# CIHM <br> Microfiche Series (Monographs) 

## ICMH <br> Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques


## Technical and Bibliographic Notes / Notes techniques et bibiliographiques

The Institute has attempted to obtain the best original copy avallabie for filming. Features of this copy which may be blbliographically unique, which may alter any of the Images in the reproduction, or which may slgnificantly change the usial method of filming are checked below.


## Coloured covers /

Couverture de couleur


Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Cou rerture restaurée etoou peliliculée
Cover titie missing / Le titre de couverture manque
Coioured maps / Cartes geographiques en couleur
Coloured ink (i.e. other than biue or black) /
Encre de couleur (l.e. autre que bieve ou nolre)


Coloured plates and/or lilustrations /
Planches etou iliustrations en couieur
Bound with other material /
Reilé avec d'autres documents


Only edition avaiiabie /
Seuie édition disponlble
Tight binding may cause shadows or distortion aiong interior margin / La reliure serree peut causer de l'ombre ou de la distorsion ie long de la marge Intérieure.

$\square$
Blank leaves added during restorations may appear within the text. Whenever posslble, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, iorsque cela était possibie, ces pages n'ont pas été filmées.

Additional comments /
Commentaires suppiémentaires:

L'Institut a microfilime ie mellieur exemplaire qu'li lul a été possible de se procurer. Les détalis de cot exemplalre qui sont peut-etre uniques du point de vue blbllographlque, qul peuvent modilier une Image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont Indiqués cl-dessous.

## Coloured pages / Pages de couleur

Pages damaged / Pages endommagces
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoioured, stained or foxed /
Pages décoiorées, tachetées ou plquées
Pages detached / Pages détachées
Showthrough / Transparence


Quality of print varies /
Quailté inégale de límpression
inciudes suppiementary materiai/
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refiimed to ensure the best posslble Image / Les pages totaiement ou partieliement obscurcies par un feuillet d'errata, une pelure, etc., ont été flimées à nouveau de façon à obtenir la meilleure image posslble.

Opposing pages with varying coiouration or discolourations are filmed twlce to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décoiorations sont filmées deux fois afin d'obtenir la mellieure Image possible.

This item is filmed at the reduction ratio checked below / Ca document eat filmo au trux de riduction indiqus ef-inatere.


The copy filimed here hes been reproduced thenks to the generosity of:

> Stauffer Library
> Greon's University

The images oppearing here are the beat queliky possible considering the condition end iegibiiity of the originoi copy and In keoping with the niming contrace specificetions.

Originai copies in printed paper covers are flimed beginning with the front cover and anding on the last pege with e printed or iliustrated impression, of the back cover when eppropriote. All other originel copies are filmed beginning on the tirs: page with e printed or iifustrated impression, and ending on the ievt page with a printed or illustrated impression.

The iess recorded frame on asch microfiche shali contain the symboi $\rightarrow$ Imeaning "CONTINUED"), or she symboi $\nabla$ (meaning "END"). whichover applies.

Meps, pleres, charts, are., may be fiimed at different reduction ratios. Those too iarge to be entireiy included in one exposure are fiimod beginning in the upper ioft hand corner, ioft to right and top to botsom, as many frames as required. The foliowing diagrams iliustrate the mothod:

L'exsmpiaire fiimb fut reproduit grice at is géndrosite de:

> Stauffer Library amen's University

Les images suiventes ont dte reproduitss evec is plus grand soin. compte renu de le condition as do le notrerd de ioxemplaire fiimd, st an conformite avec ies conditions du contras de filmage.

Lee oxempiaires originaux dons la couverture an papior ast imprimde sont filmds on commençant par ie promier piet et en terminent soit par lo dernidre pege qui comporte une emprointe dimpresaion ou d'iliustration, soit par le second piat, seion lo ces. Tous iss autres exemplaires originaux sont fiimts en commenpant par le promidre poge qui comporte une emprointe d'imprasaion ou d'iliustretion of en terminant par la dernidre page qui comporte une telle emprointe.

Un des symboies suivants apparaitre sur io dernidre image de chaque microficho. salon le ces: io symboie signifie "A SUIVRE", lo symbole $\nabla$ signitio "FIN".

Les cortes, pianchos, rabieoux, orc., peuvent dere fiimbe do des raux de reduction diffdrents. Lorsque ie document est trop grand pour dere reproduit en un soul ciicht, if eas filmd \& partir de i'angie suplriour geuche. de gouche à droise. ot de haur en kese, on prenent le nombre dimages ndeossaire. Les diagrammes suivanis iiiustrent la méthode.




## THE NEW <br> PRACTICAL REFERENCE LIBRARY

## EDUCATOR VOLUME

CONTAINING HUNDREDS OF SPECIAL articles on canadian subjects, TOGETHER WITH COURSES OF READING AND STUDY, OUTLINES, QUESTIONS AND GRAPHIC ILLUSTRATIONS

Editomin-Chief
JAMES LAUGHLIN HUGHES
Chief Inspector of Schools, Toronto, Ontario
Asociate Editor
A. MELVILLE SCOTT

Superintendent of Schools, Calgary, Alberta

## VOLUME VI

INCLUDING INIDEX

TORONTO CHICAGO HANSON-BELLOWS COMPANY

## TABLE OF COMTENTS <br> Volume VI-The Educator

Injaodeciory ..... Pase
This Volume and Its Object
5
5
How to Study
6
6
To the Ambithous Young Man and Woman
8
8
To the Boys and Girls
0
0
To the Teacher
10
10
To Parents
11
11
Aartculture
13
13
Abchitecture ..... 45
Arathmetic
Arathmetic
50
50
Elementary Aloebra
103
103
Astronomy
Astronomy
111
111
Athletics
Athletics
119
119
Biography.
Biography.
126
126
Botany
Botany
195
195
Canadian Government .....  208
Chemistry
229
229
Domestic Science.
Domestic Science.
234
234
Drawing
Drawing
246
246
Ethics
Ethics
273
273
Geography
Geography .....
280 .....
280
Geologr
Geologr
341
341
History
History
348
348
Industares
Industares
412
412
Kinnergarten
Kinnergarten
455
455
Language and Gramamar
Language and Gramamar
492
492
Lin' zatr re
Lin' zatr re ..... 541
!-• . Bankina ..... 558

- ..... 566
study ..... 569
Orthography ..... 585
Painting ..... 616
Physical Culture ..... 621
Physics. ..... 629
Physiology ..... 636
Paychology and Pedagogy ..... 648
Reading ..... 656
Sculpture ..... 661
Story Telling, Games and Plays ..... 676
Workshop, The Bor's ..... 682
ZooLogy ..... 705728


## The Mother's Creed



BELIEVE, with the sardener, that the youngeot plants ahould have the tenderent care; that the kabite of carly youth should be 00 moulded as to develop fixed traits of sood character in the adult.

I believe what one wille to be, one can be: "that education laye the foundation, ut that self-education erects the building; " that the mind can only poesens that which is does.

I believe that obstacies and reverses are but qual-ity-teating stepping-stones to success; that the room for improvement it the largest room in the world.
$I$ believe that within the bresst of every child is an inatinctive deaire to be sood; to erow; to learn: to work: to love; to achieve.

I belleve in home encourasement; that a nome without sood, useful books is like a home without windows: that where children are there should be found the treasure thoughte of the greatest men and women of all ates which ever beckon on and on, in. spiring to higher ideale and nobler ambitions.

I believe that the mind can only be rightly formed when it is rightly iniormed; that opportunity ever knocks at the door of those who are rishtly equipped by exercise. battles: thes the power to think grows

I believe in the pleasure of self-sacrifice, the price paid by hundreds of mothers of world-renowned men.
$I$ belleve in the education that stimulates thourht: develops self-reliance and leads to a delight in whatever is fair in nature, in whatever is true and beautiful in literature and art.
-J. H. H.

## The Teacher's Creed



BELIEVE in boys and girls, the men and women of a great to-morrow; that whatsoever the boy soweth the man shall reap.
I believe in the curse of ignorance; in the efficacy of schools; in the dignity of teaching; and in the joy of serving others.
I belleve in wisdom as revealed in human lives as well as in the pages of the printed book; in lessons taught, not so much by precept as by example; in ability to work with the hands as well as to think with the head; in everything that makes life large and lovely.

I believe in beauty in the schoolroom, in the home, in daily life and out of doors.
: llieve in laughter; in love; in faith; in a.. .deals and distant hopes that lure us on.

I bellieve that every hour of every day we receive a just reward for all we are and all we do.

I believe in the present and its opportunities; in the future and its promises; and in the divine joy of living.
-Edwin Osgood Grover.

He that loveth a book will never want a failhful fiu id, a w.olesome counselor, a cheerful companion, and an efficient comforter.

# The New Practical Reference LibRaRy 

## VOLUME SIX-THE EDUCATOR

## INTRODUCTORY

## This Volume and Its Object

The Dosire for an Education. An educator of note has plaeed himself on record as saying that a person is half educated an soon as he begins to seek knowledge for lts own sake. Certainly firm determination to alvance one't education at once gives stimulus '? every serious and worthy endeavor, alds fris: and mental balance, suggests positive direction for the expenditure of energy and begets a feeling of the responsibilition of life, at regards both the person himeelf and his duty toward the world. A young man or woman begins to grow jut as moon as there is discovered in the soul an andeat denire for growth.
The methods by which one may aequire an education are manifold. Chief among these are the public instltutions of learning; however, the benefits of the regularly appointed school syatems unfortunately are denied to many and are not embraced by others for laces of appreciation. Selfeducation is the only means by which a vast number rise in the mental plane; the history of numberiess self-inatructed, yet notable, men and women gives courage to young people everywhere to believe there is practically no limit to their own powers, if but determination be yoke : to ambition.
Helps to instruction, of a dependable character and true to pedagogical ideals, are rare. The lone student under the evening lamp, the mother attempting to help the son or daughter on the lessons of the day, the teacher impelled by necessity to seek new material and attractive ways of presenting trite subjects-all recognize this fact. The publishers of Tye New Practical Refinunce Library have labored hard and with unsparing expenditure to produce something to meet the prowing demand for truly helpful study aids. To the five volumes of the reftazece Library has been added this
valuable sixth volume; the two units combine tr give to atulent, paremt and teacher a hoo a school of practical knowledge. In the is volumes, much care has been taken in arrans ment that any subject of importance can be atulied in a aystematic mannef.
The Edecaton aims to develop a denife for knowledge for lts own akke and to awaken a deeper interest in thowe aubjects which are chosely related to the every-day affairs of lts readers. It is planned in a way to arouse interest, syatematize study, create or atimulate the habit of investigation, strengthen self-reliance, broaden the view of life and add to the num total of information useful in every avenue of endeavor.

The Outhimes and Type Itudies. The outlines am! type lemoons have been carefully prepared with the view "hat they ahall enable the teasher and pupic ", unise $\ln$ a aystematic manner the subjectes which they an: allied. This sixth eolume en is models of this character on pructica!!j every department of secondary educati $\because$, and these are so arranged as to make thes. rimablo in all branches of school york. The undels furnish the ambitious teacher "ith an abuminnee of suggrative material for any hise of study during idle hours, and they also point the way to successful review work. From these outlines the teacher will find it an easy and pleasant task so to arrange and present the branches she teaches that the interest of pupils in their work will be gratly increased.
Courses of study are in use in all public schools and teachers are expected to conform to these in their daily work. In the preparation of The Educator the editors have made frequent reference to and use of the best courses of atudy in the Dominion of Canada, and the work in this volum is so arranged as to conform to the

## Introductory

best of these models and thus meet the most practical needs of teacher and pupils.

It ahould be noticed that all the main divisions of each outline are treated with care and exactness in this set of books. To illustrate: In the outline on Agriculture there are various subdivisions, such as soils, plants, etc., each fully and interestingly presented in such a way that it can be outlined. The reader is also referred constantly to lists of correlated suhjects, by means of which it is possihle to extend casily his study and research.
The Guestions. Features which will appena to parents and teachers alike are the lists of interesting questions which follow the outlines. The importance of putting questions in good form is appreciated by every teacher and mother, and the lists in this volume furnish excellent models for many others. These questions also afford the student, young or old, a wide field for pleasant and profitable study. It must be apparent that hy the use of this feature in connection with The Niw Practical Rimarince Library many an otherwise long, rainy day or winter evening can be devoted to profitable exploration into some field of knowledge. Home study clubs may be organized. Father and mother will find an hour spent with the children in study invaluahle to themselves. The hahit of alloting a few minutes each day in this way must recommend itself to all who value time and who know what it means to be well informed.

It will be noticed that many of the questions relate to the children's immediate surroundingthe home, the playground, the neighborhood, their city and county. This leads to keener observation and increases vastly their appreciation. For home study work, begin with topics relating to the breakfast tabi--coffec, sugar, salt, orange, tea; note the interest immediately aroused and the earnest effort to procure information onncerning these things. Many of the questions will awaken curiosity; curiosity will in turn excite interest, and interest leads to investigation and study.
In consulting Taz New Practical Refrerence Library for the information sought from these questions, the student should turn to the suhject most directly referred to in the question. Aimost all the questions are based on information found in the Library. Their value lies in the fact that they must be investigated. There is soon developed the hahit of research, and this leads to a stronger desire for knowledge. A few questions are asked in The Edecator that compel the use of pencil and paper to answer, such as, "How many Nova Scotias can be carved from Alberta?" "What would be the population of Saskatchewan were it as thickly settled as New Bunswick ?" In each suhject the information needed as a basis for solution will be found in regular alphabetical order in
this set of books.

## How to Study

How Educstion is Aequired. What you know has come to you in three ways. You have listened to the words of the teacher, who with elaborate care has uncovered valuahle truths to your understanding; you have kept your eyes open and hy observation and experiment, perhaps in lonely vigils, have forced answers to your persistent inquiries; you have made wise choice of books, and in them have found the wisdom of centuries.
All three elements comhine to give one a good education. The presence of the teacher is essential in the years of early youth; then is formed the desire to study, the determination to ask nature and art and science to give up their secrets; the true teacher creates in her pupils a longing for knowledge of the things which always lie just a little beyond the present vision. Fortunate is the boy or girl whose dominant trait is an inflexible determination to advance.

## Benefits of Observation. Shakespeare knew he wrote the truth when he said there

 were "sermons in stones," and "books in running hrooks." Bryant urged us to "go forth unto the open sky and list to Nature's teachings." It would be difficult to estimate the proportion of our practical knowledge which results from alert observation-"keeping our eyes open." It is the beginning of all education. Little children are "animated question boxes;"; Nature puts thousands of questions to them, and they have every right to have those questions answered. As they grow older, if the faculty of observation has not been discouraged, boys and girls naturally help themselves to answers to their inquiries, hy consulting books and periodicals, diligently seeking the truth from every source available. Few people get so old that they lose desire for investigation, provided theystarted right.

## How to stedy

Colleges and universities do not train all the educated people of any generation. Their graduates doubtless are more scientifically developed, but the ambitious, determined young man or woman who has to depend upon home study and local assistance may easily distance the majority of the college bred. Some of the greatest men and women hold college diplomas and degrees; the same have been earned by many who cannot more than earn a mere living. Merely going to college does not insure success; the mental and physical equipment which may make a college course successful will help a young person to a liberal education through his own efforts. Once solve the question, "How should I study 9 " and the learning of the world, just as far as you wish to follow it, lies at your hand for mastery.
some Principles. Below are a few brief definitions and suggestions, stripped of technical and psychological detail, which will be helpful to every student:
Srudr. The systematic application of the mind to the purpose of acquiring lnowledge, especially from the printed page.
Inrzapss. The mental satisfaction one experiences from the study of a subject, or the appeal which the unfolding of a subject makes to one. Interest is present when one feels a desire to continue an investigation well begun.
Atreminon. To succeed with study one must be able to shut out from the mind all subjects and thoughts unrelated to the subject at hand. The mind cannot be active and alert in pursuit of definite facts which it is necessary to grasp, weigh, classify and properly assign, if ideas and devices entirely foreign to the investigation are at the same time encouraged or even permitted on the horizon oi thought.
Concentration. This may be defined as intensified attention. Concentration is merely a matter of practice, and reaches its highest degree of perfection when one is able to keep his mind upon his work, regardless of usual noises and ordinary conversation near at hand. Do not believe after even scores of attempts that you cannot acquire the fine art of concentration. It is possible, in every case. When your interest is sufficiently strong the thing is achieved. Marshal the forces of your will. The parallel rays of the sun falling directly upon an object are harmiess. Puss them through the burning glass, concentrate them upon one spot, and you may start a mighty conflagration.

Undmestandino. To understand any matter

## How to stady

is to grasp fully its inherent truth and to identify it clearly in its connection with all related facts. As long as one sentence on a page remains in the least obscure do not turn the page Hunt for the missing element, and do not abandon the search until you discover it.
It is study of this character that renders mastery of any subject comparatively easy. A wise old teacher once said that Greek could be made as simple as arithmetic; it is only necessary to master-to understand-every part of lesson one before beginning lesson two, and knowing you have mastered lesson two before approaching lesson three. He was right. If one always proceeds from the known-mark the emphasis-he will have slight difficulty in overcoming the unknown.
In developing your understanding of a subject, omit no step in its unfolding. One step leads to another only a little ahead; do not omit the first one in advance and jump to one still farther ahead because it may appear attractive; you may be missing something impcrtant-a link in the chain which sooner or later you must go back and pick up.
study Principlos, Not Rulos. When you comprehend the principles of a subject in their relation to each other and their relation to other subjects, the rules will take care of themselves. In iact, your best rules will be those which you deduce from your study. Rules are based upon principles, and unless principles are understood rules are of little value.
Oorrelation of Imbjects. While on any topic keep in mind its relation to other departments of education. To illustrate: Note the close connection between history and geography, between literature and all of the sciences, and trace these connections to the fullest possible extent. It is only in this way that the full significance of any subject can be understood.
study siyatomatically. This you are bound to do if you trace relations which the various departments of a topic bear to each other. The systematic arrangement of a subject under divisions and subdivisions assists in its mastery and also aids the memory. Suppose you wish to learn about coal. You will wish to know (1) what it it ; (2) how it is formed; (3) the different kinds or varieties; (4) where it is found; (5) the countries leading in its production; (6) its principal uses; (7) how long it has been used; (8) when it was discovered in the United States, whether it is produced in Canada, and the first

## To the Ambitions Toung Man and Woman

wo in your country to which it was pur. It in it in in to have an ourify.
Use Boferonet Eooks. No one text-book contains all of the information to be obtained on one aubject. Neither doess it point out all of the vical relations of this suhject to others. Therefore, one who wishes to study broedly needs to have at hand other works. Among the most valuable of these is a reference work which contains the leading facts in the suhjects presented. The use of such a work broadens one's study, saves time, and leads to a fuller comprehension of the subject than is otherwise possible. Cot literal works on the same subject are also of value.
We do not wish here to state a matter which may be in any sense out of place, but in connection with the subject of reference books it is well to call attention that in the six volumes of Tre New Practical Refarence Library we believe there is offered to the private student the greatest amount of help in condensed and usahle form that can be found in print. We stated above that one should study a subject from a well-prepared outline. This sixth volume preents hundreds of outlines embracing almost

## 8 To the Ambttores Young Man and Woman

every topic within the range of secondary educetion, and if studied according to outline one is sure to have omitted no material fact and to have developed the topic in a logical and sensible manner.
study with Enoreg. When you study put your best effort into the work. Never allow yourself more time than is necessary to accomplish a task. Many people permanently injure their capacity for mental work hy acquiring listless hahits of study.
8tudy to Apply Your Inowlodge. The only test of knowledge is ahility to use it. A boy may commit to memory all of the rules in his arithmetic, hut if for his father he cannot compute interest on a note he does not know the rule for finding interest, however glibly he may repeat it.
The Inoy to Growth. The spirit of melfhelp is the basis of all genuine growth in the individual. The opportunities for study which the quiet of the home offers are unequaled. The way the leisure hours have been used has determined the success or failure of legions of men and women.

## How do you spend your leisure hours? <br> To the Ambitious Young Man and Woman <br> There are more than six million people out

of school in the Dominion. Whatever the school may do to transform the unkettered child into a reasonable, rational being, it has fallen far short of its exalted purpose in the case of that young person who leaves its doors without an ambition to continue his study by himself.
Bishop Spaulding says that education lays the foundation, but that selfeducation erects the building. It is a very wise person who determines that there shall be no time limit to the years during which he shall study and continue to develop. No one is so great in business or $s 0$ skilled in the arts or the professions that he can afford to neglect self-improvement. Not to grow is to retrograde.
Someone who is just now a rival of yours for local honors or emoluments is possibly working hard while you sleep too long or play too much. Some day you may wonder why he is always "lucky" in pushing ahead of you and others and grasping the coveted places. Do not call it "luck;" it is preparedness. Your outlook this minute is as fair and promising as his.
Life is a battle. The victors are those who edvance to meet their opportunities and who
hesitate not to grapple with the most serious obstacle; they get strength for every fray from each addition to their fund of practical knowledge; knowledge gives them power.
Mast people unconsciously waste time sufficient for the acquirement of a classical education. In many instances this time is wasted because when the leisure fifteen minutes come they have nothing at hand on which to spend that quarter of an hour.
The ambitious young person denied the advantages of a hroad education will find that Tax New Practical Refarence Librart and The Educator places at his disposal, bystematized and classified, the fruits of ages of investigation.
An hour a day devoted systematically to study will give any man a good education in the course of years. It will give him capital on which he will draw dividends throughout life. Today more than ever before it is the man who knows, the man who is hroadly and correctly informed, the man who is ready to grasp opportumities as they come, who succeeds. An old Armb proverb, whose authorship has been unknown for hundreds of years, is worth remembering:

To the Doye and Cirla
4 mas who know not and knows not he knows not,
He is a fool; shun him.
A man who knows not and knows he knows not, He is simple; teach him.
A man who knows and knows not he knows,
He is asleep; wake him;
A man who knows, and knows he knows,
He is wise: follow him.

## To the Boys and Curla

"Industry is the one really great thing you will need. If you want the highest positions you must pay the price. This world runs a oneprice store and has no bargain counters. Don't expect the goods unless you are willing to pay the price." So said a very sensihle man, who became Governor of his state and later United States Secretary of the Treasury.

## To the Boys and Girls

The boys and girls of today are going to be the great merchants, the teachers, the preachers, the lawyers, the manufacturers, the honest and respected carpenters, the engineers, the charity workers and the competent home-makers in the days soon to come.
Just now you are finding this to be a great, big, beautiful world, and of course you are thankful every day that you live in it; has it occurred to you that you may be destined to take an important part in the great things that are going to happen within your lifetime? There are very many things you must learn in getting ready for a! that is before you, and your knowledge will come to you in many ways. Much of it will be secured in school, from teachers and books; much from your reading and study at home, with the help of your parents; hut a very great proportion of what you are to know you will get day hy day simply by keeping your eyes open and secing things that are constantly taking place all about you.
It isn't simply a knowledge of arithmetic that makes a man a good merchant, nor is it enough that he knows grammar and history. Everything he learns which helps to make him think along straight lines is just as useful as mathematics and science. So when you learn that almost on the same day every spring a certain kind of bird makes its appearance in your neighborhood, and that on almost the same day every fall it flies south again, and you associate this knowledge with other related truths, you are being educated. You are learning to think and to reason, and when from all the knowledge you have acquired you can discuss any question reasonahly, you are well advanced in education. A man named Robert Louis Stevenson once
wrote,
"This world is so full of a number of things, I'm sure we should all be nas happy as lingings." This applies very directly to boys and giris. Every time you step out of doors into the sun-
shine and a mong the trees you are in the midst of a world of wonders. The wonders are there, hut that doesn't necessarily mean that you see, them. Most things in nature are shy; they do not thrust themselves before your faces, hut wait quietly for vou to discover them.
In the world of hirds there are hundreds of facts that you will learn with enthusiasm, and the more you know alout these feathered friends the hrighter and more attractive will all outdoors be to you. What birds huild their nests on the ground? What one never builds, hut takes possession of a home that another has huilt? What ones are masons, huilding their nests of clay? Do you know why the meadow lark and the oriole are in the hlackhird family, or why the rohin and nightingale are thrushes?
The fowers constantly remind us of all that is good and beautiful, and boys and girls, and men and women, too, are better because of knowing them. You can find out in a day enough about our common flowers to keep you wondering for,$m$ inth. The wild rose is a very common blossom. You doubtless know that the large, beautiful rose in our front yards belongs to the same family, but have you compared this wild specimen with other flowers? You will find that the spring hlossoms of the peach, the pear, the apple and the strawberry are very much like it. Indeed, we class the rose and all of these in one important flower family. The lily, the tulip and the hyacinth all belong to the aly, family. Can you find why we class the onion and the asparagus as relatives of the lily and members of its family? Learn all you can about the locust, clover, peas and beans; if you study far enough their close relation will be shown as members of the pulse family. Under "Botany," in this volume, we tell a good deal more about these families of flowers, fruits and vegetahles. Did you ever gather huttercups? of course you have done so, many times. But can you draw the roughest kind of aketch of what the
leaf of a buttercup looks like? Can you tell how the bark of the poplar tree differs from the bark of a maple tree? Do you know why the pupils of a cat's eyes diffier from those of a dog's? If you do know such things as these, the education of your eyes has begun.
Everywhere you go in the summer time you can find thousands of tiny insects crawling along the ground. Each has an existence just as real as that of the huge elephant, and there is something interesting about most all of them. There is enough to learn about the ant to employ your of help in the weeks. We give you a good deal of help, in the study of the ant in "Nature Study," in this volume, and there is also a
beatiful colored picture in the benutiful colored picture in the same place.
In a certain sense, no books can help in this part of education, this learning to see by seeing; but in another sense books are a great help. For it is true that we often see a thing after we have looked at a picture or read a description of it, when we have overlooked it scores of times
belore.
This is a wonder world, indeed' Not one of

## To the Tescher

us will ever learn more than a small pari of what nature can tell us if we are always watchful. Tee New Practical Refermace Librany was made to be of special help to boys and girls in their scarch for knowledge. Many color plates that will help educate you are provided, and they have been made particularly attructive, with your interests in mind. Do you want to know more about the honey bee, or about sugar, corn, cotton, wilk, insects that look like the things to which they cling, the ant, flowers, birds and their neats and eggs-they are all shown true to the coloring of nature and are accompanied by carefully written descriptions. Read these books and have your eyes open every time you go out of doors. Ask questions of parents and teachers and be determined to understand the secrets of nature. They are waiting for you to discover them.
The boys and the girls with eyes and minds alert to see and know things in nature, and w:th questioning lips to demand answers to things they cannot understand, are on the sure road to

## To the Teacher

A. Place of Bigheat Eonor. The person who underestimates the position among the professions that teaching occupies is unworthy to enter the schoolroom as an instructor of the young. Giving all possible honor to the dignity of the ministry, admitting the service to mankind of the medical and legal professions, yet it remains true that the influence of the teacher upon the boy and girl is powerful beyond the precept and example of any other persons, excepting the father and mother in the home. The purity of the life of the preacher is accepted as a matter of course-such qualities are expected of him as of one considered, justly or otherwise, as "set apart:" The sincere and blameless example of the teacher occasions more comment, commendation and emulation; a laxness in deportment or a serious blemish in character is as quickly noted and is as likely to serve as a pattern. Teacher and pupils are in intimate association; the latter are forming their futures-are "finding" them-selves-and the responsibility of being a pattern and examplar is on the former, no matter how strongly she may wish it otherwise.
Tho Maling of a Man. The teacher may turn a wayward boy ints the making of a truly great man; we have witnessed the miracle. A eingle incident will mark the beginning, then
nothing but level-headed management and tact are needed to complete the transformation. Eralted may that teacher feel if in thirty years some strong man may say, "Your example and your training gave me my inspiration." The teacher's power is a thing not to be lightly esteemed. It is always in evidence and always forceful, usually it is most conspicuous when unconsciously displayed.
Edecational Proparation. There is another side to the teacher's responsibility-extremely essential in the estimation of all, all important in the view of many. It is the degree and quality of educational equipment. If you stand before your classes with little comprehension of the subject-matter of the lesson; if you bring to your duties a feeling that you will in some manner get through the day without serious difficulty and without exposing your lack of knowiedge, even though you fail io make careful preparation, you are not doing your duty-to yourself, to your trusting and dependent pupils, or to your salary-paying patrons.
Every year somewhere in the United States and Canada higher educational qualifications are demanded as a basis for granting teachers' certificates. The standard is fairly high now, but it is going to be higher. You must face this

To Paronts

## To Paronts

fact and should not do so with resentment; it is for the good of every interest concerned. The boys and girls of this day are getting the preparation with which they will assume the duties of tho men and women of tomorrow; before you in the schoolroom is a possible future governor or representative in Parliament; a manager of a great public enterprise; a budding scientist or a great writer; a girl with latent power to hold the world's attention. If you judge the future man or woman by the unattractive dress, the freel is and the snub nose, you are not a teacher; you are merely a timeserver. The children deserve something better behind the teacher's desksympathy, insight, imagination, that feeling of responsibility which will exalt the work of the day. Continue to Grow. Strive, then, to make
yourself intellectually worthy to stand befors the little men and women. Give them the best that is in you; just as long as you feel unequal to the task study hard to improve yourself. Constantly find new, fresh material for your charges; this will require continual and patient research, but is worth every effort that may be put into it. The benefit you will get for yourself will exceed the great service to your pupils.
In this volume you will find literally hundreds of plans to develop your efficiency and add to the breadth of your understarding. Acyuaint yourself with what this volume conteins and learn how it supplements the subject-matter of The New Prictical Referrince Library. No better aid to the hard work of the day could well be offered you.

## To Parents

Some of Your Troubles. Your time is limited; your duties call with ins istence; few days are sufficiently long in which to do well all the things you know should be done. There is work in the kitchen, in the parlor, in the office, demanding attention; household supplies to be purchased, children to be cared for, furniture to be dusted, table to be set and cleared away; clients to be pacified or angered, patients to be cured or left with hope abandoned, goods to be bought and sold. Surely the stress seeems not to be less from month to month, but rather to grow more severe. There is not time to raise your head from the work at hand; no opportunity to get away from encircling duty.
So have you bcl eved, and so have others; that is the attitude of most of us. We are workers, bound to toil to sustain our lives and care for those to whom we are under loving and legal obligation. That there can be much variation in this unattractive program of life seems impossible. However, examples a!ll around us prove without question that every one of us busy people always finds the time to do the things lee wants to do. If parents rise to their full responsibilities and deal justly with their children and with the world there must be found the hour for relaxation, for vision not bounded by labor; the hour of mental and spiritual exaltation, shared with others for the common good.
The Responsibilites of Parenta. The country imposes upon parents the moral responsibility of rearing their children in such environment as will develop useful citizens. This slould
be a function of government, crystallized into law, because necessary to the perpetuation of our institutions. To date we have reached the point where there is a legal demand that the child be given educational privileges until at least fourteen years of age. It is not enough; citizenship should reflect higher intelligence.
We do not do our whole duty when we feed, clothe and shelter the boy and girl. They are more than animals; there is more than the physical to develop. Neither is it enough when we merely comply with every legal demand respecting their education. The children look for and naturally expect assistance and sympathy from the parent in everything which will strengthen the halting footsteps. That child rill complete the grammar school work and nine times out of ten will enter bigh school who at home has needed coobperation. The loyal boy or girl knows that father and mother are wise and good-why not demonstrate your goodness and do your best to measure up to the juvenile standand of wisdom established thus in faith and love and perfect trust?
Surround the child with an atmosphere of mutual understanding; sive him to know that the problems of existence that he has to solve are your problems, too; place at his command efficient helps to study and then help him in his studies-you then have risen to the full stature of true parent.
Many of us wonder why some boys take such delight in their school work, while others manifest so little interest in it. Let un visit the homes of two boys belonging to these respective clases.

## To Parvats

The Intarsated E0y. In the home of the boy who is interested we find a led with an active and inquistive mind. He anks scores of questions, come the result of his dey's work at school, some prompled by his father's and mother's discumion or reading, others the result of his observations in the home or on his way to and from achool; still others have arisen because of his own thinking and discussions with his playfellows. We admire his intereat and alertpess. We redive that he has tugun right, and with a little direction will continue right. Instinctively we think of the successtul professional and business men whom we have known as having been just such boys, retaining all the years theha bits and traits of early boyhood. Inquiry reveals the fact that this boy has been blessed with teechera who helped him moot by leading him to help himself. They have stimulated him to observe and investigate subjects and questions, and to thinkin short, to do for himself. We also learn what is far more important-that this boy is constantly encouraged along his lines of study by an interested father and mother, who are never too busy to answer his questions, and who provide him with the means for self help and improvement. The Unintereited Boy. In the second home we find a boy who manifests no interest in his school work or studies. He does not observe; he does not ask questions; he does not think or reason. He has a mind, brit does not hunger for knowledge; he prefers idleness to activity; in short, he seems to be asleep rather than wide awake. Again, we call to mind the many idlers and no-accounts, the shiftless and dependent whom we have known, and in imagination we see them in their boyhood in the same condition as the boy before us. Inquiry reveals the fact that this boy's teachers have stimulated him to thisisk, to observe and to do for himself, but that he fails to respond because his first efforts along this line have met with no encouragement from father or mother, who feel that their whole duty is done when he is sent of to school, forgetting that he needs their $k \cdot 1 \mathrm{p}$, their encour-
agement, and, above all, their intereat in his work.
Again, father and mother cannot help him because they do not understand his work, or are too busy to give it their time. He finds no helpful working tools on his study table. The question that he was assigned to look up yesterday he cannot answer on his return to school today. After numerous failures he feels that the odds against him are too great, the humili: ion too much, and he becomes discouraged. Soon he loses all heart and interest in his work, and simply drifts. The reacher's best efforts will fail unless they are seconded by home influence.

The Right Eolp. This sixth volume of Trie New Prictical Reference Librait has been prepared to enable parents and teachers of the first boy to hold and develop his interest; to enable the parents and teachers of the second boy to encourage and awaken and stimulate in him a desire to learn and achieve. It furnishes a field of natural rescarch and delightful study. In the preparation of Tue New Pasctical Reference Library, the educators have aimed to give information in simple, concise, and interesting manner on practically every subject that will come up in connection with a boy's entire school life. and, best of all, to give it in such a way that he can find it by himself and for timself. Intelligent parents and teachers have long felt the need of such a work.
The progress of events makes a broader equipment necessary to success in the present than it did in former years. The equipment that was sufficient for a boy twenty-five, or even ten or five years ago, is not sufficient today. The world is nearer to us; life is more complex, more full of meaning, and to succeed requires a better trained mind than was required in the days of our fathers. Some parents are so engrossed in the accumulation of property or the prosecution of business that they give little attention to the educational needs of their children. Such should bear in mind that "To make a life is more than to make a living."


A Developing Edence. Agriculture is the oldest of occupations and the foundation upon which all others have been reared. It is at once the must extensive business in the world and one of the leading sciences. It is a business, because so many follow it as a means of livelihood; it is a science, because earnest men are studying, arranging, and classifying the facts they have learned about agriculture, and in the light of known things they are reaching out in search of unknown truths, that they may be classified and handed down for the benefit of humanity for all time to come. Science is classified knowledge; so long as men knek only certain isolated facts regarding agriculture, and were ignorant of the relation one truth bore to another, agriculture was not on a scientific basis.
Modern demands are creating a wonderful change in our point of view; the progress of civilization, the competition with other occupations and the constantly increasing demand for agricultural products are compelling us to set aside old methods and bring into existence a new era for the farmers of the world. Concerning this, the director of the Agricultural Experiment Stations of the United States Government recently said:
"Without doubt the character of our agriculture is rapidly changing. It is becoming more highly diversified, its occupations are becoming more complicated, the use of intricate machinery is becoming more common and necessary and, in general, successful farming now requires a wider knowledge and a greater skill."
Why the Parm Was Not Attrectivo. We have heard much in recent years about desertion of the farm by young men and women-that their education has been "away from the farm, to the city and to the factory." Not only has
hard labor induced this exodus, but another cause can be as reasonably assigned. The methods employed by the old-tine agriculturist have been too slip-shod, his horizon too limited; the esthetic feelings have been discouraged by reason of the drudgery necessary with ancient tools and wom-out ideas. The dawn of a new era is here, bringing with it the application of scientific ideas to every branch of the industry; improved machinery which multiplies results and saves time and toil and money; and a growing feeling of dignity and position which affects the entire social structure.
There are men :ind women and young men and young women not yet awake to the new era in agriculture. They do not know that the Dominion government spends very large sums of money annually to learn of the agricultural possibilities of each section of every province and that all the resulting valuable information is given to the public without the slightest cost. They do not know why certain crops so frequently fail, but if they would write to the nearest Agricultural Experiment Station they might learn the reason. They should wish to know something about rotation of crops on such soil as covers their farms: the information is ready for them if they but apply for it.

The whole country is beginning to recognize the great advancement in agriculture, and still greater benefits will be ours when the fullest advantage is taken of the scientific experimentation constantly carried on under provincial and national authority.

Recognizing the supreme importance of agriculture among our industries, the editors of Tite New Practical Reference Librakt have placed in that work ample information along all lines of agricultural development. See $A g$ ricultural Experiment Stations; Agriculture; Ag-
rientrove, Deparamens of; Com; Cotton; Irrigan tion; Hilk; solls Wheot, and many other thedred topice. In addition to articles of this naturs the article in thio sixth volume deale more apecifcally with the farmer's needs and showa how in many mays be can lighteen hio haborr and at the mame time increase his producta.
Prolemor L. H. Bailey of Correll University mays: "In an agricultural community all the harme of the neightorbood will aford training in the elements of failure and aucceses." It is for each farmer to determine which elements shall prevail in the triining which his farm affords. Old conditions and prectices can no longer win, but under the new methods now in vogue, the farmer's life can be made the moot enjoyable and the most substantial on earth.
Celontiline Farming. The application of the principles of physics, chemistry, botany and oiher branches of physical science to agriculture in a scientific manner is of comparatively recent date, 80 recent, in fact, that only a small percentage of the acreage under cultivation in the Dominion is tilled in scocordance with scientific melhods. The chief requisites in scientific farming are analyzis of the soil to determine the crops and fertilizers best adapted to it, selection and texaing of seed to secure the greatest yield, operation and care of agricultural machinery, the study of the life history of noxious insects and plant disensess for the purpose of their prevention and extermination, the application of scientific principles to animal husbandry and the keeping of such a system of accounts as will show the expenditures, receipts and net gain or low of each crop or other enterprise undertaken.

## seed

Importance. Fertile soil, good seed and proper tillage practically insure a bountiful harvest. As careful attention should be given to the selection of seed as to the preparation of the soil. Unfortunately, many farmers overlook this important thetor in their success, and, instead of a bountiful crop, they reap a moderate or a small harrest. The importance of good seed is now so fully realized that the various Agricultural Stations and the Department of Agriculture at Ottawa are giving special attention to the production of seed for planting. In some sections seed-growers' associations are formed, which derote their attention to the production of the seed most used in their respective provinces and both the Experiment Stations and the national Department of Agriculture issuc bulletins con-

## 4 acriveltare

thining full directiona for the selection, storing and teating of meod.
oharseior of Good sood. Good reed has the following chancteristics:
a. It is plump. With the exception of certain marietices of pens, sweet com and onions, whose seedr are a ways winkled, the ceed should be well filled and umooth. Seed of this sort contains the moot food for the growing plant.
b. It is of good color and luster. Good meed has a bright, clear color, appropriate to the sort to which it belongs, and it usunlly has a certain amount of luster or a shiny appearance. It the seed lacks the luster it indicates that it was packed in bulk belore being thoroughly dried. In this case it may have hented so ns to kill the germ.
c. It is not too odd. Young secds are more desirable than old ones, since the proportion of those which grow diminishes with age. Seeds that have been raised the previous season should be selected whenever possible. However, if this seed is of poor quality, the farmer must use his judgment whether to take tbis or good seed that is older.
solection of sood. The time to select seed is before the harvest, since in making the selection the characteristics of the entire plant should be taken into consideration. The first point to consider is productivesess. Seed should be taken from plants hari.g the greatest yield. The second point is resistance to drought and divase. The third is the time of ripening. These points are readily seen when applied to the selection of the seed of any important crop, such as corn or wheat. It is usually wise for the farmer to raise his own seed, for then he is sure of the variety. In selecting seed corn the farmer should watch his field during the growing of the crop and mark those stalks which retain their full vigor and bear more than one car of about the average size, provided the ears on these stalks are well filled and rounded out at the butt and tip. It is not wise to select ears from stalks standing alone or stalks which bear only one ear, though that ear is unusually large. Seed taken from such stalks is not so productive as that taken from stalks which grow under ordinary conditions and bear two or more ears.
Before the corm harvest, the farmer should go to his field, bearing these points in mind, and gather seed for the next crop.
storing the Beed. Seed should be thoroughly dried, then stored in dry, cold places. In the case of com, a large number of ears should

4 Acdealianse
ma be piled upon coe another, for in damp weather -s condition is liable to cause mold. Seed mols in which individual ears are pleced or cords - which severel eari are attached and then hung a melos or beame form convenient and ale mana for moring seed corn.
Seed for wheat, oats and other grains ahould bistored in small bulks and carefully protected them moisture. Uniess the seed in thoroughly ty when harvested, the grain is liable to be dimged by froat. When this occurs only a mell portion of the seed will grow.
Tosting Eood. Pefore planting it is wise to the the seed, unless we farmer in sure that it is mod. A simple but effective apparatus can be mode by taking a large plate, and placing upon i a sheet of blotting paper, which should be marked of into speces one inch square. In each d these speces plece a number of seeds from the seed to be used, usually five or ten. Moisten the blotting paper, then lay a damp cloth or socther sheet of blotting paper over the seal and cover with another plate, inverting it over the frut. Keep this apparatus in temperature about the mame as that of the soil at the time of planting. From day to day lift the upper sheet of paper and impect the seeds, noticing their progress in germination. The germination should be completed in a week to ten days, depending upun de $f$ ind of seed. Notice the number of seeds in each square which show signs of producing sood, strong plants and the number which have not germinated. Supposing ten seeds are in the aquare and eight of these have germinated, it is nefe to draw the inference that 80 per cent of the ened will grow. If less than this per cent germinate, the seed should be regarded as
unsafe.
If one wishes to make a thorough test of seed corn, a large testing apparatus consisting of a bor several feet square can be made and the sed taken from each ear placed in the squares marked off in the box. When this is done, the ars should be numbered, the number on the ar corresponding to the number on the seed ave in which the seed is placed. By this method, poor ears can be detected and withdrawn. The apparatus is easily constructed and the testing can be done at the season of the year when the farmer usiully has ample time for this wort of work. By continuing to select and test his seed from season to season in this way, any hrmer can improve his grade of corn or wheat ar the grade of any other crop which he raises. The profit from the increase in yield far more
than compeneates for the extru time and trouble taken.

## Agrentantal Meahdnery

Fondostell Improvemant It is a harcy from the hand sickle of our forefatherss to the havvetter and binder of the prevent day, or from the old hand atimmer to the modern cream separator. However, thew machives are no more complex than thow in general use in moot thriving farming communities. The operation and care of these machines require intelligence and come degree of mechanical skill.
On the farm, power in required for tilling the soll, planting the seed, harvesting the crops, threshing, tranaportation and such other operntions ne are necesary to transform raw material into usable products, ma in the grinding of corn, oeparating cream from milk and churning the cream. This power can be furniahed by man, domentic animals and motora. The firat is the moost expenaive and the last the least no. Wherever practicable, farmers are installing gasolino engines for grinding feed, operating cream separators, cutting fodder, pumping water and various other operations. Moreover, in some localities the auto-truck is displacing the draft horse and on some large farms in the northwest the traction engine is taking the place of the team for plowing, hauling and seeding.
Oare of Miechinery. This complicated farm machinery is expensive, and if it is made profitable it must be so cared for that it will last a long time. Many farmers by lack of care allow their machinery to deteriorate more rapidly from weather than from use. In other words, they allow it to rust out faster than it wears out. But when properly cared for and preserved, farm machinery is a profitable investment. When not in use, it costs nothing to keep it, while the teams, which can be used only a portion of the year, are a constant source of expense. The progressive farmer is constantly studying these conditions and changing his methods so as to meet them in a successful manner.
When any farm machine is in use, the operator should see that all bolts are kept tight, and all bearings are well oiled. Just as the railroad engineer goes carefully over his locomotive before starting on a trip, so should the operator of a farm machine go over his machine every morning before beginning the work of the day. The few minutes thus spent may save vexatious celays and costly repairs.

Machines should not be left exposed to the

## Agacolitims

meather, even in a dry climate. Whea the work of the semoon in completed, the machine chould be thoroughly cleanod, the iron and weel exposed to the atr and unpaisted ubould be coated with all and the machine stored in a dry building.

## The Soll

Vilue. The soll in the great morchouse of wealch, not only for the tarmer, but for all others as well. A tertile soil in the firat requisite to succemplut agriculture soil in considered fertile when it contains an abundance of plant food in such state that the plants can appropriate is as needed. The chief ingredients of this food are nitrogen, potach and phosphorus, which occurs in the form of phouphaten. The nitrogen in obtained from the decomposition of organic matter which constitutes that portion of the soll knowa as humus. Potash and phosphorus exist in the mineral portions of the soil, which must be chemically decomponed before these subotances can be used by the plant. Many mils, rich in potash and phosphorus, or both, are unavailable beceuse these substances are not in a state to make them available for plant food. On such soils the sort of fertiliser needed is some ingredient that will decompose the rock particles which hold the potash and phosphorus in insoluble form.
Eofl Analyais. Before the farmer can obtain the beat results from his labors, he must underatand thoroughly the condition of his soil; that is, he ahould know the plant foods it contains and the relative proportion of each. Also, he should know whether or not each of these foods is in such a state that it is available for the plants. So important is this knowiedge that the agricultural colleges are making soil surveys throughout their respective provinces and the Dominion Department of Agriculture is doing a similar work for the tillable portions of the public lands. Any farmer wishing to know the chemical constituents of his soil should write to the agricultural college of his province. If the soil in the vicinity of his farm has been surveyed, he will obtain the desired information. If it has not been surveyed, he will be told what steps to take to secure the analysis. In general, the funds of these colleges do not enable them to analyze soil for individual farmers. The college will, however, refer the farmer to some chemist who will make the analysis for him. The fee is usually ten dollars, but if the knowledge gained enables the farmer to produce more bountiful crope, or to render fertile what the farmer sup-

## 4 Ardeatrese

poned to be worthlees soill, the money if very wisely invented. Analyvis of the noil of many co-culled wornout harms showe that right methods of treatment will in a few years make them as productive as ever. The besk authorities state that the first 16 inches of soil contain an average of 7,122 pounds of nitrogen, 6,035 pounds of phouphoric acid and 23,100 pounds of potash to the scre. Fertilising the soll means setting thew ingredients tree as frequently as it means supplying them.
How to ittedy Soll. Firs determine whether or not the soil has been formed chiefly from the underlying rock If it has, it is of the awme componition as the rock, with the addition of humus. If the soil in alluvium, or soil that has been deposited by water which overfowed the land, its composition will be very different from that of the soil upon higher levels in the cumpr locality. Moreover, alluvium contains a large proportion of humus.
To determine the texture of soil, dry a quantity, then break it into fine particles. If it is lumpy and pulverises with difficulty, it contains a good proportion of clay. If more than one-half of it is clay, it is known as clayey soil. If about three-fourths of it is cend, it in a sandy soil, If one-fifth of it is lime, it is a limy soil. A soil containing a mixture of annd and clay is loamy.
A perfect soil contains these various ingredients in suitable proportion. It must have sufficient and to enable it to absorb the requisite quantity of air and moisture, and to render it warm and friable. It must have sufficient clay to prevent the rapid leaching or evaporation of water, sufficient lime to aid in the decay of vegetable matter and enough humus to enable it to retain the best amount of moisture and to furnish the necessary material for the chemical changes necessary to healthy plait growth.

Next determine whether or not the soil is "sour." Soils that have not been worked for a long time are liable to contain an excess of acid. Crops do not thrive in such soils, and before planting, it is always wise to test them for acidity. For this test, procure a small quantity of litmus paper from a drug store. Take a quantity of the soil and moisten it. Lay a strip of litmus paper upon it. If the soil is sour the paper will soon turn red. Soils containing excess of acid can be restored to their normal condition by treating them with slaked lime or hot ashes.
To determine the relative proportion of humus, thoroughly dry a quantity of soil and weigh it. Then place it on an old shovel blade or some

## 4 grtoltime

ocher fint merallic surface and have 4 to rectrees. The humee will be burned out. Atbor cooling. weigh agio.
What wes the roes in weidet?
Whas proportion does this boes nescition to the firs welcht?
Local conditiones may suggers further invertigrisoa, and it the farmer in in doubt no to the bus method of procedure he ehould write to hin ecricultural college, from which be may always foed sure that he will receivo meliable informan. toba.

## Insoets and Piant Disoncos

Inscets. The yearly damage caused by noxious insects in practically beyond extimate. Oficial eatimates place the total tomes to the apple crop caused by the codling moth in Canada and the United States at more than $\$ 20,000,000$ a yeur. The damage to wheat and corn wrought by the chinch bug exceeds $825,000,000$. In addition to these we have the damage to the tobecco crop, the potato crop, nearly all varieties of fruit and all kinds of garden regetables, and to these must be added the ravages of insects which damage or deatroy forest and ahade trees. The destruction of these pests is one of the most difficult tasks with which the farmer is confronted, and in order to preserve his crops from serious dannage he must understand thoroughly the habits of the insects which affect them.

Itudy of san Insoet. The study of an insect includes a study of its life history, that is, following it through the first stages of development from the egg to the imago, or perfect insect. In the course of his observations, the farmer should take note of the following points: the time at which the eggs appear and the plants and parts of plants upon which they are laid; the time required for the eggs to hatch, the plants and parts of plants upon which the larvae feed; the number of days the insect remains in the larval state; the kind of chrysalis or cocoon which it forms and the places in which the cocoons are lodged, the time which the insect spends in the pupal state; that is, the time that elapses from the forming of the cocoon to the appearance of the perfect insect. The insect lives but a few days, in some cases but a few hours, but during that time it mates and the female deposits her eggs, thereby making provision for the second brood.

To make a cuncrete application of the above suggestions, we will apply them to the history of the codling moth. We seldom see the moth,
which is maill, with brown silky wiage, cromed by nummorow gany and brown lises of males. Neur the hind angle of each front wisg in a hage dark-brown apok, marked with streake of bromes and I Id. The female hys here eges on the apple or on haves of other parts of the tree near the apple, soon after the blowoms fill. When found upon the apple the eges appear as a suall white dot, closely resembling a drop of milk. As soon as the egg hatchno, the larva, ia tiny worm, works its way to the center of the apple, where $\&$ lives and grows, feeding upon the fruit, expecially the seeds. When the harra has seached its full growth, it crawls out of the apple, leaving a blackish wormbole, and proceeds to find a suitable place for its cocoon. The trunk of the tree, erevices, large branches and the crotch of the tree are favorite places, and cocoons in large numbers are often lound in the rough bark on these partis of apple trees.
Since the core of the apple is an extension of the stem, the damage wrought to it weakens the stem, and the apples thus affected fall before they are ripe. In most orchards they constitute by far the largest part of the windfalls. Many apples fall before the worm has reached its maturity, and if this fruit is left upon the ground the worms soon crawl out and form cocoons upon the trunk of the tree. Therefore in orchards affected by the codling moth, windfalls. should be frequently gathered.

There are always some worms that do not reach maturity until after the fruit is harvested. These may form coccoons on the inside of the box or barrel in which the fruit is stored. If the fruit is stored in the cellar and the boxes and barrels are left open, the cocoons may be formed on the walls of the cellar. Hence all receptacles and places in which apples are stored should be thoroughly fumigated with bisulphide carbon before fruit is stored in them the second time.
From the above description of the codling moth, one can quite easily infer how its zavages may be greatly lessenen, if not entirely stopped. If the rough bark is scraped from the trees, many favorite places for depasiting coccoons are destroyed. Again, by winding folds of burtap around the trunk of the tree, and folding them so that the worms can cravil under the folds, most of the coccons that will be formed by the worms coming from other places can be gathered and destroyed. All old apple trees and shrubbery, as well as other objects which may afford lodging places for cccoons, should be removed
from the orchard. Theos methode are mensurably succuoful in preverating the lnereese of the codling moth, but by fur the moot effective method of dexroying thin peat in that of spraying the trees with a solution of paris green as noun as the blomoms fall. So important, in fect, in opraying considered where applo growing is a specialty, that ouringent laws have been paceed in the United Sutee compelling every orchandint to see that his trees are thoroughly aprayed at the right time. If this is not done, the inspectorn are authorized to do It at the orchardiat's expense. The abuve deacription showa a meithod of otecrvation which will enable the farmer to ! come acqualnted with the life history and the habits of the Insect that feeds upon his eropa. The time taken for this work in more than amply repaid in aaving the crope from damage or deatruction. By writing to the nearest Agricultural Experiment Station, also to the Department of Agiculture at Ottawa, any farmer can mecure valuable information about the destruction of noxious insects common to his locality or to the crope which he grows. See Chinch Bug; Gypay Moth; Potato Bug; Ineecticides.
Plant Disoases. Plant disemsen ahould be atudied in a manner similar to that outlined above for insects. Most of these disensen are caused by parasites, usually known as fungi, growing upon the plant. The fungi draw the nourishment from the plant and this prevents its growth, - in many cases destroys its life. Fungi are propagated by ninute orgnnisms called spores. When the spore lights upon a plant upon which it is to live, it sends out a minnte thread which penetrates and apparently takes root in the inner part of the leaf or stalk. When perfected, each of these ininute plants sends forth into the air a multitude of spores which produce another crop. The most injurious fungi are miklews, rusts, smuts and potato bl:ght.

Prevention of plant disenses requires careful study. If the seed is suspected, it should be treated before planting with some solution which will kill the spores. Fields in which the disease has appeared should have the olld stubble burned over and be cleared of all shrubbery and other objects in whi h the spores may find refuge, before plowing ior the second crop. Even with these precautions it is wise to plant the field the second season with a different sort of grain, selecting something upon which these spores cannot feed. See Bacteria; Mildews; Rusts; Smuts; Yeasto.

## Agrtothase <br> The Daty

Some of the leading acemilic prineiples of animal humbandry are ruadlly ulumerated by ahowing their application to e dairy farm. To conduct a dalry succeuffully the daliryman muat give careful attention to the following par: ticulars:

## 1. Careful selection of his herd.

2. The conatruction and maintenance of suleuble mables and other bulldinge necemary to the work.
3. Providing the right sort of parturage.
4. Providing the right nort of feed In addilion to pasturage.
5. Facilities for the care and marketing of the cairy products.
Neglect oi any one of theme points in liable to kend to failure in the enterprise.
The Elord. The cows whould be selected with reference to the main purpose for which the dairy is conducted. If the dairy in to supply milk for city markets, the cows ahould be chowen with due regard to the quantlity of milk which they produce. If the dairy in devoted to supplying the market with butter, more regard must be paid to the quantity of butter fat in the milk than in the former casc.

Experienced dairymen are good judges of cows and seldom make mistakes in the selection of hends. For the benefit of those of leme experience the following points, taken from Brook;: Animal Husbandry, are given:
lizad-Small, lean and bony, with large muzzle and mouth. The nose and face should be free from fleshiness.

Ere-Full, large, lively in expresown, but at the asme time mild, clear and bright. The whole expression of the face and eye should be motherly.
Formarad-May be either straight or dishing, but the latter gives a more well-bred appearance.
Ear-Thin, large, active, and for most breeds should be of an orange color within.
Neck-Should be rather thin, especially near the head, and long. It should be free in croot breeds from loose, pendent skin.
Horns-Should be of moderate size.
Shoulders-The animal at the shoulders niay be from two to four inches lower than at the hips. The shoulders themselves should be thin, especially at the top, lean and bony.
Cnest-Should be deep, that is, it should have a large measurement from top to bottom. It is less broad and roomy than in beef breeds. The section through the animal behind the ahoulders

## Ascrouttere

could have an elliptical outline. Too grost thianew behind the shouldern in, bowever, a mark of weak conatitution.
Back-Should be rather long and rugend. The vertebrae of the backbone aho', ibe mither wide apart to that the fingern mo be preved down between the points in the ridge of the back. This if oaly one festure of the generai Inowenese of aructure which in looked for in the dairy type, as contrauted with the clove, compact aructure which in desimble in the beef type.
Loviso-Should be fairly broad, the hip bones mether high and well apart. The bones, moreover, are offen nuther farther forward than in the beef type. This gives a long and atrong hind
quarter.

## 4 aroctiase



A MODEL DABRY bARN

Tmans-The thighs should be thin, especially on the inside, in order to give room for a large udder.
Flank-The flank is well up, and rather thin.
Legs-The legs should be ruther short and the hind legs may be rather crooked. The bones of the legs should be i:oderately fine. The forelegs are comparatively near together, the hind logs wide apart.
Tall-The tail should be long and fine, with a long switch. A long tail is believed to indicate that the vertcbrae of the hackbone are somewhat loosely connected, which, as has been pointed out, is considered highly desirable.
The Geveral Otptune-Wher, looked ai from the side, the general outline should be that of a wedge, the upper line, or line of the back-
being wide from side to side, ex :- ling well forwand, well backwand also, and ingh up between the thighs. It should be broadly and firmly attached to the abdomen. The akin of the udder should be thin and delicate. The udder should be well filled out at the bottom between the teats, and the latter should be wide apart, sq:iz rely placed, and of good size.
A daily recond of each cow should be kept and those that do not reach the required standard should be soid or fattened for beef and their places taken by others. Only the calves from the best milkers should be retained for future additions to the herd. In this way the strain of the herd will be strengthened from year to year. The record should enlighten the dairyman concerniag two points: the average daily quantity

## Agriculbers

of mill given by each cow and the lengtio of time from calving before the quantity of milk begins to diminish. The most profitable animals are good milkers for a long time. They may not produce such large quantities of milk while fresh as some others, but their record for six months or a year shows them to be far more profitable. It costs no more to keep a good cow than a poor one, and the first is kept at a profit, while the second is kept at a loss.
The next thing necessary is a milk test which will show the amount of butter fat as well as the quantity of cream. This test should be made by an expert in a creamery or butter factory if posible, because in these places the necessary apparatus is at hand and an expert is usually in charge. If, however, the farmer is so situated that he must make his own test for milk, hy sending to his experiment station for directions, he will receive such assistance and guidance as will enable him to make the test successfully.

Tho stablo. Milk can be produced only from healthy cows, and in most regions where dairying is carried on, proper housing of the herd is the important factor in preserving the health of the animals. Disease, especially tuherculosis, is frequently contracted because the stable is poorly ventilated and because it is kept in a filthy condition. The stable should be wellventilated and well-lighted. The walls should be kept free from dust and should be frequently whitewashed. Above all, the floors should be kept free from filth and plerity of fresh, clean litter should be spread daily. Open feed troughs and partitions made of piping or iron railing, which will not collect the dust, are the most desirable.

The yard and grounds about the barn should also be free from weeds, manure and rubhish.

Foed. Fresh grass is the most desirahle feed for milch cows, hut suitahle pasturage for a large herd requires so much land that some other source of food supply availahle all the year is necessary. During the months when pastures are not in grass, the cows must be fed entirely from this other source. The right sort of ration must be determined and the most economic means of supplying it be provided. Many farmers use ensilage, or silage, as it is commonly called.
The sill. The silo has become a fixed part of the equipment of nearly all dairy farms. It enahles the farmer to preserve a larger quantity of fodder than is possihle hy any other system of preservation known. Moreover, it preserves
the fodder in neariy as natural a state as posible. While a good silo is comewhat expensive, on the other hand it moon pays for the outlay by the beneficial results which it yields. Silos are con-

a practical exave bilo
structed of various materials. Doubtless those built of concrete are the best, as they are certainly the most durahle. On the other hand, they are the most expensive and beyond the

Agatentitre
reach of many farmers who can afford to build only a wooden structure. For this renson atave silos are more commonly seen than any others. Various forms of these silos are in use, and a farmer desiring to construct one abould consult firms which make a business of putting up buildings of this sort. While by doing work himself the farmer might save a littie expense at the outset, yet the risk of mating an imperfect structure is 100 great to warrant attempting to ave the slight difference in expense. A cylindrical silo 20 feet in diameter and 20 feet high will contain 105 tons of silage and one of the came diameter 25 feet high, will contain 143 tons; while a silo 25 feet high and 25 feet in diameter will contain 224 tons. These figures enable a farmer to judge quite socurately as to the size of a silo which he wishes to build, and the work should be done by one experienced in constructing buildings of this sort. All things being equal, the cylindrical silo is the best. It contains no angles, it is more easily kept tight and is easily cleaned when emptied. Moreover, the cylindrical silo is the strongest form for a structure of this sort, and it is not easily pressed out of shape by the pressure from within.
In locating the silo the farmer should carefully consider two things: first, convenience in handling the silage, which must be done at least twice a day; and secondly, the position of the silo with reference to the stable, so that odors arising from it will not penetrate the stable, at least during milking time, since milk readily absorbs odors of this sort. The silo should be as near the stable as possible without danger of contaminating the milk. If the cows are fed after milking time and the stable is thoroughly aired before milking time, there is but little danger from these odors.
The bottom of the silo should be cement or plank, but cement is preferable, since a plank bottom causes a loss of five or six inches of the silage next to it. The sides should be air tight, but the roof should provide ample ventilation. With these points in view, the farmer desiring to construct a silo knows about what to require of the builders. Connected with this article is an illustration of a silo of a very satisfactory type.
Various crops are suitable for silage, but experiment has shown that corn is the most desirable. Alfalfa and clover are also used to good advantage. Experiments have shown that the best results are obtained from corn silage when the crop is cut just as the cars are beginning

## Agreathare

to glase. As the corn is cut in the field, it it hauled to the ensilage cutter, which cuts it into pieces about an inch in length, using the atalke and ears without reparation. As the cut silage leaves the machine, it is carried by an endless belt containing buckets, or by a blower, to the silo. If the plant is dry it should be thoroughly wet after leaving the cutter, before it is packed. Otherwise it soon becomes mildewed. In case of dry crops it is the practice to run a stream of water over the silage as it leaves the cutter. The water tends to make the mass in the silo air-tight, and thus prevent fermentation and decay.
When the silo is filled, the ensilage should be covered by some preparation which will exclude the air. Local conditions determine what can be used to the best advantage. The doors in the side of the silo should, of course, be kept closed until the contents have been lowered to each succeeding door. Silage protected from the air will be kept fresh and succulent through the winter, and it is practically as nourishing and healthful as the grass obtained in the average pasture.
The silo combines the advantages of storing a large amount of feed in a small space and of keeping it in its natural state until used. Moreover, by this means of storage, the farmer can raise upon a few acres fodder, which, if raised under ordinary conditions, would require many times the acreage, and, in addition to this, the silage is much better adapted to the purpose of feeding milk cows than any other sort of dairy food.

Milk. Healthy cows, suitable feed and cleanliness are essential to the production of good milk. The first two of these conditions we have already discussed. The third is equally important. No farm product is so sensitive to its surroundings as freshly drawn milk. It absorbs particles from the air and odors from any stibstances in close proximity to it, or from the atmosphere impregnated with the odor of such substances. Moreover, the smallest particles of dirt may contain germs which multiply very rapidly and in a short time render the milk unfit for use, either because it is disagreeable to the palate or because it contains germs which will convey disense to the system.
Under cleanliness three things should be cansidered. The first of these is the condition of the stable. Before milking, the air in the stable should be changed, so that it will be pure and fresh. Sweeping or littering the cows before
milling should be avoided, because these operntions mise dust which it liable to contaminate the milk. The recond point pertains to drawing the milk. The milkers should wear clean clothing and have their hands clean and dry. Previous to milking, the udders and flanks of the cow should be wiped with a damp cloth, so as to remove any particles of dirt or dust which might fall into the pails. Pails with small tops should be used. Those with the tops partially covered are preferred. The old-fashioned wide-top pail should in all cases be avoided. As soon as the milk is drawn it should be removed from the stable, strained and cooled. However, if the milk is to be used at once, or in a few hours, the cooling is not essential. In small dairies milk is usually strained into cans which are placed in cold water. The temperature should be reduced

to $40^{\circ}$, or at least $45^{\circ}$. If the cans are covered so that the air is excluded, under these conditions milk will keep sweet from 24 to 36 hours, sometimes longer. Milk designed for butter and cheese should be taken to the creamery at the earliest opportunity, for there suitable facilities are provided for storing it under proper conditions and temperature. Milk designed for shipment to a city should be stored in receptacles that are kept in ice.
All utensils employed in the reception or storage of milk should be thoroughly cleaned immediately after using, and scalded with boiling watt:, or, what is better, placed in a vat and steamed for several minutes. This will kill all germs that may adhere to the surface.
Sour milk is caused by the growth of bacteria which convert the sugar ir: the milk into acid. There bacteria are not active at a low temper-
ature. Therefore warm milk sours much more quickly than cold. The following illustration, taken from "Farmers' Bulletin No. 63," United States Department of Agriculture, shows the contents of pure milk freshly drawn, and of milk which has stood in a warm room in a dirty dish for a few hours.
Good milk contains about $87 \%$ water, $3.6 \%$ fat and $4.8 \%$ sugar, besides a number of other ingredients. Under normal conditions it is the most healthful and perfect food provided. However, it does not contain sufficient nutriment to supply the demands of the adult human system, but it is an important factor in that supply. Milk should never be considered as a beverage, and when it forms a part of one's diet, the other portions of the diet should be regulated in accordnace with the kind and amount of nutriment

which the milk contains. See Bacteria; Animal Husbandry; Milk.

## Agriculture in Raral schools

Opportunitios in Agriculture. There are no more promising opportunities. presented to young men than thase offered in the field of agriculture. The demand for trained agriculturists is greater than the agricultural colleges can supply. Notwithstanding their strenuous efforts, this demand is constantly increasing. The young man who takes a thorough course in agriculture in any institution offering such course is sure to find a good position awaiting him upon his graduation. But what is of F eater importance still is the demand, now becuming general, that the elements of agriculture be taught in the public schools, especially in the schools of rural communities. The time is at hand when the

## Agreolitare

tenchers of these schools must be prepared to teach this subject. Realizing this, the Dominion Department of Agriculture and the agricultural colleges in the various provinces are doing all in their power to prepare teachers for this work. However, the demand is increasing so repidly that they are unable to meet it. See Agricultural Education, page 227. Ixplanatory Wort lor the Ethool Year. For the purpose of assisting teachers and parents, we herewith give an outline of what can be attempted in a year in the average rural school. The work is arranged by months, beginning with September, but the work of any month can be taken up without that of the preceding mouth, except that the necessary material must be provided. Better results, however, will be secured if the work can be taken regularly through the year in the order in which it is given.
The lessons should be graded and the older pupils given such exercises as will tax their capacity and lead to practical and interesting results. The lessons for the primary and intermediate divisions should be included in the nature study work, which as far as possible should be directed along the lines of agriculture. Practically every rural school now has a prepared course of study in which the nature study work is given, and the lessons as they are outlined should be followed to prevent confusion. If a school garden can be maintained, much can be accomplished in connection with it, and it should be made the most of, assisting both the lessons in nature study and in agriculture.
Too much should not be attempted, especially if the subject is new to the school. The work with the primary and intermediate divisions should be of such a nature that it is applicable wherever the school is located. That with the grammar divisions should deal chiefly with the agricultural interests that are most prominent in the locality; as corn in the corn belt, wheat in the wheat belt and the prevailing sorts of fruit in a fruit region. One, and at the most two, lessons a week are all that can be devoted to this subject; yet if these lessons are carefully planned much can be accomplished.
The outline which follows is confined to those lines of work especially suited to agriculture, and it is designed for the grammar divisions of the school. The reason for this is readily seen when we understand, as before stated, that the more elementary lessons must in practically all cases be included in the nature study work.
September-This is the month when many
plants mature. The study of the seed vessels and seeds of these plants should be taken up during the month. Have the pupils bring to class specimens of all the grains and grasses grown in the neighborhood, such as corn, oats, peas, beans, etc. In the case of the smaller grains, several stalks of each should be brought by each pupil. But one or two stalks of corn with the ears in place will probably answer for the entire class. Pea vines and bean stalks with the pods in position should also form part of the collection.
Have the pupils study the heads of the different grains and noie how the seed is arranged upon each.
Notice the different coverings, as the hulls on wheat, husks on corn and pods which enclose the peas and beans.
What grains are threshed?
What does the threshing machine do to them?

Compare heads of the same grain as to fruitfulness by counting the kernels of wheat and oats on different heads. Send the pupils to the corn field to count the number of ears on different stalks. Have them count the number of peas and beans in different pods. In connection with this counting, ask the pupis to compare the ears of the plants and their general appearance of thriftiness. The difference in stalks of corn in regard to these peculiarities is more easily traced than in the wheat and oats and smaller grains, so it is well to begin this exercise with the corn plant.
The remaining lessons of the month shol.'d be devoted to the collection and study of seeds. Each pupil should have his own collection arranged in bottles or small boxes which are labeled. These collections :hould be stored for use in the spring.
October-Numerous insects deposit eggs which form chrysalides which remain through the winter, and upon hatching form the early brood of these insects the next spring. Very effective field work can be done by th. - pupils by making collections of these egg clusters and chrysalides. If they are found on the twigs of trees or shrubbery, cut off the twig and pin to it a slip of paper bearing the name of the plant from which it is taken. If the egg cluster or chrysalid is taken from any other object, make a record of the place in which it was found. Keep these collections in a coll place through the winter. They will form material for future lessons.

## 4 Aricultars

The nature and compocition of soil can be studiod this month with profit. See page 16.
Noverana-As the winter approachos, attention should be callied to the care and feeding of stock. What constitutes a proper mation for milk cows, horves, swine and other domeatic animals will be of sufficient importance to employ the attention of the clase during the month. Ask each pupil to give an account of the kind and quantity of fodder used for the different animals of the farm where he lives. This will lead to the discussion of the quality of different hinds of feed and best methods of curing, storage and preparntion for the stock.

## Are there any silos in the neighborhood?

Of what advantage is the silo?
Why would you feed a dairy cow a ration different from that fed a draft horse?

## What are the best feeds for fattening cattle ?

## For fattening pigs ?

The observations necessary to answer these questions should be carried through the winter may require.

Drccirema-Continue the lessons on live stock. Discuss the construction of stables and other buildings for shelter.
What are the essentials for a sanitary stable?
What defects are common in the construction of stables?
Does it pay to shelter stock in regions where the animals will survive the winter without shelter? Why?
The discussion of these questions will lead the class to give attention to the construction of stables for dairy cows and probably will lead them to notice the good and bad points about the barns and the other out-buildings on the various farms in the neighborhood. The lessons can be made very interesting and profitable if the pupils are led to observe, to glean information from their farmer friends and then to compare notes and discuss in class the results of their efforts.
Jantary. This is a good month in which to study the branching and the bark and wood of trees. For outlines of these studies, see Nature Study, in this volume. Some hirds remain through the winter. Lead the class to discover all the birds they can and learn what they feed upon and where they find shelter.
Are these birds of any benefit to the farmer during the winter? Why?
What can be done to entice the birds to remain about the buildings?

Agriealtare
For a plan of the atudy of birds, Nature Study, in this volume. Revien from time to time the observations on feeding stock.
Frazuarir. The older pupils will be interested in a simple but effective aystem of accounts that enable the farmer to keep a record of each portion of work carried on, as with the difierent cropa, the dairy, the poultry, swine, beef cattle, etc. In keeping these accounts, the crop or other industry should be charged with everything expended for it and credited with everything it returns. To illustrate: in the account with the corn field, the field should be charged with whatever is expended for habor in preparing the ground for the seed, with the fertilizer used and with the seed and seeding. Iater it should be charged with the expense of tillage, and when the crop is ripe, with the expense of harvestiry. and marketing. To these charges should be added the use of the land at a fair valuation and at the rate of interest which that amount of money would receive if loaned.
The field should be credited with the corn produced. This credit will usually be divided into several items, such as seed corn, corm sold and corn retained for use on the farm. If the stalks are used for feed or in any other way that yields an income, either directly or indirectly, this income should also be credited to the field. The balance of the account will show the actual gain or loss on the crop.
Several lessons can very profitably be devoted to these accounts. Lead the pupils to see what ahould be charged to such accounts as poultry, dairy, beef and pork. Make model forms and prepare exercises for practice, so that the pupils will become accustomed to the form of an account. It will then be an easy matter to keep such accounts with the enterprises carried on on their own farms. Their ability to do this will usually be very gratifying to the parents. Any teacher familiar with the elements of bookkeeping can casily arrange such a system of accounts, and an elementary text on bookkeeping should constitute a part of every teacher's equipment.
Train the pupils to be systematic and regular in keeping these accounts. At the close of each day on the farm, memoranda of the day's business should be entered in the book used for this purpose. These items should be entered in their respective accounts at regular intervals. If the farmer's accounts are to be of value they must be kept as systematically as are those of the merchant. The farmer not accustomed to keeping a system of accounts may at first think

## Agricaltuse

it a waste of time. Therefore the teacher must thoroughly impreses the importance of this practice upon the pupils. The eccounts with the crope ahould begin with the preparation of the ground for planting and close with the marketing of the crop. Accounts with industries from which a constant return is received can le opened at any time. It is well to balance such accounts every month, and they should never be sllowed to run over three months without
balancing. balaucing.
Marce. This is the mondh in which preparations for planting are begun in many loculities, but in the colder sections of the country these preparations are necessarily deferred until later. Three lines of work demand attention this month:

1. Testing seeds (see page 15). In addition to the test given in the school, have each pupil prepare a testing apparatus and test the seed to be used on his own farm.
2. The cocoons and eggs collected in the fall will need attention. They should now be brought into the schoolnoom and placed in cages to prevent the escape of any insects which may hatch from them. To make the insect cage, take a small box, such as a cigar box, or one of similar size made of cardboard. Cut out a portion of one side and fasten over this space some wire screen. Place in the box one or two supports and place the eggs and coccons within.
Under natural conditions the eggs and cocoons will hatch at about the time when the leaves upon which the larvae feed appear. They may not hatch for some weeks after placing them in the schoolroom, but they should be cared for in order that none of the specimens may be lost. As soon as the insect hatches, place in the box leaves from the tree or shrub upon which the eggs or coccons were found.
3. Birds will begin to return and a practical field study of them should legin. Much of this can be done ineidentally by pupils on their may to and from school and as other opportunities offer. However, in order that this study may be successful, the teacher should enter into it mith the pupils and give specifie directions as to what to look for and how to conduct the observations. The important fact to be brought out in this study is the relation of the bird to the farmer. Many birds are of greatest benefit to the farmer in destroying insects, and they should be pmetected. Too often the farmers consider the birds as enemies, because they eat berries and other fruit; but the insects they destroy far

## $\triangle$ Ariculture

more than sepay for these small depredations. Every school library should be provided with books giving descriptions of our common binds and directions for observing them. The following are inexpensive and will be found very useful. They are given in the order of their preference:

## Bird Guide. Reed.

Color Key to North American Birds. Chapman and Reed. Doubleday, Page \& Co.
Bird Life. Chapman. D. Appleton \& Co.
Handbook of Birds of Eastern North Ameriذa. Chapman. D. Appleton \& Co.
Popular Handbook of the Birds of the United States and Canada. Nuttall.

Check List of Canadian Birds. Maconun. Birds of Ontario. Mellwraith. Bird Homes. Dugmore. Doubleday, Page \& Co.
The swelling of buds, coursing of sap and general awakening of vegetation to life will involuntarily attract the attention and arouse the interest of the pupils, and from their observations numerous valuable hints can be derived.
Apall. The study of the soils, preparation of the seed bed and planting, wherever these activities occur on the frrm, should take the time of the regular lessons in agriculture for April. So far as possible obtain specimens of the different kinds of soil in the school district. "t these are placed in glass cans, their differences in color and structure can be seen as they appear in mass. Study the soils according to the plan given on page 16. Have the rupils study the methods usel in preparing the ground for the crops.
Is the same method used for corn, potatoes, wheat or oats? If not, how do these methods differ?
Try experiments in planting. Fill small boxes or glass fruit jars with soil. In each, plant several kinds of corn, wheat, oats, cucunbers and other seeds. Place some of these seeds one inch below the surface, some two inches and others to a depth of three inches. Which seeds grow the best?
If you can have a schooi garden, begin working spon it as soon as the weather'and condition of the soil will permit. In this and all other work on the garden, strive to put into practice the plans and methods discussed in class. If you do not have a school garden, induce the pupils to plant plots at home. Encourage the care of these through the summer by the promise of a school exhibit of what they raise, at the

## Agrientiture

beginning of the fall term. At this echibit the productes ahould be judged by the most experiencod farmers in the district and first, second and thind mention given pupils securing the beat maultes, A contexs in raising corn, potatoes or come other crop can be so managed that it will awaken lively interest throughout the district. If the achool is in a county which has a achool exhibit at the county fair, the exhibits receiving the firte and possibly the second mention ahould be phoced in the county exhibit.
Begin the study of insects with those hatching from your collection of egess and cocoons. As thast as the goung insects appear, place them on the leaves of the plant wbich they feed upon. Make a recond of the date upon wbich the eggs hatch. Then record the date when the larva apins its coccoon or makes its chrysalis.
How long do the insects live in the hrva state?
Within a short period the perfect insect will appear from the cococon. How long did it remain in the pupal state? Secure specimens of eggs from eacb kind of insect and note the time required to hatch. At this rate bow many broods of these insects will appear during the summer?
Some of these observations may extend beyond the school term, but their completion is profitable work for the summer vacation.
Mar-Tillage should receive first attention this month, and the experiments begun in April should be continued. Lead the pupils to see that the different crops require different degrees of moisture. Have them investigate the relation of tillage to the conservation of moisture in the soil.
Why should a fine mulch be maintained in the corn field or potato field?
What effect does rolling have upon moisture?
What effect does rolling bave upon planting? What effect upon conserving moisture?
How do you explain this?
The number of plants in a stand should be noted. What number produces the best results?
The garden plots should reecive careful attention. Keep the soil loose and free from weeds, that the young plants may get a good start. So far as possible, let the dew and rain supply the moisture, but use the watering pot when
necessary. necessary.
Project the work for the summer. Many rural schools close in May. We have given several bints as to what should be done during the summer, such as care of the garden, follow-

## Agriealture

ing the life hittory of inects and continuing th atudy of birds. In addition to theer lines th work, a syatematic atudy of weeds common the locality should be made. Procure Fown Weeds, a bulletin published by the government by writing to the Secretary of Agriculture Ottawa, Ontario
Encourage the pupils to atudy the growth and maturing of the crops.
How many days between planting and harveat? What was the yield per acre?
Was the crop reasonably profitable?

- What insects damage the crops ?

Have any plant diseases appeared?
If so, what are they?
Question likes these kept before the pupils during the summer will lead to much careful observation. The results of this observation will constitute valuable material with which to begin the work the second year. See that the school library contains a few books on elementary agriculture. Many of the publications of the Department of Agriculture will be found of great value in this work. Write to the Department of Agriculture, Ottawa, for a list of those on any subject of interest to you.
General 8ugrestions. 1. From the beginning have the pupils use note books in wbich to record their observations. These books should be systematically arranged and neatly lept. The records will be useful for future reference.
2. Place the burden of the work upon the pupils, by asking them to examine objects whicb you wish to discuss. Tell only what you must, but do not fail to give information beyond the reacb of the pupil when it is necessary. Work with the pupils as their director in research.
3. Have occasional written reviews. These should be given when a subject has been completed. Many excellent and interesting papers can be obtained by the pupils in agricultural topics. The essays on corn on the following pages show what can be accomplished. The preparation of sucb papers affords excellent exercises in language and also leads the pupils to see the necessity of language study.

## Practical School Work in Rotation of Orops

The subject of agriculture in the public schools is one to which more and more importance is attached every year. In some counties each teacber is furnished with a tentative course in agriculture for all grades, and while it is not compulsory usually to follow sucb an outline, it is always strongly recommended.

## tinuing the

 tines of common to ure Farm overnment, griculture,nowth and dharvent?
pe pupils careful cervation which to that the ementary 3 of the of great artment cose on
beginhich to should kept.
ence.
on the which must, ad the Work h.

These comapers Itural owing The ellent upils

1001s
is each e in not ine,
:

1

## 4 ardenaltase

If la any school there is sufficient intereat in the matter and enough time can be given to it, a form of work in agriculture after the following outline may well be adopted.
A feld ceventy-two feet by one humired eight feet, not counting speces for walke, should be provided. A diagram of auch a plot offered by County Superintendent George W. Brown of Paris, Illinois, is used hy permission. It is a modification of a plan sugyested by officials in the Wetern Illinois State Normal School.

| 10 | 21 | 12 | 25 | 14 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 21 | 22 | 25 | 24 | 25 |
| 30 | 91 | 62 | 53 | 34 | 35 |
| 40 | 41 | 42 | 43 | 44 | 46 |

DLARAM OF BXPETIMENTAL HELD
Every boundary line s' uild be a gram or gravel walk three feet wide. Every square should be eighteen by eighteen feet. Before harvesting a crop on any square cach plot or square should be cut down to the dimensions of the square rod for purposes of easy computation and record. Having determined the yield in

## $A$ grientious

one square rod, multiply by 100 to determine the yield per icre. On such a plot it is pomible to atudy with excellent reaila rotation of crope. Rotations abould be conducted an follows:
Plots 10, 11, 12, 13, 14, 15-Continuous cors cropa.
Plots 20, 21, 22, 23, 24, 25 -Com and oata rotation.
Plots 30, 31, 32, 33, 34, 35-Corn, oath and clover rotation.
Plots 40, 41, 42, 43, 44, 45-Corn, eats, clover and whent rotation.
The experiments in the value of standard fertilizers could be tented in this way:
Plots 10, 20, 30, 40-Nothing.
Plots 11, 21, 31, 41-Apply manure.
Plots 12, 22, 32, 42-Manure and lime.
Plots 13, 23, 33, 43-Manure, lime and phowphorus.
Plots 14, 24, 34, 44-Manure, linte, phosphorus and potassium.
Plots 15, 25, 35, 45-Nothing, and, in addition, permit no vegetable matter to decay. Remove it.

All work can be done with hands and primitive tools. These experiments can be directed upon about thirty-five square rods or about onefirth of an acre. This amall tract of land will answer the same queations, in the same way, as the larger fields. The agricultural college in your province will doubtless be very glad to cooperate with you in connection with your experiments along the above lines.

## The Work of Luther Burbank

to grow upon a spot of gropinion that whoever could make two ears of corn, or twoo blades of groses, do more easential service to his country, than the grewo before, would deserve better of mankind, and So whote Jonathan Swift, over one hundred fifty years ago. The statement lived; it is an imperishable truth. The twentieth century recognizes a man who is the full measure of Swift's eulogy, and vastly more. This man has so far surpassed every other worker of his kind, in the benefits he has conferred on the race, and has such wonderful, elmost miraculous, results to his credit, that his fame has spread through all the world. The man is Luther Burbank.
4 Plant Broeder. He is a plant breeder. The outline of his activities could be extended. to fill many pages of this book, but no better definition of his work could be suggested - a sympathetic, tender, ambitious plant breeder; a
man who has developed amazingly beautiful flowers, and improved already hardy fruits; who has enriched the world merely in dollars to the amount of millions every year, and who has given to all men freely and unselfishly the benefits of his experiments in many directions.
What Plant Breeding Moans. Before considering particularly what Mr. Burbank has accomplished it should be shown what plantbreeding, even on a moderately successful scale, means to the world. Very many men can breed a new wheat, ryc, or oats which will produce a grain more to each head, and as easily develop an ear of corn with an added kernel to each ear, or a potato with one more tuber to each hill.

Agatvelitise
If oury expp river would do thle, what would be the rouk? In auch staplo articles aloce the United States, not coneidering the rex of the world, would produce each your without extru cote 5,000,000 more bumbel of corm, 18,000,000 extres buabels of wheat, $20,000,000$ extro bumbels of oath, $21,000,000$ more buibele of potatoes. Reculte for Canade would be in like proportion. Some may my theso figures are hanclul. Mr. Burbank provee their nensonahlasess, and he does more: he has shown how even greater resulte are reached through intolligent effort.
Mr. Burbank is a acieativ; with acientife faith he sees for the future till better grmina, fruits, nuts and regetables than he has yet produced, in new forms, harger sises and improved Alavors; under his experimental eye these ueful plants have now been given greater power to revist winc, sun, rin and frosi. Already there has been produced fruit without atcnes of seeds, better hardroods, better coffee, tea, spices; such things alreanly accomplished only indicate what some of the remarkible adrancement of the future in to be. Wo shall aim not to apeak in scientific terms in this article, but to tell in simple manreer how Mr. Burbank has worked to resch the results which are very properly credited to him.

The Iaw of Yatural Elelection. In noting the ways of Nature we know that more seeds are produced and asore children are born than can possibly survive; plant nurture and child nurture are along lines not at all dissimilar, or should be; we sometimes fear the sealous gardener is more intent on the growth of his plants than upon the proper development of his children. Which seeds and which children live depends upon the conditions which give life and also upon the particular qualities possessed by competing seeds and competing children. Little in the economy of Nature is left to chance, although chance certainly appears arbitrarily to decide some cases. The race of men has been adranced from lowest states to its present development not by chance but by constant choice of the individuals best fitted to advance it. The powers controlling this choice are unseen and the compelling forces are hidden; scientists call the phenomena the principle of notural selection. Its laws apply equally to plant life and animal life.
Not to carry the analogy further, it will be admitted that plants are influenced by their surroundings and by their associstes. A better quality of seed and soil and constant cultivation

28
will poodece hinproved repetation; nothing ohe will. Scientits know that some wild phants have exitited in the mame form ctioce long belore the dawn of history, having their habits and charecter fixed by agou and agee of unchanging environment. A better apecimen accidentally introduced could oaly by mereat chasce affect the quality of the common lot; the typical quality would reduce a'i to its level.
Surroundings are vital. There is no pomible room for doube or argument to the contrary. When man takes adrantage of these facta and changes all conditions, afiords plenty of room for growth and apecial cultivation and addr chemical eiements which intensily fertility, it is reasonable to expect changes in the product of the soil. It becomes a great fact that the opportunity to improve is then practically without limit.
Some Important DoAndtions. Luther Burbank has labored since he was kess than twenty years of age to improve our useful and ormamental planta. Early he knew that a better plant demanded selection and regregation. Selection means guiding the changes in plant life by cutting of all those parts which are changing in undesirable ways, and reserving for reproduction only those which are better than the average. With these finer specimens the processes of planting and developing are continued. Segregation means keeping these more desirable plants away from the poorer specimens, so the latter may not influence the better specimens in their natural processes of reproduction. "Like produces like;" man never will be able entirely to change this man-made definition of Nature's laws, but by intelligent plant breeding we have already modified it to "Like produces like, or nearly alike." Burbank does things according to the ways of Nature; he has taken things as he found them and at the end of patient years has yet the same thing, only larger, more beautiful, of greater value and utility, made so by the simple process of working with Nature.
The chief means by which Mr. Burbank reaches the results he seeks consists in producing new varieties by croasing. By crossing is meant a mixing of races or kinds, or a mingling of the characteristics of different organisms. The resulting organism is called a cross, or, more commonly speaking, a hybrid. The general reader sees the word hybrid very fiequently; it is easily understood in any connection in which it may be found if one simply remembers that a hybrid is a crossbred animal or plant-the off-
spring of the male of one variety or apecies with the female of another. Another wond wo must underatand at this point is atroin. A armin in a group of plants of the name variety which dififert from the rece k. which it belongn, but difiers only in Improved phyniologioal tendency, and not by any apparmat chasmeteriticos.
Mr. Burbank's aim in eroming plants is to secure the combination of desirable qualition into one atruin, and in the proceme eliminate undesirable characteristles. Many times only one cmassing is necessary; in other instances many crosess are needed, during which procesess many progeny appear which are valueless and must be destroyed It is here that one must exercise great care in selectlon. Cmosing is only one of the means of producing better variefies and species. Long continued and patient relection of the plants which nearest approach the quality desireci must be continued until such quality is found in some individual plant. Then it is thereafter reproiluced from seed, and all future growths which show a tendency to revert to inferior quality must be rigidly excluded until none but the type desired shall remain.
The Boginning. What of the beginning of Mr. Burtunk's career? Did he do something accidentally that no other man could do and did it lead naturally to the great things he has accomplished? There is nothing accidental in the greatness of this man. His methods are not protected by patent; they are as open as the day. Thousands will follow in his footsteps. Where most of the others have failed and will fail is in hack of enough thoroughness and skill, united with natures which will not be sufficiently patient It takes time, and while most of us have time enough it is hard to be convinced that we have sufficient to spare in which to accomplish some far-reaching good. Compounds of patience and brains have done the work thus far, and these will be demanded of those who follow. Phrase makers have called Mr. Burbank a wizard, but what he has done has been wrought by no magic save that of logic and waiting.
The Burbank Potato. At the age of nineteen in his home in Massachusetts, Luther Burbank heard the complaints of farmers who were unable to raise more than 200 bushels of potatoes to the acre. They clamored for a variety which would yield a larger acreage and enable them to make a little money from their lakor. This young man began his experiments in crossing and development and the fourth year produced a potato so much improvel in size and quality
that as centera sed house gave hin 8125 for the sole righe to une and produce the better markes. They named this the Burbank potato. At once this variety began to yield 435 bumbels to the aere and since that time has produced 825 bumbel. The United Seates Department of Agriculture, in a bulletin, gives credit to Mr. Burbank for adding $817,000,000$ a year to the ascricultural outpur of the country, due solely to the development of the Burimank potata.
With the 8125 realised from this ave, Mr. Burbank weat to California determined to dovoto his lifo to plant breeding. He chowe that ntate because the elimate was better adapted to hio purposes than any other portion of the United States; then ensued a time of privation, during which he was obllged to seek work of every description in order to hive. Within four yeara he was able to buy on contrace purchase a few acres of ground, and in ten years had greatly enlarged his holdings so that soon he was able to sell his small farm for enough to enable him to atart his experimental farm, where he could thereafter devote himself solely to the one object
he had in view.
So important does the United States government consider the experimental work of Mr. Burbank that through government sources his experimental farm is given the sum of $\$ 10,000$ per year with which to further investigations.
Horticulturists and seed houses vie with each other in their efforts to secure from Mr. Burbank his perfected specimens. He will not part with one until he has developed it to a point where he is satisfied that the product is about as good as it can be made.

Blackberries. In 1880 Mr. Burbank began crassing blackberries. In four years he had sixty hybrids, the first ever produced. From hybrid seeds of the third generation he grew black, red, and yellow raspberries, white, black, red, and pink blackberries, widely varying in sizes, flavors and qualities. One of the most interesting specimens of berries is the white blackberry, a hybrid with abundant clusters of most delicious fruit, perfectly white in color. He found in the eastern states a bramble with an insignificant variety of small, whitish berries; he secured some of these, introduced the type into his blackberry culture, and the result was a combination of the white color with the excellent qualities of the other parent.
seediess Applen. Another instance of his genius is the scedless apple, which is now being introduced into the general horticultural trade

## Eationtore

 a goung granad troes, which, when fully frown, are proctionly curs to axverete of hare infurvice on the cabrien ol appion and on the cenciro apple market. The coadros applo io not catioly now; a has brea tound fie diffocwat varietion but atrays comblued with come defoct which mado thowe mariodes malves Nobody but Mr. Burthin suadloes quality the charncterimion of other bet varletionMhens One of the anow colobisted of Mr. Burbank's eroming is in consection with the culture of plums, In no other departiment of his work has thres boon shown more patient developunent of a truts or flower. Ono of his avorite phums is a combination of seven dininct parente, wonce of which are of Ampricin. some of Japaneec, and romen of Europenn ofigin. Each generution required about three years, the seedlinge being grifted ho their first summer oa old toen and thereby blowoming early in life. By thin procese the whole pedigree lincluded only thirteen yearn. It is impomible to state what Mr. Burbank's developmeat of the plum has sacant to Californin. In 1004 the plum and prune crop of the state amounted to $05,000,000$ pounds; at present there are almoat $200,000,000$ Counds, and there are $10,000,000$ plum trees in Califormia alone. The success of the industry dates from the introduction of the Burbank plum, since which time be has made several thousand new pruse and plum combinations; plums that will grow in almost any soil, of a aise and quality superior to those produced in any other country, plums that will grow in droughe as well as in min, and that thrive in frost-belts as well as in warm regions. From aix hundred varieties of his new plums he has removed the pit or stone and has created the otoneless plum.
Shesti Daisen. In one of the illustrations accompanying this article is an exact-size picture of the Shasta daisy. and by its side daisies of the size of its original parents. His achievement with this flower is as fascinating as a fairy story. From all over the world where daisies grew ho secured seeds of the best varieties-not simply a few, but thousands. These were planted under best conditions and watched with closest care. They were all destroyed except the best speciimens. but from their death there came a new daisy larger and more beautiful and of a hardier variety, one that would fower in every climate. More than ten thousand seeds were required for this one experiment. Sometimes in the work of

## Agritalinus

doveloping a fower or phant an hundrad a mad or moore ande have boen und batore Burbenk meured whas bo wanted.
Eptinoloses caetias. Throlers in the now werem part of the United Staice find nev ending cause for remark in the gillione seres of land which appear aboolutuly worthe without water furniabod by ifrigation aystems, only arge brush and cretua can be made to gm there. A number of variecies of cectus fourt in the acmitarid regions of the West. The stems conaibt of flat pode, very hrge and joine together in strange manner. The plants of e reach a helght of aix feet, and their brancte are nide-spreading. The fruit of the cactus relished by cattle when it in not too apiny, io it is Juicy and nutritious. Realizing that ax other discovery could be of greater benefit th mankind, Mr. Burbank set about converting the cactus into a food plant for man and animals and he finally accomplished a task which doubtless will rank among the greatest achievements of all times because of its prospective influence upon coconomic conditions in remi-arid lands.
In the procem of the development of the cmetus Mr. Burbank firte removed the thorns which covered the entire plant, then by procewes of patient development converted a thorny, worthlews phant thriving upon non-productive land, into a plant the leaves of which are nutritious food for all kinde of stock; the joints of which make excelient plelkes; a wholesome food, when fried; a swreetmeat, when preserved. The fruit combines the flavor of the pear and the banana, relle for a priee equal to the value of oranges, and is produced at ono-half the expense. It is belloved there never can be a fillure in the cactus crop. The fruit if $n: \dot{a}$ into janis, jellies and ayrupe. Respecting the development of the cactus, we quote from Mr. Burbank. "The population of the globe may be doubled, and yet in the immediate food of the cactus plant itself, and in the food-animals which may ber all." upon it, there would still be enough
A cactus plant six months after planting will produce ninety tons of food to the acre; after the second year it will produce two hundred tons to the ecre. A cactus leal twelve inches across will develop thirty-ix full sized cactus pears, exactly like the fruit shown in the lower figure of the cuctus illustration shown in this article. From one acre of the average jield of corn 335 worth of denatured alcohof can be produced. The Burbank cactus is producing


Crom original drawingen, courtey of Owrar F. Binacr Co., Calcago, Luther Burtank publiaher LUTHER BURBANK'S DEVELOPMENT OF THE CACTUS 1-Useless, thirny growth. 2-Thornless cactus and fruit. 3-Section of 2 ,


,

0

劫


Pronu orisimal druminn
SOME RESLLTS OF LUT 1-Cobless corn. 2-Wonderful hybrir BURBANK'S E.NPERIMF.NTS


## Agrientare

$\$ 1200$ worth of denatured alcohol to each acre.
Oobless Oorn. Not a great deal of attention has been given to the feat of producing corn without the cob on which we have thought Nature intended it to grow. It has been accomplished by Mr. Burbank, although he doubts that practical results will be reached. He believes a small cob will be better than entire elimination of the cob. A stalk of cobless com is shown in one of our illustrations.
It is believed that the earliest corn was cobless. Mr. Burbank's present cobless com illustrates the steps backward in evolution towards its orig. inal form. The decrease in size of the cob incrrases the quantity of kernels. It is expected of this corn that instead of merely adding one kernel to the ear it will untimately double the number of kernels to the ear, for the energy now going to waste in the large cob will be transferred into the production of more kernels. Practically cobless corn offers a great benefit to the farmers, for if there is even one kernel increase to each ear this would mean a total crop increase of $5,000,000$ bushels per annum in the United States alone.
4 World Benefactor. The average reader has doubtless considered Luther Burbank to be a theorist, a man lacking ir. practical lines of endeavor; but the foregoing brief account of his work should fully convince one that here is doubtless the most practical man who lives in the world today. It would be utterly impossible to estimate the added wealth which flows into the pockets of the farmers and fruit growers every year as a result of this patient man's development of our fruits and plants. Had he produced nothing during his whole lifetime of experiments other than the Burbank potato and the edible cactus, he would deserve an exceedingly high place in the memory of generations to come.
Consider the lowly potato, the drowsy poppy, the succulent plum, and the delicate blackberry; give thought to the cactus, the rose, the lily, all of which he has developed in directions that are marvelous-consider, in brief, almost any plant you choose, and if you follow the investigation carefully enough your study will lead you invariatly to the door of a rose-covered cottage in Santa Rosa, California, Mr. Luther Burbank's home.

## Raise a Ohild Like a Rare Plant

In addressing a convention of teachers Luther Burhank summed up admirably the proper care of children, using as illustration plant life, which he knorrs so thoroughly. He said:

## Agricultare

"Raise the child like a plant, care for it an you do for the rarest specimen of vegetation, bring it up in an atmosphere of love.
"If the child has but the emallest trace of some characteristlo you desire to develop, take hold of It, care for it, surround lt with proper conditlons and it will change more certainly and readily than any plant quality," he declared with a fervor which left no room to doubt that from the fulness of his knowledge he knew what he said was true. This possibly is the keynote ir the whole system of proper child rearing. Plant life is improved and quality is bettered by careful cultivation of desired chara-teristics. The same rule applies in traini.g the child.
Mr. Burbank adds emphasis in the following lines, which serve to explain his last siatement
above:
"The child in nature and processes of growth is essentially the same as the plant, only the child has a thousand strings instead of but a few, as has the piant.
"Where one can produrs one change for the betterment of the plant one can produce a thousand changes for the betterment of the child.
"Surround the child with the proper environment to bring out certain qualities and the results must come.
"Work in the same way as I do with the plant, and you will find the developemnt of the individual is practically unlimited.
"I have taken the common daisy and trained it and cultivated it by proper selection and environment until it has been incrased in size, beauty and productiveness at least four hundred fold.
"Do oun educational methods do as much for our children? If not, where is the weakness.
"Not only would I have the child reared for the first ten years of its life in the open, in close touch with nature, a barefoot boy with all that implies for physical stamina, but should have him reared in love.
"I have taken the little yellow California poppy and by relecting over and over again the qualities I wished to devclop have brought forth an orange poppy, a crimson poppy, a blue poppy. Cannot the same results be accomplished with the human? Is not the child as responsive?
"If the child has but the smallest trace of some characteristic you desire to develop, take hold of $i t$, care for $i t$, surround it with proper conditions and it will change more certainly and readily than any plant quality."

## Agrienlture

## Irrigation

Land Valees and Molature. In semi-arid sections land values are closely related to the water supply which a land owner can be certain of sceuring. Some people consider irrigation to be more or less of a makeshift, resorted to because of insufficient rainfall, but, as it happens, irrigation may be neered berause of imperfect distribution of moisture, though the total rainfall in a year may be more than is theoretically needed. The farmer who tills his soil under
are possible; while wheat, barley, oats, corn, sugar beets, cotton, potatoes and fruits of all kinds grow as well on such soil as elsewhere. Only two things are required to produce bountiful crops. These are a warm senson, long enough to mature the crop, and sufficient moisture. A proper irrigation system will fully supply the latter.
One of the greatest irrigation projects of all times is that referred to in Volume III, under


THE ROOSEVELT DAM
frequent rainy skies is never sure of rain when he needs it; under irrigation, with a properly constructed irrigation system to provide him with moisture, his work becomes a science. He gets moisture when it is wanted, and is sure of it when his crops must have it.
Every agricultural industry that can be made profitable where there is plenty of rainfall can likewise be turned to profit in irrigated sections. On irrigated land one can fatten beef cattle; he can engage in dairying and cheese-making; poultry and ostrich farming, and sheep raising
the article Irrigation, as the Salt River Project in Arizona, It has become more popuiarly known as the Roosevelt Dam and Irrigation Project, named after Theodore Roosevelt and dedicated by him in March, 1911. The accompanying illustration will give the reader an accurate idea of the location and magnitude of the dam. The height of the dam above the surface of the water is 50 feet and the water is 230 feet deep. Behind the dam will be stored $1,300,000$ acrefeet of water, or water enough to cover that number of acres one foot deep. This means a

## Afrclowltare

supply of three years for Salt River Valley. Below the dam about fifty miles is a diversion dam, by means of which the water is turned into the various canale. The body of water stored thus by the damp is the largest artificial lake in the world. If spread out a foot deep it would cover the entire province of Prince Edward Island.
Eritich Oolumbis. Great engineering works, such as the Roosevelt Dam, are found in many parts of the world, on the Nile, in India, in Mexico. There is only a difference, of degree between these and the most primitive ditches and flumes. In recent years irrigation in British Columbia has taken enormous atrides. In the southeastern part of the province are great areas which produce a good quality and large quantity of fruit when properly irrigated. It is here-in the Okanagan, Thompson and Columbia valleys-that irrigation is being extensively carried on. The district embraced in the valleys of the Olzanagan and Thompson rivers, with their tributaries, contains 500,000 acres. It is claimed that 10 acres of good irrigated fruit land here are equal in producing value to 160 acres of wheat land. A respectable beginning has been made in reclaiming this area, about 100,000 acres being covered by various systems now in operation or in course of construction. The provincial government has done much by revising the water laws, reserving the watersheds, protecting the forests from destruction by fire, providing survey for water measurements, etc. Two municipalities, Summerland and Penticton, have acquired and are administering the irrigation systems for all land within their boundaries. With these exceptions, the various irrigation enterprises are carried on by private land compaizes, who look to the higher prices obtainable for irrigated lands to return their expenditure on irrigation works. Tha Central-Okanagan and BelgoCanadian Companies at Kelowna, the White Valley Company farther north, Fruitlands at Kamloops and the British Columbia Horticultural Estates at Wallachin are examples of companies who are putting in permanent modern systems of steel and concrete. One of the chief factors in extending the areas of irrigated land is the utilization of natural storage basins; for instance, the water stored in Lake Aberdeen, the reservoir at the head of the White Valley, cost 60 cents per acre-foot, while at Penticton the reservnir cost 817 per acrefoot. In this district the average cost of reclaiming lands

33

## Agrieulture

by irrigation has been from $\$ 30$ to $\$ 80$ per acre, according to the character of the works. The average annual cost to the user varies from 85 to $\$ 8$, while the average difference in value due to irrigation is about $\$ 100$ an acre.
Aborta and Easkatchowan. Irrigation in Alberta and Saskatchewan presents problema different from those in British Columbia. The extent of land unider irrigation is much greater, the average value per acre is much less and the supply of water available for irrigation is also proportionately less. Irrigation has been practiced to some extent in the nouthern part of these provinces ance these districts wern first settled, but the irrigated tracts were small and the works were crude. As a result of the enactment of the first irrigation law in 1894 and of later hydmgraphic surveys, there was considerable development of irrigated farming for a few years, particularly in the district between Calgary and Lethbridge. Within the past three or four years, there has been a noteworthy development of irrigated farming in the Cypress Hills country, south of the main line of the Canadian Pacific, between Moose Jaw and Medicine Hat. There are many small streams in this district and the irrigated tracts are usually small areas in the valieys. Some cereals have been grown by irrigation, but water has generally been used only for hay and pasturage. The results have been good, particularly so where the works have been substantially constructed and the ditches well laid out. Mr. E. F. Drake, of the irrigation branch of the department of the interior, Ottawa, estimates that there are about 400 separate irrigation schemes in Alberta and Saskatchewan, with a total area irrigable of 130,000 acres. About half of this area is actually under irrigation now. In addition to these small schemes there are four larger projects now under construction and in partial operation.

Oanadian Pacific Ruilway Project. This project has been so widely advertised that it is probably better known than any other irrigation scheme on the continent to-day. This tract consists of about $3,000,000$ acres along the main line of the railway, between Calgary and Medicine Hat. It has been divided into three sections, known as the western, c-ntral and eastern. The Bow River furnishes water for all three sections; for the western and central sections it is taken near Calgary; and for the eastern section near Bassano, at the Horse Shoe Bend, where a great dam has been built.

The western section has been covered by a complete aysterm of canals and rewervoirs and the remaining areas are being rapidly supplied with excellent works.
present only about 75,000 acres are sectually under irrigation, but when ff:"y developed, the ayntem will provide for the inrigation of about 180,000 acres more. Alfalfa and sugar beets
ibhigation in albtrata

Ifforta Reditway and Irrigation Company. The lands of this company, which have recently been required by the Canadian Pacific, lie betwere the line of the company's railroad and the St. Mary, Belly and Milk rivers. Its system of $c$ 's and ditches in mout 250 miles long and tise main canal has a tiximum flow capecity of 800 cubic feet per second. At
have proved very profitable, especially in the vicinity of Lethbridge and Raymond.
The Southern Alberts Land Company. This company also uses water from the Bow River. Its main canal begins about thirty-five miles southeast of Calgary and runs in a northeasterly direction for fifty miles, where it empties into a large reservoir known as Lake McGregor.

## Agrientiaro

This revervoir covers 18,000 acres and holda ebout 380,000 acre-feet of water. At the north end of the reservoir is an earth dam 3,600 feet long, 173 feet wide at the base, 63 feet wide at the hich water mark and 48 feet hich; the dam has an eight inch reinforeed concrete face on the reservoir wide. The dam at the southern end is 2,100 feet long and 46 feet high. From the southers end of the reservoir a canal runs in an easterly direction to the tract irrigated. Tho company owns over 400,000 acres, probably half oi which can bo easily irrigated.
Tho Aylwia Projoct. This was formerly a private enterprise including about 70,000 acres of irrigable land just west of the eastern section of the Canadian Pacific project, but it is now a project of the southern Alberta Land Company's poject.
Fature of Incigation. Though the amount of water applied seems to bear no direct relation to the resultant crop, it is universally admitted that without water there would be no crop at all. That irrigation aystems will spread as far as possible and that they will become a permaneat feature of agriculture cannot be doubted. The development of the dry belt depends almost exclusively on irrigation.
Too many people think that the irrigated land in Alberta and Saskatchewan will yield nothing but wheat. Not only will it yield other crops but the fact seems to be that continued planting of wheat imporerishes the soil. In an address before the convention of the Western Canade Irrigation Association at Calgary, in August, 1911, Prof. W. J. Elliott, superintendent of agriculture for the Canadian Pacific Railway, said of the true significance of irrigation that it must "inevitably lead up to the small farm, every acre of which is used, and every acre of which will produce more dollars than by any other system." At the demonstration farms at Strathmore, Alberta, under practical farming conditions, one acre in 1911 yielded $\$ 500$ worth of strawberries and a net profit of $\$ 300$. At the same time one acre of green garden peas yielded a net profit of $\$ 260$, and half an acre of turnips a net profit of $\$ 140$. It is in the fact that irrigation will make possible diversified farming and rotation of crops that the true significance of irrigation lies.
Outiine for study. The student of the subject and the teacher who wishes a general view in brief spece will find the following out-

## Agrienltare

## Outhine on Irrigation

I. Definition
(1) Conserving the rainfall
(2) Reservoirs
(3) Distribution of water
II. Irrigation is neceumary
(1) In desert areas
(2) Where rainfall is insufficient
(3) Whero rainfall is unevenly distributed
(4) For crops requiring unusual mointure

## III. History

(1) Ancient
(a) Esypt
(b) China
(c) India
(2) Modern
(a) In North America
(1) Among Indians
(2) By Spanish Missionaries
(3) By the Mormons
(b) Egypt
(1) Dam across the Nile
(c) Other countries
IV. In Canada
(1) The Dominion Irrigation Act
(a) Water in streams and lakes the property of the Government
(b) The right to use this water on compliance with the law
(c) Uses for which water rights may be so acquired
(1) Domestic, that is, household and sanitary purposes
(2) Industrial; that is, business operations by steam
(d) Title to use of the water so long as it is applied to beneficial use
(2) British Columbia
(a) Okanagan Valley
(b) Columbia Valley
(c) Thompson Valley
(3) Alberta and Saskatchewan
(a) Canadian Pacific Railway's project
(b) Alberta Railway and Irrigation Company
(c) Southern Alberta Land Company
(d) The Aylwin Project
V. In the United States
(1) The Carey Act
(2) The Reclamation Act
(3) Results so far accomplished
(4) Future plans

Essays
Frectleal Easy Fork. The recon that composition work is often so unsatisfactory, and that pupils consider it the wort kind of drudgery, is because they are anignod themes which they do not understand and upon which they can obtain little of no information. The exhaustive treatment of school subjects is True New Practical Refincace Liana makes it an invaluable aid to the teacher who wishes to make her r ri interesting and auceesful.
Below are given a few essay on corn, propared after a study of articles and illustrations in The New Practical Rermance Lipaiey pertaining to this subject. These easy are given to show teachers how the subjects prosented in this work can be used to advantage, and as illustrations of what may be done in other subjects.
The illustrations are simple and such as any pupil will delight in drawing. If, however, the teacher feels unable to supervise work of this kind, very interesting illustrations can be found in catalogues of farm implements and articles in agricultural journals and other periodicals.

20
Aghonlturs
on Corn
These can be cut out and pasted on the pages of the cray.

On this and the eight pages following we have endeavored to present these cay in form not more artistic than the work of the average boy and girl can be made. If the student seas that be can write and draw as well as the writing and the illustrations shown herewith, it is a matter of encouragement to him.

By way of special emphasis we would like to state that in a great number of instances the boys and girls are cecily discouraged in their attempts at drawing because their efforts fall immeasurably abort of the perfection seen in the copy. It is true that a perfect copy leaves no room for doubt at to exact form and detail but for all practical purposes of these essays there is much encouragement lent to the exercise if the students can see in the copy from which' they work that which has actually been produced by boys and girls with no better preparation than their own. It is therefore with pleasure that we offer such results in the next eight pages as may be achieved by every average pupil.


Corm is ne sort of quass, that is like wheaí, dully, me gus that in like to the quass t family ot is noised in almost even count yt having in warn au temperate climate.
The plant prow for fou to the he the thigh ow c frying tow the has
 tuple in coder, and orc con no ave on on our side. The levees app ion at the joints an do proud tidally nedout tu tale where they sum to goo foo it they are bones sherndeu and pointed and when furled, goondew bend over son as to give the plant a n very grace pul and beautiful appearance.

1. Corn has two kinds of flowers: those growing at the top of the stale and in the gars. These first and those forint Th staminate flowers peccausi there bravo only stamens. Opecause they consist of the silken and constitute the pistilate flowers because the sills is nothing mownoy less than a cluster of pistils each the ers appear in the axils of th laves at th joints Thy Nh axis of the begins top hagicalled hus shes. as the coin begins to ripens the husks open at the top:
showing the yellow er nils beneath, and the lar qu law hawse of the we iv weight, bend the so that by the tim they ar w ere hel, bend over the lower joints on the stale begin to form at ears are the oldest and the highest the lowest

Th w root extend far into the gre young for the pup pose of obtaining moister around food from the soil. Could a coin plant be i titis roots you ned to it, their as is haver all of length would surprise us

When growing, the coin plant is of a dup gen colo with, a brownie h on purplish on one side the early frosts, tend to twin the tips of the leaves and some of the husk angleowish-brown, this color dep ens and ripe. at any season is of che near becomes a field of coin is so bealiifule sight.

Preparation of the ground.
mary Martiv
the farmer who look forward to as pood crop of com uses guat caw iv preparing the ground. the spoil must br made mellow and fum so that the roots of the cow caw pere. trite it aud aboobs nowriak. mint.

The ground is
first plowed to a depth of sure or light punches. On dual farms, where but little cow is raised, the old-fashioned plow, tum ing but one furrow, is p ped, but ow the large farms in the cow blt, gang plows turnun two. Three aud sionetinus moue furrows dive employed. $\mathrm{O} N$ ground that has previously brew plowed, a' gang plow turning threw furious is easily driven by four horses. aud caw be op rated with three horses. The drier rides aud controls the raw and plow frow his seat. Some very large gang flour are hauled by steam ungmes
after plowing, the ground is has. rowed. of the ground is old and mellow, only a toothed harrow is needed, but ow new ground aid ground where the sol is hard aud lelwpy, the disk harrow is used first aud is followed by the common harbour. She han owing is cowlimed until made smooth for
 planting.

Planting and Cultivating Corn. many ${ }^{2}$ converts
On the anat fauns in newbonglandi and other raster states, much of the wore is done by hand labor. On the I 9 id anquarms in the conn NT Nell, holvever nearly all of this wore io done by machinery. The coir planter generally used has two -wheels and two sharp rummers. These rummers maser a small furrow, into which the seed is dropped flow boxes connected with au device Rnluwn as au checkerboard. Ihesermachines are drawn by horses, and she best of then plant, four rows at once, and wits a pod teaniv, os machine will seed about ten acres in ia day. tow the large dent corn, the rows are four feet apart inch way. This gives each hill of conn 16 square feet of ground Sornetinnes another Rind of planile us used. in which disposes Rape the place of rummers, as shourvin the picture. Ins Goth piridsi of planters. the wheels press the soil over the convini The furrow. Soon after the conn contemp, cub. tivating or plowing sit is usually

called, begins, and continues every fur dares until the conn is so -lang that further cultivation is liable to injure the plants
 try breaking the stales and disturbing the noots. sher conn is then laid try until the harvest.
Ocuitivator is used inn plowing conn. At destroys the weeds, Ind stirs the soil. Alter cultivator' has two wheels supporting a frannerwores, to which bianus bearing froe shaped teeth are attached. Ike cultivator is drawn by horses and guided by two handless which s extend lace frown the frame. Ore or tiro nous are plowed at a time. Often the field is plowed one wary it is usually plowed the other wary do that the second plowing crosses the first.

She sold wang of cultivating corn was far different e a puttivator. was used to plow between the rows one wary; thew this left as good part of the mover to bes don er wide d the hoe. Oh wore was slow and tiresoure. If two whew hoed ann acre of corn in ar dare trey called it ar rood darius words. Later a sur all pul. tivator was insed: and This removed the reds letwrens the nouses. Shin me. trod is still used in regions where, only annal fields of courdare planted.

Gmemues of the Cow Slant benny Andrew er
The room plant has many fumes, and frow the time the plants appear above the ground until the crop, is hawrsted, the farmer uninst fer ow the fin watch for thy in. Guong these pests, are caterpillars rigs, buttes and so wows. nee root won n bors its way into the plant. soil which, asa scow rills the plant. sow which has produced com for a mus. They shorten the sots and desc roy their power to nourish the plant. Root wonks paw be powestroyed by plaiting the ground with otherecrops for two rv thine seasons.

The cut wow is the cater pillar of a shoal moth. It works in the night whew because they eat the plant off just below jisiti the surface of the ground, the gus destroying much more thaw they eat. Ait whins aw swale joint. edhuorns about aw inch long and having a shine, dave brown color. They and be cause they feed upon so many different plants.
the The chinch bug is the wo st enemy of the com' plant. of some seasons these bugs damage the com crop to The extent of sweral millions of dollais. The chis chbug is a small insect, bring less thaw a givarter of aw inch hong, but it multiplies berg rapidly so that it mares up inure
bens what it lack e in size. She bugsigather bens what it lack in size. The bringigatter in masses ow the stem and leaves of the plantsraud sooi: destroy them.

Whew they have itestroyed the plants in one field, they move to another, sometimes going as far as a quarter of a mile since the broil do not fly ow these journeys, fields that are e free frow shew caw be protected by plowing a deep furrow around the fired Whew the bi gs. reach this furnow they caw br killed by scattering straw in the furrow, spinning it with renounce aud burning. if he bugs pass the sinter in the vote and stubble of grass and plants that grow around fences. Of these places are build over in the fall moet of the bugs will be destroyed.
ishowgh it w not aw usect, smut nay be considered awenowy of the coiwplaut for it sometimes causes munch damage to the coop. Shut s a sort of plant which hives a
grow es in she cor w plant. ot starts frow whittle body palled as stow, aud is so sulull it caw be sew only, with a mic wo scope the spore fail upon the young plants, work Their way
into the leaves and stales and into the leave and stales and threads which enter wry branch aud ear of the cbrw. These threads form new spores in the kernels and before the cow is ripe they burst through the kennels and give off a quantity of spows. powder.

Hawresting Com Until within a fur sears martin husked whinely by haver corneas harvested and Off and the thanh haft standing and were bores Sidered writhes Nous li the wise of the con-
 harvester, the conn is cont and the stales are pushed under a finding frames platform from which the shoer in set whore the che corn have ster es seminal to the rape

Gushing vv she dding follow cutting and binding. The ofoces a m foiled to the farm yard. this machine hears the caws from insedder in and removes the huss, dropping them in oneshac and the che an ears in another.

The hart of the machine which does this for so mes thy is made up of a frame which has som geared that the soles containing flanges, and each other. The rollers are about fou fee long, and The frames has one end lower than the other, wo that
 tache to the m, hit in ordevelo have th av wore sic. assully, the con must be thoowighly former prefers edo stow the colly the thoroughly dry.

Marketing Th Corn Cop Arthur Clark
After the coin is husked, it is stored $n w$ long. nay our buildings called cribs. The sides of the cribs are wade of marrow boards nailed to uprights so as to leave a space about aw inch wide between the boards This allows the gie to sireculate through the crib aud dry the cow
After the cow is dry, it is shelled by a sheller operated by steam. or horus power. The cow is thew hauled in wagons to the nearest elevator from which it is loaded into cars and shipped to lo inge cities From these centers. it is distributed to The mills and manufactories which' mare the various cow products.

Poo v roads are as great
 hindrance in marketing the conn, and every movement to secure bette v country roads, and to reduce freight rates. is' a movement towards giving the farmer greater profits on his crop.



Arehitocture a Fino Art. If buildings were meant to serve but one purpose, and that utility; if a house were only a abelter; if a capitol were only a place where government business might be transacted; then architecture would have no place among the fine arts. But the purposeg of architecture is the production of beautiful and harmonious, as well as strong and convenient, buildings; and thus tie good architect must be not only a practica: man who understands the use of building materials and the mechanical problems of construction, but an artist with imagination and a knowledge of the beautiful.
The most primitive peoples paid no attention to the beauty of their buildings; a dwelling was a place into which to crawl at night or during bad weather; if it answered that one demand it did all that was required of it. But gradually as men had a little leisure for other things than the protection of themselves from enemies and the procuring of food, crude ideas of ornamentation sprang up; and as man became more and more civilized he paid more and more attention to the erection of buildings which would please the eye. By the time we come to the dawn of authentic history we find a well-developed architecture. No one can read of the pyramids of Egypt and fail to be impressed with the ability and skill displayed in the raising, moving and adjusting of the huge blocks of marble and granite, weighing hundreds of tons, of which those structures are composed. Even today, with all the mechanical equipment which we have at our command, the building of such structures would be a tremendous task; and it seems incredible that the ancients, with their simple maschinery, could have accomplished it.
Every age, and to a certain extent every country, has had its own particular architectural
problems to solve and difficulties to meet. The overcoming of these difficulties has in a measure determined the style of architecture of each period and people; although of course the varying ideas as to beauty have had much to do with the subject.
One can enjoy looking at a beautiful, symmetrical building without knowing anything whatever about its arehitectural style or about the history of architecture in general, but the interest and enjoyment are greatly increased by some knowledge of the subject. In looking perhaps at a wonderful old-world cathedral or at a comparatively prosaic modern office-building, certain questions naturally arise. Why was this building made in this particular style? Would any other style have answered just as well? What were the difficulties the architect encountered? Was it a new style of architecture which he evolved for himself or did it grow naturally out of something which preceded? The ability to answer these and like questions will make the sight of buildings, new and old, much less commonplace than it is likely to be when we give no particular thought to the subject. Under the heading Architecture in Tre New Practical Refrerence Librart there is a discussion, with illustrations, $f$ the various styles of architecture. Eomo-Euilding. There can be no phase of the subject of architecture more interesting to the general student than that of home-building. This means the erection not of a many-roomed palace in which some wealthy family passes a few months of the year, but of a home in which a family of moderate means has its whole life. A man in the city is likely to live in a building which some one else has erected; he has had no part in choosing the type of building, the ornamentation, even the arrangement of the

Architcoeture
sooms. Bis family must have some place to live, and a certain house or apartment building appeale to him as, all things considered, more decirable than its neighborn. The majority of city people, have little chance to display any
and other people beaides those who paid for the original plans have had the benefit of them. For many of the magurines publish from month to month pictures and plans of houses, describing materials and giving prices. Of course in cboor-


4 modenan mova or antienc deack
Conte little, if any, moreithan the plaineat structure along old-time lines
individuality or originality in the exterior of their dwellings.
But in the country and in small towns, conditions are different. A man is much more likely to build his own home than he is to rent one. And it is in this connection that the subject of the proper style of architecture for a home assumes importance. Perhaps a man in a small town has what he realizes is a very limited amount with which to build a home. There is one casy thing to do. The neighbors on both sides and farther up the street have built houses which have cost no more than he plans to spend on his: he may make his like theirs. With this idea, he erects the conventional small-town house, with its atifl, straight lines, its pointed roof, its wing to one side or the other, and its small porch. Perhaps the new home is gray and has its front door on the left hand side, while its neighbor is green and has its front door in the center; but in all essential respects the house is like three-quarters of the houses in town. It has little individuality, little distinction; nothing has gone into it to make the owner feel that it is really his except his money.
The necessity of building a house for little money does not make such a state of things unalterable. Architects, even good architects, do not always confine themselves to designing elaborate homes that demand a great outlay of monef. There has been, particularly within the lust few years, much attention given to the planning of inexpensive but attractive homes.
ing a home from a pictured design, care is necessary, and many things must be taken into consideration. The size and shape of the lot, the direction in which the house is to face, the atyle of the neighboring buildings must all influence the choice.

an attractive ground plan
Thefinterior of the house shown in the illustration below
The illustrations here given show an attractive bungalow which may be built for the reasonable sum of $\$ 1,600$, with prices of material and labor at their highest point.

## $\triangle$ Areliticetrues

 The "Alos-ferapos." Amperican architects have not invented "styles," in the sence in which we speak of Greek or Roman anchitecture; but they have modified other atyles. More eapecinlly of late this modification has taken the particular turn of making the style of architecture fit the type of building. There was a time when if a building was benutiful in itself there was little attention paid to the question is to whether or not it looked like that for which it was intended. A schoolhouse might look like a Greek temple; a residence might reoemble a jail, or a church might look like an officobbuilding. Today, however, a building to be conidered artistic must like look what it is But the most thoroughly modern type of building which has ever been developed is the huge office-building which is known as the "skyscraper." As land in the down-town portion of it became mocenme more and more expensive every equare foot of it count for as much an posaible. The erection $\alpha$ offico-buildings several ctories in height was the simplest way of solving this question. However, people were not villing to walk up more than three or four flights of stairs to reach their offices, and this fact naturally limited the height of the buildings. Then, too, the methods of construction in use in the middle of the nineteenth century would not have made a very tall building safe. The invention of steel beams for construction work about the mi ille of the last century made possible taller buile ss, and the invention of the elevator in the sixties increased almost indefinitely the possible height of buildings. The Tacoma Building in Chicago Tos the first steel-construction "sky-scraper." "sley-chat building can scarcely rank with the Tacomap Building The cuts given here show the in New York, with and the Woolworth Building to date the tallest office-building ever, which is the world.We need not think just because the "skyscraper" had its origin in purposes of utility that it is a prosaic structure, unfit to rank with great architectural achievements of the past. True, it is not grand as a Greek termple is grand, or beautiful as a Gothic cathedral is beautiful, but it is very wonderful, nevertheless. Of course it must be fire-proof, and, consequently, little wood goes into the making of it, but it contains ateel enough to build over one hundred locomotives; literally miles of metal piping; acces and acres of terra cotta blocks; millions of bricks;

## Arelattocture

thoumands of toas of mortar; hundreds of tone a print; almont oae hundred thoumad aquaro ret of glane, and miles ol elevator cablea. All in all, perhape nothing represents so well the crowding of people in our Canadian cities, to gether with their ideals of utility combined with benuty, as does the modern "sky-acraper."

tacoma buthding, chicaco

## The first steel-construction building ever erected

4 Mothod for the study of Architecture. The Nem practical Rembrence Library has numerous articles on subjects connected with architecture, all of which are listed under the heading Architecture in the Classified Inder. For thoroughly intelligent study, how. ever, a further classification may be helpful. The following outline divides the articles into related
 inverination of the aubject. Under Buipling and Builling Metovial in the Climisied Inder


WOOLWORTE BULRDING, NEW YORE
The tallest building in the world, up to 1912
there are listed a number of topics which are of interest in connection with the subject of architecture:
 Anciriciust - Docompted Stylo
Archicecture
Epplian tecture Fiamboyant.
Indian Architor. are
Mohammedan ArchHecture
Norman Architeo tue
Pupeedicular
Tudor Eigle
II. Krum or Bumpnes-
Baptistry
Bailica,
Bungulow
Campanio
Casthedral
Cuner or
III. Pasts or Bumpiven-

Apee
Arch
Attrium
Attic
Baluster
Bay Window
Beam
Bracket
Buttress
Chancel
Chimney
Cloister
Column
Console
Crypt
Cupola
Dome
Dormer Window Entablature
IV. Ornammatation-

Arabesque
Caryatides
Corbel
Corbie
Crocket
Cyma
Fan Tracery
Monque
Payods
Round Townses
Temple
Tow

Facerde
Gable
Hall
Iogegis
Manmand Roof
Minaret
Nave
Oivel Window
Parapet
Pedimend
Pier
Propylea
Rib
Roof
Row Window
Spire
Transept
Vault
Window

Fillet
Finial
Fluting
Gargoyle
Moldings
Pendant
Trucery
V. Fayous Butidinas-

A list of these is given under the heading Famour Buildinge and Monumente, in the Classified Inder.

## Quostions

What is architecture? To what remote period can we trace it?

In what style of architecture is your church built? Your schoolhouse? Your county court-

## Aselitiontare

homet Your eity hall? Your proviacial caps tolf The Purlhameat Bulldiges at Othwa? Por how may yeres did Chappe cumploy man to aver the great pyrumid? How manay acrem dowe it corver?
What in the triche of the great pyramid? What dove ita inturior conatain?
What epecial chim have the Eyoptinas to dictinctive architectare? Wes architecture their apremen art?
With what wese the temples, tombs, and statues of Esopt decornted:
What pheos in Egopt because of its many pyramids in called the "Wectuse of its many
Eqypt"? Abbey of
What is the generally accepted belief as to the construction of the pyramide? How did the length of a king's seign affect the size of the monument?
How were the Buddhirt temples built out of oolid rock?

What characterised the early Greet architecture? Who were the three great architects of Gresce?
How would the acating capacity of the larger Greek theaters compare with those of today?
The Parthenon in the Acropolis at Athene in sid to be the most perfect building ever erected. When was it built? Of what material? How long is it? How broad? How high? How many pillares did it originally have?
How did the Roman amphithenter differ from the Grecian theater?
What were the thermae? What have the

## Areldtentere

excesvations at Pompell sovelod as rejurds the arruggemeats of the Roman dwallinghome? Describe the Pantheon at Roma
Are we justifed in chaing arehitecture as one © the arti? Why?
What particular type of building have Amerh can architects developed in receat yearn? Why were such buildinge not powible a halscentury ago?
What is the tallest building in the United States at the prement time?
What is a mosque? What in conaidered the mont perfect mosque in the world?
What people developed the arch to its highent type? Had the areh been known at all before their time ?
What is the longest stone appan in the United States?
What are Caryatides? What are Cleopatra's Needles? Where are they now?
What are the distinguishing features of Gothic architecture? Of the Renaisance atyle? Or the Elimbethan atyle?
In what countries is Mohammedan architecture chiefly represented? What are its moot prominent featurea?
When was Norman architecture introduced into England? What are its specific characteristics?
What are pagodas? Round Towers? Cam. aniles?
Of what did the Chaldeans make their buildings? Why did they not use stone?
What were the three styles of Grecian architecture? Characterize each style.



Dofinition of Number. "Number in a product of the mind'i sction," mays Dr. Dewey, the paychologint, "in making a rague thing definic."
The late United Seates Comminioner of Education, W. T. Harris, mid: "The ides of number will at firet be grasped by the pupil imperfectly. He can see only some phaces of it. Later be will arrive at operations which demand a view of all that number implices"
Pabjoet-I lattor. The subject matter of arithmetic is of two kinds-aberract processes and concreds problems, or, pure arithmetic and applied arithmetic. The processes may be thought of as instruments to work with; the problems as the real life-questions that the children must colve.

Ortilines. The outlines of work have varied greatly in the past, and are not exactly the same now in any two localities; but the variations are slighter. For instance, we no longer find "long division" placed where very young children would be forced to do $i$. The outlines appended here are based on what is generally conceded to be the proper work in each grade in the best schools all over the country. They represent, fiirly, the consensus of opinion of Canadian educators.
Ordor of Toples. One topic need not be finished before another is begun. In real life all sorts of experiences come to the child in one day. The idea of the work should be "spiral," that is, the same main topics should be carried on from year to year. As the child develops, so should the topics. At certain ages special attention should be paid to certain topics, and a definite and thorough study must be given them; but never should all the other topics be dropped in favor of the one under immediate st. $:$ For
example, simple fractional relations, as $\frac{1, f, \text { etc. } \text {, }}{\text { a }}$ ahould be used from the rery firpt, althoigh the topic of fractions in dealt with most thoroughly in about the fifth grade. In the fifth grade, how. ever, denominate numbers, which are emphasized before that grada, must not be dropped, but must rather be used in the fractional work itself. In this way arithmetic appears as a unity, not as a patchwork.
ITothoda. Genemar, Sugarmons-1. Do not be deceived: the mind of your pupil acquires knowledge only by its oven activity. You may talk till doomsday; you may "explain" until you are gray; the child learns to do by doing. The degree in which you have awakened his sell-ectivity is the measure of your success. Even an ordinary teacher, if she works with this in mind, will find her pupils "just love arithmetic."
2. Send for, or borrow, no matter what grade you may be teaching, some of the modern standard arithmetics, such as Meyer's, South-worth-Stone's, Smith's or the standard for your province. They are full of valuable suggestions. 3. Awways teach the process first, carefully, even slowly; then drill for facility. Dor a think you can teach by drill. Drill, or traini: "- mes after the process is understood thoret ${ }_{i}, \cdots$.
4. Arithmetic is truly practical wt ot deals with real things, with living proble.13. The child, for instance, should actually weigh and measure. How often we find children, or grown people, reciting glibly, 12 inches make 1 foot; 3 feet make 1 yard, without really having a definite idea of the distances. Let the child use his ruler constantly. He should estimate measurements and then verify his judgment by using his 12 -inch ruler or his yard stick. Take the children on imaginary trips with friends, paying fares, for lunches, etc. Make market lists for

## Adtithentis

provilione, clothing worn by childros, and the the. Have the children who ave old nound and the pricur at dirct hand, and insits on accuracy. Proce theos thete on the bluckboand for une fo both oral and written work; they may be a bavie for invention problezan and for mating many an aribhaetic ppiaciple clar.
Irumber Ipasesas. In the hoove and in the kinderparten the littlo child in alowly emerging trom the rague and indefinite in number relations to the exact and definite. Quite informally, but none the lem surely, the mother or the kindergarten tencher may aid in directing this growth. Siso-hrge and amall; meauremento-long, abort, thick, thin, wide and narrow; weightheary or light; poaition, direction, etc., are all basic in number. As Froebel says, "The whole of arithmetic, and the whole teaching of number,


2
is connected with the perception forms of the kindergarten." It is the business of those in charge of young children to present conditions that will appeal to and encourage the desire to

Astramente
coviar or manguse or limit, in some way, aed thus ald in the child's carly dowclopmeat along number lines.
The home and the kindargarten traching of number abould be as follown:
(a) Ratioaal counting-counting so that the number of objocts in mparate from the objects themelves in tho child's mind.
(b) Ready recognition of number in groupe of objects variously arranged.
(c) Number pictures, e.f., blocks, aticto, Angern, armanged to make it eavy for the child to picture through aight, for instavec, certaia any number facts, as
Suoomernon. 1. When the mother taken her little one upou her lap, and plays baby fingergames, counting, ase : "Four littlo birdian nat upon a tree. One fiew away and then thero

were three," suiting the action to the word, she is teaching number. To help the child in his learning to count, let the mother or the kindergurtner give such exercises as the ofllowing:


How many fagmes have you en ase handi
8 mut con thgr. How suay ave open ?
Shut another. How wany ase opeal flow many are chuif
2. The mother, ovea withous ad ling to her many dutios, may be of sevice th her chilld's deviloparax, 4 ibe will frequartly cell atcection to tho number clement in thinge. She may ath "How many chain do wo net et our tallet" or "Pick out the hrgeet buttome and purt them tato oue pite, and the mallear into another, tor mother," or "Give wises ane of grur throw penaices; now how many have yout ker ${ }^{\prime \prime}$
2. The making of chaing, mingiry \& brad grouping of objects, all add to th zuvwing number idens. Encouraging the his of Hecy His soldiers in two or three stra.str T,w, or dirsecting him to put the clothospins io the ing two at a time, are waym of strempibening his number sence. When the father plasen iswin. tmoee with his little one in the evening 'wuth: ing" ends, he is not only entertaining iut ceachtig the child.
4. In the audy of the aliplays theoe are number epportunties at eviry turis.' Tablest, polas mort, and eppecillly the third, fourth and athe githe, land directly to truches in number. The anth its is eppecially finad for the very beypraning work in frections. The divicion of the thay cube into omathalf, or half of a ball, menhonit poom ble for the litele child to aeo those rolatione. Ho plays he in a manoo with four eatire cerbes to phice es an foundation for his house, then builde more; pero hape he elipe a rubber bend sbout this group and places in as "ons four" inctend of four blocta. Thea a rubber band (a ropo to him) fastens ono block with one move, and the hoints this until "the two" reat upon "the four." He is mally, without forcing, woing that four and two are cix, allhough be may not be able to my this. And to the building proceeds; in the taking apart of the blocks, more number rethions are naturall discovered.
It wrilt by a great miblake to force arithmetic a. '1., malt. it in only the recognition of the 1 in where arithmetic neturally appean and ther at be emphasired that is urged.


JOMS AND TOM ARE ROLENTG BALIS


EOW MANY DC THET BOTH BAVE?

## First Year

Gogorel Ingsoattoas. In the yeur, number secivition brazue at home or in the kindergarten, such as (1) counting, (2) recognising number in groups of objects, and (3) forming numberpieturen, are contimed and developed. Beolde this, number mintions are shown through the menauring and mating of aimplo thing with the hands, by presenting little probleme well within the inevere and group of young children, and by leaching and trining in the beginning, of read. ing and writing numbers. Onallis of Work 1. Expucimion. The reading and writing of Arabic numbers io 100; Roman numerals to XII; fractional parts i, i, f; digns,,$+-=$.
2. Notation and Nomeantion. Pmocmaza. Numbern from 1 to 10 , inclusive. The four operations ahould be taught through the use of objects; counting by ones and tens to 100 ; recognizing groupe of objects without counting. 3. Fanctions. Halves, fourths, thirds. $i$ of $2,4,6,8,10 ;\}$ of $3,6,9 ;\}$ of 4,8 .
4. Devominatr Numarrs. Cent, nickel, dimé; inch, foot; pint, quart; day, week.
5. Menaunava. This is really the basis of the year's work. Ideas of direction, size, form should be continued and developed from the home or kindergarten work.
6. Liviva Problems. The problems in this grade, as in the later grades, should be based on the child's interests and experiences. Problems relating to the cost of tico tons of hay may be apparently simpler but are farther from the child's real comprehension than the cost of five
toy balloons.
Erescise in Addition. In presenting arithmetic to the ptimary class, it is easier for the child's mind to grasp the addition of objects or pictured objects rather than written figures, and for that reason a chast developed for drill work, like the one given, should be in the possession of every teacher who realizes the importance of the first steps in arithmetic. In developing a harge chart for class use, pictures of objects can be drawn or pasted on the chart and a similar device used in subtraction, multiplication and
division. In the
In the first two lines we give the simplest combinations, and for the first lesson in addition, by
mvering aith covering with a sheet of paper nine of the circles,
the pupil can tell without hesination circle and one circle are hesitation that one continuing to uncover ane cimo circles; and by continuing to uncover one circle at a time in suceess.
the fink row, the chan may be sade perfectly familiar with the addition by 1 up to 10 .
Por kinderganten wort this chatt can be produced in colors or developed into pictures of apples, oranges or other intereating and cacily represented objects, and insure the interest of the pupll. Color work and grouping will be combined in the onc exercies, and many intercening lename will be the result. The emential to succems

in this work is a constant drill, and the drill, to be effective, must not bee me monotonous. The many variations sere suggested avoid this monotony and the r elaptation insuries
sucgontions. c. The teacher or mother must be sure that the littife ones in her care understand the meanings of the firures and signs beo
fore she requires their use.

Lat thr vumeration come belore the potation. Let the pupils mee who can find and read the page numbers in their First Recmiers, frot, as a game. Afterwards the figurne should be used.
b. Triin children to see astantly how many objects there are in a group of objects on the deat or table; in a group of marks on the blackbourd, or on cands held up for the purpose.
Let the children, for busy work, make great numbers of inch squares, $2 \times 4$ rectangles, etc. They are useful as counters, as material to use in objectifying the four operations, etc. Skill, exactnes in measuring, and neatness are all gained in this training work. Scraps of colored paper from the printer or stationer add to the interest in this work.
c. The simple frectional relations must be taught through the use of objects. Here is the place for quantities of simple paper-folding and cutting, preceded by mensuring.
d. Make the denominate number work objective. Make many, many opportunisies for actually measuring the inches in the foot on the board, or in construction; counting out the five cents, in toy money, that make the nickel. Remember that much repetition is needed in this basic work.
e. Such terms as square inch, rectangle, triangle, circle, cubic inch, in connection with the form as it is used in class, should be used freely by the tencher, as the definite idea of form is growing in the child's mind.
Let children measure, measure, measure.
Probloms for solution. 1. How long do you think your deak is? Use your ruler to measure.
2. How wide do you think the window pane isp Measure.
3. Show me a block this size; one twice as large. Find one only one-half as large.
4. Measure, fold, and tear this piece of wrapping paper into three-inch squares for paste dishes.
5. Cut these half-inch strips into 3 -inch lengths for paste sticks.
6. Mother gave you a dime. You spent 5 cents for candy. What change did you get back?
7. The milkman left 1 quart of mill at your house this merning. The baby will drink a pint. How much is left?
8. Six inches melted from an icicle that was 1 foot long. Sh:ow with your ruler how many inches were left.
0. Begin at 10 and count beckward by 2's
10. Mary paid 16 cents for some ribbon, and for a collar athe paid 7 cents lesa. How much did the collar coott How much did both cost?
11. Lester gave Charles 5 cents for a ball and had 4 cents left. How much had he at first?
12. How many fingers have you; how many thumbs? How many fingers and thumbs together have you?
13. Three spools of thread cont 12 cents; one spool will cost onethird as much as three spools. What is the cost of one mpool?
14. Alice bought some oranges for 8 cents and some nuts for 3 cents and gave the storekeeper a 10 -eent piece and a 5 -cent piece. How much change was given back to her?
15. Tommy had two 5 -cent pieces and 4 cents more. How much more must be receive to have 20 cents?
16. How many cents in four 2 -cent pieces and a 5 -cent piece?
17. A little girl bought 8 pears and had 5 more given her. How many more than a dozen had she then?
18. If two gallons of milk were spilled out of a 10 -quart pail full, how many quarts would be left?
19. A room is 5 yards and 1 foot long; how many feet long is it?
20. If you drink 1 pint of milk every day for two weeks how many pints will you drink? Can you tell how much it coots at 5 cents a

A Variety of Materials. As the work of the young child must be objective, a great variety and a great number of usable objects must be provided. Foot rulers, splints, counters, such as shoe-pegs, corn, squares and oblongs (made for seat-work by you or by older children); one-inch cubes; toy or "made" money; sets of cards for quick work and (perhaps borrowed) a pint and a peck measure are among the materials needed.
Make a set of pasteboard cards, about $6 \times 5$ inches, for teacher's use in quick work with children. On one cari make a group of 3 , on another of 4 large dots or solid squares that may easily be seen as the teacher holds the card before the class.
A set of scissors, or old scissors brought from home, together with flour paste kept fresh with a few drops of carbolic acid, have become a necessary part of the first-grade class equipment. They make possible much seat-work in making things explained in class, as boxes, envelopes, etc.

simple Instruction Holpa. Besides the above suggested material at the disposal of teachers and parents, many other materials close at hand may be utilizel. For instance, a picture such as the one shown below may be made the basis of a lesson in arithmetic, and, indeed, of a language lesson, for here the two

How many are there with more than 10 spots? Add the spots on the domino nearest you in the picture.
How many spots on the one Henry is touching with his finger?
How many on the domino nearest Henry's father?


COLORED CARDBOARD COUNTERS
subjects can be nicely correlated. We may imagine an arithmetic lesson proceeding along somewhat the following lines:
Henry and his father are playing dominoes.
Do you think the game is about finished?
Why do you think so?
Who is going to win?
Find a domino with 7 spots.
${ }^{T} \cdot \mathrm{~d}$ one with 10 spots.

Which domino seems to have the greatest number of spots?
 Without expense or the mother to it is possible for the teacher splints, dialogue per dominoes, and the like. A following: may ensue, beginning quite like the

Teacher: Tell me quickly, how many in this group of counters, Edwin.

Astithmetle
Aypit: Thrce
Thacher: How many in this, Nore?
Pupit: Three; no, four.
Tacolior: In this other group, Nora? Pupil: Four.
Tracher: Make groups of ive of there pega, Edvin; of four, Nora; of three, John, ete.

## Arithmotic

trich appeses. Divide each short end into two equal parts with a mark. Connect the'marke. The circle-maker in then made.
Stick the point of a pin through the circlomaker any plece on the long central line where the ahort lines crome. Stick firmly into the paper on which the circles are to be made.


CARDBOARD OR PAPER DOMNOES

Domanoms yon Armtrinetrc. Paper dominoes cut in large quantities from paper or cardbourd by children, and dotted with brush and ink by the teacher, make good material for many number gamea.

1. Let the pupils "match" ends
2. Select all alike.

Stick the point of a pencil through the circlemaker on the long central line just one inch from the pin. Make the circle.
Ask the children what is its diameter. Then ask what shall be the diameter of the colored circles they expect to make for valentines.


MRCLE MAKER
2. Plece in rows with a given number in each row.
4. Find one with $\frac{f}{f}$, or $\frac{f}{f}$, or $\frac{1}{d}$ as many dots as another.
6. Write on the board or on paper the number of dots on the dominoes.
Cmols-Markr. With this simple tool young children can make circles of different diameters for various uses.
Have the children cut a piece of thin candbond 4 inches long and 1 inch wide. Using your suler, mark of each long edge in inches; then in halt inches; then in quarter inches. Connect the marks. Write $1,2,3$ and 4 in the

Boxps for Stondes, Surds, Counters, mic. The material needed for this exercise will be thin cardboand or heavy wrapping paper.
The children should take the cardboard and draw a 4 -inct square on it, then cut this out. Then have them place a dot 1 inch from each corner on each edge. Connect the opposite dots. Cut out the 1 -inch square in euch corner. Find the four little rectangles. Fold them inward. Take the little squares cut out and paste them across the open edges of the box. Then ask the children how long, wide and high the box is, and how many cubic inches it will hold.

## Second Year

7. Type of Oral Problemes. I know how many pounds of candy I have and how meny boxes I wish to put it in. How ahall I find how much I should put into each box?
You know the length of one side of a square. How can you find the distance around it! Make 2 picture and explain.
Rolpe on the Outlino. Playnva Stori. Playing store is a delightful occupation at this age. Almoot every bit of formal grade work can be done through this medium. With thy money or money made by the children themselves, interesting things may be bought and sold, United States money read and written, bills for goods added, change made. ribbon monsured hy the inch and yard, nuts measured hy the quart and peck; also problems may be suggested hy the children themselves. In playing store many mothers will find an ewsy solution of miny-day problems when the children are kept inside and are inclined to be restless. The regular schoolwork can be kept up in this way. Below are several store probisms appropriate to this grade:
8. Yesterday Carrie bought a dozen eggs for 20 cents. Two of them were bad. How much money did Carrie's parents lose?
9. You huya piece of ribbon for 18 cents, some calico for 15 cents and 2 yards of muslin a، 8 cents per yurd. How much did they all cost? 3. The storekeeper charged 6 cents for hall a pint of nuts. I bought a quart and gave him 50 cents. How much money did I get tack?
10. Berries cost 8 cents a quart today. If your mother gave you 40 cents, how many quarts could you buy? Would you have any of the money left?
11. There are 18 huttons on one card and 24 on another. What will both cards of buttons cost you at 10 cents a dozen?
Addition at Sigetr. In adding columas of three or more figures, do not allow the pupil to add one figure at a time, especially after he has acquired a little experience. He should combine two consecutive figures and should finally give 5 the result of three at sight. Por example: of Ggures, as (a), on next page, then may use the same column in combinations or groupings, as (b), (c), (d) and (e). By adding another

| (d) | (b) | (c) | (d) |
| :---: | :---: | :---: | :---: |
| t | 4) | 4) | $4)$ |
| 2 | 2 ) | $2\}$ | $2\}$ |
| 8 | 8 | $8)$ | $8)$ |
| 6 | $6\}$ | $6)$ | 6 |
| $t$ | $4\}$ | 4) | 4 |
| 8 | 33 | 3 3 | $8)$ |
| 7 | 7 | 7 \% | 7 |
|  | 4) | $4)$ | 4 |
| 8 | 8 | $8)$ | 8 |

number at the top or bottom of the column, still other combiratio as are available.
There is anthing more helpful in later achool life than a quich; active mind. Bapid calculo.

## Artibumetle


fions have been frequently termed mental gymnastics and are advised for frequent exercises. Herewith is an illustration of a chart which can be very easily prepared by using an ordinary window shade roller and slated cloth. The figures can be put on the cloth permanently with challe, or pasted on with mucilage, and for the pupil beginning addition the shade should be drawn so it will show but two rows of figures As soon as two rows can be handled effectively the shade can be pulled lower and the third number may be presented. Such a combination of figures has been used in these two rows that no "carrying" is required. Therefore the work is kept in elementary form. The mother or teacher can hear the recitation or drill the pupil from the combination of these figures cimply by the use of the pointer, and may save the time and avoid the diversion which would attend writing a series of figures on the blackboard.
Tare face or time Cloci. The teacher or the mother can make excellent use of the clock face with pupils of this grade. In absence of a large clock in the room, you may use a piece of string and crayon and with these draw a large circle on
2. What is the sum of the 12 numbers on the face or the dial of the clock?
3. How much faster does the minute hand travel than the hour hand?

4. While the hour hand travels from XII to XII, how many times has the minute hand gone around the dialt

## Arithmetic

## Arithmotio

8. Add the numbers on the dial, I, III, V, VII, IX, XI, and subtract your result from the sum of the numbers II, IV, VI, VIII, X, XII. a. You should be at your uncle's house, one mile north of your home, at nine o'clock. You can walk four miles an hour; it is now a quarter after eight. How long before you must start if you will reach there promptly at nine?
Let the smaller children move the hands to time for school to begin, for noon, for school to close, etc.
When problems in time are given, or pupils are learning to tell time, have the little ones actually work with the thing; having the teacher point is not enough.
The clock device is an excellent one for illustrating points on simple fractional relations, comparisons of size, for pointing to in quick work in tables, etc. Once the principles are fixed, the object may be removed and used only in cases of doubt.
Denominate Numbers. The subject of denominate numbers should all be learned by means of actual objects at hand, so far as is possible. If there may be before a class liquid and dry measures, measures of length and weights, and imitation money in all amall denominations, a vast amount of interest is added to the recitation and the work is made so real that it is easily understood. Sometimes real things do not seem real to the child because of his inability to grasp facts. When he can visualize things he understands them. When a fact has been presented there should be drill relating to it. Below are a few problems which will be helpful in this connection and which may offer suggestions for many others of like nature:
9. Into how many yard-sticks can a stick be cut which is 36 feet long?
10. Into how many foot rules can you cut a stick 45 inches long? Would you have a short piece of stick left less thr., a foot long?
11. How many days in November, December and January?
12. How many sheets of paper are there in $1 \frac{1}{2}$ quires? How many quires and sheets are there in 54 sheets?
13. In the above problem, what is the value of the 54 sheets at 12 cents a quire?
14. Tommy played one hour and a half. How many minutes did he play?
15. A gallon measure holds 4 quarts. How many quarts will 9 gallons hold?
Actual measuring of things in the room and making problems from the measurements, cut-
ting and tearing pieces of paper to a given sise for a given purpone, etc., form a bacis of work in measurement such as can be done later without using the rule, for the thing is underatood. Quice Wori Gaires. The second, thind and fourth grade teachers can use a set of number cards in a great variety of ways. Let the children make, of odd bits of cardboard, cards about

$3 \times 5$ inches, as seat-work. These the teacher may make into sets of number cards by writing numbers on them in a bold, clear hand, in ink. They may be used for drills, as follows:
(1) The teacher holds up one before the class, so that all may see for an instant, then takes it down. She then calls on some pupil for the sum, difference, or whatever process was decided upon before showing the card. This must be done rapidly.
(2) The card may be given to the child who gives the answer correctly first, each child trying to get as nany cards as possible.
(3) Score may be kept by a monitor of the number each "side" has given correctly.
3ird House. This should be drawn, enlarged, on the blackboard for work in mensuring. Pupils who estimate height, mensure, width, etc., correctly may aid in coloring "our bind house," while attention is given by the teacher to thowe weaker in ability to measure. (See next page.) Numeration. Have on hand sets of epplints or toothpicks bound with rubber bands, one in

Astrhanatic
one group, ten in the next, one huadred in the next, etc., becides manay loove eplinta for children to group.

biad house
Teacher: Show me one splint. (Write " 1 " on the board.)

Show me ten splints. (Write " 10 " on the boand.)

## Artithmette

Writo the aumber that atands for them, etc.
Dnimetrone for Macang ax Enveloper This may be made to hold hagruage words, seeds, a letter, valentine, etc. The material needed is manile paper.

The children may cut (or tear) a sixinch square. Fold the square so that the two opposite corners will meet. With the base of the triangle toward you, fold the right-hand corner to the middle of the base. Puste. In the mme way fold the left-hand corner. Puate. Fold the apex of the triangle to meet the middle of the base. Open. Then fold and paste the inner triangle to thr middle of the bese. Now tell them that since sey have made this envelope so well with help, they may make one without aevistance for seat-work.
Such directions as the above may be written on the board with ench step numbered as the children proceed. It may be left for the pupils to follow, by themselves, as soon as they are skifrul enough to be left alone to carry out directions. The values in the work will appeal at once to the thoughtful teacher.

## $\triangle$ Iype Leason for Eecond Grade

Roading the Thermometer. This lesson is based on the use of the thermometer and is for the purpose of training the children in counting by 2 's and by 10 's. A common thermometer,


SETS OF TOOTHPICKS OR BPLDNTE

How many times as many in the second bundle as in the first?
Show me ten of the bundles of ten. (Write " 100 " on the board.)
This place (units) is for the ones; this place (tens) is for the tens; this place (hundreds) is for the hundreds.
Write the number that means 1 unit, 1 ten and 1 hundred.
Pick out 2 units, 2 tens and 2 hundreds from the bundle:
which the children have been watching, may oe used. Draw a diagram of a thermometer on the board, showing the degrees and spacing.
Teacher: All find the figure $\mathbf{0}$ on the drawing of the thermometer on the board. Jame, find it on the real thermometer, or heat measurer. Ralph, show with your finger how far the wercury rises when there is one degree of heat to measure.
Pupil: This is one degree.

Adtelimotic
Tanolor: Show bow high it ricees to measure

$10^{\circ}, 20^{\circ}, 80^{\circ}, 40^{\circ}$, Lena. Pupil: This is $10^{\circ}$; this is $20^{\circ}$, etc.
Teacho: To what point
has it risen today?
Pupil: To here, bo tween $30^{\circ}$ and $40^{\circ}$.

Teacher: How many apaces are there between the marks $30^{\circ}$ and $40^{\circ}$ ?
Pupil: There are five spaces.
Teacher: Mark off on the blackboand drawing the space between $30^{\circ}$ and $40^{\circ}$. Into how many appeces are you dividing it?
Pupil: I'm dividing it into five apaces.
Teacher: How many degrees between $300^{\circ}$ and $40^{\circ}$ ?
Pupil: There are ten degrees.

Teacher: And how many speces did we say? Pupil: Five speces.
Teacher: Then how many degrees must each appace stand for?
Pupil: Each space stands for two degrees.

## Tracher: Count by two's.

Pupit: Two, four, iir, eight, ten.
Taceher: Call the first apace $320^{\circ}$, the second $34^{\circ}$, and so oa.
Pupul: $22^{\circ}, 34^{\circ}, 36^{\circ}, 38^{\circ}$.
Tcacher: Now read the temperature for today, exactly.
Pupil: $34^{\circ}$.
Teacher: Count aloud and show the apaces from forty to fifty in the smme way.
Pupil: Forty, forty-two, forty-four, etc.
Teacher: Now we have all counted by two's in pretty large numbers. Read the hrge apacen on the drawing of the thermometer, Cora.
Pupil: 0, 10, 20, etc.
Tewcher: You have been counting by ten'a. This is the way to write them:
$10 \times 2=20$
$10 \times 3=30$
$10 \times 4=40$
$10 \times 5=50$
$10 \times 6=60$
$10 \times 7=70$
$10 \times 8=80$
$10 \times 9=90$
$10 \times 10=100$
They mean 2 tens are 20; 3 tens are 30; 4 tens are 40 , and so on. All read them. Now write them on paper at your

Quite aside from work with the class, it may be stated here that the teacher or pareat would do well to consult authorities and learn how a thermometer is made. Much of this information will not be too difficult to impart to some of the older pupils, and will enliven any session devoted

## Third Year

Genrral Suggestions. In this grade the child should be taught to keep before him these three questions that arise in solving every problem: What is given? What is required? What shall I do to get it?
Outline of Work. 1. Exprussion. Reading and writing Arabic numbers of five orders; Roman numerals to C ; fluent reading and also writing of fractions and of dollars and cents as used in this grade.
2. Notation and Numeritton. Procesegs. (a) Rapid and correst adding and srobsracting.
of easy numbers.
(b) Tables through the 12 's. Counting forward and becikward by 2's, 3's, 4's and 5's.
(c) Multiplication and division. Murtiplier and divisor to be 10 or less. Written
seat-work emphasized. Comparison of quantities continued.
3. Fractions. Halves, fourths, eights, thirds and sixths.
4. Denomanate Numbers. Emphasize and continue denominate numbers as presented in grades one and two. Change denominate numbers to the next larger or smaller unit. Tell time by the clock to minutes.
5. Mensuring. Make still further use of measuring of all kinds.
6. Livive Problemus. Let the probletas be chiudren's problems, interesting and full of meaning for them, not the problems of a grown-up.
Real problems in comparison arise, as: If 3 sheets of cardboard cost 5 cents, what is the cost
a 6 sheet Let the comparison of 6 with 8 process the second stop of the problem.
Jim and Harold kept a lemonade stand at a picnic. At 5 cents a quart, what did it cont to make 2 gallons of lemonade? What was their pain $\#$ they sold it at 1 events a plat ghat?
False va the Onetime. Various sivaamenoma (a) In this grade especial attention should be given to neaten and eccurncy in written work, as well as to the more exact oral expression of number facts. Make a point of praising attempts to shape figures well and to give remits rapidly and accurately.
(b) There is great delight at this age in "numbers." Moke great use of number games in fixing number facts, especially the tables.
two trectres long and two taches wide cans you cut it?

1. You take to the store 80 egg, which the merchant buys at 12 cents per down. You bay ono-quarter pound of tee at 40 cents per pound and a package of exarch for 10 events. How much money does the merchant them owe you?
a. If a domino is 2 inches long, bow many placed in a row will reach one yard?
2. If Willie can walk one mile from his home to his uncle's house in 30 minutes, bow long will it take to wall to town, which is one and coe-hall miles farther than his uncle's?
3. Subtract the following columns of figures at alight:


ADDITION AND SUBTRACTION WEES
As suggested later, great enthusiasm may be maintained, and drudgery forgotten, if the teacher will but enter, with the spirit of fun, into the work on tables, as games in which all may compete. However, before rapidity or fluency in them is demanded, the number facts must be well taught.
(c) Make use of the chart given and use the counters freely, allowing the pupils to show the relations in as many ways as possible. Encourage little original "number pictures" made by the pupils to illustrate problems.
(d) Make use of many problems. The following are suggested as typical of such as $\mathrm{mr} y$ be employed:

1. We have been in school, now, $1 \frac{1}{3}$ hours. How many minutes is that?
2. Fred is exactly 4 feet high. How many
yards high is he?
3. A piece of paper is 12 inches long and four inches wide. Into how many smaller pieces

| 9 | 7 | 11 | 12 | 13 | 14 | 13 | 14 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 |
| - | - | - | - | - | - | - | - |
| 6 | 9 | 11 | 12 | 11 | 13 | 12 | 14 |
| 4 | 4 | 4 | 4 | 3 | 4 | 3 | 4 |
| - | - | - | - | - | - | - | - |
| 8 | 7 | 9 | 10 | 12 | 9 | 11 | 8 |
| 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
| - | - | - | - | - | - |  |  |

(e) Always follow this plan in measuring: (1) Let pupils estimate the distance or the quantity. (2) Measure, exactly. (3) Compare the measure with the estimate of it.
Special Ineppresive Dories. We hope you have not failed to note that in the work for each grade up to this point there have been suggestions relating to inexpensive devices which may be employed by the teacher in school or by the parent at home to develop elementary

Enthmatical truthe It is not enough for you to know the procticability of theoe thinges, but the devices themalres muat be need i" proper reanls are to be secured. But little time is requirod in malding them, and thero is litto escume for one who enters upon the work of the dyy with no illuotrative material at hand with which to develop the lemona some of the derices which ase particularly appropriate for chind-grade pupils follow:
"Talese" Wrimi Make a hrge copy of the "Number Whed" on the board.
This is ane of the mont intereating devices for truining in pure number. It may be used in mariod ways, as followa:

1. The teacher, using the pointer, mys, "Give tuble of cixen, rapidy."


Table wares
2. A pupil uses the pointer and chooses other pupils to answer.
3. Sides are chosen. The teacher, rapidly pointing, gives ench side a turn in succession. One child may keep tally.
4. The central figure may be changed and the sign + placed on the board. Then tests pay be given for correctness and rapidity. The pupils may write the resulto and rise when the work is finished.
Chlat or Comparasons. An ingenious tancher will find such a diagram full of posshilinies for training the eye to see, the mind to judge, etc. Comparisons are easily taught by its use. She may ask such questions, at last, ws the following:
Which line is twice B? Which two added make H? Which line is the difference between C

03
Pand Di Call A b ; mame the otheren. Call $\Delta \mathrm{G}$, and name the ocheran.


Bucmor
maycrion Cerint. The teacber or pareat fraction chart, about 21 feet by 2 companying and may direct the children to reproduce it on paper reduced to ${ }^{2}$ aize of 2$\}$ inches by 2 inches. This amall chart may then bo used for illustrating problemsinvolving fractions and proportionate dimensions.
Suchquestions as the follow. ing will be of special value here, and each is applied to the small drawing in the hands of the pupils:

How many square inches in the entirefigure? How many square inches in

What part of a square inch is B?
How large is A when compared to C?
How large is B when compared to A?
Into how wany quarter-inch equares could you divide the whole figure?

Thise owohall of i; how many timelarguris B? Btanary Comblandone a Dimbora. Wo give you herevith overy combination in the

addidion tuble up to 10 . TMis mblo is havern as the list of forty-ive comblanations of nember. It will be roticod that combinations of 1 with 1 all difits are reprouented in the frat line, that $2+1$ beine reper lased comblandion for the $2^{2} 2$, thin revens reporenned in the firse lina, and for
 citate ane lew comblination, until in the table d $\mathrm{Y}_{\mathrm{h}}$, ouly $9+9$ would not have been lauraed in a provious tuble. Une thie twble for teating, or for bomo-mork for beckmed pupila.
Onal divill from this mble, arranged the chart form or placed upon a blactbonrd, muat be continued until the pupils are thoroughly lamiliar with theoe problems
It in hardly necemary for us to suggeat that the bright pupil and wido-arake rexcher will prepare dimilar exercises for subtenction, multiplication and division.
By placing any figure deired before thove given, a geat many pure number problems may be earily contrived by tencher or mother.
Combination of cdeonds. There are two worde with which you should be sequainted, although you may have little occacion to use them in your dhily wort. They are mathumatical terms, not oaly in arithmetie, but in higher mathematics as well. They are addend and augend. An addend in a number or quantity to be added to another number, called the

| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 8 | 8 | 8 | 8 |  |  |  |
|  |  | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 0 |  |  |
|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |  |  |

## Astichanele

ancods then, in the matromoth, $7+8-12,8$ is the aumed is the adtr and $t$ the eddoch. Tw bo adided, ad $\mathrm{m} s \mathrm{~m}_{3}$ above, 7 is the angund Is comerim unger the trone eddead is givia to boct the mumbere whoen aum is to be found, and we mill no moit have.
The deifer an the preceding pape shows the
 than 1 , which will produce as oumo nay sumbowe trome 1 to 18. An coxminmition al the table will whow that only 2 and 2 wlll prodece 4, and that whith ow have four combinationd 8 equalion 17 . white wo have four combination equaling 11 and a to mamber for 10 and 12. May quetions and ve mandy aquent a few, having the sant to the ctedemat:
What addeads in 78 In 99 In 13 ?
One of the addend in 11 b9 9. What is the oher?
One of the addeads in 11 is 7 . What is the

6
Mito a lin of adionde which alve 1 for unith Eyuse
Make a lix of addonds that exeved 10 and dive 22 for the unitu spars. (Siniles like cas bo zado for mech frure in the uaiter preas.) What addad with 0 cives a mumber whooe fithethand fure is 2 ? if 6 ?
What adiond with 9 givee $a$ number whow sifothand \&uro is 78 of 87 it 8 ?
Aldsade int encend 10 and give a 2 for units:
$3+0$
$4+8$
$47 \quad 0+0$

Addends thit exerad 10 and give of for unitu: $7+9$
$8+8$

Addeads that exceed 10 and give o 8 for unitt:
iddends that exceed 10 and give a 7 for unite:
$8+9$

## Fourth Year

Comoral bacgentions. At the age of pupits In the fourth grade there is great interces in "tomm" watk. The arithmetic tencherer may take adranage of thin by frequent "chooing up" for aridumetic matches for moview wort: Pupis will rork, becauseof thio social instinct, for their "wide" in a number game, when the mane material, presented as drill by the teecher, would amaken little interest
Outline of Work 1. Exprameson. Reading and writing Arabic numbers to neven ordera; Roman numerals to $M$; two orders of decimals; Including the reading and writing of dollars and cents, decimally.
2. Notimion and Nonizution. Procisests.
(a) Worts for ernctreas and rapidity in the four
(b) Written wonds using the four operations with multipliers and divisors of two oriers. "Long" division and "long" multiplication well begun. Comparisons extended.
3. Fracions. Purther use ol frections karmed in previous grades. Changing from frections to whole or to mixed numbers and beck again. Addition, subtraction and comparison of frections.
4. Devonumate Nominas. Al denominate number tablee used in other gredee completed
and learmed. Much work on problems involving denominate number.
5. Mrearuana. Measuring as notod in grades two and three phould be extended Application in draving, making, etc., bhould be continued.
6. Livive Pmontime What are the dimensions of this room in yands? Find the avea of the rpace on which your seat and det atand.
Correlating this work with nature study, such questions as the following might be auked: Our wasther chart shows that 15 of the 20 days were sunny and 5 were cloudy; what proportion $\alpha$ the days were cloudy? What propntion were sunny?
Hidpe on the Outhino. 1. Give much training in the application of our current money, after showing that the businem way of writing is merely a grouping of doliars, dimes and centis exparately, o. g., 250.73 means a group of ifty dollars, a group of seven dimes and a group of three cents.
2. It is a great otimulus to tres each chiid by the clock lor mpidity in performing certain operations. At the end $\alpha f$ i vect, texa agnin to And improvement During the etudy period oconsionally ank the pupis, as part of the work, to watch the clock and tert themselves for mpidity

On the work you expect to ragis orally of the char.
Diatinguleh with elaikirme of this age botwom division and partition; that is, land chem to me e the different belwea

## $8.18+8.06=$ ?

Bey examples involving the $1 / 50 \mathrm{B.150}$ ? may be written on the board for the ate of training, then emceed rapidly one at a time. The children should put down the answers coaly, exchange papers and correct.
Eximpleo:

$$
\begin{gathered}
88+22=? \\
800-250=?
\end{gathered}
$$

2. Make sure that the child fractional relations by anting him. for ingrate to shew $f$ in ave different ways; variations of the following mugeretioes ave recommended:

## Astithenclie

Eatrets Devious. An the pupils grow alder the number and compleatey of the devices which may be capployed in connection with arithmetic are found to increase. Those which are pros seated true are typical of a great number which the ingenuity of teacher or print can morea. For instance, in the above hive diagram which show bow to explain the relation of \& to 1 , there Is all the egestion which one should require to enable her to adapt the mope thought to four the, sArthe, sixths, tote.

Illumination or Onforwar Promerio. By this time pupils ought to be able to handle with eave examples with pure numbers. Yet illustrndione cana wall be undead by them to aid in explaining their own original problems. For witter work, act the chase to write out and to illustrme problems involving some point you have just

4. Have a square yard measured of on the floor by the children and used for comparison.
8. Let the children estimate the number of quires of paper used by all the members of the room in the year, and the price of it.
Let them figure on such problems as the length of a rectangular pane of glass in a school door it it is 19 inches wide and contains 665 square inches.
made plain. For example, you have just re o viewed certain work on fractions and wish the class to illustrate it by original problems.
Illustration by pupil: I spent \&4 of the 312 I had. What part of my money did I spend?
Denominate Numbers. Children should use the actual measures when dealing with denominate numbers. Much handling of the quart, peck or bushel is needed before the teacher can



Adaphability $\alpha$ Oratimes. The outlines prowented in the forgoing pages are not oflered with the expectation that they shall be applied in evrey echool or home always in the exact way auggeted. What is beat for pupils in a given grade in one locality may be better for the grade highar or the grade lower in a different locality, or whem students work under different conditione. Topics net down for the work of one grade may be bagun oae grade carlier and continued into the micceeding one, or, as in case of such topies as fractions, mensuration, ecc., may be usod in all grades. Where textbooks are used by regular adoption the suggestions in the outlinees may be adrantageously used to supple meat the books. Parents of children who need apecial aid in mathematics will find tho outlinea we offer will be very acceptablo and practical belpa.

## Anetrals of Probloms

Aminits. The meccentul tencher is the one who can get down to the plane or the child, who can seo what he wees and can think as he thinks.
Teachers sometimes fail to see the necessity of very detailed explanation of problems, because they appear really so simple that even the aloweat minds among her pupils should readily comprehend them. The mind of the child is not trained to logical proceses, and the steps in the unfolding of a proposition are difficult for him. Proceeding from the known to the unknown must be by slow degrees and accomplished by elaborate illustration and explanation; each new fact developed must be accepted by the pupil as naturally following that preceding principle he has come to understand. Until you are conscious that this condition exists, painstaking analysis must continue. Choose different ways of making your explanations; a statement one pupil understands will fail to reach the understanding of another, but there is some form your effort may take that will dispel the last lingering doubt.
A problem is presented below' with such analysis as is always to be desired. In the second solution nots the repetitions which connect the known and the unknown, and how these fail in the first solution.
Problem. Charies had sixty cents, and his mother had ninety cents which she divided equally between Charies and his brother William. Charion bought two packnges of candy at five oents each and five orangees at three cents each.
diving tex ceante ench weok. How many weoks
The simpleat form of colution, ase girma below, is objectionable, since it states no remena for any of the processes employed; and the child may not be able to undertand the atepa:

$$
\begin{aligned}
& \text { t of } 904=454 \\
& 604+45=105 \\
& 2 \times 5 \%=10 \\
& 5 \times 3 j=15 \\
& 104+15=25 \\
& 105 i^{i}-25=80 \\
& 80+10=8
\end{aligned}
$$

A form which may be employed with eplendid results simply states in words what is in the raind when solution is progreaing. It ?ollows:
60 centa=the money Chariee had at irest.
90 cents the money given to the two boyn.
of 90 cents $=15$ oenta, Charles's portion of his mother's gift.
60 cents +45 cents $=105$ cents, the amount of money he then had.
$2 \times 5$ cents $=10$ cents, tho sum spent for candy.
$5 \times 3$ cents $=15$
$5 \times 3$ cents $=15$ cents, the sum epent for orngees.
10 eents +15 cents $=25$ ceate, the total sum Charles epent.
105 cents -25 cents $=80$ cents, the amount he had left.
$80+10=8$, the number of weeks his monoy would last for Sunday School.
There is not always the necessity of onal analysis as detailed as the one below, yet it in recommended; if used in its couppleteness by the tencher in illustrating a special kind of problem for next day's work she may be sure of thirry good results on the morrow. If a pupil gives such an analysis in the course of a recitation no one can doubt his full underatanding of the problem:
(a) Charles had 00 eents, before receiving his portion of his mother's gift.
(b) The sum divided between Oharleo and William was 90 cents; of this Charles received ono-half of 90 cents, which is 45 centa.
(c) Since Charles already hed 60 cents, he now has
cents. 0 cents plus 45 cents, which is 105
it) Ho purchased two packages of candy. If une paciage coot 5 cents, two pachages cosit. 2 times 5 cents, which is 10 cents.
(e) He aloo purchased five oranges. If one orange cost 3 cente, 5 oranges coot 8 times 3 cents, which is 15 cents.
(f) The two purchases cost the sum of 10 cents, for the candy, and 15 centa, for the oranges, or 25 cents for both.
(g) He had 105 cents, out of which 25 cents was spent. There remained the difference between 105 cents and 25 cents, or 80 cents.
(h) The 80 cents is given to the Sunday

## Artichantle

cum would hat an many woeb for thin purpose (i) Theruatare, the theo in 80 , which in 8 . atit trum his, thother mey remaining after the purchan would provide money malking hit Sahool for 8 veeks.
Probloma for Amalyale. Following the second analyis above, for blackboand work, and the thind, for oral prementation of a problem, the examplos below are recommended for practica. In each there is opportunity for cancoul analyitio, and the teacher may well remember that in training her pupils to be analytical ahe in inotructing in the rudiments of logic:

1. Hary wished to buy a sled for one doliar and a half. He had oaly 55 cents. His father gave him 50 cents, and his mother sold 3 dowen egge at 20 centa per dosen and gave him hall the money received for them. He then agreed to mw wood for his uncle at ten cents per hour until he had carned what he yet needed for the purchase of the sled. How many hours was be engaged at this work?
2. A man buys sugar at the rate of 12 pounds for 72 cents and sells it at the rate of 6 pounds for 60 cents. If he sells in all 24 pounds, how much doen he gain or lose?
3. How many handkerchiefs can be bought for 84 cents, if the merchant asks 72 cents for one-half dosen?
4. Mary poured a gallon of mill into bowls, and each bowl held one pint. She sold the bowls of mill for 2 cents ewch. How many cents did abe receive for the whole gallion?
Tabtar up a Ilow fabjoct. The great educator Peataloma hid down the principle that "All mathematical knowledge is founded upon immediate obvervation, and therefore must proceed from the concrete to the general or abstract by means of innumerable exmmples." So, in beginning a new subject in mathematics, "make haste alowly" if you would really teach it. Let the lesson be lively and atimulating, but give the pupils plenty of time to think when you are developing a new idea. Go over it in different ways; present it in as varied forms as possible. That is teaching. Representing the work in exactly the same form many times does not serve when a point is bring developed. Remember,

## Astitheotis

the new ideas have to break out, ess it were, a path for themselves through the hrain, and the better the path in the beginning, the greater the apeed in the end. Encourage the pupils to mis geat different ways of doing a problem, especiaily when the subject is new and beiore you have decided with the chase how $a^{2}$ " bould do the work. Thus you encourage real linking.
Reviswe. The reviews of a portion of a topio in Mathematics may be cither diruet or inotdental.
Direct seview need not be a retracing of the course followed in tenching a given topic; rether it should be a going over the fundamental pointa from different points of view. Miscellaneous exercises should be given out, made up of the material already presented, but under a new form and in an order so mixed as to make the pupils consider what processess to use. Thue they must apply indepeadently what they have learned.
Incidental reviews are used when a procems learned is needed in building up a new pubject. In this way many processes may be kept freah in the mind while new work is progreasing and the teacher does not wish to atop to give a moro formal direct review.
Hone-Worr. The chief purposes of work asigned for study at home are:

1. Drill on operations whose theory is understood.
2. To impress on the memory the thinge which need most to be memorised.
3. To give a chance for the slower pupila to think out things, undisturbed by those about them.
Nerer give out work to be done at home that has not been developed far enough in clase to kive even the dull boy a fair chance of getting it properly done. Review work, or work the principles and operations of which are familiar to the child, is the best material to assign for work apart from the teacher. There is little gain to the child in making him struggle through halfunderstood operations without the aid of the teacher. There is great gain, however, in repeating work as home effort, when it is of a type that is better mastered by repetition.

## Fifth Year

Conaral ingeretions. Fractions constitute the special wort of this year, ondinarily. Aim to incremse the pupil's insight into number through the demands: "Answer all you cun
orally"; "Use the pencil only when you must"; and "State firat what you think the answer might reasonably be." The child is at an age when he should begin to use and to trust his

## Arthereatle

mathematicel judgment. This should increense threygh the muceceding graden.
Ouition al Work. 1. Vanied Pmocreina Oral and written review and prectice in the four funchmeatal operations: addition, subtraction, multiplication and division. How to read and write nine-digit whole numbers; how to interpret numbers in Roman numeralas. Simple factoring by right. Ratio comparioon of numbers coninued
2. Frections Common Fractions. Addition, subtraction, multiplication and division of common fractions with amall fractional numbers.
Intelligent use of cancellation in the multiplying and reducing of fractions.
Decimal Frections. Addition, subtraction, multiplication and division of decimals to hundredths. Multiplying or dividing by 10 , or 100 , or 1000 , by ahifting the recimal place.
3. Devonnate Numbres. Application of mensures of length, surface, volume, time, capacity and weight.
4. Mimsimation. Areas and perimeters of rectangles; surface and volume of right prisms. This wort to be used, as well, in picturing operations with fractional numbers.
5. Living Problimes Many real problems uring the processes emphasized under the fundamental operations, frections and work in denominate numbers. Problems in which the pupils state merely how the problems may be solved; others in which they think problems through and give approximate answers before solving. How to make, foot and balance simple bills.
Eolp on Outline. 1. In the reviews on the four operations make a point of teaching how to "check" addition by adding in a changed order; how to "check" subtraction by addition, division by multiplication and multiplication by division, if these proofis have not been fully taught. Make this "checking," or "proving," part of the solving of the problem in uppergrude work.
It may be well in simplest form to show that "chocking" by reversing operations is not a matter o "play with figures, or a trick, or the result of "catch" problems, but that the check is a sane proving process. Apply the checking rules to a problem in the following manner:
(a) In multiplication: The multiplicand multiplied by the multiplier equals the product:

$$
\begin{aligned}
& \text { Multiplicand }=117 \\
& \text { Multiplier }=\underline{5} \\
& \text { Product }=585
\end{aligned}
$$

## Arthemotio

By division, we prove the correctaese of the wort. The product divided by the multiplier equals the multiplicund; or, the product divided by the multiplicand equals the multiplisr:
5) $\mathbf{6 8 5}$
117) $\frac{585}{5}$
(b) In division: The dividend divided by the divisor equals the quotient:

| Brime fividen quotion |
| :---: |
| 144)1728(12 |
| 144 |
| 288 |
| 288 |

By multiplication and by division the correctness of the operation is proved. Multiply the divisor by the quotient and the product is the dividend; divide the dividend by the quotient and the divisor is found:

| 144 |  |
| :---: | :---: |
| $\frac{12}{288}$ | $12) 1728(144$ |
| $\frac{144}{1728}$ | $\frac{12}{52}$ |
|  | $\frac{48}{48}$ |
|  | 48 |

2. It is a well-established fact that seeing is to most minds more effective than hearing in mathematics, and so it is better to make frequent appeals to the eye, in figures, diagrams and the like, when attempting to build in such ideas as those comprised in the subject of "Fractions." Be patient in giving such concrete illustrations frequently at the start; the formulas should come later.
3. If sets of papers dealing with denominate numbers may be exchanged either with a fifth grade in another school or with a higher grade in your own school it will give an impetus toward exact work and neat papers.
4. A square foot and a square yard chalked off on the floor of the schoolroom often are of practical aid as objective units to use in problems in surface mensuration.
5. Seldom give loag and complicated problems, especially in a new subject. The principle is illustrated by a short problem just as clearly as in a long one. Indeed, when the numbers are large and the operations many, the child loses or forgets what he started out to find.

Arlthmotle
6. Train the pupils to be gure they know the conditione of a problem before they begin to solve it. Otten read a simple problem from an arithmetic not used by your pupils and aak them to extimate quickly what the result will be. Then give the correct answer and commend thowe who have eetimated firirly well. Remember that arithmetic is, hrgely, "the art of computation." Doviees for the Teachor. Problems like the following will help to pin pupils down to rensoning out problems instead of "fooling with figures" They arr especially helpful in any grade where the children are given to working montly to get an "answer," and are equally will-


## Arthmentle

2. How many times more parts have you in W than in $S$ ? In $X$ than in $T$ ? In $Y$ than in $U$ ? V. as yous see, is divided into five parts. Without dividing up the whole fifure tell the name of \& of one of these parts. Use 2 and get a new name for each part of $V$. What is the name of $1 / 2$ of $1 / 3 ; 1 / 3$ of $1 / 3 ; 1 / 5$ of $1 / 5$ ? Tell how you got the name.
Wori with Countras. 1. Place on your deak 12 counters or alips of paper of the mme size in 2 equal piles. What part of the whole will each pile be? Divide them into twice as many piles. How many of the new piles muast you ahow for each of the first pilas? Divide


ILLUETRATIONS OF FRACTIONS

them into three times as many piles as you had at first. How many of these piles must you show for each of the first piles?
2. Place on your desk 30 counters in 3 equal piles. How many piles of counters and how many in a pile would you show me if you divided them into 2 times as many piles? 5 times as many piles? What part of all the counters did you show first; next; last ? In which pile was the largest number of counters?
3. With your counters show me that $1 / 2$ may be shown as $2 / 4,3 / 6,4 / 8$.
That $1 / 3$ may be shown as $2 / 6,3 / 9$.
That $2 / 3$ may be shown as $4 / 6,6 / 9$,
You have found that when any fractiona, part is divided up into smaller parts, a greater number of these smaller parts must be taken to equal that first part. Show this with your counters.
When you multiply or make the denominator larger, but want to keep your fraction just as large, what must you do to the numerator?

## Anditherati

 F jew fist th incision io by the name names. 4. Tulle 8 commines. Show $4 / 8$ de than. What wald the denominator be if divided by 21 To thorn the miss number of counters as anted for, what would you have to do to the numerator? Shew $2 / 1$ of the counters. Divide the numerator by 2 To chow the came number of counters as anted for, what mure you do to the denominator?
Than whenever you divide the denominator, th top the fraction just at large, what must you to to ill mamerntor? If you divide the numen.actor, what must you do to the denominator to lowe the fraction just as large?

Pupils may smelly to ituprosed with the companation sine of the riacrext fractions by criciom at migrated above. They can cannily ce that the are two halves in one; that it then $4 / 4$ to equal ane and $8 / 8$ and $16 / 16$. Since the rector undordande them fete she should not pes over them too rapidly, but many owns exuciorer may be developed, showing just how many 10the in $1 / 8, \operatorname{in} 1 / 4, \tan 1 / 2$ How mag 8 the in $1 / 49$ In $1 / 2$ ? How many the in $1 / 2$ ? Various other questioner may be sacked, arch as: How much huger is $1 / 2$ than $1 / 4$ ? How much niger is $1 / 4$ than $1 / 6$ ? How much larger is $3 / 4$ than $8 / 8$ ? $2 / 8$ ? $\frac{1}{3}$



The above illustration can be used in developing the fractions $1 / 3$ and $1 / 0$ and shows, at the mme time, their relative value to the whole number and to each other.
We give a few exercises of the many which can be developed by this device:
$1 / 3$ is equal to how many 0 the?
$2 / 3$ equals how many goths? $1 / 3+1 / 9$ equate how many 9 the ? $2 / 3$ is how many more than $5 / 9$ ? Which is greater, $4 / 0$ or $1 / 3$ ? $2 / 3 \times 7 / 9=$ how many 9 the ? $6 / 9=$ how many 3rdia?

$$
\begin{array}{ccccc}
65 / 9 & 268 / 9 & 61 / 3 & 30 & \\
1142 / 9 \\
11 / 3 & -72 / 3 & 22 / 9 & -74 / 5 & 62 / 3 \\
\hline
\end{array}
$$

$3 / 8$ is equal to how many 10tha? $6 / 16$ is how much larger than $1 / 4$ ? $3 / 16$ is contained in $6 / 8$ how many times?

> Easy Erescisem

effective shactor wimita

Arthriene
 Have fourthe compared with thirds, eighths, tenths and twelt has
Story problems should be used freely to illustrate and make plain.
Every atep ahould be illustrated with objects or drawingen Cardboand diaks can be easily auppliod.

| 6 $2 / 5$ 9 $1 / 4$ <br> -4 20 $4 / 5$ 39 <br> -6    |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |



The above diagram is divided into 20ths and will be found useful in teaching fractions and reduction. We give the following suggestive examples and the teacher can develop any number of similar exercises:
$1 / 5$ equals bow many 20 ths ?
$1 / 2$ equals how many 20ths?
How many 5 ths in 16/20?
$3 / 5$ equals how many 20ths?
$1 / 4$ equals how many 20ths?
$1 / 4$ is how much larger than $1 / 5$ ?
$3 / 5$ is how many 20 ths?
How many more 20ths in $3 / 5$ than in $1 / 2$ ?
Which is greater, $4 / 5$ or $3 / 4$ ? How much?
Since 5 is larger than 4 , why is not $1 / 5$ larger
han 1,4 ?

Graphic illustratoons like the above are of assistance to the parent who in trying at home to asvist the child who is behind in his clam in fractions. Let the parent have the child point out $1 / 2,2 / 4,3 / 6$, for instance, and woe that they are identical. Let him give the rame name (denominator) and add or subtract, etc., until the child becomes familiar with simple fractional relations. The illustration given below gives the different atages in the reduction of fructions. This embles the pupil to tell at a glance how many twentsfourths are equal to one-ighth; the number of sisteenths in one-hall, etc., and from clover study to fix definitely the relative size and value of the fractions contained in the unit or whole

Wo suggest, in connection with this illustrotion, that the teacher write exercisen on the boardsaducing to lowert terme such frections as 72/128

63/00
98/144
c0/105

What is the comparative ralue of $5 / 8$ and 15/24?
How many othe in $1 / 2$ ?
How many 16thy in $1 / 4$ ?

halves
THIRDS
POURTMS
SIXTMS
EICNTMS
TwELFTMS.
SIXTRENTHS,
TWENTY-FoukTMS
COMPALATIVE VALUPB

In the eight circles in the diagram below is material affording opportunity for many examples in fractions. These arcle, with their mbdivisions, will be of special help in comparing sizes and values of fractional parts found within them. A few problems typical of those which may be made from these diagrams are given below:

Change $3 / 6$ to 8 the. $1 / 2$ to 16 ths.
Change $6 / 24$ to 8 ths.
What is 16 times the diflerence between $3 / 16$ and $3 / 6$ ?
What is 24 times the sum of $5 / 6$ and $3 / 4$ ?
What is $1 / 2$ of $5 / 6$ ?

## How many 24tha $\ln 2 / 3$ ?

How many 4ths in $9 / 12$ ?
$1 / 2$ is how much larger than $3 / 8$ ?
$2 / 3$ is how much harger than $1 / 6$ ?
How many 12ths in $1 / 3$ ?
How many 24ths in $3 / 16$ ?
How many 8 ths in $3 / 4$ ?
$3 / 4$ is how much larger than $10 / 24$ ?
$1 / 4$ is how much larger than $3 / 16$ ?
Rapid Work. Drill work should be continued in the upper grades, and, because quickness and accuracy must be insisted upon, should be of a simpler, easier nature than that of the regular
work.

cibcles illugtrating fraction valutes


If this chart is before the class, pupils may be called upon to recite as the temcher points to the different numbers on the outside row and pupils may recite in turn, or, ns a mark of honor, those pupils who have made mort effort may be "teacher" and use the pointer.
Daris por Wartien Wora. Write numbers that can be oubtracted from 6 with remainders, as:

$$
\begin{array}{ll}
6-0=6 & 6-3=3 \\
6-1=5 & 6-4=2 \\
6-2=4 & 6-5=1
\end{array}
$$

Write numbers that can be subtracted from 4 with remainders.
Write numbers that can be subtracted from 7 with remainders. From 5 with remainders.

From 8 with remaindera. From 9 with semainders.
Make a table of numbers above 7 which can be subtracted from 15 with remainders. Of numbers above 8 , from 16, with remaindern. Of numbers above 5 , from 14, with remainders. Of numbers above $\theta$, from 17, with remainders. Subtract by $3^{\prime}$ sfom 21. From 35 to 20. By ${ }^{2}$ s from 20.
By 2's from 27.
By 4's from 36. From 23 to 3. By 5 's from 50. From 31 to 1. These drills will fix definitely in the pupilas minds that subtraction is counting one number from another and is, therefore, the opposits of

## Sixth Year

Conoral suggestions. In this grade, decimal fractions, percentage with its simpler applications, and simple business forms are usually the main topics chosen. Special emphasis is placed on a few topics and careful attention given to correctness and rapidity in all the work.
Outline of Work. 1. Varied Processes. Multiples and factors. Tests of divisibility. Intereas by easy and current ahort methods. The equation.
2. Fractrons. Fractions, decimals and percentage used interchangeably and freely, both applied to husiness problems and as drill.
3. Demominati Nuctries. Oral and written
exercises in changing denominate units in all tables used in previous grades.
Concrete work in the larger mensures, as rod, mile, cord, etc.
4. Mensurition. Measurement of rectangles, using larger units, triangles and rectangular solids as in lumber and wood.
5. Livina Problems. Have pupils make up practical problems involving principles studied, and then solve them. Problems involving common and decimal fractions as used in business; problems in gain and loss and in interest.
Eolpu on Oatline. 1. Show the pupils how to know whether a given number is divisible by 2,3 , $4,5,8,9$ and 10 . Give plenty of rapid work on
tore of diviablity. Puple tove a mal maoe of power whon they cena tiell by incpection dhat:
 cay.
2. In puruing the more difincult work in frectione, moto turo that jour papil rally grap what they ase dome. Pregecaty art ing to chow you the problam by wilas some cracrite mavaiol, as pepre equarme, drawinge. Ap. The way litio a cubjees if through the cooevits. Baghe with the uee of thinger but do not conciunce and end with thiges. Once the procees you ave trying to tonch if graped, dop the objectry they are colly the menns of reaching the procme. It in not the perception of the objects that dow the dien; it is the uing of thowe thinge in a constructive wes.
8. Encourage pupits to solve these review probloms in denominate numbers without the ure of pancila, as far as pomible. Do not scom "number downs" because the childrea ave "too old for gemen" They are not too old for ipell downe, so how can they be too oll for competitive "number downs"? Give a series of mpid writtea of oral seview exencises involving cinging denominato unite from ose form to anolimes, as:

## $1 \mathrm{yd}=\mathrm{ith}$ : im.

$1 \mathrm{jre}-\mathrm{i}$ ma. i wh, ? dh.
4. Draving to a scale should be dose by the pupite on the blackboard of on paper, to illuatrate many probleme in the harger meacures. Much trining in computation, exactnem, peatnem, Nang is thus gained.
6. The occational "making up" by the pupila of problems involving the principles the teacher is troing to make clear is of great aid in forcing the pupit out of his attitude of taking only what 5 handed to him. It increases his insight and his ability to know what to do, when to do it and how to do it.
Doviees for the suecher. Ther Equatron. The ides of the "equation," which begine with the little ones as $1+1=2$, and should be pointed out and used as the main statempeat in all mathamatice, on through high school, may be empPrimed in or about this grade. Point out that an "equation," a "balance," or "statement" is being sought for in the problemas; that it in the olber side of the equation that conatitutes the answer in all such statements $356 \%$ of $85000=$ ? The foundations of "Proportion" and of much alowere are thus hid.
Multinies and Factoms. Here is an exellout opportunity for reviewing "tables"

## Actuhmere

 bulpling up and teming down moch quatidios es $800,418,8700$, de, in at many waje at poemible.

$$
s=\left\{\begin{array}{l}
-10 \times 6 \times 8 \times 2 \\
=10 \times 4 \times 4 \times 8 \times 2 \\
=8 \times 2 \times 2 \times 2 \times 2 \times 8 \times 2 \times 2 .
\end{array}\right.
$$

Objecter, as cocuatere of iline to typity 2, 3, 7,9, Me, amy bo unod at the chart.
Decaina Divicma Belore eotering en the formal and extcoded atudy of deelmal frections, mike aure that the puplls are frow is the interschargmble use of minctions, ifriplo decianels and pere ceate For instance, uilig the $10 \times 10$ aquare dawn aa the blackbond ac on a hage aboet of manlin paper (aleo, when pomilble, by childruan ucing the erownection paper, imvaluable for showiog mathematical rulationj), pive a mien of "quick" problems lite the following:


I plece a value of 87 on the 100 equares; ahow me one row and give the value. Write the equation ( $1 / 10$ of $87-8.70$ ). Show me one of the aquares and give its value. Write the equation ( $1 / 100$ of $\$ 7=8.07$ ). I place a value d 8.05 on 10 of these squarea. Pind the value of the 100 , etc. Let the entire 100 squares representa a ton of conl. Show $5 \%$ of the qquares and tell how many pounds are represented. Show $20 \%, 10 \%$, etc., until the 100 equares have been used. Add the pounds ( 2000 lbe.). Add the rates $(100 \%)$. Have equations written ${ }_{100}$ pupils proceed, ending with the statement $100 \%=2000 \mathrm{lbe}$
When taking up the formal wide of decimal fractions, firat call attention again to the relative
valuas aialag botwew the adiecent orders in inverea. Hidp to priplts to seo the the arnee mhatio nive exids betwom edincuat ordere $10 \times 10$ ngion of the derimal point. Uns the $10 \times 10$ syanar in objootively comparing values and the following "placing" device for wotting


Confucion may be avoided by pleturing the units order, instead of the decimal point, as the atarting place; this causes the firmt, secoad, third, fourth, etc., orders to the right to compare reppectively with the firte, ecoond, thind, lourth, etc., orders to the left of units-a plan worth
using.
Read the following in orders to the left, warting after unita: 8888 (Ans. 8 tens, 8 hundrods, 8 thousunds). Read the following in orders to the right, marting after units: 888 . (Ans, 8 tenths, 8 hundredthe, 8 thoumadiha.) In comRination, the two numbere above make 8888.888 . Spend time on reading and writing this cort. until the matter of relative poition io decimals A common fraction whose denominator ised. the table of tens is a decimal fraction. Ask in many illuctrationa. Now exprese .8 as a frection (Ans 8/10). . 88 (Ans, 88/100). . 888 (Ans. 888/1000). Give training at this stage in changing into series; e. g .,

$$
\frac{888}{1000}=\frac{8}{10}+\frac{8}{100}+\frac{8}{1000}
$$

$.888=8$ tenthe, 8 hundredths, 8 thousand ths. Note that a decimal is read just like a common
frection: first ite numeralor, thea ito deaons. inator. In writing a decimal, withe the numare. tor juat es you would in a common fraction, then phece the decimel point $e 0$ as to make the mane of the lut order the name of the dencminatos. Illustration: Write 85 hundredehs. Wo wite the numerator as in comanon frections, 20. Looking at 5 we think hundredthe, at 8 , teathy; then write the decimal point.
When tenching the multiplication of a dectional by a decimal, begin in the following way:
First reduce the decimala to cormmon frectiona and multiply. Thes charge to a decitana aguin. This will, if the racicher nets the pupils to looking for it, make phain, after many repeth tions, the relations between the number of decimal places in the product as comparad with the sum of such placen in the multiplicand and multiplier. The child gradually discovers this "rule" of pointing of as a quick way of doing the longer procem Illuatmation: $.25 \times .5=$ $25 / 100 \times 3 / 10=125 / 1000=$. 125. This will $800 a$ be ahorteand to $.25 \times .5=.125$, as the sule is formed.
When teaching division of decimals the rule of "pointing off" as many decimal places in the quotient as those in the dividend exceed those in the divisor may be seen as a "ahort cut" by changing the decimals to fractions an explained in multiplication of decimals and proceeding to divide. A "short cut" in mathematices is seldom a bug-bear; sules often are.
Decinul Tess. This test may be written on the board, or, if teachers are supplied with somm sort of a duplicating machine (which can be of copies of this exercise can be prepared for clases use. The tencher ahould prepare the answers before class time. The pupits may exchange papery and grade them while the teacher reads the anowers. The eatire exercise need not take ten minutes and will prove an eye opener to the class. It is suitable for any grade in which decimals have been taught as a subject.

## Seventh Year

Gomoral saggentions. Percentage and its applications, proportion, practical methods in business and analysis of problems are the main topics of the year.
Ontiline of Work. 1. Varmid Procissmas. Percentage. Train in rapid combinations and in short methods. Give special attention to equations and to atatements of problema.
2. Fractions All forms and operations in fractions continued further, seviewed and applied.
3. Devoninate Nunbers. Comparison of foreign and Canadian money. Application of surface and cubic measures in mensuration.
4. Mensuration. Application of measurements of lines, triangles, various quadriaterale,

## Astitheotio

elreles, rectuaguler solide and cylinder to the memourancat $\alpha$ sarteces, volumes, had, humber, che
6. Livino Promerma. Praction probleme comaceted with measuration, application of provitage, bevinue formes, etc.
Eapy on Ontllas. 1. Perceatige, so im portant in modera bualinem, muat be dealt with In ciasth and in righth grode as well es in seveath. wheee, parthpes, it is surdied monf fully. Among the hysy number of "cave" in percentage, hit the tencher plece emplaition on these tro lmo portant matters: (1) to find some per cent of a dran aumber, and (2) to find what per cent one number is of anothes. The following are the applications that may be made, some in aixth and a fow reserved for eighth, but the majority In the reveath year: Gain and Lone, Commisicion, Discount, Insurance, Tuxes, Intereat and Discount, Stocks and Boads, Exehange and Accounts.
Percentage in more fully treated later in this departuent of Tixe Educatos, in the hat pagee devoted to arithmetic. However, helps in teaching this subject are given their proportion of spece here.
2. If, from the start, children underatand thet $0 \%$ is only another way of writing $6 / 100$ and .06 , there will be but litte difficulty in undentanding percentage. One very lmportant feature is the interchange of the per ceat forme, decimal fractions and common fructions, as, for example, in $1 / 4=25 / 100,=.25,=25 \%$. Ask in rapid succecsaion "What part?" "How many hundredths?" "What per cent 8 " to imprem the inter-dependence of percentage and common and decimal fractions.
3. To show the relations of the inch in the linear, the square and the cuhic meessure, and the relations of the foot in these mme mensures, the eaterprising teacher should direct interested pupils to make, outside of school, a box, 12 in. by $12 \mathrm{in}$. by 12 in ., of cardboard, having each $\alpha$ the six faces marked by lines into 144 inchequares. A clear notion may be gained by using this cube, of the cubic foot, the cubic yard, and of how to find the contents of rectangular baxes of varying dinensions. This is useful, too, when teaching the dimensions of a cord of wood and of the number of cubic inches in a bushel and of a gallon. Teach that a bushel is nearly $11 / 4$ cubic feet, and hence $4 / 5$ of the number of cubic feet is very nearly the number of bushels.
4. Mensuration as suggested for the higher

## Astrinarle

grades can bo bete doas by uing problome from the many cimilar formes to be found in the vilanity of every seltoollomis. Lat the pupthe find the hieval armo of exch of the type sallds ued, by having them mike for clay reos a hre one of atil paper. Make conatant nferenco to thew mado modeto when there is difikculty in grapping the problema in mensuration. In this way, 100 , the volume, for instance, of a cone can rendily bo foumed by comparing the rapacty of a hollow cone with that of a hollow cylinder or prism having equal dimencions. This wort cman be furtber applied to practical problema, as in the amount of grin in piles or bins. The time uned In this actual conatructing in more than made up by the pupils' quicker and atronger grap of the abstract problems baved on measurementa. Let the pupils once actually masure or make a thing and they undertand problems related to It better than if the teacher had taken the time explaining the "rules."
B. Spend time on real and reaconable prob. lems, an:

Dremmaking problems. Illustration: The dremmaker bought a 20 -yd. silk dress pattern at 82.10 a yd., being allowed, as dresanaker, a discount of $5 \%$ and $6 \%$ off for cash. She charged her curtomer the marked price, 82.10 . What was her per cent of proft.
Much valuable material may be gathered from government reports and statistics which may be cocured for the asking, for various problems in upper-grade work. For example:
In 1010 the oat crop of Canada was $323,000,000$ bushels, and the selling price thirtyfive cents a busbel. In 1911 it was $350,000,000$ bushels, at two cents a bushel more than in 1910. Find increase in value of the crop.

Problems involving trade discounts should be given also. One or two illustrations will make the application of these discounts clear to the pupils. Use problems like the following:
A wholessle deaier quotes brondcloth at $\$ 2.00$ per yard, $20 \%, 15 \%$ and $5 \%$ off, or, as commercially expressci, $82.00,20,15$ and 5 off. What would the retail merchant pay for 50 yards of the cloth?
Solution:
$20 \%$ of $82.00=\$ .40$.
$82.00-5.40=81.60$.
$15 \%$ of $\$ 1.60=\$ .24$.
$\$ 1.60-\$ .24=\$ 1.36$.
$5 \%$ of $\$ 1.36=\$ .078$ or practically $\$ .08$. $31.30-8.08=-1.28$.
$\$ 1.28 \times 50=\$ 64.00$, cost of the cloth.

## Ardithantio

Encoury puplis to uo boid, complete state conte in thatr explanationa. In oral reviewn in Interver uee cimple problems, dien, as:
What priacipal will gain 90.60 in 4 yeare at $6 \%$
Explanadioas 81.00 in 4 years at $0 \%$ will $\sin$ 8.24. It will take as many dolliors to min 80.00 as 8.24 is contained times in $\$ 0.00$, of 40. Therefore 40 is the principal.
In how manay yerrs will 850 gain $68.00 \mathrm{at} 4 \%$ ?
Explenstion: In 1 year 850 at $4 \%$ will goln \$0.00. It will take as many years to gain 80.00 as 88.00 is contalined times in 60.00 , or 2 Thervore it will take 3 yeari.

At what rute will 8100 gain 850 in 2 yeara?
Explanation: At $1 \% 8400$ would gain 88.00 in 2 yeara. It will take as many per cent to gain 850 as 88.00 in contained times in 850 , or of. Therefore $67 \%$ is the nate.
Intorest Elathoda. The method of computing intereat that is mavt widely used is callod the $0 \%$ method. Arithmetics usually explain lo brief form the philooophy of this method, leaving more complete analyia for the instructor or tencher to impart.
Sxx Prax Cinvt Metiod. It amay be well here to outline the philosophy of the $6 \%$ metbod mep by mep.
In all interest computations 300 day are amumed to be one yeur. If the interest on 81.00 for one year in 8.00 , it is clewr that for one

70
Intervet on 81.00 for 1 year. ............. . . . 08
Intereat on 81.00 for 1 month. . . . . . . . . . . . . 005
Interex on 81.00 for 8 dayn............... . . 001
Intercest on 81.00 lor 1 day................. . . 0001 Let un apply the above to the following problem: What is the interua for 2 yearn, 6 months, 24 didy, on 8500.00 , at $0 \%$ por anaum ? Intereat on 81.00 for 2 years is. ........... . . 12 Interoct on 81.00 for 6 monthy in . . . . . . . . . . 03
Intercat on 81.00 for 24 daynit.
Interest on 11.00 montho, 24 days, is. lor 2 years, 0 If the interest on 31.00 .............. 184 6 montho, 24 dayn, in 8.154 , $\$ 500.00$ will be 800 , 8.184 , the interent on In the obore pro times 8.184, or $\$ 77.00$. ineted above problem, if the intereet were $8 \%$ for the of $0 \%$, we would find the intercat first for the full time at $6 \%$. At $8 \%$ in ; more than $6 \%$, we would add \& to the interem on 81.00 at $6 \%$, and find that the intereve on 81.00 for 2 yeurn, 6 month, 24 days, at $8 \%$, is 8.2053 , after which we would multiply this laterext on $\$ 1.00$ by the principal.
Should the interest be $7 \%$, wo would Aren find the intereat on 81.00 for the given time at $0 \%$, divide this by 6 , which would give un the interest on $\$ 1.00$ for the given time at $1 \%$; then multiply by 7 , which result would be the intereet on 81.00 for the given time at $7 \%$.
Thur Trovaud Day Meriod. But few


INTEREST
month the interest on 81.00 would be onetwelfth of 8.06 , or one-half cent, or 8.005 . If for one month or 30 days the interest on $\$ 1.00$ at $6 \%$ is 8.005 , then it is clear that the interest for 6 days is $\$ .001$. If the interest is 8.001 for 6 days, for 1 day it would be $8.000 \%$. Now, let us put the above analysis in tabular form for
people know of the existence of a brief method of computing interest, known as the thousund day method. This is one of the ferw methods not complicated, and it has the virtue of clearness. Next to the $6 \%$ method it is recommended as the best, for no other system of computing interest excels the thousand day method in simplicity and perfect adaptation to mearly



## Actichmotio

svery problem. The theory of this method may bo atated es follows:

The simple interest of any sum of money will exacely agual the principal in 1000 days at $36 \%$.
Belore proceeding to learn a rule by which to solve a problem under this method, find the interest on $\$ 100.00$ for 1000 days at $36 \%$, by the six per cent method. You will find this interest to be $\$ 100.00$. You can now without doubs write your own sule for the thousand day method. It is as follows:
Muliply the principal by the number of days, point of three decimal places in the product, and the result io the inderest on the principal for the given time at $56 \%$.
If your problem requires the interest at $6 \%$, divide the result by 6 .
II $3 \%$ is required, divide by 12 ;
If $4 \%$ is required, divide by 9 ;

If $9 \%$ is required, divide by $\mathbf{4}$;
If $12 \%$ is required, divide by 3 ;
If $1 \%$ is required, divide by 36 ;
If $10 \%$ is required, multiply the intereat at $1 \%$ by 10 .

Below is a solution of a probiem by the thousand day method. Find the simple interest at $9 \%$ upon $\$ 248.58$ for 2 jears, 2 months, 20 days.

Solution. 2 years, 2 months, 20 days equals 800 days. Pointing of three places, we have the interest on $\$ 1.00$ for the given time at $36 \%$. Multiplying the interest on $\$ 1.00$ by the number of dollars, the product is $\$ 198.804$, which is the interest on the whole amount for 900 days at $36 \%$. We require the interest at $9 \%$, which is one-fourth as much as $36 \%$. Therefore, dividing $\$ 198.864$ by 4 , we find the interest on $\$ 248.58$ for 2 years, 2 months, 20 days, at $9 \%$, to be \$49.716.

## Eighth Year

Gomeral 8uggentions. This, in most schuols, is the great review year for rounding out subjects touched in the upper grades and for specializing on business problems. The new work is square root, longitude and time and the metric system.

Outitine of Work 1. Varifd Procissers. Ratio and proportion continued. Square root.
2. Fractions. Review with special reference to business uses.
3. Dimonanati Nuibairs, Longitude and time, standard time, metric system.
4. Mensuration. Continuation of work of seventh grade, with efforts to gain in skill in rapid computation.
5. Livina Problems. Commercial discount, commission, insurance, taxes, stocks and bonds, modern forms of checks, money orders and the like to be treated as actual problems, :-ing modern business methods.
Eolps on Outline. 1. Proportion is but a continuation of the work in ratio, begun in the primary and carried on through the intermediate grades. Every fraction expresses a ratio. Haviag two equal fractions, therefore, we have two equal ratios; and the numbers making up the fractions or the ratios form a proportion.
To illustrate: The equality of the ratios 2 to 4 and 3 to 6 gives the proportion $2: 4=3: 6$, because 4 is 2 doubled, just as $f$ is 3 doubled. A great number of the rules in mathematics
depend on the theory of proportions. Indeed it is the foundation of the famous old "rule of three." That rule, by which so many problems are worked, depends upon the fact that when the first three terms of a proportion are given, to get the fourth, one need only multiply the second and thind together and divide the product by the first. This "rule of three," or proportion, is, when the conditions of the problem are thoroughly grasped, the great and handy tool.
2. Review in particular the work of a previous grade in which a considerable number of the class seem to be backwand. In this the question should be, at this stage, not "Can the problem be solved this way?" but, rather, "Is this the best and quickest method?" Try to give your pupils a large stock of "spot-cash" knowledge.
3. Why teach the metric system? Because it is simple and rational, and is gradually coming into use, as in the United States postoffice department, by druggists, in science, etc. The pupils should use chiefly the more common measures: the liter, gram, kilogram, milligram, meter, kilometer and millimeter.
If the names seem strange and difficult to the pupil, the teacher might refer to the fact that a gas meter measures gas, and a water meter measures water, and then ask what the word meter probably means. Show a meter stick. Ask how many mills in one dollar; then how many milli-meters are there in one meter stick?

Little time aced be great on the table if the general scheme in understood.
4. The aquare rod as a unit of measure may be clearer in the minds of the pupils if the toucher will in their class room (or even outside) plece four pupis so as to form a square 163 feet on a side. At the same time the difference between a square rod and a linear rod may be brought out. After this sort of work, "What in the difference between 5 square rods and 5 rods square?" is not a catch question: the pupils are thinking of real measurements.
6. Give real and practical problems like the following:
A furmer hee a 30 -acre meadow, yielding 13 tone of hay to the acre. If, by spending $\$ 300$ - juar for furtilisers, he can bring the yield to
transections claver by maling thum memes moce real. . For inetance, they have their pupile ange in as imaginary busincos, buy and eell seconding to the methods in current une, use an imagionty bank, etc.
Eapld Addition. Skill in rapid addition is quickly acquired by practice, and compaitive exercises are always found vitinulating. One of the best derices for procuring efficiency in rapid computations is the following:
The teacher will state that she hopes someone can tell the answer to the problean she in in give as quickly as she finimbes its mettomant. Then she "makes up"" her problem and ropente it in the making, somewhat as follows: "6 times 5 , divide by 2 , divide by 3 , add 1 , divide by 3 , multiply by 4 , subtrine 8 , multiply by 10 ,


## ADDITION CHAET

4 tons th the acre, how much more will be make a year, hay being worth $\$ 8$ a ton?
The old-style problem in partial payments should be discarded, now that it has not the practical value it had when banks were fewer, for more modern business methods. The school cannot be expected to teach the technical points involved in corporations or in insurance, but it should teach the general business principles underlying them.

Blank forms, such as are used in different business transsctions, ought to be brought into class for use. The short business methods should be taught and the underlying principles em. phasired. To aid in this, many teachers of the upper grades are now adopting certain devices used in the modern business colleges for making
add 4 , add 12 , divide by 2 , divide by 2 , divide by 2. Who has the answer? That's right, Mary, the answer is 2. "
Another: "Take 3 , add 9 , divide by 4 , multiply by iself, double it, add 2, cut off all the ciphers, subtract 2 , add 19 , add 8 , add two ciphers, cut of the left-hand figure, divide by 7 , divide by 4 , cut of all ciphers, divide by 5 , divide by 5 . Yes, William, the answer is 1. " "Teacher, I thought I was wrong when you told us to cut of all ciphers from 25 ." "Well, you were told that to fest your confidence in youraelf; I am glad you kept on 1 the end, believing you hind made no mistake and that there were no ciphers at that point."
The teacher must be able to compore hee problem, keeping her mind running ahead for

## Adthmontic

new combinations and remembering always the last result obtained. It will not be difficult after a few trials, and will be found at once one of the beat mathematical exercises and most attructive five-minute busy-work period, in which eviery pupil will take a lively interest. . At first do not astempt to state the problems too rupidly.
Addition Cenart. On page 51 we gave you directions for making a chart especially designed for drill in addition and suggested exercises in connection with it. Too much emphasis cannot be laid upon rapid addition. If not persisted in too long at a time it is a mental exhilaration, as well as a positive permanent mathematical advantage to the pupil. Using the same chart, which we hope you made as suggested on page 51, after the pupils have mastered addition of two numbers the chart may be pulled a little lower, discloaing three rows of figures. It will be noticed in the diagram on the preceding page that the sum of each of these rows is less than 10. It may be well to arrange your chart after the same order. As soon as pupils have acquired ability to add all of these columns of three figures, the chart may be pulled still farther down, disclosing. more difficult work.

Merizods or Addition. Pensons likely to be disturbed while engaged in addition frequently use checks to he.p them in case of interruption. The following are the principal methods.

Civil Service Method. The r blem below shows at its right the sum of eac nartial addition; each column is added without carrying the tens. figure from one column to another. The sums of the various columns are set down as indicated, then added:

| 2480 | 13 |
| ---: | :---: |
| 725 | 28 |
| 6844 | 29 |
| 2893 | 13 |
| 3251 | 16193 |

Bankers' Method. The advantage of this method over the civil service method is that the result is always in sight without making the second addition, since the ten's figure carried from one column to another is added to each pertial sum. Immediately to the right of the problem below is given the partial addition. The number shown as the sum is not the result of adding the partial additions, but reptesents the last addition and the last figure in each of the other partial additions. The usual way of showing an addition by the bankers' method is
as in the third row of partial additions. One would then read for the sum the last two figures set down and the units figure in each of the other numbers:

| 2480 | 18 | 18 |
| ---: | :---: | :--- |
| 725 | 20 | 29 |
| 6844 | 31 | 31 |
| 2893 | 16 | 16 |
| 3251 | $\underline{16103}$ | 16103 |

Cross Addition. An interrsting mental exercise, but one lacking elements of practicability, is performed by adding to the upper number the units, tens and hundreds successively of the next number below. Variations can be had by adding from left to right or by beginning below and adding above. In oral recitation, drop "and" and "are" and simply give results. Examples:
\(\left.\begin{array}{r}38 and 6 is 43 and 40 is <br>
83 and 3 is 86 and 70 is <br>

156\end{array}\right\}\)| 38 |
| ---: |
| 156 |

225 and 2 is 227 and 60 is 287 and 800 is 1087 and 4 is 1091 and 20 is 1111 and 300 is 1411 and 5 is 1416 and 10 is 1426 and 400 is

Applications. The following extimates and problems afford opportunity for much practical drill in de :ominate numbers.
Surveyors and engineers usually measure w:th steel tapes generally 100 feet long, divided into feet and fractions of a foot.
A hand, used in measuring a horse at the shoulder, is equal to 4 inches. A span is equal to 9 inches.
A gunther's chain is 4 rods or 66 feet long and consists of 100 links.
A knot is equal to 1.15 common miles and is used in measuring distance at sea.
A square for measuring floors is equal to 100 square feet.
In order to survey a piece of ground it is first necessary $t$ find some corner stick or rock from which to start. This being found, the line is then run according to an official chart until the particular subdivision is located.
The Canadian land measure, whicl ie same as that of England and the Unitea wates, is 4,840 square yards to an acre.
A Scotch acre is equal to 6,150 square yards; an Irish acre to 7,840 square yards; a French

## Arithmette

acre is equal to 11,000 square yards and an acre in Prumiais is equal to 3,053 square yards.
To find the number of acres in a rectangular piece of land, multiply the length in rods by the breadth in rods and divide by 160 .
To find the number of square rods in a triangular piece of land, if right-angled, multiply the width by the length and divide by 2 .
To find what fractional part of an acre is contained in a town lot, wultiply the length in feet by the width in feet and divide by 43,500 . $t$ of an acre equals a square of land 73; feet each way.
$\frac{1}{6}$ of an acre equals a square of land $104 \frac{1}{3}$ feet each way.
$\frac{f}{5}$ of an acre equals a square of land $120 \frac{1}{y}$ feet each way.
$\frac{1}{2}$ of an acre equals a square of land 147 feet each way.

1 acre equals a square of land 208! $\frac{1}{5}$ feet each way.
Dry measure is used in weighing such articles as grains, fruits and all articles not liquid.
Before weighing scales became common it was customary to use measures for this purpose.
Dry measure weights of different commodities are fixed by law. A table for reference can be
prepared and pupils should learn the weigita used in their own country.
One bushel of grain is equal to 2,218:39 cubic inches.

One bushel of vegetables is equal to 2,68 : cubic inches.
The legal bushel of the United Stride is the Winchester mensure of $2,150.42$ cubic inches, while that of Canada is the English measure of 2,218.142 cubic inches, so that 33 United States bushels are equal to about 32 of ours.
Wheat, beans and potatoes weigh about 60 pounds to the bushel; shelled corn 56 pounds; oats 34 pounds; rye and flawseed 66 pounds; corn on the cob 70 pounds; buckwheat 52 pounds; beets 60 pounds; onions 80 pounds; barley 48 pounds.

A bushel of corn means a bushel of shelled corn, or ear corn enough to make a bushel when shelled.

One gallon is equal to 277.27 cubic inches; the United States gallon is equal to 231 cubic inches.
One cubic foot of water is equal to 621 pounds. A teacup holds about 4 fluid ounces.
A tablespoon holds about $\frac{1}{2}$ a fluid ounce.
A teaspoon holds about 1 fluid dram.

## Longitude and Time

Introductory. Our dictionaries and arithmetics tell us that longitude is a name applied to distances on the earth's surface east or west of a given point, from which all measurements relating to the entire world are reckoned. For short distances we usually measure in units called miles; but such meeasurement is inadequate in connection with great distances, and quite impossible when used with reference to other heavenly bodit. Our scientists have a common measure which they apply to the entire solar system, of which the earth is one small member.
The earth is round; its path around the sun we know to be circular; the other planets are rouni and their paths as they whirl through span - are in form nearly circular. Therefore, in measuring distances on the surface of the earth it is natural that our scientists have taken the circle as the basis of measurement; for that reason, we shall study the circle of the earth, or the distance around it.
Difisions of the Groat Oircle. The teacher in school tells us that the circle or circumference of the earth is divided into 360 equal parts, each part of which is called a degree. This measure-
ment came down to us from more than 2,000 years before Christ, for it was used by the Babylonians and adopted, with slight improvements,' by the ancient Greeks. The reason that 360 divisions in the great circle were made is that the ancients believed that the year contained 360 days. A degree, then, is one of the 360 equal parts of the curcle of the earth.
We know that from the instant in any day that the sun is directly over our heads until it is again in the same position, 24 hours have passed. During that 24 hours each portion of the earth's surface, at one moment or another, has been directly under the sun. Therefore, in the 24 hours, the entire circumference of $360^{\circ}$ has passed directly beneath the sun. Now we see clearly why our arithmetics tell us 24 hours of time will be the same measurement as $360^{\circ}$ if space, for it takes 24 hours for the entire $360^{\circ}$ of the earth's circumference to pass beneath the sun. If, then, 24 hours of time equal $360^{\circ}$ of space, 1 hour of time will equal $1 / 24$ of $360^{\circ}$ of space, or $15^{\circ}$ of space. Now let us put in tabular form those two facts before we 80
farther:


3 has. of time -300 of eppece, 1 hr . of time $=18^{\circ}$ of space, and let es apply thie truth at once in a practical why. If it is moon exactly where you atand and theow in a difference of 1 hour in every $15^{\circ}$, how tare cest or wet of you will the time be 2 hours dirfenst from what it is where you are? Will it be earlier or later than noos at points enad of you ? The earth in its orbit moves from west to mat, so it in clear that when it is noon with you it has alreedy been noon at places cank, for they have been directly beneath the sun and the oun has appeared to move on weatwand toward aundown. If you are at a point called A and it is noon, and a point called B is $15^{\circ} \mathrm{E}$. of you, then at that point it is 1 o'clock in the after noon. By the mme proces of receoning, when it is noon at your location at $A$, it is not yet yoon at a point $15^{\circ}$ W. of you, for that point hee not yet, in its whirling through space, come directy under the sun. It will not do so for 1 hour, for it has yet to turn $1 / 24$ of the distance around on the axis before coming directly beacuth the sum. These are elementary truths, but they must be understood before one has a basis of fact on which to build his knowledge of longitude and time.
It is clear that we must have amaller divisions than degrees if we would measure with accuracy. The ancients divided a degree into 60 equal parts, called minutes, because they divided their hour into 00 equal parts, called minutes. Now, we must not confuse a minute of time and a minute of space, for they are as distinct as hours and degrees. The minute of space is still further mubdivided into 60 equal parts, called seconds of space, for the reason that the minute of time is also divided into 60 equal parts, called seconds. Therefore, we may coroplete the partial table above, as follows:
24 hrs of time $=360^{\circ}$ of space,
1 hr . of time $=15^{\circ}$ of space,
4 min of time $=1^{\circ}$ of apace,
1 min . of time $=15$ of space,
1 sec. of time $=15^{\prime \prime}$ of space.
Exeraises. Let some object conveniently placed represent the sun; place a globe in such a position toward the sun that it must be noon at the place where you live; point out all the other places on the globe where it must be noon at the same time. Meridian is a term which means noonday; therefore, the name meridian has been given to this imaginary line which passes through your town and through all other towns where it is noon at the same time. A more

## Adthratile

complete definition of meridina in great circlothe meridina whick pasces through your home extends asound the world. Locate on the globe the opposite meridian. When it is noon on your meridian, what time must it be at the phece exactly opposite? How many hours difference in time between these two places? How many degrees diffierence between these two places.

Point out the place east of your meridian which is hall-way towand the oppoatte mide of the globe from you. It would be sunect. How many bours difference in time and how many degrees distant is that apot from your home? Point to another meridinn where it is also 6 o'clock, considering it yet to be noon at your place. Will it be sunrise ?

From what you can learn from the above exercises answer this question:

If clocke keeping correct time were placed at points exactly $15^{\circ}$ apart clear around the carth, beginning at your home, what would be the exact difierence in time these clocks would show?
Plan for Tesehing. Longitude and time should not be taught without the use of the globe and a flat map of the world; it would be well, also, to present a diagram of a hemisphere; better than the ordinary reprecentation of a hemisphere as shown in Fig. 1 would be a


HOURE 1. HEMISPHERE
diagram, such as Fig. 2, showing the north or wouth pole so that the entire $360^{\circ}$ of the circle can be strown.

Do not leave the fundamental principles until each member of the class thoroughly understands them; the boy or girl who does not
trow the rilative values of 1 hour and $15^{\circ}$ will nove loara loagitude and time; drill over and overen the fuce that 24 bours of tumo repremeat

mguas 2. mowne conviranve metioluns the pasing under the sun of $300^{\circ}$ of space in the revolution of the earth. That once understood, it is enay to show that 15 of these degrees pasm undes the sun in 1 hour of time, and from that, the other subdivisions are explained without difficulty.

Have a pupil stand fecing sorth with hands outatretched toward the enat and weit II it is noon direetly over his head, ank him it it is carlies or hater than noon in a certain city some hundreds of miles east or weat. Thea follow with eary problems relating to places whow location the clase fairly well understands. Ask them to tell you how many hours apart in time the city $A$ and the city $\mathbf{B}$ are, it one is $30^{\circ} \mathbf{E}$. of you and one $15^{\circ} \mathrm{W}$. You can noatinue mech problems until you have practically made the circuit of the globe. (See map, page 82.)
The Gtren Mertdian. Thus far we have not developed the fact that all men must agree upon a certain meridian from which to reckon loogitude cust and weat on all the earth's surface. In our investigations above we have based all questions and computations upon the meridian running north and south through our homa. The children will understand clearly why it is impossible that all men ahould be able to use in their computations our own meridian, 50 we all agree upon a certain meridian which runs north and south through England, France, Spain and Western Africa, exactly at the point where it passes through Greenwich, England, where is located a great astronomical laboratory. This point is only a few miles from the largeat city in the world. We call the meridian of Greenvich


COMPARATIVE TMIE, WHIN NOON IN TORONTO.

## Arithenatle

$0^{5}$ and suchon all dirtances in loaggitude enat and wet from that givea meridinn.
Iseculese. Have the papils solve t: .Jwing problomen, meatally, without consulung the chart which appenes on page 82:

1. Chicago is about $90^{\circ}$ W. of Greeawich. Chicago clocke abow how snisig hours later or earlier than Greenwich tims?
2. When it is 2 c'elock in the afternoon at Greenvich, what time is it in Chicago?
3. S. Petersburg is $30^{\circ}$ E. of Greenwich; Hamburg, in Germany, is $10^{\circ} \mathrm{E}$. of Greenwich. How many hours difiereace in time between the two places?
4. If it is noon in St. Petersburg, what time is it in Hamburg?
5. Denver is about $105^{\circ}$ W.; Carson City, Nevada, in about $120^{\circ} \mathrm{W}$. When it is 11 o'clock in the morning at Denver, what is the time in Carson City?
The diagram on the preceding page will help you to understand the differences in time between cities. The clock in the center shows noon in Toronta. It is forenoon in all places wext and afternoon in pleces east of Toronto.
Rule foe Longrtude and Tmes. If the pupils have had no difficulty in understanding the principles thus far developed and have been able to solve the simple problems above suggested, they will understand the reasons underlying the following rules for solution of the more difficult problems in longitude and time:
6. When the difference in longitude is given, divide this difference in longitude, expreased in degrees, minutes and seconds, by 16. The diffreences will be the difference in time expressed in hours, minutes and secends.

Below is an example to illustrate the rule:
The longitude of Baltimore is $76^{\circ} 37^{\prime}$ W.; that of San Francisco is $122^{\circ} 23^{\prime}$ W. What is the difference in time?
$15 \frac{\frac{46^{\circ} 22^{\prime}}{76^{\prime}}}{3 \text { hrs. } 3 \text { min. } 4 \text { sec. }}$
2. When the diference in time is given, exo pressed in hours, minutes and seconds, multiply the difference by 16. The result will be the diffreence in longitude in degrees, minutes and
econds. seconds.

Betow is an example to illustrate the rule:
When it is noon at San Francisco it is 13$\}$ minutes past $30^{\circ}$ clock in the afternoon at New

York. If the longitude of New Yort in $70^{\circ} g$ W., what is the longitude of San Prameico: $3 \mathrm{hrse}{ }_{15}^{13}{ }^{13}$ min.

| $48^{\circ}$ | 20 |
| ---: | ---: |
| $74^{\circ}$ | 3 |
| $122^{\circ}$ | 234 |

Note. If one point is eant of the meridian at Greenwich and one point is weat, the difierence In time or in degrees is found by adding mather than subtracting. Demonstrate the truth of this.

Below are a few problems for practice. Each ahould be undentood by every pupil who attempts to solve it, and any difficult points abould be fully explained before the neat problem is attempted:

1. A veseel miled from a port directly oa a line of latitude for a certain distance, then turned and went due north to port. Here the captain found his watch to be 40 min . alow. In what direction did he mil at first, and how. many degrees?
2. A man travels until his watch in 1 hr .20 min. fast. Does he go east or west, and how many degrees?
3. A boat race is finished on the Thames at \& o'clock P. M. How carly can the fact be published in Halifax papers? Halifax is about $63^{\circ} 30^{\prime} \mathrm{W}$.
4. What time is it in Buffilo, $79^{\circ} \mathrm{W}$., when it is 20 min . after 6 o'clock A. M., July 6 , in Constantinople, which is $29^{\circ}$ E.?
5. The following cities have the longitude given:
Berlin $\quad 13^{\circ} 244^{\circ} \mathrm{E} . \quad$ Detroit $83^{\circ} 43^{\prime} \mathrm{W}$.
Quebec $71^{\circ} 13^{\prime} \mathrm{W}$. London $6^{\prime} \mathrm{W}$.
Calcuta $88^{\circ} 20^{\circ} \mathrm{E}$. Paris $2^{\circ} 20 \mathrm{E}$.
(a) When it is 3 o'clock P. M. in Berlin, what time is it in Detroit?
(b) When it is noon at Calcutta, what time is it in London?
(c) It is $80^{\prime}$ clock P. M. in Paris; what time is it in Quebec?
International Date Ine. When it is Monday where you live, is it Monday, on all parts of the earth's surface until the day changes to Tuesday at your home? You will readily see that such is not the case, for all people cannot reckon the beginning of their day from your meridian. We may understand, therefore, that there is a certain line drawn in imagination on the earth's surface where the date changea.

Ariose wo fanion that on Sunning noon you
 mopping the san directly over your had all the than. In one hour you would have traveled 10, but the seen would still be directly over. hand and to would still bo noon with you, on Sunday. If another hour you would have trowed $80^{\circ}$, Jut it would will be Sunday noon. In another hour you would have gone $40^{\circ}$ from tome and it would well bo sunday moon, for you ane keying with the mom. Continuing at
the cont Al Ala, you would have 'en told that it moo Monday. Though all of At and entiviy through Elope people would tor deckhand that the hour who Moody noon, although during the entire trip is was continually the same day and the same bour of the day to you-Sundey. II you had waived to be in accord with the people among whom you wore traveling, yon would have had to chrage your day from sunday to Moody, comenthes along the route.
It if customary for mariner to octane their


this rate around the world you would find upon returning to the place from which you started that it is still noon on Sunday, so far as your reckoning is concerned. But would it be still Sunday noon to the people you had left behind and to whom you have gone back! No. There would be a difference of 24 hours in time. People will tell you that it is then Monday noon. Somewhere in your travel with the sun the time instantly changed from Sunday to Monday. Had you asked of native peoples in the progress of your journey the day of the work, you would have been told, even as far went as the Sandwich Islands, that it was Sunday; but a little beyond that point, as you neared
day at a point exac 'refr-may around the world from Greenwich, a the given meridian. This is $180^{\circ}$ east or west of Greenwich. However, to run a straight line arbitrarily north and south $180^{\circ}$ east or west from Greenwich would prove a great inconvenience in some portions of the world, so the line is run crooked in places to accommodate all of the islands of one group on one side of the line rather than to divide them. For instance, the Aleutian Islands, of the coast of Alaska, are partly east and partly west of the 180th meridian. If the interns. tonal date line were drum expertly north and south from pole to pole, it might run midway of one of these inlands and one lithic furselad
mative mifte be living is Thureday whils with He medebore over the hill the day mighe be Hiter. ITrufore, the date lloe doviates from Its disuction due sorth and south and mown courthwet eutill thow inlande are pareod, whea ceale it thersis craishe south to the equator, thealt mover east about $45^{\circ}$, thence south about $20^{\circ}$, thence with a light variation to the couth wout. Thine fatwamational dato ling is fenaginary, and authorition do not absolutely agres an to fta locention. It in avideat that no mecesalty compels an erbitranly flised line, but all aro in mcoord as to lte gesoral poation and direction.
mado it impomilbe that oves the cation thomed siles of lise exch employse could hap th watch regulatad by loed times. The roed nuthe doclare that it would rean its traina by Now York time, which is about 40 mis. troter then Chicago tima. All employan watchen, then along the eatire line of roed must connenath reqiater New Yort time, sugardlow of the boer tion of the employce. Asocher silifrod rumatas from Chicago to Wianipeg might adopt Chlange time as its standard or mighe chooep to rim an Winnipes time.
Such condition ou all reilronds could rualt

gTANDARD TME CEART
Showing approximate boundaries and difference in time
hart on the preceding page shown the sine as generally published.
Itwadard Time. With the development of the country and the increased facilities for comnunication between provinces, many opporrunities have been found for making changes which have aided in the transaction of all kinds of busines. For many years travellers in Canada and the United States were greatly inconvenienced because every great rilroad was run on a different time system; in 1880 the railways were operated by acventy-iight time merir?: vis. For instance, a line of rond from New ork to Chicago would have all the watches of its employees set exrectly alike. This
in nothing short of dire confusion. A traveller might reach Winnipeg acoording to tho achodulo of the railrond on which he is siding. He might desire to go farther west than Wianipeg and would find that the trian he wishes to take leaves that city at 5:30 P. M. In the absence of a coummon standerd of time adopted by these two railisonds this traveller would not know whether the departing 5:30 troin leaves Winnib peg at $5: 30$ by the time of the firat railroad or whether $6: 30$ may mean a half-hour or an hour earlier or later than the time on which the first rond is run.

The syutem of ptandard time brought onder and aufety out of confusion and dangeres By
the gyinu the country is divided into sooveo of 15 degros, extordias $7 / / 5$ degrom on ameh cide Ot the crateal mordilime, and the ceratral hoond -ans the is aned for all plecon within that yone. Thus the firct and mont cacterly Canadian
 terations whlel lies $73 / 5$ degrew mens adde of the alstionh degree of loagitude. The atandard thme for the cattre soce is the locel or mun time A Andifex (four hours behlad Gropawich timo). Inrety through the eflorts of Str Sapdford Fioming, betwess the youss of 1870 and 1881 the edopption of this plan was kept belore the publlo and the goveramont, with the roult that alace 1883, whem a Geareal Thme Convention Wes beld in Chicapo, atandard timo has beea in see co all railionds in North Amarien. Benides the A tlantio sone, thero are four ochere dividions of timen in Ceneds which corrempond with thowe of the United 8tater. The firte of there is Enotorn time, the 75 th meridina being almont ha fis centre, and the time throughout the Enetura mection is that of the 78th meridian, Which is practically the sun time of Ottawn. The next division toward the went is known as Contral time, and includes the cection from Port Eluron to Winnipes; the meridian running nearly through the middle of the Central division is the 90th. T7. Dicial time in the Central divinion If therefore practically the local time of the dity of Port Arthur and is one hour curtier than
the timo in the cention divition. Wert of the Cratral divicion is the Mountain dividion of time, which includes the wostern hate of Meajcobe, Backatchowas and part of Alborte, the contral weridian boing the 103th, which is only 23 minutes of longitude from Rogina. Thus Regina loel tirme is otandard time for the Mountaia divition; it is ono hour cartime than Central, two hours carlier than Eectern and throo hourn carlier than Alinatie time.
Boyond the Mountain divicion is the last cection, in which Pacife of Conot time provails; the meridian of longtudo which metablishen time for this divivion is the 120th. The northorn part of the boundary between Alberta and Brition Columbla runs on this mocridian, but as there is no large city exactly on tho lina, Vaacouver, $123^{\circ} 8^{\prime} \mathrm{W}$., is mado the dividion point on the sallrond. Throughout this division the time is one hour corlime thes Mountain time and cisht hours carlier thas Greenwleh time.
The syitem of counting timo by twenty-four hours instend of twelve is is use on all the Canadian railways west of Lako Suparior and also on the Intercolonial Rnilway between Halifex and Montroal. Thus twenty o'clock is eight o'clock at night, midnight being the besinning and end of each twenty-four hour period. The twenty-lour hour notation is part of the scheme of time reckoning worked out by SirSandloed Fleming more than thirty yours ago.

## Cubic Measure

Every solid object has three dimensions, ilength, breadth and thickneso. In teaching cubic mercure the inatructor ahould elvays have

at hand an object in the form of a cubo, as well as other solids of various forms. If the pupils underatand the common operations of
tractions and decimals, solution of problems involving cubic measure is not difficult. The teacher or parent who attempta to give help in problems involving solids muat have a knowledge of the underlying principles and be able to state the facts in relation thereto so that they may be comprehended by the boy or gird of ordinary intelligence. There is not a difficult principle involved. The illustration herewith represents one cubic foot; the malleat cube shown is one cubicinch. It would be fortunate if the school equipment included enough of these cubic inch blocks to form a cubic foot. How many would there be? By the manipulation of these small inch cubes any class could understand the scientific basis of cubic foot, cubic yard, etc. Such blocks could be used in other groupings to form solids of various dimensions, and the solid contents of these varying bodies could be very plainly and quite easily
illustrated.

## Afthmeotio

$\triangle$ Tow leten. To tind the number of cuble fect in a log multiply onolourth of the average clacumieromee by fitelt and multiply the product obrimed by the leagth, which will give the contents in cuble foet.

To find the number of conds of wood coothad in a plle, multiply the leagth in foot by

1. How many conds, stove-wood menguse, each stick 12 inches long, could be mado fro: - full-wised cond of wood?
2. If the full cord as pictured above is boughs for 83.00 and anwed lato stove lengehe as in problem (1) and sold for 81.23 a coed, what is the proat!


4 CORD OT ETONL
the beight in feet and then by the width in feet and divide the rexult by 128.
A cord of stone will make approximately 100 cubic feet of wall.
Three bushels of lime and one cubic yurd of and will liy a cond of stone.
$A$ Oord of Wood. A cord of wood is a solidly built pile 8 feet long, \& feet wide and 4 feet high.
3. If 6 hours' time was required to mant this wood, and labor cost 25 cents per hour, wis there anything gained on the tranmection?

Woightes and Micesuros. Distilled water is the unit by which the standend of weight is ds nin f .
ang ton, which is used in weighing conl an . erchandise in large quantities, is equal to $2,2 \leq 0$ pounds.

$\triangle$ CORD OF WOOD


One pound Avoirdupois weight equals 7,000
One pound Troy weight equals 8,760 grains The carat, used in weighing diamonds, is equal to $31 / 5$ grains Troy weight.
The fineness of gold is also determined by the carst, the standard purity being .9 gold to .1 alloy, the alloy being of pure copper.

## Square Root and Cube Root

Petactplos. When a number is multiplied by
itsell we call the product the equare of the number.
If we have given the square of a number we may be required to find the number which, multiplied by itself, produces the number called the square. When performing such a problem the square. When performing such a problem
we call the operation that of extracting the
square root. square root.
What is the Iquars of a...Irumbort Suppose we are asked to square the number 42.42 is a number composed of 4 tens, or 40 , and 2 units. Then we can suy,

$$
42=40+2
$$

Therefore, to find the square of 42 , whether we
are conscious of the ffct or not, we actually
go through the following operations:
Therefore, to find the square of 42 , whether we
are conscious of the ffct or not, we actually
go through the following operations:
Therefore, to find the square of 42 , whether we
are conscious of the fact or not, we actually
go through the following operations: 0

A firkin of butter weighs 56 pounde.
A barrel of flour weighe 109 pounde.
A barrel of beef or pork weighs 200 pounda. A barrel of salt weighs 280 pounds. A cask of lime weighs 240 pounds. A keg of nails weighs 100 pounds. A pint of water weigha about 1 pound.

$$
42^{2}=(40+2)^{3}
$$

$(40+2)^{3}=40 \times 40+2(40 \times 2)+2 \times 2=1764$
From the above, we underntand the priaciple underlying the following rule:
The square of a number equale the square of the tens figure, plus twice the tens by the units, plus the square of the unito figure.
Then the square of 37 equals:
$30 \times 30+2(30 \times 7)+7 \times 7$
This formula may be shortened as follows:
$30^{2}+2(30 \times 7)+7$
Write formulas similar to the above for squaring $29 ; 46 ; 68 ; 71$.
If the principle of the square of a number is well understood, we are ready to undertake the explanation of the opposite formula, extructing the aquare root of a number. In extracting the

## Actikneotle

cquare root we cimply work beckwand the principlo of cyuaring a number.
Rquaro Boof. As multiplying in the meant d squaring a number, division must be the mane of extrecting its square root. Since 1 equals 13,100 equals $10,10,000$ equals 100 , and $s 00$, it is evident that the square root of any number between 1 and 100 lies between 1 and 10 , and that the square root of any number between 100 and 10,000 lies between 10 and 100. In other wonds, the aquare root of any number expresed by one or two figures in a number of one figure. The square root of any number expresed by three or four figures is a number of two figures. Then, in performing the operation of extracting the square root, an integral number is divided into groups of two figures each, commencing at the right hand, or the decimal point, so the number of figures in the root will be equal to the number of groups of figures.
Let us extract the square root of 1764. From the explanation above we know that there will be two figures in the root, for we divide the number into groups of two figures each and find two such groups:

## $17{ }^{\circ} 64$

The greatest square in 17 is 16 , and the square root of 16 is 4 ; therefore 4 is the tens figure in the root:


The square of the tens figure is subtracted and the remainder contains twice the tens figure times the units, plus the square of the units figure. Twice the 4 tens is 8 tens, and the 8 tens are contained in the 16 tens of the remainder 2 times, hence 2 is the units figure of the root.
Extract the square root of the following numbers: 2209; 4096; 9216; 13,$225 ; 29,855,296$.
Onbe Root. Cube root is the process of resolving a give number into three equal factors, or of finding the length of one edge of a cube.
The radical sign ( 15 ) with the small figure 3 over it denotes that the cube root of the number over which it stands is to be extracted. Thus, $1728=12$.

The cube of a number is the product of the number used three times as a factor.
The cube root is one of the three equal factors.

## Antitherte

Brery divisor in cube root is aris oe aurieces and every dividend in cubical contents.

Any additione made to a cube must be medo to ench of the three faces.

By the use of the geometric or block mathod it will be very engy for the student to under

stand the process of extracting the cube root. If one understands thoroughly the "remeon why" for each step, it will be unnecessary to take up the study of the rule.
We give you diagrams represenuing the divisions, additions and dividends. These graphic illustrations will prove helpful and enable the student to evolve a rule.
Required: to find the cube root of 110,502 .


Every perfect cube consists of four parts, as illustrated above.

1. The cube of the tens.
2. Three times the product of the square of the tens by the units.
3. Three times the product of the tens by the square of the units.
4. The cube of the units.

Arthentio
ncoseration. This word is a noun meaning the act, the process, or the art of meacuring: Mensuration is a branch of geometry and is limited to finding the length of lines, areas of anfaces and volumes of ivlids, having given cortain fects of lines and anglea. The under-

lying principles on which the rules which apply to mensuration are based cannot be entirely underatood by the student of arithmetic. Some

of these rules may be worked out by arithmetica! proceses, while others require involved applications of geometrical formulas.
That part of arithmetic devoted to mensuration is very practical. Common measures of


Bines, surfaces and solids enter into the calculations of men every day of their lives, and all abould be familiar with these common prin-

## Astithenatis

Dofindtiona. The atudent ahould become familina with the meanings of the termserplained below:
Pourcon. A polygon is a plane figure bounded by strnight linea. II it has three aides it is a triangle; four sides, a quadrinteral; five sides, a pentagon; six sides, a hexagon; seven sides, a heptagon; eight vides, an octagon, etc. A polygon having four sides, and called a quadrilateral, is also called a rectangle if all the angles of the figure are right angles. It is called a parallelogram if the opposite sides are parallel. The figures $\mathbf{A}$ and $B$ below represent $a$ rectangle and parallelogram respectively.

Formola. To find the area of a rectangle it is only necessary to multiply the base by the altitude. The sume rule applies to the parallelogram. In the figure above, ahowing the parallelogram, AB is the base and DE is the altitude. It contains the same arem exactly as a rectangle having a base equal to $A B$ and an altitude equal to DE.
Any parallelogram may be divided into two equal triangles, and it follows, then, that the area of one of these triangles is ono-half the area of the entire parallelogram. It is evident, then, that the area of any triangle is the product of the base by one-halit the altitude.
Oircles. Cut a circle from stiff paper with a diameter of 4 inches. Mark it of into triangles as shown in the half circle below. The bases of the triangles form what part of the circle?


ILLUSTRATION OF CERCLE
The altitude of each triangle corresponds to what part of the circle? If we are able to find the area of a triangle, can we then find the area of the circle?
The altitude of a triangle is the perpendicular
dinnace from the bace to the farthert opposite point. In the triangle above, the line $A B$ is it altitude. Since we know how to find the area of one triangle, we can find the areas of as many triangles as we have made from our circle. Therefore, to find the ares of a circle:
Find the area of one of the triangles and multiply by the number of triangles, or in brider form, multiply the circumference of a circle by half its radius.
The Oyindor. A cylinder is a round body with equal and parallel circles for its bases ind having a uniform diameter. In the accompanying figure the line EF represents the altitude, AB the diameter. The convex surface is the curved exterior.
To find the coonver surface of a cylinder multiply the circumfereace of the base by its altitude. You can easily understand the reason for this sule if you can imagine that the entire outer surfice can be changed in shape so that
it lies fiat as a rectangle. The ares of a conves nurface of a cylinder is the mame as the aree of such a reetangular figure.


To find the volume of a cylinder multiply the area of the base by the altitude. The area of the base is the area of one of the circles forming the base, and above we explained bow to find the area of a circle.

## Common Measurements

On this and the following pages will be found the principal short rules in use in connection with common measurements.
Meacures of Oapecity. To find the number of bushels of grain in a bin or box, multiply the length in feet by the height in feet, then by

To find the approximate contents of a round bin or tank, square the diameter in feet and multiply by the depth in feet, then by 2$\}$, striking of the right hand figure. For instance: A tant 6 feet in diameter and 10 feet deep will conrain $6^{3}=36$. $36 \times 10 \times 2 \frac{1}{y}=90.0$ barrels.

the width in feet and then by 8 , striking off the right hand figure. 'The result obtained will be the number of bushels. For instance: In a.bin 10 feet long, 6 feet high and 8 feet wide, $10 \times 8 \times$ $6 \times 8=384$. 0 .

In estimating the contents of a cistern, one barrel is equal to $31 \not$ gallons and one hogshead to 2 barrels.
To find the number of barrels a cistern will hold, multiply the square of the dinmeter of the

civivis in foet by thic helght in feet and divide the ralk by 4 For instance, if a cintern is 6 feet in diameter and 8 fex deep it will hold $6=$ 84. $30 \times 8=288+4=72$ barrele

To and the number of barrels in a aquare cistum, multiply the width, height and depth monther and divide the product by 4 . For limance:
A cintern in 6 leet wide, 8 feet loag and 4 fret decp; multiply together equals 192. $192+4=$ 48 barrols of 311 gailons each.
4 tank 5 foet equare will hold 6 barrels for every foot of depth.
A tuak 6 feet square will hold 88 barrels for every foot of depth.
A tank 7 feet square will hold 113 barrels for owny foot of deptin.

A tank 8 feet equare will hold $15 \nmid$ barrels for overy foot of depth.
A tank 9 feat equare will hold 191 barrels for

(iii)every foot of depth.
A tank 10 feet square will hold $23 \%$ burrels for every foot of depth.
To find the medium diameter of a cask or barrel, add to the head diameter of the difference between the head. and bung.
Iand Mcaguremea A regular townahip, sccording to the Dominion surveys, is 6 miles zquare and is divided into 36 equal parts or sections, sach section containing 640 acres and measuring one mile equare.

To fix permenently these values in the pupil's mind, a few exercises can be given in conneotion with the atudy of this diagram, such as:
How many scres of land in $4 \frac{1}{8}$ sections?
How many more acres in $7 \frac{1}{3}$ sections than there are in 3 rections?

How many acres of land in $\frac{1}{2} 00$ tion?


How many screse of had in 23 swetion? How many acres of had in 85 section?
How many more meres in $8 \frac{1}{3}$ metions than in 2 sections?
To familiarise the pupils with the difinerent divisions of a townatip, have them make diegrams ahowing farms located in different parts of the section shc $w n$ on nest page, auch as-
The N. $\frac{1}{2}$ of the S. E. \%.
The W. $\frac{1}{\frac{3}{2}}$ of the S. E. $\frac{1}{5}$.
The S. W. $\frac{t}{}$ of the N. E. $\}$.
The S. $\frac{1}{2}$ of the N. W. $\}$.
Then after locating such farmi intereating problems can be rmade computing the value, as:
What will be the coat at $\$ 35.50$ per sere of a farm comprising the N. $\$$ of the S. E. 1 ?

Inmbor I Ocogromants. Parmese, carpenters, and mesons make use of short methode of arriving at results. In maling extimates they use the following data:
A board foot, used in mensuring lumber, is ? foot long, 1 foot wide and 1 inch thick.
In computing dimensions of lumber, do not use fractions. A board mensures betwren 5 and 6 inches in width; if nearer 5 call it 5 nches, and if nearer 6 , call it 6 .
To find the number of feet in a nuraber of 12-foot boards, find the total width of the boards in inches and the sum will equal the number of feet in the pile.

To find the number of feet in a number of 14 foot boards, add to the total widths of the boards
$f$ of the sum obtained.

To find thenumber of feet in $16-$ foot boards, add to the sum of the widths of the boards \& of the result. For example: To find the number of feet in 6 boards 8 inches wide and 14 feet long, $6 \times 8=48$. of $48=8.8+48=$ 56 feet, the number of feet contained in the boards.

To find the number of feet of lumber contained in afence, multiply the sum of the widths of the
boarda in a portion of the fence by 163 and if more than 1 inch thick by the thickness, and divide by 12. The result obtained will be the number of feet contained in a nod of fence and this multiplied by the number of rods of fence will give the number of feet of lumber used. To illustrate:
To find how much lumber will be required to fence a square mile of land with three $6-$ inch boards and one 10-inch board in
each panel of fence: $3 \times 0+10=28$ inches, tota width of board, ill each panel. $28 \times 161 \div 12=$ $38 \frac{1}{2}$ feet in each rod of fence. The number of rods of fence around a square mile of land equals 1,280 rods multiplied by $38 \frac{1}{2}=49,280$ feet, number of feet of lumber in the fence.

To find the number of laths required in a room, find the number of square yards in the room and multiply by 18.

Mescares for Oropn. A ton of dry hay is estimated at 500 cubic feet to the ton.
beight and divide by 500 . For esample: A stack 20 feet long, 10 feet high and 15 feet wide will contain $15 \times 20 \times 5+500=$ 3 tons in the stack.

To find the contents of round stack, multiply the distance around the stack in yards by itself and then multiply by 4 times the height in yards, striking off two places from the right of the result thus obtained. Thisgives the number of cubic yards in the atack and by dividing by 20 will give the number of tons. To illustrate: A stack 20 yards around and 8 yards high will contain $20 \times 20 \times 32=12800$. $12800 \div 20=$ $62 / 5$ tons.
To find the contents of a crib in bushels of shelled corn, multiply the number of cubic feet in the crib by 8 and strike of the right hand Gigure. To illustrate: A crib 18 feet long, 10 feet high and 8 feet wide will contain $18 \times 10 \times 8 \times$ 8 or 5760 bushels.
To find the number of heaped bushels of car


To find the number of tons in a mow, multiply the length in feet by the height in fcet and then by the width in feet and divide the result by 500 . To illustrate: In a mow 30 feet long, 10 feet high and 20 feet wide there will be $30 \times 10 \times 20 \div$ $500=12$ tons.
To find the number of tons in a stack, multiply the width in feet by the length in feet by $\frac{1}{2}$ the
corn coniained in a crib, multiply the number of cubic feet in the erib by 4 and strike off the right hand figure, as, a crib 15 'ong, 10 feet high and 8 feet wide will cor $15 \times 10 \times 8 \times 4$ or 7200 bushels.
When the sides of the crib are flared, multiply the height in feet by half the sum of the top and bottom widths and then multiply by the length

## Afteltrentis

fa fect, maltiplying the reoult by 1 and striling of the right hand igrure: For emample: $A$ crib 12 feet wide at the top, 8 feet wide at the bottom, 14 foek loag and 10 feet high will contain $12+$ $8+2=10$ feet, average width. $10 \times 10 \times 14 \times 4=$ 8000 bustela.

## Cemoral Intos in ITemsuration

To and the alant height of a cone when the diameter of the base and the altitude are given, extruct the square root of the sum of the aquares $\alpha$ the altitude and ono-half the diameter.

To find the aren of the convex murface of a regulur pyramid or cone, multiply $\frac{1}{1}$ the sum of the perimeter of the two bases by the altitude.
To find the area of the surface of a sphere, multiply the circumference by the diameter.
To find the volume of a sphere, multiply the convex surface by $\frac{1}{}$ of the radius.
To find the area of a parallelogram, multiply the base by the altitude.
To find the aren of a triangle, multiply the base by $\frac{1}{1}$ the altitude.

To find the arem of a trapesioid, multiply $\frac{1}{}$ the sum of the parallel sides by the altitude.
To find the area of a polygon, divide into triangles and find the sum of their areas.
To find the area of a cincle, multiply the radius by $\frac{1}{2}$ the circumference.
To find the circumference of a circle, multiply the diameter by 3.1416 .
To find the hypothenuse of a right-angled triangle, when two dimensions are given, extract the square root of the sum of the squares of the throe dimensions.
To find the base or perpendicular of rightangled triangle, from the square of the hypothenuse subtract the square of the given side and extract the square root of the remainder.
To find the volume of a pyramid or cone,

## Adtheotit

multiply the ares of the bace by the altitude aad divide by 2
To find the coaver surface of a cylinder, multiply the circuinference of one base by the altitude.
To find the rolume of a cylinder, multiply the aren of one base by the altitude.

To find the volume of the frustum of a regular pyramid or cone, multiply the oum of the areas of the two baces plus the aquare root of their product by the altitude.
To find the contents of an irregular body, immerse the body in a vemel full of water, and measure the quantity of water displaced.
To find the area of a rectangle, multiply the length by the breadth.
To find the diameter of a circle, divide the circumfereace by 3.1416; or multiply it by . 318309 .
To find the side of a square equal to a given cincle, multiply the diameter by . S 6227 or $\frac{1}{2}$ of $\sqrt{3.1416}$.

To find the diameter of a circle equal to a give square, multiply the side of the square by
1.12838.
To find the side of an inscribed square, multiply the diameter by .707106 , or the circumference by 225079.
To find the circumference from an inscribed square, divide the side of the square by . 225079 .
To find the side of the largest inscribed equilateral triangle, multiply the diameter by .866025 .
To find the diameter of the three largest equal circles that can be inscribed in a given circle, divide the diameter of the given circle by 2.155 .
To find the contents of a cube, multiply three sides together.
To find the surface of a cube, multiply the square of the length of one of its sides by 6 .

## Business Forms

## Thit Note with Interest

4150. Toronto, Ont., Feb. 4, 1912.

Por value received, sixty days after date I promise to pay to John G. Rogers, or order, four hundred fíj and 00/100 dollars, with interest at $0 \%$ per anouia.

Grorge L. Holmps.
Drmand Nótre
$\$ 500$.
Montreal, Sept. 7, 1912.
On demand, for value received, I promise to
pay to Edward L. Reynolds, or order, five hundred and $00 / 100$ dollars, with interest at $7 \%$. Wtham Roberts.

## Jontr Note

8050. Winnipeg, Man., June 15, 1912.

Ninety days after date, for value received, we promise to pay to the order of Robert $L$. Taylor, sis hundred fifty and $00 / 100$ dollars, with interest at $6 \%$, at the Dominion Bank, Toronto.

Tromas L. Hanlet.
Mary B. Hanley.

## Arthametio

Shart Dinfr
$\$ 560.50$.

Halifax, N. S., Aug. 4, 1012.

At sight, pay to the order of Albent $\mathrm{L}_{\mathrm{c}}$. Bond, five hundred cixty and $50 / 100$ dollars, nalue received, and charge to the account of Tyiz Bane or Nova Scotil.
To the Bank of Montreal, Toronto, Ont.

## Time Danft

$\$ 150 . \quad$ Quebec, Dec. 1, 1911.
Thirty days after date pay to the onder of M. A. Mitchell, one hundred fifty and 00/100 dollars, at the Imperial Bank, Vancouver, and charge to the account of

Nouman A. Palmigr.
To Reed, Jones \& Co., Vancouver.
Ormer
\$40. Victoria, B. C., May D, 1912.
Please pay. to Richard A. Fenton, forty dollars and eharge to the account of

Hent W. Allen.
To Franklin Bros. Co., Victoria, B. C.

## Dor. Bille

S. John, N. B., March 2, 1012. hera James In Arnold, for value recerived, one huadred ninety dollars. D. A. Cuntis

## Recerpt

3125. Ottawn, Ont., June 10, 1012.

Received of Herbert I. Morris, one hundred twenty-five dollars, in settlement of account.

James R. Stonr.

## In Full of Dmand

Calgary, Alberta, May 5, 1912.
Received of James M. Brown, four hundred fifty dollars, in full of all demands to date.

Frank In Maxtun.

## Order fom Goods

Regina, Sask., Nov. 1, 1911.
Ward, Smith \& Co., Regina, Sask.
Deliver to R. S. Marsh merchandise to the value of seventy-five dollars and charge to my account.

Wilton S. Long.

## Percentage

Easy Bedis of Comparison. In an examination Charles answers correctly five questions out of ten, while Mary answers thirty-five out of fifty. Mary has done better than Charles, but how are we to know exactly how much better? We see that Charics has answered $5 / 10$ of his questions, and Mary 35/50, but we require a single term to show their relative degree of merit.
John lost 30 cents out of a dollar he owned and William spent 40 cents out of a dollar he had earned. How shall we find a number which will show what part of a dollar John had more than William?
The two problems above given are like thousands of others, with slight variations, and it is clear that some system of calculation must be found by which they may easily be solved.
In the first problem, let us reduce our fractions to those having the common denominator 100 . Then Charles has answered $50 / 100$ of his questions and Mary 70/100 of hers. Mary is a better student by 20/100 than Charles. We have learned to express $20 / 100$ decinally as .20 , which is a simpler form than the fraction.
In the second problem, we begin its solution by remembering that a dollar contains 100 cents. John lost $30 / 100$ of his money ; William spent $40 / 100$ of his ; therefore, John has yet 70/100 of his original amount, and William $60 / 100$ of his. John has $10 / 100$ more money
than William, which proportion we express decimally as .10 .
These problems are solved on the basis of 100 for the complete amount in each case. We consider in the first instance the questions asked Charles and Mary on the basis of 100, and in the second place we know that the dollar is easily reckoned on its basis of 100 parts, or 100 pennies, comprising the whole. So we may build a section of our arithmetic which shall have for its foundation computations based on 100 parts to make the whole, or th. ntire thing, and we call this system Percenta from two Latin words, per and centum, wh together mean by the hundred. Instead of saying that a certain number is so many hundredths of one hundred, we say that it is so many per cent. In writing, we shorten the words per cent to the sign \%.
Thet percentage system would not be of much use to us if by its means we could compare numbers only directly with one hundred. It would be easy enough to tell how many onehundredths of one dollar a quarter is, but it would not help us in telling how many onehundredths an inch is of a foot, or a quart is of a peck. However, if we remember the simple rule that any common fraction may be expressed as a per cent merely by reducing it to hundredths, we will find that the application of percentage is extended over a great part of arithmetic Thus:

## Arthmeotle

$$
\begin{aligned}
& 1 / 2-50 / 100=50 \% \\
& 1 / 5=20 / 100=20 \% \\
& 1 / 4-25 / 100=25 \% \\
& 3 / 5=00 / 100=60 \% \\
& 3 / 30=6 / 100=6 \%
\end{aligned}
$$

There are a number of fractional parts of one hundrod which are exprecood as per cents so often that the per cents ahould be committed to mesinory.

| $1 / 2=50 \%$ | $2 / 3=683 \%$ |
| :--- | :--- |
| $1 / 3=331 \%$ | $3 / 4=75 \%$ |
| $1 / 4=25 \%$ | $25=40 \%$ |
| $1 / 8=20 \%$ | $3 / 5=60 \%$ |
| $1 / 8=163 \%$ | $3 / 8=37 \% \%$ |
| $1 / 8=124 \%$ | $5 / 8=62 \% \%$ |
| $1 / 10=10 \%$ | $7 / 8=87\} \%$ |
| $1 / 12=84 \%$ |  |

If
If we examine the very simplest statement in percentage, $25 \%$ of $824=56$, we see that there are three numbers used-the number of which the per cent is taken, the number which tells how many hundredths are taken, and the number which results from taking the indicated number of hundredths of the given amount. The first of these is called the base; the second the rate, and the third the percentage. Thus in the statement above, $25 \%$ of $\$ 24=56,824$ is the base, $25 \%$ the rite.and 30 the percentage.
The sum of the base and the percentage is called the amount; the difference between them the difference.

The charee Oasos. No probicis in percentage can be worked unless two of the three numbers named above are given. These two may be either the base and the rate, the problem being to find the percentage; the rate and the percentage, the problem being to find the base; or the base and the percentage, the problem being to find the rate. The first one is the simplest, and the one most often mot with.
Lrereises under case I. Given the base and the rate to find the percentage. Let it be remembered that the base represents the whole of anything. In the problem, What is $8 \%$ of 500 ?, 500 is the base, as it represents the whole, and we are required to find $8 / 100$ of this whole. By the analytical method we may more clearly understand the process of the solution:
$100 \%$, or the whole, $=500$

$$
\begin{aligned}
& 1 \%=5 \\
& 8 \%=40
\end{aligned}
$$

The arithmetics tell us that if we have given the base and rate and are required to find the percentage, we multiply the base by the rate,

## Arthaneth

decimally expremed. Lat we wee why this is correct. In the above problem wo have to find $8 \%$ of 800 . This means that we ane to find $8 / 100$ of 500 . Exprewed in fractional form, our problem resolves itself to this:

## $8 / 100 \times 500$

$8 / 100$ may be expremed docimally as .08. Then wo see clearly that the arithmetical process of solution is as follow:

$$
\begin{array}{r}
500 \\
.08 \\
\hline 40.00
\end{array}
$$

It will be evident froin the above example that the rule which applies in percentage problems of Case I is, Multiply the base by the rate.
Solve the following examples, the firat ten orally, the others with paper and pencil.
What is-

1. $5 \%$ of 200 ?
2. $50 \%$ of 12 oranges ?
3. $25 \%$ of 400 yands ?
4. $37 \% \%$ of 64 bushels?
5. $7 \%$ of 80 cows ?
6. $331 \%$ of $\$ 750$ ?
7. $623 \%$ of 240 acres ?
8. $82 \%$ of 86 apples ?
9. $20 \%$ of 1200 sheep?
10. $6 \%$ of 80 feet?
11. John has 64 marbles: James has $371 \%$ as many. How many has James ?
12. Mary earned 82.40 ; she spent $10 \%$ for ribbons, $6 \%$ for candy, and $4 \%$ for pencils. How much did she spend?
13. A flagstafi is 72 feet high. How high is a flagstaft that is $75 \%$ as high? One $25 \%$ as high ?
14. A man owned 1,000 acres of land and sold $623 \%$ of it. How much did he have left ?
15. Mr. A paid $\$ 450$ for dry goods. He sold them at a gain of $27 \%$. How much did he gain ?
16. A lawyer collected $\$ 1,200$, and received for his services $3 \%$. How much money did he receive ?
17. A paid $\$ 4,500$ for a store, which he sold to B at a gain of $10 \%$. B then sold it to C at an advance of $83 \%$. What did C have to pay for the store?
18. A man paid $\$ 150$ for a horse and two years later sold it at a loss of $6 \%$. How much did he get for the horse?
19. Frank had $\$ 50$. He spent $40 \%$ of it for a suit of clothes and $5 \%$ of what remained for a straw hat. How much did he then have?

## Asthmente

20. A merchant employs an ageat to purchase goods for him, paying him for his services $3 \%$ of the coot of the goods purchame. How much money must he read the agent if the latter in to purchaco 81,500 worth of goods?
Iressicess under case II. This is the case in which the rato and percentage are given and the base in to be found. In the problem dircureed first under Cave I we were asked to find $\mathbf{8 \%}$ of 500 . We found lt by two different forms of solution to be 40.40 is a certain part of 800 , for lt is the mame as $8 \%$ of 800 . Then is it not clear that the percentage, 40, and the rate, 8 , exactly equal each other? Let us apply that truth to problems under Case II, in which the rate and the percentage are given and in which we are to find the base. Remember that the base is still $100 \%$, or the whole:

25 is $20 \%$ of what number?
We are to find $100 \%$ and we know that $\mathbf{2 0 \%}$ of it is 25. Let us wolve this problem by the analytical method:

$$
\begin{array}{ll}
20 \% \text { of some number } & =25 . \\
1 \% \text { of that number } & =1\} . \\
100 \% \text { or the whole number, } & =125 .
\end{array}
$$

All problems of this class, no matter how complicated they may at first appear, may be solved by this analytical form. The usual method used in the arithmetics follows this rule: Divide the percentage by the rate, expressed decimally.
Solve the following problems, as many of them by the analytical and fractional methods as possible, the others by the usual arithmetical rule. By the fractional method the first problem below is easily solved. $20 \%$ is $1 / 5$ of the whole. Then if 18 is $1 / 5$ of the whole, $5 / 5$ of the whole would be $5 \times 18$, or 90 .
Find the number of which-

1. 18 is $20 \%$.
2. 230 is $75 \%$.
3. 24 is $84 \%$.
4. 81 is $9 \%$.
5. 770 is $11 \%$.
6. 18 is $90 \%$.
7. 345 is $121 \%$.
8. 276 is $40 \%$.
9. 375 is $62 \%$.
10. 421 is $163 \%$.
11. An agent was to receive a commission of $4 \%$ for purchasing goods for a merchant; his commission amounted to $\$ 36$. How many dollars' worth of goods did he buy?
12. In selling a store at an advance of $10 \%$.

Mr. B made 400. How much did the atore cont him?
13. John had a certain num of money in the morning. He found at night that he had bout 8.51, or $17 \%$ of $1 t$. How much did he have In the morning ?
14. Mr. Brown lost $\$ 30$ by selling a quantity of apples at $6 \%$ below cost price. How much had the apples cont him ?
15. In selling a house for $\mathbf{8 5 , 6 2 3}, \mathrm{Mr}$. Gry made 121 per cent. Find the original cons of the house.

This problem dififers from any that we have had belore. 85,625 , the sum for which the house war sold, is the base plue the percentapthat in, the amount. To find the base, divide this amount by $1+$ the rate -1.12$\}$.
16. By selling a quantity of flour for $\$ 487.50$, a merchant gained $89 \%$. How much did the. flour cost him?
17. Frank had a certain number of marbles. After losing $\mathbf{2 5 \%}$ he had 45 left. How many did he have at first?
This is just the opposite of problem. 15. Here we have given the difference between the base and the percentage. To find the broc, therefore, we divide this difference by 1 -the rate, which is .75 .
18. Mr. Black sold two horses, at 8202.50 and $\$ 203.25$ respectively. On the former he gained $121 \%$; on the latter he loot $81 \%$. Did he gain or lose on the transaction, and how much ?
19. Mary received some money for her birthday. She spent $10 \%$ for candy, and then $20 \%$ of the remainder for ribbons, and had $\$ 1.80$ left. How much did she receive?

The significant part of this problem is the word remainder. Mary did not spend $10 \%$ and then $20 \%$ of the original sum, so we cannot add $10 \%$ and $20 \%$, and say that, she spent $30 \%$ of her money. We must work it as if it were two separate problems-first find the number of which $\$ 1.80$ is $80 \%$, and then find the number of which that amount is $\mathrm{B} 0 \%$.
20. A sold a horse to B at an advance of $20 \%$ on the original cost ; $B$ then sold it to $C$ at a gain of $123 \%$ over what he had paid for it. B received $\$ 202.50$ for the horse. What was the original cost ?
Erorcises undor Oase III. This is the case in which the base and the percentage are given and the rate per cent is to he found. Keep in mind the fact that the base is always $100 \%$, and that the percentage is such a part of the buse as is indicated by the rate per cent. Let us analyze the following problem:

## 10 is what per even of 20?

20 in the entire amonat of the ention number and $6100 \%$. 10 h a cortant pate of 50 and we are soquirad to find that part. 80 equille $100 \%$. If 80 equal $100 \%$, 1 equall $1 / 30$ of $1 \mathrm{mP} \mathrm{\%}$. or $34 \%$ If 1 equale $84 \%, 10$ would equal $10 \times 3!$ \%, or $33 \% \%$.
There in another limple way of oolving thim problem. 10 in of 20 , and if the whole number $6100 \%$, theo of of $100 \%$, or $83 \%$, will reprevent the relhtion beiween 10 and 80 .

Proen this we may make the general sule: To find tho nule divido the prownage by tive beve. solve the following problems:
What per cent of

1. 00 in 20?
2. 90 in 20 ?
3. 98 in 8 ?
4. 216 in 36 ?
5. 72 is 6 P
Q. A hwyer collected 2400 for a firm, and reeetred for hin services 823.30 . At what rate wes the paid for making the collection?
6. Mr. Brown bought a house for 30,000 and sold it for 87,000 . What was hia gain per
7. C paid 8150 for apples and wold them for 8165. What per cent did be gain?

## Astahemetis

9. B bouch two hormes, for 8160 and $\$ 200$ reppedivily. He sold thein for 8176 each. Wias peer cent did the gith or low on the two?
10. A moreckepper buyn peacile at 8 cents a dowen and sells them at 2 cents apiece. What per cent dows he gain?
11. An ageat noceived 880 for buying 82,000 worth of goode for a merchant. What was the rate per cent at which he was paid?
12. If by melling a picture for $\$ 231$ I pin $10 \%$. what per cent would I gain by colling it for 231. 80 ?

The applicutions of the priaciples of percentage in practical arthmetic are numerous. Come mimion, Thade Discount, Thxes, Inourance, Stocks and Boado-all of there subjects have as their batis the simple prisciples of percentage which have been diecused. The following table connects all of these subjects, and others, with percentage, and that, in its turn, with the simple mubject of multiplication. A atudy of this table will ahow that many of the terms with which we meet in more adranced arithmetic are but new names for ideas which have been familiar to us from the very beginning of our study of arithmetic. When we begin to understend the relation one fact bears to another, then we begin to get a proper perspective.

APPLICATIONS OF TERMS OF MULTIPLICATION TO PERCENTAGE


Eoletion to Artithmotle. Quite a little of the time given to non-smentials in arithmetic could be spent to better advantage in moot schools in laying the foundations of the cuady of algebrs. Some algebraic knowledge may be the beat pomilhle aid to a grod understanding of much of arithmetic. For these reasones, in many schooly the two branches are curried together in upper clamen.
Learn Why a Thing Is Irve. It in our design here merely to lay the foundation for the study of algebra, to explain the reasonablenesa of fundamental principles. If this is accomplished to the matidaction of the audent his hater succeses will come with comparative ease. Too many of us older people ameepted algebraic formulas as true without knowing why they were true, or by what processes they were reached. We believe all tenchers of today know that underlying reasons should be explained; their later work will be mado ensier if they give clasees a clear analysis of first principles. If the helper of the boy or girl, either teacher or parent, knows a general fact but knows not why it is true, it will be a means of satisfaction as well as a duty well performed toward those who need instruction to investigate thoroughly. Much of this fundamental help follows in these pages; it opens the way to practically all of the science, as far as it is given consideration in our public school system.
Signs and Aymbols. The signs used in arithmetic are applied to algebra without change of form or meaning:

+ (plus) indicates addition
- (minus) indicates subtraction
$X$ (times) indicates multiplication
$\div$ (divided by) indicates division
- is the sign of equality; whatever ap-
value or amount that which is written at its right. Thus, $7 x+5=3 x+13$. Seven times the value of $x$, whatever that may be, added to 5 equals 3 times the same value of added to 13.
The rigns of parentheses, brackets and braces are called afgne of aggregation, because every. thing within them, in to be treated as a single expreation, to be simplified and reduced to lowest terms before being applied to other parts of the problem. For illuatration,

$$
[10+\{3+6-(4+2)+6\}-4\}+8=9
$$

Here we treat $(4+2)$ in parentheses an a single number, then everything within the bracee as a single number, after the part in parentheres has been simplified; fimally, after simplifying all that remain within the braces, reduce to simplear form all within the brackets, after which add 8. The mame rule applies if the terms encloved by the signs of aggregation are algebraic. See if you can solve this problem:

$$
[4 a+6 a+\{5 a-a+(3 a+4 a)\}-a]=1
$$

Doofliciont. The next term you must loarn, and one not found in arithmetic, is the word coefficient. It means any number or aymbol placed before another symbol, and it stands as a multiplier; the coefficient shows how many times the number or aymbol is to be taken. In the term $4 y, 4$ is the coefficient of $y$, and indicates that the value oi $y$ is to be taken 4 times; : $\because$ the value of $y$ happens to be 5 , then $4 y$ equals 20. In $(a+b) x, a+b$ is the coefficient of $x$, and $x$ is to be taken $a+b$ times; this you will understand better a little later, even without further explanation.
The Bigns of Parentheses. If a compound expremion is to be treated as a single expression it is to be enclosed in parentheses, as we learned above. The authorities of our algebras tell us that-

Let we hamu that the ahove if true without having to mecept the word of another. 18 wr prove tho truch for curnelvee we politively know, and it in good to know things at frru-hand:
If a man ban 20 dollang and aflermando mont kete 8 dolinere and then 4 dollar, 14 makee no dilferpees whethor to addo the 8 dollan to him 20 dollase, and aftermande the 4 dolinera or Whomber he pures the 6 dollan and the 4 dollari cogetior end addo therir uum to hin 20 doliars.
The amt procen 10 repmented by $20+a+4$.
The mecond prooen if reprentiod by $20+$ ( $0+4$ )
Hf the $20+(0+4)=20+0+4$.
sollbete 6 dol has 20 dollars und afterwandre it mikeen no ding and payy a bill of a dollare. dollare to io the bill of 4 dollo doilhar and paye sut of thbs Adollan from the of dor whember he payc the the remalinder to th dolhars colleoted and adde The firt pro 20 doliam.
The meond procen repreentiod by 20+6-4. $(0-4)$ ). meond procome it repreentiod by $20+$

$$
\text { Hence, } 20+(6-4)=20+6-4 \text {. }
$$

If the abore explanation is ciear you will ensily understund the following:

$$
\begin{aligned}
& 3+(8-2)=3+8-2 .
\end{aligned}
$$

$$
\begin{aligned}
& 4+(6-3)+(7-2)=4+6-3+7-2 .
\end{aligned}
$$

The abore explanation is in connection with the nign + when it preedesa a parenthesis. The authurities in algebra further tell us that-
If an expresion within a parenthectis is preecoded by the ailkn -, the parenthenise can be removed provided the siginn before each term within the pareetheeis is changeod, the nikn + to -, and the aign - to + .
This is not quite so easily understood as the principle just explained, so let us carefully examine the matter, using the mame illustration we found so serviceable in the first instance:
If a whan hase 20 dollare and has to pay two billa, one of 0 dollars and one of 4 dollare, it makeen no difference whether he takees 6 doliliars and 4 dollars in succession, or whether he takes the 6 dollars and the 4 dollars at one time from his 20 doliarr.

The fint process is represented by 20-6-4. $6+4)$.
Hence, $20-(6+4)=20-6-4$.
If this mame man is 20 dollars consisting of 5 dollar bills, and has a debt of 6 dollarssting of in return 4 dollars.

This procellars.
If the debt paid is 6 dollars, that is $(10-4)$
dollare, the number of dollan the ins lofiean bo expred by $20-(10-4)$.
If the explamation is undertiood you will readily find answers to the following. We have stated remults in three insonewn:

$$
\begin{aligned}
& 10-(10-8)=10-0+8=6 \\
& 7-(3-2)=? \\
& 9-(4+3)=9-4-3=2 \\
& (8-2)-(5-3)=8-8-5^{2} \cdot 9=4 \\
& 15-(10-3-2)=8 \\
& (8 a-2 a)-(a-c)=?
\end{aligned}
$$

Thumerted Values. By way of a review, refer again to the definition of coeficient. It is - multiplier; in the expremion 7y, we understand that $y$, whatever ita value, is to be taken 7 timen. Then, il $y=4$, the exprecion $3 y+4 y$ $=12+18$, or 28; or, $3 y+4 y=7 y$, of 28. Apply. ing this knowledge, colve the following problems, You will find remila atated in a few inotances, for your encourgement.
If $a=5, b=4, c=3$, find the value of:

1. $9 a-2 b$. (Ans, 21; here bo are to be
2. Sact 2a multiplied together, and 2 in
3. 3 ( $a-b+c \%$ their coefficient.)
4. $c+2(a-b)=6$.
5. $2 \dot{2}-3(a-c)$.
6. $2 c-b(a-b)$.

Let us colve and explain the last problem, step by atep; you will then know whether vour methods have beer. corrset:
(1) $2 c-b(a-b)$.
(2) Removing parentheses, $2 c-a b+b ; b$ times $b$ is not $2 b$, but is the result of $b$ multiplied by itself, as in arithmetic;
ir signing values to the letters,

$$
6-20+16
$$

Adding terms having plus signs, deducting from the sum the term having a minus
(4) $22-20=2$.

Addition. The processes of addition in arithmetic and algebra vary but little. If in arithmetic we add 4 and 5 , there is a term known to us which expresses the result of this addition; it is $\theta$. If in algebra we wish to add $a$ and $b$, there is no single term which will express the sum; the addition of two algebraic expressions can be represented oniy by connecting the second with the first by the sign + . If there are no like terms in the entire expression whose sum we are required to find, the operation of addition is algebraically complete when the two expressions are thus connected; hence, the sum
of $x$ and $y$ is $x+y$.

Add $3 x+4 y+6 x+y$. Hew wo find like terms twiee; bence we comblen theo like termes before completing our addition, for we muat have the expremion in the dimplent form. so we combine ther insilor terme:

$$
\begin{aligned}
& 3 x+a z=0 x \\
& 4 y+y=8 y
\end{aligned}
$$

Therefore we have the cumplete problem, $3 x+4 y+6 x+y-2 x+8 y$.
We may sive the problem this form:

$$
\begin{aligned}
& 2 x+4 y \\
& \frac{6 x+y}{8 x+5 y}
\end{aligned}
$$

Add the following, remembering that If no sign appears before a term, the plus slgn is alway underntood; and recelling, further, that we exprees the oum of coeficients only:

1. idd: $2 d^{-2}-e^{2}+6 d^{2}+d^{2} ;+6 c^{2} d-8 n d-$ $2 d^{2} ; 3 c^{-}-\mathrm{c}^{2} d-7 \mathrm{~cd}^{d}-3 \mathrm{~d}$.
2. Add: $4 a^{2}+3+3 ;-2 d^{2}+3 a-8 ; a^{2}-a+1 a$.
3. Add: $-3 a+2 b+c ; a-3 b+2 c ; 2 a+3 b-c$.
4. Add: $2 a+3 b+6 y ; 2 b-2 a+y ; a-4 b-6 y ;$ $a+b+y$.
5. Add: $2 a^{3}+4 b-2 c ; 3 c-2 b ; 3 c+b-a^{3} ; a^{3}+c$.

It it clear why you must arrange this problem in the following order?

$$
\begin{array}{r}
2 a^{3}+4 b-2 c \\
-2 b+3 c \\
-a^{0}+b+3 c \\
\sigma^{+}+c \\
\hline
\end{array}
$$

subtraction. The remson assigned for the rule for subtraction in algebra is sometimes difficult for the boy and girl to unders.and. Let us state it as usually given, and explain it step by step, with the practical help of problems. The rule tells us to-
Set the like terms one under tho other in the minuend and subtrahend, then change all the signs of the subtrahend and proceed as in addition.
We have learned how to add, and know tha. the algebraic sum of $8 a$ and $-3 a$ equals $5 a$ :

> | $8 a$ | first number |
| ---: | :--- | :--- |
| $-3 a$ | second number |
| 53 | sum |

In addition in arithmet:, we know that if either number be subtracted from the sum, the difference must be the other number. Here, then, if we subtract $-3 a$ from $5 a$, what is left must equal the first number, and it is $8 a_{\text {, no }}$ matter how strange the number may look to you. In performing this subtraction, we know that the result reached must be 8a. So far, simply keep in mind that we have only applied to
alsebre an arithmetical iruth, that either termes In additio., $I$ aubreseted from the mum, gives the other lesm as a remainder; no matter how un mal the malt of much a suberaction may hook to ue we are furced to helieve it in corrove.
Sire if here in further proof: If we add -sa
and 3a the sum in -5a:

> | $-8 a$ | flirt number |
| :--- | :--- |
| $3 a$ | acond number |
| $-8 a$ | sum |

Subtract 3 a from - Ba and the remainder, if our rule of arithmetic is true, must be -8a, for that is the other number.
Again, the sum of -8 a and -3 a is -11 a :

$$
\begin{aligned}
& \text { - 8a first number } \\
& -3 a \text { mecond number } \\
& -11 a \text { sum }
\end{aligned}
$$

Subtract $-3 a$ from $-11 a$ and the remainder must be the firat term, -8 a.
Now let us show these last three problems in subtraction side by side. We have understood the explanations given, for we know they are based on arithmetical trutha we have long known:

| Minuend | $5 a$ | $-5 a$ | $-11 a$ |
| :--- | ---: | ---: | ---: |
| Subtrahend | $\frac{-3 a}{8 a}$ | $\frac{3 a}{-8 a}$ | $-3 a$ |
| Remainder | $\frac{8 a}{-8 a}$ |  |  |

Note once more that in these problems in subtraction the algebraic sum of each surtabhend and remainder equals its minuend. These, then, are correct solutions of the above problems; and from our experience with them we desire to learn the shortest method for subtraction and the briefest possible rule to apply.
Look at the three problems above. In each the same remainder would have been found had we imagined the signs in the subtrahends to have Feen changrd and the minuends and subtrahends then added. Apply this rule to each of the ivree examples:
Arango the problem so that like terms in the minuend and subtrahend will be one above the other; change all the signs in the subtrahend from + to - and from - to + and proceed as in addition. The result will be the remainder
sought. sought.
If we have made clear the reason for the above rule a difficult task has been performed.
Multiplication. If we desire to set down graphically the product of abcx and bcexy we find the factor $b$ is taken twice, the factor $c$ ihree times, the factor $x$ twice, and each remaining factor once. Therefore, the result of our multiplication, written in expanded form, is $a b b e c x x y$, or, simplified, $a b^{3} c^{2} x^{2} y$.

As in arithmetic, the little figures at the right

## Itrameatary Atrolese

and alightly above the letter are called exponents, and ach indicates the number of times the lecter or term is to be taken; $0^{3}$ means the square of as or a multiplied by itselt, or a mined to the mecond power. It a mande alone the firat power of $a$, or $a^{\prime}$, is understood. The problem in the paragraph above makes it clear that in multiplication we add the exponents of like terms. Thus, $c^{0} \times a=0^{0} \times a^{4}=a^{4}$.

Applying the suggestions, note the various steps in the solution of the following problem in multiplication:

$$
\begin{aligned}
& 5 a^{2} b+2 c \\
& \frac{2 b c}{10 a^{2} b^{2} c+4 b c^{3}}
\end{aligned}
$$

The signs in this problem are all + , but it is certain that many will contain the - sign. Let us see what it means. We are required to find the product of $-5 x^{9} y$ and $3 x$. Since $-5 x^{2} y$ indicates that $5 x^{2} y$ is to be subtracted, then multiplying $-5 x^{2} y$ is equivalent to subtracting 5xaty $3 x$ times, or to subtracting the product of 6xty and $3 x$ once. The product, therefore, is $-15 x^{2} y$.
Oberve the analysis of the following problem: Multiply $-5 x^{2} y$ by $-3 x$. To multiply these terms together is equivalent to subtracting $-5 x^{2} y 3 x$ times We remember, however, that in subtraction the sign of the subtrahend is always changed, so in subtracting $-5 x^{2} y 3 x$ times, we have the equivalent of adding $5 x^{2} y$ $3 x$ times, or of adding the product of $5 x^{2} y$ and $3 x$ once. Therefore, the product in this instance is written $15 x x^{\prime} y$.
Side by side, then, we have these operations in multiplication:

$$
\begin{array}{llll}
5 x^{2} y & -5 x^{2} y & 5 x^{2} y & -5 x^{2} y \\
\frac{3 x}{15 x^{2} y} & \frac{3 x}{-15 x^{2} y} & \frac{-3 x}{-15 x^{2} y} & \frac{-3 x}{15 x^{2} y}
\end{array}
$$

From the above it is evident that when the signs in the multiplicand and multiplier are alike, the product is a positive quantity, taking the sign + ; when the signs in the multiplicand and multiplier are unlike, the product is a negative quantity, taking the - sign.
When the multiplicand and multiplier each contains more than one term the form of the solution is as follows:

$$
\begin{aligned}
& 2 a+3 b \\
& \frac{2 a-3 b}{4 a^{3}+6 a b} \\
& \frac{-6 a b-9 b^{2}}{4 a^{2}-9 b^{2}}
\end{aligned}
$$

## Enementery Algobra

For practice solve these problemm:

1. Multiply $5 x-3 y$ by $5 x-3 y$.
2. Multiply $a-7 b$ by $a-5 b$.
3. Multiply $x^{2}+5 x-10$ by $2 x^{2}+3 x-4$.
4. Multiply $a^{2}-3 a b-b^{2}$ by $-c^{2}+a b+2 b^{2}$.
5. Multiply $a^{3}-a b+b^{2}$ by $a+b$.

Divinion. In multiplication the exponents of like terms in the multiplicand and multiplier are added in the product; as division is the reverse of multiplication, we mubtract the exponents in the dividend and divisor to determine their power in the quotient. Let us see if this does not seem reasonable:
Divide $c^{2}$ by $a$.

Proof: $\sigma^{2} \times{ }^{-}=c^{2}$.
Another way of showing this division is the following:

Divide $a^{9}$ by a

$$
a^{2}=a a a
$$

Divide aaa by a

$$
\begin{gathered}
\frac{a a a}{a^{1}}=a a \\
a a=a^{3}
\end{gathered}
$$

Divide $3 a^{4} b^{2} c-9 a^{4} b c^{2}-6 a^{2} c$ by $3 a^{2} c$.

$$
\text { Solution: } \frac{3 a^{2} b^{2} c-9 a^{2} b c^{2}-6 a^{2} c^{3}}{3 a^{3} c}=
$$

In long division, for convenience in multiplying, the divisor is usually written at the right of the dividend instead of at the left as in arithmetic. Note the form of the solution:

$$
\begin{aligned}
& \frac{2 a^{2}+5 a b+3 b^{2}}{2 a b+3 b^{2}} \\
& \frac{2 a b+3 b^{2}}{}\left(\frac{2 a+3 b}{a+b}\right.
\end{aligned}
$$

By inspection it is found that $2 a$ will be contained in the first term of the dividend $a$ times. Multiply this partial quotient $a$ by the entire divisor, placing the product under the first terms of the dividend, then subtract; bring down with the remainder the next unused term of the dividend. By inspection it is found that the first term of the divisor is contained in the new dividend $b$ times. Multiply the new partial quotient by the entire divisor, and proceed as before.

Observe that when the signs of the dividend and divisor are alike, the quotient is a positive
quantity, or + ; when the eigns of the dividead and divisor are unlike, the quotient is a negative quantity, always - Apply the above truth to the following problem. Follow the molution very carefully nep by step:
Divide $x^{4}+4 a^{4}$ by $x^{3}+2 a x+2 a^{2}$.
Solution: $x+1 a^{2}$

$$
\begin{gathered}
x^{4}+4 a^{2} \\
\frac{x^{4}+2 a x^{3}+2 a^{2} x^{4}}{-2 a x^{3}-2 a^{2} x^{2}} \frac{\left(x^{3}+2 a x+2 a^{2}\right.}{\left(x^{3}-2 a x+2 a^{2}\right.} \\
-2 a x^{3}-4 a^{2} x^{3}-4 a^{2} x \\
2 a^{2} x^{2}+4 a^{2} x+4 a^{4} \\
2 a^{2} x^{2}+4 a^{2} x+4 a^{4}
\end{gathered}
$$

Note that new partial dividends have been brought down with respect to the ascending powers of a. Solve the following problems:

1. Divide $9 a^{2}-18 a y+9 y^{2}$ by $3 a-3 y$.
2. Divide $y^{3}-12 y+35$ by $y-5$.
3. Divide $3 a^{2}-10 a^{2} b+22 a^{2} b^{2}-22 a b^{3}+15 b^{4}$ by $a^{2}-2 a b+3 b^{3}$.
4. Divide $x^{5}-2 x^{4}-4 x^{4}+19 x^{3}-31 x+15$ by $x^{2}$ $-7 x+5$.
5. Divide $x^{4}+64$ by $x^{3}+4 x+8$.

Simple Equations. It is not necessary to enter upon a long and detailed explanation of the equality of two or more terms connected by the sign $=$. A briel illustration will make the principle clear to every beginner in algebra


The ordinary balance scale will serve our purpose. In one pan we place a 5 -pound weight in the other we place a 3-pound weight and a 2pound weight; we know the first weight balances the other two, and we may indicate the fact by the following statement:

$$
5=3+2
$$

Adding 4 pounds to each pan, our new statement is,

$$
5+4=3+2+4
$$

Removing 2 pounds from each pan, we write the new condition,

$$
5+4-2=3+2+4-2
$$

## Elomantary Algolios

These statements are called equations, and from them we may easily asume each of the following principles to be true:

1. The anme quantity may be added to both sides.
2. The same quantity may be subtracted from hoth sides.
3. Each side may be multiplied or divided by the sume number.
In the equation $7 x+4=32$, there is balanced value, or quantity; it tells us that $7 x$ does not equal 32 , but that to $7 x$ we must add 4 to equal 32 , or that 32 is 4 more than $7 x$. So we must subtract 4 from 32 if we want to know the number which exactly equals $7 x$. Then our revised equation will be,

$$
\text { Simplifying, } \left.\begin{array}{rl}
7 x & 7 x=28 \\
7 & x
\end{array}\right)
$$

We moved 4 to the right of the equation and in doing so changed its sign from + to -, the reason for which is clear from the explanation above. At the same time we placed all known quantities, 32 and 4 , on the same side of the equation, leaving the unknown quantity on the left. These two principles embody the philosophy of the simple equation. Let us apply what we have learned to several problems:

1. A 60 foot pole is divided into two parts so that one part is 5 times as long as the other; find the length of the two parts.
The length of neither part is known, therefore let us represent the shorter length by the letter $x$, to indicate that its numerical value is not known but is to be found. Then,

$$
\begin{aligned}
x & =\text { shorter part, } \\
5 x & =\text { longer part, } \\
6 x & =\text { both parts, } \\
6 x & =60 \text { feet. }
\end{aligned}
$$

Therefore, $x=10$ feet, the shorter part,
and $5 x=50$ feet, the longer part.
2. Find a number such that when 17 is added to its double, the sum will be 49.
The unknown number may be represented by $x$ and we must also find a number just double the unknown number. Then, $x=$ the number, $2 x=$ double the number.
Now if we add 17 to double the number, the sum will be 49. Therefore, it is evident that 49 is 17 more than double the number, or in other words, that to double the number we must add 17 , if we would reach the result 49. We have our statement

$$
2 x+17=49
$$

## Hozentary Alsobra

Then, if 49 is 17 more than $2 x$, we should subtract 17 from 49, which is the ame as subtracting 17 from both sides of the equation, and we have

$$
\begin{aligned}
& \text { Then, } 2 x=49-17 \\
& \text { and } x=16 \text {. } \\
& \text { and }
\end{aligned}
$$

Using the above problems as types, solve the following:

1. If the sum of the ages of a father and son is 60 years, and the father is 5 times as old as the son, what is the age of each?
2. A tree 90 feet high was broken so that the part broken off was 8 times the length of the part left standing. Find the length of each part.
3. Three times a given number is equal to the number increased by 40. Find the number.
4. The yield of an orchard was 70 bushels of fruit. Three times the number of bushels of apples is 6 more than the number of bushels of pears. Find the number of bushels of each.
5. A horse, a cow, and a sheep together cost 1106. The cow cost sixteen times as much as the sheep, and the horse cost $\$ 40$ more than the cow. What was the cost of each?
6. Frank, Fred and Harry together caught 36 fish. Fred caught :wice as many as Harry. Frank caught three times as many as Fred. How many did each catch?
7. Three boys together caught 24 fish. John caught twice as many fish as Harry. Frank caught as many as both John and Harry caught. Find the number caught by each.
8. A man doubled his capital every 5 years for 15 years. He then had $\$ 25,600$. What was his capital at first ?
9. Divide 400 into three parts, such that the second is four times the first, and the third five times the second.
10. A merchant earned three times as much on dry goods as on shoes, and twice as much on shoes as on notions. His entire profits were \$486. Find his profit on each.

## Problems Involving Two Unknown Quantitios

In the equations above we have had to deal with problems in wbich only one quantity was unknown. The next step in advance introduces us to a slightly more complex form of example in which two quantities are unknown, but which will give us no trouble if there has been a clear understanding of the principle underlying solutions where there was but one unknown quantity.
Three Methods. There are three methods cominonly employed in the solution of any
problem involving two or more unknown quantities. These are principles by which one unknown term is first eliminated-that is, by which its numerical value is found-this new value then being placed in the original equation as a substitute for its former unknown valuc. These three processes are called elimination by addition or subtraction, elimination by substitution and elimination by combination.
By Addition or subtraction. The first is probably the easiest form and almost any problem can be solved by this process. Let us explain in detail a problem in which we must find the value of two unknown numbers or quantities; we will perform the operation by elimination by addition or subtraction:

$$
\text { Solve }\left\{\begin{array}{l}
3 x+4 y=34 \\
6 x+3 y=33
\end{array}\right.
$$

By careful inspection we find that if we multiply the first equation by 2, we will have for its first term Gx, which is exactly equal to the first term in the second equation. The whole product will be $6 x+8 y=68$. We can now subtract from this equation the second equation of the problem and we shall find our difference :": be $5 y=35$. These first few steps in the soluti, n of the problem are given in detail below:


If $y$ equals 7 , it is easy to apply the value of $y$ in eitber of the original equations, or, to use a technical term, substitute in equation (1) or equation (2) the value of $y$.
Knowing that $y$ equals 7 we put the value of $4 y$ instead of that term in the first equation, and we have $3 x+28=34$. The two known quantities are not on the same side of the sign of equality, so we will transpose, which gives us the equation $3 x=34-28$, or $3 x=6$, and $x=2$. Now we may finish the statement of the solution of the problem, as follows:
(7) Applying value of $y$ in (1). $3 x+28=34$
$\begin{aligned} \text { (8) Transposing............3x } & =34-28 \\ \text { (9) Then.............. } 3 x & =64 \\ & =6\end{aligned}$
$\begin{aligned} \text { (9) Then................ } 3 x & =6 \\ \text { (10) Therefore. .......... } & =6\end{aligned}$
(10) Therefore. $\ldots \ldots \ldots \ldots,{ }^{x}=2$
(11) Proof............... $6+28=34$

It would be well for the beginner in algebra to write out as fully as appears in the eleven steps above the solution of every problem he attempts, until the orderly plan is well understood. Solve the following problems, eliminating in each one unknown quantity either by

## Itomeatary Algobra

addition or subtraction. It may be neceseary sometimes to multiply both given equations by such numbers as will make elimination of one unknown term pomable. For instance, in the first problem given below if we wish to eliminate $y$ at first we can multiply the first equation through by 3 and the second through by 5. This will give us $15 y$ in cach equation, and we may then eliminate $y$ by addition.

1. Solve $\left\{\begin{array}{l}a x-5 y=10 \\ 5 x+3 y=37\end{array}\right.$
2. Solve $\left\{\begin{array}{l}2 x+5 y=23 \\ 4 x+3 y=25 \\ \text { 3. Solve }\left\{\begin{array}{l}4 x-3 y=0 \\ 5 x+2 y=60\end{array}\right.\end{array}\right.$

Elimination by Subatitution. This is the process of clearing an equation of one of its unknown terms by substituting in either equation the value of one of its unknown terms, in the following manner:
Solve $\left\{\begin{array}{l}2 x+5 y=31 \\ 3 x+4 y=29\end{array}\right.$
The first step is to find the velue of either $x$ or $y$. We will write the first equation in another form which the student will understand:

$$
y=\frac{31-2 x}{5}
$$

Now we can write the second equation of the problem by placing our new value of $y$ in it, and we have,

$$
3 x+4\left(\frac{31-9 x}{5}\right)=29
$$

Applying your knowledge of arithmetic to the above fraction we will perform the operation which is called clearing of fractions, and we shall then have,

$$
3 x+\left(\frac{124-8 x}{5}\right)=20
$$

which, reduced still further, equals $15 x+124-$ $8 x=145$. Transposing the known quantities to the right of the sign of equality, we have $i 5 x-$ $8 x=145-124$. Now let us place this entire problem in formal order as directed in the cxplanation of the problem involving elimination by addition or subtraction:


$$
y=\frac{31-2 x}{5}
$$

## Homentary Algobra

| (6) Transposing. . . . 18x | $-8 x=145-121$ |
| :---: | :---: |
| (8) Substituting io |  |
| value of $x$ in (3)* | 31-6 |
| (9).. | $=5^{5}$ |

*It would be as well to subntitute the value of $x$ in either (1) or (2) as in (3).

Solve the following problems, eliminating by substitution:

1. Solve $\left\{\begin{array}{l}5 x-4 y=-2 \\ 4 x-6 y=-10 \\ 7 x-4 y=20\end{array}\right.$
2. Solve $\left\{\begin{array}{l}3 x+2 y=42 \\ 7 x+2 y=24 \\ 6 x-y=7\end{array}\right.$

It frequently happens that there will be three unknown quantities, the values of all of which are to be found. Such a problem presents no more difficulties than any of the above, for the student should apply the rules for elimination to two of the giver equations and find the values of two of the unhinown quantities, then substitute these values in connection with the third unknown quantity. Such a problem, with full solution, is given below:
Solve $\left\{\begin{array}{l}x+y+z=6 \\ 2 x+3 y+4 z=20 \\ 3 x-4 y+6 z=13\end{array}\right.$
(1) $\cdots \ldots \ldots \ldots \ldots \ldots \ldots x^{x+} y+z=6$
(2) $\cdots \cdots \cdots \cdots \cdots \cdots \cdots, 2 x+3 y+4 z=20$
(3) $\because \cdot \cdots \cdot \ldots . . . . . . .3 x-4 y+6 z=13$
(4) Bring down (2) $\ldots \ldots .2 x+3 y+4 z=20$
(5) Multiply (1) by $2 \ldots \ldots 2 x+2 y+2 z=12$
(6) Subtract............ $\quad y+2 z=8$
(7) Bring down (3).......3x-4y+6z=13
(8) Multiply (1) by $3 . \ldots . .3 x+3 y+3 z=18$
(9) Subtract............ $7 y+3 z=-8$
(10) Multiply (6) by $7 \ldots . . \quad 7 y+14 z=56$
(11) Add (9) and (10)..... $17 z=51$
(12) Therefore........... $\quad z=3$
(13) Suhstituting in (6) $\cdots, \quad y+6=8$
(14) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \quad y=2$

(16). $\ldots \ldots \ldots \ldots \ldots \ldots+1+x=1$
(17) Proof................... $\quad 1+2+3=6$

Solve the following problems and prove the correctness of your work in each instance:

1. Solve $\left\{\begin{array}{l}x-y+2 z=7 \\ 3 x+2 y-z=8\end{array}\right.$
2. Solve $\left\{\begin{array}{l}5 x-6 y+4 z=15 \\ 7 x+4 y-3 z=19 \\ 2 x+6 y+6 z=46\end{array}\right.$
3. A farmer sold 10 barrels of apples and 3 barrels of potatoes for \$29; and at the same rate 4 barrels of apples and 5 barrels of potatoes for 323 . Find the price of each a barrel.

## Elomentary Algobra

If the adodent atater deariy a problem meah - the above, ho will have no dimioulty with any part of it. The statement of this is an follow: - = vatuo co 1 barrol of apples,
y- value of 11 barrel of potatoen,
$10 x+3 y-29$
$4 x+8 y=23$
Solve socording to inatructione governing the solution of problems involving two unknown quantitiea.
4. Two numbers are such that 3 times the first plus 5 times the second equsls 44; but 3 times the second plus 6 times the first equals 60 . What are the numbers!
5. A book-seller sells 3 bound copies of a work and 7 stitched copies. He receives for them all 532.40. Another day he sells 2 bound copies and 5 stitched copies for $\$ 22.60$. How much does a stitched copy cost, and how much a bound copy?

## Enemembery Arolera

Advacee Fort, We have covered the fundamental principles of algebres in the foregoing pages. The subject of fructions involves no new theory; it requires uimply arithmetical knowledge of fractions added to the algebraic principles which have here been described. If one learns thoroughly what has been given in these pages he can proceed intelligently to the study of factoring, highest common divisor, the lenst common multiple, and on through quadratic equations.
The subject of algebra is lascinating as a study, but it is an exacting science. The alightest mistake, even in the change of one sign, destroys the work of an entire problem. There is really no better subject that the boy or girl can study to develop care and painstaking accurney.
the funregoing dres no metical Igebraic red. If fiven in to the sor, the quad-
g as a The e sign, There or gird ttaking


The Earicest Ecionce. Almost as far back as the beginning of civilization we find the beginnings of astronomy-the earlieat science. And the fact that it was the earliest seems natural enough when we consider the question seriously. People might drink water for centuries without wondering in the least about its chemical properties; they might. know, that a heavy object dropped from the hand would invariably fall down, without once wondering why it did not fall up; they might quarry rock from the earth without ever a question as to how it got to its present position. All of those things were so close at hand as to seem almost commonplace; people knew how to make use of such material objects and of the obvinus facts about them, and that was enough to sacisfy any unscientific age.
Ancient Boliof. But the sun, the moon, the stars-they presented difierent questions. The question was not what to do with them; the problem was, what are they? Too conspicuous to be overlooked, too far away to he examined, it was natural that about them should grow up theories and religions, and finally a science. But at first the science was not just what we call astronomy; it was that, and something else. The wise men who far back in Chaldea stayed on their roofs through the night to study the heavens were not interested simply in the positions, the movements, the relative brightness of the heavenly bodies; those things chained their attention, but chiefly as an aid to something else. Could it be that the stars, the constellations, the comets, had nothing to do with human life? Those old investigators could not believc that such a thing could be. To them, the earth waes, of course, the central fact in the universe, even before the theory was advanced that it was the central body; and what reason was-thrre for the
existence of thowe innumerable points of light, shifting, ctanging, if they did not in some way influence the earth and its inhabitants? And so there grew up what we call now autrology, a regular science of predicting events, and eppecially the fortunes of men, from the positions of the beavenly bodies. The Egyptians, the Chaldeans, the Hindus, the Chinese, placed great faith in the so-called science; the Jews, after the captivity, practiced it; the Greeks and Romans made much use of it. Even the early Christians believed in it thoroughly, and it was not until the time of Copernicus, in the sixteenth century, that the science of astronomy really began to emerge and to stand as a science worth while in itself, not merely as an aid to astrology. Copennicus, by his discovery of the fact that the sun was the center of the universe and that our earth is but one of the bodies that revolves about it, overthrew the theory that the heavenly bodies were but fortune-tellers for men.
The Most Wonderful scionee. Is it is the oldest, so astronomy is one of the most wonderful, of the sciences-the most wonderful, perhaps. For with other sciences the materials are at hand; wonderful as was the discovery that water is composed of two gases; wonderful as have been the discoveries about the geologic ages which have preceded us, yet the water was there to be analyzed, the rocks and fossils could be touched, measured, examined. But the nearest of the heavenly bodies is so far away that our minds can have no conception of the distance, and yet astronomers have determined accurately not ouly those distances, but the size of the various planets, their weight, and even their composition. The methods by which these wonderful discoveries have been made are too technical to be studied here, but a single example

Of what has beac eccomplished may serve to convince us as to the almoet miraculous charucter $\alpha$ thewe discoverie.

The Attriction of the Pianots. From the time of the great divcovery of Sir Imac Newton in 1088, the discovery of the law of gravitation, astronomers found the things which they could figure out were almos infinitely increased. The sun held the earth in its elliptical path by a certain pull, just as it held every other planet; but that was not all. The earth pulled the sun and every other planet, and every other planet pulled the carth. Of course, since the other planets are so much smaller than the sun their pulls are very much less, but atill they are enough to demand consideration. The path of any planet about the sun is not just what it would be if it were the only planet; all the other planets are drawing it a little from its course, this way or that way. And it was this fact which led to the remarkable discovery of the planet Neptune.
The Discovery of Neptunc. Newton and his successors had figured out, by means of the law of gravitation, the paths of all of the planets. But one planet, Uranus, did not keep to its path. Astronomers figured and figured, but could discover nothing wrong. Should they let the slight irregularities in the behavior of this planet overthrow their faith in the laws which they had discovered and set down? Finally someone suggested that there might be, far out beyond Uranus, too far away to influence much the movements of the other planets, a new planet, undiscovered, which was disturbing Uranus. It seemed an almost impossible problem to solve, but finally two men, an Englishman and a Frenchman, after years of work, announced that their figuring-not their telescopes-had assured them that there was such a new world. Their results, reached independently, agreed remarkably, and the two instructed the eager astronomers as to where, at a certain time, they were to direct their telescopes. And there, just where they hoped, yet scarcely dared really expeet, to find it, the astronomers found the new planetthe planet Neptune. It had been seen before, often enough; but it is so far away that it looked like a faint, bluish-green star, and seemed to have no motion like a planet.

The $\triangle$ ppearance of the Planets. Of course to us the most interesting phase of astronomy is simply the appearance of the heavens, not through a telescope but to the naked eye. The planets in their seasons, the bright stars, the
groupe of ctars called constellations, caanot fail to draw and hold our attention whenever we are out on a clear night. Perbaps the moet interesting, though by no means the mout conspicuous, objects in the heavens at night are the planets. Of these there are eight, counting the carth. Mercury, the planet that is nearest the sun, is almost never seen without a telescope. It is said that the great astronomer Copernicus grieved because he would die without having seen it. Soinetimes about three-querters of an hour after sunset it may be seen for about fifteen minutes.
The old Greeks talked much about Hesperus, and our own poets love to write of the evening star. This brilliant star which, in certain seasons, appears in the southwest shorly after sunset, is the planet Venus. Gradually, night by night, it rises higher. At length it appears to remain stationary for a few evenings, then it returns and finally disappears. Soon after its disappearance there is seen in the southeast, a little befure sunrise, a bright star. The Greeks called this Lucifer, the morning star, but we know that it is the same planet Venus which a little earlier appeared in the evenings.
We have doubtless all noticed a certain star which shines with a steady brightness, and which is the reddest star in the sky. This is the planet Mars. The brightest of the planets next to Venus is Jupiter, which appears sometimes at such an hour that it is called the evening star. Saturn is a bright star with a slightly reddish tint, Uranus is rarely seen without a telescope, and Neptune only with a telescope.
Far more conspicuous than the planets and far more easy to study are the "fixed stars," as they are called. This term does not mean that such stars are always in the same place; that you will always find the star Sirius, for example, in the same place at the same hour. But it means that such stars keep the same positions relative to other stars-that they do not move about as do the wandering planets.
The Winter Eoavens. Let us suppose that we are looking at the heavens on a clear evening in January, at about eight o'clock. We will turn first to the north where is the constellation which all people in North America know best-the Great Dipper. The seven stars which form this well-known group, together with many other fainter stars about them, have for centuries and centuries been called, the world over, the Grent Bear. Just why, we do not know. We can find no resemblance to a bear, but we do find a very clear resemblance to a dipper in the seven stars,

see-the latter one because the ability to see it was considered.proof of keen sight.
The two stars that form the upper edge of the dipper, that farthest from the handle, are called pointers, because a line drawn through them and continued passes almost through Polaris, the North Star. This star, with six others, some fairly bright, some quite faint, makes the Little
bright stars which are so placed as to form an irregular letter M. These five, with one fainter star, form what is known as Cassiopeia's Chair, a very noticeable constellation, once you have found it.

These are the most notable groups of stars in the northern sky. Now let us turn to the south. The most beautiful constellation in our sky is

a small star, which is in the sword. The bright reddish star above marks one shoulder of the hero, the other shoulder being formed by a somewhat fainter star; while below the girdle Rigel, one of the brightest stars we see, shows the right foot, and a smaller star, east of Rigel, marks the left knee, on which Orion rests while he fights the bull. The bull is the constellation Taurus,
may be counted in this little group on a clear night, and they are arranged somewhat in the form of a dipper. The Pleiades is one of the most celebrated of the constellations. Some ancient nations began their year with its rising, and the Book of Job speales of it (xaviii: 31): "Canst thou bind the sweet influences of the Pleiades, or loose the bands of Orion?"

In Jasuary, at the them when we are suppoend to bo looltres at the sly, the dipper If Atanding almots arringht upitigh oa fte harde. At the bead of the handlo is the ctar called Mthar: near ft is a amall atar which the Ambe called nometimes the Ioot One, cometimes the Prool. Thew namer wie tive it bocius it.is so hand to

Dipper, not seacty to preflet as the blez ons, but guite recogrinblis.

Now ingine a Moe denwa through Mimer, the car which is have juse learsed is at the bend of the handbe of the Groat Dipper, and the North Star. About as far on one dide of the North gex es Minar in oa the other ase ive mechor
now buose wer Thit is Orioa, the Warsios, of whase deacs before he was ent in the aky as a consteliction the ancinate told many wonderful talen. The cenceat ctara in the figure to find are the three bright bluich onee, exi in an oblique line, which form the belk. Below the belt, at a right angle with the lowext of the three ctare, is
an ifrigular group of mars north aed wit of Orion.
The brighteet etar in this croup is the roddich uar called Adebaran, seen almont directly in the south at the time wo are maling our obervitions; and to the north and wex ol Aldebaran in the benatiful dunter of the Plicinden. Six tare

Now lut us some back to Orion. II we follow the line of the throe belt mam downward, wo come to the mont magenificent atar in the hesvene Sirien, the Dog slar. This benutiful mar in entmatod to bo about thatreen times ac largo
North of the red ratar Aldebaran, and almonst dinectly overhead, is a very bright marr, Capella. Ol course there are other bright ctars and other intereating constellations, but these are the eacieat to locate and the ones most often referred to.
The frummer Eoavoms. If, now, we imagine that the time has changed, and we are looking at a July aky, we ahall find that that has changed, too. The Great Dipper is atill visible in the north, near the horizon, but now it seems to reat on the front edge of the bowl. The Little Dipper and Camiopela are in the same relative positions, but in dififerent places in the sky. If wo, in our imagination, trace a line through the last two ntarn of the handle of the Great Dipper, we ahall ind a bright, golden otar, callerl Areturus. In the cust appearn a bluish star, brighter than Areturum, called Vega. West and south of Vega is the beautiful Northern Crown, a semicircle of six stars, with its bright central star called the Gem.

But the brightest constellation of the July sky is the Scorpion, direetly in the south. Its brightest ntar, Antares, with three fainter otars, forms a figure like a boy's kite, while a line of stars below Antares forms the tail. This is a very casily recognizable constellation, and when you have once found it you will look for it in the summer sky, as you do for Orion in the winter.

Mothod of 8tudy. The subject of astronomy is given considerable space in The New Practical Refrrence Library. Not only is there a long article, general and historical, under the head Astronomy, and full articles on all the planets and the important stars and constellations, but there are numerous articles on such general subjects as Aatro-Photography, Axis, Dectination, Degree, etc. All of these are found listed under the heading Astronomy in the Classified Index. Also in the Classified Index, under the title Biography, subhead Astronomers, appear all the astronomers whose lives are given in Tar New Pructical Reference Libriry. A thorough study into the subject of astronomy is therefore possible with the aid of these volumes, and it is felt that there are few subjects forstudy which will, in interest alone, better repay the
mudent. An ourline for the aymematie atudy of the oubject, auch as a teacher might tako up with his ctiudente, is hers given:

## Ontiline

## 1. Definition

## II. General divinions

(1) Descriplive atronomy
(a) Description of the
(1) Motions
(2) Figures
(3) Periods of revolution
(4) Other phenomena of the hearenly bodiea
(2) Prectical actronomy
(a) Teaches how to observe the
(1) Motions
(2) Figures
(3) Periods of revolution
(4) Distance of the heavenly
(b) Tenches how to use neceasary in. struments
(3) Physical astronomy
(a) Explains cause of motions
(b) Demonstrates laws by which causes operate
III. History
(1) Among the Egyptians
(2) Among the Chaldeans
(3) Among the Ctinese
(4) Among the Greeks
(5) Among modern peoples
IV. The solar system
(1) The sun
(a) Size
(b) Distance
(c) Physical nature
(1) Sun spots
(2) Rotation
(3) Faculae
(d) Eclipses
(e) Physical and chemical effects
(1) Light
(2) Heat
(3) Gravitation
(2) The earth
(a) Form and rotation
(b) Time ; longitude
(c) Atmosphere
(d) Gravitation
(e) Satellite-the moon
(1) Size
(2) Character of surface
(8) Dietance
(4) Orbit
(5) Relation to tidee
(d) Other planets-shape, slae, rotation, conatitution, appearance
(a) Mercury
(b) Venus
(c) Mars
(d) Jupiter.
(e) Saturn
(I) Uranus
(g) Neptune
(h) Minor planets
(4) Nebular Hypothesis
V. The itellar system
(l) Stars
(a) Characteristics
(b) Number
(c) Size
(d) Distance
(2) Consteliations
(3) Comets
VI. Laws of motions of heavenly bodies
VII. Methods of determination of
(1) Distances of planets
(a) From the sun
(b) From the earth
(2) Size of heavenly bodies
(3) Mass of heavenly bodies
VIII. Astronomical instruments
(1) Telescope
(2) Mensuring instruments
(3) Transit instrument
(4) Mural circle
(5) Altitude and azimuth instrument
(6) Equatorial
IX. Great astronomers

Interesting Fects. Some of the spots on the sun are 100,000 miles in diameter. Could the earth be placed in the center of one of these spots and viewed from a point on the circumference, it would appear to the observer about four times as large as the moon does to us.
The spectroscope shows that the sun and stars are composed of the same substances as are found in the earth. What does this tend to prove?
Experiments show that the heat of the sun is sufficient to warm a shell of water having a diameter equal to the radius of the earth's orbit and a depth of four-tenths of an inch, $7^{\circ}$ Fahrenheit in one minute.

Astronomy
The satellites of Juplter are about the sive of our moon, being from 2,000 to 8,000 miles in diameter.
The time required for a phanet to make a revolution round the sun conatitutes the year of that planet. Measured by the cime of the earth's revolution round the sun, the planet's yeare are respeetlvely as follown: Mercury, 88 dayn; Venus, 71 months; Marr, 1 year, 10 months and 22 dayn; Jupiter, 11 years, 101 months; Saturn, about 30 years; Uranus, 84 years, and Neptune, 105 years.

Because of their periodic return and peculiar appearance, comets are among the most intereating oi the heavenly bodies. The ignorant and superstitious associate their appearance with dire calamities, such as war, pestilence and tho end of the world. Newspapers publish now and then statements which are given out as coming from come eminent astronomer, and containing predictions of the exact time and place at which a comet which is attracting attention will strike the earth and shatter it to fragments. Such statements should never be taken seriously. Astronomers never make them, and they do not rest upion any foundation of fuct.

## Questions

With what prople did astronomy first take a somewhat scientific form?

Which of the Greeks taught the motion of the carth around its axis and around the sun?

When do meteors most frequently occur?
From what century does the present astronomical system date?

What is Aquarius, and when is the sun said to enter it?

What has been the most remarkable recent discovery in regard to comets?
In what manner is the term "earth shine" described?
What is the cause of an eclipse of the moon? Of the sun?
What is the average number of eclipses in a year?

Describe the term "coal sack," observed in the Galaxy, or what is commonly known as the Milky Way.
What is the course and the cause of the Milky Way?
What is the harvest moon?
What is the average diameter of the planet Jupiter?
What was the very valuable discovery regarding light made from observing Jupiter's satelites?

## Adrimeng

What is the theory cuacwaing the dimertbution Whine and land on the phami Mari?
Whe is the mare form $\alpha$ metal which is found in minoorio atomis

What aro the gray phains of the moon?
To whom 5 the nebular hypocthexio due? How
hit now reolved by amronomern!
Whan and by whom wan Neptume discovered?
Is 4 villble to the naked eyel
How doee the magnitude of the star sirives compare wibl that of the am ?
What is the precemion of the equinoses?
What to computed to be the amount of lighe
oun out from the min?
Whot it the hrgext telescope in the worid?
How abort a day has Uranue and how long a Pr
What two mames did the ancients give Venus because of its alternate appearance in the morntrig and the eventag?
What is the sodinc? How wa it divided by
the ancients and what ane the divisions called?
What is sodincal light?
How many yeurs does
trom the nearect mar to un? take light to come
Why are some mars called variable, other
temporary and others the fixed atera ?
Which planet approchches neareat the earth?

To what two men is the eymemetising of astronomy due?
What dioovery of Nimtom prenctionlly complened the proof of the Copmaician thoory?
Why was Copmalem encommanulonted by the pope?
Why is $h$ more matiofactory to mudy the movements of the heavenly bodies by amro-photog. mphy than througt the teleroope?
What are the three main brasehes of antronoray? Which one of these divilomestives a deccription of the motion and fagures of the heavenly bodies? Which divition teaches us to obrerve the revolutions of the heavenly bodien? Name the division of atronomy which explains the causes of the motione and demonacrates the laws by which these causee operate.
What in the difierence betweta an obvervatory and a laboratory? Where is the famoun Yerkes observatory?

Who invented the teleccope?
What led Galileo to observe the lawe governing the arcillation of the pendulum? To what important discovery did this lead?
Why do we regard the sun as the moot important of the fixed ataris?
What is the diameter of the sun?


Work and Fiay. Oberring people know that one can work hard it he can play hard. There may be temporary profit but not peimanent gain from much work and no play; there in sure to be failure-financial, and often moral-from a life of much play and too little work. Shakespeare told us that "No profit grows where is no pleasure taken;" the human mechine cannot long stand a strain from which there is not temporary relief. Another truthfully mid that "All work and no play makes Jack a dull boy;" no variety enters into his life and he fails to acquire the stimulus and exhilaration which always come with change.
Granted, then, that games and play are as necesany as work, what shall we play, and when? We are told, with characteristic force and pleasing brevity, when not to play, by Theodore Roowevelt, who says, "When you play, play hard, but when you work do not play at all." Americans play more than other peoples; we are the most proaperous nation on earth, also, and many peonle believe that there is relation between these facts. Healthful recreation is more and more taking the place of sports and games which not only are no benefit to health, but which are positively injurious. Anything which compels one to be out of doors, which makes him breathe deeply and use all his muscles in well-balanced and not over violent exercise, is to be encouraged.
Glasified Ilat of Games. Tur Nzw Prictical Reference Library presents almoot 100 articles relating to athletic sports, games and playa, and to terms belonging to them. The portion of these which relate directly to outdoor recreation are classified below, so the person who seeks information on them may turn at once to the variome titles in regular alphabetical arrangement:

| outboon | AND apomis |
| :---: | :---: |
| Angling | In Crome |
| Arebery | Lawn Tennin |
| Baseball | Marblee |
| Canoeling | Polo |
| Conating | Quoite |
| Crieket | Rounden |
| Cronuet | Rowing |
| Curling | Shooting |
| Falconry | Skating |
| Fives | Swimming |
| Football | Tobogganning |
| Gol | Trapping |
| Hand Ball | Truwling |
| Hockey | Water Polo |
| Hunting | Wrestling |
| Iee Yachting | Yachting |

Briel statements respecting some of our deservedly popular games may well be given here. No man or woman need be ashamed to admit a liking for healthful sports or hesitate to participate in them. There are more outdoor contests for men than for women, but in at least two, lawn tennis and golf, women are worthy sivals of men in efficiency displayed and in their understanding of the fine points of the games. Baseball is enjoyed by women as keenly as by most men, even though they cannot play the game.

## Coll

Among the Oldost and Beat. Golf is one of the best of outdoor games because it furnishes exercise without overworking any part of the body. It can be played by old people as well as by poung, by convalescents an well as by athletes-in short, it is a game for everybody. It has been known for many years as the "Rogal and Ancient Game of Golf." As early as 1457 the Scottish Parliament prohibited golf playing

## Athloties

on Sunday. Even in thoce early days the game must have had a strong hold on everybody who played it. Many of the most famous characters in English history were enthusiastic golfers. Charles I was playing golf when the news of the Irish Rebellion of 1642 was hrought to him. We are told that he was so upset by the news that he could not finish the game. Tradition says that many of Scotland's rulers, including the unfortunate Mary, Queen of Scots, were golfers. In our time King Edward VII was for many years the patron of St. Andrew's, the most famous cluh of golfers in the world. Today the game is not restricted to any group or class. For those who can afford it there are clubs which own their houses and grounds. For

## Athletios

which leaves his ball about ten yards from the hole. Meanwhile, his opponent has played. The opponent's "drive," that is; the shot from the tee, was a few yards short of the bunker. On his second shot the ball akims over the bunker and rolls to the green, a smooth, grassy plot in the middle of which is a small cup or hole. Both players now take two shots to get the balls into the hole, hut the second player wins the hole, because he has taken only four shots to the first man's five.
The players pick up their balls and walk to C, the second teeing-ground. The winner of the previous hole always plays first. Though the distance, compared to the first, is short, this second hole is very difficult, because there is this second hole is very difficult, because there is
DIAGRAM NINE-HOLE
GOLF COURSE


## Athletics

scores are added. The winner is the man who has won the most holes or used the least strokes; either way of counting may be used, but this should be decided before the game begins. Most golf courses today are eighteen holes. You can see that a great deal of land is required for this purpose, from the fact that the holes may be anywhere fiom 150 to $\mathbf{0} 00$ yards apart. Many courses have only nine holes, such as shown in the diagram. No matter'how long the course, it is always laid out so that the first half runs in one general di $\cdot a$ inn, that is, "out," and the second half "u the cifiosite direction, that is, "in." In this way the players phiny their game and return alre ist to the point frec: which they started.
I ire is also a kis 1 of competition called boge, , Nay, in which exch man plays against an imaginary oppontent called bogey or Colonel Bogey. "Bogey" is an arbitrary number of strokes allowed for each hole. The best players often use fewer strokes than "bogey," but the average player of ability is more likely to take more strokes. A player using fewer strokes than "bogey" is said to be up on hogey; if he uses more strokes he is docrn.
$U p$ and dovn are also used to refer to match play, a player being "up" the number of holes he is ahead of his opponent. For example, if $A$ has won nine holes and $B$ has won six holes, $A$ is "three up" on B. If $A$ and $B$ are playing an eighteen hole match, three holes remain to be played. Now if $A$ wins the next hole he wins the match, being four holes ahead of B with only two holes left to play. So A wins by "four up and two to play." As soon as one player is ahead by more holes than there are holes remaining to be played he wins the match. If the players are tied at the end of a round they play an extra hole. Then $\mathbf{A}$ is said to win "one up, nineteen holes."
In Volume II golf is fully described, the various points of the game being clearly outlined.

## Lacrosse

The National Game. Lacrosse undoubtedly originated among the North American Indians. The name "lacrosse" was applied to the sport by the early French explorers, who noted the resemblance of the hooked stick to a bishop's cross. The crosse is a light stick, five or six feet long, crooked at the end to allow a net of rat-gut or decr skin to be stretched across. The ball used by the Indians was made of hide, stuffed with hair, bark or the knot of a tree, hut all balls are now made of India rubber,
$21 / 2$ inches in diameter. Many interesting aneedotes of this game are related by the early settlers and explorers. As many as 1,000 Indians sometimes played on a side. The players were put through a long course of training and the ganie was preceded by elaborate ceremonial dances. History records that on one occasion a band of Indians led by Pontiac invited the garrison of Fort Michilimackinac (now Mackinac) to witness a game of "baggataway," as

tife game of lacrosse
they called it, and proceeded to massacre all the whites. In time the game was adopted by the white settlers, but it is only since 1867 that it may be called the national game. In that year a set of practical rules were adopted, clubs were organized and a great impetus given to the game in every part of Canada.
How It Is Played. The object of the game is to drive the ball as many times as possible through the opponent's goal, at the sam time defending one's own goal from a similar attack. There are twelve men on each side. Each player, except the goal-keeper (generally known simply as "goal"), is opposed by another player

## Athletien

whose duty it is to outmaneuver his opponent. The two centers begin the game by "facing off;" that is, after the ball is placed in the center of the field, the two players place the backs of their crosses on either side of the ball and at the word "play" each tries to draw the ball toward him. The ball is scooped up from the ground and carried horizontally on the crosse, while the player runs towards his opponent's goal. The other team tries to stop his progress by securing possession of the ball. If the senter now sees a. good opportunity he tosses the ball to one of his tenm-mates, who then runs with it or tosses it on. When one side has scored a goal the centers again face of and the game goes on. In the necessity for quickness of eye and limb, not to mention brain, in the general effect on the players and in the fascination for both players and spectators, are found the reasons for the guat popularity of lacrosse.

## Eockey

Iee Eockey. The article Hockey in Volume III describes the game now generally known as Gield hockey. In Canada and the United States hockey invariably means ice hockey. In England field hockey is still common, but in the Dominion ice hockey is played almost to the total exclusion of the other. So when we speak of hockey we mean ice hockey. In its simplest

## Athlotics

where it has become fully as popular as in the Dominion. The "Canadian Amateur Athletic League" has jurisdiction over the numerous Canadian hockey clubs and the American Amateur Hockey Leaque has a similar position in the United States. The emblem of supremacy among the Canadian leagues is the Stanley Cup, presented by Lond Stanley, once governorgeneral of Canada.
Method of Play. The game should be pleyed on a rink at least 112 feet long by 56 feet wide. The goals should be 6 feet wide and


4 feet high and should be provided with nets like the lacrosse goal. The puck is a flat round piece of vulcanized rubber, one inch thick and three inches in diameter. The sticks are made of one piece of hard wood, and may be not more


## HOCKEY STICK

form hockey has been played for centuries in many of the countries of northern Europe, eapecially Holland. Many paintings of the sixteenth and seventeenth centuries still exist, showing players using a stick shaped like a golf club-
In North America the development of the game is due chiefly to the Victoria Hockey Club and MoGill University and to other clubs co-operating with them. About 1881 the first attempts were made to draw up a recognized set of rules. Three years later the first general tournament was held, and in 1887, the "Amateur Hockey Association of Canada" was formed. Soon afterwards the efforts of several Canadian teams resulted in the spread of the ganame to the northern sections of the United States,
than three inches wide in any part. Each team consists of seven men. At the beginning of the match the puck is faced or faced off Both sides try to secure the puck and to pass it to a point from which a goal may be shot. The two centers then face off again and play continues as before. A game generally consists of two periods of twenty or thirty minutes each; in case of a tie an additional period is played.
Ice hockey requires good skaters, as speed and sureness are the essentials of a good hockey player. Because of the speed with which skaters can cover a rink, hockey is one of the fastest of all garnes. At one moment the puck may be at one end, and then thirty seconds later a goal may be scored at the other end. Aside

## Athleties

## Athlotics

from the work of the offense, the goal-keeper has probably the most responsible position. A good goal will save his side from many a defeat even though his mates may be weaker in other parts of the game. Hockey offers considerable opportunity for individual effort, but the best results are obtained when the individual is subordinated to the team and consistent teamwork is developed.

## Basketball

A Popular Pastime. Basketball enjoys the unique distinction of having been invented by one man at a single sitting. In 1891 a lecturer on psychology in the training-school of the Young Men's Christian Association at Plainfield, Massachusetts, was speaking of the metial processes of invention. As a test he proposed to his class that each member invent a game, with all its conditions and limitations. The same night, James Naismith worked out basketball as an ideal game to meet the hypothetical case, and the next day in the lecture room it was tried with the aid of the members of the gymnastic class. These facts explain why it was that basketball was at first played only by teams formed by members of the various Young Men's Christian Associations in different cities. But the game became so popular in these circles that it spread to schools and colleges, to other athetic clubs, and to the general public everywhere.
Basketball is deservedly a popular game for boys and girls of all ages and all classes; it calls for healthful exercise of all parts of the boiv. Every boy or girl who has played the nows that using feet only will not make 1. yer; no matter how strong the hands may be, they alone will not enable the p ' er to cover the ground. Alertness of eye, quickness of movement, accuracy and endurance are necessary. Perhaps even more valuable than this all-round development of the body is the simultaneous development of the mind. Every second of play presents a new situation to the mind. The player must decide at once; he unust seize his opening the moment it appears. No boy can play basketball and rem-in slovenly and careless in his habits and $n \quad \cdots$ The very nature of the game requires him to be wideawake and energetic. The boy who never cares, who never has onergy enough to : what is expected of him, who is always tin : will soon find that there is no place for hinu in a baskethall game. It does not require
a boy of great physical strength to jlay basketball. Any healthy boy who can run on his legs and move his arms will find that basketball is doing him good. The game does not need boys already fully developed; its purpose is to help in their development.
There remains a still greater benefit to every player. Aside from quickness of movement and $r$. judgment, basketball requires coolness and elf-control. The training thus acquired will stand in good stend in later years. A player may be knocked over accidentally: has he the right to lose his temper, thus lessen his own value to the team and disturb his temm-mates? Certainly not. Everybody knows that-m a player who has lost his temper quickly loses his heed; then he is better on the side-lines than in the game. The boy who fights hard, plays a clean, square game, and keeps his temper, is the boy who will come out on top in basketball as in every other game or activity in life. Basketball helps to dev?! op the manly characteristics of a boy's nature. The writer has scen many a player help his opponent up and ask him if he was hurt or apologize to him for the cocidental push. There was no desire to stoop to a weaker man or bow down to a stronger one, but it was simply an exhibition of the spirit of fair fighting, the spirit which must prevail in all sports.
$\triangle$ Game for Girls. Basketball soon after its invention was adopted as a game for girls. Whatever may be said of it as a game for boys may be equally well said of it as a pastime for girls. It will help to develop the giris physicaily and mentally during the years when they most need healthful exercise. The girl who mopes around the house all day long, the girl who is always dissatisfied, the girl who has no interest but her own pleasure, is just as disagreeable as the boy who is always tired and doesn't care. The growing girl needs exercise just as much as the growing boy. With some slight modifications of the rules, such as shortening the time and making all roughness impossible, basketball has become as popular for girls as for boys "The proof of the pudding is in the eating;" the value of baskethall is proved by playing the game.

An excellent description of the game of baskethall is given in regular alphaber 1 order in Volume I.

## Besoball

Its Dovolopmont. Baseball is a game rapidly increasing in popularity in Canada. For many years it has been the one outdoor

## Athlotices

league ball team could do-well, there is very little in its line it could not accomplish.
Rules and laws governing the great leagues are copied in all the lower ranks; the boys on the vacant lot play the same game as the masters of the art in the great cities, and they play it intensely, as though it were the most serious matter connected with existence. No more exacting critics of famous players exist than these same boys when they witness a professional battle, and the youngsters know the various plays and players better than most adults.

## Every Man on Rocord. In no other sport,

 and in no business organization, is so cereful a record kept of efficiency of the individual as in baseball. The record of every player is known from the Atlantic to the Pacific, and the man rises in the profession or falls as the published figures proclaim his strength or weakness. A record of the players in a single game indicates how figures for a week, a month, and an entire season are compiled. The Montreal team of the International League played the Toronto team of the same league on a certain day, and the official score for the Toronto "Leafs" was as follows: developed then ully studied and scientificallyThis may eocm any other American enterprise. ment but a strange and unlikely statefigures it is trie. What business house seconds in provements of employes down to so persistently on certain results, or practices of baseball as - "ntifically understood, a baserunner on first e kpows that he has practically three secunds to get safely to second base, ninety feet away, before the pitcher can deliver the ball to the catcher and the latter has time to throw it to second base to intercept the runner. The loss of a fraction of a second in getting started may be fatal to the runner, or one superfluous motion or slightest error in judgment on the part of catcher or pitcher may give the runner all the time he needs.Every player in the "big leagues" knows in terms of seconds the value of every play and constantly practices to make himself so perfect a part of a great machine that he shall never make an error of judgment. Errors he does make, but not many of them are due to poor judgment. Such splendid results as are cchieved are due to constant, untiring practice, under the cold, critical eyes of masters of the game. A business house with an organization so compact as the "machine" unich we call a major


Fxplanation of "Boz Score." When the columns of figures and abbreviations are explained, the average reader will see more clearly. the system by which efficiency is noted and defects are emphasized. A glance at the table gives the stcry of the game. The names of the playing positions are shown in the diagram in the article Baseball, in Volume One. The symbols heading the columns have the following meanings:
AB-At Bat. Number of times the player took his turn at batting the ball. If the batter is given a base on balls, or is hit by a pitched ball, he is not charged with a turn at bat. R-Runs. The total number of runs made by the player during the game.

## Athlotices

BH-Base Hits. The number of tinues the batter hit the ball to a section of the field where it could not be caught and from which it could not be returned to first base in time to "put out" the batter.
TB-Total Bases. The number of bases gained in the game as the direct result of his own hits.
BB-Bases on Balls. Showing the number of times the batsman was allowed to go to first base because the pitcher could not or would not pitch the balls securately.
SH-Sacrifice Hits. With a runner on first base the man at bat may simply allow a pitched ball to hit his bat and thus he may easily be "put out" at first base, but the play enables his fellow player to run to second base and thus increase the chances that the team will score a run.
SB-Stolen Bases. The number of times a player gains a base by cunning and strategy; without the help of a hit by the batter.
PO-Put Out. The number of times a man is able to retire an opposing player, as, for in.stance, when he catches a batted ball before it touches the ground or stops a fast rolling ball and through his own efforts "puts out" a runner.
A-Assizts. The number of times a player by timely throwing of the ball assists a fellow player to "put out" an opposing base runner. E-Errors. The number of errors of judgment committed whieh gives the opposing team an advantage; also the number of failures properly to handle the ball when it comes in a player's direction.
There are nine innings in a $g$. $e$, and one inning continues until three men are put out on eaeh side. There are then twenty-seven "putouts" in a gamefor each team. The table above shows who made. the "put-outs."

Because of the length of the season, the cleanness of the sport, and the care taken in professional circles to maintain a high standard of ethics, both toward other players and toward the public, it is safe to predict that it will increase in popularity in the future fully as rapidly

## Athloties

## Guostions on Athlotics

What is meant by match play in goll? Medal play?
Who is "Colonel Bogey?"
Explain "A wins by three up and two to play."
Why is golf known as the "royal and ancient game?"

What is said to be the national game of Canada?

What can you say of the origin of lacrosse?
How many men play on each team?
Describe the method of play in lacrosse.
Whyt are some of the reasons for its popuiurity?

In what European country was hockey especially popular as early as the sixteenth century:

## What is the Stanley Cup?

What is the minimum size of a hockey rink?
H,Nw many men compose a hockey team?
What outdoor game is adapted to both sexes?
Why does golf recommend itself as an outdoor game?
Give reasons for outdoor sports gaining in popularity. Where is this especially true?
Aside from pleasure, what benefits accrue from rowing? Swimming? Tennis? Skating?
How do the schools regard this subject? What are some of the late developments along this line?
Compare the games of ancient days with those of modern times, in their effect on health, intellect and morals of the nations.
Mention games whose chief instrument is the ball, boat, gun, horse.

What are some of the far-reaching effects on a nation whose people engage in outdoor recreation?

Are interest and enthusiasm necessary in what is known as gymnastics in our common schools? Does the openness of the play help to make bnseball a clean sport?
Can basketball be played all the year?
What kind of ball is used in basketball?
Is there any regulation as to size of balls and bats in the game of basebally

Bography for Ohildren. If the teacher or parent of a child ever hears him say, "I don't like to read biography-I don't care for 'lives' of people," that teacher or parent may be sure hatit the lives have simply been presented to or in the wrong way. For everyone, young or old, is naturally interested in "lives"-if they are shown him from the right angle. What, indeed, are moot of the stories which so delight children but biography, presented from the point of view which appeals to a child? Joseph, Daniel, Devid, King Arthur, the Cid, Rolandany child will listen to stories of them told over and over again, and then ask to hear them once more. We expect a child to like stories of these heroes; we pick out the points that will strike the child's fancy, fire his imagination, hold his interest. But our attitude changes when we come to consider other men whom tradition has not marked as children's heroes. "Why," we any, "should a child be interested in the Apostle Paul? A boy or girl does not care particularly for preaching and for missionary work." And we forget that Paul had, if ever a man had, just those experiences that children love to hear about; that he was "in deaths oft, . . . . in journeyings often, in perils of waters, in perils of robbers, . . . . in perils of the wilderness, int perils in the sea." Or we think again, "Of course a child doesn't care to read about Dickens or Longfellow or Hawthorue. Of what particular interest is it to him that one man wrote The Tale of Two Cities and another man wrote The Marble Faunf" But let us see whether we cannot find in what we might at first think of as a biography for grown people plenty that would interest a child. There may be, in such a biography, an apparent lack of proportion; but it is simply an exaggeration of some points, not a distortion. As a child grows older and
becomes wider in his interests, he will leam other facts to fit on to and fill out those he has already learned; but he will not need to unlearn anything of what he has remembered.

## Charles Diclens

Charles Dickens did not write many things just for children; there is his Childs History of England, which you will read when you get a little older, and there are some of the Christmas stories which will please children almost as well as grown people. But he did not, like Hans Christian Andersen, spend the moot of his busy life writing stories for children. However, no one ever loved children more or understood them better. We can see this love in the way he treats the children in his stories. There are many of these children, some of them rich, cared for and happy, but more of them poor or abused or neglected. Later on we shall see why Dickens liked to write about sad little children; just now we shall stop for a time and gei acquainted with one or two of the children that everybody knows and that everybody will know as long as there are books and people to read them.
There is little Paul, in Dombey and Son. Everyone loves little Paul, but everyone feels sorry for him, in spite of the fact that he has a father who loves him and is willing and able to give him everything he wants that money can buy. But the poor father has never really loved anybody before, so he does not just know how to love Paul; and Paul, who is sick and weak, can't enjoy the things that other boys enjoy or be happy in the way other boys are happy. This makes him seem strange and old-fashioned, half a little boy and balf a little old man. When you read the following descrip-

## Elography

Doctor Blimber's, ean you make a picture of b'm in your mind, and do you feel morry for the strange, frail little boy?
"He grew more thoughtful and recerved every day. . . . . He loved to be alone; and in those short intervale when he was not occupied with his books, Hiked nothing so well as wandering about the house by himself, or sitting on the stairs, listenling to the great clock in the hall. He was Intimate with all the paper-haroing in the house; saw things that no one else saw in the patterns; found out miniature tigers and lions running up the bedroom walls, and squinting faces leering in the squares and diamonds of the floor-cloth."
"Lo and behold, there was something the matter with the great clock; and a workman on a pair of steps had taken its face off, and was poking instruments into the works by the light of a candle! This was a great event for Paul, who sat down on the bottom stair, and watched the operation attentively: now and then glancing at the clock face, leaning all askew against the wall hard by, and feeling a little confused by a suspicion that it was ogling him.
"The workman on the stepe was very civil; and as he said, when he observed Paul, 'How do you do, sir?' Paul got into conversation with him, and told him he hadn't been quite well lately. The ice being thus broken, Paul asked him a multitude of questions about chimes and clocks; as, whether people watched up in the lonely church steeples by night to make them strike, and how the bells were rung when people died, and whether those were different bells from wedding bells, or only sounded dismal in the fancies of the living. Finding that his new acquaintarce was not very well informed on the subject of the curfew bell of anciest days, Paul gave him an account of the institution; and also asked him as a practical man, what he thought about King Alfred's idea of measuring time by the burning of candles; to which the workman replied, that he thought it would be the ruin of the clock trade if it was to come up again. In fine, Paul looked on, until the clock had quite recovered its familiar aspect, and resumed its sedate inquiry; when the workman, putting away his tools in a long basket, bade him good-day, and went away. Though not before he had whispered something on the door-mat to the footman, in which there was the phrase 'old-fashioned'-for Paul heard it.
"What could that old farhioa be, that reemed to make the people sorry! What could it bel"

And aren't you ghad to find that little by little all the people at the school, the teachers and the pupils and the aervants, came to love Paul 8 This is the way Dickena tells us about it:
"In those days Immediately before the holidays, in short, when the other young gentlemen were laboring for dear life through a general resumptlon of the studiea of the whole halfyear, Paul was such a privileged pupil as had never been seen in that house before. He could hardly believe It himself; but his liberty lasted from hour to hour, and from day to day; and little Dombey was caressed by every one. Doctor Biimber was so particular about him, that he requested Johnson to retire from the dinner-table one day, for having thoughtlessly spoken to him as 'poor little Dombey'; which Paul thought rather hard and severe, though he had flushed at the moment, and wondered why Johnson should pity him. It was the more questionable justice, Paul thought, in the doctor, from his having certainly overheard that great authority give his assent on the previous evening, to the proposition (stated by Mrs. Blimber) that poor dear little Dombey was more oldfashioned than ever. And now it was that Paul began to think it must surely be oldfashioned to be very thin, and light, and easily tired, and soon disposed to lie down anywhere and rest; for he couldn't help feeling that these were more and more his habits every day."
"A busz then went round among the young gentlemen, of 'Dombey's going!' 'Little Dombey's going!' and there was a general move after Paul and Florence down the staircase and into the hail, in which the whole Blimber family were included. . . . . The servants, with the butler at their head, had all an interest in seeing Little Dombey go; and even the weak-eyed young man, taking out his books and trunks to the coach that was to carry him and Florence to Mrs. Pipchin's for the night, melted visibly."

Florence, Paul's sister, is a lovable little girl, and we are sorry that her father cannot look at her with our eyes and love her as we do and as Paul docs.

There is one litule boy about whom Dickens tells a great deal, in whom he was particularly interested and in whom we are particularly interested. That little loy is David Copper-

## Blography

Mlacraphy
price." And all of these stories, as well as sor which his own bright little brain made u Charles used to tell to his brothers and siste and playmater, so that we may imagine ti other children liked to have him with then even if he wasn't always strong enough to plaj
It wasn't only the children that Charies use to tell stories to, either. His father was ver proud of his clever little boy, and very ofter when there was compiany at the house would keep him up inte, far too late for a little loy telling funny stories and singing lively songa.
But suddenly all Char s's good times camu to an end-his schooldays, his comfortable living, everything. In those days if a man could not pay his debts he was sent to prison, and that is what happened to Charles's careless father when Charles was about clever years old. However, if a man in the debtor's prison had a little money he could buy good food and make himself fairly comfortable, and so it is likely that Charles's father, in prison, had a better tine than Charles, who had been put to work in a blacking warehouse. He workell very hard all day, tying, trimming and lalseling blacking pots; he had very little to eat; he slept all night in a miserable little attic; and he had only the roughest boys to talk with; but it was none of those things which made him most unhappy. It was simply that he could see no end to the wretched life; he couldn't see where he was to get any education or any time or chnnce to do anything worth while. And that was what Charles wanted most in the worldto make something of himself. He was very. very unhappy, so unhappy that he never likeli, in his happy later days, to talk about this time. But he has given us, in David Copperfield, a good picture of his life at this time:
"Mr. Quinion then formally engaged me to be as useful as I could in the warehouse of Murdstone and Grinby, at a salary, I think, of six shillings a week. I am not clear whether it was six or seven. I am inclined to belicve. from my uncertainty on this head, that it was six at first and seven afterwards. He paid me a week down (from his own pocket, I belicre), and I gave sixpence out of it to get my trunk carried to Windsor Terrace at night: it being too heavy for $m y$ strength, small as it was. I paid sixpence more for my dinner, which was a meat pie and a turn at a neighboring pump; and passed the hour which was allowed for that meal, in walking about the streets."

## well as some

 made up, and sisters imagine the with them, igh to play. harles used was very very often ouse would little loy, ly song. imes camu omfortable if a man to prison, les's empe ever years r's prison food and so it is n , had a en put to workel 1 Tabeling eat; he ; and he ; but it im mest 1 sre no where time or ind that worldas $v \mathrm{ry}$, rliked, is time. field, a"I wer no youns and oflllinth, and no little qualibiod-how could I be othorwiso?-to undertake the whole charge of my own exintence, that often, in goling to Murditoae and Griaby's of a moraing, I could not reciot the atalo paitry put out for math at hal-price at the pantrycook's doors, and apent in that the money I ahould have kept for my dinner. Then, I went without my dinner, or bought a foll or a alice of pídding. I remember two pudding-abope between which I was divided, sceording to my financen. One was in a court elose to $8 t$. Martin's Chureh, - at the back of the church,- which is now removed altogether. The pudding at that ahop was made of currante, and was rather a special pudding, but was dear, two pennyworth not being larger than a peanyworth of more ordinary pudding. A good thop for the litter wase in the Strand-comewhere in that part which has been rebi ilt rince. It was a stout, pale pudding. heary and fabby, and with great fint misins in It, stuck in whole at wide dibtances apart. It came up hot at about my time every day, and many a day did I dine of it. When I dined regularly and handsomely, I had a maveloy and a penny-loof, or a fourpenny plate of red beef from a cook's shop; or a plate of bread and cheese and a ghas of beer, from a miserable old public-house opposte our place of busineess, called the Lion, or the Lion and something ove that I have forgotten. Once, I remember carrying my own bread (which I had brought from home in the morning) under my arm, wrapped in a piece of paper, lixe a book, and going to a famous alamode beef-house near Drury Lane, and ordering a 'small plate' of that delicacy to eat with it. What the waiter thought of such a strange little apparition coming in all alone, I don't know; but I can see him now, staring at me as I ate my dinner, and bringing up the other waiter to look. I gave him a halipenny for himself, and I wish he hadn't taken it.
"We hall half-an-hour, I think, for tea. When I had money enough, I used to get half-a-pint of ready-made coffee and a slice of bread and butter. When I had none, I used to look at a venison-shop in Fleet Street; or I have strolled, at such a time, as far as Covent Garden Market, and stared at the pineapples. I was fond of wandering about the Adelphi, because it was a mysterious place, with thowe dark arches. I my meelf emerging one evening from some of these arches, on a little publio-house close to the river, with an open space before it, where some coal-heavers were dancing; to look at
whom 1 mit down upon a boack. 1 woeder What thay thought of moll"
"I know I do not exagerate, unconsciounly and unintentionally, the crantinew of my soeources or the difficultien of my life. I know that if a abilling were given me at any time, I apent it in a dinner or a tea. I know that I worked from moraing until night, with common men and boys, a shabby child. I know that I lounged about the streets, insufficlently and unmatifactorly fed. I know that but for the mercy of God, I might caslly have been, for any care that was taken of me, a little robber or a Uittle vagabond."
But the wretched days did come to an end after about a year, while Charles was still young enough to enjoy the things that other boys enjoy. He was sent to school, and of that school and his comrudes there he has written again in David Copperfield.

It is a joy to us to know that Charles did have good times-real "boy" good times-after all his hard days. We like to read of the fun ho had with a secret language which he made up, and which sounded like mere gibberish to thowe who did not know it; we like to hear about the little toy thenter, all bright with paint and red fire, in which he made his toy actors act out the stories he was always so fond of writing; and we are sorry that the school days were so short, and that Charles was so soon back at work again. But this time it was more plecsant work. To be sure, he was little more than office-boy in a lawyer's office, but he was at least among people who enw that he was an unusual boy; he bad a chance to learn, and time to learn. And he used the time and the chance with all his might. It does not sound unusual to say that he learned shorthand by himself, but it was a long, hard task, to which the boy set himself like a young hero. In his own bright way he has made David tell us some of the hard things about this shorthand learning. He had learned the alphabet, he says, but "there then appeared a procession of new horrors, called arbitrary characters-the most despotic characters I have ever known; who insisted, for instance, that a thing like the beginning of a cobweb meant [expeciation' and that a pen-andink skyrocket stood for 'disadvantageous.'" When the learning period was over, one of his friends said of him, "There never was such a shorthand writer."

do a man's work. Whens, more thas ready to and his woaderful books, with theire characters that everybody knows and remembers an il! y were real peoplo. But what we care mont about now is the man Dickene. He was a rery lovable man, a little quick and exritable and nervous, tometimes, but always bright and entertaining. His childrea must have been very happy and very proud of their father. Ho opent much time with them, playing, walking, seading. When be was away he wrote them funny letters; and the Child's History of England be wrote just for hle own ahildrem, acver monening to have it

## Megeriploy

Hill; but Dickens had not belonged junt to his own family, but to the public which had 0 loved him and his worken. And that public telt that Dickens abould bo buried in the place where the most famous Englishmen have been buried-in Weutminster Abbey. So there, in the Poets' Corner, they placed the body of the great writer whom Englishmen and Americans, grown people and children, loved while he lived and have gone on loving since his death.

Biography in the Echool. The teacher finds many uees for biography besides the merely intelectual one. There is nothing so helpful in character-building as well-eelected, well.


He of Gosoral Wolle. James Wolly, the bero of Quebee, wes born at Westerham, in Kent, England, oa the 2d of January, 1727. At Weterham, in a fine old mangion, James and his brother Edward, a year younger, used to romp about. Comparatively little is known of these childhood days, but one seems to wee the small eager children, ccampering through the house, playing in the garden with the dages, or aniling a fleet of toy boats on the waters of a neighboring brook. Or again they might be ditting at the firealde just before bed-time, listening to their father, the stout, gouty colonel, as he told them staries of the battles in which he had fought under Martborough and Prince Eugene of Savoy. It is little wonder that little red-haired James and his chum, George Warda, who later became a famous cavalry general, ronmed the neighborhood on foot or on horsebeck, fought mimic battles, ambushed each other and solved all sorts of military problems. James' brother, Edvrard, was supposed to be more interested in books than in battles, but when the time camo he followed his brother's example and entered the army. For a short time the two brothers were together in Flanders, but in the autumn of 1744, Edward's regiment was ordered to a new post. Here his health rapldly went to pieces and ho died of consumption after a few weeks of nuffering. He was only sirteen years old. In writing to his parents about Edward's death, James speaks of his brother as follows:
"He was an honest and a good lad, had lived very well, and always discharged his duty with the cheerfulness becoming a good officer. He lived and died as a son of you two should, which, I think, is saying ail I can. I have the melancholy satisfaction to find him regretted by his friends and aequaintances. His Colonel is particularly concerned for him, and desired I would assure (you) of it. There was in him the prospect (when ripened with experience) of good understanding and judgment, and an excellent soldier. You'll excuse my dwelling so long on this cruel subject, but in relating this to you, vanity and partiaiity are banished. A strong desire to do justice to his memory oceasions it."
Written in the formal style of the day, this letter nevertheless helps us to form some idea of Wolfe's character. His respectiul devotion to his parents is apperent. Fifteen years later, when he was ordered to Car. da, he preferred to leave without seeing his mother, because he
felt that she would suffer more from the formality of a farewell visil. This dealre to avold show or display of any kind was copecially characteristic of Wolfo, oven as a boy. All that he may about his brother may equally well be eaid of him. A stroag desire to do justice to everybody, not only to his brother and pareents, is also noteworthy. The atory is told that after the battle of Culloden Moor, Wolfe and his commander, the Duke of Cumberland, wero riding over the battlefield, when the Duke observed a wounded Highlander amiling defiance at him. Turning to Wolfe, the Duke said, "Wollo, thoot me that Highland scoundrel who dares look on us with such contempt and insolence." Whereupon the young side replied: "My commission is at your Royal Highness's disponal, but I can never consent to become an executioner." This was Wolfe at the age of nineteen, daring to disoley becauso justice and humanity were strong in him. Such qualitios as these made his zoldiers love him.

Yet Wolfe was a strong disciplinarian. In 1749, when he was major in command at Stir ling, he issued the following arder: "The Major desires to be acquainted in writing with the men and the companies they belong to, and as soon as possible with their characters, that he may know the proper objects to encourage and those over whom it will be necessary to keep a strict hand. The officers are enjoined to viait the soldiers' quarters frequently; now and then to go round between nine and eleven o'clock at night, and not trust to sergeants' reports. They are also requested to watch the looks of the privates and observe whether any of them were paler than usual, and that the reason might be inquired into and proper means used to restore them to their former vigour." Wolle's care was always for the men in his charge. To this fact must be attributed much of his success; he always knew the condition of his men, and this, thanks to his foresight, was nearly always perfect. The responsibilities of his command weighed upon him. "You can't conceive," he writes to his mother, "how difficult a thing it is to keep the passion within bounds, when authority and immaturity go together. Fancy you see me, one that must study the tempers and dispositions of many men, in order to make their situation easy and agreeable to them, and should endeavor to oblige all without partiality, a mark set up for everybody to observe and judge of." He was less concerned with his personal affairs than with the affairs of his

## Engutis

coldines. It was always his mono of whom be weo thinday
Folle whe not lachiag in seli-conidance and Independince when thaw were necurary, as thes anedote of his roply to the Duke of Cumbers land shown. Though bo whe much youmer thana mout of his follom-olicoves, ho fole that ho whe wacing hie time in Scotland and conateatly chafed under the restruints of garricon life. Yot ho made tho bost of matters. An eploode Mlundrating this may be mentioned. After epouding ooly a few woek at Stirling, be wes ondered to Glaciow. It was now over aly years claco Wollf had actuoded school and be began

to realize the deficiencies in his education. Conrequently, though he wae acting as commander of the troopo in a great city, he put himself in the hands of teachers from the University of Glagrow and apent at least two hours each day in atudying mathematics and Latin. In a letter to a friend be says he is trying to "repair the damages of my education." For several years he continued his studies, until, as he humorously remarks in a letter to his father, be had "grown perfectly stupid."
The outbreak of the Seven Years' War in 1756 gave Wolfo his great opportunity. He took part in an expedition against Rochefort, a seaport of France. Though the expedition failed miserably, he distinguished himself by his good sense and decision, when all the other officers threw away their opportunities in usless erifument. The failure of the expedition disgusted Wolfe the more because the chances of success had been

## ategraphy

## good. Now Wolfo turned his actanction to

 Americen 1dke Pitt, io monlised that in Americe was to com the rem struagho. "In Amarica," wrote Pitt, "Eapland and Europe were to bo fought foe." The Proseh under Moatcalen had Juot capturnd Fort Willian Beary and were driving the Endiah bofore them. At thly crisis redical meapures were necescary. Three expeditions, against Fort du Queme, Ticonderoga and Crowa Point, and Louisburg, were to anve the English cause. Wolle was created brigadien general and in May, 1788, arrived at Halifax. The expedition againit ! ouisbure mecveded, as Wolfe had confidently expected. The fortress was unable to withetand the fro of the enemy and after a short wiese survendered. The engineer who directed the approaches at Loulsburg was a very formal man and Wolle did not hevitate to complain of his slownese. "My maxim," suid the engineer, "is 'slow and sure." "And mine," imstantly replied Wolfe, "is 'quick and sure' - much better maxim." The retort is characteristic of Wolfe. He himself could be formal, but whea the time came to otrike, he struct and otruck hard. He was more than a mere machine; he was one of the most brilliant soldiers England ever had. Though only a subordinate officer, be was generally hailed as the bero of Louisburg and Pitt had already marked him out to lead the expedition against Quebec.On the 14th of February, 1750, the expedition against Quebec sec asail from England, and on the 30th of April it reached Halifux. Every child knows the rest of the atory-the preparations, the disappointments and setbacks, the quarrels with his brigadiers, and the final victory on the Plains of Abraham. Hot-headed and independent by nature, at the supreme crisis of his life, Wolfe was hampered by difficulties which only served to bring out his aterling qualities. On the night of the 12th of September the British army climbed the stoep path from Wolfe's Cove and on the morning of the 13th stood on the Plains of Abraham ready to give battle. A conspicuous figure was Wolfe-over six feet high, in his bright new uniform, a man daring, impetuous, absolutely without fear. Leading the charge, he was mortally wounded. Just before he died he heard the words, "They run-they run." "Who run?" he asked carnestly. "The enemy, sir," came the answer. Wolfe gave a brief command in regard to his troops, then turned on his side, and murmuring. "Now God be praised, I die happy," in a few moments passed away.

# Ing graphey 

Mothod ar elentying Mocraphy. Tix New Puctical Regraznce Lancuity has a very compleee deparment of blogtaphy, including, as it doeen the lives of over three thoumand men and women of all times and of all natione. In the cuse of many of these, of course, it has been poumble to give only the chied fects of the life, the oututunding resion for which the man or woman to rememberod. But in the cuse of persons who are recogaised as meally great in any biedd, who have evioundy affected history, more in given; interwing facts and aneedotes, little persooal touches are introduced, which make the reader feel that auch people really lived.
The Aeld of biogmphy is so wide that no one rould think of beginning itu exudy with no more definite iden than to "learn biogmaphy." Each student is interested primarily in great men and women $\alpha$ some particular clam or chases; and the Classified Index in this rolume makes poes sible and eny a aymematic atudy of biography according to departments. The names in the Index are, moreorere, not only divided by departments, but mubdivided by countries, so that a student who wishes to learn about English norelists, for example, does not need to look up all the novelists whose names appear in the five volumes.
It is not neceesary that we give here any list, even partial, of the biographies contained in this work. To show, howerer, the comprebensiveness of the field covered we give here a list of the classess into which the department of biography is divided in the Index:
Actors and Actreses Esayists
Adventurets
Aeronauts
Anarchists
Archaelogists
Architerts
Arists, Miscellaneous
Astronomers
Authors, Miscellaneous Inventors
Botanists
Capitalists
Chemists
Churchmen
Colonists
Criminals
Citites
Dramutists
E.conomists

Editors
Educators
Engineers
Essayists
Explorers
Financiers
Geographers
Geologists
Historians
Humorists
Indians
Inventors
Journalists
Labor Leaders
Lawyers
Librarians
Mathematicians
Merchants
Missionaries
Musicians
Naturalists
Naval Leaders
Novelists
Orators

| Puinters | Publichers |
| :---: | :---: |
| Patriots | Reformers |
| Philanthropits | Religious Leados |
| Philosopher | Revolutionist |
| Phymicians and | Rulers |

Phyicists Suints
Phymiologists Satirists

| Pfoneers | Scholars |
| :--- | :--- |
| Poets |  |

President-American Socialists
Precenders
Printers
Paychologists
Such a clasaified lin of Scerlaneous [cians of the greatest service to biographies should be with the subject of geology. for example, it is possible to find out in a moment, by mere reference to the Index, who the men are who have contributed mont to the science; with the expenditure of a little time and habor, it is enasy to leam just what the con sibution of each man was. Such information is not always available in handy form. In the department of literature the clasification makes of the five volumes really a supplementary textbook. Mort textbooks treat authors chronologically, by periods; this arrangement makes pomible a survey of each great department of literature, poetry, the drama, the novel, etc., separately.
No distinction has been made in the Index between men and women-poets have been classed as poets, whether they were men or women. Since it may easily happen that one may wish to know just how many of our famous people have been women, just how many women would be considered worthy of a place in such a work of reference, we give here a list of thowe whose biographies are included in The New Practical Reference Library:
Adams, Maude K. Barton, Clara Addams, Jane Albani, Emma Alboni, Marietta Alcott, Louisa M. Alden, Isabella M. Alexandra Anderson, Mary Anna Ivanovna Anne
Anthony, Susan R.
Arnim, Bettina von Aspasia
Austen, Jane
Barbara, Saint
Barr, Amelia E.

Bernhardt, Sarah
Blackwell, Elizabeth
Blessington, Countess of
Bloomfield-Zeisler, Fanny
Boadicea
Bolegn, Anne
Bonheur, Rosm
Booth, Maud Ballington
Bradstreet, Anne
Bremer, Fredriks
Bridgman, Laura
Bronté, Charlotte
Browning, Elizabeth
Barrett

## Alograplay

Burdett-Coutts, Angela Foote, Mary Hallock Burnett, Frances Hodg- Freeman, Mary E. son
Calve, Emma
Caroline Amelia Eliz beth
Cary, Alice
Cary, Phoebe
Catalani, Angelica
Catharine I
Catharine II
Catharine de Medici
Catharine of Aragon
Cecilia, Saint
Cenci, Beatrice
Chaminade, Cecile Louise
Child, Lydia Maria
Cleopatra
Colonna, Vittoria
Corday d'Armont, Charlotte
Corelli, Marie
Cornelia
Cotes, Sare J. Dume
Craigie, Pear Richan Isabella II
Craik, Dinah M.
Curie, Madame
Cushman, Chariotte
Cushman, Pauline
Darling, Grace
Darrah, Mrs. Lydia
Davenport, Fanny
Davis, Rebecca Harding
Deland, Margaret W Keller, Helen Adams
Dickinson, Anne Elizo Kellogg, Clara Louise beth
Dix, Dorothea Lynde
Dödge, Mary Abigail
Dodge, M. E. M.
Dora D'Istria
Doremus, Mrs. Sarah
Platt
Du Barry, Countess
Duse, Eleanora
Eames, Emma
Macdonald, Flora
Eddy, Mary Baker Maill Maintenon, Marquis de
Edgeworth, Maria
Edwards, Amelia
Blandford
Elizabeth
Eugenie, Marie de Montijo
Fiske, Minne Medd Maria Christina

Mocraplay

Maria Theres
Marie Antoinette
Mary I
Mary II
Mary Stuart
Melba, Nellie
Mitchell. Maria
Mitford, Mary Russell
Modjeska, Helena
Montagu, Mary Wortley
More, Hannah
Morris, Clars
Mott, Lucretia
Moulton, Ellen Louise
Chandler
Murfree, Mary N.
Nethersole, Olga
Nightingale, Florence
Nilsson, Christine
Nordica, Madame
Octavia
Oliphant,Mrs.Mare Terhune, Mary Virginia
Ossoli, Sarah Margaret Terry, Ellen
Fuller, Marchioness Urso, Camilla
Palmer, Alice Freeman Ursula, Saint
Patterson, Elizabeth Veronica, Saint
Patti, Adelina
Pocahontas
Porter, Jane
Procter, Adelaide Anne
Rachel, Mademoiselle Radeliffe, Ann Ward
Ramé, Louise de la
Rehan, Ada
Repplier, Agnes
Rice, Alice Hegan
Riggs, Kate Douglas Wiggin
Ristori, Adelaide
Rives, Amelie
Rohlfs, Anna Katharine Yonge, Charlotte M. Green Rosamond In addition Zenobia
In addition to this long list, the biographies of a number of distinctively Canadian women have been added to this volume, as follcws: Arthur, Julia Blewett, Jean Cameron, Agnes Dean Carlyle, Florence Crawford, Isabella Dougall, Lily Weugall, Lily
All the biographies in this vald, Agnes in the Correlative Ines in this volume are listed as well as in the special inginning on page 763,

Rometti, Christina Georgina
Sand, George
Sappho
Schumann-Heink, Ernestine Sedgwick, Catherine Maria
Sembrich, Marcella
Semiramis
Siddons, Mrs. Sarah
Sigoumey, Mrs.
Somerville, Mary
Sontag, Henriette
Stael-Holstein, Baroness de
Stanton, Elizabeth Cady
Stowe, Harriet Beecher
Stuart, Ruth McEnery
Tarbell, Ida M.

Victoria
Walpurga
Wand, Elizabeth Stuart Phelps
Ward, Mrs. Humphrey
Warner, Susan
Washington, Martha
Wharton, Edith
Whitney, Adeline Train
Wilcox, Ella Wheeler
Wilhelmina
Willard, Emma Hart
Willard, Frances E.
Young, Ella Flagg
long list, the biographi
ctively Canadian wom
volume, as follcws:
Laut, Agnes Christina Machar, Agnes Parlow, Mary Kathleen Secord, Laura Traill, Catherine Parr Wetherald, Agnes as well as in the special index for the Educetor

## Canadian Biography

Bevides the many hundreds of biographical sketches in the first five volumes, the editors have added a special department of Canadian biography. The lives of nearly 400 eminent Canadians are here presented, some briefly, some at length, but all in such a way that the important facts are made clear. It has been the aim of the editors to include men and women in all walks of life-statesmen, explorers, poets, novelists, artists, musicians, capitalists, soldiers, scientists, churchmen and educators. People who are making history have been included as well as people who have made history. Lack of space has made it necessary to limit the biographies to such as would be needed in the work of the average public schrol. Whenever possible the biography of an individual has been related toothers in such a way that the student may appreciate the true significance of his career. At the same time these biographies provide an up-to-date work of reference. The reader who wishes to read the life of only one man at a time will find it as satisfactory for his purpose as it is for the student.
Abbott, Jobn Joskpa Caldwell, Sir (18211893), statesman, born at St. Andrew's, Quebec. He was educated at McGiill University, where later he became dean of the faculty of law and one of the governors. His first appearance in public life was in 1857, when he contested the representation of his native county of Argenteuil; after an investigation that lasted two years he obtained the seat and was successively reêlected till 1874. In 1862, as solicitorgeneral, he introduced the use of stamps in the payment of judicial and registration fees in Lower Canada, he remodeled the jury law, and he drafted and carried through Parliament an insolvency act which is the basis of Canadian law today. From 1887 to 1889 he was mayor of Montreal and at the same time a member of the Dominion Senate In the cabinet of Sir John Macdonald he became a member without portfolio, and after Macdonald's death in 1891, he became premier. Old age and the cares of office overburdened him, however, so that he resigned on December 5, 1892. He died on May 24, 1893. (For portrait, see illustration facing page 210.)
Aberdeon, John Casapbell Gordon, Seventh Earl of (1847- ), a prominent English Liberal statesman, was born on August 3, 1847, and was educated at St. Andrew's University
and at University College, Orford. Since 1880 he has been lord-lieutenant of Aberdeenshire. In 1886 and again from 1808 to 1911 he was lord-lieutenant of Ireland. From 1893 to 1888 he was governor-general of Canada, where his excellent qualities made him very popular. He was an honorary officer of several regiments and received honorary degrees from the University of Aberdeen, Queen's, McGill, Ottawa, Toronto, Laval and other universities.
Adama, Frant Dawson, Ph.D., D.Sc. (1859 ), educator, born at Montreal. He attended the Montreal High School and MeGill University; later he studied at Yale and at Heidelberg, Germany, where he received the degree of Doctor of Philosophy in 1892. He whs appointed professor of geology at McGill in 1893 and became dean of the feculty of applied science in 1908. Dean Adams is a member of numerous scientific societies and is well-known for his published reports and papers on the geology of Canada.
Cibins, Janes Cox, LL.D. (1823-1904), a statesman, born in Toronto, Ontario, and educated at Victoria College, Cobourg. He began life as a farmer, but at the age of twentyone was elected to represent his native county in the legislature. At the formation of the Macdonald government he entered the cabinet as secretary of state and registrar general, and held these offices until 1873. He was the author of the public lands act, and also organized the Dominion lands bureau, which is now a branch of the department of the interior. On the return of his party to power in 1878, Mr. Aikins was again appointed secretary of state, but he exchanged the office for that of minister of inland revenue in 1880 . Two years later he resigned from the cabinet and was appointed lieutenant governor of the province of Manitoba. On the expiration of his term of office he was called to the Senate.
Allan, Huger, Sir (1810-1882), financier, was born at Saltcoats, Ayrshire, Scotland, on the 29th of September, 1810. Emigrating to Canada at the age of sixteen, he soon entered the employ of the principal ship-building and grain-shipping firm of Montreal, of which he became a junior partner in 1835. In 1853 he organized the Allan Line of steamships and until his death he was intimately connected with the growth and commercial prosperity of Canada. He was one of the original promoters of the Canadian

## Degraphy

Pucific Railway, but the company, which had alreedy received a charter, was disoolved as theresult of disclomures with reference to polition infurence.

## Allam, Huar Montagu, Sir (1890-

 K.B., C.V.O., son of Sir Hugh Allan, was, bora at Montreal. He was educnted at Bishop's College, Lennoxville, Queboc, and in Paris, Prance. He was created a Knight Bachelor by His Majesty King Edward VII in 1804 and made a Commander of the Victorian Onder in 1000. Sir Hugh is vice-chairman of the Allan Line Steamship Company and a director in many other corporations. Alard, Julies (1850-), lawyer and statemman, born at St. Francois du Lac; Quebec; educuted at Nieolet College. He was called to the bar in 1883 and 300 n rose to distinction in his native town; he was president of the school commismioners from 1892 to 1898. mayor of the village from 1895 to 1898, and registrar of Yamaska county, 1890-97. He was elected to the legislature of Quebec in 1898 and rextected at each election since. In 1005 he became minister of public works for the province, in 1008 minister of agriculture and in 1009 minister of lands and forests. Allom, Gunvt (Charlas Grant Blatrmindir), (1848-1899), author, born at Kingston, Ontario. He was oducated in America and France and later at King Edward's School, Birmingham, and at Merton College, Oxford. He was a voluminous writer on acientific subjects, which he treated in popular fashion, but is best known as the author of numerous novels and books of travel.$\Delta$ mherst, Janrecy, Baron (1717-1779), English soldier, born in Kent, England. He eatered the army in 1731 and served in various capacities until, in 1758. he was appointed majorgeneral and was put in command of the expedition against Louisburg, which surrendered after a short siege. In September he became commander-in-chief of the British forces which won the victories of Crown Point and Ticonderoga. For his services in winning Canada for Great Britain he was made governor-general and was formally thanked by Parliament. After his return to England in 1703 he held a number of important offices and for several years was commander-in-chief of the British sarmy.
Angery, anok'eir, Auouste Rras, LL.D. (1838-), statesman, born in the city of Quebec and educated at Nicolet College. He

## Mography

began the practice of law in 1800, and was ap. pointed queen's counsel in 1874. The same year ho entered the Quebee amembly and held his seat for five yeers. Later he was colicitor and attorney-general in the Bouchevillo ministry. On the dimmssal of the government in 1878 he bucame leader of the opposition in the as sembly and retained this position for three years. In 1880 he was elected to the House of Commons, and the same year was appointed judge of the superior court of the province of Quebec, which position he resigned in 1887 to assume the duties of lieutenant-governor of the province. In 1892 he entered the Thompson administration at Ottawa as minister of agriculture, and continued in the office under Sir Mackensie Bowell until 1895, when he resigned and resumed his prectice of law. The following year he entered the sovernment formed by Sir Charles Tupper, as president of the council, but resigned after a few montha.
Angion, Fruncts Alexandiris (1865lawyer and judge, educated at St. Mary's College, Montreal, and at the University of Ottawa. He was called to the bar in 1888, became judge of the Ontario High Court in 1904, and judge of the Supreme Court of Canads in February, 1909.

Aschibald, Adays George, Sir (1814-1892), statesman, born at Truro, Nova Scotia; educated at Pictou College. He was called to the bar in 1839 and entered public liie in 1851, when ha was elected to the House of Assembly of Nova Scotia. He became in turn solicitorgentral for the province, attorney-general, ad-vocate-general in the vice-admiralty court of Halifax, and member of the Dominion Parliament. He was a member of the Quebec Conference and played an important part in the work preceding Confederation. He resigned from Parliament in 1870 to become the first lieutenant-governor of Manitoba, a position he filled with great success for two years. In later years he was lieutenant-governor of Nova Scotia and from 1888 to 1891 again a member of the House of Commons.
Argyll, John Douglas Sutherland Camp(1845, Duke of Argyll, Marquis of Lorne, etc., (845- ), born in London, educated at Eton and at Trinity College, Cambridge. From 1868 to 1878 and again from 1895 to 1000 he was a Unionist member of the British Partiament. From 1878 to 1883 he was governor-general of Canada in succession to the Marquis of Dufferin and Ava. He married H. R. H. Princess Louise,

## Nography

 seme yeur held his citor and ministry. 1878 he the as eears. © Com. judge of Queber, assume he proson ad-agriculir Mac ned and g year by Sir ouncil,daughter of Queen Vietoris, in 1871. He is the author of numerous books, including Canadian Pitures, Memories of Canada and Scolland, Lijo of Palmerrion and Life and Times of Qucen Viotoria. (For portrait ree illustration facing. page 200.)
Armatrong, Huch (1858-
), a business man and legislator, born in New York. He went to Manitoba in 1883, and engaged in business. He was elected to the legislature in 1892 and resigned in 1896 to contest the election for a sent in the House of Commons, but was defeated. He was again elected to the legislature in 1002, was retlected in 1003 and in 1907, and became provincial treasurer in the Roblin cabinet.
Arthur, Gronge, Sir (1784-1854), British colonial governor, was born at Plymouth, England. At the age of eighteen he entered the army, in which he served with great distinction. He was appointed successively lieutenantgovernor of British Honduras, of Tasmania and of Upper Canada. In Canada he used every means to punish those who had taken part in the rebellion of 1837, but interference by the home government prevented excesses.
Arthur, Jowa (1869- ), an actress, born in Hamilton, Ontario. Her real name is Ida Lewis. She began amateur dramatic work when only eleven years old, and three years later made her professional debut as the Prince of Wales in Daniel E. Bandmann's presentation of Richand III. She went to England and Germany, where she studied violin music and dramatic art and returned to America and made her first public appearance at Union Square Theater in New York. She developed unusual histrionic powers and later became one of Sir Henry Irving's company, playing with him and Miss Ellen Terry in various Shakespearean roles. She has written numerous articles for the press, some of which have attracted wide attention.
Auden, Henry Willam (1867-), educator, graduated at Shrewsbury School and Christ's College, Cambridge, where he took several prizes for excellence in the classics. He is the editor of a number of Latin and Greek textbooks. He came to Canadk in 1003 and is now principal of Upper Canada College, Toronto.
Aylesworth, ALLen Bristol, Sir, K.C., K.C.M.G., (1854-), statesman, born at Newburgh, Ontario; eductated at the Newburg High School and Toronto University. He was called to the bar in 1878. In 1803 he was appointed one of the commissioners for
the settlement of the Alacka boundary dispute with the United States. He entered Parliament in 1805 and was appointed postmaster-general. In 1008 ho became minister of justice, but resigned in 1911, when he was defented for reelection to Parliament.
Aylmer, Loxd, The Rt. Hon. Sir Matthew (1842- ), born at Richmond, Quebec; educated at Montreal High School and McGill University. He served six years as lieutenant in the 7th Royal Fusiliers and thirty-five years on the staff of the Canadian forces. He retired from the service in 1907 with the rank of majorgeneral and has aince been engaged in fruit farming in British Columbia.

Eagot, Charizs, Sir (1781-1813), British diplomatist and colonial governor. At various times from 1814 to 1834 he represented Great Britain at Paris, Washington, St. Peteraburg, The Hague and Vienna. While at Wrshington he negotiated the Rush-Bagot treaty, which limited the number and size of war vessels on the Great Lakes. In 1842 Sir Charles was appointed governor-general of Caneda, but he died before he had time to leave an imprees on Canadian history.
Baker, Alurizd, M.A., an educator, prepared at the Toronto grammar school and the Univer: sity of Toronto. He became a teacher of mathematics in the Upper Canada College, and in 1875 was appointed tutor of mathematics, and the next year registrar of the University College, Toronto. In 1885 he was appointed dean of residence in the University, and two years later succeeded to the chair of mathematics. He was elected senator of Toronto University in 1895, and the following year president of the Ontario Educational Association and member of the Educational Council in Ontario. In 1897 he was olected a member of the Coumcil of American Mathematical Societies. Professor Baker is the author of many articles and books on geometry, trigonometry and mechanics.
Baldwin, Robert (1804-1858), statesman, born in Toronto; educated under the direction of Bishop Strachan. He served in the Assembly of Upper Canada, became solicitor-general for Upper Canada in 1840 and was attorney-general and premier, 1842-1843. Baldwin's first cabinet marks the introduction of a responsible ministry into Canadian government. From 1848 to 1851 he was again at the head of the cabinet; during this second period the amount of constructive legislation was unprecedented, including the organization of the municipal aysutem

## atography

a it now exists, the establishment of Toronto University on a non-sectarian besis, the creation of the courts of common pleas and chancery, the opening of the St. Lawrence to commerce

after the repeal of the British navigation acts, and the abolition of the old preferential tariff. Never physically robust, failing health compelled his retirement from political life at the early age of forty-seven.
Barnard. George Henry, K.C. (1868legislator, born at Victoria, British Columbia; educated at Trinity College School, Port Hope, Ontario. He was called to the bar in 1891, became alderman in Vistoria in 1902 and was mayor 1004-05. Since 1908 he has represented Victoria in the House of Commons.
Bart, Robert ( 1850 - ), an author, born in Glasgow, Scotland, educated in the Normal School of Toronto. He began his career as a teacher, and in 1875 was appointed head master of the Windsor, Ontario, Central School. While in this position he wrote a humorous sketch of a journey made by himself and a friend in a small boat along the southern shores of Lake Erie. This was published in the Detroit (Mich.) Free Press and was quoted far and waie. As a result, Mr. Barr was invited to join the staff of that paper, which he did in 1876. In 1881 he went to England and established the weekly edition of the Free Press in London. His writings, under the pen name of Luke Sharp, became widely popular throughout the United Kingdom. In 1892 he established the Idler

Magazine, under the dual editorahip of himself and Jerome K. Jerome. In addition to his newspaper and magarine writings Mr. Barr has published a number of books: chief among these are Strange Happeninge in a Steamer Chair, From Whase Bourne, The Face and the Mask, In the Midrt of Alarms, A Woman Intervenes, The Mutable Many and One Day's Courtship.
Bock, ADAM (1857- ), manufacturer and legislator, born at Baden, Ontario; educated there and in Galt. He was elected to the Ontario legislature in 1902 and was returned at the general elections in 1005 and 1008. He was appointed a minister without portolio in the Whitney administration in 1905, and was mayor of London, Ontario, 1002-04. He is the originator of the hydro-electric power legislation and a member of the commission which controls the sale of power to the cities.
Beck, Nicholas Dominic, LLL.B. (1857-
), jurist, born at Cobourg, Ontario; educated at the University of Toronto. He has been identified with Catholic educat'onal af fairs for many years and has been a member of the Educational Council. He has taken an active interest in the University of Alberta and is its vice-chancellor. His present official position is judge of the Supreme Court of Alberta.
Bogin, Louis Nazaire, Mgr. (1840- ), prelate, born at Lewis, Quebec; educated at, Quebec Seminary and the French Seminary at Rome. He was ordained priest on June 10, 1865, became bishop of Chicoutimi, 1888, and archbishop of Quebec, 1898. He is the author of The Rule of Faith, The Infallibility of the Sorereign Pontiff and other books on religious questions.
Bell, Robert, F.R.S., D.Sc. (1841geologist, born at Toronto; educated at $M$ ), and Edinburgh universities. Dr. Bell is one Canada's most distinguished geologists and has done much to add to our knowledge of Canadian conditions. He made the first surveys of many of the western rivers and lakes, among them Lake of the Woods, Winnipeg, both lake and river, Great Slave Lake and the Athabasca, Slave, Nelson and Moose rivers. He is a member of many scientific societies and has published numerous reports and papers of great value.

## Boll-dmith, Frederici Marliett (1846-

), artist, was born in London, England, and studied drawing at South Kensington. He arrived in Canada in 1867 and became a charter inember of the Society of Canadian Artists, or-

Elography
ganised in that year. He is a menber of the council of the Royal Canadian Academy of Arts, president of the Ontario Society of Artists and has been director of fine arts in Alma College since 1881.' Among his principal paintings are Quens Victoria's Tribute to Canada, for which Her Majesty gave personal sittings, Landing of the Blenheim, in the national collection at Ottawa, and Lights of a City, in the On tario collection.
Bongough, ben gof, Joms Wruson (1851), a caricaturist, lecturer and poet, born in Toronto and educated at the Whitby district and grammar schools. He prepared for the practice of law, but changed to journalism. He established in Toronto in 1873 The Grip, a humorous weekly illustrated by himself. His political cartoons in this paper showed a high degree of artistic talent and attracted wide attention, the New York Hemld pronouncing him the greatest cartoonist living upon this side of the continent. In 1892 he severed his connection with Tho Grip and was employed for a time as caricaturist by the Montreal Star; later he joined the staff of the Toronto Globe in the same capacity. Mr. Bengough is also widely known as a humorous lecturer and as a poet. He is the author of the famous election song, Ontario, Ontario. Among his publications are Popular Readings, Original and Selected; Caricature Hiotory of Canadian Politics; Modley Verses, Grare and Gay; The Up-to-Dats Primer, A First Boak of Lessons for Little Political Economists. He was appointed an associate of the Royal Canadian Academy of Arts upon the formation of that institution in 1880; in 1891 he was elected president of the Single Tax Association.

Betts, Craven Langstroh (1853- ), author, born at St. John, New Brunswick. Since 1879 he has resided in New York and has devoted himself to literature. He has published many poems in magarines; among the collections of his verse are Songs from Beranger, The Perfume Holder, A Persian Lore Story and A Garland of Sonnets.
Blake, Edward (1833-1912), born in Adelaide, Ontario, educated at Upper Canada College and the University of Toronto. He was called to the bar in 1850 and soon became prominent. In 1867 he was elected to the Ontario assembly, where he was leader of the Liberal Opposition till 1871, when he became premier of the province. He resigned after a year, but again came into prominence in Hon. Alexander Mackenzie's ministry. In 1875 he be-

## Bography

came minister of justice, in the same month doclining the chief justiceship of the Dominion. From 1887 till his retirement from political life in 1891 he served almost continuously in the


HON. EDWARD blate
House of Commons. From 1892 until 1907 he was a Nationalist member of the British House of Commons; he resigned because of ill health and returned to Toronto, where he died.
Blowott, Jean (1862- ), an author, whose maiden name was Jean McKishney, born at Scotia, Ontario, and educated at St. Thomas Collegiate Institute. Her success in literature began with the publication of Cabinet Articles, a series of pen pictures which appeared in various magarines and newspapers. These sketches were unique and attracted wide attention. At seventeen she wrote Out of the Depths, a book of some merit, but inferior to l.er later works. She is best known by her poems, which have led to her being called the sweetest of Canada's poets. These were collected and published by the Lippincotts of Philadelphia.

Bonar, James, M.A., LL.D. (1852- ), economist, born at Collace, Portshire, Scotland, educated at Glasgow, Tubingen, Leipzig, and Balliol College, Oxford. From 1881 to 1895 he was junior examiner in H. M. Civil Service Commission, and from 1505 to 1907 senior examiner. He came to Canarla in 1907 to be come deputy master of the Canadian branch of the Royal Mint. Dr. Bonar is well-known as a writer on financial and economic subjects. He

Mography It the sacthor af MCikive and Eio Work, Phil Falition Eand Poditio
Eorlon, Theracas Wuruux, Stir, K.C.M.G. P.C., M.D. (1817. ), otatomman and physician, born at Cormmallis, Nova Scotia; educated at Kin, Colloze, Windsor, and Harrand Medicel School, Bonton. Ho began recticing modicine at Canninc, Nova Scotia, whare to was eho agent for the Halitux Banking of Commions in 1874, and has bean a member mont of the time rince, serving hif coastituency contimuonsly from 1887 to 1911. In 189 he was swoen in as a member of the Privg Council and wis appoiated minister of militia and defence, a poltion ho hold till the recignation of the Laurice administration in 1911. In 1809 bo wou appolated animitant surgeom of the 68th Battiey and is now honorable colonel of the army medical corph. Sir Prederict is a member of a number of distinguished orders.
Bordor, Ronemt Lured, D.C.L., K.C. (1851- ), ntatuman, cousin of Sir Frederick Borden, was bora at Grand Pre, Nova Scotia, aind educated at Acialia Villa Acmdemy, Horton. He was admitted to the bar in 1878 and was the head of the firm of Borden, Ritchie and Chisholm, Halifar, for a number of years. He mes elected to the House of Commons fore Enclifax in 1896 and 1800; in 1904 he was defented for Helifax but was elocted for Carleton, Ontario, after Edward Kidd, member for Carloton, had rexigned. At the next general election be was. returned for Halifax, which he still represents. From 1001 to 1911 he was leader of the conservative opposition and following the general election of 1911 ho was made premier and formed a new ministry on October 10.
Boarases, Hanar (1868-), journalist and lojinatator, born at Montreal; educated by private tutors. He was mayor of Montebello, 189004, and mayor of Papineauville, 1897. He was first clected to the House of Commons in 1896; he renigned in 1899 in order to seet reelection as a vindication of his position on the participation of Canada in the South African War, and was returned by acclamation in January, 1000, and again in 1804. Since 1008 he has been a member of the Quebec legislative esembly. Ho is the editor of Io Dewoir, founded in 1910, the orgen of the Nationalist party.
Bourinet, boo re no, Jomi Gromon, Sir (1837-1902), historian and parliamentarian.

Iicgraply
Alter his induation from Trinity College Toroato, to extablished the Halijax Reporker of which to was the editor for many years. Hin firut historical and political papers, many a which were latere expanded into books, appeaned in the procedings of the Royal society of Canada. He was the recognined authority on queationa of partiamentary procedure and constitutional history. Amone his bent-known books ave Parliammentary Procedure and Practice, Manval of Conntitutional Bistory, Parliamentary Gowmiment in Canyda, How Cencida is Gorerned, Conads under Britioh Rule and Canada's Intel. loctual 8tronyth and Wraliness.
Zowol, Mactenzie, Sir, K.C.M.G., P.C. (1823-), statemana, born at Rickinghall, Sufiolk, Englasd, edveated at the Belleville (Ontario) public schools. At the age of eleven he entered the oflice of the Belleville Indelligener, of which he later bocame editor and proprietor. He was clected to the House of Commons as a Conservative in 1807 and served continuously till he was called to tho Senate in 1893. In 1878 he entered the cabinet of Sir John Macdonald as minister of customs; ho was minister of militia under Sir John Abbott, and later, as minister of trade and commerce, ho was instrumental in securing the Pacific Cablo to Australia, In December, 1894, be became promier, but reaigned in April, 1896. Until 1803 he was lender of the opposition in the Senate. Sir Mackenrie took an carly interest in the militis and in 1857 assisted in raising a rifle company. He was in active service on the frontier during the American Civil War and in the Fenian troubles in 1886 , retiring with the rank of colonel. He has served as one of the governors of Toronto University and as senator of Albert College. (For portruit see illustration facing page 210.) Bowser, Wiriua J., K.C. (1867- ), barrister and legislator, born at Rexton, New, Brunswick; educated at Dalhousie University, Halifax. He was called to the bar of New Brunswick 感 1890 and to that of British Columbia, 1891. He was chosen Grand Master of the Free Masons in 1004 and was elected to the provincial aveembly in $1803,1007,1009$. In 1907 he was appointed attorney-general and commissioner of fisheries of the province in the McBride government.

Eoyd, Joms (1864- ), journalist and author, born at Montreal; educated at Montreal High School and McGill University. He began newapaper work in 1881 and was successively connected with the Montreal $\boldsymbol{H}$ erald, Montred


HON. ROBERT LAIRD BORDEN

## Nograply

Witnose, Toronto Mail and Eapirr, and Montreal Gartlo. He is the author of $\mathrm{On}_{\mathrm{n}}$ the Quabe Batilofidld, an ode on the accmion of Quebece's Tercentenary Celobration, and has trandsted many of the best Preach-Canedian poems into English. He was honordd with a prominent part in the St. Jean Baptiste celebration, in Montreal, June, 1909, and read a poem dedicated to the Aswociation. 1 Other well-known poems include a connet on Poe, read at the centennial celebration held by the Univeruity of Virginia, a sonnet on the denth of $S$ winburne, and a poem on the centemary of the birth of Tennyson.
Eroat, Charlie Henry, Rev. (1862- ), Episcopal clengyman, bora at Newcatle, Ontario; educated at the Univenity of Trinity College, Toronto. He was ordained clergyman in 1887, and was rector of St. John Evangelist, Boaton, 1888-1891, and associate rector of St. Stephens, Boston, 1801-1801. He was consecrated hishop of the Philippine Islands in 1901. He was offered one of the richeat bishoprics in the United States a few years later but refused it because he felt that his work in the Philippines was a greater mission. Bishop Brent is tho author of With Gorl in the World, The Splendor of the Human Body, Liberty and Other Sermons and other books on ethical and religious subjects.
Brodour, 3 ro dure, Louts Phiruppe, K.C., LL.D. (1862 ), statesman and judge, born at Beloeil, Quebec; educated at St. Hyacinthe College and Laval University. He was admitted to the har in 1884 and was elected to the House of Commons in 1891. In 1900 he was chosen speaker of the House hut resigned in 1904 to become minister of inland revenue; in 1907 he became minister of marine and fisheries. He accompanied Sir Wilfrid Laurier to England as a delegate to the Colonial Conference of 1907 and was delegate to the Imperial Defence Conference in 1009. Together with Hon. W. S. Fielding he negotiated the first treaty ever negotiated hy a British colonythe French-Canadian treaty of 1807. In 1911 he was appointed justice of the Supreme Court of Canada.
Brown, George (1818-1880), statesman, born at Edinhurgh, Scotland; educated at Edinburgh High School and at the Southern Academy. He went to New York in 1838 and to Toronto in 1843, where he founded The Globe, soon to become one of the leading Cansdian papers. In the Canadian legislative assembly, to which he was elected in 1851, he became
the leeder of the radicale. On July 81, 1858, after the defeat of Sir Joha A. Mecdomald, in and Hon. A. A. Dorion formed a minintry but beld cifice for only four dayn, rovigning bocaue the governor-general refused to dimolvo Parlicment. He took a leading part in the effort to secure Confederation, was a member of the Charlottetown and Quebec conferences and prenident of the Council in the conlition ministry of Sir Etienne Tache (ree page 187). In December, 1873, he was called to the Senate. He deelined the lieutenant-governorahip of Ontario in 1875 and the decoration of K.C.M.G. in 1879.

Brown, Gronar Wiluux (1860- ), lawyer and legislator, born at Holatein, Ontario; educated at Brantford Collegiate Inatitute and Toronto University. He went west in 1882, was admitted to the bar and practiced law in Regina. For twelve years he was a member of the local board of education and from 1804 to 1008 he sat in the legislature. On October 5, 1910, he became lieutenant-governor of Saskatchewan.

Brucheai, broo ke' ee, Louss Paul Napoleon, The Most Rev., D.D. (1855-, ), Roman Catholic archhishop of Montreal, born in Montreal and educated at St. Sulpice College in that city, and in Paris and Rome, where he was ordained priest in 1878. Upon his return to Canada he was appointed to a chair in Laval University. In 1887 he was appointed canon of the cathedral of Montreal and in the same year professor of Christian apologetics at Laval. He prepared the educational exhibits of his native province for the World's Fair in Chicago, and was for some years chairman of the Catholic school board of Montreal. He was appointed archhishop of Montreal in 1807.

Bryee, George, Rev., M.A., D D., LL.D.: ( 1844 ), clergyman and author, born at Brantford, Ontario; educated at Brantford High School, University of Toronto and Knoz College, Toronto. Dr. Bryce played an important part in the development of Manitoba; he was selected hy the General Assembly of the Preshyterian Church to organize a church and college at Winnipeg in 1871. He was one of the founders, councillor and examiner of the University of Manitoba; ho was also head of the faculty of science and lecturer in hiology and geology. He was senior professor and financial agent of Manitoba College, also professor of English. He is the author of many articles and books

## Begrashy

## - Canadiaa history; among the beat known ase Manible; Infancy, Prognese and Prownd

BEY, GHOROL BRYCE
Condition, Short History of the Canadian People, and Remarkable History of the Hudson's Bay Company.
Eryminor, Willam (1855-), painter, bora at Greenock, Scotland; educated at St. Francis College, Richmond, Quebec, and St. Therese College, St. Therese, Quebec. Later he studied art in Paris under Bouguereau and T. Robert Fleury. He received a gold medal for painting at the Pan-American at Buffalo and at the Louisiana Purchase Exposition at St. Louis. Since 1886 he has conducted the advanced art classes of the Art Association of Montreal. He was elected president of the Royal Canadian Academy of Art in 1910.
Bueke, Richird Maurice (1837-1902), physician, born at Methwold, England; educanted at the London (Ont.) grammar school, McGill University and in London and Paris. After completing his studies he went to California but later entered on the practice of his profession at Sarnia, Ontario. In 1878 he was appointed medical superintendent of the asylum for the insane at Hamilton and a year later was transferred to a similar position in London. During his lifetime he was regarded as one of the highest authorities in America on the subject of mental diseases.
Bulyea, Geurge Headley Viciers, B.A., LL.D. (1859- ), statesman, born at Gage-
tewn, Now Brunowick; educated in th grammar nchool of Gagutowa and the Univervity of Now Brumwick. He wrat to Winaiper h 1882 and the followiag spping to Qu'Apelle, Seactatchewan, where he eagaged in buainem. Ho was elected to tive Northwest Council in 1894 and for many yearn was a member of the executive coyncil. In lise territorial sovernment he was commisioner of agriculture and of public works (1809-1805), and on the organizn. tion of Alberts as a province be was appointed lieutenant-governor, September 1, 1005.
Burear, Jaçuse (1800), lawyer and lecialator, born at Trois Rivieres, Queber; educated at Nieolet College and Laval Univer aity. Ho was elected to the House of Commons for Trois Rivieres-St. Maurice in 1800 and atill represents that constituency. From 1007 to 1011 he was solicitongeneral of Canada Iurpee, Llwarnct Jomaston, F.R.GS. (1873- ), librarian and author, born at Halifax, Nova Scotia. He was private secretary to the minister of justice in two Domini, in administrations but resigned to become librarii a of the Ottawa Public Lihrary. Among his beocknown books are Canadian Lifo in Town and Country, The Search for the Western Sea, and Flowers from a Canadian Garden.
Burrell, Martin (1858- ), legislator, born at Faringdon, Berkshire, England; educated at St. John's College, Hurstpierpoint. He arrived in Canada in 1885, and engaged in horticultural work in the Niagara peninsula. In 1000 he went to British Columbia, where he becume a member of the provincial board of horticulture. In 1007-08 he was in England as fruit commissioner for British Columbia. He was elected to the House of Commons in 1008 and in 1011 was appointed minister of agriculture in the Borden government.
Burton, G . ver, Sir (1819-1901), lawyer and judge, was . $n^{1}$ at Sandwich, England. He came to $C$ in 1836 and was admitted to the bar ir ${ }^{2}$ 42. He practiced his profession for over th..ty years, and from 1874 to 1807 was a judge of the Court of Appeals of Ontario; from 1807 until his death he was chief justice of Ontario. He was chairman of the commission which consolidated the statutes of the province. In 1898 he was created a baronet. Burwash, Nathaniel, Rev. (1830- ), an eminent Canadian scholar, president of Victoria University since 1887. He has been one of the leaders in every prominent educational reform in Ontario during his day. Before becoming

## Blography

providont of Victoria Univeruity be was profanor of natural hintory and suology. In 1859, as proiddont of the conference, he was inotrumental in bringing about the confederation of the univenition. He is the author of Wodey's Doctrinal Standondo and a Lifo of Eyorton Ryercom. D5, Joun, Colonel (1781-1833), founder of Otrame, was bore in Eagland. He came to Canade in 1802 and was stationed at Quebee for nine years as an officer in the Royal As tillery. After varied experiences in Portugal and England be returned to Canada in 1826 to superintend the construction of the Rideau Canal. After five years of pioneer work he completed his tack and the first vesool passed through the locks on May 29, 1832. Instend of receiving credit and praise for his great aceomplishment, Colonel By was severely and urjustly censured for extravagance. The town he founded wes called Bytown for twenty years, but in 1854 it was incorporated under its present name, Ottawa.
Oaldos, Jayes Alexunder (1868- ), born in Odord County, Ontario, educated in 'the public schools of Winnipeg and at Manitoba College. He was principal of the Moose Jaw High School, 1891-04; inspector of schools of the Northwest Territories, 1894-1000; and deputy commissioner of education, 1001-1005. Ho was elected a member of the Saskatchewan assembly at the first general election in 1005 and was appointed provincial treasurer and commissioner of education in the Scott ministry. From 1008 to 1911 he was also a member of the House of Commons.
Onmoron, Agnks Dean (1863-1012), author and educator, born in Vietoria, British Columbia. Miss Cameron began teaching at the age of fifteen and for twenty-five years was closely identified with the public schools of the province. During the last ten years of her service she was principal of the South Park Public School, Victorin. In 1008 she travelled from Chicago to the Arctic Ocean by way of the Athabasca, Slave and Mackenzie Rivers. She is the author of The New North and of numerous articles which have appeared in the Century, Allantic Monthly and other magazines.

Oampbell, Alexander, Sir (1822-1892), statesman, born at Heydon, Yorkshire, England; educated at Lachine and St. Hyacinthe. He studied law and becume a partner of Sir John A. Macdonald; in 1860 he was appointed dean of the feculty of iaw in Queen's University,
alderman of Kingtion (1851-2). Previous to Confederation ho was apmaker of the Legidativo Council of Canada, but revigned in 1801 to bocome comminiotier of erown lands. He took a prominent part in both the Charlottetown and Quebee conferences. He became poutmacterseneral in the firat Dominion cablinet and served for six years. He was called to the Senate in 1807 and for twenty years was the Conservative leader. Uader Sir John A. Mecdonald he held various cabinet positions from 1878 to 1887, the moot importunt being minister of justice. On June 1, 1887, ho became lieutenant governor of Ontario; he died on May 24, 1892, just a few days before the expiration of his term, and was buried with public honors.
Oampboll, Coun H. (1859- ), iegislator, born at Burlington, Ontario. He was admitted to the bar of Ontario in 1881 and the nest yeur to that of Manitoba. He was elected a member of the Manitoba assembly and was choven attorney-general of the province.
Oampboll, Wiluax Wilmed (1881- ), poet, born at Berlin, Ontario, and educated at the University of Toronto and at Cambridge, Mass. Ho was ordained for the Church of England ministry in 1885 and began his duties in a New England parish. Three years later he returned to Canada and becanie rector of St. Stephen's, New Brunswick. In 1891 he retired from the Church and removed to Ottawa and secured a position in the civil service. His first poeris appeared in a village paper; later he became a contributor to the Atlantio Monethy, the Century and Harper'0 Magazine. His poems on the Lake region have earned for him the title of The Poet of the Jakes. His first volume was Lake Lyrics and Other Poems. Since then there have appeared The Dread Voyage, Mordred and Mildebrand. His poem entitled The Mother, which appeared in Harper's Mapazine in April, 1891, is said to have received more notice than any other single poem that ever appeared in the American press.
Oamoton, George Frederice (1854-1885), poet, was born at New Glasgow, Nova Scotia, and educated at Queen's University, Kingston. After spending several years in the United States he returned to Canada to become editor of the Kingston Newo. Many of his poems rereived praise frum suck exacting critics as Swinburne and Matthew Arvold. Cameron's poems may be found in Lyrics on Freedom, Love and Death, edited by C. J. Cameron, and in - Stedman's Victorian Anthology.

## Exuanty

 Caver, Troanta Aher atudyly imelloto for trovind ertendiviy and contimued is atudies
 a stop modiral fecolty of Vietoria Colloge. Ifo E willhanos es the author of wreval books, is. dreling The Sotilimor of Oppor Canda, Tip
 daver of the Urpre Canme Rowillion, 1857. Garligy, Jotv, is ( $1223-1011$ ), athtumase, borm in Loadon, (meario, educatod hat the schools
 ald Conad 1854 t 1800 and a mamber of the
 wertes, :, 11 u . r-gc. crail, miniteter of agricultric, ame incun'er of the cab'net without portSolio in vorioun catinets. In $X$ isch, 1803, the atending con nit tas in sgrieulta. In the House
 approciatio, en the seer $i$, wiuered by hime to the agricult sa inteat at an Dominion. Oarigle, furuar io is artist of Canadian Writh. Whe a young gisl an attrneted the ato tention of the Irincom folise, and this led to her being enat tu Paris io 1890 , where she studied at the Julina Atelier. She was acknowledged by In in intructor to be his moot prominent pupil. In 1803 the exhibited in the Paris alon her picture of A Dudel Lady. The pext year two of her pictures were exhibited. In 1807 she was Alocted an asociate of the Royal Canedian

Oarman, Alimant, Rev., D.D., LL.D. (18331, born in Dundes County. Ontario; eduented at the Dundes county grammar school and Victoria Univenity, Cobourg. He was principal of the Dundas county high echool from 1853 to 1837, when he was chowen chancellor of Albert Univerity (laters united with Victoris College). Fio was elected a bishop of the Methodist Epircopel church in 1874 and since 1884 has been its general superintendent. Dr. Carman is widely known as a premecher and orator. (For portrait see illustration facing page 190.)

Garman, Bliss (1861- ), journalist and poet, soo of Rev. Albert Carman, was born at Fredericton, New Brunswick, and educated at the Univerity of New Brunswick, Edinburgh and Harvard. From 1890 to 1892 be whs afice-editor of The Independent, New York. Among the beat known volumes of his poems are

Low gite on Guad Pre, Bance from Vepelondio (with Rictind Bovig), A Wintor Edidoy, and Pipeo of Pm. IHo ctiedo fo the Ere rank of Caradiar preta
Oarca, Jomera Eorwad (1800- ), wisis Inter, bora in Selate Louice, Ouxbees ducalet at Baint Anng's Colleg. Ho held variony loral oflicesste Selante louios and was doeted to the Queboc loglelature in 1002. He becime minister $\alpha$ epriculture in the Gouin cablimet. Oasen, Remí Edouand ( $1800-1876$ ), stater manand judyo. Ho was educated at tho Seminary of Quebee and at the Colloge of 8nint Pierre, and was admitiod to the har in 1820. At the ose of twratymen he was elected mayor of Qupbec, holding the oflice for ten yeur. Later he was twice docted apeaker of the leginlative council of Lower Camenta. In 1853 bo retired from active political life and became judge of the Queen'd Bench. The last three years of his Hifo he was lioutenamt-governer of Quebec. Cartios, Geomana Etienve, Sír (1814-1873), Conorvative statemana, wa born in the province of Quebee on the Oth of September, 1814. He wae called to the bar in 1835 and gained a large perectice. He took an ective

an crongen en cantiri
part in the rebellion of 1837 but gradually changed his views so that after his election to Parliament in 1848 he soan became an actnowledged leader of the more liberal wing of the Conservatives. In 1855 he was appointed provincial secretary and two years later attorneygeneral for Lower Canada. From 1858 to 1862

Mography
the whe jolmt premier of Caseada with Sir John A. Msodonald. He rook a prominent part in progmalve Ingilation, vuch as the abolition of celgnourial tenure, the reform of eivil Law, and the development of the Grand Truak Rallway. He carried Queber into the Confoderation against great oppoation and served till his death as minioter of zailitis and delence in Macdonald's Arst cabinet.
Oerter-Cottea, Funvers L. (1817- ), a journalist and legiblator, born in Yorkohire, England. Ho is the manoging editor of the Victoria Nowe Adsortioer. He was first eiected to the legidature of Britiah Columbia in 1890, and retlected in 1894 and 1898, but defented In 1900. In 1803 he was again elected. He was provincial minister of finance from August, 1808, to February, 1900, and chief commissioner of lands and works from March, 1809, to February, 1000. In 1904 he was appointed president of the executive council.
Oartwright, Rictard John, Re. Hon. Sir, KC.M.G., P.C. (1835-), statesman and financier, born in Kingston, Ontario, educated at Trinity College, Dublin. He was elected to the Parliament for Upper Canada in 1863 and continued to serve till the formation of the Confederation in 1867, when he became a Liberal member of the House of Commons for Ifanox. From 1873 to 1878 he was minister of finance, and after the resignation of the Mackenzie ministry became leader of the Litheral opposition. He became minister of trade and commerce in the ministry of Sir Wilfrid Laurier and was acting premier during the latter's absence at the queen's jubilee celebration and again at the Imperial Conference in 1907. In 1897 he proposed the formation of the Angio-American Joint High Commission, of which he became a member.
Oesgraid, Henri Rarmond, abbe (1831-
). French-Canadian historian, was born at Riviere Ouelle, Quebec. He studied for the priesthood and was ordained in 1856. He is best known for his numerous histories, in which he sought to portray the Freach-Canadians as they really were. Among his works may be mentioned Legendes Canadiennes, Historie de l'Ilotel Dieu de Quebec and Monloalm et Levis. Casgrain's books are well written and entem. taining but their intense partisanship occasic.ally makes them unsatisfactory as histories. Challojer, Frederict Sproston (1869), painter, born at Whetstone, Kityland; edueated at St. Paul's School, Stratford, Essex.

Mograply
He ritudiad at the Ontario School of Art, also in Italy, Exppt and Syria. Ho is a member of the Ontario society of Artists and of the Royal Canedian Acendemy of Art. Among his best pietures are Worbore of the Field, $A$ Song at Twilioly (both In the National Gallery, Ottawa), When the Lighte are Low and A Quide OUS Road (in the Provincial Art Gallery, Toronto).
Ohamberiala, Montaque (184t-), born at St. John, New Brunswick; educnted in private schools there. For ten years he was an active member of the Canadian militia, retiring with the rank of captain. Mr. Chamberiain is an authority on Cunadian binds; his published worts include Canadian Binds, Binde of Oroonland, Systematio Table of Camadian Binde, and Tho Penobered Indians.
Ohaploase, shah plo', Jowapli Adolpar, Sir, LL.D. (1840-1808), a politician and barrister, born at Ste. Therese do Blainville, Quebec, and educated at the College of his native town and at Saint Hyacinthe. He began the practice of law in Montreal, and in 1873 was created queen's counsel. He becume a member' of the Quebec legislature, and at the union of the provinces In 1867 became solicitor-general for Quebec. In 1878 he was chosen leader of the Conservative opposition in the Quebec aseembly, and the following year was appointed premier of the province. In 1882 he became secretary of state for Canada and continued in this position with the Abbott ministry. Later, for a short time, he was minister of customs. In 1892 he was appointed lieutegant-governor of Quebec. A ready speaker and a keen debater, he was generally considered the leading FrenchCanadian orator of his time.
Olati, Willam Robinson, D.D., LL.D., F.R.C.S. (1829- ), born at Inveruric. Scotland; educated at King's College, Aberdeen and Hartfond College, Oxford. He was curate of St. Mathias', Birmingham, 1857, of St. Mary Magdalene, Taumen, 1858. In 1887 and again in 1899 hedeliv- lectures at the University of Michigan. Since 1882 he has been professor of phliosophy at Trinity University, Toronto. Ife was chosen honorary canon of St. Alban's Cathedral, Toronto, in 1907 and was president of the Royal Society of Canada in 1910. He i the author of a number of books, including ine Redeemer; The Four Temperaments; Saconarola, His Life and Times, and Pascal and Port Royal.
Oochrane, Francls (1852- ), legislator, born at Clarenceville, Ontario; educated at St.

## Mograsty

Thomas, Quebec. Ho wou for many years a melkont of Sudbury, Ontario, which ho Inter reperenated in the Ontario amambly. He was appointad ministere of hade and mineen of Ontario on May 30, 1005, and on the formetion of the Borden minitury wies appointed miniteres of milways and cuanala in the Dominion soveramaot. He reprecents the Nipiaing district of Ontario in the Howse of Commona.
Oabborno, Joank, Sir, First Baron Senton (1778-1803), English geperal and coloninal administrator, born in Hempehire, Englanod. $\mathrm{He}_{\mathrm{c}}$ entered the army as an ensign in 1794 and won every promotion without purchavo. He served with greand distinction in Egypt, Spain and Belgium, under Sir John Moore and the Duke of Wellington and was expecially conspicuous at the battle of Waterloo. In 1830 Sir John became lieuteonant-governor of Upper Canada. Haviace realened his position, he was about to depart for England when the Upper Cannda rebellion brote out By apecill order of the bome government he took commend of the Britich forcoses and quickly crusbed the outbreak Later ho held several other high offices in the mervice of his country and in 1880 , on his retirement from the army, he wes crestod field marshal.
Ooldwoll, Gronar Ronson, K.C. (1858), a barrister and legisistor, born in Darlington, Ontario, and educatod at the publica achool in Kinburn and at Trinity College School, Port Hope, and Trinity College, Toronto. He removed to Manitoba in 1882 and engaged in the practice of hav in Winnipeg. Soon atter be removed to Brandon, in which city be took an active part in public affairs, and was a member of the city council for twenty years. In November, 1907, he wns appointed municipal commisuioner for Manitobe, and a year later he was also siven charge of the department of education.
Oolebroko, Wrumu Macaran Gronal, Sir (1787-1870), Boldier and coloninl governor. Atter graduating from Woolwich he entercit the army in 1803. He served with distinction in India, was for ten years one of the commissioners to enquire into conditions in Ceylon and wha lieutenant-governor of the Bahamas and of the Leevard Idands. From 1841 to 1847 he wes lieutennant-governor of New Brunswick. After eight yeurs as governor of Barbados he returned to Englend, was appointed lieutenant-general, and untill is death was in cocmmand of the royal

## Megraphy

Donamydt, Aetrave Whunur Patrac Aluarts, Duto of, (1850- ), mon, of Quee Vietoria, wne born at Buctingham Palareo May 1, 1850. Ho entered the Royal Militury Achdemy, Woolwich, at the ace of dixteen an at cightecon wes amigned to the Royal Engineen He then surved for a fow months with the Roya Artillery, and in Auguat, 1880, was trans ferred to the Rifle Briende. He mas promotee captrin in 1871 and muccesuively won promotion to major, lieutenant-oolonel, colopel, major. ceneral and to the runk ol general in 1893. In Egypt, in 1882, he commanded the Guards Brigade at the battle of Tedel-Kebir. He wis mentioned several times in despatchem, was made Companion of the Bath, and mas thanked by Pariament. From 1880 to 1890 the duke was in active command of the Bombey army in India; from 1890 to 1888 he was dimtrict commander at home, first of the southen district, liter of the Alderabot dintrict. $\mathrm{He}_{\mathrm{t}}$ evecoseded Lord Roberts in 1000 ns commander. in-chief of the forcess in Ireland. Four years Inter, when the war office was reorganized, the duke whas appointed to the newly created office of inspectorgeneral of the forces, which he held untill 1000, when he became commander-in. chies in the Mediterranear. Ho remained otationed at Malta for two years and then ro turned to England. On October 13, 1911, he became governorgeneral of Canedi.
Oostícan, Jomir (1835-), a politicine, born at Saint Nicholes, Quebec, and educated at St. Anne's College. He was elected to the legis lature of Nova Scotia in 1881, and upon the formation of the confecteration in 1887, weas elected to the House of Commons. He entered the Mecolonald cabinet as minister of inland revenue in 1882, and continued to hold the office untilit was aboliahed in 1892. He wha secretury of otate in the Thompoon administration and Inter, in the ministries of Sir Mackenzie Bowell and Sir Charles Tupper, he held the portílio of marine and fisberies up to the retirement of the party in 1896. He served continuously in the House of Commons from 1887 to 1907, when he was called to the Senate.
Ootos, Samie Jmannette (1862-), author, bora in Brantford, Ontario, and educated at the Collegiato Inatitute there. Her maiden name was Serrah Jeannette Duncun. She began her career as a publio achool tencher, but gave that up for joumalism. Her first series of letters were descriptive of the cotton centennial erposition, New Orleass, aid appeared in the n. of Queen Palace on vel Military sirteen and 1 Engineers h the Royd was trans3 promoted promotion sel, major 1893. In e Guands Cebir. He lespatches, , and was o 1890 the - Bombay e was di - southern trict. He mmander. our yean nized, the ited office h he held ander-inremained then ro1911, he
olitician, scated at the legispon the 67, was entered inland he office ecretary ion and Bowell tolio of $t$ of the in the hen he ), all ucated naiden began t gave letters al ex-
n the

H. R. H. THE DUKE OF CONNAUGHT


## Megraply

Toconto Gicho, tho Memphis Appolel and other papers. Aftwrwade ehe hecame a mamber of the editorial stal of the Waebington Pouk, and later recturaed to the Torcato Cllob, where abe wrote under the pen mame of Garth Graftoa. Later she was correspoodent for the Montreal Star at Ottawn. She then zeede a tour round the world, writing letters for a ayndicate of American and Cemedian sewspapers. Some of her best known works are $A$ Sceial Departure, How Orthodocia and I Wont Rovend the World by Ourselese, The American Girl in London, A Deughter of Today, Vernon's Aunt, The Simple Advonture of Mom Sahib, The Story of Sonny Sahib and His Honor and a Ledy.
Ooz, Gromar Alagatus (1840- ), a capitalist and legialator, born at Colborne, Ontario, and educated there. Mr. Cox was very succesful in business enterprises, and took an sective interest in all measures having for their purpoce the benefit of his town and the province. He was for three years mayor of Peterborough. In 1884 be became president of the Central Caneda Loan a Savings Co., and the following year a direetor of the Canadian Bank of Cornmerce, and in 1890 was chosen president of that institution. On November 13, 1896, he was called to the Dominion Senate.
Orais, Jamas Hinntr, Sir (1748-1812), British soldier. He took a conspicuous part in the American Revolution, was present at the battle of Bunker Hill, at the surrender of Fort Ticonderogen with Burgoyne at Saratoga and with Cornwallis in Norttr Carolina. In 1791 he was in command of a British force against the Dutch colony of the Cape of Good Hope, which surrendered, and henceforth was a British colony. From 1807 to 1811 he was governor of Lower Canada, but his administration was unpopular because of his distrust of the French-Canadians.
Grawford, Isabrina Valanct (1851-1887), poet, born in Dublin, Ireland. She removed to Canadu at an early age and lived at Peterborough and Toronto. Her verse shows considerable lyric power and originality. Old Spookses' Pase and Maloolm's Katic are her best known books.
Otosh, Canaliss Wilson (1872- ), lawyer and legislator, born at Madoc, Ontario; educated at Upper Canade College, Toronto University and Ougoode Hall, Toronto. He was appointed attorney-general in the first Alberta ministry in 1005 and elected to the legislative assembly the same year. He msigned as attorney-general in 1910 but continued
to represent Edmonton in the asembly. On the smorganization of the Siftom miniotry in May, 1912, ho again became attormey-general.

Oushing, Wrusum Himer ( 1852 ), bucinem man and legislator, educated in the public schools of Ontario. He was appointed minister of public works in the firat Alberta cabinet in 1905, was elected member for Calgary in the amembly in the same year, and has been returned at each election since.
Danill, Antosry, Father (1601-1648), Jesuit misaionary, born at Dieppe, France. Ho accompaniod Champlain to America in 1633 and for many years was one of the most faithfu! and courageous of the missionarics. While celebrating mase on July 4, 1648, he and his followers at St. Joseph were attecked by houtile Iroquois. The brave priest tried to rally his people, but soon fell, overwhelmed by a shower of arrows.
Davies, Louns Heray, Sir, K.C., K.C.M.G. (1845-), ataterman and jurist, born at Charlottetown, Prince Edward Island; educuted at the Prince of Wales College in that city and at the Inner Temple, London, England. Ho began the practice of law in his native city in 1868 and yoon became one of the acknowledged leaders of his profession. In 1869 and 1871-72 he was solicitor-general of the province; 187370, leader of the opposition; 1876-79 premier and ettorney-general. Hn was elected to the Dominion House of Commons as a Liberat in 1882 and continuor :y, returned until 1001, when he was appointer ge of the supreme Court of Canada. He was counsel for Great Britain before the International Fisheries Arbitration Commission at Halifax in 1877, joint delegate with Sir Wilfrid Laurier to Washington for the settlement of the Bering Sea controversy in 1897 and a member of the Joint High Commission for the settlement of all disputes betwreen Canada and the United States. From $186 \%$ to 1801 he was minister of marine and fisheries.

Dawion, Gyorar Mercer (1849-1001), geologist and explorer, aon of Sir John Willinm Dawson, was born at Pirtou, Nova Scotia. Ho was educated at McGill University and the Royal School of Mines, London. In 1873 he was appointed geologist and naturalist to the North American boundary commission, and in 1875 became member of the staff of the gealogical survey of the Dominion, later beo coming assistant director and in 1805 director. He was in charge of the Canadian governmeat':

Blography
Yukon Survey in 1887 and Dawmon City is named for him. In 1891 he took an important part in the arbitration of the controveray regeacling the real fisheries in the Bering Sea. He was the author of many scientific papers and reports, expecially on the surface peologs and mineral formastions of northern and western Canada.
Dawion, Jomr Wruun, Sir (1820-1899), geologist and educator, born at Pictou, Nova Scotis, and educated at the University of Edinburgh, Scotland. After his return to Nove Scotia in 1842 he several times accompanied Sir Charles Lyell on geologienl expeditions. From 1850 to 1853 he was provincial superintendent of education and from 1855 to 1893 he was professor of geology and principal of McGill University, which attained a high rank under his administration. In his books he declined to accept the theory of the evolution of man and stated that human beings only made their appearance on the earth in comparatively recent times. Among his many published works are Acadian Geology, Air-breathers of the Coal Period, The Story of the Earth and Man, The Daven of Life, Foasil Men and Their Modern Representutives, The Canadian Ice Age. Decanio, Jeremie La (1870- ), legislator, born in Notre Dame de Grace; educated at Montreal Colieyse and Laval University. He studied law in the office of Hon. Messrs. Gouin and Lemieux, with whom he later formed a partnership. In 1004 he was elected to the Quebee assembly as member for Hochelaga. In January, 1009, he was appointed provincial minister of agriculture and in December of the same year became provincial secretary.
De Millo, Jamps (1837-1880), educator and author, born at St. John, New Brunswick, graduated from Brown University in 1854 . From 1860 to 1865 he was professor of the classics in Acadia College (Wolfville, N. S.) and from 1865 until his death was professor of history and rhetoric in Dalhousie College at Halifax. His publications include Andy O'Hara, The Soldier and the Spy, The Dodge Club, The Living Link and A Cartle in Spain.
Denison, George Taylor, Lt. Col., LL.B. (1839-), one of Canada's most patriotic citizens, was born in Toronto and educated at Upper Canada College and Toronto University, receiving the degree of LL. B. from the latter in 1861. He took an active part in the military affairs during the Fenian raid in 1866, and during the Riel Rebellion in Northwest

Territory in 1885. In 1865 he won the graod prise offered by the Emperor of Russia for the best work on cavaliy tactics. His book hen been translated into several languages, and is sccepted as authoritative in modern strategy. He has also written Soldiering in Canada. He has been president of the British Empire League in Canads eince its organization, and has written epoch-making articles on the relationship be tween the motherland and the colonies.
Denonville, Marguns de, French soldier and colonial governor. In 1685 he was appointed governor of New France. Though a brave and able man he was not equal to the task of conquering the hostile Indians who threatened the colonists. He made several vigorous attacks on the Indians but only succeeded in infuriating them. In 1689 he was succeeded by Frontenace. Dovins, Charles Ramsay (1858-), born at Aylmer, Quebec; educated at Montreal College and Laval University. He was engaged in newspaper wort for many years. His public career began in 1891 when he was elected to the House of Commons. From 1897 to 1903 he wns Canadian commissioner in Ireland; in the latter year he was elected to the British House of Commons as member for Galway City. He returned to Canada in 1906 and was elected to the Dominion House of Commons, but a year later resigned to become minister of colonizntion, mines and fisheries in Quebec. Since the by-election of Nov. 4, 1907, he has represented Nicolet county in the assembly of the province. Doherty, Charles Joseph, D.C.L., LL.D., K.C. (1855- ), jurist and legislator, born at Montreal; educated at St. Mary's Collige and McGill University, Montreal. He was admitted to the bar in 1877 and from 1891 to 1906 was judge of the superior court of the province of Quebec. He served as captain of the sixtyfifth Battalion during the Northwest Rebellion. He was appointed professor of civil law at McGill University in 1890, was elected to the Dominion House of Commons in 1908 and in 1911 was made minister of justice in the Borden cabinet.
Dorion, Antoine Aime, Sir (1816-1891), lawyer and statesman, was born in the parish of St. Anne de la Pérade, in Champlain county, Quebec. He was educated at Nicolet College and then studied law in Montreal, where he was admitted to the bar in 1842. For many years a leuder in his profession, he entered public life in 1854 as a member of the Canadian Assembly, in which he served until Confederation. Dorion

## Mography

won became one of the leaders of the reformers who sought to secure proportionate representation. In 1856 he suggented a federal union of Upper and Lower Canada, but did not continue to advocate the scheme. On August 2, 1858 he formed an administration vith George Brown, but after holding office four days the ministry resigned. A few years later when confederation was again discussed he opposed union, believing that there was nothing to be gained at the time. Previous to 1867 he was succesaively commiscioner of crown lands, provincial secretary, and attorney-general of Lower Canada. In 1873 he was minister of justice in the Meckensio government; the next year he became chief justice of the province of Quebec. Though a man of ability and broad mind, he never had a political following aufficiently strong to enable him to carry out his ideas.
Dougall, Jomn Redpati, M.A. (1846a journalist, born in Montreal and educated at the high school of Montreal and McGill University. He became associated with his father and succeeded him in the management of The Montreal Daily and Weekly Witness. Later ho became the sole owner and publisher of The Witness, and as the manager of that paper he has acquired distinction as one of the leading journalists in America.

Dougall, LiLT (1858- ), an author, sister of John R. Dougall, was born in Montreal. She spent her childhood in Montreal and her girlhood in New York. After completing her education she traveled somewhat extensively in Europe. She is the author of numerous stories whose scenes are laid in Canada. Among the best known of these are Beggare All, What Necessity Knows, The Mermaid, A Question of Faith, The Madonna of a Day, end The Earthly Purgatory.
クoughty, Arthur, C.M.G., Lit.D., F.R. Hist. S., born at Maidenhead, Berkshire, England; educated at Eldon School, London, and New Inn Hall, Oxford. He came to Cenade in 1886 and entered the service of the Lagai and Commercial Exchange at Montreal; he held several other secretarial positions before his appointment to his present position of Dominion archivist. Dr. Doughty was one of the first to realize the necessity of collecting documentary material of Canadian history. He is the author of a number of historical and other works which are standard; among the best known are The Siege of Quebec and the Batlle of the Plaine of

## Iography

## Abraham, Quebse under Two Flage, and Lifo and Worke of Tonnyoom.

Dowgias, Jaris, Sir (1803-1877), colonial administrator, was born at Demerara, British Guiana Ho was educated in Scotland, but at the age of weventeen left that country and entered the employ of the Northwest Corapany. After holding numerous positions under his friend John McLoughlin, he was in 1830 appointed McLoughlin's chief ascistant at kort Vancouver and finally succeeded him as chief factor. From 1851 to 1858 Douglas was governor of Vancouver Island, then under the control of the Hudson's Bay Company; later he also became governor of British Columbia. In 1866 the union of the two colonies under the crown led to Douglas' resignation. There is no question that he had been for many years an autocrat in office. Certain forms of government were still observed, but it was the will of Douglas that ruled. With the rapid increase of population in the sixties this style of government becumequite impossible. But even Douglas' bitterest enemies paid tribute to his honesty, courage and ability, and all admit that he may justly be considered as the founder of British Columbia.

Drummond, Gordon, Sir (1772-1854), British soldier. Entering the army in 1789 he rose rapidly and distinguished himself in Egypt and during the Napolconic wars in Europe. He was second in command of the British forces in North America during the war of 1812-14 and at the close of the war remained for a year as commander-in-chief.

Drummond, Wilhiam Henrt (1854-1007) a physician and author, born at Currawn House, Ireland, and educated at Mohill and at the Montreal high school and Bishop's College, Lennoxville, Quebec. He engaged in the practice of medicine in Montreal, and at the same time held the chair of medical jurisprudence in the faculty of Bishop's College. He was widely known as a writer as well as a physician, his contributions of dialect poetry having ven him considerable fame. Among these The Habitant, Phil-o-rum's Canoe, Johnnie Courtears and The Voyageur are the best known. He also wrote some satirical verse in English.
Dufir, Jayms Stoddart ( 1856 - ), farmer and legislator, born near Cookstown, Ontario. He was elected to the Ontario legislative assembly in 1898 and in 1008 he was appointed minister of agriculture in the Whitney adminis. tration.

## Mography

Deti, Lnmar P., K.C., LLB. (1805furiot, born at Menford, Ontario; educated at Toroato Univenity. Ho was cellod to the bar in 1803 and became sedse of the Supreme Court of Britinh Columbia in 1004. Stince 1003 ho has beva judys of the Suppeme Court of Cenade.
Detioria and Ava, Pamparicer Tmaris Humason Blacewood, Marquis of (1820-1902), Briti-h diplomatist and staterman, educated at Eton and Oxford. After apending ceveral years in managing his Iriah cotates he soon became a prominent member of the Liberal party, was seat on a number of important forsign minions and also held several cabinet poritions under Lond Pal verstom, Earl Russell and Gladstone. In 1872 he was appointed governorgeneral of Caneds. Here he was given opportunity to dipiny hir brilliant abilities in dealing with the many problems of the newly formed Dominion. His great personal charm, added to his known ability, combined to make his administration one of the most popular in the history of Canada. He returned to England in 1888 and for pearly thirty yeare continued in public service, nucceaively as ambmasador to Ruscis, British commiscioner in Egypt, viceroy of Iodia, ambuandor to Italy and ambasador to France. (For portrait, see illustration fecing page 200.)
Dunean, Noaman (1871- ), author and educator, born at Brantford, Ontario; educated at the Univerity of Taronto. From 1897 to 1900 he was on the start of the New York Evening Poat; from 1001 to 1004 he was professor of shetoric at Washington and Jefferson College; and he was also professor of English literature at the University of Kansus for a time. He is best known, however, as an author. His best books include Doctor Inele of the Labrador, The Way of the Sea, The Cruice of the Shining Lighe and Dr. Gronfell's Parish.
Dungmuir, Junis (1851- , a business man and legislator. He was elected to the legislature of British Columbia in 1898 and again in 1900. Upon the resignation of the Martin government be was called upon to form an administration, which be did, assuming the portfolios of premier and president of the council. He resigned in 1002 and from 1808 to 1809 he was lieutenant-governor of British Columbia. Derham, Lono Jorw Geomas Luyaton, First Eari of, (1792-1840), an English statesman, born in London and educated at Eton. He hold a commistion in the army on completion of

## Megrophy

his educntion, but woon gavo his attention to politics. In 1818 he entered Parliament for Durham as an advanced Liberal. In 1828 be was created Baroan Durham. In 1833 he whe appointed ambanasdor extraordinary to Russia, and in 1858 governor-general of Canada. While Lord Durham remained in Canada as governorgeneral only aix months, the conditions at the time of his appointment and his able statesmasship mado a lasting impreaion upon the history


LORD DUREAY
of British North America. When appointed governor-general, a rebellion against the home government had broken out and Canadian affairs were in a turbulent condition. Lond Durham made inquiries in the various provinces as to the exact condition of the people with regand to the form of government, and hald a conference with the governors of the provinces. This conference resulted in a plan for the confederation of the provinces. Although this confederation was not effected until a later date, Lord Durham'a report to the home government is one of the moot masterly ever written on colonial matters. He pointed out the necessity of making the executive of the government responsible to the people. His suggestions were edopted by the home government, and as a result Upper and Lower Canada were united in Fobruary, 1841.

Edgat, James David, Sir (1841-1909), statecman, born at Hatley and educated at Lennorville and in the city of Queboc. He began the practice of law in 1864 in Toronto, and was cre-
ated queen's counsel by the Ontario goverument in 1890. For a time after begianing his practice be was the logel editoe of the Toronto Globe and Montraal Trado Revive. He was elected to the House of Commions in 1872 and became the lender of the Liberals; under his leadership the downfall of the first Macdonald cabinet was caused in 1874; he remained out of Parliament until 1884, when he was returned. At thin time he had been for four years one of the directors of the Toronto Clobe, and his writings had been influential for the reform party in Canada; in 1898 he was speaker of the llouse of Commons and the following year became a member of the privy council.
Eigin, Jumes Buvce, Eighth Earl of (18111862), English stateaman, soti-in-law of the Earl of Durham, educated at Eton and at Christ


Church, Oxford. After four years as governor of Jamaica he was appointed governor-general of Canads in 1846, while the struggle for responsible government was at its height. Though the principle had been acknowledged by Lord Sydenham in 1841, it was not until Lord Elgin summoned Lafontaine and Baldwin to form a new ministry after the general election of 1848 that the principle was really in operation. Since that date no Canadian governor has ever denied either the principle or practice of responsible goveriment. Lord Elgin returned to England in 1854 and in 1862 became Viceroy of India.
Ellison, Pricr (1862-), legislator, born in England. For many years he was the largest
grower of wheat in British Columbia. In 1808 ho became a member of the legiolative nacembly, in 1000 was appointed minister of lands and two years later ministers of finance and agriculture.
Imory, Joarea Edward, Very Rev., D.D. (1855- ), born at New Glaggon, Quebee; educated at the College of the Avoumption and St. Joneph's (now Univernity of Ottawa). He was ordained a prient in 1881, and for three years was missiosary in western Canada. He was Manter of Novices and Superior at Oblate College, Tewkaburg, Mass., 1881-03, then mis sionary in Texas for two years, and from 1895 to 1001 escistant pastor of Holy Angels Church, Buffalo, New York. Since 1801 he has been rector of the University of Ottawa.

Emmierson, Henar Robint, K.C., LL.D., D. C. L., P. C. (1853-), legislator, borp at Maugerville, New Brunswick; educated at Acadia College and at Boston University, Boston, Massachusetts. Ho was admitted to the bar of New Brunswick in 1877 and was elected to the asmembly of the province in 1888. In 1892 he was appointed chief commissioner of public worke and from 1897 to 1800 was premier and attorney-seneral of New Brunswick. Later he became a Liberal member of the Dominion House of Commons and was uninister of railways and canals from 1004 to 1007, when he resigned to engege in business.
Falconbridge. Willum Gunnioliat, Sir (1840-) jurist, born at Drummondville, Ontario; educated at the Model Grammar School for Upper Canada and at Toronto University. He began the practice of law in 1871; Was appointed an examiner in Toronto University and from 1872 to 1881 was registrar. In 1885 he was created queen's counsel by Lord Lansdowne and appointed a judge of the Queen's Bench for Ontario; in 1800 he became chief justice of the King's Bench. Sir William was member of many important commissions, including that for revising the statutes of Ontario.
Fiolding, Wthune Stevens, D.C.L., LL.D., P. C. (1848 ), journalist and statesman, was born in Halifux and was educated there. He became connected with the Halifux Morning Call in 1864 and ultimately became its managing editor. He was elected to the Nova Scotia assembly in 1882 and two years later accepted the office of premier and provincial secretary, which he held till 1896, when he became minister of finance in the Iaurier administration. He served continuously till the defeat of the Liberals

## Degraply

 is 1911. As minietier of inmance he did much to advance the Imancial linterwets of the Dominion. Ef was the prime mover of the preferential tarif bill of 1807 and in the rame yoar he visited England to sout a new Canodian loan, which wes obtrined on very isvorable termas. The net to atablich a Canedian branch of the Royal Mint and fmportant ameadments to the banking and insurance acts are amons tho moot important monoures initiated by him. As acting minister of railways in 1003 he conducted the aegotiations which revulted in the agreement for the conotruction of the Grand Trunk Pacific Railiway. Ho was one of the delegates to the Colonial Conference in Loodon in 1002, one of the king's plenipocentiarios appointed to negotiate a commercial tresty between France and Canadi in 1007, and also a member of the noyal commimion ( 1009 ) to inquire into trade relations betreea Canada and the Weut Indies. Fighor, Canrliss Werumoton (1800a merchant and legislator, born at Hyde Park, London, England, and educated in London. He was elected a member of the legislative everably of the Northweat Territories in 1003, and electod to the legislativo ascembly of Alberta at the first general election in 1905. At the first resaion of that body he was chosen speaker of the house.Fiahor, Stonier Abtrion (1850- ), Jegisletor, born at Montreal; educated at McGill University and Trinity College, Cambridge. Himself a student of the scientific principles of agriculture, he has been one of the leaders in promoting the arricultural interest of Canada. He has been an officer of numerous agricultural associations, was chairman of the Canadian delegation to the North American conference for the conservetion of natural resources and was a member of th3 Conservation Commission for the Dominion. He was first elected to Parliament in 1882; on the formation of the Laurier ministry in 1898 he became minister of agriculture, which post he held until 1911. In this position he secured the enactment of the fruit-marks act, the seed control act, the San Jose scale act, the cold storage subsidies act, the meat and canned food act and many other laws in the inter att of the nation's health and prosperity. He expanded the work of the clairy commissioner's branch, organized a healch of animals branch, organized the permanent census and statistics branch and aloo established many new experimental farms. He personally supervised the construction of a building for the

## Mography

archives, provided for their care, and secured the appolatment of a commision of experts to arrange the material. In 1003 he visited Japan and began negotiations which reculted in a favorable commercial treaty with that mation.
Hispatiflek, Cunries, Rt. Hoa. Sir, D.L, P.C., K.C.M.G. (1853-), legialator and jurist, born in Quebec, educated at St. Ann's Collegs and Laval Univenity. He was admitted to the bar in 1876 and becime crown prowecutor for the city and county of Quebee. In 1890 he was elected member of the provincial aseembly, but revigned in 1883 to represent the same constituency in the Dominion House of Commons. In the same year he was appointed solicitor-general, in 1802 was choven minister of justice, and in 1006 became chiel juatice of the Supreme Court of Canada. Sir Charles is deputy sovernor-general and is also Canadris representative before the Hague Tribunal.
Foming, Sanpord, Sir, K.C.M.G., LL.D. (1827- ), engineer and suthor, born in Scotland. As chief engineer he was in charge of the construction of the Intercolonial Railway. He made the firot surveys for part of the Cans. dian Pacific and was engineer-in-chief, 1871-80. He was elected chancellor of Queen's University in 1890 and was president of the Royal Society of Canada, 1888 to 1889 . He was one of the supporters of the movement for establishing a Pacific cable and it was largely due to his efforts that the present aystem of standard time was adopted by Canadain 1883. Among his published books are The Intercolonial, a Hitcory; England and Canada; Tims and ito Notation, and Tho New Time Rockoning.
Momming, Jumes Krod (1888- ), merchant and legislator, born in the parish of Woodstock, New Brunswick, edricated at the common schools and in the provincial normal school. For a number of years he was a manufacturer and dealer in lumber. He was first elected to the legislature in 1000, and was returned in 1903 and 1908, in the latter year becoming provincial secretary in the Heren cabinet. On the resignation of Mr. Hazen to become Dominion minister of marine and fisheries, Mr. Flemming became premier and surveyor-general of the province.
Torbes, Joms Colns (1846- i, painter, born at Toronto, educated at Upper Canada College, Tormato, South Kensington Museum, and the Royal Acad $\cdots \cdots$, London, Englanc. It is as a portrait pain :hat Mr. Forbes is best known. His portra of King Edward and

## Mography

Queve Alexandra are in the House of Commona, Ortawn. Ho hay painted portraits of Gladstone, Campbell-Bannerman, Lond Dufferin, and many distinguinhod Canadiana, including Sir John A. Mecoloaald and Sir Wilfrid Laurier. Forget, for -liay, Avadez Emanurl (1847), barrister and leglelator, born in Mariovill, Quebec, and educated in the village echool. He began the practice of lav in 1871 . In 1875 he was eecretary of the Manitobe Half-Breed Commixwion; from 1876 to 1888 he was clerk of the Northweat Council. For five years he was asistant Indian commiacioner for Manitobu and the territories and from 1894 to 1898 he was commiasioner. He richly deserved his promotion, in the latter year, to the lieutenantgovernorahip of the Northwent Territories, and when the province of Sackatchewan was organized in is05 he became its firat lieutenantgovernor. At the end of his term of office he was called to the Dominion Senate.
Forgek, Rodolpus (1861- ), banker and legisistor, born at Terrebonne, Quebee; educated there, at Masson College. He is prominent in the financial and industrial world and is an officer of several public service corporations. He was first elected to the House of Commons in 1904, and hes served continuously since that time.
Tontor, Gzorge Eulas, Ph.D., LL.D. (1847), statesman, born at Carletoin, New Brunswick; graduated from University of New Brunswick, 1888. From 1871 to 1879 he was professor of ancient literature in his alma mater. He was elected to the Dominion House of Commons in 1882 and has served continuously since, except from 1900 to 1904. He early won recognation as a brilliant thinker and speaker, and in 1885 was appointed minister of marine and fisheries in the Macdonald cabinet. In 1888 he became minister of finance, holding office till the retirement of the Conservatives in 1890. On the return of the Conservatives to power in 1911 he was appointed minister of trade and commerce.
FOY, Jayps Jostpe (1847- ), born at Toronto; educated at St. Michnel's College, Toronto, and Ushaw College, Durham, England. He was called to the bar of Ontario in 1871 and was elected to the assembly in 1898 . In 1905 he became commissioner of crown lands, but exchanged this office for that of attorneygeneral at the end of the yoar.
Tragor, Duncan Canaron, D.C.L., LL.D. (1845-1910), statesman, born in New Glasgow, Nova Scotia, and educated in the public and

## Sography

normal achools at Truso and at Dalloweso Univeraity. Ho began the practice of law in 1873; was mayor of New Glayow for two terms, and in 1878 entered the legislative council of Nova Scotia, but revigned the mame year to run for the amembly. He was again called to the council and also to the executive council in 1888, becoming the lender of the government. He resigned this ponition to contest a reat in the House of Commons as a Liberal; he was elected in 1891 and reslected in 1896 and 1800. In 1904 he was appointed judge of the supreme court of Nova Scotia and from 1006 until his death he was lieutenant-governor of the province.
Fracor, Simon, an explorer. He was for many years in the employ of the Northwest Fur Company. He it was who first (1808) followed the entire course of the river now known by his name.
Fíchotte, fra shet, Lous Howont (18391808), a French-Canadian poet, was born at Levis, Quebec, was educated at QuebecS Seminary and Laval University, and was called to the bar


LOUIS FRLCABTET
in 1864. As editor of the Journal de Levis, which he founded, he came into public notice for his revolutionary doctrines and was compelled to leave Canada. After several years spent in newspaper work in Chicago, he returned to Levis. In 1874 he was elected to the House of Cormmons but after defeats in 1878 and 1882 he retired from politics and devoted himself to literature. His principal works, all in French, are Mes Loisirs, La Voix d' un Exile, Pelo-mells, Les Oiseaux de Neige, crowned by the French

## Dogreping

Acodray, and two hitotical dramas, Papinems and Folis Poutro. Ho otamdr unquertionad as the groatert Pronch-Cansdian poet.

Gacios, Eranter (1694 ), author and muscian, bora at Louisvilie, Quebee, aducated at Joliatts Colloge. His atudied mume in Pario in 1857-05 and was medo orguaist at the Barilice, Quobec, in 1804. In 1876 he was made secrotary of the department of public works for Qucbee, a poiltion be hold for over thirty yeass. Ho has publishod a number of books of a his. torical charecter, induding Chancoms Populains du Canada, Lo Comete do Pario $\operatorname{E}$ Qupho, LO Fort af 15 Chateass Sr. Lowio, and Lowis Joliv, diocownr of the Misoivippi.
Galt, Alexunder Thliocis, Sir (1817-1803), statermana, youngeet son of John Galk. He was born in London, but emigrated to Cannda at the aye of eighteen. Ho entered the Canadian

hin alexandea calt
Assembly in 1849 as Liberal member for Sherbrooke county, Quebec, but he opposed the rebellion losses bili, the chief measure of his party. Ho retired from the Assembly before the end of the year, but refntered it in 1853 and for twenty years was the leading representative of the English Protestants of Quebec. In 1858 he was called on to form a minis $\therefore$, but declined. From 1858 to 1862 and again from 1884 to 1867 as minister of finance he did much to reduce the chnotic finances of Canada to order. To him are due the introduction of the decimal syatem of currency and the system of protection to Canadian manufacturers. He was

Eagregty
oee of the men whoes influmee led to the colls tion miniotay of 1801-67. Ho becarne ministe of finasce fin the firx Domindon minitry, bol moizned after a fow moache In 1877 he remdroed brillinat survies as Camadian sepromentativo on the Ando-American Fubteries Commission at Hellifar Ho was Cemedina hide commissioner to Great Britain, 1880-1883, bolag nucceeded by Str Charios Tuppos. The laot ten years of his life were apent in retirvoment. "No Cana dian ctatemman has had soundor or more aburndant ideas, but a certain intullortuol fickleness mede him alwas a somewhat untrustworthy colliongue."
Call, Joun ( $1770-1839$ ), Scotilith novelist, born at Irvine, Avechire, and educated at Irvine and Greesock. In 1804 he went to London, where he made unsuccenful atterapts to enter busineni. His early works aro the Lisc and Adminitration of Wolog, Voyages and Tranelo, Ittore from the Lomant, a recond of travel. This Ayrolive Ingotese (1820) first ahowed his real power as a novelist; this was followed by his masterpiecc, Tho Anmals of ins Parioh, and later by Sir Androw Wylic, The Embail and The SleamBoaf. Theso are humorous ntudies of Scottish charrecter, all in his happiest manner. In 1828 he came to Amperica $w e$ mecretery of the Canads Land Company. He carried out extensive schemes of colonization and opened up a rood through what was then foreat country between Lake Erie and Lake Huron. In 1827 he founded Guelph, but two years later returned to England. The remainder of his life was devoted to writing.

Garnong, Phuncois Xhyma (1809-1866), historian, born in Quebec. He was clert of the Quebec assembly for a few yeurs and of the municipal council of Quebec from 1844 to 186 . He publishod a number of historical sketches, poems, etc., but is remembered chiefly for the Histoire du Camada.
 Alsamr (1895-), king of the United Kingdom of Great Britain and Ireland, and emperor of India, the second son of Edwrard VII., was born at Marlborough House, London, June 3, 1865. At the age of 12, with his elder brother, Albert, Duke of Clarence, he entered the navy as a cadet, on the ship Britannia. Here for two years the princes were subject to the same discipline and drill as their shipmates with whom they messed. In 1879 they were transferred to the Bacciants and began their first long voyage. The following year Prince George was promoted

## Mogrushy

to milditipnas. Thio wis but a beginning in the primepis edvacoment in hic naval career. In 184 in becares sub-lioutemat and the fotlowing your be boceme full lioutenast. In 1889 ho was given commanad of a torpedo boat during the maval maneuven: while ta command of the boat ho rendered valiant survioe to a vewel in distrem. In 1890 he commincioned the first sunbont, Thruch, and epent a your on it, visting Caneda and the Wret Indion.
In 1802 Albart, Duke of Clerasce, died and Georfe becance hel apparent to the throne. As the direct helr ho now became Duke of Corarall and of York. The following yeur he married Princem May of Tect, the ceremony taking place in tho Chapel Royal, St. Jamen, July 6. There are ctr children in the royal house-hold-Prines Edward Albert, generally known as Prince David, born 1894; Prince Albert Prederick, bora 1805; Prineem Victoria Alexandra, called Princem Mary, born 1897; Prince Henry Willimm, born 1900; Prince George Edward, born 1002, and Prince John Charle, born 1005.
In March, 1901, the Duke and Duchew of Cornwall and York began their journey around the world in the battleship Ophir, which had been luxuriously fitted our for their comfort. The prince and princem reached Australia in seacon to participate in the events connected with the opening of the first parliament of the Commonwealth. New Zealand and Tasmania were also visited. The next objective point was South Africa, and from there the journey was continued to India and thence to Canada by way of the Pacific, to Victoria, Britinh Columbia. At this time the prince spent more than a month in the Dominion and made a study of Canada's resources and posabilities. The prince was again in the Dominion in 1008 as the King's representative at the Quebec Tercentenary celebration.
On the death of Edrand VII, May 6, 1910, Prince George was prockimed King as George V. The new king has had excellent training for his position. His years in the navy gave him an acquaintance with foreign countries and when his father ascended the throne he imposed many duties upon the Prince of Wales, and be was a dnily visitor at Buckingham Palace, where, during the transaction of businem, be occupied a room adjacent to that of the king, with open doors between them. Moreover, be wis froquently called in consultation with the king and his ministers. By these means he became tamiliar with the affiers of the empire and the
dutho of the novirelga. When Geoges I became King, thervipre, he was well propered to savime the duties of his great oflice. Both king and queen aro popular with their mubjects and are well known in all the leading colonies of the empire, and they began their reign under favorable muspices. (For portrait, non Volume II.)
Gorvals, Hovors Hiffolvte Acmile, K.C., LLLD. (1804 ), havyer and legidator, born at Richelien, Quebec; educated at the Seminary of Sainte Marie de Monoir and Laval University. In his profecioion to has stood high for mony yeers. He is profemor of international haw and civil procedure at Laval Univerrity and is governor of the provincial school for higher commercinal studien. He served la Parliament from 1804 to 1911, as Liberal representative of St. James' division of Montreal.
Cill, Cahnles Ionace (184-1001), a distinguiahed jurint and lesialator, was born at Pierreville, Quebec. After practicing low for neveral years, be served in the provincial avembbly from 1871 to 1874 and in the Houve of Commons from 1874 to 1879 . He was a judge of the Dominion Supreme Court from 1979 until his death.
Gordon, Charles Willuam, Rev. (1880), better known by his pen name, Ralph Connor, author and Presbyterian minister, was

born in Glengarry county, Ontario. He roceived his education at various public schools, at Toronto University and Knox College, Toronto, and at New College, Edinburgh, where

## Megrapley

be atudiad thaciong. Frome 1828 to 1803 bo was ientionery in the Rocty Moustaine, bue in 1891 sulired from miemionary morti to becemo pestor of SL Arepphem'! Church, Wianjpec. His chort morle and sovila, mosty of westers liff, are very popular. Blect Roat, his firts book, is probebly the boet known, but Thi Shy Pilo, The Man from Clonpory, Tho Proppector, Fho Dower, Comanry Seliod Dayo and Corporal Camona are all road and liked by chousarda. Gostom, Dimer Menera, The Very Rov. (1si6- ), clorgmas and eductitor, born at Pletou, Nove Scotia; aducated at Pietow Acwdeny, Ualvenity of Glangow and Univerity of Berilin. Ho was ordained to the ministry in 1806, wis pactor of Se. Androw's Church, Ottomer, for Aftem yoas, and protor of KBoz Collogen Winnipes, 1882-1887. In 1885, as honorary chaplain of the goth Rogiment, to accompaniod the Aighting columan under General Middloton throughous the Northwent Rebellion. In 1887 ho bocame pator of Sc. Andrew's Church and peolemor in Probbytariaa College, Helifux. In 1003 to whe chosea principal of Queva's Uaiveolity, Kingetom.
Graham, Gromae Prany (1850-), journelist and statcomana, born at Eganville, Ontario, and edveated at the Iroquois high achool and Morsibbirs Collegiate Institute. For twentyfive yours he was a journalist, being associated with the Morribburg Herald and with the Brockvillo Rocondor as editor. Ho was elected to the Ontario legialative amembly in 1898, 1802 and 1905, and was provincial mecretary for aix months in 1904. In 1007 ho was sworn as member of the privy council of Canada and appointed minister of railways and canals in the Laurier administration. In the general elections of 1011 he was defeated, but was retlected at a apectacular by-election early in 1012.
Grane, Groner Monno, The Very Rev., D.D., LL.D. (1835-1902), a Presbyterian clergyman and educator, born at Albion Mines, Nova Scotis, and educated at Pictou Academy, West River Seminary and the University of Glasgow. Ho returned to Nova Scotia in 1860 and in 1863 becume pastor of St. Mathew's Church, Halifax, where he remained for fourteen years. In 1877 be became principal of Queen's University, Kingeton, which through his influence expanded from a mall denominational college into a large and influential educational center. During his ineumbency of this office he succeeded in ruising 8250,000 as an endowment fund for the institution. He was the euthor of Ocean to

160
Orvar, Now Yerr': Sermons, Owr Pios Powipn Mivione and Natimal Objinte and Aimo. Drvi. Grant wes one of the bandere of eplaion in


## REV. GZOREE MONRO GRANT

Canada, and used his influence in the interests of public education and in developing sentiment for a united Canada.

Grant, James Alexander, M.D., K.C.M.G., (1831. ), legislator and physician, was born at Inversess, Scolland, and educated at Queen's Univeraity, at London, and at Edinburgh. From 1803 to 1867 he served in the Canadian Asembly; from 1867 to 1873 and again from 1802 to 1896 he was a member of the House of Commons. He began the practice of medicine in Ottava, where he soon became one of the acknowledged leaders of his profession. When Ottawa became the seat of the Dominion government be was appointed honorary physician to the governor-general, Lord Monct, and was reappointed by each succeeding governorgeneral. Dr. Grant wrote extensively for the periodical literature of his profession and his articles are regarded as of great value.
Grennway, Tromas (1838-1908), statesman, was born at Cornwall, England, and educated in the public schools at Huron, Ontario. He was a member of the Dominion Parliament from 1875 to 1878 . He removed to Manitoba in 1878 and became representative from that province in 1879. He was premier of Manitobe for several years.

## Nogrophy



Grozfoll, Wilnazo Thomason, C.M.G., M.D (1805- ). phymieias and mugoon, educated at Marlborough and at Odford Univeralty. Ho fitud out the firut hompieal ahlp fore the North Son fishaies, and cruined with the finhormen trom the Bay of Bliceny to lecland. He went to Labrador in 1892 and has aince espent his life in helping the inhabitantis of that devolate conet. He has built and equipped hoeplial ohips ad hopituls on land, and has started numerous industrial schemes, such as coöperative atores. Dr. Grenfell is a fuent apeeker and writer and through hie work, eddrewees and writings has become widely known not oaly in Canade and the United Stater, but over the work. He is the author of Vikinge of Todey, of the Rocks, Labmador and in Poceibititice, This Harmet of the sea, and of many articles and short stories on the fishermen and his work among them.
Orog, Alumar Henay Geomae, Earl (1810-
). British colonial administrator, elucated at Harrow and Trinity College, Cambridge, where he graduated with honors. Ho was a Liberal member of the Britiah Parliament from 1880 to 1886, administrator of Ihodesia, 18961997, and a director of the British South African Company, 1898-1004. From 1809 to 1904 he was also lord-lieutenant of Northumberland. In 1905 he sueceeded Lord Minto as governorgeneral of Canada. He returned to England in 1911 and was succeeded by the Duke of Connaught. (For portrait, see illustration facing page 209.)
Gifim, Martin Joserf, LL.D., C.M.G. (1847- ), bora at St. Johns, Newfoundland, educated at St. Mary's Collego, Halifax. He began the practice of law in 1868 and in 1873 was chosen assistant counsel for Nova Scoctia belore the Halifax Fisheries Commission. He was for a number of years editor of the Halifax Herald and from 1881 to 1885 editor-in-chief of the Toronto Mfail. On August 6, 1885, ho was appointed parliamentary librarian, a position he still holds. Mr. Grifin has for many years edited the literary column "At Dodsley's," a feature of the Montreal Gazette's Saturday edition.
Grisdalo, Jonn, Rt. Rev., D.D., D.C.L. (1815- ), clergyman and educator, born at Boiton, Lancashire, and educated at London, England. Ho arrived in Canada in 1873, was canon of St. John's Cathedral, Winnipeg, from 1874 to 1878, and deaa from 1878 to 1896. In that year he was made bishop of Qu'Appelle, Saskatchewan. He is an examiner of the University of Saskatchewan and was one of the original members of its senate.

## Biograpay

Elagart, Jonn Grarnu (1835- ), logis Lator, born at Perth, Ontario, edueatod in his aative town. Ho began buainew as a miller but coon turned his attention to politics. From 1897 to 1872 he was mayor of Perth; stince 1872 he has cerved continuoualy in the House of Commona. Ho wan pootranter-general in Sir John A. Mecolonald's cabinet and also in Sir John Abbott's adminiatration until 1892, when he berame mininter of railways and canala While in charge of this departament he supervised the construction of the Sault Ste. Marie Canal and won high praise by his management of the Intercolonial Ruilway.
Geldimand, Fucdzack, Sir (1718-1791), soldier of fortune, born in Switserland. He erved in several European wara and in 1756 came to Americt, where be took part in the French and Indian wars. From 1778 to 1784 as governor of Canada, he playod an important part in the American revolution. His collection of papers and official correapondence are especielly valuable for information concerning the history of North America.
Ealiburton, Thomas Chandler (17901895), humorist and judge, was born at Windsor, Nova Srotia, and received his education at King's Colloge, in his native town. Ho was


THOLAS CHANDLER HALIBURTON
called to the bar in 1820 and soon distinguished himself. At the age of thirty-two he was appointed chief justice of the Court of Common Pleas for Nova Scotia and in 1840 was promoted to the Supreme Court. After two years, how-

Megraphy
owes, to mierand and removed to England, whare to wa for six yearsa Consmrvative member of Purliameat. Despito his briliant careve $0-$ a furist it is as a humoriat and sutiriot, under tho pes name of "Sam Slich," that bo is beet remembered. The Sam Slick sketchee, which first appeared in a local paper, pletuired a Yankee clockuaker, whove thremd myinge, and knowlodse of human nature won immediate recognitioa. Theme dietches were collocted and published in 1837 under the title of Tho Oloctimaber, or Sayinge and Doinge of Samul Slick of Shiabmille. A mecond teries of Slict atories appeared in 1838 and a third in 1840 . Ho aloo wrote
The OUd Judje. The Lotter Bas of tio Groat The Old Judpe, Tho Ioterr Bay of tit
Eavmilton, Canalis, Moot Rev., M.A., D.D. (1834 ), archbishop of Ottama and metropolitan of Cunada, born at Hawkeebury, Ontario, educated at Montreal High School and University Cillege, Oxford. He was ordained dencon in 1857 and priest in 1858. In 1885 ho was chreen bishop of Hamilton, a poot he held for eleven years. He was then transferred to the dioceso of Ottawa and in 1009 was chosen metropolitan of Canada by the House of Bishope. Esange, Wiluin John, K.C. (1862- ), a Cenadian berrister and statesman, born at Adelaide, Ontario, and educated in the public schools of the townabips of Brooke and Lambton. He was first elected to the legialature of Ontario in 1902 as a Conservative and rezlected in 1805, in which yeer he was appointed provincial secretary. Mr. Hanna is a distinguiabod orator and debater.
Farcoart, Ricmand (1840- ), educator and legislator, born in Heldimand; Ontarior educated at Toronto University. He began his career as teacher in the high echool and later was high achool principal and inspector. He was admitted to the ber in 1876. He served continuously in the legislative assembly of Ontario from 1878 to 1005 , and for the last seventeen years of the period was a member of the Liberal cabinet, his most imy:rtant position being minster of education. From 1888 to 1898 he was also treasurer of the province.
Eardy, Armur Sturots (1837-1899), statesman, born at Mount Plensant, Ontario. He studied lare, was called to the bar in 1865 and practiced with great success. In 1873 he was elected as a Liberal member of the Ontario asermbly, where his infuence was soon felt. He held reveral positions in Sir Oliver Mowat's cabinet and succeeded him as premier of Ontario.

## alograyly

Me. Bards was active in mourine umful legichs. tion on rallway hegal procoduro, manitation, liquor licarme and mathas of provil iapportanco. Iarris, Rommes, R.CA (1810 ), an artist, bors in Walos, and educated at the Prince of Weilen Colloge, Charlotetown, Priace Edwand Island, and at the Univerity Colloge of Londom. Later, ho itudied his peofomion in Paris, Italy, Belgium and Holland. After this ho retumad to Canada and opeant two winters in Toronto and wes elected a member of the Boyal Canadina Amociation of Artists. He again went to Paris for further atudy and whilo abroad exhibited at the Royal Acendemy, London, the Paris Saloo and in other gallerion. In 1883 be took up his ruidence in Montreal and became the director of the Art School of the Montreal Art Associs. tion. He was arverded a medal at the Word's Fair in Chicago in 1893. Ho is known chiefly me a figure and portruit painter. Two of his pictures which have attracted most attention are The School of Trustess and The Fithere of the Confolonation, which were painted under comp. miacion from the Dominion govermment.
Barrige, Chinley Alasat Bowns (1862-
), conductor and compores, born in London, England; educated at St. Michael's College, Tenbury, England. He is one of Caneda's best known musicians. In 1883 he became organist and director of the choir at Montreal Cathedral. He directed the Canadian-Britich Festival in London, 1808, in the presence of the King, was suest conductor at the London Symphony orchestral concert in honor of premiers of Europe attending the Colonial Conference in 1507, and has lectured and played in many perts of the world. Ho is composer of Danid before the King, Pan, The Sande of Dee and numerous anthems, songs and pinnoforte piecta. Earroj, Horscas (1863- ), born in Elgin County, Ontario, educated at Toronto Univer. sity. He was called to the ber in 1889 and practiced for four yours, when be removed to Calgary. In 1808 he was appointed registrus of land titles at Calgary and in 1900 became deputy attorney-general for the Northwest Territories. In June, 1904, he was appointed judge of the superior court of the territories and on the organization of the province of Alberta became judge of the superior court. In 1010 he succeeded Hon. Arthur Sifton as chief justice of the provincial supreme court.
Harvoy, Join, Sir (1778-1852), British soldier and administrator. After service in many parts of the world he was sent to Canela

## Megraphy

ha 1812. During the War of 1812 be was conegicuons, appecillly for his vietory at Stoay Cruct over Genaral Dearbosi. Ho served in the Wetarloo cempaiza on the stafl of the Duke of Wellingtom In 1830 be returned to America as gevernor of Prince Edward Island. He was covernor of New Brunswick from 1837 to 1841 and of Nove Scotia from 1846 until his denth. Sir John wes ane of the moot popular of the governors who have gerved in Caneda. That thio popularity came in a period when moot of the governots wero dialiked by the people is a high tribute to his character.
Enciltala, ho drin', Frepzaces Wrurus Gordon (1857-, ), barrister and atatesman, born at Woolvich, England, educated in Woolwich, Peterborough and at Toronto University. He began the practice of law in 1882 and later went to the Northweat Territories, where be engaged in practice at Foot Mcleod. He was elected member of the Northwest Assembly in 1888, where he gradually grew in infuence until be became territorial premier in 1897; be continued to hold thin office until the organization of the provinces of Alberta and Saskatchewan. Since 1905 he has been leader of the Conservative epposition in the legislativ: avermbly of Saskatchewan.
Hays, Charles' Mervinis (1856-1912), born at Rock INand, Illinois, educated in the public and high schools of that city. At the age of seventeen be entered the paccenger department of the Atlantic and Pacific Railrond Company at St. Lovis, Mirsouri. From 1878 to 1884 he whs private secretery to the general manager of the Missouri Pacific; from 1894 to 1888 ho was secretary to the general manager of the Wabash; and in 1886 he himself becume first assistant general manager and then general manager. In 1894 he was chooen general manager of the reorganized Wabash Railrond. He next eccepted the position of general manager of the Grand Trunk at Montreal. He remanined here four years, during which he seorganised the Central Vermont Riilway Company, a subsidiary of the Grand Trunk, and doublo-tracked the line of the Grand Trunk from Mositreal to Chicago. In January, 1901, he became president of the Southern Pacific, but in the sutumn of that year he was recalled to Montreal to become second vice-president and general manager of the Grand Trunk. It was largely due to his efforts that the Grand Trunk Pacific Hailway Compeny, of which be was president, was organized. (See page 449.) On January 1, 1910, he became
president of the Grand Trunk Rail way Company. Whilo returning from a trip to England, where he hed mado arrangements with the dirsetors for further expansion, he loot his life in the Titanic diseoter on April 15, 1912. Mr. Hays was one of the great constructive milway men of the country, a man of executive ability and large viewn. Te raised the Grand Trunk to a position of pa ninence, and there is no doubt that had be lived he would have made the combined Grand Trunk and Grand Trunt Pacific one of the world's greatest railmay ayntema.
Easoz, Jomis Dovolut (1800- N), lawyer and atatemman, born at Oromocto, New Brunswick, educated in the common schools of Fredericton and the University of New Brunswick. For three years he was an alderman of Prederio ton and for two years mayor. In 1800 bo removed to St. John and the following year was elected to the House of Commons, where ho served till 1896. At the gencral elections of 1899 he was elected to the New Brunswict legislature and inmediately became leader of the Conservative opposition. In 1008 Mr. Hasen was called on to form a ministry, in which he becume premier and attorney-general. After the general elections of 1911, he was appointed Dominion minister of marine and fisheries in the Borden cabinet and took his seat in the House of Commons for St. Jobn.
Roed, EdmuND Walcer, Sir (1805-1898), English colonial-governor and writer on art, was educated at Winchester School and Oriel College, Oxford. At his father's death in 1838 he succeeded to the baronetiry. For six years he was poor-law commissioner, a position in which be ahowed ereat administrative ability. Then, in 1817, be was appointed lieutenantgovernor of New Brunswick and in 1854 he became governor-general of Canada. In 1861 be returned to England, where he died after bolding minor public offices. In spite of his many official duties he found time to write and edit everal volumes of criticism on painting. He was a student of political and economic affairs, a man of real learning and ability.

Road, Francis Bond, Sir (1793-1875), English soldier, author, statesman, was born at Hingham, Kent, England, and was educated at the Rochester Grammar School and Royal MMitary Academy. He was for some yeara after 1811 stationed in the Mediterranean, and he served in the Waterioo rempaign. In 1825 he went to South America to take clarge of some gold and silver mines. He remained only two

## Bograpliy

years and then again became an active officer in the Britich army. He was appointed lieu-tenant-governor of Canada in 1835, at a time when the political aituation wes very difficult to handle. A short time after the rebellion of 1837 he returned to England in consequence of a disagreement with the home government. Thereafter he devoted himself to writing. His books of travel, written in a clever and sraphic atyle, show keen thoush superficial observation. His most important works are Bubblee from the Brunnens of Nastau, The Emigrant, Stokers and Pokers, Faggol of Pronoh Sticks and The Royal Enginaer.
Foerne, Saxuzl (1745-1792), explores. He was for several years in the employ of the Hudson's Bay Company at Prince of Wales Fort, at the mouth of the Churchill River. In 1770 he set out on a long voyage which finally led to the discovery of the Coppermine River and its exploration to the Aretic Ocean. Considering the difficulties of the country through which they passed the achievement of Hearne and his company was a notable one.
Eoarysoge, Canrlise (1816-1876), poet, bom in Liverpool, England. He came to Canada in middle life and for a time followed his trade of cabinet-making. His first work, The Reoolt of Tartarus, was published anonymously, but Saul, his next poem, established his reputation. Count Pilippo, The Dark Huntsman and Tho Ond are other well-known productions of his pen.
Eorbert, Lours Phluppe (1830-), a sculptor, born in Sainte Sophie d'Halifax. At the age of 21 he went to Massachusetts and engaged in work on a farm, but during this time exercising his inclination for carving in wood. Soon after this he began to study with Bourssa, a pointer and sculptor of Montreal. After five years he went to Paris and spent one year in study there, when he returned to Canada. He has designed a number of public statues for Canada, among which is that of Sir Georges Cartier in the Parliament Square at Ottawa, and that of Sir John Macdonald at the same place. In 1886 he was commissioned by the government of Quebec to design a number of historical statues for the legislative buildings of that province.
Hincks, Francis, Sir (1805-1885), statesman, was born at Cork, Ireland. In 1832 he engaged in business in Toronto, where he became a friend of Robert Baldwin. In 1835 he was chosen to examine the accounts of the Welland Canal, whose management was being attacked
by William Lyon Mackenzie. His attention being thus turned to political Hife, he founded the Examinor, a weekly paper mupporting the Liberale, and in 1841 be was elected to Partion-

ment. In two of Baldwin's ministries he wnu inspector general (minister of finance) and in 1851, after Baldwin's retirement, he became premier of Canada. After three years, howeve, the opposition led by George Brown became too strong and Sir Francis resigned. In 1855 be was chosen governor of Baxbados, and later od British Guiana. Returning to Canada in 1800 he became minister of finance in the cabinet d Sir John Macdonald. He resigned in 1873 but continued to take an active part in public life until his death on the 18th of Auguat, 1885.
Hodgins, Join George, LL.D. (1821educator and historian, born in Dublin and educated at the Upper Canada Academy and Victoria College, Cobourg. In 1855 he wa appointed deputy superintendent of education for Upper Canada; from this appointment be went abroad to study the methods in the normal and model schools of Dublin. On his return to Canada he introduced as much of the Irish syatem into the schools of this country as seemed practicable and in connection with his chief, Dr. Ryerson, perfected a system of public education for Upper Canada. Aside from his work as an educator, Dr. Hodgins has been a prolific writer; he was for a long time editor of the $U_{p p r}$ Canada Journal of Education, and one of the pioneers in preparing school books in Cannde

Bography
He is the author of the School Hitory of Canada and Olver Britich North American Provinces; Inctures on Sehool Law; The School Houss and It Anchiticature; The Documentary Hidory of Eheation in Uppor Cancoda and Tho Legislation and Hidery of Scparate Schools in Upper Canada.
Eopline, Jour Castris (1864-), journolist and author, born at Dyersville, Iowa, educnted at Bowmanville, Ontario. In 1886 he formed at Ingersoll the first branch of the Imperial Federation League in Ontario; three years later he became honorary secretary of the Lengue in Canada. In 1880 he became associate editor of the Toronto Daily Empire. He began liternry work in 1895 with a Life of Sir John Thiompoon and has since contributed an immense amount to the history and biography of Canada.
Eowo, Juarchi (1804-1873), was the leader in Nova Scotia in securing responsible goverament. Ho learned the trade of printer and afterwards becamy a publisher and editor. He refused to unite with Mackenrie and Papineau in the Upper


JOSEPH HOWE
and Lower Canada Rebellion of 1837, though he vigorously attecked the existing evils in the kovernment. In 1835 he was prosecuted for libel and defended himself. He won his case and became the idol of the province. He was elected to the legislature and aided in securing the liberties which he demanded as an editor. Mr. Howe remained in public life until his death

## Blography

in 1873. During his carees he was euccenively apeaker, secretary of state and premier of Norm Scotia. After the confederation he became a member of the Dominion governmer., and at the time of his death was governor of Nova Scotia. On reveral occasions be represented his province in England. He was noted as an orator and was the author of Speccies and Publio Letters, Lifo and Times of Howe, Whorn and Eandern Rambles and Legidative Revinos.
Iughos, hure, James Lavoamin (1840- ), educator, born in Durham county, Ontario. Hie lived on a farm till he was twenty years old; then, after teaching for a year, entered the Toronto Normal School. He taught at Prankfond for six months after leaving the Normal School and then was appointed assistant in the Model Training School in connection with the Normal School. After three years he became principal, and in 1874, at the age of 28 , was elected chief inspector of schools for the city of Toronto. Mr. Hughes was the lemder in the movement for school cadet corps, the Toronto cadets being known throughout the Dominion. He resigned from his position of inspector of schools in 1912 in order to devote the remainder of his life to a wider field of activity in educntional matters. Mr. Hughes is well known as a lecturer and writer, among his publications being Froebel's Educational Lawo, Dickens as an Educator, and Sfistakes in Teaching.
Eughen, Sasurl, Col. (1853- ), legislator, brother of James L. Hughes, was born at Darlington, Ontario, and was educated at the Toronto Model and Normal Schools and Toronto University. He was lecturer in English language, literature and history in Toronto Collegiate Institute till 1885, when he becmue editor of the Lindsay Warder. He has been for many years actively interested in the militia, and has been prominent in military organizntions. He served in the Fenian Raid and in the South African Transvaal campaigns and was mentioned several times in despatches. He declined the position of deputy minister of militia in 1891 and that of adjutant-general of Canada in 1805. Since 1892 he has been a prominent Conservative member of the House of Commons; and in 1911, on the formation of the Borden ministry, became minister of militin and defence.
Hanter, Gordon (1863- ), lawyer and jurist, born at Beamsville, Ontario; educated at Brantford College and Toronto University, where he graduated in 1885 . He was called
use mame year sccepted the profescombip of civil law at Laval University. For twenty yoars he was a member of the provincial council of public instruction and reaigned only when be became lieutenant-fovernor of the province in 1898. It was his distinction to merve two terms as lieutenant-governor, finally retiring from office in August, 1908. Lese than a year later be was appointed chicl justice of the euperior court for the province of Quebec. In 1003 Sir Louis was a member of the Alaskan Boundary Commisaion which settled the dispute between the United States and the Dominion.
Johason, Paulave E. (1862- ), a poet, born at Chiefswood, Ontario, and educated by private tutors and at the Brantford model school. She has boen a frequent contributor to Canadian and American periodicals. Her best poems are on Indian aubjects and Canadinn scenery. Among those best known are The Death Cry, A Cry From an Indian Wife, As Red Men Die, The Idlor, In the Shadows and In April. She is also widely known as a reader and has recited ber own poems in many Canadian and American cities.
Joly De Lotbiniose, Henra Gustave, Sir (1829-1808), stateaman, was born at Epernay, France. His father, Gaspard Joly, was the owner of famous vineyards at Epernay. The non was educated at Paris but came to Canada

Dame of Houlsine act which won him the for many years a member of the Hos. He wa mone and it mes largely owing to that the Liberal party refused in 1878 to abandon its policy of free trade, a position which led to its defeat. From 1900 until his death he wn lieutenant-governor of his native province.

Jomeald, Crusetns, Rt. Rov. (1851-), misionary and priest, born at Grenoble, France; educated at the Seminary of Grenoble. He came to Canada in 1880 and for twenty-eight years was a missionary among the Indians in the Athabeske district. In 1909 he was named condjutor to the vicar apostolic of Athabasha and was consecrated bishop in September of the same year.
Eomp, Aysurat Edward (1858- ), manufactures and legislator, born at Clarenceville, Quebec; educated at Clarenceville and at Lacolle Academy. He has been president of the Cans. dian Manufacturers' Association and of the Toronto Board of Trade. From 1000 to 1908 ho was a Conservative member of the Dominion House of Commons. In 1911 he was again elected to represent Toronto and was appointed a minister without portfolio in the Borden cabinet.

Eornighan, Robert Krakiand (1857- ), a poet and journalist, born at Rushdale Firm, near Hamilton, Ontario, and educated in the

), born at Charlottetown, Prince Edward Iland; educnted at St. Peter's achool, Charlottotown, and King's College, Windsor. Mr. King is known as a poet and novelist; among his books are Grielda, In the Garden of Charity, The Oianf's Strongth and Tho Inner Shrine.
Elag, Wilian Lion Macienvire (1874), economist and stateaman, grandson of William Lyon Mackensie, born at Berlin, Ontario; educated at the University of Toronto, Harvard University and University of Chicugo. From 1898 to 1900 he was instructor in political economy, first at University of Chicago, later at Hurvard. He has represented Canada as special commissioner in matters relative to industrial questions; he has been secretary and charmas of the Royal Commission, and goverument conciliator in over forty industral strikes. From 1900 to 1908 he was deputy minister of labor and from 1009 to 1911 minister of that department. He resigned with the Laurier cabinet in the fall of 1911, and failed of rexlection to the House of Commons.
Einguford, WiluaM (1819-1898), historian, born in London, England. He studied architecture but his personal tastes soon led him into the army. In 1837 he came to Canads with his regiment, from which he resigned in 1841. He then became a surveyor, taking part in work on the Grand Trunk Railway and Rideau Canal. He wrote numerous books on canuls and ronds
and at Zermatt in 1809.
Ls Oosto, lah cou', Alexunder, Sir (1842), an eminent jurist, born in Boucherville, Quebec; educated at St. Hyacinthe College and Laval University. He selected the profession of law and was made queen's counsel in 1880. He was a member of the legislative council of Quebec from 1882 to 1884, when he was called to the Dominion Senate. In 1891 he was choven Speaker of the Senate, but resigned in the mane year to become chiel justice of the court of appeals. He retired from the bench in 1907.
Infontaine, Louis Hypourte, Sir (18071864), stateaman, born in Chambly, Quebec; educated at Montreal. As a law clerk he very soon established \& reputation and after his call to the bar quickly became a leader. In 1830 he was returned to the legislative assembly for Lower Canada. At first a follower of Papineau, he zonn became a rival and eventually succeeded to Papineau's position as leader of .the Freach party. Elected to the joint assembly after the Act of Union, he was recognized as the leader of the French-Canadians and in 1842 joinod with Robert Baldwin in forming a ministry. During the struggle for responsible government Lafontaine was one of the learders of reform and after the elertion of 1848 again formed a Lafontaine-Baldwin ministry, the first ministry really acknowledged to be responsible to a majority of the people. Naturally

## Eegraphy

to the bas of Ontario in 1888 but socan removed to Britioh Columbia, where, in 1801, he became the firct officiel law reporter to the Supreme Court. Later he became crown solicitor and on March 18, 1902, was aworn in an chied furtice of the Supreme Court of British Columbia.
rallagton, Jomm ( $1840-$ ), Lawyer and judge, bore at Wellingtoa, Ontario. He was celled to the bar in 1884 and precticed in Stratford, Ontario. Ho was appointed county crown attornay for Perth in 1879 and continued in difice until 1904, when be bocame judge of the Ezchequer Division of High Court of Justice for Ontario. On Pebruary 10, 1905, he was cmorn in as a juatice of the Supreme Court of Canada.
Sotte, Louss Amale, Sir, K.C., R.C.M.G. (1830-), judge and staterman, boen at L'A emomption, Quebec; educated at L'Amomption College. Ho was called to the bar in 1857 and gradually became one of the leadere of his profemion in Canada. Ho was at one time editor of various legal journals and treasurer of the Bar Ascociation. He was appointed puisme judge of the S.jperior Court of Quebec and in the came year scceppted the professornhip of civil law at Laval University. For twenty
as a young mana and begas to practice lavin in the city of Quebee. In 1801 he was elected to the Canadian Amombly as Liberal, member for the county of Lotbiniares, and from 1887 to 1874 be seprevented the cume county in the House of Commons, He was opposed to Confederation, and took an active part in the oppoaition to the zainistry formed by Sir John Macdonald. In 1878 he why premies of Quebec; then for four years was leader of the oppoition. He retired from public life in 1885, but ten years later, in reaponse to party appeals, took an active part in the campaign and was igain elected to the House of Commons. On the formation of the Lauries ministry be sccepted the portfolio of inland revenue. From 1000 to 1908 he mu lieutenant-governor of British Columbia. He rendered apecial service in the promotion of Canadian agriculture and forestry.

Jomen, Almad Gupis ( $1824-1906$ ), legis lator, was born at Weymouth, Nova Scotic. He becmme procainant as an opponent of federttion in 1865 and later mado a apeech in criticism of the British government's refusal to repeal the British North America Act which won him the name of Hauldown-the-fiag Jones. He wm for many years a member of the House of Com-

## Mography

cammon achools of that eity. When tiventy yune ol age the was appointed to the stail of tho Iomilion Spectator as local editor and laters bucume editor of the Winnipey Swn. He is widely known as the author of many potriotic and humorous songe, written under the pen name of "The Khan." Thew have been publithed in a volume entitled "The Khan's Cantido." The most popular of thete songss is The You of the Northom Zone.
Eom, Jumes Kirepatacte, K.C. (1841- ), matmman, born at Guelph, Ontario; educated in the Hamilton and Guelph schoola. He began the practice of law in 1802, and in 1881 wae crented queen's counsel by the government of Ontario and in 1886 by the Dominion government. He becume a member of the Senate in 1002 and was its spenker from 1009 to 1911. Mr. Kerr is prominent in Masonic circles and has held some of the most important offices in the gift of that order. In 1883 he was created a Knight of the Grand Crous of the Temple by King Edward VII., then Prince of Wales.
Iligg, (Wruuм Benjamis) Bastu (1850-
), born at Charlottetown, Prince Edward Iland; educated at St. Peter's school. Charintta
and on tho weat in general, but he is best romembered for his Hivory of Canada, in ten volumes, an accurate and mbreightorward camunt of the itory of Canade.
Tirby, WruLur (1817-1900), author, born at Kingoton-upon-Hull, England. At the age of Afteen he came to Canada with his parents and $s$ on engaged in newppaper work. Ho wrote The Goddom Doy, dealing with the struggle of the French to hold Canads against the English and conaidered the best Canedian historical romance. Ho also wrote A. E., an epic poem, and a volume of verse called Canadian Idyllo.

> Mots, Orio Junus (1852- ), natronomer, born at Preston, Ontario. From 1875 to 1885 ho was engaged in explorations and surveys in every part of Canada; in the latter year he became Dominion astronomer. He completed the firnt astronomic girdle of the world in 1904 and has published many articles and reports on surveying, terrestial force, meismology, etc. Ho represented Canada at the International Seismological Congress at The Hague in 1907 and at Zermatt in 1909.
Le Oosto, lah coaf': Alexander, Sir (1842-
made chiel justice for Lower Canads in 1853 and on August 28, 1854, he whs created a baronet. He continued to hold the office of chief justice until his death in Montreal, February 26, 1864.
Irmont, Jorn Himprision (1865-), lawyer and legislator, born in Dufferin county, Ontario; educated at Orangeville High School and Toronto University. He studied law in Toronto, was admitted to the bar in 1893 and practiced in Toronto for six years He then removed to Prince Albert, Sask. He was clected to the House of Commons in 1904, but resigned in the following year to become the firat attorney-general of the province of Siskatchewan. In September, 1907, he became a judse of the Supreme Court for the province.
Iampman, Archibald (1861-1890), a Canadian poet, born in Kent county, Ontario, and educnted at Trinity University, Toronto. On the completion of his education he entered the civil zervice department at Ottawa. While in college he began to write poems, but did not publish his first work until 1888 . He now ranks among the best of American poets. His published volumes are Among the Millet, and Other Poems and Lyrics of Earth.
Landry,Churles Phiuppe Aucuste Robert, CoL (1840- ), born at Quebec; educated at

1884 to 1898 he was in the House of Commons He served aight years as mayor of Quebec and for a short time was seting chief justice of the superior court of Quebec. In 1011 he was ap. pointed lieutenant-governor of Quebec.

Langevin, Hector Louts, Sir (1826-1000), statesman, born at Quebec. He early took up the profession of law and quickly became prominent. From 1858 to 1861 he was mayor $d$ Quebec. Previous to Confederation Sir Hector held several offices in the Canadian ministry, including those of solicitor-general for Lowes Canada and postmaster-general. He was one d the delegates to the London conference which drafted the British North America Act, and on his return became secretary of state in the fint Dominion cabinet. After the defent of his perty in 1873 he continued to be one of its leaders in opposition to the Liberal government formed by Alexander Mackenxie. From $187 \%$ to 1891 he was minister of public works in the Macdonald cabinet. He retired from Par liament in 1890, after a continuous service $d$ thirty-nine years.

Iangevia, Louts Phiuppe Adelard, The Most Rev. (1855- ), Roman Catholic antr bishop of St. Bonifece, born at Sk. Isidore, Quebec, and educated at the Sulpician College, Montreal. After completing his education be was for a time professor of classics in the college from which he graduated. In 1881 he enten

Ifrom mons cand of the us ap.

House of Lords during the discussion of the
Loyd-George budget in 1909. (For portrait, see illustration facing page 209.)

Learior, Wilurid, Sir (1841- ), statesman, born at St. Lin, Quebec, educated at L'Assomption College and McGill University, where he took the course in law. At graduation he delivered the valedictory address, which, like $s 0$ many of his later speeches, closed with an appeal for sympathy between the French and English peoples as the secret of Canada's future. After a number of years of law practice and journalism he was elected to the Quebec assembly in 1871 and three years later to the House of Commons, where he quickly rose to prominence. In 1877 be became minister of inland revenue in the Liberal government of Alexander Mackenxie. After the defeat of the Mackenzie government in 1878 because of its low tarif platform, Sir Wilirid became one of Hon Edward Blake's chief lieutenants in the opposition and on Blake's retirement in 1887 he became the recognized leader of the Liberal party. From the first he won great popularity and showed unusual capacity for leadership. In 1896 his party carried the country and Laurier was called to form a ministry; he was the first FrenchCanadian to be premier of the Dominion. During his long term in power, 1896-1911, he aw Canadian prosperity advance by leaps and munds. The chief features of his administration were the enactment of special tariffs for poods imported from Great Britain, the sending

Canadian and English publich United States, is well known English publications. Mise Laut books on Canadian history and biography; among these are Londs of the Nork, Heralds of Empire, Pathinders of the Weat, Vikinge of the Pacific, Canada, Empire of the North and Fresbooters of the North.

Loacock, STHPHEN BuTLier (1800- ), author and educator, born in England; educated at Upper Canada College and Toronto University. From 1801 to 1890 he was instructor in Upper Canada College; he is now head of the department of economics and political science at MeGill University. In $1907-08$ he delivered a series of lectures throughout the British Empire on imperial problems, under the auspices of the Rhodes trust. Mr. Leacock is the author of Elements of Political Sciencs, of biographies of Baldwin, Lafontaine and Hincks in the Makers of Canada series and of numerous pamphlets.
Lo Jeune, Paul (1502-1664), French Jesuit missionary. He came to Canada in 1632 as superior of the Jesuit house in Quebec. He wrote a Bricve relation du voyage de la Nouvelle France, the first of the collected works known as the Jesuit Relations in New France.

Le Moine, te mooahn', James MacPirison, Sir (1825- ), historian and naturalist, born at Quebec and educated there at Le Petit Seminaire. He was admitted harrister in 1850, and for a number of years was collector, later inspector of inland revenue at Quebec. His

Megraphy
an eristocrat and conservative, Laloataine felt himedre out of accond with the youngers seformers - and in 1851 sotired from political lifo. Ho was


made chief justice for Lower Cemade in tean

Elagraphy
Quebeo Seminary. He wes first elected to th Quebec lodislative amembly in 1875, and to the Dominion Houes of Commons in 1878 and 1882. He was called to the semato ten year later and in 1911 becume its Speaker. He mu prevident of the council of agriculture od Quebee and was the province's commisaioner to the World'a Fair at Chicago in 1883. He telke great interest in military sflairs, served in the Fenian raid and was for seventeen years colood in command of the sixty-firat regiment.
Iandry, David V. (1806- ), phyicina and legislator, born in Memrameook, Ner Brunswick. He was elected to the New Brum wick asembly in 1008 and was immedistely appointed commimioner of agriculture in the Hasen cabinet.
Langoliof, Pruncors Xavien, Sir (1838-
), lanyer, educator and statesman, edo. cated at St. Hyacinthe College, Laval Univerrity and Univernity of Pario. He was professor d Roman lam, later aloo of civil law and politiol cconomy, at Laval University. In 1873-75 he wes a member of the Quebec assembly and from 1884 to 1898 he was in the House of Commons He served cight years as mayor of Quebec and
the order of Owhates and was ordaised priest the Whowing your, In 1885 ho was appointed to the char af theology in the univerity of Oteawa and lept this podition for eight years, when he wnat to Manitobs and became cuperintendent of all the Oblate misaione of the Northweat Tersitories. In 1894 he became partor of St. Mary's Church at Winnipeg and the neat year was dvered archbishop of St. Boniface.
Iangdoweo, Henar Caurles Ketti PextyFrranumes, Marquis of (1845- ), a Britiah staterman, educnted at Etou and Balliol College, Oxdord. When a young man he entered upon a political career as a Liberal. Between 1808 and 1883 ho held auccemively the offices of lond of the treasury, undes-secretary of war and under-secretary for India. In 1883 he was appointed governor-general of Canada, to succeed the Marquis of Lorne, and from 1888 to 1893 was viceroy of India. In 1895 ho became secretary of war, and in 1900 secretary of atate for foreign affirs. He was leader of the opposition in the House of Iords during the discusaion of the Uloyd-George budget in 1909. (For portrait, see
of Canedian troope to South Alrice during the Boes War, the contract with the Grand Trunk Railway for the construction of a new tranecontinental railroad, the appointment of a federal commisaion with power to regulato freight and express charges and telephone raten, the roduction of the postal rate from three to two cents for domentic poatage and from five to two cents for Great Britain, United States and Mexico and the formation of the provinces of Alberta and Saskatchewan. In 1910 he arranged a reciprocity treaty with the United States, but when the question was submitted to the voters the Liberals were defented and the trenty filled of ratification. The Laurier ministry resigned on October 6, 1011. (For portrait see illustration facing page 210.)

Laut, Aowes Chrasmina (1871- ), author, born at Stanley, Ontario, educated at Manjtoba University. She became an editorial writer on the Menitobe Fres Precs in 1895 and Iater was correspondent for United States, Canadian and English publications. Mise Laut is well known as the author of a number of

## Mography

 writinge on easty Canedina history wou for him - repuration for carnfulames in his inveritigation and lmpartiallity in hie conclumions. Much of his time was devoted to the study of metural Mistory, expecially birde. Among the numaroue books which guined for hima mandias as a naturaliat and historian are Legondary Lore of Quive Pert and Prumat, Canalion Moroinoo, Dinle of Quive and Amacle of the Port of Qubro. Ifgithall, Wussum Doves (1857-) , a poot and sowaliot, boen in Hamilion, Ontario, and edvested at the Montroul hish sehool and MeGill Univirity. Ho begua the practice of haw in 1881, but in commetion with his proferion he has boea a student of Canadian hintory and wee one of the foundern of the Society of Canadian Uheratura. He oricinated striets of Montroal and was a leader in the movement which recured the esection of the Maionneuve monument. Ho has also been a protific trites of poems as well as books on prycholayy and ethica. Ho is the author at Thoviluts, Moods and Idcale, a volume of poenon, Sonve of the Onvat Dominion, and Canadian Pooms and Lay.
Ihagar, Lord, Right Hon. Sir John Young (1807-1876), an English diplomat and atatesman, bors in Bombay, India, and educated at Etoo and Oxford University. He prepared for the practice of haw, but while still a student wes elected to the House of Commons, whers he continued to represent his constituency for nearly twenty years. In 1852 he was appointed chief secretary for Ireland, and three years later, lord high commiscioner for the Ionian Iflands. In 1880 he became governor of New South Wales, and in 1868 succeseded Lord Monct as governon-general of Canada, holding the position until 1872. During his administra: tion in Caneda, Manitoba and British Columbia entered the confederation, the Treaty of Wachingtoa was aigned, and plans for the construction of the Cansedian Pacific railway were perfocted. In 1870 Sir John was created Baron Liagur. When be left Canada he retired to his estates in Ireland, where he died Oct. 6, 1876. (For portruit see illustration facing page 209.)
Hlojd, Groraz Exton, Rev. (1881clergyman and educator, born in London, Engo. land; educated at Wyclifie College, Toronto, and at the University of New Brunswick. He was ordained in 1885, and in 1890 organizer and became principal of Rothesay College for Boys
in Now Brungwict. Ia 1005 be wes appointed archdescon in the diocres of Sarkatchewan; in reigmad in 1000 to become perincipal a Eumanual Colloge, Sackatoon.

Lorne, Mampure op. See. Arcall, Johe Douglos Eutherland Campbell, Duke of.
Lengloed, JuMes ALscurDime (1854- ) bora at Toroato, where he was educated and prectioed lave till 1883, whea he sumoved to the Northwote Teritorios. Ho was called to the Sonate of Canada in 1889 and for many yenn was londes of the Conservativen In 1011 he became a minatere without portolio in the Bondon cabinet.
Iurton, Wixum Fmren (184-1005), a Casadina fouraalice, bora in England. He came to Canada when cloven yoars of age and rettled in Saint Thomas, Ontaria. He began his career as a tencher but lator changed to journalism. In 1871 be weat to Winnipes and establishod the Proo Proes, which be edited for twenty-one yeare. Ho is regarded as the father of journatinmin westera Canada. Mr. Larton took an active internot in education and agriculture. He was a member of the bourd of education, chairmana of the school board, and also held other important offices, the lact being that of cuperintendent of public buildings for Manitobm. Caboo, Jumas Pryr (1850-1012), Iavyer and judge, borm at Port Rowan, Ontario; educated in the high school of his native town and at Toronto Univerity. He practiced law at Listowel, hater at Stratford and Toronto. He was appointed one of the Judges of the High Court of Juatice for Ontario in 1905 and is 1008 became chief comminioner of the boand d sailway commisaionera. As chief commissioner his work was of untold value in securing men ognition for the rights of the private citizen as well as justice for the railroads.

## MeBride, Ruchurd, Sir, LL.D., K.C., K.C.

 M.G. (1870 ), a barrister and statesman, born in the city of New Westminster, British Columbia, and educated at the public and high schools of New Westminster and at Dalhousic University, Haifiax, Nova Scotia. He was elected to the legislature of British Columbin in 1898, 1900 and 1903 and again in 1907. In 1000 he was appointed minister of mines in the Dunsmuir administration. He resigned the following year because of disagreement with the premier. In 1003 he became leader of the opposition in the House, and on June 1st of that year was called upon to form a ministry, which he did, becoming premier and chief commissionerrok an
ulture.
ation,
held
hat $\alpha$
itoba
$t$ and
cated
nd at
w
He
High
nd in
and $\alpha$
Honer
ree-
tizen
K.C.
man,
itish
high
usic
was
abia
Jn
the
the
the
the
hat
ich
合

Al hamosend works Iin 1007,1910 and egein in 3013 ho morganied the milatery.
recomed, Hivon Joum (isso-), hamyer und logdeletore, con of Sir John A. Merdonald.
 and at Torooto Univeraty, whero ho greduated at the ase of nimoteon. He practiond haw for Toconto frome 1572 to 1888 , when ho memoved $\pm$ Wiralpes. In 1001 ho was deeted to the Hormo of Cormmones and in 1800 brocume minititer $\alpha$ the interiof is the Tupper eabinot, which maienad in tho meme your. Later bo became tho Conurvivativo keder in Menitober, and in $2500-1000$ wees premiere of the provinoe. On Docember 12, 1011, be was appociated a police megitrato $\operatorname{in}$ Winnipes.
 hidelator and fudse, bors in Hurca county, Ontario; educated ai the Collogidato Inotitute. Strotiond, and Toroato Univerity. Ho proctined havi in Toronto for a number of year, but m 1800 removed to Roowland, Britshh Columbia. In 1003 and 1907 he was alocted to tho provinciel membly, whero he became leader of tho Ibberal oppoaition. Ho reignod from the membly to becomene cinife juatice of the court of appenals for tho provinoes.
Nedoanda, Jount Alexunpez, Str (18151501), frote premier of the Dominion of Canedta, Thu bora in Glayour, scoctend, on the 11th of Jonuery, 1815. His farily camono to Caneda in 1820 and setted in Kinguton, Ontario, where the future premier became a laryyer. In 184 ho mane elected to the emembly as Consiervative member for Kinguton. A sentence in his frrt public addresestruck the keynote of his carreer: ${ }^{1} 1$ therefore need scarcely atnto my firm belief that the prosperity of Canede depends upoa its permanent connection with the mother country: and that I ahall reaint to the utmoat any attempt (from whatever quartere it may come) which may tend to wecken thate unlom." During his first years in the Canadian avembly he apoke little, but be mastered the details of parliamentary buinese. His abilitices attracted attention and be beeame receiver-gmenal and then commissioner of crown lande. Meodonald was in opposition until 1854, but he gradually became the real, if not yet the acknowledged, leader of the Liberal-Conservatives, as distinguished from the Radicals and the Tories In the ministry of Sir Etienne Tache he was attorneygeneral and on Troché' retirement in 1858 he became premier. For more than thirty years Mucdonald continued to be the dominant figure

## Megraphy

Ia the gorerament of Caneda. The confucion In the dixtien, dwe to the Peolaa rida and other pollitinal causers save a sereat imputeo to the movement foe a union of all the provicocr. In 1804 delegates from Ontario, ausbee and the Martimo provinces mot at Charlotitotown. and the outlino of union as theos armed upon was worked out at the queber conferences ta the next year. The ecturl frumiag of the British North America Act, the moult of theow conderences, was carried out in London during Derember, 1800, and January, 1807, by dolo gates from tho provinces in cosperation with low officere for the Crown. As the loender to the pocliminary dimuelons Mecdonald naturally bocenme the Ant premies of the Domialion in 1807.

The difienculter of orgaining the Domitrioe called for infarite tact and reoures on the part of the new premier. The jeclousise of the provinces had to bo amoothed over, yet the federal righte hed to bo malintainod. The Northwout Territories were mecured by purchare of the Hudson's Bay Compeny's teritoral rights, and Manitoba was orgeninod as a proovinee. The Pacilic scandalo of 1874, in eonnection with the bullding of a tranacontinental milroed, foreed the Maedonald ministry to reaign, but in 1878 tho Libenalo wero amept out of office and Macdoandd again undertook the building of the railroad. "The firith of Sir John." says one of hio biographers, "did more to build the rood than the money of MountStephen." During the remaining years of his life the history of Sir John to prectically the history of Canede. Moot of his efiorts were directed to the organization and development of the great Northwest, one of his greatent reforme being the formation of the Royal Northweet Mounted Police. Until his death he retuined the office of premier. The excitement and anxiety of the contested election of 1801 brought on a troke of paralynis, which cenued his death.
The career of Sir John Macdonald cannot be studied apart from the history ol Canada. $\mathrm{He}_{0}$ wan a man of strong will and great ambition; but his foreaight and political magacity enabled him to submit to the leaderahip of amalles men without impatience. "He had the gitt of living for the work in hand without feeling the diatraction of other interests" "Pew political leaders have had so many opposing elements to reconcile, so many factions to hold together. The man who could rule a misture of jenlous. factions, including "Irish Catholics, and Orange-

(ANSI and ESO TEST CHART No. 2)


## APPLIED IMAGE Inc

1033 Eest Main Street Nochopter. Now York 14800

USA (716) 482-0300-Phere (713) 20 - Stes - For

## Bography

men, French and English anti-federationists and agitators for independence, Conservatives and reformers, careful economists and prodigal expansionists, was manifestly a man of unusual power," without prejudice towards any creed or party. He stands out as the one man whom everybody trusted. His singleness of purpose and personal independence, combined with his inexhaustible energy, enabled him to triumph where others could see nothing but defeat.

Macdonald, John Sandfield (1812-1872), statesman, born at Saint Raphael, Ontario. He was admitted to the bar in 1840 and soon after was elected to the Canadian Parliament, in which he served continuously for sixteen years. He was leader of the reform party, but his party allegiance was uncertain when mere names were at stake. For two years he was speaker of the House and from 1862 to 1864 was premier of Canada, though his ministry was not a strong one. He opposed Confederation, but after the passage of the British North America Act was called on by the Conservatives to organize the provincial government of Ontario. After four years, during which he governed with economy and efficiency, he was defeated by the Liberals and resigned in December, 1871.
Macdonald, Wilunм C., Sir (1831- ), a philanthropist, was born in Prince Edward Island and was educated at Charlottetown. He gave a large amount of moncy to McGill University, and through his efforts scientific agricultural education was established throughout the provinces. He founded the Macdonald schools for elementary technical education. Perhaps his greatest charitable enterprise was his interest in and gifts to Victoria Hospital, Montreal.

Mecdonell, Alexander (1762-1840), the first Roman Catholic bishop of Upper Canada, was born in Scotland. He became a priest in 1787 and was missionary to his native land for a number of years. Through his influence the first regiment of English Roman Catholics since the Reformation, the Glengarry Fencibles, was organized. After it disbanded in 1803 he organized a colony for its members in what is now Glengarry county, Ontario. Bishop Macdonell also raised a regiment which played a gallant part in the war of 1812-14. From 1820 until his death he was bishop and apostolic vicar of Upper Canada.
McDongall, Wiluham (1822-1905), journalist and statesman, was born at Toronto, Junuary 25, 1822, and was educated at Victoria College,

Cobourg. He studied law and was edmitted to the bar in 1847. In 1858 he was elected to the Canadian assembly and after Confederation in 1867 he served until 1882 in the House of Commons From 1862 to 1864 he was commissioner of crown lands, then provincial secretary, chairman of the West Indian Trade Commission and minister of public works. McDougall was present at both Charlottetown and Quebec conferences and took a prominent part in the discussions. In 1868 he was sent to England to negotiate with the Hudson's Bay Company for the purchase of the Northwest Territories and on his return became the first lieutenant-governor of Rupert's Land. as the west was then known. On his arrival at the boundary line he was turned back by the half-breeds under Louis Riel (see page 179), thus giving the signal for the outbreak of the revolt. In 1871 he was one of the commissioners $t n$ settle the boundaries of Ontario. He continued to serve Parliament until 1882, when he retired from public life.
Mcªchran, Duncan McNab (1841- ), veterinary surgeon, born in Campbelltown, Argyleshire, Scotland, educated at Edinburgh. He was the founder of the Montreal Veterinary College, in connection with the medical college of McGill University; in 1890 this became the faculty of comparative medicine and veterinary science and Dr. McEachran was appointed dean, a position he held until 1903. He organized the cattle quarantine system, which he conducted so successfully that contagious diseases of animals are practically unknown in Canada. After twenty-six years he retired and became honorary veterinary adviser to the Dominion government.
McGee, Thomas D'Arcy ( $1825-1868$ ), poet, orator and statesman, was born in Louth, Ireland. He came to cie United States in $18+2$ and in three years made an international reputation as a poet and editor on the staff of the Boston Pilot. Daniel O'Connell induced him to return to Ireland as editor of the Frecman's Journal when he was only twenty years of age. McGee became associated with the "Young Ireland" party and was forced to escape to the United States in 1848. He became one of the editors of the New York Nation and the Celt, which was first published in Boston and afterward in Buffalo. In 1857 he removed to Montreal and started the New Era. Here he became widely known as an orator, entered Parliament and became president of the council. He afterward held cabinet offices as secretary of state and minister of agriculture. In 1888

## Blography

ted to the the Carn in 1867 ommons. of crown an of the inister of at both and took 1868 he the Hud$\theta$ of the turn beRupert's On his sed back see page break of commisrio. He 2, when inburgh. terinary | college ame the terinary d dean, ized the cted so animals After onorary nment. ), poet, Louth, in 1842 nal repstaff of nduced e Freeyears th the ced to He beNation Boston moved Iere he ntered ouncil. retary 1888
he was assassinated by a Fenian. His published works are History of the Irish Settlers in A merica, Hitory of Altempts to Establish the Protestant Reformation in Ireland and Popular History of Ireland.
Machar, Agnzs, Canadian poet and writer of short stories, '’as born at Kingston, Ontario. From early youth she has been a contributor to periodical literature at home and abroad, especially to the Canadian Monthly, Century Magazine and Westminster Review. Among her publications are For King and Country, Katie Johnson's Cross, Stories of New France, and Lays of the True North.
Mechray, Ronert, The Most Rev., M.A., D.D. (1831-1809), archbishop of Rupert's Land and primate of all Canada, was born in Aberdeen, Scotland, and sducated at King's College in that city and at Sidney Sussex College, Cambridge. After occupying a number of important positions in his native country, he was appointed the second bishop of Rupert's Land, in 1865, his diocese comprising what now constitutes the provinces of Manitoba, Alberta, Saskatchewan, and all of the Northwest Territories. On the subdivision of this diocese in 1874, Bishop Machray became the metropolitan, under the primacy of the archbishop of Canterbury, and upon the union of the Anglican churches in 1893 he was elected primate of Canada.


SIR ALEXANDER MACKENZIE
Mackensio, Alexander, Sir (1755-1820), a North American explorer, was born at Inverness.

He began his career with the North-West Company, and in 1784 was sent to Detroit with a small party. He spent several years traveling the unknown region far to the northwest. In 1789, with a small party, he traveled the region about the Great Slave Lake and discovered the outlet, since named the Mackenzie River. 'Here setting up a post bearing his name and date, he returned to Fort Chippewyan in September. In July, 1792, he again set out with the purpose of crossing the Rocky Mountains and finding the Pacific Ocean, which he finally reached on July 22, 1793. Devoting a number of years to the fur trade at Fort Chippewyan, he finally organized the firm known as Alexander Mackenzie \& Co. in 1802, which became a rival for the fur trade of the country. This company was absorbed by the North-West Company in 1804. Mackenzie later settled in Scotland, where he died.
Mackensio, Alexander (1822-1892), Liiheral statesman, was born in Perthshire, Scotland, on January 28, 1822. He emigrated to Canada in 1842 and worked at Sarnia, Ontario, as a stonemason. In 1852 his interest in political reform led him to become editor of the Lambton Shield, a local Liberal paper. In 1861 he was elected to Parliament, where he quickly rose to distinction as a follower of Hon. George Brown. He was elected to the first Dominion House of Commonsin 1867; from 1871 to 1872 he also sat in the Ontario provincial assembly and was provincial treasurer. In 1873, after the defeat of the Macdonald government, Mackenzie formed a new ministry and became the first Liberal premier of Canada. He remained in office till 1878, when industrial depression and the Conservative platform of protection led to Macdonald's return to power. Though ill health forced him to resign the leadership of his party in 1880 he continued to serve in the House of Commons until his death on April 17, 1892. "While perhaps too cautious to be the ideal leader of a young and vigorous community, his grasp of detail, indefatigable industry, and unbending integrity won him the respect even of his political opponents." (For portrait, see illustration facing page 210.)
Mackensio, Peter Sanuel George (1862-
), legislator, born at Cumberland House, Northwest Territories. After studying at St. Francis College and McGill University, he was called to the bar i.. $\sigma 84$. In 1900 he was elected to the Quebec assembly and in 1911 became provincial treasurer in the Gouin cabinet. He
whe chosen a member of the Quebec council of public instruction in 1006.
Mekensfo; Wilunam, Sir (1840- ), born at Kirkfield, Ontario, educated in the schools of that tuwn. He began to earn his living as a achool teacher, but later became a storekeeper. He soon went west and became a contractor on the Canadian Pacific Railway. His association with Sir Donald Mann began in 1886; aince that date the firm of Mackenzie, Mann \& Co. has built many important lines, including the Calgary and Edmonton Railway and the Qu'Appelle, Long Lake and Saskatchewan Railway. In 1896 they commenced building on their own account, with 100 miles of the Iake Manitoba Reilway and Canal Company. This was the beginning of the Canadian Northern, a aystem which now includes nearly 5,000 miles. Sir William has financed all the Canadian Northern lines, while his partner has been chief engineer in charge of construction; he is president of the Canadian Northern and of many subsidiary railways and other public service corporations.
Meckende, Willum Lyon (1795-1861), political leader, was born near Dundee, Scotland, on March 12, 1795. His father died before he was a month old and left the family in poverty.


WILLIAM LYON MACKENZIF:
In 1820 Mackenzie came to Canada, where he engaged in business, first at York (Toronto), Dundas, and later, Queenston. In 1824 he, began the publication of the Colonial Advocate, in which the Torics were violently attacked; most of the changes he recommended have since
been adopted, but the bitterness of his attacto roused great opposition among the extreme Conservatives, headed by Sir John Robinson. In 1828 he was elected member of the House of Commons for York, but he was expelled on the technical ground that he had published acrounts of the proceedings of the House without pes. mission. He was elected five times and five times expelled, till the government refused to issue a writ and York remained without one of its representatives. In 1832 he visited England, where he secured many important reforms for Canada; on his return in 1834 he was elected mayor of Toronto. Then he served in Parlis. ment for a year, but in 1836 the Tories won a complete victory and Mackenzie and most of the other reformers were defeated for revlection. The bitterneas of the unexpected defeat was one of the causes of the revolt in 1837. Mackenzie gathered a mob to set up a provisional goverrment, but the attempt resulted in failure and he was forced to flee to the United States. He returned to Canada in 1849 and in 1851 was aguin elected to Parliament, but he refused all offes; of government positions. In 1858 he resigned his seat because of ill health. He was a born agitator, and tended to exaggeration and misrepresentation, but "he could neither be bribed, bullied or . led."

Mačininun, Donald Alexander, K.C., LL.B. ( $1863-$ ), a barrister and legislator, born at Uigg, Prince Edward Island, and educated at the Uige grammar school, Prince of Wales College and Dalhousie University and Law School. He began the practice of law in 1887 and was appointed queen's counsel in 1900. He was elected to the legislative assembly of Prince Edward Island in 1893 and again in 1897. In 1899 he was appointed attorneygeneral for the province, and in 1900 was elected to the House of Commons. From 1904 to 1911, he was liestenant-governor of Prince Edward Island.
Macloan, Wrinam Findlay (1854- ), journalist and legislator, born in the township of Ancaster, Ontario, educated in the public school and at University College, Toronto. In 1880 he founded the Toronto World, of which he is still editor and proprietor, and has made it one of the best known papers in Canada. In 1891 he contested East York, Ontario, with the late Hon. Alexander Mackenzie, but was defeated by twenty-six votes. Since 1892 he has represented South York in the House of Commons.

## Bography

3 attact eme Con1son. In House od od on the acrounts out per. and five fused to it one of England, orms for elected Parlin3 won most of Blection. was one ckenzie governure and es. He as again 11 ofers esigned a born ad misbribed,

MeLood, Henay Fulton (1871- ), legislator, born at Fredericton, New Brunswick; educated at the University of New Brunswick. He was mayor of Fredericton, 1007-08, and has been a member of the assembly and solicitorgeneral since 1808.

MeMtater, Wilunu (1811-1887), banker and legislator, was born at Tyrone, Ireland. He founded the Canadian Bank of Commerce and became its president. He entered political life in 1862, taking a seat in the Legislative Counci: of Canada. Later he was elected as a senator. In the year 1865 he became a member of the old Council of Public Instruction. When the Senate of Toronto University was reconstructed in 1873, he became one of its members. He was a liberal patron of literature and art, and wns well known fur his benefactions to the Baptist Church, of which he was a life-long member. He founded McMaster University.
Mejyillan, Danirl Hunter, Sir, K.C.M.G. (1846- ), a military officer and legislator, born at Whitby, Ontario, and educated at Collingwood. He was in active service in 1864 and in 1866 during the Fenian Raid. He was also engaged in the Red River expedition in 1870, and was major of the 95th Battalion with the Northwest Field Force in 1875, and two years later was appoirted to the command. He settled in Wirnipez s.nd ran for the legislature in 1879, but was dufested. He was elected the following year and represented his constituency until 1000, when he became a member of the Greenway administration as provincial treasurer. He resigned with the government and was appointed lieutenant-governor in that same year. He was created knight commander of the Order of St. Michael and St. George on the occasion of the coronation of the king.

MeMab, Alan Napier, Sir (1798-1862), soldier and statesman, was born at N:agara, Ontario. He mervel first in the navy ! A later in the army during the War of 1812, after which he studied law and was admitted to practice. He came into the public eye in 1830, when he refused to testify in regard to disturbances in Hamilton $f$ Ig the parade of Sir John Colborne's ...... through the streets. He was elected to the assembly for Upper Canada and from 1837 to 1841 was speaker. As colonel of militia he took a leading part in the suppression of the rebellion of 1837. After the downfall of the Baldwin-Lafontaine ministry in 1844, McNab was again speaker of the assembly for four years. From 1854 to 1857 he was joint
premier with Morin. He then spent three years in England but returned to Canada in 1860 and was immediately elected to the assembly, of which he was speaker during the last session before his death.

McIfab, Archibald Peter (1864-), a business man and legislator, born at Glengarry, Ontario, and educated in the public schools of that place. He became a resident of Saskatoon, where he became a miller and grain merchant and was chosen president of the Saskatoon Milling \& Elevator Co. He was first elected to the Saskatchewan legislature in 1908 and appointed to the cabinet as municipal commissioner in that year. Later he became minister of public works and is now minister of municipal affairs.
Macphersoh, David Liwis, Sir (1818-1896), financier and politician, was born at Castle Leathers, near Inverness, Scotland. At the age of seventeen he emigrated to Canada and settled in Montreal, where he built up a large fortune as a forwarder of merchandise. After his removal to Toronto in 1853 he became one of the contractors on the Grand Trunk Railway. In 1864 he was elected to the assembly for the United Canadas and in 1867, on the formation of the Dominion, was called to the Senate. In the following years he wroter a number of pamphlets on economic subjects. From 1880 to 1883 he was apeaker of the Senate and for the next two years was minister of the interior in the Conservative ministry.
MePhilipy, Albert Edward (1861- ), lawyer and legislator, born at Richmond, Quebec. as was called to the bar of Manitoba in 1882 and of British Columbia in 1891. He served throughout th. Northwest Rebellion in 1885 and retired with the rank of captain. He was elected a member of the legislative assembly of British Columbia in 1891, and in 1903 became attorney-general in the Conservative ministry formed by Sir Richard McBride. Later he became prsident of the council.

Már, Charles (1838- ), soldier and poet, born at Lanark, Ontario, and educared at the Perth grammar schools and Queen's University, Kingston. At an early age he began to write for the press, and in 1868 published a volume entitled Dresmland and Other Poems. His second volume, Tecumseh, a drama, appeared in 1886 and showed a very clear insight into Indian character. Two other works of importance are The Fountain of Bemini and The Conquest of Canada. He lost many of his valuable

## Elography

manuscripts in the Northwest Rebellion. Durs ing that outbreak he served as an officers of the governor-general's bodyguard. During his realdence in the northwest he wrote for the Mililary Gazette a ser: \& of papers entitled Canada in the Par Weat.
Malsonnoute, ma soN nob, Paul De Chomider, Sir ( $P-1676$ ), a French colonial governor in Canada, born in Champagne, France. He was interested in the attempt to found a religious colony in New France, and in 1641 with others came to Quebec. The next year the city of Montreal was founded. He was made governor of the colony, but was removed by De Tracy in 1665 and sent to France. He was a brave pioneer whose enthusiastic spirit was well suited to his day and task.
Mana, Donald, Sir (1853- ), was born at Acton, Quebec, and educated in the public schools there. He went to Winnipeg in 1879 and became a contractor for the Canadian Pacific Railway. The firm of Mackenzie, Mann \& Co. was estahlished in 1886 and has since taken a great part in the development of the west, especially through its construction of the Canadian Northern Railway, of which Sir Donald is vice-president. His work has chiefly consisted in directing construction, in which he has a unique reputation for speed, efficiency and economy. (See the sketch of Sir William Mackenzie in this department.)
Marcil, Chirles ( 1860 - ), legislator, born at Sainte Scholastique, Quebec; educated in the common schools and at Ottawa College. Since 1880 he has been connected with various newspapers in Montreal. He was elected to the House of Commons for Bonaventure (Quebec) in 1900, and was reëlected in 1904 and 1908. In January, 1905 he became deputy Speaker and from 1909 to 1911 he was Speaker.
Marihall, Duncan McLean (1872- ), legislator, born in Bruce county, Ontario; educated at Walkerton high school and Owen Sound Collegiate Institute. His early life was spent on \& farm in the Olds district. He was one of the organizers and workers in the Patrons of Industry movement in Ontario from 1891 to 1898. He removed to Alberta in 1905 and became manager of the Edmonton Daily Bulletin. In 1009 he was elected to the Alberta legislature and has since been minister of agriculture and provincial secretary.
Matheson, Arthur Jamps (1845- ), a Canadian harrister and legislator, horn at Perth, Ontario, and educated at Upper Canada College

## Mography

and TMinity Univeraity, Toronto. Ho begaa the practice of law in 1870. He became a member of the tnWZ council at Perth, and was mayor of that city in 1883 and 1884. He was electod to the legialature of Ontario in 1894, and reElected in 1898, 1002 and 1905, in which year he was appointed provincial treasurer in the Whitney administration. Mr. Matheson was: lieutennat-colonel, commanding the 42d Battery from 1886 to 1898, and in 1000 was appointed brigadier, commanding the 6th Infantry Brigado at the Kingston camp.
Matheson, Samulil Paitchard, Most Rev. (1852-
), born in Manitoba; educated at St. John's College, Winnipeg. After graduation he held various offices both in St. John's College and in the St. John's Cathedral, of which he was canon and later dean. He was also headmaster of St. John's College School. In 1009 he was elected archbishop and primate of all Canada, in succession to Rev. Robert Machray.
Mavor, Jamzs (1854-), economist and educator, born at Stranraer, Scotland, and educated at the high school and the University of Glasgow. In 1888 he was appointed professor of political economy and statistics in Saint Mingo's College, Glasgow, and during his teaching and lecturing he had extensive experience in technical journalism and took an active part in numerous schemes for social progress. In 1892 he was appointed one of a committee of four to proceed to Germany and inquire into the working of the labor colonies there. In the following year he was commissioned by the board of trade of England to continue his investigations on the Continent, and his report was puhlished as a parliamentary paper. In 1892 he was appointed professor of political economy and constitutional history in the University of Toronto. He has written extensively on social and economic topics, and in addition to many reports and magazine articles he is the author of Wages, Theories and Statiotics, Scottish Railway Strike, The English Railway Rate Question and Labor Colonies and the Unemployed.

Mercier, mair sya', Honore (1840-1894), lawyer and statesman, born in France and educated at the Jesuit Col'ege of St. Mary, Montreal. He began the practice of law in 1865 and was for many years editor of the Courier de St. Hyacinthe, one of the leading papers of the province of Quebec. He opposed confederation on the ground that the French-Canadians would lose their distinctive position. He was a member

## Blography

173

## Bography

of the House of Commons from 1872 to 1874, but it was not until 1883 that he became leader of the Liberals in Quebec and was the dominant figure in provincial politics. From January, 1887, to the end of 1891 he was premier. A man of commanding presence, firm yet courteous in manner, and convincing in argument, he was a popular idol for a few years; but in 1891 serious charges of misuse of public funds were brought against his ministry. Though he was personally acquitted on trial and was reellected to the assembly, the power of his party was broken.
Meredith, Willan Ralph, Sir (1840- ), jurist, born in the province of Ontario and educated at the University of Toronto. For twentytour years, 1872-96, he was member for London in the provincial legislative assembly. In 1004 he was appointed chief justice of the common pleas court of Ontario. Sir William has been for many years an honorary lecturer to the law school as well as chancellor of the University of Toronto.
Metcalio, Charles Theophites, Baron (1785-1846), governor of Canada, was born at Calcutta, India, on the 30th of January, 1785. After graduating from Eton, he returned to India in 1800 in the service of the East India Company. Here he remained until 1838, holding various positions of increasing importance. For a year he was acting governor, but some of his reforms, including the liberation of the press, though universally popular, led to unpleasantness with the directors, so that he resigned all connection with the company in 1838. In 1839 he was appointed governor of Jamaica, where he showed great tact and executive ability. After an administration of four years he was appointed governor of Canada. Personally a man of great popularity, he was unfortunate in coming into conflict with the movement for responsible government. In view of his past career and other evidence, it seems that his opposition to Baldwin, Lafontaine and other reformers was the result of instructions from the home government and not of personal inclination. After three years Metcalfe resigned and returned to England.
Middleton, Frederick Dobson, Sir (18251898), soldier, born in Belfast, Ireland. He saw active service in Australia and India, where he won the Victoria Cross for gallantry. He was in Canada from 1868 to 1870 and again in $188 \pm$ and 1885, when he was commander in chief of the Canadian militia and was active in
suppressing the Riel rebellion in the Northwest. His services were rewarded by a grant of $\$ 20$,000 from the Canadian parliament and the honor of knighthood.

Mills, David (1831-1903), Canadian lavoyer and statesman, born in Kent county, Ontario. He served in the House of Commons continuously from 1867 to 1896, at which time he was elected to the Senate. He was chosen professor of international and constitutional law in the University of Toronto in 1888. In 1897 he became minister of justire and attorneygeneral and in 1801 was chosen judge of the supreme court. He was an acknowledged authority on constitutional and international law.

Minto, Gilaert Joun Murray Kynywmond Eluor, Fourth Earl of, (1845- ), British soldier and statesman, educated at Eton and at Trinity College, Cambridge. He served in the Seots Guards from 1867 to 1870, with the Turks in 1877 in their war against Russia, and with Lord Roberts in the second Afghan War (187879). Later he was military secretary to Lord Lansdowne during his governor-generalship of Canada and was also chief of staff to Gcncral Middleton in the Riel rebellion. From 1898 to 1804 he was governor-general of Canada and from 1905 to 1910 was viceroy of i.dia. (For portrait, see illustration facing page 209.)
Monck, Charles Stanley, Viscount (18101894), a British statesman, born at Templemore, Ireland, and educated at Trinity College, Dublin. He began his career as a lawyer, and in 1852 was elected to Parliament. From 1855 to 1858 he was lord of the treasury. In 1861 he was appointed governor-general of Canada, and was reappointed in 1867, on the formation of the Confederation. He resigned the following year. (For portrait, see illustration facing page 203.)

Monk, Frederick Debartzsci, K.C., D.C. L. (1856- ), educator and legislator, born at Montreal; educated at Montreal College and McGill University. He began the practice of law in 1878. He served as school commissioner for Montreal for twelve years and since 1896 has been a member of the House of Commons. For a number of years he was professor of constitutional law at Laval University, but resigned in 1911 to become minister of public works in the Borden government.
Monts, Pterre du Guast, Sieur de (15601611), French explorer and founder of Acadia. In 1603 the King of France made him governor
of the French Company of Caneda, which had the exclusive rights to trade in furs in certain territory. Together with Champlain and several other loaders, do Monts reiled for Cnanda and In 1605 founded Port Royal, on the present site of Annapolia. De Monts' privileges were taken awny from him by the next king and he died a poor man. But his aid led Champlain to found Quebec and was of great encouragement to Freach colonization in general.
Moris, Auguste Norbert (1803-1895), stateaman, first came into public notice in 1830, when he was elected to the assembly for Lower Canada. Elected to Parliament in 1840, Morin was a prominent follower of Lafontaine and Baldwin, in whose first ministry he was commisioner of crown lands. Throughout the long struggle for reaponsible government he labored fiethfully for reform, and after the general election of 1848 was elected Spenker of the A cembly. After the retirement of Lafontaine, Morin, as leader of the Liberals, joined with Sir Francis Hincks in forming a new ministry, which remained in office for three stormy years. He then united with Sir Allen McNab to form a new coalition ministry, but in January, 1855, ill health led him to resign. He then accepted a judgeship of the superior court of Quebec, bolding this post until his death.
Morrisioy, Joinn (1855- ), legislator, born at Newcastle, New Brunswick. He was elenteci to the legislature in 1889 but was defeated in 1890. He was again elected in 1903, and in 1908 became chief commisioner of public works.
Mone, Charles, $\operatorname{Sir}$ (1840- ), lawyer and judge, born at Cobourg, Ontario. Even as a law student he gained a reputation for clearness and brilliance of his opinions. He was prominent in many legal organizations and was for many years bencher of the Ontario Law Society. He became judge of the court of appeal for Ontario in 1897, was appointed chief justice in 1002 and five years later was knighted. Mount 8tephen, Lord, The Right Hon. Sir George Stephen (1829-), inancier, was born at Duffitown, Scotland, and educated in his native parish. When quite young he acted as a herd boy and later served his apprenticeship in the drapery business. Afterwards he went to London and entered the employ of J. F. Pawson \& Co. He came to Canada in 1850 and entered his uncle's establishment in Montreal, later forming a partnership with him. In 1880 be purchased his uncle's interest in the
bueinews and entered largely into the mawn factire of woolon soode. Ho was elected a dirr- of of the Bank of Montreal, and in 1873 bect vico-president and three years later was chosen preadent of that inatitution. He was a leader in the formation of the company which in 1880 undertook the construction of the Canadian Pncific Railway, and the muccessful completion of that sigantic enterpriso is due largely to his energy, forenight and falth in the future of Canoda. As a reward for his services in connection with the building of this sailway, the queen created him a baronet of the Unitod Kingdom in 1886 and in 1891 raised him to the peerage with the title of Lord Mount Stephen.

Mowat, Ourver, Sir, LL.D., K.C.M.G., G.C.M.G. (1820-1903), jurge and atatesman, born at Kingaton, Ontario. He studied lawn under Sir John Macoonald and was called to the bar in 1841. He entered Parliament in 1858 as a Liberal, became pootmaster-general in 1863, and vice-chancellor of Canada in the following year. In 1872 ho succseded Hon. Edwand Blake as premies of Ontario. A strong supporter of the rights of the provinces, Mownt gave to Ontario an excellent body of laws and able execution of them. In 1896 he was called to the Dominion Senate and appointed minister of justice in the Laurier administration. From November, 1897, until his death he was liet-tenant-governor of his native province.
Minlock, Wruhan, Sir, M.A., LLLD. (1843), atateaman and judge, born at Bondhend, Ontario, and educated at the Newmarket grammar school and the University of Toronto. He began the practice of law in 1868, in the city of Toronto, and was created queen's counsel by the Ontario government in 1890. He was also for four years one of the examiners in and lecturer for the law society of the University of Upper Canada. In 1881 he became vice-chancelor of that institution. He was also the founder of the William Mulock scholarship in mathematics in the University. He was elected to the House of Commons in 1882, and since his connection with Parliament has shown a keen interest in all questions affecting agriculture, banking and commerce. On the formation of the Laurier cabinet in 1896, he became post-master-general, and two years later established a new two-cent Canadian postage rate from Canada to all parts of the empire. In 1005 he became chief justice of the exchequer court for Ontario.

Murplay, Cuneus (1893- ), a leading berrister and stateaman, born in Ottawa and aducated in the Chriation Brothers School of that city, the Ottawa Colleginte Iostitute and Ottawa University. Ho was dected to the House of Commons by a large Liberal majority in 1808 . From that year until 1011 ho was recretary of ntate for the Dominion.
Mersy, Gronos Hzvit, K.C. (1801-), premier of Nova Scotia, was born at Grand Narrown, Cape Breton. He was educated at Boaton University, and in 1883 was admitted to the bar of Nova Spotia. In 1805 he was appointed queen'a counsel and four yearr later was chosen as a member of the council for Nova Scotia. In 1891 he became a member of the Nova Scotia government, and in 1888 was appointed premier, taking the portfolio of previncial eecretary.
Muray, Jamps (1710-1794), British governor of Canada. He entered the Britioh army, served in the West Indies, the Netherlands and Brittany and rose to the rank of lieutenantcolonel. He commanded a brigade at the niege of Louisburg and was one of Wolte's brigadiers in the expedition againat Quebec in 1759. After the British victory Murray was left in command of the city, which hedefended against the French in 1780. In the fall of that year he was appointed commander at Quebee, and became governor of Canada after this country had been formally ceded to England in 1783. Three years later he retired. From 1774 to 1781 he was governor of Minorca, which was finally surrendered to the Spaniards after a long siege. In 1783 he was made a general.
Murray, John, Sir F.R S., LL.D., D.Sc. (1841- ), born a .... . . Ttario; educated at Victoria College, of Edinburgh, $S$, is. 1863 he visited the Arctic region: - a ist on board a whaler; later he wi. . the naturalists on the "Challenger" in the explorations of the great ocean basins and edited the fifty-volume report on the results of the expedition. He has taken part in a number of other important expeditions, has published numerous papers and reports on geography, oceanography and marine biology, and is recognized as one of the world's great suthorities in his field.
Mantel, Wilprid Bruno (1857- ), legislator, born at St. Jerome, Quebec; educated at the Seminary of Ste. Therese de Blainville. For six years he was mayor o, St. Jerome. In 1004 he was ap unsuecessful candidate for the

House of Commons, but elected in 1008 and again in 1011. Alter the redignation of the Liberal ministry in 1011 be was a aworn member of the privy council and ansumed the portfolio of mines in the Borden ministry.

Filsor. Wulmazo (1702-1883), phywician and agitator. Dr. Nelson was the son of an English officer and was burn at Montreal. After preco ticing for a number of years he was elected to the Canadian parliament in 1827. He soon became prominent among the radical members and was one of the leaders in the rebellion of 1837. In later life he ahowed his ability and high character to better advantage, was several times elected to Parliament, was mayor of Montreal for two terms and was at the hend of the Lower Canada College of Physicians and Surgeons.
Iowcombe, Edaund Leshe (1850- ), born at Cornwallis, Nova Scotia; educated at Dalhousie College, Halifax. He was admitted to the bar in 1883 and ten years later became deputy minister of justice for Canada. From 1887 to $i 883$ he was a governor of Dalhousie College and during part of the time was also lecturer on insurance law. He was one of the commissioners appointed to revise the atatutes of Canada, 180200.
Mowaham, Jarvois Arthor, Right Rev. (1852- ), born at Bath, England; educated at Bath College, at MeGill University and at the Montreal Diocesan College. For four years he was a missionary at Onslow, Quebec; then he became curate of Christ Church Cathedral, Montreal, and from 1886 to 1890 he was rector of Westmount, Montreal. In 1893 he was consecrated Bishop of Moosonee and in 1904 Bishop of Saskatchewan. As missionary bishop he has traveled much in his diocese, especially by canoe and on snowshoes in the Hudson's Bay district.

O'Eagan, Tyous, Ph.D. (1855- ), a poet and writer, born near Toronto, and educated in the public schools and St. Michael's College, Toronto, and in the Ottawa University. Later he took a post graduate course at Syracuse University, New York, where he received the degree of Ph.D. He began his career as a teacher in 1874, and during the succeeding nine years held the principalship of some of the leading Roman Catholic separate schools in his province. His various poems were collected and published in a volume entitled A Gate of Flowers, in 1887. Since that date he has published In Dreamland and Other Poems, and in addition to his poems

## Elography

has been a prolific contributor to newapapen and mageijave, inciesting the Toronto Olabo, Camadian Mforathy, Domain:"': Megasine and the Canholio World. He is also whidly knowa in Caneda and the United States as a la twres.
Oltios, Fhanx (1853- ), legtalaiof, born in Peel county, Ontario. He went west at an early ase, became member of the Nortimest Councll in 1883 and from 1888 to 1896 was a member of the legisiative assembly which succeeded the Council. Since 1896 he has been a prominent Liberal in the House of Commons. He cetablished and atill owns the Edmonton Bulletin, one of the most nuccesalul dally papers in western Canada. In 1905 he was appointed minister of the interior in the Laurier admin. istration, and served till the defeat of the Libes. als in 1911.
Oronhyatothn, - ron'hy'a w'kah, M.D. (1841-1007), was born near Brantford, Ontario, and educated at the Industrial Schools, Wesleyan Academy, Kenyon College, and Unlversity of Toronto. He belonged to the Six Nation Indians in Canada. When the Prince of Wales visited Canada in 1880 , Oronhyatekha was selected by the chiefs of the Six Nat. is to present an address to him. He made such an impression on the Prince that he was invited to continue his atudies at Oxford, which he did, under the care of Sir Hy Acland, the prince's physician. As a physician, Dr. Oronhyatekha had a remarkable carcer. He began his practice at Frankford, Ontario, and later moved to London. He removed to Torento in 1889 and continued to practice medicine with great success. In 1863 he married Miss Ellen Hill, a great-granddaughter of Joseph Brant, head chief of the Mohawks.
Oalor, Edmund Bord, SIR (1845- ). legislator and banker, born in Simcoe county, Ontario. Sir Edmund is one of Canada's most prominent bankers. He is president of Osler \& Hammond, Toronto, brokers and financiers, president of the Ontario and Quebec Railway and a director of the C. P. R. He is also president of the Dominion Bank. He was an unsuccessful candidate for the mayoralty of Toronto in 1892, and since 1896 has been Conservative member for West Toronto in the Dominion House of Commons.

Oslor, Whlham, M.D., LL.D. (1849- ), a physician, born at Bondhead, Ontario, and educated at Trinity College School, Port Hope, at Trinity University, Toronto, and MrGill University. Later he studied at the University

Coliege of London and at Berlin and Viena He returned to Caneda in 1874, and was elected to the chnir of physiolory and pathology h MeGill Univenity. In 1884 he went to Phils delphia as profecoor of clinical medicine in the University of Pennsylvania, where he remainad for five years, when he was called to a prolesson. ship at Johns Hopklns University at Balti.mon. He has won remarkable distinction as a lecturer and also as a physlician. He is the author of numerous monographs and artirles in medicul journals and also has published Cerelind Palsices of Children, The Rrinciples and Practica of Medicing, The Teacher and Student, and Oimm Wendell Holmes: an Addrees. While at Jobm Hopkins Dr. Osler attracted wide attention by his theory that when men reached the age beyoud usefulness, an end ahould be put to their yeman. Otfor, Wiluas Drlon, Brig !ler-Genenal (1843-), a military offirer, born uear Clinto, Ontario, and educated at Goderich grammus school, the Model School, Toronto, and Upper Canada College. He joined the militia forre in Toronto in 1861, and took an active part in the Fenian raid in 1865. In 1869 he became major, and in 1874 was appolnted lieutenant-rolonel He was active in suppressing the Pilgrimage riots in Toronto in 1875, and the Grand Trunk riots at Belleville two years later. In 1883 be was appointed commandant c? the school al infantry in Toronta. During the Northwest Rebellion in 1885 he commanded the center, or Battleford column, and with his command made a forced march of 100 miles in five and a half days. His command was suceressful in preventing the junction of the forces of Big Bew with Riel, and he was largely instrumental in closing the rebellion.

Parent, Sumon Napolison (1855- ), legib lator and lawyer, born at Beauport, Quebec; educated at Laval Normal School and Lavid University. In 1890 he was elected alderman for the city of Quebec and from 1894 to 1905 was mayor. He was called to the provincial cabinet in 1801 as minister of lands, mines and forests and in 1001 was chosen premier. He resigned in 1905 to acrept the position of chair man of the National Transcontinental Railway Commission, which post he held until 1911.
Papinear, pap" pe no', Louls Joseph (17801871). orator and politician, born in Montrel and educated at the seminary in Quebec. He was elected to the assembly of Lower Canada in 1809. He commanded a company of militis during the war of 1812, but saw no seal servike

## Mography

He wan chosen Speaker of the Assembly in 1817 and held that pooition until 1837. He was appood to the policies of the royal governorn,


LOURS JOSEPR PAPINEAU
with whom he was in constant conflict, which ied to open revolt in 1837. The revoit was apeedily crushed and Papineau was forced to flee to the United States. He went to France from the United States, but in 1847 returned to Canada. In 1848 he was eiected to a seat in the iower house of the United Canadia, Parliament, but retired in 1854 and spent the remainder of his life in seciusion at his residence in Montbello, on the Ottawa River.
Parkin, Gzoroz Robert (184u ), educator and author. He was born , Brunswick and educated at the universaues of New Brunswick and Oxford, Engiand. He was principal of the College School at Fredericton until 1895, at which time he became principal of Upper Canada College, Toronto. He resigned in 1902 to become the administrator of the Rhodes Scholarship Fund in Oxford. Among his published works are Imperial Federation, Round the Empire, The Great Dorinion and a Lifo of Sir John Macdonald.
Parkor, Gilbert, Sir (1862- ), noveiist and politician, was born at Belleville, Onta ," and educated at Trinity College, Torontu. In 1886 he went to Australia and became one of the editors of the Sydney Morning Herald. In the early nineties he began to make a reputation as a writer of romantic fiction. By fur the

## Biography

best of his novels are thowe in which bo deals with the history and life of the French-Casadians; it is on his Canadian stories, wueh es Pierre and His Pcople, The Trail of the Smord, An Adventurer of the Norsh and The lighe of Way that his literary reputation rests. His priscipal Ister books are Donoran Pasha, The Wcawre and Northern lights. In 1900 he was elected to the British House of Commons as member for Gravesend and sonn herame a leader in the Unionist party, especialiy by his work for tariff reform and imperiai preference.
Parlow, Mary Kathleme (1890- ), violinist, born at Calgary, Alberta. When but five years of age Miss Parlow commenced the study of the violin in San Francisco. In 1908 she removed to St. Petershurg, Russia, where ahe continued her musical studies. Since 1008 the has appeared in most European countries, Canada and the United States, and has rapidly become recognized as one of the foremost living violinista.

Paterson, William ( $1830-$ ), statesman, born in Hamiiton, Ontario. He was educated in Hamiliton and at Caledonia. In 1872 he was eiected mayor of Brantford, where he resided. The same year he was chosen to the House of Commons and continued to rep-

sir gilbert parker
reset * his cunstitucncy until 1911. In 1896 he $t$. tered the Laurier cabinet as controller of customs. The following year he became a member of the privy council and was appointed

## Elogrephy

mialater of cuatome, the oflies of controller having beon abolished. On the dofeat of the Leverier edmialatation in 1911 be redgned with his chid.
Patticion, James Colramoone (1830- ), - berrioter and otatcomaan, born at Armagh, Irchand, and aducated in Dublin. He came to Caneda in 1857 and in 1876 began the practice of law. He was succeaively soeve of Windsop, wardoa of Emex and inspector of achools for Windsor. He was in the locel leglelature from 1874 to 1878, and in the latter year wns elected to the Hoves of Commona, whers the semained until 1891. In Januery of 1802 he became secretary of ctate in the Abbott ministry, and in the ministry of Sir John Thomproon was mede minioter of milition and defence. In September, 1805, be bocame lieutemant-governor of Manjcobe and Kewwatin and served until 1900.
Pollotior, ped to asp, Ceurles Alpmomas Pantaleon, Sif, K.C.M G., K.C., B.C.Ln, LL.D. (1837-1911), a Canadian barrister and statemma, born at Riviere Ovelle, Quebec, and educated at College Sainte Anne de in Pocatiere and Laval Univerity. He began the "-aetice of law in 1860, and late: scame city arney of Queboe. He represented Kamouracka in the House of Commons from 1809 to 1877, in which year to was called to the Dominion Senate, and entered the Mackenzio administration as minister of agriculture. He retired the following year on the change of government. He was president of the Canadian commission at the Paris Exponition, in 1878, and apeaker of the Senate from 1896 to 1001. In 1802 he was appointed judge of the superior court of Quebec, and from 1908 to 1911 was lieutenant-governor of the province.
Pollotior, Louss Phurppe (1857- ), brin at Trois Pistoies, Quebec; educated at St. Anne College and Laval University. He was called to the bar in 1880 and has since practiced in Quebec. He was at various times a member of the Quebec legislative assembly, as well as attormey-general of the province from 1896 to 1897. In 1011 he was elected to the Dominion House of Commons by Quebec county and was appointed postmaster-general in the Conservative ministry formed by Hon. R. IL Borden.

Perley. Georoz Halsey (1857- ), educated at St. Paul's School. Concord, New Hampshire, and Harvard University He has always been in the lumber lasiness, is a director in everal barks and corporations and is prominent in the charitable work of Ottawa. Sunce 1004
he hae been a member of the Houme of Cominmas In the elections of 1011 be took a prominent part as erganiser for the Conservativen, and on the defent of the Laurier administration was appointed a mininter without portfolion in the new cabinet formed by Hon. I. L. Bc rden
Porgy, Ayseawonti Bowar, HeutenantColonel ( 1800 - ), boon in Lensox coulty, Ontario; educated at Napanee High School and Royal Millitary College, Kinguton. In July, 1880, he was appointed a lieutenant in the Royal Eagineers, but renignod soon after un account of ill health. In 1882 be became an inspector of the Northwet Mounted Police, in 1885 was promoted to superintendent and aince 1000 has been comminsioner.
Potorion, Willam, LL.D. (1850-), educator, born in Edinburesh, Scotland, educated at the high sehool there and in Edinburgh University. After graduating from the University of Edinburgh ho studied at the Unuversity of Goetingen. On hin return from Germany ho was ejected to the Mackensie acholarahip in the Univerity of Edinburch, and 1000 after this sained a scholarahip in Ondord. Later he was appointed avelatant professor of humanity in the Edinburgh Univeraity, and in 1882, upon the opening of the Univeraity College at Dundee, was appointed principal of that institution and and profencor of clasaics and ancient history. He held this position until 1895, then was chocen principal of McGill Univesity, Montreal
Pintham, Willuy Crpauns, The Rt. Pev. (1844- ), Anglican bishop of Saskatchewan, was jorn at St. Johns, Newfoundland, and elucated at the Church of England Academy, St. Johns, and at St. Augustine's College, Canterbury, England. He was ondained deacon in 1868 and priest in 1869. From 1888 to 1882 he was rector of St. James' Church, Winnipeg, and during all but the first three years of the period he was also superintendent of education for Protestant public schools of Manitoba. For five years he was archdeacon of Manitoba and canon of St. John's Cathedral, Winnipeg. In 1887 he became bishop of Saskatchewan. Always interee ' $x$ in education, he has been a most in-
in factor in educational problems of Manitoba and Saskatchewan.

Pope, Josapi, Sir ( ${ }^{2} 854$ ), suthor and administrator, born at Charlottetown, Prince Edward Island, and educated at Prince of Wales College. In 1878 he entered the civil service and four years Jater became private secretary to Sir John Meodonald, a position he held until Mao

## Begraply

Pyac, Runaty Allan, M.D. (18s6- h phyalician and leggolator, born at Newmarket, Ontario. Provious to his election to the legio lature, to held the poolitions of chairman of the Turonto echool bourd and the Toronto free library boand. He wrev elected to the legislature In 1808, and returned in 1002 and 1905, in which year he was appuinted minister of education in the Whitney administration.
Zoammo, Josapi O., M.D. (1850- ), a phywician and legislator, born at Anderton, Ontario, and educated at Asomption Collerge, Detrolt Medical College, and Trinity Medical College, Toronta. He was first elected to the legislature in 1002. In 1005 he was appointed commissioner of public works in the Whitney administratlon.

Reld, Gromoz Aanaw (1860-), painter, bora at Wingham, Ontario; utudied art in Toronto, Philadelphla, Paris and Madrid. He has exhiblead in the Paris Salon and at numerous an abltons in Canada and the United Staten. Bis works Include Tho Pioneers, a series of panels In iuse Turonto city hall; Morlgaging the Home acod and the Arrinal of Champlain as Queboo, in the Natlonal Gallery at Ottawe.
Rold, Joinn Dowsley (1550- ), phyaician and legialator, bora at Prescott, Ontario; educated at Queen's University, Kingaton. He practiced medicine and was ln businese for a number of years. He was first elected to the House of Commons in 1801 and long continued to be the Conservative member for Grenville. In 1911 he became minister of customs.
Risl, Lovis (1844-1885), ugitator, $v:$ bor? at St. Boniface, Manitoba, on ths $1 . i$ of October. Though generally krown as alfbreed, his ancestry was mainl:: Firench. From 1866 to 1868 he worked rit various cecupations In Minnesota. In 1869 the vaasfer of the territorial right -' the Hudsoa. " Bny Company to the Dominic's ar vernment lert to an armed revolt of the hat isceds under Riel's leadership. In October a party under Riel turned back the new governor (Hon. Wm. McDougall) and later captured Fort Garry (Winnipeg). After holding a convention which passed a bill of rights, a provisional government with Riel as president was formed. So far the metis or hall-breeds were within their rights, but the execution of Thomas Scott, an Orangeman from Ontario, roused the whole of English-speaking Canada against them. An expedition under Colonel Wolseley captured Fort Garry, but Riel escaped. He was not arrested or proser ited and several

## Biography

years later was elected to the House of Commons, from which he was expelled after a year. He was agnin elected is 1874, but his reat again became vacant after he was outlawed in February, 1875. For nine years he kept out of public notice, apending five years in Montana. In 1884 in response to a call from his countrymen, who had moved west to the Saskatchewan district, he returned to Canada. His own rashness and the harshness of the officials caused another rising, which was crushed after hard fighting. Riel was imprisoned at Regina, was tried and found guilty of treason, and was executed in November, 1885. (See also pages 400 and 401).
Robests, Charlis George Douolas (1860-
), a Canadian poet and story writer, was born at Douglas, near Fredericton, New Brunswick, and educated at Fredericton Collegiate School and the University of New Brunswick. He was professor of English and French literature in King's College in 1885-1887, and of economics and international law in 1887-1895. In 1897-98 he was associate editor of the Illustrated American, New York. Among his more important writings are Orion and Other Poems, Songe of the Common Day, New York Nocturnes, The Canadians of Old, Around the Camp Fire, A Hidory of Canada, The Kindred of the Wild, Barbara Ladd, The Little People of the Sycamore and The Backwoodsman.
Robertson, Jons Ross (1841- ), journalist, born in Toronto and educated at Upper Canada College. While in college he learned the trade of printer, and for a time published a school paper entitled The College Times. In 1861 he established the Sporting Life, a paper devoted to athletics. Later he published The Grumbler, a weekly satirical paper. In 1864 he joined the stafi of the Toronto Globe as city editor, and two years later became one of the founders of the Daily Telegraph. This ceased publication in 1872, and Mr. Robertson went to London, England, where he acted as resident correspondent and business manager for the Toronto Daily Globe. He returned to Canada in 1875, and assumed the business management of The Nation, a journal edited by Goldwin Smith. The next year he established the Evening Telegram, a publication which met with remarkable success from its foundation. Mr. Robertson is the author of The History of the Degrees of the Cryptic Rite in Canada, Talks with Craftomen, Landmarks of Toronto and other volumes.

## Bography

Robinsoa, John Bevarlet, Sir (1791-1863), stateaman and jurist, born at Berthier, Quebec He studied under Bishop Strachan, by whom his religious and political ideas were much influenced. He served with distinction at the beginning of the War of 1812 and later in the war was acting attorney-general of Upher Canada. From 1817 to 1829 he was the hend of the Tory party in Upper Canada (known as the Family Compact). In 1820 he became chief justice of Uppes Canada, and served till shortly before his death. Not one of his decisions was ever reversed on appeal. For many years he strongly advocated a federal union of British North America but he opposed Lord Durham's plan of legislative union for Upper and Lower Canada as a makeshift.
Roblin, Rodmond Palen, Sir, K.C.M.g. (1853- ), a merchant and legislator, born at Sophiasburg, Ontario, and educated at Albert College, Belleville, Ontario. He began busines in Winnipeg as a grain merchant. He was reeve for five years and warden of Dufferin lor two years. He was elected to the legislature in 1888 and became leader of the opposition in the assembly. In 1900 he was called upon to form an administration, and assumed the offices of premier and president of the council. He has also held the position of commissioner of rilt ways and minister of agriculture.
Roche, William James ( 1860 - ), physician and legislator, born at Clandeboye, Ontario; educated at London High School, Trinity Medical College and Toronto University. In 1883 he removed to Minnedosa, Manitoba, where be practiced medicine and was a member of the Manitobe medical council for several years Since 1896 he has been a member of the Dominion House of Commons. In 1911 he was appoint ed secretary of state in the Borden ministry.
Rogers, Robert (1864- ), born at Lakefield, Quebec. He was engaged in general business for many years at Charlevoix, Manitoba; later he dealt in grain and was interested in mining. In 1899 he was elected to the Manitobs legislative assembly and a year later became a member of the ministry, first without portolio, later as minister of public works. He continued in office until 1911, when he was elected to the Dominion House of Commons and became minister of the interior and superintendent of Indian affairs in the Borden government.
Ross, Alexander (1783-1856), author and pioneer. He was born in Scotland and emigrated to Canada in 1805. After teaching school for

## Mography

several years in Glengarry, Ontario, he went to Oregon with John Jacob Astor's expedition (See Adoria, Volume I). He settled in the Red River district after many years' service with the Hudson's Bay Company. He was the author of Adrentures of the First Setllers on the Oregon or Columbia River, The Fur Hunters of the Weat, and The Rod River Settlement, Its Rise, Progress and Present State.
Rosi, Alexander Milion (1832-1897), naturalist, born in Belleville, Ontario. He studied medicine in New York and during the American Civil War served in the Federal army as surgeon. After the close of the war he served in Mexico under Juarez (See Juares, Volume III). He then returned to Canada and devoted himself to the study of natural history. His published works include Recollections of an Abolitionid, Binds of Canoda, Butterfies and Moths of Canada, and Mammals, Reptiles and Freshoater Fishes of Canada.
Ross, George Williny, Sir (1841- ), educator and statesman, born near Nairn, Ontario, educated at the Toronto Normal School, Albert University, St. Andrew's (Scotland), Victoria and Queen's universities. For a number of years he was a teacher and public school inspector. From 1872 to 1883 he was a Liberal member of the House of Commons; he retired in order to become minister of education for Ontario, holding that office till 1899, when be became premier. After six years in office he resigned and two years later was called to the Senate. He is well known as a lecturer and author, among his published works being Life and Times of Alexander Mackensie and a History of Public and Separate Schools
Roas, James Hamilon (1856- ), a Canadian legislator, born at London, Ontario, and educated at the London grammar and high schools. He was elected to the Northwest Assembly in 1883 and retained his seat until 1901. He was also commissioner of public works and territorial secretary. In 1901 he was appointed commissioner of Yukon Territory, which position he held until the following year, when he became a candidate for the House of Commons. He was returned at the first federal election ever held in that territory. In 1904 he was appointed to the Dominion Senate, and soon after removed to Moose Jaw, Saskatchewan.
Rutherford, Alexander Cameron, B.A., LL.D. (1858- ), barrister and legislator, born at Osgoode, Ontario, and educated at the

## Bography

Metcalfo high school and Woodstock College and McGill University, Montreal. He was for some time secretary-treasurer of the town of Strathcona and of Strathcona school district. He was elected to the legislative assembly in 1002 and was deputy speaker of the last legislature of Northwest Territories. Upon the formation of the province of Alberta in 1805, he was called to form a cabinet, which he did, assuming the portfolios of premier, provincial treasurer and minister of education. The government was sustauned in 1009 but was defeated two years later. After his resignation as premier he continued to represent Strathicona as a private member.
Ryorion, Egerton, Rev., D.D., LL.D. (18031882), a Canadian educator and divine, born at Charlotteville, Ontario, and educated in the public schools and by private tutors. At the


## REV. EGERTON RYERSON

age of 22 he entered the ministry of the Methodist Episcopal Church, and because of his forensic ability soon rose to prominence among the clergymen of that denomination. In 1829 he was influential in founding the Christian Guardian, the organ of Canadian Methodism, of which he became editor. He was one of the leaders in founding the Upper Canada Academy at Cobourg. This afterwards became Victoria University and Dr. Ryerson was its first president. In 1844 he was appointed superintendent of education for Upper Canada, which office he held for thirty-two years. During his incumbency of this office $\mathrm{D}_{\mathrm{r}}$. Ryerson made repeated journeys to the United States and Europe to
study the educational systems of different countries. Hie in justly regarded as the founder of the public achool aystem of Upper Canada (Ontario), and his work and influence in behalf of the public schools of Canada are likened to those of Horace Mann in Massachusetts. In 1874 ho wes elected president of the first general conference of the Methodist Church in Canada, and held the office for four years. He represented his conference in Great Brituin at three different times, there being an interval of forty-four years between his first and last election. During his last years Dr. Ryerson lived in retirement. His published works are Lettere in Defense of Our School System, The Loyalists of America and Their Times, and The Story of My Liff, an autobiography which was completed after his death by Dr. J. G. Hodgins.
sangater, Charles (1822-1893), poet, was born at Kingston, Ontario. For fifteen years he was a newspaper editor at Amherstburg and Kingstom. In 1868 he nccepted a position in the post office department at Ottawa; he resigned in 1886. Probably his best known poem is England and America. His poems were collected in two volumes and published under the titles of The St. Lawrence and the Saguenay, and Other Poems, and Hesperus and Other Poems and Lyrics.
saunders, Margaret Marsiall (1861), author, was born at Milton, Nova Scotia. Miss Saunders has traveled extensively and takes an active part in philanthropic wark. Her best known book is Beautiful Joe, which has been translated into many foreign languages. Among her other books for children are Charles and his Lamb. Tilda Jane, Beautiful Joe's Paradise and Nita. Her stories are remarkable for their sympathetic treatment of dumb animals.
Scott, Duncan Campbell (1862- ), poet, born in Ottawa, Ontario, and educated at the pubii : schools and at Stanstead Wesleyan College. Atter completing his education he entered the government service as a clerk in the department of Indian affairs, and in 1893 was promoted to be chief clerk and public accountant of the department. He has been a constant contributor in prose and verse to journals of Canada and the United States. In 1893 he published a volume entitled The Magic House and Other Poems. This work was most favorably received in England and America. He is also the author of Labor and the Anpels (poems), New World Lyrics and Ballade, Life of Simeoe, and he is one of the editors of

The Makers of Canada, a serries of historical biographies.
Reote, Predertct George, M.A., D.C.L (1861- ), churchman and poet, was born in Montres. He received his education at the Montreal High School, Bishop's College, Letrnoxville, and King's College, London. He wa ordained priest in 1886 and held a number of rectorates until he became canon of Quebre cathedral in 1006. His volumes of poems include Soul's Quest, My Lattice, The Hymn of Empire and The Key of Life, all of which contain many lines well worth remembering.
scott, Riciard William,Sir, K.C., K.C.M.G, LL.D. (1825- ), statesman, born at Prescot, Ontario, and educated by a private tutor. He began the practice of law in 1848 in Ottawa, and soon became one of the leaders of the local bar. In 1852 he was chosen mayor of Ottawa, and five years later was elected to the legislature. In 1867 he was elected to represent the federl capital in the first legislature of Ontario, and continued to hold his seat until 1873. In 1871 he was chosen speaker of the assembly and late became commissioner of crown lands in the Blake administration. On the formation of the Mackenzie administration at Ottawa in 1873, he became a member of the privy council, and the next year was appointed secretary of state and registrar-general of Canada. He we appointed to the senate by the Earl of Dufferin in 1874, and during the existence of the Mackenzie government was one of the leaders of the administration forces. After the defeat of the Liberals he became leader of the opposition On the formation of the Liberal cabinet by Sir Wilfrid Laurier he was again appointed sectetary of state and registrar-general, and was government leader in the senate until 1908 , when he retired from active political life.
8 cott, Walter (1867- ), a journalist and legislator, born in London township, Ontario, and educated at the public schools of Middleser, Ontario. He was part owner of the Standan, Regina, 1892 and 1893. In 1894 he became proprietor and editor of the Times at Moosejar, but in 1895 he relinquished this paper and pur. chased the Leader at Regina, which he edited and managed until 1900, when he becamepresident of the Leader-Times Company, which position he held until 1906. In 1899 he wis chosen president of the Western Canada Pres Association. He was elected a Liberal member of the House of Commons for Assiniboi West in the general elections of 1900 and 1904 ,

## Bocraphy

and took an active part in the negotiation and prange of the acts creating the provinces of Saskatchewan and Alberta. In 1905 he was invited to form the first ministry for the province of Saskatchewan. He becume premier of that province and president of the council, and later also minister of public works.

Eocord, Lavia, a Canadian heroine. During the War of 1812 a force of Americans sought to surprise a amall British force at Beaver Dam. News of this plan reached James Secord, a

the laura secord monument, at lundr's LANE CEMETERY
wounded militia officer then living in Queenstown. As he himself was unable to warn the British commander, his wife undertook the dangerous mission. Driving a cow before her until she reached the woods, in order that the enemy might not suspect her purpose, she then set out on her solitary tramp of twenty miles through the dense forest. After an exhausting day, during which she was in constant danger from hostile Indians and Americans, she brought the news to the defenders of Beaver Dam. The

## Bography

British forces were now prepared for atteck and when the Americans approached, the English immediately took the offensive and forced the Americans to surrender. While the battle in itself was not of great significance, it will live in history for the heroism of Laura Secord.
Hollifk, Thomas Dovalas, Earl of (17711820), was born at St. Mary'n Isle, Kirkcudbrightshire, England. At the time of the change of the highlands of Scotland into graaing lands and deer forests, Selkirk took deep interest in the evicted peasants and tried to organize emigration to British colonies. He founded a large colony in Prince Edward Island in 1803, but it is as a founder of the Red River settlements (now Manitoba) that he is famous. He received an immense tract of land by grant in 1811 and at once proceeded to send out settlers. But the hostility of the North-Went Fur Company eventually ruined his colony. One of the most generous and disinterest d men in the history of colonization, he died brokenhearted in the knowledge that his plans had failed. Much of the credit of opening the west for settlement must be awarded to him.

Somple, Robert (1766-1816), traveler and governor under Hudson's Bay Company; was born at Boston. He engaged in mercantile pursuits and traveled almost constantly. In 1802 we find accounts of him in Cape Colony; in 1803 in London; in 1805 in Spain, Italy, Smyrna and Constantinople; in 1808-1809 in Portugal, Spain and Tangier; in 1810 in Venezuela, and in 1813 he was captured as an American spy in the rear of the allied armies - ear Hamburg. In 1815, through the influence of Lord Selkirk, he was chosen as governor of the Hudson's Bay Company's factories and territories, and arrived at Red River in September. He was killed June 19, 1816, in a pitched battle between the forces of the Hudson's Bay Company and the North-West Company.

Service, Robert W. (1876- ), poet, born in Lancashire, England; educated in Glasgow, Scotland. He came to Canade in 1897. For several years he was employed in a variety of occupations, first on Vancouver Island, later as clerk in the Canadian Bank of Commerce at White Horse and Dawson He resigned his clerkship in order to devote himself to literature. His poems, which are remarkable for their simplicity and fidelity to the conditions in the Northwest, have been collected and published in several volumes, The Spell of the Yukon, Songe of a Sourdough and Ballads of a Cheechaco.

## Bography

## Mography

Thamghmeany, Tromens Gromaz, Sir (1853), railroed president, was born in Mir waukes, Wisconsin. At the age of airteen he entered the employ of the Chicago, Milwaukee and St. Paul Railway, with which he remained till 1882. He then became general purchasing agent for the Canadian Pacific Railway, vicepresident in 1891 and president in 1001. He is also presideat and director of a number of other railway corporations, all connected with the Canadian Prcific. He was knighted in 1001.
shophord, Fravels J., M.D., LL.D., etc. (1851- ), surgeon, was born at Como, Quebec; educated at Montreal Higin School, McGill University and University of Vienna. In 1875 be was appointed demonstrator of anatomy at McGill, in 1883 he became professor and a few years later dean of the medical faculty. Dr. Shepherd is one of America's greatest surgeons and has been honored by election to many medical organizations. His written contributions on anatomy and surgery are among the standard works on medical science.
Ghortt, ADAM (1859- ), economist, was born near London, Ontario, and received his oducation at Queen's, Glasgow and Edinburgh universities. He has cevoted himself especially to a study of Canadian economic and political development. He was for a number of years lecturer and professor of political scieace at Queen's University. Among his published writings are a life of Lord Sydenham and a series of papers on the history of Canadian currency and banking. In 1908 he was appointed a member of the Civil Service Commissaion for Canada.
sifton, Arthur L. (1858- ), legislator and judge, born near London, Ontario, educated at Wesley College and Victoria University. He was elected to the legislature of the Northwest Territory in 1898 and in 1901 became treasurer and commissioner of public works. In 1905, when the province of Alberta was organized, he became its first chief justice. He resigned after five years to become premier of the province. He is a brother of the Hon. Clifford Sifton.
Bifton, Cupford (1861- ), legislator, born in Middlesex county, Ontario; educated at London High School and Victoria University. He was elected to the Manitoba assembly in 1888, and was attorney-general and minister of education, 1801-06. As attorney-general he of ried through the act codifying and simpiifying civil prucedure in the province. He was
callied to the Dominion cabinet in 1898 as minister of the interior and superintendent of Indian affaina In 1898 be introduced and carred legsiation giving responsible government to the Northwest Territories In 1903 he was British agent before the Alaska Boundary Tribunal. He resigned from the munistry in 1905 on account of differences of opinion over education in the territories, but continued to represent Brandon in the House of Commona. He was appointed (1909) the first chairman of the Canadian Conservation Commission, a position which has enabled him to be of continued service.
simeoe, John Gruves (1752-1806). an Eng lish general and the first governor of Upper Canada, born in Northamptonshire, England, and educated at Merton College, Orford. He came to New England during the Revolutionary War, commanding the Queen's Rangers. He took an active part in the war and surrendered with Cornwallis at Yorktown in 1781. He served as governor of Upper Canada in 17911794; then became governor of Santo Domingo in 1796-1797, and in 1806 was appointed com-mander-in-chief of India. He wrote a History of the Operations of a Partisan Corps Called the Queen's Rangers.
simpion, Grorger, Sir (1792-1860), stateman and explores, was born in Roseshire, Scot-

bir oeoree bimpson
land. He came to America in 1820 as one of the officials of the Hudson's Bay Company, and a

0

Magraphy
year later was appointed governor of the northern department when the Hudson's Bay Company acquired control of the Northwest Fur Company. For thirty-five years ho was general superintendent of the company's offairs in America. He sent out and himself took part in meny exploring parties which helped to open the West. He published an account of a trip around the world under the title $A$ Narrative of a Journey Round the World During the Years 1841 and 1848.
Eproule, Tromas Simpson (1843- ), legisIator, born in York County, Ontario; educated at University of Michigan and Victoria University, Tor unto, where he graduated in medicine in 1868. He has been a farmer for over twenty years as well as a practicing physician. He was elected to the House of Commons in 1878 and has served continuouslv s'nce. On November 15, 1911, he was electrd Speaker.
raunir, Joan ( $18 \%$ ), educator, born at Bowmenvilie, Ontario; educated at the high schools of Newcastie and Bowmanville and at the University of 'foronto. Since 1883 he has been head of the department of French in University College. Mr. Squair has been active in the wort of the Ontario and the dominion educational associations and has edited many French works for school use. He also collaborated in the preparation of a French reader and a Fisach grammar.
8tanloy, Fredrrick Arthur, Earl of Derty (1841-1008), an English statesman, born in London and educated at Eton. He was elected to Parliament at the age of 24, and during the next few years held several importani offices, including that of secretary of state for the colonies. From 1888 to 1893 he was governorgeneral of Canada. When King Edward VII succeeded to the throne, Lord Stanley was appointed supernumerary aid-de-camp to the king.
Strachan, Joun (1778-1867), first episcopal bishop of Toronto, was born at Aberdeen, Scotland, and was educated at Aberdeen University, where he paid his expense? by private teaching. In May, 1803, he was ordained and was immediately appointed to the parish of Cornwall, where his sclool became the most notrai educational institution in the country. In 1815 he was appointed to the executive council of Upper Canada. A man of great force of character and much ability, of keen ambitions and unusual shremdness, he attained great influence in the government and was soon the leading spirit in the dominant group of extreme conservatives
commonly known as the Family Compect. When the University of King's College was established ho became its first president; but in 1849 when it became the University of Toronto


## BISHOP STRACHAN

and lost its denominational character, he resigned and at once took steps to found another university under the control of the Episcopal Church. Trinity University, the result of these efforts, was opened in 1852. He had been appointed bishop of Toronto in 1839 and after the founding of Trinity, Bishop Strachan devoted his remaining years entirely to his episcopal duties.
Strathcone and Mount Royal, Donald Alexander Smith, Baron (1820-), statesman and financier, was born at Forres, Scotland. In 1838 he was appointed a jumor clerk in the Hudson's Fay Company. For thirteen years he was stationed at Hamilton Inlet, Labrador; here, hesides mastering the fur trade, he spent much of his time is introducing improventents into th.e conditions of lift, being the first to prove that potatoes could be grown there with success. Then for ter years he was on Hudson Bay, where he ruse to be a chief trader and later chief factor; and in 1868 he became resident governor at Montreal. During the disorders in 1870 in the Red River settlements he used his infuence in settling the disputes without bloodshed. He was elected to the first legislative assembly of the new province or Manituba and then to the House of Commons.

In Purliament he was prominent for his independence and his advocacy of railroad expansion. Together with his cousin, Lord Mount Stephen, be was one of the organizers of the present Canadian Pacific Railway, and it is largely dse to his energy and ability that the project wascompleted. Except from 1882 to 1887 he continued to sit in Parliament until 1890, when he succeeded Sir Charles Tupper as high commissioner in London. Smith kas raised to the peerage in 1897. He received numerous honorary degrees from colleges and universities and for many years was chancellor of Aberdeen and McGill universities (For portrait, see illustrntion facing pege 190).
Etringor, Artaur (1874- ), poet and novelist, born at London, Ontario. educated at Toronto University and at Oxford, England. For several years he was editorial writer for the American Press Association and later was literary editor of Sucoess Magazino. He is the author of Watchers of Twilight, The Loom of Deatiny, Lonely O'Malley, The Wire Tappers and a number of other volumes of verse and fiction.
strait, Cburles Alhan (1864- ), lawyer, judge and educator, born in Middlesex county, Ontario; educated at Sarathroy Collegiate Inatitute and University of Toronto. In 1898 he was called to the bar of Ontario but soon removed to Alberta, where he became successively a member of the legislature, judge of the supreme court for the Territories and judge of the supreme court of Alberta. In 1908 he became chancellor of the University of Alberta.
8ulte, Benjamin ( 1841 - ), poet and historian, born at Three Rivers, Quebec. After the death of his father he engaged in business and later entered the government service, in which he was employed for thirty-five years. His most important historical work is the Histoire des Canadiens-Francais. Sulte is also known for his volumes of poems, Les Paurentiennes and Les Chants Nouveaux, and numerous minor essays.
Iuthorland, William Caarless, (1865- ), an attorney and legislator, born at Embro, Ontario, and educated in the Orangeville high school and McGill University. He began the practice of law in Manitoba and afterwards removed to Saskatchewan and was secre-tary-treasurer and councillor for the town of Saskatoon. In 1905 he was elected to the legislature of the province when it was organized, and was reelected in 1908. He was
chosen deputy speaker of the Saskatcherna legialature and chairman of the standing com mittee on private bills and railwaya and that $\alpha$ law amendments and municipal law in the firat legisature. At the first session of the recond legislature he was elected speaker.

Emeoney, Jamis Fitiding, Rev., M.A.,D.D. (1857- ), cergyman, born in London, Enp land, and educated at the Montreal high school and McGill University. Upon his or dination he became rector of St. Luke's and chaplain to the Montreal General Hospital. Ia 1889 he was appointed an honorary canon dist Alban's Cathedral, Toronto, and was elected rural dean of Toronto in 1895. Later he becime archdeacon of York and Simeoe and in 1009 was consecrated bishop of Toronto.
DJdenham and Toronto, Crunless Edwao Pouletr Thomson, Baron (1790-1841), Britad etatesman, was born in London and spent the early years of his life as ascistant to his father, 1


## LORD BYDENEAM

merchart. In 1826 he was returned to the Brit ish House of Commons for Dover and in 1830 joined Earl Grey's ministry as vice-president of the Boand of Trade. He was a member for Marchester from 1832 to 1839. A free-trader and an expert in financial matters, he was continuocsly occupied with negotiations affecting inter national commerce. From 1839 to 1841 a governor-general of Canaula, he took a kending

## Bography

part in forming the union of Upper and Lower Canada His services were rewarded by a perrage, which became extinct at his death for back of heirm.
Fach', tash a', Alexandrar Antonin (18231894), a Roman Catholic archbishop, born at Riviere du Loup, Que., educated at St. Hyacinthe College, Montreal Theological Seminary and Chambly College. He became instructor of mathematics in St. Hyacinthe College in 1842 but reaigned after a short time and joined the Oblate Onder at Montreal, volunteering for missionary work among the Indians on the Red River He soon became known throughout Canada for his great energy and fortitude. In 1851 be was consecrated bishop of Avath, after having ieen summoned to France by the Superior of the Oblate Fathers In 1852 he returned to the Northwest and a year later became bishop of St. Boniface. He urged upon the government the necessity of adjusting the grievance with the Indians and half-breeds in 1869, but during his absence in Italy in 1870 the Riel rebellion broke out. Had his advice been followed in 1868-1869 this trouble could probably have been averted. In September, 1871, St. Boniface ,was made the metropolitan see, and Tache became archbishop of Manitoba. He died at Winnipeg, June 22, 1894, and was buried in the cathedral of St. Boniface. Taché was a brilliant scholar and an eloquent preacher; his influence in the west can hardly be overestimated.

Thehd, Etixnne Pascial, Sir (1795-1865), premier of Canada, was born at St. Thomas and educated at a Roman Catholic seminary. He became an ensign in the 5 th battalion on the outbreak of the War of 1812. He studied medicine after the war and was admitted to practice in 1819. Taché entered the Canadian Assembly in 1841. In 1846 he resigned his seat and was appointed deputy adjutant-general of the Canadian militia. He was reellected to the Assembly in 1848, and on March 11 was made commissioner of public works in the BaldwinLafontaine ministry. The next year he became receiver-general and held that office till May, 1856. Tache was appointed a life member of the legislative council in 1856. He was elected speaker in April, and in a short time became premier. His administration was wise, and Taché was noted for his efforts for economy. He sought retirement in 1858, and during that year visited England, where he was received by the queen at Windsor and knighted. He again
became premies in 1801 and presided over the conference at Quebec when the great question of federation was discussed. He died at Montmagny July $30,1865$.
Talot, Juan Baptiste (1625-1691), French official in Canads. After serving in the civil service in France he was appointed intendant of justice and finance in the French ponsessions in North America. His work was of great value in establishing permanent colonies and alto in expansion. He built ships, began trade with the West Indies, sent out exploring expeditions and labored for the advancement of the colonies. His Memoire a la majesto sur l'etot present dus Canada, published in 1667, is a valuable source of information concerning the early history of Caneda.
Tarto, Joskpa Ispazl (1848-1007), statesman, born in Quebec and educated at L'Assomption College. He followed the profession of law for a time and later became editor of La Canadien. From 1877 to 1881 he was a member of the legislative assembly of Qucbec, and in 1891 was elected to the Dominion House of Commons. He was appointed minister of public works in 1806, and filled this office until 1902.
Tascherear, tash yo', Elzmar Alexandre (1820-1898), prelate and cardinal, bo n in Quebec and educated at Quebec Seminary, with which he remained as professor of moral philosophy until 1862. In 1802 he was made vicargeneral of the diocese, archbishop in 1871 and cardinal in 1886.

Tascherean, Henri Elzear, Sir (1836-1911), born at St. Mary's, Quebec, educated at Quebec Seminary. He was called to the Quebec bar in 1857. From 1861 to 1867 he sat in the Canadian Assembly; later he became a judge of the superior court of Quebec. In 1878 he was appointed to the Supreme Court of the Dominion and in 1902 became chief justice. After his resignation in 1906 he became dean of the law faculty of the University of Ottawa.
Tascherean, Louis Alexander (1867- ), legislator, was born at Quebec and studied law at the Quebee Seminary. He was elected to the Quebec legislative assembly in 1900 and was sworn in as minister of public works in October, 1907.

Taylor, Tromas (1865- ), legislator, born at London, Ontario; educated in the public schools and at the London Commercial College. In 1885 he removed to Winnipeg, where he entered the employ of the Canadian Pacific Railway. He moved to British Columbia in 1894

## Begraply

and eagaged in mercantilo pursuita. In 1900 he was elected to the provincial locisiature and ia 1008, on the formation of the department of public worke, was aworn in as its minister in the McBride edministration.
Tomplomax, Wilham, P.C. (1844-), jouranaist and stateaman, born in Paicenham, Ontario, and educated in the public schools of that towa. Early in life he became intercuted in journaliam and in 1867 eatablished the Almonte Gazetts. In 1884 he snoved to Victoria, B. C., and established the Victoria Times, which he has since published. Fie became a member of the Canadian Senate in 1897, and in 1002 was sworn in as a member of the privy council In 1008 he was appointed minister of inland revenue, and upon the organization of the dopartment of munes the next year, he became its minister. Having resigned from the Senate, in 1908 and again in 1000 he was elected to the House of Commons. In 1911 he was defeated in the general election.
Thompion, DAvid (1770-1857), explorer, born in Westminster, England. He was educated at Oxford and in 1789 came to Canada in the service of the Hudson's Bay Company. For several years Thompson was engaged in explorations in the Great Lakes region and in 1807-1811 he explored the Columbia River Valley from source to mouth. He was employrd on the boundary survey, 1816-1826, and also had charge of numerous surveying and exploring expeditions in the Northwest.
Thompion, John Sparrow David, Sir (1844-1894), jurist and statesman, was born at Halifax, Nova Scotia. At fifteen he entered a lawyer's office and at twenty-one was called to the bar. In 1877 he was elected to the local legislature as a Conservative and a year later became attorney-general; for a few weeks in 1882 he was premier of the province and in July became a judge of the provincial supreme court. In 1885 he was appointed minister of justice in the Macdonald ministry and was elected to the House of Commons for Antigonish. "Though a quiet man who did not advertise, few Canadian statesmen have done so much honest and solid work." In November, 1892, he succeeded Sir John Abbott as premier of Canada, but he died before he had time to carry out the many reforms planned for the good of his party and of Canada. (For portrait, see illustration facing page 210).
THey, Samuel Leonard, Sir (1818-1896), statesman, was born at Gagetown, New Bruns-

## Biggraghy

wick. Ho was elocted to the provincial legits ture in 1850. From 1800 to 1805 he was premis of the province and was prominent in the dis cusion and confereaces preceding conleder-


BIR BAMUER LDONARD TILLET
tion. Fron 1's8 to 1873 he held various poste in the Dominion cabinet; he was lieutenantgovernor of New Brunswick, 1873-78, and minister of finance in Sir John Macdonald's cabinet from 1878 to 1885. He was the author of the bill providing a "national policy" of protection, which is the basis of Canadian financin policy today.-After his resignation from the cabinet ho was again appointed lieutenantgovernor of New Brunswick, this time serving for eight yeara.

Townshend, Charles J., Sir (1844- ), legissator and jurist, educated at the Collegiate School and at King's College, Windsor, Nova Scotia. For many years he practiced law; then served in the provincial assembly, and in 1884 was elected to the Dominion House of Commons In 1887 he was appointed to the supreme court of Nova Scotia and in 1907 became chief justice.
Traill, Catherrane Parb (1802-1899), borm in London, England. In 1832 she married Lieutenant Thomas Traill and emigrated to Canada, settling at Rice Lake, Ontario. Mrs. Traill won distinction by her contriputions to English magazines and her other literay works She is author of the Backwoods of Canada, Canadian Crusoes, The Fomale Emigrants' Guide, Lady Mary and Her Nurse, and Rambla
-induc Canction Poreat Amoag her loterer worke $\alpha$ divitinction are Prarlo and Pobbloc; or Noto of - OHU Nacurlitat, Cot and Crodlo Storico, and onviow in Plant LJJo in Caneda.
fuppos, Canaise, Sir (1821- ), ntatesmen, wras born at Amhert, Nova Scotie, and mo colucted at Horton Acndemy and Edinburch Univenity, where be studied medicine. Returning to Nove Scotin to practice his protenion, he soona ec ered public life as a Conservar. tive member for Cumberland county in the provincile amembly. From 1857 to 1860 be mo provincial secretary and from 1803 to 1807 bo mas premier. In discuusions preceding Con Ioderation Sir Charres took a leading part, both at the Charlottetown and Quebec conlerences and aloo at the final meetings in London where the British North America Act wna draftod. He derliod ofico in the firts Dominion cabinet, but in 1870 acceptod the prosidency of the privy council, later becoming minister of inland revenue end then minister of customs. From 1873 to 1878 he continued to eerve in the House $\alpha$ Commons and in 1878, in Sir John Mac doould's scocond ministry, he became in turn mininter of public works and minister of railways and canals Sir Charles was prominent in support of the Canadian Pacific Railway and in 1887, as finance minister, he floated a large loan on its behall. From 1884 to 1887 , and agxin from 1888 to 1800, he wnas Canadn's high commissioner in London. In April, 1880, he sucreeded Sir Mackenzie Bowell as premier of Canada, but at the general elections in June the Conservatives vero defeated. Sir Charles continued to lead his party in the Houss of Commons until 1900, when be was defeated for retection and retired to private life. (For portrait, illustration facing page 210.)
Tappor, Charless Hibbert, Sir (1855- ). son of Sir Charles Tupper, was educated at MaGill University and at the Harvard Law School. He was first elected to the House of Commons as a Conservative in 1882, and was returned in 1887, 1888, 1891 and 1896. From 1888 to 1895 ha was minister of marine and fisheries, and in $1895-98$ was minister and attorney general for Canada. Since his retirement from politics he has practiced law in Vancouver.
Targeon, Adzinkd (1883- ), born at Beaumont, Quebec; educated at Laval University. In 1887 he was called to the bar and in 1880 mas elected to! the Quebec Assembly. He bas held various offices in the provincial

## Biegraplay

zainistry, Including that of miniater of colonizar. tion and mines and minister of lunds, mines and forcots. In 1909 be became president of the leginlative council.
Turgeon, Wilasue Ferdnand Alphonas, Hom. (1877-), an attorney and legislator, born at Bathhurit, New Brunowick, and educaterl in New York City and Laval University. He was admitted to the bar of Quebec, but soon afterwards removed to Prince Albert, where he continued his practice. He was sworn in as attorney-general of Seskatchewan in 1807, and in the next apring was elected to the assembly.
Treedio, Lamuer John, K.C., LL.D. (1840-
), a barrister and statesman, born at Chatham, New Brumowick, and educated at the Presbyterian College. He was frost elected to the legislature in 1874. He was defeated in 1878, but returned in 1886, and continued to hold his position. In 1890 he became surveyorgeneral and provincial secretary in the Mitchell edministration, continuing to hold the office in the Emmerson edministration. On the resignation of Premier Emmerson in 1900, he was called to form a ministry, which he did, becoming premier and provincial secretary. From 1007 to 1912 he was lieutenant-governor of the province.
Vancouver, Grorge (1758-1798), explorer and discoverer. He accompanied Cook on several of his voyages, and later was in command of an expedition to explore Australia and New Zealand. From there he sailed by way of the Hawaiian Islands to North America, where he surveyed, in a period of two years, the coast from $35^{\circ}$ to $56^{\circ}$ North latitude. Vancouver Island was named after him. He sailed for England via Cape Horn and St. Helena, and died shortly after his arrival at his home in Surrey.
Van Horme, Wrluam Corneluts, Sir (1843), was born near Joliet, Illinois. He entered the railway service at the age of fourteen, and, after filling various positions, rose to the superintendency of the Chicago and Alton Railway, and later of the Chicago, Milwaukee and St. Paul Railway. In 1881 he was appointed general manager of the Canadian Pacific; in 1884 he was elected vico-president and in 1888 president. He retired from active management in 1899, and became chairman of the board of directors.
Vardrouil-Oavagnal, Pierre Francors, Marquis (1698-1765), the last French governor of Canada, was born in Quebec. In 1733 he

Miography
wes appointed governoe of Throe Rivert. He brecme guvernor of Louibians in 1742, and was medo governoryseneral of Cameda in 1755. Ht currendered Montreal to the Eindish in 1760, ageinat the edvice of Genern! Levis, who wea in command. Ho wau laterer brougst to trial in Purie, but was fully vindicated.
Forandryo, om rehn dri', Phemaz Gautizar De Vamexness, De Lu (1085-1749), a FrenchCandian explorer, born at Three Rivers, Quebec. He is noted lor his work as an explorer and earrly pioneer in Central and Western Caneda. Ho built PL. Saint Pierre in 1731, Fr. St. Charifes in 1732, and in 1733 Fr. de la Reine. He explored the mestern part of Canade, traveling to the Rocky Mountaine. In $1748-1749$ his explorations carried him to the north, where he built Fort Dauphin.
Walkor, Brions Eoxcond, Sir (184s- ), a Anancler, born in the township of Senect, OD. tario, and educated in the publice cehools. He began his busineses carreer in the banking office of his uncle, and in 1888 entered the service of the Canadian Bank of Commerce. In 1872 he was appointed nccountant at the hend office in Toronto and continued to riso until in 1007 he became president of the bank. Mr. Walker controls large interests in addition to those directly connected with the bank, and has rendered important services to the cause of Canadian banking. He has written and spoken frequently upon topics connected with business and finance. Among his publications are the Canadian Sydem of Banking, National Banking Sydem of the United States, History of Banking in All the Leading Nations, Why Canoda Is Against Bimecallim, and a series of papers on Early Italian Art.
Warman, Cr, (1855-,), author, born at Greenup. Illinois; educated in the public schools there. He came to Canadm in 1897 and has been successively farmer, wheat merchant, railway employe and journalist. His best known books are Tales of an Engineer, Expreas Mescongor, Frontier Stories, and Snow on the Headlight.
Wotherald, Aonvs EThelwTw, (1857- ), an author and journalist, born in Rockwood, Ontario, and educated at Friends' schools in New York and Ontario. Miss Wetherald has written numerous works of fiction and is also known as a journalist. Some of her poems appeared in St. Nicholas under the pen name of Bello Thistlewaite. She also edited the woman's department of the Toronto Globe and did most of

## Mlography

the edicorial work on Wive and Daughom, monthly published in London, Ontaria. 8 sioh author of the novel The Alconquin Maidem, If Howe of the Trow, The Radiant Road and otm perms.
Wetmose, Eoward Ledlow, (1841- $h$ lecislator and jurist, born at Fredericton, NH Brunswick; educated at Prodericton and Geop town and at King's College (now Univenity a New Brunswick). Ho was called to the ber it 1864, was mayor of Fredericton for two ywin and leader of the opposition in the legialatim, 1884-85. He was appointed a judse of th supreme court for the Northweat Territory in 1887. He was commimioner for conoolidation the laws of the territorices and later of thy province of Saskatchewan. In 1907 ho becwow chief justice of Seakatchewan.
Whato, Wilusu Trowns, (1800- h banker and atateaman, born near Bronte, 0 . tario, educated at Brampton Hish School and Toronto University. He was engaged in nemp paper work for a few years but soon entered the banking business. From 1900 to 1911 he wis general-manager of the National Trust Company, Toronto. He took a prominent part in the agitation against the Taft-Fielding reiprocity compact and on the defent of the Lauria government accepted the portolio of inance in the cabinet formed by Hon. R. L. Borden. Ho was elected to the House of Commons at a by. election on Nov. 6, 1911.
Whitnoy, James Plunt, Sir, LL.D., D.CL, K.C. (1843- ), staterman, born at Willinm burg, Ontario, and educated at the Commll grammar school. He began the practice of br in 1876, and in 1890 was appointed queara counsel. He was first elected to the legisintum of Ontario in 1888, and has been seturned a each election, including that of 1908 . In 180 he was chosen leader of the opposition, and in 1905 was called upon to form a new gover ment. In this he became the prime minister and assumed the office of attorney-general. Latur he relinquished the office of attorney-genend and became president of the council. Iu honor of knighthood was conferred upon his by H. R. H. the Prince of Wales, in 1008, 0 the occasion of the celebration of the Queber Tercentenary. Sir James served in the milition during the Fenian troubles and is lieutenanh colonel of the militia reserve.
Wilmot, Lemuel Allan, (1809-1878), states man and jurist, born at Sunbury, New Brumb wick, and educated at King's College, Frederic

LORD STRATHCONA
BIR JAMES P. WHITNEV


$\square$

Frasaly
Ho was a good rudeut and wan known as the bext owimmop, shater, sunner, wroetle mearac, upenker aod mualcian" of his tim. 11508 ho whe callod to the ber and two yoe: we began his loag carcer is publio lito as a mer of thely, twila. Ho was frut elocted to Sort to meure control of the erown lands for - mproentative amermbly and in 1844 was be a chort time minister without portolio. In MS, after the principle of remponaible governpent wes firmly evteblished in practiee, Wilmot ceame premier and attorney-peneral of Now Tunawict Thrse years later bo became judge F the supreme court and after the Coafedert ton bo wes appointed lioutenant-governor. i0 wes evpridely active in seruring Now Tramwick's concent to Conf riferation 7.
Wisoen, Ampinur, (1872- ;, legialator, mas born in Britioh Columbla. He has been a eldent of the Yukon Tectitory for many yearr. theno of the firnt elected members of the Tukon government and was delegate to Ottawa o prevent grievances of the people to the governpent. He was acting administrator of the enilory during the abvence of the commissioner Ind in 1011 became mmmimioner.
Wilgon. Daniel, Sir, LLLD., F.R.S.E. 1816-1bow, archaeologist and educator, born E Ednburgh and educated at Edinhurgh University. After completing his course at the onivesity he went to London, where for five cers he engaged in journalism. He then refurned to Edinburgh, and devoted himself to schueological research. In 1847 he published Siinburgh in the Oldon Time, a work which thencted wide attention and was most favorably revived. In 1451 Arehaeology and Prehitoric Annalo of Scolland appeared. Two yeurs Iater Or. Wilson was appointed to the chair of history and literature in the University of Toronto, and in 1881 be beccame president of the University. Dr. Wilson was one of the leading educators of Canada, and by his scholarship, energy, addresses and writings he contributed much to the advancement of higher educe tion in the Dominion. He continued his archaedogical researches, and in addition to the works menbined above, published Prehidoric Man; Rsearches Into the Origin of Civilization in the Old and New Worlds; Chatterton, a Biographinal Sturly; Calivan, the Miasing Link; Bpring Wild Fhomen, a volume of poems; Reminiscences of OUd Edinburgh. He was a member of numerous cientife societies in Great Britain and Canada.

## Mogroophy

Woos, Joantan (1843- ), merchant and Ledilator, born at Baekvillo, New Brunawiek; educuted at Mount Allison Wenkyan Collene. Ho was callod to the bar in 1803 but coon on. tered mercantilo life. Ho was mayor of sackville for five years, a Conservative member of the House of Commone from 1882 to 1895 and a menator from 1895 to 1012, when he wan appointed lisutcnent-govermor of Now Brunswick.
Food, Wiluay, Lleuteaant-Colonel, hibtorian. Colonel Wood lis one of the best known historians of Caneds, his published worka tocluding Tho Figh for Canada, Tho Logo of the Conyeat of Canada and many monographs on hastorical subjects; he is alvo the editor of a saries of aridinal documents relating to the War of 1812 . He hise been president of the Literary and Historical Society of Quebec, vino-preddent of the Quebee Tercentemary, and from 1007 to 1910 wes commanding officer of the 8th Royal Rifes.
Wroag, Groman McKnnron (1860- ), educator, born at Gravesend, Ontario; educated at University College, Toronto, at University of Toronto, and at Oxford, England. In 1883 ho took orders in the Church of England, but he has aince been engaged in aceder. jeal work. In 1894 ho succeeded Sir Daniel Wiloon as professor of history in the University of Toronto. He is the author of E life of the Earl of Elgin and of Tho British Nation: a Hithory.

Zoung, Gzorar Paxton, Rev. (1818-1800), - Canadian minister and educatrr, was born in Scotland. He was in charge of Knox Caurch in Hamilton, 1848 to 1853, and in the latter yms was appointed professor of logic and philoso, ,., in Knox College. He was made inspector of grammar achools for Ontario in 1804 and in 1868 was made principal of Knox Collage proparatory department. He was an able educetor, and one of the most noted teachers of his day.
Toung, Henar Eseon, B.A., M.D., C.M., LL.D. (1867. ), a physician and legislator, born at English River, Quebec, and educated at Clucen's University, Kingston, and McGill University, Montreal. He was first elected to the legislature of British Columbia in 1903, and reelected in 1007, when he became provincial memetary and minister of eduration. In 1007 he received the degree of LL.D. from Toconto University.
Toung, Jomy, Right Hon. Sir. See Liggar, Lord.

## Dography <br> Quentions

The following groups of questions make no pretense to be anything but suggestive. Hundreds of others on each group will readily occur to any student or teacher.

## FAMOUS WOMEN

In what year did Louisa M. Alcott write her famous Little Women?
Why will Laura Secord always be remembered ?
Why is Agnes Machar famous?
In what production did Maude Adams score a great success and win much of her present fame?
For what are Alice and Phoebe Cary celebrated?
Who was Hypatia? What led to her brutal murder by the clergy?
How old was Queen Victoria when' she ascended the throne? How many years did she reign? When and at what age did she die?
At what age did Wilhelmina become queen of the Netheriands?
In what field of labor did Frances Willard become world-famous? Where was she born?

Was Emma Hart Willard, who wrote "Rocked in the Cradle of the Deep," related to Frances Willard?
What are some of the principal productions from the pen of Mrs. Humphrey Ward?

## aCTORS AND DRAMATISTS

How is Henry Irving regarded as an actor?
Of what nationality is Ellen Terry? How does she rank as an actress?
In what world-famous play did Joseph Jefferson take the leading part? How is he regarded by the American people? What is his rank as an actor?
In the presentation of what plays did Edwin Booth win fame?
What is the nationality of Bernhardt? For what lines of work is she noted other than acting?
What are the principal dramas of Shakespeare presented today?

## ARTISTS

How does Rosa Bonhctif rank as an artist? When did she die?
What was the last and unfinished painting of Raphael ?
Is Dante Rossetti more fanous as a poet or as a painter?
How inany paintings did Rubens produce?
What picture by Titian has been described as faultess?

What are Raphael's greatest works? Name

## Biography

What is Vandyck's rank among portuis painters?
For what extraordinary sums were Rem brandt's "Coppenol" and "Jesus before Pilue" sold?
What sculptor made the statue of Sir Joh Macdonald on Parliament Hill, Ottawa? discoverers and explorers
What were the two most important tripo d exploration made by Sir Alexander Mrcherzie?
How did it happen that the new continet was named after Amerigo Vespucci?
Where did Andree start on his balloon expadib tion to the North Pole? What was the resul?
What were the education and the early taver of Christopher Columbus?
Which was the most famous of Drakel voyages?
How was Vasco da Gama rewarded by the Portuguese government for being the first on round the Cape of Good Hope?
What was the farthest northern point reached hy Nansen?
What are the dates of Peary's three Arcic expeditions?
From what very humble origin did Livingstooe make his way to fame?

Who is Captain Roald Amundsen? What did he do to entitle him to fame?

## EDUCATIONAL

What is the rank of Egerton Ryerson as ue educator?
Along what lines is Booker T. Washingloe working in the education of the negro?
For what is Euclid noted? Sir Isaac Newton! What was the original endowment fund of the Astor Library, and what is the size of the librar!! For what is Leland Stanford's name noted!
How did Aristotle believe happiness is attained?
What was the great good in life and the grat evil according to Epicurus?
For what is Dr. J. G. Hodgins distinguished! Of what university was Rev. George Mono Grant president?

What is the plan of the Carnegie Institution! Where is it located?
Who founded Harvard University, and when! Who was Horace Mann? Francis Parker! Who is the president of Ilarvard University' HISTORICAL
What were ine various stages of the emand pation of negro slaves in the United States?

## Dicgaphy

Who were some of the leaders in traming the Briash North America Act?
Where did Croesus obtain his proverbial realth?
Who was Aurelius Antoninus?
What was the career of Caius Marius?
What is the story of Romulus and Remus?
For what was Alfred the Great especially noted?
When did Kitchener leave the Sudan?
Who were the parents of Frederick Douglas, and what was his carly mode of life?
What was the far-reaching object of Lycurgus?
In what way was the work of Frontenac important?
For what parliamentary acts was Sir Robert Peel celebrated?
What were the great events in Oliver Cromwell's life?
Who was Chinese Gordon or Gordon Pasha?
Who was Robin Hood?
What is the story of William Tell?
What Presidents of the United States have been assessinated?

## nnventors

Where was the first locomotive engine made in the United States, and from whose plans was it constructed?
How is the story of Thomas Edison's life typically American?
What is the great invention of George Westinghouse?
What American ship famous in the Civil War was invented by Ericsson? What effect did it have on naval warfare?
When did Howe invent the sewing machine?
What machine invented by Eli Whitney has been the means of the saving and making of millions of dollars every year?
Who is Marconi? What is his important discovery?

## RELIGIOUS

In what capacity has Rev. Albert Carman earned his fame?
What life did Peter the Hermit lead after the Crusades?
For what is Robert Raikes noted?
For what is Bishop Strachan famous?
Who was John Huss? What noted article did he wite?
Who protected Calvin after he had turned beretic to the Roman Catholic faith? How did the Calvinist sect arise?
What famous duel was made the subject of one al Lyman Beecher's most noted sermons?

## Ilocraphy

Of what religion was Zorounter the founder? Of what famous educational movement was Bishop Vincent the founder?
Who was Savonarole ?
To what form of religion did Voltaire hold in denouncing Christianity?
In what way was the Society of Jesuits formed?
When did Leo XIII become pope and how many years was he at the head of the Roman Catholic church?
Who was the founder of the Church of Christ, Scientist?
At the head of what great religious and charitable movement is William Booth?

## musiclans

What rank does Mary Parlow take as a violinist? Where was she born?
To what king was Mendelssohn appointed musical director?
What is Mme. Nordica's nationality? What is her rank as a singer?

When was Sousa's band first organized?
For what is Antonio Stradivarius noted?
From what did Wagner select his subjects? minttary and naval
In what great battle were Wolte and Montcalm the commanders ?
What part did Sir Guy Carleton play in the early years of the American Revolution?
What was the most important victory won by General Brock?
Who is Captain Dreyfus? To what persocutions has he been subjected and why?
Who commanded the Invincible Armada?
What Japanese leaders won fame in the Russo-Japanese War! What Russian leaders?
What great English general was victorious at the battle of Blenheim? How was he rewarded?
What event of far-reaching importancer in the history of the United States took place at Appomattox Court House?

## PEILOSOPRERG

What famous simile did John Locke make in describing the human mind?
In what direction has Hegel's philosophy made itself most powerfully felt?
What was Plato's philosophy? Who were the Seven Wise Men?
What system of reasoning did Sir Francis Bacon advocate?
What system of philosophy did Auguste Comte found?

What was Socrates' method of arriving at the truth?

## Bography

## Potincar

Who were some of the leaders of the political revolt ageinat the Family Compect?
What was the effect of Mackensie's rebellion?
What was the importance of the first BaldwinLapontaine ministry? Summarize Baldwin's political career.

What important positions did Lord Elgin hold in Canada and India?

Why is Lond Durham famous?
Who was the first premier of the Dominion? For how many years did he hold the office? Who were some of the "Fathers of Confederation?"

Who was D'Arcy McGee?
What was the cause of the Red River sebellion? Who was its leader? Who was in command of the troops sent to suppress it?
How many years was Sir Wifrid Laurier premier? What led to his defent? Who succeoded him?

RUTH:
Who is the present Sultan of Turkey?
For what reasons was Marie Antoinette unpopular with the French populace?

When was the title "Empress of India" conferred upon Queen Victoria?

Who is the present king of Denmark? of Norway? Whom did the latter succeed?

Who was the father of Queen Christina of Sweden and who directed her unusually broad education?

Who was the greatest king of Scotland, and why?
Over what celebrated woman did Mary I triumph in ascending the throne?
What is the meaning of "Hapsburg?"
Who is the present ruler of Holland?
Who was Queen Elizabeth's mother?
Who was Peter the Great?
Why was George IV given the nickname of "First Gentleman of EuropeP"

## STATESMEN AND ORATORS

Who was Joseph Howe?
What are some of the important offices held by Sir Charles Tupper?

## Nography

To which party did Alerander Macken belong! How long was he premier?

What important wort did Sir Alexander Gelt accomplish as minister of fimance?
What were some of the important chana brought about by Robert Baldwin?
Who was Sir Georges Cartier?
For what was Lord Strathcona noted Parlizment?
Of what important law was Sir Sam Leonard Tilley the author?
What were the leading characteristics William Lyon Meckenzie?
How long was Lard Rooebery premier England?
Who was Paul Kruger?
Who was Ito? What did he do for his con try?

## Patziotic

Where is there a beautiful monument Laura Secord?

Who was Joseph Brant?
Who was Robert Emmet? For what was executed?
Why is Joan of Arc famous?
In what way did Florence Nightingale sem her country?
What nation did Kosciusko soek to maintui independent?
What part did Garibaldi take in the struggh for Italian independence?
Who was Marco Boxzaris? How did he dis tinguish himself?

## sctimitific

For what is Pasteur noved? Professor and Madam Curie?

Why is Professor Roentgen famous?
What is liquid air? Who has been the moal successful experimenter with it?

What are the principles on which the ther mometer works? The barometer? Who invented each?

Who is Hiram Maxim and for what is be noted?

What deadly explosive was invented by alled Nolel? What are the Nobel prizes?

er Mackenis ent Alexander T. nance? itant changen
na noted in
Sir Samud acteristies $\alpha$ premier d
for his comb.
tonument it
what was ho
tingale serme
to maintuin
the strugsh did he dir
ofessor and
1s?
an the mat
$h$ the thes Who ir
what is be
d by alled

The Beginninge of Botany. It is easy to imagine how the science of botany began. Wherever men live there are plants of some kind, and always have been, and men must always have paid more or less attention to them. At first, no doubt, the plo:ts were looked upon just as were the rocks o, the clouds or the hills; they were there through no art of man's, and it was not his duty or business to take care of them or develop them. When, without his aid, they produced fruits that might be eaten, he ate them; but he troubled himself little about the planis from which they came. But, naturally, as men grew more and more civilized, they came to take a more intelligent interest in their surroundings, and the differences in the various plants about them drew their attention. Some lost their leaves with the coming on of colder weather, and brought out fresh ones in the sping; some kept the same leaves all the year round; some had flowers, but no fruit; some had most insignificant flowers, but gorgeous fruits. And, besides, they were useful for different things. The stems of some might be eaten, the roots of others, the leaf buds of others; from some, medicines were made. Perhaps it was this last-mentioned fact which first led students to give serious attention to the study of plants-the beginnings of the science of botany seem to have concerned themselves most with medicinal plants. We know that a Greek writer, Theophrastus, in the fourth century ${ }^{\mathrm{B}} \mathrm{C}$, wrote a treatise called the Hastory of Plants, in which he told of aboui five hundred kinds that were useful in healing diseases; and in the first century of the Chistian era, Fliny the Elder described about a thousand plants, many of which were used

It is not strange that these ancient writers, studying the subject, as they were, with a definite end in view, paid little attention to the classification of plants. Indeed, even the merest hint of such classification as modern botanists make would have been impossible for them. Certain plants resembled other plants so much that their relation was evident; but others looked much more like members of entirely different families than the, did like certain members of their own family.
In the sixteenth century, when there was a renewed interest in everything, botany shared in the awakening. Books were published in various countries, describing plants and giving really beautiful woodcuts of them; but still the interest was chiefly on the medicinal side of the science. Gradually more and more definite attempts were made at systematic classification, until the time of Linne, or Linnaeus, in the eighteenth century. Linnaeus is Imiked upon as the originator of modern systen at lic botany. and more exact and elaborate classifications grew out of his outlines.
Outline. The following outline on botany not only shows the classifications of plants, in its larger aspects, but gives a general view of the whole subject. showing how a systematic study would be undertaken:
I. Plant physiology

1. Chemical composition of plants
2. Plant foods
3. Movement of water in plants
4. Action of chlorphyll (the green coloring matter)
5. Digestion and assimilation
6. Storing of food
II. The plant and its structure
7. Cells

Botaxy
2. Protoplamen (the substance of which cells are componed)
8. Germination
a. The seed
b. The embryo
4. The root
a. Functions
b. Classification
(1) By manner of growth
(a) Soil-roots
(b) Aerial roots
(c) Water roots
(d) Parasitic roots
(2) By form
(a) Taproot
(b) Fascicled (cluster)
roots
(c) Fibrous roots
c. Structure
d. Use
6. The stem
a. Functions
b. Classification
(1) By direction of growth
(2) Bymanner of development
c. Structure
d. Use
6. The bud
a. Structure
b. Pasition
c. Kinds of buds
7. The leaf
a. Arrangement of leaves
b. Structure
c. Functions
8. The flower
a. Arrangement
b. Parts or organs
(1) Calyx
(2) Corolla
(3) Stamens
(a) Filament
(b) Anther
(c) Pollen
(4) Pistils
(a) Style
(b) Stigma
(c) Ovary
c. Reproduction
(1) Pollination
(a) Self-pollination
(b) Cross-pollination
(2) $\mathrm{F}^{*}$,tilization
(3) Reproduction by spores
(4) Other methods

Botany
9. The fruit
a. Definition
b. Classification
(1) Fleshy fruits
(2) Dry fruits
(3) Aggregate fruits
c. Dispersal of seeds
III. The struggle for existence

1. Over-crowding
2. Change of temperature
3. Lack of moisture
4. Adaptation to conditions
IV. Classification of plants
5. Cryptogams, or spore-plants
a. Diatoms
b. Fungi
(1) Molds
(2) Mildews
(3) Smuts
(4) Rusts
(5) Yeast
(6) Mushrooms
c. Algae, or seaweeds
d. Lichens
e. Mosses
f. Ferns
6. Phanerogams (seed plants)
a. Gymnosperms (not having : closed ovary)
b. Angiosperms (having a closed ovary in which seeds ar matured)
(1) Monocotyledons (hasing one seed-leaf)
(2) Dicotyledons (having tro seed-leaves)
The New Practical Reference Librait has a long list of articles on botany. There are discussions of general terms, and hundreds d interesting descriptions of trees, flowers, etch And the Classified Index affords a method d taking up the study of any phase of the subjet which is desired. Under the heading Botony are included the general articles; under Planti are listed all the plants which are discussed in these books, divided into simple classes.

Botany for Boys and Ciris. There are many things about botany which any child an and should learn-things which are as interest ing as a story. We have dogs or cats or canaria as pets, and we say that they are intersaing because they are alive, they have sense, they do things; but we wruld never think of ssigng, "I have a bed of pet pansies," or "I have a lily and a rosebush for pets." And yet, if we study


## Botany

about them, we find that plants, too, are alive; they do things, and it almost neems to us como times that they have sense.
Did you ever atand in a garden and look at a tall, bouutiful white lily! It seems strange. as you look at it, that from the black soil at your feet could come the materials to feed anything so pure and white. And now just look down; there beaide the lily grows an ugly weed-a cocklebur. It is dusty and brown, with nothing beautiful about it, and everyone calls it a nuisance and wishes it out of the way. Does it not seem wonderful that those two plants can grow there, in exacdy the mme ground, within a few inches of each other, and each choose from the soil

is this a beautiful flower or a weed?
just the elements it needs to make it what it is? The lily takes up water and food from the ground and turns it into smooth green leaves and beautiful waxy white petals; the cocklebur takes up water and food and turns it into harsh, rough leaves and troublesome burs. Could anything that is really "alive" do more than that?
Weeds. We ourselves would not have to think twice as to which we would choose to look at, the lily or the cooklebur; but if a botanist came into our garden he might turn from the lily we are so proud of and give his attention
to the ugly bur. In fact, botanists are parion alarly interested in weeds, for one reasoa No matter whether we huve flowers or vegetable growing in our yards, we have to take care d them; a bed of sweet peas will soon die out il the sun beats too hot upon it; a garden heed d tomatoes will soon wither if it is never watened But weeds are different; they do not need to be watered or shielded from the sun; the carth does not need to be loosened up about their roots. And it is just this ahility to live in spite of everything which makes weeds interesting to botanists. Did you ever stop to think what makes a weed a weed? One of the flowers we like best is the daisy; if we buy it at a florist we call it a marguerite. In some parts of the United States, and in Canada, there is a weed which the farmers hate, which they call white weed; it is almost impossible to get rid of it and it chokes out other crops if it isn't constantly watched. Our marguerite and the farmers' whiteweed are the same. Any plant may be a weed if it grows where it is not wanted and becomes troublesome to the farmer of gardener.
Another strange thing about weeds is that many of them which are now looked upon as the worst pests were brought to this country purposely. The tansy, the field-garlic, the oxeye daisy, the wild carrot are a few of the weds which we all know which were, for one reason or another. introduced into this country.

Uninvited Guestu. There is a word we ux often which comes from an old Greek word that meant "eating at another's table"-it is the word parasite. Probably at first the word had no unpleasant meaning, but meant any invited or welcome guest. But gradually it came to mean a man who, uninvited and unwelcome, thrust himself upon his host and stayed and stayed, doing nothing to pay for his keep, but just living of his host. From this the word came to mean anyone who demands and obtains a living from other people without giving anf. thing in exchange for it. You probably think at once of the tramps and able-bodied beggas that you see from time to time, asking for food and money without showing the least willing ness to work for it. Now it is not only in the animal world that parasites exist; there are plant parasites-many of them-and they atuch themselves to plants which are calliel then hosts, and feed on them. We have all sem such parasites, though probably we have not always recognized them. Have you ever notiod

Soteng
106
Boteng
oa the top of a jar of preserves or on a crust of bread that hao been left in a damp place a furrylooking covering? That is a parasite plant, and it is feeding not on another living plant, but on a plant product. The mildews on leaves and fruits, the wheat rust which so often deatroys a wheat crop, the yeast with which your mother makes bread, the mushrooms you eat with your befsteak, are all parasite plants.
There are others which are more interesting, because they are lurger and can be examined more easily. One of these is the dodder. It starts life like any self-supporting plant, with its roots in the ground, but just as soon as it is
unlese the trees are very strong, the mistietoe must be cut of every yenr, or else it will sted so much of its host's food that the hoot will die.
Inseev-aationg Mants. We have talked $3_{0}$ far of plante which get their food straight from the soil or from other plants; but there are some :trange plants that want another kind of foodanimal food. They capture insects, in one way or another, and auck the juice from them. It seems almost uncanny, doesn't it? If you could see a collection of such insect-eating plants you would find that they all have some special means of catching and holding the insects. The pitcher-plant, which you may find in swampy

old enough it begins to send out little stems, reaching for some host on which it can fasten itself. When the stems find such a plant they trine around it and send little roots down into its stem, to draw away the food which the host plant wants for itself. Then the first ground root dies, and the dodder is left, a parasite for the rest of its life, clinging to another plant.
Some parasite plants are not altogether lazythey take part of their food from the host plant and make the rest for themselves. Such plants have green or greenish leaves, which a real parasite never does. At Christmas time when we trim our houses with the sturdy holly we put with it the mistletoe, which is a half-parasite. It grows on the branches of trees, down in the couthern part of the United States; and often,
woods, has leaves which are shaped like pitchers, and which usually contain some water. The insects fall into the pitchers, or in some cases enter them in search of the honey which the leaves secrete, and are drowned. They are then partially absorbed by the plant. The sundew has another way of capturing its food. The leaves are covered with hairs, which give out a sticky liquid. When a small insect touches these sticky hairs he is held fast, and the hairs at once close over him. They remain closed until all the plant wants of the insect has been absorbed, and then they open and allow the undigested part of the insect to drop off. The Venus's flytrap has leaves which are hinged in the middle and which have three short hairs on each side of the hinge. When these hairs are touched by an
merect, the two iden of the leaf comeo together with a map, and naually the hucklews insect in caught. Afice it has boen digested the bavee open and trop out the undigented parts. $D_{0}$ you woader that we mid at the beginning of this talk that some phants seem to have sease? Plamets that liese Foed. During the fall the equirrels ave very buay sunning about the woods gathering nuts and carrying them of to some hole in the tree. They gether far more nuts than they can use at the time, and they


## Sotery

do not go to seed until a year from the follom Pall. The firse your thewe plants atore up to in thair roots, and read up above the grou only leaver; the mecond year they wee the fa which they had atored to build a tall ma which bears on its top the Rowers and Anally ceode. If you will pull up a carnot that $h$ gooe to roed you will find that the root withered and ahriveled-almont all the mored food has been used. The onion acts in mue the mme way, but in the case of the onion it

the pitcher plant and venus's flytrap
They need insects for food
store them. Plants, of course, go about the matter differently, but they, too, often manufacture more food than they need and store it up. When you cat potatoes or turnips or carrots or onions, you are eating food which the plants manufactured and stored up. In some cases it is not so easy to see why the food was stored; in other cases it is just as simple as the squirrel's reason for storing up the nuts. The beet, the carrot, the parsnip, the turnip are what is known as brennial plants, that is, twayear plants. This means that if they are planted one spring they
a part of the stem, which we call the bulb, in which the food is stored.
Plant Familios. Another thing about plants
which may seem very strange to us is their family connection. We know that, in the animal world, the cai, the tiger, the panther, the lion all belong to the same family; but there is nothing extraordinary about that. A dog and a wolf look enough alike to be cousins, if not brothers. And so, in the plant worid, we should not think it wonderful if we were told that the blackberry and the raspberry belong
the Pollowine are up foed - the ground woo the food a tall stem. and Anally the rot that has the root hes the atored-up cts in much conion it is
bulb, in at plants is their in the panther, ut there A dog 1sins, if rid, we re told belong


BOME PLANTS THAT BTORE POOD

1. Onion. 2. Turnips. 3. Paranip. 4. Carrots.
to the same family, for, indeed, they du. But many of the plant families are very large, and some of the members do not seem to have the least resemblance to each other. W? will look at some of these families, exami. alg all the members that we are sequainted with.
The first is the lily family-botanists call them the Liliacecue. The name is familiar; you know a number of beautiful flowers that bear it. But unless your attention has been called to
some of the relatives of the lily, you probably have never suspected them of being relatives. First, there are the tulips and the hyacinths, the dog-tooth violets and the trilliums. Did you ever think when you picked the yellow dogtooth violets, or the white and red trilliums that they were related to the lilies? But there are stranger members than that in this big family. Out in the fields you have touched at times the wild onion or the field garlie, and yon



THE NGEMABADE FAMILY

1. Nightahade. 2. Potato. 3. Jimmon weed. 4. Sandbur. 5. Tomato. 6. Petunia.


THE BUTTERCUP FAMILX

1. Hepatica. 2. Anemone. 3. Iarkspur. 4. Peony. 5. Buttercup.

2. Poppy.
3. Dutchman'u breeches.
4. Bloodroot.
5. Bleeding heart.

tHe pulse family
6. Locust.
7. Acacis.
8. Beans.
9. Peas.
10. Clover.

## Edetany

have wished afterward that you had kept away from thers, the seent is 10 unplenemint. Ye thow badramolling weeds belong to the mme family with the lily-of-the-talley and the hyactach, nome of the aweetex flowers that grow.

There is ove member of thie wooderful family that comes to our table often, and we are unualiy wery ghd whea it in time for it to come. It docent look like a lify in any way, and yet botaniotes reas prove to us by pointing out reacersblances that we cannot see, that if does belong to that family. This is the aeparagus. Would you over have believedj that it was ponible?
misht think of all the beauty that would 500 of the world with the roves, and you woukd is But would it ocrur to you that you coulld nev again have apple pio or cherry pie; that quince jelly or plum jelly would ever come your table again; that no husclows otruwherti or mopberries or blackberrices would evee beaped up before you, waliling for the nugar an cream; that you would have no velvety peach or yellow peare, nor even any aimonds to cre of a vinter's night? It mally doesn't men poomble; but it is a scientific fact that all those fruits do belong to the wooderful fami


## THE HEATH FAMILY <br> 1. Huckleberry. 2. Cranberry. 3. Honeysucklo. 4. Rhododendron. 8. Trailing arbutus.

Some members of this family and also members of the rose family are shown in the color plates in connection with this article.

We have just referred to the rose family. "O yes," you say, "I know that is a bigfamily. There's the moss rose and the tea rose and the American Beauty and the wild rose and the cinnamon rose, and dozens and scores of others." You are right; it is a big family-bigger than you think. If someone were to ask you whether you could get on without the rose family you
that includes the mses and the sweetbrier and the exquisite bridal-wreath. And there ar family resemblances which even we who are not botanists can see. Just take a strawberty blossom or a blackberry blossom or an apple blossom and examine it. Doesn't it, after all, look in many ways very. much like a wild moe? The petals on the little blossoms are smallor, but they are much the same shape and are plaed in much the same way. And it is the wild ros which really represents the roses-all the other
would go an a would 14 coulद neve pie; that $m$ ceref enme in atrawierine uold evee be he mugar and Ivety preatho mids to mat Jocan't xea that alld lenful hamis
mhancs.
rbutus.
thrier and there ans ho are not trawbert an apple after all, xild mose? - smallur, sre placed wild rose the other



SUME MEMBERS OF THE LILY
LILY FiMMILY



## Botany

beautiful kinds have come from it. Now would you want to get along without the rose family?
There are other families which seem to us strange; there is the pulse family, which includes the locust, the clover, the acacia, the peas and beans. Look carefully at a red clover blossom; does not one of the tiny flowerets of which it is made up look very much like a sweet pea? If you had before you a yellow huttercup, a hlue larkspur, a red peony, a white anemone and a pink hepatica, would you think of them as relatives? They are, and the little buttercup has given its name to the family. The poppy is a big, flaring flower; the hleeding heart is as different from it in shape, size and manner of growth as can well be imagined. And yet these two, with the Dutchman's hreeches and the bloodroot, make up a part of the poppy family.
We have found out so many strange things about plant relations that perhaps it will not be surprising to learn that the heath family includes, besides the gorgeous rhododendron and the exquisite trailing arhutus, the honeysuckle, the cranberry and the huckleberry. But even these striking discoveries cannot have prepared us for the fact that the nightshade, the sandhur, the jimson weed, the potato, the petunia and the tomato are all relatives. This nightshade family is surely one of the strangest we have found.
Pictures of the members of all of the families described here are to be found on these pages. In some cases, close examination will show resemblanees never noticed before; but in many instances the closest scrutiny will fail to make evident any traces of relationship. Do you think it is at all strange that men studied plants for hundreds and hundreds of yeara before they even began to be able to classify them correctly?
The Seattering of seods. If no seeds ever grew except those that are gathered and carefully planted, only a very small part of the earth would have green things growing upon it. But fortunately for the plants, most of them do not have to depend on people to carry their seeds about. They are provided with all kinds of ingenious apparatus to do the work for them. You all know what a dandelion seed looks them. What a tiny little thing it is. If it had to depend just on itself it would never get far; it would probably just stay on the head of the stalk until that withered, and then it would fall to the ground. But the dandelion seed has wings, white, fea thery wings. A puff of wind takes up a number of the seeds with thei- feather tops

## Botany

and carries them away, sometimes, perhaps, bearing them for miles before it drops them. Did you ever think when you pick a fuffy dandelion that has gone to seed and hlow it to "see what time it is" that you are helping the dandelion to scatter its seeds about? The thistle and the milkweed seed have the same kind of little white hairs, which help them to find their way about. The elm and the ash and the maple have winged fruits, hut these wings are different. They are made of a sort of memhrane which looks more or less lil.e the inside wing of a grasshopper. Huwever, they do just the same duty as the fluffy wings of the milkweed-they help the wind to carry the seed and scatter it everywhere.
You have surely looked often at the little seed-pods of the pansy or the violet. One day they are green and round and all closed up; then later you come and look at them again and find that they have become hrownisi and hrittle and have split open and let the seeds fall out. Or rather, they look as if they had just quietly opened and let the seeds fall out; what they have really done is to hurst open and throw the seeds about. That's why the pansy bed, if it isn't tended, becomes so crowded that none of the plants can grow rightly.
If you live out in the country where there are open stretches you have watchal dried-up plants, molled up almost into a ball, blowing about the prairies and piling themselves up hy fonces. These plants, which have broken off near the ground, are known as tumbleweeds, and they are doing just what the pansy does when its seed-pods shoot open-scattering their seed. The seeds are held rather firmly by the plant, so that they do not all fall out at once, but are strewn over long distances. This is the way the Russian thistle and the pigweed and the ticklegrass spread themselves over so much ground, for those three trouhlesome plants are all tumhleweeds.
We talked some time ago of the cocklehur. Of course children know what the hurs are forto make bur baskets; hut are they of any use to the plant? The seeds are in the burs, and when those troublesome things stick to people or to animals the seeds are scattered. All the other kinds of hur phants, the sand hur, the sticktight, the burdock, have their seeds carried about for them in the same manner.
In these ways and in other ways seeds are scattered; and when you thirk of the many, many seeds that most plants produce, does it
not ween atrange that there are any places which are not covered with plants? Let us take a ingle instance. A morning glory has just about an average number of seeds--three thousand to a single healthy plant. If all of these seeds were planted, and grew, there would be nine million plants the next year. The following year there would be twenty-seven billion plants, and the year after that eighty-one trillion. You can readily see that at this rate it would not take the descendants of a single morning glory very long to cover mucb of the earth. Indeed, it is a well-known fact that if there were no check to the growing of plants, the whole surface of the
of little plants which begin to grow makes it impossible for them all to grow up. If a farme sows his seed too thickly, none of the plants are as atrong as they might be; if a tree drops it seeds under its branches and many, many little plants sprout, only the strongest live; the weaker ones die. So we see that over-crowding is one of the things plants have to fight.
Sometimes the water in a certain place will grow less and less, until it dries up aloogether; that means that the plants which neel moisture must die When a swamp is drained the swamp vegetation is destroyed. Sudden changes of temperature affect many plants, and milliona

seed-scattering devices

## 1. Tumbleweed. 2. Milkweed. 3. Cocklebur. 4. Winged seeds of maple.

land would soon be covered with vegetation denser than that in the thickest tropical jungleso dense that men and animals could not get through. Why does this not happen?

The Etruggle for Existonce. Did you ever hear anyone speak of the "struggle for existence"? Perhaps if you did you thought it meant the hard time people have getting enough to live on; but it refers to the animals, and, which interests us more now, to the plants as well. Plants have many things to fight; many things which keep them from becoming as numerous and as thickly spread as they might be. For one thing, the very number
and millions of little plants are killed off each spring by late frosts.

When you watch cattle and sheep grazing in the fields you are watching some of the stronges plant enemies. Of course in most places the vegetation grows again; but many regions hare lost all their plant life because sheep have gramd on them 80 long. Insects, too-the chinch bug, the locust, various kinds of beetles-destroy whole crops every year.

These are some of the enemies and the urfarorable conditions that plants have to meet Altogether, the things that destroy plants and the things that help them to grow just about

## Botany

behnce each other, so that regetation is not Hedy to change very much from year to year. Of course man can make it change; he can plant wres that have been barren, and with care an make them flourishing green spots, or be can cut down forests that have stood for centuries.
Have we not found enough interesting facts about plants to show you that there might be much pleasure in studying about them?

## Qrestions

What is the great fact in the life of the Sower?
Why is it neccssary that birds and insects mould be attracted to the flowers? By what means are birds and insects so attracted?
Name and describe a dozen different kinds of flowers of your neighborhood.
What are some of the peculiar shapes of archids?
Name some members of the lily family.
What is the calyx of a flower?
Why is the corolla usually highly colored?
Where do you find the pollen in the flower and of what use is it?
From what country does the lotus come?
What flower is the emblem of Persia?
What country has the fleur de lis for a national
dowre?

207
What is the national emblem of Canada ?
What is the national flower of the United
States ? How and when was it selected ?
What flower is the emblem of Japan?
How are the state flowers adopted in the United States?
To what family does clover belong?
What species of the chrysanthemum are common weeds in Britain?
What is the popular name of geranium?
Where has ivy been held sacred?
What kind of plant is the sundew?
Of what was the myrtle an emblem at Athens?
In what way did Darwin's theories and discoveries revolutionize botany ?
What is pollen? Why is it produced in such abundance? How do insects help in the fertilization of flowers?
What are some of the methods by which seeds are scattered?
What are parasites in the plant world? Give examples.
Give uses of the following to plant life: Roots, stems, leaves, flowers.
What is chlorophyll? What important work does it do for the plant? What is meant by saying that plants take in carbonic acid gas and give off oxygen?

What is meant by germination? Upon what does it depend?


The Sapreme Lav. The constitution of any country, whether a definite written instrument or whether founded on tradition and precedents, is the supreme law of that country; that is, it is the country's highest law and every other law must be in harmony with it in all respects. If any law is made in violation of that fundamental law it is of no force whatever, and is null and void. In Canada the Dominion constitution is our supreme law. One of the principal objects of the framers of the constitution was to establish a strong central government. The British North America Act assugns to the different provinces, and to the central government, their powers and spheres of action, but any rights not otherwise specified belong to the general government. This is the opposite plan to that adopted by the framers of the United States constitution, by which all powers not granted to the federal government belong to the sovereign states. It is clear that our Canadian constitution establishes the broad principles that: shall underlie all legislative enactments which may at any time be made, though it does not include any laws as such.
Three Departments of Government. No free government can exist if the administration of its powers is not distributed. If one person should assume to make the laws and execute and interpret them, he would become a despot, and his government would be a despotism. If this combination of power should be centered in any number of people the character of the
government would not be changed. One a more persons may safely be trusted to mate the laws, another man or group of men may be chosen to execute the laws and a thind group may be selected to interpret the law; but there would be the gravest danger to our institution if these powers were all in the same hands.
The constitution of Canada was the first attempt to adapt the British principles and methods of government to a federal system. The government, therefore, bears striking me. semblances both to the British government and to the government of the United States; it is a safe generalization to say that the nationd and provincial governments are based on British principles and the local governments on American principles. The chief executire authority is vested in the sovereign, who is represented by the governor-general. The powers of the governor-general are strictly limited, all his executive acts being with the advice of the cabinet. The cabinet, as in Great Britain, is composed of members $\alpha$ Parliament, and holds office as long as it retains the confidence of the people. Thex officials are responsible to the people for the execution of the law which Parliament placen upon the statute books. The third great division of the government is the judiciary, whose duty it is to pass on the constitutionality of lans passel by Parliament and decide many other judirial questions which arise in the govern ment of a great nation.

## Executive Department

The Governor-Genert, The king is the head of $t \mathrm{t}$ cutive departmers of the government of CL da. He is the scriverign of Canada, just as he is the sovercign of England. As he is unable to be present in person he is represented by a governor-general. This
cial has double responsibilities, for he is at once the governor of a great nation and the guardian of the imperial interests. As the chief executive of Canada, the governor-generl assembles, prorogues (that is, closes the sessiac)
for the
plecer
livision
$e$ duty
dars
other
overr-


## Cancalian Opvermment

cunts to the bille in the rame of His Majooty. In the dicharge of all his exacutive duties to w with the edvice of the priry councli, which th tue he the support of the majority in the yue al Commons. On Canadiaco quentiona andy within the juriedietion of the Dominion woneor act apart from his aidivers, and is bud by thotr edvice. It is always as tho "pruraorgeamell in council" that be sect, mas the governorgeneral.
O.eilly, the zovernorgeneral occupien a mildon o nevitrality botween opposing political priticn Ao bo can have no poomiblo object in warm exopt to add to his own usefulnees and to ylyity of his ofice, be is often in a poostima io ald the interests of the wholo country. Ho is hwo to set ese the bent interests of all conound reve to dictate. In this reppect he en:log coniderable edvantage over the prevident $d$ tho United States, who is necemarily a pretion and ofton driven to partiona menoures. In mitintive in legidation rests with the -1Hy, but there are many occadons when thatrice and halp of the governor-general are inrimbl. If we could mee into the inner cumelis of government we should be surprised atin influence a conscientious and able governor an, end doen, exercise. In the performance of mind dutien, which bring him into touch with pepho of varied opinions, be may exert great Dhrece in leswening the bitternese of public cantrovery, by allowing men of opposing parr tias to meet on common ground. In his trips truygh different parts of the Dominion he moy bocome familiar with all classes and interatr; by the information he gains in this way, upecilly about the resources of the country, he can make himself an important fector in the development of Canada. The high character of the men who have held this office may bo ma from the list below:

## Governore-Genzral

The Right Hoh. Viscount Monck, K. C., M. G., 1867-1899.

The Right Hon. Lond Lisgar, G. C. M. G., 18891872.

Tho Right Hon. Earl of Dufferin, K. P., K. C. B., C. C. M. G., 1872-1878.

The Right Hon. Marquis of Lorne (later Duke d Arall), K. T., G. C. M. G., P.C., 1878-1883. T. C. M. G., 1883-1888. Marquis of Lansdowne, G. C. M. G., 1883-1888.

The Right Hon. Lord Stanley, G. C. B.

The Rithe Hoa. Eerl of Aboodesa, K. T., G. C. M. G., $1803-1800$.

The Right How. Earl of Minto, G. C. M. G., 1808-1904.
The Right Hoa. Earl Grey, G. C. M. G.,
1004-1011.
H. R. H., Arthur Willinm Patrick Albeot, Dulte of Connaught, K. G., K. T., K. P., etc., 1011-
The Privy Comsell. The coontitution provides that the couscll, which aido and adviee the governorgeneral, shall be known as the "kings privy council for Canada." As in England, the terms "cabinet," "ministry," "edministration" and "sovernmeat" are popis larly applied to thome members of the council who are at the head of affirs for the time being. It should be underntood that privy councillores, even when no longer minioters, retain honocary rank. When the governor-general appoints his edvisess, he first determines who shall be promier; with the premier's asdistance the other ministers are then chown. The number of members of the cabinet varies; there are at prevent Sifteen ministers as heads of departments and three "ministers without portfolio" (that in, without departments) beaides the president of the privy council. Ministers in charge of dopartments receive a malary of 87,000 a year; the president of the council receives 812,000 . The permanent head of each department is a deputyminister, appointed by the Crown and holding office regardless of political affiliations. The duties of esch minister may be briefly summarized as follows:

1. The president of the privy council, who has no departmentel duties, except such as relate to the work of the council.
2. Minister of justice and attorney-general of Canada, who is the legal adviser of all departments of the government and has supervision of matters affecting the administration of justice.
3. Minister of finance, who prepares the budget and has charge of all mattera relating to the finance and expenditures of the Dominion.
4. Minister of trade and commerce, who executes such laws relating to connmerce as are not by law assigned to any other department and supervises the census and statistics branch.
5. Minister of agriculture, who besides agriculture has charge of immigracion, public health, patents and copyrights.
6. Secretary if state, who has charge of all correspondence between the government and
the provinows and othar oflelal mathoes guarally, inchuding poiathes and ctacionery.
7. Mafiete of marion and naval arviee and Acheries, who has expervilion of the ficherien, Hhethees and IIP-avias arrios, ingpection of atramers and navigation.
Q. Miniater of malitia and defence, who is repoaable for all sillitis achirs, faclualing the military collese at IIngaton.
8. Mininter of the interior, who coatrols the alater of the trivitorion, Indians, public lands and valogionl murvey.
1a. Poutmantingteneril, who has complete charge of the poatal arrice.
9. Minister of public works, who has charge of the construction of all public buildings and worts, except rallway and canals.
10. Minister of rallway and canale, who has charg of the Intercolovial Railway and all rullroed and canal mattern.
11. Miniteter of cuntomes, who is is charge of the collections of curtoma.
12. Minister of inland revenue and mines, who has the adminiatration of excles duties, wights and meavures, all internal tares gener ally and mines.
13. Minister of labor, whoce duty it is to invotigate labor troubloe and industrial affairs.

The Promior. As the members of the cablint only hold oflice as long as they are mpperted by a majority in the House of Commons, mont of the ministers are members of the lower house, though several are always senators. The ministry, thercfore, is practically a committice, made up of members of hoth Houses. Its head is known as the "premier" or "prime minister," though he is legally known as "president of the privy council." The title "premier" originates from the fact that, as in England, he is the first called on to form a new ministry. As the leader of a political party and as a man of commanding influence and ability, he is chosen to lead the Houses and control the government. It may be safely said, as a rule, that the goverrrmeat's policy is his policy, though each individual minister has the right to communicate directly with the governor-general, on all important public mattera. Communication between the cabinet and the governor-general takes place through the premier. If the pre mier dies or resigns, the cabinet is dissolved, and the ministers hold office only until a new ministry is formed. In case the government, that is, the ministry, is defeated on some important issue in Parliament, the premier must either resign or
convine the povirnanguaral that an guacral electios chould bo beld, on the grow that the vote dow not sopreseat the pepile condiment.
OVIl forvico. That the exiciency of sovernment depeads on the sreat force of mes codinate anploysee who perfores the routim vork is a truth which no oas will veature $n$ diapute. What would be the condition, he $m$ may, in the postofiee department, with in shoumads of workers, if these were dischand Situr a general clection and a new foree on ployod? We can imagise the revulting ham of the servion If the decemnial conams figures mon complted and tabulated by political farain instead of trained etacisticians. Yet the "epoin ayotem" was the rule not oaly in Canads buth the United States and Great Britain for may years and is atill the rulo in many lese advinail mations. In Caneda, as in other countries the civil arvice has developed alowly; each step in advance has boen poodible oaly as the result a ntrucide.
What is meant by the civil service? Bridy, the civil service includes the classified a. ployees of the departments. This nlassificution is based on the principle that people of ablity and experience should receive the best position Mere length of rervice la not enough to cavas promotion. Competitive examinations an mod for practically all poaitions, and the reoult $d$ the exauninations, together witin the character d the applicant, determine appointments.
The civil service of Canada is controlled bys civil cervice commission, whose office is a Ottawn. This commission, composed of three members and a recretary, is appointed by the governor-general in council. Its duties are to test and pass upon the qualifications of canbi dates for admission and promotion; the actual work of examination is done by examinen under the control of the commission. The commission's powers also include the right to ir vestigate the operation of the civil service lam, either independently or at the request of the minister or of the governor-general.

The service is divided into two great braches known as the inside and the outride service. The inside service includes the employees of the executive departments at Ottawa, and the employees in a number of offices, such os those $d$ the auditor-general, the governor-general's mat tary, etc. The outride service includes the nas of the public service, such as the customs' of. cials, railroad and postoffice employees. Thw

the civil service list includes practically all the employees of the Dominion government except the heads of the departments.
Though the details of the classification and qualifications are too numerous to consider hero, one fact of great importance must be noted. Members of the civil servics pay five per cent d their salaries into a retirement or pension fund. The governorgeneral in council grants a pension from this fund to any person "who has served in an establishod capacity in the civil

## Onnedian Govornmeat

service for ten years or upwards, and who has attained the age of sixty yeare or become incapacitated by bodily infirmity from properly performing his duties." After a service of tan years an empioyee is granted a pension of tenfiftieths of his average sialary for the last throe years; for each year of service over ten and up to thirty-five he is entitled to an additional one-fiftieth. If a perron dies whilo in the service, the amount to his credit in the setirement fund is paid to his legal heira

## Legislative Department

Parliamont. The constitution deciares that the legislative department shall be called the Parliment of Canada, and that this Parliament
than the other, ite restrictive influence would be the greater. This theory is really an outgrowth of the Middle Ages, whem

FIRst PARLIAMENT BUILDINGS, TORONTO, 1706-1818
shall consist of a Senate and a House of Commons. In this respect the framers of the constitution patterned after the English government, where the law-making department consists of two houses, the House of Londs and the Houso of Commons. The theory of the bi-cameral (that is, "two chambers" or houses) system is this: if there were only one House it might puss some harmful legislation, either through haste, popular excitement, or under influence of powerful forces; it there were a second House acting with the first, it whuld be improbabte that the same influences should exist in both, and one House would doubtless correct the influence of the other. Then, too, if ase. House were in some sense higher grade
the House of Lords and the House of Commons represented the interests of different clasess of people.
The Eenate. The Senate was originally composed of seventy-two members, twenty-four each from the three great divisions of Canada -the maritime provinces, Ontario and Quebec -with the hope of affording special protection to their respresentative interests. Since 1867 the entrance of other provinces has made necessary readjustments of the number from each division, so that the total membership is now eighty-seven. The senators are appointed by the governor-general, with the edvice and recommendation of the privy council (the official title of the cabinet). Thus it happens,

- in Great Britain, that the political party in conatrol nominates the members of the Upper House. The fect that they are independent of the vote of the people at large ls supposed to sender them free from local influence. A senator must be thirty years of age, and have real and personal property worth $\$ 4,000$ above his liabilities in the province for which he is appointed. The appointment is for life. In legislation the Senate has the same powers as the House of Commons, except in regard to bills imposing taxes or appropriating money (see page 214, for table of complete powers). Financial measures must originate in the lower House, and the Senate cannot amend them.

Eouse of Commons. The real political power rests in the House of Commons, elected by manhood suffrage. No ministry can remain in office without its support and confidence. The British North America Act provides that the province of Quebec must have a fixed representation of sixty-five members, and each of the other provinces has a number bearing the same proportion to its population as sixty-five is to the population of Quebec. The populftion of Quebec in 1911 was 2,002,712; by dividing this total by sixty-five, we find that the province has one representative for $\mathbf{3 0 , 7 8 0}$ inhabitants. The population of any province divided by 30,780 gives the number of its representatives in the lower House. The basis of representation is changed after each decennial census.

No property qualification is required for membership. A member must be a British subject by birth or naturalization, but he need not reside in the district for which he is elected. This provision is like that of the constitution of England and differs from that of the United States, where members of the House of Representatives must reside in the states from which they are elected. All members of Parliament receive an allowance of $\$ 2,500$ if the session exceeds thirty days in length and an additional ten cents per mile for travelling expenses. The recognized leader of the opposition in the House of Commons, in addition to his sessional allowance, receives a salary of $\$ 7,000$ a year.

Ofilicers of Parliament. Each House of Parliament must have an officer to preside over its deliberations; this officer is the speaker. The term "speaker" comes directly to us from the English system of government, and the name of this officer could not be changed, except by ameadment of the Constitution. The speaker
of the Senate is appointed by the governongeneral; the spenker of the House of Commone is elected by the members; he is assisted by the deputy-speaker, also elected, who presides in the absence of the speaker or in case of a vacancy. In each House there is a clerk or chief officerr (appointed by the governor-genenal in council) under whose direction a large number of clerks write the journals, attend committees, translate the public documents, etc. All dobates are reported by an official body of reporters French or English may be used in addressing either House, and both must be used in all the laws and records. The sergeant-at-arms has charge of the messengers and pages, and looks after the furniture of the House and offices The Senate also has a "gentleman usher of the black rod", who summons the Commons to meet the governor-general in the senate chamber at the beginning or end of the session.
Flectoral Districts. In order that the Members of the House of Commons chosea from any one province may represent every part of the province, the provinces have been divided into electoral districts as nearly equal in population as possible. If the census shom that Alberta may send twelve representative, the province is divided into twelve districts or "constituencies", each of which is entitled to one representative. It is not necessary by lav that a man so chosen be a resident of the ditrict, but in practice the voters prefer a man who resides in the district to a man who lives severa! hundred miles away and knows nothing of loow conditions.
EOw Elections Are Held. General elections are held on the same day throughout the Dominion, except in several large and remote districts, such as Yale and Cariboo in British Columbin, where the returning officers fix the day so that all voters may have a reasonable chance to vote. When a general election has been decided on at a cabinet meeting, the premier so advises the governor-general and Parliament is then dissolved by a proclamation in the name of the king, who alone has the power to summon, prrrogue or dissolve it. A second proclamation author izes the writs of election or order to each district officer, announcing the date for nomination of candidates. As a general rule the elertion takes place on the seventh day after nominn tion. If the party in control is returned to porfet, no changes are necessary in the officers of Partirment, in the cabinet or in the character od legislation. If the opposition wins at the der-


## Oanadian Gopornment

tion the system of a responsible ministry necescitutes the resignation of the existing cabinet ad the formation of a new cabinet by the victors. General elections must be held at mat once in five years, but they may be held dtaner at the discretion of the governor-general heouncil. A by-election is one in which a seat, which has become vacant for some reason, mant be filled. A by-election may be important $m$ registering changes in popular opinion or as larecasting the result of the next general election; edinarily, however, it is only of local interest.
How a Bill Bocomes a Lant. A formal statement of a proposed law or act is called a ":II", and under this name is introduced into

After being passed by Parliament and approved by the governor-general the bill is called an act.
Oommittees of Parliament. A great many thousand bills aro introduced into Farliament at each session and it is manifestly imponsible for the Houses in open session to give considerntion to even a very small portion of them. Standing committees aro therefore named in each House whose duty it is to give particular consideration to such proposed legisiation as shall be referred to them. For instance, a bill proposing that certain changes be made in the banking laws would be sent in each House to the committee on banking. After a committee has given a bill due consideration,

whe muat be rend throw timo in ench Elowes, as will as cconidived in the comnalition of the whola Aftre a bill has paued one House and gow into the other, the mocoad Hown may momend it should it so denire (exceppt that tho Sesato may not amood financile bill); th this cave the bill must be retured in its ampeded form to the House in which it origimated. Erach Houss must agree to amemdments proponed by the other House. If the two Houme cannot surwe to the final form of a bin, the bill in dropped for the rexion.
The Eedpet. The most important power of the House of Commons is the control of financial athirs. The committes of aupply, at the begioning of the recion, brings a mennge from the covernongeneral with the estimates of the sums sequired foe the government for the next financifl years, from the lat of July to the next 30 ch $\alpha$ Juma. Thme extimetes contain the expenditures for the current and the previous year in parallel columns and itis the duty of the ministore noppomible for expendituress for his depertment to cive full explanations if they are demanded ha the House. When the evtimatee have been formenly laid belore the House it is the duty of the minister of finanoe to make his Anancial etaternent, that is to prowht the budgot. This familiar word is an old French word for "bag'"; fo maling his statement the minister opens the zoney bag, ahows how it should be filled and what uhould be done with the contents. The dobate that follows the delivery of the minister's apeech is sure to be one of the most important of the sesion. The committee of supply continues to recommend expenditures; when these have all been adopted by the House, the committee of ways and means reports a supply or appropriation bill which is a formal ratification of the work of the committees and shows how the money for the appropriations shall be raised and apent.

Powers of Parliament and of the Provinces. The constitution definitely prescribes what powers are granted to the provincial governments. It also enumerates some of the more important powers of the Dominion Parliament as well as those powers that are prohibited or in whose use Parliament is restricted.
The following outline explains the three divisions:

1. Powzrs of ther Provinces
(1) The amendment, from time to time, notwithstanding anything in the British North America Act, of the

## Cunadias Govoremont

contitution of the province, except as segarde the ofice of lioutenant. covernoe
(2) Diroct taration within the provincow to rive sevenue for provincial purs pown
(3) Borrowing of money on the credit of the province
(4) The entablishmeat of provincial officen and the eppointment and payment
(b) The establishment and maintenance od seform and penal institutions, as vell as hoopitale, eaylums and charitable inatitutions
(0) Control of their municipal institutions
(7) Shop, sloon, auctioneer and other licenses controlled by each province
(8) Controf of public worts, except such iss ire inter-provincial in character
(9) Guarantee of property and civil right in the provinces
(10) Administration of justice
(11) Authority over matters of a merely local or private nature
(12) Education, except that no laws shall "prejudicially affect any of the donominational schools in existence before July, 1807"
2. Pownres of Parliantivt Exteno to
(1) Public debt and property
(2) Regulation of trade and commerce
(3) Raising of maney by any system $\alpha$ taxation
(4) Postal service
(5) Census and statistics
(6) Military and naval service and defences
(7) Navigation and ahipping
(8) Sea-coust and inland fisheries
(9) Currency, coinage and banking
(10) Weights and measures
(11) Patents and copyrights
(12) Bankruptcy and insolvency
(13) Indians and Indian lands
(14) Marriage and divarce
(15) Criminal laí and penitentiaries
(16) Interprovincial matters
(17) Powers not expresuly granted to the
provinces
3. Powezs Prohibited or Rnetractid
(1) Appropristion of money or taxation
ercept on the recommendation od
the governor-general
(2) Treaties with foreign n:tions

## Camadias Governmeat

## Judicial Department

Inry power, executive, legialative, or judiad, exercieed by the Dominion of peovincial swermentes is subject to the constitution. Is with all statutes or laws, the meaning of thin constitution must be interpreted by judgee who are authorized to do so. The judiciary is thes the third grent department of the governnant The judgee of the provincial courts, trom the higheast to tho lowest, can and do decide menastitutional questions that arise under the hws governing their respective provinces. In judges of the provinces are appointed and pid by the Dominion goverament, but the orymization and maintenance of their courts mon the power of the provincial governmenta. It in worthy of notice that the British North America Act made no specific provisions for a mbral court. It provided for the appointment d the judges of the provincial courts by the sowernor-general, but in regard to federal eourts it merely said that "the Parliament of Canda may, notwithstanding anything in thin Act, from time to time provide for the constitution, maintenance and organization of a suernl court of appeal for Canada, and for the etablishment of any additional courts for the better administration of the laws of Canada." The problem of creating a Supreme Court for Cenada was an important one for the first penier, Sir John Mmodonald, but it was not until 1876, in the premiership of Alerander Meckenzie, that the court was finally established. Sinoe that time two other federal courts, the axinguer court of the Dominion and the admiralty cour, have been eatablished. The admiralty court is, properly speaking, a division of the ancequer court which has jurisdiction over all metters pertaining to navigation and ahipping. suprome Oourt. The Supreme Court is composed of a chief justice and five puisne (or mociate) judges. It is the highest court of uppenl and has appellate, civil and criminal jurisdiction throughout the Dominion of Canada. The judges reside at Ottawa, where the Supreme Court holds three sessions each year-the first beginning on the third Tuesday in February, the eccond on the first Tuesday in May, and the thind on the first Tuesday in October. In cusunal cases, where the question at issue is of tuadingly great importance, appeal may be dlowed from the decision of the Dominion Supreme Court to the privy council in England, but the court is intended to be, as far is pos-
sible, the court for the final rettiement of coatrovernies arising from the operation of the conatitutional system of the country. By an act pamed in 1891, the governor-general has authority to refer to the Supreme Court important questions relating to provincial legislation, education or any problems of general public intercest.
Bxchequer Oourt. The exchequer court originally formed part of the Supreme Court, but in 1887 the two courts were separated. The name "exchequer court" carries us beck to enrly English times. The king's treanury was in charge of a treasurer or "hoander"; as the revenues increased in amount and as diapute arove in connection with their management, it became necesaary to divide the duties into an administrative and judicial department. When the English courts were formed, questions affecting the revenue were referred to the court called the exchoquer, which derived its name, 20 we are told, from a chequered cloth which covered the table. The duties of the court grev in importance and were gradually extended to all suits in which the Crown was intercested.
The exchequer court of the Dominion is presided over by oate judge and has original juritdiction in "all cinims, suits or actions agumst the Crown." It also has jurisdiction in revenue cases and the enforcement of penalties, copyrigh . rade mark, and patent cuses, and heare claims against the government when eny person suffers injuries from or in the construction or oparation of a public work. It hears all actions in which the Crown takes part in cases of receiver for or aale of insolvent railways, and in time of war it is also a prize court.
Admiralty Oourt. The exchequer court hes the powers of an admiralty court, but with the development of commerce and the consoquent increase in the number of questions for decision, it became necessary to establish separate courts to hear this class of cases. The court has jurisdiction in all civil cases in any way relating to navigation, ahipping, trade and commerce in Canndian waters, tidal or nontidal. The governor-general may appoint a judge of a superior court, or of a county, or any barrister of not less thun seven years' standing, to act as "local judge in admiralty." Admiralty business may be transaited either at the erschequer court in Ottawa, or in the district courts. At present there are seven admiralty districta, each presided over by a local judge in admiralty:

Omedian Covernmont
(1) Ontario, reoder the mave of Torcato edminalty diverict, with affew is Tor cata.
(0) Amboe, with offom at the city of Quabec.
(a) Nova Scotia with olices at Balifar.

## Curallian Governmont

(4) Now Brunowick, with oficous at SL Jin (5) Priece Edverd Island, with oflicem a Charlottetown.
(0) Britinh Columbia, with oflices at Victorih
(7) Yukon Teritory, with olfices at Darman

## Local Government

Corrolated with Geograpis. In our dircurion of ceography, premated later in this volume, the fect in appareat that a great doel of govimment and coography may profitably be atudied together. Por example, it is clear that the goverumental boundary between Britthh Columbia asd Abberta is also a geopraphical boundary. In etudytag the township, the vil lage, the city and province, it is pomiblis to unite seograplay and government to a conaiderable exteat, and the rooder if particularly arged to rend pagre 284 to 288 belore continuing the topic of locel governmeat. Tho otudent, temecher or pareat who will do this is better prepared to undertand what follows.
Govornmoztal Dividong. II Canede were very small it would be pomible for all the people to meet together in one place to make their lawe. We would then live under a pure democrecy. The vast area of this country makes such a syatem impossible; indeod, so diversified are our intersesta and so great our domain, that we cannot be governed entirely from one central point, to eny nothing of one central meeting place for the people as a whole to frame their lawe. The framers of the constitution realized, however, that the nation could not survive if the provinces, which had hitherto been relfgoverning, retained all their powers; therefore they were granted only such powers as were necemary for the proper maintenance of local sovernment; all other powers, national and international, belong to the general government ( page 214).

While there arc many differences in the details of the machinery, all the local governmente of the provinces have some characteristics in common. The province finds it imposerible to exercise perfect control vithout still further sub-divisions. The divisions common to all provincee are county, township, city, town and village. In Quebee and New Brunswick the largest division of the county is called the parish, instead of tornship; as the name indicates, this was originally an ecclesinstical or church district. Prince Edward Island is the only province which has no local divisions; most of the lo sil businese
is transected by the acoumbly, but Charlotho town and Summerside are now incorporated a epperate goveruing bodies.
The achool district is the unit of goverameat and a true democrecy. The local school bown may do absolutely what it pleases in actood matters, to long as the lawe of the provina relating to education are not violated. If the province declares that the teechers must holl liceases to teach and that each diantict mux have at lonet ais montho' school per yens, the regulations muat bo obvarved suder penalty $\alpha$ loving the funds distributed by the province fou education in each district. In some cacses the townahip is the public school district; countim and dities are hish sebool districts.
The township is independent of the provinu and even of the county, in everything boal, such as the dection of its officers, the brilding and maintenance of its rooda, plans for drier age, etc. These affirs concern only the people of the townahip and it is natural that the highos political units ahould give the township fow control of its affaire within the limits hid dom by lan.
The county governs itself without referean to higher authority, except that here aguin then can be no violation of general principles insitted on by the provincial constitution and statutua The province does not care whether the county courthouse is in a Gothic or Romanesque sth of architecture; it is none of its concern what people are elected to county offices. Sach matters are the business of the people in end county. The county may incur debtsat the pleasure of its citivens, though the province may declare what the maximum indebtedness mav be.

County and Local Govoriment. In ont rio the county councils aro compoend d councillors elected by "county council diri sions," the number of which depends on tin population of the county. The assembly bu provided for the election of a mayor and thrux aldermen for each ward in cities. Any com munity with a population over $10,000 \mathrm{~m}$ become an uscorporated city. Every town hom

- myor and three coumellors for each wand -win there ano lows than five wards, or two councilors when thuse are more than five. A town4 er a village has a reeve and four councillors. all offieem aro elected by general vote except incities and townships divided into wards; then dation is by wards. Widows and unmarried woen who aro rated as taxpayers can vote.
In Quebee the county councils are composed d the mayors of the "local municipalities"the is, the parishes, towns and villeges, each d which is governed by seven councillors who doet the mayor from their own number. As in Onterio, citien have special acts of incorporation.
In Now Brunnoick the county councils consist $d$ two councillore from each parish and of a medea chosen annually by the council. Cities me apecinlly incorporated and elect their own myor and aldermen.
In Nova Scotic the councils ire elected by the tuppyers, one councillor for each district; a heve districts, enumerated in the law, have two comeillora. Town councils are composed of a myor and not less than six councillors. All the towns are now subject to a general act mod by the provincial legislature.
In Maniloba the city and town councils conin of a mayor and two aldermen or councillors for each wand; the village council is composed of a mayor and four councillors. In a rural diraict the chief executive is the reeve.


## Oanedian Governmeat

In Sasketcionaan there is a provincial department of municipal afnime. The minister or commissioner has general superistendence in county and locel matters. In cities the counclls consist of a mayor, elected annually, and from six to twenty aldermen; in towns, they consist of a mayor and six councillors, thres elected each year; in villages the governing body la composed of three councillors. In sural municipalities the council consists of a mayor and one councillor for each division (the rural municipality comprises 324 equare miles) in six equal divisions.

In Alberta the provincial minister of public works has supervision of municipal affaira. Rural municipalities and towns ano governed under the Consolidated Ordinances of the Northwest Territories of 1905, which provide a council of a reeve and four councillors for the rural districts, and a mayor and six councillors for the towns. Citien are governed under special chartera.
In British Columbia townships and sural districts ane governed by a reevo and a council of four to seven members. Councils of cities established since 1892 consist of a mayor and five to nine aldermen. Nanaimo, New Westrinster, Victoria and Vancouver aro governed under special statutea Mayors and reoves are elected annually by general vote, aldermen and councillors by wards whese such exist, otherwise also by general vote.

## Provincial Government

The provincial government is modelled very dondy after the general character of the Dominiongovernment. The constitution of the provineo is practically the constitution of the Dominion, for the latter expressly dictates what matters may be dealt with by the provincial sovernments. Within these limits it is free to act as it pleases. The provincial government, Itie the Dominion of Canada, has three great depurtments, the executive, the logislative and the judicial.
Liontenant-Governor. The chief executive is the lieutenant-governor, appointed by the goveroorgeneral in council. He ordinarily holds dfice for five years, but he may be dismissed by the governor-general for "cause assigned," which, in sccordance with the constitution, must be communicated to Parliamont. He is, therefore an officer of the Dominion, as well as of the povince. His position in the province corre-
sponds almost exactly to that of the governorgeneral in the Dominion. He appoints his executive council, and is guided by their advice so long as they retain the majority and confidence of the assembly. He can summon, prorogue, and dissolve the assembly, make appointments to office, and performall executive. acts, with the advice of the council, which are necessary for the government of the province.
Executive Douncil. The executive council is the name given to the body of men composing the administration of each province. The number and titles of ministers varies; broadly speaking, they correspond to thedepartments of the Dominion government. Each province has an attorney-general, who supervises the administration of justice and is the legal adviser of the government. Nova Scotia, whose agricultural interests aro small, has no minister of agriculture, whereas Saskatchewan, whose min-

## Canatlan Covorumeat

Ing inturuts are as yot not deriloped, monds co minitior of mina. There io guncrally a trovesuner or minieter of finasce, and throvervo officials at the had of the differvat departivents of pablio workta, crovis landes, education, etc. All the mimbers of the councll who aro departmaneal ofllowe must vacate thetr mente if the cuambly votes againat thom. All the conventions, furthermore, which govern the rolations at the goveroospenaral and his ministers epply whe equal lorce to the relations betwa - Bintranat-joverncer and his councillors.

Endilative Aesembls. In all the provinces, concopt Quebre and Nova Scotia, the legislature

## Onadilas Coverranamt

The legilative acomblios ano dected by manhood muifrage, axcept in Nove scotia ad Quolve, where as anall property qualification in mecceary. The method of clection coms. aponds to thet for Parliameat: the lieutenash soversor, by the edvice of his council, issues a proclamation dispolviag the old logillature and appointing the day for the return of the writs he also calls tho sew legidature together. Th members recelve a semional allowance of 8200 in Prince Edvard Ilaad, 8500 in New Bruma wick, 8700 in Nove Scotia, $\$ 1,000$ in Manitobe and Alberta, $\$ 1,200$ and extre milioge in Britioh Columbie, 81,400 in Ontario, and 81,500 in


is componed of one House, the legislative assembly. In Nova Scotia and Quebec, there is also an upper House, known as the legislative council, whome members are appointed by the lieutenantgovernor. They may retain their positions for iife, unless they become banlrupt, are convicted of crime, or otheswise disqualified by law. The council of Quebec consists of twenty-four members and that of Nova Scotia of seventeen members; one of the members is chosen spenker by the lieutenant-governor. In Prince Edward Island the assembly is a combination of the former legislative council and of the assembly; since 1893, when the union took place, eadistrict elects one member with a real est..4 qualification $(33,250)$ and one member on the general franchise.

Saskatchewan. The legislatures have a durr tion of four years (ive in Quebec and Nor Scotia) unless dissolved by the lieutens sovernor, and they must meet each year. 1vincial legislation in every way more closely affects the daily life and interests of the provinco than the more general and national legislation of the Dominion. A consideration of the subjects of provincial legislation (see page 214) will ahow how large a measure of local selfgovernment is given to all the provinces in the Confederation.
Provincial Oourts. As the constitution gives to the provinces exclusive control over all matters affecting property and civil rights, the provincial courts have to deal with subject that affect intimately all clavee of persons. On

## Onallen Govormanast

trather hand, the Domialoon Parliament alone mino lavo relatiag to erime and criminals, but intinl of cilonders must tako placo ia the courts d to provise, which have the right to admisinn furtices In othee words, the proviscial - to have abooluto powers in all civl and crianin cetiones at lav, but the Dominion Governant deternines the courre of procedure in aininal caces. Thic divilion wes due to the hat that in the province of Quebee the code of hach civil how provailed, wherems in the other pribces the civil lan was baed on Endiah poadure. The criminal $\ln w$ of England has monuled in all the provinces unce 1763, but to ivil code has always beem difierent. This eimece mode it necomary to allow the provinco complete control of civil har.
Tho provincial courts are of various kinds and sifer in each province. It is impomible to give $s$ complete list of all of the courth, but a short nemary of the claves into Fin'th they may be trised will be of equal, if no of gre veter value, monizs the priaciples on wiuch all the ayvtems molned:
L. Inferior courts of civll juriediction, for the monery of debtr and the rettlement of civil ntims where small sums of money are at insure. 2. Inferior courts of criminal jurisdiction,

## Onaedlea Govornyont

for petty offences and for preliminary examination in cave of serious erimo.
2. Suparior courth, for the trial of civil and criminal cares below a judge and jury in each Judicial district.
4. Speciel courts for the dizolution of marriage, proving of wills, trial of diaputed olections, etc.
8. Supreme Court, a court of appen, tor anch provinces.
Gozoral Bummary. A comprehenaive survay of our system of soverament shows us that Caneda existo as a great federation of nine proviacees, each of which is practically independent of higher authority in the conduct of its owa internal affairs. In this respect it sumbles the United States and the Commonwealth of Australia, in both of which amallere uits have retained their ldeatity, and differs from the Union of South Arrica, in which all the colonien were merged into ons. Elach of these nine provinces, practically independent, prants a large mensure of local and independent relfsovernment upon amaller divisions of territory called counties, townships, cities, towas and villagea. The spirit of the government is locel control, with such limitations as are necomeny to the well-being and protection of every citiren.

## Territorial Government

Iorthwost Tomitorios. The Northwest Tentories now comprise all the land north of th Octh parallel, except the Yukon and a small prt of Quebec. Since the establishment of the porinces of Alberta and Saskatchewan in 1905, the territories have been governed by a comsimioner as executive officer, acting under intuctions from the governor-general in council $\sim$ ot mine mister of the interior at Ottawa. A coumcil of four may pass ordinances which have the nme force. as those of the former assembly These ordinances may be disallowed or declared mid by the Dominion government within two suers.
The judges or magistrates are appointed by the governor-general, and have all the powers lormerly vested in the supreme court of the Teritories. In case of a death sentence, however, the magistrate murt forward to the minister of jutice at Ottawn full notea of the evidence, mosthes with his report on the case, and execution must be delayed until a reply is received. In general the commiasioner may use his disertion whenever the laws fail to provide for
emergencies. No established aystem of schools exists in the territories. Whenever a misaion is atarted by members of any denomination, the government of Canada will usually grant a small sum to assist in the work. The Royal Northwest Mounted Police have jurisdiction over the whole of the Northweot Territories.
The Iukon. Before the discovery of gold in the Yukon, the territory was inhabited only by a few Indians, but the sensational finds in the Klondike brought great crowds of settlers into the region. Parliament then organized a government to meet the requirements of the population. The territory is now governed by a commissioner. appointed by the governorgeneral in council, and a territorial council of ten members. Any voter may be a councillor, but the qualifications of voters are determinod by the commissioner and his council. To be eligible to vote a mana muast be over twenty-one years of age and must have resided in the district for at lesst twelve months previous to the election.
This government has extensive powers, always suiject to the approval of the national govern-

## Omallan Geverneent

 moneding Jury teral of alvil and crimital caver
 tion of municipelition. Any ordimacos of this courell yy be diollowed oe ritoed by the coverita pmaral in couscil withle two yearm The highat court is the Yuroou ls the teatitarial court, compoend of three juccisen, who are eppolatid life all muperior court judgees. Br. dides this court thare are aloo police maghs! - ' 1 , magietrates and juaticse of the peace, ar. tho treitory is also an edmiralty dirtrim. it io esperlos court has prectically unlimite! 19.4 diction in all eivil and criminal caners $l_{1}$ efiminal caves there of no grand jury, bt: ehe
coused to catitiod to jury tifil, though bo mon chocee to be triod without is jury. The mand tratee of vaious clames have only limitud five. dietion in criminal and dvil camen In a mattice as appoal may be taken from the tand torid court to tho Euprome Court of Cender and in capital caves the centence must bo 4 proved by the governon-jenoral.

The councll of the territory, rogothber wial two elfisens having no othere official pat tions, form the cousell of publio instros. tione It poremen the unual pownen of and council to the provinces. The Yukon $\hat{1}$ d. ided into districts for school purposee, nod lisa.iet eloeting its owa truateces. The minorixy of Ule taxpayers in any diatrict, whother Proter ant or Catholic, may potition and obtio. ip rate rewool dirtrict.

## Royal Northw:-

Pormation. After the Dominion Criarnment, in 1800, had purchased the terith in! righte of the Hudson's Bay Company, it fur nd ithelf fece to fuce with the problem of governing a new country extending nime hundred miles form cast to woot and nomewhat more from north to south. The Red River rebellion and other disturbances in the weat showed the need of come control over the rection if it was ever to be open to permanent settlement. To Sir John Mecolanald belongs much of the credit for the iden and for the ultimate success of the plan. The firat stepa towards organization were taken In the autumn of 1873 and by October about 150 mounted policemen had been sent to the temporary hemdquarters at Lower Fort Garry, in Manitobs. The Act of Parliament which established the force provided that all the police were to be mounted and efficiently equipped, but without any finery. "As little gold lace and fuss and feathers as possible" was the motto of Sir John Mecdonald. No person was to be appointed to the force "unless he be of sound constitution, able to ride, active and ablebodied, of good character, and between the ages of cighteen and forty years; nor unless he be ablo to read and write the English or French language." The Northwest Mounted Police was to be a civil force, though drilled in military organization.
From the very beginning it has attracted a higi grade of men. One of the sons of Charles Dickens served for many years. University craduates and noblemen have merved in the

## Vourt: ? Plice

 ran $i^{\circ}$. init the humblest. Another importat $^{2}$ it. Ti ter cie of the men of the force in then t. $\because, \ldots k$ for themselven. In the course dis pa rul ? rgeant may find himself called on of ant in ithoust any capacity. He must be a mom capable of neeting emergencies as they ana Consequently the Northwent Mounted Polion has always been a self-reliant body of men, jux $a$ body well-disciplined and'ready to obey ou. mands.It was on the 6th of June, 1874, that the timu divisions of the newly formed police left Toroctio by train for the west, by way of Chicago, St Paul and Fargo. From Fargo the expedition started on horso-beck. The hardships of thin overland march are history. How the polian eatablished their posts, how they broke up th illegal trade in whiskey and stolen horses, hor they won the confidence of the Indians, how they reelly made possible the great development $d$ the territories-these ahould be familiar storis to every sehoolchild.
Dutios. There is havdly a department d Canadian government that is not assisted by these hardy troopers. They act as custome officials along the border. They carry the maib to distant mining camps, they report on the roads, bridges, crops and weather, and they then the census. They help travellers, and they an frequently called on to care for the sick. In the rintes of 1904 word came to the police at Fort Chiperyan that a missionary had become inemes at Peace Station. Constable Pedley was mat to take him for medical treatment to the neareal


## Candilion Cocrormsuat

nenumb. In the dead of winter, with the mpature dition 60 dognem bolow sero, the cmabio took the madman to Fort sankatchemina dibtanos of 800 milos by trail. Twice tr mednan broke his boodo and triel to excape. throlly afier the firt attempt the pals were held piveren by a terible anowitorm for two days - nithts. Por protection Pedley lachod the manan and himself to a tree, clter he had mbuched the doge in the now. When the milonery wen examined at Fort Sackatchewan Kwatened that his fect were badly froven and Hitware paralymed by cold. Alter two months dendul nuruing ho we discharged completely endin mind and body. Alone on the return tio Pedley himoell hroke down and had to be Nult to in ayyum for meveral montha. After a thort les ve of absence he returned to Regina and continued to serve. Of course, this was an mumally terrible experience, but it is typical of thouttitude of both ofilicers and men towand their mat. The sotto of the force might almont be, "Boa hero, but don't tell anybody about it."
Probebly the most important duty of the plico is to enforce lav and order. In many of the remote districts they not only preserve the $\mathrm{m} w$, but make it and interpret it. The officers min regular tripe throughout their districts to bodd court. In tracking down criminals these mea have many difficulties. It might seem that in the north, especielly in winter, it would bo thoot impossible to detect a crime and punish thecriminal. The records of the police prove the cantry. No detective force in the world can chor a better recond. No matter how small the crime, "Get the man." The murderer and the ment thief are both criminals; though their punishment is different, both must be punished. Time and distance are no object. This attitude, abolute justice to every man, has earned for the mounted police the fear of all evil-doers and the respect and admiration of all good citimeas.
Prosent Organisation. At the present time, forty years since its formation, the Royal Northwest Mounted Police is 626 strong- 50 chens and 576 non-commissioned officers and camables. They are distributed over Alberts, Salatchewan, the Yukon and the Northwest Tenitories, an area of more than $2,500,000$ mume miles. The remotent detachments are thoee on Herschell Island, on the shores of the Aric Ocean, 2,500 miles from hendquarters, and Beyliken, on the northwest corner of Hudson's

The inadequary of sweh a amall fores oaly Increasen one's sdemiration for the manner in which it teoes and complotes tho many tanks thonat upon it. The table below ahows the present distribution of the force:

| Aberta. | Now- |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | 68 | 180 | 276 |
| 8entatcheman . . . . . . 20 | 75 | 181 | 282 |
| Northwest Territoring 2 | 0 | 16 | 27 |
| Yukon Territory..... 3 | 12 | 20 | 41 |
| Totals.......... 80 | 104 | 412 | 620 |

The force is divided into eleven main districta, each of which is commanded by a superintendent, who has under him a number of inspoctors and other afficers atationod at important pointa.


ROTAL NOETEWEST MOUNTLD POLICE DISTRICTS
Surgeons, assistant-surgeons and veterinary surgeons, are commissioned officers. The noncommissioned officers, as in the militia and in the British army, are staff-sergeants of various kinds, sergeants and corporals. The trocbers are called constables. Euch of the central pusts maintains communication with the smaller oosts and detachments, and is responsibl for their control to headquarters at Regina. Repina is the residerice of the commissionec ance assustant commissioner, the executive offiners of the force. The permanent official head is the comptroiler. who resides at Ottawa. The Royal Northwest Mounted Police is atill a branch of the civil

## Geandian Covernment

gevernment of the Dominion, umder the direct coatrol of the premiser and prevident of the privy council.
Alone with the numerous other dutien, the police regulaty patrol all dietricts where there ars mettlers. All over the prairies, at stated inturvele, mounted constables ride from homoatend to homentend to seo that all is well. Each b provided with a patrol aheet, on which the settler is required to enter any complaint that ho may have to make. If nothing has happened that deverves to be called to the attention of the police, the constable fills in the form "No complaints," and the settler signs it. These sheets are then turned into the officers at the posts and any matters requiring attention are attended to. Eepecially to foreiga settlers the visit of the

## Oanedian Governmeast

mounted policeman is welcome. The constabl is generally a man of comaidersble experima and can advice and help the homesteader in the building of his ohack, the herding of his stock, and in dowens of other ways of which the outiof world knows nothing.
Each month the muperintendent of a district reports to the commisioner at Regina. There reports give full information as to all the wan performed in the district. Thus the commin cioner is enabled to keep securate record of the entive force. Every report sent in to him is a comprehensive history of the district, nothing being considered too insignificant for notion In the reporta for a whole year, therefore, then is a fairly exhaustive record of the country'

## Taxation

Tho Iational Govermmort Ooandored. The siovarmment of the Dominion is a vast businem organization, requiring annually one hundred twenty-five million dollars to pay Its expencen. Estimating the population of the country it eight million people, the cost of mameing our national affairs averages over $\$ 15$ for each man, woman and child each year. Thus, Mr. and Mra. A., with three children, discover that in caring properly for their interests, the government is put to an annual expense of over 375. To whom does Mr. A. pay his proportion of the one hundred twentyave milion dollars? How does it get to the national treasury at Ottawal Does Mr. A. ever protest at the amount of this tax, declaring it is too high, too burdensome, in proportion to the bencitis he and his fumily receive?
It may seem strange to the boys and girls, and to some older people, as well, that no man of woman in all the Dominion pays to the Canadian government directly one cent a year towards meeting the enormous sum necessary to pay running expenses. If Mr. A. were callod upon by the tax collector for $\$ 75$ a year, he would cometimes find it almost, if not quite, impomiblo to meet so large a sum. It would be a very heavy burden, and one of the most arious problems of our law-makers has always been to make this burden as light as possible. They have planned it so well that no tax-collector for the Dominion ever calls upon Mr. A. or apon any other man. The money needed is mot reised by direct taration, but is otherwise cotured.

Taria on Imports. We manufacture a val numbers of things in this country for our om use and to sell in forcign countries. Other nations are also heavy manufacturers, and they sell some of their producta to us. Every time a boatlond of goods from Engiand, France, or Germany comes to Canada to be sold haen, such goods come into competition with goods of the eame kiod that we manufacture at home Sometimes our fectory owners find that so much forcign material is offered here that there is an oves-aupply and our own workmen sufira for lick of employment. Some countries of not pay their workmen as much as ours earn, so the foreign goods can be made more cheaph and sold here for less than we can make them Therefore we tell the foreign merchant that be may bring his products here if he chooses to do so, but that he must pay us for the privileged welling them here. The case is exactly similar to the village tax of $\$ 1$ a day you impose on the traveling huckster who comes to your town to sell things in competition with your local mar. chants.
The amount the foreigner pays varies mith the character and value of his wares. He my be required to pay a certain per cent of the valve of the goods, or may pay a certain fixed prix per doeen articles or a certain price per hundred pounds. These matters are all stated in a har called a tariff law. When Mr. A. buys an im ported article he pays a little more for it, becaus the foreign merchant has increased his price to cover the tarifif chargea. So in this way Mr. $A$ and every other person who buys foreign-met

Eticles contributes to the expense of ruaning - criovernment.

Many of these foreign articles are such that twey could be diepensed with almost entirely by manty every person. If all were determined to do without them, then where would the governmeat secure its revenue, since its income from wach tariff duties would be cut off? Our lawmekers have provided for such an emergency, for it is recognized that the demand for most foreign goods may at any time decrease.
There ave certain commodities we must have ewry day, and a tariff on these is certain to produce immense sums in revenue. Some of theo are sugar, coffee, upices, and other domestic articlea. Every tarif haw, no matter by what political party it is prepared, always includes duties on these articles for which there is a constunt necessity; thus is revenue assured.
Inland Rovenve. Not all the necessary hrowe of the government is derived from the turili upon imports. Certain products of domatic manuffecture aro taxed, and in such intences the maker is obliged to add the tax directly to the cost of the goods. The conamer pays this additional sum every time he mikes a purchase. Such a tari is called an arise duty, the wond "excise" coming from an old French word meaning a tax. Every tine a man buys a cigar he pays a tax to the sorernment, as does the man who buys beer, thisk and other liquors. People could well gut along without oll these things, but they will not; therefore the government's revenues are mareased nearly $\$ 16,000,000$ each year.
Loenl Taration. The province, county, tornship, school district, village and city are not allowed to raiso money for expenses in any other way than by direct assessment of tares apon the property of the people. The laws povide that all taxes levied shall be equitablethat is, that in any tax district each property onner shall pay in exactly the same proportion $\square$ any other who has tarable wealth.
There are a number of taxing bodies drawing hunds from each neighborhood; so it is a little dififult to explain in a brief article exactly how tures are levied and collected. Every political division named in this articlo on civil government except the Dominion raises money by direct taxation.
In outlining the general system let us begin with the temands of the province. The province recei : 1 of its revenue from three mances: $11, \ldots$ ifrom mines (especially in

Nova Scotin); (2) sale ot public landa, timber and mineral products; (3) the subudidine or annual allowances made by the Dominion government. Previous to confederation nome of the provinces, except Ontario, had used direct taration. It was felt that to force the provinces to resort to direct taxation as the only method of carrying on their government would probably spell the failure of Confederation, and it was finally decided that the central government ahould grant annual subsidien, based on the relative population and financial position of the provincem. It is from these subsidies that the provinces derive the greater part of their revenue. In none of the provisces has there been a general aystem of direct taration for provincial purposen. In the fiscal your of 1011 the provinces received subsidies as follows:

| Aberta. | .81,173,088.60 |
| :---: | :---: |
| Britich Columbis. | $\quad 522,076.60$ |
| Manitoba.... | 838,247.06 |
| New Brunswic | 621,360.06 |
| Ontario. | 2,128,772.08 |
| Prince Edward Island | 321,051.08 |
| Quebee | 1,688,579.08 |
|  | 1,229,975.00 |
|  | \$9,131,591.80 |

The legislative asaembly of the province meets to appropriate money to a fixed amount for the annual expenses of the province. The treasurer or minister of finance presents the budget or estimate of expenses for the coming yeer, whereupon the ascembly eccepts it, that is, makes the appropriations. The local divisions of the provinces receive their respective proportions of the total, and in addition such sums as they themselves have levied for local purposes. It is customary, for example, for the residents of a school district to pay an assem. ment towards the maintenance of the echool system. Similarly, the people of the township and county must contribute toward the funds which pay the expenses of these units of government. The building of ronds, of township high schools, and wimilar expenses fall properly on the locality which is to receive the benefits, though it is true, especially in education, that the provincial government often helpe.
Mr. A. owns a farm on which his taxes are \$100. He finds he must pay something for the support of the schoole, whether or net he has children, for the government of his townahip,

## Ocnadian Goveramonat

the district achools? Is any part of A's anned tax applied to the support of the village high achool?
Location and Arzas. Which section of the township is section 1? What is the manner of

Hi county, and his province. This is all right and proper, for from each he recaives beanfits in seturn. The amount be pays is apportioned somowhat as follow, the details varying little in different provinces:


TO TOWNGHIP TREASURER


If the tarpayier lives in an incorporated village or city his village or city tax is added to the other iteme, and he would pay his money to the city collector rather than to the township treasurer.
After all collections are made the various allotted proportions are sent to the proper authorities, to be spent according to the appropriations that have been made.

An Illuatrated Lesson. Various phases of local government and taration can be made clearer to the student by atudy of the map on next page, and the questions suggested by it.

This Map. Medine tomnship is a part of Boyne county, which stretches to the nirth, weat and south. On the east the territory is a part of another county. This township is typical in form, six miles square, and wagon ronds are on all section lines.
Education. Well arranged school districts provide that no child need travel more than two miles to reach a free public echool. Is such the arrangement here? Within the school district of the village of Clayton are sections 15, 16, 21 and 22. Will $F^{\prime}$ s children be entitled to free tuition inothe village high school? $E$ is one quarter of a nile nearer the village, on the opposite side of the street from F ; why must E pay tuition if he sends his children to the village school? If E's children do not attend school in their own district, need E pay school taxes there? Do the village taxpayers help support
numbering? Where, then, is section $369 \mathrm{D}_{1}$ farm may be described as the $w 1 / 2$ of the $n w 1 / 4$ section 8. How many acres does it contrin? Write the description of B's farm. How many acres does he own? What is A's farm worth, at 890.00 per acre?
Polutrical. The village is incorporatol. What does this mean? Can $F$ vote for villge officers? Will $C$ and $A$ and $E$ vote for the mum county officers? Do Medina township men vole for provincial officers? A portion of A's farm liss in Monroe county. His residence is indicated by the atar. Is he entitied to vote in Monroe county? Would A and F vote at the sume polling place? Would a voter of any township vote for county and provincial officers and for officers of the school district at the mm polling place?
Tarimon. The school district in which A't farm is located comprises sections 23, 24,25 and 26. He lives nearest the schoolhouse in section 13. Must he help support the schod nearest him? Can A pay his entire annual tux in one sum in Boyne county? A pavement is repaired in the main street in the village a the section line from north to south. © lives one hall mile from the paved street. Will he be taxed for this improvement? Will E be tuad frr this improvement? Are residents of the village tared for the support of the townsbip government? Are residents of the township taxed for support of the village govermment! II

Nif voted to macadamise the hishway north of metion 23 and 24 from $M$ to $N$, will $A$ be taxed tr a chare of this improvement? Would B be and for it? Would any portion of this tax

Boyne county portion of his farm, to what offeial does he give the money?
When the railiond was built through A's farm, he demanded 8500.00 for the property taken and BOYNE COUNTY

chart for btudi of local government
thll on the property owners in the village? A armp lies east of King's Creek. Would the expense for the drainage of this area fall upon the Wwnship, the county or the individual owners of the land? When A pays his taxes on the
for damages, but was offered $\$ 100.00$. Was there a legal way of deciding how much $A$ should receive? Does the railroad pay taxes for the privilege of running through the township? If so, to whom?

## Education

According to the British :North America Act, education is entrusted to the several provinces. Fach provinee has worked out a aystem suited to its own needs and conditions. In all of the povinoes except one, primary education is free to pupils of school age; in Quebec a nominal fee
is charged. In secondary schools a fee is sometimes charged as supplementary to provincial, municipal and district grants.

The system in each province is administered by a central board. In Prince Edward Island this consists of the executive council, the super.

## Onertian Ceverament

fntcondent of advention and two permincat educatores. In New Bruaswick it coniete of the evecutive councll, the chancollor of the univuruity and the chinf auperintendieat. In Nove Scotia it consinte of the erocutive council, and the chicf oficere if the ouperiatendent appointed by the lieuteannt-governor is council. In Quebec the council of instruction consinte of the Roman Catholic billops of the province, an equel number of Romson Catholio Iaymen, and en equal number of Protestants. This council


Laval-montwomency
For whom Lavil Univenity is named
is divided into two committees known as the Roman Catholic and the Protestant committees, each responsible for schools of its own kind. In Ontario the head of the department of education is a minister of the Crown, and he has as his advisery an educational council and is well suported by administrative officers covering every department of the work. In Manitoba, Saskatchewan and Alberta almost similar methods of government obtain, and in British Columbia the active head of the whole is the minister of education. He has as an advisory body the inspectors in the field.
Though these officinls regulate education as a whole, each school district regulates its own affinirs in all mstters of detail. Esch selects its own teacher, but no teacher can be selected who has not a certificate iasued by the province. There is a fair degree of reciprocity among the provinces. In the weetern part of Canada the supply of teachers is not quite equal to the demand, and numbers of permits are issued from time to time.

## Oanedilen Coverrment

Is moot of the provimen schools are opend and clowed with selicions exerciver. Except $h$ Quebee no definito relicious inatruction is cive in the proviacial rehools. In British Columbie achools aso condusted on ratrictly noa-sectarima pricciplear In Quobec, Outario, Sarkatchema and Alberta a'distinction is made betwem Roman Catholic and Protentant sechoole In the lant two provinces this distinction in merely nominal.
The schools are supported by a provincial fund, mumicipal fund, and a fund yielded from dis trict assessments. In Manitobo, Saskatchewna and Alberta, one-eighteenth of the whole had has been ret avide for school purposes. Thit is being sold from time to time, and the provinow receive the interest from the fund so obtrined

The training of teachers has received attortion in all the provinces of the Dominion In Ontario, Manitola, Saskatchewan, Alberta and British Columbia, the course is almost purdy profesional and based on a definite aceademic training. In other provinces the academic and professional training are carried on simut taneously as in the normal schools of the United Stater. Usually the course of training for teachers develops into a short courso for begim. sers and a longer course for those who have hed some experience. The work in the norman echools in supplemented throughout the Dominion by teachers' institutes. In some of the prow vinces much has been done in the way of school libraries, and this applies particularly to Sar katchewan.
The courses of study in the various provinou do not differ very greatly and steps are being now taken to harmonize these. One of the most notable movements in education in Cande is that carried on at Sta Anne de Bellevue, in the Muodonald College. It is to Sir Willimm Macdonald that Canada owes not only thin building, but the movement in favor of school gardens and consolidation of schools. Each province has secondary schools as well as elementary schools. Secondary schools are both public and private, the private being confined to the large cities. The secondary schools are supported most liberally, and one of the reasomes for this is that they aro so mencessary to the continued existence of the elementary sthook It will be found that the secondary schools hare two of three grades, sceording to the needs d the provinces and of the district In amili towns there are intermediate schools or high schools. These give instruction to the yours

## Comadian Glovernmont

mine of the. towns and to many teachera. In edtion have coliegiats instituter, and here tho high erredo toachase get their preparation.
Uurverition are to be found in overy provereo In Prince Edrued Inland thero is the Price of Walos College; in Nova Scotion, the Dollousie; Acadia, St. Prancis and King's collowa; in Quebec, McGull University and Lavel University; in Ontario, Univessity of Toranto, Queen's University, MeMnater Univerity, Weotern University and the Univernity of Othma;in Mantoba, the Univernity of Manitoba with its affilintod colleges, in New Brunswick, the Univerrity of New Brunsurck, Mount Allison College, St. Jomeph's Collegs; in Seakatchewan, Suratchewan University at Sercatoon; and in Aberta, the Universaty of Alberta at Edmonwa. British Columbia has recently mado amagements to eboorb MCGill University College and Columbia College and will soon have a provincial Univernty.
Blreation, Ayricultural Sinco Canada socos of the lending agricultural countress of the word, it is natural that agricultural education ahond receive most careful attention. Esch povince has itta agricultural college. These matutions are maintained on the highest minentific plane, and their benefit to their respetive provinces is beyond entumate The agnealtural college of Manitobe owns property rlued at $81,000,000$, has about 300 students con year, and is maintained at an annual expense of 880,000 . Although affiliated with the University of Manitoba, this college is under

## Oanadiar Covernmont

indepradeat manamunent. The moot prominnat of the egricultural colleges of the Dominion is thot at Gualph, Ontario. Its influence is felt in all the Weetere provinces, and it is favorably known in evary part of the coaticent. Oatario depends very largely upon her raw products for her national wealth. Among the various forms of ram material, none are so valuable as those included under the head of acricultural produce. If, therefore, the College of Áriculture cas take. from the farms a cortain number of young men each year, teach them the beat methods of tillage, the principles of atock breeding and feeding, and, in general, a better knowledge of how to look after the field, the garden and the orchand, these youra men will holp to prevent the waste which is 80 common in farming communities. That Ontario ferming has been kept up to its present high standard has boen largely due to the wort of the Agricultural College.
What is true of Ontario is equally true of the other provinces. The agricultural college of Saskatchewan is deetined to become an important factor not only in the educational life but in the industrial life of the province. In addition to the regular wort of thewo. colleges, short courses in the winter are oflered to farmers who have not the time for a year's coursa. Stoct judging, seed judging, horticulture, dairying and poultry husbandry are some of the practical aubjects which are thus taught to the farmer. Together with the agricultural experiment stotions, these colleges are doing much for the improvement of agriculture in Canada.

## Public Lands

The public lands of Canada consist of granted and ungranted lands. The ungranted lands are in the older provinces and are the pmoperty of the provinces in which they lie. They are dipposed of by the officuls appointed by the rappective legislatures of these provinces for this purpose. The ungranted lands in the Northwest Territories belong to the Dominion and are administered by the Dominion govermment under direction of the department of the interior. Berros. The Dominion luads are laid out in quadriateral townships, each contrining thirty-dix sections of as nearly one square mile, ar 640 scres, as the convergence of the meridians pearits. The sections are numbered consecutively, beginning in the southeast cormer of the tormahip and following the order shown in the
dingenm:

| 31 | 32 | 33 | 34 | 35 | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 29 | 28 | 27 | 26 | 25 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 18 | 17 | 16 | 15 | 14 | 13 |
| 7 | 0 | 9 | 10 | 11 | 12 |
| 6 | 5 | 4 | 3 | 2 | 1 |

## Crmatian Goversument

Eech section is divided into quarties sections d 100 seres, and theve quarter wections may be aub-divided into quartern. The aumbering of the mubdivisions followe the mame order as the mumbering of the sections in the townehip, as chown by the diegram:


The townahips are numbered in regular order northward from the international boundary linee on the 40th parallel of latitude, and lie in rangee mumbered in Manitobe cast and weot from a prime meridian, which is named the principal meridian, and extends northorly from the 49th paralleL. Throughout the northwest provinces the sagee are numbered wenterly from other initiol meridians, which are named 2nd, 3nd, 4th, and 50 on, mocording to their order, weetward from the prime merician.

Disposal of Dominion Landa. The Dominion hands of the northwest are divided in two claces, vis, even-numbered and odd-numbered wectiona. The sections numbered 8 and 20 are allotted to the Hudson's Bay Company; numbers 11 and 29 are resarved for school purposes and are known as school sections. All other rections are beld for male and as land granta in sid of the construction of colonization railways.
Fomestoads. Any pe ma, male or temale, who is the sole head of a family, or any male who has attuined the age of eighteen years, who is a British subject, or any alien who declares his intention of becoming a British subject, is entitled, on making application before the local agent of the district in which the land he deaires

## Camadian Governmeat

is located, and oa paying an ofllee fee of in dollars, to obtain homentiod entry for any quan. thty of land not exceseding 100 ecren.

Anyone granted an entry for homentend in sequired to conforme to the provisions of th Dominion Land Acta, under coce of the followite acts:
(1) At leat six months' reldencs upon an cultivation of the hand in each yeers duriag th term of three yeasm.
(2) If the father (or mother, if father in ob censed) of any person who is eligible to matho homentere entry under the proviacoas of the sct, reair use upon a farm in the vicinity of th land entered for such perron as a homestad, the requirements of this act as to revidence prine to obtaining patent may be satinfied by mad percom residing with father of mother.
(3) If a nettler has obtained a patent for him homentend, or a certificate for the iseve of yod patent counterrigned in the manner prescribol by the set, the requirementes of this sect $m$ o residence prioe to obtrining patent may $k$ sutisfied by residence upon the first hometted if the second homestend is in the vicinity a the first homestend.
(4) If the settler has his permanent reideax upon farming land owned by him in the vicinity Of his homestend, the requirements of this acte to residence may be satisfied by residence upan said land.
(5) Should a number of homestend settikn, embracing at least twenty families, with : view to greater convenience in schools and churches, deaire to locate in a village or hamket near their homestends, the minister of the interion may dispense with the condition of residemen but the condition of cultivation must be cariad out.

The privilege of homestend entry appliss io agricultural lands only.


Sodnainge of Ohomiatisy. There in another Fond, the name of what used to be considereds sience, which in clowely related to the word chmidry; it is alcheiny. One word, in fact, gever out of the other, jurt as the science of chanictry grew out of alchemy. Just what the sme came from has been discumed for very may yearr; it seems moot probable that it mo derived from Chemia, an old mame for Eopt, and that it thus means merely the Eopptian art This is remonable enough, for achamy was first practiced by the Eapptiana.
There wes anothes name given to alchemy, a mee which had a moot unfavorable meanimpthe Black Art. The Egyptian priests, with whom the study began, were so mysterious about their ramarches that people in general got the idea that they must be dealing in magic. And when we remember what it was that the alchemists ree trying to do, we do not wonder that they kept it meret. For they were trying to discover a my to change all metels to gold. They mever doubted that such a thing could be donethe oaly trouble was to find the subotance with which the bese metals had to be treated. They had a mame for this wonderful substance, though they could not discover its nature; it was called the Philosopher's Stone.
Sometimes the alchemists wrote out accounts d what they did, for their own use in the future or for the use of other alchenists, but since it Wa necessary that no outsider should find out about the great secrets which they felt they wern almys just on the verge of discovering, they set doma their records in the most mysterious. ambiguous way possible. This of course added to the idea that it was a Bleck, or Secret, Art.
The Araba were always interested in sciences, and when, in the seventh century, they invaded

Egypt, they took up at once the science which they found there. In the neat century an Armb alchemist made some real discoveries. He found a mubatance that would disoolve gold and he worked out several very important combinationa. He also advanced the theory that there were certain elements from which all other substances are made, but he believed that there were only two of these primery subatances.
During the Middle Ages alchemy fluurished, especially in Spain, where the Mohammedans from Arabia had nettled and founded achools. Students from these schools returned to their own countries and taught the science there and sometimes kings kept alchemista in their service; for why should not a science be popular which had for its object the making of much gold?
But through working toward this end and constartly experimenting, alchemists gained a fund of knowlerge about many substances in nature which was very useful. And gradually they came to see that this knowledge might be very useful for at least one purpose-the compounding of medicines. Little by little the original object came to be neglected: men learned enough about gold to realize that it could not be made of tin or of rinc, aide enough of other substances to see that they were valuable in themselves, aside from their possible use as a basis for gold.
In this way the science of chemistry began. Of course its progress was slow, but it was steady, until gradually the science came to be what it is today-"the science of the composition of subatances."

Ohomical Momonts. Chemistry divides all substances in the world into two classes: either they are elements or they are compounds. An element is a subatance which cannot be divided
 Sa matrace made ty of cheremt There ase Whel no amount of axpuinuntition no trifeg of procem after procest, has ever suduced to dapler form; and then difity we cell domente. Of coures it may be that comen chemity of the furwe will succued in brouling up some of theoe mbinancers; but untll the in done they rill be convidered clementita
In the tid of the clomentes which followes the Fure oe lotters aftere the mane repremat the eywbol of the ciement, which will bo exphined hater

| Nure | Snmer | Nus | Srueor |
| :---: | :---: | :---: | :---: |
| Aluminium | Al | Molytrenum | Mo |
| Antimoay | Sb | Neodymhum | Nd |
| Arom | A | Neon | Ne |
| Armaio | As | Nickel | N |
| Barlum | Ba | Nitrogen | N |
| Beryllium | Be | Osmium | O |
| Bismath | Bi | Orypea | 0 |
| Borom | $B$ | Palladium | Pd |
| Bromine | Br | Phoephorue | $P$ |
| Cadmium | Cd | Platinum | Pt |
| Caedum | C. | Potamium | $\mathbf{K}$ |
| Cakium | Ca | Praseodymium | ${ }_{\text {Pr }}$ |
| Carton | C | Radium | Ra |
| Cerium | Ce | Rbodium | Rh |
| Chlorine | C | Rubidium | Rb |
| Chromium | Cr | Ruthenium | Ru |
| Cobalt | Co | Sumarium | Sa |
| Columbium | Cb | Scandium | Se |
| Copper | Cu | Seleaium | Se |
| Dyaprovium | Dy | Silicon | 5 |
| Erblum | Es | Silver | As |
| Europium | Eu | Sodium | N8 |
| Fluorine | F | Strontium | Sr |
| Gadolinium | Gd | Sulphur | S |
| Gallium | Ga | Tantalum | Ta |


| Gallium | Ga | Thntalum |
| :--- | :--- | :--- |
| Germanium | Ge | Te |
| Gold | Aurum | Te |


| Helium | $\mathrm{Al}_{\mathrm{He}}$ | Terbium | Tb |
| :---: | :---: | :---: | :---: |
| Hisdrogen | ${ }_{\mathbf{H}}$ |  | T |
| Indium | In | Thorium | Th |
| Iodine | 号 | Tin | Tm |
| Iridium | Ir | Titanium | Ti |
| Iron | Fe | Tungaten | W |
| Krypton | Kr | Uranium | U |
| Lanthanum | La | Vanadium | V |
| Lead | Pb | Xenon | Xe |
| Lithium | L | Ytterbium | Yb |
| Lutecium | Lu | Yturium | $\mathbf{Y}$ |
| Mragnesium | M8 | Zine | 2 n |
| Manganees | Mn | Zircoaium | 2 |
| Mercury | Hg |  |  |

## Crametres

Mon-3. What eas we find out about the coup all mather which exint in chaviats world io made up, in the trat amilyite, of treoscalmbly minute partiche called carne. Wo are net 10 thank of thee alomes es anything which could be seen by the moet pownilul miercecope which might ove be inverted; they are lar 100 sumall for that. And they aro indivielble. Now when a cortuin momber of atome of ove elommet are brought clow to a certaia number of atome of another, various thlinge may happen. The two tinds of atome may dow not the alighted intereat in each other, boch rematining aseily as before; ane alore of ane kind may mise upon one or more atomin of the other aubamace and unite to form a tiay particle of a new subatance; or both Hinde of atomem may wait until some outside force, like dectricity or heat, putes them in mech a condition that they can uaite. It is never hard to harm nameen, even long nameen, if we first have fixed in our minds the fact or thing which the mame describes; and it will not be difficult to remember that atoms which unite with ench other, either unaided or with the help of some outide force, ave elid to hrve a chomical affinity for mech olher. Uniow the atome of two subatances have this chemical affinity, no amount of mixing or heating or fuing vill make of them anything but a mechanical mixture.
In the very implest form of a.chemical compound, one atom of one aubotance combines with one atom of another. But often one atom of one element will sise upon two or three or even four of another; or two atoms of one may unite with three of another.
Some of the eighty or more elements of which we know are gases; some are metals, some are solids other than metals, and one is a liquid. Naturelly we are better acquainted with the solids than we are with the gases, because such things as gold, iron, lead, silver, sulphur and tin we see about us every day, while chlorinc, fluorine and argon must remain bittle more than names to us until we come to the aystematic study of chemistry.
nomo Well- nown Gasos. But there are three guses with the namen of which we are all tolerably familiar, for the reason that two of the moot common things in the world, as well as the most important, are composed of them. Twese three goses without which we could not live are oxygen, nitrogen and hydrogen, and the two compounds without thich we could not
live are air ased water. Now there is a way roll dianumee betrien them two compoundsa diferesce more fundarmantal thana the fact ther acie is a ge and oae a liquid; that m , air i marcly a mocinalical mixtiere of nitrogen and arygu, while water is a cherical compound a oxygun and hydraga. ('In articles on tis, Wion, Oxypu, Hyluogen and Nirogem in Tar New Phecrecal. Requavce Limun will give you mana interexing facts about them two compounds and the clemmatas of which thy ave made up.)
Obemion Byrubla. Chemiote have a my of naming ebemacal compounds which abom at once thatt they are much compounde, and ahoms the elementu of which they are componed. End element has what is callod a gymbol by which it in known-ugually the firat letter of its nemis thus $\mathbf{O}$ atande for oxygen H for hydrogen and N for nitrogen. And when it is deaired io exprem a chemical compound, the letters whid atand for the elements of which it is compooed are written together; thus NO would mean a combination of nitrogen and oxygen. But thit is not enough. We mid above that sometime two atoms of one element combined with one or with three of another element. This alvo man be shown, and for this purpose amall Graum, written to the right of and below the letters, are used. For instance, $\mathrm{H}_{3} \mathrm{O}$ means that tro atoma $\alpha$ hydrogen combine with one atom of oxjgu to form some sort of a compound. In ith case, the compound is water.

Ohomistry an Exportmental \&donce Once we have recally grasped the iden of the combining $\alpha$ atoms and the aystem of the naming of chem. ical compounds, wo have the foundation pripciples of chemistry; all the rest is really variation of the same theme. But these variations ar endless, or so nearly so that we can make now even a beginning of discussing them bere Chemistry is emphatically an experimental acience, and no exhaustive knowledge od it an be gained without the making of experimants. Unlike experiments in phyics, chemical es periments cannot well be performed at home, by an inexperiencer' nerson, is the substuncu dealt with are in many iastances dangerous

## Guostions

How do you sccount for carbonic acid ger being poisonous to the luags but pleassant avi stimulating to the stomach?

What is sodas water? With what is it charged? From the bark of what tree is quinine made?
 ntrat? Whits elvericere? Wha and by whan -if drownedi Wha and by whea wagis
 tund? Whet are to rectof

Nime rane of the remartable and mivable coovile mide by Eir Humpliey Dery.
What is cooce? Where dons if edat? Whea in thedor noticed?
How in eplume unad is exrain countries as an treicant 8 Usder what mame is it comacoly
 and Prom that country it the primolpal apply obtained?
What are some of the moot common food chaltrenate?

How and hoo what 6 guponder ment

Dow German diver cemela any allow in the compeidion?

What $i$ sto dillume botwou guppender ond for fiteo and that mod for blanting and

What io mokolexe pomider?
What is sulphur? Where is 4 focuad? What are the princlpal usen?
 When were matcheo firet unedif How were they
How can you deteet the promences of ammonia and alum in balder powder?
What part of air in axysea? Nitrogen? $D_{0}$ theo grem antes?


Somages fer a Domeatie "Eatomes." Not wry many years ago thome worde would have booked very utrange togecher; so ono meing or hauring them would have underitood what they mesat. The word cienos mae, to mort people, a word rewervad for technical subjects. There was a science of grology, asemore of botany, a slemee of atronomy; but about the domentic life, with the almost infinite number of bis and littlo duties, there was litto or nothing that was recognined as arientilic. Even today, of course, the worde mould mean nothing to thoumands and thoumade of housevives, but gredually the idens which they convey are becoming more and more widely apeead, more and more wiltingly accepted.
Of late years ceientific interest in all things has beem increasing, and as a natural consequence acieatise knowledge has been growing. That "domentic" science came hate if due to the fact that it concerns itself with affairs which are so univerval, so constantly and unobtrusively before our eyes as to seem commonplace. But little by little people came to see that there was, in the running of the usual houschold, an enormous mate of time, of energy, of money. Nothing like an adequate return was being received for the outlay that was made. The result, gradual and atill uncompleted, was the syatematixing of domeatic affairs.
Ohanges fa Eouschold Oceupations. Centuries ago the duties of a housebold were far different from what they are today. The women prepared all the food, cared for the house, spun the garn, made the cloth from which clothing was made, and then in turn made the clothing. The education of a girr conalsted largely if not esclusively of training in such houschold duties. But conditions within and without the home
changed no that all of thin becume rery differme. First, there carme the invention of maching which did much of the work women hed been cocuromed to do; it did mot pay a moman 6 mbor hours and weeks making "homeapme" when factory-made cloth, as good and far ann attrective, could be bought remeonably. In growth of fectories of all kinds contied this rowult further and further; more and more induatrien were taken out of the hamis of tre housewives and transferred to factories. This teadency was areagthened by the growth a ecties; when people lived by themselven, a bor ditunce from a neightor, perhaps, they win dependent in lagge meanure on their own in sources, but when they moved to crowded centere of population they found many thing within their reach which hefore it had bert well-nigh impomible to obtain.
Then, too, the desires and ambitions of woma have changed. They are no longer sativfied io spend every minute of the day drudging a housework, even work which is in itself ver pleanant becoming the mereat drudgery when it muat be performed day after day without recho. tion or recreation. Women have taken ${ }^{\circ}$ other occupations, have discovered how good it is to be out-of-doors, have formed sociction and clube of all sorts; have, in short, builk 4 for themselves a social life which makes demands on time and energy which to our grandmotben would have seemed incredible.

One of the results of these various facts is then many of the old household duties are becoming lost arts The young girl is not trined in domentic affairs in the home; she has no lime and little inclination for such things, and in many instances her mother has no more. Besiden, 234 conditions have changed so that the necessity fre
nal trae alucselon in in appareat. Suppose - Hi cellid en come day to manare e honmo-
 4it What she will live. Everything for the
 tw tere are people whes for a fee, nupply idews - to furntining and decoration of bomes. If elatres can be bought rudy-marle, from in cimpleat shirtmint to the mont daborate malnh pown. Bakemhope and dellewtensen the eupply cooled fooda of all varleties, hot the ovem, is deaired. Why should a girl ped tive In lamaing to do thing which che cocrity have doae tor hee? Ingurinate of Dowestle Elosen. The miniation of the fact that the old bounehold excoptich wonte are being in large mearure adicted has had much to do with the mal with thich whe mee and women have tried to advance thenme domentic science. Por the answer of to gint to whom we referrod in the precoding parpaph to dometic quections is in reality from being the right or the who anawer. These are problems in the housahold which an never be met until the housewifo undermods every detill of the management as troughly as did the old-fashioned housebeper, even if mhe does mot do neariy so large a proportion of the work. It is not necenary Ha i moman ahould go beck to the days of the spiming wheel, and insist on making the eloth from which her winter suit is to be fashioned; bin the should know enough about tabrics to jode wisely of the materials which do go into the suit. The cookine problem differs in a mamure from the problem of textiles and of dolling; for while there are abope where foods of all kinds are prepared, and in many instances well prepared, there are reasons why the habitual patronining of such shops is not a wise policy. In the first place, such prepared foods are by no means always so bealthful; in the second place, they are lar more expensive. In the case of mats, for example, it is extimated that one pays almost double for cooked meats-and then they are emally neither as palatable nor as digestible. It in more true in the case of domestic duties than in almost any other class of industries that a person is fit to have things done for him only whe be knows how to do them himself. A man who owns a shoe tore dees not need to know how the workman operates the machine which cuts out the soles; but a housewife can tell whether things are being done properly and comomically only if she thoroughly understands
ewry procton. If the known the price of the valion evis of cormal bonk, tion lanith of thene It taken to onols them and the commpuent cont of fuel, she as maily tell whether er not ohe in payine an utterfy urromonablo manoturt for conker comed heel.
When we roaling that it is an anablished fact that ninety per eent of the salary fos pald out by the woman of the averugs housenolid for shetter, clothing, foodmuth, etc., we begin to undermind how extremely important it in that the woman who in to oversee this outlay should be ahle to do is intelligently. If a tencher had before ber a chan of ifty boys, and knew that almont all of them wese to bo architects, the would eertainly find bat tanching much modliked by thas fact. With a claw of girls, it is known for a certainty that a axpe proportion will be engerd in some phase of home-making. Is it not of importance, then, that some recognition thould be made of thin fact is their leaching?
Roconadty for Enowlodig of Poodstais. The quection of food is naturally one of the first and mox innportant problems taken up by the student of domestic science, or domestic economy, as it is sometinns called. The points to be covered in the mudy of foorls are manywhy we need lood, what kinds we need, how much we seed, how it should be prepared, what it coets, and so on. Wo need kook no further than our regular newapapers and periodicale to convince ourselves that this subject is becoming a vital and a generally iatereating one. Newrly every newspaper we pick up gives a corner to some phuse of the jroblem-perhap to the question of the healthfuiness of certain foods, jerhaps to economy in the preparation of foods, perhaps merely to recipes. And then, there ase whole magazines devoted to such question as diet and vegetarianism. You may pick up a magazine one day which proves cooclusively that only raw foods should be eaten if the higheat atandard of health is to be maintained; the next day you may read equally convincing articles to the effect that all foods should be thoroughly cooked. These references do not mean that the present brief treatment of the suhject in to be argumentative, is to advance any theory or champion any idea. They are aimply brought forward to prove that the question is a live one. It is not the purpose of the present article to give exhasustive technimal information on foods and toodstuffs; the average housewife does not need such extended acquaintance with the subject. She does need, however, general ino
formation as to the clements required by the body, the foode which can supply those elements, and the combinations of foodsurfs bret calculated to work good reculta. Such information cas be given in a form which is comparatively untechnical, so that the bouservife or student with little or no provious training in acience ran undentand it.
It is true that a large proportion of diseases are trucenble direetly to the stomach, and many of these might be prevented if intelligent caro were exercised. If the housewile underntands this fact, it will help her to realise as moxhing elee cun the necessity for knowledge of focderufis.
What the Sody Ifoeds. A plant grewing in woil which is well suited to it takes up just exactly those substances which it needs to make it grow best. There are certain things it draws in through its roots and leaves and manufactures into food; the other elements of the soil it disregards altogether. In the sume way, there are certain subntances which the body needswithout which it cannot do its best work. But the body cannot always get just what it needs as simply as does the plant. Certain nexesaury elements are not given to it at all, or are given only in inadequate quantities; certain hurfful elements are thrust upon it, or things which in themselves are harmless are given to it in too large quantities.
It stands to reason that the food of the body, taken as a whole, must contrin all the elements which the body contrins. We do not need in a discussion of this sort, to consider these in detail, or even to mention them all. The elements do not exist by themselves, they combine to make up the rarious substances which we use as food; for example, hydrogen and oxygen, two very necessary, elements, are found combined in water.

There are three things which food must doit must furnish materials for replacing worn-out body tissues; it must give energy for work, and it must supply animal heat. Of course, no one kind of food can perform all three of these functions equally well, and that is why we need a mixed diet. That is why, too, certain combinations of food, as, for example, cheese and meat, are not considered good-they provide $t 00$ much of one clement and not enough of some others.

Food-substances in general may be divided into three groups-minerals, substances which contain mitrogen, and those which contain no
nitrogen.

## Domantis telemen

Clivef of the miamel subetances in water. If all realise that weter is exaremely importax, in fect that we could not live without it, but prot ably we do zot appreciate how univeral it is All foodatulfe contain it, ha varying pernextice from ten to ninety-dre, and from two-thinds three-fourths of the body comitss of it. Enry part of the body contains it, even the enamed d the teeth, though of course there the percentipe is very small. Water furnishes no energy, but as a molvent it aida digention, and it has an in portant part to play in the replacing of wors. out tissue by new.
The other minerals needed by the body incuade such things as lime, alk, roda, and iron. Thoud the proportion of such subatances in the bady is small-not more than about five per centthey are absolutely necessary, and it has been proved that if all the other food elements are supplied in proper quantities but these mineal subotancess ara lacking, death is the certrin resuk However, it is not often that one has to plan a supplying these minerals; the ordinary diet cos. tains enough of them to supply all needs, exepx in unusual cases.

The serond class of foods named-thowe com pounds containing nitrogen-is a large and ver important class. The name given to these fooid is proteins, and since the name is becoming quite common we shall make use of it here There are three clasees of proteins, the firs and most essential of which is called allowminoid Albumin exists in the lean part of meat, the white of an egg, the casein of milk (that part which is congulated by acids) and the gluten of wheat. These subatances are absolutely necessary; lif cannot go on without them. All of the time functions which food must perform-the build ing up of tisoue, the supplying of energy, the supplying of heat-these substances perform They do not, however, perform them all in equal degree, and so other foods are necessary. Bu the a!buminoids are more nearly capable of maintaining life unaided than is any other chas of substances.
The second class of proteins, called gelatinaith, is not nearly so necessary, though these substances have certain qualifications which meke them valuable. They are very ensy of digation, and are for that reason often given to invalid and convalescents. The typical example of this form of fondstuffs is gelatin.
The extroctives, the thind class of protime, include the juices obtained by soaking merat in water, at a low temperature-nok much hider

- 100 Pharembeit. The beef tea so much nod for lavalids in made by this process. Pururly it wes believed that there was much marchmant in such beef ten-that it contained al at the strengch of the meat; but it is now trowe that such thinges really supply nothing the the maintennce of the body, and it is not -litedy that people have been atarved to death tilo being fed on suppocedly nutritious beef m.

The third division of food-substances-those compounds which do not contain nitrogen-is divided into two classes, called carbohydrates and hydrocarbons. We use these technical terms aimply because there are no other names to uee in their stend, but it is not necessary that we chould know the chemical compounds of the metonacess. When the term carbohydrates is mod we may understand a class of substances of vegetable origin, of which sugnr and starch are the most important. These compounds funish much of the enargy of the body and some animal heat, but the chicf heet-producers are the other class of this third division - the tydrocarbons. These are the oils and fats of all kinds, whether of vegetable or of animal arigin.
It in important that the food taken into the body should not only contain the right elements but that it ahould contain them in the right proportion. Physicians and chemists have spent much time and thought in figuring out just what this proportion should be. Teots have been mode by having people eat difierent kinds of foods in different proportions, and some interexting facts have been discovered. Of course the results of such tests never could be expected to be sboolutely alike, but the best authorities agree that to keep in good health the average grown person should have each day food which mill provide him with food elements about as follows:
Protein, $1 \%$ ounces; fat, $1 \%$ ounces; carbohydrate, 16 ounces.
This translated into terms of food such as we eat would be about 57 ounces of beef, 17 oumers of butter, 6 ounces of ponatoes, and 19 ounces of bread. Of course such a statement does not mean that we must have every day jurat those articles; if some other kind of meat in wed, which contains more fat, less butter is required; if cheese is used, the quantity of meat my be lessened; the starch-furnishing potatoes my be replaced by other starchy foods, and the brad may include cake or other things which
have largely the mame ingredients as bread. But prectically theme proportions should be mainthined. There are, naturally, many thinges which are not taken into wccount here; nothing is mid, for example, of water, of which any normal diet should contain a goodly quantity.

## ipectal Foods

Wator. Since water is such an extremely important part of our diet, it may well be given very serious attention. As clear, pure water is a good preserver of health, so impure water is one of the greatest breeders of discense. The question can never be "Shall I drink water or not?" -it must always be "What kind of water shall I drink ?" The word pure as generally used is really a relative term; no water is strictly pure except distilled water, and a very, very small proportion of the water used for drinking purposes is distilled.
The water that we use comes from wells, lakes, rivers and springs, and all of it contains, in greater or lese degree, lime and other salts. These, however, unless they are present in unusually large quanti:iss do no harm; the danger in impure water comes largely from the presence of decaying vegetable or animal matter. Such diseases as typhoid fever and diphtherix are often caused by impurities in the water supply, as are various forms of more or less violent intestinal disonders. In the case of those living near wells or springs from which water is secured, the greatest care should be exercised. No refuse of any kind, liquid or dry, should be thrown on the ground near the well or spring, or above it; for almost certainly, if such a thing is done, the impurities sink through the ground and find their way to the source of the water supply. People in towns and cities which have a public water system can of course have no such personal supervision over the source of the water supply; but they can exercise care enough to espure themselves of the purity of the water which is supplied to their homes. The safest way is to have samples of the water analyzed by a chemist, but there are certain simple and fairly satisfactory tests which anyone can make as to the conditions of the water.
The first one is the test with permanganate of Iotash, which may be made as follows:
Partially fill a clean teacup with the water to be tested, and add about sixty drops of weak sulphuric acid. Then pour in a weak solution of permanganate of potash (crystals of this substance can be ohtained at any drug store)
unill the water in the trecup becomen a deep rowe color. II there in harmful organic matter in the water, the beautiful color will soon dis. appear.

A still simplor tect in as follown:. Into a bottio which holds abous two ounces of water drop grapulated avger equal in quantity to a pea. Phace the cork in the bottle, and set the solution in a marm place for forty-eight hours. If the Weter, when the cork is removed, has an unpleneman amell, it in too impure to be salely uned.
As to the methods to be used in purifying water, there are two in common practice. First, there is filtering, the simplest method, though ant the moot matisfectory. For filtering, while it does remove some impurities, is likely to allow nome of them to pass through. The other irethod is boiling. This kills the organic matter and renders the water practicully safe. It has, however, ose drawhack-it leaves the water Alat and incipid; but if the water is poured back and forth from one vesel to another several times, it tukes up again some of the guses which it loeses by the boiling process, and tastes much more like freah water.
The great importance of an uncontaminated It would supply is being universally recognized. It would be a great advance if we had haws prohibiting public drinking cups at public fountains and in stations, office-buildings, department stores, and all places where a large number of people would be likely to use such drinking cups.

Ment. One of the most important as well as one of the moot wonderful foods is milk. In a way, it is a sort of composite of all other foods or of the food-elements contained in them; for it has protein, fats, carbohydrates, salt, and water, in just the right proportion to sustain the young. The most wonderful thing about it is the fict that these proportions differ in thr milk of dififerent animals. The little seals, walruses and whales, which have to live in cold countries, need much fat, the heat-producing element of food. And tests shorr that the milk of the seal and walrus and whale is ten times richer in fat than is cow's milk.
While milk is the perfect food for infancy, it has not enough carbohydrates to be in itself a complete food for adults. It has, however, valuable nutritive qualities, and should be used freely by iteelf and in combination with other foodstuffis. It has been proved that there is as much nourishment in a quart of milk as there is in a quart of oysters, which cost six times as
much. Of courne the nutritive value of a hood is not the only thing to be considered; the fluwor, or tante, is an insportant point. But there ant many times whea bills mighe be cut dom materially, and real beneft be derived from the change, if milk and checes were suhbotitued to meat. Especially is this true in the aummer months.
The greatest care must be taken that ooly pure milk is used, as it is of all foodstuffs the moot rubject to contamination. In the frax place, be very sure that the milk is pure when it comes to you. If the conditions under which the cows are kept are not of the best, if the ching, the people who handle the -mill, and the veseds in which it is kept are not aboolutely clem, there are certain to be impurities in the mill, and these impurities multiply with astonishing rapidity. There are some cities which have on oversight over the milk supply, and demand thas milt have a certain richness, that is, posees a certain proportion of fat, and that it be kept and bottled under sanitary conditions; but there are very few places, where one may depend on such public regulation of the supply. If you live in a small city or town, it will not be dil. ficult to investigate the place from which your milk comes.
After the milk is received into your home, the greatest care is necessary. The vessels in which it is kept should be thoroughly waded, scilded and cooled, and the mills should be kepp, if possible, in a room which is well-ventiluted and cool; an ice-box in which other foods ane kept is not the ideal place in which to keep milk. If you are in the least doubt as to whether or not milk is pure, boil it before you use it.
Sterilization, which consists in keeping milk at the boiling point, $212^{\circ}$. Fahrenheit, for about twenty minutes, kills practically all of the bacterim in milk and renders it safe for use. It also, however. does something clse-it changes the flavor of the milk so that most people do mx care to drink it. Pasteurization, on the other hand, which consists in raising the temperature of the milk to $155^{\circ}$ Fahrenheit, doess not atter the flavor of the milk. It is much to be doubted, however, whether this process really destrons all the harmful bacteric.
Egge. Eggs are in their chemical composition very much like milk, but they sre not so perfer $a$ food, for they lack one important food elemeat -the carthohydrates. However, if eggs are servel with some sturchy food, such as potato or rice or white bread, they form a complte

## Dremeetis Reciveres

nad. At almose all seacomes of the yerr eage ars chraper thas the choice cuts of miont, of wide thay take the phece cacollenty. It io not, buver, as a lood in themenives that eqga are mat important, but as an ingrodicne in ito mameble combinations. Exporiments have dove that cegi are much more curily digented if they are cookiod at a temperature of from $150^{\circ}$ - 180 Pabreaheit, and since this b aleo the popper teapperature for milk, dishes composed minh of milk and cegs, such is cumpands,
came, by the expenditure of a litith thought and cras, suboritutes for mmat, wach as cheese, nuts or exes, can be used; in other caves, the more inexprasive cuts might be used, with no decrense in the nutritive valus, and cometimes oven with an incruese.
At the oution of any sudy on meats there in one important topic which muat be taken upthe molection of ment. By buying gramanteed milk of cape we are fairly sure that we got the bet of thowe subotances which the market aflords; but it is not enough to requen the


A, meak; B-C, chuck tibe and ahoulder-blide; C-D,
that dirloin; F-H, rump; H-I, round; J, leg; K, top of when prime rib; D-E, porterhouee; E-F, courne. if cornstarch is used, it requires a higher tempenature, but it is usually possible to cook the starch before the eggs are added.
Hents. There is no difference of opinion as to the absolute necessaity of water; there is little difierence of opinion as to the value of eggs and milk. But when we come to the subject of meat, opinions do differ. Many people insist that mant is not a fit article for lood, that it does uttual harm; others merely believe that it is sot pecessary. However that may be, it is certain the most of us use meat, and it is equaily cermin that almost aiways ment forms the moot expenive part of the daily food. In many
butcher to send meat that is fresh and not tough. Meat, more than any other article of food, should be selected by the housewife; only thea can she be surc that she secures what she wants. A little study will acquaint her with the different cuts, and with the comparative values of them as foodstuffs. Almost any butcher will be glad, at an hour when he is not too busy, to help a customer in acquiring the knowledge she neerls, for intelligence in buying will make his work easier. We give here an illustration which shows the location of the various cuts of beef, it is impoosible to give such diagrams of all the animals whose flesh is unod

## Drmenth frianeo <br> on food, but they are all buit much on the mex plan.

The firct thing to comidne in brying mant is the color and grin-pood or poer manter may uounlly be diatiaguitiod in that was. Good bot in flrm, facgruloed, of a purpilh rod whan firt cut, but changing very quichly aher expoums to sir to a bright sud. The fas chould be of a Hfhe ctanw color, the goet frin white and crumbly. If the lean is dark colored, course and fabby and the lat dart zellow, if in curtain that the beet is of poor quality. Veal, at its best, in tnegrined, teoder and elmont white; the fat is frm and white. If the floch is sabby and has a bluish tinge it should never be eatem, as it is aboolutely unhealthful. In mutton, the bones should be amall, the meat fine-grained, rich red and juicy, and the fat white and frm. There should be plenty of fat, as a lean animal does not yield pood mont. Spring lamb is from six weelas to about six months old. The lean of the meat ahould be pink, the fat delicate and white. Presh pork, above all other meats, if used at all abould be of good quality, for pork which comes from animals in poor condition is very harmful. It is abooiutely neceasary that pork should be thoroughly cooked; there is no part of it that may be left "rare," as is done with steala and lamb chops.

The meat from different parts of the animal varies in several ways; some of it is tough, nome tender; some is dry, some juicy; some has much flavor, some is comparatively tasteless. These differences determine largely the vaes to which the various parts are put.
The loin of beef ( $D$ to $\mathbb{P}$ in the figure) is considered the choicest part, and is therefore the mont expensive. It is used for romsts or steaks. giving porterhouse, sirfoin and short steaks, The prime ribs, as they are called (C-D in the figure), are uned for roasting. It in poor economy to buy one rib, even though the family is small; two will give much better results, and the "leftover'' may be utilized in many ways.

The ment from the top of the round is often used for steals, and while it is not always very tender, it has a good fiavor. It is fine, also, for pot-pies or for boiling; since it has little bone and almost no fat, there is little wast. The rump is sometimes, from a prime animal, excellent for a ronst, as are the riby from B to C . Unless, however, the ment is tender, it is better uned for braising or for pot-ronsting The flank and the leg are maed for stewing or for making
soup.

## Erolling

 coted, we do mot minw mant il ensily onder to make th more appetising in farror an zuore altractive in eppearance. we cook it, and the cooking may be done in various magh Primitive men, of courre, had no way of cooking thair mand ercept belore or over an open fir, and we have kept their method in the simplew of our ways of cooking-that is, broiling. TH method is ueed in cooking tender cuts of mex, auch as steak, chope and cutlets, and for some kinds of foh. The hent at first should be interes, so that the surfice may be quickly seared. h this way the juices are prevented from escuping. After the conting is formed on the outside, the beat should be lemened. To cook a stak a chop about one inch thick to medium rarenem, keep it cloce to the fire for about two minuta thea draw it a little distance away. It should be turned often.Doastins. Ronsting was originally proctcally the ame as broiling, the only difference being in the thickneas of the piece of meat to be cooked. However, such constant attention and meh frequent turning were necessary that the old open-fire method of roasting was given w; what we call roasting today is practically baking The same principle holds as in broiling-the heat should be great at the outset, then decreasd A temperature of $350^{\circ}$ Fahrenheit is none 100 great for the first half-hour or thereabouts, onti the ment is browned on all sides. The hat should then be checked, a temperature of some where near 200 being sufficieat for the remainda of the time. Roasting meat should be bastad frequently with the drippings in the pan, as thi makes the ment juicy.

Dolling. Meat to be boiled should be, lise that to be broiled or roasted. subjected to sever heat at firrot, that the juices may be kept in. It should be put into boiling water and boild rapidly for fifteen or twenty minutes; then the heat should be lessened until the water bard immers. When a bubble of air rises from the bottom of the pan every few seconds, the tum perature is about right. All boiled or stewad ments are far more tender, juicy and nutritions if cooked in this way than they are if boikd rapidly. It takes, however, a longer time m cook them done. A fairly good-sized piece d frech beef must cook for about five hours to be well done; a ham of about ten pounds, of I piece of comed beef, unless it is very thin, wil take about the sume time. The "fireless cooke"

in $h$
in $b$ applii botio
The
muste
than
mat
suitab
rable
for the
used o
808

## Domentic Iteloneo

in very matidactory in boiling or atewing meats juis for the remom that it keepm them for hours as a simmering point. The meat is boiled for thean or twenty minutes. then the kettle is coved clowely and placed in a box which is filied with hay, or some other non-conductor of mat. The box is then made as nearly air-tight a pomible, and the water remains hot enough - cook meat for several hours.
shewing is practically the same as boiling exept that it is done in less water, and that the mat is usually cut up into smaller pieces. The tenperature must be kept considerably below the boiling point. In braising and fricasseeing and pot-ronsting the meats are first browned in bot fat and then stewed slowly.
Pymug. Properly speaking, frying is boiling in bot fit, but the name is more commonly applied to the process of cooking in a pan, the bottom of which has been covered with fat. The former method is the better, as it is not so mulful of the fat, which may be used more than once, and as it preserves the juices of the mat or fish better. The temperature of fat suitable for frying ranges from $300^{\circ}$ to $400^{\circ} \mathrm{Fah}$ rabeit. Frying is the least healthful method lor the preparation of food, and should not be used often.
Sonp-Maling. As in ronsting or boiling the object is to keep the juices in the meat, in soupmaking the object is to draw them out. Consquently the meat is cut into small pieces and put into cold water, which is then gradually brought to a temperature near the boiling
point
Itarchy Toods. Starchy foods include various things besides starch, but the starch is the important principle in their makeup. All regetables do not contain starch-for example, curols, onions, turnips and tomatces; but many dour important vegetables, as potatoes, beans and peas, are largely composed of it. The cerals, too, are starchy foods.
In cooking milk, eggs and meat we have seen that the most satisfactory method is to keep them thoroughout at a temperature well below the boiling point. With vegetables no such cuution is necessary; in fact, most vegetables are better if cooked at a temperature above the boiling point, and all vegetables should be thoroughly cooked, though not overdone. Some vegerabies, as potatoes and squash, have watcr enough in their composition to cook themselves and may accordingi's be baked, or boiled in just enough witer to cover them. In boiling meats,
it is better to have the cover pushed a little aside, that the air may escape; but vegetables are better cooked with a tight cover to the kettle. There are certain kinds of vegetables such as lettuce, radishes, cross and celery, which are uevelly eaten saw. This is not only because they tasto better in this state, but because they are more casily digested. In eating rav foods of any kind, it is always very necesmary to be vure that they are clean and fresh.
Nutritive value is not the only thing to be considered in the selection of a dietary. Some foods, eapecially certain fruits and salads, contain little nutrition but are of the utmost importance because of their effect on the digestive process. They bring about certain reactions which are very helpful. Fruit and salads should form an important item in the diet of every normal person.
The grains, wheat, rye, corn, barley, onts, which are from six- to seven-tenths starch, are chiefly used in two ways-us cereals and in doughs. Doughs include any mixture of flour of any sort with milk or water, no matter what the proportions or what the other ingredients may be. As in the case of starchy vegetables, it is necessary that all cereals and all doughs be thoroughly cooked, as underdone starch is very indigestible. Many housewives dry out their bread in the oven after it has been cut, $\varepsilon$ - id it is certain that some people can eat such twice-ouked bread who cannot with comfort eat fresh, soft breads.
It is hoped that enough has been anid to show in what a proper diet should consist. To sum up: the weight of authority seems to decide that a mixed diet is best-that vegetables and other starchy foods, fat in moderation, sugars, lean meat should all be used. The methods of combination are also important. As has been pointed out above. meat should not be served with eggs or with cheese-they supply more than is necessary of the same element. Starciny foods should, on the other hand, always be served with eggs, for eggs lack the starch elements. Watery vegetables and fruits should not be used together to make up a meal, as the combination is likely to cause fermentation.

## Sanitation and Ventilation

There are no more important questions connected with the home than those of sanitation and ventilation. If people always built their own houses, a wise supervision at the time of construction could settle many problems once and for all. By far the larger proportion of

## Dremate acromeo

 thet have brow built by otbere, and in thowe cume the mont that cas be done in to axmeleogrot carre in the molection of a location and to remady co fer as pomible ardiving delecta.

Dratiago. The draimapo is an extronely important point. Scagemat water abould aover be allowed to remain amar a hooms, as it brende all manner of divences, and show, moreovers, a difective drainage syevern. If a bouse stands by thect, in a meigtbortood where there in no comage sytem, it is aboolutely necemany. II the inmbitnats ase to keep well, thet drain pipeer be provided to curry wate water from the premises. The cuatom of throwing the water out sear the bouse in ass unennitary as it in unaightly. Such a drain chould empty an far as posibib from the house-three hundred feet is a good minimum diannce; ond if pomible the opening ahould be lower than the howe. If a break of any kind in allowed to exirt in druinage pipes for any length of time, much harm can be done by the injurious eewes ges
Fiambing. Plumbing is a subject which is clovely related to drainage. In communition Where there is a public sewafe syaters, the owners of houmes have little to do directly with the druinage, but every familly should under thand the plumbing in its own house well esourch to be sure that it is kept in proper order. A afo rule is that plumbing should be "open," that is, not boxed up, so that defects may be found easly; and that it should be as simple as poocible. A plumber tho is called in at any time to moke repairs will sladly explain the simpler pointan of the syotem, so thatemall faulto my be dumeted and corrected.
weter tapply. This is a point which ahould be recond to $\mathrm{F}=\mathrm{y}$ in the aclection of a location for a hoeme. The topic has, however, been fully discusped under the subject of food, and need ooly be enpinaised here. The fect that there 6 a public syatem which supplices water to bundreds or thoumnds of homes does not necesmrily mean that the water in alvays afe. Usually, however, the public is kept informed by the boand of health as to the condition of the water supply so that proper precautions may be thiken. In the country, where people depend on springs or wells, great care is necemary, expecially in the care of the former. The ground near the upring abould be guarded so that surface water cannot get in, and under no circumstances should waste of any sort be thrown near the spring. Wells should be lined to the

## Demanit felemce

botiom with crment, that surface matron sot moak in frome the sida, and should bo deep as pomible. If there ane inequalities in the groued, the moll or apriag should never 1 es lowres thea the bare or cutbuildingn.
Geanilisem. Dusk and dirt are not mady undighly; they are harmful, as well. We lon all stood in a dartened room to which oaly man sunbean had entrunce and watched the dom particles daces in the streak of light. It in hand cometimon, for us to believe that the light ty not some attraction for the duat-it meem in pomible that ell the air is as full of duas on th streak in which we can eee it. But we maly know that auch is the cave. Dust contion particles of matter from the body and the broud, and cannor fail to injure thone by whom it in breathod. Even what wo call "clean dra" bas a very irritating effect on the lining of is nose and throat, and the so-called "dust catum" is common. It stands to reation that litike is scommplished by dusting with a dry chol. The duat in merely stisred up, transferred fro the furatture to the air. A dampened or cill cloth ahould be used, or a damp chamois tivi; and the dust should be gathered up instend being bruahod off. The inexpensive vacur clonners have dose much to aid in gotting it $\alpha$ the injurious duat.
Incoets. OR late years we undervatul more clearly what a great amount of han comes from the insect peats which are so troulth come to almoot every housckeeper. Belbyp have always been detested, and roaches hin been treated as real enemies to the bouschilt the common fly has always been lowited upon simply as a nuisance but not particulht ass a menace. It is likely, however, that mex injury is done by files in the household then ly any other insect, because they are 30 much man numerous and because housekeepers who wall not tolente ronches or bugs of any sort prop with fliee. When we consider where fies pad much of their time, about the refuse heape and garbage cans and stables where their eqza leid, it is clear that they must carry about u thair feet much filth. In the house they rifit a cmanty on any food that is left about ocovered, thus leaving the germs where they we cerrain to be taken into the stomach. TM typhoid fever is spread by flies is not a prout fact, but it is poritive that some disences are 1 , carried. It in not an eany matter to ge ind flies, but it can be done. Every opening ind
bo exurcied what the ee Whenever a Ay it man thllod
Monquilcos, too, ave ko cimes, notably yellow for mox in quite 50 much dana trom tiee, for mooquitoen mobody is likely to allow bouse if it is at all avoidal that the time will come will be as much amhamed wes seen about the house buge or cockronches.
Voatilotlon. This is mexiving so much attentio regrow almout tired of it, mon would ceuse. Deapi molise, to a certain exten in doubtuul whether many given the subject definite at mand how serious it is. $V$ with the general knowledge freb air to keep in good bu further into the question. thes the moot of us do not air through the greater part
Toa much cannot be mic the need for fresh air dur It is believed now by mout ideal way is to aleep out-ofmost severe weather; some p winter, taking care, of cours and bedding which is as lig manc, for there is no merit geting cold at night. If we dodoors, the next best thin sepeping room as near lik ponible. There are people wather have their bedrooms a few inches, held 50 , perhu calch; but if windows are to little, it is almost nefer to have mer than in the winter. For house has been closed during
air has been vitiated by the I by the breath and bodily imp who are much more likely house in the winter than in the me rule to make that a bedroo almost almays be wide open; a times when a high wind or a
impowible. A bed should not imponible. A bed ahould not
dineelly in a drught, though ac from allowing a breeze to blow But when we hare made out

tioas as nearly ldoul as pomible we bave dose by no mease all, for wo cpead but about a thind of ous time in cloep. In some cardully built moders homes there are devices which provide for weatilatioa mochavically; bus uniain thowe is auch a syatem which bringa air into the bouse. there is no way to ger from ais execept to open doors and windown. Even in the coldese weather the house should be thoroughly aired at least once a day, and there chould be some opening which constantly allows air to come into the bouse.
The lated authorities declare that it is not enough to have outaide air admitted-that that provides ouly one element. The other element needed is moisture. You have noticed that when you go into a hot, dry room your eges amart and burn. This is because the dry air, constantly seeking to become lem dry, takes up the moisture which protects your eyeballs. It does the mme to the lining of the nove and mouth. Now the moisture exiots in thowe membrance for protective rencons, and harm is certain to come from its drying up. These authorities plead for moisture in the air. Keep water on the stove at a boiling point, they advise, and colds and catarrh will certainly be lessened. Then, too, when the air is kept full of moisture, the temp penature may be lower than when the air is dry without causing discomfort. A room kept at $00^{\circ}$ Fahrenbeit would ordinarily be considered too cold; but when the air is moist, $60^{\circ}$ in quite comfortable. There is an instrument called the hygrometer which mensures and records the amount of moisture which is present in the air. The questions of eewing in its various branches and of the care of the bouse demand detailed treatment and cannot be taken up here. The outline which follows shows the various departments of the subject of Domestic Science, with their subdivisions:

## I. Foods

## 1. Clasaification

(a) Nitrogenous-Proteins
(1) Albuminoids
(a) White of eggs
(b) Blood serum
(c) Lean meat
(d) Cascin of mill
(e) Gluten
(2) Geletinoids
(3) Extructives
(b) Non-nitrogenous
(1) Fats
(2) Carbohydrates


(a) Stareh
(b) Snear
(e) Voynable soide
(c) Minent
(1) Water
(2) Saltas and scidh
2. Pood Valves
(a) Hent production
(b) Nutrition
2. Marketing
4. Cooking
(a) Purposes
(1) To change food so that it be comes more digertible
(2) To make food more appecizing
(3) To free food from orgenic impurities
(b) Mechods of applying heat
(1) Radiation
(2) Coarection
(3) Conduction
(c) Special foods
(i) Milk
(a) Production of butter and cheese
(b) Changes producel by cwoking
(2) Egsa
(3) Ments
(a) Relative values of differsas cuts
(b) Methods of cooking
(1) Broiling
(2) Ronating
(3) Frying
(4) Boiling
(5) Baking
(4) Starchy foods
(a) Vegetablea
(1) Propers methode of cooking
(b) Grains
(1) Cereals
(2) Doughs
(5) Drinks
II. Clothiva

1. Materials
(a) Sources
(1) Cotton
(2) Wool
(3) Flax
(4) Sill
(b) Methods of preparing
(1) Spinning
(2) Weaving

## Drmestis Paloses

(3) Dyane
(4) Printing
(c) Adaptability to dianing perpom
2. Making
(a) Cuting and fitting
(1) Malime patmerne
(b) Hand cowing
(1) Gathering
(2) Hemming
(8) Orementing
(4) Malding buttonatoles
(c) Machine cewing
(d) Embroidery and fancy atiches
3. Paiching and darning
III. Hoviraold Ecovomics

1. Sanitation
(a) Drinage
(b) Water supply
(c) Plumbing
(d) Warming and veatiating
(e) Cleunlinem
(1) Freedom from duat
(2) Freedom from insects
2. Purnishing
(a) Decontions
(1) Color schemme
(2) Materials
(b) Ornaments
(c) Articles of furniturs
3. Care of the house
(a) Cave of floore
(b) Dusting
(c) Dish-washing
(d) Bed-making
IV. Cane of Pemson
4. Care of clothing
5. Bathing
6. Cave of teeth, nail, hair.

## Guostions

What is the meaning of the word domente?
What advantage came to housewives whea no longer obliged to make "homespura" cloths for family clothing?

Does the fact that women today take more time for recreation than formerly necemandy indicate that any houschold duties are aty lected?

Is it economical for the average family of patronize bakeshops and delicatessen stores? What has occasioned the popular demand loe these institutions?

In your opinion does the household conducted according to the teachings of domestic semen find its expense is increased beyond the sum

To whint mos.
how
Nex ano
wapply tol
lis chamito
Can one
the nations
mpert to ch
What min
He? Dow
intormin $h$
How woul
food ereatual
Leme the
alin of food
Wint pr
alluminoido?
Is edifee a ceaider la a
How cmn
mater is nomi
Is the hava dinking cupa
Exphin can
lood If not

## Duneritlo Pcleace

sulat privius to the fatroduction of scientific ninithy?
To wint extuat chould the houmkeeper unienand tow the butcher euts up a bed?
Mot ane be cpecially prolicieat is chemistry wapply to boe dally bill of fare the rulen seepect. ha chemictry of food?
Can lan from a non-acientific rolume th various decirable comblnations of food, with noper to chemical needs?
What mineml aubrance is most evential to Yel Dos thin zimenal cupply coengy? What is for mina function?
How woald the entise absence of ali from lood eveatually affeet the body?
Lava the meaning of allouminoids, then make - Lit of foode containing albumin.

What proportion of food should be Alouminoide?
I confee a food? In what respecta do you conlder it a usciul beverage?
How can you determine whether your well mater is sominally pure?
If the haw a proper one which banisher public driaking cupa?
Exphats carefuliy why mill is an excelient food Unot a pertect article of lood, what does

## Domeetle Eclame

it lack I In aying that an article is a perfect food what do you underctasd by the atatemeni?
What chemical changee oceur ta boiling a potato?
Is an es hard-boiled of aoft-bolled more cually digmited?

What should be the appearance of a milis factory cut of beef-ateak?

What is a firelem moker? Upon what pribciple in it convtructed? Can one be prepared at home at little expense?
Do you know of any regetables which, caten raw, are canily digented?
Scientifically stated, why is too much aweet food injurioun?
Is it heaithful to sieep in a very cold room?
How many cubic feet of impure air are ex. pelled per minute by the luaga?

Why is the rrevum cleaner enpecially mitary?
How do flies carry contagion? Is there much danger of disence from this source?

Is it ponable for a community practicaily to rid itself of flies? Have you ever read of a place where it has been accomplished?

Where there are many flies would you also expect to find many monquitoes? Do the mame causes produce both?



## InteDOUETOL E) THis mpros

Tho Byotom Tangite in This Sook. The exencises here givea were prepared by Profeseor D. R. Augeburs, author of Aughenerg's Droving. Alter malay years of experience as as teacher and cupervior of drawing, Profemor Augiburg has solved the difiscult problem of prowenting thin subject ayatematically and upon a meientific basia. The arecem of his work is such that within the few years since the publication of his books they havo found thatr way into the public achools throughout the United States and also in come forelga countrices. Wherever used they have been productive of excelient remults. In these exercioes Profemor Augaburg given the principles underlying his gystem of draving, and show the method of their application. The exencisen are phia, imple and arranged in logical order. The directions are so complete that anyone can follow them, and any pernon who will practice these exercises as directed will leam to draw and thereby add to his other powers of expresion that of pencil and brush.
Draving a Matural Mode of Exprosedon. Draving io a mode of expression. It is as natural to the child as writing and is used by him long before he learns to write, and in many instances even before he leams to talk. Experienced teachers of drawing claim that were draving taught with as much care and persistence as langunge in the primary grades of the public schools, the children would go from these grades as proficient in one mode of expression as in the other.

The practical value of ability to draw even simple objects is almost beyond extiriate, let ove's occupation be what it may; while to those
engeped in the occupations of carpenter, bedroth smith or drese maker, and in other commen occupations requiring mechanical akill, a knowh edge of draving in indispensable. Notwithenent ing this, how few can draw even the siaplan deiguse The common expremion, "I mat draw a straight line," is in mont cuses more mal than imaginary.
Importacee of Drewitag. Whower gose ind life without knowing how to draw is handicappl| in his ability to express himeell. Ability dman alov enables one to make plain many the which cannot be exphined by words alone, 4 the description of a machine or the plan of house Moreover, a knowledge of dinites gives one a knowledge of form and sixe whid enables him to judge machinem, tools, bow and other structures more aceurately thes is pomible without such knowledge; it gives th an insight into the benuties of form and structan in the various objects of meture-as mokn, flowers, insects, binde and animals, and this mos. tributes much to his enjoyment of the wotud creation. Froin any point of view, the man a woman who can draw has great advantage owr one who cannot.
Considering the impertance of drawing, $r$ often wonder why so few people are able to dar even the aimpleat objects, and when we compure the results derived from teaching drawing in the public schools with results from teaching abre branches, we find the comparison anything bur encouraging. Doubtless the chief reason for ite failure to secure good results in draving lies in the fact that drawing has not been, and in geenal is not yet, taught as systematicaily as are the other branches in the course of study. This don not mean that regular lesoons in drawing how

0xivis
cas be taridt by all tuectros and lananed by proctically all pupill, and cherias the proeen of raching and lewning, the ectivile clernate are mone or lue aboorbed.
 fundamemial clemate of free-hand drawing ase: Papition, or the placing of objects Dination, or the surfece of objectes, Porm, or the chape of objects, and Proportion, or the tise of objects. Thee clements are mechanical and can be taught by all tenchers and laaraed by practically all pupils. They are to drawiag aromentinta addition, subtruction, multiplication and division are to numbers. Through them the fuadamental procemes of drawing are taught and learsed.
To thew may be added the eathetic clemeat. which in drawing is called the artiotic or charseter clomento 13 ha clemant is gained hagoly through

F10. 1

Thes three modiuma, of studies, are fup damental in character and largely mechanical in coastruction. The elements are taught and harned more or lem mechanically, and are the bais of all other branches
The esthetic element is common to all of these modiums, in language as poetry, in number ae shythr and in drawing as the artistic. Music is the esthetic element of sound.
The mechanical elements of the above studies
aboorption. The artistic cannot be taught in the direct manner of the mechanlcal elementa, but is gained more alowly as the principle and the mechanical processes are learned. As the fundamental elements or processes are taught, the esthetic element is absorbed to a greater or less degree, according to the temperament of the pupils.

Podtton. Position tells how to place objects in the picture or drawing. From the firct,



APPLIED MMEE Inc
1053 Eest Moin Street
Pochoeler, Now York 14605
USA
(116) 4a2-0300 - Phone
(710) 280 - 500 - Fer

Drawing
position deals with one object or a part of an object in relation to other objects．If two apples or three balls are drawn，each must have its place；and in advancing to higher levels，it is groups of objects and things，groups of animals． groups of boys and girls，forms of hills，dales． plains and trees，which must have their position
away the object，the higher it rests in the picture； the nearer the object，the lower it rests in the picture． position has four principal directions from a given point．To the right，to the left，farther，

It will be seen from the above that the element and nearer than the apple，or any given point． At the left．nearer，farther，and at the right： in the picture．Position includes perspective and composition．Position shows how to put objects in a definite place；peropective，how to place them different distances away，and composition， how to arrange them in a pleasing group．In Fig． 1 each part of the head，eye，nose，mouth， chin，ear and hair has its place．If one wishes to learn how to draw the human head，the first lesson would deal with the placing of each part．
$\beth$
The best objects with which to learn placing are apples and balls．The apple is the center， and the balls are to be placed right．left．farther and nearer，following definite exercises．

Work out such exercises as these：Draw an apple．Place one ball at the right and tro farther away．Draw an apple．Place one bill at the left，three farther away and one newra． Work out about twelve exencises of this nature．


Genizral Principles．In Fig． 2 there are five belle and one apple．Ball $F$ is at the right of the eye．Balls $A$ and $B$ are at the left of the apple．The apple and balls A，B and $F$ are the same distance away（back）．Therefore：Objects on the same horizontal line are the same distance away．Ball E is farther away than the apple； ball $C$ is nearer than the apple．The farther

Use models．Progress is more rapid with models than without．Round objects，such as apples，balls or oranges，may be used．The ue of the model is to verify what you learn in the drawing．You need not draw from the modeh， but use the models to verify or prove your drawing．
After some power is gained in placing the balls

## Drawing

and apples, then other objects may be used, as, for example, the deer and trees in Fig. 3. Here the deer takes the place of the apple as a center. and the trees are placed right, left, farther and nearer.
Croquet balls and a stake, one black marble

The method gives perfect perspective, and by using it one learns perspective to the extent that objects near and far awry can be represented with case and with a fair degree of accuracy. The process is as follows.
Draw a light horizontal line, as in Fig. 4.

These represent balls of the same size if they. Touch this line.

and a number of lighter ones. a tree trunk and apples, pears or other fruit, all make excellent models with which to learn placing.
Perspective. Perspective is a branch of Posilion, and tells about representing objects differment distances away.

This line represents the level of the eye and is called the horizon line.

Draw balls of various size, making the upper edge of the balls touch the horizon line. Then it makes no difference how large or how small the balls may be drawn; they are in perfect


The simplest way of teaching and learning perspective is arbitrarily to represent the top or a definite part of the object as being level with the eye. This level of the eye is indicated by a light horizontal line, as shown in Figs. 4 and 5 .
perspective. The line under the ball indicates the surface of the ground and marks the position of the ball. The balls are in reality the same size, the farther ones being drawn smaller because farther away.

One heary lines for the neaser balls and lighter liner for thowe farther avay.
Make the neareat bell about ose inch in diametre on paper, and on the blackboard about five thiches in diameter.

Use balls when atudying a principle. Why? Because balle are casy to seprewent, and have so litte perronality that the attention is not attracted to them sufficiently to love sight of the more important element, principle. But the mome principle in applicable to other objects in the

## Drawly

In B, the ferthest house has a tree et the inde of it and ase farther awny. Objects may bo placed at the right, Melt, farthos and nearer than a given object, the mme as in phaing.
To learn perspective one may draw such os excises as the following: Draw six balls raion distances awny. Draw five trees various dim tances away. Draw four houses various distancuas away. Work such exercisees as these until you have acquired the akill necessary to represan


PERSPECTIVE - Place the roots and lree tops above the horizon line, and the tree Trunks and main part of the
houses, below.
same manner as to the balls. In Fig. 5 are wigwams. By placing the top of each even with the horizontal line, perfect perspective is repl ented.
When drawing tall objects, like trees and houses, part may be placed above the horizon line and part below. In A, Fig. 6, the tops or foliage part of the trees are drawn above the line and the trunks below. The trunks are of the ame length. In $\mathbf{B}$, the main or rectangular part of the housea are drawn below the horizon line, and the roof or triangular part above the line.

Of course, using the horizon line js a mena d learning perspective; in nature objects are not cut by the horizon line like this, but attr jou have learmed how, then the irregularity d nature may be taken into consideration.
Oomponithon. Composition is the arrangemeat of objects in a pleasing group. The most simphe, pleasing arrangement is triangular. In A, Fig. 7 , is a triangle and below it are three balls, one oo each angle of the triangle, and still lower down; in G, are the trunks of three trees arranged ii the same manner. In like manner, $B, C, D, B$ and $F$ show the different arrangement of trianglu;

## Draving

## Drawicg

mis each triangle are the balls grouped in the anm manere, and below these in a comporition indrating the group. Thus, group H cos mepoends io $\mathrm{B} ; \mathrm{I}$, to $\mathrm{C} ; \mathrm{J}$, to $\mathrm{D} ; \mathrm{K}$, to E ; and L, to F .
Grouping may be learmed by composing much evercices as these: Make a group of trees based oa tringle A , triangle B , triangle C , and so on.

## Direction, or the Surinee of Objectes

Disoction. Direction tells about the surface of objects and the various lines that indicate surface.
and are indicated by the vertical, horisontal and oblique straight and curved linea.
In A, Fig. 8, the trees reax on a horisontal surthee indicated by the horisontal lines; aloo in $F$ the horizontal horizoo line suggents the be rivontal surface of the water. In B the single tree reats on an oblinue surface muggented by the oblique line of the alope. In E the vertical lines of the eliff suggest their vertical surface. C represents an outwand curved surface and $\mathbf{D}$ an invard curved surface. The representation of surfaces may be learned through such exercises as there: Draw an apple resting on a horisoatal surfice:


COMPOSITION - A simple grouping of three objects.

Direction also indicates act growth as seen in growing plents; the action of inamimate form as seen in the movements of animals, and the action of rhythm as seen in grecful movements.
Direction is indicated by lines. It is the office $d$ a line to show direction. A vertical line indiantes a vertical direction or surface; a horisontal line, a horisontal direction or surface; an oblique line, an oblique direction or surface, and a curred line, a curved direction or surface.
The principal directions that lines may take are, therefore, vertical, horizontal and oblique,
on an oblique surface; on an outward curved surface; on an inward curved surface. In like manner represent other objects on the various surfaces, such as trees, wigwams, poots, balls and houses.
Lines. In Fig. 10 are shown the lines used in drawing. Of the above lines, the first group, the unaccented lines, are learned first. These should be learned before the cocented group is taught at all. In general, use the heavy lines in the placing of objects, and the light and medium lines in perspertive.

The graded line is the most important line unod

in drawing. It is the most rapid, the most serviceable, and the most pleasing of all the lines. This line should be learned, however long it may take, or however great the exertion put forth in learning it. Learn to draw it from light to heary, or from heavy to light, at pleasurc.
In Fig. 11 are examples of the graded line which show how much may be accomplished at cack stroke. Observe that the stems are made with a single stroke, and that the joints are represented by a space. Practice these lines until learned.
The emphasized line is a line accented by drawing one or more lines parallel and close to it, in such a manner that the general effect is that of one line or direction. Important lines and round surfaces should be emphasized.
The broken line is to indicate a hroken surface, such as the roughness of ground, the irregularity of grass, the broken appearauce of stune, or the bark on tree trunks. Both the broken and emphasized lines misy be and usually are graded.
All that is truly great comes to us by slow degrees. It is the same in acquiring these lines. There is the least character in the unaccented lines, and the most in the accented, hence these latter are more gradually acquired, and of these the broken line seems to be the last one to be

The different lines should be learned so wel that they can be used at any time and in an almost antomatic manner. Lines are the wond of the dra wing language. If they are not leamed, they cannot be used, or if learned impericely, their use will be labored and imperfect. Larn these lines, and learn them now.
T'he birds' nests in Fig. 12 are examples of the broken line. The broken line is learned largdy through the copy.
Action Drawing. Action is that part $\alpha$ direction that relates to motion. In a genend way direction implies motion, and motion in drawing is largely indicated by lines
Lines not only express action, but each line has a leading expression of its own that is d vital and far reaching use in action drawing. These expressions are as follows:
Vertical lines are the "still" lines. The express stillness, but when in motion they express vertical motion, as seen in falling water, rain and snow.
Horizontal lines are the "sleep" lines, and suggest repose; but when in motion they express horizontal motion, as ripples in still water.
Oblique lines are the "go" lines, and express movement more than any other kind of line.
Curved lines are the "grace" lines. They express graceful movement and harmonious action.


Parallel lines are the "order" lines. They eppress order. When the hair is combed, the lines are made parallel. Parallel lines when in motion express uniform motion.
Angular lines nre "discord" lines. They are the lines of disorder and express violent action, as in explosion; awkward action, as in clumsy movement; and disorder, as in untidy hair.
Mothod of Teaching Action. Action is tuyght through the copy. It is practically impossible for the average draughtsman to learn action through the olject that expresses the action. There is not a movement of an object, or animal, so slow that it can be grasped by a leamer to the extent that he can transfer it to paper; hence, first efforts, at least, in the learning of action should lie from the copy. An excellent plan is as follows:
First: Learn how to express the action from the copy ; that is, learn the mechanical processthe lines that represent action and the method of using them.
Serond: Use the action thus learned in memory and imaginative work until the action can be represented with some degree of facility.
Thind: Use direct observation to verify, correct and perfect the action until it can be represented with both facility and accuracy. These
three steps are not widely seperate, but may occur in the same lesson.
For example, we will choose the action of running. There are many phases of running, but periaps that represented in A, Fig. 14, is as simple as can be made. Learn this action by carefully copying A, and then for practice, draw an Indian boy running, $\mathbf{B}$; then a Chinese boy, C: a sailor boy, D; and a soldier boy, E.
Then take another phase of running, as shown in $\mathbf{F}$. In this phase the knee joint is represented by a space. A spase can represent an idea as well as a line. 'I'o learn this, first carefully copy the action; then represent a summer boy. F , running; then a winter boy, $G$; then a colonial hoy, $H$, and so on until the action is learned.
Action is impersonal, that is, it is not a part of the object that expresses the action. Character belongs to the object, to the individual; character and action we often think are one and the same. The action or running is common to all animals alike, but the character of the run belongs to the individual. For example, the running of a turkey, a goose, a hen, a dog, a cat, and a squirrel are in principle the same, but the character of the run is so different that we recognize each one at a glance.
In Fig. 15, A represents the action of running; in $C$ it is applied to an ostrich. in $D$ to a goose,

Denwing
UNAccented Lines
lighl:
in $\mathbf{E}$ to a hen. Then, by taking the two hand legs as one, and the two fore legs as one, the same action is applied to a deer, a horse, a pig and a dog.
Broadly spenking, there are five great groups of action, under which nearly all phases of action may ke puaced. They are the running group, the walking group, the standing group, the sitting group and the reclining group. For example,
dancing and jumping would be classed under tie running group.
In the running and walking groups, the "ga" or oblique, lines predominate; in the standing group, the "still," or vertical lines, predominary; in the reclining group the horizontal lines pro dominate, and in the sitting group the verial and horizontal lines unite. The "grace," a curved lines, would predominate in dancing "order," or parallel lines, in the marth ing of soldiers, and angular lines in a fight.

The Action of Rhythm. Lins not only show direction, and suges motion, but they may represent rhythm. Rhythm is graceful motion, and in drawing is indicated by great ful lines. All nature is full of rhyhm, We see it in the waving grain and bending trees, in the motion of wate and the swirl of smoke, in the markings on the feathers of birds, and in the graceful folds of drapery. It is seen in the movements of a kitten and in the color of a lily; it is heand in the call of a lark and in the grand
mill of thumeder. It is all about us. It is is the profill or rhythmic mortioe of cound, color and
Rhythre Ande its exprumion in eklll, in Hythmic skill. Rhythmic still is doing thinge ecily, quickly and grecifully. Decomative denign is that department of drawing which deals with the ormamentation of forma, and has for its bacia Hythmic akill.
Agood wey to sequire shythmic still is through two-handed draving on the blackbonad. Fig. 18
at the rop, and an sutwerd double carre is one that curvee outwnid at the top.
$O, P, Q, R$ and $S$ are pitchers made from the above forms.
Branching is $\boldsymbol{f}$ two kindo-outward and ioward. Outwand branching is the branach curse ing outward from the main stem, as A, Fig. 21 . The ahorter curve is the branch. Inward branching is the branch curving inward toward the main stem, as B, Fis. 21.
Dis an examplo of loward branching, and

abows the method, and Fig. 17 shows some excellent examples to practice.
Decorative Design. Decorative design relates to the ornamentation of form, and the designing of form in which the decorative element is primary. In Fig. 19 are represented the line elements in decorative design.
The single and double curves are to nodify form, as for example, in Fig. 20, $A$ is a rectangle; in B, C, D, E, F and G, the single curves, both inward and outward, are substituted for the vertical lines of the rectangle; and in I, J, K, L, M and N , the double curves have been substi-
arted.
An inward double curve is one that curves in
all the others are examples of outward
branching. These branching elements are fundamental in character, and are the basis of an infinite number of combinations running through the entire subject of decorative design. To draw these curves and branches with facility requires much practice and persistent effort, but so important is it that these elements be acquired, that almost any amount of application and hard work is justifiable in their acquisition. The designer must acquire the ability to draw these curves and branches with ease, freedom and skill.
Fig. 22 represents the chief form elements used in decorative design and the three ways of apply-


The fation of Running

## Drawter

Ing then. The grometrical forms are the meme
 en und in the ghaming of ormaremita, and en

A unit in deconative derign is ove of the parte unod is making the dolym.
The souren of ualto nes as fellowst

form measures in making designas. The we of these forms is shown in the following discussion

The grometrical forms, weh as the triangles, rectangles, diamonds, circles, ellipses and ovals Plant forms such as the branch, stem, leaf,


Make these birds and animals run, walk,stand,
and sleep.
bud, flower, frute and root ctany kind of treo, slirub or phant.
Andmatie forme, as the hrad, body, kos, tell and produce of all kiade of animaly, blods and laneles, fith and ruptilen.
Natural form, as whetes, saow, las, beleles. mave, manalas water, amoke, cloedr and vind, thello and mifover.

formed. Carry if otill farther and the whent formad. Eliminate the polat entirily and in loop is formed. Add to the bleds asouth polist and the aboulder if formed.
The sames of the stencard uaits ane fime from a mal of lanciad remablance to the oblim afur which they are maved.
There units are chacic, and therefore unirwal in theis application. They ean be appliato criver, boodere, bande, baci ppations corves, suppoets, nf any ocher fore of decorntion. They will bo mot throughout this courne; therefors thy mait be fully memorived. We men fonow them as a carpeater knowit ti tools.
The combinations of these standerd unite are proctically unlimited. This coments enter into mearly overy lom of decorntive deign.
They can branch outwand, at in A) Fy. 23; branch inwand, $m \mathrm{~B}_{i}$ branch inward with double curmi as $D$; and outward with douth eurves, as C. In Fig. 24, the loop in shown in exch of there branching. Mg. 24 reprewents the Greck anthemion The standiard unite can be combined, as shoma in Fig. 25, forming wing units. The fins and mecond rows represeat the blade united wid each of the standard unites In like manner med clandind unit may be united, thus forming endlom combinationa.

The standard units, the ingle and doubh currs $s$ with their inward and outward branclings. and the geometrical forms are together a com plete sat of toole with which to wort in decombine
cre, banasis, sopees, chinise-in flect, any object made by man.
It will be ceen from the above that it is quite impoemible to give even a superficial list of the units that may be used. Yet, while this is true, there are certain elements common to all decorn: tion that have their origin in the experieace of the past, and have been handed down to tu as the fruit of succenful experience.
These elements, as near as pomible, have beem reduced to their most simple form in the ive standard units, A, Fig. 23 These units are the result of many years of resoarch and study, and incluce nearly all the elements used in historic ornament and modera decoration.
These units are so fundamental in character that through them we can leam to use any unit or form, however varied or complex it may be.
These standard units are very simular in their construction, and have eloments that are common. The two main lines of each are exumples of outward branching.
Carry the point A of the blade acound farther, and the trumpet is


## Drawing

dina. They ass decorative words to express donative thoughts, figures of design to work ont portions of ornamentation. They are cremate if the mind, and as asch the greatest Meaty may bo maven with thea; they may be added to, aubterceted from, multiplied, divided, ar mortised in any way the mind may devise. Inge are no more clements to be given; the a ti complete. All that now remains is to make

The rectangle may be vertical, as in C, or horizontal, as in D. A vertical rectangle is one longer vertically, and a horizontal rectangle It one longer horisonalally Ellipmem may be drown vertically and bortsontally; as in E and F. The oval may be inverted 'There are Caber modifications, but these are the one monty used in the menarne of form.
Rights means straights covid monas sharps

## inward 19

thew tools our own until they become willing and obedient instruments in our hands. They Ire inflate us, and can bo applied to all decontion.

## Form

The Measures of Form. Form tells about
the tape of objects. The moat simple forms that an be seen, recognized and maned are the triangles, rectangles, circles, ellipses, and ovals. These form in mathematics are called geometrical forms, and in drawing, type forms; but a still better name is manures of form, for their use in draining is to measure form. They an the standards, or measures, of trim, very much as a pound is a mamore of weight. a gallon, of liquid, a dollar, a measure of money.
The circle can be modified only in is but the remaining measures of lame ins, be made narrow. medium and wide, as shown in Fig. 26. The tixagle may be drawn with the apes pointing upward or downward, os in A .
and corvee, dull. Trim means threw, brat triangle means a three-angled figure. Rectu means right, hence, rectangle means a figure composed of right angles. Apes mans top: base, bottom, and altitude, height.

The user of measure. . form are aid in recognizing and gracing, th shape and yropor


Drawing
ion of objects, to the extent that they can be reproduced in drawing. They abs aid in mating complicated objects simple and easy to grasp asa unit. Theme geometrical forms are measures af form in the sense that we recognise other and more complicated forms through their ald. There
simple form measures. The architect cons. bines them in endlem variety and ever changing proportion; the engineer in his greatest mates and most complicated problems never depart from the simplicity of these form measures. The carpenter, the blacksmith, the cabinetmaker, the tailor, the dremanaler, artist and artisan, from the designer of the greatest sky scrapers to the humble workman who digs the foundation, base their work on these simple fundamental forms.
In Fig. 5 the triangle is seen in the wigwams. In Fig. 8. these forms are seen more or lease in the tree tops and the houses. They are common in Pig 9. The binds' nests in Fig. 12 are triangular, rectangular, round, owl and elliptical, and in decorative de ign they are the fundamental formal In Fig. 28 the forms are used in designing a pitcher. In like manner
measures of form are common in all form, both natural and artificial. We see them in the shape of trees, plants and shrubs ; of leaf, bud, flower and fruit ; in the shape of bird, animal and reptile, and in what they make. The hills and dales, forms of water, great clouds, the broad manes of light and shade, are all full of these
they could be used in designing any other object.
Drawing the Measures of Form. A meanure of form to be used must be thoroughly learned-learned $s 0$ well that it can be dram easily and quickly. The best way to learn them forms is to draw them.

## Drawing

All mensures of form should be drawn with light lines-with oketch lines. These forms are not an end in themselves, but merely a means to an end, and for that reason should be drawn so lightly that it will not be necesoary to erace them in the completed drawing.
power and scquires the swing of the lines, his efforts become more and more sccurate until crowned with success.
Draw the measures of form about two or three inches long on paper, and from fourteen to tweaty inches on the blackboard.

The Sfandard Units.


## The

Standard Units
branching outward!

Dnaw these form measures offihand, without the aid of ruler or compess, and with the minimum of guide lines, dots and other devices. Drw the ellipses, orals and circles without aid of any sort. It can be done. At first the reasults are discouraging, but as the student gins in

When turning these mensures of form into other objects, use a full range of line. Use all or as many of the lines in Fig. 10 as is necessary. The test of knowing these forms is the ability to draw them and use them as meacures of formoto use them as monsures of the great world of form.

## Drawing

An excellent way to learn these forms is to use them as meapures of other forms. For example, procure a palm leaf fan; atudy it, draw it until you have learned how to represent it, then draw fanse ehaped like the various form mensures. Do the mme with a padlock, a pitcher, jug, teapot, sign board, and similar objects.
The Ohief Mcasures of Torm. The triangle, rectangle and the circle are the moat important of the measures of form. By adding the thind dimension to these forms, the prisms are_ made, giving the triangular prism, the reo.
form must be learned thoroughly; we must how them as we know the multiplication table, so well that they can be used instantly, without confusion or hesitation.

## Parallol Drawing

The Dectangular Priam or Box Porm, In Fig. 31 are represented the rectangle and the three most important triangles and their prisma Read from the top downward, and in the firt column wo have, first, a right angle; then a reom tangle; then a rectangular prism; then an

tengular prism, and the cylinder, which become the measures of solids.
The triangular prism is the form mensure for objects containing oblique lines.
The rectangular prism, or box form, is the form measure for square-cornered objects.
The cylinder and the sphere are the form measures for objects containing curved lines.
In these form measures are represented the mechanical elements of drawing, and are the form basis of a vast range of objects that more or lemembrace all form. These measures of
oblique rectangular prism, showing the orderd origin and the order in which they should be studied.
Parallel drawing, or as it is often calliod, parallel perspective, is represented by row $C$. Paralld drawing is representing objects with the front face parallel with the surface on which the drawng is made. This surface is called the picture plane.
Oblique drawing, or oblique perspective, is represented when the object is drawn at an angle represented when the object is drawn at an angle
with the surface on which the drawing is made

## Drawing

Fig. 82 represents a box with the front face open and toward you. Procure such a pasteboard box and place it on the table before you in the same position and observe that the box has:

1. Six faces-Top face, bottom face, front face. buck face, right face and left face.
2. Four vertical edges, four horizontal edges, and four horizontal receding edges.

The horizontal receding lines converge to a point called the eye-point, or center of vision. This is an imaginary point directly opposite the eye, to which all horizontal receding lines converge.
The horizon line represents the level of the eye, and is often called the level-of-theecye-line. The horizon line is to show whether the top or bottom of objects can be seen. If the object is below this line, the top can be seen, and if above,

3. Twelve edges or lines in all. These lines are divided into three sets of four lines each: A set of four vertical lines, a set of four horizontal lines, and a set of four horizontal receding lines. The vertical lines are all drawn parallel with the sides of the paper on which the drawing is made; the horizontal lines parallel with the top and bottom of the paper, and the horizontal receding lines all converge to a point.
the bottom can be seen. The horizon line always passes through the center of vision.
The center of vision, or eye-point, shows where the horizontal receding lines converge and also whether the right or left face of objects can be seen.
Observe in Fig. 33:
That the box can be drawn in nine po-

That when drawn above the lovel of the eje, the bottom taces can be ween. (Boxes H, C and I.)
That when drawn below the lovel of the eye, the top faces can be meen. (Boxes F, B and G.) That when drawn at the left of the eye, the right faces can be seen. (Boxes H, D and F.)
That when drawn at the right of the cye, the Vfit froes can be seen. (Boxes I, E and G.)
That the vertical lines are all drawn parallel with the sides of the paper on which the draving
incher. On the blackboard the drawings should be at least $7 \times 12$ inchea.

Use the model. Compare your drawing with a model, not so much to see if your drawing looks like it as to see if you have the cormut principle.

Trees may be introduced into these drawings by placing the top, or foliage part of the tree, above the horison line, and the trunk below it, as in Fig. 33.
The beat wny to learn these positions is io
$\square$
is made ; that the horizontal lines are all drawn paralled with the top and bottom of the paper, and that all the horizontal receding lines converge to the eye point, or center of vision.
There can be but one center of vision in each drawing.

The bas forms are drawn as follows:
(1) Draw the front face, A, B, C, D, Fig. 34.
(2) Choose the center of vision.
(3) Choose the point E and draw the remaining lines.
First make the drawing with a very light aketch line, then finish with heavier lines.
Do not use a ruler or straight edge.
Make the drawings on paper, about $1 \frac{1}{2} \times 2 \frac{1}{4}$
draw them. Practice exencises such as thex: Draw a box below the eye; above the egr; at the right of the eye; at the left of the ege; below and at the left of the eye; above and at the left of the eye, and similar exerisas Introduce trees, balls and similar objects to make a picture effect.
Fig. 35 represents block or box 1 as dram below the eye, block 2 added to the left fice, and Hock 3 to the right face. In $A$ there is a similar combination. In $B$ there is a bos drawn above the eye, and in C , one below and at the left of the eye, with balls placed on and side. In D boxes of all sizes are piled up around the renter of vision, and in E ther

Drawion


The MEASUREs of FORM say to the designer that you can make your pitcher lriangular, vec「angular,
round, elliptical or oval.
is a box drawn below and at the left of the eye and the front face removed. These are all muggestions as to how to learn in parallel danving.
Make arrangement of blocks similar to $\mathbf{A}$. An object above the eye shows the bottom face, and is supposed to be in the air, as the box in B. Pluce objects, as the balls in $\mathbf{C}$, on various faces.

The birds on the blocks in the large drawing are similar in principle to the placing of the balls in C. It is interesting to pile boxes promiscuously, as in $D$. Remove the various faces from boxes, as suggested in E .
A, B and C, Fig. 36, represent the triangular prisms, which are drawn in the same manner and obey the same principle as the rectanguiar

used to design fans.



Reclangle.

$\xrightarrow[\substack{\text { Right Tri } \\ \text { angle. }}]{\substack{\text { Acule } \\ \text { Triangle. }}}$

Obluse Angle

parallel priaims


D
Oblique prisms. Prisin., angular Pi
Pright Tri-



The MEASURES of FORM sur Objeeth confaining $Z /$
sfraight lines.


We hare studioc in Pig. 31; then live, as shown in now we will study as hown in the is to show how to an oblique positio 4 it is often called

Above and to the lest:

To the lejt.

Below and $5_{0}$ the left.

## Drawing

In oblique drawing the center of virion in not band, neither are vanishing points of any kind. The whole dependence is put on the unaided used and eye.
The rectangular prism, as shown in Fig . 88, is the principal figure. This must be thoroughly learned. It must be drawn over and over until it can be drawn with ease and a fair degree of


We have studied the angles and forms as shown in Fig. 31; then the prisms in parallel perspeos tire, as shown in the third horizontal row, and now we will study the prisms in oblique position, as shown in the last horizontal row. The aim is to show how to draw struight-lined objects in an oblique position, or in oblique perspective,
accuracy, for it is the basis of a large class of objects, and if this is leaned thoroughly it becomes the basis of the whole class.
Place before you a common pasteboard box in the position of Fig. 38, and observe the three sets of lines, AAAA, BBBB and CCCC. The lines of the first set are vertical and parallel. The sets of lines marked B and C are receding


## Drawtay

and consequently converge slightly, but in the druwing they should not appear to converge, but should appear paralled and natural.
Draw the rectangular priem in the order of the aumbern, beginning with line 1 , then line 2 , and $\infty 000$, as shown in D, Fig. 39 .

## Draviac

Pig. 30 reprevents the principal forms of the sectangular priem that may be uned in dril work.

- Learn to draw theve forme quickly, with an and a fair degree of accuracy.

The lunch box in Fig. 10 is an application of


The faces are named top, hottom, right front, left front, right back and left back.
Draw all prisms and objects with light lines, and then finish with heavier.
Draw the receding lines longer than they are to appear in the object, so as to judge more accurately of their correctness.
oblique draving. All of the drawing in paralled perspective can be dracr. in oblique perspective, and that may and should be the drill wort in learning this branch.

Draw, for cxample, in oblique perspective the triangular prisms A, B and C, Fig. 36, and then draw their applications, as shown in D, E and


## Drantag

1. Draw the bousee in Fig. 37. Do this until Hink of draving is learned.
Tro Oyflader. With the addition of the otinder, our mencures o forma are complete. Ite four rows of forms in Fig. 41 reprement the

## 200

## Drawine

alike in the fachioalng of delicate jowelry and the building of a gront akymeraper.
The cylinder is the meavire of form for objects having curved linen. It is the mechanical bats d cylindrical ahaped objectar

machanical basis of practically all form. These are the measures of form that underlie the arts and crafts, the enginearing professions, and the grat world of form. These are the basic forms for all making and building, and are common

The leading directions of the cylinder are the vertical, the horizontal, the receding (horizontal receding), and the oblique (oblique horisontal receding). These four directions are the ones most commonly usod in drawing cylindrical


shaped objects; $\alpha$ these the first three are in paralled drawing and the lat in oblique drawing. These four cylinders must be thoroughly
knowing the cylinder is the ability to use it in drawing similar forms.
Moders. Use a variety of modela. A rolld


learned, learmed to the extent that they can be cuaily, quickly and alilliully drawn. The teat of

pasteboard or paper two inches long, a amal fruit can, a plain tumbler, and cylindrical block, are all good models. These modes are not to draw from as in objet drawing, but are to aid in unda tanding and learning the cylinder.
The cylinder and sphere are the last of the type forms. The cylinder, together with the rectangular and triangular prisms, are a complete x of measures for all forms. There ar no more to learn.
The vertical and horizontal cyimders are drawn alike, except in direction. The unsech end in ench is drawn somewhat wider than the end. It is necessary to draw alld the unseen end to make correctly the part that can be seen. Draw the cylime der offhand and in the order of the numbers marked on the lines.

Daw the cyltioder abour two inches in diamCres papre, and about twelve incties on the Mactbond. Maste in with lighe lines and finich

## Dravise

The cenver of vivion is ued whea druving this cylinder.
Both tho aeen and unceen eado are circles; both are alike, except in tim.

Forms.


Parallel prisms
 Oblique prisms.


Cylinders
41
The Verlical The Horizon- The Receding Tbe Obliguie Thir Recednac Crundera. The receding ghtioder corresponds to the horizontal receding limes, hence the sides converge to the ceanter of
vima.


It is at right angles with the picture plane. The entire unseen end should be drawn. The Oblique Cylinder. The oblique cylinder corresponds to the oblique, horisontal reced-

## Denter <br>  pine <br>  the eqtioner. <br> Buit tho mon sed meon ende ave ellipm; reth ane cillem, mapt in tow. <br> It hat an obllique argle with the pletere plase. The enter unerin coid alould be drow.

878

## Downes

Twe fore eftelom mux be chamery
 an bo dawiva cally quidty and mide of dyread revency. By hariay thon othen the mecharleal clemanis a all dbjeto ifive - eglieder are beling lammed. 16 woll to doo tron egtioder areal trum mot dy ex maned.

trope of the Elebjoct. Ethices is the o ance What truste of tha nature of the moral oblifeciona an perron owe to another and to his comganity at hoge; it outlines thom sules which could determine conduct. Somee writers on tha enfoct declare it to be the scieace of ideal Hunity, and this it really is. It may be beat mot to consider it generally in such exalied sense, for tr teaching of ethice will be move effective It Here is carried the impresmon that it is posalbe maily to mx $1:$ e up to the atandardes net. Vhal hrmenity is something the world should thive fot, but we ase cacily discouraged in the blid thet such a state can moon be reachod. Let un, then, my that our aubject goes not byoud an inquiry into the mature of what in sood, a study of that which is proferable and dinabble; an investigntion into what is right and whet falls clearly in the line of duty. We prefer this middie ground because it in not at al theoretical; when one theorines there is dimys danger that others will dechare bim iniberry. What we ali need is practical precept and principle, so plainly stated thut there is no cape from seceptance of the truth. Knowing the way, then, or having a guide, it may be anier for us to walk uprighty.

## Importagee of Moral Tratating. Surely

 preats and teachers should not underestimate the mive of ethical culture. In the right moral atmaphere-we do not mean strained, affected Puitunism-where every aet seems the entirely appocpriate thing and nothing violates the injunction, "Let everything be done decently and in order," the child extablishes ectical madends without knowing it. Every child's mond nature reflecte his surroundings; when the parent, the teacher, the State, eliminate moge and injustice, the Ideal humanity sferred to mill be a reality. Pareata give children theircarliok aurroundinges and atamp upoa them the imprese of carlient influences; by the them the task of mind- and characten-building is paceed on to be ahared with the teacher a promt deal in the way of training has been accomplishod, for good or ili, which is to be permaneat. It if a pity, but it is true, that habits ave frequently formed by the young through the faulu of their oldere, yet we blame the wayward chlild for the traits be has developed. In all falmex, the abould not be done $A$ very wise man mid that the moral education of a boy or eirl should be begun with the grandparents. Wo readily underutand what be meant.
Egpenilit Iicoded Today. While moral training hes always been important, it is partioularty so at the preseat time, for the following rencons:

1. In a aytem of government such as ourn, the lawn of the country derive theip cutburity from the consent of the governed. The atrongeit mieguard against lawiemenem and the enact ment of vicious hawa is a public moral sentiment which will not toierate the one nor support the other.
2. Our present induscial syotem apparates employer from employe, parents from childrea; creates clases in society, and makes prnctically imposible the old-feshioned home with it benign and merred influencer. Unlem apecial emphanis is placed upon moral training during childhood, the public standard of morals will be lowered.
3. Our complex life tends to a confusion of moral ideas on the part of come. There are altogether too many men who pomess a "strutified conscience": that is, they have one conscience for their home life, another for their church life, a thind for their social life and a fourth for business. "Mr. A is the soul of bonor in hie

Thuten
private life, but in busineas he is not to be trusted," says one. "Mr. B. is a very faithful attendant upon the services of his church on Sunday, but look out for him on the other days of the week," mys another. Unfortunately, the conditions here described are so numerous as to make the above examples commonplace. We say that a person following different moral standards lacks principle, and this is true; but he lacks as well a moral training which would have given him a clear conception of right and wrong and developed in him the power of deciding for and adhering to the right.
Recognizing the importance of moral train-ing-the kind which in most cases may accomplish its object-we consider it a high privilege to present the helpful material found in the pages which follow. The principles stated are fundamental, and the purpose of the article is to show parents and teachers how they can aid those under their charge in gaining high ideals of right and in forming the habit of maintaining those ideals. To be aware of ideals is not sufficient; to strive to reach them in every-day affairs and live according to them is greatly to be desired. The following outline will assist in the study of the article:

Sthles

Right and Wrong Impulse
Action
Immoral Acts
Non-Moral Acts
What a Moral Act Includea
Knowledge
Desire
Choice
Execution
Ideals
Heredity
Early Training
Public Opinion
Associates
Change of Ideals
Moral Standards
Helpful Suggestions
Environment
Mental Attitude
Example
Books
Self-Restraint
Self-Reliance
Reason and Judgment
Questions for Discussion

## Right and Wrong

Impulse. Every idea has in it what may be called an impulsive element, that is, as soon as the idea is entertained there comes along with it a tendenc, to carry it out in action. In children, and in some people of mature years as well, this element is so strong that it leads to immediate execution of the idea, regardless of the consequences. People in whom this element is strongly developed are called impulsive. If their acts are disastrous either to themselves or to others, and they are asked why they do such things, the usual reply is, "Oh, I did it before I thought," or "I didn't think."
The thoughtful man is inclined to censure impulsive people, but he should not condemn impulse, for in impulse lie the beginnings of action. The impulsive or motor element in ideas should be brought under the control of the will and be guided by reason. In this way it will be led to manifest itself in acts that are beneficial to the individual and helpful to those with whom we associate. In brief, impulse properly guided leads to right action. Without guidance it is hiable to lead to wrong action. One of the first steps in moral training consists,
therefore, in helping the child to gain contal over his impulses.
The child is particularly a creature of impuks; the reason and the will develop slowly, and for the first ten or twelve years of his life the child is moved to action more by his feelings than by any other power. Parents and teachers who understand the training of children recognix this condition and endeavor to keep the children under their charge in a happy frame of mind In a state of happiness the desirable emotions are active, and these in turn lead the child to right action in his relation to others.

Moral Aets. What is a moral act? Do all acts contain a moral quality? While there my be some differences of opinion upon these questions, it is generally accepted that moral acts are those which are concerned with our relation to others, or with the development of our orm character. For instance, casting one's vote is a moral act. In his vote the citizen reghister his choice for officials to administer the lar a for measures which affect the welfare of the state or community. His choice affects not only himself but those with whom he is associnal

Afain, a boy's obedience to rightful authority, as a request or a command of his father or mother or his teacher, is a moral act. It shows that he recognizes and conforms to the proper rehtion which he sustains to the one making the request or giving the command.
Acts relating to the development of our own chancter cannot be wholiy separated from acts renting to others. What we are determines what we do On the other hand, what we do helpe to make us what we are. A' good illustration of this class of acts is found in thoee sects which are concerned with the formation of parsonal habits, such as truthfulness, honesty and the like.
Immornl Acts. Acts which are contrary to the welfure of society and of the individual are immoral. Indulgence in an appetite for intoxicunts is immoral because their effect is injurious both to body and mind. Appropriating that which belongs to another without his consent, or without giving him an equivalent in return, is immoral. Deception in any form is immoral, and to the above list many other illustrations an be added by the reader.
Non-Moral Acts. A non-moral act is one which sustains no relation to others and will have no specific effect upon one's character. Such, for instance, is the swinging of the arm when walking; multiplying one number by another simply for the multiplication or when there is nothing depending upon the result. In the discussion of morality non-moral acts are usually given little or no consideration.
What a Moral Aet Includes. A complete moral act brings into play all the mental powers. It consists of the following steps:

1. Kvowledal. You must know whether the contemplated act is right or wrong before you an determine its moral quality.
2. Desire. The knowledge gained leads to a desire to perform the act.
3. Chorce. Knowledge and desire lead to decision. You choose to do or not to do.
4. Execurton. Having made the choice, you proceed to carry it out in action. The act is performed or it is dismissed from the mind.
A concrete illustration will enable us to fix thees steps more clearly in mind. Henry, a boy of trelve, started for school one morning in time to enable him to walk the mile between his home and the schoolhouse and be in his seat when scchool called. Before he was half-way there he disonvered a neighbor's colt so entangled in a wire fence that the animal was liable to
erious injury unless relewsed at once. Upon examination Henry found that unaided he could not release the colt. He saw that the colt was in danger (knowledge); he therefore wished to release it (desire), but if he went for help he must be late at school. Which should he do-go for help or go on to school? He decided to return home and get help (choice). He no sooner reached this decision than he started for home (action).
The reader will be interested, possibly, in analyzing a number of his own acts after this plan. In the study of the illustration, or in the analysis of his own acts, however, the reader should bear in mind that the last step is the crowning achievement, and that unless this step is taken, the others are of no value. Many a young man can trace the beginning of his downfall to his failure to act upon the good resolutions he made.

Idoals. Though we may understand that a moral act is a right act, it is not always casy to decide whether an act is right or wrong. Such is the difference of opinion, that the same act is often considered right by one and wrong by another. The questions "What is right ?" "What ideals shall I follow?" and "What ideals shall I lead those under my charge to follow?" are constantly before the conscientious parent and teacher. If we would lead those having less experience than ourselves in the paths of right, we must first of all be familiar with those paths ourselves. Our ideas of right and the ideals that we form are shaped by a number of influences; chief among them are the following:
Hzrimorit. Everyone is born with certain inherited tendencies. These become more or less prominent in childhood and exert an influence over one's entire life. These tendencies may be beneficial or injurious. They are modified to a greater or less extent by environment and training. If given proper attention in childhood, inherited tendencies can usually be brought under the control of the will. Those which are undesirable should be suppressed, and those which are beneficial should be strengthened. Many people assign to heredity a much larger share of responsibility in the development of character than justly belongs to it.
Early Truining. We never wholly depart from the teaching of the first ten years of our lives. The ideas of right and wrong received during these years abide to a greater or less extent in our moral consciousness. The carly moral training, both direct and indirect, which
a child receives is thenefore of the greatest tmportance.

Thomes lives in a home whose inmates are 1ind and courteous to each other, and whose atmosphere in pleasant. He is taught to be land, truthful and generous. By the time he is ten yours of age he has learned that these virtues are right and that their opposites are wrong. Andrew lives in a home where there is constant strife; the inmates exercise their ingenuity in deceriving each other and in trying to gain some advantage over their associates. To Andrew lying and selisishess are virtues, and truthfulness and generosity are weaknesses practised only by thowe who have not sufficient courage to withcand their fellows. These boys go out into life with directly opposite moral ideas as the result of their home training. Between these extremes are many grades of moral code, each formed by home training and association.
Puevic Opinion. Every social group, whether of children or adults, has its moral code, and failure to conform to this code is a cause for disapproval, if not for censure and expulsion. This code expresees the moral sentiment of the group, be it large or small, and this is what we usually mean when we speak of public opinion. It requires courage to stand against public opinion. Let Thomas remove to a locality where the most of his boy associates are of Andrew's type, and he can remain true to his moral code only by constant struggle and possibly an occusional fight. If Thomas is a lad of weak will, he will soon yield to his companions and adopt, with possibly some mental reservation, a good portion of their moral code.
The case of Thomas is that of a large number of people of older growth. When removing from one locality to another they often find themselves at variance with the community they have entered. What shall they do ? Shall they adhere rigidly to their established moral code and be looked upon as "queer," "Puritanic," and so on, or shall they overlook these points of difference and conform to the usages of society? These are among the most important questions that ever confront a young man or a young woman upon leaving home, and their decision often marks the turning point in the person's life.

A young person of good moral training and strong will will not give up those moral principles upon which his character is founded. Furthermore, he will adhere to such virtues as truthfulness, honesty, sobriety and industry. However, if one's moral convictions are not firmly fixed,
one is very liable to change one's moral standurd, because in so doing the individual follows the line of least rexistance.

Earnest people who believe the moral code of society to be partially wrong refuse to conform to those beliefs and practices which their conscience will not approve. Such people are staunch moralists, and although the thoughtew may deride them, their influence in a community is alvays good. In time this influence usually wholly changes or in part modifies the objectionable practices. The reformer not only refusa to adopt the moral code of society, but he opealy and aggressively goes to work to change public opinion until it shall coincide with his views.
Associates. One's ideas of right are more or less influenced by the opinions of those with whom one comes in daily contact and by the opinion of intimate friends. When two people are associatei, the stronger influences the weaker and the result is a modification of ideas. This influence is much stronger with children and young people than with those of more extended experience. We can, therefore, see the necsasity of safeguarding the young from evil associate. The saying of the wise man, "Keep thy hear with all diligence, for out of it are the issues d life," is as potent now as when it was uttered three thousand years ago.

Ohange of Ideals. To the active mind the ideal of today is different from that of yesterdys. Every day sees advancement; man's view of moral truth is broader and his insight into monl principles is deeper. This growth does not neressarily imply the forsaking of old principles and the adoption of new ones. It is more likely to mean the discovery of new opportunities of applying these principles, and with each nen application the strength and significance of the principles are increased. In this way our mond ideas expand. Men and nations regard each other with greater respect and kindlier feelings today than they did a century ago. The idel hero of the fifteenth and sixteenth centuries was the warrior; the ideal hero of the twentiet! century is the man who can prevent war. EsPresident Roosevelt gained greater renown by bringing about the treaty which closed the Russo-Japanese War than any military or nanal commander in that conflict. This is also true in local communities; the man who is held in highest esteem is he who uses his talent in promoting the peace and wellare of the community.

Again, the true boy hero of today is not the bully of the playground but the boy with the

## Etrina

monal courase that enablen him to aland by What he knows to be true and right, and thereby promote a publec seatiment which drives the bally to cover.
Breadth of view heads to tolerance. Many puxtimes and pleasures that were formerly conidered harmful and even sinful, are now accepted and indulged in as being beneficial. People of experience are more lenient toward young ofienders than are those of their own age. These hats do not imply that moral principles have been discarded, but that they are more bromedly
applied.
Toral standards From the foregoing discusion we see that moral questions are often complex and that even the man of elucation and experience occusionally finds it difficult to decide

What is right in certain casces. This is true to. a much greater extent of those who lack training. and experience. For these reasons moral standards should be establishod, and those virtues which for ages have been recognized as right by all civilized peoples, should become firmly fixed during the periods of childhood and youth. The most important of these virtues are truthfulness, honesty, fidelity, reverence, sobriety and hind. nesa. However widely people may differ in their application of these virtues, they are universally recognized as constituting the foundation of all good character, and their installation should be the chief aim of moral instruction. Teachers and parents will be aided in this work by giving attention to the points mentioned under the title "Helpful Suggestions":

## Helpful Suggestions

Indronment. The body exerts a strong intuence over the mind. While now and then we find a brilliant intellect associated with a weak and sickly body, in general, health and vigor of the body lead to a clear intellect and a clear consience. The surroundings of children should be pleassant and of such nature as to give them the bodily comfort necessary to a happy frame of mind. Plain, nourishing food and loose, comfortable clothing are important factors in monal training. Children who live in the country have greater advantages for the development of chancter than many of those who live in the city. The country child communes with nature and learns many of her secrets. For a portion of the time, at least, his companions are birds, plants, animals, trees, flowers, verdant hills and ruaning brooks. The city child may he confined to streets and alleys for his playgrounds and may have vicious companions only for his ussociates.
Whether in city or country the home life should be made attractive. There should be no place where the child can find so much pleasure and enjoyment as at home. An atmosphere of love and lindness should pervade the home, and through his association with the other inmates, as well as by precept and example, the child should be led to practice the virtues we have mamed.
Mental Attitude. The mental attitude exerts a strong infuence upon chasracter. The child who is always happy is kind. truthful and bonest. His desirable feelings are constantly
ectire and they give little or no opportunity for ective and they give little or no opportunity for
fear, anger, hatred and other undesirable emotions to appear. Teasing, nagging and scolding by those who he e the care of children are reprehensible, and their practice is a merious obstruction to the development of right character.
Eramplo. In nothing is the adage "Krample is better than precept" more clearly proven than in moral training; Children are imitators, and they strive to become like those whom they love. By the time he is ten every boy has a pattern that he is following. This pattern may be a living personality or it may be the hero of some tale. Purents and teachers should not only do what they wish their children to do, but it is equally or more important that they refrain trom doing those things which they do not wish their children to imitate.
Books. A word should be said about the value of reading as an agency in the formation of character. Next to friends and associates, books exert the greatest influence over the young. A story like Ruskin's King of the Golden River, Hawthorne's Great Stone Face, Longfellow's Evangeline and scores of others that might be named, whether in prose or verse, will do more toward the development of character than any number of discourses on duty, honesty or other virtues. Many maxims gleaned from books when memorized are also helpful and oftem inspiring
Fortunately, school and other public libraries are now so common, and good books can be procured at such slight expense, that suitable reading can be placed in the hands of all. Just here a word of caution may not be out of place.

## Ethles

The young abould be saleguarded from vicious literature as carefully as from evil associntes. Both exert a baneful influence. Inhibition, or the power to arrest a previous action, is the highest prerogative of the will. The wise use of this power shows that the will has been well trained.

Soll-Rortratat. Thrice armed against evil is that young person who during childhood learned to say "No" and to stand by it. In the development of character restraint is as essential as section. One is led astray by first consenting to little things which are wrong. One step leads to another, and thus the character is lowered. Resistance to temptation must be acquired in the home if it is to be acquired at all.

Soli-Rollance. In the formation of character it is necessary for the youth to learn to rely upon himself. In order that he may do this he must recognize his own powers and believe in them. Those who are unable to stand alone are easily led into temptation. From the beginning the child should be trained to do all that he can for himself. Too many parents and teachers do far too much for the children under their care. The maxim "Never do for the child what he can
do for himself" may occasionally be taken too literally and cause waste of time and energe, but in general it is a sufe maxim to follon. Within the capacity of his judgment the child should be led to decide moral questions for himself. Muscle, intellect and conscience gin strength only through exercise.

Bocson and Judigmont. We have seen that many moral questions are complex, and that often a right decision can be reuched only through a careful investigation of all the circumstances involved. Questions of this kind can be decided only by those who can think clearly and exercise sound judgment. The thought pomers develop later than the powers of observation and memory, hence young children can do but litite reasoning and should not be asked to decide complex questions. During the period of youth, however, the thought-powers should recire particular attention. By discussion, illustratioa and experience, young people should be led to realize that hasty judgment is faulty judgment. Exercises for training the reason should not be confined to problems in arithmetic and grammar; the affairs of everyday life furnish many interes. ing and profitable problems for consideration.

## Questions for Discussion

Ethical Training. The following questions are given as illustrations of what may be done in the home, the school or in clubs and other organizations to train one to reason along ethical lines. Some of the questions are very simple, while others are so complicated that they will tax the ingenuity of the keenest intellects. In every case the reasons for the decision should be given.
The discussion of two of these questions given below shows how they may be used. Considerable amusement can be derived from questions of this nature, whether in the home or school, or wherever any number of people are gathered. The discussions which are sure to follow their introduction serve the double purpose of training the reasoning powers and of showing those taking part the necessity of considering all the evidence in a case before a just decision can be reached.
Eramples. At the close of school someone took Lucy's umbrella by mistake. Lucy remained to do some extra work, and when ready to depart she found only one umbrella. It was raining and she must take this umbrella or be exposed to the storm. On the way home she
broke the umbrella. The next morning it mu learned that the umbrella belonged to Fred Who should pay for mending the umbrella?
"Lucy, of course," says Tom. "She broke it"
"Fred," says Nellie. "Boys, not girls, are always expected to pay such bills."
"Whoever took Lucy's umbrella," sunp Henry. "That person was responsible, for he made the mistake."
Are any of these answers right? If so, which one?
On examining Tom's answer we find that Lucy was obliged to use the umbrella as a means of defense against a boy who did not attend school and that it was in so doing that she broke the umbrella. The accident resulted from necessity, not carelessness.
We see at once that Nellie's answer is foumded on sentiment, rather than justice. In discussing this answer George remarks that girls and women nowadays are trying to take the places of boys and men in almost all kinds of work, and if they want to do men's work he doesn"t see why they should not take men's resporsibilities.
Henry passes by those directly connected with

## Ethics

Two government officers are sent to ths Yosemite with a large sum of money. As they drive round a corner in a rough part of the country, two highwaymen spring out and yell, "Hands upl". The officers at once obeyed. Did they do right ?

Factories sell their typewriters to tenchers for $s 70$, but the price to other people is $\$ 100$. Your principal buys a machine for $\$ 70$ and decides in a few days that he does not care for it and ufiers to sell it to a lawyer. What should he ask the lawyer for it? Should the teacher or principal ask permission of the firm to sell the typewriter for less than $\$ 100$ ?
Tom saw Fred cheating in an examination After it was over Tom said to Fred, "You are a good friend of mine, but your cheating in the examination was wrong in four ways." What do you think were the four ways that Tom had in mind?
Henry is trying to decide whether or not he ought to go to college. He is talented, but poor; his father is dead and his mother is not strong. How ought Henry to decide the matter?

Dick and Keran are in the same room at school. Dick got mad at the teacher one day, and that evening when u.e two boys were going past the schoolhouse, Dick had revenge on the teacher by throwing a snowball through the window in the schoclhouse. Keran saw him do it. Tree next day the school-teacher asked each boy in the school privately what he knew about it. What should Keran say when she asked him?

A boy goes to spend the night with his friend, another boy about the same age. The boys' room is lighted by a defective lamp. In the night the visiting boy gets up in his sleep and lights the lamp. The lamp explodes and sets fire to the house, which is totally destroyed. The house was insured for two-thirds of its value. Who should pay for the house?

A boy has $\$ 1$ which he received for 10 tickets which he sold for the school entertainment. A sudden freeze makes the skating good and he spends the money for a pair of skates, fully intending to replace it from his earnings which he would receive for delivering papers. He fails to get the money for his teacher for the tickets. Was he wrong?

A bank crashier takes money from the bank for speculation and loses it. A wealthy friend makes good the lass, so that none of the depositors loses any money. Should the cashier be punished? Did the cashiar do wrong? Whom did he ng?


Its Divitons. Geography is a highly specialized science, treating of the earth as the home of man ; for purposes of study it is usually divided into three general departments, namely, physical, mathematical and political geography. The first is known also by the name of phyaiography. Some authorities add a fourth: economic, or commercial, geography. The whole subject in all its parts is one of the most important branches taught in the public schools.

Fhysical Geography or Physiography. The scientists of the world classify known facts of phyical geography from the viewpoint of today. The physical history of our planet does not belong here, but is discussed in the higher branch which we call geology. The relations of our earth to other members of the solar system are treated in astronomy. There is left, then, to be included in physical geography a study of the external appearance of the earth, and the changes wrought in land, water and air; the causes of the seasons and of the tides, the meaning of great earthquakes, and such oft-recurring phenomena.
Mathomatical Geography. In mathematical geography man has adapted his carefully developed rules to physical conditions as he finds them. In our lives we find necessity for some knowledge of the simpler mathematical elements of the subject; so under the general term mathematical geography we study the earth as to its shape and its motions, the scheme of its measurement, the changing of its seasons and their length, the alternate rise and fall of the tides, and make graphic representations of all these, which we call maps and charts.
Political Coography. A part of geography is man-made. It is an interesting study to learn what part, and why, and how. In this sense geography and history are united and must be
viewed together. The divisions of polition geography result from the social and economic activity of the human race, influenced here and there materially by physical conditions. Politioal geography, then, is that branch of the subject out lining human governments, treating of boundaries of states and nations and the locations d cities, and pictorially preserving the present dy results of the great events of history.
Commerclal coography. Some authorities take from political geography some of its features and shape them into cconomic, or commerial, geography, which treats of commodities, their places of origin, the world-wide demand for them, means of transportation, trade routes, etc

An Intimate View. It may be assumed that the student desires quite fully to cover the genend subject of geography. He will find it intensedy interesting. The world is his home; in men d all tribes and races he should have an interest, and of them should possess some knowledge He may never have traveled far from the place of his birth, but is free to follow his inclination and mingle with strange peoples and even live among them. Business interests may demand specific knowledge of some far-away corner d the world; the news of the day is best inter. preted through positive information previously gained of places and peoples-everything practical in our experience or even within the nange of possibility points to the need of precise geographical knowledge. In its study the mone intimate view is desired-comparisons and coortrasts of things unknown and distant with thing which we know and understand. So, if you accept the brief outlines below for plans d study, by investigations based upon local knowtedge to supplement what you read you shonid come to a better understanding of some of the world facts which you have viewed hereldore

| m |
| :--- |
| it |
| it |
| it |

$\mathrm{G}=\mathrm{m}$
whu
Wem
500
and
nguix
titles
refer
whic
aticic
addit
attern
réan
no in
by th
Yo
There
every
furthe
Under
covere
alphal
find tI
Atmos
Bliza
Calms
Chino
Climat
Clouds
Cloued
Clond

## acograpity

ryidy in the abotract This ypirit of pernonal inevigetion into relatione and conditionas finds aphantion and partial elaboration in huer Mane derotod to this nubject.
ensdy by Toplea. Promiscuour reading is not whe commended, except in search of important veno of the day and in getting the substance of moding magaxine article. When one turns to to erioue quetions involved in study, time is 11 ipent e eccept when a defnite plan is followed, by which, otep by step, the wbole of a topic or ablopic is covered. Confining oursedves just son to geography, let un suggest briefly bow to umage reading and study programs, baved emfery upon Tie New Pricticil Refrarecer Lemirr.
Tho Fouther, an Istamplo. No more intimudy related subjects may poosibly be suggested and those connected with the weather. The uppic is not exhausuted when you have instinctively tumed to the article Climate and have mastered it The foundation only has been hid. The Geven土 Index discloses the presence in these volumesol Irelated articles on Wind, Rain, Clowd, Wrather Bureau, Metconology, and the like. If pou are ambitious, you will take them in order and become familiar with them. Recoorting gain to the Index it will be found that the mious winds are deecribed under their respective tiven As you read, topic by topic, crosereferness to still other titles are given, none of wich should be ignored. For example, the aticle Cloud contains a reference to $F$ Fog, in addition to others already brought to your attention. When reading about Winde you are rdered to Storme, and under Storms attention is called again to the various severe winds, that no important item may possibly be overlooked by the investigator.
Your interest in the subject has doubtless incrused with the lengthening of the inguiry. Therfore it is determined to go very fully into enery subject dealing with the weather, and further information is sought from the Index. Voder Geography the following topics are discorered relating to the investigation at hand, aplabetically a arranged, and one is gratifed to And the themes so fully covered:

| uaphere | Cold Wave |
| :---: | :---: |
| Blizand | Cyclone |
| Calm, Region of | $\mathrm{Dew}^{\text {ch }}$ |
|  | Doldrums |
| Climate | Etecian Wind |
| Claods | Frost |

Bhall
Hase
Horse Latitudes
Humidity
Hurricane
Isobars
Isothermals
Kharisin
Land and Sea Breeses
Lightning
Monsoon
Norther
Northwesters atudied together, as follows:
Chinook

## Etecian Winds

Hurricane
Khamin
Land and Sean Brezees
Monsoon
Norther
Northwesters

Having the list completed, rearrange it 80 all winds shall be grouped together, and thus may bo

Geographay
Prevaling Wectecties Rain
Reinbow
Simoon
Siroory Squall Storms
Temperature
Tornado Trude Winds Typhoon Whirlvind Wind

Previling Westerien Simoon Sirocco Squall
Tornado Trude Winds Typhoon Whirlwind

Some topics will bring others to mind which have no relation to geography: Temperature suggests Thermometer; Slorme suggests Baromder, and these will be tranaferred to your liat. This group of forty-two articies, topically arranged and carefully studied, will give any family circle material for several evenings of profitable investigation, or will provide work in school calculated to give a class a really broad view of this common, yet not generally wellknown, subject. The weather is only one of many themes which may be treated in this way with great profit. In no other way can the ill effects of haphazard reading be overcome.
$\triangle$ Itudy in Arens. It would be emberrnasing to a Canadian abroud to admit that ho knew nothing of some of his home wonderapots. The rest of the world is inclined to think of Canada as merely a part of the North American continent, and thousands of our own men and women, not to mention boys and girls, admit a lamentable ignorance even of the more commonplace details of our geography. For instance, we muat realise that Ontario's area was increased by 60 per cent in 1912 and still is only one-ninth of the Dominion. Few of us know that British Columbia is almost three times as large as Great Britain and Ireland and nearly twrice as large as France, yet is only onetenth of the Dominion.

## Coograplay

Tables fee Oomparicoss. Eepecially belpSul in reaching as understanding reapecting comparative arme, deacity of population and other Intareating dots are tebles like the following. The Dominior ${ }_{5}$, the United States and your owa province are compared; then in alphabetical order all the countrices in a continent are arranged, to be compared with the three above them. This chart may be varied, and the lewons learned frome ench new compilation will be valuable:

The above nuggeations open a wide field to th ingenuity of teachers, parents, and the chillam themedres. Out of such exercises will come better understanding of the greatress of or national domain.

Pollitical Dividons. Earlier in this dirow sion it was atated that political divisions an almoot entirely man-made. In a sense thin atatement admite of no exceptions, but phyical conditions have in many instances influenced man, or have practically determined some

| countay |  | population in MoUnd кимвепа | $\begin{aligned} & \text { POPOLATYON } \\ & \text { PER } \\ & \text { mazer male } \end{aligned}$ | $\begin{aligned} & \text { MaLEs or } \\ & \text { RULLROAD } \end{aligned}$ | PRENCTPAL PRODECH NAME MVE OF BACH COUNTET |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Canada | 3,745,574 | 7,200,000 | 2 | 25,000 |  |
| United States | 3,000,000 | 02,000,000 | 31- | 237,000 |  |
| Ontario | 407,262 | 2,525,000 | 6 | 8,250 |  |
| Argentina | 1,114,000 | 5,000,000 | 4 | 14,000 |  |
| Bolivia | 729,000 | 2,000,000 | 3- | 700 |  |
| Brasil | 3,218,000 | 17,000,000 | 5 | 11,000 |  |
| Chile | 308,000 | 3,000,000 | 10- | 3,000 |  |
| Colombla | 513,000 | 4,000,000 | 8- | 500 |  |
| Eeuador | 116,000 | 1,500,000 | 12- | 200 |  |
| Guinna, British | 90,500 | 800,000 | 3 | 1,000 |  |
| Guiana, Dutch | 47,000 | 84,000 | 1 | 40 |  |
| Guiana, French | 30,500 | 30,000 | 1- | . |  |
| Paraguay | 157,000 | 630,000 | 1 | 150 |  |
| Peru | 696,000 | 4,000,000 | 6- | 1,400 |  |
| Uruguay | 72,000 | 1,000,000 | 14- | 1,300 |  |
| Venosuela | 594,000 | 2,000,000 | 4- | 600 |  |

suggeated by the Ohart. How do the sive and population of French Guiana compare with your own province? With those of the United States?

If Brazil's population should suddenly increase five times, how would it compare with that of the United States? Which has the larger areal

Which has more miles of railroad, Brazil or Ontario? Brazil or your own province?
If New Brunswick were no more thickly populated than Bolivia, what would be its population?

How many South American countries have a Larger population than Ontario?
things for him. The questions that follow nd only explain the statement, but suggest thema on which to base research :

1. As Spain and France were not destined to be one nation, could the boundary between thee reasonably have been placed clsewhere?
2. If the racial characteristics of the peopla to the north and south of the Pyreness are so different that union would be unmise are the Pyrenees in the least responsible for the fact?
3. Would the Swedes and Norwegians hrie been justified in making an arbitrary boundul line between their countries?
4. What man was largely responsible for
pualing Itely's boundary up to the Alpe. Did in try to 80 farther?
5. Loeato several natural boundary lince between the provincen of the Dominion, and medeavor to find reasons from our history why in some cases arbitrary lines were chowa suther than natural.

Geography Presontod by Oudilies
In this subject, as in every other, it must be hept in mind that succensul results are reached only by proceeding from the known to the unknown. The child learns the geography of the

## Ceographs

tainous country, the appearance of a greet river, the vastaens of the ocean. A great doal of foundation work may be thoroughly dowe through the medium of local geography, withbut passiag the physical bounds named.

The Iehool Distriet. The amallest political division is the school district. The pupils should know enough of the terme township, county and province to realize that they are more important geographical unita. The geog: raphy of the district may then be outlined for atudy, somewhat as follow:

graphic mlustration of areas of canada and oterr political dinisione
yard around his home, without knowing that he has mastered the first elements of geographical science. He knows the directon of one object with respect to another and has an idea of relative distances. In play he may imagine the grass area a vast plain; the vines and bushes, trees and forests.
When he goes to school the geography of the schoolyard is to be learned, and if he is in the country, he is soon to know as geography the strip of land between home and school. In his geographical plays the brooks are dignified as rivers; the hills become mountains; stretched before him are valleys, plateaus, forests. Such is his introduction to the science of geography. When be is able fairly well to understand dictance and deration he can imagine'the contour of a moun-

School Dibtrict
(a) Political Peatures
(1) Map
(2) Location in township
(3) Numbers or names of surrounding districts
(4) Aren (sections included)
(5) Roads
(6) Population
(7) School population
(b) Physical features
(1) Rivers
(2) Creeks
(3) Valleys
(4) Plains
(5) Hills or mountains
(6) Swamps

Tre Townaly. From the setroel eintrict to the townctip is an mey stap; thi following outInop is anginud, with the expectation that hool moder may wry it in any mocienary degeos:

## Tres Townian

(a) Political fenturn
(1) Map
(2) Location in county
(3) Namee of surrounding townebipa
(4) Number of sebool diatricts
(5) Arem (milee in esch direction)
(0) Location of village or citien
(7) Public building:
(8) Population
(9) Governmeat
(b) Phyical fenturce
(1) Rivers
(2) Creoks
(3) Deer valley:
(4) Phing
(b) Heary forent aseas
(0) Mountrins or great hillo
(7) Lakee
(8) Swamp

- It may be difficult to learn the physical grography of the eptite township, for neither pupils nor tercher may have personal knowledge of the facts, and the gubject in one on which it is imposible to read for firlormation.
1 Moothe will pase in learning the factes relating to local geography as above explained and outliied, and this is well. Relatively amall children must not be required to push their inventigations far beyond their immediate sursoundinge. To attempt excursions too lar diatant invites confusion. Introduce larger political units for atudy only when the boys and girls are prepared by knowledge of the township to understand the step. In the following outlines on the county and the city it will ba wise to omit some of their features, except with more advanced pupila.

Tho Counts. As a political unit, the county is the division next superior to the township, and is composed of a number of townships grouped together for goveramental purposes. The relation of the township to the county should be closely studied. It will be well to find answers to the following questions, and to others which these will naturally suggest:

What officer or officers of the municipality participate in the government of the county? Does any authority in the county pass laws to be enforced within the township? Is there any law-maling power in the township?

Does a tomachlp pey any taxe to suppent the county geverament?
Do the prople of a whole county rote for cticuse of a towaship?
Does a towaship pay any tuxes so suppon county soverament?
Do the people of each towaship role fex county ofincers?

Out of what treasury are county officers pid?
Does any portion of the tar collected in the county go to the provincial government?
What authoity locates the county seat? the county poorboune?

Does the coursty have control of the affaira of us incorporated rity within its limits? of an me. incorpormted village?

Mont of the quentions above selate to the sub feet of civil government more than to geography, but there is certainly opportunity for praction correlation hese of government and geography, and much in connection with the former aboult be leamed by the child long belore he is $\alpha$ age to atudy the formal subject of civil government

In atudying a county from the viewpoint $\alpha$ its history, geography and government, the following outline is recommeeded. It may be changed in any reppect to meet local condition:

## The County

I. Maf or Countr, Shownso Townsma Crits, Viluams, Ratroand, Rivem and Laxes
II. Descriftiow
(a) Stze
(b) Number of townships
(c) Boundaries
(d) Position in province
(e) Physical fentures
(1) Surface
(a) Mountains
(b) Hills
(c) Valleys
(2) Lakes
(3) Rivers
III. Govmanient
(a) County officers
(1) How elected
(2) Terms of office
(3) Duties of each
(4) Salaries
(b) County buildings
(c) Taxes
(1) How levied
(2) How collected
(3) How applied
(d) In what electoral district

Cougraphy
IV. Inurrotsome
(b) Penal
(b) Chariable
(c) Educational
(1) Public
(2) Private

## V. Inductary

(a) Agricultare
(1) Landing cropa
(2) Markets
(b) Manufactures
(1) Landing articien
(2) Markets
(c) Mining
(1) Leading products
(2) Markets
(d) Trangportation
(1) Rail
(2) Water

VI County Seat
(a) How and when locatel
(b) Reason for present location
(c) Rank among county's cities and towns
(d) Distance from other cities In province
(e) Industrial iifo
(1) Banking
(2) Commercial
(3) Manufacturing

## VII. Histort

(s) V. hen settled
(b) When organized as county
(c) Famous men produced
(d) Events which were notable

The Oity. An incorporated village or a city is a portion of a to wnahip so thickly settled that its increasing necessities cannot be met by the governmental facilites of the township. It must have the privilege of providing many things for itself that the remainder of the township does not need. Here again geography and government are found in strong correlation, but wo cannot remove this subject entirely to the department of civil government, for any outline for study of a city or village must unite its geographical and governmental features.
Bring to mind a mental picture of a muchtraveled four-corners well located in a populous township, and let it assist us in a discussion of the growth of a village and the needs that this growth imposes. At an early day there was a blacksmith shop established on the four corners around which the village was afterwards built. Soon a general store was opened there and houses

Coograpis
Wres erceted for the binclamith and the storekcoper. Two farmers belle homee meas the corver and moon aspeater chowe the locality for his reibionce. No apecial needs sroe with theos improvement on and near this cornew, 60 the emall village still remalned a part of the township, it inhabitant bearing theis portion of townchip expenmes and charing in whatever was done for the good of all within the tomachip.
Many thinge may happen which contribute to the growth of a community. This little group of dwellinga with its amall commercial center begina to expand. Soon there are more than dowan businem houses, mill or two mupplying local needs, and poribly a hundred realdences. Now aidewalks are a necemity. Better atreets than ordinary country ronds are required, and poos sibly the inhabitante wish to secure a manicipal lighting plant. The township at large will object to helping pay for improvernents within the ares of the village when the benefis will not be ahared by the cownship at large. The people of the village may therefore apply to the provincial assembly for perminion to organise s separate goveramental body to be known as an incorporated village. All peoplo then living within the Incorporation lines come within the control of this new organization. It can provide for itself whatever improvements it roquires, but within itself must find the means of meeting the expense.

The community may continue to grow rapidly and soon may become a very important commercial center. Its needs multiply, and a more complex system of government isrequired. The provincial authorities are appealed to for enlarged liberties and a city charter is provided. The city is divided into small divisions called wards, and further divided into precincts. It may $g \circ$ into debt more than was possible under the village government and has the privilege of expansion to meet every necessity.

In studying a city in all its phases we include not only its geography, but its history and lis government. No class in school or children in the home, of an age to master these three divisions, should be permitted to drop the subject until they have secured a copy of the city or village charter and have studied this basic document and understand froms the machinery of government as applied to their particular locality. A topical outline of a city is given below. It is subject to such amendment as may be necessary to meet local needs:

Quepatis
ywo diy
I. Map of Cres, Snowno Pawerpal Oravern, Locatron of Punclupls Bumoproe, Wateawate, exc.
II. Decurtion
(a) Asw and population
(b) Location
(1) In towallip
(2) In county
(3) In province
(4) Direction from other cilies
III. Govmanuravt
(a) Chief executive
(1) Tite
(2) How cha
(3) Length of term
(4) Dutiee
(b) Other elective ofilicens
(1) Financial
(a) Treacuree
(b) A remor
(c) Collector of taxee
(2) Clesk
(3) Fire
(4) Police
(5) Judicinal
(c) Appointive aficess
(1) Health
(2) Edruation
(3) Parky
(4) Streets
(5) Water Supply
IV. Edocatmon
(a) Board of Education
(b) Inapector of Schools
(c) Public schools and buildings
(d) Private institutions
(1) Kinds
(2) Endowments
(3) Rank among other schools of mame kind
V. Puanc Utilitiss
(a) Rail and water communication
(b) Street railways
(c) Water supply
(d) Lighting systems; how owned
(1) Electric light
(2) Gas
VI. Parks and Boulevards
(a) Parks
(1) Number
(2) Arco
(3) How controlled
(4) How supported

## acogratiay

(b) Boulowards
(1) Extcat
(2) Spectal ruleo goveraits
VII. Comyzace and Indevinis
(a) Banling struagth
(b) Manufacturad articlen
(1) Kinds
(2) Markor
(3) Annual value
(4) Persone employed in manufacture
(5) Wages paid annually

Vill. Study of Cuntyen
IX. Hetomit
(a) When settled
(b) Date of organimation as a village
(c) Date of change to elty governmeat
(d) Notable events
(e) Persons more than locally known

The Proviace. When the pupil begins ite atudy of the province as a unit in politual geography he should have eet before him in reacons for the division of the whole country Into relatively small areas, ench subdividod portion a province.
The thousands upon thousands of squen miles of our national domain could not th


TEE RESULT OF CENTRALIEID CONTROL
The denasity of shading suggents the degrew $\alpha$ control, or the lack of it. The closest suparvision is nearest the source of power
governed properly from one point, no matte il it were centrilly located. The national capiul was placed at the extreme ceastern part of tiw country; except for inconvenience in traveligy to it there can be no objection to its preseat location, in view of the divisions we have med

## Ceograplay

for purpoese of loeal coverament. Wore one mapeal elty the cource of all our authority aad mos wo goveried exclualvely from it, wo afthe juatly boliove that ceetione near at haad mold be well goversed, and that within sueh ane the intervets of every percoon would be meveted, while regiona far diotate would wifer for lack of properly exarcieod control. The ehart boopwith graphically llluatrates the Wra; the darkect areas aeareet the eapleal city npumat thowe metione whieh would be beest owrned and the lishter portions show areas dralatively rolaxed authority, owing to greater dinasces from the governing ceater.
When the pupil begina the atudy of eivil prerament be will leara that for most purpane af sovernment-for all purposes purely beal-thenatioanl goverament yields its control to the provinces. In ouch matters as only coneern the people in their relation to the provbee, the authority of the province is supreme. Tha mational governmeat controls affairs within the province ouly 80 far as the welfare of all d the people of all of the provinces is concuned. The chart below shows the locations dranay capital cities, each the absolute center

our capital ctitira
Ench star locates the seat of a nearly independent governmeat.
$d$ authority in all matters pertaining to the every-day needs of the people within that province. The controlling power ls thus al ways aear to all the people; that this necessary condition might prevail our provincial boundaries were located and provincial governments were organized.
We desire to study the geography of a province systematically and to cover every essential feature. Such a determination will kead older students to add to the merely georrephical outlines something of government and history; a general view of a province is
not complote without theo features. In fols lowing the outline bolow, sueh parts may bo orilted for younger ehildiren as may mom justibable:

1. Locatmon
(a) Latitude
(b) Loagltude
(c) Boundaries
II. Extzurt
(a) Leagth
(b) Breadth
(e) Area
(d) Compare with other provinces

## III. Outhen:

(a) Geaoral form, regular or irrogular
(b) Boundaries, natural or artificial
(e) If there ls coast line
(1) Leagth
(2) Indentations
(3) Projections

## IV. Sumpace

(a) General facts
(1) Mountains or great hille
(2) Plains
(3) Valley:
(4) Watersheds
(b) Effects on climato
V. Dratracer
(a) River systems
(1) Main utreams
(2) Branches
(b) Lakeq
(c) Spriags
Vi. Climate
(a) Natural conditions expected, due to latitude
(b) How changes are wrought by physical features
(c) Effect on health
(d) Compared with other provinces of countries in same latitude
(e) Average annual rainfall
VII. Products
(a) Agricultural
(1) Grains
(2) Stock raising
(3) Dairying
(4) Fruits, etc.
(5) Rank among provinces
(b) Mineral
(1) Precious metals
(2) Iron, coal, copper, zine, etc.
(3) Oil and gas
(4) Rank among provinces

Geograpliy

## Geogrephy

## VIII. Commarct and Indmetay

(a) Railways and canals
(b) Navigable rivers
(c) Commercial centers
(1) Ten largest cities, in order
(2) Population of each
(3) Distances from other cities
(d) Principal manufactures
(1) Where sold
(2) Value yearly output
IX. Populition
(a) Rate of increase
(b) Per cent of native Canedians
(c) Countries furnishing foreign-born proportion
(d) Where densest, and why
X. Governgent
(a) Provincial departments
(1) Executive
(2) Legislative
(3) Judicia!
(4) How officers are chosen
(5) Length of terms
(6) Duties
(b) Number of counties
(c) Number of members in Parliament
(d) State institutions
(1) Penal
(2) Charitable
(3) Education of defectives
(4) Location of each
(5) How each is conducted
XI. Education
(a) Public school system
(1) Coinmon schools
(2) High schools
(3) Normal schools
(4) Industrial education
(a) School of Mines
(b) Agricultural College
(5) Provincial University
(b) Colleges
(c) Private and separate schools
XII. Hibtory
(a) Exploration
(b) First settlements
(c) Date made a territory
(d) When admitted to Dominion
(e) Events that are historical
(f) Famous men and women
XIII. Stitistical
(a) Rank among provinces in mineral products
(b) Raok in farm products
(c) Rank in area
(d) Rank in population

Geography in Picture and in Questiona, A few pages farther on in this volume there appears the first of a series of graphic outlinas on leading features of each province. Many of these illustrations are of such a simple character that they can easily be copied on the blackboand and thus made available for a large number of pupils. Opposite there graphic representations are questions and refcrences to items of interest in each province. It would have been possible to include hundreds of questions in each instance, but the design has been merely to indicate ooe direction for the activities of pupil and instructor, and to inspire one to search foe further matelial along the same lines. Make good use of these helps; they begin on pase 203.

The Dominion. The geography of the Dominion is first studied as a unit. When the general facts with relation to it are well understood each province may be studied separately and with more attention to particular detail.
A complete outline of the Dominion will include a few facts relating to its history and government, but in studying it as much may be omitted as it is beyond the capacity of the student to understand:

## The Dominion

1. Location and Extent
(a) Latitude
(b) Longitude
(c) Boundaries
(d) Area
(e) Comparison with other countries
II. Surface and Drainage
(a) Coastal plain
(b) Appalachian highlands
(c) Great central plain
(d) Rocky Mountain highlands
(e) Pacific slope
(f) River systems
(1) Main streams
(2) Branches

## (g) Lakes

III. Chmate
(a) Natural conditions expected, due to latitude
(b) Changes wrought by physical corditions

## Ceography

(c) Average temperature
(1) Maritime provinces
(2) Ontario and Quebec
(3) Northwest provinces
(4) Pacific slope
(5) Yukon
(d) Average rainfall in various sections
(e) Need for irrigation
(1) Extent of irrigation service
(a) Reclamation projects
(b) Extent of irrigated lands
IV. Industries
(a) Mineral resources
(1) Gold and silver
(2) Iron, copper, coal, lead, etc.
(3) Oil
(4) Granite and building stone
(5) Where each is found
(6) Annual output and value
(7) Provinces leading in each
(b) Agricultural products
(1) Cereals
(a) Wheat
(b) Oats
(c) Rye
(d) Barley
(e) Alfalfa
(f) Corn
(g) Other grains
(2) Fruits
(a) Apples
(b) Peaches
(c) Pears
(d) Berries
(e) Value of annual crop
(f) Provinces leading in pro duction
(3) Market gardening
(a) Its importance
(b) Where most profitable
(4) Live stock and dairy products
(a) Great grazing sections
(b) Packing-house centers
(c) Domestic and foreign markets
(d) Creameries
(e) Milk and butter
(c) Manufactures
(1) Natural locations of districts
(2) Leading industries
(a) Food products
(b) Textiles
(c) Iron and steel
(d) Lumber
(e) Leather and leather goods

## Geography

(f) Paper and printing
(g) Rank with other nations
(h) Laborers employed
(i) Value of annual output of leading products
(j) Leading foreign markets

## (1) Commerce

(1; Domestic commerce
(a) !y rail
(b) By water
(1) Inland water routes
(a) Navigable rivers
(b) Canals
(c) Coasting trade
(1) Nations which compete for carrying trade
(a) Proportion of foreign vessels
(b) Reasons for Canadian proportion
(2) Principal coast trade routes
(2) Foreign commerce
(a) With what countries
(b) Value of annual exports
(c) Value of annual imports
(d) Principal countries engaged in carrying trade
V. Population
(a) Per cent of annual increase
(b) Center of population
(1) Rate of progress westward
(2) Density of population
(c) Comparative growth of cities and rural communities
(d) Immigration
(e) Races and colors represented
VI. Government
(a) General character
(b) Departments
(1) Executive
(a) Governor-general
(b) Cabinet
(2) Legislative
(a) Parliament
(1) Scnate
(2) House of Commons
(3) Judicial
(a) Supreme court
(b) Courts of limited jurisdiction
(1) Exchequer court
(2) Admiralty court
(c) Provincial governments
(1) In what ways sovereign

Geography
290
(2) In what subordinate to Federal government
(d) Territories

Vil. Education in Canada
VIII. Citixs
(a) List of twenty-five largest
(b) Forms of government
(1) Commission form
(2) Large elective list of officers
IX. History
(a) Periods
(1) Discovery and exploration
(2) Colonization
(3) Development of colonies
(4) Wars for control of North America
(5) Opening of the west
(6) The fur trade
(7) The struggle for representative government
(8) The union of Upper and Lower Canada
(9) Governmental reform
(10) Confederation
(11) Northwest territories established
(12) Industrial and agricultural expansion
(13) Territorial changes
(14) Foreign affairs
(15) Canada's position as a nation

There is material in the above outline for much profitable investigation and study. For instance, so extended is the area of the Dominion that there is great diversity in climate, ranging from mild temperate latitudes to the long and bitter cold winters of the Yukon and the northern territories. Great mountain ranges and ocean currents modify the temperature in some sections; lack of rainfall affects other localities. These physical facts influence all crops and vegetation. While the Yukon is freezing and under cover of heavy snowfalls the cattle are roaming on the plains of Saskatchewan and Alberta. Unlike the United States there is no section of Canada absolutely free from frosts. In some sections the warm season is short, though generally long enough for the ripening of all grains. Inquiry into the relation of physical geography to the industries and products will repay every student.
Worth America. In preparing an outline of a great continent one is confronted with the
necessity of including an almost endlem amount of detail or of limiting the record practically to its physical features. The latter is the logical method to employ, for a continent is always divided into countries and the countries still further subdivided, in detail. In a great land division of the immensity of a continent we seek only genend physical characteristics, and leave more intimate study of peoples, governments, industries, and the like until we reach in tum its various political divisions. In the form going pages these smaller divisions have been given due consideration.
A satisfactory outline of North Americs, or of any other continent, should include every important physical feature in its boundaries, definitely named and in a general way located. The chief characteristics of the surface of the continent merit like careful treatment. The following may be considered a typical outline:

## North Amorics

## I. Position

1. Latitude $9^{\circ}$ to $70^{\circ} 36^{\prime \prime} \mathrm{n}$.
2. Longit: de $47^{\circ} 3^{\prime \prime}$ to $168^{\circ} \mathrm{w}$.
II. Extent
3. Length $4,500 \mathrm{mi}$.
4. Breadth (greatest) $3,000 \mathrm{mi}$.
5. Area $8,300,000 \mathrm{sq}$. mi.
6. Rank, 3d.
III. 1. Projections
(a) North

Cape Lisburne
Point Barrow
Cape Bathurst
Boothia Felix Peninsula
Melville Peninsula
Cape Wolstenholme Labrador Peninsula
(b) East

Cape Charles (north)
Nova Scotia Peninsula
Cape Cod Peninsula
Cape Hatteras
Florida Peninsula
Yucatan Peninsula
(c) West

Lower California Peninsuls
Cape Mendoceno
Cape Blanco
Cape Flattery Alaska Peninsula
2. Coast Waters
(a) North Arctic Ocean

## Goography

Dophin and Union Strait Gulf of Boothis
Committee Bay
Ferry and Hecle Strait
Fox Channel
Hudson Bay
Ungava Bay
(b) East

Atlantic Ocean
Gulf of St. Lawrence
Bay of Fundy
Massachusetts Bay
Long Island Sound
New York Bay
Delaware Bay
Chesapeake Bay
Gulf of Mexico
Gulf of Campeche
Caribbean Sea
Gulf of Honduras
(c) West

Pacific Ocean
Gulf of California
San Francisco Bay
Puget Sound
Strait of Juan de Fuca
Queen Charlotte Sound
Strait of Georgia
Prince Williams Sound
Cook Inlet
Bering Sea
Bristol Bay
Norton Sound
Kotzebue Sound
IV. Islands

1. Arctic Ocean

Greenland
Baffin Land
North Somerset
Prince of Wales Land
Prince Albert Land
Banks Land
Parry Islands
2. Atlantic Ocean

Newfoundland
Cape Breton Island
Prince Edward Island
Anticosti
Martha's Vineyard
Nantucket
Elizabeth Islands
Long Island
Bermuda Islands
Bahama Islands
West Indies
3. Pacific

Reville gigedo Islands
Santa Barbara Islands
Vancouver Island
Queen Charlotte Islands
Prince of Wales Island
Baranof Island
Kudiak Island
Aleutian Islands
Pribilof Islands
V. Surface

1. The Appalachian Highland
(a) Mountain ranges

Notre Dame Mountains
White Mountains
Green Mountains
Adirondacks
Catskill
Allegheny
Cumberland
(b) Piedmont Plateau
(c) Coastal Plain
2. The Rocky Mountain Highlands
(a) Mountain Ranges

Rocky Mountains
Cascade Range
Sierre Nevada
Coast Range
(b) Eastern foothills
(c) Coastal Plain
3. Great Central Plain
T. Drainage

1. Watersheds
2. River Systems

Atlantic System
Gulf System
Saint Lawrence
Hudson Bay
Mackenzie
Columbia
Colerado
Rivers of the Great Basin
3. Lakes

Lakes of the Appalachian High-
lands
Lakes of the Great Central Plain
Lakes of the Rocky Mountain High-
Vil. Climate

1. Temperature
2. Rainfall
3. Winds and storms

Vili. Minerals

1. Gold and silver
2. Iron

Geography
3 Copper
4. Lead
5. Other metals
6. Mineral fuels

Coal
Petroleum Natural gas
7. Building Stone
IX. Vegetation

1. Forest areas Hard-wood trees Soft-wood trees
2. Prairie regions
3. Desert regions

Geography

## X. Anmal Lefe

1. Large animals
2. Small animals
3. Birds
4. Fish
5. Insects
XI. Inelattants
6. Indians and Eskimos
7. Other nationalities
XII. Political Divishons
8. Canada
9. Newfoundland
10. United States
11. Mexico

## Methods of Teaching Geography

## Mothods in Coography

I. Purposes to be Gained
(a) In primary and intermediate grades
(1) Knowledge of immediate surroundings
(2) Local plants and animals
(3) Occupations
(4) Elementary principles of political and mathematical geography
(b) In grammar grades
(1) Principles and laws of the science
(a) Distribution of animal life
(b) Distribution of vegetable life
(c) Laws governing climate, tides, seasons, etc.
(d) Political geography
(c) Application of general laws
(1) To special cases and places
(2) Exceptions due to local conditions
II. Preparation of Teacher
(a) Knowledge of subject far beyond point class is expected to study
(b) Ability to reduce to simple language scientific data of physical geography
(c) Knowledge of general methods of teaching
(d) Study of geographical topics in the best teachers' journals
III. Aids in Teacher's Preparatton
(a) Knowledge of correlated subjects
(b) Reference works on topics of the days lessons
(c) Careful reading of current publications
IV. Equipment
(a) Globe and wall maps
(b) Indexed clipping file
(c) Modern text-books for class use
(d) Supplementary text-books for pupis' reference
V. Methode by Grades
(a) Primary grades
(1) Make local geography real
(2) Acquaint pupils with technical geographical names of local objects - Jse of maps
(a) Show relative distances and locations locally
(b) Make clear that a map is merely a picture on a small scale
(b) Intermediate grades
(1) Apply general facts from local geog. raphy to world conditions
(2) Model continents from sand, locating river systems, mountains, ralleys, with care
(3) Study cities
(a) Size
(b) Reasons for location
(c) Causes contributing oo growth
(4) Text books
(a) Endeavor to visualize text, making descriptions seem real
(b) Basis of imaginary journeys
(c) Grammar grades
(1) Tex..books should be used daily in connection with good refereuce works
(2) Compile clippings on geographial subjects
(3) Make maps from memory, drawn scale
(4) Study of types


## Geography

## Alberta

## Items of Interest

- -ris xise established as a provinere in $190 \pi$.
 $\therefore$ ar a distance as from Iand's Find to the

 a "ol quare miles less than 'rexas, the - in the Lnited States.
$\therefore \therefore$ orion and southern parts its surface - ...ter. bat the suil yields genal crops, - bern irrigaterl; the eventral part of the - ree che ordinary ranfall sulfices, is an m! ${ }^{2} \cdot$
I Atse showfall is very lisht in the Fe atul even this is frcipuently re..e wamin "Chintok" winds from the - "Athe may graze in the copen ; whic year.
$\because$ Hothtains ascend by a very - $\quad$, ...n the cast; the principal peaks - i i.fon fect: Athabasca, 1:3,700; .20; rulumlia, about 11,000; 20.
inur well-known Allerta passes - xumains: (I) (row's Nest Puss, - bhere. bumdary, thromph which + the Canarlian l'acific runa; (?) $\therefore$ a e Pass, throurh which the 're Cauarlian l'acific runs: (i) - it lib $_{\text {s, }}$ running west from the - nu t of the Saskatelucurn River, at in lisis; (4) Peace River $\therefore$ which Sir .Nexmen Mar-t:- celebratm trip to the Pacific 14 provided chiefly ly two great ther Saskarheran and the , h of which have their origin in as enall prortion at the fumthern end the Milk liwer into the Mississjppi
al rivers are the Peace, Athahatea, $\therefore$ ar, which all flow into the Hack-- though Lake Athathasa and Creat aful the North and Sonth Sa:hrerliear many triburaries, which empty
ant has an area of 2,42 square

known as the home of the redebrative "Alkerta lheyl" winter wheat. Dry-farmang is making grat alvances hore.

The midalle thind atecages four to five degress lower in teminerature in winter than the wuthern sretion, but it is less suloject to change; rumghly spraking, this is the farming distroct.

The morthern thirl has a sub-arrtic ditaze, but its low altitude gives an average summer

(UAT OE AKMS OF AIBELTA.
temperature only 1 .fic lise than Cingary, and $1 . x^{\prime \prime}$ lose than the Fitmonten district; the agricalurnil posibilities are as vet not fully oppreriatefl.
Amone wild aninuala several species of theary, wolves, panthers, whild shern and knats orene in the wosked and mountaino:s clintricts.

In the northern seretion are found many furhearing animats, ejpecially the mink, marten. beater, otter, ermilue and monkrat; it is alors a nesting-grontul for vasi unminer of ducks, kerese, swant, pelicons, cratus ath! patridies. The humting of beaver is prohititel uthtil Decensber 31, 1915. (Ser color plate faciag page +17.)

Fike, pickerel, whisefish and sturgem are the most important fishes.

There are large furests in the north and west; poplar, birch, and sevoral :arieties of pine, fir and spruce are commos.

The chief indu-cin s are farming and ranching; of catile the primepal breeds are Shorthorn and Herford, but Hobstins, Ayrshires and Jerseys are treing introdued for dairying.

## ALBERTA




## Itoms of Intorest

Alberta was established as a province in 1005.
It extends for 750 miles from north to south a great a distance as from Land's End to the morth of the Shetland Islands.
It has a tot 1 area of $\mathbf{2 5 5 , 2 8 5}$ nquare miles, about 10,000 square miles less than Teras, the hrgest state in the United States.
In the eastern and southern parts its surfices $h$ almost treeless, but the soil yields good crops, eppecially when irrigated; the entral part of the province, where the ordinary rainfall suffices, is the most fertile.
In winter the snowfall is very light in the couthern part and even this is frequently removed by the warm "Chinook" winds from the west, so that cattle may graze in the open practically the whole year.
The Rocky Mountains ascend by a very gredual slope from the oast; the principal peaks are Alberta, 13,500 feet; Athabasca, 13,700; Assiniboine, 11,830 ; Columbia, about 14,000 ; Murchison, 13,500.
There are four woll-known Alberta passes over the mountains: (1) Crow's Nest Pass, near the southern boundary, through which a branch of the Canadian Pacific runs; (2) Kicking Horse Pass, through which the main line of the Canadian Pacific runs; (3) Yellow Head Pass, running west from the northern branch of the Saskatchewan River, and discovered in 1858; (4) Peace River Pass, through which Sir Alexander Mackenzie made his celebrated trip to the Pacific (see page 169).
Drainage is provided chiefly by two great river systems, the Saskatchewan and the Mackenzie, both of which have their origin in the province; a small portion at the southern end is drained by the Milk River into the Mississippi aystem.
The principal rivers are the Peace, Athabasca, Smoky and Slave, which all flow into the Mackenzie system through Lake Athabasca and Great Slave Lake, and the North and South Saskatchewan, with their many tributaries, which empty into Lake Winnipeg.
Lake Athabasca has an area of 2,842 square miles.
The southern third of the province, increasingly mountainous as the Rockies are approached, has a moderate but changeable climate; this has been a great ranching district, but is becoming
known as the home of the celebrated "Alberta Red" winter wheat. Dry-ferming is making great advances here.

The middle third averages four to five degrees lower in temperature in winter than the southern section, but it is less subject to change; roughly speaking, this is the farming distrec.

The northern third has a sub-arctic climato, but its low altitude gives an average summer

coat of arms of alberta.
temperature only $1.6^{\circ}$ less than Calgary, and $1.8^{\circ}$ less than the Edmonton district; the agricultural possibilities are as yet not fully appreciated.
Among wild animals several species of bears, wolves, panthers, wild sheep and goats occur in the wooded and mountainous districts.

In the northern section are found many furbearing animals, especially the mink, marten, beaver, otter, ermine and muskrat; it is also a nesting-ground for vast numbers of ducks, geese, swans, pelicans, cranes and partridges. The hunting of beaver is prohibited until December 31, 1915. (See color plate facing page 447.)
Pike, pickerel, whitefish and sturgeon are the most important fishes.
There are large forests in the north and west; poplar, birch, and several varieties of pine, fir and spruce are common.
The chief industries are farming and ranching; of cattle the principal breeds are Shorthorn and Herefords, but Holsteins, Ayrshires and Jerseys are being introduced for darying.

## Coography

There are about 300,000 horses in the province. Alberis won the priso for the champion hackacy at the Pan-American Exposition, Buffalo, in 1901, and aleo for the champiun hackney stallion and hackney mare at the Louisiana Purchame Exponition, Sc. Louis, in 1904.

About 80,000 hoge are $\mathrm{B}^{2} \mathrm{n}$.ghtered annually.
The total number of cuctle is wtimated at $1,000,000$ head.

The average value of horses uruder one year If 850 ; from one to three yeare about 8100 ; and over three years, 8165.

Practically no hay or fodder is cultivated, except alfilia in the south, because there are forty-uis varieties of native grases, which make excellent hay.
There are 180,000 sheep and 150,000 swine in Alberta.

The great irrigation projects of the province will provide water for more than $3,500,000$ acres (ree page 33).
The total value of all field crops in 1010 was $816,682,000$, but in 1011 this had risen to \&17,750,000.
In 1911 Albesta produced $36,000,000$ bushels of whent, nearly one-fourth of which was winter wheat.

The average yield of wheat per ecre is over 20 bushels, ascompared with 12 te 15 bushe!s in North Dakota, Iowa, and Minnesota.
According to the Calgary Herald, the net proft per acre under wheat is $\$ 10.54$, in a good semen.
The average yield of oats per acre is over 48 buthels, the total asop in 1011 being nearly $57,000,000$ bushels.

Other important crops are barley, rye and flax.
Small fruits do well is nearly all parts; apples, crab apples and plums are the principal orchand fruits.
The government maintains ten small-fruit experiment stations in Alberta.

Sugar beets are grown in large quantities in the vicinity of Raymond, where there is a factory for the extraction of sugar; in 1011 the total production was about 15,000 tons.

The annual factory production of butter is about $2,500,000$ pounds, and of cheese about 200,000 pounds. The total value of all dairy products is nearly $\$ 1,000,000$ and there are over twenty creameries, formerly managed by the government.
Approximately $\$ 100,000$ worth of fish are talken from Alberta lakes each year; whitefish represents one-half of the total.

Rocky Mountria Part heo an area of 4,500 square milies; in 1911 this park was included in a new Rocky Mountain Foreot Renerve with a rotal area of $18,564.5$ square milen.
The mineral products of Alberta rose from $80,000,000$ in 1009 to $\$ 8,000,000$ in 1910, but fell to $80,500,000$ in 1911 .
Coal represents over ninety per cent of the total product of the mines, but building stone, clays, coppoum, natural gas and salt are found in considerable quantitiea.
About 130 collieries aro in operation and over $3,000,000$ tons of conl, one-fourth of the total for the country, are peoduced annually.
There are oves 800 aro lampe and nearly 00,000 incandescent lampo in Alberta.
According to an eatimato of the sailmay lands branch of the department of the interiof, there is about $1,500,000$ horee power available for development; the Grand Rapids of the Athebasca River furnish 100,000 horse power; the Peece River Chutes about 250,000, and the Slave Rives, at Fort Smith, about 300,000 .
There are about $60,000,000$ acres of ursurveyed land in Alberta available for agricurtura.
Over $\$ 20,000,000$ of United States capital aro invested in the province.
The value of the manufactured products rose from $\$ 1,900,000$ in 1000 to over $\$ 5,000,000$ in 1905 and $88,000,000$ in 1911.
Flour and grist-mill products represent onefifth of the total manufactures; lumber and timber products are eccond in importance.

There are over 1,600 miles of railways in operation in Alberta, 1,200 of which are iscluded in the Canadian Pacific system.

The principal railroads are the Canadian Pacific, the Canedian Northern and the nem Grand Trunk Pacific.

The liabilities due to commercial failures decreased from $\$ 410,000$ in 1909 to $\$ 205,225$ in 1910.

There are over 700 post offices in Alberta.
The bank clearings at Calgary rose from $364,815,000$ in 1908 to $\$ 150,677,031$ in 1910 , and $\$ 218,881,021$ in 1911; at Edmonton they rose from $838,488,000$ to $871,633,122$ in 1910 and $\$ 121,438,394$ in 1911.
The province has an excellent publicsechool system, a normal school at Calgary, and cot legisto institutes for eecondary education at Calgary and Edmonton and high schoois in all parts of the province. The provincial University ol Alberta, situated at Strathcona (Edmontoa


## Oengraphy


 fori ly proate lenefactions.
 woveloser inn.





 4. ananjert of fleipert's land.


 - atrur. 1 masel.



 - : a if conymari.
=-ns mat ritus are Calpary, lialmunton. - x. V1.is :he liat and Strathoman (now


## Questions on Alberta

## we li neta cirganizal as a province:

cen gowernal pree iomidy?
can area of the pmome?
Suan Scotiny can lue earved from \&un.

- .e. -2. 'a say of the surface and suil)
- Por urvat praks of the Rockier, niw \& 5 . . An pasete.


Through whicll presv dwem the zain line of tho Causdiun flauilic mat

What twis great siver aywo me no etheir smare in the province?

What large lake lies on the lentumbary luetween Aberta amil Sa-kutclewan?

What is the character of the climate?
Name several fur-lentiog animala foymal here.
Where are the large forestes fo und?
What is the area of thir Rechy Muuntain Fiotent Raxive?

What are the principal indutries"
What is the estimatcal munler of cattle in the province: (A) sheep: Of suine?

What grent irrigation propects are in operation:

H w many nes are irtigntle?
Compare the value of feld unipis in 1910 ond 1911.

What way the yield of wheat in 101l!?
What are sune uther impertiant rempu?
In what section are sugur beeve: rained extundivaly?

What is the average annual factory pror duction of butter?
What is the principal inineral prenlurt?
What part of the cond prisluction of Canala is mitred in Alberta?
Whet are the inportant manufactures?
How many miles of puitway are in operation?
What are the principal railroals?
Whit is the enipital of the proviners:
How many mankers has the lege sliture"
What was the prybation in Bumy ou 1911\%

## British Columbia

## Hems of Internst

of Brotish Columbia is sinis.
ivany-rwo tienst that of swizep-

- Lari five times that of the state
* on alty a monntainus region, the Sai-x the Cawedr or Coant lamge ……ncomering a large part of the
 -... "notra a sthe "init rior platean."
- .r ased and the Gueen Charlute $=2 x$ eninants of still another rangre. T. Bursuif I to the coast, but is uow suber
- ynowe alitude of the linekies nt the
and houndary is 8,000 feet, but the
highest punt in Britioh Columbia is Moront
 Oher hath peaks are tivinilasita, It ed fort:
 (tere Atherta, page 2? (3).
The highest pass ofer the Rorkiers is the South Finetemay or Ronandary l'ass, 7,1 fof fort.
The partially sulmerged va!leys of the Conast Range form the many tartars and sound a which are tharacteristic of the const. The const liae, including all intets, is nver $\bar{i}, 0,0$ mites long.
One the southwestern sife of the heckina is a great valley in which the Kootensy, Colunbia, Fraser, Finlay and ocher riars have their upper conrses; the bogthern part aif the prowne is dirained by tributaries of the Makenaie anl the Yuhon.


Suath) ofters full courses in arts and enginecring, od a university is also being extablished in Colary by private benefactions.
There are twenty-six Indian schools, with a meal attendance of 800 .
The capital of the province is Elmonton, shere the lieutenant-governor and cabinet reside.
The legislature consists of one house of fortyan members.
From the time of the incorporation of the Hudson's Bay Company (1670) till 1875 the distiict wes a part of Rupert's Land.
In 1875 the district of Alberta was organized ma part of the Northwest Territories and in 1005 was established as a province and the preseat boundaries formed.
Alberts received 29,859 immigrants from the United States in 1911.
The population, according to the census of 1911, is 374,663 , an incrense of 301,641 or over 400 per cent, in ten yéars.
The principal cities are Calgary, Edmonton, Lethbridge, Medicine Hat and Strathoona (now a part of Edmonton).

Guentions on Alberts
When was Alberta organized as a province?
How had it been governed previously?
What is the area of the province?
How many Nova Scotias can be carved from Alberta?
What can you say of the surface and soil?
Name four great peaks of the Rockies, also lour well-known passes.
What celebrated explorer crossed the Peace River Pass?

## Acography

Through which pase does the main line of the Canadian Pacific run?
What two great rives syitems have their source in the province?
What large lake lies on the boundary between Alberta and Sackatchewan?
What is the character of the climate?
Name several fur-bearing animals found here.
Where are the large forests found?
What is the area of the Rocky Mountain Forest Renerve?

What are the principal industries?
What is the estimated number of cattlo in the province? Of aheep? Of swine?
What great irrigation projects are in operstion?
How many acres are irrigable?
Compare the value of feld crops in 1010 und 1911.

What was the yield of wheat in 1911?
What are some other important cropa?
In what section are sugar beeto saised extensively?

What is the average annual factory production of butter?
What is the principal mineral product?
What part of the conl production of Canade is mined in Alberta?

What are the important manufactures?
How many miles of railway are in operation?
What are the principal railroads?
What is the capital of the province? '
How many members has the legislature?
What was the population in 1901 In 1911?

## British Columbia

## Items of Intorest

The area of British Columbia is 355,855 zquare miles, twenty-two times that of Switzerland nnd more than five times that of the state of Washington.
It is essentially a mountainous region, the tro great chains, the Cascade or Const Range and the Rockies, covering a large part of the area.
Between the two ranges is an elevated tract of hilly country known as the "interior plateau."
Vancouver Island and the Queen Charlotte Elands are remnants of still another range, which ran parallel to the const, but is now submerged.
The average altitude of the Rockies at the Onited States boundary is 8,000 feet, but the
highest point in British Columbis is Mount Fairweather, 15,287 feet, also on the boundery.

Other high peaks are Assiniboine, 11,860 feet; Lyell, 12,000; Robson, 13,700; Grillon, 12,750 (see Alberta, page 203).
The highest pass over the Rockies is the South Kootenay or Roundary Pass, 7,100 feet.

The partially submerged valleys of the Coart Range form the many harbors and sounds which sre characteristic of the const. The const line, including all inlets, is over 7,000 miles long.

On the southwestern side of the Rockies is a great valley in which the Kootenay, Columbia, Fraser, Finlay and other rivers have their upper courses; the northern part of the province in drained by tributaries of the Mackensie and the Yukon.

## Geography

In the southern half of the province July is the month of least and December of greatent rainfall.
The mean temperature for the year is about $47^{\circ}$ Fahrenheit.
On the mainland are found the mountain cheep and goat, bear, moose, caribou, deer, coyote and grizsly bear; the black bear, wolf, lynx, and Columbian or const deer aro also found on the islands.
Sea-lions, sew-otters, fur-meals and harborseals were formerly abundant, but are growing ecarce.
About 340 species of birds are found.
Mining is the principal industry; from 1894 to 1904 the mineral output increased from $84,225,717$ to $\$ 18,977,350$ and in 1011 to


COAT OF arms of britisi colutibla
$\$ 22,000,000$, over twenty per cent of the mineral product of the country.
About $3,000,000$ tons of cool, $2,600,000$ ounces of silver and over $\$ 5,000,000$ worth of gold ase produced annually.

About one-half of the coal mined each year is exported to the United States; most of the present coal supply comes from Vancouver Island and from the western slope of the Rockies near Crow's Nest Pass.
The Rossland, Boundary and Kootenay districts are the centers of vein-mining for gold and silver.

The output of copper is worth more than $\$ 5,000,000$ a year.
Over 4,000,000 pounds of sinc were produced in 1011.

In 1911 the value of the fisheries' products was $50,163,235$, as compared with $\$ 10,314,735$ the year before and $86,465,038$ in 100 .
The moat valuable catch is the salmon, vilued at $\$ 8,744,000$ in 1911.
The quantity of salmon packed fluctuates, due to lack of proper co-operation between the state of Washington and the province; in 1905 the pick was 1,167,460; in 1908-0 it was only 542,000 , but in 1910-11 it rose to $1,006,000$ cases.
The total catch of herring is worth about $\$ 600,000$ in a good year; most of the product is packed for exportation to China.
The seal fisheries yield about 3,800 skins a year, worth $\$ 125,000$ to the fishermen.

Shrimps, clams, cockles and mussels are found everywhere along the coast.

About 600 whales are killed annually.
Other products of the British Columbis fisheries are cod, crabs, oyisters and smelts.
There are seventy salmon canneries in the province.

Oysters from the Atlantic coast have been planted in Pacific waters but the industry is not yet of importance.
The Dominion government maintains eleven fish hatcheries, which planted $93,000,000$ salmona, mostly fry, in 1911.
The forest area is estimated at $182,750,000$ acres, of which $1,306,760$ acres have been et aside as a Dominion forest reserve.
All lands within twenty miles on esch side of the Canadian Pacfic Railway, known as the "railway belt," are the property of the Dominion government; the total area of this belt is about 17,000 square miles.
The stand of merchantable timber is estimated at 130 billion feet.
The most important tree is the Dougles fir, but cypress, white spruce, white and yellor pine, maple, hemlock, red cedar and tamanat are all important.

The manufacture of wood pulp is still in the experimental stage, $\$ 2,200$ worth being used in 1910 and 81,140 in 1911.
Log and lumber products are valued at $\$ 15,000,000$ a year.

The products of the smelters are also about $\$ 15,000,000$ each year.
The preserving and packing of fish is the third great manufacturing industry, the annual produets being valued at about $\$ 8,000,000$.

Minor industries are the manufacture of flour, bread and foundry products.

Geography
The amual total of manufactured commoditios bebout $\$ 50,000,000$.
Onts represent about eighty per cent of the total value of field crops; in 1911 the total was $\$ 1,290,000$.
The average value of farm lands is $\$ 74$ per acre, as compared with $\$ 38.50$ for Canada as a whole; the high value in British Columbia is due to fruit-farming.
In 1001 there were 7,400 acres in fruit farms, in 1911 about 110,000 acres.
Apples are the principal truit, but peaches, apricots, almonds, small fruits and grapes are being succesafully cultivated.
1,200,000 pounds of butter were produced in the factories in 1911, but nearly four times as much was imported in addition.
108 petents of invention were granted in 1911 to citizens of the province.
There are about 400,000 incandescent electric lights in use in British Columbia.
The province has about eighty saw mills.
The Canadian Pacific owns two large lines of steamships running from Victoria and Vancouver: (1) the Empress, to Japan and China; (2) the Audralian, to Honolulu, Fiji Islands and Sydney.
There are 1,832 miles of railroad, of which over 1,200 are included in the Canadian Pacific
system.
There are three classes of schools-common, graded and high-all free and undenominational.
There are two colleges in the province, McGill University College of British Columbia at Vancouver, one of the branch colleges of McGill University at Montreal, and Columbia College at New Westminster, affiliated with the University of Toronto. These will be absorbed by the new provincial university at Vancouver.
There are 62 Indian schools, with a total attendanue of 2,225 .
There were 204 branches of Canadian chartered banks in the province at the end of 1911.
On the basis of the census of 1911 British
Columbia has twelve members in the House of Commons instead of seven as before.
The number of Indians on government agencies was 24,338 in 1911.
The population increased from 178,657 in 1901 to 392,480 in 1911, an increase of 119 per cent.
The average density of population, 1.1 per quuare mile, is less than that of any other prov-
ince.
A graduated income tax is in force.

## Coography

Geographical explorations of the Pacific const began with Cook's voyage in 1778.
Vancouver (see page 189) surveyed almost the entire coast of the present province.
From 1821 to 1849 the country was controlled by the Hudson's Bay Company; it then hecame a province under royal government.
British Columbia joined the Confederation in 1871, one of the conditions being that the Canedian Pacific Railway should be finished as quickly as possible.
The principal cities are Vancouver, on the mainland, Victoria, the capital, on Vancouver Island, and New Westminster, Nanaimo, Rossland, Nelson, Prince Rupert are also important.

## Questions on Britith Dolumbla

What is the area of British Columbia? How does it compare with Switzerland? With the United Kingdom?

What is the character of the surface?
Name the two great mountain chains and three of the highest mountain peak
How was Vancouver Island formed? How long is the coast line?
What are the common wild animals found in the province?
Which are the principal rivers? In what direction do they flow?
What is the total forest area?
What is the principal industry?
What is the importance of the mining industry in British Columbia as compared with the rest of Canada?

Where are the coal-mining districts? The gold-mining?

What other minerals are important?
What is the principal product of the fisheries?
What percentage of the total does it represent?
What is the average value of the year's catch?
How do the fisheries of British Columbia rank?
How many salmon canneries are there in the province?

What is the "railway belt'"?
What tree furnishes most of the lumber cut?
What is the total value of log and lumber products?
What is the acreage devoted to fruit-farming? Which districts are especially famous for fruits?
Name five fruits raised in abundance.
How many miles of railroud has British Columbia?

## Coography

How many representatives has the province in the Dominion House of Commons?
What is the population according to the last censuus?

Name five of the largest cities. Who was Vancouver?
When did British Columbia join the $\mathrm{Com}_{\mathrm{o}}$ federation?

## Manitoba

## Items of Intorent

Manitoba lies nearly midway between the Atlantic and the Pacific consts.

Its area in 1870, when it became a province of the Dominion, was 13,500 square miles; in 1881 its area was increased to 73,732 , only 10,000 of which were land; by an act of Parliament during the session of 1912, the province was further enlarged by the addition of a part of the district of Keewatin, so that its present area is 251,832 square miles.

The word Manitoba is a contraction of two Indian words, Manio (the Great Spirit) and Waba (the "narrows" of the lake); this strait

in Lake Winnipeg was a sacred place to the Crees, who were impressed by the sound of the wind rushing through the narrows.
The word was formerly pronounced Man-itobd', with the accent on the last syllable, but the accent is now generally placed on the syllable next to the last.
The drainage of the province is entirely northeastward into Hudson Bay
The principal rivers are the Winnipeg and the Red, with its tributary, the Assiniboine, both of which empty into Lake Winnipeg, and the

Nelson, which connects Lake Winnipeg with Hudson Bay.
The highest point in the province is in the Porcupine Mountains, 2,500 feet above sea leve.

The surface is chiefly a prairie region, but the river banks are fringed with trees, sometimes forming forests of considerable size.
The Manitoba forest reserves have an aread 3,600 square miles.

Aspen, maple, oak, elm and willow are the important varieties of trees.
The strawberry, raspberry, currant, plum, cherry and grape are native fruits.
Agnculture is the principal industry; the fot lowng figures in bushels give an Idea of its growth.


The Dominion government maintains an experimental farm of 670 acres at Brandon.
The acreage under wheat is about $3,000,000$, under outs about $1,300,000$.
Factory dairying is still in its infancy; there are now 23 creameries and 31 cheese factories a operation, with a totol annual product valued at over $\$ 600,000$.
The total value of dairy products is about $\$ 1,600,000$ a year.
The potato crop was $5,122,000$ bushels in 1911, an average of 207 bushels per acre.
All classes of live stock, except horses, shor a slight decrease in 1911 as compared with each year since 1908; the number of horses increased from 230,926 in 1908 to 244,987 in 1910 and to 251,800 in 1911.
There are great possibilities in poultry raising; about 700,000 chickens and 120,000 turkers were sold by farmers in 1911 but there were alo large imports of poultry and eggs for hame consumption.


## Goography

How many representatives has the province in the Dominion House of Comnams?
What is the population acronding to the last census?

## Goography

Name five of the largest sities.
Who was Vancouvery
When did British Columbia join th. federation?

## Manitoba

## Items of Interest

Manitoba lies nearly milway lixtwern the Atlantic and the Pacific coasts.
Its area in $1850(1)$, when it beenme a province of the Bominion, was 13.000 square miles; in 1895 its area was increasul to 73.732 , only $10,(\mathrm{OH})$ of Which were hand; by an act of Parlizment during the seasion of 1012, the provinee was further enlarged by the aldition of a part of the distriet. of Keewatin, so that its present area is $2.51,832$ square miles.
The worl Manitoba is a menitraction of two Indian words, Manito (the (ireat Spirit) and Wula (the "narrows" of the lake); this strait


COAT WF ARM\& Mi MANITUGA
in Lake Winniper was a murpel plater to the Cries, whe were impreswed ty the sumbl of the wind rushing, through the narmows.

The word was formerly promemaced Mon-i-80ba', with the necrent on the lase cyllable, bit the acrent is now generally places on the sythable next th the lam.

Thes danage of the province is entirely nor heontward intu Hulson Hay
'She principal rivers are the Winnipeg and the Hed, with its tributary, the A siniboule, hoth of which enipty iut, Lake Wiusipeg, and the

Nelson, which romects Iake Winnim; e IIudson Bay.
The highest point in the province is Pormpine Mountains, 2,500 feet alrove sel

The surface is chiefly a prairie region, th . river banks are fringed with trees, sumbe. forming forests of considerable size.

The Manitoha forest reserves have at as 3,600 square miles.

Aspen, maple, oak, elm and willow important varioties of trecs.
The strawberty, raspherry, currant: cherry and grape are native fruits.

Agreulture is the principal industry ; + lowng figures in bushels give an ilean growth.


The Dominion government mainta exprrimental farm of 600 acrey at Brand
The acreage under wheat is abotit :i: under veets alxout $1,300,(x \mathrm{~m})$.
Fhetory dairying is still in its infanare now 23 creaneries and 31 cherew f.t. operation, with a total anmual prewhet.. over semo, (0)
The toral value of dairy produet: $\$ 1,600,000$ a year.
 an average of 207 bushels per arpe.
All elasses of live stack, exmpt for, a slight deerense in 1911 has eompatai an:
 from 2300 Pe 6 in 1914 to $24+, 987$ in :4.9. . 2.51,800 in 1911.

Thare are great possibilities in paming is -
 urre sold hy farmers !n !al! ! hut the ex yore an large imports of poultry aud equ. if eou consumption.


## Goography

There are 161,000 milch cow and 135,000 sumes in the province.
The products of the fisheries in 1011, moatly whitefich and pickerel, were worth $81,302,000$; I cko Winnipeg contributes about half the total.
The mineral products are worth over 81,600 ,000 a year, chiefly cement, clayn, ayprum and building otone; this is lene than two per cent of the totel mineral production of the Dominion.
Large depoits of metals and cool are said to eist in the Keewatin district.
Manitobs was the first province to set aside one rection of land in each township for school purpoees.
Tho Manitobm Agricultural College at Winnipes was first opened in 1008; its new buildings are estimated to cont $\$ 1,000,000$.
The provincial univeraity stands at the hend of the educational ayitem.
Bark clearings at Winnipeg mere over one bllion dollars in 1011; only Montreal and Toronto have a greates total.
The total assesed valuation of property by municipalities is $\$ 300,000,000$.
The population of the province in 1011 was 455,614, an increase of 78.5 per cent in ten yeara.
There are about 3,230 miles of railrond in opention.
The principal cities are Winnipeg, Brandon, St. Bonifuce and Portage la Prairie.
There are 180 branches of chartered banks in the province.
Manitoba is entitled to fifteen members in the House of Commons on the basis of the census of 1911; this representation will remain unchanged until after the census of 1921.
In 1911 one hundred and two patents of invention were issued to citizens of Manitoba by the Canadian patent office.
The manufacturing industries yield an annual product of nearly $\$ 40,000,000$. The most important products are flour and allied products, which form twenty-five per cent of the value of all manufactures; Manitoba ranks second only to Ontario in this industry. flour? tion?

## Oeography

Other mapufactures, in the order of their importance, are $\log$ and lumber products, alaughtering and meat products, printing and publishing.

The Dominion government maintains three fish hatcheries, two on Lakn Winnipeg and one on Lakh Winnipegonis; all three handle only whitofish.

There are 62 Indian schools, with a total attendance of 1,700 boys and girls.
The Indian population of the province is nearly 14,000 .

## Groestions on Manitobs

What is the precent area of Manitoba? When Whs the last change made in the provincial
boundaries?

What is the origin of the word Manitoba? What are the principal rivers?
Of what drainage system are they a part?
What is the highest point in the province?
What is the general character of the surface? What efforts are being made to improve the conditions?
What are the important native trees? Where are they found?
What are the two great grain crops?
What can you say of the importance of dairying? Ot agriculture as a whole?
What is the screage under whent?
What is the average potato crop?
What is the probabie future of poultry raising? Why do you think so?

Name three of the principal mineral products. How does Manitoba rank in the production of
Narne several other manufactures.
How many miles of railroad are in opera-
How many representatives has the province in the Dominion House of Commons?
What was the precentage of increase in population between 1901 and 1911? What was the population in 1911?
Name the five largest cities. Which of these is the capital?

## New Brunswick

## Items of Interest

New Brunswick is 230 miles long from north to south, and its greatest breadth is 100 miles.
Its conast line is about 550 miles long.
The area is 27,985 square miles, slightly amaller than Scotland.

The surface is undulating in the eastern part, but in the north and northwest are several low ranges of hills, an extension of the Appalachian
system.

The highest point in the province is Bald Mountain, 2,604 feet.

## Geography

New Brunswick is a network of riven, bays and Iakes; the principal rivers are the St. John, Miramichi, Restigouche, St. Croix, Petitcodiac and Richibucto.
The 8t. Joha, which rises in Maine, is over 450 miles long, and is navigable for vesuels of moderate tonnage from the city of St. John to Fredericton, a distance of 88 miles.
All the sivers have a general easterly direction.
The Bay of Fundy has a length of 140 miles and an extreme width of 45 miles; it is noted for its high tiden.
The Basin of Minas, an extension of the Bay of Fundy, is the scene of Iongfellow's Evangeline.
The Bay of Chaleur is 90 miles long.


COAT OF ARMS OF NEW BRUNSWICK
There are many excellent harbors; almost every river mouth is a deep and broad inlet.
The average mean temperature for the summer is $60^{\circ} \mathrm{F}$. and in winter $19^{\circ} \mathrm{F}$.
For the last thirty years the average annual rainfall is 32.6 inches.
The forest area is estimated at 20,000 square miles; black spruce, hemlock, cedar, birch, beech, oak, and ash are the principal kinds of trees.
In 1902 the provincial government set aside tract of 10,000 square miles as a national par_ and game preserve.
The value of the wood used in the making of pulp increased from $\$ 119,620$ in 1910 to $\$ 251,858$ in 1911 ; there are four pulp mills in the province.

In 1911 the field crops of the province were worth $\$ 16,797,000$; hay and clover form the

## Ceograply

moot important litem, with a total of manty
$87,000,000$.
$8,627,000$ bushels of potatoes were raised im 1011, an increase of $2,560,000$ over the crop of 1010.

The oat erop is about $6,000,000$ lushels.
Nearly $4,000,000$ busaels of tunnips are nied annually.
The only other field crop of importance is buckwhert, with a yield of $1,600,000$ bushels in 1011, an increase of 20 per cent in one year.
The yearly output of factory-made butter is about 850,000 pounds; of cheese, nearly 1,230 p 000 pounds.
New Brunswick has 225,000 head of catth, 66,700 horses and 03,000 swine.
The recent law permitting the shooting od stray dogs without liability and the increased use of woven instend of barbed wire for fencelin largely responaible for the increase in the number of sheep from 143,000 in 1910 to 100,000 in 1911.
The estimated annual crop of apples is 650,000 bushels; about 600,000 quarts of berries and small fruits are raised.
The blueberry, raspberry and cranberry an native fruits.
The provincial government has establishod twenty-six model apple orchards in differat parts of the province.
The fisheries' products are worth over $\$ 4,000$, 000 a year.
Herring yields about twenty per sent of the total value, lobsters fifteen per cent, cod tredre per cent, amelts twelve to fifteen per cent und sardines ten per cent.
The capital invested in fishing implement tackle and boats is $\$ 2,500,000$.
There are 185 lobster canneries in New Br . wick.
The government of the province leases its fishing waters to be used for "fly-fishing" only; licenses are granted for five or ten years to the highest bidder.
The total mineral production is $\$ 600,000$.
New Brunswick produced 1,500 barrels $\alpha$ petroleum in 1911, and about 50,000 tons of cold

Gypsum is the only other mineral of commercial importance, except building stones.
The manufacturing industries of New Brusswick produce about $\$ 30,000,000$ worth d commodities a year.
The most important branch of manufacture is $\log$ and lumber products, about $\$ 7,000,000$.
Other products, in the order of their import ance, are cotton goods, foundry and machion-

## NEW BRLNSWICK. .NOA SCOTIA AND <br> PRINCE EDIWARD ISLAND



New Brunswick is a metwork of nivers, bay and lakes; the principal riven are the St. John, Miraunichi, Jestigowehe, St. Conir, Betitculiac and Richilueto.
The St. John, which risea in Maine, is avee 450 miles long, and is navigalle for venvels of snodernte tonnage from the city of St. Jolan to Fredericton, a dintance of 88 iniles.
All the rivers have a general carterly direction.
The Bay of Fundy has a length of 140 urileo and an extrense width of 45 miles; it is noted to: its high tides.
The Basin of Minas, an extenvion of the blay Fumily, is the srene of Tonkfellow's Evangeline The Bay of Chaleur is 90 iniles long.

coat of imms ur siw brenswick
There are many encellent harlwirs; almost every river mouth is a derp and broud inlet.

The wrrace incon temperature for the summer i= thi" $\mathcal{F}$. and F , winter $19^{\circ} \mathrm{F}$.
Fior ti.e lant thirty years the average annual rainfall is 3215 indtus.

The furcost armin is estimated at 20.000 square rultes; back spruce, hemoork, cevar, hireh, tutch, ouk, and anh are the principal kinds of trew.
In 190: the provinfial guvermment set aside a tract of $10, \mathrm{~mW}$ erpuare miles as a mational paris and gane procern.
The value of tie wonal unel in the making of
 in 1911 : there on- farer falp muths is tir provine.
In 1911 the firld. Thy of the province were

rasst limportant item, with a total is ... 87,000,000.
8,6iz7,000 bushels of motatuen want
1911, an increase of $2,500,0 \mathrm{ON})$ over : 1. 10.

Amerly $4,000,000$ bualels of turnii, . a mur uly.
only other field crop of inju.
(the is at, with a yield of 1, ew, (0x)
1"1 a. iucrease of 20 per cout in us.
It a carly oitput of firtory-inal



I'runswiek has 2:5,00n hrall

b. $\cdot$ itting the 4 . ..c nubility and the. cad of bartayl wire fir 1.1 nell whte for the incrense in :1

The c. .1: "i annual crup of applan:
 snall frits are raised.
The bueberry, raspherry nad cran- :native fruits.
The provincial government han: a twenty-six moxlel apple orchards in parts of the proviner.
The fisheries' prolucts are wurthon-5 000 a year.
lierring yields alout twenty pra.. total value, lolisters fifteen per celli. : per cent, smelts twelve to fiftern $\mu^{\mathrm{K}}$. sarlines ten per cent.
The rapital investel in fishin: $i$ tackle and lonats is $\$=, 500,000$.
There are 18.5 lobster eannerim: :7 wick.
The government of the prowne fishing waters to be used for "Hy-fi liernsers are granted for five or tin: highout bidder.

The total mineral proxiurtion i, \&ar
New Brunswick proxhred 1, ive petroleum in 1911, and akout $50,(x)$ :...
Gypum is the only other min: . mercial importumee, exerpt Inilhlins...
The manufucturing indussriew of : wick produce about $s: 30,(x)($ ) (wa) commodities a year.

The most important branh of naaits is $\operatorname{iog}$ and Inmber products, atnutit $s i$ Other pronlucts, in the order of times ance, are cotton goods, fuundry and c:a

## NEW BRUNSWICK. NOO SCOTIA PRNCE EDNTARD ISLAND


$!$

## Geography

Judging by the length of the const line as compared with the length of the province from north to south, what would you say of the character of the const?

What is the highest point in the province?
Name five important rivers. In what direction do they fiow?

Where is the Bay of Fundy? The Basin of Minas?
What is the average annual value of the lumber products?
What are the leading crops?
What was the size of the potato crop in 1911?
Is dairying an important industry?
What can you say of the growth in sheep ranching?
What is the principal product of the fisheries?
Name three other fishes caught in large quantities.

How is the right to use New Brunswick waters for fishing acquired?

What are the most valuable minerals found?
Compare the importance of manufacturing with other industries.

What are the leading manufactures?
What is the population of the province?
Name four of the largest cities.
Of what French province was New Brunswick originally a part?
When did it become a separate province?

## Itoms of Interest

The province of Nova Scotia is composed of the peninsula proper and the island of Cape Breton.
Its area is 21,428 square miles.
The isthmus of Chignecto, which connects it with New Brunswick, is eleven and a half miles
wide wide.
The peninsula is intersected by several chains of hills, the Cobequid Mountains being the principal ones.
In Cobequid Bay, the eastern end of the Basin of Minas, the tides have risen as high as fiftythree feet; in the tast coast of the province the tides seld I, ed seven feet.
Sable Islan . . niles southeast of Cape Censo, is conpc of shifting sands, with dangerous sandbars that run out into the ocean; because of the rimay wrecks which have occurred here it has long been known as "the graveyard
of the Atlentic."

The principal rivers are the Annapolis, Avon, Shubenacadia, Musquodoboit and the East, Middle and West rivers of Pictou.
Lake Rossignol, in Queen's county, is the largest of the freshwater lakes.
There is considerable game, including moose, caribou, duck, teal, partridge, snipe and plover; the game laws are strict and well enforced.
Bears, foxes and wildcats are still found, but wolves are extinct.
The fisheries of Nova Scotia are the most important in the Dominion. In 1911 the value of the catch was $\$ 7,133,000$ in the green state and $\$ 10,110,000$ as marketed, or more than onethird of the total for Canada.
The industry employs nearly 27,000 men and $35,500,000$ in capital.
The principal product of the fisheries is cod, with a value of over $\$ 4,000,000$. Lobsters are second in importance, with $\$ 2,271,000$ in 1911, and haddock thind with $\$ 1,138,000$. Herring,

Goography
hake, pollock, meckerel, halibut and salmon are next valuable, in order. The lobster fisheries use 720,000 traps; there are over 200 lobster canneries in operation.
The value of all field crops in 1911 was $814,297,000$.
The total value of farm property is over $\$ 900,000,000$, over two-thirds being the value of land and buildings.


COAT OT ARMS OF NOVA BCOTLA
Hay and clover were wor $: 300,000$ in 1911, only $\$ 200,000$ less than the total of all fiela crops in 1901.
$5,000,000$ bushols of potatoes, $4,000,000$ bushels of turnips and other roots, and $2,471,000$ bushels of oats were raised in 1911.
Other important field crops are wheat, barloy and alfaliz.
The exports of apples have risen from 70,000 barrels in 1880 to $1,250,000$ barrels in 1911.
There are thirty-five model orchards, maintained by the Canadian government.
Nova Scotia captured the highest award for apples at the Royal Horticultural Show at London in 1909.
The crop of fruits and vegetables is valued at $\$ 3,000,000$ a year.
The amount of live stock changes very little from year to year, the number of horses and milch cows increasing slowily and the number of other cattle and sheep decreasing in about the same ratio. The following table gives the number of each class in 1911 and 1908:

302

## Goography

|  | 1911 | 1908 |
| :---: | :---: | :---: |
| Horres. . | 64,000 | 7,857 |
| Milch cows. | .151,700 | 143,362 |
| Other cattle | .180,000 | 190,907 |
| Sheep. | .351,000 | 373,392 |
| Swine. | 70,000 | 74,063 |

Nova Scotia produces annually $6,000,000$ tomes of coal, nearly one-halt of the total for all the provinces.

The' value of all mineral products is', ore $815,000,000$ a year.
The total amount of gold produced from 18 SM to 1912 was approximately $1,000,000$ oumen, at the high average value of $\$ 20$ an ounce.
The production of gold is gradually diminith ing, being only $\$ 200,000$ in 1911 .
Nova Scotia produces each year 350,000 tous of pig iron, worth about $\$ 12$ per ton.
Brick and fire clays, building stones, cemant and sypsum are the remaining minerals of greatest commercial importance.
$\$ 40,000,000$ worth of manufactured product are made in the province each year. The smelting industry represents about onesirith of the total, $\log$ and timber products about ous eighth.

Other prominent industries, with averge annual production, follow: canning and prearr. ing fish, $\$ 2,500,000$; foundries and machine shops, $\$ 2,000,000$; clothing, both men's and women's, $81,500,000$; bread, biscuits and coerfectionery, $\$ 1,300,000$.
The wood-pulp industry used $\$ 111,119$ worth of wood in 1911, an increase of nearly ten pe cent over 1910.
The province has 1,350 miles of railmay.
There are wireless telegraph stations at Hol ifax, Cape Sable, Sable Island and Glace Byy.

The population, according to the census d 1911 , is 492,338 .
The density of population is 23.3 per squm mile.
Primary education is free and conpulson; secondary education is also free but voluntry.
The universities are King's College at Windsr, Acndia University at Wolfville, St. Frameas Xavier at Antigonish, and Dalhousie at Halitiry all except the last are denominational.
The province supports a normal school and schools of agriculture, horticulture and tacth nology.
Until 1881 Nova Scotia had the largest sis ping tonnage, in proportion to population, it the world.


## Geography

What is the term sometimes applied to Siable Island? Why:

Name the principal rivers.
Waht kinds of game are found?
How do the fisheries of Nowa Axytin ranks
What is their principal proxuct? Name four other fishes of importance.

How many people are employwl in the fisheries? What are the leading crups:
What can you say of the growth of the trade in apples?

In the production of what mineral does Nova Scotia lead the Domiuion?
Is the proxiuction of gold increasing?
Name the four leading manufacturas in the onder of their importance.
Which are the principal universities?
What was the total population an 19:1? The density of population?

## Ontario

## Theme of Iaterost

 Cot
3 "te - ionear puquistion than any other


 What ishes saxt fin thtwe and the St. Lew-

 The it en:minar it in divided into sections
 74.





 3x.t. 9 :
5. Nese. Be. Dot ahre the invel of the
 ... Wrater the Niprigon hiver is



 - ......s in Mis Otawa, Trent and $\therefore$ and as: She Allany, Mmse.

The following table will pive wane ileat of the nomnal clinate (the cemberntur: it Fahrenheit degrees and the rasofall us iuches)


COAT (3F ARMN OF GYREAR(t)
for the southwestern, eastern an.I inurtiwestern portions:



## Goography

## Goography

Cape Breton was visited by the Cabots ( 100 Folume I) in 1497-98, but no attempt at permanat colonisation was made till 1604 , when Port Rogal was founded.
Until 1673 the province was in constant dipute between French and English; by the Thenty of Paris in that yeur Frasce resigned dis chim.
If 1755 the governor, Charles Laurence, edenal about 6,000 French settlers exiled; thin is the historical basis of Longfellow's Eranaline.

## Quentions on INove Heotic

What is the area of Nova Scotia? What large island is a part of the province? Where is the isthmus of Chignecto? What is the principal range of mountin?

What is the term sometimes applied to Sable Island? Why?

Name the principel rivers.
Wabt kinds of game are found?
How do the fisheries of Nova Scotia rank?
What is their principal product? Name four other fishes of importance.
How many peopleare employed in the fisheriea?
What are the leading crops?
What can you say of the growth of the trade in apples?
In the production of what mineral does Nova Scotia lead the Dominion?
Is the production of gold increasing?
Name the four leading manufactures in the order of their importance.

Which are the principal universities?
What was the total population in 1911? The density of population?

## Ontario

## Itoms of Intorest

Ontrio has an ares of 407,262 square miles, - which about 41,000 are water.

It has a larger population than any other province; the total in 1911 was $2,523,208$.
Nime-tenths of the inhabitants live in less than - tenth of the area, the district between the Great Iakes and the Ottawa and the St. Lawmace rivers.
Geologically this district is a part of the plain d the St. Lawrence. It is divided into sections by the Niagara escarpment, a line of cliffs runming from Queenstown Heights west to the head d Lake Ontario near Hamilton and then northwat to Bruce Peninsula on Georgian Bay.
The altitude of the northeastern part is from 200 to 700 feet lower than the southwestern.
The Niagara escarpment causes falls on the rivers which plunge over it, Niegara Falls being the most important.
Lake Nipigon, 852 feet above the level of the ma, may be regarded as the headwaters of the St Lawrence system, for the Nipigon River is the liggest tributary of the Lakes.
The north shore of Lake Superior is bold and rugred, with few settlements.
The principal rivers, all tributary to the St. Larrence system, are the Ottawa, Trent and Thames.
In northern Ontario are the Albany, Moose, Mimanabi and Abitibi rivers, which flow into Hudson Bay, but none of these is navigable, exapt for canoes.

The following table will give some idea $\alpha$ the normal climate (the temperaturo in Fahrenheit degrees and the raunfall in inches)


COAT OF ARMS OF ONTARIO
for the southwestern, eastern and northwestern
portions:

|  | Torento | Ottame | $\begin{aligned} & \text { Port } \\ & \text { Arthur } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Det. Jth., End Fob. | 33.7 | 13.8 |  |
| Junch, April, May. . . . . . . | 40.6 | 38.8 | 81.1 |
| June, July, Ausurt. . . . . . . | 65.4 | 67.1 | 88.8 |
| A rerage anual rainiili, ing | 83.98 | 84.8 | 38.8 |

## Coograyky

Is the Ortawa valley are quariod of miod
 and corumdun．

Thin district sialde mose corundume，when in and to a merbutitute for cmory，than any other in the Dominion．
Gold，eoppow，loed，irom and arwiele are aloo tound in this valley．
Prectically all the divere comes frome the Cobelt diberict；the anmul production escends $80,000,000$ eunces．
Ontario produces 20,000 tome of sickel anmally，more then hali of the world＇s total aupply；ivearthe ase experted to the United Stater．
Natural geo is produced in Wolland and Evas countios and exported in pipen to Burfalo and Detroit．
About $90,000,000$ gellone al petroleum aro produced yourly，prectically the whole output of Caneda．
$81,000,000$ worth of cement is manufactured each your．
The Porcupine district，the newent gold－ producins camp in eastern Canada，produced more gold in alx months in 1911 than all Ontario in 1910.

Ontario produced 47，000 tons ol pis iron in 1010；the production of 1911 was over 520,000 tons．
The marble used in the Parliament Buildingo at Ottawa was quarried near Arnprior，in Renfrew county．
$20,000,000$ pounds of copper were produced in 1911，principally as a by－product of the nickel cres．
Ontario＇s mineral products ase worth about $830,000,000$ a year．
The total value of all field crops in 1911 was $\$ 193,200,000$ ，as compared with $\$ 204,000,000$ in 1910.

The capital invested in agriculture is estimated at $\$ 1,200,519,000$ ．
Farm land is worth about $\$ 50$ an acre．
Hay and clover are the most valuable cropa， worth $865,000,000$ a year．
Other important crops，with their value in 1911，are as follows：onts，$\$ 37,000,000$ ； wheat，$\$ 16,730,000$ ；potatoes and other roots， $\$ 24,000,000$ ；corn，$\$ 21,623,000$ ；bariey，$\$ 9,645,-$ 000.

Ontario also produced 162，000 tons of sugar beets，and 169,000 tons of alfalfa．
Flax is raised mainly for fiber；the annual crop is about 120,000 bushels．

Over 870,000 ecres are mader archend and anden cultivntion．
Thero ase 12，000，000 applo tros in the provinct．
 aported to Grmet Britain．
The countios of Lincola，Folland and Weat woeth produce os per cant of the grapes prom in the provinces；the anaual output is ebout 20,000 toos，of which ono－thind is magufectured into wima．
Thase are seventy fruit and vegetablo canairy and preverving factorie．
Over 900,000 bushals of beans ase nind anmually．
Thare are more than 100,000 colocies of bre．
Ontario exports more chave than the whath United Statem
The following table will give some ides of the growth of the dairying induatry（thowe figum sule only to fectory products）：

|  |  | Pounde |
| :---: | :---: | :---: |
| 150 | Cume |  |
| 50 |  | 13.4000 .00012 |
|  |  |  |
|  | － |  |

Toronto usee from 2，000 to 3，000 ninety－poud bags of potatoes a day．
Other important vegetable crops are appor agus，caulifiower，peas，tomatoes and oniona．
The following table gives the number of liw stcct on the farms of Ontario（Consus and Statictice Monthly，July，1912）：


The fisheries of Ontario yield a product of over $\$ 2,000,000$ a year；trout，whitefish，freh herriug and pickeral are the most important varieties in the order named．

The trout catch was worti） 8690,000 in 191 ．
The total number of men employed in the fisheries is nearly 4,000 ．The capital investod in fishing equipment was $\$ 1,165,229$ in 1911 ， about 8 per cent of the total for Canade．Tups and smacks represent one－third of the capital ic：Ontaria．
The area of forest land in the provinct is estimated at 102,000 square miles；the foreor reserves include an area of 17,860 square mita， with a stand of seven billion feet of pine．

## cougraply

Th ens fourtan mille, uniag 218,000 cords (0in1) a pulp wood and manufecturing thirty (rer curt of the wood pulp made in Caveda. miteo conde of apruce wood wroe uned in wil in tho menufecture of wood pulp alone.
Ontrio und over $02,000,000$ feet of timber b 1011 in the produotion of cars and furniture; 1, maplo and dim are important.
ITe provinice loads in the manufacture of frithers and of murical imitruments.
Tho maple humber cut in Ontario is 87 per ax of ell the maple usad in the Docinion.
Nimety per cent of the acricultural implements al ribicos manufectured in Canada ase made moneria.
To produes of all the mamufecturing industinded the province are worth over $\$ 400,000,000$ a yue, pearly double thowe of Quoboc, which mila meond.
The principal manufectures, with their uprouimate annual value, are as follow:
Legead humber products.
$850.000,000$
Threr and grist mills products. . . . . 40,4:0,000
smintitering and meat pecking.... $20,000,000$
Fandry and machine abop products $19,000,000$
Butter and choce.................. 18,000,000
Sendting.
$13,000,000$
Piuting and publishing............. . 12,000,000
Bond, biscuits and confectionery. . 11,000,000
Yaniture, etc. ................... $0,000,000$
Electical apparatus and supplics.. $\quad 9,000,000$
Gria shipments from Port Arthur and Fort William by veseel in 1911 totalled $80,000,000$ bubels. The Canadian Northern's griin elovator at Port Arthur is the lurgest in the world; it has a capacity of $7,250,000$ buable. (See page 320.)
Ontario has 8,250 miles of railway.
There are over 1,000 branches of chartared bunlos in the province.
The total annual bank clewringe at Toronto eve about $\$ 1,800,000,000$; the clearings at Bratford, Hamilton, London and. Ottawa are extimated at $\$ 100,000,000$, melking a total for the - -wince of about $\$ 2,240,000,000$.
C. $n, \cdots$ is the premier provinee of Cannda; ith...! !uger population, its crops and mineral peoteces are more valuable and its manufacturing induastries are greater than those of any other province.
The principal cities (over 20,000) are Toseato, Octawn, Hamilton, London and Brant-
ecogrintiv
The populatione of the followiog eftien are from 15,000 to 20,000: Bodlin, Fort William, Gudph Kinguton, Peterboso and Windsop.
Thres is in fores a direet tess on corporations (insurances, luen and railway comppanios), an inheritanco tax, and a liquor licane tax; mone of the provincee has power to impone indisuct taxation
In 1707 the first appropriation wae made for an educational aystem; 600,000 enve ol crown Innds were set aside.
School attendance is compulsory for children between the ages of eight and fourteen.

The primary schoole are free and undenominational; there are also a number of separate schoole for Catholic children.
Secondary education is provided by high schools and collegiste instituter.
The provincied univerity in situated in Toronto; other important educational inotitutions are Upper Canada, College, founded in 1820; MraMiaster, Queen's, Kingaton, Wentera and Ottawa universities.
Over eighty per cent of the temehers in the public schools of the province are women.
The province aupports eeveral model and normal achools, a dairy school and a large school of mining at Kingston, and the Ontario Agricultural College at Guelph.

There are also 93 Indian schools with a total attendance of over 8,000 children.

The total Indian population of the recervetions is 18,000 .
The first white man known to have net foot in what is now Ontario was Champlain; in 1613 be explored the Ottawa river as far as Allumette Island and in 1615 be reached Georginn Bay by way of the Ottam.
In 1763, when Canada was ceded to Great Britain, there was a great revolt led by Pontiac in a vain attempt to drive out the white men.
The present province was formed into Upper Canads in 1791, but in 1841 it was again united to Lower Canade under one government. The population of Ontaric in 1791 was probably less than 20,000; in 1824 it was 150,066, and in 1841 it was 455,688 .

## Questions on Ontario

What is the population of Ontario? The aren?

In what part of the province do mont of the inhabitants live?
Describe briefly the aurfince of this district.
What is the everege density of population?

What is the difarmes between the lovels of Lake Difo and Lake Oatario?
What is the Nigemes cecorpanatt?
What is the character of the moerth chore of Lake Suparior?
What ase the throe principel rivers?
For what minsuals is the Ottame Valley fancous?
Where is moet of the cilvor mined?
What part of the woold's supply of nickel dow Ontario produce?
What is the extcat of the production of petroloum?
For whet in the Porcupine district famous?
Where was the marble for the Parliemcat
Building at Ottawa quariod?
What is the totel anoual value of Ontario's mineral productu?
What are the priacipel erope?
What io the cetimated totel of capital invected in acriculturs?

What fults ane raleod extenaively?

What cas you syy of the importasor of Ontario's daliryingt Pidhotioe?

What io the eatoat of the forest area?
How dows the province malk in the proder. tios of wood pulp?
How dow the total value of manufecturn compare with that of other provinees?

Name the hading manufecturse, with this approximato anaual value.

Whase is the largent grain elevator in the woold?
How many milow of railway are in the prov. fince?

Why is Oatario justly called the premier province of Canada?
Name ifve lasge eltien of the province.
What can you say of the educational aydea!
Who io the first white man known to have et
foot in what is now Oatario?
Who was Pontiac?
What was the population of the provino in 17918

## Prince Edward Island

Itome of Intorest
Prince Edward Island, lying in the Gull of St. Lawreace, is separated from the mainland


COAT OF ABME OF FANNCE EDTVABD ISLAND
by Northumberland Strait, which varies from nine to thirty miles in width.
Its total area is 2,184 square miles.
Its population is 93,728 , a decrease of 9 per cent diace 1901,

The average density of population is 224 per square mile, making it the most denak populated province.
The average number of persons to the Pamily ( 5.51 ) is greater than in any other province.
The island is extremely irregular in shape ad physical features; the width varies from one and one-half to thirty-four miles and the alituch from 150 to 800 feet.
Fredericton, 307 feet, is the highest point of the ialand.

The north ahore, facing the gulf, is a series d beaches of fine sand and is a favorite summe resort.

The field crops of Prince Edward Island are worth less than those of any other provine except British Columbia; in 1911 the total ws $\$ 8,846,800$, of which hay and clover represented $\$ 3,086,000$.

The annual crop of oats is about $5,000,000$ bushels, of potatoes $5,500,000$, and of turip and carrots $3,500,000$.

579,500 bushels of wheat were raised in 1911
The amount of live stock is slowly decrum ing. The totals for 1911 follow: horses, 34,$000 ;$ milch cows, 65,500 ; other cattle, 56,500 sbeth 108,600 ; swine, 48,400 .
The province is a poor third in the production of factory-made cheese; it produces on-eserw


## Osogrephy

wowth ma much as Quebrec, which poxdures less Walulf as much as (Ontario.
The annual output of cliese is ahmit $3,000,000$ enda and of butter amarly $700,0 \times 0$ peamens; tere figures meter enly to factory purndurtion.
The annual production of eges is alanut ,
क minupe Industry on the infand is fox rancl. 4. the thins heing sold for $8: 300$ to 32, vin each: WSI the industry was valued at $8:(000),(4 \times 1)$. dyhies, strawberrien, plums auxl cherries are - Vaxipal fanits grown.

7ne fisheries employ 8,000 men and capital - aes somp,000; the annual outpat is worth we $3,120,000$.
tatera reptesent nearly 00 per mat of the ATHeriex; other important products are end, -3诲. gysters, minelts and mackerel.
Bure are two lolster hatcherims, which dis$4 \rightarrow$ ahwatt $100,000,000$ fry en-h year; there 45s cate maluon hatchery with an annual Ent ad $1,000,000$.

* or are suppowel to be valuafle inireral Cent on the island, but they ane ns yet mosyan.
*     - Mmufartures total ahout $\$ 2.000,0001$ 0 *nag chiefly the productes of fichories and montr, such as butter, cherese and preserved
theme are 269 miles of railway, all th tonging * (azalian government (lutmecolonial) mex
 Wenetat tis three representatives is the House - momesns, it had six when it entered the Con7ese 141873.
$\therefore$ athal and principal city is Charlote-

The manuffucture and male of intoxicating lifuors are pmotihitev.
Prinary eduration has bewn free since 1siz.
The principal institutions are the nosinal showh, Prive of Wales Codlowe nml St. Dunstan's Culleses; these ame of ailvanoel mecondary ruther than of crillegiater rank.
Jaryues Cartier sightell the IWand in 1/akA, but mineock it fire the minulami.
It was origmally governed as a part of Nova swotia, hut hoter was siven a meparate guverament, irx first parliment merting in 1873.
The first uurvey of the islaril was mado in 15015.

It reveived its present name in 1798, out of eoruplinent to the Duke of Kirnt, futher of Ghern Vircturia, then menmanding the Isritish formes in North Aurerias.
It lecame a prowtive of the Dominion in 1873.

## Questions on Priuct Ecward Ithand

What is the area in? frime, Lifwarl thatul? The population?

When lid it mereive its rrosme natm: Whys
When did it becorse a provine of the Dominion?

Comprere its density of population with that of Ontario. British Columbia.

Jexribe the shape of the island.
What are the principal crops:
IA thairying important?
What can yous say of fox ranching?
What are the principal fisheries' prolucts?
How many reprosentatives has the province in the loure of Commons?
What is the capitaly What is its population?

## Quebec

## Items of Interest

5o z , I Quelne for niaty ycars (from $\therefore 11$ was 351,873 sciuare inil:-4, but hy * o of Ungava in 1912 it was incroased - suare miles.
5) ane from the western and of the Ethe Isle to Ianke Trmiorauling, that
thaytern to the western boundary, is
miles.
= = three main physical divisions: (1) - *erciun highlands, really a plateau; (2) of the St. Lawrence; (3) the Notre wains and the rolling country to the 4 this range.

The highest juint in sombern Queleer is Momat layan, in Matane commy, s, ins feet: the hi;hest point in the Ungava district is Nachvak Mnumtuin, absut 6,0 (e) fert.
Sone of the rivers draining the plateau run in drep, lighl-walled vallegs cut in solid rock, such as throse of the Hamilton, Mingan and Saguenay rivers. The walls betwen which the Saguenay flows in some places reach a beight of 1,500 to 1,800 feet.
The Note Itant Mouthtaims are as continuation of the Appaluchisn range which runs north and south through the eastern part of the United States.

with mavis as Quebec, which produces lem tha half as much as Ontario.
The annual output of cheese is about $3,000,000$ puinds and of butter nearly 700,000 pounds; then figures refer only to factory production.
The annual production of egse is about (323,000.
A unique industry on the island is fox ranchhy, the akins being sold for $\$ 300$ to $\$ 2,000$ each; h 1911 the industry was valued at $\$ 2,000,000$.
Apples, strawberries, plums and cherries are top principal fruits grown.
The fisheries employ 8,000 men and capital dover 8800,000 ; the annual output is worth doutt $81,150,000$.
Lobaters represent nearly 60 per cent of the wal fisheries; other important products are cod, buring, oyiters, amelts and mackerel.
There are two lobster hatcheries, which distributs about $160,000,000$ fry each year; there in also one salmon hatchery with an annual output of $1,000,000$.
There are supposed to be valuable mineral depoaits on the island, but they ase as yet undeveloped.
The manufactures total about $\$ 2,000,000$ a year, being chiefly the products of fisheries and aqiculture, such as butter, cheese and preserved anh.
There are 269 miles of railway, all belonging to the Canadian government (Intercolonial) milway.
On the basis of the census of 1911 the province is entitled to three representatives in the House of Commons; it had six when it entered the Conmoderation in 1873.
The capital and principal city is Charlottebown.

The manufactire and sale of intocicating liquors are prohibited.
Primary education has beea tree since 1852.

The principal institutions are the normal school, Prince of Wales College and St. Dunstan's College; these are of advanced secondary rather than of collegiste rank.
Jecques Cartier sighted the island in 1534, but mistook it for the mainiand.

It was originally governed as a part of Nova Scotia, but later was given a separate government, its first parliament meeting in 1773.
The first survey of the island was mado in 1764-8.

It received its present name in 1798, out of compliment to the Duke of Kent, father of Queen Victoria, then commanding the British forces in North America.
It became a province of the Dominion in 1873.

## Questions on Prince Idwasd Island

What is the area of Prince Edward Island? The population?
When did it receive its present name? Why?
When did it become a province of the Dominion?
Compare its density of population with that of Ontsrio. British Columbia.

Describe the shape of the island.
What are the principal crops?
Is dairying important?
What can you say of fox ranching?
What are the principal fisheries' products?
How many representatives has the province in the House of Commons?

What is the capital? What is its population?

## Quebec

## Items of Intoreat

The area of Quebec for many ytars (from 1898 to 1911) was 351,873 square miles, but by the addition of Ungava in 1912 it was increased io 906,834 . square miles.
The distance from the western end of the itrait of Belle Islo to Lake Temiscaming, that , from the eastern to the western boundary, is bout 1,350 miles.
There are three main physical divisions: (1) bo laurentian highlands, really a plateau; (2) be valley of the St. Lawrence; (3) the Notre Dme Mountains and the rolling country to the outhent of this range.

The highest point in southern Quebec is Mount Logan, in Matane county, 3,708 feet; the highest point in the Ungava district is Nachvak Mountain, about 6,000 feet.
Some of the rivers draining the plateau run in deep, high-walled valleys cut in solid rock, such as those of the Hamilton, Mingan and Saguenay rivers. The walls between which the Saguenay flows in some places reach a height of 1,500 to 1,800 feet.
The Notre Dame Mountains are a continumtion of the Appalachian range which runs north and south through the eastern part of the United States.

Quebec is exceptionally well watered and abounds in large rivers, bays and lakes.
Beiden the St. Lawrence, the principal rivers are the Ottawe, 600 miles long, the St. Maurice, the Batiscan, the Jocques Cartier and the Montmorency, with it femous fella.
The island of Anticosti, in the Gulf of St. Lawrence, now used as a game preterve, is 135 miles long by 40 miles wide.
The field crops of Quebec in 1911 were worth \$103,187,000.
Hay and clover, worth over $\$ 58,000,000$, was the most valuable crop.
$87,500, \mathrm{MM}$ bushels of oats, worth $\$ 20,000,000$, were produced in 1011.
The wheat crop is only spring wheat.

coat of arms of quebsc
Nearly $18,000,000$ bushels of potatoes ars raised each year.
Other important crops are barley, buckwheat and turnips.
In 1010 the alfalfa crop was reported for the first time; it was 39,000 tons, valued at about 810 a ton.
The total value of farm property in Quebec is over $\$ 450,000,000$.
The production of grapes is $1,000,000$ pounds, and of apples over $2,000,000$ bushels.
The crop of berries and small fruits is $3,000,000$ quarts, greater than that of any other province except Ontario.
There are nine experimental fruit stations in Quebec.

The Montreal district is famous for its apples and melons.
$81,500,000$ worth of maple sugar is made ench year; Quebee produces about one-thind of the world's supply.
There are 000 butter factories, 1,400 cheese factories, and over 700 factories manufacturiag both cheese and butter.
The value of all dairy products is about $\$ 25,000,000$ a year, mecond only to Ontario.
Flax is cultivated in amall quantities chiefly for its fiber; it is manufactured into fabrics almost exclusively by hand.
The growing of tobecco for commercial purpoees is confined to the district around Mortreal; the total production of Canada, which is divided evenly between Ontario and Quebec, varies from $9,000,000$ to $12,000,000$ pounds.

Most of the cattle in Quebec are of French Canadian strain, first brought to Canada about 1620; they furnish excellent milk and are good breeders, but are not as good for beef as the ordinary stocks.

The following table shows the amount of live stock:

|  | 1011. | 1910. | 1000. | 1906 |
| :---: | :---: | :---: | :---: | :---: |
| Catthe (inol indud. | 371,400 | 868,419 | 362,796 | 361,711 |
| fing milch cown... | 1,402,000 | 1,456,428 | 1,479,407 | 1,553,500 |
| 8bop.............. | 833,400 07,500 | 80,068 | 870.342 | 600,007 |
| 8 \% | 607,800 | 651.415 | 670,012 | 751,336 |

The products of the fisheries were valuct at $81,692,000$ in 1911; this was a slight dectine from 1009 and 1010.
The principal products are dried cod, which represents half the total value, canned lobsters and herring used as bait.
Only 1,200 seals were caught in the year 1911, but in good years as many as 40,000 have been taken; all the seals are caught off the Magdalen Islands.
The forest area is $130,000,000$ acres, or 203,125 equare miles, of which nearly 175,000 are included in the forest reserves.
Quebec has twenty-eight julp-wood mills, as many as the rest of the Dominion together; in 1011 these twenty-ight mills used 390,000 cords of wood, and pruduced 60 per cent of the wood pulp made in Canada. One cord of wood produces from 1,100 to 1,800 pounds of pulp, de pending on the process (see Paper, Volume IV).
Five mills of averagu size could run on the amount of wood -pulp exported in 1911.
Nineteen species of wood are used in the mannfacture of furniture in Quebec; about one-third


-     - hurniture manofnctured in Canada is y3 wo to the province of Quebec.
ather ranks secound in the total value of asphectured commodities, with over $s: 30$,-3-7.e e year.
a) Dente the Dominion in the production of sint is , 000,000 a year), refined sugar ( $\$ 12$, (0.0:3): and tohacco products ( $\$ 12,500,000$ ).
y. - important industries, with the average masal wive of products, ane as follows:
nave and timber products \$20,000,000 18,000,000 18,000,000 11,000,000 10,000,000
8,000,000
6,500,000
6,000,000
6,000,000
t.e toc lends the world in the production of
* is the annual product being valned at
th, wri,000. Thetford, in Megantic coun-
$\therefore$ ct conter of this industry.
- mereral products of the province are

Finturi,000 a year.
\& shat output of copper is $1,000,000$ an how-grade ore.
$\$ 1$ m0,000 worth of brick and
(as:(1) worth of cement are produced.
. 4 st sunite, graphite, iron, ochre and talc Son iwnes found in small quantities.
ematment of the interior estimates that
it +4 sep puwer that ma; be developed in the
is + a marly $14,000,000$ H. P. at minimum
$1=0.2$ nbout 850,000 incundescent lamps
4. 4 . we lifhts in use in the provinre.
(2ath a. $\therefore 100$ post offices in (Quebec.

- 1 fuilway mileage is 3,000 .
..i. 30, 1911, Quebre had granted amis about $13,500,000$ acres of land -1. rai'ways.
$\because$ Mit branches of rlartered banks.
vorings of Moltrual are over two
- A. billions of dollars a year; this is
w.er than Toronto, the next highest

309
42,900 immigrants arrived in 1911.
The population in 1911 was 2,002,712, an increase of nearly 22 per cent over 1901; this is 28 per cent of the total population of Canad.
Eighty per cent of the inhabitants over five years of age can read and write.
The leading edurational institutions aro Bishop's College at Lennoxville. Laval University at Quebec and McGill University at Mortreal.
The principal cities (over 10,000 ) are Monn treal, Quebec, Maisonneuve, Hull, Sherbrooke, Verdun and Lachine.

## Quostions on Quebee

What is the present area of Quebec? When was the boundary changed?

What is the length of the province from ease to west?
What are the three main physical divisions? Name some of the principal rivers.
What and wherc is Anticosti?
What is the principal crop? What part of the value of all field erops does it represent? Name four other large crops.
What fruits are raised in Quebec? For what fruits is the Montreal district famous?
What is the relative importance of the dairy industry?
In what part of the province is tobeceo raised:

What kiad of live stock predominates?
What are the principal products of the fisheries?
Where are the seal fisheries?
What is the approximate forest area?
How dues Quetrec rank as a proxluser of wood pulp? of all manufactures? Of paper? or tubacco products.
Name fuur other learling manufactures.
What are the principal mineral products?
What is the total ruilway mileage?
What is the annual total of Montreal's bank dearings?

What are the leading educational inst:cutions? Name five of the large cities.
What was the population of the province in

## Saskatchewan

## Items of Interest

- Asth has an area of 2:0) bio square Thet of (ireat Britain and $50,0 \mathrm{~m})$
mure than that of Germany.
"Saskathewan" is a Cree Indian word meaning "rapid-floning river."
The sontheastern part of the provine is chiefly praicie, a continuation of the Manitoba prairies.


Quebec leads the world in the production of abeston, the annual product being valued at marly $\$ 3,000,000$. Thetford, in Megantic countr, is the center of this industry.
The mineral products of the province are worth $\$ 10,000,000$ a year.
The annual output of copper is $1,000,000$ pounds of low-grade ore.
About $81,000,000$ worth of brick and 2,000,000 worth of cement are produced.
Gold, granite, graphite, iron, ochre and tale have been found in small quantities.
The department of the interior estimates that
the water power that may be developed in the province is nearly $14,000,000 \mathrm{H}$. P. at minimum dow.
There are about 850,000 incandescent lampe and 6,000 are lights in use in the province.
There are 2,400 post offices in Quebec.
The total railway mileage is 3,000 .
Up to June 30, 1911, Quebee had granted $20,000,000$ and about $13,500,000$ acres of land as subsidies to railways.
There are 400 branches of chartered banks.
The bank clearings of Montreal are over two and a quarter billions of dollars a year; this is 30 per cent more than Toronto, the next highest

What are the three main phymical divisions? Name some of the principal rivers.
What and where is Anticosti?
What is the principal crop? What part of the value of all field crope does it represent? Name four other largo crops.
What fruits are mised in Quebec? For what fruits is the Montreal district famous?
What is the relative importance of the dairy industry?
In what part of the province is tobecco saised?
What kind of live stock predominates?
What are the principal products of the fisheries?
Where are the seal fisheries?
What is the approximate forest area?
How does Quebec rank as a producer of wood pulpf Of all manufactures? Of paper? O: tobecco products?
Name four other leading manufactures.
What are the principal mineral products?
What is the total railway mileage?
What is the annual total of Montreal's bank clearings?
What are the leading educational institutions?
Name five of the large cities.
What was the population of the province in 19118

## Itoms of Intervat

Saskatchewan has an area of 250,050 square miles, double that of Great Britain and 50,000 square miles more than that of Germany.

## Saskatchewan

"Saskatchewan" is a Cree Indian wad meaning "rapid-flowing river."
The southeastern part of the province is chiefly prairie, a continuation of the Manitoba prairies.

## SASKATC



## Geography

at the furrituro manufectured in Canada is mode in the province of Quebec.
Quebee ranks mecond in the totel value of manufectured commodition, with over 8230,000,000 a year.
It kads the Dominion in the production of paper ( $87,000,000$ a yeur), refined sugar ( 812 ,$000,000)$ and tobecco products $(312,500,000)$.
Other important induastries, with the average annual value of producte, are as follows:
Lumber and timbers producte ..... $820,000,000$
Boots and ahoes.
Butter and cheeve (factory coaly).... $\quad 16,000,000$
Cmis and car works. . ............. $11,000,000$
Fiour and allied productr. . . . ...... $10,000,000$
Cotion goods.
Iroan and sted.
9,000,000
Slaurghtering and ment peci....... 0,500,000
Hate, cape and furs . paciding.... $\quad 0,000,000$
Quebsec leads the world in the production of
mbeston, the annual product haine wolual of

## Geography

4,000 immirganto arrived in 1911.
The population in 1911 was $2,002,712$, as increase of neurly 22 per cent over 1001; this is 28 per cuat of the total population of Crinede.

Eighty per ceant of the inhabitants over ilvo years of age can read and write.
The leading educational institutions aro Biihop's College at Lennoxville, Laval Univers sity at Quebec and McGill Univeraity at Montreal.
The principal cities (over 10,000 ) ave Moor treal, Quebec, Mnisonveuve, Hull, Sberbrooke,

Verdun and Lachise.

## Guestions on quebee

What is the present ares of Quebec? When was the boundary changed?
What is the leagth of the province from eace to west?
What are the three main physical divisioas? Name some of the principal rivere

Tro Mighoot point in "The Nowe" 2,005 text, is the Nowten Hille.

The pelactpel sivese weo tho Exelatchowan, Whith dives tos mamo to the province, the Gr'Appecto and souris, both of wholk aise tribatariot of the Avinitboina.
Frow tho fuaction of the sorth and couth trancine of the Ralratilieven to its mouth in
 fos chrilow-druycht viocls as far an Edroonton, Alsorte over 800 milos farther.
 foretts, chivaly of apruce and tamerack.
The climate may be roughly deccribed as lite that of Alberts (nee page 203).
Except in the couthriot, tho province io wall maturad


## COAT OF ABME OF HASKATCELTWAN

The wid-animal life is practicully the same as that of Alburta, except that the mountain shoep, sont and lion are lecking.
The chice liduotrice eve cattlo-riising in the northern part and graingrowing in the southern, though the antreme morthern esetion is also important for its furs.
Noariy $00,000,000$ acrus of cood land ave aviilable for cultivation.

The total value of ell seld erops in 1011 was \$107,147,000, escecoded oely by Ontario, with $3183,200,000$.

The whect crop in 1911 was $97,605,000$ bushele (an average of 21 buabels to the scre), valued at $856,548,000$.

The total crop of onter for the yeur was 97,002,000 bushels; Senkatchewnan producee more oates than any other province.

## ecograpisy

Thonaruel exp of pocatem in ebout $8,000,000$ buabolo; of turalpe and other sooth, $8,000,000$ benhela

The average siold of potatece is 148 bunich per sere.
Tho followiag tablee are of interent es ahowitas. the gront edrancoo fa agrioulturs in the part ifry yenre (1910 showe a decline on account of the emat drought):


|  | 101 |  | 1000 | 100 | mow |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | Cuscou | 1 | , ${ }^{\text {a }}$ | 2,180419 | Heniil |
| Areas in watar, OATE AND EnELET in Achan |  |  |  |  |  |
|  | 1 ml | 1910 | 1000 | 100 | 1 m |
| Truat..... | 4.74.en | sersome | 2 crac | 127631 | crim |
| Barlig...... | 21erom | 12mam | Tis, | 6, $7=$ | ${ }^{112187}$ |

At the experimental farm at Indinn Head the potato crop averagen 610 buabels per sace.
Flax, which is recognized to be the beat crop for brealing now ground, is cultivated as yee only for reed; in 1910 the production wia 3,448,000 bushelo, and in 1911 it was ove $10,000,000$ bushels; the acrenge in flax increned from 110,308 in 1809 to 438,000 in 1910, and to 690,000 in 1911.
The hay crop is valued at $\$ 5,000,000$ a year.
The climato is well adapted to the raising of the amall bush truits, but this branch of agiculture is yet in its infancy.

There ase 888,300 head of cattle in the prorince.

The following table is rignificant as showing that the live stock industry is barely holding its own, whereas the raising of staple cropes has largely increased (sce table above):

|  | 1911 | 1010 | 1900 | 190 |
| :---: | :---: | :---: | :---: | :---: |
| Horni.............. | \$3,000 | 893,028 | 779.003 | 20, 11 |
| Mileh Comet............ | 143,000 | 18,486 | ${ }_{891,789}^{124}$ | 11.818 |
|  | 11120 | 135,200 | 129,030 | 110 |
|  | 200,500 | 125,783 | 181,737 | HLM |

The horses in the peoviace are valued at $800,000,000$.
There are no pork-pecioing plants; practically all the swise ase riised for home consumption.

## Cougreply

The vilue of all kiedo of poultry is about (4, $, 0,000$.
thmase covan colpprative ereameries under avincinl control, four private cromeneries and en clume fectory.
About $\$ 000,000$ worth of lesh are taken from th hlies af Sactatchowan each yene, over hall Whe whitefish
Lyaite coal in found in extensive beds in the samis River fold; and suitablo for clew milime oult and sulphur are found in various mition but are not yet of commercinl impertasce.
It hatimated that the manufactured prodmets mou worth $14,000,000$ a year, chiely four and lumber.
Thare are 810 breaches of chastered banks in 4 province.
The benk clearinge of Moose Jaw, Regina ed Sakatoon aceregated $8170,000,000$ in 1911.

Ia 1000 it was decided to entabliah a provincial eqienultural college and experimental college at Sinktoon in connection with the University; crua began in the fall of 1911.
There are thirty-four Indian echools with a mal attendence of over 1,200 pupils.
About $8,000,000$ weve apent in Sackatchewan ber construction and improvement of public rorka in 1911.
The educational syatem of the province indudes tree district and grade schools, high abooln, colleginte institutes, normal schools and the provincial university at Saskatoon.
There are over 3,000 miles of railway in opers.-

## Goegrapley

The total popelation, cecording to the canase of 1911, was 490, 192, an incrune of. 410 precert in ten years.
On the bacis of theve fifures the provisce is antitiod to fiftera sumbers in the Howse of Commona
The principel ciftien ase Regias (the enplay), Moom Javr, Serkstoca and Princo Albert.

## Geostlons on Ecchachhomas

What in the ares of Seaketchowan? Corepars It with that of Great Britain and with that of New Brunswick.
Deacribe the surfece of the province.
Name the princigal rivers.
What are the two great brasches of industry? Compare the wheat crop of Salkatchewea with that of the other provincea.
How does Sackatchewan rank as a prodecon of onta?
What other crope are of importanca?
Does the live stock industry show any great changes? What seems to bo its future?

Where is coal found in Seskatchewan?
What are the principal manufactures?
Where is the provincial university locnted?
Describe briefly the school system of the province.
What is the total railway mileage?
How many representatives has the province in the House of Commons?

What are the principal cities?
What was the population in 19118
What would be the population of Seckatchewan if it were as thict\&y settled as New Bruns-

## Canadian Cities and Towns

One of the most noticenble features of the deelopment of Canada is the growth of cities. his growth is greatest in the west, especially 1 Alberts and Saskatchewan. In the year 1001 aly four cities-Calgary, Edmonton, Lethidge and Regina-had a population of more lana 2,000. Calgary had 4,000; in 1011 the ominion census gave it 43,704, an average crease of almost 100 per cent a year. Regina 1901 had 2,249; in 1911 it had 30,213. Miny the enatern cities show large increases; amilton, for example, increased from 52,000 nearly 82,000; Toronto jumped from 208,000 376,538 and Montreal from 267,730 to 0,480 . Most of the large cities are found in
the eastern part of the country, as the table below shows. The hundred largeat citien ase divided among the provinces as follows:
Ontario ..... 48 ..... 
Quebec ..... 21
Nova Scotia. ..... 12
British Columbia ..... 6
British ..... 5
Seskatchewan ..... 4
Manitoba ..... 4
New Brunowick ..... 4
Prince Edwand Ieland ..... 1

Tho Euadrod Iagrest Ottos. Bolow in diven st tublo of the huadred largent dition in Cande, arranged according to atro; siforence to volume numbers shows whers articion docertptive of theme sany be found. The decerip. tions of the elties and towns in Volume VI are givea on pages 813 to 810 , and in all the other volumest they are gives in megular alphabetical order:


|  |  |
| :---: | :---: |

Ottawa, Oar Ospital Oity. On page 288is given a general outline which will berve, rith amall changes, for any city. Any necesang changes in the arrangement or choice of topia should be made. In order to show how easily thit seneral outline may be applied to a particaler city, the following outline hass been prepared for Ottawn, the capital of the Dominion. In order of topics has been changod, new tropia have been added and others have bren dropped, but the principel facte about tho city ave in cluded:

## Outline on Oteawa

1. General Descruption
(1) Location
(2) Population
(3) Plan of city
(a) Central points
(b) Principal streets
(1) Metcalfe Street
(2) Laurier Avenue
(3) King Edward Avenue
(4) Sparks Street
II. Pualsc Bulldinas and Institutiom
(1) Partiament Buildings
(2) Langevin Block
(3) Royal Mint
(4) Victoria Museum
(5) Rideau Hall
(6) Government printing office
(7) Carnegie Library
(8) City Hall
(9) Experimental farm
III. Park Ststem
(1) Parliament Hill
(2) Major's Hill Park
(3) Strathcona Park

The librars volumes.
The new un Ridenu Canal
The Cenadi experimental
Othana is Ontario and $\alpha$ Ottawa.

## Deogreptay

(1) Rochltife Park
iv. Femeipal Monvinange
(1) Quma Victoria
(M) Str John Mecdonald
(3) Sir Georges E. Cartios
(4) Alexander Mactenalo
V. Bovcathonal Syemea
(1) Publ'c Schools
(Q) Separate Schools
(B) Collogiate Institute
(4) Normal School
(3) Ottawa Univenity
VI. Goychmiart
(1) Mayor
(B) Boand of control
(3) Boand of aldermen
VII. Conarases and Inducient
(1) Manufectures
(a) Lumber
(b) Matches
(c) Flour
(d) Carbide
(2) Tranepportation
(a) Ridenn Canal
(b) Grand Trunk Reailooed
(c) Canadian Pacific Railway
VIII. Histort
(1) Site frest visited by Champlain, 1 1R13
(2) Portage for fur traders
(3) Bytown, Iounded when the Ridean Csanal was built, 1827
(4) Incorporated as city of Ottawn, 1854
(5) Choven as capital of Canada, 1858
(6) Recent growth

## Itoms of Intorost Rogasding Ottawe

Ottawa ntands on a samall group of hills, from 0 to 155 feet above the Ottawa River. The Rideau Canal cuts the city into two parte, - western portion being known as "Upper" own " and the eastern portion as "Lower Town."
The Parliament buildings are in the Italian The Parliament buildings are in the Italinn id by the Prince of Wales Clater King Edward (1) in 1860. The Victoria Tower, on the atral building, has a height of 180 feet. The library of Parliament has over 200,000 lumes.
The new union railway station, just east of the denu Canal, was finished in 1912.
The Canadian government maintains a central erimental farm at Ottawa
Othma is the seat of the anglican bishop of tario and of the Roman Catholic archbishop
Ottawn.

## Geograply

The eity is noverned by a mayor and boerd of control (four membera) doeted by the city at large, and a board of aldermen, two dectod by each of the eight warda. It elects two members to the provincial arembly and two also to the Dominioa House of Commonas.

About oae-thind of the population is Prasch.
Ridenu Hall, the residence of the govwnorgeneral, stands among benutiful tries a short diatance outcide the city.

Champlaia visited the alte of the city in 1013.
For two huadred yeare after Champlain's voyage the Chaudiere portage was tho main aveave of travel from Moatronl to the greet weotern fur country.
Philemon Wright, of Wobura, Mamechuwite, whe the first settler at the portage. Hio built a hut in $\mathbf{1 8 0 0}$ on what is now the Quebee aide of the Ottawa River, but it was not until a quarter of a century later that the mettlement grew large enough to be called a town.
Colonel Joha By, the builder of the Rideau Canal, is generally called the founder of Ottama, for the opening of the canal crested a fair-mised eettlement at the northern end.

## OLTIES AJD TOWH:

In the list of cities given below it was aecomary to set an arbitrary limit of population. In the enstern provinces this limit is 3,000 . In the newly settied sections of the weot, however, a village of 400 or 800 may be of more relative importance than a towa of 3,000 in Ontario. For this remon all villagen with a population a 400 or over have been given brief but edequate treatment in proportion to their importance. The articles are based on especial reporte furnished by the local boands of trade wherever ponsible. The atatistics of population are taken from the final reports of the census of 1911.

Amherat, Nova Scotia, the countyreat of Cumberiand county, on the Bay of Fundy and on the Intercolonial Railway between Halifax and St. John. Industrially Amherat is of great importance; the neighborhood supplies coal, lumber and agricultural produce, and the town manufactures railroad cars, woolen goods, boots and ahoes and malleable iron. Gypoum is also found in the vicinity. Population, 1911, 8,973.
Annapolis Royal, Nova Scotia, situmted at the mouth of the Annapolis River on the Bay of Fundy. The Dominion Atlantic Railway and a line of steamers furnish communication. The town, which was founded in 1604, is the oldeet


settlement on this continent north of Florida. It has a large trade in lumber, apples and fish. Population, 1911, 1,019.


OLD FOET ANNAPOLIS
Antigonish, the county-seat of Antigonish county, Nova Scotia, is situated on St. George's Bay, an arm of the Gulf of Saint Lawrence, and on the Intercolonial Railway. It is the seat of a Roman Catholic bishop, of Saint Francis Xavier College, and St. Bernard's Convent. Prominent among the industries are cheese-making, woodworking and grist milling. Population, $1011,1,787$.

Arcola, Saskatchewan, a divisional point on the Arcola branch of the Canadian Pacific Railway, 113 miles southeast of Regina. It is the center of the Cannington judicial district and of a fine wheat growing section. Population, 1911, 794.
Armstrong, a town of British Columbia, in Okanagan Valley, on the Canadian Pacific Railway. Numerous industries are located here, the most important being flour milling and lumbering. The district is famous for its fruits and mixed farming; an annual agricultural exhibition is held at Armstrong. Population, 1911, 810.

Arnprior, Ontario, at the junction of the Madawaska and Ottawa rivers, thirty-seven miles west of Ottawa, is on the Canadian Pacific and Grand Trunk railways. There are large lumber mills, also flour and woolen mills. In the vicinity are marble quarries and iron mines. The town has a beautiful site and is well laid out. Population, 1911, 4,405.

Arrowhead, British Columbia, on the Columbia River and Upper Arrowhead Lake, is on a branch of the Canadian Pacific Railway, twentyeight miles south of Revelstoke. It is a landing
and shipping port for the boats on the Arrow. head Lakes. Population, 1911, 600.

Asheroft, British Columbia, on the Thompoon River and the main line of the Canadian Paciic Reilway, 200 miles northeast of Vancouver. It is the shipping and outfitting point for a promising copper district and is the gateway to the Thompson Valley, where large areas are being irrigated for fruit raising. Population, 1011, about 800 .
Atlin, British Columbia, on Atlin Lake, is about forty-five miles from Kamloops. Lumber. ing and placer mining are the principal industries The Atlin district yields about three-fourths of the placer gold mined in the province. Popula tion, 1911, 800.

Aylmer, a town of Quebec, in Wright county, on Lake Deschenes, an expansion of the Ottawa River, and on the Canadian Pacific, eight miles from Ottawe. The manufacture of lumber products is the leading industry; there is also a large canning and preserving factory. Aylmer is a favorite summer resort. Population, 1911, 3,109.

Baddock, the county-seat of Victoria county, Nova Scotia, on Bras d' Or Lake. There is some gold and gypsum maining in the neighborhood, but the town is better known as a summer resort and as the headquarters of Dr. Bell and other inventors, Population, 1911, about 1,200 .

Banfl, Alberta. See Volume I.
Bank Hoad, a village in Alberta, five miles from Banff, on the Canadian Pacific Railmay. The coal mines here employ about 500 men. Population, 1911, 694.
Barrio, a town of Ontario, county-seat d Simece county, on the north shore of Lake Simcoe and on the Grand Trunk Railway. The principal industrial plants are 'sreweries, tanneries, machine shops, woolen and flour mills Owing to its pleasant climate and beautiful surroundings it is a popular summer resort. Poptlation, 1911, 6,420.
Bassano, a village of Alberta, in the Medicine Hat district, is on the main line of the Canadian Pacific Railway, only three miles from Horseshoe Bend, where one of the main intakes of the Canadian Pacific's irrigation canals is located. Population, 1911, 540.

Bathurst, the county-seat of Gloucester county, New Brunswick, situated on the Intercolonial Railway. Four lumber and shingle mills, a brick yard and a grist mill are the principal plants here. There are large deposits of iron in the vicinity and also good salmon fishing and

## Coography

buating. Four rivers flow into Bathurst harbor. Population, 1911, 960.
Eattloford, a town of Sackatchewan, situated at the junction of the Battle and Saskatchewan fivers, on the Canadian Northern and Grand Trunk Pacific railways, 90 miles from Saskation. Itin the center of a region devoted to the raising $d$ grin and to mixed farming and is rapidly bocoming a railroad and wholesale center. Battleford was the capital of the former district of Seskatchewan; the old government house is now occupied by an Indian industrial school. The district headquarters of the Royal Northwest Mounted Police are located here; there are also poblic schools, a high school and Protestant and Catholic parish schoois. Population, 1911, 1335.

Bosusejour, a village of Manitobe, thirty-five miles east of Winnipeg, on the Canadian Pacific Railmay. A pressed brick and a glass factory are here and there is good farming land in the seighborhood. Population, 1911, 847.
Bolleville, Ontario. See Volume I.
Bollevie, a village in the Macleod district, Alberts. Population, 1911, 463.
Borlin, Ontario. See Volume I.
Mis River, a village in Saskatchewan, in the Prince Albert district. Population, 1911, 516.

Birtle, Manitoba, a town on the Bird Tail River, 195 miles west of Winnipeg, on the Canadian Pacific and other railways. It is in a fine agricultural and ranching region. Grain devators, flour mills, a creamery and lumber yurds are important. Population, 1911, 437.
Blairmore, a village of Alberta, is situated on the Crow's Nest River and the Canadian Pacific kriiroad, thirteen miles east of Crow's Nest Pass. The principal industries are lumbering and mining, Blairmore being a distributing point for the coal fields of the region. Population, 1911, 1,137.
Boissevain, broa se rane', a town in Manitobe, on the Canadian Pacific and Great Northern milways. Boissevain is the shipping point for a great wheat section and has five grain elevators, with a total capacity of 275,000 bushels. Population, $1911,918$.
Brampton, the county-seat of Peel county, Ontario, is on the Canadian Pacific and Grand Trunk railways, twenty-one miles northwest of Toronto. Brampton is a cattle and hog center and has a large trade in apples. The leading entablishments of the town are a four mill, boot and shoe factories, paper-bor factory, grist mill
and three large greenhouses. Population, 1011, 3,412.
Brandon, a city in Manitoba, on the Assiniboine River, the Canadian Pacific, the Canadian Northern and the Great Northern railways, 133 miles west of Winnipeg. It is a divisional point of the Canadian Pacific Railway and has extensive railway yards. The chief industries include flour mills, saw mills, a brick plant and establishments for manufacturing cement blocks, factories for the construction of sash and doors, furniture, farm implements and building materials. The city is also one of the most noted horse markets in the west. It is the seat of an Indian school and the home of the Western Agricultural and Arts Association, and there is a government experimental farm near by. The city maintains an excellent system of public schools and is the seat of two collegiate institutions and a Baptist

gCENE IN CALOARY ( 8 oe Valume 1)
college. It is well supplied with churches and has a fine Y. M. C. A. building, also a hospital, and is the seat of a provincial asylum for the insane. Population, 1911, 13,839.
Brantiord, Ontario. See Volume I.
Bridge water, a town of Nova Scotia, situated in Lunenburg county, at the head of navigation on La Have River and on the Halifax and Southwestern Railway, whose general offices and machine shops are located here. Bridgewater is a great center for the manufacture of lumber products and for export trade in lumber, pulpwood and bark. Population, 1911, 2,775.
Broadviow, Saskatchewan, on the Canadian Pacific Railway, 72 miles east of Regina. Broadview has three grain elevators, two lumber yards and a brick plant. Population, 1911, 702.
Brockvilie, Ontario. $\leq \sim$ Volume I.
Brooks Alberta, is a growing town on the main line of the Canadian Pacific Railway,
nearly in the center of the eastern section of the railway's great irrigation project. (See page 34.) Population, 1911, 486.

Buclingham, Quebec, the county town of Labelle county, is on the Canadian Pacific Railway and on the Riviere du Lievre, four miles from its junction with the Ottawa River. Lumbering is the principal industry, and there are also cheese and butter factories. Phosphate, mica and graphite are mined in the neighborhood. Population, 1911, 3,854.
colonial Railway, sixteen miles west of D 2 . housie. It is on the border of an extensive forest region and is one of the most important lumbering points in the Dominion. The town was totally destroyed by fire on July 11, 1910, but has been rapidly rebuilt. Trout and salmon fishing are important, as are also lumber mills, machine shops and a ginger ale factory. Population, 1911, 3,817.
Camrose. a town of Alberta, on the Canadian Pacific, Canadian Northern and Grand Trunk


THE THREE BISTERS, CANMORE

Oalgary, Alberta. See Volume I.
Oampbelliford, a town in Northumberland county, Ontario, on the Grand Trunk Railway, twenty-seven miles west of Belleville. It has extensive water power, which is used in the development of manufactures. The chief industries include woolen mills, pulp and paper mills, flour mills, saw mills, a shoe factory, and steel and bridge works. Population, 1911, 3,051.
Campbellton, in Restigouche county, New Brunswick, is situated at the head of deep water navigation, on an estuary of the Restigouche River, on Chaleur Bay and on the Inter-

Pacific railroads, about twenty-five miles east $\alpha$ Wetaskiwin. It has seven churches, a fine public school and several banks. Camrose is in one ot the most fertile regions of Alberta, and is a distributing point for the surrounding country. It has a large and growing wholesale business Other important industries include brickyards, lumber mills and yards, creamery, tannery and grain elevators. There are two producing coal mines within the town limits. Population, 1911, 1,586.
Oanmore, a mining town in Alberta, sixtsseven miles west of Calgary. Most of the
popplation is employed in the neighboring coal mines. Population, 1911, 754.
Oanors, Saskatchewan, on the Canadian Narthern and Grand Trunk Pacific railways, is the market and distributing point for a mixed fruming district. It is 190 miles northwest of Regine. Population, 1911, 435.
Oanso, a town in Nova Scotia, on Chedabucto Bay, twenty-five miles from the Intercolonial Railway at Mulgrave. Eighteen ocean cables are landed here. Fishing and the preserving of fish are the principal occupations. Population, 1911, 1,617.
Oarberry, a town in Macdonald county, Menitoba, located on the Canadian Northern and Canadian Pacific railways, twenty-eight miles east of Brandon. It has three churches, about thirty stores, grain elevators, banks, good schools and a fine park. Population, 1911, 878.
Oardston, a town of Alberta, on St. Mary's River and the Canadian Pacific Railway, sixtyfive miles southwest of Lethbridge. There are three grain elevators, a large flour mill and a creamery. Shipments of dressed meats and coal are considerable. The farms in the surrounding country are especialiy known for sugar beets and other root crops, winter wheat and dairy products. Population, 1911, 1,207.
Oarieton Place, a town in J.cnark county, Ontario, on the Carudian Iracisic Railway. Stoves, knitted goods anc t tuur art manufactured here. The Canadian Pacific has large repair stops. Population, 1911, 3,621 .
Oarlylo, a town in Saskatchewan, on the Arcola branch of the Canadian Paciffe and the Maryfield-Lethbridge branch of the Canadian Northern Railway, ten miles east of Arcola. It has good public schools and is a grain and lumber center. Population, 1911, 358.
Oarman, a town in Macdonald county, Manitoba, on the Boyne River, and on the Canadian Pacific, Canadian Northern and Great Narthern railways, fifty-ight miles southwest of Winnipeg. Its annual shipments of grain average 400,000 bushels. Population, 1911, 1,271 .
Oarnduff, Saskatchewan, on the Estevan branch of the Canad cific Railway, is in the southeastern cornu. che province. Wheat rasing is the leading industry of the section. Population, 1911, 469.
Ohambly, Quebec. See Volume I.
Oharlottetown, Prince Edward Island. See Volume I.
Ohatham, a town of Northumberland county, New Brunswick, is situated on the Miramichi

River about twenty-five miles from its mouth It has an excellent harbor, which will admit ocean-going steamers. The town owns its water works and electric light plants. The chie! industries are the manufacture of lumber, which is largely shipper to British markets, and the manufacture of wood pulp, which is shipped to the United States. There aro also wood working factories and two foundries. Chatham is the center of an important fishing industry and is oted for its salmon and smelt fisheries; the lobster fishing at the mouth of the river is controlled from this town. There is a good grammar school ouilding, a hospital, and the exposition buildings for the northern part of the province are also located here. Population, 1911, 4,666.
Ohatham, Ontario. See Volume I.
Ohicortimi, the county-seat of Chicoutimi county, Quebec, on the Saguenay River and Canadian Northern Railway. It is one of the most important centers for the manufacture of wood pulp, more than 60,000 tons being exported to England alone; other industries include foundres, machine shops, butter and cheese factories. Wheat, oats, hay, potatoes and blueberries are raised in large quantities in the surrounding region. The city is the seat of a bishrp and has a Roman Catholic cathedral and college. Population, 1911, 5,880 .
Chilliwack, a town in British Columbia, seventy miles from Vancouver, on the Fraser River, on the Canadian N rthern and Great Northern railways. It is als) the eastern terminus of the British Columbia Electric Railway, the long: . 'ectric road in the Dominion. The town has some manufacturing interests, chiefly lumber and dairy products. The fair grounds of the Agricultural Society are located here. The surrounding country is noted for its cement feposits, dairying and fruit farming. Population, 1911, 1,657.
Claresholm, a town in Alberta, on the Canadian Paciic Railway, eighty-two miles south of Calgary. Grain and lumber are shipped from here in considerable quantities. Population. 1911, 809.
Coaticook, ko at'c kuk, a town in Stanstead county, Quebec, on the Coaticook River and the Grand Trunk Railway, twenty-five miles south of Sherbrooke. It is a large manufacturing center for knitted and woolen goods, chemicals, butter, cheese, patent medicines and varied milling machinery. Population, 1911, 3,165.

Cobalt, ko'balk, a town in the Nipising district, Ontario, on Cobalt lake and the Temircaming and Northern Ontario Reilway. The Cobalt region is one ne the sichest silver producess in the world. Cobalt silver was discovered here in 1904, and in 1911 the ahipments d ore were valued at $816,000,000$. Besides rilver, nickel and arranic are minod in consider. able quantities A large machine ahop and foundry and thirteen are concentrators are located here. The town is 300 miles north of Torrato Population, 1911, 5,638.

Oobouss, Ontario. See Volume I.
Ooloman, Alberta, on Old Man River and the Canadian Pacific Railway, ten milen from Crow's Nest Pass. Over one-hall the populetion is employed in conl mining of dependent industries. The International Coal and Coke Company employs about 700 men. The town has electric light and water works, a good public school system and weveral churches. Populajon, 1911, 1,657.
Dollingwood, a town in Simeoe county, Ontario, located on Georgian Bay and the Grand Trunk Railway, ninety-five miles northwest of Toronti. It is the headquarters of the Northern Navigation Company, whose shipyarde and drydock are located here. The leading industries include tanneries, breweries, flour mills, Iumber mills, brick yard and broom factory. The town has an extensive lumber and grain trade and is connected by steamer with 0 wen Sound, Mactinac, Sault Ste. Marie, Duluth and other porta The public schools are very good; there is also a separate school for Catholics and a collegiate achool. Population, 1911, 7,000.
Corawall, Ontario. See Volume II.
Oraik, Saskatchewan, on th? Regina-Prince Albert branch of the Canadian Northern Railway, seventy-three miles north of Regina. The agricultural fair grounds are located here. Craik is a large distributing point, especially for farm implements. Population, 1911, 435.
Oranbrook, a town in British Columbia, a divisional point on the Crow's Nest branch of the Canadian Pacific Railway. The town and vicinity are extensively engaged in the lumber industry. It has five cht ches, zeveral banks, telephone and electric light systems, excellent public schools and a good hospital. Population, 1911, 3,090.

Creston, British Columbia, on the Crow's Nest Pass division of the Canadian Pacific Railway, about midway between Nelson and Cranbrook. The Creston strawberries are famous
more than locally for their excellence. PopeLation, 1911, about 800.

Oryatal Oity, a town of Munitoba, on the Canatian Puctio Reilway and Cryatal Croch, 130 miles southwest of Winnipeg. The elevatons here have a capacity of 175,000 bushels. Pop. ulation, $1911,600$.

Oumborland, a town of British Columbis, on Vancouver Island, sixty miles north of Nannima. A railway runs from Cumberland to Union What, on Boyne Sound, and steamehipe connect it vith Nanaimo, Vancouver and Victoria. Lumbering and coal mining are the important industrics; the Canadian Collieries produce as much wo 15,000 tons of coal a day. The town is supplied with electric light and water workn. Population, 1911, 1,237.
Dalhounio, New Brunswick, in Restigorcte county, on Chaleur Bay, at the mouth of the Restigouche River. The neighborhood hathrge spruce, maple, birch and cedar forests. Fishing and lumbering ave the only industries of importance, but the town is also a populer summer resort. Population, 1911, 1,650.
Dartmouth, a town in Halifux county, Nom Scotia, on Halifax Harbor opposite Halifax, and on the Intercolonial Railway. The industria include cordage works, a sugar refinery, chocolate and molasses factories, ship repairing and boiler works. The town has six churches and sevenal banks. There is a little gold mining and some agriculture in the vicinity. Population, 1911, 5,058.
Dauphin, dawo'fn, a town in Marquette county, Manitoba, on the Vermilion River and Canadian Northern Railway, 178 miles northwest of Winnipeg. It has an extensive trade in grain and machinery; the most important indurtrial establishments are flour and grist mills, sash and door factory and lumber yards and mills. The town owns its electric light and power plant and water works. There are seven churches, three banks, two schools and a colleg. iate institute. The Riding Mountain forest reserve south of Dauphin is noted for moose, ell and deer. Population, 1911, 2,815

Davidson, a town in Saskatchewan, on the Regina-Prince Albert branch of the Canadian Northera, ninety-one miles from Regina. Population, $1911,389$.

Dawion, Yukon Territory. See Volume II. Deloraine, a town in Souris county, Manitobs, on the Canadian Pacific Railway, 200 miles southwest of Winnipeg. It has a machine shop, flour mill, shoe factory and five grain do

## Coography

vetor. There are conl deposita in the vicinity. Population, 1911, 808.
Dhamond Oity a village in Southern Alberta, mar Medicine Hat. Population, 1911, 510
Didsbury, a town in Red Deer district, Alberta, forty-seven miles north of Calgary, is in a ich agricultural rection which supplies the boal elevators, flour mills and creamery. It aloo has lumber yards, planing mill and a steel calvert factory. Population, 1911, 726.
Digby, the county-seat of Digby county, Nove Scotio, on an arm of the Bay of Fundy and on the Dominion Atlantic Railway. The town has the county academy, box and barrel hecories, fish-curing establishments and is a mell-nown summer resort. Population, 1911, 1,247.
Dominion, Nova Scotia, thirteen miles from Sydney, to which an electric railway runs. Coal mining is the principal industry. Population, 1911, 2,589.
Dorchestor, the county-seat of Westmorehand county, New Brunswick, is situated on the Mermamecok River and the Intercolonial Railmay, twenty-one miles from Amherst. There are five large churches, and the county buildmigs and national penitentiary. Fishing is the principal industry. Population, 1911, 1,080.
Dundes, a town and port of entry in Wentworth county, Ontario, on the Grand Trunk and Toronto, Hamilton \& Buffalo railroads. It is five miles from Hamilton, on Lake Ontario, with which it is connected by the Desjardines Canal. The town possesses unlimited water power and has manufactories of iron castings and machinery of all kinds, also paper, leather, woolen and cotton goods, flour and wooden-ware. It is situated in a valley famous for its beauty. Population, 1911, 4,299.
Edmonton, Alberta. See Volume II.
Edmunston, the county-seat of Madawaska county, New Brunswick, on the Canadian Pa cific, Grand Trunk Pacific and Temiscouata railways. It is in a lumbering and farming district and is also headquarters for sportsmen. The manufacture of lumber products is the principal industry. Population, 1911, 1,821 .
Idson, a village in the Edmonton district, Alberta, on the Grand Trunk Pacific Railway. Population, 1911, 497.
Elikhorn, a town of Manitoba, situated in Brandon county, on the Cenadian Pacific Railway, sixty miles west of Brandon. It has a large fiour mill and grain elevators, Population, 1911, 574.

Imorion, a town in Manitoba, on the Red River, and the Canadian Pacific, Canadian Northern. Great Northern, Northern Pacific and Soo Line railways. The town is the center of a rich agricultural iection; its principal industries are the making of bricks and cement blocks. Population, 1911, 1,043.
inderby, a city in British Columbia, on the Spallumcheen River and Canadian Pacific Railway, is beautifully situated in the Okanagan Valley, twenty-three miles south of Sicamous. Over $20,000,000$ feet of lumber ase cut here each year. Dairying and fruit raising are important industries, and the city also has growing manufactures and noteworthy public buildings. Population, 1911, 835.
Eaquimalt, es' ko mo, a city on Vancouver Island, British Columbia, three miles from Victoria. Esquimalt has a fine harbor, naval yards and fortifications and a large dry dock Shipbuilding and salmon canning are the principal industries. Population, 1911, 4,001.

Estevan, este oahn', a town of Saskatchewan, situated on the main line of the Canadian Pacific Railway and the Estevan and Souris and the Minneapolis, St. Paul and Sault Ste. Marie divisions of the Canadian Pacific Railway, 290 miles southwest of Winnipeg. It is the hea ${ }^{\circ}$. quarters of the Dominion Coal Company and an important railway junction. It is an important distributing point and makes extensive shipments of coal. Large brick yards are located here and nearby are deposits of pottery clay of excellent quality. The town has electric lights, water works and sewers The prominent public buildings include the public library, postoffice and city hall, and the hotels and several business blocks are also worthy of mention. There is an excellent system of public schools, including a high school, and a normal school is also located here. Population, 1911, 1,981 .
Farnham, a town of Quebec, on the Yamaska River, and the Canadian Pacific and Central Vermont railways, thirty-five miles east of Montreal. The Canadian Pacific has divisional shops here, and there are also large factories for the manufacture of butter and cheese, furniture, tobaceo products and safes. Farnham has excellent public schools and is the seat of a growing Roman Catholic college. Population, 1911, 3,560.
Fernie, a town in British Columbia, near Elk River, is on the Canadian Pacific, the Great Northern, and the Morrisey, Fernic and Michel railways, 700 miles east of Vancouver. Fernie
in the center of the Crowrs Nest Pase coal district, the annual production being over $1,500,000$ tons; there are 800 coke ovena here with an estimated output of aearly 400,000 tons a year. The town fo naturally the wholesale center for this great mining district; it also has large manufectures, moutly connected in some way with coal mining. The Elk luver at this point furnishes extensive water power; the city owns its electric lighting system, water works, sewers. and a beautiful natural park of 200 acres. Fernie is a customs port of entry, a judicial center and the provincial police headquarters for Enot Kootenay. Population, 1911, 3,148.
Tort Elakkatchowan, a town in Alberta, on the nesth branch of the Saskatchewan River and on the Canadian Northern Railway, eighteen miles northeast of Edmonton, was for many years one of the best known posts in the west. It is a division headquarters of the Royal Northwest Mounted Police. Population, 1911, 782.

Fort William, a city of Ontario, situated on the northern ahore of Lake Superior and on the main lines of the Grana Trunk Pacific, Canadian Pacific and Canadian Northern railways, 861 miles from Winnipeg. The first settlement was made by French traders in 1669. Its railways and excellent harbor at the head of navigation give the city great commercial importance, and it is one of the largest traffic centers of Canada. During 1011 about 3,000 vessels, with an aggregate tonnage of $8,000,000$, entered and cleared from its docks. The grain elevators have a total capacity of $22,000,000$ bushels; from here $92,485,360$ bushels of grain were shipped in 1911. The chief manufactures consist of flour, oatmeal, iron pipe, car wheels, tinware, brick, tile, brooms, wire nails, hardwood finishings, lumber, cigars, cheese, harness and aerated waters. In the vicinity are iron, copper and silver mines, blast furnaces and pulp mills. The city has an excellent system of public schools, including a high school, fifteen churches, a public library and several other buildings of note. Population, 1911, 16,499.
Frank, in the southwestern part of Alberta, is on the Canadian Pacific Railway, fifty-one miles east of Fernie, British Columbia. About 300 men are employed in the coal mines here. Frank is also well known as a health resort, especially for its sulphur baths. Population, 1911, 806.
Frasorville, Quebec. See Riviere du Loup.
Fredericton, New Brunswick. See VolumeII.

## Cloography

Calt, a to 3 in Waterioo county, Ontario, on the Canedia 'acific and Grund Trunk railway, thirteen miles trom Berlin, fifteen miles from Brantford. Numerous electric lines connert it with neighboring towns. The vicinity suppies large quantities of lumber, limestone and and. The principal products of the city's factories are edge tools, knitted goods, safes, boots and shoes, flour and foundry products. The public achool aystem is very good and there an also several private schools. Population, 1911, 10,209 .
Gananoque, a town in Leeds county, Ontario, at the eastern end of Lake Ontario, and on the Grand Trunk Railway. It is an impors. tant point for traffic on the lake and on the St. Lawrence River and it has many industries, the most important being direct or indirect pruduets of iron, such as hinges, nails, hammers. shovels, rivets, bolts and carriago forgings. The town is also known as a summer resort. Population, 1011, 3,804.
Gilbort Rlains, a village of Manitobe, twenty miles west of Dauphin, on the Canadian Northern Railway. The neighborhood is rich in brick clay, spruce, tamarack and poplar. Population, 1911, 542.
Gimll, Manitoba, on the southern end of Lake Winnipeg, twenty-seven miles from Selkirk. Large lumber yards and creameries are located here. A great deal of lumber from mills on the lake is brought here for reshipment. Population, 1911, 496.
Glace Bay is a town in Cape Breton county, Nova Scotia, on the Sydncy and Louisburg Railway, fourteen miles from Sydney The Dominion Coal Company, which has large mines here, has an average pay roll of $\$ 200,000$ : month. Fishing and the manufacture of machines are also important industries. The town has an excellent electric lighting system, seven churches, three banks, and public and high schools. It is an important wireless telegraph station. Population, 1911, 16,562.
Cladstone, a town in Manitoba, thirty-five miles from Portage la Prairie, on the Canadian Pacific and Canadian Northern railways. It carries on an extensive trade in wheat, flour and building material. The churches, schools and public improvements are excellent. Population, 1911, 782.
Gloichen, a town in Alberta, about fifty miles east of Calgary. A creamery, bottling works, grain elevators and lumber yards are locuted here. Population, 1911, 583.

## acography

Goderseh, the county-ment of Huron county, Outrifo, is located on Lake Huron, at the mouth d the Maitland River. It has one of the bent lurbors on the east shore of Lake Huron and bergood railroed connections througis the Canadian Pacific and Grand Trunk sailway.. The mighborhood supplies limestone, salt, lumber, gheorand and clays of various kinds. The manulecturing interests are extens/ve, the majority of the industries being dependent on the neighborhood's supply of the raw materials. Population, 1911, 4,522.
Coldon, near the eastern boundary of British Columbia, on the Canadian Pacific Railway and the Columbia River, which is navigable for both pemenger and freight boats. Golden is the northern gatervy to the rich Kootenay Valley. Population, 1911, 953.
Granby, Quebec, fifty-five miles enst of Montreal, is situated on the Yamaska River and the Central Vermont Railwny. It is one of the most important of the amaller manufacturing centers $\alpha$ the province, especially for rubber goods, furniture, cigars, celluloid goods and baby carriuges. There is abundant water power for future development. The schools are very good. Population, 1911, 4,750.
Grasd Falls, in Victoria county, New Brunswick, at the head of navigation on the St. John River, and on the Canadian Pacific and Grand Trunk Pacific railways. Lumber and pulp wood are cut in iarge quantities in the neighborhood, and their products, especially dressed lumber, furniture, shingles, window sashes and doors are the principal manufactures. Maple sugar and grup, potatoes, hay, oats, brekwheat, honey end many small fruits arThe falls of the St. John : mm here. high. Population, 1911, :

## Grand Forks, a towni. $\therefore$

Columbia, on the Kettle
r ive feet

Cendian Par on the Viley rin Pirs Great Nortuerri and Kettle Valley railways. It is a customs port, a railway divisional point and a great smelting center. The noted Granby Smelters, the Boundary Iron Works and the British Columbia Steei Works are located here. There are also breweries, machine shops and a saw mill. The surrounding country is well adapted to fruit farming. Population, 1911, 1,577 .
Grand Mere, Quebec, twenty-one miles north d Three Rivers, on the St. Maurice River and on branches of the Canadian Pacific and Canadian Northern railways. The manufacture of mood pulp, paper and other lumber products is
the leading induatry. Grand Merc is in a good farming district. Population, 1911, 4,783.

Grand Pre, Nova Scotia. See Volume II.
Grand Viev, a tows in Manitoba, on the maln line of the Cariadian Northern Railway, thirty miles west of Dauphin. Five grain elevators, a pump factory, a lumber mill and a machine shop are located here. The heavily timbered Duck Mountains north of Grand View are full of game. Population, 1911, 637.

Greonarood, a town in the Yalo-Cariboo district, British Columbia, is a mining and umelting center for copper. Population, 1911, 778.
Grotas, Manitoba, a village on the Canadian Pacific and Great Northern suilways, seventy miles south of Winnipeg, situated on the international boundary. Its lending industries are the manufacture of flour and the shipping of wheat and other grains. The town and the surrounding country are inhabited almost entirely by Mennonites. Population, 1911, 819.
Grolph, Ontario. See Volume II.
Eillojbury, in the Nipissing district of Ontario, $a$ town on the Temiskaming \& Northern Ontario and the Nipissing Central railways. The town has some industries, but it is practically a residential suburb of Cobalt. Population, 1011, 3,874.

Ealifax, Nova Scotia. See Voiume III.
Eamilton, Ontario. See Voiume III.
Eamiota, Manitoba, on the Oak River and Miniota branch of the Canadian Pacific Railway, fifty miles northwest of Brandon. Large elevators and several iumber yards are the principai industrial establishments. Population, 1911, 565.

Hampton, New Brunswick, the county town of King's county, is situated on the Kennebecasis River and the Intercolonial Railway. Hampton is a popular summer resort, especially for residents of St. John, twenty miles away. Population, 1911, 554.
Eartary, a town of Manitoba, situated on the Canadian Northern Railway and on the Estevan branch of the Canadian Pacific. There are six elevators, two lumber yards and a brick yard here, and there is fine goose and duck shooting on several lakes in the vicinity. Population, 1911, 623.
Hawkesbury, Prescott county, Ontario, is on the Ottawa River, the Canadian Northern and Grand Trunk railways, half-way between Ottawa and Montreal. The town has separate, public and high schools and a fine olectric and power plant. Lumber and paper mills, a sash

Geograply
and door factory and a clothing is-tory are important industrien Population, 1911, i, itis?
Eorbort, Sackatchewan, on the main line of the Canadian Pacifo Railway, eishty-two miles west of Moose Jaw. Population, 1911, 659.
Bieh Rivor, a town in Macleod district, Alberta, on the Higiwood River and Canadian Pecific Railway, fotty miles south of Calgary. Lumber products are the principal manufantures of the town, and it also receives much grain, cattlo and hoge from the surrounding country for shipment. Population, 1911, 1,182.
Eillerest, a village in the Macleod dlstrict, Alberta. Population, 1011, 481.
Eillsborough, in Albert county, New Brunswick, on the Petiteodiac River. The gypsum mines in the vicinity have an annual output of 120,000 tons. The town has plaster mills, woodworking factories and railway machine shopre. Population, 1911,911.
Eoumor, British Columbia, on the Great Vorthern and Canedian Pacific railways, eight miles east of Fernie, is a great coal mining and coke manufacturing ( 240 ovens) town. Population, 1911, 2,000.
Eull, Quebec. See Volume III.
Eumboldt, Saskatchewan, a divisional point on the Canadian Northern main line, eighty-one mules east of Saskatoon. A Dominion lands office, grain elevators, creamery and reveral general stores are located here. The Humboldt district is fine for wheat and mixed farming. Population, 1911, 859.
Indian Eoad, a town of Saskatchewan, on the main line of the Canadian Pacific Railway, forty miles east of Regina. It has large flour mills, window sash and door factories, and ten grain elevators with a total capacity of $4,500,000$ bushels. The electric light system is owned and operated by the town. The Dominion experimental and forestry farms are located here. Population, 1911, 1,285.
Ingorsoll, a town in Oxford county, Ontario, on the Grand Trunk and Canadian Pacific railways, ten miles southwest of Woodstock. Its principal industries use wool and agricultural products as raw materials; furniture, pianos, outmeal, condensed milk and flour are among the manufactures. Their annual value is over $\$ 3,000,000$. Population, 1911, 4,763.
Inninfall, Alberta, on the Calgary-Edmonton branch of the Canadian Pacific Railway, seventyfive miles north of Calgary, has a large saw mill, grain elevator, three creameries, brick plant and lumber yards. Population, 1911, 602.

Invernens, Novi Scotia, on the weot coned al Cape Breton Island, is situatod on Bis River ead on the Invernese Rellway. Copper, erpuma and fireclay are found is considerable quantity, but the most important induatry is coal minine 'ropulation, $1011,2,719$.
'ollotie, jo li $x^{\prime}$, the county-rent of Jolietw county, Quebec, is situated on L'Aeromption River, about thirty-ix miles north of Montronl. It is on the Canadian Pacific and Canadian Northern Quebec rallway. Lumber, tron and steel, paper pulp, tobaceo, biscuits and candies are the principal manufactures. The town in known for its excellent achools, acndemies and Joliette College. Population, 1911, 6,346.
Eamloopa, a town in the Yale distriet $d$ British Columbia, is situated at the junction of the North and South Thompson rivers, 230 miles from Vancouver. It is on the main lima of the Canadian Pacific Railway, of which it it a divisional point, and it io also divisional point on the Canadian Northern. The surrounding region is devoted to stock raising, mixed turring, fruit growing, lumbering and mining. In - A town the leading industries are saw milh ansh and door factoricu, machine shops, a brick yand, a brewery and a cigar factory. The toma owns its light and water systems and has good educational facilities. It supports a daly and weekly paper and is the seat of Domiaion government land, Indian agent and customas offices. The sits of Kamloops is 1,150 feet abore sen level and the town is noted for its dry and healthful climate, which makes it a delightul summer resort. Population, 1011, 3,772.
Eamsack, Saskatchewan, a division pointoo the Canadian Northern Railway, about ninety miles northwest of Dauphin. Population, 1911, 473.

Kaslo, British Columbia, on the west shored Kootenay Lake, is the terminus of the Kalo and Slocan Railway; it also has stemmbost copnections with the Canadian Pacific and Great Northern railways at Nelson. The surrounding country is admirably suited to fruit growing and there are important deposits of sulphur, lead, zinc and copper. The town has a number d lumber and saw mills and also has a large trude in supplies for the mines. It owns its waterworks and has an electric lighting aystam Population, 1911, 722.

Solowna, a city on Okanagan Lake, British Columbia. The city is in a rich farming district, tobacco and fruits, especially apples, plume and cherries, being the principal products; others

## Aoography

Important eropa aro potatoes, celery, cabbaro and tomatoes. There are several fruit packing and preserving plants, a cigar fectory, brick yand and ruw mulla. Kelowna apples aro famous and have taken prises in the national apple ahowa at Vancouver and Spokane. Population, 1911, 1,003.
Iozara, Ontario, formerly known an Rat Portage, on Lake of the Woods, and the Canadian Pacific, Grand Truak Pacificand Canr. dian Northern railways. It is the Industrial erner of the Lake of the Woods district and hae harge flour and lumber mille and two grinin edevators. The town hes aplendid schools and piblic buildingg Good hunting and fishing in the neighborhood have made it one of the moat popular summer resorts in Cananda. Popuhtion, 1911, 6,138 .
Kontrille, county-eeat of King's county, Nova Scotia, is on the Dominion Atlantic Railway. It is the husiness center of the Annapolis and Cornwallis valleyz and is a prosperous midential tnwn. Automobiles, carriages, gasoline engines and milling machinery ere manufactured here. Population, 1911, 2,304.
Kullarnay, a town of Manitoba, on the Pembinas branch of the Canadian Pecifce Rail way. It in the shipping point for the Turtle Mountuin region, known for lts mixed farming. It has an annual live atock exhibition, contains an uptodate town hall, good school facilities and an adequate electric lighting system. Population, 1911, 1,010.
Kinderley, Saskatchewan, a divisional point on the Saskatoon-Goose Lake hranch of the Canadian Northern Railway, 126 miles southwest
Saskation. A Dominion lands office is. muc. here. With its many supply hous projected additional lines of ruilroad Kinderstey is destined to become a great distributing point for a prosperous agricultural district. Population, 1911, 456.
Kingiton, Ontario, See Volume III.
Lechine, Quebec. See Volume III.
Lscombe, a town in Alberta, on the branch line of the Canadian Pacific Railway between Calgary and Edmonton, 115 miles from Calgary and eighty miles from Edmonton; also on the Canadian Northern Rallway. The town is located in a very rich agricultural and grazing district. It has several grain elevators, hrick yand, factory, iron foundry, plening mill, larness and broom factories. Population, 1911, 1,029
Lednor, a town in British Columbia, twelve miles by steamer from New Westminster, on the

Great Northern Railway. Fish canneries, a creamery and maw mill ave noteworthy. Population, 1011, 800 .
Ladjumith, a town on the eart coast of Vancouver Ialand, British Columbia, on the Erquimalt and Nanaimo Reilmay, eighteen milee from Nanaima. The Tyee Copper Company has a largo amelter here; thero are aloo stove works, a brewery, shingle mill. Coal ls extenuvely mined in the vicinity. Population, 1911, 3,205
Las gan, a station In Alberta, on the Canadian Pacifc Rnillway, situsted In the heart of the Rockien, 250 miles from Vancouver. The place has attenned world-wide reputation bechuse of the benuty and grandeur of the surrounding mountain ecenery. Lake loulse, one of the most attractive of mountain lakes, is about two miles distant. The Canadian Pacific changes here from the Western to Pacific time.
Lanigan, Sackatchewna, on the Canadian Pacife Railway, eighty-one miles southenat of Saskatcon. Population, 1011, 392.
Lauson, lo zon', in the province of Quebec, a town in Levis county, lies just below Quebeci on the opposite ide of the Saint Lavrence; It is also on the Intercoloninal and Quebec Central railways. Its principal industries are the manufacture of lumber products and shipbuilding. The trade in lunber is large. Population, 1911, 3,978.
Ioduc, in Stratheona district, Alberta, eighteen miles wouth of Edmonton, on the Cal-gary-Edmonton branch of the Canadian Pacific Railway. Large grain elevators and lumber yards are located here. Population, 1911, 523 .
Letabridge, a city of Alberta, on the Canadian Pacitc, Great Northern and Alberta railways, 109 mules from Medicne Hat. It is an important railway center and is the shipping point for a rich coal-muning and farming rekion. The crop shipments ure large, averaging $3,500,000$ bushels a year, mostly wheat, oats and flax. Six large coal mines are within aight of the city. The head office of the Alberta Railway and Irrigation Company, which is constructing and operating a great inigation aystem in southern Alberta, is located here. The chiel industries of the city include imn and hrick p. ks , flour and woolen mills and a large brewery. The city is the headquarters of a division of the Riyal Northwest Mounted Police. Pu, ulation, 1911, 8,050.
Lovis, Quebec. See Volume III.
Lindsay, Ontario. See Volume III.

Unerpeol, Nova Scotia, the county town of Quomi's county, is ilturied at the mouth of the Ruver Merrey and on the Helifer and Bouthwercere Railway. The town has the country ceadony, Ivo churchoen mumerous induatrico, espocially troa worta, pulp and paper zeille and shipworke, and hes a large trade in lumber and Ach. Population, 1911, 2,108.

Hogdimiastor, a towa in the proviace of Ses katchowes, on the main line of the Canadian Northess Reilimay, 160 sullen enst of Edmontoa and on the bordep line of Alberta and Sackatchowan. A govarnment creamery, tour mille, echools and beaks are evidence of the progrescivenews of the town. Population, 1911, 441.

Zondos, Ontario See Volume III.
Ireaguerdh, lon $\mathrm{N}^{\prime} y$, the county-ment of Chambly county, Quebee, is on the south bank of the Saint Lawrence Kives oppoaite Montreal. Ito industries are amall, but it is a noted reabdeatial suburb of Montred and lo also a popular cummer resort. Population, 1911, 3,072.

Ioudaburs, Nove Scotia, on the eastern end of Cape Bretou Island, is benutif:"'y aituated on $a$ ine harbor, open all the year. . visburg is of great historical interest to Canadianos, es it was one of the points of attack throughout the wars between France and England in the eighteenth contury; the ruins of the fortifications atill remain. Lobates packing, fish curing and lumbering are the principal industries. Population, 1911, 1,006.

Irmaden, Sackatchewan, a town on the Qu'Appelle Kiver and the Prince Albert-Regina branch of the Canadian Northern Railway, twenty miles northwest of Regina. Lumsden is in one of the richest grain sections of the northwest. Population, 1911, 695.

Lanonburg, the county town of Lunenburg county, Nova Scotia, is located on the Halifar and Southwestern Railway. Besides numerous Industries, Lunenburg has a fishing fleet of over 150 vessels, with an average annual catch of 5,000,000 pounds. Population, 1911, 2,681.

Macleod, a town in the district of the same name in Alberta, located at the junction of the Crow's Nest Pass and the Calgary and Macleod branches of the Canadian Pacific Railway, 108 miles south of Calgary. It is a railrond divisional point, and is the district headquarters of the provincial courts and of the Royal Northwest Mounted Police. The Canadian Northern has been granted a large trict for yards and shops. Four grain elevators, a flour mill, soap factery, iron works and tannery are in operation.

These are lage depoelto of coell, both anelhnaite and Bteuranoves, in the meighborhood. Mackead is a town of crowiany lapportances as a distributias and sesaral manulacturing ceanter. Pupulation, 1911, 1,84.

Meges, Quobec, a town on the Canadian Peciac Railway twenty miles south woot of Sher brooke, is soted priacipally for lts textile mills and butter and cbose fectorien. Population 1911, 3,978.
Tagentik, Alberta, on Pot Hole Creek and the Alberta Railway, twelve miles west of Raymond. It ls a Mormon wettement, with a fino church of the Latter Day Saints. Population, 1011, 905.

Cidsenaerve, a town in Hochelaga county, Quebec, on the Saint Lawrence River and on the Canadian Peelsc, Great Northera and Mor renl Terminal rallronda; it was formerty a part of the town of Hochelaga. Much of its growth is due to lta natural advantages as a manufacturing and shipping center, ourrounded as it is by the city of Montreal, except on the river side. It is the mant important of the industrial suburbs $\alpha$ - atreal; the principal induatry lo shoe manufecturing, but it also has a large sugar refinery, foundriet, anw mills and lumber yards, cottoa mille, biscuit and other fectories. The achool system is excellent and there are also two colleges and a good public library. Population, 1911, 18,684.

Manitor, a town in Manitobe, on the Canndian Pacific Reilway, eighteen miles from the United States boundary. Wheat is raised in large quantities in the surrounding larming district. Manitou is the neat of a normal schood and the county court. Population, 1911, 639.

Maple Oreek, a town of Saskatchewan, in the southwestern part of the province, is on the main line of the Canadian Pacific Railwa, eighty-six miles east of Medicine Hat. Sheep, horses and cattle are extensively raised in the neighborhood. Maple Creek is the headquarten of a division of the Mounted Police. Population, 1911, 836.

Marysill l , a town in York county, New Brunswick - the Intercolonial Railway, three miles A.c. -'redericton. Lumber and rotton mills employ most of the lnhabitants. Popultrtion, $1911,1,837$.

Modicine Elat. a city in Alberta, 660 miles west of Winnipeg, on the Ceusedian Pacific Ruib way. It is an important rairoad point and has large repair shops. A flour mill, lour brick yards, foundry, linseed ail mills, planing mills
andiliag mills ans amoas the Important mantrecturing planete. Coal mines and natural grae th tho vichatey oupply cheap fuel and power. Purks, churches and four harios schoole are ferture of the eity. Population, 1011, 5,008 .
Molorit, Saskatehewan, h on the Carrot River and the Canadian Northern Railmay, eiditity miles enot of Prince Abbert. It is a nilmad divisional point, has a government customas and lands office and is the trade center for the Carrot Miver Valiey, where lumbering in extemdive. Population, 1011, 800.
Mollits, Manitoba, on the Souris River and Cenadian Pacific Railway, eighty-five miles southwest of Brandon. Five eievatoors here have - cmpacity of 100,000 bushela; there ave hour mills, lumber yurds, a brick plant and throe public parks. Population, 1911, 000 .
Molvillo, a town in Salkatchewan, of the min line of the Grand Trunk Pacific, on the Hudson's Bay brach and the Melvillo-Regina bresch, wa founded In 1903. Large wavehousee and grnin elovators have been erocted here; there are also two breweries. As the nearest point on the Grand Trunk Pacife for the Qu'Appelie Valley, Meiville meems destined to a mpidg growth. Population, 1911, 1,816.
Morriti, a city of British Columbia, In the Niods Valley at the junction of the Nicola and Coldmater rivers. It is a large producer of coal and coke and is riso noted for Nicola Valley truits. Three rilisoads meet here. Population, 1911, 703.
Miebol, a town of British Columbia, twentytwo miles northenst of Fernie, on the Crow's Nest division of the Canadian Pacific Railway. Population, 1911, 682. Adjoining it is New Michel, with a population of 1,515 .
Malisad, a town of Ontario, in Simcoe evunty, on Georgian Bay. The Grand Trunk Railway and a line of steamers furnish transportation. The town has many large factories and mills, grain eievators, iron smelters, engine rorks, coal docks and a shipbuilding yard. Population, 1911, 4,663.
Milestone, Saskatchewan, fifty-four miles from Moose Jnw and abcut thirty-five miles suth of Regina, on the Canadian Pacific Railvey. Milestone has a meat packing plant, lumber yards and grain elevatorsa Population, 1911, 436.
Milltown, in Charlotte county, New Brunsmiek, one mile from SL. Stephen. Large cotton mills are here, also a grist mill and a saw and edge tooi factory. Population, 1911, 1,802.

Miaredost, a cown in Manitoba, on the Uttle Sackatchewan River and the Minnedoan braech of the Canedian Pacific Railway. Lumbee and groin are the principal producta of the region; Minnedoos has ifve erriain clovators and two large lumber yards. it is the center of the northern judicieal distriet of the province. Population, 1011, 1,483 .
Wonetoa, a city in Wevtmorland county, Now Brunawick, on the Petitcodise River, which Sows into the Bay of Fundy, and on the Inter. colonial and Grand Trunk Pacific ruilmayn, dighty-nine miles northwest of St. Johnh. Monctoo has an exeellent harbor and is a port of entry. The principal manufactures include Jumber, atoves, woodenware, cottoa and woolen coode, barreis and riilroed cars. The city hae the main repair thops of the Intercolonial Railway and io the eastern terminus of the Grand Trunk Pacifc. There are eight churches and lour $v$ ': nole. Population, 1911, 11,345.
Yooi:on, Quebec. Sce Volume III.
Moose Jan, a city of Seskatchewna, at the Junction of Moose Jaw River and Thunder Bay Creek, also a divisional point on the Conadian Pacific, Canadian Northera and Grand Trunk Pacific railwaym. The surrounding region is noted as one of the finest agricultural districts In westera Canada; It lies in the heart of the greateat whent belt in the world. The city is 2 large industrial center, the most important plants being bridge and iron works, slaughter and packing housen, tannery, ecrgine and gus motor shopa, flour mills, creamer.' and butt " faciory. A large company also nunnufac:u brick and other ciay products. The city 1 many beatiful buildings; especially natewort! are the city hali, court house, Coliegints Inatitute and the new million-dollar p.'.' ic ic ibrary. In addition to a fine public achool $\because=$ icm there are institutions for savi...ced study ir.suding the Collegiate Instity 4 the new Sudatchewan Coilege. A prominent feature of the city is the absence of telegraph and telephone poles in the streets, practicaliy all wires and conduits being under ground. The city is experiencing an unusually rapid growth. Population, 1901, 1,558; in 1911, 13,823 .
Moonomin, a town in Saskatchewan, on the main line of the Canadian Pacifc Railway, eightyreven miles west of Brandon. There is a flour mill and a government creamery here. It is the center of a judicial district and also district herdquarters for the Royal Northwest Mounted Police. Population, 1911, 1,143.

Mordon, a town of Manitoba, situated in Lisgar county, on Dead Horse Creek and on the Canadian Pacific and Great Northern railwiys, eighty-two miles southwest of Winnipeg. The chief manufactures are flour, lumber and machinery. The town contains a number of grain elevators. Morden is the center of the southern judicial land titles and surrogate court districts. It is also the county-seat, and among its public buildings contains a fine court house and a jail of the moot approved pattern. Population, 1911, 1,130.

Morris, a town in Manitoba, situated on the Canadian Northern and Canadian Pacific railways and on the Red River, forty-two miles south of Winnipeg. Several grain elevators are located here. Population, 1911, 598.

Moyie, on Moyie Lake, British Columbis, twenty miles west of Cranbrook on the Crow's Nest and British Columbia Southern Railway. The largest silver-lead mine in Canada is in operation here, and there are many smaller mines. Population, 1911, 1,200.

Janalmo, nak ny' mo, a town of British Columbia, on the east side of Vancouver Island, thirty-five miles from Vancouver and seventythree miles from Victoria. Lumbering and coal mining are the principal industries, but the packing of salted herring for export to the orient is increasing in importance. Minor industries are brewing, brick-making and the manufacture of foundry and machine-shop products. The town has electric light and power plants, gas works, waterworks and good fire department. The neighboring districts produce copper and brick clay. Population, 1911, 8,306 .

Nanton, Alberta, is a town on the Macleod branch of the Canadian Pacific Railway, about sixty miles south of Calgary. It is in a fine wheat and ranching district. Population, 1911, 571.

Neopawn, nes paw' wah, Manitobs, a town in Portage county, on White Mud River and the Canadian Northern and Canadian Pacific railways, sixty-one miles from Portage la Prairie. It has elevators, a machine shop, brick plant, sash and door factory and creamery, and excellent schools and churches. The town owns its electric light system. The annual Manitoba Fat Stock Show is held here. Population, 1911, 1,864.

Nelson, British Columbia. See Volume IV.
Newcastle, New Brunswick, the county-seat of Northumberland county, is situated on the left bank of the Miramichi River, eighteen miles from its entrance into Miramichi Bay, and on
the Intercolonial Railway 78 miles from Moncton. Neweastle is the center of a great fishing and huntung district and has a large trade in fish and lumber. Four saw mills, two sash and door fectories and a farm wagon factory are in operntion. Population, 1911, 2,945.

Jow Mlagcow, a town in Pictou county, Nova Scotia, on the East River and the Intercolonial Railway. The Nova Scotia Steel Works, employing over 1,000 men, are located Fere. Other establishwents produce glass, agricultural mschinery, bricks, mineral waters, steel and wire fencing, lumber and mill products. In addition to large quantities of coal, the district yields limestone, iron ore, spruce and some hardwoods. Population, 1911, 6,383.

Fiow Wostminster, British Columbia. See Volume IV.

Niagara Falls, a city in Welland county, Ontario, on the Niagara River, between Lake Erie and Lake Ontario. Its geographical position makes it a great railroad center; practically all of the great trunk lines, including the Canadian Pacific, Canadian Northern, Grand Trunk, Michigan Central, Lake Shore \& Michigan Southern, Wabash, and Erie systems, have connections here. The great water power of the falls furnishes abundant power for many in. dustrial establishments; the most important of these produce silverware, iron and steel, chemicals, leather and leather goods, neckwear, hosiery and hats, firearms, paper and paper boxes. The city has one of the finest park systems in the world, and it is the center of the boulevand system which extends from Lake Erie to Lake Ontario. Its proximity to the falls of the Niagara River makes it a great resort for tourists at all seasons of the year. Population, 1911, 9,248 .
Nicola, British Columbia, on Nicola Lake, fifty miles south of Kamloops, is the terminus of the Nicola-Spence's Bridge Railway. The Niols district is famous for its fine fruits. Population, 1911, about 300.
Mokomis, Saskatchewan, at the junction of the main line of the Grand Trunk Pacific and the Winnipeg-Saskatoon branch of the Canadian Pacific Railway, seventy-five miles north of Regina. The town has four lumber yards, machine shop, fiour mill and other industries Population, 1911, 374.
North Battleford, a town of Saskatchewna, on the main line of the Canadian Northern Reilroad, of which it is a divisional point, and at the junction of the North Saskatchewan and Battleford rivers. The principal industries include

## Clography

nilroed repairs, asash and door manufactures and grist milling. A foundry, machine shop, cement block and tile factory, and the town's light, power, and water syatems are worthy of notice. Population, 1911, 2,105.
Forth Bay, the county-seat of Nipissing county, Ontario, on Lake Nipissing and the Canadinn Pacific, Canadian Northern, Grand Trunk, Grand Trunk Pacific and Temiskaming and Northern Ontario railways. The Canadian Prcific Railway has extensive repair shops here and the town is also known as the gateway to the Cobalt and Porcupine mining districts. It is an important point for tourists and sportsmen, aince there is excellent fishing and hunting in the immediate vicinity. It has two public schools, a high school, two separate schools and a provincial normal school. All of the leading denominations have churches here, some of which are fine edifices. The town owns and operates its water works, and is well lighted by electricty and gas. Population, 1911, 7,737.
Morth 8ydney, a town in Cape Breton county, Nova Scotia, is situated on the Intercolonial Railway five miles north of Sydney. A steam ferry runs hourly to Sydney and there are also steamers running to Montreal, Quebec, Halifax, Charlottetown and St. John's. The coal dorks of the Nova Scotia Steel and Coal Compeny make it an important coaling station. Fishing is extensively carried on and the town also has large granite quarries, planing mill, brick yards and a stove factory. Population, 1911, 5,418.
Morth Toronto, a town of York county, Ontario, on the Grand Trunk Railway. There are a few industrial plants here, but the town is better known as a residential suburb of Toronto. Population, 1911, 5,362.
Morth Vancouver, British Columbia, on the north shore of Burrard Inlet, opposite Vancouver, with which it is connected by ferry. Ship and boat building, the manufacture of sails, cigars, sash and doors are the principal industries. The Pullman Company plans to build a large steel car works and dry docks. North Vancouver is also popular as a residential suburb of Vancouver. Population, 1911, 8,196.
Oak Lake, a town in Manitoba, thirty-two miles west of Brandon, on the Canadian Pacific Railway. Lumbering and flour milling are the principal industries. Population, 1911, 449.
Okotoks, Alberta, on the Maclcod branch of the Canadian Pacific Railway, is twenty-seven miles south of Calgary. It has grain elevators,
flour mill, brick plant, lumber yard and other industries. Population, 1911, 516.

Olds, a town of Alberta, is on Little Red Deer River and the Edmonton branch of the Canadian Pacific, fifty-seven miles north of Calgary. There are two banks, a creamery, cement block plant, and it is in a fine farming district. Population, 1911, 917.
Orillia, o ril' e ah, a town located in Simeoe county, Ontario, on the Grand Trunk, Cansdian Northern and Canadian Pacific railways. Though especially noted for its fine scenery, it is also an industrial center. The important manufactures are cheese, clothing, flour, woolen goods, carriages and wagons, furniture and wood pulp. The town has four public achools and a collegiate institute. Population, 1911, 6,828.
Oshawa, a town and port of entry in Ontario county, Ontario, thirty-three miles from Toronto, on the Grand Trunk, Canadian Northern and Toronto Eastern (electric) railways. The town has canning and evaporating factories and manufactures machinery, agricultural implements, malleable iron, musical instraments, woolen goods and flour. Sugar beets of high grade are raised in the vicinity. Population, 1191, 7,435.
Ottawa, Ontario. See page 3i2; also Volume IV.
Ontlook, Saskatchewan, the terminus of the Moose Jaw-Lacombe branch of the Canadian Pacific Railway, is on the South Saskatchewan River. The new railroad bridge here is estimated to cost $\$ 1,000,000$. Population, 1911, 685.

Owen Sound, Ontario. See Volume IV.
Oxbow, a town of Saskatchewan, is beautifully situated on a hill above the Souris River, forty miles cast of Estevan. Oxbow lies in the great wheat belt and has grain elevators with a total capacity of 200,000 bushels. Population, i? $11,630$.

Uyford, Nova Scotia, on the River Philip and the Intercolonial Railway, has woolen mills, furniture factory, foundry, machine shop, box factory, etc. The annual lumber shipments from here are over $10,000,000$ feet. The neighborhood supplies good fishing and hunting. Population, 1911, 1,392.

Paris, a town of Brant county, Ontario, on the Grand Trunk and Grand Valley Electric railways, seven miles northwest of Brantford and fourteen miles south of Galt. Gypsum and lime are found in the vicinity, which is also a good mixed farming district. The chief industries include alabaster works, flour and woolen mills,
refrigerator and screen door factories. Population, 1911, 4,098.
Parrsboro, Nova Scotia, on the Basin of Minas, has railway and ateamer connection. Though especially known as a aportsmen's resort it is industrially important for its coal and lumber shipments and its shipbuilding yards. Population, 1911, 2,856.
Parry Bound, Ontario, the county town of Parry sound county and the seat of the Parry Sound judiciel district. The Grand Trunk, Canadian Pacific and Canadian Northern Ontario railways, beside the steamess of the Northern Steamship Company, furnish excellent transportation facilities. Wood alcohol is one of the principal manufactures; there are also Give maw mills, veneer, boat, sash and door factories and machine shops. It is a distributing point for camping and tourist parties. Populer tion, 1911, 3,429.
Pombroks, the county-seat of Renfrew county, Ontario, on Allamette Lake, an expansion of the Ottawa River, and on the Canadian Pacific and Grand Trunk ralways, fifteen miles northwest of Renfrew. There is ample water power for many industries, including the manufucture of flour, axes, woolen goods, leather goods, stoves and carriages. The town also has an extensive trade in lumber. Five schools, besides a convent boarding school, furnish excellent educational facilities. There is also a wellequipped and well-managed public library. Population, 1011, 5,626.
Penetanguichene, a town in Simeoe county, Ontario, is situated on an inlet of Georgian Bay, about two miles west of Midland. Its chief manufactures are lumber, iron products (especially stoves), leather, boats and canoes. Population, 1911, 3,568.
Penticton, British Columbia, a town at the southern end of Okanagan Lake, seventy-five miles from Okanagan Landing, with which it has steamer connection. Fruit growing, brick making and lumbering are the principal industries. The town operates its own irrigation system. Population, 1911, 1,800 .

Perth, the county-seat of Lanark county, Ontario, is situated on the Canadian Pacific Railway, forty miles northwest of Brockville. The Rideau Canal has been extended to Perth and has aided in local development. The town contains railroad shops, distilleries, woolen mills, knitting mills, checse and butter factories. There are important mica deposits in this region. Population, 1911, 3,588.

Potarboreagi, Ontario. See Volume IV.
Petrolos, a town of Ontario located in Lambton county, fifteen miles southeast of Sarnia, is on the Grand Trunk and Michigan Central railways. The town is in the center of the great oil region of the province and has numerous oil wells and refineries, also saw mills, grist mills, boiler works and a fruit and vegetable cannery. The largest butter fuctory of Ontario is in operation here. Population, 1911, 3,518 .

Phoondx, British Columbia, a mining camp thirty miles west of Rossland and only six miles from the international boundary. Low grade copper ore is mined here in large quantities. Population, 1911, 662; also a floating populetion of about 800 .

Picton, the county-seat of Prince Edward county, Ontario, is situated on the Bay od Quinte (kwoinde), an arm of Lake Ontario, and on the Central Ontario Railway, forty miles southwest of Kingston. It is a port of entry. Canning and packing fruits and vegetables is the principal industry. In the navigation season steamers ply daily to Kingston, Belleville, Rochester and other nearby towns. Population, 1011, 3,564.

Pictou, the county-seat of Pictou county, Nova Scotia, is on the Intercolonial Railway and has steamship connection with Charlottrtown, Montreal and other ports. It is the seat of Pictou Academy, founded in 1818, and has large manufactures, including flour, biscuits, candy, motorboats and foundry products. The tom has a beautiful Young Men's Christian Assocss. tion building, and is also noted for its excellent schools and fine churches. Coal, lumber and orchard fruits are abundant in the surrounding country. Population, 1911, 3,179.
Pincher Oreek, a town of Alberta, on the Crow's Nest section of the Canadian Pacific Railway. The completion of the Canadian Northern Railway will give it additional transportation advantages. The town is the center of a mixed farming and coal-mining district, which gives it a large jobbing and supply trade. Population, $1011,1,027$.
Ponoka is a town in Alberta, sixty-two miles south of Edmonton. Large fair grounds and a race track are located here; there are also elevttors ( 65,000 bushels), creameries and lumber yards. Population, 1911, 642.

Porcupine, Ontario, on Porcupine Lake and the Temiskaming \& Northern Ontario Railmas, 450 miles north of Toronto. The town is composed of three settlements: Golden City, Pott-

## Aoography

## Ceography

vile and Southend. It is one of the greatest gold mining campe in Canada. Since the big fire in 1911, the town has been solidily rebuilt. Population, 1911, largely floating, 5,000 .
Portage La Prairie, a city of Manitoba, is situnted on the Portage plains, fifty-six miles wet of Winnipeg. It is located on the Canadian Prcific, the Canadian Northern and the Grard Trunk Pacific, the three great trans-continental suilways of Canada, and its connection with the Great Northern gives it direct communication with Minneapolis, St. Paul and other large American cities. This makes it a natural distributing point for manufacturers and ahippers. The chief industries include flour and oatmeal mills, brick yards, a sash and door factory, a pump factory, a cigar factory, a radiator plant,

Port Arthur, a city in the Thunder Bay district of Ontario, at the head of Lake Superior, two and ono-half miles from Fort William. The Canadian Northern, Canadian Pacific and Grand Trunk Pacific railways, together with the exceptional opportunities for water transportation, make Port Arthur an important collecting and distributing point, especially for the grai - -growing regions. The report of the Board of Trade shows a total of over $92,000,000$ bushels of grain shipped from Port Arthur and Fort William in 1911; the Canadian Northern's great elevator, with a capacity of $7,500,000$ bushels, is said to be the largest in the world. There are also large fishing, mining and lumbering interests. The blast furnace of the Atikokan Iron Company, large coal and iron ore docks, a dry dock and


PORT ARTHUR GRAIN ELEVATOR; LARGEST IN THE WORLD
and a plant for the manufacture of farm machinery. There are also a number of large elevators. The city has a number of parks, Island Park immediately south of the city and nearly surmounded by Crescent Lake, being one of the most beautiful parks in western Canada. The city is well lighted and has excellent systems of waterworks and sewerage. It is the seat of a collegiate institute, normal school and business college. These institutions, with the excellent system of public schools, give Portage la Prairie exceptional educational facilities. Population, 1911, 5,892.
Port Alberin, British Columbia, the terminus of the Esquimalt \& Nanaimo Railway, owned by the Canadian Pacific, is situated on a deep natural harbor on the west coast of Vancouver lsland. It is the distributing point for a great lumber, coal, fruit and fishing district. Population, 1911, 891.
shipbuilding plant, saw mills and foundries are among other large establishments. About 350,000 tons of pig iron are shipped from Port Arthur each year. Excellent public schools and a public library are features of the city. Population, 1911, 11,220.
Port Hood, Nova Scotia, the county town of Inverness county, on Cape Breton Island, has steamship connections with Halifax and other large ports; the Inverness Railway and Coal Company's Line connects with the Intercolonial Railway at Mulgrave. Coal mining and fishing are among the leading industries. Population, 1911, 1,078.

Port Hope, a town in Durham county, Ontario, on Lake Ontario, the Ganeraska River, and three railways: the Grand Trunk, Canadian Northern and Canadian Pacific. It has a fine harbor and a very active trade in lumber, grain and dairy products. There are manufactories

## Coography

of woolen goods, flour, steel, porcelain and enamel ware, leather belting, plews, etc. The canning of fruits and vegetables is also important. It is the seat of Trinity College School, in affiliation with Trinity University, Torsato. Population, 1911, 5.092.

Port Moody, a town in British Columbis, at the head of the Burrard Inlet, on the main line of the Canadian Pacific Railway. Sowmills, a ahingle mill, brick plant, and oil refinery, are the leading manufactories. Population, 1911, 1,100.

Port Bimpson, a town in British Columbia, twenty-five miles northwest of Prince Rupert, has an extensive harbor with direct approach from the ocean. Fishing, especially for halibut, salmon and herring, is the principal industry, but there is also some lumbering and mining. The Hudson's Bay Company has offices here, and there are Indian schools and provincial buildings. Population (mostly Indians), estimated at 1,000.

Preston, a town of Ontario, in Waterloo county, on the Grand Trunk and Canadian Pacific railways; electric railways connect it with Berlin, Galt, Paris and Brantford. The chief manufactures are agricultural implements, woolen goods, furniture and aboes. The distriot produces live stock, grain and vegetables. Mineral springs make the town a popular resort. Population, 1911, 3,883.
Prince Ulbert, a city in Saskatchewan, on the Canadian Northern, Canadian Pacific and Grand Trunk railroais, and on the North Saskatchewan River, is the northernmost of the large cities of the province. The city is in a beautiful country, especially suited to spring wheat and oats, but also known for fishing and shooting. Three large lumber companies here cut about $100,000,000$ board feet a year. Other large industrial plants include four brick plants, three flour mills, a brewery, planing mills, marble and granite works, and saddlery factory. Two public schools, a collegiate institute, business college, convent and separate school, numerous churches, electric light and water works, and sewerage system are evidence of the progressiveness of the city. Prince Albert is the headquarters of a judicial district and of the Royal Northwest Mounted Police for central and northern Saskatchewan, and is the seat of the provin ial jail and penitentiary. Population, 1911, 6,254.

Prince Rupert, a city on Kaien Island, British Columbia, 550 miles from Vancouver.

It is the western terminus of the Grand Trunk Pacific Railway and has direct steamshup communication with important foreign ports. The city is located on an excellent harbor, just east of the Queen Charlotte Islands, and just south of the most southern point of Alaska. The sur. rounding country has unlimited agricultural, mineral and forest resources and the bay and nearby rivers abound in fish so that extensive fishing industries are already established. With the completion of the railway, Prince Rupert will become one of the most important ports of the Pacific const. It is 400 miles nearer Japan than any other Pacific port of North America. Before lots were offered for sale the city was laid out and grades established by engineers acting conjointly with the government and the railway company; the first lot was sold in May, 1909. Immense cold storage and fish-curing plants, creameries and a large sash and door factory are worthy of mention. Population, 1911, 4,184.
Princeton, a town in British Columbia, on the Great Northern Railway, a direct route to Spokane, Washington. Gold, silver, copper and coal are mined. Population, 1911, 600.

Or'Appelle, ka pel', Saskatchewan, a town on the main line of the Canadian Pacific, thirty-two miles east of Regina. It is in the midst of a rich wheat and oats raising section, for which it provides elevators and shipping facilities. There are excellent public and high achools, and an Indian mission school is located about eight miles from the town. Fort Qu'Appelle, twenty miles distant, is an old post of the Hudson's Bay Company. Population, $1911,851$.
Quebec, Quebec. See Volume IV.
Queenstown, a village of Alberta, about fifty miles southeast of Calgary, lies just north of the new reservoir, Lake McGregor. Population, 1911, 666.

Rapid Oity, Manitoba, in Marquette county, on the Little Saskatchewan River and a divisional point on the Canadian Pacific Railway, thirty-six miles north of Brandon. Four gran elevators, flour mill, brick and lumber yardare important. Population, 1911, 580.

Raymond, a town in southern Alberta, on the Alberta Railway, It is situated in a well irrigated section which raises good live stock and sugar beets. A flour mill, beet sugar factory and two brick plants are important. Population, 1911, 1,465.

Red Deer, a town of Alberta, on Red Deer River and the Canadian Pacific and Canadian

Geography

## Geography

Northern milways. There is abundant water power for manufacturing purposes as well as for dectric lighting. Two brick and tile factories, lumber mills, concrete works and a tannery fur. nish the chief manufactures. A Dominion lands office is locited here. Population, 1911, 2,118.
Iogina, Saskatchewan. See Volume IV.
zonfrev, ia town of Ontario, is situated in Renfrew county, on the Bonnechere River and

Rovelstoke, a city in the Kootenay district of British Columbia. It is a divisional point on $i:$ Canadian Pacific Railway and has large repai: shops, which are the largest industry at the present time. As the gateway to the Kootenay country, it is the headquarters for mine supplies and also ior tourists and sportsmen. North of Revelstoke is the Big Bend mining region. The neighborhood also supplies large

the public butlding, reaina
on the Canadian Pacific and other railways. The river at this point affords abundant water power and the town contains numerous manufactories, including woolen mills, flour mills, a tannery, brick and tile factories and one of the largest creameries in the Dominion. Its cducational facilities include a public school system, extending from the kindergarten to the high school, and a good collegiate institute. Population, 1911, 3,846 .
Raston, a village in Manitoba, on the Canadian Pacific Railway, twelve miles from the provincial boundary and aioout 180 miles west of Winnipeg. Population, 1911, 416.
quantities of strawherries, vegetables, lumber and brick clay. (See illustration on next page.) Population, 1911, 3,01?.
Richibucto, the county-seat of Kent county, New Brunswick, on Northumberland Strait, has a fine harbor. Coal mining and lobster fishing are the leading industries. Population, 1911, 871.
Bimoushi, the county town of Rimouski county, Quebec, on the south bank of the St. Lawrence River, 180 miles below Quebec. It is the seat of a Roman Catholic bishopric and has a seminary, three convents, normal and other schools. Lumber and potatoes are the leading products. Population, 1911, 3,097.

Coography

## Geography

Mrors, a town in Brandon district, Manitoba. Population, $1911,950$.

Miviore du Loup or Treserville, in Temiscounta county, Quebec, on the Intercolonial and the Temiscounta railways. It is situated at the junction of the Riviere du Loup with the Saint Lawrence. Both the railways have repair shops here and there are numerous factories and mills, mostly for lumber and its products. The town is known as a resort for fishermen and hunters. Population, 1911, 6,774.
mining district, noted for its rich gold and coppet mines. Among the chief gold mines located here are the War Eagle, Le Roi and Center Star. Fruit growing is a profitable industry in the vicinity, the climate being especially adapted to apples, pears, plums and small fruts. Population, $1911,2,826$.

Rosthern, a town in the province of Sas. katchewan, situated on the Regina-Prince Albert branch of the Canadian Northern Railway, fifty miles south of Prince Albert. Rosthern


THE COLUMBIA RIVER AT REVELSTOKE
(Bee page 331)

Rockland, a town of Ontario, in Russell county, on tho Grand Trunk and Car-Jian Northern railways and on the Ottawa River, twenty-two miles east of Ottawa. A large mica factory, flour and lumber mills are located here. Population, 1911, 3,397.
Roland, a village of Manitoba, fifty-five miles southwest of Winnipeg, situated on the Canadian Northern Railway. There is a large trade in wheat and agricultutal implements. Population, 1911, 433.
Rossland, a town of British Columbia, on the Great Northern and Canadian Pacific railways. It is the center of the West Kootenay
is the shipping center for a great wheat raising district; its grain elevators are the largest west of Winnipeg. Flour mills and brick yards are the chief industries of importance. A government experimental farm is located here. Population, 1911, 1,172.
Roulean, Saskatchewan, on the Canadian Pacific Railway, thirty-two miles southeast of Moose Jaw. The town has two lumber yards, oil storage tanks and other industries. Popule tion, $1911,679$.
Russell, a growing town in Manitoba, sith ated on branches of the Canadian Pacific and Canadian Northern railways, ninety-five miles

Goography
northwest of Brandon. Russell is in a fine aricultural rection. Population, 1911, 562.
8ectivill, a town in Westmorland county, New Brunswick, is the terminus of the New Brunswick and Prince Edward Island Railway. It is the seat of Mount Allison University and d a college for women. Stoves, carriages, atone and leather goods, especially boots and shoes, - the most important manufactured products of the town. Population, 1911, 2,039.

## Coography

is the most important industry. Populatiun, 1911, 887.

Saint Anae de Beanprt, a village of Montmorency county, Quebec, at the junction of the Saint Anne and Saint Lawrence rivers. For over two centuries Saint Anne has been known as a Roman Catholic shrine, and many miraculous cures are said to be performed through the intercession of the saint. In the basilicm are great piles of crutches cast aside by pilgrims. The

galnt anne de beaupre

Saint Albert, a town in Alberta, is nine miles northwest of Edmonton, on the Sturgeon River and Canadian Northern Railway. It is the seat of a Roman Catholic bishop and has two large churches and a convent. Population, 1911, 614

## saint Androws, the county-seat of Charlotte

 rounty, New Brunswick, on Passamaquoddy Bay and Saint Croix River. It is the Atlantic terminus of the Canadian Pacific Railway and has a deep harbor which will accommodate the lurgest vessels. Catching and packing of fishpermanent population is about 2,000, but on such feast days as that of Saint Anne (July 26) over 25,000 kave often been present. About 200,000 pilgrims visit the village each year.
Saint Bonitace, a city of Manitoba, on the Red River, opposite Winnipeg, with which it is connected by four bridges. The Canadian Northern, Canadian Pacific, Grand Trunk Pacific, Great Northern and an electric railway serve the cuty and afford excellent transportation facilities. The surrounding country is a splendid agricultural section and sends great quantities
of wheat to the mills of St. Boniface. Besides flour, lumber and building materials are the important manufactures. It is the seat of the Roman Catholic see of Manitoba. A Jesuit college, an academy for boys, excellent schools and churches make lt: a pleasant home town. Population, 1901, 2,019; in 1911, 7,483.

Iaint Oathorino's, Ontario. See Volume IV.
Baint Goorge, New Brunswick, on Passar maquoddy Bay, opposite Saint Andrews. Considerable fishing is canried on in the neighborhood. Population, 1011, 988.
gaint Eysaintho, a city of Quebec, the county-seat of Saint Hyacinthe county, located on the Yamaska River, which almost encircles the city, and on the Grand Trunk, Canadian Pacific, Intercolonial and Quebec Southern railways. Saint Hyacinthe has excellent schools and is the seat of a seminary, two convents, the Academie Prince for girls and Academio Girouand for boys. It also has a branch of the Sacred Heart College of Arthabaska and the provincial dairy school, probably the first dairy school in Canade. The principal manufactures are boots and ahoes, threshing machines, musical instruments, corsets, biscuits and knit goods. Population, 1911, 8,797 .
saint Jorome, Quebec, the county-seat of Terrebonne county, is on the Riviere du Nord, and the Canadian Pacific and Great Northern railways, thirty miles from Montreal. Saint Jerome is an important manufacturng point, especially for pulp and other wood products, pianos and rubber goods. The school system is excellent. Population, 1911, 3,473.
gaint John, New Brunswick. See Volume IV.
Eaint John's or Baint Joan, Quebec, the county town of Saint John's county, twentyseven miles from Montreal, on the Richelieu River, Grand Trunk, Canadian Pacific and other railways. The town has a large trade in lumber and grain. Sewing machines, silk thread and goods, drain pipe, straw hats, furniture, umbrellas and canned vegetables are the principal manufactures. Population, 1911, 5,003.
Saint Laurent, Manitoba, in the Macdonald district. Population, 1911, 581.
gsint Mary's, in Perth county, Ontario, twenty miles north of London, on the Grand Trunk and Canadian Pacific railways. There are large stone quarries in the neighborhood. The principal factories'make agricultural implements, butter and flour, and fruit is dried. The achools are excellent, and there is a public library. Population, 1911, 3,388.

Alaint Itophon, a seaport and port of entry of Now Brunswick, aituated at the junction of the Denny's and St. Croix rivers. The Canadian Pacific, New Brunswick Southera and Maine Central riilways (via Calais, Maine) provide transportation. It has large manufetures of chemicals, edge tools, bricks and soap and is a point for the shipping of lumber. Population, 1911, 2,836.

Ialnt Thomas, Ontario. See Volume IV.
Ealmon Arm, British Columbia, on Shuswap Leke and the main line of the Canadian Pacific Railway, has steamboat connection with Kamloops and other lake pointa. A government fish hatchery is located bere. Fruit growing and dairying are very profitable in the vicinity. Population, 1911, 1,500.


ENTRANCE TO TUNNEL ONDER THE BAINT CLAR RIVER, Barnta
saltcoath, Saskatchewan, on Saltcoats Lake and the Winnipeg-Saskatoon branch of the Canadian Pacific Railway, seventeen miles southeast of Yorkton. Oats, and wheat are the principal products of the surrounding sections, Population, 1911, 432.

Blarnia, Ontario. See Volume IV.
Saskatoon, a city of Saskatchewan, is situated on the Saskatchewan River and the Caradian Pacific, the Canadian Northern, the Grund Trunk Pacific and other railways, 466 miles west of Winnipeg. Branches of these thre railroads radiate from Saskatoon in all directions, making the city one of the most important railway centers in western Canada. This gives Saskatoon great advantage as a distributing point, and it has an extensive wholesale trade. Many large firms from Canada and the United States have established offices and warehouse here The trade includes groceries, provisions, hardware, lumber and agricultural implements. The city has a number of banks and is an
taportant financial ceanter. There are excellent mublic schools and numerous churches. The University of Seakatchewan and the agricultural college and experimental farm of the province asp located here. Sackatoon is also the seat of the Sackntoon Collegiate Institute. Population, 1901, 113; in 1911, 12,004.
Mandt filato ITrito, Ontasto. See Volume IV.
scost, a town of Samutchewan, in the Battloland district. Population, 1911, 420.
Mollirk, a town in Selkirk county, Manitoba, If situated on the Red River, twenty-two miles morth of Winnipeg, with which an electric line and the Canadian Pacific Railway furnish consection. It is the seat of a customs house, an inhand revenue station and an Indian agency; one of the provincial ayylums is also located here. Selkirk is the center of the Lake Winnipes fishing industry, the annual sinipments being over $7,000,000$ pounds. The chief industries are the packing and preserving of fish, the manufecture of humber products, and flour milling. Population, 1911, 2,977.
Chavinigan Falla, Quebec, on the Saint Maurier River and the Canadian Northern Quebec and Canadian Pacife railways. The filh of the siver furnish 200,000 horsepower. Aluminum, manganese, carbide, paper and wood pulp are the products of the principal industries. There are four public schools and several churches. Population, 1911, 4,265.
shedise, in Westmoriand county, New Brunswick, is on Shediac Bay, Northumberland Strait, eighteen miles northeast of Moncton; it has steamship connection with Prince Edward Island and is on the Intercolonial Railway. There are large lobster fisheries near Shediac and lobster packing is one of the town's leading industries. Several lumber and saw mills and a tannery are also located here. Population, $1911,1,442$.
Shelburne, Nova Scotia, county town of Shelburne county, on Roseway River and Shelburne Harbor and on the Halifax \& Southwestern Railway. Shelburne has seven churches, the county academy, two shipyards, lath and stave mill, granite quarry and monument works. Population, 1911, 1,113.

## Shorbrooke, Ontario. . See Volume V.

Bhoal Lake, Manitoba, on the Canadian Pacific Railway, 180 miles west of Winnipeg. Five grain elevators, a creamery, lumber yeg. and a cement block plant are the leading industiees Pof lation, 1911, 591.

Eimees, the county-ment of Norfolk county, Ontario, on the Grand Trunk and Wabash rail. ways. The rich farme of the meighborhood send their products to the town's ercamery, ontmeal mill, canning and pickling fectorice. There are also woolen mills, clothing fectories, foundries and planing mills. Population, 1011, 3,227.

Eintaluta, Seskatchewan, fifty-three miles from Recina, on the main line of the Canedian Pacifoc Railway, is a large ehipper of grain and a distributing point for farm machinery. Population, 1911, 391.

Blocan, mining town on Slocan Lake, British Columbia, is on the Canadinn Pucific Railway. It is the principal town of a zinc and silver-lead district Population, 1911, 800 .
fmith's Felle, a town in Lanark county, Ontario, on the Rideau Canal and the Canadian Pucific Railway, twenty-eight miles northweat of Brockville. A harge agricultural lmplement fectory is located here; also stove fectories, woolen, flour and planing mills. The town has flve public achools and a collegiate institute. Population, 1911, 6,370.
Borol, a city of Quebec, the county-seat of Richelieu county, is situated on the right bank of the Richelieu River at its junction with the St. Lawrence, and also on the Quebec Southern Railway, forty-two miles northenst of Montreal. The ship-building establishments and foundries are important. There are also manufactories of egricultural implements, sash and doors, cothing and native wines. Population, 1911, 8,420.

Souris, soo' ris, a town of Manitoba, on the Souris River and Canadian Pacific Railway, twenty-five miles from Brandon. The chief industries include flour mills, grain elevators, a furniture factory and a foundry. The town is beautifully situated on the bank of the river and is in the center of a rich whent belt. It has a good system of public schools, hospital, electric lights, sewers and waterworks. Population, 1911, 1,854.
souris, in King's county, Prince Edward Island, on Colville Bay, and on the Prince Edward Island Railway. Fishing is the principal industry; large quantities of lobster, codfish, hake and haddock are caught each year. There are also a sawnill, planing mill and motor boat fectory here. Population, 1011, 1,089.

South Vancouver, British Columbia, adjoins Vancouver and is on the Canadian Pacific and Great Northern railways. It has fifteen
chunches, dioven fine schools and two large parka. Saw mills, foundries, and a furniture fectory are important; there ase aloo large creocote works. Population, 1011, 16,021.

Sprine Elil, a towa in Cumberland county, Nova Scotia, on the Cumberland Railway, is noted for its conl mines, whose annual output is over 800,000 tons. Five churches, three sehools and three banks are supported by the commusity. There is also a wood-working factory and an aerated wates plant has been established. Population, 1011, 6,713.

Stollarton, Nova Scotia, is located in Pictous county, two miles from New Glasgow. It is the industrial center of a great conl region, has railway repair ahope, cugar factories, woodworking factories, and is a distributing center for the International Harvester Company. The thickest known coal seare in the world, thirtyseven feet, is located |hero. Population, 1911, 3,010.

Stettios, a town of Alberta, is situated on the Lacombe branch of the Canadian Pacific Rail-


UnIVEHSITY OF ALBERTA, ETRATHCONA
way, and on the Vegreville \& Calgary branch of the Canadian Northern Ralway, fifty miles east of Lacombe. The town is an important distributing point, contains large grain elevators and a flour mill and lumber yards. There are considerable deposits of coal in the vicinity. Population, 1911, 1,444.
Steventon, a town of British Columbia, on Lulu Island, at the mouth of the Fraser River, has steamship connection with Victoria and electric railway to Vancouver and New Westminster. Fifteen salmon canneries are in operation here. Population, 1911, 1,100.
Stonewall, Manitoba, a town in Selkirk county, twenty-one miles northwest of Winnipeg,
on the Canedian Paclec Rallway. The man rounding whent coction oupplion stonewallis elovetore and flour milla; there are also ceveral lime kilon, atone quarries, coment works, and a fairmised bating powder factory. Population, 1011, 1,006.

Itony Main, Alberta, a towa about twenty milles west of Edroontor, on the Canadian Northera Rallway. Population, 1011, 805.

Itreanbare, Seckatchewas, on the Canadina Pacific Railway, fifty-ívo miles north of Reging, in Lout Mountain Valley. The town has fine churches and good achoola. Population, 1911, 811.

Itratiord, Ontario. See Volume V
Itratheons, Alberta, now a part of Edmoston, on the south bank of the North Sackstcho wan River and on the Canadian Pacific, Cansdian Northern and Grand Trunk Pacific railway There are important mining interesto in and near the town, and large quantities of coal ave mined and exported. Gold is found in paying quastitien in the river. The city is a divisional and distributing point of the Canadian Pacific and Canadian Northere railways for all their braiches south of the North Saskatchewna River. The principal manufactures are brick, lumber, concreto blocke, sewer and drain pipen, leather goods, caskets, flour and oatmeal. The city is the seat of the Univerity of Alberta and also of a collegiate institute and high achool. The municipality owns its electric light power. Population, 1911, 6,579.
Budbury, a town in Sudbury county, Ontario, on the Canadian Pacific and other railways. There are some manufacturing interests in the town, and it is also a distributing point, but its importance is due to its position in the nickel mining district. Over 60 per cent of the warld's output of nickel comes from the Sudbury district. Population, 1011, 4,150.
summerland, British Columbia, on Okuragan Lake, fifty-five mules south of Okanagen Landing, is the seat of Okanagan College. The district is famous for fruits, especially pesches. There is a large canning factory. The town operates the irrigation system within its borders. Population, 1911, 1,800.

8ummerside, Prince Edward Island, a setport, the county-seat of Prince county. The harbor is large and accommodates sea-going vessels. The Richmond Bay oyster fisheries, three miles away, are famous. A creamery, flour mill and lobster packing plant are noteworthy. Population, 1911, 2,678.

## Geography

Inceos, a town in King'e county, New BrunsWhet han the Intercolonial Rail way. It is the man of the provineial dairy sehoob, and hae the periacial mallitha drill grounds and county adiblion buildiage Retigerators, tiaware, hitres and choes, canned veretablon, dremed pat and ferme implements ars the londing malacturn Population, 1011, 1,006.
Fastherlaed, a village in the Seakntoon dittriet, Senketchowan. Population. 1911, 421.
swan Ivor, a villace of Maritobe, on the Sman River and Canadian Northern Railway, 100 miles northwent of Dauphia. Flour milling and humberias aro the important induatrice. Population, 1011, 574.
Initit Ourroat, Sackatchowea, a town on Sinit Current Creek and on the main line of the Candian Pacific Reilway. The murrounding mion is a fine agricultural country, noted for prin; in 1911, over $1,500,000$ bushels were marteted hers. Large lumber yards and flour milh are the principal manufactorien As a distributing point for an area of 3,000 square miles, the town is rapidly becoming an important railmy center. Population, 1911, 1,852.
CJdiney, Nova Scotim. See Volume V.
Bydnoy Mlaes, a town in Cape Breton county, Nova Scotin, is three miles from North Sydocy, on the north shore of Sydney Harbor. Tho Intercolonial Railway Tram and the Nova Scotia Steel \& Iron Company's railway furnish transportation. The last named corporation employs nearly 4,000 men in the mines, furnaces and loundries located here. The annual output of conl is over 900,000 tons. Practically the entire population ( 7,470 in 1911) is dependent on the coal mines.
Taber, a town in 1 southern Alberta, on the Belly River and the Crow's Nest Pass division d the Canadian Pacific Railway. Eleven coal mines in the neighborhood and large ahipments d wheat make it an important center. Electric light, waterworks aud telephone systems are in opention. Population, 1911, 1,400.
Thettord Mines, a city in Megantic county, Quebec, on the Quebec Central River, seventy-six miles from Quebec. The name indicates sufficieatly the character of the industries; the city is in the richest asbestos district in the world. There are three sash and dhor factories, also suw mills and foundries. Population, 1911, 7,261. Three Rivers, Quebec. See Volume V.
Toliold, Alberta, is a flourishing town on the main line of the Grand Trunk Pacific and also oa the Calgary-Edmonton branch. Three coal
miscon, lumber gards end a grain clovator are located inex. It is $n$ station of the Royal Northwoot Mounted Poli.:. Population, 1911, 8 Se.
Toronto, Ontaria See Volume V.
Trall, Britich Columbia, a town do the Columbia River and the Canodian Pactio Rail way, seven miles east of Roasland. Trall is the matural outlet and supply polnt for a rich min-


TORONTO CITY EALL
ing country, producing silver, lead and copper. The Consolidated Mining and Smelting Company has a large smelter here. The town aloo has a large lumber yard and saw mill. Population, 1911, 1,460.
Trenton, a town in Pictou county, Nova Scotia, is on the Intercolonial Railway, about seven miles southeast of Pictou. Trenton is in the center of a great conl-mining district. Population, 1911, 1,749.
Tronton, a port of entry in Hastings county, Ontario, is situated at the mouth of the Trent Rives near the west end of the Bay of Quinte. It is on the Grand Trunk and Central Ontario railways. Its industries include a foundry, cannery, grist mill, clothing factory, sugar refinery, bridge works and many other manufactories. The town is near iron mines and limestone quarries Population, 1011, 3,088.

Truro, the county town of Col-hester county, Nova Scotia, on the Intereolonial and Dominion Atlantic railways. It is situated on the Salmon

River about two milep from the head of Cobequid Bay, the conternmote erm of the Bay of Pundy. Tio manulecturse include haves, poper hetes and capen havitud goodes, hecheres, Soundry products and coadensed milit. The town io moted for its tine publice buildithes, among which are the county bullaligen the provimetel, normal and modd rehoole and Thuro Acedomy. Population, 1911, 6,107.
FalloyAmla, Queber, on the Gread Truak and the dut Lavwnoes is Adiroodacka rilt ways, bt the wetcorn terninus of the Benuharnols cemal. The town hee hare corton and flour milla, twalve loumadion and othere induretial


THE PUBLIC BUILDING, VANCOUVER
planta. It is the seat of a Roman Catholic bishop. Considerable lumbering and iron ore mining is done in the vicinity. Population, 1011, $9,449$.
Vancouver, British Columbin. See Volume $\nabla$.

Fogrevillo, a town of Abberta, on the Vermilion River and a division point on the main line of the Canadian Northern Railway, seventythree miles east of Edmonton; it is also the terminus of the Calgary-Vegreville branch of the Canadian Northern. The town is growing steadily; its flour mills and creamery receive most of the product of the district. There are
aloo brict yurda, mechioe ahop, masis and dow Pectory, asd four large grais clovaters. Popule tioa, 1011, $1,029$.
Vorsilition, Alberta, on the Vorrailion River, is a divilionel polat on the main line of the Canedian Northera Rellway, which has a roued houm and repare chope hers. Vermilion in the canter of a rapidly crowing graia and atock milas district. Population, 1011, 025.
Voraen, a town in the Yole diatrict, Brith Columbla, two miles from Long Lake and Swa Lake, and Ave miliee from Okanagna Lata Is has the Shuuwas and OKanagan branch of tin Canedian Pecife Rallway. It to a noted halith recort and is the shippling polnt for much im frult growa fo the vidnity. It hat four mill lumber and planing milla, a sech and door factory add a cramery. A provincial fruit demonots. tion farm fa now located hare. Population, 1014, 2,071.
Fiotorta, Britioh Columbin. See Volumo v.
Fictoriaville, Quebec, in Arthabasea cutunt, an the Grand Trunk Railway. Electrie pown b furalsbod by Bhavinigan Palls. The prinot pel manuffectures are furniture, coda maver, chees, clothing, aprings and mattreses and foundry products. Population, 1911, 3,0es.
Virdoa, a town in Brandoa county, Manitobbe, on Ebor Creek and on the Canadian Puclic Railway, forty-eight miles west of Brordon. It is noted for fits erain elevat- How milla, engine works, cold storage . xtpacking planta. Wheat, oats, flax and bariky are rined extensively in the vicinity. Popo lation, 1911, 1,860.
Wainwisht, Alberta, a divisional point on the Grand Trunic Pacific Railway, 130 mila southeast of Edmonton, is famous for its part, which contains a herd of 1,000 buffaloes. Pop ulation, $1911,788$.
Walkorville, Ontario, on the Grand Trurk, Pere Marquette and other railways, one and osen half mile from Windsor. Four stenmship lines run to Fort William, Port Arthur and inter mediute points and two lines to Montreal. The indistries of the town are increasing in number anil variety; there are distilleries, varnish and paint factories, wire fence works, brewers. bridge works, tobecco, clothing and curiage Psctories. Population, 1011, 3,302.

Wellacoburg, Ontario, situated in Keat county, on the Pere Marquette Railway, abont eleven miles northwest of Chatham and twentythree miles south of Sarnia. Several lines od bonts run on Lake Saint Clair from Wallaceburs

Coography

- Dutrole and mexrby porta. 1 leapes exnninp bertory, daes worta, loundry, beet cugar in rary and hour mill are loceved here. Popult Ten, 1011, $8,438$.
 Ta tha Cas. Ihan Paclice Rallway, 110 miles east $\alpha$ Regma It ib in a good farmiag diberice. Pyumetion, 1011, 485.
Waction, Ontario, a town on the Grand Trumk Reilway, thres miles northwet of Berlin. Wotertoo ion an lmportant center for manufacturing, furniture of all kinds, boots and ahoeen, matt producta, trunks and bages, bricks and tlles belige the moos important producte. There aro rood pubbio and exparato schools and alr churchen. Population, 1911, 4,350.
Watrous, a town of Sackatchewan, ba divttoonal point on the Grand Trunk I cifie Railway, mildway between Edmonton and Winnipes and about meventy-three miles southenet of Sunktoon. The newrnees of Manitou Lake is meking it a tourist and bealth recort. Popur htion, 1911, 781.
Wolland, a to wa in Welland county, Ontario, baltuated on the Welliand Canal and on the Gruad Trunk, Michigan Central, Wabesh and Gro other suilwayn. Welland has become a grest mil: $\therefore$ and manufecturing center. Esperially important are dredges, hoisting engines, wod products of various kinds, agriculturai mplements, automobiles, metal beds and Hoves. There is an abundance of water power and natural gas in the vicinity. Welland has the county high school, three publle schools and - businems college. Population, i911, 0,318 .

Wostmount, a city of Hochelaga county, Quebec, is a suburb of Montreal and forms an important part of the residential district of that city. It la preeminently a city of homes. It contains twelve churches, five public schools, $a$ public librury and a public hall. The electric lighting plant is owned by the city. Population, 1911, 14,579.
Wertvillo, in Pictou county, Nova Scotia, on the Intercoloninl Railway, five miles from Nem Glasgurr. Coal mining is the leading industry, but lumbering and mixed farming in the vicinity and woodworking and the manuffeture of bricks in the town are aleo important. Population, 1911, 4,417.
Wotagididin, a city in Stratheone district, Aberta, on the Calgary and Edmonton division of the Canadian Pacific Railway, forty miles south of Edmonton. The industries include brick works, cement and clay works, grist mills

## Oeography

and factorien for the manufecture of mastrumes and excollaros. Thero aro aleo a number of canmerien. The town has good publle achooth. wowoll churctom, thinc hocele, throe banks and sood stom. It is locesed in a fine agricultural mocion and lagee depoites of cond, day mad marl aro found in abo aeleghbortood. Population, 1011, 2,411.
Wejbura, a towa in the Qu'Appelloditrotict, Sackateterman, on the Sourio River. The Winnipeg-Regiac-Lethbridge line of the Canadian Pacific Rallway, which will make Weybura an lmportant divisional point, when completed will be the shortect route to the Preifio const. It in also connected with the United States by the Soo line from the soucth. Weyburn is an important grain market and dis. tributing center for the surfounding country. It contains a custom house, has four banke, and owns its electric light plant, water works and sewage aystem. There are two publio schools, embracing all grades from the kindergarten to the high school. Population, 1911, 2,210.
Whito Eorso, a town in Yukon Territory, on Fifty-Mile Rivee and the White Pane and Yukon Railway. During the summer, ateamers ruan to Dawson in about forty hours. Whte Horm is the center of a copper mining district. Population, 1911, 727.
Whitowood, Saskatchewnu, ifteen miles eave of Broadview. It is a distributing point for a prosperous and growing grain district. Popular ation, $1911,447$.
Wilkso, Saskatchewan, a divisional poin: on the Winnipeg-Edmontun line of the Canadian Pacific Railway. Railway repair shops, gria': elevators and a machine shop are located hiel.There are also barracks of the Royal Nurthweut Mounted Police. Population, 1911, 637.
Windsor, the county town of Hants county, Nova Scotia, at the junction of the Avon and Saint Croix rivers, forty-six miles from Halifax. It is the seat of Kire's College, or the Church School for girls and the Boys' College School. About 200,000 pounds of gypsum are shipped from Windsor each year, and the deposits are zaid to to practically incxhaustible. The town has a largo trade in lumber and also has several factories for the manufecture of assh doors and otherlumberproducts. Population, 1911,3,452.
Windsor, Ontario. See Volume V.
Winkler, a village in Lisgar county, Manitoba, on a branch of the Canedian Pacific. There are six large grain elevators and a fine public school. Population, 1911, 458.

## Grography

Wianipec, Manitoben. See Volume V.
Whanipegoris, Manitobe, a town at the southern ead of Lake Winnipegosis and on the


WINNipEa CITY hall
Canadian Northern railroad system. Population, $1911,518$.
Wolfville, a town in Kings county, Nova Scotia, on the Basin of Minas and on the Dominion Atlantic Railway. It is the seat of Acadia iniversity, Horton Academy and Acadia Seminary. A creamery and corn mill are located here, but the town is better known as a resort
for tourists who wish to visit the historic spots of the vicinity. Population, 1911, 1,458.

Wolsoloy, Sackatchewan, on tho Canadian Pacific's main line from Brandon to Regina and a terminus of the Wolseley-Reston branch. The town has aix churches, public school, seven grain elevators, a brick yard, electric light and power and a telephone system. The Canadian Pacific Railway has a nursery of $\mathbf{7 5 0 , 0 0 0}$ trees here. Population, 1911, 961.

Woodstock, the courty-seat of Carleton county, New Brunswick, is situated on a high bluff at the junction of the St. John and Medurnekeng rivers and on the Canadian Pacific Railroad. It is the center of a thriving agricultural and lumbering district. A creamery, three foundries, tannery, grist mill, saw mills, pork, carriage, berrel and wood-working factories are among the important industries. Population, 1911, 3,856.
Woodstock, Ontario. Seo Volume V.
Zarmouth, Nova Scotia See Volume V.
Yollow Grass, a town of Saskatchewan, is situated on the Canadian Pacific Railway about eighteen miles northwest of Weyburn. It is the center of a fine grain belt. Population, 1911, 459.
Torkton, a town in the province of Saskatchewan, on the Canadian Pacific and Grand Trunk Pacific (Hudson's Bay branch) railways, 130 miles north of Regina. It hasexcellent churches, schools, stores and banks. It does an extensive businews in flour and building materials and is a wholesale distributing point for northern and eastern Saskatchewan. The town owns and operates an electric light plant, waterworks and sewage system. A Dominion lands office and the dis trict headquarters of the Northwest Mounted Police are located here. Population, 1011, 2,309.


Introduction. The subject of geology appeals to many of us as being altogether too technical and too difficult to enter upon by ourselves; and so, in fact, it might be if we were intending to go into it very deeply. For it is a study which needs laboratory work and field work; reading only, no matter how extensive, could never make a man a geologist. But reading can give more than a passing acquaintance with the subject; can create an interest which may lead to further work, and can open our eyes to many, many wonderful facts in the world about us.
The general article on Ceology in The New Practical Refrrincee Library treats of the origin of the earth, the formation of rocks, classes of rocks, the periods of geologic history, the socalled systems into which these periods are divided, and the present geological forces which are causing changes in the earth. From this article there are references to the various systems and periods mentioned in the article; also to articles on such subjects as Dike, Dip, Fossil, Fault, Joint. The Classified Index at the end of this volume gives under the heading Geology a list of topics related to the general subject which are treated in The New Practical Reference Library. There is, moreover, under the sub-heading Rocks, a list of the important rocks on which articles are given.
The following outline will give an idea of the various departments of the science, the geologic theories which are current today, and the divisions which scientists make of geologic time. In the elaboration which follows the outline it has, of course, been impossible to give anything more than a brief sketeh of some phases of the subject; but the aim has been to present interesting points, so that the student may feel a desire to pursue the subject further.

## Outline

## I. History

## II. Theories of Origin of Earti <br> III. Branches of Geology

(a) Cosmical Geology (studies relations of earth to other members of solarsystem)
(b) Geognosy (studies materials of which earth is composed)
(c) Dynamic Geology (studies forces which modify the earth)
(d) Structural Geology (studies arrangement of materials in earth's crust)
(e) Physiographic Geology
(f) Stratigraphic Geology (studics geological history)
(g) Paleontologic Geology (investigates records of life in crust of earth)
IV. Geoloaic Divisions of Time
(a) Azoic
(1) Oldest igneous rocks formed
(2) No forms of animal life
(b) Protozoic
(1) Formation of granites, marbles and slates
(2) Appearance of lowest forms of life
(c) Paleozoic
(1) Appearance of continents
(2) Formation of coal measures
${ }^{(3)}$ Agt of fishes, insects, amphibians
(d) Mesozoic
(1) Formation of sandstone, chalk beds, gold
(2) Great variety of vegetation
(3) Great variety of animals, birds, reptiles
(e) Cenozoic
(1) Continents nearly as now
(2) Birds, mammals
(3) Snow, floods, ice
(4) Age of man

## V. Groloarc Proctrasis

(a) Making of rocks
(1) Part plants and animals have played in rock-making
(2) Work of air and moisture
(3) Work of winds
(4) Work of water
(5) Work of ice
(6) Work of heat
(a) Through expansion and contraction
(b) Through fusion
(c) Metamorphism, or changing
(b) Making of valleys
(c) Making of hills and mountains

Geology and Mythology. We say, sometimes, without realizing that we are using figures of speech, that a volcano hreathes out smoke; that the waves are angry; that a mountain lifts its head among the clouds; that the wind whistes; that the clouds threaten. With us, they are only figures of speech, but in the early days such expressions were more than that. The ancient Greeks and Romans lived in a region whose geological features could not be overlooked. It was no flat prairie country, the same to the north as to the south. There were mountains and mountain streams; there were volcanoes and carthquakes; there were chasms and rivers and deep still lakes and the restless, wind-tossed sea. And for all of those things the active minds of the Greeks and Romans had to find explanations. To those ancient peoples everything was alive, not with merely human life, hut with the life of gods. A man might hlow a basin of water and make little waves upon it; what, then, more natural than that the wind, so like, on a large scale, the hlowing-out of a man's breath, should be the breath of some great god? So they accounted for all the facts in nature which they saw about them. If they rose in the morning and found that the sea had become very stormy during the night and was hurling its great waves up on the shore, they felt that the sea god was angry, and they made offerings to him to buy back his favor. Anything so unusual as an earthquake or a volcanic eruption needed a very special explanation, so they invented histories that reached far back into the past, telling how the gods hacame angry with some huge giant and buried him under a mountain. His hreath was the smoke of the volcano; his struggles to escape caused the earthquakes. A deep chasm or hole in the ground showed where some god had struck his spear,
cither in anger or because he wanted to get to the regions below the earth without taking a long way round.

Boginninge of a Blionce. Now, while such reasons atisfied for a time, it was natural that there should arise wise men who should ank some other explanation for the facts and changes they saw about them. How, for example, did sea-shells come to be imbedded in land scores of miles from the sea? What were the atrange objects, some so like plants, some like animals, but all made of stone, which were found in the rocks? What, if you found you could not believe that carthquakes and volcanoes were due to the twisting and struggling of a giant under a mountain, did cause those disturbances? Aristotle, away back in the fourth century B. C., wrote a book called Meteorics, in which he tried to prove that earthquakes and volcanoes were due to wind inside of the earth. He also declared, with a modernness which rather surprises us, that the lud and the water are not just as they have always been; that some of what is now land was once covered with water, and may be again; while land may emerge from what is now the sea. Thus little hy little the very beginnings of the science of geology were built up in ancient times.

Goology in the Middle Agen. During the Middle Ages little attention was paid to geology, but after the beginning of mordern times, when men began to have a new interest in sll the sciences, it came in for its share of study. But just as geology and religion had been mixed up in the ancient days, religion again began to have a connection with the growing science. Geol ogists declared that it must have taken ages and ages for the rocks to be formed hy water; the doctrines of the Church declared that the world had existed for only about six thousand years. And straightway began a struggle between the scientists and the churchmen, the latter insisting that the geologists were attempting to overthrow the Bihle. The battle was a long and a fierce one; in fact, it is only in recent years that people have come to see that the geologists' statement that the earth has been in existence for a great. great length of time does not deny in ay degree the truth of the Bible.
Age of the Earth. Have you any idea how long the geologists believe the earth has existed? Or of how they go about it to make up their minds on the subject I It all begins with the study of rocks and the fossil animals which they contain. In some places there are found great


|  <br>  <br>  <br>  - jopuns rogag puripag z!suefy SISIDOTOTS <br>  <br>  <br>  <br>  <br>  J020U33 <br> "วิ 'sorncor <br>  <br>  <br>  - ว2 'plos <br>  <br> -כ!รsuม亡 <br>  3jozoserw "e <br> รแทq!qdum <br> 'suopluoss 'mpesul 'soqsg jo ofy '9 <br> - mopusqeysa of <br>  <br> "yund toos zo alv-rogmoson qpra \% |  -ュuอupuos jo Inureody ' $z$ <br>  <br>  a,0yourd <br>  <br>  <br> - mojreding <br>  - - un! smonewnog aqI Tuyurifi-uojeis 'I <br> grozoyond co <br>  <br> -3p01 snosuet 30 8x!umor "z. <br>  <br> DyOCH <br> - गा <br> [wulue jo zuwh axojaq 'om jurd jo soven <br>  <br> -9пा до \&uларрия <br> ox <br> -นоришш: <br>  <br>  <br>  suratis aforoas |  <br> prex ous "pespus puis oqs avis to enmos exs uI <br>  <br>  <br> - <br>  <br>  <br>  <br>  "xyos snoent st umouz *: 3 smour 50 nogremind <br> 150705 <br>  <br>  - uns og <br>  <br>  <br>  -чишо <br>  seyraent. <br>  |
| :---: | :---: | :---: |

## Coology

beds of rock, sprend out in layers, which look very much like petrified sand and clay and gravel; and so, in fact, they are. All of these great layers of rock, some of them thousands and thrusands of feet thick, were made, geologists believe, just as land is being made now at the bottom of the sea. Sand, limey shells, gravel, sank down, down through the water and formed in layiss on the bottom. Then there came, how or when nobody knows, great upheavals; the bottom of the sea was raised above the water, and water flowed in over what had been land.
This happened again and again, so that layer after layer was added. If we had in any one place all of these layers, we should have a complete rock history of the world; as it is, the history has to be pieced out. Now we know that the depositing of sediments as now going on, though constant, is slow; and geologists have Ggured out that if geologic processes in by-gone ages were like those today, it must be something like one hundred million years since the first stratified rocks were laid down. That is too great a length of time for us to have any real idea of-to us it seems almost like eternity; but the majority of geologists feel that no shorter time will account for all that must have happened to this planet of ours.

Origin of the Earth. As to the origin of the earth there can be, of course, nothing definite known. But from conditions that exist on the earth today, geologists believe that they have proof that the earth was originally in a molten condition. If a ball of molten material could be set to whirling about on its axis as the earth wheels, it would take just the shape of the earth-that of a sphere flattened at the poles. Gradually the earth solidified, an ever-thickening crust forming ove: the fluid interior. Until very recent years, scientists believed that the central part of the earth was still molien. If you dig down far enough into the earth, you find it very warm, and they figured that if this heat increased in proportion all the way in, the center must be so hot that it would be fluid. Now, however, they are inclined to believe that while the conditions as to heat are about as they have always believed, the pressure of the surface rocks of the earth is so universal that it would raise the melting point of the interior above even the great temperature that exists t'e.ere; so that it is gencrally believed now that the center of the earth is solid.

Divisions of Time. Geologists divide the millions of years with which their science has to
deal into various periods, each of which has certain definite characteristics. The first d these periods is the Archacan, or beginning, time, from the Greek word for "beginning;" the second is the Paleozoic time, the name being taken from two Greek words meaning "ancient" and "life;" the name of the third, Mesonoic, means "middle life," and that of the hast, Cenozoic, means "recent life."
In what seems to us quite a wonderful manner, geologists have been able to distinguish between rocks of one age and those of another. One d the most interesting ways of telling rocks of be Archaean Time is by the occurrence in thow rocks of great beds of iron ore. This was the world's iron age, and some of the beds of that ore which exist in Archaean rock are from one hundred to two hundred feet in thickness. $O$ course even a person who knows nothing much about geology could tell that there must have been a time, back in the beginning of things, when there was no life on the earth; for what could exist on a molten globe? Even after the earth began to cool off, it was long before it wns of a temperature to support life. It is probable that the very first living things that existed on the globe were water plants of the lower orden, for plants can bear a higher temperature than even the lowest of the animals. However, no one can be sure that either plants or animals existed even in the sea during the Archacen Time.
During the Paleozoic Time life became, gradrally, very abundant. At first there were only sea plants and sea animals, and only the simpler forms of those. No vertebrates of any sort, not even the simplest fishes existed; but there wer sponges and starfish and mollusks, much like our clams or oysters, and worms. Then the fishes appeared, huge forms related to the sharks; but still there was no trace of animal life on land. Finally the land, too, began to have life on it; swarms of little insects appeared, as spiders which spun their webs to catch the tiny, dancing things. Before the close of the Paleozoic Time reptiles had appeared-sa reptiles and land reptiles; these, we must remember, were not just like any of the reptiles that exist today. But nowhere during Paleozoic Time was there any trace of birds or mammals

But perhaps the most interesting feature of Paleozoic Time was not the animals, but the plants-the plants of one particular division d Paleozoic Time, which is called the Carboniferous Age. During this period the greatest coal beds of America and Europe were formed, and it is

Geology
this fact which has given the period its name; for "Carbonilerous", comes from "carbon," the Latin name for conl. The great forests of the curth kept on all through the period, building up layers oa layers of black pulpy material
which lired in those times, we are glad that the period ended before the days of men. Of courne reptiles were not the only forms of life; there were corals and mollusks, as there had been earlier, and modern fishes, such as the salmon

tIPE OF VEGmTATION OF THE CARBONIFEROUS AGE
which today we call peat, and which finally hardened into coai. (See article Coal, in Volume II.)
Mesozoic Time is called the Age of Reptiles, and when we read descriptions of the reptiles
and the perch and the herring; there were a few birds with feathers, some of them having teeth set in sockets; and there were a few species of mammals of the lowest orders, relatives of the kangaroo and opossum. But, first and last,

Obology
there were reptiles, of all sizes and forma. There werse reptiles ten or twelve feet in height, which stalked about on two feet; and there were reptiles that walked on all fours, and that had heads over two feet long. There were amphibious reptiles, living partly in water and partly on land, covered with gcales like a fish; and there were fiying reptiles, like gigantic bats, with a wing stretch of twenty-five feet. Some of the most terrible were the megalomur, a lizard twenty-five or thirty feet long; the ichthyosaurus, which had a long bead, a short nuck, a thick body and a long tail, and which grew to be thirty feet long; and the plesiosaurus, which has a very long neck, a unall head, and four limbs developed like pad-
has stopped; species are still becoming extinct, through man, if not in other waye. The dodo, a strange bind momewhat like a chicken, but much larger, was living in the seventeenth century, but exists nowhere now. The aurochs of Europe is nearly extinct, and our own buffialo bids fair to disappear from the earth.

Presont Coologle Ohanges. Nor are changes in animal life the only changes that are taking place in the earth today. All the processes which have gone on through geologic nges are going on now, but so slowly that we seidom notice them; and some of the processes are not on so grand a scale as they have been in times past, because the carth has become solidified,


Iehthyosaurus
Pleaiosaurus
TYPES OF ANIMALS OF THE REPTILIAN ACE
dies for swimming. Never since Mesozoic Times have there been reptiles in anything like the number in which they existed then.
The last period of time, the Cenozoic, is divided into two periods, called the Age of Mammals and the Age of Man. In the Age of Mammals all forms of life existed. It is true that all the kinds of mammals and $n$ e birds that existed in the carliest part of the period no longer live; but many of the lower orders of animals still exist just as they did then. And gradually, with the progress of the years, appeared animals much like the modern hog and rhinoceros and hippopotamus. But it was not until during the Age of Man that all the forms of animal life as they exist today finally appeared. Nor are we to imagine that the process of change
or more nearly so, and its surface is not constantly affected by the movements of : molten interior.

Let us see, for example, how rocks are made. There are various methods, some of which may never have occurred to us. In the first place, plants and animals have had a great deal to do with the making of rocks-with certain kinds of rocks. Many of the animals that live in the sea have internal skeletons or else have shells, and the chief material in these skelitons and shells is lime. When the animals die, the stony parts fall to the bottom of the sea, and these deposits, heaped up year after year and age after age, finally made up great beds of limestone. Some tiny marine plants and animals make stony secretions of other kinds, called

Iicoous, and of these secretions aloo rocks have woan formed. We spoke earlier of the making d coulbeds, which are of regetable origin.
Winds, by carrying mand and piling it up in dritts, and running water, by carrying mand and gravel and depositing them along its course, built up layers of these subatancen all through past ages, just as they are building them up todey. And these layers, pressed down by sccumulations on top of them, and sunk, perhaps, agas long beneath the water, became rock. All d thees rocks which were laid down in layers are called stratified rocks-that is, rocks in layers. But there is another style of rock which is not armaged in layers, which is called igneous rock. This was made by the cooling of melted rock material forced up to the surface of the earth through fissures. Occasionally even now. when roleanoes pour out lava, we have a chance to see the making of igneous rocks.
The story of the making of mountains and valleys belongs rather to physical geography than to geology. The two subjects are, in fact, verg closely related, and the person who is interested in geology will find much to belp him in the study of physiography.

## quentions

What is geology? What is now the accepted theory as to the origin of the earth?
Were the rocks of your neighborhood formed through the sction of heat or water? Why your answer? What causes an earthquake? A rolanic eruption?
What makes a hillside uneven and rough? What causes canyons?
Where does the soil come from? What is it? How formed?
Since the earth is being constantly worn down,
what prevents it from being entirely immersed in the see ?
What is the difference between geology and mineralogy?

What is the difierence hetween marble and granite?

What are some of the causes of the changes in the earth's crust at present? Citesome instances of change.

What are the uses of marble? Granite?
How is quartz used in the manufacture of porcelain?

What is amalgam?
What are some of the theories regarding the nature of the earth's interior?
What is stratified rock?
By what means do we know the form of plant or animal life existing before man?
Which existed first, animals or plant? How do we know?
What is a quarry?
What is the difference between coal and diamonds?
What is the action of frost on rocks? What is the actior of rain? Why?
What is the origin of the hills and mountains? Where are the stratified rocks generally found?
What effect does ice have on rocks?
Why do we sometimes find single rocks weighing many tons located on level farm lands?

How do waves change the seashore? What properties has water that it is able to decompose rocks?

What are glaciers? Where found? How formed? With what rapidity do they move? What effect would they have on surface?

What was the glacial period? What effects did it have on the earth?

Of what elementis the diamond the purestform?


Tho Term Eroadly Considered. History, in the broadeat sense of the word, refers to everything that has happened, not merely the history of people or of nations, but of the changes and phenomena of nature as well. It includes evarything that changes. As modern zcience has shown that everything changee, thenfore the whole universe and every part of it have a history. There is a history of geography, of physics, of mathematics, just as there is a history of the nations of the world. And not only is there a history of geography, but geography is a part of the history of countries Ancient Greece was divided into many small states; some of them, like Athens, were cities smaller than many of our cities today. Why was Grecce divided into so many states? Because mountains, rivera and the sea formed natural divisions which the people could not easily overcome. It is then clear that we must know something of the geological and geographical divisions of Greece before we can understand the political divisions.

So, too, it we consider the history of North America, we shall see that the formation of the land held great significance. Why did the English settlements spread north and south along the Atlantic Coast? Why did the French settle in the interior and spread their settlements from north to south? The great Mississippi Valley lay open to the French because they controlled Canada, whereas the English were barred by the Appalachian Mountains. A moment's thought will show us how different the history of Canad might have been if these mountains had not hemmed in the English on the coast. It may seem strange to us that so many more elements are included in history than we had imagined. Many think of it as a list of kings and battles and a few important dates, but it is much
more. History is a record of living forces and living people; history is being made every day just as history was made a hundred or a thousand years ago. Life was very much the same then as it is now. Probably there were other forces at work then; perhaps some of them were the aame as those now in operation. To atudy these forces and their results, to show the development of nations as social, political and economic units, is the purpose of history in the common sense of the word.

The word "history" comes from a Gmek word which was used centuries before Chris to denote the search for knowledge in the widex sense. History meant investigation and inquiry, not narration and description; it began wi branch of acientific research. It was not undi] many years later that the "historian" meant be man who told the story and not the seeker attr knowledge. In the course of time a "history" became the story which the histerian told.

Prosont-Day Application. The article co History in regular alphabetical order in Volume III explains the three present-day uses $\alpha$ the word. In the first place it means the itdividuals, events, forces and institutions which together show the progress and growth d: nation, in other words, the facts of history; in the second place it means the branch of suinece which studies these facts; and finally, it mans the branch of literature in which they are pre sented. The first meaning, the facts and materials of history, has already been explaind; let us simply bear in mind that the "history di people includes every item which has interest or importance in connection with that people's bite and growth."

There remains the explanation of the tro other meanings, which refer rather to the amnge ment and presentation of the facts than to the
ate themelven. Viered as research, it is a cince; vewed as a branch of literature, it is anath. In a general way, we find two schools of Himainas, one scbool giving prominence to the abjem-matter, the other to the form. History wa seimee flourishee in a scientific age; history wan art risen and falls with the art. As an art in culb upon the imagination and the powers of eqpemion. Thoee periods which have been influenced by masters of style have been less intereted in the methode of investigation than in the beauty of their shetoric. Macaulay often sems to merrifice strict accuracy of detail in ardes to make a rhetorical point. The historian is an artist looks upon his subject as a great picture whose details must be subdued in order to make a harmonious whole, even though the nullines are dimmed and the colors blurred. The acientific historian, on the other hand, grenerilly feels that the facts must be presented as they are. History, the art, is dependent on the individual artist, but history as a science has developed along scientific lines.
The historian of today has at his diss a great amount of machinery and material accumulated by the past, splendid collections of documents and manuscripts, now opened to rearch, give him opportunities which were for many years denied to his predecessors. The scientific historian defends no theory or thesis, be secks to lay bare the truth. To illustrate the reation of history to its sister arts and sciences, kt us take two typical examples. The first years of the nineteenth century were, with a few exceptions, characterized by romanticism, with its exaggeration of the individual; Macaulay's History of England and Carlyle's works are typical of the age. Carlyle's "great man theory of history," his "hero-worship" is logically connected with the age of Scott, Byron and Keats; it was a philosophy of history which might furnish poets with inspiration. Later in the nineteenth century came a scientific age, the age of Darwin and Spencer, of Buckle and Guizot, of practical statesmen rather than poets. It is almost invariably true that histories deal with subjects which interested the age in which they were written. Modern historians began with politics and wars, but as the interest of the people was drawn toward the economic and social factors, these two were considered by historians. Histories of commerce, of industries, of cities are now as common as histories of wars and mobber-barons. We know that no one of these is more than one of the many factors which
make up the complex force of civilization Mativial for Ithidy. Abundant material is provided in these volumes for the student who wishes to know the hintory of his own or any other country. The history of each nation is given in a subhead of the article upon that nation. These subdivisions contain numerous references to the histories of other nations, as well as to other articles upon important wars, battles, political events of sufficient importance to be known by distinctive names, such as Congress of Vienna, Barebones Parlinment, and others; treaties; famous documents; temporary aystems of government, such as the commonwealth and the directory; great institutions, such as the feudal syatem and chivalry, and important apecial periods, wuch as the Dark Ages, the Middle Ages, etc. Frequent reference is also made to the biographies of famous individuals, and in a few cases general discussions of the periods in which they lived are given under their names; this is true ol Napoleon and Cromwell. The history of the United States from the discovery of America is contained in an article which forms part of the article United Shates. This is subdivided by periods and contains frequent references to a great many other asticles, such as those upon batties and wars, famous laws, treaties, congresses, documents and organizations. Canadian history is summarized in the article Canada, in Volume I. On pages 308 to 405 of this volume is a more detailed account of Canada since Confederation. This is followed by a complete outline of our history from the discovery of America and by a series of questions which are suggested as examples. The department of Biography (pages 135 to 191) contains sketches of many Canadians; these should be invaluable in the systematic study of history, as constant reference must be made to them. References and cross-references have been inserted whenever possible in order that related subjects may be studied in their proper connection.
If the pupil and teacher both realize that history is more than a set of dates and names to be memorized, that they are studying the deeds and thoughts of people who lived as we live, that they are considering forces many of which are at work today, then the study of history will be fascinating. It will open our eyes not only to the past but to the present and future, for it is by seeing how other people have lived that we ourselves learn to live. The
article on Hidery-Maliods of Tcsehing, in alphabetical order in Volume III will be found of great value in canbling the pupil to uniderstand the trve purpoese of instruction in history; its general arcjentions and apecife methods of teaching ta the primary, intermediote and grammar greden, and the listo of booke suited to the work of theee grades will be of special amistance to the tancher or parent.

## Oretime of Elistory-Mothode ot Tesehing

## I. Puaronime

(1) To preseat facts in ouch a manner that the principles of growth and government of nations will be extablished
(2) To stimulate patriotism and all its attendant virtues
(3) To develop the minds of pupils to imagine and grap a aituation.
(4) To train the judgmeat and resconing powers
(b) To direet the reading of pupils along supplementary lines and create a permanent choice for historical reading
(6) To strengthen and develop character
II. Paipiration of tele Teachime

## Tistery

(1) A thovaugh knowledse of subject
(2) A trowiodpe of methode of tencting
(3) Ability to direct pupils in atudy
(4) Ability to prowat aubjects in as interw. ing manne
III. Proniar Grade-Pret, Stcond ano Tamp
(1) History stories
(2) Biographies of great men
(8) Storices of exploration
(4) Patriotic songa and geme of literture
IV. Inteamedite Gindw-Fourth, Finm and Suxiza
(1) History stories
(2) Biographies
(3) Stories of travel
(4) Memorixing patriotic congs and gems
V. Genimar Grades-Seventi and Eigiti
(1) Text-books
(2) Cause and effects
(3) Maps
(4) Outlines
(5) Dates
(6) Government
(7) Wars
(8) Supplementary work

## Ancient History

Covers Groat Poriods. The period of ancient history is by far the largest of the three great divisions of recorded history. In addition to more or less autheitic records there is a body of legend and tradition, some of it perhaps based on facts; most of it, unfortunately, is so mixed with myths and religious superstitions that its value as history is doubtful. Vergil's record of the wanderings of Aeneas and Homer's account of the Trojan war may be accepted as histories only because we have little other evidence in regard to these events; they may or may not present an accurate picture but they are founded on actual events and persons. These legends are of value because they tell us something of the people and events.
There are other great fields of historical study, which enable us to reconstruct ancient civilizations, though they tell us little or nothing of single incidents. These fields of study are anthropology, which is the history of man as a unit in the animal kingdom; ethnology, the history of man as racial units, and ethnography, the history of the distribution of the races and nations, thus formed, over the earth. The study
of these topics properiy accompanies a thorough knowledge of ancient history, because it give a background and perspective which can be acquired in no other way. For the same reason the study of mythology, of painting and sculpture, of architecture, even of domestic life, has its proper place alongside the study of great men and important events. In our study of recorded history we should combine these subjects so that history fulfils its true purpose of giving us a complete picture and an accurate understanding of past and present civilizations. Alexnnder's system of imperial government is as much a part of history as the Battle of Issus; the domestic life of the Romans is fully as important as the character of Caesar or Nero or Constantine tbe Great in explaining the course of Roman hirtory.
Oharts and Outtines. To help the student in grasping the main facts of ancient history a series of charts has been added to the outlines Especially the younger students should find these of great value, for they present in a form that may be understood by all the important event of history and the characteristics of the nations

## 

## 1. Racm of Mar

(l) Dinmons
(a) Cavcaian or white
(b) Mongolian of yellow
(c) Malay or brown
(d) Negro of black
(e) American op red
(2) Developmeat of ctrilization
(a) Stone Ase
(b) Brouse Apo
(c) Iron Ape
II. Civileatione of tize Elet
(1) Eypt
(a) Old Empire, first seventeen dynastiea
(1) Menes, legendary founder
(2) Pyramid buildern
(a) Cheops
(b) Shafra
(c) Menkara
(b) Hyksos or Shephend kings
(a) Dark Ajez of Exyptian history
(b) Exile of the Children of Israel
(c) New Empire
(a) Amosis establishes Theban dymasty
(b) Thothmes III
(c) Amunoph III
(d) Rameses I
(e) Rameses II
(i) Later rulers
(2) China
(a) Legendary history
(b) Reign of Yao (about 2350 B. C.)
(c) Shun
(d) Yu
(e) Shang dynasty
(f) Chow dynasty
(1) Confucius
(2) People change from nomadic to agriculture state
(g) Tsin or Chin dynasty
(1) Great Wall of China buile
(2) Buddhism introduced
(b) Tang dynasty
(3) Chalden, Assyria and Babylonia
(a) Chaldean supremacy, $2300-1400$ B.C.
(1) Nimrod, founder of the Empire
(2) Kudur-Nakhunta
(3) Kudur-Lagamer, aiso known as Chedoriaomer
(b) Assyrian supremacy, $1400-625$ B. C. (1) Tiglath-Pileser I

## Inetory

(2) Vubluch III and his queca, Exmirumio
(3) Saryon
(4) Semnacherib
(5) Sancus
(c) Babylonian supremacy.
(1) Becomes independeat under Nabonamar
(1) Nabopolamar
(3) Nebuchadnezanr, 004-501
(b) Captures and subdues

Jerumatem
(b) Siege of Tyre
(c) Bebylonia's Golden Age
(4) Fall of Babylonia
(4) The Hebrew Nation
(a) Under the patriarche
(b) In Egypt
(1) Joseph
(2) Mоев
(3) Aaron
(c) The Exodus
(d) The Judges
(e) The Kingdom
(1) Saul
(2) David
(3) Solomon
(I) Kingdom of Istael
(g) Kingdom of Judah
(5) The Phoenicians
(a) Sidon
(b) Tyre
(6) Persia
(a) Cyrus the Great
(b) Darius I
(c) Xerxes I
(d) Artaxerxes I
(e) Decline of the Persian Empire
III. Civilizations of the West
(1) Greece
(a) Legendary Age
(1) Argonsuts
(2) Trojan War
(b) Early history of Sparta
(1) Lycurgus
(2) Messenian Wars
(c) Early history of Athens
(1) Cecrops founds Athens
(2) Rule of the Archons
(3) Solon
(4) Pisistratus
(d) Graeco-Persian Wars
(1) First expedition of Xerres
(2) Battle of Marathon
(3) Thermopylae
(4) Salmin
(b) Ploteon and Myale
(c) Athonian cupromacy
(1) Themittoclen
(2) Arpatides the Juat
(3) Confedersey of Detos
(4) Agou of Pericles
(a) Athens in her glory
(I) Spartan and Theban supromacy
(1) Peloponnedian Wars
(2) Sparta the leading reate in Greece
(a) Xenophon and the Ten Thouman
(b) Oppremion of the oligare chies
(3) Theives
(a) Victory of Epaminondas at Levetra
(b) Death of Epaminondas and decline of Thebee
(g) Macedonian supremacy
(1) Philip of Macedon
(a) Batte of Chaeronea
(b) Conquest of Greece
(2) Alexander
(a) Battle of Isaus
(b) Siege of Tyre
(c) Conquest of Egypt
(d) Arbela
(e) In India
(f) Character of Alexander
(h) Division of the Empire
(1) Syria
(2) Thrace
(3) Macedonia
(4) Egypt under the Ptolemies
(2) Rome
(a) Legendary
(1) Romulus
(2) Numa
(3) Servius Tullius
(4) Tarquin the Proud
(b) The Republic
(1) Samnite Wars and conquest of Italy
(2) Struggle between Rome and Carthage
(a) First Punic War
(b) Second Punic War
(1) Hamilcar
(2) Hannibal
(a) Crosses the Alps
(b) Cannae
(c) Battle of Zama
(c) Twird Punie War
(1) Romanan tumetiory
(2) Fell of Carther
(3) Civll Wars and chees strife
(b) The Graechl
(b) The Socinl Wam
(c) Marius and Sullm
(d) The First Triumvirate
(1) Comesp
(2) Pompey
(3) Crimua
(e) Clvil War between Caearar and Pompey
(1) Cocmar in Gaul
(2) Caemr's triumph
(a) Croming the Rubicon
(b) Batte of Pharalia
(3) Death of Caemar
(t) Second Triumvintie
(c) The Empise
(1) Its glory
(a) Augumas
(b) Tiberius
(c) Nero
(d) Trujan
(e) Hedrian
(f) Marcus Aurelius
(2) Decline and fall
(a) Commodus
(b) Diocletian
(c) Constantine the Great
(d) Julian the Apostate
(e) Theodosius the Great
(1) Alaric and the Goths
(2) Altila and the liusis
(3) Odoacer and the tall of Rome

The Anciont Eintory Oharts
Exypt.
China.
Chaldea-Persin-Assyris.
The Hebrews.
Greece-Heroic Period.
Greece-Period of Glory.
Greece-Period of Decline.
Greece-Civilization.
Rome-Legendary Period.
Rome-The Republic.
Rome-The Empire.
Roman Civilization.
Rome-Social Customs.
The Eternal City.
Mythology.
Mohammedanism.







品 © 9 B.

๙ลை愿

15xen
12
$-\frac{1}{3}$
$\frac{3}{6}$


## IEGEC

) 1
[2)

1an TME
encomrat of Tin









## Medieval and Modern History

Boginany of Mediovil Porlod. The more we study history the more fully we realise that all divisions into ancieat, medieval and modern are purely arbitrary. It is conversient to be able to pick out a dofinite date and may "modern history begins here." As a matter of fact, we find that there is no real break in the continuity of events. We my the fall of Rome in 476 A. D. ends the period of ancient history, but Roman influence has continued even to our own time.
Some historians say that the discovery of the New World marks the beginning of modern history. The eatablishment of a new dynasty in one country may have an effect similar to a successiul war in another country. The truth is that we must look beyond the mere date to a connected account of causes. The beginnings of the Reformation can be traced for a hundred years before Luther nailed the ninety-five theses to the doors of the church at Wittenberg. The beginnings of the French Revolution were apparent for many years before Louis XVI was executed. Especially in modern history it becomes almont impoosible to pick out a date as the starting-point of a great movement or to isolate events in one country from those in another. Improved means of transportation and communication, the resulting intermingling of opinions and of peoples, and the inevitable effect on other nations make it impossible for us to my, "Let us study only England or Germany in the nineteenth century."
Not even among ancient barbarians can we pick out a nation which had no relations with other nations. If we try to study the many wars between England and France as independent units we shall soon be in hopeless confusion. If we relate them to the general history of Europe, we shall find that each falls into its proper place. If we consider only Napoleon during the Revolutionary and Napoleonic era we shall not be able to understand why it was that France, though a defeated nation, still held the balance of power after 1815. Of course we cannot at one sitting understand all European history since 1500, but we can grasp some of the main cirrents of events and subordinate the minor facts to their proper
phn place.
Ontlines. In the following outlines no attempt has been made to present all possible fields of study. The recorded history of the world, however, may be divided into a number
of periods whose general movemeats are ensily traced; these periods are so grouped that a glance at the outline will show the principal events and tendencies of the time:

## Modioval Bintory, 476 to 1498

I. The Dari Aars, 470-1050
(1) Germanic migrations
(a) Ostrogoths in Italy
(b) Visigoths in Spain and Gaul
(c) Burgundians in Gaul, 413534
(d) Vandels, 439-533
(e) Pranks, 488-752
(f) Lombards in Italy, 568-774
(g) Angles and Saxons in England, 449
(2) Fusion of the Romans and Teutons
(a) Conversion of barbarians
(3) Eastern Empire
(a) Under Justinian
(b) Under Heraclius
(4) Mohammed and the Saracens
(a) Religion
(b) Conquests
(c) Driven out of Europe
(5) Empire of the West
(a) Pepin
(b) Charles Martel
(c) Charlemagne
(d) Division of the Empire
(6) The Northmen
(a) Causes of migrations
(b) Settlements and conquests
(1) Scotland and Ireland
(2) Iceland, Greenland, America
(3) Russia
(4) Constantinople
(5) England
(a) Repulsed by Alfred
(b) Conquest under $S$ wend, 1004
(c) Reign of Canute, 1016-1035
(d) Edwand the Confessor.

1042-1066
(6) Gaul
(a) Rollo receives grant from Charles the Simple
(b) Normans
(7) Rise of the Papacy
(a) Reasons
(b) Its relation to Europe
II. The Aae of Revival, 1050-1492
(1) Characteristic institutions
(a) Feudalism
(1) Origin and causes
(2) Form of the ayitem
(3) Chivalry
(4) Eflects
(b) Monasticism
(1) Origin
(2) Hermits and anchorites
(3) Monks and monasteriea
(4) Effects
(2) The Crusudes, 1096-1272
(a) Causes
(b) The expeditions
(c) Effects
(3) Struggle between the Empire and the Papacy
(a) Gregory VII against Henry IV of Germany
(b) The Hohenstaufens
(c) Innocent III, 1198-1216
(1) His eharacter
(2) Quarrel with King John of England
(3) Lateran Council
(d) Great Schism, 1378-1414
(1) Rival popes
(2) Council of Constance
(e) Papecy loses its temporal power
(4) The development of nations
(a) England
(1) Under the Normans, 1066-1154
(2) Under the Plantagenets
(a) Constitutions of Clarendon
(b) Magna Charta, 1215
(e) Simon de Montfort's Parliament, 1265
(d) Conquest of Wales
(e) Wars with Scotland
(f) The Hundred Years' War
(g) Wars of the Roses
(b) France
(1) House of Capet, 987-1328
(a) English possessions in France
(b) Crusades and persecution of the Albigenses
(e) The States-General
(2) House of Valois, 1328-1498
(a) Hundred Years' War
(b) Invasion of Italy by Charles VIII
(e) Germany
(1) The successors of Charlemagne
(2) Conrad of Franconia and the Saxons, 911-1125
(a) Development of central government

## Eitetory

(3) Lothar of Sascoay, and the Hohenstaufens, 1125-1254
(4) The Great Interregnum, 1254 1273
(a) Caures
(b) Rise of the cities
(5) Rise of the House of Hapsburg, 1273-1518
(d) Spain
(1) Union of Castile and Aragon, 1479
(2) Conquest of Granada, 1492
(3) Growth of royal power
(4) Inquisition
(5) Discoveries in tine New World
(e) Italy
(1) Different racial elements
(2) The cities powerful
(f) Russia
(1) Beginnings
(2) Tartar conquest
(3) Rise of Moscovy
(a) Ivan the Great
(b) Ivan the Terrible

Medern Eistory, trom 1492
I. The Repormation and the Rehgiots Wars, 1500-1648
(1) Germany and Switzeriand
(a) The humanists
(b) Luther and the Edict of Worms, 1521
(c) Council of Trent, 1545
(d) John Calvin
(e) Peace of Augsburg, 1555
(2) Denmark, Norway and Sweden
(3) Rise and fall of Spain
(a) Emperor Charles V, 1515-1556
(b) Philip II, 1556-1598
(e) Fevolt of the Netherlands
(4) England under the Tudors, 1485-1603
(a) Henry VIII, 1509-1547
(1) Act of Supremacy, 1534,
(2) Articles of Faith, 1539
(3) Foreign Policy
(b) Edward VI, 1547-1553
(1) Book of Common Prayer
(c) Mary. 1553-1558
(d) Elizabeth, 1558-1603
(e) France
(1) Beginnings of Reformation
(2) Civil Wars
(a) Catharine de Medici
(b) The Bourbons
(e) Peace of St. Germain

Initary .
871
(d) Mavenere of St. Bartholomew, 1572
(o) War of the three Henrice
(I) Edict of Nantes
(g) Richelieu
(f) Thirty Yeare' War, 1618-1048
(1) Bohemis and the Palatinate
(2) Danish War, 1625-29
(3) Swedish intervention
(a) Gustavus Adolphus
(b) French Alliance
(c) Battle of Lutren
(d) Pence of Westphalia
(4) Disruption of Germany
II. Era of Absolotibi and Dinastic Wars, 1648-1789
(1) England
(a) James I, 1603-1625
(1) Gunpowder Plot
(2) Colonization in America
(b) Charles I, 1625-1649
(1) Struggle between King and Parliament
(2) Civil War and execution of Charles
(c) The Commonwealth and Protectorate, 1649-1660
(1) Oliver Cromwell
(2) Ireland and Scotland subdued
(3) War with Spain
(4) Death of Cromwell
(d) The Restoration
(1) Charles II, 1660-1685
(2) James II, 1685-1688
(a) Revolution of 1688
(e) William and Mary, 1688-1702
(1) Bill of Rights, 1689
(2) Act of Settlement, 1701
(f) Anne, 1702-1714
(1) War of the Spanish Succession
(2) Union with Scotland, 1707
(g) Supremacy of England under the House of Hanover
(1) Development of cabinet govern-
ment
(2) Foreign affairs
(a) War with Spain
(b) War of the Polish Succession
(c) War of the Austrian Succession
(d) French and Indian or Seven Years' War
(2) Prance

## Instors

(a) Ascendency under Louis XIV, 1643 1715
(b) The regency, 1715-1723
(c) The atruggle with. England for supremacy
(3) Russie Lows of colonial posestasions
(a) Early history
(b) Peter the Great, 1682-1725

> (1) League of Denmark, Poland and Russia
> (2) Fall of Sweden
(c) Catharine II, 1762-1796
(4) Rise of Prussia
(a) The Great Elector. 1640-1688
(b) Frederick William I
(c) Frederick the Great, 1740-1788
III. Revolotion and Reconstruction
(1) The French Revolution and the Ere of
Napoleon
(a) The National Assembly
(b) War against Austria
(c) The Reign of Terror
(d) The Directory
(e) The Consulate, 1799-1804
(f) The Empire, 1804-1815
(2) Great Britain
(a) The Reform Bill
(b) Repeal of the Corn Laws
(c) Free Trade
(d) A world-empire
(3) The revolutions of 1830
(a) July Revolution in Paris
(b) Belgium independent
(c) Insurrection in Poland
(4) The revolutions of 1848
(a) In France
(b) In Germany
(c) Italy
(d) Hungarians
(5) Unification of Italy, 1861
(6) Unification of Germany
(a) War with Austria
(b) North German Confederation
(c) The German Empire, 1871
(7) Russia
(a) Crimean War
(b) Revolt of Bosnia
(c) Congress of Berlin
(8) The United States
(a) Early history
(b) The Civil War
(c) The United States a world-power
(9) Canada. See special outline, pages 407-409.

c. Cohminue, 1436-isos
i. Lever Abcevery: Thu C
 a) Prich aboizutba: Vornume, Carter.

4. Now Inaland, 1600-1700.


-


reyolutionairy



- Vietory and miopenderces, 1778-178





## PERIOD

V. sceesidion and Civil Wur, 1sco-ises





V. Bre ol Namanel Expandom, 1876-101L.



BUGGEBTON TOR BLACTBOARD OUTKDM

















## The American Indians

One of the great tragedies of modern history ta the overthrow of the native Indians of Amerten and the grodual amimilation of their mee and civlimation with that of the white mans. Especilly in North America thoir numbers and inAnvence havo doclined greatly; in South and Central Americs frequent intermarriage with the conquerine mee has not prevented a decline in thals number bus it has reverted in greater influmos on the race type and civilization.
The amount of material avnimble for atudy of the Indian is enormous Languages, customes, drem, gamen and sporte, all cosceivable subjects have been invertigated by experth. Our knowledge, eupecially of the Indians before the coming of the white man, is lar greater than it was twenty-five years ago; the tribal clacilications of the early enthnologists and anthropologints have long since been superseded; the charecter of the cusome and habits, erpecially of the southwesters tribes, has boen studied to great advantage with the sid of newly discovered ruine and relich.
Aide from this anthropological study there is the great feld of the study of the Indinns as a race and its divisions. Few of us realize that the Indians formed a great mee, juast like the Caucasian or Mongolinn. In the outline below are given the principal groupe or stocks and subordinate units called triben. In addition to the outline it has seemed wise to give a few questions, all of which are answered in these volumes, and which may stimulate the reader to independent investigation.

## Outling

1. The Indian Hace
(1) North America
(a) Arctic regions
(b) Temperste regions
(2) Central America and Mexico
(a) Chapanecan
(b) Mayan
(c) Otomitlan
(d) Terascan
(e) Tehuantapecan
(f) Zapotecan
(3) South America
(a) Arawakinn
(b) Axmaran
(c) Caribian
(d) Tupian
(e) Tronecan
(I) Zaparoan
II. Drame
(1) Skins
(2) Woolens
(3) Peathers
(4) Sbelle
( 5 ) Batt
III. Spouts And Gnus
(1) Ball
(2) Recine
(3) Canowing
(4) Fishing
(5) Hunting
(6) Singing
(7) Dancing
(8) Wreating

## IV. Rexioton

(1) Culture-hero or demi-god
(a) Part man
(b) To redeem the world
(2) Tribal and local deitien
(3) Ceremonies
(a) Medicino-man as prieat
(b) Dances
(1) Sun-dance
(2) Sanke-dance
(3) Miscellanecus
(c) Sooge
(d) Prajers
(4) Philosophy
(a) Creation
(b) Future life
V. Governuiter and Soctal Organizaton
(1) Tribal or clan system
(a) Chieftain hereditary in clan
(b) Other civil and religious functions hereditary
(2) Smaller units
(a) "Band" of the plains tribes
(b) Family
(1) Descent through the female line
(3) Confederacies
(a) The Five Nations
(b) Creek
(4) Slavery
(a) Captives and their descendants
(b) Negroes
(5) Property rights
(6) Marriage
VI. Arts and Impusthise
(1) Abode
(a) Tents
(b) Mounds



## Inatory

(c) Pucblon
(2) A ricultare
(8) Mining and working of metals
(4) Sculpture
(a) Stone
(b) Wood
(c) Bowe and ivory
(b) Potiery
(a) Pipen
(b) Bowls
(c) Miscellaneous forme
(6) Backetry
(7) Blankets
(8) Miscellaneous
ViI. Curious Cumpoma
(1) Tattooing
(2) War-dance
(3) Scalping
(4) Forms of burial

## Vill. Hietory

(1) Content with the white race for supremacy
(2) An a dependent race
(a) Homes
(b) Government
(c) Education
(d) Character

## Indinens in Jorth Amories

The North American Indians are divided into a number of stocks or groups, based chiefly on language; each of these groups is divided into tribes. The lines of division are not always clear, but the principal groups, at least, are wellknown and can be accurately classified. In the following classification only those tribes have been included which are still of some importance today; the smallor and the extinct tribes are not mentioned.
I. Alconqutan

Arapahoe
Blackfeet
Bloods
Cheyenne
Chippewn
Cree
Delaware Kickapoo
II. Atiapastinn

Apache
Beaver
III. Caddoan

Caddo
Pawnee
IV. Eaxyo

| Alouts |  |
| :--- | :--- |
| Greenland | Labredores |

V. Inogeon

Cayuga
Cherokee
Hurone
Iroquois
Mohnw
V1. Musarocienan
Chickenw
Choctaw
VII. Sulmazar

Flathenda
Pend d'Oreille
Lummi
VIII. Smomonzan

Bannock
Comanche
Misvion Indians Moki
IX. Stoux

Aseiniboin
Catawba
Crow
Dakota
Iowa
X. Minor Groups

| Kiown | Tanoa |
| :--- | :--- |
| Sahaptian | Yuma |
| Shasta | Zuni |

## Questions on the Indian

Who gave Indians their name? Why?
What are the Indian tepees or wigwam How were they made hy the plains Indians! By those in the laise region? Why the difference!
How many Indians are found at present in North and South America? How many of this number resided in Canada in 1911?

How and of what material were the houssad the Pueblos constructed, and how arrunged! What was peculiar about the houses in the lore tiers?

Without doors and . ndows, how did the Pueblos gain entrance to their homes?

By close observation of the Pueblo types as shown in colored illustration, what grts would you say were highly developed by this tribe?
In time of ceremony how did the Indians drem and decorate themselves? When and why did they paint their faces and bodies?
Have the Indians always used horses?
How and from what did the Indians mele knives? Fish hooks? Needles? Axes! Pips?

## Filstory

 What weo numertable about come of thole backwef Did thry know the art of making leather?
What gamee did the Indian boy play that wrolliko thow of his white brother?
What was the highout ambition of the Indian boy?
Where were the dend gomerally burted? What mes everally burited with the decened?
What wow the dutien of the medicine man? What were the great apirite of the Indians?
How did they conaider the wind? The min? How did they segard every living thing?

## What ere Indian recervationas?

Name five of the principal groups of triben.
To which group do the following tribes belong: Asapaboe, Apache, Comanache, Crow, Seminole, Twearora, Omaha, Huron, Shawnee, Navaho?
What Indian maiden saved the life of Captain John Smith? Whom did abe efterwand manry?
What Indian name has been made world thnous in one of Longfellow's poeme.

What is moant by Indian summer?
By a etudy of the various types of the human race as shown in colored illuatrations, bow do the Indians compare in drew and intelligence with the Monpolian! With the nerro!
What did the Indians of Mexieo and Ceatral America know of bouks, astronomy, arithmetic, etc., at the time the Spaniands invaded their country? How did their civilization compars with the Speniards'?
What Indlan antions inhabled Mexico and Central America when these countries were discovered by the Spaniards?
What did thewe Indians know about astronomy, arithmetic and other aciences?

How did their civilization compare with that of the Spaniands?

In what manufuctures did they show great *ill?
What Indlans of South America possensed civilization equal or superior to that of the Indinns of Mexicop

## Flags

It seems probable that almost as soon as men begne to meet for common purposes some conapicuous object was used ether as a symbol of the common rentiment or as a rellying point. In milhtury expeditions, where orgunization was mecessary, such objects were used, to mark out the lines and atations of encampment, and to keep in order the different bands on the march or in battle. In the course of time certain standards becume known as belonging to certain regiments or tribes of even nations, as the case might be. The standards of individual lords and rulers were used by their retainers; as these rulers increased their dominion their flags gradunlly assumed the character of national flag.
Among the remains of the earliest civilizations are records of ensigns or atandards. From ancient carvings and paintings it appears that difierent companies of the Egyptina army had their own standards, which were generally objects of awe and reverence; sacred animals, boats, a tublet hearing a king's mame, and other devices were mised on the end of a staff, and the office d carrying them was considered a great privilege and hojor. Among the ancient Assyrians two distinct designs are known to have existed: one, a man druwing a bow and standing on a bull; the other, two bulls running in opposite direc-
tions. Both Anayrian and Egyptian standards were frequently ornamented with flag-like streaners. The banners and standards of the Hebrews and other nations are frequently mentioned in the Bible. The Persians used the figure of an eagle fixed to the end of a lance, and sometimes the sun, as their divinity, was also represented. Some of the North American Indians carried eagle's feathers fastened to the tips of poles.
The standards of the Greeks and Romans show greater variety. The early Greeks bore a piece of armor fastened to a spear; in later times the cities chose emblems or letters sacred to their associations; the Athenians used the olive and the owl, the Thebans a sphinx, and the Messenians their initial M. Among the Romans a cross piece of wood was sometimes placed on the end of a spear and surmounted by a silver hand, figures of Mars or Minerva, or portraits of gencrals and emperors. Figures of animals, especially the wolf, horse, bear and eagle, were carried; it was not till the days of Marius that the eagle became the only standard of the legions. The emblems were guarded in the temples and the Roman soldier swore by his emblem as by his deities. Roman generals are known to have ordered a standard cast into the ranks of the enemy, in order to rouse their soldiers to a

Crecer atteck for the recovery of what to them mas parhape the moet recrad thing on earth.

The mariont flape weo ahoont pundy of a rels dowe chmrective. In fact, the ald of relision coms to have beom soughe to givo emmetity to andonal faces many of which cen bo trued to a mocred braner, as the orifiamme of Prance and the Damocbros of Deamark. The atory goee thot Eiing Wuldeamer of Deumeark, whilo loeding Mo troope to batto in 1219, at a critical moment mow - croes is the dky. It was forthwith adepted as the embleme of Deamark and callod the "Dannobros," that is, the otrength of Deamerts. The otuaderds of the carly kinge of Frasee bore the blue hood of St. Martin; later the oriflemese, the emblems of St. Denis, was mubattuted. Similarly the eroen of St. George weo und in Eagland, the caose of St. Andrew in Scotlend, and the crome of St Patrick in Ireland. Flage of the Dritioh Empare. The mational Ansof the Britian Empise is the Union Jack, in which the crovees of St. George, St. Andrew and


St. Patrick are combined. When the crowns of Eagland and Scothand were combined undes Jamee I., bo ineved a proclamation that the flag of a man-of-war ahould be the "red cross commonly called St. George's cross, and the white crose commonly callied St. Andrew's croes, joined together according to a form made by our heralds, and sent by us to our admiral to be published to our said subjects." This was the frat Union Jack; strictly speaking, it should be called the "Great Union," and it is only a "jack" when flying from the jackstaff of a man-of-war. Probably the name of the king, "Jacques," the French for Jamea, gave the name to the flag and then to the ntaff on which it was hoisted. Various changes were made by Cromwell and by Charles II, and in 1801, after the legislative union with Ireland, the cross of St. Patrick was added, $s 0$ that the arrangement of the tbree cromes now in use was adopted. The Union

Sect is the move inaportant of all Britioh Sman and if sown by reperemataives of the empinh all over the wordd. With the Irish hump on : blue chicid to the cuatex, it is the tase of the lood lieuteasat of Iroland. The otar and arme of the order of the Stur of Indin ivdicute the ith of the Vieeroy of India. Colonial governors ft with the arms of thatr colonies displayed in the center. With the royal arma in the centre it is und by the Britiah government's diplos matic reprocentatives ased aloo ne a militiary for Hown over fortremes and hendquarters. Whea fit is holsted at the manimmact of a man-d.wry It is a atgn that the admiral of the fieet is oe bourd.
The royel ctandard is divided into four quan tove. The upper left-hand and lower righthend quartees have three lions in gold on a red held; theos are for England. In the uppcr righthuad quarter is a aimglo lion within a frame, both nod on a feld of gold. The golden Irish harp on a blue field is in the lower left-hand quarter.
The three ensigne-the red, the white and the blue-wers originally all naval. In the days of huge fieete, such as that which met the Armade, there were three admirals, each with his speciel ensign. The edmiral in command used a phin red flacg. The vice-admiral, who generally commanded the van, used a white fag, and the rearadmiral a blue one. All these three flags latere bose the combined cromen of St. Geurge, SL Andrew and St. Patrick, and until 1861 they were used only by the royal navy. By a changy in the regulations in that year, the navy retained only the white ensign, the mercantile marim was allowed to use the red ensign and the bue ensiga was given to all vessels on public servios except those of the navy. For the various departments of goverument, special devices are used; for unstance, the telegriaph uses a blue ensign on which is represented Father Time with his hour-glass shattered by lightning.
The Union Jack is flown from all fortrems and garrisons of Canada, under the charge d the colonial militis authoritica The Dominive also has authority to display on all public ocx sions a national, flag. This is the red or bure ensign with the Union Jeck in the upper ar ner next to the mast and the Dominion cont $d$ arms in the field. The red ensign is used at the opening and clocing of Parliament and on national ocensions of any sort. As in Englead, the blue flag distinguishes the government veench
The governor-general uses a plain Union Jack with the Dominion coat of arms surrounded


[^0]
fereer attack for the reenvery of wha: to thein whe perhapi the most ascred thing on earth.
The carliest tiags were almost pirely of a relisiove character. In fart, the aid of religion mouns to have been sought in give sanctity to mational flags, many of which can be fraced to a mered banner, as the oriflanume of Prance and the Dannebrog of Denmark. Tin story goes that King Waldemar of Denmark, while leeding his troops to battle in 1219, at a critical moment mave anse in the sky. It was forthwith edopted as the emblem ci Denmark and called the "Danncrrog," that is, the strength of Denmark. The standands of the early kings of France bore the blue humel of St. Martin; later the oriflamme, the emblenn of St. Denis, was substituted. Similarly the cross of St . George was ussed in England, the cruas of St. Andrew in Scotland, and the cross of St Patrick in Ireland.
Fags of tho British Empure. The naitonal fing of the British Empire is the Union Jack, in which the crosses of St. Gromge, SL. Andrew and


Marg of TE! iamision
St. Parrick are cembined When the crowns of Eugheno and tiveland avere emorbined under Jances I., he insuel a prochamaion that the flag of a man-ot-xar shathl te the "red crons commerly called st. ficurge 's (rions, and the white grows commarily ralled St. Andrw's moss, juined ngether ancurdiag to a form twade by our foralde, and went by as to cur oxdmiral to be a. Hlisterl to outr suid singemes" This was the tir.t Union Jack; utrity wankick. ? should be - Ahe "Great Livion, "and it resuly a "jack" - 1 fling forn the juchiaff of a buannif-war. F. bly the game of the ki:ap. "locyures," the F. I for James, gan the rasme to tom flag and th othe staff on which it whs hosited. VariOn wazes were made hy Cromiaell and by Ch ․ M, and in 1sol, after :ime Irgilative uni th ireami, the cross of st. Patered was add , that the arrangenient of ithe three


Juck is the most important of all Britah ${ }^{2}$ o and is flown by representatives of the in all over the world. With the Irish haw; bluc shield in the center, it is the flag of it. lieutenant of Ireland. The star anil ants the onder of the Star of India indicate ine. of the Vireroy of India. Colonial govertin. it with the arms of their colonies diviligy the center. With the royal arus in 11 . .. it is used by the British governinons? matic representatives and alwo as a uit w: flown over fortresses ard healquartes. it is boisted at the mainniant of a math. it is a sign that the admiral of the :in. boerd.
The royal standard is diviried into : $n$ or ters. The upper left-hand and lower fich quarters have three lions in woud ons in these are for England. In the ujnm: $n^{\prime}$ quarter is a single lion within a frame : on a field of gold. The guliten Ims: bue field is in the lower left-nand is.... te.
The three ensigns--the rel, the : ' ', blue-were originally all naval. In a buge flerets, such as that whirh nu- :in. there were three admirals, fa it witn ensign. The admiral in comanasas :... red flag. The vice-adiniral, whinger manded the van, used a white dhal: s.. admiral a blue one. All these tine bore the combined crosery of :Andrew and St. Putrick, apm! $n \|^{4}$ were used only by the ruya at: 3 in the regulations in that yeur, her the only the white ensign, there now was allowed to use the ned enn+r, "i a ensign was given to all vesemsa i. except those of the navy. I., departments of governuent. : used; for mstance, the tairgra, , ensign on which is reprewntis: with his hour-glass shaterow! th "r. .

The Union Jack is fuour inse" and garrisons of Canaila whe the colonial militia aulis io so. also bas authority to diaplay.... . sions a national flag. 't"us ensign with the Union dals. ner next to the mast anll um arms in the field. The : : ? the opening and cleming of 1 . national occasions of way w.ro the hlue flag distinguishes t... -
The governor-generai t.a. Jack with the Domiman : $\cdot$ :
䲢
by a garland of maple leaves and surmounted by a cown. The Union Jeck in flown at the govanmeat house at Ottaws and at the provincial engitole on oedinary occasions. On the King' Wirthday and on the daye of his accuavion and coronation the royal standard is flown. The lieutenant-governor of each province has a Ins, displaying the provincial arms (see page 203 and following) surrounded by \& wrath of


FIG OF THE GOVARNOR-GYNERAL
maple leaves on the white ground of the Union Jeck.
The colored plates accompanying the article on Flags in Volume II show the flags of the l'nited States and of a number of foreign nations. A further aid to the study of this interesting subject will be found in the outline and questions which follow:

## Outline on Fiags

I. Menning of the Teray
II. Lses
(l) Primary
(a) Rallying point in battle
(b) Emblem of nationality
(c) Religious emblem
(2) Secondary
(a) To distinguish divisions of army in
(b) To denote rank of officers in army and navy
(c) Private emblems
(d) Signs or signals

## Eistory

(1) Quarantive
(2) Fias of truce
(3) Sign of distress
(4) Sign of reapect to superior officers
(5) Mourning
(6) Signals at sea
(7) Salute
(8) Danger

## III. Higtory

(1) Ancient Standards
(a) Esyptian
(b) Asyrina
(c) Perman
(d) Greeks
(e) Roman
(1) Eagle for infantry
(2) Cavalry emblems
(3) Imperial
(2) Medieval fiags (of cloth)
(a) Religious
(1) St. George
(2) St. Andrew
(3) St. Patrick
(4) St Martin
(5) St. Denis
(b) Knightly
(1) Pennon
(a) Like modern peanant.
(b) Personal ensign
(2) Banner
(a) Denoted leader of military expedition
(b) Battle fing
(c) Aloo personal ensign
(3) Standand
(a) Ceremonial
(b) Denoting position of the owner
(c) Not carried into battle
(3) Modern national fiags
(a) England
(1) Royal atandard
(2) Union Jack
(3) Royal navy
(4) Ensigns
(5) Colonial
(b) Canada
(1) National
(2) Governor-general
(3) Lieutenant-governor
(c) Germany
(1) Imperial standard
(2) Imperial navy
(3) Mercantile marine
(d) France
(1) Oriflemme
(2) Fleun-do-lis
(3) Tricolor
(c) Austrio-Hungary
(1) Imperial navy
(2) Mercantile marine
(3) Imperial utandard
(I) Italy
(1) Man-of-war
(2) Mercantile marine
(3) Royal
(c) Spain
(1) Navy
(2) Mercantile
(b) United States
(1) National Flag
(2) Union flag and Jack
(3) President's standard
(4) Naval and military flags
(i) Other countries

Quastions on Flags
What were the primary uses of flags and standards?
What are some of the secondary uses?
What were some of the devices used as standards by the ancient Egyptians?
What were some of the Roman standards? What finally became the only standard of the legions?
What other ancient peoples are known to have used fiags or standards?
What was the character of the earliest flags?

Eistory
What were the three claeses of knightly tre dards in the Midalie Ages?
Describe the orifiamme
What is meant by "Dannebrog"? Why ma the term applied to this crow?
Describe the national fiags of France, Rumi and the Netherlands
What is the difference between the nationd flags of Italy and Mexico?
What do the stars and the stripes of the Asar. can flag represent? How many of each are ther? Describe the British merchant flag.
Explain the origin of the red, white and bee ensigns.
When did the white ensign become the oficid flag of the imperial navy?
What is the probable origin of the mane "Union Jack"?
What three crosses are combined in the presant Union Jack!
What changes make it the flag of the lootlieutenant of Ireland? Of the viceroy of Indis: Of a colonial governor?
What does it indicate when it flies from the mainmast of a man-of-war?
Describe the ensign used by the British tok graph branch.
How many divisions are there on the sory standard? Describe each of thern.
What is the national flag of the Dominua!
On what special occasions is it used?
Why should every child be taught to love the flag of his country?

## Famous Inventions and Discoveries

History, in the brondest sense of the word, has been defined to include "everything that has happened." A nation's progress is measured by many factors, by its territorial expansion, by governmental development, by social and industrial growth. At first glance a table of great inventions and discoveries may seem to have no place in history; yet it is true that all great inventions have exercised some influence, whether direct or indirect, on the progress of nations. Few of us realize that the persistency of slavery as an institution in the United States was due largely to the profits made possible by the invention of the cotton gin. Not many of us are conscious every day of our lives that the great internal development of the Dominion would have been impossible without the railroad, the steamboat and the telegraph. Many people still living can appreciate the difference that the
telephone and the telegraph have made in the development of Canada. If telegraph and cable aystems had been in use in 1815 , the battleol Nier Orleans would never have been fought, for the treaty of peace had been signed two weds before. Numberless instances might harr changed or actually did change the coursed events, but enough has been said to show thet great inventions and discoveries have a proper place in the study of history, just as muches laws, battles or statesmen. On the next prep is a table of some of the great inventions ribid have influenced life and history in moden times. The remarks explain as briefly as pot sible the character and importance of each de vice or process. It is hoped that this outime may be an added help to teacher and pareati enlisting the child's interest in some of tire improvements of modern civilization.


## History of Canada Since Confederation

To treat adequately the four centuries of Canadian history, throuch the periods of exploretion, colonimation, conquent and union, is a tack out of proportion to the reope of this book. But it weems Afting that the atudent and tencher ahould have material on the history of Canada mo a nation. For this remson the period of Confederation, or the movement for Confederation, an it is generally called, has been chosen sas the atarting point of the brief atatement of the priacipal events in the histrry of Canada. In the article on Canada in Volume I and lia the outline on pages 407 to 400 of this volume will be found additional material for a more extended study of the subject. The outline should be expecially useful, as it presents all the facts in simple form.
The Oonfoderation I Oovomont. The idea of a federal union-one in which there would be a central government, while each province retained its local administration-was by no means a new one in 1894. Lord Durham (see page 150) recommended union in 1840, and Dorion (see page 148) and others had suggested it at various times later. The cause of the dicussion of a federal union was the endless friction between Upper and Lower Canada. In the Canedian Parliament, as established by the Act of Union, the two provinces had equal representation. In the next twenty years the population of Upeser Canada (now Ontario) had increased very rapidly, so it was 250,000 more than that of Lower Canada. Upper Canada demanded more representatives in Parliament; "representation by vepulation" was the cry of the reformers. The people of Lower Canads, however, pointed out that for many years their population had been greater than that of Upper Canada, and yet the representation had been the same. Other local causes only added to the constant irritation between the two sections. In Parliament the parties were so evenly balancod that deadlocks became common occurrences. Sir John Mecoonald, in describing the situation, said: "We had election after election, we had ministry after ministry, with the same result. Parties were so evenly balanced that the vote of one member might decide the fate of the administration."
Such a state of affairs naturally led to plans for a federal union of the two Canadas, and then of all the provinces. In every province were men of all parties who later joined hands in the com-
mom cause of union. Yet it remained for extemal affics to crystallise public mentiment. During the American Civil War occurred the Trent Affair (see Volume V), which threatened to dres the United States and Great Britain into me. The mere possibility of a war with the Criied States showed the provinces their weakness, and Jed to a meeting at Chariottetown, in 1854, when delegates from New Brunswick, Nom Scotia and Prince Edward Island met to lom a martime union. Meanwhile the idea of a union of all the provinces was gaining ground ia the Canadas. At last, in 1804, a joint ministry of Liberals and Conservatives was formed and pledged to seek a federal union. When the Canadians heard of the meeting at Charloter town, they asked to be allowed to take part in it. Eight representatives, including Sir John Macdonald, Hon. George Brown and Sir Georges E. Cartier, were went to Charloteteom. Here the bronder scheme of confederation wa discussed, and the ides of a maritime union ws left in the beckground. The delegates agred to meet agnin at Quebec for the purpose od dicussing confederation.
The Fathors of Oonfoderation. A month later the Quebec Conference began. Thirty three delegates from Canada, New Brumb wick, Nova Seotia, Prince Edward Island and Newfoundland, assembled in the old Parliameat buildings. These "Fathers of Confederation" wese men of French, English, Irish and Sooch descent. No more suitable presiding offica could have been chosen than Etienne Pashal Tache, A veteran of the War of 1812, who mast the famous remark that "the last gun that rould be fired for British supremscy in America would be fired by a French-Canadian." The delegation from Canada was headed by Sir John A. Madonald, who had already played an importent part in public life. Sir Alexander Galt, Sir Oliver Mowat, Hon. William McDougall, sir Georges Cartier, Hon. George Brown, Sir Chanten Tupper, Sir Adams G. Archiball and Sir Samved Leonard Tilley were among the other leders in the conference. "No greater achievement" says a popular history, "has marked the progran of our country than the uniting of the Brisish North American provinces; there are no mums more worthy of a high place in the memory of Canadizns than those of the Fathers of Cooldo eration." After considerable discussion, the Quebec Conference adopted a set of seventr.

## Eistery

two resolutions, which formed the besis of the Britich North America Act. It unanimoualy apreed "that the beat interests and preseat and futurs prosperity of Britich North America will be promoted by a federal union under the crown d Great Britain, provided such union can be dected on principles just to the several provincen." The British government welcomed the new plan, as did both Upper and Lower Canada. Newloundland aboolutely refused to consider it and has remained an independent province to this day. Prince Edward Inland refused to

Eistery
sovernor-gueral of the Dominion. At his roquest Sir John Mecolonald formed a miniotry, composed of prominent men from esch province. The firut general election was held in August, and except in Nova Scotia wes favorablo to the edministration. In Nova Scotis aritation for sepeal of the union had arisen, under the iendership of Joseph Howe (seo page 161). Howe went to London to advocate repeal, but the British government made it clear that the withdrawal of Nova Scotin from the Dominion was impomible. Though the open disturbances

old bishop's palace, quebec, witere mbet panllayevt of lower canada met in ifog
enter the confederation, but New Brunswick and Nova Scotia, after a year's uncertainty, decided in its hevor.
Meanwhile a delegation was sent to London to help in the preparations of the law which should make the resolutions effective. Here as at Quebec, Sir John Macdonald, ably seconded by Sir Charles Tupper and others, took a leading part. In March, 1867, the British North America Act was passed and on May 22, a proclamation by Queen Victoria declared that the new constitution should come into effect on July 1. The birthday of the Dominion has been fixed as a public holiday and is observed ench year as "Dominion Day:" Lord Monck, who had been governor of Canada, was appointed
were thus brought to an end, bitter feeling remained for many years.
The new government had many problems to face. It had to respect the prejudices and the wishes of the separate provinces; yet it had to subordinate these to the best interests of the new Dominion. The reorganization of the government held the attention of the first Parliement. The postal system was put on a firm footing and the rates were reduced. In 1868 the militia was organized, the tariff was systematized and a civil service act was passed. In the next year a system of decimal currency was adopted for the whole Dominion. In this way the machinery of state soon began to run smoothly.

## Ciatory

Ied Itroz Robollion. A moath after the opmane of tho firet Purliemont a mew quention was brought belose the government Hon. Wiltian McDougall ( 000 pege 188) introduced a meolution anking that Prince Rupert's Land and the Noerhwert Territories be added to Canada. With Sir Georges Cartier, he was sent to loados to segotiate the purchase of the Hudoon's Bay Company's territorial righte. The purchase was finally corapleted in 1868, the Company surrendering lis conterd over all land except a mall part in the couth, but retaining its treding poots and lts trading rights. The deed of surrender is dated November 19, 1809. Several weeks before, Hon. William McDougall had been appointed governor of the territories and had started for Fort Garry (now Winnipeg). Meanwhile dirturbasces were beginning in the weat. The Metin, or half-breed?, weng afraid that the new government would in some way take away their righte. Louis Riel (eeo page 179) was at the head of this movament in opposition. He organized a provisional governmeat of which he was elected president. When the new governor reeched the boundary line, he wan met by a crowd of Riel's followers and prevented from entering the territory. A number of the white settlers opposed the provisional government, and one of them, Thomes Scott, was tried for treason and executod. This cold-blooded murder excited great indignation throughout the Dominion. An armed force, composed partly of Canadian volunteers and partly of British regulara, was placed under the command of Colonel (later Lord) Wolseley. On the approach of thene troopa, the rebels quickly dispersed and Riel fled to the United States. While the troope were on the march, Parliament had passed aur act establishing the province of Manitobe. The arrival of the noldiers was followed almost immediately by the first lieutenant-governor, Sir Adams Archiball, who organized the provincial goveroment.

Now Provinces. Manitobe was thus the first new province to be formed under the provisions of the British North America Act. In 1871, British Columbia decided to join the Confederation. The Dominion of Canade now extended from ocenn to ocean. The entry of British Columbia was subject to a very importtan condition, namely, that a transcontinental rilway should be begun within two years and completed within ten years. This condition; as we shall see, was a disturbing fuctor in politics
for meay years. Fiftecn yurs wive to dapm before the rallond wes comploted, but with th driviag of the leot apike Britiah Columbia mis firmaly bound to the Dominioa

In 1878 Prince Edward İland, which hwl mandily sufued to anter the Dominioa, neoseddered ita decilion. The Dominion governmor acumed the hoovy financial oblygations of the province and bought out the rights of certion abouateo owners of lande. The Dominion now included all of British North America exapx Newfoundland. Finelly, in 1878, in ordes क smove all posible doubt about unoccupind territory, an imperial order in council was imed annexias to the Dominion all British poneviom in North Americn except Newfoundland.
zolations vith the Onited Btates. Asth semult of the Clvil War reveral disputes arom between the United States on one side and Canada and Great Britain on the other. In 1871 an attempt was medo to rettle all differences by the appointment of a joint commiscion. Sif John Mecdonald was Cenada's representative, this being the firat time that a colonial had ever been called upon to asaist in rettling international disputes. The commission met at Washington, the capital of the United State, in February, 1871. The United States cleimed that Great Britain should pay for the damagu inflicted by a Confederate veswel, the Alaboms, which liad been fitted out in England. (See ITi" Alabama, Volume 1). This claim wea atio trated and decided in favor of the United Stames Caneda's chaim for damages on account of the Fenian raids was withdrawn at the reques d the British Government. In return for the erro. render of these claims, Great Britain guarunted a lonn for the construction of Canadian railrarz The navigation of the St. Lawrence and tin Great Lakes wes thrown open to both countrim The boundary of British Columbia was now definitely established and a commission to determine the value of the fisheries was appointed The fisheries commission, which met at Helifar, granted the United States unnestricted use $\alpha$ Canadian waters for ten years in return for a payment of $\$ 5,500,000$. The Treaty of Wish ington thus disposed of many troublesome questions.

The Pecific Ratiway Ecandal. One of the conditions of British Columbia's entrance into the Confederation was the building of a trant: continental railway. In 1872, therefore, thin problem was faced by Parliament. Two cow panies sought the charter, one headed by St

Bist A those. © nto Home a contain $\pm$ und tintina Trow eh denco ma moxy, in neivo troons th nocuery Alcunaden adiately 0 overl tion 7 rouid be beas plant Evernamea build the the countu inited on - compror agrod to 1 at onco an
Meekor yenrs that ponre man and paceed the extebli Court in 1 the Austral I). Anoth chemeter, I Teritorien the Red Ri lock into t trict wes go Manitoba Alter that under the enor atd under a $n$ five. The brought the page 220 ).
Sir John N administrati lone was ec iatroduced xrioundy hai the Senate House of $\mathrm{C}_{0}$ unity of

## Inatory

Hugh Allan, the other by Hon. David Mnow phroce. Wult angotiations were under way w alle the two compenion, a mamber of the Bowe of Commons made a public charge that certin mambers of the covernment hed recaived and und money furaithod by Sir Hugh Allan to hanasce votion in the elections of 1872. Theo chagee were nover proved, but the ovi denee maselear that Allan had paid large sume of coxy, evidently on condition that his company nevivo the contrect. Public feeling was so trone that the Mecolonald ministry felt it mavery to reilga in October, 1873. Hon. Alexunder Mackensio, the Liberal leader, im. madiocely formed a new ministry, which received movowhelming majurity at the general eleco tion. The new premier anoounced that it moild be impoomble to build the roed as had bees planned. He proposed that the Dominion coverament abould undertake the enterprise and build the ruilway gradually, as the finances of the country permitted. But British Columbia ninted on having tho road builtatonco. Finally - compromise was arranged: the goverument ampod to build a wayon rond and telegraph line at ance and to complete the railway by 1890.
Mactonsdo's Adminiatration. During the yerre that the Mackenzie ministry remained in powre many important measures were proposed and paened. One of the moost noteworthy was the entablishment of the Dominion Supreme Court in 1873; another was the introduction of the Australian ballot syatem (see Ballot, Volume I). Another great change, of a totally different character, was the organization of the Northwest Teritories. No sooner was order restored after the Red River Rebellion than settlers began to lock into the west. Until 1876 the whole district was governed by the lieutenant-governor of Manitole and a council of eleven members. Alter that year only Keewatin was retained under the personal control of Menitoba's govenor and the other districts were united under a resident governor and a council of five. The opening of the west to settlement brought the Northwest Mounted Police (see page 220). Though the idea originated with Sir John Maedonald, it was in Meckenzie's administration that the organization of the lone was completed. The Liberal government atroduced many improvements, but it was seriously hampered by Conservative strength in the Senate and by a strong opposition in the Hosse of Commons itself. Then, too, the popularity of the government suffered because of
poor buiseme conditiona. Grunt depreceion proviled in the United Stateo followiag the panie al 1873. The fectories of the United States now tried to flood the Canedian marketes with goods which they could not sell at home. This gave the opposition a chance to adopt what Str John Maodonald called a "nationel policy." This was simply a protective turif and a cy of "Caneda for the Canadiane." The tarif becmese the principal liave in the clections of 1878, by which the Conservatives wree returned to power.

The year 1878 also masked the end of Lord Dufferin's term of office as governor-meneral. He was succeeded by the Marquis of Lorne, whose wife, Louise, was the deughtes of Qiseen Victoria.

Consorvatives in Power. Sir John A. Mecdoanald immediately took up again the question of a transcontinental rond. He discarded Mr. Mackenzie's plan to have the government build the railway and awarded the contract to a group of capitalists, Two promineat members of the new Canadian Pacific Railway Company were Lord Mount Stephes and his cousin, Lond Stratheona. The roed was to be completed by 1890, but the work was pushed 00 vigorously that Lord Strethcons drove the last apike in November, 1885. Without such great transcontinental sailway permanent union of the east and weot would probably be impossible.
The Riol Robolifon. After the Red River Rebellion each half-breed had been given 240 acres. As the settlements sprend, many of the Metis gave up their lands and settled farther west, on the banks of the Saskatchewan. The opening of the new railway brought to a head the discontent which had boen rising among the half-breeds. Their natural unrest was increased by the fear that their lands, to which they had no title, would be seized by settlers and speculetors. Some dissatisfaction was felt, too, with the government's land survey, which interfered with the old French plan of having all the farms fronting on the river. While affairs were atill in this state of unrest, Louis Riel was called on by some of his friends to lead the half-breeds. At first Riel was moderate in his demands, but an accidental encounter of the Mounted Police with a band of Métis at Duck Lake started open rebellion.
The news of this effair at Duck Lake was the signal for a rising among the Indians. The Crees, fortunately, were the only tribe to join the Métis, but there was nlways constant danger
that other fadlans might rime. When the rowe af tho outberak ruchad Ortawn, the goverument trok prompl action. The dibtanes from Ottawe to Datoctre, the cumter of the siding, 1,840 malibe, was a grome cboteck, but within lows thas two moathin, 4,800 maca wreo in tho lad under the comanamd al Goncral Middieton. The troope woo divided into three columss: one, under Genvel Middleton, was to advance from Qu'Appelie to Batoche; another, under Colvad Queve Brigedion-Gemesal) Otter, wis to advance

from Swift Current to Batticlord; and the third, under General Strange, was to march from Calgery to Edmonton. General Middleton's column mot the Metis near the junction of Fish Creek with the Seakatchewan Rives. Two days later the Metis were badly deleated at Batoche. Meaniwhile Colonel Otter's force had mot the Indians undes Poundmaker and the third column was proceeding to his relief. Riel, Poundmaker and Big Bear, another Indian chieftrin, were soon captured and the rebellion was at an end. Riel was tried at Regina, was found guilty of treason and was hanged. The greatest influence of the rebellion was on the Dominion as a whole rather than upon the Northwest alone. All the provinces were interested in suppressing the revolt. Common hardshipe and cormmon dangers "strengthened in the hearts of Canadians the union which Confederation had brought about."

Political Afairs. In the general election of 1887 the principal issue was the protective tariff, but the Mecdonald ministry also sought approval of ita policy toward the rebellion in the Northwest. On both issues the voters expressed their confidence in the ministry. From 1887 to 1891 the tariff continued to be a serious quention, the Liberals constantly agitating for
cloves trade sciations whe the United Suntem The Conservative perty, on the other mand, took the poiltion thes commmecial union would oventuality leat to political union. The election of 1801 proctically gede protection the metthed policy ditho country. Shardy after the election Sir Join Mecoloneld diad. Tho student $\alpha$ Canedins hbotory muat atudy the life of this mana (mo page 167). Pop forty yeurs be was accive in political life, and for ane-hall of the period in weo the dominant force in Canada. Under hin direction were formed the policles which haw made Canadia a great confolerated otaic.
During the next ifo years a series of death weakened the Conservative party. Sir Joha Meodonald's mueremor as premier was Sir J. J. C. Abboth, but he retired after a year on account of ill health. From 1802 to 1894 Sir Joh Thomprona was premier. An earnest man who sald little, he would probably have done much more for his country had he lived to carry out his plane. During his term of offire the Bering Sen controvercy (nee Volume I) was settled in favor of Caneda, Thompeon being Canedr's representative on the commimion which derifed the queetion. The minintry of Sir Mackenin Bowell, the neat premier, was marked by quarrels in the Coascrvative ranks. In 1890 the ministry was reorganised with Sir Chates Tupper as premier, but at the general elertions of that year the Liberals were vietorious by a large majority.
Tho Laurior Ministry. Sir Wilfril Laurike, who had succeoded Hon. Edward Blake as leakz of the Liberals, was called on by Lord Aberdena to form an administration. The new ministry was atrengthened by draving into it the premiers of Ontario, New Brunswick and Nova Scotim The next fifteen ycars ahow a remakteble development of national feeling and material prosperity. The growth of the strong feling $\alpha$ Canadian unity and individuality has been no lese marked than the growth of the ties which bind Canada to the empire. This has bean illustrated in many ways. The outbreak of the war in South Africa in 1899 gave an opportunity to show Canada's loyalty. Three contingens of troops eaw active service in the field. In 184 the first colonial conference at Ottaws mis 8 step in the same direction. This spirit wn illustrated in other wayl. The laying of a Pudife cable, the establishment of penny postre throughout the empire, the grants of preferentian tarifis to British goods, the assumption of reppor. sibility for defence at Halifax and Exquimat

- Chem
eplot aprone gwerse treope
yerm Cunirex
Ine the con man is other $n$ of the quarter codime didence. men and foe thre number exceptio ory betw be callod The South AS hurnish 1 enpire, toward a ment par provided
 The naval fax and examinati "Niobe" chased tro went to C fux and the Canad
Toroiga pratnem it in a cou cultices wi without th ceranal im with the I boundary d the many internation da joint In 1908 an for more ac between the mee time truted by 1 The decisio

she rimith. The Camedina militia is uader the control of the salititia councll, whoes chair man is the miniater of milliti and defence. The olber nembers of the councill taclude the chief of the general stefif, the edjutank-geseral, the qeartermateer peneral, the mastergeneral of andances and the deputy minituter of miltitia and didence. Thers is a permaneat militia of 1,000 man and an sective militia of 47,000 men, serving bee three years and drilling oaly a certain mmber of days ach yees. With certan exceptions, all the malo Inhabituate of the cousty between the ages of cichteen and sixty may be callod out for service.
The oanedian llays. After the war is South Africe had proved Canadn's willingmens to fumish land forces to fighe the battles of the empire, the thoughts of the people turned tomand a navy. In 1910 the Dominion Partis. sent paseed the naval service bill. This act provided for the beginning of a navy, a neval colker, a navy volunteer force and a maval reserve. The aaval college was soon evtablished at Halifux and boys were edmitted after competitive examination. Two protected cruisers, the "Niobe" and the "Rainbow" wese then purchased from the British government and were ent to Canarian posts- the "Niobe" to Halifas and the "Rainbow" to Esquimalt. Thus the Canadian nary was eatablished.
Toreiga Rolations. When we conider the gretress of the questions cometimes involved, it in a source of cratification that all our difficulties with other mations have been settiod without the use of arma. In the last decade everl important agreements have been mede with the United States. In 1803 the Alaskena boundry dispute was eettled. In the same year the many questions relating to the use of the international waterways led to the appointment A a joint commission to arbitrate all disputes. In 1008 an agreement was reached to provide for more accuurate marking of the boundary line between the United States and Canads. At the mme time the fisheries claims were being arbjtuted by the court of arbitration at The Hague. The decision of this tribunal upheld the claims.
of Camada and Novioundlent oe all the fapers tant querioas reind.
Another step of great haportances wes the negotiation of a commencial treaty wich Prase in 1007. This wes striling evidones of the growing infuemee of Caanda and a practieal actanowedgment of her right to be conalderad in the making of treaties which concersad har interepte. The tresty was acpotiated by two Canedians and was ratifed by the Canadian Purlinmant.
Aborts and Clackatalowan Irovinces. The end of the migetcenth century maw great changes in the Northwert Torritarion. A rapid inerease in population led the governament to realise thet the temporary teritorial cranis:tion was no longer matisfactory. In 1005 the districts of Alberta, Aminiboia, seckatchewan and Athabanca were formed into two provinose, Alberta and Saskatchewan. Saskatchewan is now entitled to four senatorn and fiftera membere of the House of Commone in the Dominion Parliament and Alberts to four senators and twelve mermbers of the House of Commonas.

Quober Toscoatonary. For soveral ymer previous to 1008 there had been much diseverion of the edvisability of a great celobration to come: memorate the three hundrodth anniverary of the founding of Quebec by Champlain.
In September, 1907, His Excellency Lord Grey advocated ass a leading feature of the celobration the equuisition of the Plains of Abraham and the battlefield of Sainte Foy and the making of these battiefields into a national park. This idea, which had been given first public utterance three years before by Mr, Chouinard, editor of the Quebee Telegraph, met with universal approval in the Dominion and was sanetioned by the King, who contributed liberally towards Its consummation. The nature and objects of the plan and the historical situation were clearly ret forth by Lord Grey in an addrees at a public meeting in Ottawa. He suid:
"The immortal associations which cling around the battlefields of Quebec are the procious inheritance of Englishmen, Scotchmen, Irishmen and Frenchmen. They contain enough and more than enough to feed and stimulate the national pride of all, no matter whether they be of British or French descent. There is another aspect from which the battlefields of Quebee should be specially dear to you. It was there that French and British parentage gave birth to the Canadian mation. Today the inhabitunts of the Dominion are neither English nor French. They stand before the world, not as English and

(ANSI and ISO TEST CHART No. 2)


Eistory
Fruech, but as Canadian. It is from the inspiring standpoint of Canadian nationality that the propocel to celebrate the three hundredth birthday of Canada, by the nationalization of the famous battlefields of Quebec, should win the enthusiartic support of every patriotic Canadian. If we regard the question sectionally I would ask where is the well-informed Briton to be found, no inatter in what part of the empire he may reside, who has not a personal interest in the Plicins of Abraham, where the cornerstone of Great Britain was laid? I might say the same of every well-informed American. It is known that the bettlefield of 1759 was the parchment on which in 1775 the Declaration of Independence was inscribed. If the Battle of the Plains decided the fate of North America, it was equally certain that the Battle of Ste. Foye won for the French-Canadians the secure enjoyment of their language, their religion and their laws."
As finally carried out, the chief features of the celebration included (1) the acquisition and dedication of a national park; (2) a series of pageants, eight in number, commemorating the foundation of Canada; (3) the dedication of a monument to Bishop Laval; (4) sports and tournaments on land and sea. The time set for the event was July 10th to 31st, 1908. Invitations were extended to Great Britain, the United States and other foreign nations, all of which sent representatives. The United States was represented by Vice-President Fairbanks, and the British Empire by His Royal Highness the Prince of Wales (now His Majesty, King George V). This royal visit and the presence of British, French and American warships did much to emphasize the international feature of the occasion and add to its spectacular success.
The Quebec Tercentenary was of great national and international significance. Never before in the history of the Dominion has there been such a gathering within its borders of noted men and historic names as occurred at Quebec in July, 1908. The participation of all the provinces in the celebration tended to unite them more firmly to the Dominion. The honor paid by Canada to the United States, France and other nations in inviting them to join. in the events, cemented the friendship already existing between the Dominion and these nations, and the presence of the heir to the British throne strengthened the bond of union which, ever since the Confeleration has existed. has been strong between the empire and her foremost colony.

404
The Gonosal Hiection of 1911. In 1010 the Laurier ministry conducted negotiations with the United States government looking toward a reciprocity agreement. In January, 1911, the text of the provisional tarifis was made public and immediately started a long debate in Parliament. This discussion, which continued until May 19, when Parliament adjourned for the Imperial conference and the coronation of King George, was resumed on July 18. Suddenly, on July 29, Parliament was dissolved and the question was thus submitted to the Canadian people. The general election on September 21 resulted in a conservative majority of about forty-five, therefore causing the resignation of the Laurier ministry and the rejection of the reciprocity agreement.

The Imperial Conference of 1911. This conference lasted from May 23 to June 20. The Dominion was represented by Sir Wilfrid Laurier, Sir Frederick Borden and Hon. L. P. Brodeur. Twenty-eight resolutions on various subjects were adopted by the conference. Those of especial importance to Canada were in favor of freer trade relations between Canada and other countries.

Important Legislation. The last session of Parliament during the Laurier administration passed a number of important acts. One of these continued the customs tarifis on imports from Japan, with a view to the negotimtion of a new commercial treaty with that nation. Another act authorized the governorgeneral in council to subsidize steamsinip service between the Pacific coast of Canada and China and Japan.. Another important act provided for the uniform registration of physicians throughout the Dominion. Various other acts in the :itterest of the public good, such as the prohibition of the sale or manufacture of cocaine and opium except for medical purposes, were passed.

The Borden Government. Shortly after the general election, Sir Wilfrid Laurier and the members of his administration resigned. Hon, R. L. Borden, the leader of the opposition, then formed a ministry (October 10), composed at the following:
Hon. Robert Laird Borden, premier and prosident of the privy council.
Hon. George Eulas Foster, minister of trade and commerce.
Hon. William J. Roche, sceretary of state.
Hon. Charles J. Doherty, minister of jutiee and attorney-general.

## Eistory

Hon. John D. Hesen, minister of marine and fisheries and naval service.
Hon. Col. Samuel Hughes, minister of militia and defense.
Hon. Louis P. Pelletier, postmaster-general.
Hon. Martin Burrell, minister of agriculture.
Hon. Frederick D. Monk, minister of public works.
Hon. William T. White, minister of finance.
Hon. Frank Cochrane, minister of railways and canals.
Hon. Robert Rogers, minister of the interior. Hon. John D. Reid, minister of customs.
Hon. W. B. Nantel, minister of mines and internal revenue.
Hon. T. W. Crothers, minister of labor.
Ilon. A. C. Kemp, Hon. G. H. Perley, Hon. J. A. Lougheed, ministers without portfolio. The Governor-General. From 1904 to 1911, the position of governor-general was filled with great success by Earl Grey. His term of office closed in October, 1911, and on the twelfth of that month he sailed for England. On the thirteenth, his successor, H. R. H., the Duke of Connaught, was welcomed at Quebec, and on the fifteenth took up his official residence at Ottawa. A month later His Royal Highness lormally opened the session of Parliament. Among the important laws passed at this session and later approved by the governor-general were acts enlarging the provinces of Manitoba, Ontorio and Quebec, providing a third member of the civil service commission and reducing the number of railway commissioners to one.
Internal Dovelopment. The great internal
development of Canada in the last years of the nineteenth century and the first years of the twentieth century is probably the most remarkable feature of recent Canadian history. The discovery of gold in the Yukon and the organization of Alberta and Saskatchewan as provinces each in turn led thousands of settlers westward. The settlers on the prairies were the people who came to stay and to work. The unparalleled development of agriculture in these provinces, the great increase in railway facilities and the enormous increase in population are signs that the west is being doveloped for the future. All eyes are turnal to the west as the farming center. At the sama time Canadian manufactures have taken great strides. The manufactures of a single year are now worth one billion dollars. The fisheries have been developed and are now the most extensive in the world.
With all this rapid arivance there has been a steady growth of the desire to meet the new problems which these conditions cause. To control the railroads a railway commission was appointed, to secure justice for the shipper as well as for the railroads. Labor disputes are settled by a board of arbitrators. To preserve the natural resources of the country a national commission of conservation was appointed. The annual reports of this commission are extremely valuable for the light they throw on such great questions as preservation of the forests and irrigation. These are merely examples of the frankness and strength with which Canada faces the future.

## Important Events

## In the History of Oanada

1492-Discovery of America by Columbus
1497-The first of the Cabot voyages
1534-Cartier's first voyage
1583-Sir Humphrey Gilbert took possession of Newfoundland

In the History of Other Countries
1068-Norman Conquest
1215-Magna Charta
1517-Luther nails the ninety-five Theses to the church door at Wittenberg 1600-East India Company chartered

1601-1700

1603-James I becomes King of Ergland 1607-Jamestown, Virginia, founded by Eng-
lishmen
1ishmen
1618-Beginning of the Thirty Years War in
Germany
-u25-Accession of Charles I
1632-The Treaty of St. Germain
1648-Treaty of Wer
-u25-Accession of Charles I
1632-The Treaty of St. Germain
1648-Treaty of Wer
1648-Treaty of Westphalia

1603-Champlain's first visit to Canada
1805-The Port RoyaI settlement planted
1608-Quebec founded by Champlain
1610-Hudson's Bay discovered
1613-Port Royal taken by Argall of Jamestown
1627-The Company of the Hundred Associates chartered
1620-Quebec captured by Kirke

1635-Death of Champilain
1042-Moatreal founded by Maisonaserve
1040-Dedruction of the Hurons by the Iroqualt
1003--Royal government eotabliabed
1070-The Hudson's Bay Company chartered
1672-Frontenac made governor
1072-Marquette and Joliet divcovered the. Misimippi River
1082-LaSalle reached the mouth of the Misuisrippi
1689-King William's War began
1007-The Peace of Ryswick restored Acendia to Prance
1098-Prontemac died

1019-1000-The Commonawnelth and Protectorato
1000-Charies II succeeds to the throne 1601-England acquired New York from the Dutch

1680-1688-James II<br>1688-1702-William and Mary<br>1680-Outbreak of war between England and France<br>1007-The Pence of Ryswick

## 1701-1800

1702-Queen Anne's War began
1713-The treaty of Utrecht gave Acadia to England
1731-Verendrye set out in soarch of the Pacific
1744-King George's War began
1745-Louisbure captured by New Eaglanders
1748-The Peace of Airda-Chapelle restored Louisburg
1755-War began in America-Braddock dofeated
1758-The capture of Lounsburg and Fort Duquesne
1750-The fall of Quebec
1760-The fall of Montreal
1763-The Treaty of Paris
1769-Prince Edward Island became a separate province
1774-The Quebec Act
1775-Invasion of Canada by the Americans
1783-The Treaty of Versailles
1784-New Brunswick became a separate province
1784-The Northwest Fur Company formed
1791-The Constitutional Act, creating Upper and Lower Canada
1793-Sir Alexander Mackenrie reached the Pacific

## 1801-1900

1803-Britain declared war against Napoleon
1800-Berlin Decree; Onders in Council
1800-American Non-Intercourse Act
1812-United States declared war against Grut Britain
1814-The Treaty of Ghent between Grat Britain and United States
1815-Battle of Waterioo
1820-1830-George IV
1830-1837-William IV
1832-The Reform Bill

## Eistory

1846-The Oregoa Boundary treaty
1851-The reciprocity treaty
1804-The Charlottetoima and Quebec conferences
1807-The confederation of Nova Scotia, New Brunswick, Quebec and Ontario
1850-Manitobe and the Northwest sdmitted to Confederation
1851-British Columbin simitted to Confederation
1871-The Washingtoa treaty
1873-Prince Edward Island sianitted to Confederation
1876-The Intercolonial Railway opened
1885-The Sackatchewan rebellion
[385-The Canadian Pacific Railway completed

1837-Victoria becomes Queen of England
1852-Napoleon III becomes Emperor of Prance
1851-The Crimean War
1857-Mutuny in India
18e1-Outbrenk of the Civil War in United States
1867-The British North America Act
1867-United States purchased Alaska from Russia
1869- Opening of the Suez Canal
1870-Franco-Prussian War
1871-Formation of the German Empire
1899 - The South African (Boer) War began

1903-The Alaskan Boundary award
1905-Provinces of Alberta and Saskatchewan formed
1011-Imperial Conference

1901-Death of Queen Victoria and accemion of King Edward VII
1904-Russo-Japanese War
1910-Accession of George V

## Outline of Canadian History

## I. Discovert, Exploration and Setticmient

(1) Age of discovery, 1000-1603
(a) Norsemen
(b) John and Sebastian Cabot
(c) Cortereal and Verrazano
(d) Jacques Cartier
(1) Sailed up the St. Lawrence
(2) Three voyages
(2) Age of exploration and settiement, 1603-1663
(a) Settlement of Acadia, 1604
(1) Established by the French
(2) Destroyed by the tiaglish
(3) Changed hands several times
(b) Founding of Quebec, 1608
(1) Explorations of Champlain
(2) Champlain and the Indian wars:
(3) Progrtud of the settlement
(c) Founding of Montreal, 1642
(d) The work of the missionaries
(1) As pioneers and explorers
(2) Among the Indians
(a) Hurons
(b) Iroquois
(e) The Hundred Associates
(1) Monopoly of fur trade
(2) Bringing of settlers
(f) Internal strife among the colonists
(g) Indian ruids; heroes of the Long
(3) Canada becomes a royal colony of France, 1663
(a) Opposing interests of
(1) Priests
(2) Traders
(3) Royal governor
(b) Comte de Frontenac
(c) Opening of the interior, 1670-1682
(1) Explorations of Marquetto and Joliet
(2) Voyages of La Salle
(3) Hudson's Bay Company founded, 1670
(d) Social and economic conditions
(1) Despotic government
(2) Trade controlled by great companies
(3) Feudalism
II. The Struggle for New France (see French and Indian Wars, Volume II.)
(1) Queen A.nne's war, 1697-1713
(a) Attack: on the English colonists
(b) Capture of Port Royal
(c) Acadia and Newfoundland ceded to England, 1713
(2) King George's wax, 1744-1748
(a) Only a part of the struggle botween Prance and England
(b) Capture of Louisburg
(c) Treaty of Aix-la-Chapelle; Louis burg restored to France

Elatory
(3) The war of 1812-1814
(a) Causes
(b) Principal campaigns and battlom
(1) Land
(2) Sen
(c) Results
IV. Tae Stmugele for Responsible Gor. crnmints, 1815-41
(1) The issuies
(a) Demand of the Assembly to cor. trol the revenue
(b) Responsibility of the executive
(2) Popular leaders
(a) Louis Joseph Papineau
(b) William Lyou Mackenzie
(c) Robert Baldwin
(d) Egerton Ryerson
(e) Joseph Howe
(f) Louis H. La Fontaine
(g) Lemuel Allan Wilmot
(3) Rebellion and reform
(a) Rebellions in Upper and Lowe Canade
(1) Papineau and Mackenzie
(2) Quickly suppressed
(3) Caused popular reaction af ainst reform
(4) Led to appointment of Lord Durbam as governorgereral
(a) Durham's report
(b) Act of Union, 1840; in effect, 1841
(b) Reform in New Brunswick
(1) Executive and Legidatire Councils separated
(2) Conditional control of revenue granted to Assembly
(c) Nova Scotia
(1) "Twelve resolutions" by the Assembly and submitted to the Britisb Goverament 1837
(2) Some desired changes in gorernment granted
(a) Separation of the two legislative bodies
(b) Partial control of the public funds by Assembly
(3) Principle of responsibility to the Assembly not yet $2+$ allowed
(4) Triumph of respensible government 1841-48
(a) The first union Parliament, 1841
(b) Lond Erian puts the principle into operation in Canads (the present provinces of Ontario and Quebec)
(c) After everal years the priaciple in force in the other provinces
(5) Fruits of responsible government
(a) Control of appointments, crown lande and public funds
(b) Provinces free to regulate their own tarifis
(c) Establishment of a cystem of municipal government, 1849
(d) Abolition of sergniorial tenure, 1854
(e) Secularization of clergy reserves, 1854
(I) Reciprocity treaty with the United States, 1854
(g) The Legislative Council of Canada made elective
(h) Government established in British Columbia
V. Confrdiration
(1) Movement for union
(a) In the Canadas
(1) The coalition ministry in favor
(2) Caused by friction between the sections
(b) Charlottetown Conference
(1) For union only of the Maritime Provinces
(2) Confederation overshadowed local issues
(3) Decided to hold general conference at Quebec
(c) Quebec conference, representing

Canada, New Brunswicic, Nova
Scotia, Prince Edward Island, Newfoundland
(1) "Fathers of Confederation"
(a) Sir John A. Mecdonald
(b) Hon. George Brown
(c) Sir Georges Etienne Cartier
(d) Sir Etionne P. Tache
(e) Sir Alexander T. Galt
(t) Hon. Thomas D'Arcy McGee, Sir Oliver Mowat, Sir Charles Tupper, Sir Adams G.Archibald, Sir Leonard Tulley, and a number of others

## Elatory

(2) The Quebec resolutions
(a) In favor of union
(b) Plan of government map. ped out
(c) Referred to provinces
(d) Reciprocity treaty ended Fenian raids
(2) British North America Act
(a) Passed by the British Parliament in March. 1867
(b) Terms of the Act (see pages 208 to 216)
(c) In effect on Dominion Day, July 1, 1867; Ontario, Quebec, Nova Scotia and New Brunswick included in the Dominion
VI. Growth and Expansion
(1) Development of the west
(a) Hudson's Bay Company surren. ders its territorial rights; trading privileges retained
(b) Northwest territories
(1) Northwest rebellion
(2) Royal Northwest Mounted Police
(c) Manitoba (1870) and British Columbia (1871) join the Do minion as provinces
(d) Prince Edward Island enters Confederation (1873)
(e) Transcontinental railway, Canadian Pacific
(2) Industrial and commercial progress
(3) Foreign affairs, Canada and the United States
ViI. The Twentieth Century
(1) Internal development
(a) Territorial changes
(1) Alberta and Saskatchewnan become provinces
(2) Yukon organized as a territory
(3) Ontario, Quebec and Manituba enlarged
(c) Transportation
(1) Railways
(2) Canals and Rivers
(d) Industries
(e) Education
(f) Political affairs
(1) Important legislation
(2) Election of 1911
(3) The Bordern government
(2) Canadr's postion as a nation
(a) In relation to the British Empiro
(b) To other countries

Questions es Concolian IIf: "vry
Whem and whoes are the Noscer 1 maid to thre laoded about 1000 A. a. ?
Who was Iall Ericuecon?
Who were the Ceboth, and why are they fame cun?

Why werw the explorations of Cartier fmportant?
Whan was Acedia settiedp By whom?
Whea was Quebeo founded? Who was the foundert Give a briel account of his wort as a pioneer.
What were the conflictiag internal interesta which threatesod the existence of the colony?
Explain the importance of Frontenac's work.
Name threo exploners, not already mentioned, who traveled through the interior of the New World.
Give abiel mcocont of the discovery of Eludsoa's Bay.

Who were' the Hundred Acrociates? Were they succentul?
When and by whom was Montreal founded?
When did the Hudson's Bay Company receive its charter! Who were some of its first members? What can you say of the influence this comprany has exerted on Cenedian history?
Who diecovered the Misisinippa River? When did La Sello reach its morith?
What is meant by the expresion, "the itruggle for New France."

Sums arize the pridcipal incidents of King Williamo's War. What were its most important resulta?

Show as well as you can the connection of these wars in America with general European history.

Explain Geveral Wolf's plan for the capture of Quebec. What was the importance of his victory?

Who was Pontiac? What was the purpose of the great conspiracy?
What were the important provisions of the Quebec Act?
When was Canada divided into Upper and Lower Canada? By what name is this Act known?
Outline the method of government at that time.
What can you say about the explorations of Sir Alexunder Mackensie?
When was the Northwest Fur Company organized?
Why was the fur trade instrumental in opening the West?
What did Hearne and Fraser accomplish?

## Elitory

Who was Lond 8olleter? Why it he fumocat What were the cmuese of the War of 1812 ? Name reveral haportant victories woo by General Brock,

Who wat Laura Secord?
Explain briely Cameda's porition in the We of 1812.
What were the lending inves in the struache for responsible government?
Name four popular leaders of the movement
Who was the Earl of Durham? What nu the importance of his famous report?
When was the Act of Union pasced? Whem did it 80 into effect?
Who was Lord Elgin?
Who wese the two premiers whose ministry marks the beginning of reaponsible government in Canada?
Name at least three great changes which muy properly ho called the results of the triumph of responsible governument.
What plece does Sir James Douglas hoild in the history of Canada?
When was the Charlottetown Conference held? What did it eccomplish?

Name six "fathers of Confederation."
What were the Quebec resolutions? What did they propose? How were these resolutions put into effect?

Who was the first premier of the Dominion?
When was the British North America Act passed? What is the anniversary of the day on which it came into effect?

What was the cause of the Red River Rebrat lioa? Of the Northweet Rebellion? Who we the leader of both?
When did Manitobe and British Columbis become provinces?
What caused the Pacific Railway scandly? Who became premier of Canada as a result of this disclosure?
When was the Royal Northwest Mounted Police organized Outline the duties of this force.
Who were the four Conservative premiers who followed Sir John Macdonald?
When did Sir Wilfrid Laurier become premire! Name some of the important events of his it ministration.
When was Queen Victoria's diamond jubilm celebrated?
Give a brief sccount of the Quebec Tercer tenary Celebration.
What was the principal issue in the election of 1911?

## Ealones of tho Wor

| Councrey | Rutes | Bneti | Accies 보웅 | Trut |
| :---: | :---: | :---: | :---: | :---: |
| Abyminia. | Lid Eyamu... | 1800 | 1008 | King of King |
| Arghanietan. . . | Eabibullah Khan. | 1872 | 1901 | Angear Ang |
| Argentine Republic. | Roque Smens Pens. |  | 1910 | Prued |
| Autria-Hungary | Prancis Jowoph 1. | 1880 | 1848 | Braperor |
| Bendum. ...... | Albert I. ...... | 1875 | 1009 | Stur |
| Bolivia. | Eliodoro Viliason. |  | 1809 | Pruidiont |
| Bititinh Empiro. | Gbore V.... |  | 1010 | Preidiast |
| Bulgaris....... | Ferdinand. | 1861 | 1910 | Kias |
| Cuilo.. | Ramon Baros Luca. | 1801 | 1887 | Cuar |
| Chins. | Yuan Shi Kai ... . . . |  | 1910 | Prouldent |
| Colombia. | Carlos Es liestrepo |  | 1912 | Prealdent |
| Coota Rica. | Ricardo Jimines. . |  | 1910 | Prouldent |
| Deamark. . | Christian X..... |  | 1009 | Preident |
| Eeuador. | Emillo Eatrada. | 1870 | 1912 | Klat |
| France... | M. Armand Fallieren | 1841 | 1911 | Preideat |
| Cerman Empiro. | William II. . . . . . . . | 1851 | 1888 | President |
| Orveco. . | George I. . | 1845 | 1888 | Bumperor <br> Kros |
| Ouatemala. | Manuel E. Cabrera. | 1856 | 1911 | Preident |
| Esith. . . . | Cincinnatus Leconte. |  | 1911 | Preadent |
| Itoaduras. | Franoticos Betrand. . |  | 1911 | Preuident |
| Italy... | Viotor Emmanuel II | 1869 | 1000 | King |
| Jepan. | Yoehihito | 1879 | 1912 | M1bado |
| Kores. | Y Chok...... | 1874 | 1907 | Emperor |
| Lurembourg. | D. E. Howard. |  | 1911 | Prevident |
| Mexico...... | Francisoo Madero | 1852 | 1808 | Grand Duke |
| Montenegro. | Nicholas I. . . . . |  | 1911 | Preaident |
| Mo.0060..... | Mulai Hafid. | 1811 | 1910 | King |
| Nepal. . | Dhirai Bhamsher Jan | 1873 | 1008 | Bultan |
| v beriar 's. | Wirhelmina. . . . . . . . | 1875 | 1881 | Maharaja |
| - \% | Louis Mena. | 1880 | 1898 | Queen |
|  | Haakon VII. |  | 1911 | Preaident |
| $\cdots$ | Seyyid Feysal Turki. | 1872 | 1805 | King |
| $\because$ | Pablo Arosemana. |  | 1888 | Bultan |
|  | Ahmed Mirza. |  | 1911 | Preaident |
| Peru. . | Aususto B. Iegui | 1897 | 1900 | Shah |
| Portugal. | Manuel de Arriaga | 1863 | 1908 | Preaideat |
| Roumania. | Curol I. ........ | 1840 | 1911 | Preaident |
| Rumein. | Nicholas II.. | 1839 | 1881 | King |
| Salvador. | Manuel Araujo | 1868 | 1894 | Crar |
| Seato Domingo. | Men. Ramon Cacer |  | 1911 | Preaident |
| Servis......... |  |  | 1908 | Preaident |
| Spain. | Alfonso XIII | 1844 | 1808 | King |
| Sriedea | Gurtarus V. | 1886 | 1902 | King |
| Sritterland. | M. Forever | 1858 | 1907 | King |
| Turtey:. | Mehmed $\mathbf{V}$ |  | 1012 | Preaidana |
| United States. | Wm. H. Thf | 1844 | 1809 | Sultan |
| Vencenuela. | Gen Gome | 1857 | 1809 | Prealdent |
|  | Gent Games | 1856 | 1808 | President |



The mupromeoy of Indeatry. A great Englishman, John Ruakin, eminent in so many directions that it would be difficult to state in what he excelied, believed in habor and in the supremacy of induatry. He anid that a nation which habora, and takes care of the fruits of its labor, will be rich and happy, though there be no gold in the universe.
The sousce of the wealth of the world is the earth-in what is produce ${ }^{-1}$ through agriculture and what is dug from its depths, the gold, silver, iron, coal, etc., with which are wrought the miracles of modern commerce. The present age is especially chameterized by great development along these industrial lines, and nowhere do we find more striking exumples of this than in the United States and Canada. Recognizing the importance to the student of this phase of national life, we present outlines on several important industrial products, such as com, wheat and lumber, and have also included products that are mised in other countries and used extensively throughout the world, such as coffee and tea. In the arrangement, the outlines on products that are prominent in the United States and Canada are placed first.
Extent of Treatmont. In regular alphabetical order in these volumes will be found extended articles on all the subjects included below among the industries, besides carefully prepared descriptions of many other agricultural and manufacturing enterprises which in one way or another contribute to our higher civilization. Attention is directed particularly to the following, among the most important:

Metals and Minkrals
Aluminum
Asbestos
Asphalt Clay Coal

Lead
Marble
Nickel
Platinum
Radium

| Copper Gold | Salt Silver |
| :---: | :---: |
| Gyprum | Tin |
| Iron | Zinc |
|  | Industajal |
| Basketry | Meat P |
| Blart-urnace | Mining |
| Book-binding | Printing |
| Brewing | Rubber |
| Bricklaying | Silk |
| Calico Printing | Spianing |
| Cooperage | Steel |
| Fish Culture | Tanning |
| Fisheries | Waterpro |
| Forestry | Weaving |
| Gilding | Well Bo |
| Lumbering | Woclen |
|  | Agricultural |
| Agriculture | Grains |
| Apiary | Barley |
| Breeding | Corn |
| Cattle | Oats |
| Cofiee | Ric |
| Cotton | Rye |
| Creamery | Wheat |
| Dairying | Poultry |
| Forestry | Sugar |
| Fruits | Tea |
| Gardening | Wool |

It must not be assumed that the tilues abom include all the subjects treated in these voluma on the subject of the world's industrics. Ody those most important to mankind are named i the three groups, but hundreds of othee atide all related to the general theme appear in TII New Practical Reference Libbart. Tt General Index at the end of this volume shald be referred to for a more complete outline dor industrial life. Consult the divisions-

| Agriculture, | Minerals, |
| :--- | :--- |
| Industrial, | Plants, |

Al mote the carsfill mubdivitions of esch general mbjut, by whleh oae may mudy all related aples and know that no important ltem is eltaed. Nosily a thoumad tition refer to valowe features of the world's induatrial tife.

In prownting outlinen for study on various Industrial topies, we have included thowe of gronteot general interest and importance; from thew sugeretions any person will be able easily to outline other subject, as necesvity may require.

## Corn

Ingurtases of the Oorn Orop. According to the euthority of one of the greatest arricul. turnl schoola in the United States, the raiue of the come erop of that country is more ti.na trice that of any other crop. In 1000 it amounted to $81,720,000,000$, which wa thirty-five per cent of the value of all field crops. The world's annual cora crop amounts to about $3,500,000,000$ busbels, of which the United States pmoduces more than three-fourths. With these enormous tounh in mind, it ls clear that corn is not yet siixd in Canada in sufficient quantity so affect the total, but it is equally clear that there is sret opportunity for an Increase In the production Ontario is the only province in whleh corn forms an impoitant crop; this province's Fedd cropa in 1911 were valued at $\$ 103,260,000$, of whiph corn represented $\$ 21,023,000$, nearly anecighth of the total The only crop of greater value wes oats. Manitobe produces about $\$ 800,000$ worth of corn for fodder each year, and Quebec shout $\$ 1,000,000$ worth of fodder corn and $\$ 800,000$ worth of corn for husking. As forming becomes more mixed in the western provisess there is nu doubt that corn, especillly as feed for animals, will become a crop of increasing importance.
What Becomes of the Oorn Orop. More than four-fifths of the cor. :sed in the United States is fed to live sto he farms where it is produeed; in Canada suader corn represents oneninth of the crop ( $21,350,000$ bushels in 1911). The high percentage of fodder corn in the United States indicates a degree of mixed forming which has not yet been reached in the Dominion. Practically all the corm raised is cossumed in Canada; only 55,000 worth was exported in 1910. The portion of the corn crop not used for food-either for man or animalsis made intn various manufactured products, induding alcohol, many grades of laundry and cooking starches, glucose, table s. 1p, confectioner's sugar, paste, oil, etc
Cost of Producing Corn. In the Cens's and Slatitices Monthly for March, 1912, are teresting figures, based on a wide range of statistic, ahowing the sverage cost of the different

Items of production and the profits from corn cropa. The average per acre is follow:

| Items | Canuda. | Ontario | Queboe |
| :---: | :---: | :---: | :---: |
| Preparation. | 4.31 | 4.49 | 4.05 |
| Seed.... | . 88 | . 75 | 1.08 |
| Seedling. | 3.37 | . 87 | 1.70 |
| Cultivaton | 2.98 | 2.83 | 3.03 |
| Harventing | 3.18 | 3.05 | 3.35 |
| Threshing | 3.52 | 3.85 | 3.08 |
| Interest. | 3.10 | 3.00 | 3.20 |
| Depreciation | . 5 | . 34 | . 63 |
| Total.. | 21.88 | 19.48 | 20.00 |
| Value of produce. | 32.12 | 28.13 | 37.64 |
| Profit. | 10.24 | 8.65 | 17.64 |

The average yield of corn for the entire Dominion is 60 bushels per acre, for Ontario it is 61 bushels, and for Quebee 30 bushels. The apparently high profit made In Quebec was partly due to the fact that the corn crop was less affected by drought than in the other provinces. The figures for Canada must be tuken to show profits in a poor year. The ordinary farmer produces a yield of less than 40 bushels per acre. The more careful farmers get an average of about 60 bushels per acre. From the above table it appears that the cost of growing the corn crop is about the same regardless of results. The farmer who produces a crop of 60 bushels an acre is sure under general conditions of making a greater profit than the man who gets only 40 bushels. With the best possible conditions in Quebec mr ny farmers make a profit of 50 to 100 per cent nore than the average. In the great corn belt of the United Stated yields of 80 bushels per acre are not uncommon al. d crops of as many as 100 busheis to the acre have been obtained under unusually favorable conditions. The chart on page 414 shows the distribution of the corn belts of the world.

Loss Through Waste. Officials of the Do ninion Department of Agriculture declare that every 100 pounds of cornstalks will yield $61 / 2$ pounds of alcohol; in not utilizing this byproduct the agriculturist has been allowing a
vis growt amount de molith to go to meta. No man with the internets of bis fillow-bolag at fourt would edrocete as lacrume of the pouduotion of alcohel for fappoper nem. Wo do not the to think that ayy holpful drue producem druakards and all the mo that follow for the train of drink, but thees are maay hdtimate now for aloobol aed were it mose plentiful and cheaper, the opportumition to the it would maldiply.
If one aere of corn will yield from 10 to 12 tome of cormetalle, which is about 20,000 pounds, that amount of maw material would produce conly 1,200 or 1,200 pounds of aloobol, of over
priat books and new cpapert, eqpecialty the latre. Vary soon it will bo nocimery for manufectumen to find maxo ecouptable subatitute for wood fe the manulecture of polating paper, for ow lorma are mpldity boling eut ama. Every tim - Ereat Bunday monapaper is printed a goos diand formot is dentroyed. Experiments thus for made have not dotermined the value of contocks in the manufecture of paper, but mam. fecturess are hopoful in this direction.

Ontlime for findy. The following ourlimy Is suggeted for the uee of the teacher or the pareat who wiahes to make a carelul and do tailed otudy of the oubjoct:

ppinctpal conin amowng areas of the world

200 gallona. Aleohol is worth at the preseat time probably 40 c per gallon
If grourd in a wet condition, then dried, cornatalks may be lept indefinitely and be held ready at any time for manufacture into aloohol. The elcohol derivable from cornstalks that now 50 to waste in this country would aci only drive all the machinery of our factories: a egovernment authorities, but woul' furan. ane requisite power for all our sailroesds, steambonts, run all our automobilen, heat and illumine all our houms and light the streets of every city in the Dominion.

Experiments are being carried on at the prewent time to determine whether cornstalks cannot be manufactured into paper on which to

## Ortline on Corn

1. Genzral Description
(a) Stalk
(1) Height
(2) Jointed
(3) Color
(4) Structure
(b) Leaves
(1) Shape
(2) Length
(3) Position
(c) Flowers
(1) Silk
(2) Tassel
(3) Location on stalk
(4) Locatioti of ear

## Indentros

(d) Pruib-Dase
(1) Amman merete of lumais
(D) Covirins
(B) Location on atalls
II. Hiemont
(a) Whese alrot cultivated
(b) Whea firut unod by white men
(c) How introduced to all notions
III. Kines
(a) Fint corn
(1) Characteristis
(2) Where cultivated
(b) Dent ewn
(1) Charseteritatics
(2) The corn of commerne
(c) Swret corn
(1) Canning industry
(2) Table harury
(d) Pop corm
(1) Extent of eultivation
(2) Comanercisl usen
IV. Puavtiva
(a) How coil is prepared
(b) Machinery usod in planting
(c) When planted
$\checkmark$ Cultivation
(a) Care of corn fictd
(b) Extent of care required
VI. Harvestivo
(a) Time of harvest
(b) Method of harvesting
(c) Where gathered com is stored
VII. Whare Cultivatedo
(a) United States
(1) Raises what propistion of world's crop?
(2) Importance of nation's crop
(a) Annual yield
(b) Value of annual crop
(3) Exports to what countries?
(b) Cunada
(1) Extent of annual crop
(2) Value of annual crop
(3) Comparison of methods and times of planting and harvesting with same in United States
(4) Importance of industry to Canada
(c) Other countries
(1) Argentine Republic
(2) Russia
(3) India
VIII. Eises
(a) As food
(1) For mankind

## Indastrios

(a) Man
(b) Homing
(c) Hulliad come
(2) Por calimals
(b) Micellanoous uex
(1) Starch
(2) Glucons
(3) Alecholie liquors
(c) By-products
(1) Cobe
(a) Syrup manufacture
(b) For fuel
(2) Huaks and stalls
IX. Mankis
(a) Local
(b) Porelam
(1) Portion of erop exported
(2) Value of exports
(3) Pribelpal foreign eustomens

## guostions on Cors

Why called Indian corn?
How many diahes are made from corn meal in your home?

Start with the farmer and name nome of the induatries that arice frow or are dependent upon corn.

To what family of plants does corn belong?
How does corn rank as a food throughout the world?

What does corn contain that mekes it valuable as a food?
In general appearance what plant does it resemble?
Ho m many kinds of : wers has the plant? Which fower formn toe in: al? Which the sills? What is at the inner en each thread of wilk? Do the ears have an udd or even number of rows? fuw are they covered? Why?
Of what consinent is corn a native? What is 4. Nwn of its 4 a a yong the Astees and Incma? ilor: far north is corn now cultivated?
ifhat is the difierence between the corn belt in the cool temperate regions and that of the warmer corn belt?

How does comn compare in value with wheat?
What is the average price of corn per bubbel? What is the average yield ner acrer
What are the results of a failure in the rorn crops of the United States?
Describe fint corn. What are the two chief varieties of fint com? Where is the yellow variety generally raised? Where is the dent corn grown? From what does it take its name? How high do it arow?

## Induatrion

What is the total annual corm exop of the Dominion? Is any of it exported? What perceatrage of the total is used as fodder corn?

How does aweet comn differ from field corn? What great industry is connected with this article?
Why is corn used as a fattener of stock?
In what manner did the Indians grind corn? How is it cultivated and prepared for food by the native Mexican to-day?

How is corn planted? Cultivated? Harvested? When does the cultivation begin? Upon what do the methods of harvesting depend? What machines are now in use on the larger corn farms?
What proportion of people use it as a food?

Give three forms in which it is commonly used. Give three manufactured products made from it which are used extensively.

Of what value are the stalla? How is grues corn used as fodder? Describe the process in dothil.

What proportion of the world's product in raised in the United States?

Which is the leading corn-producing provinee!
How many billion bushels are raised annully in the United States? What is the value of the yearly crop?

How does it compare with the production of gold P Silver? Iron? Cotton?

What other countrics produce large quartities of corn?

## Wheat

4 Most Valuable Orop. Wheat is one of the principal food crops of the world; it stands second only to rice, which sustains a greater part

Argentine and Canada. Ontario is the leading province for winter whent, the crop being about $17,000,000$ bushels, but in the production od


WHEAT CROP OF CANADA, BY PRJVINCES
of the human race than any other crop. The average yield of wheat varies in different countries; approximately, as follows: Great Britain, 32 bushels per acre; Germany, 26; Canada, 20; France, 19.5; Hungary, 15.5; the United States, 15; Russia, 9. In 1910 the wheat crop of the United States reached the total of $737,000,000$ bushels, of which approximately $500,000,000$ wese winter wheat and the remainder spring wheat. This crop represents a value of 8500 ,000,000 . In the same year Canada produced $150,000,000$ bushels, of which $133,000,000$ bushels were epring wheat. That Canada is now taking an important place as of wheat producer may be seen from the fact that the total wheat product of the country increased from $55,000,000$ bushels in 1001 to more than $215,000,000$ bushels in 1911. Russia, in spite of a low average per acre, produces more than $400,000,000$ bushels per year. The Inited States aloneproduces from one-sixth to one-fifth of the world's supply of wheat. Next in importance are Russia, India, Hungary,
spring wheat it is greatly exceeded by Saskatchewan, Manitobe and Alberta, in the order named.

In Canada the average cost of producing this crop is about $\$ 13$ an acre, made up as follows:

| Items | Fall Wheat | Spring Whent |
| :---: | :---: | :---: |
| Preparation. | . 3.93 | \$ 3.10 |
| Seed. | 1.62 | 1.74 |
| Cultivaton | 1.00 | 1.00 |
| Harvesting. | 1.72 | 1.55 |
| Threshing. | 2.09 | 2.32 |
| Rental Value | 2.82 | 2.68 |
| Depreciation. | . 39 | . 48 |
| Total. | . . $\$ 13.57$ | \$12.87 |

A fair average crop in a good year would be 20 bushels to the acre, at an average price of sinty to eighty cents per bushel. Under favorable conditions the farmer may make a profit of \& to $\$ 7$ an acre, which may be anywhere from five to eight per cent of his invested capital. According to the latest census reports the average sire



## Industrios

difurmsproducingwhent is 25 sares. The greatsize dimany farms in the western whent belt is offiet by hundreds of amall areas under whent in the cast. The average value of the crop is about 817 per acre for the whole of Canada; in Saskutchewan and Alberta the average is less than 814, but in the more settled districts of the east, where cultivation is more intense, it is as high $m$ 824. In British Columbia the average is $\$ 36$, bet this is because high grade fruit land is generally broken with a crop of wheat or sometimes onts or barley.
Ilarkets and Pricos. The greateast wheat market in the world is Chicago; wheat is shipped from the local centers of the United States, and even from Canada, to Chicago, where it in stored in elevators. In recent years Minneapolis, Duluth, Winnipeg, Rosthern, Fort William and Port Arthur, because of their proximity to the wheat-growing areas, have received a great deal of wheit for storage, but it is still true that the general movement is toward concentration of supply before distribution to retail dealers.
This tendency is partly the cause of and partly caused by the so-called "Grain Exchanges." In the Cnited States the Grain Exchanges are known as Boards of Trade, which must not be confused with Canadian chartered Boards of Trade, whose function is quitedifferent. Originally a Grain Exchange was made up of middlemen, who sought to act as agent for the fermer and for the consumer. In the course of time the middleman's position at the contral makets led to an increase in his power. By bargaining with other commission men he fixed the price at which wheat might be bought and sold. Thus we see that the Grain Exchange was originally the outgrowth of necessity. It set a price and furnished a market. Incidentally, the commission men made profits. They dictated prices; they dietated classifications of wheat. The Dominion government now inspects and grades wheat. This standardization of the wheat supply has made possible the enormous growth in central control of the wheat markets. If you buy one thousand bushels of Grade 1 you know that the wheat will be of that grade whether delivered in January or in June, in Winnipeg or in Montreal.
Unfortunately the immense power of the Grin Exchanges has brought some evil results, the chief of which is unrestricted dealing in a posible future supply. This is simply gambling, which must eventually be stamped out. So long

## Indastrios

as the Grain Exchanges act honorably in the attempt to equalize the advantages of production and distribution, their existence is highly deair able.

Ortiline for Itndy. For the beneat of the student who would like to know the detrils of the subject, the following outline is added. It will enable any boy or girl to arrange the frets in a logical, evderly way:

## Outline on Wheat

I. General Description
(a) Plant as a whole
(b) Stalk
(c) Leaves
(d) Fruit

## II. Hegrory

(a) Where first cultivated
(b) Ersly cultivation in general
(c) Introduction into Europe and North America

## III. Spicies

(a) Beardless
(b) Polish
(c) Spelt
IV. Prociss of Production
(a) Planting
(b) Harvesting
(c) Threshing
(d) Milling
V. Usis
(a) Food for human beings
(1) Flour
(2) Bran
(3) Macaroni
(4) ieresls
(b) Other products
(1) Feed for animals
(2) Straw
(3) Straw-board
(4) Paper
VI. Markets
(a) Local
(b) Grain Exchanges

Questions on Wheat
What is the average yearly production of wheat ir C anada?

What: are the other leading wheat producing countries in the world?
What proportion of the world's crop does the United States produce?

What machines are used in preparing the noil for wheat?

Who invented the harvester?

## With what tool did our forefathers cut their grain?

Is that tool still in use?
Name the difierent varieties of bread that you know.
Which do you consider the best? Why?
For what purpose is wheat straw used?
Where are the great wheat regions of Canada?
How long has wheat been known?

Which province ranks first as a producer $d$ winter whent? $O$ it spring wheat?
What is the average cost of production od apring whent? Average profit?
Of what region is wheat prcbably a native plant?
What is bearded wheat? Bald wheat?
What is red wheat?
What is known as hard wheat?

## Cotton

Briel Bistory. The oldest cotton producing country is India, where the plant has been known from time immemorial. It was used there in the manufacture of clothing, which was said by Herodotus, the early Greek historian, to be of better quality and finer fiber than that made from the wool of sheep. On account of the character of the plant, he called it "tree wool," the name by which it is still known in some countries.
The first attempts to grow cotton in North America were made in Virginia about 1721. Until the later years of the same century its cultivation was confined chiefly to that colony and the Carolines, where it was grown principally for domestic uses. The first exportation of cotton, consisting of eight bags, weighiug 1,200 pounds, was from Virginia in 1784. In 1791 the United States furnished less than one-sixth of one per cent of the cotton importation of Great Britain; a century later its crop was sixty per cent of the world's supply. The increase was from 8,889 bales weighing two hundred and twenty-five pounds each to $9,534,700$ bales weighing five hundred pounds each.
Growth of Industry. Cotton is one of the few great staples not produced in Canada. It requires a sub-tropical climate, such as that of the southern part of the United States; but the importance of the cotton manufactures is shown by fthe fact that Canada produces over $\$ 100,000,000$ worth of textiles a year; of this total $\$ 18,000,000$ are pure cotton goods, and a large percentage of the remainder are part cotton.
Canada is dependent upon the United States for her importation of cotton, yet the abundance of power and the increasing demand have given rise to an industry which seems destined to become even greater. There are as yet only twenty-five mills for the exclusive manufacture of cotton goods; but there are nearly 2,000 mills and factories in which cotton and cotton pro-
ducts are used. These include blankets, clothing, hats and caps, mats, thread. Woolens and sills comprise only about one-tenth of the textik products of the Dominion, cotton products being the great bulk of the total. Canada imports over $\$ 35,000,000$ worth of cotton products a yeur, besides $\$ 10,000,000$ worth of raw cotton.
The growth of the industry is sufficient prool that it has been profitable. The margin ietwees the price of a pound of raw cotton and that of a pound of goods is so amall, hnwever, that the profits of a mill during the whole year may depend on the judgment or luck of the purchasing agent in buying his raw material at the right time. The general condition of the country determines the demand for the finished pros. ducts, but the cost of production depends greaty on the price of cotton. Cheap cotton and a brisk demand make the manufacture profitable; dear cotton, a sluggish demand and habor troubles reduce or extinguish profits. Unfortunately the latter set of conditions is too of ten presented. The decade from 1901 to 1911, it must be admitted, however, was a prosperow one, in spite of several bad years.
The World's Eupply and Oonsumption. There are late and quite accurate statistios showing the annual crops of all cotton-producing countries; the consumption of the mills in Great Britain, the United States, Canada and other countries takes practically all the world's production. The consumption of the mills for $1809-$ 1900 was $13,535,000$ bales of five hundred pounds each, but this figure is somewhat in excess of the crop for the year, as the two nreceding crop were the largest in the histor, of cotton production, and a part of the cotton consumed by the mills in the year 1899-1900 was brought forward from preceding years. Of the total quantity grown in the United States from thirty to forty per cent was exported. The folluring figures for 1010 furnish an interesting basis for comparison:

## Industifos

Country
United States
British India.
Eypt. ......... . . . . . . . . . . . ...... . 3,508,000
Rusia. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .5035,000
China $. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . ~ . ~ 725,000$
Brazil.
360,000
Other countries. . . . . . . . . . . . . . . . . . . . . . 600,000
Total
19,171,000


PROPCRTION OF TOTAL CONBUMPTION OF THE WORLD's COTTON SE:TPLY-TROM census heport, 1911

| Country | Cotton Spindles | Mill Consumption |
| :---: | :---: | :---: |
| United States. | 29,149,000 | $4,799,000$ |
| Great Britain. | 53,397,000 | $3,372,000$ |
| Germany | 10,200,000 | 1,660,000 |
| France. | 8,250,000 | 1,457,000 |
| Bntish India | 7,100,000 | 951,000 |
| Austria-Hungary | 4,643,000 | $1,653,000$ 785,000 |
| Italy............ | 4,200,000 | 785,900 753,000 |
| Japan. | 2,005,000 | 1,028,000 |
| Canals | 1,853,000 | 265,000 |
| Belcium | 1.497,000 | 140,000 |
|  | 1,322,000 | 180,000 |
| Other | 5,213,000 | 1,278,000 |
| Total. | 44,526,000 | 8,321,000 |

The figures show that the United States produces more raw cotton and also uses more in the manufacture of cotton goods than any other country. At the same time it exports annually
from thirty to forty per cent of its crop. The only countries that produce grades of cotton required in American manufacture aro Eyypt and Peru. The Egyptian cotton is not as fine as the sem-isiand cotton, and does not command as high price, but it is much better than the upland for the manufacture of goods requiring $a$ smooth finish. Goods made from it have an appearance somewhat like silk. The Peruvian cotton ponsesses a rough, strong fiber, but it is


PROPORTION OF WORLD'S SUPPLY OF COTTON CONTRIBUTED BY EACH COUNTRT-FROM census heport, 1911
shorter than the upland of the United States. It is well adapted to mixing with wool, and is used in the manufacture of mixed goods, principally underwear and hosiery, which require a soft finish. Finished cotton goods, however, have always been imported in considerable qrantities, but these importations have been a nfined almost exclusively to fine grades. The tarif has helped the Canadian manufacturer to control the home market, but until recent years he confined his attention to staple goods, and loft the fancy and expensive stuffs for his foreign competitor to make.

## Outlire on Cotton

## I. Varieties

(1) Long fiber or sea island cotton
(2) Shart fiber or upland cotton
II. Where Raised
(1) United States
(a) Sections
(2) Other countries
(b) Names

Induatrios

## III. Punving

(1) Methods
(a) Rows-distance apart
(b) By what means
(2) sencom

## IV. Culinvatiox

(1) Soll
(a) Sandy loam-lime and phorphates
(b) Heavy rainfall while planting
(2) Dry season, to mature
(3) Temperature
(a) Not less than a mean annual temperature of 60 degrees
V. Hurvestave
(1) Time
(a) Bursting of pods or bolls
(2) How picked. All bolls not ripe at same time
(3) Sent to gin house
(a) Seeds removed by cotton gin
(b) Pressed into bales of 500 lbs . each
VI. Suaports, Raw Mathaine
(1) United States
(2) Other countries
VII. Factories
(1) Canada
(2) Forrign countries

## VIII. Products

(1) Cloth
(a) Clothing
(b) Household furnishings
(2) Cottolene
(3) Fodder and fertilizer

## Industrios

(a) Seeds from which oil has beem prewed ground into powder
IX. Hustory axd Gnowie of Cotron Ls dutiry
(a) Domestic
(b) Foreign

## Questions on Cotion

When and how are cotton seeds sown! How is cotton cultivated?
How long after the flowering has commenoad do the seeds open?
How is cotton harvested? How is it separated from the seeds?
How did the invention of the cotton gin afiet the production of cotton? Who invented it?

In what form is the cotton sent to the manrfecturers?
What is the weight of a bale?
Which is the oldest cotton-growing country! Who introduced cotton into Europe?
Name the chief cotton-producing countries.
Where and when was cotton first planted in the United States?

What states make up the cotton belt?
Which variety of cotton is most extensively cultivated in the United States?
What is the average heigbt of the sea-sisud plant? Of the upland plant?
What are the leading cotton ports of the United States?

How does the value of the average cotton cupp compare with the corn crop? with wheat? with wool?

Name some of the by-products of the cottoo industry.

## Wool

Briel Eistory. The history of wool dates back to the earliest times of which we have recond, and as civilization has progressed its uses have steadily increased. The chief woolproducing countrins are Australia and New Zealand, Argentina, En-land, the United States, Russia, India and British South Africa. The total world's clip is estimated at nearly three billion pounds a year. Some idea of the amount of product may be obtained from the fact that one pound of wool will yield about one hundred miles of thread.

Wool may be considered a product of domestication, as no wild animals are known which resemble the wool-bearing sheep. The sbeep was originally covered with fur or coarse hairs,
among which was a softer hair or wool close to the skin. Under the influence of good care and protection from the weather, the longer coarse bair has largely disappeared, and only the shorter, softer wool remained. By carelul bred. ing various classes of sbeep have been developed with unusually long and fine wool. While mod is generally characterized by its fine, soft, cunty nature, the true distinction between it and hais lies in its covering of pointed scales or plates, which overlap very much like fish scales. Atother important characteristic of wool is it clasticity, which gives it softness and strength

All wool in its natural state contains lat e grease called yolk, which covers the individul hairs. This keeps the fiber from getting too

## Industrios

dry and also protects it from injury. Before the wool is used for manufecturing purposes the yolk must be removed by scouring, so that the fibers will grip more firmly and will take dye. White is the most common color of cleaned sheep wool, but black, fawn, cream and gray shades produced by various breods are utilized in their natural colors for certain kinds of cloth.
Tinds. The three main classes of wool are generally given as follows: (1) carding or clothing wools, short fine fibers, such as merino, suitablo for clothing; (2) combing wools (Southdown, Shropshire, etc.), long fibers suitable for worsteds; (3) miscellaneous or carpet wools, chiefly hair, used for carpets, blankets and coarse clothing. The best wool is the merino, used in all-wool goods. In making yarn for worsteds the fibers are carefully drawa out and laid parallel. For this purpose the long wools are obviously best. Foe the ordinary woolen goods no particular attention is paid to the arrangement of the spparate fibers. An examination of the two kinds of yarn will ahow the difference. Shoddy, contrary to general opinion, is all-wool, but it is made of old stuffs and shredded again. As many of the scales of the fibers are torn of in this process the thread does not hold together so well and the cloth is weaker.
Oanedian Production. Canada imports about $\$ 2,000,000$ worth of wool and woolen goods a year and manufectures about $\$ 10,000$,000 worth. The number of sheep shows a decline from $2,831,000$ in 1908 to $2,389,000$ in 1911. This decline has been due chiefly to the steudy settlement of the eastern provinces, and the consequent increase in mixed farming and decrease in sheep raising. In addition to this discouraging recline is the fact that the actual importations of raw wool are less now than they were in 1875. A special report published by the department of agriculture in November, 1911, explains the reasons for the dedine and shows that only system and energy are needed to bring sheep raising to its proper importance. The opportunities are great, and the only obstacle in the way is the ignorance of the frumers. The total raw wool production is now about $11,200,000$ pounds a year, an average of four pounds per head. As the government continues its campaign of support and education there is no reason why our annual production should not exceed $50,000,000$ pounds.
Markoting Wool. The marketing of the nw wool presents some unusual difficulties. It should first be noticed that there is no specula-
tion in wool as there is in the corton or grain markets. The place of a Grain Exchange is taken by the "wool merchant," the middleman who bears the risks. These risks are unusually great, for various reasons. In the first place, there is no uniformity in grades of wool, even in wool from the same flock in different years. Unless he has pernonally inspected the wool to be buught the wool merchant has no security. This complexity of the raw material is a risk which must be borne chiefly by the commission merchant. Furthermore, he beara the load of price variations, which ere frequent in the wool market.
The manufacturer, on the other hand, risks an unusually large investruent. The high labor and mechanical cost are responsible for the concentration of the manufacture of woolen goods in the enstern part of the country near the great central markets. The situation in England and the United States is identical. The raw wool is shipped to distant manufacturing centers, because these are the best markets. Small mills, unless making specialties at fancy prices, cannot bear the risks of the market. They are practically at the mercy of the commission houses, which fix prices and practically dictate what shall be made at the mill. The American Woolen Company is an attempt to overcome some of the difficulties. It was incorporated in 1899 with a capital of $\$ 50,000,000$ to buy and sell raw material on a large scale. The formation of this company has helped to a slight degree to standardize conditions, for it controls one-third of the United States clip and one-fourth of the total supply, including imports. The company has incurred the enmity of many classes interested in the wool markets; it is by no means a solution of all the difficulties. Further remedies will be the development of years, not the rash conclusion from an imperfect knowledge of the facts.
The woolen industry is one of the most interesting, in all its branches. In a short space it is not possible to point out more than a few of the features which distinguish it from all other industries. Anything connected with the industry, the raising of sheep or goats, the shearing and preparation of the wool, the manufacturing processes, all these are worth studying. Technical problems and coonomic questions both remain to be solved. The outline and questions on wool have been prepared for the purpose of guiding the student or general reader who wishes to know more about the subject:

## tadestrios

Oratline oa Tool

## 1. Defraction

II. Sounces
(1) Sheep
(a) Courso-wooled
(b) Medium-wniled
(c) Fine-wooled
(2) Alpactand zonte
III. Cuneszs
(1) Canding wool
(a) Description
(2) Combing wool (a) Dencription
IV. Quality
(1) Moot valuable
(a) Where obtained
V. Output
(1) Leading countries
(2) Amount in the United States
(3) Amount in Canada
Vi. Manuracturae
(1) History
(a) Ancient
(1) Jews, Greeks and Romans
(2) Reason for early development
(3) Introduction into England
(b) Modern
(1) Effects of development of spinning and weaving
(2) Processes (seecolored plate in the article on Woolen Manufacture, Vol. V.)
(a) Sorting
(b) Cleaning
(1) Dusting
(2) Scouring
(3) Dyeing
(4) Drying
(c) Removing burs

## Monsotrios

(d) Plding
(1) Pulling tuftu apart
(2) Mixing
(c) Carding
(1) Druwing out fiber
(2) Reducing nive and atrengther ins
(3) Reoult
(h) Epinning
(1) Mruchine used
(2) Resulation of size and twitt
(3) Winding yarn
(g) Weaving
(1) Arrangement of spools
(2) Regulation of width of watp
(h) Pressing
(i) Winding into bundles
(3) Clessification of products
(4) Output in Canada
VII. Comparative Importance of Woolen Industar

## Quentions on Wool

Which are the principal wool-gr Jwing courr tries?

What qualities in wool are most desirable?
Why is the merino the most valuabi: of woot producing animals? What is the native country of this sheep?
To what extent was woolen manufacture developed by the Greeks and Romans?
What modern country first became famous for woolen manufacture?
How is a fine hard woolen thread produced?
When is the dyeing process introduced into the manufacture of wool?
What is the present condition of the industry in Canada? What seem to be the principal reasons for it?

## Iron

Its Importance. The world would have made in generations and ages past but very little progress had its peoples been deprived of iron. Excellent substitutes could be found even today for a great number of our most useful articles, were we to be deprived instantly of any of them, but no substitute could be named which would in any measure take the place of iron. Without iron we should have no speeding express trains; no immense buildings; we should have neither the telephone nor the telegraph. Iron is indispensable in the construction of these and many other things we could not well do without.

Its Adaptability to Uso. What gives iron its immense value, aside from its great aburdance, is its cheapness, its strength, and certuin properties it possesses by which man can adapt it to a multiplicity of uses. It can be made extremely hard by sudden cooling; if it be heted and cooled slowly it will remain soft and very pliable. Man has learned how to make iron to ductile as copper or as brittle as glass; how to render it springy or springless at will; he has contrived processes by which it will conduct heat and the electric current with the greatast ease, or, on the contrary, give it high resisting

## Induriden

power to them dements. It cana be mado to mele by application of heat or be so treated that it can be fused only with greateent difliculty.
Iroa in the moot abundant of all the metals, and it is fortunate that the moot useful of all should be most pleatiful. The iron Industry of the world has reached siguatic proportions. In 1009 in the United States, the iron and steel industry was capitalized at almost a half-billion dollines.
Produetion. Reporta for the United States and Canada have been brought down to date. While in 1908 the production in the United States was $47,750,000$ loag tons, it increased in 1007 to nearly $52,000,000$ and in 1010 reached atotal of about $54,000,000$ long tons. The production of pig iron in Canada for the year 1000 mes 515,200 long tons; for 1011 lt was 800,000 loag tons.
The reader is referred to Volumes III and $\mathbf{V}$ for full treatment of the nature and history $d$ iron and steel, in regular alphabetical arder.
It will be a most interesting atudy to trace the facts respecting iron through such an outline as the following. One should know as much as poosible about a metal which can be tempered to the hand cutting edge of a razor and the point of a fine needle, of made soft enough to meet requirements for horseshoe nails.

## Oatine on Iron

I. Properties
(1) Ductility
(2) Malleability
(3) Hardness (tempering)
(4) Magnetism
II. Ores
(1) Kinds
(a) Red hematite
(b) Brown hematite
(c) Magnetite
(d) Spathic
(2) Distribution
(a) United States
(b) Canada
(c) Other countries
III. Mining Ore
(1) Methods
(a) Blasting-ore in form of ledge
(b) Steam shovel-when ore is soft
(2) Shipping
(3) Smelting-Object
(a) Crusher
(b) Blast furnace

## Indantries

IV. Pro Iron
(1) Characteristics
(a) Coarse
(b) Brittlo
(2) Uses
(a) Iron castings-

Stoven, framework, etc.
V. Wrouairt Iron
(1) Characteristics
(a) Flexible
(b) Ductile
(c) Malleable
(2) Uses
(a) Nalls, wire, etc.
VI. Steel
(1) Characteristics
(a) Hard
(b) Tenacious
(c) Gray in color
(2) Principal Uses
(a) Framework of large buildings
(b) Bridges
(c) Steel rails and ties

## Questions on Iron

What ls iron? Why are steel plants generally built near extensive coal beds?
Why does iron rust easily? What is rust? What kind of iron in your kitchen range?
Is there any other known metal that could be used for the same purposes as iron?
Which would you miss the more, gold or iron? Which constitutes the greatest factor in the world's progress?
Who was Krupp? Bessemer?
Why is coke used for blast furnaces?
What is slag? To what practical uses is it put?
Distinguish between pig iron, cast iron, wrought iron and steel. Name articles made from each.

What effect do repeated smeltings have on iron?

How did they handle iron in the iron age? What are some of the new uses of steel?

What is the name of the one continent which has no iron supply? Where is the best iron found in Europe?

How does the United States stand in the production of iron ore?

What is the method of mining iron ore?
How are the impurities separated from the iron?

How is a blast furnace operated?
In what is the molten iron cooled?

Introduotion tact Morth Amoriem. During the middle of the eifhtecenth rentury mugar cane was introduced from southern Europe into Loubiena, where the manufecture of sugar has boen corriod on mucceadully over innee. The articles on Supar and Supar Cono in Tuz New Practcal Remenarces Lamary give a completo mocount od the plant en woll as the procemen by which the eugar is produced. The modern auger sectory is equipped with every mechanical device for wecuring the beat reculta. Every year mees new improvements made and new inventions applied. There have been increaved efforts, eppecially In the United Statees, Canada, and Germany, to substitute suggar from beets and other plants for cane muger. Today the world's production of sugar bs about evenly divided betwrea sugar cane and beet sugar. In 1911 the total amount of cane augar producod wan $8,522,000$ long tons, of beet nugar, $8,575,000$ long tons. This is an increnes in the world's output of sugar of $2,000,000$ tons in two years. The five leading sugar producing countries of the world, British Indin, Dutch East Indiee, Germany, Russia, Cuba, produce more than two-thinds of the total supply.
Iugar Prodzetlon. In 1009 the United Statee produced 5.3 per cent of a world total of 15,000,000 long tons; in 1911 the percentage had risen to 10 . No other figures could show so well the great advances made by the sugar industry under the encouragement of the government. The greatest increase in the cane sugar supply has not been in the United States itsell but in Porto Rico and the Philippines. The quantity produced in Louisiana and the other southern states Huctuates very littie.
Sugar is one of the most important imports of the United States; like Canada, it can never hope to produce enough to meet local demands, even with wide extension of the beet sugar industry.
Boot Bugar. It is clear that climate and soil limit the areen in which cane sugar may be produced. Beet sugar, on the other hand, thrives in more temperate zones of wider area. It is only since 1901 that the cultivation of sugar beets in Canada has become a recognized industry; the census of that year makes no mention of sugar beets. In 1911 over 177,000 tons of sugar beets were raised on an area of 20,878 accres. Ontario produced all but 15,000 tons of the total; there are factories at Wallaceburg and Berlin. Alberta is the only other provinco producing sugar beets for the market; the

Irrigeted diberict asound Ravmoond, where them in a factory, yielde a high averuas per acre. Th net pronit to the farmer rangeo from $\$ 30$ to sico an aero. The chied difiteculty today is the clovire d the fectory during the grenter part of the yer. The "peacon" hatis frome dixty to ninety deve eccoording to the deo of the erop; when the evp has been harverted and mado into surkar, in factory clowes. This is a werious obstacle to the invectment of capital. Purthermore, the rugur beet demands a lirge amount of field labor. Experience mems to show, however, that ine induatry is eppecinlly favorablo to smali invetoon because the returnas are high. It mems certain that the beet will be cultivated in incresiandy large arect, ase further study will improve the conditions of the industry.

## Ontitan os Bugar

## I. Souncts

(1) Sugar cane
(a) Where grown?
(1) United States
(2) Other countries
(b) Description
(1) Heighe
(2) Leaves
(3) Reesembles what plant?
(c) Sugar mills
(1) Proceses
(2) Crushing tralks
(3) Reduction of sap
(4) Refining, etc.
(d) Products
(1) Granulated sugar
(2) Loef sugar
(3) Brown or raw sugar
(2) Beets
(a) Where grown?
(1) Canada
(2) Other countries
(b) Sugar factories
(1) Processes
(2) Slicing beets
(3) Drawing juice
(4) Refining, etc.
(3) Mapie sap
(a) Where produced?
(b) Season
(c) Securing sap
(d) Sugar-making (see sugar cane)
(e) Flavor, value, etc.
(4) Sorghum
(s) Resembies what plant?

## Seduatertos

(b) Proees (nee sugar cams)
(c) Product
(1) Syrup
(2) Sugar-not of commercial importance

## II. Sugar Retineruea

(1) Incestion of
(2) Wort of sefining
(3) Annual output cane sugar, beet sugar
(4) United States
(s) Annual output of cane sugcap
(b) Annual output of beet sugur
(c) Annual coneumption of sugar
(d) Annual importation of sugar
(e) Annual consumption of individual
III. Br-Prodvcts
(1) Molasees and syrup
(a) Sorghum
(b) New Orleans molasses
(c) Foundation for all syrupo
(2) Bagasse
(3) Beet chips

## Questiona on Sugar

How many pounds of sugar are made from a ton of beets? From a ton of West India cane? Louisianas cane?

## xifneatron

How many pounde of augar ere uned to asch individual yourly in the UnitodScitien! Is raneda?
What in the sugar you use delly med, from -beett, sugar cane of maple sapp?
How is loaf sugger made? In what manner is it mootly used?
In what cities are some of the sugar refineries located in the United Staten? Where are come beet sugar fectories in Canada? With what product do they work? What atage of the work do they handle?
Whet are the chief unes of maple mugar?
What is sorghum? Why is not the cane suitable for mugar?
What do we mean by raw sugar? Browa sugar?
What counstrieslead in the raising of sugar cane?
How does the cane in the tropies compare with that in cooler climates?

What becomes of the crushed stalks?
Upon what does the growth of the sugar cane depend largely?
For how long a period does one planting last? Is this an important factor?
What is done with the beets after extraction of the sugar? With the cane staliss?

What color is the raw sugar? What is used to whiten it?

## Salt

Whore saltis Found. Salt is found in many parts of the world $\ln$ one of three forms: in orean or lake water, in underground brine, and surock salt. Since all rivers carry some salt,? the exumulation may become very great when the rivers enter a reservoir which has no outlet. It is in this way that the salt lakes have been lormed, and the salt of the ocean has also probably come from the wash of the lands. We must remember that salt is really a mineral, lound in the earth; its existence in water is due to solution. In the Caspian Sea the water has anly $0.63 \%$ salt; the Mediterranean contains ${ }^{3.37 \%} \%$ the Atlantic Ocean averagee $3.63 \%$; and the Deed Sea has $22.30 \%$. When the quantity $d$ witer evaporated exceeds that entering a natural reservoir, the water becomes saturated, and walt will gradually be deposited on the bottom. The drying-up of lakes or the evaporation of sea water in enclosed bays has thus led to the formation of rook salt deposits.
How salt is Obtained. The simplest method $d$ obtuining salt is by the evaporation of sea vate, but this is seldom done except in counthies which have no other source of supply. It
consists in conducting sea water into shallow tanks and then evaporating the water by artificial heat or by the sun's rays. Underground brines are extracted by driving wells through which they are pumped to the surface. Rock Ealt is mined just like any other mineral. When brought to the surface it is either dumped in large lumps or put through a "breaker," or series of crushers, toothed rolls and screens, for breaking up the lumps.
It sometimes happens that rock salt is in such a formation that the ordinary mining methods are ineffective. In this case well is bored down to the salt deposit in the same manner as an oil well. It is customary to case the well with a pipe; inside of this is put a second tubing, which usually extends to a lower depth than the outer pipe. Water is forced down between the outer and inner tubing. The water at the bottom dissolves the salt, and the sofution is forced up through the inner tube. It is also possible to bore several wells, the water being forced down one and the brine up the other. The coarser grades of salt are produced by allowing the water to evaporate ly the sun's heat, but for the better

## Indenterter

preden ertinceal boet ot a wry high temperaters 6 mecmery. A tankis is about twanty to twoatyfour foet wide, one hundrod foet long, hand ten to twolve taches deep. The tanks reet on botck asches and the beat lo aupplied from fraten set at one end of the tank and somewhat underneath It. Intead of uing gratem, hot water of steem plpee ars often rum under the tank. In another procem the brive is poured into large kettles having a capacity of 120 gellons.
Small quantities of salt in the form of bripe spriage oceur in northera Alberta ond near Suscex, Kiag's county, New Brunswick. Prectically all the malt for commercial use, however, comen from Ontario, in Middlesex, Huron, Bruce and Iambtom suntioc. The evaporating process is the caly one used; in the United Statee, whowe annual output is about $4,000,000$ toms, moat of the malt is mined. The beds are at depthe varying from 200 to 2,700 feet; New York and Michlana lead, theugh large quantities are now ovaporated from the Great Salt Lake in Utah. Canede's output of ealt is over 80,000 tons, valued at $\$ 400,000$. In addition to the domentic output, all of which is consumed In Canade, the imports of ealt amount to 130,000 tona, at as average value of 85 a tor.
Outline for ittady. The following outline may be found of value in the further study of salt and the salt industry:

1. Sources
(1) Salt water
(2) Brine springs
(3) Rock salt
II. Production

## mancedes

(1) Mathode
(a) Evaporation of esa wain
(b) Boring wolls
(c) Mlning
(Q) Chide producers

1II. Uspa
(1) Seeconiag and presarving
(2) For chemieals
(a) Soda
(b) Chloriop
(3) Miscellancous
(a) Glaalag pottery
(b) Herdeniag soap
(c) Making dians elearer
(d) Pertilion

## Quoutions on sals

What is salt?
What procese rauses the formation of ach deposits?

Where is most of the salt extructed from on water produced? What is it generally called?
What are the proceses of drying? By which process is the best ealt produced?
From what cource is most calt produced?
Where in the United Staten is ru's valt found? Where underground springs of vells? Which in the leading malt-producing statel

For what has calt beels used since the cartient times?

Of what chemi ' 3 is it the chief source? What are some c. .eer uses for salt?
Where is ealt produced in Canada?
What is the chemical name for salt?
Is calt unknown anywhere in the word?

## Dairy Products

The Dairying Induatry. Although butter and cheese are mentioned among the early exports from the North An.crican colonies, dairying as a special branch of agriculture did not appear to a considerable extent till well along in the nineteenth century. Its history as an industry, therefore, is identified with the general industrial progress of United Slatis and Canada in the last century. The rapid growth of cities and the enormous development of transportation facilities have exerted a great influence on the progress of this industry. As the growth of the cities has increased the dependence of millions of inhabitants on the farmer for food, the demand for dairy produce has greatly increased, while the improved means of transportation have made possible the delivery of the produce to
the cities at a profit to the farmers. The genen changes in the character of industry have thu lod many to adopt duiry farming as a specientry instead of following it incidentally.

In the early part of the nineteenth century the methods and utensils used in dairying wer very crude. Winter dairying was unknown. The cows generally calved in the spring, going dry in the fall or early winter, and often, throush lack of proper care, dying of starvation of exposure. In some sections the milk wis at in pans for the cream to rise, and in others all the milk was churned, a method still used in some sections of the southern states, where butter is made every day.

Early Oneoso-Mating. In Herkimee contrty, New York, the making of cheese was be

## thdastrios

## tedestrios

 hamoun for to produce, an Now Yook is oxill the keding dairy strate of te Unlos. Ranked mooding to the number of dairy eown, the moet important atatee ary Now York, Iowa, Illinoif, Wironain, Pennaylvania. In Reneral it may be wid that in the North Atlantic atateo dalirying th tho primipal source of income of a large proportion of the farmers who own cown; the Central Wert hee more dairy cows, but they are kept as ridental to the mose general cattio indurtry, of to other branches of asriculturs. The total production of milk in the United Staten is about $8,000,000,000$ galloas per your, an average of 424 cullons per com.
Dariging in Oaseda. Dairying was naturally one of the first brapches of agriculture practiced by the caly colot ita. We know that the farmers d Nova Scotis and New Brenswick were famous lor the excellence of their dairy products. As entiker apreed weutward, the dalrying industry kept pece. As early ac 1852 cows wero kept mumendully at Fort Simpson. At Fort Good Hope, Just outaide the Aretic Circle, also at York Fuctory and Churchill, cows have been kept for many years.
There are about $3,000,000$ dairy cows in the Dowinion. Ontario lends with $1,240,000$, folbowed by Quebee with 875,000 and Manitobs with about 160,000 . Taking the average of miik per cor as 400 gallons, the production for Canada in about $1,200,000,000$ gallons. The fact that a coasiderable percentage of milk and its products is consumed on the iarms makes accurate records imposible, but a conservative estimate places the annual value of darry products at $\$ 100,000,000$, an increase of over 60 per cent in ten years. Most of the dairy products are for home consumption, but over $\$ 20,000,000$ worth of cheese is exported each year, all but one per cent being sold to Grat Britain.
Perhaps the most noteworthy feature in recent years has been the development of the factory system. It has been the means of introducing better systems of dairying and butter-making among farmers who art unable to send milk to thetories, and this has greatly increased the avernge value of dairy products in the last thirty years. The census of 1911 shows that there are 2,028 lectories in operation. The quantity of butter made in the year was $59,875,097$ pounds, having a value of $\$ 15,682,564$; this is $23,818,358$ pounds more than in 1901. The quantity of chese Wha $231,012,708$ pounds, a slight increase over 1901, but with a iower value. The number
of condeased mill fectorios facrused from fous Is 1001 to twalve in 2011, and the value of the product from feco, 820 to $81,830,871$. There aro usp dix fectories in Ontario, two esech in Nova Scotia and Quebec, and one each in Britiah Columbla and Prince Edwand Illand. The fot lowing table summarises the factory production of dairy products, secording to the coasues of 1011:
$\begin{array}{llll}\text { Provinces } & \text { Butter Cheew Cond.Mint } \\ \text { Alberts..... } & 833,428: 23,473: & \ldots . . \\ \text { British }\end{array}$
Columbla. . 420,083 Manitobe.. $\quad 811,072$

$\begin{array}{lrrr}\text { Nova Scotia } & 88,481 & 20,077 & 133 \ldots 00 \\ \text { Ontario..... } & 3,482,171 & 14,845,661 & 1,335,089\end{array}$
Prince Edwand
Irland..... 156,478 354,378 80,900 $\begin{array}{rrrr}\text { Quebec....... } & 0,895,343 & 034,378 & 80,800 \\ \text { 8ackntchewan } & 381,809 & 3,152,89 & 278,000\end{array}$

Total.... $015,082,064821,620,68431,830,871$
Oretine for lindy. The subject of dairying includes too many details to be treated here except in mere outline, but it is a subject which will repay further anvestigation along any linen in which the atudent is inverented. The foiliow. ing outlina and questions may be of value in beiping the reader to grapp the subject:

## Outline on Dairy Product: <br> 1. Mile

(1) Description
(2) Composition
(a) Water
(b) Casein
(c) Sugar
(d) Fat
(e) Salt
(3) Usis
(a) Food
(b) Basis for butter, etc.
II. Butter
(1) Manufacture
(2) Packing and shipping
(3) Uses
III. Chezse
IV. Br-Products
(1) Oleomargarine
(2) Butterine
(a) How made?
(b) Legal restrictions
(c) Tax
(3) Condensed milk

## Questions os Dairying

What wort in performed by the reparator?
What is a creamery? Generilly located where? Name the different kinds of cheese. What foreign country is noted for its checos?
What causes mill to sour? Give uees of sour milk. What is whey?

## Irduriader

How is milk regarded as a diet?
How is it powible for mill to be the means of spreading disease? What are some of the sules for the taking care of milk?
Name some of the dishes prepared in cooting whose foundation is milk or cream.
How can milk bo adulterated?

## Tea and Coffee

Source of Anpply. Two articles in commnn use, but not produced in the United Btates or Canada, are tea and cofiee. While the features of their production are interesting and worth knowing, the articles on Tea and Coffer in Tar New Practical Refirince Library make it unnecesanry to repeat any of the facts already stated. Our concern is with the industry as it affects the United States and Canada; the former, especially, has a large trade in these commodities. The simplest way to secure an accurate iden of the extent of the trade is to glance at the figures for the sources of supply und consumption of coffee in the leading countrics. It will be noted from the figures given that Brazil produces nearly all the coffee in the world.


The World's Largest Consumar of Oollco. The United States is by far the largest consumer of coffer; its annual consumption is two and a half times that of Germany, the next important consumer, and more than three times that of France. None of the other nations of the world, except Austria, Belgium and The Netherlands, are of importance. Canada uses only 700,000 pounds per year. A great deal of coffee is consumed by the natives of coffee-growing countries, but this is a cheap quality, generally mixed with other matter, and is not considered in estimates of supply and consumption.

## Consumption or Liading Countries

Pounds

| United Ste | 833,066,000 |
| :---: | :---: |
| Germany | 375,883,000 |
| France. | 245,964,090 |
| Austria-Hun | 131,340,000 |
| Sweden | 91,868,000 |

Netherlandi. . . . . . . . . . . . . . . . . . . . . . $90,603,000$
Belyium................................ 81,864,000
Italy.
51,632,000
Great Britain.
29,105,000
Other countries.
.088,797,000
Total.
2,920,212,000
Tos. Like coffee, tea is used extensively in the countries where grown. Unfortunately, there is no way of determining the quantities thus consumed; the only available figures are for exports and imports. The following figures shon the exports of the chicf tea-producing countries of the world:

| British | ,301,000 pounds |
| :---: | :---: |
|  | 208,133,000 pounds |
| Ceylon | 102,887,000 pounds |
| Japan. | 43,489,000 pounds |
|  | 33,517,000 pounds |
|  | 23,285,000 pounds |

Iargent Consumer of Tea. England consumes about twice as much tea as any other nation. In 1910 almost $287,000,000$ pounds of teen were consumed in England, an average d 6.30 pounds for each man, woman, or child. Russia used $147,000,000$, an a verage of only ninetenths of a pound. The United States used 99,367,000 , an average of 1.06 . Canada, although it used only $34,000,000$ pounds, had the high average consumption of 4.34. About one-hall of the tea imported into North Amcrica comes from Japan, one-fourth from China, and the remainder from the minor tea-producing countries.
Eow Businoss is Bandlod. The business d handling tea and coffee, because of the delailed knowledge required, has gradually grown apart from the general trade in foodstuffs. Most d the importers are commission men, but many $d$ the larger firms own their own plantations and handle only special brands of product. As ten and more especially coffee, are casily adulterned before they reach the consumer, the importane of a reputation and good name is clear. Each firm, as a rule, has certain standard grades whidd are sold regularly. If any purchaser wishes a special mixture it is easy enough to accommodatu


## Indeutrien

 ＊＊will directly to the consumer；the 7pe loret sold to the retailer，who sells teas At＇s afolor the importer＇s brand．The use ratyes has helped to do away with by dishonest retail dealers；the $\because .+$ f．w：that he is getting the original sit whas reveivel from the importer．

## Oatline on Coflee

## L．WT

## －cacteristics

Height
जize and appearance
vatrest

حrace
－＂dor
－＂wanes

－1） 4 品
－＋6，
$\because$
＇rava
4ip
－＂isar
？ $14=$

## $\therefore$ as＊randirions <br>  <br> ＝暴标 <br> －mion Inerica <br> 1． 1．．．Inlinz <br> （I）ATH

## Ooffee

mffer tree？How the pluin tree？
－wibler of prounds of 10，
I Crry before being

Describe the leaves，the linasouns，the fruit． How are the therrics gatherril？How drand How is the husk remuverl：How in anflee gationd for shipment：

Of what countries is it a ： 1 ：ave？
Where does the beat arfice court from and what is it called？

What country suppilics thombinivy of sid tha． coffec userd？
From what country deres ibe Cimesd Stutry get most of its coffer？Ihes Canada riceive ats supply from the same source？

## Outline on Tea

I．Tue Plant
（1）Height
（2）Leaves
（a）Color
（b）Size
（3）Flowirs
（a）Frugrance
（b）Shape
（c）Colur
11．Cinitivation
（1）Where
（a）China
（b）Japan
（c）British India
（d）Other countries
（2）Methot
（a）Three crops yearly
（b）Harvesting leavers
（1）Iricking
（2）Irviug
（3）Rolling
（1）Packing
III．（curmemen
（1）Nitmgenod utmances
（2）Theine
（3）Tanmin
（4）Cother sulsumers
IV．Kivos of Tea
（1）Breen
（2）Black
（3）Chapip grades

（1）（ircue Britain
（2）Kussin
（3）Inited Siates
（1）Cruada
（5）rificr manetries
V1．Val＇e as fimi．
Questicns on Tea
Why is the shruh under cultivation made to branch freely？


Him. Prectically noae of the importers or wholemers ever sell directly to the connumer; the goods are firct cold to the retailer, who sells tean and coffes under the inpporter's brand. The use a mall pactages has holpod to do awny with adulteration by distonett retail dealers; the purcheser knows that be is getting the original package, just as it was received from the importer.

## Ontite on Coltoe

1. The Plant
(1) Ctarracteristica
(a) Height
(b) Size and appearance
(2) Leaves
(a) Surface
(b) Colur
(3) Blossoms
(a) Fragrance
(b) Color
(c) Shape
(4) Fruit
(a) Bean
(1) Sise
(2) Color
(3) Cells
II. Cultivation
(1) Necessary conditions
(2) Where grown
(a) Brazil
(b) Central America
(c) Mexico
(d) West Indies
(e) Ceylon
(i) Java
III. Consumptron
(1) United States
(2) Canada
(3) Germany
(4) France
(5) Austria
(6) Other countries
IV. Conditions of Growti
(a) Heat
(b) Shade
(c) Moisture
V. Food Value
(1) Stimulant

## 

What is the height of the cofiee tree? How Would it compare in size with the plum tree?
What is the average number of pounds of coffee per tree from each crop?
What is the color of the berry before being

## Induatiden

Deacribe the leaves, the blomomes, the fruit.
How are the berriec gathered? How drieds How is the huck removed? How is coffee packed for shipment?

Of what countries is it a native?
Where does the best coffice come from and what is it called?
What country supplies two-thirds of all the coffee used?
From what country doce the United States get most of its coffice? Does Canade receive its supply from the same source?

## Ontiline on Toa

I. The Prant
(1) Height
(2) Leaves
(a) Color
(b) Sixe
(3) Flowers
(a) Fragrance
(b) Shape
(c) Color
II. Culitivation
(1) Where
(a) China
(b) Japan
(c) British India
(d) Other countries
(2) Method
(a) Three crops jearly
(b) Harvesting leaves
(1) Picking
(2) Drying
(3) Rolling
(4) Packing
III. Composition
(1) Nitrogenous substances
(2) Theine
(3) Tannin
(4) Other substances
IV. Kinds or Tra
(1) Green
(2) Black
(3) Cheap grades
V. Consumpton
(1) Great Britain
(2) Russia
(3) United States
(4) Canada
(5) Other countries
V. Valee as Food

Questions on Tom
Why is the shrub under cultivation made to branch freely?

## Industries

What part of the ahrub is of commercial ralue?
How are green and black teas prepured?
Which of the annual harventa yields the bent grade?
May all grades and varieties of teas be prepared from the smme plant?

Examine a tee leaf after steeping and compare it with those in the plate shown. Examine a
number alter steeping and compare them in size with each other.

Look at the color plate and point out the perte of the plant.

What is the effect of excesaive tea drinking? Is it beneficial in mild quantities? Why? is it a stimulant?

In what countries is ten chiefly cultivated?

## Cacao

An Ineroasing Trede. It is not necessary to repeat the description of the cacao tree; this will be found in its alphabetical order in these volumes. A few interesting facts in regard to the trade and manufacture of the commercial cacao, or "cocoa," will be of value. The following figures will give some idea of the increase in the production of the article:


Total. ......... 218,500 141,374 105,723
By 1911 the world's production of cacao had increased to nearly 240,000 long tons.

Practically all civilized nations use cacao in increasing quantities. The figures for the world's consumption for 1805 are as follows:

19051910

|  | (Long toma) | (Long tons) |
| :---: | :---: | :---: |
| United States. | 34,958 | 50,420 |
| Germany. | 29,683 | 44,033 |
| France. | 21,748 | 25,110 |
| Great Britain | 21,106 | 24,100 |
| Holland. | 19,295 | 19,230 |
| Spain. | 6,102 | 5,530 |
| Switzerland | 5,218 | 9,108 |
| Belgium. | 3,019 | 4,800 |
| Austria-Hungary | 2,668 | 4,972 |
| Canada ....... |  | 2,230 |
| Other Countries.. | 4,988 | 13,850 |
| Total. | 148,665 | 203,383 |

How Manufactured. In the manufacture of cocoo and chocolate the beans are cleaned and sorted to remove foreign bodies of all kinds and are also graded into sizes to secure uniformity in roasting. The roasting is done in rotating iron drums in which the beans are heated to a temperature of $260^{\circ}$ to $280^{\circ} \mathrm{F}$.; the result is the peculiar aroma and the elimination of the bitter elements. The beans are dry and thcir shells are crisp. The beans are next crushed, the light shells removed and the beans left in the form of "cocoa-nibs" or kernels, occasionally
seen in the shops. Cocoa-nibs may be prepared with hot water, in the same way that coffee or tea is, but for most people this beverage is 500 rich. The fat is usually extracted from the beans, which are then ground to a fine powder. It is then ready for use in the ordinary way.
In the preparation of chocolate the preliminary processes are followed as for cocoa, except that the fat is not extracted. Sugar and sometimes other materials are added to the ground paste, together with vanilla or other suitable flavoring materials. The final result is a semi-liquid fuid which is moulded into the familiar tablets or other forms in which chocolate comes on the market.

## Ontline

## I. Description

(1) Tree
(2) Fruit
(a) Pod
(b) Seeds
II. Production
(1) Tropical America
(2) West Africa
(3) Other countries
III. Products
(1) Cocoa
(2) Chocolate
(3) Cocoa Butter
IV. Conscmption of Products

Questions on Cacao
Which are the principal cacno-producing countries? The principal cacaoconsuming countries?

By what process is the commercial chooolate made? Cocoa?

Where are these articles used largely as a beverage?

What is the commercial importance $d$ each?

What per cent of fat do the seeds contain?
What element does chocolate contain that is lacking in cocoa?

Among she Worid's Greatest Orops. A fruit of much greater importance than any other is the apple. It is one of the most widely cultivated and appreciated of fruits belonging to temperate climates. The apple is more succafluly cultivated in higher latitudes than any other tree; good crops have been obtained in Norway and other countries as far north as 65 deprees north. The blossoms are very susceptible to injury from frost, but they appear much liter than peach or apricot blossoms and so avoid the night frost which would be fatal to truit bearing. Besides Europe and North America the apple is now extensively cultivated in South Africa, Northern India and China, Australia and New Zealand. North America is the lending applegrowing region of the world. Apples are raised for commercial purposes from Nova Scotia to Virginia and from New Englund to British Columbia. In recent years there has been a remarkable development in the apple industry of Idaho, Montana, and other mestern states. The apples of this section are noted for their fine color and great size. It is true in general that the apples of the cold northern climates are smaller and harder than those of the hot summer climates of Canada and the Linited States.
The Principal Oanadian Fruit. The apple is unquestionably the chief fruit product of the C'inted States and it is gradually attaining the same position in Canada. In 1871 the apple crop in Canada amounted to $6,000,000$ bushels; in 1911 it was over $20,000,000$, about eight per cent of the total being exported. Though the British Columbia crop is rapidly increasing, its annual value is by no means equal to that of Ontario. The Fraser Valley, the ColumbiaKootenay district and the Okanagan Valley are epecially famous for fine apples. In Alberta epples are raised in considerable quantities in the district south of Edmonton. Apple-raising in Manitoba is not yet a distinct industry, though many varieties of crab-apple are cultivated. Ontario has about $11,500,000$ apple tees which yield a crop worth over $\$ 16,000,000$; the province produces from $30,000,000$ to $35,000,000$ bushels each year, over half the apple app of the Dominion. A considerable part of Ontario's crop is sent to the western provinces. These western shipments, which include some of the best fruit, total nearly $1,000,000$ bushels - year. For many years Quebec and Nova

Scotia each produced ahout ten per cent of the total for Canada, but since the great development of fruit raising in British Columbia their relative importance is slightly less. The bulk of the Ontario crop is sold within the province; at the same time the province exports more apples to Great Britain than any other state or province in North America. In 1911 Great Britain bought over $\$ 4,000,000$ worth of apples from Canada, in addition to large amounts from France, Belgium and Holland. The greater part of the Canadian output finds a ready market at home; but a constantly growing fraction is exported, mainly to Liverpool, London and Glasgow. It seems that the Mediterranean countries may also be counted as future markets for Canadian apples. The growing use of apples at home, and the expanding markets abroad both for fresh and dried apples, indicate that the future will make the apple crop even more valuable than it is to-day. In the United States the predominance of this fruit is marked; fifty-five per cent of all the orchard trees and eighty-two per cent of the bushels of fruit are apple. About one hundred varieties are commonly raised in the United States; Baldwins, Bishop Pippins, Golden Russets, Stark and Northern Spy are among the important varieties in Canada, and many other kinds are successfully raised.

## Rasentials to successful Growth. Good

 cultivation is an important part of orchard management. Two crops can seldom be profitably grown on the same soil at the same time; the orchard should not be used as pasture or as regular farm land. Another essentiel of good management is pruning. This must be modified to suit the variety, the locality, and the purpose for which the tree is grown. In general, a low head, wide-spreading branches evenly ranged about the trunk at different heights are desirable. Most apples in the market to-day are so-called "winter apples," which are allowed to remain on the trees as long as possible without being frozen. Fruits so treated are usually better flavored and colored than those picked early in the season, and experiments show that they are better for preservation in cold storage, as they are more likely to keep their fiavor.suggested Outline. The outline on the next page is suggested to help in further study. The items of interest on pages 293 to 311 should a'so be consulted.

## Indeataios

## Ontlise on the Appio

1. Decration
(1) Tree
(a) Shape
(b) Branchow
(c) Laves
(d) Blomem
(B) Fruit
(a) With core and reeds
(1) Shape
(2) Color and texturs of akin
(3) Pulp
(4) Cose and seeds
(b) Seedlem
(1) Color
(2) Fiavo
(3) Sise
II. Whire Growr
(1) North America
(2) Europe
(3) South Africa
(4) India and China
(5) Australim
III. Usis
(1) Food
(a) Raw
(b) Cooked
(c) Dried and canned
(2) Feed for animals
(3) Cider and vinegar
IV. Harvesting
(1) Picking
(2) Packing
(3) Shipping
V. Wabte

## Indestrion

## (1) Ontre

(a) From disease
(b) From neglect
(2) After pecking

## VI. Manketwa

## Geostions on the Apple

To what family doen the apple tree belocit Of what continent is it a native?
What continent now leads in its production?
How many barreis will one tree yield in a cencon, under favorable conditions?
From what two apecies have all varieites bow derived?

How many cultivated varieties of apples an known?
How many cultivated varieties are grown in the United States? In Canada?

How many of these are profitable?
Do the seeds produce the fruit from whidh they are taken?

How is vinegar made from apples?
How are orchand trees prepared?
What is grafting?
Why is clover sown in an orchard to insure a good crop?

Who has succeeded in growing the secdlew and coreless variety of apples?
What is peculiar about the ukin of these apple!
Why is the blossomless tree an important feature of this variety?
What danger is removed by the lack of the flower?
What are the indications that the secdlem apple will in time displace all the old mont bearing varieties?

## Peaches

An Important Orop. The peach is second only to the apple as an orchard fruit. It has a wider range for possible growth than the apple, and some varieties succeed equally as well in the north as in the south. According to the latest available figures Ontario, with over 700,000 bushels, is far in the lead as a producer, but the production in British Columbia is rapidly increasing. The district bordering on Lake Erie and Lake Ontario, because of its low altitude and the influence of the lakes, produces large quantities of fruits and is generally known as the peach belt. The same condition exists to-day in the peach-growing as in many of the applegrowing districts: large numbers of trees have been planted but have not yet reached the age at
which they bear large crops. Such sections as the Otanagan and Kamloops districts of Britid Columbia are bound to become incrensindy large producers of fruit of all kinds.

Kinds of Puschos. Peaches are populaty divided into clingstone and freestone, but there two classes gradually merge into each other in the different varieties, and even the anme variety may be clingstone or freestone in dib. ferent seasons. There are nearly three hundrad varieties of peaches grown in North Amana, which may be roughly grouped as follons: (1) Peen-to, a flat, medium sized, greenish vitite early peach, suitable for commercial cuiture ond in the hot Gulf states; (2) South Chim, 1 rather amall, oval fruit; (3) Spanish or India,

## Indestrios

a lete peach, neerry alvays jullow, with a hairy dia; (4) North Chine, a iarge, oval truit; (5) The Perilan, which lincludes the sreat majarity ollarge, yellow or white fleabed varietien prown in the more northom latituden. In addition, there are certain amooth okinned peaches ealled "necturines," which are really variations but may be cultivated like other varieties of the peach.
In America peaches are grown is orchards tive apples, but in Europe they are usually trained againat walls or other protection and aten kept under glasa.
InT Ralsed. Peaches are raised from seed, which is usually covered with moist and in the fall and left expowed to freewing and thawing, which sottens and cracks the pits. In apring the pits are planted aix to cight inches apart in rows wide enough to allow cultivation with horsen. In Ausust or September the seedlings are budded (see Grafting, subhead Budding) rith the desired varieties, since the peach does sot, es a rule, reproduce true to seed. In warmer dimates the buddinr may be done earlier in the ummer. In the ..urth, trees budded one fall are allowed to grow the following season before transplanting to the permanent orchard. Peaches thrive best on light, eandy, gravelly soil, though hrger trees will grow if heavier soils are used. High or roling lands are desirable to insure good soil and air drainage, for the peach must be planted in protected localities free from late spring frosts. Occasionally the trees are thoroughly whitewashed in the fall or winter, because this has a tendency to delay blossoming; planting on a northern slope will sometimes have a similur tendency. In the permanent orchard the trees are set about twenty feet apart each way, though they may be set fifteen feet apart if carcula attention is given to pruning and fertilizing. The peach is not a long-lived tree, even under the most favorable conditions, seldom lining more than thirty years. The life of a commencial orchard is from seven to nine years; new trees should be added at various times as
the old ones die out.

## Induatries

In harvesting, the frults are gathered whem full prown and well colored, but before they bejia to soften. Then they are graded according to silse and marketed in various stase of bankets
of boxes.

## Outline on the Pocech

## I. Demenimon

(1) Tree
(a) Sizo
(b) Shape
(2) Leaves
(3) Bloneoms
(4) Fruit
(a) Characteristics
(b) Kinds
(c) Shape
(d) Flavor
(e) Size
II. Where Rained
(1) North America
(2) Europe
(3) Asia
III. Harvesting
(1) Picking
(2) Packing
(3) Shipping
IV. Peach Disenses
V. Uses
(1) Food
(a) Raw
(b) Cooked
(c) Dried
(d) Canned

## Questions on the Posch

To what fruits is the peach allied?
In what country is it most extensively cultivated?
What kind of climate does it need? What kind of soil?

Into what classes may peaches be divided?
What is meant by "budding"?
What is the average life of a peach tree?
What is an average peach crop per tree?
What is the chief cause of a smaller crop?

## Forestry and Lumbering

## Poreatry

4 Torest's Usefulness. In a general way it may be said that forests are of direet and indirect nlue: direct, through the produce which they jedd; indirect, through the influence which they ererise on climate, the amount of moisture,
quality of the soil, healthiness and beauty of the country. Let us first consider the indirect usefulness. It is clear that a piece of land without vegetation is exposed to the full effect of the sun, rain, snow, and wind. If, on the other hand, the land is covered with a growth of plants and

Industries
Tesestry fa Amorica. The conditions unde which formotry is practiond in Europe and in Amarica are so dififereat that lt seems beat loe our purpoen to study oaly conditions in the United States and Caneda. A rule that is as axiom in England might be ueclems in the Unitad States. Among the fectors to be noted ane the highly developed and specialised methods of lumbering in America, the better facilities $\alpha$ transportation, the vast number of amall hoit iags of forent land, and the enormous supply of low-grade wood. In a word, though the opportunities are great, American foresta are not yet atandardised. High taxes on forest propertion, and above all, the customs of the lumbering business, are of great Importance. Methods od forest management, to be of practical value and find ready acceptance, must conform as closily as possible to existing methods of lumbering. The introduction of aystem anywhere, in any industry, is is work of years of lobor, not of a few moments' thought. 'The problems of forestry must be applied to sctual conditions.

It would almost seem as if the white rece had begun wrong on this continent. Needing ceared land for agriculture we started in the woods, and now that we need woods we atart on the clensd land. The early settlers, coming f:om Europe. had practiced forest conservation at home, but In the New World the destruction of forestso 0 the const was at first a necessity and later : habit. In the southern portions of the provinem of Manitoba, Seskatchewan and Alberta and in the Peace River Valley, is a praj 'e country which is absolutely treeless, except for amall clumps of timber in the large river beds and on a few isolated hills. This treeless area is abont 200,000 square miles. Practically the whole remainder of the country was covered with timber when the earliestsettiers landed at Quebec. In the maritime provinces and as far west as Manit tobe was a great atand of pine; Ontario and Quebec had large bodies of hardwoods; from Nova Scotia to the Yukon was the great spruee belt; and on the Pacific coast was a coniferous forest containing the greatest amount of timber per acre of any forest lands in Canada. Accorth ing to the Dominion Census about 110,000 square miles of land, of which only 20,000 are prairie, are now occupied, and about 100,000 square miles in addition have been cleared by lumbermen. The original timber area of Cancli was about $1,000,000$ square miles; of this spprosimately 200,000 have been cleared for ectionat and lumber. The report of the Commissian d

## Indastrion

Coservation extimates that the sectual stand of tumber to-div in 2,000 billion feet lew than it dould be if no other causen were operating for dontriction. This difference is due to forent iim. It ly a quantity almost beyoud compresbenion; it is over 400 times as much as is yearily cut in Canada; it is fifty times es much as the combined yearly cut of the North American contineot aorth of Mexica. It means that for every foot of timber evers cut by luenbermen in Cabradh, at leant moven feet have bevo doctroyed by
fre.
Topest Rosorves. Thus the great problem which bas faced the government has been the pevention of forest firce. In common with mont European countrios and in contrast to the United states, Canada is fortunate in that practically the entire forent area is owned by the Dominion of provincial sovernments. This has greatly simplified the problem of controi, yet in providing I modies little more than a begianing has beea made. To prevent undue destruction of the forests, either by fire or by lumbering, is the meenn for cresting forest reserves. The reader should understand that timber may be cut under mertin restrictions, but no settlements may be made on the reserves. The first Dominion reserve was the Rocky Mountain Park, established in 1887. Since that date there have been twenty eight edditions to the reserves, making $a$ total of over $16,000,000$ acres. In 1911 an ant of Parlimment provided for the formation d a new Rocky Mountain Forest Reserve, including the old Rocky Mountain Park, Jasper, Park and Kootenay Lakes reserves. This new antional forest has a total area of $11,656,000$ anes. The Dominion reserves are all in the western provinces, as follows:

| British Columbia. |  |
| :---: | :---: |
| Manitoba ... | 1,356,760 acres |
| Suskatchewan. | . ${ }^{\text {2,294,240 }}$ |
| Alberta. | $\begin{array}{r} 699,641 \\ .11,881,280 \end{array}$ |
| Total. |  |

In addition to this area the provinces have merves or parks over 200,000 square miles in extent; Quebec leads with 174,000 square miles, Ontario has 17,860, and New Brunswick 10,000 . All timber land in Nova Scotia is subject to goverament montrol.
The Porestry Branch. The formation of reseves was the first step in advance. The moond step was the establishment of the forestry

The admiaistration of the reserves is in the hands of a commineioner, who realdes at Edmonton, and reports directly to the auperintendent of forestry at Otiawa. Under the commalaioner are the fire rangers and guands who setually cover the teritory. In 1010 thers were about 800 fires on Dominion lands and probably 1,000 more on other lands. To prevent the apread of fires, and so far as poosible, prevent their origin, is the principal buainem of the sangers. They patrol their districts, mark timber, enforec the regulations and conduct the minor bualnew arising from the use of the foresta. In addition to the permanent foresters, the superintendents of the various parks are fire wardena and additional men are employed during the dry season. That the number and extent of fires is decrensing is a tribute to the efficiency of the regulations which have been adopted, but it is an even higher tribute to the character and ability of the handful of men who administer them.
The comperation of the government with private owners will result in the eventual solution of the second great problem in forestrythe planting of areas which are now comparatively or abrolutely treeless. The securing of natural reproduction of a lorest depends on the method of removal of the full-grown trees. The forestry branch aims to regulato the cutting of timber on forest reseves so that the conditions shall lead to the plentiful reproduction of the most valuable species. On burned-over land the foresters plan to secure the best results by using proper scientific methods. But the forestry branch aims not only to prevent undue destruction, not only to replace destroyed forests, but actually to create new timber areas. It is here that co-operation with private owners is most obvious, for the government supplies trees free of charge and tells the farmer how to take care of them. (Send for Bulletin No. 1, Tree Planting on the Prairies, Forestry Branch, Department of the Interior, Ottawa.) Large nurseries have been established in various parts of the country, and young trees are distributed to settlers. The value of trees for shade, for conserving the water supply, and as windbreaks, is clear. In parts of Manitoba various coniferous trees are being planted as windbreaks for fruit orchards, apparently with excellent results. Quick-growing trees, such as cottonwood, are frequently cut for fuel. There is no space in a general article to mention the kinds of trees used, the conditions under which planting should take place, the care of the young
powth and the many othop nexcomary detaile. going thes of the extont of the curvire which the goveraternt is readerias to lts clisems may be gined from the fect that in 1010 over 8,000 appllication for esees wre reedived and 2,533,000 trow wee distributed. The importance of this movernent in the prairio soctions for its ultimate menuesce os problems of water mupply and agrib cultures, quite alde from any humber value of the toves, ens hardly be overoctimated.

## Inmborins

Irember Froluctay Countrios. The priselpel lumber produciag countries of the world are the United Bretem, Caneda, Ruada, Emeden, Germany and Prasce, but come tropical weetion furish manay boourtiful varieties of timber, ouch as anchogany, ebony and rowewood, which are ehiely used in furniture maklag. Rumia and Swoden are the only important European exportera of lumber; moot of the other nationa, apecially Grant Britain and Germany, Import larese quantities, oe produce jurt enough for thetr own us. With the increasing demands for lumber there has been a correspondirs incrense in the varieties of wood available for induatrial pusposes. Subotitutes have beed found for many varietiec formerly in use; and such subatitutes have often proved better than the rarietics they displaced. Distant countries are now beins drawn upen to fill the supply, so that woods suited for particular purposes have thus been obtained.

Dividons of the Induatry. According to the reports of best authorities the lumber industry is divided into three brunches, as follows: "(1) The logging industry, including the felling of timber, cutting it into lengths, and transporting it by rail or by river to the mill. This industry is carried on in part by individuals, who own or operate the sawmills. The raw material of this industry consists of standing timber; the finished product consints of logs delivered at the mill. (2) The marmill industry, in which the raw material consists of saw-logs, and the product of rough lumber, including beams, joista, scantlings, boards, shingles and laths. (3) The planing mill industry, in which the raw material consists of roughl lumber, and the finished product of planed, with such minor manufactures sa are carried on in connection with these mills, Some of the planing mills are operated in connection with sawmille, while others are under separate ownerthip and management." The details of the operations are carefully explained in the article
on Lumbering, In Volume III; our panat interent is only in the mela fentures of in Induatry.
Wo shall confine our attention to lumberiag h the United States and Canmila, not no mand becaume it bo typieal of lumbering in other cowtrien as because it showe eertain standardo af organization and dovelopment of the une al mechimery. All the operations of the lumber trade in thewe two countries are influemod by the peculiar unit of meanure which has been adoped. This unit is the board-foot. It ls enenerly defined as a bourd one foot long, one foot milb, and one inch thiek, but in practice it ls equirt lent to one hundred forty-four cubic linties al mesoufactured lumber in any form To purciom loge by chis meavire, one murt know how mad one inch timber each los will yield. For thin purpose a scale or table la used, which gives the number of board feet of logs of various kenghim and diameters. Under this aystem the buyw pays for nothing but the salable lumber in end log, wlthout any expense for the waste in indim and sawdust.

In parts of the United States, especinlly in northenotern and lake states, and also in Cemech lumbering was once only a winter industry, bue generally it is now carried on the year aroumd Rivendriving, that is, floating the logs dom stream to the mille, is atill practied whereve posaible, but as the timber supply near the iven is being exhausted, other means of transportaion have been used. The loga are sometimes carind out of the wreds ty teanis over temporary he roeds. In the mouncuin forests eurmous bach are drawn on aleighs by single pairs of horsothe roads are previously flooded and frozen, in that the surface is icy. In the south and west temporary railronds are sometimes built into the forests to transport the logs. In the far machinery is used to a far greater extent the in the east on account of the great size of the timber. Donkey engires and traction engion are used in the woods for handling logs and for dragging logsover roads to the rail way. For loct ing logs on the cars cranes are commonly ued.

The lumber industry of Canada may be roughly divided into three great sections:
(1) The southern forests, including moot d southern Ontario, the St. Lawrence Valley ofl the maritime provinces. The principal tread this region are maple, beech, ash, birch, pine, apruce and cedar.
(2) The northern forests, which reach nown the continent from the Gulf of St. Lawrope ib

## redrotitios

the Recky Mountalan. The coutherm atrip as towe on the chart le deamoly wooded, apruce, pim, tumarict and poplas bolag the moot
the Douglan Ats is gredually inerresing for value. $169,000,000$ boand leet of Dougles fit wove eut in 1000; in 1910 the totel was $717,478,000$.


DIVELONA OF TRE FOODED AREAS OF CANADA
vluable trees. North of this atrip is another, known as the nod denoly wooded, including such hendy varieties as apruce, larch and canoe-birch. (3) The western or Cordilleran foresta, which extend from the Rocky Mountains to the Pacific Ocen. The common trees in this region are Dongles fir, cedar, blark pine and white apruce.

The following diagram illustrates graphically the lumber production by species, mecording to the Intest reports of the forentry branch.
This chart ahows that the leading timber products are soltwoods. Larch and balsam together, as a matter of fact, are worth more than all the hardwoods. In the United States

lumber production of canada by specties

Lumber Cut. For many years white pine was the mott important sourse of the timber supply, but epruce since 1908 is far in the lead. With the growth in lumbering in British Columbia,
softwoods comprise 76 per cent of the total; in Canada they comprise 94 per cent. Thero were two speries in 1010 of which Canada cut a larger amount than the United States, namely, codar

## Industries

438

## Industrios

and belsam. Nearly $\mathbf{6 0 , 0 0 0 , 0 0 0}$ feet more of cedar and $15,000,000$ more balsam were cut in Canada. Spruce is the only other timber in the output of which Canada approaches the United States; the production for the United States was $1,748,547,000$ feet, as compared with 1,300,031,000 feet for Canada.
The total lumber cut in 1910 was 4,901,649,000 board-feet, valued at more than $\$ 77,000,000$. It is interesting to notice that the increase in the lumber cut of Canada is about in proportion to that of the United States. The total cut of Canada is about one-ninth of the lumber cut of the United States, and a little less than the combined production of Washington and Maine. Ontario has been Canada's greatest lumber producer for many years; its forests of many species have enabled it to compete in the production of every kind of lumber. The most noteworthy feature of the last census is the enormous growth in the output of British Columbia. In 1900 the cut of lumbes in that province was $276,000,000$ board-feet; in 1906 it was $539,000,000$; in 1908 it was $647,977,000$ and in 1910 it had risen to $1,619,804,000$ board-feet. All indications seem to show that this is not a temporary jump but a permanent growth. The forests of the east can no longer yield the enormous quantities required and new territory must be opened. The table below gives a summary of the lumber production for the years 1008 and 1910:
for poles, posts and rails. The annual value, as estimated by the forestry branch of the department of the interior at Ottawa, follow:

| Lumber, lath and shingles. | 000,000 |
| :---: | :---: |
| Firewood. | 45,000,000 |
| Poles, posts and rails. | 11,000,000 |
| Pulpwood. | 5,000,000 |
| Hewed ties. | 3,500,000 |
| Cooperage. | 2,000,000 |
| Tanning materials. | 1,300,000 |
| Miscellaneous. | 4,000,000 |
| Total. |  |

Upportunities for Improvemont. There is almost unlimited opportunity for improving thr conditions and standards of lumbering. Wi.a we realize that lumbering is the greatest angle industry in Canada, we may appreciate the importance of an adequate control by the forestry branch. No investigations have yet beea conducted in Canada to show what percentage of the cut is wasted, but in the United States, where conditions are much the same as in Canada, it has been found that one-half of the timber cut is wasted either in cutting, logging, or in the mills. From ten to fifteen per cent of this loss is probably unavoidable, but the greater part is due to careless and short-sighted methods These figures are evidence that much study and practical work remains to be done in bringing

| Province | 1908 | 1910 | 1908 | 1910 | Percentage of Distribution |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Board-Feet-,000 omitted |  |  |  |  |  |
| Ontario. | 1,294,794 | 1,642,191 | \$30,050,344 | 330,011,009 | 38.7 | 33.5 |
| British Columbia . | 647,977 | 1,619,904 | 11,374,989 | 24,823,441 | 19.3 | 33.1 |
| Quebec. . | 690,137 | 790,197 | 9,489,386 | 11,340,323 | 20.6 | 16.2 |
| New Brunswick | 308,400 | 419,233 | 5,336,974 | 5,560,780 | 9.2 | 8.6 |
| Nova Scotia. | 216,825 | 260,871 | 3,273,177 | 3,344,075 | 6.4 | 5.3 |
| Saskatchewan. | 91,166 | 75,931 | 1,448,079 | 1,092,571 | 2.8 | 1.6 |
| Manitoba | 56,447 | 45,127 | 1,025,268 | 644,717 | 0.7 | 0.8 |
| Alberta. | 41,382 | 42,922 | 798,320 | 615,215 | 1.3 | 0.8 |
| Prince Edwards |  | 5,273 | 22,940 | 71,056 |  | 0.1 |
| Canada. | 3,348,176 | 4,901,649 | 62,819,477 | 77,503,187 | 100. | 100. |

In order that the reader may grasp the size of the industries dependent on the forests, he should know that the annual cut of timber is about three billion cubic feet, or thirty-six billion board-feet. One-half of this is used for firewood, three-tenths for lumber and shingles, one-tenth
the lumbering industry to the high standard which it ought to have. The subject is such 4 large one that it is difficult to suggest all the possible lines of investigation. The following outline and questions, it is hoped, will give the student a working basis:

## Industries

## Ontline on Lambering

I. Kinds
(1) Hardwood-mahogany, roeewood, ebony, etc.
(2) Softwoods-pine, cedar, etc.
II. Saw Mille
(1) Location
(a) Lumber camps
(b) Seaports, inland cities
(2) Methods of sawing and han iuing trees
(a) Large timber-Mriluseiy
(b) Small timber-Hrises, etc.
(c) Transporting to D il

## Questions on Forentry and Iumbering

What are some of the indirect advantages due to forests?
What uses are made of the barks of different trees?

From what trees are the following obtaineddyes, tar, turpentine, quinine, camphor, rubber?

What do we mean by hardwood trees? Soltwood? Name some of each.

Where is ebony procured? For what is it greatly valued?
What kind of trees would you expect to see were you to travel in Alaska? In Braxil? In

RELATIVE VALLS S C- CHEF (ANADAN PRODUCTS, 1911. PRODUCTS MILi: :NS OF DOLLARS FOREST HAY WHEAT OATS MINERAL FISHERIES $11012013014015016017018019011001110 \mid 1201130$ 140|150|160
(3) Product
(a) Rough lumber-logs, poles, planks, railroad ties, etc.
(b) Finished lumber-veneers, flooring, siding, interior finishings
(c) Finished articles-furniture, implements, etc.
III. Transportation of Logs to Distant Saw Mills
(1) Methods
(a) Rafting
(b) Shipping by rail or water
IV. Drying
(1) Kilns
(2) Sun dried
V. Purposes
(1) Buildiugs-public and private
(2) Railways-all equipment of wood,etc.
(3) Shipbuilding and yards, etc.
(4) Furniture, etc.
II. Lumber Producing Countries
(1) Canada-British Columbia, Ontario, Quebec, other provinces
(2) UnitedStates-Winconsin, Michigan, Minnesota, Washington
(3) Other-South America, Sweden, Russia, Germany, France, Mexico, Canada, Africa
YII. Commercial
(1) One of Canada's great industries
(2) Leading industry in foreign countries
(3) Lumber markets of world
the Philippine Islands? In British Columbial In southern Ontario?

Which are the principal lumber producing countries of the world?

What are the main branches of the lumbering industry?

What is a board-foot? What is its importance as a unit of measurement?

How are logs transported from the forests to the mills?

Name some of the different pines used for lumber. Why is this wood largely used in construction work?

Is there much waste in the lumbering industry? Why? Do you think that conditions are likely to improve?

From what countries do our hardwoods come?

What do we mean by veneers? Are they largely used?

Why are mahogany and rosewood expensive?
Which province is the largest producer of lumber? Which ranks second? What kind of lumber does each produce?

What industry, dependent on lumbering, is centered in Quebec? Why?

Where is the largest national forest reserve? When was it established?

In what way is the national government 00 operating with individual owners in order to improve lumbering and forestry conditions?

What is the forestry branch?

## Industrios

## Fisheries

Extent of the Induatry. By the terms of the British North America Act all fisheries of Canada, whether marine or inland, are under the control of the Dominion government. The department of marine and fisheries has consequently always had a clear field in the control of one of Canada's greatest industries. Although the governmentin recent years has given increasing support to the fisheries, the fishing industry of the United States still far exceeds that of the Dominion. A considerable part of this excess is due to the fact that fish caught off Canadian consts by United States vessels and landed in United States ports are creditod to Unitod States fisheries. With the exception of an occasional year the Cansdian fisheries show a steady growth, from $\$ 6,577,391$ in 1870 to $\$ 29,965,433$ in 1911.
To say that Canada possesses the most extensive fisheries in the world is no exaggeration; moreover, it is safe to add that waters in and around Canada contain the principal food fishes in greater abundance than the waters of any part of the world. The fisheries may be roughly divided into three sections-Atlantic, Pacific. and inland. Each of these is discussed in detai below.
The coast line of the Atlantic provinces, from the Bay of Fundy to the straits of Belle Isle, measures over 5,000 miles. Along this stretch are many natural harbors in many of which valuable fish are taken with little effort. The Atlantic fisheries may be subdivided into two distinct classes: the deep-sea, and the inshore or constal fisheries. Deep-sea fishing is carried on in vessels usually from 40 to 100 tons. The fishing grounds are off the "banks," twenty to ninety miles from the coast. Trawling with hook and line, with herring and squid as bait, is the customary method of fishing. Cod, haddock, hake, pollock and halibut are the principal varieties caught. The inshore or coastal fisheries are carried on in smaller boats, with crews of two or three men, using nets, hand-lines and trawls. The principal fishes taken, in addition to those already mentioned, are herring, mackerel, shad, smelt, fiounder and sardine. A great quantity of lobster is taken along the eastern shore of Canada and excellent oyster beds exist in many parts of the Gulf of St. Lawrence.
On the Pacific coast salmon is the most valuable catch, but an extensive halibut fishery is carried on in the northern part of British Colum-
bin. The salmon fisheries yield a more valuable product than any other item. Herring are abundant and provide a plentiful supply of bait for the halibut fisheries.
In addition to the immense salt-water fishing area, the fresh-water area includes 220,000 square miles, abundantly stocked with many food fishes. In this connection the render may be surprised to learn that the Canadian waters of tho Great Lakes-Superior, Huron, Erie and Ontarioform only one-fifth of the totai area of fresh. water lakes of Canada. The principal fishes caught are whitefish, trout, pickerel, pike and sturgeon. Fresh-water herring are found in Lake Erie and Lake Ontario.
Falue of the Fisherten. The market value of all kinds of fish and fish products taken by Canadian fishermen in 1911 was $\$ 29,965,433$. This is the highest total yet reached in any one year. The relative importance of each province is shown below for the years 1908 and 1911:

| Provinces | 1008 | 1911 |
| :---: | :---: | :---: |
| Nova Scotim. . . . 8 | \$7,799,160 | \$10,119,243 |
| British Columbia | 7,003,347 | 9,163,235 |
| New Brunswick. . | 4,005,225 | 4,13, ,144 |
| Ontario | 1,734,856 | 2,026,121 |
| Quebec. | 2,175,035 | 1,692,475 |
| Prince Edward Island. $\qquad$ | 1,168,931 | 1,153,708 |
| Manitoba.......) |  | 1,302,779 |
| Saskatchow | 1,492,923 | 172,903 |
| Yukon. . |  | 118,365 |
| Alberta. . . . . . . . |  | 82,460 |
|  | 26,279,485 |  |

The sea fisheries contribute about ninety per cent of the yearly catch. According to the report of the department of marine and fisheries the salmon catch leads all other species in value, anounting to twenty-four per cent of the value of all the products of the fisheries. Cod ranks second, forming nearly twenty per cent. It is interesting to note that salmon and cod are the most valuable fish catches of the United Stutes. The oyster product, however, is greater than either. The Canadian catch of cod in 1911 amounted to $\$ 5,921,248$, an increase of $\$ 2,000$, 000 over the highest preceding year. Lobsters, herring, halibut, haddock and whitefish are next in order of importance. The table which appeass on the next page shows the value of the fisheries by species:

Industrie:

| Kinds or Fism | 1008 | 1911 |
| :---: | :---: | :---: |
| Salmon...... | 85,856,760 | 87,205,871 |
| Cod. | 3,471,186 | 5,921,248 |
| Lobster | 2,922,927 | 3,784,099 |
| Herring | 2,704,596 | 2,278,842 |
| Halibut | 683,840 | 1,251,839 |
| Haddo | 766,896 | 1,218,759 |
| Whitefi | 908,759 | 983,594 |
| Trout | 791,467 | 825,290 |
| Sm | 425,631 | 797,006 |
| Sard | 514,916 | 539,227 |
| Pickera | 713,437 | 508,513 |
| Hake. | 384,490 | 508,345 |

## Industrios

great corporation. Except in the salmon fisberies, which require large capital, and to a less extent in the oyster and clam fisheries, there has been little tendency towand the formation of great companies to control the industry.
Fish Breoding. In addition to the important work performed by the inspectors and by the fisheries patrol boats, the government re ers valuable assistance by granting bounties to ves sels which have caught more than a fixed quantity of fish. Since 1882, when this aystem was first used, about $85,000,000$ has been granted in this way. But by far the most valuable service rendered by the envernment is the planting of fry by the fish hatcheries. Like the free distribution of trees by the forestry branch, fish breeding brings no immediate return to the Dominion government; the benefit, however, will increase each year in the added value of the fisheries. There are forty-one hatcheries in operation, with a total distribution annually of over one billion fry. Two-thirds of the fry planted are lobsters, all in the Atlantic fisheries; whitefish comprise nearly one-fourth, salmon one-tenth, and the remainder are pickerel and trout. It will be noticed that the fish breeding operations of the department are almost entirely in the interest of the commercial fisheries.
In view of the great importance of the fishing industry, the following outline and test questions are suggested for further study:

## Outline

I. General Description
(1) Heart
(2) Blood
(3) Gills
(4) Fins
(5) Scales
(8) Eyes
(7) Vertebre
(8) Bladder or sound
(9) Coloring
(a) Deep sea
(b) Fresh water
(c) Breeding season
(10) Eggs
(a) Where laid
(b) How cared for
(c) Number
II. Salt Watar Fibi
(1) Shellfish
(2) Seals
(3) Corals
(4) Pearls

## Industrios

(5) Whales (not really fishes)
(6) Turtles
(7) Sponges
(8) Cod
(9) Herring
(10) Halibut
(11) Mackerel
(12) Heddock, etc.
III. Frisar Water Fiar
(1) Salmon
(2) Trout
(3) Whitefish
(4) Sturgeon
(5) Eel
(6) Pickerel
(7) Bass, etc.
IV. Fisuina Devicis
(1) Drawnets
(2) Stake-nets
(3) Hooks
(4) Harpoons
V. Principal Produczas
(1) Canada
(2) United States
(3) Japan
(4) Great Britain
(5) Russia
(6) France
(7) Sweden and Non
Vi. Fibreries in Canada
(1) Divisions
(a) Atlantic
(b) Pacific
(c) Inland or fresh-water
(2) Products
(a) Salmon

## Indestrios

(b) Cod
(c) Lobater
(d) Other fishes
(3) Government nid
(a) Regulations and patrol
(b) Bounties
(c) Fish-breeding

## VII. International Trade <br> VIII. Canning and Prissarvina Indubtay

## Questions on Fishes and Fisherlos

Has a fish ears? A heart? How doen it breathe?

Is its blood warm or cold?
Where are highly colored fish found? At what season do these colors increase in brillingy'
How many kinds of fish are known to exil
Have you any idea how many are extinct?
What are some of the differences between the characteristics of deep-sea fish and of frest water fish? Name several kinds that illustrute these characteristics.
Where are some of the richest fishing grourds in the world?
What is the moot important fish taken from the Atlantic? From the Pacific? Name thre valuable fresh-water fishes.

About how many people are engaged in the industry in Canada?

What is the value of a year's catch?
What are the five most valuable productso the fisheries?

Which province yieids the greatest quantity!
Give a brief account of the work done by the fish-hatcheries.

Why should governments protect and arcourage fisheries?

## Coal

All Industries Depend Upon Coal. One of the great industries in Canada and the United States is the production of coal. A century ago practically no coal was mined on this continent; to-day almost every other industry is dependent on it. Without coal there could have been no such development of the railways as has taken place; there could have been little progress in the steel and iron industries; in short, wherever we turn, we shall find that coal is necessary to the processes of production. In $18 / 6$ the total production of coal in Canada was 091,762 tons; ten years later it was over $2,000,000$ tens; thirty-five years later (1911) it was nearly $13,000,000$ tons.

Canada as yet produces only one per cant of the world's output, jut the rapid growth in the past and the opening of new coal fields in the western provinces justify the statement that the absolute as well as the relative importance o d ite Canadian coal fields is increasing. Various cuuss have operated to delay the development of coll mining in Canada. Chief ameng these hes beet the remoteness of the fields from the mantes and the resulting high cost of transportuion The rapid development of industries depended on coal is making possible the use of low grad coals near mines which formerly suffered tron lack of local demand. The following tule shows the production of coal by countrias:

Taduatrios:
Country

|  | m Square Miles |
| :---: | :---: |
| Unitel States. . | 210,000 |
| China and Japan.... | 200,000 |
| Canada. | 70,000 (estimated) |
| Russis........ | 27,000 |
| Great Britain. | 12,000 |
| Germany. | 3,600 |
| Prance. | 1,800 |
| Other countries. | 1,400 |
| Total. . . . . . . . . . . . . . . | 625,800 |

## Industrios

Paoduction in<br>Lova Tons<br>411,431,000<br>$20,000,000$ (estimated)<br>$13,000,000$<br>24,080,000<br>263,774,000<br>217,445,000<br>87,840,000<br>$115,290,000$<br>$1,102,890,000$

The Viadble Supply. According to conservative estimates the coal fields of China, Japan, Great Britain, Germany, Russia and India con: in three hundred billion long tons of coal, which is enough for four hundred years at the present rate of consumption. If to the above be added the coal fields of the United States, Canada, and other countries, the supply will be enough for one thousand years. We must not forget in considering the possible future aupply that new discoveries may increase the available resources. Nor is it certain that coal will always remain as important in the world's economy as it is to-day. Coal was probably used by the ancient Greeks and Romans, certainly by the Europeans as early as the ninth and tenth centuries, but it is only during the last two hundred years that it has been extensively used. The world's total consumption of coal previous to 1800 was probably less than the average annual consumption in our time. It is not outside the range of possibilities that some satisfactory substitute will take the place that coal now holds in industy.

## Conl Production in Canada. Five provinces

 and one territory contribute to the Canadian cual output: Nove Scotia, British Columbia, Alberta, Saskatchewan, New Brunswick and Yukon Territory. The central part of Canada, including Ontario and Quebec, has no coal fields. The sccompanying map shows the position and extent of the fields. Many of these coal areas are at present well developed and are producing stedily. In other sections, mainly in the western provinces, owing to the lack of means of transportation or lack of market, little more than prospecting work has been done, but their coal coastitutes a valuable reserve which will probably be drawn on in the near future. In Nova Srotis there are several large areas of bituminous coll, most of which are being actively worked. The Nova Scotia fields, besides supplying thedemands of that province, send their coal to Quebec, Ontario, the eastern part cf the United States, New Brunswick, Newfoundlard, Prince Edward Island and the West Indies; the relative quantity shipped to each is about in the order

coal areas of canada
named. All the coal mined in New Brunswick is used locally. In Manitoba and the northwest provinces there are large tracts of land underlaid by coal, varying from lignite in the east to bituminous as the Rocky Mountains are approached. In the mountain region itself are several basins, of which the Crow's Nest Pass field is most important, where high-grade bi. tuminous and some anthracite coal is mined. The coal output of Alberta and Saskatchewan is used mainly in those provinces; a small proportion, however, is used in Manitobs and nome is converted into coke and shipped to British Columbia and the United States. In British Columbia approximately one-third of the production is consumed in the province, one-third is manufactured into coke and one-third is exported to the United States. In addition to the domestic output, Canada imports each year $\$ 14,000,000$ worth of anthracite conl and \$13,000,000 worth of bituminous, practically all from the United States. To offset the imports are total exports of coal amounting to $\mathbf{3 5 , 0 0 0 , -}$ 000 , sixty per cent to the United States.

Industrion
Conl Puoduction by Proviscra, 1910

| Province | Quantitt | Value |
| :---: | :---: | :---: |
| Nova Srotia. | . $6,431,142$ tons | \$12,019,705 |
| British Columbia | .3,330,745 | 10,408,680 |
| Alberts. | .2,894,469 | 7,095,736 |
| Saskatchewan. | 181,156 | 293,023 |
| New Brunswick | 55,455 | 110,010 |
| Yukon. | 16,185 | 110,025 |
| Totals | 12,000,152 tons | 230,009,779 |

In 1911 the loag continued strike in the coal mines of Alberta and British Columbia was responsible for a falling of in the coal production of Canada. The total coal production for the year was only $11,291,550$ tons. This is a decrease of over twelve per cent from the production of 1910. Alberta showed the greatest decline, from $2,894,469$ tons to $1,498,057$ tons. Nova Scotia, on the other hand, produced 562,000 tons more than in 1910. The temporary decline thus caused by labor troubles is bound to give way to a marked increase as the years go by.

## Outline on Coal

I. Defintion
II. Varietirs
(1) Anthracite
(2) Bituminous
(a) Cannel
(3) Lignite
III. Formation
(1) Decayed vegetation
(a) By pressure
(b) By heat
(2) Upheavals
(3) Coal measures
IV. Present Sources of Supply
(1) Canada
(2) United States
(3) Great Britain
(4) Germany
(5) Other countries

## Indestrion

V. Methode or Mining
(1) Open working
(2) Closed working
(a) Room-and-pillar system
(b) Low-wall aystem
(c) Ventulation
VI. Br-Products
(1) Coke
(2) Gas
(3) Tar
(a) Naphtha
(b) Creosote
(c) Pitch
(d) Dyes

## Questions on Conl

What is coal? How is it formed?
How are the veins separated from one another! What means have we of knowing the sort d vegetation from which coal was fcrmed?
How is it possible to know the number $\alpha$ upheavals and depressions which took place in the formation of coal?
What is meant by coal measures?
What are the classes of coal according to handness? Which is the best? Is it found near the surface?
Where are the largest mines of this variety! For what is it generally used?
Which variety is known as soft coal?
Where are the great fields of this coal found? What are its important uses?

What is cannel coal? Why is it especillly desirable?

Where is lignite coal found? How does it compare in age with other varieties? Why is it useless for manufacturing purposes?

What per cent of the world's supply is produced by Canada? By Great Britain? By the United States?

Which province leads in the production $d$ coal? Which province ranks second?

What do you think will be the future d coal mining in Canada?

## The Fur Trade

Early History. The use of furs as covering is probably as old as the human race itself. The most primitive people have always been sufficiently advanced to know that furs are useful for clothing. As people became more civilized they killed off the wild animals in the neighborhood and settled down to farming and cattle raising. Killing off the wild animals in the neighborhood
made it necessary for hunters to go out into the forests for furs. This has been true in every country. A hundred years ago fur-bearing amimals of many kinds could be killed in parts of Canada which are now oecupied by great cition. The hunter and trapper have always teen on the edge of civilization. In our country it wh the trapper who became the explorer, then the

## Industios:

ettler, of the west. For many years after the first Europeans came to North America trading in furs was the principal occupation. The great profita in furs led to further exploration and colonization. In a few years fur-bearing animals in the vicinity of settlements became scarce, and trappers and traders found it necessary to travel farther and farther inland. In this way lurge sections of the country were gradually explored and opened to settlement. It is true that for many yenrs the fur trade retarded the growth of permanent settlements. The rough, free life appenled to a class of men who did not care to submit to the restrictir so of a community; These coureurs do boisor "runners of the woods," were hardy, fearless men. Many of them were hand fighters and hard drinkers, but as a rule they showed their worst side only when they the fate of Champlain's settlement at Quebec or of the Jesuits at Mcntreal except as they provided markets for furs.
The Eundred Associates. At the beginning of the seventeenth century the settlers in Canada. were experiencing hardships. Montreal and Three Rivers were small trading stations, and Quebec, the center of population, could boast of onlyffify or sixty inhabitants. Cardinal Richelieu realized the wretcher conditions in New France. He ordered the withdrawal of all existing trading privileges and formed a new organization, known ${ }^{25}$ the Hundred Associstes, or the Company of New France, which was granted a perpetual monopoly of the fur trade. The territory granted incluxded Acadia, Newfoundland, Canada and even Florida. The company, in return for these privileges, agreed to bring out at least 200 setthers immediately and to raise this number to 4,000 within fifteen years. Unfortunately the company failed to fulfill its obligations and the settlements grew but slowly.
The government tried to control the fur trade iy inviting the Indians to bring their furs to the settlements. A great fair was held each year st Montreal where the Indians came in their canoes laden with beaver and other akins. After the fair had been formally opened trading berame lively. Brandy was sold freely, so that too often the fair ended in drunken rioting. Other difficulties were faced by the government. The more daring traders and the cotareurs de bois, in defiance of the laws, settled above Montreal, inteccepted the Indians en their way to the fair or visited them in their villages, and mecred the best furs. Yet the traders seemed

## Industrios

to prosper; settlers alowly increased in number and conditions gradually improved.
The Eudson's Bas Company. While the French were developing their fur trade in the south, a great rival appeared in the north in the vast territory surrounding Hudson's Bay. In 1670 King Charles II granted a charter to a number of "adventurers," headed by Prince Rupert (see Vol. IV), the sole right to trade with the Indians on the shores of Hudson's Bay. The company had power to "establish lawr and impose penakies, to erect forts, maintain ships of war, and to make peace and war with any prince or people not Christian." Thus the Hudson's Bay Company, as this organization was known, was practically a government in itself, though subject to England. For many years the company grew slowly. Conflicts with the French were almost continuous, and the difficulties of transportation were still considerable. The turning point in the histrry of the company was the conquest of New France by the English. When Canada became English the vast territory of the company could be reached from the south by land as well as from the sea. Trade increased enormously and profits jumped by leaps and bounds. But this monopoly was too profitable to be left to the Hudson's Bay Company. Competition, sometimes amounting to an actual warfare, sprang up. The principal rival was the famous Northwest Company, in which Lond Selkirk was one of the leaders. After Selkirk's death in 1820 the chief obstacle to combinatir \& was removed and a year later the Hudson's Bay Company absorbed its principal rival. After the union of the companies the management of the company's affairs was placed in the hands of an official known as the governor of Prince Rupert's Land. Sir George Simpson, a young Scotchman, was chosen for the position, and for forty years he guided the company's fortunes. Under his aggressive administration, Great Britain's control of the Pacific coast was made secure and British Columbia was occupied. Russia and the United States were thus prevented from shutting out Great Britain from the Pacific Ocean. The territory of the Hudson's Bay Company now included practically all of the northwest, reaching the Arctic Ocean on the north and the Pacific on the west. Under the control of the company the fur trade continued to increase. Trading stations and forts were built in every part of $t$ 's country until the "fur trade," the "Northwest" and the "Hudson's Bay Company"

## Industrios

became almost aynonymovis. In 1850 the trode monopoly of the company was abolished, and ten years later it surrendered its. territorial rights for an indemnity of 8300,000 and 7,000,000 ecrese of land. The trading atations and fortes all of which the company retained, dot the entire Northwest. From these various stations the furs are sent to posts on Hudson's Bay and in Labrador, or to Montreal, St. John or other Atlantic ports for shipment to England, where they are gens allly wold at auction. Though competition has increased in recent years the Hudson's Bay Company is still the greatent fur

## Indentrios

journeys to the trading post with the furs be has cocumulated during the winter. Most of these trappers are Indians or half-breeds. In the carly days a band of Indian trappers was a picturesque eight-not oniy men, but women, children, dogs and horsea. The braves marched in front, too proud and too lasy to carry any. thing but theirguns. After them came thesquaws, carrying londs or driving the sleds, loeded with meat, furs, household goods and children.

Generally peaceful, these Indians prided themselves upon their honesty. While a trader was visiting a neighboring poat an Indian came


TORE FACTORT
company in the world; it exports about one-half of all furs sent from the Dominion.

The Trappers. By the beginning of November the fur-bearing animals have their winter conts and fur is prime. The ermine, for example, is snow white. The trapper now pre'sares for his winter tasks. His isgenerally a lonely and often a dangerous life. Moreover, it is a silent life, for a noisy hunter or trapper is likely to find that he is scaing away the game. When he observes the footprime of any game he unstraps his pack and starts to mike his deadfalls and to set his traps. At regule intervals, say once a week, he visits each trap, gathers the furs, repairs broken traps and deadfalls and sets them again.

At the end of March or the beginning of April the trapper leaves his hunting grounds and
to exr' ange his furs for flour and other goods After waiting two days the Indian decided to break into the store. He took only such things as he needed and loft what he considered a fair equivalent in furs. Six months later he came back to see if he had left enough furs. Much of the picturesqueness of the fur trade has disappeared in the course of time, but it will always appeal to the imagination.

Fur Money. A peculiarity of the fur trade is that money values were unknown for many years and even to-day are seldom heard of in many of the trading posts. Everything wiw measured in terms of skins, the beaver being the common standard. A barrel of flour, for example, might sell for ten made-beavers. A " made-beaver" is the skin of a full-grown beaves


## Industrios

 leaving onty the slort woft fur. 'Thine thin whth
 When the whin has bex+mine dry it in olnowl at
 mofened by terading with barw fere it arander Te dyed. The dya ia apphed with a lipeoth siat aproud liy shaking the fur. It iv chen doind and hrustion, monetinues as many as ten thmes
The Oolor Plate. The colur pinter sloneve sume of the moset imporiant fur-licaring namials of Cunada. Fach of these animals is desprifar ill its proper place in the first five volumes of
 Many utiar fur-bearing anmala unv font ita different parts of the Dotnimion. The sterlent is ndvinud to real articles on the s.operan provinuse, as woll nat the grineral artime on North Amorion, for fursher informations.

## Questions on the Fur Trado

Who were the conceare te iwnis? What kind of greple wi re theyp

Whas orgamizal the Hundrad Assxiates?


What any the Menitratai Fairy How often was it helf:
When was the Hufantis Bay Conitany organized? Dy whom" For what pary
When is the traphing yawon! H1, of of dext a hunter visit hat trap?
What is "fur mon+"?"
Vane somp of the iapmont antithent whect furv are ceillo cted ill Cranda Where afo mat of the fires wint:

How are fiery propatal fir the bomed jument
Fixiluin the preveres of dreseing fares.
Nume fice fur-tratione animals iomel abi Cimadia and $t$ Il in atheh serems the are fond

## Transportation

 - In.a cromery in the a saxt extent nieans *-4. \%) mavication play a $T_{1}$ is only necessary * - rowth in population - 2r. Ti-t uetsun of railways, $\because$ ". 乡en it of the Canathan sain elevators and ( 30 - . inuikling through* at: the railroads do ${ }^{\text {she }}$ turere fact of trans-
portation is an inumaloe bexsidne whitel, ald aets impulver theard growth fecone - and
The following tathe will give -ithe i.era e.f...

Murss

1al6.... 1 .

|  | 1,411 | $\cdots$ |
| :---: | :---: | :---: |

18t6.......... $2: 5 \times \quad$, 6


5M ........ 11.2. * - 128

1911. - 31



## Indestrios

IThen in meoce, proppoly curod and welaching In dinceen to twenty oumces. The boaver dha d courm, dild not actually change hande, tur mex the uals or manure of value. Traders mantimas had mmall aticks of counters, each d which reprevented oes beaver or fifty cents.
The Ther Mastote. Throughous the north wis are mentered the poste or forts of the Hichon's Bay and other companion The furs abloctad at them points are sent to central dipping pointe of markets. Plicess like York Patory, Athaberea Laoding and Fort Simproa nolmportant ctations. Edmonton, the capital If the provinee of Alberts, as the center of the fre traco in Casada, io one of the grest fur matete of the world. More thas a million Whene' worth of akins ase ahipped yearly from theceity. It is the grost center for the Hudzon's By Company, and also for several amaller ugreantiona. The greater part of the furs are tot to London, Eagland
Popartag the Pas. To prepare fur akins wo thet they will not be injured on this long jureay is a dimple matter. When atripped thom the animals they are carefully clensed and d lach and fat eve removed. The akins are than huag in a cool place and allowed to dry and minden. Care muat be taken that the furs do wo beoome heated after packing and they ahould bo beaten occasionally to dentroy worms. The lerseal is bent preserved by salting and packing in hogshends, but all other raw furs aro packed and rold in bales.
The process of dreming furs differs in its dewill with the character of the fur, but the geronl outlines ere the amme. For example, the seal hur, efter being washed, is stretched on trames ad dried. Then It is washed again and while
the akin io still molat the long hairs are removed. loaving only the short soft fur. The akin aide is seraped and ahwred until It is amooth and even. When the akin has become dry it is placed in a tub filled with fine eawduot, and alter belag softened by treading with bare feet it in reendy to be dyed. The dye la applial with a brush and aproad by ohaking the fur. It is then dried and brushed, comotimen as many as ten times.
The Oolor Mate. The color plate shoms some of the most important fur-bearing animals of Caneda. Each of these animals is described in lts proper place in the firit five volumes of The New Phactical Reference Library. Many other fur-bearing anlmals are found is difierent parts of the Dominion. The student is advised to read articles on the epparate provinces, as well as the general article un North America, for further information. Questions on the Fur Trade

## Who were the couroure do bois? What kind

 of people were they?Who organlzed the Hundred Associates? Why? Did the new company succeed?
What was the Montreal Fair? How often was lt held?
When was the Hudson's Bay Company organized? By whom? For what purpose?

When is the trapping eeason? How often does a hunter visit his trap?

What is "fur money"?
Name some of the important stations at which furs are collected in Canada. Where are moat of the furs sent?
How are furs prepared for the long journey? Explain the process of dressing furs.
Name five fur-bearing animals found in Canads and tell in which sections they are found.

## Transportation

## Ealiromis

Canads has the greatest railway mileage in moportion to population of any country in the mold. In a country of such vast extent means - trasportation and communication play a pres purt in development. It is only necessary to point to the remarkable growth in population in the west after the introduction of railways, tothe present irrigation projects of the Canadian Prific in Alberts, to the grain elevators and bota which the railroads are building throughmet the country, to show that the railroads do wet than haul traffic. The mere fact of trans-
portation is an impulse beside which all other impulses toward growth become small.
The following table will give some iden of the increase in steam railway mileage in Canada:

| Year | Miles Operated | Increase | Prrcent |
| :---: | :---: | :---: | :---: |
| 1846.. | Operated | Increase | Incrrase |
| 1856. | . 1,414 | 1,398 |  |
| 1866. | . 2,278 | 864 |  |
| 1876. | . 5,218 | 2,940 | 129 |
| 1886. | . .11,793 | 6,575 | 126 |
| 1896. | .16,270 | 4,477 | 38 |
| 1906. | .21,429 | 5,159 | 31 |
| 1911. | .35,500 | 4,071 | 10 |

D aring the fiscal yene 1011 the total rolliway expenditure by the government doee wee $830,301,979$, of which $824,700,029$ was charged to capital $\$ 23,488,000$ of the total repremented the expeoditure for the new National Tranccontinental Railway. Since Confoderation the government has speant $8281,414,604.87$ for contruction (including a mabridy of $\$ 25,000,000$ to the Cinedian Pacific), $\{214,073,844.19$ for operating expenses and \&12,735,008.32 for subwidies to other railroends, making a total expenditure of nearly $\$ 520,000,000$. The total sumber of pamengers carried on all the railroads in the Dominion is about $36,000,000$ a yeariand the total tonnage of freight about $80,000,000$. The targest ingle item of freight is coal aid coke, about $20,000,000$ tons; grain and lumber each represent about $8,000,000$ tons. Theee figures represent an increase of thirty per ceat in five years During the amme period the groee carnings of stenm railways in the county increased from 8125,000 ,000 to over $\$ 180,000,000$. It is interesting to note that the number of employes changes elightly; except in 1008 it has varied by less than 1,000 , being now about 125,000 . These figures should give the reader an accurate idea of the extent of the railway system of the country.
In 1836 the first railway in Canada was built between Leprairie, near Montreal, and St. John. Ten years later another short line connected Montreal and Lachine. The railway aystem of Canada had its real beginning, however, in 1851, when Parliament paseed a bill providing for the building of the Grand Trunk road from the western limit of Upper Canada to the city of Quebec and also a branch line to Portlaist, Maine. The Portland branch was completed in 1853, and the main line from Sarnia to Quebee three years later. To trace the development of all the rilways in the Dominion is impossible, but below are given aketches of the five principal aystems now in operation:

Grand Truak. This is the oldest of the great railway aystems of Canada. Since 1856, when the main line from Quebec to Sarnia wis completed, the railroad has gradually increased Its mileage to a total of $\mathbf{3 , 1 0 0}$ in Canada alone, besides numerous direct connections, owned or leased, to points in the United States. The main line now extends from Portland, Maine, through Quebee and Montreal, to Chicago; branches and leased lines afrord direct ronnection with New Yort and Booton. Three par-
allel lines extend through that part of Outuris lying north of Iake Erie, and there are connectial by numerows croes linet, one extending as fr north as Like Temiskaming. Another impos tant line extends from Montreal to Parry Sound by way of Ottawa. The road is noted for ith erection of the old muspension bridge over the Niagara River, for the Victoria tybular bridge acroen the St. Lawrence at Montreal, and loe the magnificent atel structures which mon occupy the sites of the original bridges. For: number of years the Grand Trunk mak into an unprosperous condition, but under the management of the late Charles M. Hiny it again resumed its former position of impatance.
Intoreolonial Eailwas. This is the oaly large railway syntem in Canada owned and operated by the government. It was planned by the provinces of Quebec, Nova Scotia and New Brunswick, and after Confederation it wu assumed by the Dominion government. It wu opened to traffic in 1876. The main line ers tends from Moneton to Montreal by way d Levis and the south bank of the St. Lamrene River. It has branches which connect Point do Pictou, Halifax, St. John and Sydney. The total milenge is now 1,450 miles.

Oanadian Paclicic. The building of the firt Canadian transcontinental was a serious prob lem presented to the early Dominion Puriar ments, for it was one of the conditions of Britiah Columbia's entrance into the Confedertion. In 1872 Sir John A. Meodonald presented the question to Parliament, but political and other troubles interfered (see pages 400 and 401 )so that it was not until 1878 that the contract betwee the government and the Canadian Pacific Rat way Company, a syndicate of capitalists, ws finally tigned. Prominent members of the cone pany were Mr. George Stephen, a Montred merchant, and Mr. Donald A. Smith, an officill of the Hudson's Bay Company, both now better known as Lord Mount Stephen and Lard Strathcona. The rond was to be finished br 1880, but the work was pressed formand $n$ energetically that the last spike was driva by Lord Strathcona in 1885.
The main line now extends from Montrel io Vancouver, British Columbia. In addition to the main line there is a line extending from Mor treal to Toronto and Detroit, another, trom as the Duluth, South Shore and Aclantic along the south shore of Lake Superion, 1 thind from Minneapolis to the Soo, and

## Industries

fouth from Minneapolis to the main line at Moow Jaw, Saskatchown. The total mileage $\alpha$ the aystem is about 10,200 . In addition to its own lines the Canadian Pacific has leased ar has traffic rights over meveral ronds which give it direct connection with Boston and ports in Nova Scotis and New Brunswich. It orms two steamship lines, one, the Empress, sunaing to China and Japan, the other, the Australian, to Honolulu, Fiji and Sydney. The witern division of the roed passes through a rejion famous for its scenery in the Selkirk and Cracade Mountains.
Canadian Horthorn Rellway. This is a great trunk line projected to extend from the Athatic to the Pacific const. In 1896 the firm of Mackenxie, Mann \& Company began building on its own account by completing 100 miles of line, known as the Like Manitobar Railmy and Coal Company. From this mall befinning has grown the Canadian Northern System. The section of the line from Winnipeg to Edmonton has been completed; other partial ections east and west have already been conatructed, so that the present mileage is about 4,000 . When completed the system will include ove 5,000 miles of track. Its present mileage is divided as follows: Quebec, 350; Ontario, 700; Manitobe, 1,540; Seskatchewan, 1,200; Alberta, 225. In the northwest provinces this line ertends north of the Canadian Pacific and the Grund Trunk Pacific and passes through a fertile section which was practically inaccessible before its construction. The Canadian Northern offers every encouragement to the ettier and investor. In consequence, towns are mpidly springing up along the line of the road. Land is gradually being broken to tillage and hrge quantities of wheat are already raised in districts recently opened.
Orand Trunk Pacific, or National Transcontinental Reilway. The Grand Trunk Pucific Railway was incorporated by act of Parlicment in 1903 and is under agreement with the Canadian government to construct a line of nilmay between Winnipeg and Prince Rupert, and to operate a line from Prince Rupert to Moneton, New Brunswick. The section of railThenst of Winnipeg is being constructed by the government, the work being in charge of four commissioners, and on its completion will be haed to, maintained and operated by the Grand Thent Pacific Reilway Company. Technically ooly the line west of Winnipeg is the Grand Truak Pacific, whereas the line east of Wianipeg
is the National Transcontinental Railway. When completed the line will be about 3,600 miles long. Important branches to be constructed are as follows: (1) the Quebec extension, comprising four lines; (2) the Ontario extension; (3) the Manitobs, Alberta and Saskatchewan extensions, comprising eight lines; (5) the Dawson branch; (6) the Hudson's Bay Railway. This branch, to be built by the government, will run from Hudson's Bay Junction, about 120 miles northenst of Saskatoon, to Fort Churchill and Port Nelson, thus providing direct water and rail communication from the western provinces to Europe. These branches include a mileage of about 5,000 , and with the main line will form the most magnificent railway system in the world. It is intended to run ateamship lines from both the Atlantic and Pacific terminals to foreign ports. As Prince Rupert is several hundred miles nearer to the ports of the Orient than any other Pacific port in North America, the new railway should have a decided advantage in transPacific trade.

## Oanals

The Canadian government is rapidly improving its system of inland waterways by the construction of canals around rapids in navigable streams and by connecting lakes and rivers so as to shorten the distance between points on the Great Lakes and Montreal, the head of ocean navigation. The St. Lawrence, with the system of canals and the various lakes, affords a direct line of water communication from the Straits of Belle Isle to Port Arthur or Fort William, at the head of Lake Superior, a distance of 2,233 statute miles. The distance to Du'uth is 2,357 miles, and to Chicago, 2,289 miles. Ocean-going steamers may ascend the river as far as Montreal in the open season of navigation; from Montreal westwand are nine canals-the Lachine, Soulanges, Cornwall, Farran's Point, Rapide Plat, Galops, Murray, Welland and Sault Ste. Marie, generally known as the Soo. The aggregate length of these canals is 73 miles; the total lockage (that is, the height directly overcome hy locks) is 551 feet. The number of locks through which a vessel passes in its voyage from Montreal to Lake Superior is 48. These are the canals on what may be called the main line. Gcographically the other canals, including the Murray, Trent, Rideau and Ottawa River, may be considered as branches; in operation, however, they serve

## Induatrios

forin from Minneapolis to the main line at Moow Jaw, Seakntchowan. The total mileage of the aystem is about 10,200 . In addition to ithown lines the Canedian Pacific has leasod of has traffic rights over neveral roads which dive it direct conrection with Boston and ports in Nova Scotia and New Brunswick. It ownes two stenmship lines, ons, the Empress, sumning to Chins and Japan, the other, the Austrulinn, to Honolulu, Fiji and Sydney. The western division of the road passes through a rejion famous for its scenery in the Selkirk and Cascade Mountrins.
Onndian Fiorthorn Eallway. This is a puat trunk line projected to extend from the Atlentic to the Pacific const. In 1886 ths frim of Mackenrie, Mann \& Company began building on its own account by completing 100 miles of line, known as the Like Manitoba Railmy and Cool Company. From this amall beginning has grown the Canadian Northern Ssitem. The section of the line from Winnipeg to Edmonton has been completed; other partial ections enst and west have already been conatructed, so that the present mileage is about 4,000. When completed the system will include over 5,000 miles of track. Its present mileage

## Induatries:

is the National Transcontinental Railway. When completed the line will be about 3,000 miles long. Important branches to be constructed aro as follow: (1) the Quebec extension, comprising four lines; (2) the Ontario extension; (3) the Manitobs, Alberta and Saskatchewan extensions, comprising eight lines; (5) the Dawson branch; (6) the Hudson's Bay Railway. This branch, to be built by the government, will run from Hudson's Bay Junction, about 120 miles northenst of Saskatoon, to Fort Churchill and Port Nelson, thus providing direct water and rail communication from the western provinces to Europe. These branches include a mileage of about 5,000 , and with the main line will form the most magnificent railway system in the world. It is intended to run steamship lines from both the Atlantic and Pacific terminals to foreign ports. As Prince Rupert is several hundred miles nearer to the ports of the Orient than any other Pacific port in North America, the new railway should have a decided advantage in transPacific trade.

## Oanals

The Canadian government is sanidly im

Industrios
450
distinct traffic of a local neture. Improvements of various kinds are constantly being made. For example, during 1911, parts of the Lechine and Soulanges canals were lined with concrete walls, the Welland canal was widened and deepened, the upper entrunce to the Soo canal was
enable ocean-going vessels to pass cirectly from Montreal to Lake Huron. The total length of canal and canrlized river will be over 400 miles, built at an estimated cost of $\$ 125,000,000$. This canal will shorten the water route for through truffic by 282 miles.


PRINCIPAL CANAIS OF CANADA
widened from 300 to 500 feet, and on the Trent canal work has been done on a direct extension to Lake Ontario. In addition to the canals now in use jlans and surveys have been made for new canals. The largest of these is the Georgian Bay canal, to be constructed from the northeastern corner of Georgian Bay to the Ottawa River, and then in the valley of that river to Montreal. When constructed, this canal will

The importance of the canals as a means $\alpha$ transportation, especially for freight, is oftur underestimated. In the past they have plaged a great part in the development of the surp rounding territories. For example, navigationd the St. Lawrence river would be impossible with out the canals which enable boats to avoid the many rapids. The table below gives some iden of the traffic through existing canals:

| Canal | Numser or Vessels |  | Tons of Freigit |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1910 | 1911 | 1910 | 1911 |
| Sault Ste. Marie. | 6,331 | 7,972 | 21,861,245 | 36,395,687 |
| Welland. . | 2,433 | 2,544 | 2,055,951 | 2,326,290 |
| St. Lawrence. | 9,271 | 10,220 | 2,410,629 | 2,760,752 |
| Chambly. | 4,725 | 4,219 | 752,117 | 669,999 |
| Ottawa-Rideau | 4,417 | 5,416 | 428,713 | 520,142 |
| Murray.... | 957 | 1,308 | 102,291 | 177,941 |
| St. Peter's. | 1,439 | 1,470 | 70,850 | 85,961 |
| Trent. . | 3,730 | 3,442 | 59,952 | 46,223 |
| Total. | 33,303 | 36,591 | 27,750,748 | 42,982,325 |

## Induatrios

4 brid statement of the principal facts of introut in regard to each of the important canals ingiven below.
It. Lewrence Oanals. Lachine Canal is the fart of this group. Length of canal, $81 / 2$ milen; five locks, each 270 by 45 feet; two lock entrances at each end; average width, 150 feet; bockeye, 45 feet; canal extends from Montreal to town of Lachine, thus avoiding the St. Louis rupids. Soulangee Canal, from Cascade Point
width at bottom, 80 feet; width at water surface, 120 feet; depth below lowest known luke level, 11 feet; no locks.
Wolland Oanal, from Port Dalhousie, on Lake Ontario, to Port Colborme, Lake Erio. Twenty teven miles long; 28 locks, each 270 by 45 feet; total lockage, 326 feet 9 inches; mininum depth, 14 feet. The old canal locks were smaller and the canal was about 3,500 feet longer. From Port Dalhousie to Allanburg, $113 / 4$ miles,

htdrautic lift lock at peterborovge
to Cotenu Landing, to avoid the Cascade, Cedar and Coteau rapids in the St. Lawrence. Length d canal, 14 miles; four locks, each 280 by 45 fet; total lockage, 84 feet; depth, 15 feet. Cornvall Canal, from Cornwall to Dickinson's Landing, avoiding the Long Sault Rapids. Eleven miles long; six locks, each 270 by 45 feet; total locknge, 48 feet; minimum depth, 14 feet. In the tuble above, these three canals, together with the Farman's Point, Rapide Plat and Galops canals, are grouped under the heading St. Lerence.
Murray Oanal, extending through the Isthmal Murray, in Ontario. Length $51 / 6$ miles;
there are two distinct lines of canal; from Allanburg to Port Colborne the old channel has been enlarged.
Sault Sto. Maric Oanal extends through St. Mary's Island, on the north side of the rapids in the St. Mary River, thus connecting Lakes Huron and Superior. Length, 7,472 feet; one lock, 900 by 60 feet; lowest known depth of water, 19 feet 3 inches; average lockage, 19 feet; width of canal, 150 feet; average time of passage through the lock, 22 minutes.

Ottawa-Ridean 8yatem. This includes the Ridenu River and Canal, St. Anne's Lock and the Carillon and Grenville canals. This aystem

## Indastrion

When was the main line of the Grand Truek Rallway completed? Throush what rectiona of the country does it rum?
Name four other great ayitems.
Which of these is owned by the Cenedian government?
When was the Canadian Pacific Railmy finished? Who were some of the men promineat in organixing the company? What can you my of the importance of this ruilway?
Who were tho builders of the Canadian Nortb em Reailway?
Explain brielly the plan under which the Grand Trunk Pacific is being built.
What is the purpose of the Hudson's Bey Railway?
How many miles of railway are now in opertion in Cinada?
In what ways are the railways encouraing and helping rettlers in the development of the country?

How many passengers are carried each yerr in the Dominion? How many tons of friegtal Name three of the canals which are und to avoid rapids in theSt. Lawrence River.

Where is the Seult Ste. Marie Canal? Hon long is it? How many vessels pass through it in a year?

Where is the Lachine Canal? Welland Canll
Why is the Peterborough lift dock worthy?

Explain briefly the Georgian Bay ship cand project.

Show how the existence of canals has belped the development of the country.

## Trade and Commerce

Inerease in Toroign Trade. The Commercial growth of Canada has kept pace with the development of agriculture, of mining and of manufacturing. An increase in the productavity of a country's industry always means, other things being equal, that trade with ?oreign nations must increase. The reader who desires to study the growth of domestic facilities for handling this trade should read the article on Transportation, on pages 447 to 452. There he will get an iden of the great increase in the traffic, especially on the railroads. Most of this traffic is due to the natural growth of Canada herself, to the demands of one part of the country on another part, but a constantly increasing share is due to the growth of Canada's trade with foreign nations. Canada's exports
have increased about fifty per cent in ten yers and her imports have doubled. The tuble below will give a satisfectory summary d the increase in the value of the foreign trade:

|  | Total Exporte | Total Imports | Toul |
| :---: | :---: | :---: | :---: |
|  | -78.673,490 | - 74.814,399 | 814837950 |
| 1880 | 87,911,158 | -80,489,747 |  |
| 1800 | 00,740,149 | ${ }_{\text {189,62, }}^{1218}$ | ${ }_{3315175}$ |
| 1910 | 801,368,520 | 291,852,092 | ca3;11込 |

These figures show the great increase in viw of foreign trade. Previous to 1890 there mus: steady, but by no means rapid, growth, bothin

## Indnatrios

exports and imports; eince 1890 the increase has beouingruat atrides. The total value of the foreqai trode in 1010 was over three times that d 1800, whereas in the first twenty years of the period the incrense was less than fity per cent. That imports should show - prever increseo than exports is natural in a comparatively new country. Moot of these laports aro manufactured goods which are ecemary to the development of the country, but are not produced by home industries.
Inading Ixportors ind Importers. The interesting question arises, "Which countries wo the leading exporters to and importers trom Canada?" Below are given the totals for Grat Britrin, all British colonies, ten leading foreiga nations and the graod total for exports and imports in three typical years. Coin and bullion, shipments of which are generally the s. ult of other trade movements, and foreign soods retuported, are omitted, in onder that the cetual value of merchandise may be seen:
bealthy growth. An interesting feature is the crowth of trade with China and Japan. In 1900 trade with these countries was practically negligible, by 1910 it had reached a reapectable Agure, and-it weems destined, with further improvements in tranccontinental railroeds and trans-Pacific steamship lines, to offer great opportunities for Canadian industry.
Prinelpal Exports. Canadian exports are almont exclusively raw materials, egricultural, firheries and mineral producta. For example, in 1910 nearly one-third of the value of all exports was represented by acricultural producta, whent elone furnishing twenty per cent ( $852,000,351$ ). The other agricultural products of importance for export are flour, apples and flaxseed. Animal produce representa $253,026,515$ or nineteen per cent; forest products aro worth about seventeen per cent; minerals about fourteen per cent; manufacturers scoount for only eleven per cent and fisheries products constituts the remainder.

| Countries | 1908 |  | 1908 |  | 1910 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Exports | Imports | Exports | Imports | Exp |  |
| Gratt Britain. . | 8127,468,465 | 809,183,915 | \$126,101,124 | 594,417,314 | 8139,482,045 | Imports |
| all British colonies. |  |  |  |  |  | 395,336,427 |
| Argentine......... | 10,881,883 | $\begin{array}{r} 14,605,519 \\ 1,491,666 \end{array}$ | 12,978,666 | 16,280,235 | 15,454,512 | 16,445,645 |
| Belgium. | 1,187,950 | 2,610,072 | 2,264,122 | 872,028 $2,380,649$ | 2,867,785 | $\begin{aligned} & 2,181,554 \\ & 3290,800 \end{aligned}$ |
| Chinn. | 830,488 |  |  | $\begin{array}{r}2,380,649 \\ 727,554 \\ \hline\end{array}$ | 1,840,156 |  |
| Mrance. | 2,110,444 | $\begin{array}{r}\text { 74,68,950 } \\ \hline\end{array}$ | 1,762,832 |  |  | 799,708 |
| Germany | 1,690,907 | 6,907,314 | $1,762,832$ $1,059,891$ | 9,901,009 | 2,601,097 | 10,109,544 |
|  | 636,943 | 1,179,892 | 1732,409 | 1,426,335 | 2,085,760$1,376,807$ | 7,035,230$\mathbf{2 , 0 0 9 , 0 8 0}$ |
| Sputzerland. | 492,275 | $\begin{aligned} & 1,673,542 \\ & 2,012,405 \end{aligned}$ | $\begin{gathered} 734,868 \\ 16,414 \end{gathered}$ | $\begin{aligned} & 2,176,369 \\ & 2,734.779 \end{aligned}$ |  |  |
| United States | 83,516,308 |  |  |  | 65,185 | $2,179,936$ <br> 2,603 |
| West Indies, | 83,516,306 | $\begin{array}{r} 2,08,798,3705 \\ \hline \end{array}$ | 90,814,871 | 204,648,885 | 104,109,675 | 2,603,850 |
| duding Cuba.. |  | $\begin{array}{r} 711,996 \\ 5,895,860 \\ \hline \end{array}$ |  |  |  | 217,502,415 |
| All others. | $2,879,287$ |  | $\begin{aligned} & 1,037,391 \\ & 4,362,37 i \end{aligned}$ | $\begin{array}{r} 633,768 \\ 7,517,085 \end{array}$ | $\begin{aligned} & 2,229,838 \\ & 5,214,484 \end{aligned}$ | $\begin{aligned} & 1,558,886 \\ & 7,912,374 \end{aligned}$ |
| Total |  |  |  |  |  |  |
|  |  | 283,282,204 | \$246,960,988 | \$351,879,955 | \$270,247,551 | 8309,815,427 |

This table shows the relative importance of Cenadn's commerce with the principal nations $d$ the world. In the aggregate value of both exports and imports the United States stands firt, with the British Empire a close second. It mems dear that Canads is importing largely fom the United States, imports from the United States being more than double the exports to that country. The trade with France shows a

Principal Imports. Imports into Canada show a different state of affairs; sixty-eight per cent of the value of all imports results from manufactured products. Of this figure iron and steel products, including agricultural implements and machinery, pig iron, sutomobiles and iron wire, forms a fourth. Cotton and woolen goods, drugs, dyes and chemicals, sugar and syrup are the other chief manufactured importa.

## Induatrios

exports and importa; aince 1890 the increase has beraingreat strides. The total value of the forcion trade in 1010 was over three times that a 1890, wherens in the first twenty years of the period the increase was leas than fty per cent. That imports should show a peester increase than erports is matural in a comparntively new country. Most of these hports are manufactured goods which are necemary to the development of the country, but are not produced by home industries.
Ioadiny Irporters and Importars. The interenting question arises, "Which countries are the leading exporters to and importers trom Canadap" Below are given the totals for Gret Britain, all British colonies, ten leading forign nations and the grand total for exports and imports in three typical years. Coin and bullion, shipments of which are generally the 1. olt of other trade movements, and foreign soods reuxported, ere omitted, in order that the metul value of merchandise may be seen:

## Induatrios

bealthy prowth. An intenesting fecture is the growth of trade with China and Japana. In 1000 trade with thewe countries was practically negligible, by 1910 it had reached a respectablo figure, and-it seems destined, with further improvements in transcontinental railroads and trans-Pacific steamship lines, to offer ereat opportunities for Canadian industry.
Erinclpal Ixposts. Canadian exports are almont exclusively raw materials, egricultural, firheries and mineral products. For example, in 1910 pearly one-third of the value of all exports was represented by agricultural productes, whent alone furnishing twenty per cent ( $552,000,351$ ). The other agricultural products of importance for export are flour, apples and fiarseed. Animal produce represents $853,026,515$ or nineteen per cent; forest products are worth about seventeen per cent; minerals about four teen per cent; manufacturers sccount for only eleven per cent and fisheries products constitute the remainder.

| Countries | 1006 |  |  |
| :---: | :---: | :---: | :---: |
|  | Exports Imports | $\frac{1908}{\text { Exports Imnorta }}$ | 1910 |

## Industries

Coed to two thirds of the value of mineral inports. Canada, it should be maid, exports some coon, but it imports nearly six times as much for use in Canadian industry. The importation of large quantities of agricultural and animal products io a certain indication that Caners will yet be a greater producer of such articles. The vast areas of the Northwest, when properly farmed by a large population, will yield much greater crops than ever before. The present importation of agricultural products is chiefly of grains and fruits, for both of which there are always unlimited opportunities in Canada. The greatest development, however, is destined to come in manufacturing. With abundant waterpower especially in Quebec, Ontario, and British Columbia, and with large supplies of many raw material the next decade will show even greater advances than the past. A special table showing imports into Canada for 1910 is added, in order that the reader may note the importance of each class of products:


## geostions en redo and Oommores

What is the relative value of the export and import trade? Which has increased the moss rapidly?

Which decade since 1870 has brought the greatest increase in aggregate trade of Canada!

Which two countries have the greatest triads with Canada? Name several other nations with whom trade is increasing.

What kind of goods does Canada export? What kind does ache import? What manulto toured products are the mont valuable den of imports?

What part of the total imports comes from Great Britain? From the United States? Prom other countries?

What is the character of Canada's formica trade as a whole? What do you think it will be in the future?

Will the building of more railways increase foreign trade? Why?

8217,502,416

$\qquad$


## Industries
















By Gaxumpaz O'Gruoy, former Kindergarten Instructor in Philedelphia Normal School and Tenchern' College, New York; and Auce O'Gundr, Head of Kindergarten Department, Chiengo

Introduction. Interest in the education of soung children is not of recent origin, and their rivid interest in life and the responsive quality of childhood has always made their training possess much possibility.
The Greeks planned for definite care of children under seven. The Romans invented methods of instruction which should tempt these beginners into paths of learning, and after the etablishment of Church schools the children became proficient in many studies early in life. Indeed, we learn of wonderful pmorigies of kaming during the years of the $\overline{\mathbf{F}} \times \mathrm{r}$ - issance, when three and four-year-old children became experts in Greek and Latin and discoursed piously on many serious subjects. This, indeed, mas the difficulty. The children were regarded as immature men and women and they were
shoved into mental proceseses entirely unfitted for them.
In the seventeenth century Comenius, Bishop of Moravia, instituted a reform in supplying a reading book with pictures for little children and organizing what he called the "School of the Mother's Lap."

He was followed by Rousseau, Pestalozai and many others, who all contributed to a clearer insight into the natures of young children, and to a sympathetic planning for their needs. But it remained for Friedrich Froebel to touch the heart of the noother in the establishment of the kindergarten, or education for young children according to principles of natural growth. His work has spread all over the world and has brought new life and insight wherever it has been established.

## Froebel and the Kindergarten:

Biographical. Friedrich Froebel was born in 1782, in the little village of Oberweissbach, in Thuringia, in Germany. His parents were in friir circumstances, his father being the village pastor, but his mother died soon after he was borm and he was left to the care of servants and $\alpha$ his brothers.
His father married again when he was four rars old, and his stepmother neglected the little Froebel. An uncle, however, adopted him, and while with him the boy received good education, aflection and wise care. He needed these thinge rey much, for he was a sensitive, affectionate, eamest boy, with a lanky, awkward body and a strong vigorous mind, with much contructive and imaginative power. Profiting by
these years of good care he grew through boyhood, was then apprenticed to a forester for two years, and afterwards studied at the University of Jena. He fitted himself for work in an architect's office and was going to Franifort to take a position of this nature, but lost his articles on the journey: Looking for other work, he was offered an opportunity to teach in the Frankfort Model School, under a fine leader, Dr. Grüner. Hers he found his true vocation, and for the rest of his life devoted himself to education. He worked with Pestalozzi for two years, founded a boy's school which was most successful, lectured, taught, read, and constantly endeavored to arouse people to the necessity of a reform in

## Tindergartan

460

## Eindersartion

children called the lindergarten, and was working out a future dovilopment of this for the achools when be died.

He lived to be seventy-one years old, $\cdots$ g married twios, both times to interesting, thoughtful and devoted women. His life was marked by manay hardahipe and a cometant struggle with oppoing clrcumatances; but it was dintinguished throughout by a ainglo-hearted devotion to the cuno of humanity and an carnest purpose faichfully followed.

Curnetor ol Froobolis Fork His works are remarkable in their indistence on requirements for hygienic conditioni, that are wholly in harmony with modern tnowledge, though writtea seventy-ive years ago. He wrote and edited much during his long life, but his bestknown works are "The Eduantion of Man" and the "Mother-Flay Book."
Froebel's educational work was firat carried out with children beyond six years of age, but he gradually realised that he must begin at the beginning, and was just organizing the work for the first years, to be followed by related work for older children, when his life was cloeed. Therefore few people realized that the kindergarten was only the application of his principles to the beginning of education, and was to be a part of an educational procedure co-extensive with growth.

## Educational Principles of Froobol

One of the Firat Principlon. Development is one of the most important of these principles; it might be phrased as "Continuous Evolutionary Growth."
Froebel saw this as a basic principle of the world, and of man's life, bodily and mental. He applied it to method in education in every way he could. He believed that the child's activities and powers, physical, mental, spiritual, have, as plants have, a necessary and natural growth; that the tendency and rate of this growth depend on the kind of nurture supplied, as it does with plants; some being quicker, some slower, some stronger or weaker in certain qualities, so that right education means neither arbitrary control in forced directions, nor wild spontaneous growth. It means such cultivation, following what we observe of the child's needs and nature, as only patient and thoughtful people can give. He believed that such a method would give us a finer type of human beings, and would result in developing the best possibilities of which each child is capable.
ctarting Polat in Edacation. Another pisciple, that of Creative Activity, or Sell-Activis, in a matural accompaniment of the firt.

Froebel reganded the amallert sective power in the child as important, as the atarting point od education. Not only this, but as the apark $\alpha$ divine inheritance, the proof of our being God's children. "God," he myn, "creates and works progremively in uninterrupted continuity." Again, "Think not, mothes, that the almod infinitesimal powers of your child may be neglected. Out of least things, God created the greatest, therefore cherich and encournge your child's feeble efforts to use his power." He


FRIEDRICH FROEBEL
persistently urges that education means the draring forth and training of the child's spontaneovs energy and activity in all right and posible directions.

Proventive of Wrong Activity. Frobel says, "There is but one sure preventive of nong activity, that is right activity; an actinty is persistent as it is fit and lawful, and that is nox of the head alone, but of the head, the heart, and the body." As Col. Parker once said, "The whole child goes to school," but undes obdfushioned methods it was almost a crime for 1 child to be active in school, and teachers would oo doubt have preferred, had it been posisble, 0 have heads there alone.

## Tindergartea

II the matural comeruunce of Froebel's Finciplo, that manual training, gomnatics, art ad muric-in a word, everything that trains and derelope the phytical mature and the emotion as noth at the intellect-ahould form part of educutima.
Vilue at Piay. Play as a valuable agency in mily educution was a natural conclusion from whin belief in rell sectivity, since it was the child's cutieat form of expremion.
Proebel believed play to be one of the higheat, mos wholecome forma of human activity; pritly bocause it is the form of activity in which Whic children and ordinary people are beat able to be apontaneous and creative. He thought the plays of children, if watched and studied, pre nluable hints for training them. He may, "I believe that whatever affords a child a pure (or wholesome) and persintent pleasure, is fouded on a real need." In other worls, that the antive instincts and impulses give true inlomention as to the powers and needs of children, though the need may often be to control and trim the impulse, not to let it run wild.
It in a great mistake to suppose that Froebel thought ererything which is spontaneous ahould be he alone. He says, "All true education hoald be double-sided, prescribing and following, active and passive-positive, yet giving rope." He believed that in guiding play it is paimble to give a valuable social training in smpethy and cooperation, leaderabip and commodehip, as well as in originality.
Ditty Contributes to Growth. Another prixaiple of Froebel is generally spoken of as Organic Unity; by it is meant that as all the purts of a plant have their share in the activity which contributes to the whole growth, so should all humanity contribute, each to the benefit of all.
Froebel felt deeply the relation between all reuted things; he felt that men were dependent on nature, God and each other, and should be thll of gratitude and helpfulness. The child could learn gladly and actively to do his share is what Froebel calls a "Member-Whole" in the world. He is to give care to animals and phats, sympathy and help to his family, neighbors and fellow-citizens, with loving obedience and gratitude to God.
In planning the kindergarten, the latest of his adocational efforts, he strove to invent and sug. means for planting the germ of this idem in de minds of young children-mainly through action, for "Learm by doing" is his guiding rule. But Proebel's most urgent point is, that the
child's life and education should be an organic unity, or natural whole.
As a plant or tree has root, atem, lasues, blomom and fruit, each needing the rex for its perfect growth, so every part of life should help every other; and parenta, leachers, ministers, playmatee, neighbors, should have a necemary and helpful part in all children's development; as the plant grow from the moment the seed life stirs, so each day of a child's life belonge to the whole.

Froebel is most anxious that education and training for life ahould begin in the home; that parents ahould co-operate with the achool, heartily, intelligently. He urges, "Come, let us live with our childrea," meaning, let us ahare their play and have them ahare our more serious purruits, let us enter into the apirit of childhood, and so lourn how to teach children.
Fian of tho Indorgarton. In his kindergarten, or child-garden, he plans for something of the order and grouping of the communityaction of the achool; and with this, come of the training in language and manners, the play and exercise of the senses, the moral truining, the free movement and the happiness of a good home.
The games are simply physical exercise, the preliminary to eymnastics; the hand work is the beginning of manual training; the songs, stories, verses and conversations are the beginnings of literature, nature study, civics, and moral teaching; the touch, ear, eje and mind are made more alert and ready for the work in reading and writing; the experiments with simple objects in contrasts of number, mensurement and color are a basis for science and arithmetic; while the child's love for his home and his parents, and his duties to them as well as to teachers and playmates, are emphasized.

Frat Training in the Eome. Training, that is, seeing that the right thing is done over and over again until it becomes a habit, is especially the office of the home; for the younger we are, the more plastic we are in forming habits. Every day that a garment lies folded inakes the crease deeper; so every time we act a certain way, the habit gets more set, and every day a child is not forming good habits he is forming had ones, for the wrong way becomes more set, if the right does not. (See James' Talks on Psychology,
Chap. VIII.)
So a child should carry with him from home to kindergarten habits of obedience, cleanliness and politeness and the habit of attending when he is spoken to. Above all, he should have the

## Thiolorgatian

habit of mappines and good humor. For this is habit, too, and can be made matural to a child, evpecially by example at home; for goung child. ren learn more by imitation than any other way. If in addition the child has become interested in observing what be sees, has heard some pleamant childinh rhymen and nevries, and hai been given toys such as he can artange, take apart and put togecther by himsell, not mechanical ones, he will enter earily into kindergarten activitien. One warning must be given; neither home nor Kindergarten muat puish or overnimulate growth. It mus never be hurried.

Edorameos. In the references given there is no attempt at a complete list of Frocbel's atatoments on any point or principle of education; - fow only of the most definite statements on each subject are mentioned, with a fow similar or related views from other educators and paychologists.
See Education of Man, pp. 8, 17, 27, 29, 194,

288, 820, and A Study of Child-Nature, in Elizabeth Harriwoa, chapter on "The Triining o! the Intellect." Froebel's Matuon and Com. montaries on MothenPlay, pp. 108, 100, $201,307$.
See Eduation of Man, pp. 30, 34, 39, 71, 75, $00,107$.
Froebel's Nottoes and Commenlaries on Mother-Play, pp. 27, 153, 213, 207.
See Mottres and Commentaries, Pp. 67, 50, 108, 127, 293, 204, 296.
Read Education of Man, pp. 29, 255, 00, 107, 114; Mottoes and Commentaries of Froebel's M cther-Play, pp. 26, 20, 250, 225, 297.

James' Talle to Taochers, Chapters VI, VII, X, XI, pp. 123, 146, 147, 235, 241. Education and the Larger Lift, C. Hanford Henderion. Esay on Childs: Play, R. L. Stevenson.

Love and Law in Child-Training, Emilie Poulson.
Froebel and Self-Actvity, Chapter III; Bowen. Payohology of Childhood; Tracy.

## The Relation of Child Training to Natural Impulses and to Habits

Eabit. We are all, as Professor James says, bundles of habits; Americans prefer chairs to sit upon because it is their habit to do so; that is, they have done it every day of their lives since infancy and have done it thousands of times; their muscles and nervous system are set in the habit, which makes it a discomfort to sit on the floor, as the Japanese do. With the latter it is just the reverse; and in early childhood it is possible to make either habitual.
Going to bull-fights and seeing wounds and blood without distress has become habitual to many Spaniards; traveling on skates for long distances without fatigue has become habitual to Dutch peasent women; carrying baskets on the head, to West Indian women. Neglected children in the street get the habit of swearing; well-cared-for children get the habit of being shocked at bad language.
Instinet. Instincts are things which we do without being taught-laughing, crying, grasping things, using our senses and limbs. Every natural impulse and iustinct has a stroager tendency to repent itself ene it is used, if not checked by unpleasant consequences; "repetitions form habits, hasits form character and charreter forms destiny." But the crucial point is that instincts can be trained; the grasping can be trained into right ways of handling knife and fork, the hearing
into listening with attention to certain sounds and neglecting others, and so on through the whole range of instincta.

A mother taught her little girl to look awy from the advertising posters of theaters, ecc., fearing she might see harmful things, and the habit persisted all through life. A baby whooe mother pui his hand down from his mouth every time he tried to put buttons, etc., in it, had learned at aine months' old never to put anjthing in his mouth . «spt food.
"Mother," says '" .bel, "you can now by a slight effort do fo. : ur child what later all your powers will be is ficient to accomplish. Hom eagerly (young chldren) begin to share in what father and mother do. Be thoughfful, be cartious, O parentsl You may destroy, at least for a long time, instincts of activity in children, if you repel their help. Their minor power is aroused, but they do not know what to do with it; it becomes a burden to them and they are fretful and indolent."

We have seen children of good ability corstantly made to be quiet and inactive, because their parents disliked noise and the trouble $\alpha$ guiding and attending to them. They beatite in time dreary and lazy, so they could hardly concentrate on any effort; they were undilifal and awkward about household matters, hasy at

## TAadorgarten

stool, umoouth in maners and afriid of social frections, becuuse they had been reaticted from, mand of trinined in, the hables needed top these.
The Guld's Iataral Impoleo. A child's maural impule in towand setivity of come kind; it depends largely on Its murroundings, parents and playmater, which direction its activity In action, apeech or thought shal! take, and into what habits it will cryatallize. A scolding mother, who allowa her children to imitaw her tone and words to brothers and nisters, traine them In the mbit of woolding; a mother who caresces and apeaks gently, and reminds her children to do a, formia gentle hahits in them. A mother who imints that her children shall wash their hands and froces before meals trains them to the habit.
"Wo must make automatic, an early as posable, an many useful actions as we can, and as carefully guard children against growing into dindrantageous ways; we are bundies of habits, imitators and copiers of ourselves." (Jamea)
Toedoney Towards Letivity. Froebel is constantly urging in his "Mothers' Book," or Mothr Play, that children naturally tend toward actinity, therefore we must show them wholesome actions and let them pructice them; that they tend to imitate, so we must watch ourselves and
leach them to imitale good thinga. They wonder, are curious ; to wo must give them Interesting and wortb-while things to notice; they like to handle, take apart, and put together; therefore give them materials and show them how to make thinge.
1 will quote agaln on this mubject from Jomen, the great puychologiat:
"Constructiveness is another great inetinctive tendency. The more different kinde of thinge a child gets io know by treating and handling them, the more confident growa his sense of kinshlp with the world; the wise education from the kindergarten up takes the tide at the flood, and devotes the carly years to trining in construction and object tesching."
Whon to Dovolop Inatimeter It is now known that certain Instinctes appear at certain times of life and if not used and trained then, may fade and become uselem, or almost so. The child's tendency to handio and construct is one of these. One of Froebel's merits is that he seizes the right time to train the child's senses and instincts. It is found In training the hlind that the finger tips seem to lose wome of their sensitiveness after a person is six or seven yearn old, and that those taught later are not so quick to learn. Manual work, the sense for color, etc., are things to be begun carly.

## Description of the Kindergarten

Attrective and Ploacant. A kindergarten is so pleasant a place that at first one can hardly beliere it is for anything but a play-room. The mills are generally of a soft tan, green oz grey, with plenty of pictures; there are flowers in jars
and plants in pots; there is a piano and a sandand plants in pots; there is a piano and a sandlable; and the furniture is just right in size for the small persons who use it. There is generally - globe of goldfish, and sometimes another with ind-poles, snails, or curious sea creatures in it; here man be a glass box, or a terrarium, where atepillars and butterflies, or toads and beetles ve; indeed, any pet which can properly be kept Indoors may be found in a kindergarten, and therever it is possible, there is something of a arden outside.
When the children come in, one sees that the mall people have responsibility as sell as pleasPr; from four to six years old, they hang 5 their hats and wraps neatiy, the hooks heing thesthin reach; then, while scme find playlines, and use them, othiers help in arranging el litte chuirs in a ring, or they dust the room, -d the fishes, and water the plants, unless some
other time is appointed for this. Perhape there are forty children in the room before nine o'clock, and they are free-no one is directing them; hut they employ themselves happily and peacefully.
At nine, a chord atruck on the piano is suffcient to bring all to their places in the ring. Songs of greeting are sung, the day of the week. and month is told and marked on a calendar; hits of home news are given by one or another; then a conversation or a story is begun on some topic suggested hy a picture, or by some experience which is important for the children, the teacher guiding the talk, yet allowing the children to express their ideas and ask questions. A few more songs are sung and then each child carries his chair to its right place at one of the tables.

Pian of Exorcises. A short period of running, skipping, or other exercise follows, for the day is carefully planned to alternate quiet with active times; and then there is an orderty march to the tahles. Here are balls, large and small and of different colors; at another table there will be hlocks, simpler or more varied in comhination, larger or smaller, according to the age of the
clilidrew and the time they have been in Hindorgariea; of thewe be sticks, seode, shellis, stage, den, for makling outline pin turm, All must bo them our and put away in orderly fachion; bot the work may mary forminy may; the material is edapted for experiments which bring to the children's notice con'masti fo color, in shape, dise, soughnees and moothrres, in scund and wight, but the play of thr ctiddren and what they sugenet is either life stirt it point, or they ars allowed to play $f:: 1$ !. with, "alter the tancher has guided the firy ! sui of Uni" period.
 what the others do, ast $k$ ghin n:w ideas. Sormetimen several childre, huild $i$ verign to gether. Next comeo hillf ar thur of petive games, Where coanideration for other bat is. inteny are emphaised, as well an fur. i. ir th. intr. "f be a rest, or a little lumeho is where th en' 1 , st are taught to give thank: a dr wo wite.

Hall an hour of handwork succea; ; 11, then all come trgether to ahow what they have wne and to my good-bye. On mitaln duys, walisa may be miken to the parke to notice birds, etc., of to see a market, a blackomith abop, an enginebouse; the converation afterward helps the little ones to understand how other people work for their comfort and protection, though only the simplest of such experiences are used. Somotimes when pictures of the cow and the farmer are the topic, the children make a little butter in a toy churn or glase jur, so ass to get a little way toward understanding some steps of the wonderful process in which nature's forces, man's labor, and Providence work together to provide food and convert it into our growth and strength. They learn to follow the courne of the seasons; to notice the provision birds and animals, as well as human beings, make for their young and against the weather; and to trace all gifts and all power back to the love of their Heavenly Father. Of course, some of this can be done at home; but neither so systematically, nor, as a rule, with so much training in habits of attention, as when with other children. There are many interruptions at home, and too great attention is paid by the adults to the one or two children.

In kiadergarten each must behave well, and attend, because it is the law for the whole group; the antitude is, "We are all partners, we can all make pretty things for the room, we must all do our share in taking care of things; we must take turns in talking, in choosing games or stories; no one must be too noisy, or too push-
ing, became is prevents ofbern bearing or ewing, or haviag a good time." The discipline is on this hades; anyone ahould apoil anothet's woth, the children will cell you, be must put if righe again of give hin own piece of work to the other child: U anyone is unkind and makes his neight bors uncomifortable, he muat dit by himself until he can be plememnt again. "There is one hed right for all, which both you and I must otere," Is Eroobel's principle.
Etadorgartea fugplitos. Froebel's hasen of blocks and otber playehings and occupations for children are numbered in arien, and the lista and deacriptions of them may be found in the catalogues of the Milton Bradiey Company or other kindergarten mupply housen.
it is not advimble to buy them indiscrimiwitily for home use, as they cannot be very much used without a regular course of instrue tion. A lint of those which are moot undul in the home followa. The catalogue numbers are those used by the Miton Bradiey Company, Springfeld, Mass.
Bradley's Kindergarten Supply-Houses are found in Boston, New York, Philadelphis, Atlanta, Chicago, Kansas City, San Francisoo. Springield, Man., and Toroneo, Ontario.

## 3-A, Thind Gift <br> $4-1$, Fourth Gift <br> Blocks

2-B, Second gift, blocks of three shapes in bulk, is desirable, but expensive. The price is 55.00. The Hennessy blocks are a useful set for the home.

Parquetry papers, for arranging and parting in dexign.
2002-Ameorted package to be usell with parte.
3003-Gummed pieces, to be used with water.
Stodder design cards for sewing with silkaline; assorted.

Mrs. Kraus' booklet on Sewing Without a Needle. E. Steiger Co., New York.

Shoe-lace sewing cards for very young children. The laces are colored and sold with the cards. Paper for folding forms;
204, 210, 211X, 213E, 217X.
Blunt-pointed scissors.
Hailmann wooden beads for stringing on boo leces, Nos. 464 and 470. Thesce are in six different colors, and there is a gross in a box. They give great pleasure to children.

Peg tile 474X; and pers 472X. The peg tile is a board with rows of holes in it, into which pegs of dififerent colors, are stuck in patterns.

Boxes of word- and sentence-building tables, number tablets, etc., are an amusement to chir
$\qquad$


## Iindorgarton

dea who have learned their lettera. But they can also be made at home. These last are not Proebel's miterials

## The Iindorgaston Gifte

Powor and Oontrol. Froebel always chaims that education ahould leed man to freedom. By fredom it is evident that he means the large and varied control of power, which is attained
"Did the trees look just the same as they did last week ?" (In spring or fall.) In this way you contrive that his thought shall become definite, by limiting to a cestrin degree what he shall think about.
The kindergarten gifts are an example of this kind; and they cannot be successfully used by a mother or by a teacher who has not been trained in their use, because only one who has learned

2

3

$11-1$
5


4


7



picture-making material
i-ITres; 8-2_Water; 3-Tents; 4-Mountains; 5-Necklace; 6-Postboxes and Telegraph Poles; by acting under various conditions of limitation, unail one has mastered each condition; for instape, as a gymnast gains power by training all purts of his body. How limitation helpe a child may be seen in questioning. If you ask, "What did you see when you were out today!" there is no real thought demanded; something may come up which has no value. But ask, "What kind of animals did you see?"
"How many things on wheels did you see?"
"That were the people (or the birds) that you
their various limitations intelligently and experimented under them, can help children to achieve the interesting results which are possible.
Of course, children will play with them, at any time, because they are first of all playthings, but the plays will be hap-hazard.

The Gifts. The first gift, soft wooken balls of six colors, is intended to bring out the contrasts of color and of movement; the children learn to roll, toss, bounce, and swing them (the balls having strings) rhythmically; and the colors are emphasized by opposite or alternate children

## Tindergarton

baving dififerent colors. By-and-by, plays where the balls may represent fruit, flowers, etc., being sold, or where various colors are called for to be rolled in turn, test the children's certainty of color, as well as their certainty of aim and control. The little songs which describe the action may be found in kindergarten music-books, and will enable mothers to use some of the play.
After these, the ball games should be continued with rubber, celluloid and other balls, of different sizes and weights, for each gives a new test of skill and control. A good game for children who can aim well is tossing balls in turn, into an open box or basket; or rolling them to hit some object in the middle of the floor.

Froebel always p!ans that after cach gift has been well mastered, the same plays shall be tried with other things, rather like them, but such as can be found among common objects about the house, and ordinary toys. In other words, the things he or ganized are meant to be a key to all sorts of possible use and mastery of other things in the world.
The soft balls are succeeded by hard balls, blocks of diffesent sizes and shapes, and flat materials, suitable for making pictures and designing patterns; and after two successive kinds have been mastered separately, the two are used together, so as to give a larger quantity of material and new opportunities. At any time, two or more children may use their materials together, if they wish, either to make the object larger, or to complete something, as a house and barn, tabic and chairs, church and steeple, etc., or to carry out a pattern, which may extend all round the table.

Each gift h 3 its own contrast, and is best suited to certain things; the children's discovery of these and their success in making new inventions is the test of the freedom they have gained by trying to achieve things in spite of the limitation.

The "picture-making" material can be used at home; not only the regular sticks, but pine twigs, stripped of needles, and leaf stalks may be arranged in very pretty pictures and designs. Leaves, also shells, greins of corn, beans of different colors, pebbles; sceds of pumpkins, water-melons, citron-melons; glass and china colored buttons are very pretty, used in this way. The page of material suggested for drawing designs will do for sticks or twigs also.

The outlines given are for suggestions, not for copies. Childıen's expression of this sort is much like the early picture-writing of savages,
and is not meant to be perfect representation By repetition with colored chalks along a stip of paper, or with strips of colored paper, pasted on patterns on white, this leads to the beginnings of design. The children should be encourged to originate freely.
Stories may be illustrated in this way, but little children will not care to do connected things at first. Drawing of this kind may be follomed by drawing "borders" with the colored chalks, on paper towels and paper ne akins; druxing pictures for the doll's house, to be framed in folded paper; decorating paper plates and cupa to be used for tea-parties; and making original pictures to illustrate the seasons and months d the year, fairy tales, dreams, etc.

## Kindergarton Games

The Nocesalty for Play. Gross says that young creatures do not play because they an young, but they are young because they mas play, in order to be well fitted for the energy and effort required in later life; so, mothers abore all things, plan that your children may hare place, time and companions for play-for it is a dismal thing to play all by one's sell. I once talked with a woman who said: "There wee seven of us at home, but we were never allowed to play in the house lest we shculd make disorder, and we had no place for it out-of-doors. We are now a set of wretched, nervous, mortid people, and we have no love for our home, nor wish to go to it. My mother cannot undestand it. My youngest sister," she added, "told me that when she came from school on dark winte afternoons, she used to run around and around the block as hard as she could so as to be able to sit still when she got in."

Find a Place for Play. But how are weto find a play place if we live in cities and in smal modern houses or flats? If it is not pasibibe to give up a room to the children, have one rom where there is as little unnecessary furniture as possible, and where what there is can be mored into corners and put out of the way, for at laas part of the day. Have a straw rug to spreed ea the floor and a large cupboand where the phy things are kept. If there is a gallery or baloung which can be glassed in or screened in with canvas, for fine weather, or any place out d doors, where a playhouse can be put, it is bette than having the children indoors; but if not, $2=\frac{1}{x}$ if there is no yard, supplement the indoor romem by walks and afternoons spent in the nerrax park.

## Indergarton

Benvie of the hrger space for play and for company, children in kindergarten get experiences in games which are hardly possible at bome.
Rocommondod Gamos. Froebel's games are of many kinds: Ball games, "sensetraining" ames, partuer games, where the children skip or dance by twos; "courtesy" games, where boving, or some other expression of pleasure in meting is the point. Running, hopping, chasing, all kinds of childish activity-marching as soldiers, playing at "blacksmith" or some other of the many imitations of workmen which children love; and animal games, not only playing "horse," but any animal or bird in which the children are interested. All these are induded. The triple value is, first, that the child's attitude towards his playmatcs must be just and fair, "taking turns" in leadership or in following; second, that a large and varied series dphysical activities exercise his body and limbs, rith the happy feeling of play rather than drill, and last, that the spirit, especially of the "repreentative" games, is one of loving, kiudly reogaition, of the helpful attitude of persons and things towards him, and a better understanding d them. However, most of these games require a hre, group of children; only the "finger gunes," ball games, and "sense" games can be rell played at home or with very few children.
Fingrexgames have been played by mothers, widh littlc ones, almost since history begau.
"Here are Mother's knives and forks;
"Here is inothor's table;
"Heere is Mother's looking-glass, and
"Here's the baby's cradle."
This teaches a child to separate his fingers and close his whole hand in different ways; thus getting control of it; while the little "story" ot home life gives meaning to it.
"Puta-cake, baker's man," and "Pitty-patty polt, Shoe the wild colt," call the child's attention to activities of people about him.
The best series of finger-plays, with directions lor pheving, is by Miss Emilie Poulson.
Seme Gnips. These are easily played at home, and from one to any number of children can phy them. They are used to exercise and mike akert the five senses, and are extremely mimpatant br backwand children
Por Toven: The child shuts his eves or is thindoted, and something is put in his hands that he may guess the name by handling. If
the gueas is right, the playmates clap the guas is right, the playmates clap. The the of this game can be increased by giving
things which contrast with each other in some point, successively or on different days; or several objects connected with some one occupa. tion, or with some experience, such as a visit to the park.

For Hearing: As before, the child is blindfoided and listens to sounds, guessing them; the voice of someone behind him, the sound of metal, wood rapped, paper rustled, stamping on the floor, water being pourerl, a bell tinkled, etc.; the winduw may be opened and the child asked to tell a sound that he hears. Voices may be disguised by letting the children speak very high or low, sing, or imitate the cat, dog, etc.
Tasing: The tastes should be contrusted and given in connection with different occupations and interests. Froebel intended warnings against hurtful food and unripe or over-ripe fruit to be connected with this game.
Smeluing: The scents of flowers, fruit, herbs, etc., are to be distinguished; with very young children, only two or three very familiar flowers should be used at first; when the mother takes her turn, she will be surprised to find how hard it is to recognize scents or tastes with eyes shut.
Sering: The best form of this game is to choose some familiar object, such as a toy; then let the guesser turn his back or leave the room, while it is put in some unusual place, whic': :' "sharp eyes" are to find, when he returns; some familiar thing may be hidden, and he must tell what is gone. This is too hard for very young children, until they have been used to see others play the game. Songs accompany the games in kindergarten and add to the interest.

## Story-Tolling

## 4 Powertul Factor. Froebel makes stories a necessary part of elucation; and who that

 recalls his own childhood does not remember the delight of hearing stories ?It is a powerful means of influencing children, for the story seizes on the child's imagination, and the vividness with which he pictures it aids his memory in retaining it. Moreover, the happy recollection of the "Story-hours," by the natural process of association, lends an additional charm to the time, the place and the person to whom the memory is due. It is a means to strengthen the bond with home and with family affections and influences.
Story-books in plenty there are now, but the story read can seldom hold the attention of a young child as well as that where the eye and tone make a direct appeal to him.

## Itndargartan

U choot stories are told at fret, the child will be sure to ank for them orres and oves, and oven It the torytellior hee mot a grod tymory, the prectice and supedition will quicty improve it. Firsact Ihymos. Children of three and four years ofd like nursery thyme bet, such as "Motics Goose", and the relation of simple incidents ntikh have happenod to themedres. The risit to grandmother's; the welk in the pari; going to the 200 and weeing the animalb; the brithdey, etc. If courrge is hecking to originate the composition of theee, the "Arabello and Arumints" wories, and the Reggie and Roggio storioe, by Gertrude Smith, are excollent models, until coanfdenoe in gined. The recall of amall detrils, which mean so much to the amall perron, in whoos lite the experience was a great event, murt be practived.
Atere the firt wory has been told, and the toryteller has ween the bright egee dance with plosurure and has heard the enger little voicos my. "Tell it agian," abe or he will be gled to try it often.

Wirk Dranatio stroet. The stories should be chort, definite and bright; au far as posesible they abould be told dramatically; in The Throe Bearr; for instance, it is important to give the big, grufi roice of the Big Bear, and the tiny voice of the Little Bear, even with exaggeration of tone.
It is, of courre. not deimble to emphasize idens which are unwholesome for a child; but the occanional tragic denth of the bed character in the old chassic tales, or even a seeming tragedy for the good hero, who is sure to come out right in the end, is not to be eliminated. Virtue rewarded and vice rebuked, in strong contrast, are characteristic of primitive tates and primitive states of mind. It is the general result, not the particular feeling, which a child holds in mind.
Thinds of storios. Children are generally ready for fairy tales when about five years old. Imagination is aclive and needs food; wonder is alive, and has a needful part to play in rousing thought and fancy. A child needs the contrast Of the new and the familine, the strange and the natural.
Animal stories are always loved and Bible stories never fail in their charm, it begun early and followed out continuously. Froebel warns us not to explain or urge the moral of a story, but mither to tell it so earnestly and often that it makes a deep impression, and the child will gradually realise the moral ideal.
It adds much pleasure when the incidents or
chanction ana be reprodued by dravigg a pappre cutine, and they many aleo be dramtiond by the chiridren, at timea; it is best to wit for this till they sbow inclimation to do it. Stories athould give good standard and ideallo in languge. sacll wo in thought, and sbould not be too much simplified.

## The Three Bears

Once upon a time there was a little girr mamed Goldiocks, who lived with her mother near a great wood. One morning Goldilocks ma out into the wood without anking leave from ber muther, and abe ran on and on and on, till sbe became very tired. At list abe min a little house Now in this house three bears lived, a Guther bear, a mother bear, and a little boy bear. That morning the mother bear had made porridge for their brealfant, but it was too hot, and while it was cooling they went out for a walk in the rood. They left the door of their house open, for they were good bears, and never thought that angbody would touch what belonged to them.

Now, when Goldilocks siw the door open, the thought she would go in and rest for a while So ahe went in, and on the table she wir te three borls of porridge; a big bowl for the big father bear, a middle-sized bowl for the middle cined mother bear, and a little tiny bowl for the little tiny boy bear. Goldilocks was very hrugry, 80 she tasted the father bear's porridge, but it was too hot, and abe burned her mouth. Tha abe tasted the mother bear's porridge, but that was too cold, and then she tasted the litte boy bear's porridge, and that was so good that the ate it all up, and left none for the poor little bar.
Then she went into the parlor, and there ite gaw three chairs; a big chair for the big tuba bear, a middle-sized chair for the middlesind mother bear, and a little tiny chair for the litite tiny boy bear. First ahe sut down in the futher bear's chair, but that was too high; so ste gat out of that and sat down in the mother bar's chair, but that was too low. Then she at dom in the little boy bear's chair, and that was just right. But she jumped up and down in it, so that at last ahe knocked the bottom out dit and the poor little loy bear's chair was brita
Then she went up stairs, and there she sir three beds; a big bed for the big father batr, 1 middle-sized bed for the middle-sized moter bear, and a little bed for the little bop bar: Goldilocks was very tired by this time, 00 to thought she would lie down and take a mp First she climbed into the big father bar's bed,

## Eindergarten

"Someborly has tren lying in my bed," suid the big iuther tent in lix lyg nough, gruff viee.
"Somuchety thas beon hyig in my Inal." wait the midtle-sized mother hent in her middlemand voice.
"Somethaty hax teen lying i:n my tav!," said the little tiny boy hear in his litue tiny wise: "and here she is."

Now, when Gottilochi heard :he cruers of the thrue bears, she wohe up. Aul when she ww them all by the side of lier lual bixinng at her, and monembereyl how naughy site hul inam, the Wax very wuch frightened; she jumperi witt of



Patatanet has Inen maing my porridere," Fatace tiry hey hear in his little tiny 7athoo tates is al up." Aurl the pown

in arm the purlor next, and there A. is erate. elparss whidy were pushed not =- twe inen sittion in my chair.' a - ther luar in his hig mugh, grulf

Catwert sitine in my shair.
 (a)

- $\because$ trefy miltue in my chair, and an. Sit the paris hate tiny toy bear

 coult, ant she ran straigh hone to her nowher. And ufter that she never went ant indth the nemals withone asking her mouber first, and .ho never
 things, without asking lease.


## The There Tithy Prga

Onee mpan a titue there wore therye ting piess. and they wem sut to wet their foworm. [? first little pix med a wan wioh a bundico of fro branches. mul he suil:
 hotse with, herause I have time ec live in."

In the than gave him with firs, ant he huilt a nice chuse. But prowety the wolf came atong, and he hrocketh at the down and sind:

Vat was too hard; theo the got into the Hhoind molber bear's bod, bet that was too aiti at hat she got into the little boy bear's Whed that was seo comfortable that the vory min laxt adoep.
Yine the beans came home, and they weat into winhen to eat their porridge.
"Somebody has been cating my porridge," 41 the big father bear in his bis rough, gruif $\min$
"gumebody ha been eating my porridge," H1 the middlo-ised mother bear in her middioint vice.
"Somebody has been lying in my bed," ald the big inthor bear in his bif rough, groulf voice.
"Somobody has boen lying in my bod;" mid the middlo-sised mother bear in her middle-rised reice.
"Somebody has been lying in my bed," mid the little tiny boy bear in his litile tiny roice, "and here che in."
Now, when Goldilocks beard the roices of the three bears, whe woke up. And when ahe mer them all by the side of her bed looking at her, and remembered how naughty ahe had been, athe was very much frightened; she jumped out of

ymabody bas been eating my porridge," I D litle tiny boy bear in his little tiny ix, "und has caten it all up." And the poor Whar began to cry.
St they went into the parlor next, and there If ant the three chairs which were pushed $*$ *I thir places.
"hantody has been sitting in my chair," Whe lig facher bear in his big rough, gruff Sancbody has been sitting in my chair, 4 andle-sized mother bear in ber middle41 wice.
Sorivedy has been sitting in my chair, and Whoten," said the poor little tiny boy bear 19itite tiny voice.
ITMe bears went upstairs.
bed and ran down the stairs as fast as ever she could, and she ran straight home to her mother. And after that she never went out into the woods without asking her mother first, and she never went into anybody's house, or used anybody's things, without asking leave.

## The Three Tiny Pige

Once upon a time there were three tiny pigs, and they went out to seek their fortune. The first little pig met a man with a bundle of firbranches, and he said:
"Please, man, give me some firs to build a bouse with, because I have none to live in."
So the man gave him some firs, and he built a nice house. But presently the wolf came along and he knocked at the door, and said:
"Ning fito tiny gito in tre onem ta." But to Pis mid:
"fivo, ma, by the tiair on ny chiny -chin-ctio." Then cild the welt: "I' hufl and III pelf and III how your howe in." So mo buted and be prifed and ho blow the houes ha, and ho ate up the tiay ples.
The next littlo pir mat a man with a bundle a stiches, and ho mid: "Pimes, man, dive mo one atiels to build a boveo, for I have nome to live fin." So the man gave him some aticke and ha buili a hoves. Prowatly the woll came alogs, and he loocked at the doop and the mild: "Tiay phe tiay pis, lot me come in." But the pis Fad: "No, mo, by the hir on my chany-chls.
and be pulfed and ho laned and to men but be coulda't blow the houme in, for it m too ctroag. Thm to mid: "Ilay pie. I trm
 "you like, III thke gou there to gut come."
"Where is it $7^{\prime}$ ' mid the pls.
"Down at Mr. Brown's farm," mid the wle "III come for you tomorsow moraing."
"What o'clock ${ }^{\prime}$ " ald the pis.
"At is oiclock," mid the wotr.
So the pis got up very easty, at Eve odah, cod went to Mr. Brown's tarm; be got a inn bag of turnipe and carried them home Tla the woll cane aloag and mid: "Tiny pit en you mady"


chin." Then the woll mid: "I'Il huff and I'II puff and I'll blow your house in." So he huffed and he putied and be blew the house in, and he ate up the tiny pig.
The third little pis met a man with a lood of bricke, and he nid: "Please, man, give me some bricks to build a hove, for I have none to live in." So the man gave him some bricker, and the pig built a nice, strong bouse, with a door and a window and a chimney. Prevently the wolf came along, and he mid: "Ting pig, ting pig. let me come in."
But the pig mid: ' $N$ o, no, by the hair on my chineychin-chin." Then the woll mid: 'III huff and ITI paff and I'll blow your house in." Se be hufied and be paffed, and be hufied
" O ," mid the pig, 'I went long apo mid brought the turnips home." Then the woll id "Tiny pig, I know where there is such a in pear-trea"
'Where is it ${ }^{\prime}$ ' said the pig.
"In Mr. Sweet's garden," sid the roll, "wl if you like, I'll come and take you there tomonm morning."
"At what o'clock ${ }^{\prime \prime}$ " said the pig.
"At five o'clock," said the wolf.
So the pig got up at four o'clock, and rat down to the garden and gathered the pea But they were so nice that he began to en vem while ho wis up in the tree, and prevently le mis the wolf coming. He was very much frighanh but he called out to the wolf: "I'll thron m

## Thelergarton

dow cure pran," and ha throw thoan overy lay wif cil. Thma, whlle the woll was rumaing - fou the pars, the ple cerambied down from tue and ma houm as fact as ho could.
Tha the woll cave back to the pis's houso, nod mid: "Tiny plo, there in a fatr at Merrytwin tomerrwi and y you like ITI come and $p$ wilk jous."
"At what oflockp" mid the pis.
"As four ofclock," mill the woll.
So the ple por eyp nary, at three o'clock, and mas to the the at If erryiown. Thow he bought
grain of Whant, to the thoughe cho would plant it and heve mose whent.
Whe"ll holp me to plant it ${ }^{\prime \prime}$ " aid the litth red hen.
"Not I." mid the cnt.
"Not I," aid the reth
"Nor I." mid the dog.
"Not I," sald the pig.
"Then I"I plant it myrelf," sid the little red hen. So she planted If. Then she planted anore. And by and by the whent grew up. And then is was time to cus the whent up And

"Who'll mat the mazad?" aid trie litile med hes

- bice new churn, and he set out for home very man, for fear of the wolf coming. Just as he got to the top of a long hill he suw the wolf at the botom, so he got into the churn and it rolled our and over and over, down to the bottom of the hill. The wolf was 80 frightened when he mif coming that he turned around and ran to the woods as fast as he coulid, and after that he sover lothered the pig any more.


## The limil Red Hen and the Grain of Wheat

Once upon a time there was a little red hen, to was erntching and scratching in the ground To ber living. And one day she found a
"Who'll help me to cut the wheat?" aid the little red hen.
"Not I," said the cat.
"Not I," said the rat.
"Not I," said the dog.
"Not I," said the pig.
"Then I'll have to cut it mysell," said the little red hen. So she cut it down, and then it was rcady to be threshed
"Who will help me to thresh the wheatp" said the little red hen.
"Not I," said the cat.
"Not I," gaid the mat.
"Not I," said the dog.
twis ane pares" and to throw thean a wery by my ef. Thea, whib the woil was running to in the paas, the pis scrambled down from the tree and ma boum as lact as be could.
Then the woll came beck to the pifis house, ad mid: "Tlay g', thero fo e falr at Mexy: twa troncow; and ill you like IIll come and $^{2}$ prith yous"
"At what oflockt" nid the pir.
"As four o'clock," rall the wolf.
So the ply pot upe carly, at three o'clock, and

grain of Wheat, so she thoughe she would plant It and have more wheat.
Wholl help me to plant It $7^{\prime \prime}$ mid the little red hen.
"Not I," mid the cat.
"Not I," mid the rat.
"Not I,", said the dog.
"Not I," mid the pig.
"Then I'I plant if mywell," anid the little red bea. So abe planted it. Then ahe planted more. And by and by the wheat grew up. And

"Wrio'ls mat thi brandt" mid this circh red hien
a nice new chura, and he set out for home very man, for fear of the woll coming. Just as he got to the top of a long hill he saw the wolf at the bottom, so he got into the churn and it rolled our and over and over, down to the bottom of te hill. The wolf was $c o$ frightened when he an it coming that he turned around and ran to the reode as fast as he could, and after that he sever bothered the pig any more.

## The Little Red Hen and the Grain of Wheat

 Once upon a time there was a little red hen, the was cratching and seratching in the ground to ber living. And one day ahe found a"Who'll help me to cut the wheatp" mid the little red hen.
"Not I,' said the cat.
"Not I," and the rat.
"Not I,", sid the dog.
"Not I,' said the pig.
"Then I'll have to cut it myself," said the little red hen. So she cut it down, and then it Fas ready to be threshed
"Who will help me to thresh the wheat $p$ " said the little red hen.
"Not I," said the cat.
"Not I," said the rat.
"Not I," said the dog.

## Itrangerte

## Thatergutien


"The IT trent if myole," mid the livie
 st mad to bo tuken to the =ill to bo croved.
"Wholl halp carry it to the mill $\mathrm{r}^{\prime}$, mid the liuthe red wes.
"Not 1," mid the cal.
"Not 1 ," min the mat
"Not I," mide the dog.
"Not 1, " nald the pis.
"Than ITI crrey it myouls," mid the little red. the so the what mise ground into flour at the eill. And the littlo red hea corried it home. And thea if mos io bo beled into brend.
"Wholl halp make the breadr" suid the litle nod hen.
"Not I," mid the cat.
"Not $I$ ", and the mit
"Not I." mid the doyer
"Not I," mid the plg.
"Thei ITI bake it myult," and the little red ben. And by and by a mice round, brown, crunt loof came out of the oven.
"Wholl at the bread?' mid the little red then.
"I will," mad the cat.
"I min," mid the mi.
'I will," nid the dog.
'I will," mid the pig.
"I will eat it myentr," mid the little red hen. So she carried the loaf down to the corner $d$ the barayurd, where all the other little red hene were, and they all had a fine dinnee. But the at and the mit and the dog and the pig had none of it
The Two Green and Clitering GollLChafors
A goldechaler is a very bright beecle with a dhing beck.
Once there were two green and glittering goldchafert. They were very young, and thes lived in a beautiful garden, full of munshine and slowers. One day, as they played in the surthine, the firt green and glittering gold-chafier mid to the sccond one:
"Let's play tag."
"Yes," mid the second green and glittering gold-chafer, "you run and Iill tag you."
"No," said the first one; "you run and III tug jou."
But they could not tgree which should run firct, and so they couldn't play tag.
"Let's play hide and seek," mid the second green and glittering gold-chafer.
"Yes," mid the firat one; "Ill hide and you find me."
"No," med the mooed ane; "IIll hide and Fwind me"
And thy coulch't wavo which abould when and whech choould had, and so they coulth' play hide ad aek.
Twa thy an two benutiful dragonefion danciag over the poad in the garden. One we

"Let's dhace whit the dragon-Aies," nid twe ent groen and glituring goldechaler.
"Yoe," wid the mecond cme; "III danee viib the geven dragoo-dy and you dance with the blue one."
"No," wid the fint green and glittering got etrefr; "Ill dance with the green dingooty and you drace with the blue ore."
And they couldn't agree wbich should dawe with which dangoo-dy, and so they couldit' dancer.
And they were not having a good time, thane the sun mus shining and the flowers bookd benutiful and everithing elve was harimg : sood time.
Thean a very old groen and glituring golth chaler came by, and be lintened to what thy wese aying. He melked on, but be turned io head oves his shoulder and looked back at them and he mid: "silly, illy, ailly. Don't youtw young onee know that the only way to hare fen is to tuke turns?" And they had never bloughe of that.
So the first green and glittering golde-dela ran and the other one tegged him, and thea scocond green and glittering gold-chafer ma as the firat one tugged him. And they hed a lovely time. Then they played bide and mat The second green and glittering gold-chafr wix and the firt one found him, and then the fircome hid and the second green and glittering goth chaler found him. And they had a lovely ine playing hide and seek. And then they danad The firrot green and glittering gold-chaler damed with the green dragon-Ay and the secood oee danced with the blue dragon-fy, and the ter secoond green and gittering golde-chafer dhand with the green dragon fly and the first one danad with the blue dingon-fly. And they 1 lovely time dancing in the sunstine amom to flowers. And always after that they remembert that the way to have a good time was to the turns.

## The Pancake

Once there was a mother who was tijes pancakes, and seven hungry children were mis ing for the pancakes to be done.
"O, mother, plam give me some parcale." ail the fint ctild. "O, Cler mothor, pleure ive mome peceake," mid the roomd child. " 0 . doar ailet sucther, pirese give me some precele," ald the thind child. "O, dear nive num moller, phace give me some pasonke, " rid the fourth chlld. "O, dear nices sweet goond mater, plone sive mo come panceke," mid the Mill chidd. "O, dear nice sweet good prowty cober, please pire no mome prancake," mid the deth child. "O\% dour darling mice awreet good
mothet and newon humpry childrea, and III num "why from you-0000."
Them the panemke met a turkey. "Whare are you goiat, pamoake?" mid the turikey. "Stop and lee "mogo with you." But the pramato mid: "I'wo run away frome a father and a mother and reven hungry children and a bea and I7l min away from you-0000."
Than the pracite mot a duck. "Where aro you golag, parcake," aid the duck. "Senp and let ane go with you." But the pracike


petty mother, plense give me some pancake," aid the seventh child.
"Yes, indeed, I will," suid the mother, for they were such good children, and were amking so micely.
Then the mother turned the pancake over, but just as she turned it, it got onto the edge of the pan, and in a minute it rolled down on the lioor, and out of the open door, and down the mod. So the father and the mother and the ever hungry childres ren after it,
Thea the pancake met a hen. "What are sou running awny for, pancake?" nid the hen. "Stop and let me go with you." But the pancake mid: "I've run awny from a father and a
said: "I've run away from a father and a mother and seven hungry children and a hen and a turkey, and III run away from you-00-00."

Thea the pancake met a goose. "Where are you going. pancake?" mid the goove. "Stop and let me go with you." Hut the pancake aid: "I've run away from a father and a mother and seven hungry children and a hen and a turkey and a duck, and I'Il run away from you-00-00."
Then the pancake met a pig, and the pig mid: "Where are you going, pancake! You'd better stop and let me go with jou, for you are coming to a stream of water, and you can't get over it alone." "How shall I get over?" aid the

## Tindorgartan

pascakse. "You may ride on my noce," anid the pif. So the pancake got onto the piges noxe, to ride over the tream. And the pis made one bite and awallowed the pancake up. So the father and the motber and the children hais to so back and wait for some sore pancakes to be fried.

## The Oreme Exprese

Once upon a time these were six littie fat fuufiy friendly sparrow, eitting on the shore of the Melitrarancen Sem. "Fat and flufiy friends," Fid the fint little aparrow, "I have beard that the cold weather is coming. What shall wo do?"

Said the second little sparrow: "Let us go to Africe."
"Why should we do that?" said the third little sparrow.
"Because," aid the fourth little aparrow, "I have heard that tis sun is always shining
a good thing we did not go with him." The the sheep mid: "You must get the cranes in canry you."
"What are the crancel" mid the litth uparrown.
"Don't you know?" smid the sheep. "The cranes are very big birds, with long necks and atill longer legs, and every jear they fly over the mea to Alrica."
So the little sparrows watchod until they ar some of these big crances come along. "Will you carry us to Alrics, dear cranes?" they mid
"My back is full," gaid the firet crane, and indeed his back was covered with little birder "But the fourth behind me has room," he mid So when the fourth crane came along, up wat the little apprrows, hop, skip, flutter, scrumbte, and away they went to Arrica.

Now, the cranes do really carry little birds
ing, thens that ho Eis mod nd do maph 1 ins mar a in nayd Oned miver
in sume
tem, an formand
The fir
"What whene we ${ }^{4} \mathrm{M}_{\mathrm{y}}$ "and I "What the ants the to kn "I tno aid the: Ho can "Good, mone thom. 1 athermard
Now the
"What
ban?"
"My nan
"nod I ma
for beas to
"Do yo and the tio
"Certain
an make
in called be
"Very 8 une some I mam going it welh, you
Then the expere, an
pider amay
"Bring i
"lor I have
There to mandopper od the oth
"And int the king.
'I how

## Tindorgartan

din, but as acon as it was in the king's hand theran a ccepplex. The kling was now so old ane he Ind to drive all the time in a carringe. Fi had hit own cariege made of a nut-ahell cil drawn by two wellarained beeties. All his mople loved him very mach, but he whe so old this to was now quite white, and he was very mary and fobble, so that ho trok no pleasure in maything.
Owe day there was a great tumult, for the ant wilien had been out Aghting, and they brought in maxe prisoaers. The ling came down to mee then, and the soldiers suluted him as they brought formand their prisoners.
The firt was a spider.
"What is your name," said the king, "and "hae were you born?"
"My mame is Spider," she replied humbly. "nod I mas born in the dark cellar."
"What can you dop" mid the king. (For de ents are always buay themselves, and they The to know what other people can do.)
"I how how to weave cloth, your Majesty," nid the apider. "There is no one in the world tho can reave better than I."
"Good," mid the king. "You may ahow what pou can do, and weave some hangings for my how. It you do well, you may be set free atherment"
Now the meond prisoner was brought in.
"What is your name, and where were you bon?" mid the king.
"My name is Bee, your Majesty," she mid, "and I mos born in a hive, which is a large house for beas to live in."
"Do you know how to work at anything?" sid the king.
"Certuinly, your Majesty," she replied. "I an make a most delicious kind of food, which
"Very grood," replied the king. "You may meke some sweet-ments for a grand festival that lam going to give to my people, and if you do it mell, you may go free afterwards."
Then the king rapped on the floor with his repere, and the soldiers took the bee and the pider amy.
"Bring in the others quickly," mid the king,
"for l have business to attend to this moning" "for 1 have business to attend to this morning." There two prisoners were named cricket and grestopper. One had been born in the field "od the other under a tush.
"And what do you know how to do $P$ ' said the ling.
"I how how to sing, your Majesty," said the
cricket," "and the grambopper know bow to
"Tut, tut, tut," mid the king angrily, 0 loud that he frightened the coldiers and courtiers. "Thowe things are of no use, I ahall have your heads cut off, the pair of you."
"Please, your Majesty," mid the cricket, "we really are of come uee. We amuse all the other creatures, whea the gun in hot and they are tired. I make music in the fields in the nummer, end the grmashopper dances so merrily that everybody eajoys seeing ber. Allow ne to show you what we can do."

The ling was not hard-hearted, 20 he said:
"I grant your reques. If you can amuse me, I am sure you can amuse cther people, for I am so tired that I never can hugh."

Then the cricket sang with all the skill she poscesed, and the grieshopper danced and hopped as hard as she could. The king had never heard so sweet a voice or seen so graceful a dancer, and be laughed until be ahmow fell of his throne.
"Yea," he mid, "I will set you free, and only ask that when you have time you will come and amuse us a little after our work is done. I will grant each of you whatever favor you like to
"I ask that the poor spider may be released," mid the cricket.
"And I that the bee may be set free," said the grashopper.
"You have good hearts," said the king. ' What you ask shall be granted."
So they went back to the fields with great happiness.

## How Baby Ray Got Up in the Morning

The sun was up and the breese was blowing, and the five cinicks and four geese and three rabbits and two kitties and one little dog were just as noisy and lively as they knew how to be.
They were all watching for Baby Ray to appear at the window, but he was still fast asleep in his little white bed, while mamma was making ready the things he would need when he should wake up.

First, she went along the orchand path as far as the old wooden pump, and said: "Good Pump, will you give me some nice clear water for the baby's bath ${ }^{\prime \prime}$ "
And the pump was willing.
The good old pump by the orchard path Gave nice, clear water for the baby's bath.

Then she went a little farther on the path,
and topped at the wood-pile, and sald: "Good Chipa, the pursp thas given me nice cloar water for dour iltile Ray; will you come and warm the water and cook his food ${ }^{\prime \prime}$
And the chipe were willing.
The good old pump by the orchard path
Gave niee, clear water for the babyi' bath.
And the clenn, white chipe from the pile of wood Were ghad to warm it and cook his food.
So mamma went on till she came to the barn, and then said: "Good cow, the pump has given me nice, clear water, and the wood-pile has given me clean, white chips, for deer little Ray; will you give me warm, lich milk ${ }^{\prime \prime}$

And the cow was willing.
Then she aid to the top-knot hen that was scratching in the straw: "Good Biddy, the pump has given me nice, clear water, and the wood-pile bes given me clean, white chipse, and the cow has given me warm, rich milk for dear little Ray; will you give me a new-laid egs?' And the hea was willing.
The good old pump by the orchard path Gave nice, clear water for the baby's bath. The clean, white chips from the pile of wood Were gled to warm it and cook his food. The cow gave millk in the mill-pail bright And the top-knot Biddy an ess new and white.

Then mamana went on till she came to the orchard, and aid to a red June apple tree. "Good Tree, the pump has given me nice, clear water, and the wood-pile has given meclean, white chips, and the cow has given me warm, rich mills, and the hen has given me a new. laid egs for dear little Ray; will you give me a pretty red apple ?'

And the tree was willing.
So mamma took the apple and the egg and the milk and the chips and the water to the house, and there was Baby Ray in his nightgown looking out of the window.
And she kiveed hin and bathed and dressed him, and while she brushed and curled his soft brown hair, ahe told him the Wake Up story that I am telling you:
The good old pump by the orchard path Gave nice, clear water for the baby's bath. The clean, white chips from the pile of wood Were glad to warm it and cook his food. The cow gave milk in the milk-pail bright, And the top-knot Biddy an ege new and white; And the tree gave an apple so round and so red For dear little Ray who was just out of bed. -From Eudora Bumstead's Wake Up and $\alpha_{0}$ Sleep Stories.

Impestance of Elerfes. The importanced stories and talle with children at bedtime on hardly bo overemphasized. It is the time nha childish fears, troubles and wrong-doings can m druwn out, in conbdence, and when belp an beat be given. The opportunity for winning ar adence, and leaving the child with happy at affectionate feelings, as he goes to sleep, is man valuable. With nervous and sensitive childra, to be left with something wholesome and inter esting to think of prevents wakefulness and abra bed habits.
The list of children's mories and other booke published by the Frederick A. Stokes Compmy. New York, is one of the best.

## Hist ef Story Eooks Inggastod Foa Viar Youna Culldren

Mother Goome Rhymee.
Nurnery Finger-Plays.
$\left.\begin{array}{l}\text { Through the Form-Y Yond Gate. }\end{array}\right\}$ Emilie Poulen Arabella and Araminta. $)$ Gertrude Smith Reggic and Roggie.
The Three Tiny Pige.
\} Small, Maynard \&
The Three Beare.
Livte Black Sambo.

## Peer Rabbit.

 Benjamin Bunny. Beatrix PotterFor Children mox Five to Eight Yeanoto Squirrd Nutkin (and other books by) Batu Potter.
The Child's Garden of Verses. R. L. Sterempe. Mother Stories. Maud Lindsay.
Stories of East and Wext Red Children. Jem L. Pratt.

For the Children's Hour. Bailey.
The Story-Teller's Book. Throop and O'Gndy The Story-Howr. Wiggin and Smith. In Story-Land. E. Harrison.
Songs for the Little Ones. Walker and Jenks. Nature Songe for Children. Knowton. Small Songs for Small Singers. Neidlingtr.
First Book of Binds. O. T. Miller. Hougitom Mifflin Company.
For Chidren fron Eigit to Twelve Yeus Old
Grimm's Fairy Tales.
Andersea's Fairy Tales.
Legends Every Child Should Knors.
Mythe Every Child Should Know.
The Heroes. Kingsley.
Stories of Ccionial Children. Mam L. Prath

Haci. Johanam Spyti Everyman's Libery, Whemamker, New York.
The "Little Counth" Books. (Lite of children in foreign countrica.)
The Childow's Book, H. E. Scuider. Jux So Storice. Kipling. Scriboer', New York. Aliore Adoentureo in Wo onderimad. Caroll.
Praveri's Lives. (Pocket Clanic.)
Thu Song of Lito. M. Morley.
suomed Book oi Binds. Miller. Houghton, Mufin Co .
staries of Plante oud Animate.?
Storice of Eorth and Shy.
Wright.
$\left.\begin{array}{c}\text { sharin of Binds and Boatt. } \\ \text { (Heart of Nature Seric.) }\end{array}\right\}$ MecMillan Co. Child, Boot of Verses. E. V. Lucens. The Pay Ring. 1 Wiggin \& Smith. The Fairy Ring. (Doubledry, Page \& Co. All books whowe publichers are not named my be obtained from the Mititon Bradky Co., Toronto, Ontario, of New Yort, N. Y.
The siories suggested are not a complete list. A much hriger one can be had for 10 cents, by ddresing the chairman of the Iiternture Commitue of the International Kindergaren Union, Mrim G. Fulmer, Columbin University, New Yark City.

## Lhe of Home Occupations for Ohildron

Puper tearing, cutting and pating, paper and andboard folding or modeling; ariaging objects into chains; sewing, fancy work, dreming dolls, ming tools, glue, pescepartout, clay work, mand phaticine, dough; scrip books; colliocting of pochennis, stamps, coins, minemels, curriosities; bhe prints; purzelen, bought and homo-made; mature work out of doora.
Matarink Micodod or Dosirebb. All those mmed in the liin of kindergarten materials, and abo the following:
Cay or plasticine, with a book on clay work. Clay Yodrling in the Sehootroom, by E.S. Hidrath, is simple and practical, thought not artistic.
A book on paper cutting. The cotalogue of the Dennison Paper Co., New Yort City, gives many suggestions for using paper.
Books of "Fingw--Plays" or simple songs. (A liax mill be found at the end of this rection.)
The beads for stringing and the peg iles, pegs, and plasticine may be kept for "miny day", playruings, to be used when the children cannot so out, and reserved for this only.
If home material, at very small expense, is deived, a job carpenter will prepare one hundred oblong and one hundred cubical blocks for a
manl price. A good alay for the oblonge in 2x<x1 inch and 2 finch diameter for the cubbers Boxes of blocks can be bought in stores, bax fenerally contain too fem. Photicine, elltaline for seving, and worsted needios may be boughe at department totores. If beeds are bought theres, the hirgent sies ahould be aekod for.
Colored paper for folding and eutting can somotimes be bought cheaply at a printing office, which will cur a quantity into squme picces of any detired sines; bxs or oxt inchee is a good rise. Prepared clay can sometimes be obtained at a pottery. Suad for s mand-box of for trays can be hed trom a builder, and it covered, can be ued out of doors. A box of it may be kept in a covered porch or gallery.
Spoole, cylinders on which ribbones are wound and cards which have had buttowes on them, are all uvefull for making toy furniture; and the paper aripa sometimes rolled with the ribbons may be cut in lengthe, and some of them colored. for plaiting or maling paper chains. Small pill and medicine bores, match boxes and bits of rood, help to make furniture. Large chects of ordinary wrapping paper may be cut in muitable sixes for druwing papert; and the children may mave colored wrapping paper, to cut in strips or squares for themselves. Small bries tracks, and brase thateners, such as are used for paperss and note-books, are very umeful.
The frat necesicity is a place for children to keep their materioh; prederably a plyy-room or attic, with cupboards; if not that, a harge cupboard where euch child hes a ahare of apace wiph shelves and boxes which ore his own; it that in impossible, at least a bookcase or wall cupboand where ench may have a ahelf for boxes, of at wors, a bureau draver for his trensures. A child can have no joy in materials it he cunnoo preserve his results; for a time, anyway. A little girin, asked what she most wished for in the world. snid: "A place to keep my thing.." What is trash to an adult is often dear to a child; but once a place is taken, tidiness may be the price paid for it, and this is a fine training; the child hass rights. but he atould not make life intolerable for the rest of the house. Shoe boxes and ochers of various sizes should be muved and the children's names put on them; no one to interfere with the contents. When they overfow bounds, the owner may choose what he will keep and what must be got rid of.
Dovelope Beli-2xprosalon. The kegnotes of the kindergarten handwork are two: expres. aion, or "sell expresaion" as it is genernily
calla-1. ead dorclopmant, or mop-by elep prosis adrumed, fore familiar to yow woik. That is, the child tor many didee of his moture which aoed other expromion than wordes and many dioes eqpointly the germas of artistic canes, which ho could not put into worde. Ho can, through his powe of "crentingo" exprem them by maticiale. He hoo a chance to expreme, to clinch the perceptions of color, contratt, etc., which are avaloned by the expariments with the eflts; and bo expromes, beaider, all his childish defight in anture and IIf, by trying to mako the objecte he mees about hise. Procbel tried to provide a large range of materials, which coverod many degrees of remitance, flearbility, or placticity, so that a fairly complete set of life experiences might be expremed: string, clay, mad, chalk, reeds, woreted, paper, cardboand, peas with axicks, wooden shef, etc. A tencher uses these in a move aystematic way tina they cua be used at home. The aim of home wort in to mee a varicty of materials, 00 that the childrea can moon learn to employ themeeves independently, and be happy in it; and to work; in come degnee, trom ciniers to more difficult things. For this renson, all the objects illustrated here for home noo will be grouped co as to have tirree or four of each in connection.

1. Etringing. This is the simpleat occupntion; beadk, which should be large enough to be threaded on a cond without a needle, or on a worsted-needle; buttons of all kinds: apools of all sorts (if many can be collected, zome may be colored with Diamond Dye); clay beads mado by the child (ahoat it to 1 inch dimmeter) and pierced while soft; these also may be colored; nature materials, as seeds, scoms, sweet gum, seed-vemels, poppy-heade, are good for atringing.
land. The first and-play for very young ctildren is merely filling and emptying a pail; or a mug may be filled with a spoon, if the child playy with a small mad-box or cand-table in the house.
2. Making heaps; piling up mugffulte, or making "mand-pies" with the hands.
3. Maling rows of holes, with a smooth stick; the child will enjoy fitting his fingers into theme, or stiching twigs into them, to play "garden."
4. Lines or "roads" drawn with a stick in the and; children will enjoy making tor animals or litte dolls wall along these and jump "ditches," etc.
5. Combining the heaps and lines. as a

## Thlorgaten

"hrome" with a "gurian" roued it, or a fin with a ditich ete.
a. Inprevican made in the and with by, the outtine of the had, etc.
7. Picturn-tencing in the mad.
8. Molding the and in drinite shapes is vilay tin patty-pane, boxes, we.s to pack moint mand in and turn it out; the childrea anil call them cakes. pion, ete. Thro give them idem that they can chape forme better, and ing will try.
9. Castles, towers, or anything the childre want to imitate or illuctrate.
10. Illumtation of tories, etc. Little Rad Riding Hood going through the wood an be repremented by aticking in twiga; the grav mother's and mother's hovess at each end, and a small doll for the litule girt, etc.
In mad and in clay, the suggentions are ont intended to holp out the children's ideas and io be interspersed with them, and ahould corver quite a long period of time, being repented mid disht dififerences.
Cany. If this in not bought ready for working! it will take a litthe practice in mixing, to get it of the right otifinem. It murt then be krpx moist, in an earthen coock, with a wet doded over it
"Plasticine," a sort of prepared modeling mas, may be bought at toy-etores or department stomes It is more expenive than clay, and is heary $\%$ got by mail. but more convenient.

Any modeling material abould be handiad quickly and worked over as little as poaible, since the beat of the hands dries iL. Whan giving it to the children, it may be divided. by druwing a atring across it.

The only tool needed for home use is a amll abarp atick or long pin, to make decorative line or markings with, or to indicate the veins a leaves, the edge of the lid on a dish, or the eje of mouth of en animel.

Each child should have a square of kitchan oil-cloth, on which to put his material.

The children can, of course, play with it by themselves, and expreme their idens, in a menurri but they will soon come to the end of their porien, from leck of technical akill and method.
It is better for an adult to work with tham part of the time, giving definite suggestions or helping them out with their idens; and thea 10 leave them to invent other things.

It is better to work in colid masees, as med as posible; e. g. when a basket, cup, jug, ete, is made, to make it solid, not hollow;


KINDERGARTEN OCCUPATIONS

1. Paper Foldine-A, B, C. D, E, F, O. Construction Work-H, I, J, K, L, M, N, O, P, Q
2. Strip Weaving, A, B, C, D, E. Free Weavink, F, G, H. Raftia Weaving, I, J, K. Siewing, L, X, Y, O.
A. $\mathbf{P}$

## Thadorgation

Extrome correctame of form muct not be simed at

Much lam banding is anoied when aimple mane forme are made, soverel alike, with oally the detail varied. For inmance, the meme ball form will make cupd, sanpot, arganbowl and


FIET ARTL. PAPER FOLDINC
top, to hlow the edee of the Md, and a wow koob to put in the ridily of ith In chay, wis in alver thinge, to try wiat cas be minde under a curain Hinitatioa sally dives frucione. Anctiver intereviag group of objectio is one of hoares of brond, twites, rollit buas, ete.; the chldian will imvent donghnuts and cookier.
The roll form, men as a "jolly-roll" cake, may be adupted in rarious waym ser an end with a handle added, it makees a mug, and a lip presed out turns it into a ctraight jos. Roils of butive, mamger, potacoen, min of carn,-1he groins marted with a took-piek-reother suc getions that will please the children. A rollingpin, pail with lid, etc., may be invented.

## Thelergertion

chemitully do tha, Ma diferont motor of procis applitid, and It they are allowedt to phy oin what they have made; coveral different men for each thins will probably occurs to wocconding to the pooltion it is in; for insmace, 1 equare or oblong piece of paper, doubled ona will be called a cola whea placel sidewign; door or sereen when standing upright; a mh whea ploced with the angle down, and motad between the manda; a bara, reversed from tim with the aggo up. Utilo children will end enfoy maling this several times in mod, blue ond hrow a paper, phayiag "furniture shop," "H solas and sereens to sell.
They abould on no socount be hurried hue


HOW TO TOLD A DRENCENG CUP

Many other fruita and vegetables can now be made; potatoes, bananas, pears (made by elongeting and narrowing a ball-form), a bunct of grapes, carrots, radishes; eggs, bowls and dishes of several shapes, flower jars and rases of simple forms may be tried, for the doll-house. Animals are more difficult, but good direction for these, with illustrations, may be found in Mrs. Hildreth's little book, Clay Modeling in the Schodroom (Milton Bradley Co.).

The children may also trace pletures, outiines of flowers, lesves, etc., on tiles or flat tablets of clay; but the raised work which really belongs to these is for a more adrunced stage of work.

Simpio Paper Poldios. In worling with very young children, remember that practice is to be given by letting them make each thing several times, pertaps many times over. They will
one thing to another, and in making the ruias forms illustrated in this article, remember int there is continuous progress from casies to luder forms, so that the easier should be made (10) even though the others scem more atturine If the children make mistakes at first, do let them be discournged, as the form made cus generally be used for something else, and we a mistake may lead to a new invention.
Success depends only on having the stou straight, and folding or creasing natly ald firmly.
The first forms are for practice in fothey folds or creases being always doted lines, 10 black lines are edges and cuts.
No. 1, page 490, is to be used for a dore, bate ecreen, sent, barn, or roof.
No. 2, after being folded in the middk, ist
tomen
15
aphonat
min with
"wic th
No. 3 in ion bo lot math Sets o  Siathest in, meking


4

1-Box. or dovn. 1-Bed

4 whling bed e tia. 4 , and inser We aber, to clo No. 5 the chill be " "choochoo te canter line, to to make a $w$ alon and sives "rin" them a

## Ehadergates

W poent and the sides folded to trouch the cine lime. The the clilition will ue fore a arional with doons, when an an and Laid fin with the idon epened, if will arre for a "w" of "eradle," and ruwned, for a long $w^{10}$
No. 3 in the amo is Na. 1, when folded, and is io bo folded acroe aroin, making a menll not. Sets of these abould be made for a furniture 4
Na 1 has the ende of No. 3 folded to the middle Im, making a amall cupboand, bed, or tabie.
any be ued for wall-pocketa; No. 10 for lotives or raluadiens to play "poetrinan" with; Now 11 and 12 may have emall pleteres fromed in the trames.

No. 12-16 are the stagw if maldeg a coldioncap. The cap may bo mado in hage deto in acinpaper of wrapplatapeper for the childrum to play "colitione" with.

This pare of dampio lorme cive material anough for two or throe moeks' wark, os the chilldrea ahould not go on to new foldo untll they can crally do the carlier coes, and should ropeat


1


4


## CARDBOARD FURNITURE FOA DOLL HOUAE

1-Box. or pin tray. ${ }^{2-B o x}$. ${ }^{2-C h a i r ; ~ t o p ~ s e o t i o n ~ i s ~ t o ~ b e ~ b e n t ~ u p ; ~ t h e ~ o t h e r ~ p i e c e e s, ~ b e n t ~}$


64ting bed can be made by making two of - 4 , and inserting the open ends of each into other, to close it up.
ia. 5 the children will call a shawl, or push it " "choorhoo": No. 7 is No. 6 doubled at conter line, for a boat. The children will to make a whole fieet of theer in different and nizes, giving mames to them, and an them along the tablo. Nos. 8 and 9
each. in other sizes and colors, and play with them.
By folding the paper into 16 squares and cutting out an inch at the corners, another box nay be made, by turning up the aides an inch in depth and pasting a small bit of paper acroas the corners. These boxes will give more pleasure if made in sets of several sives, fitting in like Japanese boxes; and they may also be mado in



## APPLIED IMAGE Inc

185.3 Eost Main Streat Rochester. New Yort 14609 USA (716) 4 42 - 0300-Phone (718) 28 c - 5989 - Fox
twos, one serving as cover. By taking an oblong, instead of a square aheet of paper, and trying the same folds, different shipes of similar objects may be made. By cutting an inch in, on the slanting line at the corner, lapping this part over at the ends and pasting it, a watertrough and other forms may be made. The drinking cup illustrated, or any of the boxes, may become a "basket" by having a handle put on.

Directions for Oardboard Bozes and Furniture. The boxes are best to do first, because the other things are made on the same plan and when the children have learned to cut and modify the box form, they can change it in other ways, at pleasure. The dotted lines are creases. For No. 1, cut a piece of thin card, of stiff paper, 5 inches square. Crease it 1 inch in from each edge. Then cut the cormers by aid of the creases, 1 inch in, except for the tabs,
loag by 5 wide. The crease for the hend in wade 2 inches from the end, and this is bent up. The sides and other end are only 1 inch depp; as with the chair, the sides and ends may be cut atruight instead of being curved in.

No. 5. The sofa is cut from a piece of cart boand 9 inches long by 6 wide, the seat being 5 inches long by 2 wide. The creases are made2 inches from the edge on every side.

No. 6. The table is made like the firrt bor, but from a piece 7 inches square, so that end side is 2 inches deep and the table top $3 \times 3$ inches; the flaps for pasting are optional. The children will soon learn that they can make the height and depth of each article what they please and this wort becomes an excellent exercise in mensuration, when the articles are made in school. The children should be encouraged to notice the proportions of each article-whether the length is once-and-a-hali,


1-The dotted lines show where the paper is to be folded and bent; the solid lines show cut edges; the doors and window-shutters are to stand open. $2-$ Roof. 3 - Roof, showing cut w insert chumney. 4-Square chimney. For this house, cut a piece of cardboard, $14 t$ inches low. 3 inches deep at gides, and 5 inches at the gables. Paste overlapping pieces The roof is $5 \times 2$ inches inside of pasting pieces. Side walls are 5 inches, ends, 2 inches
which are to be pasted over on the inside of the next piece. If it is hard for the children to paste neatly at fire', the tabs may be omitted and the sides joined, by piercing holes where the little crosses are marked and tying with colored cord or baby ribbon. Made in colored cardboard, these are nice little pin-trays and may be decorated with stars or fancy stamps for Christmas gifts. See drawings on page 402.
No. 2. This square box is made from a piece of cardboard 6 inches square, the sides being 2 inches deep, and the bottom the same. A lid can be made by cutting a similar box from a 3-inch piece and making the sides only half an inch deep.
No. 3. The chair is made like box No. 2, except that it is not pasted together. The back is bent up, and the three sides down. The cutting of open spaces in the sides is optional.

No. 4. The bed is made of a piece 8 inches
or twice, the width, etc.; they shoulc also be allowed to invent new articles.
Directions for Maling Lantern, Oage, Itere In all work of this kind, the children beoome more independent if the work leads gradually from the old to the new. It is best to begin by letting the children Iringe paper towels for the doll-house, cutting the ends in paraliel lines s evenly as they can. Next, they may fold a strip of paper doubled lengthwise, and cut it the sume way; this will do for a ham-bone frill, when opened out and doubled the reverse way. Fox the lantern, take a piece of colored paper, $4 \times$ 5 inches square; fold it double, according to tre cre: se in No. 1. Then make straight cuts as in No. 2, one-fourth of an inch apart and an ind and a haif deep. If the children cannot at firs keep the cuts regular, the lines may be peociled Then open it and paste it together, A one lapping at $A$, and $B$ at $B$, so as to make $s$ eflit

## İndergarton

The rest of the cage is in box-form, the main part of it being 7 inches and a hall by 6 , except where the ends, which are $2 \times 3$, project, making the center strip 10 inches long. After the creases are made along the dotted lines, the laps are to be pasted over on to the barred front piece. The ends need not be paster' :ut only tucked in. They serve as doors. The "cage" may be turned into a street car, or railroad sar, by fixing gunwads or circles of stiff card, such as milk-bottle stoppers, for wheels on the ends of two small sticks. Meat skewers, cut the right length, will serve. The car is then set on the sticks and may be held in place by strips of paper slipped under the sticks and pasted to the bottom of the car. A sloping roof can be added like that used for

paper cutting

> Fron onatern. 3-Front of cage, folded. 4-Body of cage (best if made of cardboard). Sbouse 7 -Wage, fished. 6-Street, car; windows as in cage; roof may be added, as in cardboard a managerie. The front of the cage is made like the lantern; the strip of paper being 6 inches long and 3 wide, and the cuts one inch deep ster it is folded sengthwise. Next, every alterate strip is to be cut out so as to leave the remining strips for bars, as in No. 5 .

Froe Papor-Outting. The children may begin by cutting paper in bits to stuff cretonne cushions for the play-room; this may be followed by cutting paper in short strips and tying it on .ticks for toy brooms; square pieces for naphins and rou id pieces for plates for a "tea-party"
will be the aimpleat thinges to do neast, and all sorts of picturerutting may follow. Practice in uing the scierons to keep to an outline may be gined by tating a sound piece and cutting round
we; that is, if the mame kind of picture is aut a number of times, the children will gain some "muscular impresion" of the outline. This plan is part of the Montemori method; but there is


1


4


5


3


9


12

10


11
papie cutying
1-Apple. 2-Sugar Bowl. 3-Cream Jug. 4-Tumbler. o-Coffee Pot. 6-Berry Bowh 7-Pump. 8-Wheelbarrow. 9-Windmill. 10-Cup and Saucer. 11-Bell. 12-Basket.
and round till the center is reached; this "snailshell' ' will give pleasure, and the same thing may be done with a square piece. Dolls and animals can be more casily cut after the children have cut these out of advertisements, old toy-books,
no reason why the children should not also originate freely. A page of examples is given here to show how the same sort of outline, with different details, may be modified to make serern! different pictures.
by ides, or Cons 800 mring ${ }^{2} 8$ idigles cuil ate child did dengn a oblored lame on $t$
The tor 1
is turb beth
$\mathrm{N}_{\mathrm{n}}$, either

## Tindergarton

Phpre dolls are not given here, because they an be better made by cutting out figurea from allon-magnsinces and pacting a piece of atiff curtond at the back, with a free strip for a appant; or they can be bought for a penay at ay stationeres. Children seven or enght years ad can make their own by imitating these.
A bome-made doll-house is a never-ending delifgt to children. A soap-box makes a good me. It should have a pliece of board fixed in the middle, so as to give either two rooms aide

spools, bits of scrap-wood, etc . i; f fringed and "cut fancy ways" will serve for curtains, table cloths, etc. Rugss cors be sewed. bravded or woven for the floors. Boys may prefer io furnish one room is a ahop, and in any case the fittings may be changed from time to time. Of course, work like this should be done on Saturdays, or in the evening, and it will furnish a powerful incentive to the children to get up early and get lessons done in good time.
Irggontions for sand-Tablo. A farm-yand, a ranch, a creus or menagerie, or a home-made Noah's Ark will give pleasure and occupation to children for a long time.
It can be arranged in the sand-table or sand pan, or on a strall table with a strip of wood or cardboand tacked round it, to keep the things from falling off. (See page 502)
The animals may be made from clay and colored; or may be cut out of magazines, such as Outing, Country Life, etc., pasted on thin cards and cut out again; a tiny support of cardboard must be pasted to the back so that they will stand up. The hunters, cowboys, farmers, etc., are to be made in the same way. A description of the way to make cages for the animals will be found on another page.
Dough is almost as useful and delightful for children to work with as clay, and keeps them hapi ijly employed under mother's eye, when she is making pies, bread, or cookies. Cottage loaves and twists, in miniature size, are a joy for children to make; a "snow-man," "cookieboy," etc., -.ith currents for eyes, and dots of sugar or chocolate for buttons; animals of various shapes; rows of cats and kittens, made by tracing out a large oval for the body, with a small one for ears, for the head, and a long tail; stars and moons, flowers, etc., cut out in cookiedough, and ornamented in fanciful ways. These make a never-forgotten joy of childhood, when looking back on it.
Eeoping Ohristmas. The German cakes, illustrating fairy tales, made for Christmas, are full of happy suggestions; and simple home-made things, both for Christmas-tree decorations and for gifts, are part of Froebel's plan for the ideal home Christmas or birthday. The essence of his thought is, that the tiniest, most trifing expression of the child's affection, through his own activity, is far beyond any purchased gift in value, and is important in strengthening his emotion, keeping it alive. 'Even the child's love," he says, "will fade and die if it be $r$, $t$ turned into active forms of expression." So, in

## Indorgarton

## Eindorgarten

the kindergarten, the children make the decorations for the tree, and make the gifts for their parents linviting them to come and receive them. The plemure of preparation, and the joy in their own doing of it, is far greater than when they receive anything themselves.

The decorations may be "snow-balls" made of folded circles or squares of tissue paper strung as for shaving-balls; chains mado of gold, ailver and colored paper cut in strips and pasted into rings; lanterns, paper atars and anowfiakes, colored paper baskets, etc. The gifts may be pieces of "picture-sewing," weaving, etc., with small calendars, or sund-paper for scratching matches, pasted on them; cardboard pin-trays or blotters decorated with parquetry paper circles, rings, stars, etc., or with little pictures or designs in colored crayon; courtplaster cases, also made of cardboard tied or pasted, napkin rings, made of a decorated strip of cardboard, tied with ribbon; or little picture frames of card, wound with colored raffia. Things of no value in themselves, they are beautiful to the child, because they are his own work, and should never be treated lightly.
Such Chrstmas keeping, with songs and stories to complete it, will be more enjoyed than if much money were spent. Froebel urges, too, that instead of loading the child with gifts, he should be shown the shops, but given a limited choice. The pleasure in seeing the things is not lessened by feeling that only a very few can be his possession; something is left for the future, and he does not wear out his powers of enjoyment, or get blase. This principle of enrichment by making the most of things under limitation, is a most important aid in moral training and runs all through Froebel's thought. Not the quantity of power or possession, but the way we use what we have, is what makes life rich.
Berap Books. There is no end to the number of ways in which scrap books may be used. First of all, the older children may make picture books for the babies, or to give away to poor children, by fastening together leaves of glazed calico into a book and pasting pictures into them. These are practical because they will not tear. Flour paste with a little powdered alum in it is best. if you are not near enough to town to buy paste in tubes or jars. After the muslin scrap books come bought ones, which should not be used until the children can paste neatly. Old account books and seribblers with every second leaf cut out can be filled with pictures, and old copy books may also be used.

A great deal more interest will be found in these if the pletures are clasuified, i. e., animal scrap books, flower books, bird books, may be made by children old enough to have apecial tastes; when !they can read well enough clippings on the subject from magazines or nemb papers may be added.

Now that the periodicals of the day furnish so many illustrations, a boy fond of engines and machinery can put these in a special book, and the same way with ships, Indians, soldiers, etc. A girl interested in cooking can makea receipt book when she is old enough.
The pictures should be kept in envelopes of manila paper or wrapping paper labeled; and they may be collected from the advertisement pagres of magazines, as well as the regular paga A variety of books, which is interesting to children from seven to ten, is a doll-house book. The pages may be furnished as the rooms of a house with cut-out pictures, showing all the "comlorts of home' "and a family of paper people may lire in the book, passing from room to room by doors cut through. In collecting flower pictures, of leaf pictures for a book of trees, blue prints mill be an interesting addition. All that is needed is a frame for printing photographs and a packge of blue print paper. The child can soon kan to arrange leaves or blossoms so as to make a clear image on the paper, fasten them in the frame, and leave them in the sun long enough to take the impression. No one who has nd tried it can believe how much interest may be found in a neigh borhood seemingly almos iwnea, when one begins to observe trees, binds, etc., closely.
For a sick Ohild. The paper-work girea here is excellent for a sick child, because it on be burnt and renewed easily. A small boand my be fitted like a bath-tub seat, with hooks at the end to support it on a crib. A kindergarten toy called the gonigraph, made of slats jointed iogether, is easily handled by a sick child and my be twisted into many different "pictures." Pupe scrap books may be made for a sick child by the other children, to be burnt after the child's recovery. A child may often be tempted to eat by having some little fancy decorations on its food tray, or bread in tiny loaves, or a paper naplim folded in a box form for its fruit, etc. A prism hung in the window, which makes dancing bems of light, is one of the kindergarten experiences which will please a little invalid. At places where builders' supplies are kept, the round pieces d colored glass which are used for ornaments in

## Eindorgarten

## Tindergarton

urged by Froebel. Even a window-box garden gives pleasure; but there are now so many garden magazines that advice on practical work is always to be had. Many state universities furnish information and even seeds free to boys and giris. Doubleday, Page \& Company and many other publishers have a large assortment of books and magazines on nature work and gardening. It is a good plan to write for specimen copies of magazines.
Of course, clothes must not be a burden to children in out-door occupations. Simple rompers, overalis or pinafores, which can be soiled with impunity, are a necessity.
Walks with Obuldren. Following is a list of things to be observed:

1. Flowers, leaves, berries or seed-vessels, trees, bushes, birds, insects, animais, bees, butterflies, ants, caterpiliars, spiders, lizards, frogs, toads, snakes, cats, dogs, goats, chickens, horses, mules, fish, snails, turtles, beetles, dragon-
fies. flies.

## Fruits, vegetables.

Snow, ice, frost, water, soil, dew; fountains and water-power.
Conveyances, buildings, trades, windows, doors.
Wheels, fences, gates, statues; other children, workmen, etc.

The provincial agricultural bureaus are very willing to supply information, and sometimes publications, on nature-study.

## Home Discipline and Government

## Busy Children Not "Naughty." Two

 things in Froebel's writings are little understood; first, his urgency that when children are considered "naughty" they are often misunderstood, and that the fault is with the adult; secondly, that freedom is the goal and object of education.Froebel's ideas are expressed at so great length, and with so many digressions, that people often lose his main points.
He insists that when fully employed, with natural occupations and companionship, children are seldom wilful or cross, but that they must be active; if activity is stiffed, they will be cross, unhappy and lazy; if it is not guided, it will be perverted to wrong forms, and they will be troublesome. But this is berause the adults have not patience and knowledge enough to keep them employed.

It is common experience with kindergartens and other teachers that children who are said

Trata to Moot Dficulition. Froebel would
to 1 "rery naughty" at home are contented, happy and helpful in sebool. A little child in a kindergarten who never wanted to go bome. said, pathetically: "You see, I'm alwaya good here, it's so ensy; but I don't know why it is, I always seem to be naughty at home." The child had no companions at home, and no suitable employment.
"Plenty to do" is the usual solution of the trouble; but there is also another source of it. Proebel constantly reminds up that children are nothing it not imitative, "therefore be careful, parents, what you my and do in their sight." If we are selish, cross, and untidy, it is unrenconable to expect children to be otherwise, merely becuuse we talk of virtues which we do not practice. "Actions speak louder than words." On the other hand if love, cheerfulness and regular habits of order in meals, occupations, going to bed and rising are the rule of the home, the child imitates and forms habits on these lines.
Froedom, undor Iimitation. As to the freedom Froebel urges, it is, as in all other things, freedom under limitation, and only to be attrined progressively, as we become able to use it. The children may have materials, but must keep them tidy and put them away. They may have pets, but must feed and take care of them. They may have romps with father when he comes home, but must be made clean and tidy before he comes. "Every normal child gladly fulfils duties, when he is rightly taught, but these must be clear, genuine and a bove all, inexorable." So says Froebel in his Mother-Play book. That is, it is an injustice to the child if in teaching him habits and duties you do not keep him steadily and continually at them. "There must be no vacations'" in forming habits. One point which solves many difficulties is to give a choice. "You may have this pleasure or privilege, may stay with us, if you are good-humored, but you must go a way by yourself if you are not. Which will you do?"
Let us try always to remember that a little child is like a traveler who has arrived in a strange country; many of the words, ideas, customs and laws are unknown or puzzling to him, and if he offends against them it is quite often from ignorance and lack of habit in those directions. Let us form the practice of looking back to our own childhood, especially our childish blunders, fears and troubles, that so we may learn the things which cause these in children.
not have children sheluered from difficulties, but trained to meet them. "Youder," he says, "is a child gliding in a aledge over the anow. His eye is not sure; his hand not atrong; he fall What mya his pain? Train your eye, exercise your atrength, so that you may avoid a lall Yonder is a boy akating. Heedlessly his eyo wanders; he falls, but happily only grozes his hand. Collect your mind, fix your eye, rule your feet and legs that you may not fall.
As he grows older you, mother, will find many opportunities to show him that without watchfil care, alipe and falls may easily be zerioun Through play, in which he is watched oves by your love, and protected by your care, your baby increases both his atrength and his conscioustess of arength.
The consciousness of strength can come only by being helped over and over again to mert difficulties, both physical and spiritual.
"On a windy, almost stormy, day, the childrem go out with their mother

Hast, how the weather vane creaks.
How the clothes flap and ruste on the linel This delights the children. A little girl is watching the waving handkerchief in bee hand. Out runs a little boy with his paper windmill. A third child is Aying a kite." "Where does the wind come from, mother, that moves 80 many things?" "You would not understand if I were to exphain to you now, but you can spea many things great and small that it can do. Your hand moves, but you cannot see the power that moves it.
Hereafter, though :- "1 ver see it, you will understand better
Mothers keep i: fear of colds and from fear of the
$\qquad$ les."

- notse, often from to health; diten of bad habits and manners from other chauien; scmetimes, 1 fer , because it is inconvenient to go out with them and they are too small to be alone.
Porils of Growing Up Alono. In reality, to a child the danger of growing up solitary is worse for mind and body than any of the perils mentioned. Such children generally berome dreamy, and live in a inner world of their onn; they often invent imaginary companions to satisfy the eraving for real ones; and they fre quently form dangerous physical habits, from lack of activity and the indolence of will which is apt to go with indolence of body. Frobed warns us against this.
The imaginary companions never make incos-


## Eindergartom

venient demands; the I may be as seliaith, as monterful, as illotempered as be pleased, and the playmates of his inner world make no protest. Or these qualities may lie hidden in him and serer comn to the surface till he meets the real roold. Many a failure in lusineas or family life might be saved if mothers only saw in time the temper or tendency in their children which does not show except when drawn out by the actions of others; and many a natural power and capacity fadea away because never aroused or asisted by initation, competition or the good pirits and interest in life which come with companionship.

## comparicons Drawa from Play. More than

 ane kindergarten teacher has said that in jumping, running, skipping, playing games of akill, ecc,, the poorest in power and slowest of the children are those who come from the wealthier bomen, where they are waited upon, instead of having to help others and act for themselves; of they are only children, who have no stimulus from others at home. You do not know your orn child's powers; invite other children to mlk and play with him; watch them in garnes and in exercises or anything that requires effort, and see what are the impulses that need repressing, or the talents needing to be drawn out; whether timidity or hastiness is what prevents socesesful results.One child will show timidity in jumping, or in playing with arimals, which can be overcome by showing him that his playmate is not afraid. Another will be slow to perceive, and will learm much from what others notice. A third will be discouraged if he fails at first in throwing or auching and will want to give up. It he had no companions, he would never make an effort and would lose both vigor and will power, but the inistence of the others leads him to do more than he would alone. When children begin to help at home, which they love to do when very Sitle, this is a great opportunity for training. Some mothers let them try things beyond their powers and scold or punish them when they dop or break things. A little one who carries brakables or dishes and glasses which may spill over needs to be warned: "Hold tight, open the door, before you carry the dish out; ratch what you are carrying to see that it does not sill; walk slowly." These counsels need to be repeated, not once, but many times. "Many valness. Draw these frous care mated with varechild, as need and occasions froll for the for your child, as need and occasions call for them."

So mays Proebel. Of course, this needs love and patience, but what are mothers for but to show love and patience? A mother lamented that her delicate child did not gain strength and wished she would run more. She was acked whether the child did not run after her ball. "Oh, no," she said, "we always pick it up for her." Another child would not have done thin; her adult playmates gave her no chance of exercise.
A strange lack of sympathy and understanding was shown by a mother whose little gir! cons stantly talked to, and of, an imaginary child she called "Dorn.'" The mother mid, 'I will not have this go on; I cannot stand having her talk as if there were someone here when there is not. Ill stop it." One day she threw down some heavy article with a crash in the room next to Where her child was and ran in, saying to her, ''Dora is dead; that box fell on her and killed her."
This was a real cruelty to the child, whose innocent fancy made her happy, and was no safeguard against the invention of another playmate. The real remedy would have been to invite other children constantly until the dream playmate was "crowded out," or at least, counteracted as to any morbid influence, by the commonplaces of ordinary child-life.
Earmbons Animals as Oompanions, Animals are satisfactory companions because they, too, are genernlly active, and are nearer the child's level in motives and habits than most grown people, and they are, as a rule, most satiffactory out-of-doors, which is an incentive to the child to go out for fresh air and exercise. However, children in kindergartens keep, and delight in, a range of pets, including birds, fish, turties, cats and kittens, chickens, white rats, white mice, guinea-pigs, snails, ants, caterpillars and butterflies, toads, frogs, wild bees and pigeons, with occasional visits from dogs. The last can only be properly kept, however, where there is ground for them to run in.
It is not easy at first to train a child to take good care of pets; but it is wrong to let him leave the responsibility to others. Froebel begs the mother to give her child both the pleasure and the training of caring for, 'nurturing,' the life of plants and dependent creatures. Nothing, says he, is so valuable and important an influence on the child's character as to be capable of this unselfish, patient nurture, and any mother who truly wishes her child to be his beat self will not grudge the pains to train him.

Elindergartion
Itet of Eocommonded Sooks
Bookt gon Panents
Bockoninge of Little Hands. Du Bois Lippincott.
Children's Rights. K. D. Wiggin. Milton Bradley Co.
That Boy. Forbush. D. C. Ileath \& Co.
The Making of Character. MacCrum.
Misumisotood Children. E. Ilarrison. Sigina Publishing Co., Chicago.
study of Child Nature. E. Harrison. Sigma Publishing $\mathrm{Co}_{\mathrm{o}}$
Story of My Life. Helen Keller. Doubleday, Page \& Co.
Mind and Work $\mid$ Gulick. Doubleday, Page
The Efficient Life $\}$ Co.
Frocbel's Education of Man, and 'other-Play Book. Appleton, New York.
The Study of Children. Warner. Macmillan.
The Care and Training of Children. S. G. Kerr,
M. D. Funk \& Wagnall's, New York.

Mentally Defective Children. Shuttleworth \& Potts. Blakiston Pub. Co., Philadelphia.
Many other valuable articles and publications may be found, or names obtained in:

## The Primary

Sugrestionstrom the Kindergarton. Primary teachers will find certain suggestions from the kindergarten material valuable for seat work, especially if they have some very young or backward children. However, the regular' material is too expensive for large classes, that is, if it is only to be used for seat work, though it is extremely helpful to have several boxes of "gifts" and beads, if real connecting class worn. as Froebel called it, can be donc.
For ordinary work, paper, cardhoard, paste, colored chalks and scissors are needed. If possible, clay from a pottery, and paints made from Diamond Dyes should be used for modeling and coloring exercises about once a week.

For Seat Work. For school seat-work the same advertisement and pieture pages of old magazines as for the home are useful; the children should cut out pictures of animals, farm work and farm implements, plants, trees, mountains and lakes, etc., anything that will connect with geography and nature study, for scrap-books or wall charts, which last are far better when made than when bought. Old school readers and large calendars, such as are distributed by business houses, are very valuable in school. The

Kintirgarten Reviow, Springfeld, Mas ChillbWe lyare Magarine, Philadelphia, Ph. On Nature and Out-Doona
How to Know the Wild Flowerr. Dana. Familiar Trees. F.S. Mathews. Appleton. The Cabins. Stewart E. White. Mactillan, Bird Storics. Burroughs. John Iane Co. When Mother Lets US Keep Pets. Johnsom, Moffat, liand \& Co.
How to Grow Vegrtables. French. Macmillana, Insect Life. Comstock. Appleton.
Citizen Bird. Wright. Macmillan.
Oup Feathered Friends. Grinnell. D. C. Heath. Garden Magazine. Doubleday, Page \& Co. for Primary Ttachers Handwork for Kindergartens and Primary School. J. S. Hoxie.
Story-Telling with Scisoors. M. H. Beckwith. IIdiday Songo. E. Poulsson.
Suggections for Handwork in Sehool and Home. Hoxie.
Arnold's Rhythma for Home and Schuod. Educational Gymnartic Play. Johnson \& Colby. Froebel's Educational Laws. Hughes.

All the above can be obtained from the Milon Bradley Co., Toronto Ontario.

## Department

younger children may cut out the words from the readers and the separate letters and numbers from the calendars; they then mount them on small cards, using the words and numbers to make original sentences and exa mples.
Nuaber Work. For number work, they an also cut the colored squares of paper into halves, fourths and other fractions. Some ran be cut into inch squares or thereabouts, • are to be pasted on strips of paper te number groupings; e g., a class may show all the porsible ways of picturing five, six, ten, etc. Number groupings may also be illustrated with paper chains; e. g., three, red; two, wiite, etc., and designs be made with the pieces cut.
A box of Milton Bradley's "gummed paper dots' ' is useful for the children to paste on cands, to make sets of dominoes; this is a good number exercise.

Boxes of toothpicks and shoe pegs may be colored with Diamond Dyes, and used both lor number work and for toy furniture. The i house planned for the home is an equally nilur able school training in manual work. Every object in it may be used as an exerciss in met. suration, especially the wall-paper and rugs
thre or fou able, or any tisthen oilch the sand mu: must have : proper heigh so limit to $t$ and yand, a rores; a farm worked out as collecing the Inding an paper migwan hke, paper b mimels make hat ' r weeks.

- sonial life


## Yindergarten

Aap-200k. A acrup-book may be made on say athool subject: nature atudy, history, civlen, cramphy $\rightarrow$ scrmp-book of famous persons, cithes forrign or home celebritle, one on current ments d importance, on Invention and diseoviry, a on religious atudien. There is really no limit w the ponsibilitien in this way.
Pecturss may be neatly mounted on cards and shoed into puzzles, or the atifl picture covers of odd toy books may bo used In the sume way; while grometrical puzzles may be mude of cardboond equares cut through in various dirsetions. ate od dominoes and geography card games may be made also.
fad Tablo. A and table for either school of tome may be made, by having a wooden strip

## Inderganten

ing of the forest, planting of fields and making romed will make pioneer life vivid. Other geos graphleal and historical exercises will eacily fotlow, and the chlldren will cagerly colieet bits of wood, stone and hricks, twigs, bark, etc., to all In the merne. Clay is very helpful here, as moot things, not otherwise at hand, can be easaily represented with !t; Rukimo huts, for Instance: colored chalks and paints are useful in this, and also for designing the wall papern, rugn, etc., for the doli house or "dIome," as lt may be better to call it, for a school exercise.
Nature Stedy. Nature atudy on plants, flowers, fruits and binds of the locallty should whenever posaihle be followed hy an exercice in representing these in color on the sheets cut from


Pobsibiluties of the and table
three or four inches deep nailed round a kitchen able, or any small table; it should be lined with bichen oilcioth. The lining is needful because the sund must at times be moistened. The table must have the legs shortened so as to be of proper height for working. In school there is solimit to the use of the sand table. A hurise and yand, a village of cardboard houses and sores; a farm, with fields and orchards, may be worked out as a neighborhood study, the children collecring the material.
Indian and Colonial Life. Indian life with puper rigwams, a piece of glass or tinfoil for a ate, peper boats and toy or clay people and mimals makes a fascinating exercise which will bat' i weeks.

- monial life should folluw this, and the clear-
wrapping paper; and large sheets with lists of the birds, plants, trees, etc., whi hare know should be hung on the wall, and added to from time to tire.
Similar sheets with new words and sentences written large in colored chalk may be hung up for review work, and colored chalk is most usefy! for outlining the difficult elements in misspelled words.
suggeated Material. A cutting board and knife for papers and cardboard is most useful for either school or home, as home-made programs and menu cards, passepartout mountings, ctc., can be prepared ty its aid; the cost is from $\$ 2.0 \mathrm{~J}$ to $\$ 5.00$, according to size, at Milton Bradley's or stationers' supply houses.
Gamer fo: Erimary Teachers to Use. All thie sense-games suggested for the home may be
uned and should be carried furtber; e. g., with covertage of animalo, cheli, firy, wool, Aetr-acale, leatler, for louch; with mundo of animals, birde mualical notes and indrumente, for bearing; with tames and amelle of maturai proclucta, etc. Thew may be connected with grograpig and naturestudy.

A good game to exercite obrervation is to choone nome object of interest, while one child ts aent out, and have her guem it from the answen to her questions. Theso may be made exercisen in language.

A good game for language exercise, empecialiy with foreign children, in "Little Travelern." The children leave the room in groupm of three or four at a time, telling when they return that, "We have come from 'mnowy (or ahivering) land,' where the now was falling." "We have come from 'nummer' of 'fanning' land, where prople aifi were 'fanning.' "' The action suast be used with tie word.
An imitation game is a picasant change of poaition. The children rise from their seata, and standing in the aisles, imitate the action of a child who ls chosen to stand in front of the room as leader. A song which may be sung as accompaniment to some simple air is:
" O , a merry band are we,
Standing here to quietly:
What one can do, we ail can doi
Let $\left\{\begin{array}{l}\text { Susie } \\ \text { Willie }\end{array}\right\}$ show us romething new."
Another form of thin is "Follow My Leader." The leader may either stand atill and dramatize actions for imitation, or may walk، run, hop, march or creep around the room, the others imitating. Animal movements imitated, ponies, ducks, kangaroos, etc., are good gymnastic exercises.

Another good game is "I Went to Paris." The teacter asks "What did you do there?" or "What did you buy there?" and the child replies, dramatizing some action which all must imitate.

This may be piayed in rows, the first now saying, "I went to Paris, London, etc." The second row asks the question, and receives an answer, accompanied by some action with the right hand. The thind row begins with the statement; the fourth row questions the third, and an action with the left hand follows, the rhildren who began the game still continuing the action; the fifth row may add some action with the head or foot.

The old "Quaker' game-
"I pur my right hand in,
I put my right hand out;
I give my right hand a shake, thate, terke, And I turn mymell about,"
Io a good one for the firt grade.
Another form of thin in played by the romod ${ }^{3}$ alliren.
Jit Row: "Quern Anne's dend."
2nd Row: "How dikl whe die?"
3nd Row: "With on hand going thin wy."
The fourth row apain mays, "Quern Anmi demi," and this is continued tlli hands, fet and head are ail "going" as in the "Quaker Dhene."

A aimple gymnautic play in "Seetaw." The chlldien stand together in threes; the middle child aretches out his arms; the two on ciblow wide, lacing each other, clasp their hands orer the "board" he thus maken, then rise und thll by bending and straightening the knees akes nately.
Another simple game in the "Swing." Stevo son's verse may be sung:
"How do you tike to go up in a awing,
Up in the air so blue?
Oh, I do think th the pleasantest thing
Ever a child can do."
Stinging is not necessary, but rythmic counting is desimble, or
"Swing-wwong, the days grow long," may be nung.
The children stand in threes, around the room; tw ? face with hands clasped; the third rests his hands upon theirs and pushes them beck and forward, as if pushing a swing; sture three, or six, swinging movements, each child pushes the "swing" high enough to run under it and goes on to the next one.
Another dramatic game is-
"What can jou do?"
A child stands in front of the others, and the teacher asks:
"What can you do?"
He answers: "I can pull ropes, like s sailor," and stretches his arms up, with the action d pulling, the others imitating.

Other suggestions may be:
"I can drum, like a drummer."
"I can saw, like a carpenter."
"I can sew, like a dressmaker."
"I can skip with a rope."
"I can shoot, like an Indian."
"I can ride a bicycle."
"I can play, like a violinist," ete.
Bean-bags made by the chillten give oppottre nity for many games. They may be
nomen
4.0.016
ninhto
in hook
beck or
ins is
Tre

Tham probibly methods Marie M
In 180 theork


Dr. Seguin and afterma arries on a Dr. Montes delectives If chapting an sogreat that the instructio hartber study menal year intant school
hiven the chlldrea of opposite rows; picted periben tinid on the fioor in rows, ca in a "potatiomoni" haed by suecemive children of each Fon hlo a chalk circlo of pata-bourd box phaced in frost of emeh row; the rown may fuce the wat or fromt of the room, in whichever place num io morer apace.
The bage may aloo be pased up and down
the rown; whichever row gets all to the end firnt, wins.
A nimilar ames may be played with elothere pina.
The iframatization of storion 6 Heool exercive, but there ahoild be an effict made to provide action for more than nve or two

## The Montessori Method

Thoe interested in Froebelian methode will probebly wish to know something of the new mathads for young children, originated by Dr. Yerie Montemori, in Italy.
In 1888, Dr. Montemori became intereated In thert of $D_{r}$. Seguin with defective children.
dei Bambint), under a model tenement arocios tion in Rome.

Dr. Montemorl begins with training the mencow. expecially the nense of touch. This it true also of Froebel's work: sut the latter ures playful methods asw : men, while the Montemori



Dr. Sgguin did remarkable work first in France ud alterwards in America, where his widow still arries on a successful school, in Orange, N. J. Dr. Montessori took charge of a school for detectives for two years, and her suce is in ulpting and inventing methods for them was sogran that she became anxious to try to improve te instruction of normal children. She made a furtber study of metbods and psychology for menal pears, and since 1907 has supervised inhats school work, in Children's Houses (Casa
method is inuividual triining. It is based on contrasts, which are also used by Froebel. The child is given rough and smooth articles, altern nately, to handle, until he recognizes them will. The name of the quality is taught, but as few words as possible are used by the teacher, lest the child be confused. Similar exercises with colors are given, and after a time the child has exercises in sorting and grading the ob xts or colors. An immense emphasis is put in the personal action, or "sell-activity," of $~ 2$ child;

## Indorgarten

and the teacher must never push him on nor give the new exercise or word until he seems canger for it. This, too, is the method Froebel advocates; but the large numbers of children gathered in our kindergartens under the American school aystem are not favorable to it. The Monteseori work is done with very poor children; and the mothers are so cager to have them begin school early that they are taught to read and write when three or four years old. The child first gets to know square , circles, etc., inset in hollow blocks, by touch; he then has large script letters, set in the same way, and fils in outlines with colored chalk. Italian being a phonetic language, the sound is acquired with the name. The children are allowed to choose the forms they wish, to outline, so there is no regular order used for the letters; but as they go from one to another, and make the successive sounds aloud they 8000 discover that they are the sounds made in pronouncing words, and begin to make new combinations. Their delight when they find out that they can re-arrange these at will, is great. A child will exclaim, "I can write, see, bread, meat," etc., sounding the successive -lements of the Italian words for these, as he forms the letters. After this, reading is of course, only the discovery of the various ways in which sounds are combined in any words, and the children are eager to go on. (They use tablets on which familiar words and clements are written in large script.) The work is admirable as to method, though we question the value of reading and writing for children so young. Number is begun in a similar way.
The children also learn to tie bows and knots, and do all other simple actions concerned with dressing themselves, etc., relieving the mothers of this care and learning self-reliance.

The handwork Froebel planned to encourage creativeness, and artistic feeling or the germ of it, is not included; nor the social conversations, games and ideals, the stories, music or poetry of the kindergarten.
The Montessori method is in fact, one for developing a feeble or immature mentality, and takes heed that the physical growth is not injured or forced; it deals with immediate needs rather than with general ones.
The teaching is individual and the purpose entirely practical, i. e., to give the child useful knowledge as early as possible, by a natural method. The moral and spiritual training other than that of obedience and onderly habits, the feeling of relation to others, and the joy of play,
seems lecking; nor does it reem to cultivate idens or give the children any rich mental content of atories, songs and knowledge or love for nature. (Accounts of this work may be found in MeClurc's Magazine for May, 1011, Dec., 1911, and Jan., 1912. It seems highly desirable for defectives, but one-sided for normal childrea)

## Outtine

I. History
(1) Origin
(2) Froebel's ideal achool
(3) Recent development
(a) In the United States
(1) Kindergarten training schools
(2) Kindergarten department of the National Education Associmtion
(b) In other countries

## II. Puapose

(1) Wise direction of the child's activity
(a) In sell-expression
(1) Elementary knowledge of form, measurement, and motion gained through objects
(2) Skill in construction work ac. quired
(b) In relations to others
(1) Kindness and obedience dertoped
III. Metriods
(1) Songs and stories
(a) Mother-Play Songs (Froebel)
(b) Class singing
(c) The mother's or teacher's story
(1) Its purpose
(a) To call into play the imagination and feelings
(b) To develop the sense of right and wrong
(2) Its character
(a) Usually of the lancitr! tepe, suggestive of sin ple truths
(3) How it should be told
(d) Conversations
(2) Games
(a) Marching, guessing, and consust games
(1) Use
(a) Enfertainment
(b) Development of imagine: tion, reason, and soid instinct
(2) Suggested games

## Itadorgarten

(b) Gift-phys and games
(1) Purpose
(a) Self-expression
(b) Exercise of Imagination and power of observation
(2) Charmeter
(a). Representation of persons or objects of nature with theircharacteristicactions and feelings
(3) Gift
(a) Classification
(1) The five groups
(a) Solids, (b) surfaces, (c) lines, (d) points, (e) constructon material
(2) The eleven gifts
(a) Six colored balls, (b) ball, cylinder, and cube, (c) eight one-inch cubes, (d) eight brick-shaped blocks, (e) twenty-seven one-inch cubes, (f) twenty-seven brick-shaped blocks, (g)

## Tindorgarten

wooden tablets, (h) sticks or splints, (i) wire ringa, half-ringe, and quartes. rings, (j) pebbles, seeds, etc., (k) construction materials (wax pellets, cork cubes, etc.)
(b) Use as playthings
(1) Amusement
(2) Indirect instruction
(a) Ideas of form, measurement, and motion awakened
(b) Constructive power called into action
(4) Occupations
(a) Kinds
(1) Modeling in clay and sand
(2) Paper folding, cutting, pasting,
weaving, and sewing
(3) Drawing and painting
(b) Purpose
(1) Development of constructive instinct


Introdnctory. The real purpose of lenguage teaching is not to teach pupils to tall: it is to teach them to exprem their thoughts. The really fundemental thing, thea, if succeasful work in language is to be done either in the home or in the school, is to interent the child in something, it matters comparatively little what, so that he will of his own accord be willing to make statements or ack questions. When he wants to use words, it is ensy enough to teach him what words to use; if he is anxious to talk about a subject he is willing to be taught the best, most effective way to talk about it. From the first grade to the eighth, whether the work be the simple "language work" of the primary children, or the more advanced "grammar and composition," little is ever gained by forcing pupils to talk or write on subjects which are beyond their comprehension or outside their sphere of interest.

One of the greatest advances that has been made in recent years in the teaching of such subjects as language lies in this very fact; it is not so very long ago that pupils in grammar schools were assigned for their compositions such topics as "Perseverance," "Success"-abstruct topics
which could not, in their very nature, call up in the child any spontaneous, vigorous, individul thoughts. To a person who was trained on sced composition topics, the subjects that are asigned to pupils now-such subjects as "My Happiex Christmas," " When Father Took Me Fishing" seem almost too good to be true, just by rasea of their relation to the child's life. Nor has thin change sprung simply from a desire to cater to the child's likes, it has come from a real per ception of the fact that only by allowing a child to talk and write of what is capable $f$ interes. ing him can the school give to him that groatat of gifts in its power-the ability to use his on language easily and forcefully.
For the benefit of teachers and mothers : graded outline of work is given here, showing the development of the subject throughout the years of grammar school. With these lessons is closely connected the discussion of Story-Telling, which begins on page 682 of this volume. Retor ences to that discussion will be given in the course of the treatment of language. There are also many helpful suggestions to be found in the article on Language, Methods of Teaching, in The New Practical Reference Libary.

## First Year

Introduction. When a child starts to school he has command of a certain number of wordsmany more, probably, than the most of us imagine. Some of these he uses freely; some he is fairly well acquainted with, but uses seldom. Of course there is a very great difference observable in children from different types of homes; the child of intelligent, English-speaking parents will naturally have a much wider vocabulary than the child of foreign or uneducated parents. But to whichever class a child belongs, it is the
object of the language work to enlarge and eurich the child's vocabulary and to make surea ad more exact his use of those words he does koor. Nor are these all the purposes of the hanqueg course in the early grades. Imagination shoud be strengthened, appreciation a wakened for wat he reads and hears, and a taste cultinued in what is good in literature.

In a sense, every lesson in any subjeet throupt out the day should be a language lesoon, lux slovenly work in other classes may undo mud
in mieal in th nde $d$ cum $=$ ,
 E ray im wittens we of th sateace at the en mote can Obever which wil de all-im are prac paint to sopic mus bian with mox intere that the s at excell matein f The girls interior of or sets the maby to $b$ frist ember The boys, discuss su mork, or the hon. hets of int the home Thanksgivi diseussing made at bo Just befon interest wil oreteager tull about about the II thair suspic hidden, abo therer and rubjects fo Intert opp - be hep argested to film gramm

## Lengeage and Crammar

in in dose in the language class. An ungrammien cmitement should not be allowed to pess in th numben-work clase nor a particularly tadrome expression in the reading class. But $d$ warsis such things can be dealt with in the hy on clace in a detailed way which is impuible in other classes.
At luat the first half of the first vear's work Inll a necessity be oral; not until the sixth meth, perhaps, will the children be ready for mituen cmtements, which will then be of the vof implest. In connection with these simple miteen sentences the pupils may be taught the ue of the capital letter at the beginning of the matace and of the period and the question mark at the end. Farther than this formal language mot annot well go in this grade.
Convorration Ezercises. The subjects which will suggest themselves to any teacher for the allimportant oral exercises of the first grade ar practically innumerable. The one graat paint to be remembered, of course, is that the upic must interest the children; and in connection nith this the fact that the same thing does mox interest all children. Suppose, for example, that the subject for conversation is the homean excellent topic which might well furnish murial for half a dozen or more discussions. The giris will naturally be more interested in the intuior of the home; the way mother bakes cake ar sts the table, or makes the bed or puts the buby to bed will lead them on to talk, once the firt embarmssment is over, freely and willingly. The boys, on the other hand, will care more to disusus such subjects as a barn, r fither's mok, or why they do not like to take care of de han. At certain seasons of the year special facts of interest naturally come up in relation to the home which give variety. For instance, at Thankgiving time both boys and girls will enjoy dierusing the preparations which are being made at home, and the guests who are coming. Just before Christmas so many subjects of interst will come up that the pupils will be orereager to discuss them; they will want to tifl about the decorating that goes on at home, sbout the making and hiding of presents, about theis suspicions as to where their own gifts are bidden, about the presents they are making for hubrer and mother. And just such spontaneous abjacts for conversation are the teacher's meter epportunity. Of course the discussion mase bept within bounds; new words must be memeded to the children, wrong ones corrected, the grammatical forms made right. But if the

## Langage and Grammar

teacher shows that she in interested in what the child is telling, and not just in the manner of the telling, she may slip in her corrections without making the child self-conscious.

Discussion of home affairs may easily be connected with nature study. In the fall the pupils may tell of the preparation for winter at home, of the laying in of food and fuel and warm clothing; and from that they may be led to the subject of the preparation animals make for winter. In the spring, talk of awakening life in the garden and the feelds will be natural; wild flowers and tame flowers, the birds that may be seen in the home garden, the butterflies and insects that flit about the flowers are all topics about which the children will talk thenoselves and gladly hear the teacher talk.
Description by the pupils of pleces where they have been and of things they have seen stimulates imagination and trains powers of observation, and may also prove highly entertaining. Try, as far as possible, to teach the pupils to have some system in giving descriptions. Let them tell when they saw the cbjert, where they saw it, how it looked and how it made them feel. By forming this habit, a pupil may tell a connected and comprehensive story without needless repetition and unnecessary words.
A conversational exercise in the form of a game may be effectively introduced, the teacher, as in all the conversational work, noting and correcting all faulty construction. One pupil may think of some object, and the pupils and teacher, by asking questions, may try to guess the object in question. All questions and answers should be in complete sentences. For instance, a pupil should ask, "Is it in this room?" or "Do I see it every day?" and the answer should be "No, it is not in this room," or "Yes, you see it every day."
The interweaving of stories and games is a helpful as well as an attractive feature of this work, and the .ollowing practical suggestions should prove of assistance to the teacher in this important branch of her work:
Read or tell the class simple but interesting stories, told in words of the pupils' vocabulary, and after they have become familiar with the story allow one to commence it, another taking it up where the first one stops, and continuing until several pupils have taken part in the exercise. Stories which may be effectively used in this way are to be found in the section on Story-Telling, beginning on page 682.

## Lascuage and Grammar

Another attractive form of language work is to let certain pupils take the parts of the different characters in the story and in original sentences tell their part. Such portions of the story as the child may not remember can be supplied by the teacher. In conducting these leasons any incorrect forms or sentences should be immediately corrected, but in such a way that the pupil will not feel selfconscious. The Little Red Hen and The Three Bears may be treated in this way.
Yomory Work. The memorizing of simple poems comes under the head of language work, and can easily be made one of the most attractive parts of that work. Almost all children love the swing and mythm of the nursery riymes, and it is well to begin with the learning of a number of them, if the children have not already had them in kindergarten. The following selections .should give teachers and mothers all of the Mother Goose rhymes they need:

Dafiy-Down-Dilly has come up to town In a yellow petticoat and a green gown.

Humpty Dumpty sat on a wall; Humpty Dumpty had a great fall; And all the King's horses and all the King's men Can't put Humpty Dumpty together again.

Rock-a-bye, baby, in the tree top;
When the wind blows, the cradle will rock; When the bough breaks, the cradle will fall; Down will come baby, cradle and all.

Little Boy Blue, come, blow your horn;
The sheep's in the meadow, the cow's in the corn.
"Where's the little boy that looks after the sheep?"
"He's under the haystack, fast asleep."
Ding, dong, bell, Pussy's in the well! Who put her in? Little Tommy Linn. Who pulled her out? Big John Stout.

There was an old woman who lived in a shoe;
She had so many children she didn't know what to do;
She gave them some broth without any bread;
She whipped them all soundly and put them to bed.

## Language and Grammar

Little Miss Muffet<br>Sat on a tufiet, Eating her curds and whey; Along came a spider, And sat down beside her, And frightened Miss Muffet amy.

"Pussy-cat, pussycat, where have you beenp" "I've been up to London to look at the quee." "Pussy-cat, pussy-cat, what did yriu there?"
"I frightened a little mouse under the chari."
Little Bo-Peep has lost her sheep,
And can't tell where to find them;
Leave them alone, and they'll come home,
Wagging their tails behind them.
The north wiod doth blow,
And we shall hi ve snow, And what will y.oor llobin do then! Poor thing!
He'll sit in a barn,
And to lieep himself warm Will hide his head under his wing, Poor thing!

Three little kittens Lost their mittens;

And they began to cry,
"Oh! mother dear, We really fear That we have lost our mittens."
'Tost your mittens!
You naughty kittens! Then you shall have no pie."
"Mee-ow, mee-ow, mee-on." "No; you shall have no pie."
'"Mee-ow, mee-ow, mee-ow, Mee-ow."

There was a man of our town, And he was wondrous wise:
He jumpet into a bramble bush, And scratched out both his eyes.
And when he found his eyes were outh With all his might and main He jumped into another bush, And scratched them in again.
There was an old woman, and what do you thint? She lived upon nothing but victuals and dinks Victuals and drirk wer: the chief of he diter, Yet this grumbling old woman could peret bep quiet.

## Langeage and Grammar

Whan I was a bachelor I lived by myself, And all the bread and cheese I got, I put upon $a$ shelf;
The nts and the mice did lead me such a life, The I went to London to get myself a wife.

The arects were so broad and the lanes were so narrow,
I could not get my wite home without a wheelberrow;
The wheelbari: w broke, my wife got a fall;
Down tumbled wheelbarrow, little wifo, and all.

Simple Simon met a pieman, Going to the fair;
Says Simple Simon to the pieman, "Let me taste your ware."
Suys the pieman to Simple Simon,
"Show me first your penny."
Says Simple Simon to the pieman, "Indeed, I have not any."
Simple Simon went a-fishing For to catch a whale; All the water he had got Was in his mother's paill

## Od King Cole

Was a merry old soul,
And a merry old soul was he; He called for his pipe, And he called for his bowl, And he called for his fiddlers three. Every fiddler he had a fiddle, And a very fine fiddle had he; Twee, tweedle dee, tweedle dee, Tent the fiddlers three.
Ol there's none so rare as can compare With King Cole and his fiddlers three.
There ras a crooked man, and be went a crooked mile;
Ee flound a crooked sixpence against a crooked tilie;
He bought a crookei cat, which caught a crooked
moouse,
And they all lived together in a little srooked
house.
I had a pony, his name was Dapple Gray;
I kott bint to a lady to ride a mile away.
She whipped him, she lashod him,
She nde him through the mire;
1 sould not lend my pony now,

## Language and Grammar

## Twinkle, twinkle, little star:

How I wonder what you arel
Up above the world so high,
Like a diamond in the skg.
When the glonous sun is set, When the grass with dew is wet, Then you show your little light, Twinkle, twinkle, all the night.

In the dark-hlue sky you keep, And often through my curtains peep; For you never shut your eye Till the sun is in the sky.

As your hright and tiny spark Lights the traveler in the darl, Though I know not what you are, Twinkle, twinkle, little star!

After the children have learned one of these rhymes, various uses may be made of it. The simpler ones, the children may be allowed to illustrate on the board; the others they may give in prose, in their own language. This is a valuable exercise, hut it should not be carried too far. For instunce, in the case of a poem which has real beauty, like some of those which follow, no attempt should be made to translate into prose. The children should memorize them and should not be asked to spoil them hy changing them from the beautiful form in which they were written. Of course the list of poems that follows is merely for the teacher to choose from; no firstyear class could be expected to learn all of them, or even to take up all of them for study and discussion in class. Other poems may be read aloud hy the teacher.

## October's Brigit Blue Weather

HELEN HUNT JACKSon
O suns and skies and clouds of June, And flowers of June together,
Ye cannot rival for one hour October's hricht hlue weather,

When loud the sle-bee makes haste, Belated, thriu vagrant, And goldenrod is dying fast,

And lanes with grapes are fragrant:
When gentians roll their fringes tight,
To save ti:em for the morning, $\therefore$ nd chestnuts fall from satin hurrs

Without a sound of warning:

## Ianguge and Grammar

When on the ground red apples tie In piles like jewele shining, And redder atill on oid atone wall Are leaves of woodbine twining:

When all the lovely wayide things Their whito-winged reeds are sowing, And in the flelds still green and fair, Late aftermaths are growing:

When springe run low, and on the brooke, In idle golden freighting,
Bright leaves sink noiseless in the huah Of woods, tor winter waiting;

O suns and akies and flowers of June, Count all your bonsts together, Love loveth beat of all the year October's bright blue weather.

## A Viat From St. Nichouns <br> cleminnt c. muore

Twas the night before Christmas, when all through the house
Not a creature was stirring, not even a mouse.
The stockings were hung by the chimney with care,
In hopes that St. Nicholas soon would be there.
The children were nestled all snug in their beds.
While risions of sugan-plums danced in their hends;
And Mamma in her kerchief, and I in my cap,
Had just settled our brains for a long winter's nap-
When out on the lawn there arose such a clatter I sprang from my bed to see what was the matter, Away to the window I flew like a flash,
Tore open the shutter, and threw up the sash The moon on the breast of the new-fallen snow Gave a lustre of mid-day to objects below;
When what to my wondering eyes should appear But a miniature sleigh and eight tiny reindeer, With a little old driver, so lively and quick,
I knew in a moment it must be St. Nick!
More rapid than eagles his coursers they came,
And he whistled and shouted and called them by name:
' Now, Dasherl now, Dancerl now, Prancer and Vixen!
On, Cometl on, Cupidl on, Donner and Blitzenl
To the top of the porch, to the top of the wall, Now, dash away, dash away, dash away all!" As dry leaves that before the wild hurricane fly, When they met with an obstacle, mount to the sky.

## Languge and Grammar

So. up to tha housetop the courners they Aen, With a aleigh full of coye and SL. Nicholes, ba And thea, in a twinkling, I heard on the rool The prancing and pawing of esch little hoot. As I drew in my head, and was turning around,
Down the chimney S. Nicholas came mith, bound:
He was dreseed all in fur from his hend to hin foot,
And his clothes were all tarnished with abte and soot:
A bundle of toys be had flung on his back,
And he looked like a peddler just opening tiin pack.
His eyes, how they twinkledl his dimples, bor antyl
His cheeks were like roses, his nose like a cherr;
His droll little mouth was drawn up like a bon.
And the beard on his chin was as white as the snow.
The stump of a pipe he held tight in his teeth,
And the smoke, it encircled bis head like : wreath.
He had a broad face and a little round belly
That shook, when he laughed, like a borl fill of jelly.
He was chubby and plump-a right jolly old et,
And I laughed when I saw him, in spite of myelf; A wink of his eye, and a twist of his head,
Soon gave me to know I had nothing to dread
He spoke not a word, but went straight to his work,
And filled all the stockings; then turned with : jerk,
And laying his finger aside of his nose,
And giving a nod, up the chimney he rose.
He sprang to his sleigh. to his team gar : whistle,
And away they all flew like the down of a thisle
But I heard him exclaim, ere they drove outd sight,
"Happy Christmas to all, and to all a good night."

Tere Wind
robert louts stevexson
I saw you toss the kites on high
And blow the birds about the sky; And all around I heard you pass, Like ladies' skirts across the graso$\mathbf{O}$ wind, a-blowing all day long.
O wind, that sings so lourd a sont
I saw the different things you did, But always you yourseff you hid.

I Aht you purh, I board you call. I could not 300 younelf at all0 wied, a-blowing all day long, 0 wind, that angs so loud a wongl
0 you that are so atrong and cold, 0 blower, are you young br old 1 Ave you a benst of feld and tree, Or juas a stronger child than me? 0 wind, a-blowing all day long,
0 wind, that anga 50 loud a song.

## The Ther

## gornstilerne mornion

The Thee's eariy leaf-buds were bursting their brown:
"Shall I tuke them away?" mid the Froest, arequing down.
"No, leave them alone
Till the blowoms bave grown,"
Payed the 'Tree, while he trembled from rootlet to crown.

The Tree bore his blossoms, and all the birds mang:
"Sinall I take them away?" said the Wind, as be swung.

> "No, leave them alone Till the berries have grown," Sid the Tree, while his leaffets all quivering hung.

The The bore his fruit in the midsummer glow: Said the girh, "May I gather thy berries now?"
"Yes, all thou canst see:
Theke them: all are for thee," Sid the Thee, while he bent down his laden boughs low.

Rans
hobeat louts stevenson
The rain is raining all around, It falls on field and tree, It rains on the umbrellas here, And on the ships at sea.

## Tre Swing

gobert couts stevenson
How do you like to go up in a swing, Up in the air so blue?
Oh, I do think $1 t$ the pleasantest thing Ever a child can dol
Cp in the air and over the wall, Till I can see so wide.

## Languge and Gramear

Rivers and trees and cattle and all Over the countryide-
Till I look down on the garden green, Down on the roof so brownUp in the air I go Alying again, Up in the air and downl

## What Dose Littre Birdie Say? aluraed tennyyon

What does little birdie ayy,
In ber nest at peep of day?
"Let me fly," ays little birdie,
"Mother, let me fly away." Birdie. rest a little longer,
Till the little wings are atronger. So she restr a little longer, Then she flies awny.
What doess little baby may.
In her bed at peep of day?
Baby says, like little birdie, "Let me rise and fy away."
Baby, sleep a little longer,
Till the little limbs are stronger.
If she sleeps a little longer
Baby, too, shall fly away.

## Sevan Thups One JBAN ingelow

There's no dew left on the daisies and clover.
There's no rain left in heaven:
I've said my "seven ti ; ${ }^{\text {" }}$ " over and over,
Seven times one are en.
I am old, so old I can write a letter;
My birthday lessons are done;
The lambs play always, they know no better; They are only one times one.
O moonl in the night I have seen you sailing And shining so round and low;
You were brightl ah, bright! but your light is failing-
You are nothing now but a bow.
You moon, have you done something wrong in heaven
That God has hidden your face?
1 hope if you have you will soon be forgiven,
And shine again in your place.
O velvet bee, you're a dusty fellow,
You've powdered your legs with gold!
$O$ brave marsh marybuds, rich and yellow,
Give me your money to hold!

## Ianguge and Cramarar

0 columbles, open your folded wripper, Where two twis turtlo-doves dwelli
0 cuckoopinat, will me the purple clapper That hanges in your clear green belli

And show me your neet with the young ones in $k$; I will not steal them away;
I am old jou may trust me, linnet, linnetI am seven times one today.

Itedy of a Poom. As with the nursery shymes, the children may find much interest in illuatrating the poems. Let each child choose a line from some poem, us, for example, October's Bright Blw Weacher, and draw on the board his idea of the picture the line gives. This little poem in full of pictures.
Of course it is absolutely necessary when children are learning or studying a poem that they shall understand it thoroughly. This does not mean that they must grasp the thought entire; a poem which will appeal very strongly to children may have shades of meaning which they cannot possibly grosp. But they should kno $N$ the meaning of every word and such facts as will serve to make the poem cleares. Let us tuke, or ce more, the poem referred to in the last paragraph-October's Brighl Blue Weather. Before the children even attempt to learn it the teacher should be sure that they can answer the following queations:
Who wrote this poem? (Information for use in reply to this question may be found by the teacher in The New Practical Refremece Library.)

What does "rival" mean?
Which does the author like better, October or June?
What does "belated" mean? "thriftless"? "ragrant"?
Why is the bumble-bee called a "thriftless vagrant" ?
What are gentians? What does the author mean by speaking of their "fringes"? Why does she speak of the fringes as "rolled tight"?

Why are chestnut-burss called "satin"?
What is woodbine?
What are the "lovely wayside things," and what are "white-winged" seeds?

What are "aftermaths" ?
What is meant by "In idle golden freighting"?
The children should be encouraged to ask questions about the poem, for often children get and keep misconceptions about some point in a poem which the teacher could never suspect.

## Leagrage asd Grammar

Heasoase Forses. These are few childra to whon nonsense shymes do not appal The following from Edward Lear is atmot certain to be a great favorite:

## Tas Own and the Pewor-Cas

The Owl and the Pusay-Cat went to sen
In a beautiful pea-green boat; They took some honey, and plenty of mones

Wrapped ${ }^{\circ} \mathrm{o}$ in a fivo-pound note.
The Owl looker up to the stars above,
And sang to a small guitar,
"Oh, lovely Pussyl Oh, Pussy, my lovel
What a beautiful Pussy you arel"
Pussy said to the Owl, "You elegant fowll
How charmingly sweet you sing!
Oh. let us be married - too long we have taried-
But what shall we do for a ring ?"
They sailed awnay for a year and a day
To the land where the Bong-tree grom,
And there in a wood a piggy-wig stood
With a ring in the end of his nose.
"Dear Pig, are you willing to sell for one shilling
Your ring?" Said the piggy, "I will."
So they took it away, and were married nextdy By the turkey who lives on the hill.
They dined upon mince and slices of quime, Which they ate with a runcible spoon, And hand in hand on the edge of the sand

They danced by the light of the moon.
Nature Itudies. The teacher may find interesting material for nature stories in the department of Nature Study in this rolume. The articles on the Dog, the Squird, Anth, Trees, Flowers, Birds, have facts wbich may be used as the bases of the nature stories which ar so fascinating to children. Many points, to in the departments of Botany and Zoowar may be so used.
Fables. It is perfectly natural for childrento personify animals and inanimate objects, and 10 endow them with all sorts of human qualitio A four-year-old child had two Teddy-bears, ox: a small diapidated animal, the other a beamite big new one. The new one was neqlected ad the old one was carried everywhere, add whe the child's mother asked the resson for bi preference, he replied without hesitation, " Tr big Teddy never says 'Thank you,' no muttra where I take him; but the lintle Tedidy chatif says 'Thank you, Charles,' just as nice." The two playthings had to their owner chareves a
erex, What
the jol sates Of
twinkti
Ody,
where
ssltry,
chere
to the
oretak
Mens

## Leaguage and Orammar

endect as two human beinge could have. And .ith thin facuky so strongly developed it is mumal that children ahould thoroughly enjoy thbes After the following fables have been and the children may be asked to reproduce trem in their own language or they may bo allowed to illustrate them or to act them out. Provently children show a surprising amount of dramatic instinet in acting out these simple litle storien.

## The Fox and the Crow

A Fox once saw a Crow fly off with a piece of chese in its beak and settle on a branch of a tre.
"That's for me, as I am a Fox," said Master Remend, and he walked up to the foot of the tree.
"Goodday, Mistress Crow," he cried. "How vell you are looking today; how glossy your leathers; how hright your eye. I feel sure your mine must surpass that of other birds, just as your figure does; let me hear you sing, that I may call you queen of hirls."
The Crow lifted up her head and began to aw her best, hut the moment she opened her mount the piece of cheese fell to the ground, only to be snapped up by Master Fox.
"That will do," said he. "That was all I mated. For your cheese I will give you a pince of advice: Do not trust flatterers."

## The Hare and the Tortorse

"O you slow one, you clumsy one, your ugly chape and plodding motions make me roar with hughter," said the Hare to the Tortoise one dy as they met in the road.
"Perhaps I am ugly and do move slowly," replied the Tortoise, "but I can beat you in a mee to the next river."
This made the Hare laugh more boudly than ever, and a Fox coming along stopped to see what caused the uproar. The Hare explained the joke and finally asked the Fox to hold the stakes and judge the race.
Of started the rivals, and almost in the twinkling of an eye the Hare was out of sight. Only a little cloud of dust remained to show where he had gone. The day was hot and sultry, and soon be was choking with dust.
"Pshaw!" "said he; "I can rest here an houran eren take a nap-and beat that lazy Tortoise to the brook. Suppose he doess pass me, I can oretake him quickly enough."
Menntile the Tortoise plodded slowly along,

## Langage and Grammas

kicking up no dust, feeling no heat. When he came up to the Hare the latter was sleeping coundly, and the Tortoise passed on slowly but surely, moving ateadily, never serting a minute.
It was hate afternoon when the Hare awoke and looked up and down the road. "I declare," he said; "that slow-poke has not come along yet. I'll take a few nihbles at this clover and then run back and meet him."
The clover was aweet and juicy, and it was some time before the Hare again remembered his race. When he did, he turned to the road and examined the dust. Think how surprised he was to see the trall of the Tortoise leading by him toward the brook. There was no more nibbling of lunches, no more sleeping or resting, for off down the road he ran, covering the ground in long leaps that hrought him quickly to the brook, where, sitting lazily at the edge of the water, was the Tortoise, calmly waiting. "Here, take your money," said the Fox to the Tortoise; adding as he turned to the Hare, "Steady going wins the race."

## The Lion and the Mouse

Do you know the story of the Lion and the Mouse? It runs like this:
One day a huge Lion lay sleeping soundly in the shade of a great tree. His strong legs were stretched out limply on the ground, and his shagey head and powerful jaws looked very beautiful in repose, for the wicked teeth were covered and the fierce eyes closed. Two wittle Mice, seeing him there, began to play about him, and finally one of them, much hraver than the other, ran over the Lion's head, through his tawny mane and beneath his great fore paw.
The Lion's rest was nearly over, and the little feet of the Mouse tickled the huge beast into wakefulness. Opening one eye, he spied the Mouse under his paw, and closed his hig toes over his trembling prisoner.
"What are you doing here, you miserable little Mouse ?" said the Lion in a terrihle roar. "Why do you disturh my noonday nap in the shade? I'll hreak every bone in your ugly
little body."
Down came the big toes, out sprang the awful claws, just as they do on the cat's frot when she dreams of hunting. The Mouse thought surely his last hour had come, and he cried as loud as he could in his weak, tremhling voice:
"O Mr. Lion, spare mel spare mel I didn't mean to disturb you, truly I didn't. You see, I was just playing, and your mane was so soft and
benutiful, I couldn't keep out of h, and under jour pair jur jus the phee to hide, so here I came. I didn't mean any harm-1 didn't think jou'd care, Mr. Lon. Don't kill me this time. IIl never, never do it agnin."
"Well, see that you don't," growiled the Lion. "Killing you would be amall busines for me, anyhow:"
It was not many days after thin that the Lion, while hunting near by, was caught in a net which come hunters had apread for him. He atrugged sercoly and roared in anger, but the more he solled about and the harder he kicked and pawed, the more clowely the net clung to him, till at heat, weary with fighting, he lay bound and belplem, an easy prey for the humters when they ahould return.
The Mouse which the Lion had apared llived in a little round nest of grases not far from where the Lion was caught. He heand the noive of the atruggle and sat at home with a beating heart, afruid to venure out of doors while nuch a furious combat was going on. When the Lion grew quiet, however, the Mouse atole out, and coon saw what was the matter.
"O Mr. Lion," he maid, "you are the very Mr. Lion that let me go that other day, aren't you? And now the hunters will kill you if you can't get away, won't they? Ill belp you."
"What can you do, you little mite ${ }^{2}$ "' growled the Lion. "Better run away yourself, or when the hunters come for me they'll step on you."
" $\mathrm{O}, \mathrm{I}$ can help. 1 can gnaw the ropes in two. I'd like to do it," said the mouse. "Just you keep still till I tell you to move."

So the Mouse began to gnaw on the big ropes. It was a hand task, and his lips grew sore and his sharp teeth ached, but he kept on bravely till one after another the ropes gave way and the King of the Woods was almost free."
"Wait just a few minutes more," said the Mouse, as he paused to rest bis little jaws. "Don't jump up till I get out of the way. I'll tell you when."
In a little while the last rope was cut in two, and the Mouse, scrambling down from the Lion's big bead, called out:
"Now jump up, My. Lion; you're free. Areit you ghad you didn't kill me the other day"'
The bie fellow tood up on his feet, shook hlmeelf a fow timen, atrecthed his aching limber washed his face and walked away. But jum es he was going he booked back over his shouldam and sang out, "Little friends are great triends."

## The Mice and the Cat

A gentleman once owned a Cat that wes a very fine mouser. She hurted so much that ahber s time she had caught and killed nearly all the Mice in the gentleman's house. The remining Mice were very much frigbtened and called a council to see what could be done. They wid secreetly in their hall behind the coulbin and locked the doors carefully before they began of telk. Many plans were proposed and discused, but the Mice could agree on nothing.

Finally a dapper young Mouse arose and uid:
"Mr. President, I wish to propose a phan. It is so novel and so excellent that I im certio every one of you will approve it. A little siver bell must be hung about the Cat's neck. Then every step she takes will make the bell tinke, and we shall have warning in time to run to our holes before ahe comes too closel lisn't that a perfect plan? We can then live in salfyy ad happiness in spite of this wonderful Cat."
The young Mouse took his seat, smiling rith an air of complacent pride, and from the ober Mice came the sound of lively applause.
"Mr. President and Fellow Mice," interruped an old gray-whiskered Mouse who rose from the back of the hall and looked his companions omer with a merry twinkle in his eye, "the plan poo posed by the last speaker is indeed an adminble one, but Ifear there is one slight drawback to it. The bonorable gentleman has not told ws who is to hang the bell around the Cat's seck"

Pictures. Children of the first grade are not too young to begin to take an interest in picturs. Murillo's Melon Eaters, opposite page 636 of this volume, is a picure wbich will appeal to chidram; use this and others, and have the children wll stories about what they see in the picurs Such exercises strengthen the mental faculich.

## Second Year

Introduction. The work of the second grade is much like that of the first, of which it really forms but a continuation. There is, bowever, a little more emphasis placed on written work than was possible in the first grade. But
it must not be forgotten that the chice thingis still the oral work, and the teacher shouth amun be certain that the pupils can tell things bedore they are allowed to write them.
Written Work. As an illustration of the wi
whith
don, $m$ bo mar bene dise midh ave tho appead my be 10 Theo
The
The a
The al
The al
The am
worde are
met for re te crange, ather paper. denling will proupe have bined, but ponde to hav ormal comp Trumal 1 litle more al formal aide the work is tut name. groph in thei before them, Exphin to th bound exercis dilidren to fil I have .John has Have you I have... Mary got. The use of und of the sim in the firt gn so that the puf the riles.
The use of nebe and of made. The diference betu regutr forms, introduced unti
Mature Itud be combined I moth, and flow by the pupils a whe the carl simpler fiowers: tulip, the daisy.

## Inageage and Oramman

bo whld whitem work may be prosented is thin dwo, tet wake a almple rubject-the orange, for cmi: pthe Let cexch child, alter the tople hao bean discuesed in clay, hand in a paper on midh ave written fire of nix sentences describing the appesinnes of the orange. Thess sentences my be comewhat as followis

The oruage is pretty.
The orunge is round.
The orange in yellow.
The akin of the orange is rough.
The skin of the orange in ahiny.
The arrangement, form and apelling of the monds are criticized, and the papers are handed beck for rewriting. After further diseussion of de orange, its tacte, its usea, the places it grows, ather papers similar to the first may be written, daling with these other points. After all the poupe have been corrected, they may be combined, but no attempt moould be made in this ande to have the children produce anything like formal compositions.
Furmal Lagreage Work. Then, too, a litle more attention is given in this grade to the lormal aide of hanguage work, though perhapa the work is even yet too elementary to deserve that name. Let the pupils, after reading a paragnph in their readers, pick out words with "a" before them, and words with "an" before them. Exphin to them the difference and write on the onard exercises like the following, asking the bildrea to fill in the blanks:
I have --... apple.
John has _- dog.
Have you _-aunt?
I have ...- book and _ink well.
Mary got..._doll and Frank got.......engine. The use of capital letters to begin sentences ad of the simplest marks of punctuation, begun the first grade, should be continued in this, that the pupils feel perfectly acquainted with e rukes.
The use of the singular and plural forms of sho and of nouns may be introduced in this ade. The children will readily grasp the ference between singular and plural in the yhur forms, and irregular forms should not be moduced untii later.
Iuture itudy. The language work can again combined profitably with the nature-study ot, and fowers which are brought to school the pupils can well be used as a basis. Of tor the early lessons should deal with the phe flowers-the violet, the wild rose, the of the daisy. Point out the various parts of
the lower and dexcribe thotr umen, in so far aco the pupils may be expected to undertiand chem. Wineen the childrea have become familias wilh the fowwers, see how many seatoons they can write descriptive of each one.
Coveresmadion Exercieges. As in the finx grede, the emphasis in atill on the oral exprose sion of idens, but the topics should of course be varied. Intereeting lenoons, for examplo, may be drawn from the lives of different ruoce of people. The tencher, of counce, will have to give nope of thim material to the children, they being called on to reprodure parts of it for her. Thie New Pructical Repenincer Limaray contaios manay articles of which the teacher may make excelleme use in preparing such material. One lewon could be given on the Cave Duellore, while the articles on Cliff Dwellern, Eatimo and Indiano ahould form the basis for several lessons each. After the pupils have become familiar with several of thesc topics, call on zome child to may or to write on the board sentences descriptive of some one of them, the other children to guom of what he is thinking. If, for instance, the child chosen mys, "I live in a hut. I eat fat food. I wear fur clothes. I ride on a mled," the other children should have no difficuky in guessing "Eskimo."

Aeting Itorlos. In this grade, as in the first, much good work may be done on the basis of stories told by the teacher. A story is read or told and the children are asked to reproduce it as nearly as possible. When they have gone over it often enough so that they are fairly familiar with it, but not so often that it has low its charm for them, they should be allowed to dramatize it. The teacher should offer them as little help as possible in this dramatization; the children themselves should arrange the dialogue and work out the scenes. The result may not be as attractive as it would be :" the teacher managed the affair, but it will be far more helpful to the children. There are a number of stories in the department of Story-Telling which will lend themselves very well to this treatment. The Ugly Duckling, for instance, has about all the good points that any story could have. It is ahsorbingly interesting to children; it has a good moral which is not too plainly pointed out; it has plenty of dialogue, and offers opportunity for the making up of more; it has a large number of characters, all of whom have distinct, interesting personalities; it divides itself readily into scenes.

The first scene might be the farmyand, with

## Langeago and Grammar

## Leageage and Crammar

the mother duck, the familly of litte ducke, the ofd spanilh duck, the turkey-ack, and other fowt. In the second scene, that in the march, will appear the ugly duckling, the wild ducks. the two wild geve, the huatess and the dog. The old woman's cottage will givo the thind cocas, a very intereating one, in which appear the deckling, the old woman, the hen and the cal. Some of the children will have a chance to abow any real drumatic invelinet which they may poseses fan this scene. In the fourth scene, the tas ove, will appear the swan-duckling, the other swans, nud the children. The teacher chould have talked the mory over with the childsen belore it is acted out so that ahe feels cerrain they appreciate the ouritanding features of each charicter.

The Woll and the 8 own Kide will also be a good alory for the chlldren to play. Rhoceus, while a good wory to tell, is not quite 20 well adapted to dramatization, an It hat tew charecters and litile action.
Hinevalina. Much of the work of this year may well deal with Hianuatha; ihere in no poem or atory which the children enjoy more if it is presented rightly. The reproduction of the story by the children, the dramatization of certain scenes, the memorizing of opecially fine pas ages chould all form part of the work. The porin should not, of course, simply be taken up hrom beginning to end in ins order; some parts am obviously more simple than others, and should be taken first. The story 'inwatha's childhood, given in Chapter III, verse 64 to the end, is the beek portinn with which to begin. As in all leseons on Hiawatha, the tencher should first tell the story simply but fully in prose; then she should rend the passage as underatandingly and as musically as possible. Aftur they have got the swing of the lines, the children will be glad to learn parts of the passage. By dividing the work up, each child learning a part, the whole pasagge may be memorized and given, each child speaking in his turn.

For the dramatic part of the work on this passage, a dialogue may be arranged between Hiawatha and Nokomis about all the wonderful thinge the child sees about him. The dialogue will be about as follows:

## Hioweatha sits and sings:

"Wah-wah-taysee, little fire-fly, Litte, flitting, white-fire insect, Little, dancing, white-fire creature, Light me with your little candle Ere upon my bed I lay me, Ere in sleep I close my eyelidsl"

Iliencutha (shoneing ower his shoulder ot in moon)! What is that, Nokomio-what ane oll those flockes and shadows on the brightemem?

## Nohomu:

"Once a warrior, very angry, Seised bis aromenomother, and threw ber Ur into the oky at midnight;
Ripht againat the moon he threw her;
Ti's hee body that you see there."
Hianoatha (pointing to the ralnhow in the enct): What if that, Nokomin? What are all thowe colofs atretched acrons the heaven?

Nokomis:
"The the heaven of flowern you mee there. All the wild Bowers of the forest, All the lilies of the prairie, When on earth they fule and perish, Blomom in that heaven above us."
Hiowatha (listening in frige to the orrb): What, $\mathbf{O}$ what is that, Nokomis ?

Nokomio:
"That is but the owl and owlet, Talking in their native language, Talking, scolding at each other."
The owi loves the owret and takes good are of lt ; when I sang you to sleep when you were a fretul baby in your linden cradle, did I not sing
"Ewa-yeal iny little owlet1 wo is this, that lights the wigwam? With his great eyer lights the wigram? Ewa-yen my little owlet!"
The lines which deal with little Hismathes hunting may also be acted out, one child bring Hiawatha and the others the various wid animals.

The poem of Hiawatha is too long to be givee here. Probably there are few schoolmoms where a copy of it is not to be found; in case, howere, the school library does not contain the poem, it may be secured in very cheap but satiffactory form from any dealer in school books.

Momory Pooms. The chillren in this gnde may of course be expested to do more roris in memorizing than those of the first grude. In every school there will be found children nto are eager to "learn by heart" and who do it very easily; others seem to have to be driven of it. But there is nothing that so helps the memmy as learning things that are worth while and m! be reviewed occasionally, and no child should be permitted to shirk all work of memorizing pooms Thase who wish to, of course, may be allond to learn more than the required number. The following selections will be found well suppod to second-year children:

While shr All The ange And $g$
"Prar no had "Gied tid

Toy
"To you
Is bo
$\triangle$ Sanior And

Vanguge and Oramerar
Wexas Go The Bonte? moneat louls eftivenion
Derk brown in the siver, Golden if the sand.
utsone chag forever, Whth tree oa elther hand.

Grea leaves a-fioating, Custers of the fosm,
Honts of mine a-boatingWhere will all come home?

Or goes the ifver And out part the mill, Amy down the valley, Away down the hill.

Amay down the river, $A$ hundred miles or more. Other little childrea Shall bring my boata ashore.

## Autcin Fines mobeat loule atckinnon

In the other gardens And all up the vale,
From the autumn bonfires See the amoke traill

Pleasant summer over And all the summer flowers, The red fire blazes, And the grey smoke towers.

Sing a song of sensons! Something bright iu allI Flowers in the summer, Fires in the falll

Walle Stipherds Watciet.
While shepherds watched their flocks by night, All sated on the ground,
The angel of the Iord came ds xn Aod glory scciue around.
"Parr nool" said he, for mighty dread
Hed seized their troubled mind;
"Ghd tidiogs of great joy I bring To you and all mankind:
"To pot in Datin's town this day
Is bon of David's line
A Sarior who is Christ the Lord, And this shall be the sign:

## lenguge and Oramar

"The heavealy babe yo there shall tad To human view diaplayed
All meanly wrapped in awathing-bande And in a manger hid."

Thus spake the seraph; and forthwith Appeared a shining throng
Or angels praising Chriex the Lond, Who thus addremed their cong:
"All glory be to God on high, And to the earth be pence; Gocxlwill henceforth from heaven to mea Begin and never cence."

## Tur Day Is Done

## henay w. Lowarthoow

The day is done, and the darknem
Falls from the wings of Night, An a feather is wafted downward From an eagle in his flight.
I see the lights of the village
Gleam through the rain and the mint,
And a feeling of sadness comes o'er me
That my soul cannot resist:
A feeling of sadnesa and longings
That is not akin to pain,
And resembles sorrow only
As the mist resembles rain.
Come, read to me some poem, Some simple and heartfelt lay,
That shall soothe this restless feeling, And banish the thoughts of day.

Not from the grand old masters, Not from the bards sublime, Whase distant footsteps echo Through the corridors of Time.

For, like strains of martial music, Their mighty thoughts suggest Life's endless toil and endeavor; And tonight I long for rest.

Read from some humbler poet, Whose songs gushed from his heart, As showers frmm the ctouds of summer, Or tears from the eyelids start;

Who, through long days of labor, And nights devoid of ease,

## Still heard in his roul the mumic Of wonderful melodies.

## Such songs have power to quiet

The restless pulse of care,
And come like the benediction That follows after prayer.

Then read from the treasured volume The poem of thy choice, And lend to the rhyme of the poet The beauty of thy voice.

And the night shall he filled with music, And the cares that infest the day Shall fold their tents, like the Arabs, And as silently steal away.

## Windr Nights

 robert louns gtevensonWhenever the moon and stars are set, Whenever the wind is high, All night long, through the dark and wet, A man goes riding by.
Late at night when the fires are out, Why does he gallop and gallop about?

Whenever the trees are crying aloud And ships are tossed at sea, By on the highway, low and loud, By at the gallop goes he.
By at the gallop he goes, and then By he come back at a gallop again.

## The Brown Thruse <br> luct larcom

There's a merry brown thrush sitting up in a tree;
"He's singing to mel He's singing to me!"
And what does he say, little girl, little boy?
"Oh, the world's running over with joyl
Don't you hear? Don't you see? Hushl lookl In my tree I'm as happy as happy can bel"

And the brown thrush keeps singing, " A nest do you see,
And five eggs hid by me in the juniper tree?
Don't meddle! don't touchl little girl, little boy,
Or the world will lose some of its joyl
Now I'm gladl now I'm freel
And I always shall be,
If you never bring sorrow to me."
So the merry brown thrush sings away in the tree, To you and to me, to you and to me;

And he sings all the day, little girl, little boy, " Oh, the world's running over with joyl But long it won't be, Don't you know? Don't you see? Unless we're as good as can be."

Robebt of Lincoln
willam cUllen bryant
Merrily swinging on brier and weed, Near to the nest of his little dame,
Over the mountain-side or mead, Robert of Lincoln is telling his name-Bob-o'dink, bob-o'link, Spink, spank, spink;
Snug and safe in this nest of ours,
Hidden among the summer flowers. Chee, chee, chee.

Robert of Lincoln is gayly drest, Wearing a bright black wedding-cuat;
White are his shoulders and white his crest,
Hear him call in his merry note: Bob-o'-link, bob-o'-link, Spink, spank, spink;
Look, what a nice new coat is mine,
Sure there was never a bird so fine. Chee, chee, chee.

Robert of Lincoln's Quaker wife,
Pretty and quiet, with plain brown wings,
Passing at home a patient life,
Broods in the grass while her husband sing:
Bob-o'-link, bob-o'-link, Spink, spank, spink;
Brood, kind creature; you need not fear
Thieves and robbers while I am here.
Chee, chee, chee.
Modest and shy as a nun is she; One weak chirp is her only note.
Braggart and prince of braggarts is he,
Pouring boasts from his little throat:
Bob-o'link, bob-o'-link, Spink, spank, spink;
Never was I afraid of man:
Catch me, cowardly knaves, if you canl Chee, chee, chee.

Six white eggs on a bed of hay,
Flecked with purple, a pretty sightl
There as the mother sits all day,
Robert is singing with all his might:
Bob-o'-link, bob-o-link,
Spink, spank, spink;
Nice good wife, that never goes out,

## Layguge and Crammar

Reping house while I frolic about. Chee, chee, chee.

Soon as the little ones chip the shell Six little mouths are open for food; Robert of Lincoln beatirs him well, Guthering seed for the hungry brood. Boboo-link, bob-o -link,
Spink, apank, apink;
This new life is likely to be
Hand for a gay young fellow like me. Chee, chee, chee.

Robert of Lincoln at length is made
Sober with work, and silent with care;
Of is his holiday garment laid,
Half forgotten that merry air: Bob-o'link, bob-o'link, Spink, spank, spink;
Nobody tnows but my mate and I
Where our nest and our nestlings lie. Chee, chee, chee.

Summer wanes; the children are grown;
Pun and frolic no more he knows;
Robert of Lincoln's a humdrum crone;
Of he fies, and we sing as he goes:
Bob-o'link, bob-o'-link, Spink, spank, spink;
Then you can pipe that merry old strain, Robert of Lincoln, come back again.

Chee, chee, chee.

## Oid Gaelic Lollaby

Hushl the waves are rolling in, White with foam, white with foam; Father toils amid the din; But baby sleeps at home.

Hush! the winds roar hoarse and deepOn they come, on they comel
Brother seeks the wandering sheep; But baby sleeps at home.

Hush! the rain sweeps o'er the knowes, Where they roam, where they roam; wer goes to seek the cows;
Bui baby sleeps at home.
Agod nonsense poem for the children of this ande is from Through the Looking Clase, by
aro Carroll.

## Langrage and Crummar

## The Walzue and teri Chrianteas

The sun was shining on the sea,
Shining with all his might: He did his very best to make The billows smooth and brightAnd this was odd, because it was The middle of the night.

The moon was shining sulkily,
Because she thought the sun
Had got no business to be there
After the day was done-
"It's very rude of him," she said,
"To come and spoil the funl"
The sea was wet as wet could be,
The sands were dry as dry.
You could not see a cloud, because
No cloud was in the sky:
No birds were flying overhead -
There were no birds to fly.
The Walrus and the Carpenter
Were walking close at hand; They wept like anything to see

Such quantities of sand:
"If this were only cleared away,"
They said, "it would be grandl"
"If seven maids with seven mops
Swept it for half a year.
Do you suppose," the Walrus said,
"That they could get it clear?"
"I doubt it," said the Carpenter, And shed a bitter tear.
"O Oysters, come and walk with us l" The Walrus did beseech.
"A pleasant walk, a pleasant talk, Along the briny beach;
We cannot do with more than four, To give a hand to each."

The eldest Oyster looked at him But never a word he said:
The eldest Oyster winked his eye, And shook his heavy head -
Meaning to say he did not choose To leave the oyster bed.

But four young Oysters hurried up,
All eager for the treat:
Their coats were brushed, their faces washed, Their shoes were clean and neat-

## Language and Crammar

And this was odd, because, you know, They hadn't any feet.

Four other Oysters followed them, And yet another four;
And thick and fast they came at last, And more, and more, and more-
All hopping through the frothy waves, And scrambling to the shore.

The Walrus and the Carpenter Walked on a mile or so, And then they rested on a rock, Conveniently low:
And all the little Oysters stood And waited in a row.
"The time has come," the Walrus said,
"To talk of many things;
Of shoes-and ships-and sealing waxOf cabbages-and lings-
And why the sea is boiling hotAnd whether pigs have wings."
"But wait a bit," the Oysters cried, "Before we have our chat;
For some of us are out of breath, And all of us are fatl"
"No hurry!" said the Carpenter. They thanked him much for that.
"A loaf of bread," the Walrus said, "Is what we chiefly need:
Pepper and vinegar besides Are very good indeed-
Now if you're ready, Oysters dear, We can begin to feed."
"But not on usl" the Oysters cried, Turning a little blue.
"After such kindness, that would be A dismal thing to dol"
"The night is fine," the Walrus said, "Do you admit the view?
"It was so kind of you to comel And you are very nicel"
The Carpenter said nothing but "Cut us another slice:
I wish you were not quite so deafI've had to ask you twice!"
"It seems a shame," the Walrus said, "To play them such a trick, After we've brought them out so far, And made them trot so quick!"

## Language and Grammar

## The Carpenter said nothing but

 "The butter's spread too thickl""I weep for you," the Wairus said: "I deeply sympathize."
With sobs and tears he sorted out Those of the largest size, Holding his pocket-handkerchief Before his streaming eyes.
'Oh, Oysters," said the Carpenter, "You've had a pleasant run! Shall we be trotting home again?" But answer came there none-
And this was scarcely odd, because They'd eaten every one.

Almost all of the poems which are given her and in the first-year work are by very well-known poets, sketches of whom appear in The Ners Practical Reference Library. Childrea will have more interest in a poem if they are taught just a little, the :ury simplest facts, about its author, and a teacher can readily provide herself with such facts by reference to the othe volumes of this set.
Type study of a Poom. As a type of the way a poem may be studied in this year, het w take Bryant's Robert of Lincoln. Of course all that is given here cannot be given to the chilhrea in one lesson, or in two; the teacher is the bet judge of the way in which the material showld be divided. When there is a possibility that the children may be able to answer, questions should be asked, even, in some instances, questions which suggest the answers. Much of the information, however, the teacher will hare to gire the pupils.
After reading the poem aloud, the teacher my ask the children, "Don't you think you rould like to know something about a man who could write such a bright, lively poem about a litite bird?" and she may give them, in as interesting a manner as possible, some such brief hiography as follows:
The man who wrote this poem was bom in 1 little log house, over a hundred years ago. Cuiz dren in those days did not always have thing made as pleasant for them as children do noor, their fathers and mothers loved them just ${ }^{*}$ much, but they did not show it in the sume way. They were more strict and stern, and seldom thought of playing with the chiditres of planning games for them. And they wee ran ready to punish, taking down the hundle of birit

## Ienguage and Crammar

ticta that hung behind the stove. Little William Callen Byrunt must often have been punished in thin may, though he was by no means a bad boy. He was nather a quiet child, but I think we shoubd have liked him, for he tells, as if he really ajoped it, about the exciting times they used to have building snow forts and fighting over them. His accounts of their battles, with their heaps of soombells and their attacks and retreats, sound very much like the stories boys of these days might tell their fathers and mothers when they go home after a winter day's play.
But Bryant did other things besides playing. He studied hard, and before he got to the age when mast boys stop playing he had written some poems that grown people were very glad to read. When he grew up he wrote many, many poems, most of which you will have to mit until you are older to eajoy. This little poem, however, you can understand now; and if pou hear the grown people talking of William Cullen Bryant you may feel that you know him, too.
The name of the bird that Bryant is talking abour is the bobolink, but the poet pretends that "bobolink" 's just the bird's nickname for istelf, and that its real name is Robert of Lincoln.
Did you ever see a bobolink? What color is be! If you do not know, listen while I read the zrond stanza again.
Did jou ever see a Quaker in the plain drab dohes that the Quakers wear? What does the poet mean by speaking of the bobolink's "Quaker rite"? Are the mother-birds usually as brightly dued as the father-birds?
Do pou think the bobolink is good to his mate? Does he fly away to have a good titis, or does be say by the nest? Is the nest buiit in a tree or on the ground? How do you know?
How many eggs are in the nest? What color are they! Who are the "thieves and robbers" from whom Robert of Lincoln promises to protet his mate? Do you think perhaps they may be thoughtless boys and girls? Do you think he could really protect her? Is this why the poet alls him "prince of braggarts"?
Whea the little birds come is Robert of Lincoln agod father? Why does Bryant say that his "boliday garment" is laid off and his song "half tragoten "? (The bird loses its brilliant plumage ther the nesting season is over, and like most tides, mardy sings in the autumn.)
The bobolink flies to the southland, as do so miny of our summer birds, before the coming

## Language and Grammar

of winter, and the poet begs him to come back when he can sing his cheerful song again.
Let us see whether there are words in this poem which we do not understand or which we should not be likely to use. I think we shall find very few. What does "dame" mean in the first stanza? What does "mead" mean? "crest"? "brood"? "braggart"? "flecked"? "bestirs"? "wanes"? "humdrum crone"?
Sometimes poets use many words in their poems which are not often used in ordinary every-day talk; but our poet has used very few such, and that is one reason wby this is a good poem for children.
If you ever hear a bobolink, listen to him carefully and see whether he really says:
"Bob-o'-link, bob-o'-link, Spink, spank, spink."
yablos. A child never really gets too old to enjoy a fable; as soon as he has outgrown liking it for one reason he begins to like it for another. But a second-grade child is still at the point when he likes it in the most childish way-just as an imaginative story. The teacher should take care not to point out the moral too specifically; if the tale is well told, the child will catch the moral, never fear.

## The Goose That Ladd the Golden Eags

Once upon a time there lived a man who had a handsome Goose that every day laid a large golden egg. The man thought the Goose must have much gold inside of her, and so one day he wrung her neck, and found that she was just like any other Goose. Thinking to find wealth, he lost the little he had.

## The Shepherd Boy and tite Wolves

In the summer time the shepherds used to drive their sheep out into the mountains some distance away from their homes, where the $F$.ss was green and tender and the sheep faticined
rapidly.
But there was always some danger :- this, for the wolves hid in the mountains and often came down and carried off the little lambs, and even killed the old sheep themselves. So the shepherds never thought it was safe to leave the flocks alone, and some young lad was always chosen to watch them during the day, while the shepherds worked on the little fields they cultivated near at hand. It wasn't a hard task for the boy unless the wolves came in sight, and

## Ianguge and Cramana

then he was so mear that by calling loudly be could bring the shephends to his aid.

One lad they sent out to do this work was a mischievous little chap, who thought it would be great sport to bring the shepherds about him even if no wolf was in sight. Accordingly, he ran up the side of a high rock, mhouting at the top of his voice "Wok! Wolf!" and swinging his arms wildly about.

The shepherds saw and heard him and came running to the spot, where they found nothing but the lively boy, laughing merrily. They reproved him for his mischief and went back to their work.

In a few days they had forgotten all about his pranks, and when they saw him again upon the rock, swinging his arms and calling "Wolf! Wolf1" they ran a second time, with their hoes and spades in their hands to beat off the attack. Once more they found that the sheep were perfectly safe, and that no wolves were in sight, and the boy laughed noisily at their surprise. This time they were very angry and scolded the boy roundly for his deception.

More days passed, and nothing happened; but then, as the boy was lying idly in the warm sun, he saw the sheep huddle together in alarm and finally scamper off over the hill with wolves in close pursuit.

Frightened almost out of his wits at the very real danger, the boy climbed again upon the rock, shrieking "Wolf1 Wolf!" at the top of his voice, waving his hands, stamping, and swinging his hat as though his very life depended on it.

The shepherds looked up and saw the boy, hut returned to their work. They had been twice fooled and were not going to risk the chance again. No matter how loudly the boy called or how much he wept, they continued with their work, paying no further attention to what the

Lad mid, even when he ran to them and anal them that he was telling the truth.

When the sheep did not return that night, the ahepherds went out to find them, but thongt they hunted long and earnestly they could dis cover nothing but tom and hleeding bodies, for every sheep had been killed.

Naturally they laid all the hlame on the shoulders of the boy.

## Tee Wout and tere Lamb

As a Wolf was lapping at the head of a num ning hrook, he spied a stray Lamb paddling at some distance down the stream. Having made up his mind to seive her, he bethought himad how he might justify his violence.
"Villain," said he, running up to her, "bor dare you muddle the water that I am drinking!"
"Indeed," said the Lamh humbly, "I do not see how I can disturb the water, since it rum from you to me, not from me to you."
"Be that as it may," replied the Wolt, "il was hut a year ago that you called me names."
"Oh, Sir!" said the Lamh, trembling, "s yar ago I was not born."
"Well," replied the Wolf, "if it was not jou, it was your father, and that is all the same; but it is no use trying to argue with me." And be fell upon the Lamb and tore ber to pieces.

Picture Study. Every schoolroom sbould have pictures, good pictures, even if cheap, foe its walls, or at least in an unframed state for ne in classes. Types of the pictures which may be studied with a class of this age are to be lound opposite page 626 of this volume. Such picturas may be treated so that the children will fed no interest in them and will actually dislite them, or they may be treated so that the children will love them all their lives and fiod in them beautiful lessons.

## Third Year

Introduction. There is a little more of a change between the, third year and the second year than there was between the second and the first. Much of the second-year work is continued, but increased emphasis is placed on certain points that were passed over lightly in the earlier years. The children have reached the point when they can really read for their own pleasure, and where they see that writing is something more than an exercise in the full-arm movement. Composition work thus becomes
very much more important and will be dat with more fully in the outline for this gar's work.
Dorrection of Errort. Of course eren in the lower grades the teacher corrects erron in the speech or the written work of the puplis hut the emphasis must be so strong on the securing of spontaneous expression of thoupth by the children that the work of conrecise errors can be at the best but incidental. Bath correction made stands hy itself-little sttem
an be mede at enforcing rulen of speech. But a the thind grade conditions are a little different. The children, if their work and the teacher's wort has been well done in the lower grades, mar hearsed to express themselves with some degre of freedom, and there is less danger of trightening a shy child into not-to-be-broken stence by the correction of a verbal error. This does not mean that rules can be taught to children at this time; that generalizations may be mide to which they must make their speech conform. But it does mean that right forms can be held up before them so persistently that they will themselres make the generalizations.
Erery tencher has perhaps wondered whether It children never heard mistakes in grammar their own speech would be free from them. This is a question which will probably never be nutled; but it is certain that the kind of speech they hear at home and at school and on the seet has everything to do with what a child's hngunge is to be. Thus some children speak compuratively correctly, while others seem surcely able to utter a sentence without making mome mistake. Moreover, common mistakes differ in different parts of the country and in difierent parts of the city, so that the teacher $d$ the thind grade to write on the board such a matence as "I done it," and ask what is wrong withit. The mere seeing of the wrong form has $a$ tenderecy to impress it or. their minds. Priaps the simplest way to deal with the atter is for the teacher to write on the board matences, leaving blanks for the doubtful forms.

## Iangage and Grammar

These blanks the pupils may be asked to fill in. The sentences ahould be numerous enough for the children to perceive from them that the right form does not vary. Later, the children may be asked to write independently sentences.containing the correct forms.
A good example with which to begin drill in the correction of errors is the distinction between teuch and learn. Most pupils may be trusted to confound them. Let the first sentences be as simple as possible:

1. 2. $\qquad$
1. My sister ........ school.
2. John ....... to skate.
3. His older brother him.
4. I ...-my lesson and ....... it to my little sister.
5. If my teacher did not _me, I could not ..... so well.
6. I must ....... to read before I can __- any-
ody else. body else.
These are merely samples; many more sentences will be needed in a typical drill. Nor is it enough that the children's eyes be led to see the difference between the correct and the incorrect forms; their ears must recognize it too. That is, the sentences should all be read aloud, both by the teacher and by the pupils.

The use of their and there, and of to, too and two furnishes material for some goor! work. Such sentences as the following may be used:

1. The book is $\qquad$ on the table.
2. Whe put it $\qquad$ ...?
3. John and Frank lost ...... hats.
4. 

All mothers may scold them.
5. All the children may put ....... books on the table.
6. - ..... is a flower in my vase.
7. Do you know where $\qquad$
8. No, I have never been
9. I have $\qquad$ apples.
10. I will give them $\qquad$ you.
11. It is ........ hot in this nom.
12. This candy is .--.... sweet.
13. $\qquad$ the store.
14. What have they gone get ?
15. They have gone $\qquad$ get ....... loaves of bread.
$\qquad$ verses be $\qquad$ much for you $\qquad$ learn?
17. No, it will not be $\qquad$ much.
Saw and seen and did and done trouble many children. A child is almost as likely to say "I seen it" as "I saw it," so that opportunity for introducing the drill will not be difficult to find.

Of course, the correction should not be made so that it will embarrass urnecessarily any child. Sit and oet are also stumbing-block-and sometimes for others than children. It may be necessary in this instance for the teacher to write on the board a number of correct sentences so that the children may perceive the distinction:

1. I aet my doll in the chair.
2. She site there quietly.
3. The farmer ecto the hen on the eges.
4. The hen sits on the eggs.
5. The dress sits well.

Lay and lie cannot very well be taken up at this time, since the fact that lay is the past tense of lie complicates matters.
The personal pronouns offer opportunity for very helpful drill; the correct form and the proper position may both be emphasized. Of course the difficulty as to the proper form comes largely when the pronoun is used with a noun, so that the case force is not felt. If simple sentences in which the pronoun stands alone are given first, there will be less danger of error.
First person:

1. .-..... am going skating.
2. Tom and ....... went skating.
3. She gave ........ an apple.
4. She gave Mary and ....... an apple.
5. Father wrote a letter to ........
6. Father wrote letters to Tom and
7. Jane and $\qquad$ were sent home.
8. He sent Jane and $\qquad$ home.
Third person (masculine or feminine):
9. ........ and I are friends.
10. I gave the apple to .........
11. They asked $\qquad$ and me.
12. John's teacher likes $\qquad$
13. Our teacher likes $\qquad$ and me.
If children are taught when they are young that awful has a distinct meaning of its own, and has none of the sense of very, the use of it for very will not be so much a matter of course to them when they grow up. Make them feel the bigness of the word, and the fact that at times it is the only word which will express an idea, and show them how it is wasted by being made to do duty for very.

The above will show the kind of work that may be done in the third grade toward the correction of common errors. Every teacher will encounter in her own schoolroom others that may serve as the basis for similar exercises.

Compositicn Work. Besides such exercises as those outlined above, and the conversational exencises similar to those in the two lower grades
which should be continued in this, comporien work of a more or lese formal character in mon taken up. This work should be based on th subjects discussed in the oral lessons, for childra in the third grade should not be asked to mim on any subject until the teacher is sure that the have a thorough understanding of it. And tis knowledge should extend not only to the contec, but in a measure to the form as well. Thati, the statements of which the composition is compoud should not be set down hit or miss, with m obvious connection with what precedes or follon Related sentences should be together. Tom complish this, an outline should be drana before the pupils begin to write. Of cousse the teacher may make the outline and put it oo the board, allowing the children to fill it out, but this is not a particularly helpful method. A m more valuable exercise is to have the pupils gin suggeations as to points that should be trated, which the teacher may then arrange in propa order.

Suppose, for instance, that the subject choos for a composition is "My Last Birthdys." When the children are asked to talk on ine subject, such statements as the following ni probably be forthcoming:
"It was in the summer." "I got a doll" "I had a party." "I got a bicycle." "We mo a picnic." "I had on a new pink dras" "There were candles on my cake." "Te children came to my party." "I was eight ras old." "We had pink and white candies and frosted cookies." "The children brought w presents." "There were red roses on the table." "I was nine years old." "I went to my grandmother's house."

After this jumble of statements has been sur down, the teacher may put them in order bfotore the pupils' eyes. First will come the "rba" statements, then the "where" statements, the the "what" statements, until the outline appars in the form of a series of questions, somenhmes follows:

When was your birthday? Where did m spend it? Who was with you? What precem did you get? What did you do? What did pa have to eat?

If the children write on some such outimen they will simply have the feeling that they ne answering in a natural way natural question The unpleasantness that always attaches to 1 formal "composition" will be absent.

Every teacher will find constantly in ber moth excellent topics for compositions, but a th

## Iangago and Grammar

mantionse as to subjects suited to children of tif aride may not come amiss:

1. Tell what month of the year you like best, and why.
2. Tell about some game you can play, in vines but not in summer.
3. How to trim a Christmas tree.
4. Making presents for father and mother.
5. Why you like the snow.
a. Helping mother.
6. A letter to a good friend.
7. The tree and the flower you like best.
8. Why you are glad you learned to read.
9. The happiest day of your vacation.

Often children can express themselves more asdy in a letter than in any other form of composition. They can all imagine themselves mating some day to write a letter, and having something to say, whereas it is a little hard for them to imagine themselves ever voluntarily writing a "composition."
There are a number of things which are closely rhated to the composition work and which may be tuken up in preparation for it or in connection with it. First, stress must be laid again on the beginning of sentences, and on the simplest punctuation points, the period and the question mart. Then the subject of margins may be akten up, and in connection with that, paragraph indenting and the nature of a paragraph. Before $a$ leter is written, the chief points of form in keter-writing should be made clear-the dating, the address of the writer, the salutation, the body, the ending and the signature. A good method to pursue in taking up the subject of letterriting is to have the pupils copy from the board aneter written in proper form. This letter should be such as to interest them by its contents. The Collowing will serve as an example:

## 417 Metcalfe Sitreet, Ottawa, Ontario,

 September 14, 1912.
## My dear Frances:

It wis very good of you to ask me to come to see you during my vacation. I was afraid mr mother would not let me go, but she said "ra" without my having to coax her. My sister Bianche is at home, so that my mother and laber will not be lonesome.
1 have never been on a farm, and I suppose
Theremany, many things I know nothing sthout. Po Fill have to promise that your brothers will tox hught at me if I make mistakes or ask foolish

## Languago and Crammar

A week will not be so very long to wait, will it? And I am glad, because you know I want to wee you and your family and your home. Your happy friend, Grace Walera.
The use of the hyphen to divide words at the end of a line; the simplest use of the comma, that is, to divide the terms in a series; and the use of capital letters to begin names of persons and places will of necessity have to be taken up in connection with composition work. The use of quotation marks may be called to the attention of the children by having them copy brief conversations from their readers.
Pooms. The work on poems begun in the first and second grades is continued in this, but the study here is a little more detailed. The study should never, however, be carried so far that the beauty of the poem is spoiled for the pupils, for after all, poems should be regarded first of all as literuture, and only secondarily as a basis for language work. It is impossible to give here enough poems for use throughout the entire third year, but those given here will serve as examples. In addition Wordsworth's The Kitten and the Falling Leaves, Helen Hunt Jackson's Down to Sleep, Celia Thaxter's $S_{j}$ ring, and parts of Hiawatha may be used.

## The Chlldren's Hour henty w. longeyllow

 Between the dark and the daylight, When the night is beginning to lower, Comes a pause in the day's occupa:ions That is known as the Children's Hour.I hear in the chamber above me The patter of little feet, The sound of a door that is opened, And voices soft and sweet.

From my study I see in the lamplight, Descending the broad hall stair, Grave Alice, and laughing Allegra, And Edith with golden hair.

A whisper, and then a silence: Yet I know by their merry eyes They are plotting and planning together To take me by surprise.

A sudden rush from the stairway,
A sudden raid from the halll
By three doors left unguarded
They enter my castle wall!

They climb up into my turret, O'er the arms and beck of my chair; II I try to excape, they surround me; They seem to be everywhere.

They almont devour me with kised, Their arms about me entwine Till I think of the Bishop of Bingen In his Mouso-Tower on the Rhinel

Do you think, O blue-eyed banditti, Because jou have scaled the wall,
Such an old mustache as I am Is not a match for you all?

I have you fast in my fortrees, And will not let you depart,
But put you down into the duageon In the round-tower of my heart.

And there will I keep you forever, Yes, forever and a day, Till the walls shall crumble to ruin, And moulder in dust awayl

Ter Corn Song join aremilens whittiliz
Heap high the farmer's wintry hoard! Heap high the golden coml
No richer gift has Autumn poured From out her lavish horn!

Let other lands, exulting, glean The apple from the pine, The orange from its glossy green, The cluster from the vine.

We better love the hardy gift Our rugged vales bestow,
To cheer us when the storm shall drift Our harvest-fields with snow.

Through vales of grass and meads of flowers, Our ploughs their furrows made,
While on the hills the sun ahd showers Of changeful April played.

We dropped the seed o'er hill and plain, Beneath the sun of May,
And frightened from our sprouting grain The robber crows away.

All through the long, bright days of June Its leaves grew green and fair,

## Iangage and Graman

## And waved in bot midoummer's noon

 Its soft and yellow hair.And now, with autumn's moonlit eres, Its harvent-time has come,
We pluck away the froted leares, And bear the treasure home.

There, richer than the fabled girt Apollo showered of oid, Fair hands the broken grain shall dith And knead its meal of gold.

Let rapid idiers loll in silk Around their coatly board;
Give us the bowl of samp and milk, By homespun beauty poured!

Where'er the wide old kitchen hearth Sends up its amoky curls,
Who will not thank the kindly earth, And bless our farmer girls!

Then shame on all the proud and nin, Whose folly laughs to - m
The blessing. of our hardy grain, Our wealth of golden coml

Let earth withhold her goodly root, Let mildew blight the rye,
Give to the worm the orchard's fruit, The wheat-field to the fly:

But let the good old crop adom The hills our fathers trod;
Still let us, for his golden corn, Send up our thanks to God!

## A Bor's Song <br> james hogig

Where the pools are bright and dep, Where the great trout lies asleep, Up the river, and o'er the lea, That's the way for Billy and me.

Where the blackbind sings the latest, Where the hawthom hloms the sweetex, Where the nestlings chirp and flee, That's the way for Billy and me.

Where the mowers mor the cleanesth Where the hay lies thick and greenest, There to trace the homeward bee, That's the way for Billy and me,

Langrage and Crammar
Where the hasel bank is stoepeat, Where the shadow falls the decpeent, Where the clustering nuts fall free, That's the way for Billy and me.

Wintea<br>ALFRED TENNTEON

The frost is here,
And fuel is dear,
And woods are scar,
And fires burn clear,
And froot is here
And has bitten the heel of the going year.
Bite, Irout, biteI
You roll away from the light
The blue wood-louse, and the plump dormouse, And the bees are still'd, and the flies are kill'd, And you bite far into the heart of the house, But not into mine.

Bite, frost, bitel
The roods are all the scarer,
The fuel is all the dearer,
The fires are all the clearer,
My apring is all the nearer.
You have bitten into the heart of the earth, But not into mine.

During the month of October take up with the language class Whittier's Corn Song. By way of biographical introduction, tell them that Whittier gave very good pictures of his childhood days in some of his own poems; and then read to them The Barefoot Boy and parts of SnowBound. They will get the idea from these that Whitier was a poet of the country rather than of the town, and will realize that in this poem he is talking of something which he really knows about. A series of questions and statements like the following will bring out the points of the poem and help the children to appreciate it before they begin to learn it:
First let us see whether there are any words which we may look up. What does "hoard" mean! "lavish"? Is "lavish" a word which sou would use? What does "exulting" mean ? "glean"! "hardy"? "rugged"? "meads"? "pluck"! "knead"? "vapid"? "Ioll"? What is "sump"? Did you ever taste it?
Did you ever hear of a cornucopia, or horn of plenty? The poet imagines - Autumn as a beautiful, genemus woman, pouring gifts out of such a horn on to the earth. What are some of the gits that Autumn pours out of her horn of pleaty! Lead the children to mention such
thinge as gripes, apples, pumpldine, beautioul bright daye, gorgeouly colored leaves, nute. What does the poet think is the beat of all thewe gifts? Does he mention any of the other thinge that we have talked of?

Is there anything in thas second stanns which you do not underutand? Did you ever hear of gathering apples from a pine? That sounds strange to us until we see that it is only the poet's way of talking of pincapplea. He cay "other lands," because he lived up in New England where such things as pineapples and oranges, which love the hot weather, never grow.
Think of some way in which corn can chees us "when the storm shall drift our harventfields with snow." Did you ever ait before glowing fire on a winter night and pop popeorn ?

Ioes the poet seem to know when corn is planted and how it is cared for? How do you suppose he found out these things? What do you think he meant by frightening the "robber crows away"? Some of the children will have seen scarecrows, others will not. Let some of those who have seen them describe them for the benefit of the rest.

Tell briefly of Apollo (an account of the god is found in its alphabetical order in these volumes) and his gift of gold. Ask the pupils whether they have ever seen anything made from com which is almost as bright and yellow as gold.
Corn, or maize, as it is more correctly called, was not known to civilized people until after America was discovered. The Indians had cultivated it for centuries, and it was known as Indian corn. This fact, as well as the fact that even now four-fifths of the corn used in the world is raised in the United States, makes it really a very important national grain, and that is why the poet Whittier can sing of it with so much enthusiasm.

Atories. Children in this grade are able to read easy stories to themselves, and will frequently read stories and books which are so difficult that they can really do little but get an idea here and there. And while it is a good plan to allow them to read, the teacher should still read to them occasionally, as she should, indeed, to the children in the higher grades. Animal stories will still be found prime favorites, and of these few are more attractive than Kipling's Jungle Book.
Picture Study. Guido Reni's Aurora, on page 639, with the study on page 638, will show the kind of work with pictures that may be done in this grade.

## Inaguas aed Oramans

## Fourth Year

Corrootion of Envers. The drill on this is continued from the thind grade, a brief roview of the work done in that year forming the introduction to the work. Surpentive sentences on the variove posible evors which it is wine to guard against in thin grade are here given; in no case, however, aro there enough sentences here.

Diatinction between guese and think:

1. I -my mother will let me go.
2. I can $\qquad$ the riddle.
3. You must $\qquad$ until you know the anawer; do not try to $\qquad$
4. It will do me no good to ........ the anawer to that problem.
5. Will you go to the party? I ........ so.

The children will hear the colloquial use of guese for think so frequently from pernons whose opinion they trust, that it is well to explain to them that it is not abeolutely wrong, like "I done h" or "I seen it."

Correct use of come and came:

1. I.-... to school every day.
2. I........ to school yesterday.
3. I have $\qquad$ every day this week.
4. I should have $\qquad$ if I had known.
5. Who ........ in just now?
6. Where did he $\qquad$ from?
7. Have the children all ........?
8. Spring ....... early this year.
9. I wish it would ........ early every year.
10. He $\qquad$ to ask us to $\qquad$ to his party.

The children by this time are ready for rules of some sort on such subjects as this. These ahould be, however, of the simplest form, and not technical. That is, do not say "Came is the past tense of come, and come is the perfect tense." To fourth-year children come and came are two different words. But if they are told that come is used after have and had, it has the effect of a rule without making use of technicalities.

The proper use of like:

1. He looks like you.
2. He looks ........ a sachem.
3. He acted ........ a man.
4. He acted ........ a man should.

The fact may be impressed upon the children, if the examples given are numerous enough, that like is never used before a statement; that as and as if are the correct terms.

The correct ure of in and into will not be difficult to impress upon the children.

1. We are in a room; we go into a room.
2. Mary's mother was ........ the kitchen, when

Mary man $\qquad$ the room.
2. You will fand it $\qquad$ the yard.
4. He ran ..... and out. (Show that when mo wond follows to abow the place toward which motion is directed, in may be used. Ot courne the diatinction between adverb and prepoition cannot be made here.)

The correct use of the word got may be thimen up somewhat an follown, the teacher asking the questions:
"Il I my 'I have five dollarn' or 'I have gat five dollars,' is there any difference in my meaning ${ }^{\prime \prime}$
"Which form do you like better!"
"Is it better Nways to use as many words as possible to express our thought, or as few wond?"
Then write on the bound a list of seneems, such an the following, directing the children to read them without putting in got unless thy feel that it is really needed.

1. The Dominion has $\qquad$ a number d large cities.
2. This little boy has $\qquad$ no brothes $a$ sisters.
3. He has ...... his money by hard work.
4. Everybody has $\qquad$ some work to do.
5. Have you ........ all your work done?
6. I might have ........ that for you while I we in town.
7. I wish I had ....... better marks this wek.

After this exercise is finished, have the childre, pick out the sentences in which got is melly necessary, and find some other word which might take its place. For instance, in the thind sentence the word earned might be used. Shor them that such definite, specific words are bettu than the general word $g o t$, which is called on to mean so many things.
The use of two negatives is common with children, just as it was common with the langure in its early stages. If the fact that "I haven"! done nothing" means "I have done something" can be impressed upon them, they will be interested enough to try to correct this erno in their speech. Let them write two sets of str tences, showing the two ways in which a negaire thought may be expressed, as-
I haven't any candy or I have no candy. I do $\qquad$ want $\qquad$ books. I want ....... books. I am ........ doing anything. I am doing I have ........ seen ........ one. I have seen ._-oove.
Compositions. Letter-writing is an exeellex form of composition work for children in this

## Langeage and Ornmerar

Ont. Let ench pupll wrike a kitter to some athe child in the ches, folding it correctly and dirming the eavelope. Then ose pupli may eate posman, collecting the lestern and dis aniuing them an directed. Bech pupil in turn modo the letter the has received, omituing the max, and criticisms on the construction and nyguge forma are made by the teacher and by the chan. At the close of the recitation all hetern are handed to the teacher, If no namea an mad, criticisme can be made freely without auring any child embarrassment.
Topica should still be discused in clases and outione drawn up before formal compositions we alled for. Correctness of form, as to marina, headings, paragraphing, and so forth, sooud be insisted upon, but the teacher should be cureful not to criticize too meverely the thought expremed, of the manner in which it is expreseed, povided that it in grammatical. The main point is to had the child to express himself freely, and if he is hurt in the least by a criticism he is likely to draw back and keep his thoughts to himetl.
Suiable subjects for compositions in this grade will be found in connection with the daily work, but a number of suggestions may not come amis. Such topics as "A Nutting Trip," "Berying," "An Afternoon in a Haytield," "Thankgiving at Our House," "What I Like Best to Do in Winter," "What 1 Like Best to Do in Summer," "How We Play My Favorite Game." "How Hiawatha Built His Canoe," annat hail to interest the children. It will not almys be possible to have all the children write on the sume subject; some of them may never have gone nutting, some may never have seen a harfield. But the assigning of different topies mill merely add interest.
Eolated Topics. Further work on paramaphing should be done in this grade. If the sbject of "Nutting" is chosen for a composition, have a simple outline worked out by the children and put on the board. The outline will take some such form as the following:

1. Who went. When we went. Where we weat. Why we went.
2 The trip to the woods.
2. What we did while there.
3. The trip home.

The pupils should then be instructed that each aumbered topic in the outline must have a pragriph. This, it should be made clear. is na just for form's sake, but because every parspaph should have one central thought which

It it buile around, and each central thoughte should have a paragraph.
The use of the apostrophe so abow pornacion and to show that a letter has been dropped ous ahould be cuken up in this year. together with further work on capitalization.
The work on pynonyms can be made very intereating to chilliren In this grade. It is well to take an a starting-point some poem. for invtance, Bryant's "Planting of the Apple-Tree."

## The Plavting of the Apple-Trex

Come, let us plant the appletree.
Cleave the tough greensward with the spade;
Wide let its hollow bed be made;
There gently hay the roots, and there
Sift the dark mould with kindly care,
And press it over them tenderly. As, round the sleeping infant's feet We softly fold the cradlesheet; So plant we the apple-ree.

## What plant we in this apple-tree?

Buds, which the breath of summer days Shall lengthen into leafy sprays; Boughs where the thrush, with erimson breast, Shall haunt and sing and hide her nest; We plant upon the summer lea A shadow for the noontide hour,
A shelter from the summer shower,
When we plant the apple-tree.
What plant we in this apple-tree? Sweets for a hundred flowery springs To load the May-wind's restless wings, When, from the orchard-row he pours Its fragrance through our open doors; A world of blossom for the bee, Flowers for the sick girl's silent room, For the glad infant's sprig of bloom, We plant with the apple-tree.

As a start, the children may be asked to pick out words which the author used which they never use. They will probably make some such list as "cleave,"" "greensward," "mould," "infant," "sprays," "haunt," "lea," and perhaps others. First make sure that the pupils understand these words; then let them make a list of words which they would have used instead. It is perhaps a little leyond children of this grade to understand why the poet's words are better than their own, except in cases like "lea," when it is a rhyme word that is in question.
The teacher may then make a list of simpler

## Ianguage and Orasemar

woods from the poem-wonds which are ued by the chlldren every doy-and ack thom to make a fint of words which mean the mame. O! courne in many tintasces the chlidren's worde will not mana exaedy the came, but unlem the difierence b cmoatial, to abould not be pointed our. The word aymonym nood soo be uned if the tencher preferm; bue to will be lound that a name will not frifoten the children if its treaning has been thoroughly explained to them.

Word-atudy of a different kind takes up the we of descriptive aljectlives, not, however, under that name. The pupilis may be directed to find words in the poem chowen for study which deseribe something. After nuch lintas have been made, the children should use ench one to dewcribe something elle. Some famous character from hintory or from literature may then be chowen, and acch pupil may make a list of worda describing that character.
Pooms. One poem suitable for work in this grade has jurt been given; two others, The Village Blackemith and Paul Rewere's Ride, will be found on pages 070 and 680 of this volume. Seudice of these two poems are there given which ahould prove very helpful to the teacher. In this grade a number of poems which have been used and kearned in the carlier graden may be taken up for further study, for the children are now able to appreciate many points which were beyond them before. In addition, Whittier's The Pumptin and selections from his Snow-Bound, Celia Thatter's The Sandpiper, Tennyson's Owel and Browning's Pied Piper of Ilamelin may be used. lihen a poern contains a story, the pupils may be asked to write out the story for their comporition work.

Many a child who is not given exercises in composition work from poems in the fourth or firth grade finds he is seriously luandirapped in higher grades when required to paraphrase prose and poetry, in connection with lessons in grammar and composition. For a child to tell in his own words the atory a poem contains is to make a simple paraphrase; such an exercise develops the reasoning faculties, tends to thoughtfulness and brings to the surface those bits of human interest contained in the poem which leads one to enjoy better not only that particular poem but makes all poetry more interesting.

Stories. The teacher will find that Kingsley's Water-Babies will afford her material for the most of her reading to her pupils throughout this year. There are some parts which the children will not understand and which need
not be mad to them; but there are edivioned the work which give only the atory part, oriming the political parallele and allumbons.

Work of a alightly difiesoat kind may be dom with morioe In this year. A story choukd be nad by the teacher, and when the pupils are familing with $k=$ teas of their undernanding may be made by reviewing ti by menas of an ourlim like the following:
I. Pancipal Ciumacteas
(a) Appearasce
(b) Life
(c) Home
(d) Traits of character
(e) Place in atory
11. Otier Cuaracteras

Part In atory
III. Incident
(a) Principal hapipeninges
(b) Where they take place
(c) Minor happenings

The U'gly Duekling, given on juges 704-708 of this volume, to an excellent story for use in this way. There are many characters in the story and some of them have very well-maried personalities, so that they may be studied quike like human beings. A little character akned of some one of the more important minor char. acters would make a good compowition.

Such a story as The Ugly Durkling shoukl te invested with all the realism possible. The dit dren should see that there are types of people who in their relations with their fellow-men an quite likely to act in the same way as did de animals in the story. When such strer is taken the moral the story teaches is driven have with all the greater effect. Probably there is oot another story of its length which can be und with better results, from every point of rien de teacher and mother can summon to their id.

Ensays. The essays which follow show te sort of composition work which may be expeted from pupils in this grade.

Essay writing usually fails to interest bor: the giris' attiude is more reccptive, as a nuk. The teacher who can invest work in escars with a new feature, a new element, in which de competitive idea is prominent, and which appal to the inventive and artistic mind, is assurd dif a good measure of suceess. Illustrated evry may be a novelty; pictures, though rude, surr)! add strength to the languake Fork, and win the hand and eye in expression, just as mriman the subjeet-matter trains the mind in the fire art of composition.
$\square$

ron ore is very liberally distributed over the earth and with the exception of Australia every continent has a good supply The united States is the lar gest producer of iron are.
gt is the most useful of
it is the most useful of $\mid$ (i) all metals and has been known from the remotest (S) times. One of the most useful products of iron entering into the making of a hame is hails. Sn hails are made automatically -a single machine making five hundred hails peer minute. Their manufacture forme a very interesting study

Brackets supporting balconies, windows or upper portions of a building are generally made of iron and sometimes elaborately designed and ornamented. Many other items of use and ar
 by mar Grant.
Alasterung is the art of covering the surface of mas any or woodwork with mortar, cement, staff, or stucco in order to give it a smooth and uniform surface. Tor the purpose of recewing the plaster the wall is gens. erally covered with laths, or thin strips of wood or steel with narrow spaces between them.

The face which should be of considerable thideress is dented with cross t trowelled orin. lines to form a lay for the finishing ic eats. The second eat is applied "when the first is thorougughly dried.

The setting eat which is offer lime or, for fine work, of plat ter of Paris or stucco is applied to the second coat before it is quite dry.
a. thin coating of plaster of

Pares is frequently applied to ceilings after the sitting coat.
lass, a hard brittle substance, is made by melting by intense heat certivin ingredients.

Unless colored by some foreign substance it is usually transparent. There are many different kinds of glass, some varieties are flint, crown, window, bottle, and plate.

The principal of manufacture are used for window glass glass, and plate

For window glass trial is blown into the form Fattened, and cut into the desired sizes.

For bottle glass the sticky, melted glass is taken on the end of a tube and put into a mould where it is blown into shape.

For plate glass the melted com-
(7) pound is poured out on a large iron table, rolled to the desired thickness, cooled and afterwards polished.


paint is a compound of coloring sub: stances mixed with oil glue or water. The coloring substance. is called a pigment and the liquid with which it is mined a vehicle. The greaternum. her of pigments ore mineral but some life cochineal are animal substunces
indigo, are of

For ordina.
especially for
white lead and.
and others, like. vegetable origin ry house paint external uses. boiled linseed

2 carnally used.
dissinesh is a liquid made. dissolving a resin in alcohol, tu. pentine or other oil. It is used to form a thin, transparent coat over surfaces, to protect them from heat, air and moisture and to male themimore. beautiful

The base of varnish is
Copal, or fossil gum. The best gum is form en in Zanzibar..
aper used for decorating the walls and ceilings of rooms originated among the chinese and
was not introduced into Europe until the eighteenth century.

The papers at first were imitations of the leather tapestry and velvet hangings which had long been common as $W$ wall decorations but gradually 1 the designs became original and varied.
moot of the processes are by machinery similar to that used in calico printing, but there is also much hand work done in the fines qualities.

The paper is prepared in strips which are made fast to the wall by paste.

The skill of the workman consists in matching the strips
and laying the paper so as to avoid winkles. The manufacture of wall paper is a great industry and paper hanging is an important occupation.

By Marry Scott
rick is a sort of artificial stone made by molding a mixtire of clay and sand and drying it in the sun or baking or burning en, a kiln. The ordinary brick used in building and paring is eight inches long, four inches wide, and two inches thick.

The art of brick
dates fromivery
Sun dried bricks
found in Egypt,
Babylonia ard many client countries.
these bricks making earlytimes have been assyria, other an. many of contain inscriptions which are of great historic value, since they constitube the only known record of the people and events of the time in which they were made.

Bricks are extensively used in the found actions and walls of buildings. They are also used for sewers. cisterns, and nurserous other purposes.
tones are of extensive use for $N$ a great variety of purposes, such as building: pauing.grind-IIf ing and ornamental purpose Granite, slate, limestorie, mar ble and sandstones are the building stones in most connmon use in the United States. There are numerous ot her stones however surita. be for finishing as serpentine , in Granite is sinmunn the strong. estand slate 5 in durable of 1 in building stones. Soft AMMMIM sandstones absorb a great deal of water and are not durable for exteriors. Stones contain ing iron or other substance which the water dissolves frequently becomes discolored. Stone generally urthstands the weather best when used near the locality where it is qu an-

## Language and Cramma:

## Fifth Year

Approseh to Grammar. There is atill in the fifth year no formal grammar work, but a closer approach to it is made in the language work. The points in language forms to be covered this year are many; not all of them can be covesed here, but many will come up in connection with the ones discussed here. A review of sit and eat will lead naturally to lie and lay. (See sentences on page 510.)

1. I lay the book on the table.
2. The book lies on the table.
3. The book lay there for a week.
4. He laid the book on the table.
5. Where does that city $\qquad$ .?
6. Who will $\qquad$ this away for me?
7. I am going to ........ down.
8. She ...... down for half an hour.
9. The ship $\qquad$ at anchor.
10. You may -...... the pencil on the desk.
11. The sheep were $\qquad$ in the field.
12. He .---.. still a long time.

A good method for combining work on right word forms with the study of synonyms is to give sentences such as the following and ask the class to replace the italicized words with forms of lay or lie.

1. She redines on a couch.
2. He placed it on the floor.
3. Let it rest there.
4. She put the baby down.

Raise and rise may well be considered at the same time, since their relation is the same. It may be explained to the pupils, without the use of technical terms, that raise, set, lay are always followed by the name of what is raised or set or laid, while the other forms are not.

1. The stream $\qquad$ in the woods.
2. The stream has $\qquad$ . several inches.
3. It has ....... the water level.
4. I $\qquad$ the window.
5. We have $\qquad$ a large sum of money.
6. The sun $\qquad$ an hour ago.
7. It has $\qquad$ over the mountain top.
8. He $\qquad$ his kite.
9. It ......... gaily into the air.
10. If you had $\qquad$ . before the sun $\qquad$ , your mother could have ........no objections to your plan.

Such words as nice and awful are common words which are misused almost constantly. Review the use of auful on page 510, and take up the word nice. Every child thinks he knows what the word nice means; he uses it frequently. "I have a nice apple. She is a nice girl. We
live in a nice house." Make such a list dot murments with the word nice, and have the pupis replace the word in each instance by anolum which gives the meaning more exactly. Then explain that nice really means cxact, and hare sentences made giving the word its correct matr. ing. As:

1. It will take nice work to fit those conem together.
2. What you say will mean more if you ur nice in your choice of words.

Children may be easily interestod in thay phrases and provincialisms which are currentin their neighborhood, and may be set to wort os find expressions which will better give the sure meaning. Care is necessary in this work no to take the life out of the children's language and not to give them the idea that written languace is something utterly different from spoken las guage.

Drill on the use of them and thore, together with cautions against such expressions as "the there," "this here," may come in this yer.

1. Give me ....... books.
2. I have given ........ to you.
3. All of ....... books belong to ....childrum
4. Who gave .............. books?

Added drill may well be given on the prope forms of the pronouns; in fact, this is rot which can with profit be taken up in almost ay? grade, for many of the most common fault d ${ }^{d}$ English come from a misunderstanding $\alpha$ de uses of the pronouns.

1. Who is that?
2. It is I (or he, she, ue, or they).
3. Whom did they see?
4. They saw mc (or him, her, us, or them).
5. Whom did she speak to?
6. She spoke to him and me.
7. Whom did the teacher scold?
8. She scolded her and him.
9. Will you give it to me?
10. I will give it to you and him.
11. Let you and me take a walk.
12. Do you want us girls?

There is not so much danger when pupik have reached this stage of their being mised ty seeing incorrect forms if it is firmly impraxd upon them that the forms are wrong. There is too, a certain eagerness about cortecting num which adds new interest to the work Letim pupils tell what is wrong with the folloming sentences:
1.1
2.1

31
4.1
4. S
Q. H
7. It
\& 1
9. $\pi$

The
mouns $\alpha$ subj mentury the iffil ges," for mis denger $i$ prepasiti and the mong f oblees lii

1. Ett
2. Wb
3. The monning. 4. The

In cont in't, has be alaen I on the pul be uned ol id don't, al my nots blanks in arcions a

1. It
2. Apu
3.1
3. We
4. Mary
5. $\mathrm{Y}_{\mathrm{OL}}$.
6. That
7. 

The use
4 most $p$
xt dill
conect fer
rand fill

1. I like
2. There
3. Then
4. This
5. These
Q. Thase

## Lengrage and Grammar

1. Whom did you my was here this evening?
2. What did you and her talk about?
3. Whom did you think be was?
4. I can certainly do that better than her.
5. Such a person as him has no right here.
a. He can play better than me.
6. It might have been him.
7. I suppose it was then.
8. Who did you take him for?

The question of the singular and plural of nouns and verbs, with reference to the agreement $\alpha$ subject and predicate, may seem rather elemeatury to take up in this grade. A pupil of the fifth grade is not very likely to say "We gose", or "They thinks"; but the possibilities lor mistake are still practically endless. The denger is particularly strong in sentences where prepositional phrases appear between the subject and the predicate. Let the pupils correct the rong forms in the following sentences, and in obben like them:

1. Bither you or I are right.
2. When does your brother and your sister go?
3. The crowing of the roosters tell that it is moning.
4. The use of alcoholic drinks are dangerous.

In connection with the use of the contractions. in't, havn't, dooen't, and so forth, which may be taken up in this grade, it should be impressed on the pupils that don't means do not, and should be und only where do not is correct. He don't, it don't, she don't are therefore incorrect, for we my not say he do not, and so forth. Have the blanks in the following sentences filled with conarecions of not and some form of the verb do:

1. It _ seems right to do it.
2. A pupil ....... work as hard as a teacher.
3. I -un care to gn.
4. We .... like some of our studies.
5. Mary -......ome very regularly.
6. You ___ need to pretend to like it.
7. That tree ........ bear many apples.
${ }^{8}$-. be like his school?
The use of kind and sort with these and thase
anch mast persistent error which it will require much drill to overcome. Let the pupils observe the conect forms in the first four sentences that wor, correct the wrong forms in the second wr, and fill in the blanks in the last sentences.
8. I like this kind of apples.

2 There are many of that kind of trees.
2. That sort of berries is very expensive.
4. Thi sort of collars is very popular.
${ }^{5}$ These kind of people cause much trouble.
a. Those kind of flowers are most beautiful.

## Language and Grammar

7. Do you like these sort of books?
8. Will thoee sort of games ever be popular?
(Observe that in come of these sentences two corrections are necessary.)
9. I do not care for ........ kind of hats.
10. -- sort of pencils $\qquad$ too hard.
11. _-_. kind of electric lights ......... brighter
12. Do you prefer $\qquad$ kind of shoes, or .... ?
The distinction between can and may is easily grasped, but easily forgotten when it comes to a question of every-day use. Can expresses power Could and might mifter inssion or probability. Could and might differ in the same way. May and might are seldom if ever incorrectly used for can and could, but the opposite error is heard almost constantly.
13. .-... I have another piece of pie?
14. She said I....... play with Mary.
15. No, I
will no... not go for a walk today; mother will not let me.
16. You $\qquad$ have a drink if you want one.
17. You...-. not leave the room until I tell you to.

These, with review of exercises from former grades and exercises suggested by errors made language drill for furnish sufficient material for language drill for this grade.

Pooms. The poems which are suitable for study in this year are numerous and should appeal to the pupils for at least two reasonsfor the stories they tell and for the pictures they present. Some of the poems have both pictures and story; some have only one. A list of poems which may well be used in this grade is as follows: Barbara Frietchie-Whittier. In Time's Swing-Lucy Larcom. The Fountain-Lowell.
The Wreck of the Hesperus-Longfellow.
Song of the Brook-Tennyson.
Lochinvar-Scott.
Sheridan's Ride-Thomas Buchanan Read.
Landing of the Pilgrims-Felicia Hemans. Christmas Bells-Longfellow. Lord Ullin's Daughter-Thomas Campbell. The Arrow and the Song-Longfellow. Death of Lincoln-Bryant. Bell of Atri-Longfellow.
The most of these poems will be found in any school library; a few, however, such as the ballad of Campbell's, Lord Ullin's Daughter, and Lucy Lareom's In Time's Swing, will not be so casy to find, and we give them here. One is a typical story poem; the other a typical picture poem. Longfellow's Wreck of the Hesperus is given for comparison with Lord Ullin's Daughter.

## Lond Uleav'a Davgetrat

A chieftain, to the Highlande bound, Crien, "Boatman, do not tarry! And I'll give thee a ailver pound, To row us oper the ferry."
"Now who be ye, would cross Lochgyle, This dark and ntormy water?"
" O, I'm the chief of Ulva's isle, And this Lord Ullin's daughter.
"And fast before her father's men Three days we've fled together, For should he find us in the glen, My blood would stain the heather.
"His horsemen hard behind us ride; Should they our steps discover, Then who will cheer my bonny bride When they have slain her lover?"

Out spake the hardy Highland wight, "I'll go, my chief-I'm ready;
It is not for your silver bright, But for your winsome lady:
"And by my wordl the bonny bird In danger shall not tarry;
So though the waves are raging white, I'll row you o'er the ferry."

By this the storm grew loud apace, The water-wraith was shrieking; And in the scowl of heaven each face Grew dark as they were speaking.

But still as wilder blew the wind, And as the night grew drearer, Adown the g.en rode armed men, Their trampling sounded nearer.
"O haste thee, hastel" the lady cries,
"Though tempests round us gather;
I'll meet the raging of the skies, But not an angry father."

The boat had left a stormy land, A stormy sea before her,-
When, ohl too strong for human hand, The tempest gather'd o'er her.

And still they row'd amidst the roar Of waters fast prevailing:
Lord Ulin reach'd that fatal shore, His wrath was changed to wailing.

## Iangago and Grammar

For sore diamay'd, through storm and inth, Hir child he did discover:-
One lovely hand whe atretch'd for aid, And one was round her lover.
"Come backl come backl" he cried in pid, "Acroes this stormy water:
And I'll forgive your Highland chief, My daughter!-oh my daughter!"

Twas vain: the loud waves lashed the thore, Return or aid preventing;
The waters wild went o'er his child, And he was left lamenting.

This poem is written in the style of the atd ballads, but it has very few of the strase odd forms or the roughnesses of meter which mat the ballads. Longfellow's Wreck of the Heppen shows more of the ballad characteristics.

## Wabci of Tele Hesplres

It was the schooner Hesperus,
That sailod the wintry sea;
And the skipper had taken his little daughter
To bear him company.
Blue were her eyes as the fairy-flax, Her cheeks like the dawn of day, And her booom white as the hawthom buds That ope in the month of May.

The skipper he stood beside the helm, His pipe was in his mouth, And he watched how the veering flaw did bor The smoke now West, now South.

Then up and spake an old Sailor, Had sailed the Spanish Main,
"I pray thee, put into yonder port, For I fear a hurricane.
"Last night the moon had a golden ring, And tonight no moon we see!"
The skipper he blew a whiff from his pipe, And a scornful laugh laughed he.

Colder and colder blew the wind, A gale from the Northeast;
The snow fell hissing in the brine, And the billows frothed like yens.

Duwn came the storm, and smote ammin, The vessel in its strength;

Lested
Witi
"Cor
Por

He
Hec
" 0
"Th
" 0 hat
0
"Some
In
"O heth
0
But the
An

The han
On 1
Then the
That
And she
On
And fast
Thro
Luces ab
Towa
And ever
A sour
If mas the
On the
The break
Ste dri
And a who
Like iec
Se exruck
looked
Searuck

$$
9 \text { th }
$$



Wa who

## Lagange and Gramenar

Soshuddered and paumed, llke a frighted steed, Than loaped her cable's length.
"Come hither! come hitherl my little daughter, And do not tremble so;
For I can weather the roughest gale, That ever wind did hlow."

He wrapped her warm in his seaman's coat Aguinst the atinging blast;
He cut a rope from a broken spar, And bound ber to the mast.
"O futher! I hear the church-bells ring. 0 ay, what may it be ?"
"Ti a log-bell on a rock-bound constl" And he steered for the open sea.
"O futher! I hear the sound of guns. 0 my, what may it be?"
"Some ship in distress, that cannot live In such an angry sea!"
"O fatherl I see a gleaming light. 0 my, what may it be ?"
But the fither answered never a word, A frozen corpse was he.

Lathed to the helm, all stiff and stark, With his face turned to the skies,
The hntern gleamed through the gleaming snow On his fixed and glassy eyes.

Then the maiden clasped her hands and prayed That saved she might be;
And she thought of Christ, who stilled the wave,
On the lake of Galilee.
And last through the midnight dark and drear,
Through the whistling sleet and snow,
Like a sheeted ghost, the vessel swept
Towards the reef of Norman's Woe.
and ever the fitful gusts between A sound came from the land; If was the sound of the trampling surf, On the rocks and the hard sea-sand.

The breakers were right beneath her bows, She dritted a dreary wreck, And a whooping billow swept the crew Lake ieicles from her deck.

Se aruck where the white and fleecy waves Looked soft as carded wool,

## But the eruel rocks, they gored ber aide Like the horns of an angry bull.

Her rattling shrouds, all abeathed it. ice, With the masts weat by the board; Like a vescel of glass, she atove and eanks Hol hol the breakers scared!

At daybreak, on the bleak sen-beach, A fisherman atood aghast, To see the form of a maiden fair, Lashed close to a drifting mast.

The salt sea was frosen on her breast, The salt tears in her eyes; And he saw her hair, like the brown sca-weed, On the billows fall and rise.

## Such was the wreck of the Hesperus, In the midnight and the snowl Christ save us all from a death like this, On the reef of Norman's Woel

Have the children read the poem through first to get a general idea of the story and of the swing. Then ask them to point out any strange words or any seeming breaks in the swing. In the very first stanza there is a word which has to be pronounced incorrectly to make it sound right; daughter must be accented on the second syllahle. In the fourth stanza sailor must be treated in the same way, while in the same stanza are found two expressions which are not usual-"up and spake" and "had sailed," with who omitted. The children will be ahle to pick out other instances. Explain to them that Longfellow did not write in this way because he knew no better, and read to them some particularly musical passage from the same poet. Then, in explanation of the irregularities, tell a little about the old ballads: how they grew up among people who knew nothing of poetry, and how they were intended to be set to music. Describe the way they were kept alive, by word of mouth for centuries, and tell of the changes that took place in them. Make your pupils feel, if you can, that what would be defects in more old tallans are really the chief charm of the old ballads.
The Wreck of the Hesperus is primarily a story poem, but are there pictures in it? The second stanza gives a picture of the little daughter; the sixth stanza has the hrief picture of the billows that "frothed like yeast"; the thirteenth stanza gives the painful picture of the dead skipper
leched to the belm, with the hoterr-light gleaming on him. Lat the childrea find othere picturse.

## In Thaz's Swava

Father Time, your fooutepe go Lighely as the falling snow. In your swing I'm slating, nee: Puih me softly; one, two, three, Twelve times only. Like a sheet Spread the snow beneath my feet. Singing merrily, let me aving Out of winter into apring.

Swing me out, and swing me inl Trees are bare, but birds begin Twittering to the peeping leaves, On the bough bencath the eaves Wait, - one lilac bud I saw. Icy hillsides feel the thaw; April chased of March today; Now I catch a glimpse of May.

Oh, the amell of aprouting gruss!
In a hlur the violets pass. Whispering from the wildwood come Mayflower's breath and insect's hum. Roses carpeting the ground; Thrushes, orioles, warbling sound: Swing me low, and swing me high, To the warm clouds of July.

Slower now, for at my side White pond lilies open wide. Underneath the pine's tall spire Cardinal blossoms burn like fire. They are gone; the golden-rod Flashes from the dark green sod. Crickets in the grass 1 hear; Asters light the fading year.

Slower still! October weaves Rainbows of the forest leaves. Gentians fringed, like eyes of blue, Glimmer out of sleety dew. Meadow-green I sadly miss: Winds through withered sedges hiss. Oh, 'tis snowing, swing me fast, While December shivers past!

Frosty-bearded Fathcr Time, Stop your footfall on the rimel Hard you push, your hand is rough; You have swung me long enough. "Nay, no stopping," say you? Well, Some of your best stories tell,

## While you swing mo-jently, dolFrom the Old Year to the Now.

Thin in, fint and lint, a picture poem. Point out to the children, 4 they do nol get it froe their own firrt reading, that the swinging is only a aymbol of the pasaing year, and then let thes direct their attention to the pictures. Have than find firnt the winter pletures, then the prim pletures, then the summer pictures, then autumn pictures. Point out to them the fert that each picture is made whith a very few work

There are many binds and flowers mentioned in the poem, some of which are familar o teachers and mothers, but not so murh is knws about others. Great good will msult from sudp. ing about them in The New Practical Reri. ence Labranr, under their regular alphabeial titles.

The chikiren will enjoy making illustrations for this poem. The whole course of the gut cannot be accurately covered, hut enough pirturm can be made to ornament beautifully meny d the month's calendars.
"Underneath the pine's tall spire
Cardinal blosoms burn like fire."
" . . . . . . . . . . . the golden-rod Flashes from the dark green sod."
"Asters light the fading year."
" . . . . . . . . October weaves Rainbows of the forest leaves. Gentians fringed, like eyes of blue, Glimmer out of sleety dew:"
These are some of the pictures which will gine ideas for illustrations to the pupils.

Composition Work. A part of the compoit tion work of this year may be connected with the work on the poems. Once or twice during te te year it will be well to have the pupils gire toe their compositions the story of some mantury poem which they have studied in this gnde ${ }^{\alpha}$ an earlier one. The Pied Piper of Hamdin and The Bell of Atri are good poems for use in tiin way. Or, after the study of a namtire porm it may be well to have the children write s safy -either an original story or one from the Their own original stories, of course, ned wh be of the same heroic proportions as the the in the narrative poems.
After some time has been spent on the of a descriptive poem, let the childrea ritit

## Ingrays and Crammat

durption of some seene with which they are furtive, Improm upon them that they cannot charibe a seene ap aa object clearly until they mally krow what it looks like, until they have a peraus of it with its lights and shadown, its mpomar pointer and its minor points, distinct My Pownith Corner of the Park, Our Frout Yard ar abljects which It should be poasible for the dhtun to hadle well.
There is one subject for composition work Nixh nely frils to interest children. Let each prit choon an animal or an article which he thin to be-a rabbit, a fish, a coin, a bottlead wite the experience of that animal or article in the form of an autobiography. These may be hacilu, but not too much no; the experiences taud be those which are possible to the article a quation. Anderan's Condant Tin Soldier, Thi Daming-Nedle and The Pea Bloseom should be inuereting to the children in this connection. Compooition topics which fit the season are wdul in varying the monotony. Thus in October
some nech subject may be aevigned as How My Gerdon Har Changed. In December the rople may be A Christmas Picturn, which aflords numerous poosibilities-the Christmas tree. the family taking down the stockingi, the Christman dinner table, the group about the fire in the twilight. In February the subjoct may well be George Washington. Hia lifo may be divided into several parts-his youth, his early manhood, his career as a soldier, his presidency, his later life. Each of these parts may be assigned to several pupils, and when all the work is in, a number of lives of Wastington may be mado by putting the different chapters together.
Rolated Topies. This year ahould ground the children atill further in the use of capitals, punctuation marke, simple abbreviations, such as those for the different months, and paragraphing. Conversations should be copied from renders or made use of in original compositions until the use of quotation mark is well underbeod, and practice in letterwriting should not
bed.

## Sixth Year

Curcetion of Errors. The work of the sinh gande is very closely related to that of the ath. The drill on the correction of common arms begun in the earlier grades should be cousinued in this, until the tencher is sure that de papish understand thoroughly the end to be cumplished. Additional errors on which exerana may be based are given here.
The distinction between moot and almost is one midh is frequently overlooked. Moot means the guart quantity, the greatest number; almaot mans marly, and should be used only in places wher nearly might be used. Place the following rateaces on the bourd and let the children corwet those which are wrong:

1. I can go most any time you are ready.
2. Mort of us have been here.

2 Moat all of us have been there.
4. It in most always impossible to find a seat it tin trin.
4. I shand be most too tired to go.
4. Mosk everybody likes flowers.

The proper use of between and among requires
 tee fro in corts:

1. She and I divided it $\qquad$ 18.

2 Be had only two ap
so but

- the tho apples, but he divided - the three of us.

3. John and Mary and I appealed to father, but he said we must sette it ........ us.
4. There are four beautiful little lakes, and a village nestles ........ them.
5. Father and mother divide the responsibility them.
The statement that good is an adjective and well is often an adrerb cannot be made to pupils of this grade who have not yet been introduced to formal grammar, but the difference in their use may be made clear by numerous illustrations.
6. You are a good boy; you have done your lessons well.
7. The bread looks good (meaning, the bread looks as if it were grod).
8. The bread is baked well.
9. He is never vell, but her health is very good.
10. She is a.......worker and does everything......
11. Can you do this ........?
12. My work is not done as
13. Is your health fairly ........?
14. If you do this ........ you shall have a rest.
Wuthout and except should not be used in the place of unlfss, to introduce a dependent statement. The first four sentences which are given here are incorrect:
15. I shall not go without you do.
16. She will not do it except she feels like it.

## Iagrage and Ornmmar

2. Eroopt the thacher tello you to, you mut sot do $l$.
3. They never do anything without they are torend to.
4. ..... the sun comes out, it will be rulned.
a. I shall not go with you ....... you wear a hat.
5. There is no use in promising ........ you intend to do it.
Hed or had not should never be uned with ought.
6. She ought to go, nat, She had ought to go.
7. I ought not to do it, not, I had not ought to do $k$.
8. Ought we to speak of it? not, Hed we ought to speak of 4 ?
9. She thought we ought not to buy the house, nor, She thought we had not ought to buy the bouse.
The word real is often incorrectly used in place of wery. Do not say:
10. I am real sick.
11. She is a real strong girl.
12. We had a real good time at your house.
13. If you are real sure you do not mind, I will take it.
14. I think I shall like the new teacher real well.

In each of these cases the word urry is the proper word to use.
Word Itraj. The study of synonyms, begun in earlier grades, may well be continued in this. Such groups of words as aged, ancient, odd, antique; abandon, desert, foroake; admit, conjess, acknowoledge; as last, at length, may be di: miminated and used in sentences. Very fine distinctions between words should not be drawn with children in this grade.

Very helpful exercises may consist in making lists of adjectives describing certain objects. For example, ten words may be called for which describe a tree, ten which describe a horse, ten which describe a person. These, of course, are not called adjectives in this grade; they are simply descriptive words. The comparison of adjectives, always without using the technical terms, may also be taken up here. Ater the pupils have given several words describing a tree, as, for instance, tall, beautiful, sturdy, call on them to express those qualities in three different degrees and point out the difference between tall, taller, tallest, and beautiful, more beautiful, most beautiful.
Pooms. Any of the poems listed in the fifthgrade work which have not been studied may be
need in this yeap. Io addition, the bolionter will be found adapted to pupile of thin se:
How Thay Brought the Goud News hom Give to Ais-Browning.
The Bugle Song-Tennyzon.
An Incidons of the Fromeh Camp-Bromity.
The Fringed Gentian-Bryant.
The Daflodilo-Wordaworth.
Old Ironside--Holmes.
The Leak in the Dybo-Phorke Cary.
These poems chould be studied juna atm for the afth year were atudied, though of coum with each grade a little truer appreciation m! be expected from the chlldren. The tencher my firat in euch instance give a brief akecth oith life of the poet; this may, In all the coses pina for thle year, be found In Tue Niw Pructicus Refranece Library. Then, if the poem is atory-poem, it will be of interest to the puph to learn whether or not the incidents on whid the poem is based are true or imaginary. Fie instance, the two poems of Browning namd be atudy in this year may be contrasted. Lu the childrea read Howo They Brought the Good Sina from Ghent to Aix, and An Incident of the Fmad Camp, and see whether they feel that one in more real than the other. Perhaps the fae the Napoleon is named in the latter poem may mie that one seem a little more actual, but for the most part one rings as true as the other. $h$ the case of An Incident of the Fronch Comp however, the historical background, at hast, it true; the French did take Ratisbon just in way Browning describes. As to whetber of po the story of the boy, as he tells it, is true, $m$ do not know; but the character of Napolom, from the glimpse we have of him here, is rot true to life. When it comes to the other poran, we find that Browning inventel the cinurstances entirely; there is no rerord that thee was ever any good news sent from Gheot os Aix. But so real does Browning make the sery seem that we almost hold our breath as the galloping ride goes on.

The story of Browning's Pippa Pouse, $\downarrow$ will simply and well, will make a strong appeal ${ }^{\circ}$ children of this grade, and they will enjoy hart ing the beautiful little song which Pippe in as she starts on her day's pleasuring:
"The year's at the spring, And day's at the morn; Morning's at seven:
The hillside's dew-pearled;
The lark's on the ring;
The snail's on the thorn;

## God's in his heerven-

All's righe with the world." Cumpocition Werk. This, again, difiers in tiad wry litte from the work of the fifth grncle. TM subjects may be much the same, but of anme a litile better resulte may be expected. A lix of toplas suitable for composition work in tio prode in given here:

1. Businens kettern:
(1) To a magazine, incloalng money order for one year's subneription.
(2) To a large department store, ordering six or eight articlen, and giving directions a bout delivery.
2. Why I Like My Favorite Book.
3. The Boyhood of Lineoln.
4. The Story of "The Bell of Atri."
5. A Brave Deed I Saw.
a. The Story of a Dollar Bill.
6. The Adventures of a Pin.

## 8. A January Thaw.

0. A Felruary blizmard.
1. The Toloregran Slide.
2. How 1 Ran Away.
3. Having a Trooth P'ulled.
4. My Girandma's Kitchen.
5. Our Church.
6. What I Sve from My Window.
7. The Mont bleuutiful Ihace I Know.
8. My First Tracher.

Compositions on such subjects as Sugar, Coffer, Cotton, Lumbers, Apples, Iron, Fishisive, Wheat, Corn will connect the language work with other studles. The tencher may find it advimable to draw up an outline for such componitions first, that the work may be onderly in form. Material on these subjects may be found in Tar New Practiral Reflalice Librart, in regular alphabetical order, and also with specinl treatment in this volume, under the heading Indutrico.

## Seventh Year

Tho itmopo Bontoace. In the seventh grade lormal grammar is taken up. Or course this thould be ennnected as much as possible with de hnguage work of the previous years, but the time between the two is distinct. The greater prr of the seventh-year work concerns itself with the sentence, and that subject should be te firs thing taken up. Put before the pupils the tro groups of words Flying birds and Birds fy and have them discuss the difference. Lead trem to the statement that the former simply coumes something about hirds, while the latter asKrat ene sume fact. Then give them the definition of sdechantive sentence-that it is a group of words ruich asserts something a bout something else.
Given this definition, it is apparent that there must be two parts to every sentence, no matter lor simple; there must be the part that asserts ind the part about which something is asserted. Thus in the sample sentence given, the word $f y$ werts something about birds. The asserting and a sentence is called the predicate, the part whout which something is asserted, the subject.
Though the difference between groups of ronss which assert and groups of words which verty asume is very simple to the teacher, it is br no means always so clear to the pupils. They thold here murh drill on groups of words such th following, distinguishing the sentences trvo those expressions which only assume:

1. The fishes swim.
2. Evimming plants.
3. The roaring storm.
4. The train runs.
5. The tree falling.
6. Children play.
7. Books are read.
8. The drifts of snow.
9. The green grass.
10. The grass grows.

It will thus be made plain to the pupils that in order to have a sentence, two things are ahsolutely essential-a subject and a predicate; but it may then be pointed out that comparatively few sentences have this very simple form. Even in the little sentences in the list above, the word the is used before the subject more of ten than not. This modifier of the subject does not, however, make the arntence any less simple; it merely makes the subject less simple. By a combination of the last two groups of words in the list above, The green grass and The grass grous, it may be shown that the same sentence may both assume and assert something of the subject. The green grass groveassumes the greenness and asserts the growth.
Oomplements. After sufficient drill has been given on the very simplest form of sentences, the point may be made that some predicates do not in themselves contain enough to asarert about a subject all that is meant. Thus for instance, if we want to assert about flowers the quality assumed in the cxpression beautiful flowers, it is not enough to say Floucres arc; we must add to the predicate the worl lenutiful. Give many

## Lengrage and Grammar

examples of this use of a word after is, are, woas wore, etc., to complete the meaning, using adjectives in some and nouns in others. The distinction between these two parts of speech need not be pointed out to the pupils at this stage.

1. Birds are graceful.
2. Swallows are birds.
3. Man is an animal.
4. Men are intelligent.
5. You are good.
6. You are a boy.

The word which is thus used after some form of to be is known as the attribute complement.

But there are other predicates besides forms of to be which need something to complete their asserting power. If we say The man wants, we feel that something is lacking. What does the man want? The word which answers that question is the object, or object complement, of the word wants. The object is that which receives the action expressed by the verb. Have the pupils point out objects or object complements in such sentences as these:

1. I ate an apple.
2. He threw the ball.
3. John sang a song.
4. The bird caught a worm.
5. The teacher scolded the pupil.
6. He was reading the book.
7. You like flowers.
8. I broke the glass.

When the pupils have reached this point in their study of the sentence, they may make some such table as the following:

| Complete <br> Subject | Prodieate | Attribute <br> Complement | Object |
| :--- | :--- | :--- | :--- |
| John | is | good | a dog |
| He <br> The girl | has |  | likes <br> apples |

Let them analyze as above and place in their proper compartments the parts of the following sentences, giving, as they do so, their reasons. In analyzing the first sentence, for instance, the pupil will say: "Cats is the subject, because something is asserted of them; catch is the predicate, because it makes the assertion; mice is the object, because it is that which receives the action."

1. Cats catch mice.
2. The boy is tall.
3. The clock was old.
4. A boy was making kites.
5. The kite had $\mathfrak{a}$ tail.
6. It flew.

## Langenge and Crammas

7. Gold is heavy.
8. My home was beautiful.
9. The dog was running.
10. The pupil knows the lesson.
11. Cats scratch.
12. Horses eat corn.

Such sentences as the fourth and the miant will call to the attention of the pupils the fact that a predicate is not always only one word, but the subject of conjugation need not be taken up jus at this point.

The Moun. The first part of speech which is given definite treatment is of course the nom The statement that " $a$ word used to name un object is a noun" is so simple that the childm will find no difficulty in understanding this frist part of speech; but after the word noun is learned it should be used-"name" and "name word" and such expressions should be dropped Give plenty of practice in the recogition d nouns, by having the pupils point out all that occur in the following examples:

1. "The breaking waves dashed high On a stern and rockbound coast; The woods against a stormy sky Their giant branches tossed."
2. "Their home was a little hut on the edged a little village-a Flemish village a league from Antwerp, set amidst flat breadths of pasture und corn-lands, with long lines of poplars and d alders bending in the breeze on the edged the great canal which ran through it."
3. "I was rich in flowers and trees, Humming-birds and honey-bees; For my sport the squirrel played, Plied the snouted mole his spade; For my taste the blackberry cone Purpled over hedge and stone; Laughed the brook for my delight Through the day and through the night" 4. "Up from the meadows, rich with oom, Clear in the cool September mom, The clustered spires of Fredenick stand, Green-walled by the hills of Marjhand" Antwerp, in the second selection, and 1 mimid and Margland, in the last, will give opportunity for pointing out the distinction between comma and proper nouns.
The Pronom. The pronoun, the "rond used instead of a noun," follows very ady after the work on the noun. $I$, you, $\therefore, i$, , it, i, we, they, who, me, him, her, tus, them, and shem may be taken up now, but the possessive form cannot be understood until after the subjerd adjectives has been studied. The nouns, owe
moe and proper, and the pronouns may be picked out from the following paragraph, the pronouns being classified from their forms as subject, attribute complement and object:
"In a remote village among some wild hills in the province of Lorraine, there lived a countryman whose name was Jacques d'Arc. He had a duughter, Joan of Arc, who was at this time in bee twentieth year. She had been a solitary girl from her childhood; she had often tended macp and cattle for whole days where no human figure was seen or human voice heard; and she hed often knelt, for hours together, in the gloomy, empty, little village chapel, looking up at the altur, and at the dim lamp burning before it, until arefancied that she saw shadowy figures standing there, and even that she heard them speak to her. The people in that part of France were very igmorant and very superstitious; and they had many ghostly tales to tell about what they had dramed, and what they saw among the lonely tills when the clouds and mists were resting on them. So they easily believed that Joan saw strage sights, and they whispered among themstres that angels and spirits talked to her."
The Verb. The study of the verb comes next, and while this is more complicated than the mork on the noun, there is no reason why it dould not be so presented as to be perfectly smple. The definition usually given of a verb is that it is "a word which asserts." There is a dififulty in this, however; the word assert has ben used of the predicate of a sentence, and there is a danger that the pupils will become confused when such verb forms as giving, given ur introduced, since these forms obviously never $d$ themelves assert anything. The old definition that "a verb is a word that tells what some dijet is or does" is as simple a starting point as any. The distinction between transitive and intrnasive verbs may be easily connected with the stady of the object complement, and if that radk has been thorough there is no reason why the classification of verbs as transitive and intansitive should give any trouble. For drill, the rerbs in the following sentences may be chasified in this way:
4. Mary is a good child, but she has a quick traper.

2 The cat has sharp claws.
3. The dog runs swiftly.
4. The river carries ships to the sea.
5. I see four pine trees from my window.
4. The girl sang well.
7. She sang a beautiful song.
(These last two sentences may be used to show how the same verb may be both transitive and intransitive.)
8. I stood on the bridge.
9. You own a horse, do you not?
10. The sun shines.
11. The rain freshens the flowers.
12. The flowers grow.
13. I like dogs and horses; you like cats.
14. I walked slowly.

Infloction. The word inflection is not too difficult to introduce to seventh-grade pupils, but it should be introduced after the fact of inflection, not before. Call attention first to the fact that verbs do something in sentences besides asserting. When we say "I eat an apple," "I ate an apple," the verb tells us that there is a difference in time in the two actions; when we say "I go to school," "I may go to school," the verb tells us that in one case the speaker is certain, in the other doubtful. Different forms of the verb are necessary if it is to tell us all of these things when used in a sentence. Write on the board give, gives, gave, giving, given and ask the pupils how many words you have written; then explain that these five are really only five different forms of the one word give. The use of copulas, is, has, may, etc., may be introduced here, by showing that even the five forms of the verb give cannot always tell us all that a verb needs to tell.
Point out, too, that some forms of the verb can assert, while others have not that power; "I give," "you gave," "he gives" assert, while giving and given do not, however they may be used. Such forms of the verbs as do not assert are called verbals. Give a brief drill on verbals, letting the pupils pick them out from the following list:

## have, has, having, had.

go, goes, going, went, gone.
break, breaks, breaking, broke, broken. buy, buys, buying, bought.
bring, brings, bringing, brought. paint, paints, painting, painted.
The study of verbals leads up to the verb phrase-the combination of one or more verbals with a verb. By combining the forms picked out as verbals above with copulas, the verbals may be used in making assertions. Perhaps the simplest definition that can be given of a verb phrase is that it is "a group of words used like a verb of one word." Verb phrases may be pointed out in the following sentences:

## Imaguage and Grammar

2. The moon rove.
3. The children were playing.
4. He has learned his lectoss.
5. They did their work.
6. We earned the money.
7. The boys will run races at the picnic.
8. I shall go tomorrow.
9. She loot her book.
10. The cat is watching for a mouse.
11. The girls were having a good time.
12. We had much trouble before we found it.

Have each of the above sentences rewritten, directing the pupis to employ different forms of the same verbs, so that where simple verbs are now used there may be a verb phrase, and where there are 70w verb phrases, verbs of one word may be used. The first sentence would thus be written:

## The sum rove, or The sum rives.

It in not necessary that the time expressed be the same.

The 1 djoctive. The adjective, with its uses as direct modifier and as attribute, and the adverb, modifying verb, adjective or adverb, should next be introduced, and from the study of these two parts of speech the transition may be made to adjectives and adverb phrases and clauses. This brings in the study of prepositions, conjunctions and relative pronouns. In connection with the complex sentences, or those containing dependent clauses, may be introduced the compound sentence, with its two or more coordinate parts. A list of sentences is given here, which may be used for drill in work with all of these topics.
(a) Pick out the adjectives in the following sentences and tell whether they are direct modifiers or attributes:

1. The long day is over.
2. The blue flowers have faded.
3. Over the brown fields the pale autumn sun shone.
4. The water is cold.
5. The days in summer are long and sunny.
6. On the chill days of November we long for the bright, fresh days of spring.
7. The red leaves of the vine are beautiful against the dark, shaggy trunk of the old tree.
8. Far above us, graceful birds circled in the blue sky.
9. Do you think these red flowers will be pretty in this green rase?
10. The soft, fleecy snow has covered up the ugly, bare ground.

## Ianguage and Grammar

11. She is well, but her sister is ill.
12. I have been very happy all day.
(b) Pick out the adverbs in the follonis, sentences and tell whether they express phac, direction, manner, degree, time when, or durtion of time. Also point out the word which each adverb modnfies:
13. She plays well.
14. She plays very well.
15. I am extremely corry that you cannot ga
16. The frightened animal fled still more sapidly.
17. The Indian vanished swiftly in the forex.
18. Put it there.
19. The crayfish scuttled backward.
20. He seems to do everything easily.
21. If you do not do it now, you will never do it.
22. They worked long and hard.
23. The army moved forward as one man.
24. He searched eagerly for the house wher he had lived so happily.
25. A very tall man rose and said emphatianly, "We are wasting the swiftly passing time in utterly useless debate."
(c) Pick out the prepositions in the folloning sentences, and tell what each prepositional phase modifies:
26. Pansies grow in the garden, but ther violet cousins grow in the open fields.
27. Through the window came a snorbill, which broke against the wall.
28. It was thrown by a small boy who wu hiding behind a bush in the garden.
29. Above the tree tops floated a gorgeous kite
30. Scores of people were rushing torard the spot, asking wildly about the accident.
31. The dog ran around the house and umda the barn.
32. It is on the table, just inside the door.
33. Between you and me, I do not beliere i.
34. Such talk is out of place among friends
35. A cottage in the woods is all 1 desir.
36. This letter from my mother has nems in all of us.
37. Beyond the park paling is the unboten forest.
(d) Tell whether the following sentepers ar complex or compound, and pick out the chuse. In the case of complex sentences, tell rhether the dependent clauses are adjective or adrerb chases, and whether they are introduced by conjunction or by relative pronouns:
38. She came while I was there.
39. They went, though they should mo remained at home.

## Ianguage and Grammar

2. John and Mary walked rapidly to the top of the hill, but they were afraid to go farther.
3. The man who sent the presents is rich.
4. Birds sing and flowers bloom.
a. The home which I like best of all is too expenive.
5. She ran toward the box that contained the gold.

Since I have been here, I have seen two bease.
9. Because his father would not let him go, be man amay.
10. You had better stay at home, for you could perer stand the journey.
11. The wind is not blowing, nor does it rain wit did an hour ago.
12. This is the man who wrote the letter.
13. We found the house which we were seeking.
14. The boy whom the teacher scolded yesterdey did better today.
15. I prefer to read but I will play tennis if jou wieh.
16. If you hear from him before I do, send me mond.
17. The flowers which I bought yesterday are sill frah, and I think I shall we-- them when I go out this evening.
18. She is the girl whom we all love.
10. "The world goes up and the world goes dom."
20. He was pardoned, though he was guilty.
21. He was paadoned bus
21. He was pardoned but he was guilty.
22. I cannot go until my work is done.
23. "Knowledge comes, but wisdom lingers."
24. "You never miss the water till the well rums dy."
22. "Blessed is the man that walketh not in the coumsel of the ungodly."
20. Bring me the book which you will find on the table.
No attempt has been made here to instruct the macher as to just how each of these subjects tould be introduced; the intention has been nuber to furnish a fund of illustrative material br the neoded drill.
For the work on sentence analysis, any or all $d$ the above sentences may be used. A table
similar to that used for the simple sentences at the beginning of the year's work may be made, and the various parts of the sentences may be classified under it.
Compoaition Wort. The grammar work should not be emphasized to the exclusion of composition work in this grade. In lact, the composition work may be made a real help in the grammar, for illustrations of the principles being introduced may constantly be found in the compositions, and the pupils may be more casily interested in a form if they know they make use of it themselves. The topics for composition work in this class should be varied from month to month. Here follows a list of suggested composition topics:

1. Why I Should Not Like to Live in (some country being studied in geography).

## 2. The Woods in Autumn.

3. Our Autumn Out-of-door Games.
4. A Newsboy's Christmas, or,

A Selfish Girl's Christmas.
5. The Story of Barbara Frietchie (as it might be told to a child of ten).
6. Why I Should Like to Have Lived in the Time of Lincoin (or Washington).
7. A Windy March Day, or

The First Real Spring Day.

## 8. What I Have Learned in Grammar This <br> \section*{Year.}

Pooms. Much of the work on poems will come with the reading, but there should be occasional exercises in the grammar class. This does not mean that just the grammatical features are to be taken up, for while it may be very beneficial to point out ways in which the poetical expression differs from the prose, a poem may well be spoiled by too long dwelling on such points. But the retelling of stories, the reproduction of descriptions contained in poems, and the putting into words of the impression produced by a part or the whole will make helpful exercises. The following poems are suitable for use in this grade:
The Building of the Ship-Longfellow.
A Robin Hood Ballad.
The Courtin'-Lowell.


## Lapguage and Cramimar

The Song of the Brook-Tennyson.
The Diverting Hidory of John GilpinCowper.
The Children's Hour-Longfellow.
Rhoocus-Lowell.
Tho Hot Seacom-Holmes.
The Old Clock on the Stairs-Longfellow.
As it may not always be possible to tind a Robin Hood ballad, we give here the one dealing with Robin Hood and the Stranger.

## Robiy Hood and the Stranair

Come listen awhile, you gentlemen all, With a hey down, down, a down, down, That are this bower within,
For a story of gallant bold Robin Hood, I purpose now to begin.
"What time of day?" quoth Robin Hood then; Quoth Little John, "'Tis in the prime."
"Why then we will to the green-wood gang, For we have no vittles to dine."

As Robin Hood walkt the forest along, It was in the mid of the day,
There he was met of a deft young man As ever walkt on the way.

His doublet was of silk, he said, His stockings like scarlet shone,
As he walkt on along the way,
To Robin Hood then unknown.
A herd of deer was in the bend, All feeding before his face;
"Now the best of your Ile have to my dinner, And that in a little space."

Now the stranger he made no mickle adoe, But he bends a right good bow,
And the best buck in the herd he slew, Forty good yards him froe.
"Well shot, well shot," quod Robin Hood then, "That shot it was shot in time;
And if thou wilt accept of the place, Thou shalt be a bold yeoman of mine."
"Go play the chiven," the stranger said;
"Make haste and quickly go,
Or with my fist, be sure of this, He give thee buffets sto'."
"Thou had'st not best buffet me," quod Robin Hood,

## Lapguage and Grammar

"For though I seem foriorn,
Yet I can have those that will take my purt, If I but blow my horn."
"Thou wast not beat wind thy horn," the stanger mid,
"Beest thou never so much in haste,
For I can draw out a good broad sword, And quickly cut the blast."

Then Robin Hood bent a very good bow To shoot, and that he would fain; The stranger be bent a very good bow, To shoot at bold Robin ayain.
"O hold thy hand, hold thy hand," quod Rotin Hood,
"To shoot it would be in vain;
For if we should shoot the one at the othes, The one f us may be slain.
"But let's take our swords and our brood bucklers,
And gang under yor.jer tree."
"As I hope to be savid," the stranger mid,
"One foot I will not flee."
Then Robin lent the stranger a blow 'Most scar'd him out of his wit:
"Thou never felt blow," the stranger he sid,
"Thou shalt be better quit."
The stranger he drew out a good broad sword, And hit Robin on the crown,
That from every haire of bold Robin's had, The blood ran trickling down.
"God a mercy, good fellowl" quod Rubin Hood then,
"And for this that thou hast done,
Tell me, good fellow, what thou art, Tell me where thou doest wone."

The stranger then answered bold Robin Hood,
"Ile tell thee where I did dwell;
In Maxwel town I was bred and born, My name is young Gamwel.
"For killing of my own father's steward, I am forc'd to this English wood,
And for to seek an uncle of mine; Some call him Robin Hood."
"But art thou a cousin of Robin Hood then? The sooner we should have done."

## Language and Grammar

"A I lope to be mrd," the atruager then suid, "I am his own diter's son."

But bodl what kising and courting was there, When these two cousins did greet!
And they weat all that summer's day, And Little John did (not) meet.

But when they met with Little John, He unto them did say,
" 0 mater, pray where have you been, You have tarried so long away?"
"I met with a stranger," quod Robin Hood, "Pull sore he has beaten me."
"Thea Ile have a bout with him," quod Little John,
"And try if he can beat me."
> "Oh no, oh no," quoth Robin Hood then,
> "Little John, it may not be so;
> Por he is my own dear sister's son,
> And cousins I have no mo'.
"But he shall be a bold yroman of mine, My shief man next to thee; And I Robin Hood, and thou Littie John, And Scalock he shall be."

There are a number of expressions in this old poem which will not be clear to a modern reader. Explain to the pupils the nature of the old ballads, as given in the fifti-year work, and tell them the meanings of the following words:
"Gang" is a Scotch word meaning go; "deft" means carefully dreosed, neat; "Ile" is an old spelling for I'U; "Mickle adoe" means much adoo; "froe" is from-the strange order of this line is due to the ballad form. No one can be just sure what "chiven" means, but it is probably an old word for covoard; "buffets sto'" means store of buffets; "quod" is an old form for quoth. "Cousin" formerly meant almost any relative; here it means nephero. "Mo"" is a shortened form of more, as "sto'" is of store, above.

## Eighth Year

Introduction. The eighth-grade work in gremmer is a continuation of the seventh-grade rork in an unusually real and close sense. Tere is little that is new introduced in the ighth year, but all of the subjects studied in the serath year are expanded and systematized.
Tomen. The definition of this part of speech, mesther with many fucts about it, was learned in the eventh grade. There yet remains, howwra, mech systematic information about the nom which the pupils have not yet had given whem. The division into common and proper woms has been touched upon, but it may be emphasized here, together with the further dinison of common nouns into classes. Lists declective nouns, na mes which denote a group, ud of chatract nouns, words which name qualiin, conditions or actions, may be made. Have collerive and abstract nouns pointed out in the folfrizg sentences:

1. A crowd gathered rapidly.

2 Truth crushed to carth will rise again.
3. Prise the Lord for his goodness.

4 I find much pleasure in talking with him.
5. The now of houses looked bright and tratin in the sunlight.
a. My memory is not good.
7. Honesty is the best policy.
\& She had much trouble with her children.
9. Death comes to all.
10. The whole tribe was in arms.
11. A great herd of cattle was frightened by the storm.
12. His weight has increased.
13. One needs a good imagination to call up during the winter a picture of a summer day, with groups of children playing on the lawn, flocks of birds hovering over the trees, and the wonderful summer "feel" in the air.
Let the pupils make a list of all the ways they have studied in which nouns may be used: as subject, as object, as attribute, as part of a prepositional phrase. Add to these the uses as possessive modifier, as indirect object, independently in address, and in apposition. In the following sentences, the italic words illustrate the various uses in the order given above:

1. The bird flies.
2. He threw a stone.
3. John is a grod boy.
4. I found the book on the table.
5. The boy's hat blew off.
6. The teacher sent his mother a note.
7. John, come here this instant!
8. Mr. Smith, an upright, intelligent man, was elected.
After the pupils thoroughly understand the use of each noun in the above sentences, they may
conadderable drill, though if each step is conaneeind as clowely as pomible with the work which $m$ previously been done on the noun, the subjet will be much simplified. When the aubject $\alpha$ inflection is reached, call the attention of the pupils to the fact that certain of the proooum have fuller inflections than have the noum, possessing, indeed, a distinct form for each ear of each number.

|  | Singular | Plurol |
| :--- | :---: | :---: |
| Nominative: | I | we |
| Possessive: | my, mine | our, ourn |
| Objective: | me | us |

An intereating exercise will consist in letting the pupila try to use cach kind of pronoun in a many as possible of the constructions in whixh nouns are used. Take, for example, the thind personal pronoun, he, his, him. It may be used:
(a) As subject: $H e$ crossed the river.
(b) As object: John saw him yesterday.
(c) As attribute: Yes, it was he who did it
(d) As object of preposition: In him I ind my ideal.
(e) As possessive modifier: He matched his hat.
(f) As indirect object: The teacher gave him the prize.
(g) In apposition: The stranger, he in the fur coat, is from Alaska.

This work with the personal pronouns is courparatively easy; that on the relative will be a little more difficult. The following will serte 4 examples of what may be done:
(a) As subject: The man who bought uT house is here.
(b) As object: There is one boy whom reall like.
(c) As object of preposition: There is the woman to whom I gave the message.
(d) As possessive modifier: The boy scion hat was knocked of was very angry.

| Nominatrive Case | Possussive Cas |
| :--- | :--- |
| subject <br> attribute <br> independently in address <br> in apposition with another <br> noun in nominative. | possessive modi <br> in apposition wit <br> noun in po |
| Of course rules for the formation of plurals <br> and possessives, together with a discussion of <br> gender in English, form a part of this work on <br> inflection. |  |

Pronouns. The classes of pronouns, personal, relative, interrogative, adjective, will require

Although all of the pupils may have had drill on the correct forms of pronouns, there is is danger that they will be given too mueh pratioe Let the blanks in the following sentencew be filled in with the proper forms of the proname:

1. The man $\qquad$ you met is my futter.

## Lengego and Grammar

## 2. I dhall give this to the percon to

$\qquad$ it drex 2.ll you and ___ (3nd percon) will go, I the go boa.
1 Sto asked her and _-_(lat person) to anes to the bouse alter achool.
3. - do you suppose I met today?
a. do you think he meant?
7. They demanded to know ........ I was waiting for.
8. Frank, John and ..... (1st person) will do it for yous.
9. Whe that John in the first sent? No, it mo not $\qquad$
10 I do not think that it could have been $\qquad$ (3sd person).
II. He declared that it was not $\square$ proon) who broke the window.
12. The tencher scolded Mary and $\qquad$ (1st parmon) for being late.
13. hne is crying because some bad boys hit Mary and $\qquad$ (3rd person) with snowballs.
14. - that honor me, I will honor.
adjectives. The work on adjectives includes a reriew of their various uses, as studied in the areath grade, and a drill on the comparison dadjectives.
Varb. The subject of verbs will need much time, for conjugation is not a simple subject, and nothing but continued drill will make the pupis familiar with it. The fact that each sumber, euch person, each mode and sometimes ach tense does not have a distinct form makes the memorizing of conjugations easier, but makes pusing more difficult, because there are not timys "tags" to help the pupil recognize each torm. Another source of error which must be dourd avay is the idea that the name of the tase almays tells the time of the action. Thus in the sentence "He leaves town next week," de rebh form is present, but the time is plainly hature; in the sentence "Even though he saw me, be rould not speak to me," the subjunctive wow is past in form, but present or future in maning.
The difference between weak, or regular, rate, which form their past tense and past pritiple by adding $d$ or ed, and strong, or mgoular, rerbs, which make those forms by thanging the vewel of the root, should be mplensized.
hegalar: play, played, playing, played.
Ingeghr:: write, wrote, writing, written.
There are certain verbs which resemble each the in form whose past tenses are likely to
give trouble. There ehould be, therelores, epecial drill on such verbe as

| $\begin{aligned} & \text { sit } \\ & \text { set } \end{aligned}$ | ent | nt |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { lie } \\ & \text { lay } \end{aligned}$ | hy <br> hid | $\underset{\text { hin }}{\text { hin }}$ |
| rise mise impo | rose raised | risen mised |

It is imposaible to give here complete directions for the method of presenting all phases of this subject of the verb; any good textbook, however will, with the aid of the teacher, make the subject clear.

Paraing. The parsing of sentences is a very important part of this year's work. It forms, in fact, in itself a complete review of all that has been learned abo .i sentences and about the parts of speech. Too much emphasis cannot be placed on this subject. The exact form of words in which the parsing is done may vary, but each teacher should have a method which should be rather rigidly adhered to. In parsing a noun, the following facts regarding it should be given:

1. The class to which it belongs.
2. Its number and gender.
3. Its case.
4. The reason for its case-that is, its construction in the sentence.
In parsing a verb or verb phrase the following facts should be given:
5. Class-whether transitive or intransitive, regular or irregular.
6. Principal parts.
7. The voice, mode, tense.
8. The person and number, and the subject with which it agrees.
A personal or relative pronoun is parsed as a noun is parsed, except that there is no distinction between common and proper, while the person and the antecedent, if there is one, must be mentioned.
In parsing an adjective, give:
9. The class to which it belongs.
10. The degree.
11. Its use.

In parsing an adverb, tell:

1. The kind of adverb, whether of time, place, manner, etc.
2. The verb, adjective or adverb which it modifies.
To parse a preposition, state its object and the relation which the phrase bears to some other
word in the scatcace; to parne a conjunction, tell whether it in coordimate or subordinate, what elements of the sentence it connects, and what its apecial significance is.

The complete parsing of a sentenve should proceed about as follows:
"His house, which was very old, burmed quickly."
"His" is a third personal pronoun, singular number, masculine gender and posersive cave. It is a pomemive modifer of "house."
"Howe" is a common noun. It is in the singular number, neuter gender and nominative case. It is the subject of the rentence.
"Which" is a relative pronoun, singular number, neuter gender and nominative case. It is the subject of the clause "which was very old." Its antecedent is "house."
"Was" is an irregular copulative verb. The principal parts are is, wocs, being, been. It is in the indicative mode and the past tense. It is third person, singular number, agreeing with "which," the subject of the clause.
"Very" is an adverb of degree, modifying the adjective "old."
"Old" is a descriptive adjective. It is in the positive degree, and is used attributively, after "was."
"Burned" is a regular, intransitive verb. The principal parts are bum, burned, burning, buerned. It is in the active voice, indicative mode and past tense. It is in the third person and
aingular number, agreeing with "howe," th subject of the sentence.
"Quickly" is an adverb of mannci, moditi'is the verb "burned."
Oompentition Worth. The same cranal directions apply to componition work in this grade as were given for the seventh grode. Tr following list of topics is meant to be sugetire meroly; the teacher can relate the subjects mith the work in other classes:

1. An original story on "The Last Dhy a Johnny's Vacation."
2. A letter from Norway, telling of the midnight sun.
3. Indian Summer.
4. An Original Fable.
5. A Visit to a Haunted House.
a. What I Shall Have in My Garden.
6. My Kitten, or, My Dog.
7. A letter to some author whose storise of poems you have read.
8. A Moonlight Evening.

Pooms. Any or all of the following poems will be good material for study in this grade:

The Gift of Tritemius-Whittier.
Herve Rid-Browning.
To a Mountain Daiyy-Burns.
The Chambered Nautius-Holmes.
The Burial of Sir John Moore-Chates Wolte
O Captain! My Caplain!-Whitman.
The Last Leaj-Holmes.
Abou Ben Adhem-Leigh Hunt.

Mifent
called o
righ
implex
dina live
dons in
lictetum
protucor
Scriptur
dise io 1
jue con
defanition
the term
more
methema
ner tech
B not rea
bedind th
d hadit
inguisheo
nheis is $h$
pesing in
thich by
mereat of be higher mea we l
$i$ is very
dumes,
artions ar
dusificed
refind it,
ys, is lite
Pintry
disions of
Ware lite
line, to ta evior form madian ah mones th


What Intorature In. We use the word "litenture" very commonly, and yet if we were allid on to give a definition of it. many of us night find the question embarrassing. The imples way out of the difficulty would be to say tat licenture means everything that has been set dorn in writing and preserved. That is, English Hereture rould include everything that has been patuead in the English language, from the sripture commentaries of the earliest ecclesinstins to the last feeble volume of verse which has jus come from the press. However, such a definition is too wide really to be accepted, and de tern "literature" has come to mean a much more restricted thing. When a professor of melbematics turns over eagerly the leaves of a ener technical work on differential calculus, he is mot reading literature; when a boy, hidden betind the barn, devours cheap tales of the lives $d$ handits, he is not reading literature. As distinguished from what is merely technical, from that is harnful, or from what is of a merely pesing interest, literature is the body of writings thich by reason of beauty of form or beauty or interest of content make a continued appeal to dehigher emotions or the intellect of men. Even men we have narrowed the definition this much is is very wide, embracing as it does poems, drams, essays, biographies, histories, novels, ontions and countless writings which cannot be desuified under any of those heads. Wherever und it, that which brightens, uplifts, encourses, is literature.
Intry and Prose. The two great obvious cinions of literature are poetry and prose, and reve litely, as we think casually of the quesLine, to take for granted that prose was the evia lorm of literature. Moliere in one of his acdias atons the surprise of an old man who wovas that he has been, all his life, "talking
prowe without knowing it;" but most of us are conscious that we "talk prose," and we see nothing wonderful about it. Prose is so much simpler and more natural than poetry, we think, and surely the carly nations must have had a well-developed prose literature before they ventured to attemp' poetry.

But when we study just a little way into the subject, we find that auch was far from being the case. Centuries and centuries before there was any attempt to produce a prose literature, poetry flourished. And this, when we come to think of it, is natural enough; for just because the daily speech was so commonplace a thing, no effort was made to preserve it. It would have been, moreover, a difficult thing to hand down by word of mouth prose dissertations on any subject. With poetry the case was different. Every nation, it seems, has in its early stages naturally expressed itself in poetry. That does not always mean poetry such as we know so well today; it does not mean rhyme and a rhythmic swing which our ears can recognize as such. But it does, in every case, mean something which had a rhythm to the ears of the people who produced it; something which could be sung or chanted to a musical accompaniment. For invariably, in its earliest stages, poetry belonged with music, and both were the outgrowth of religion. Hymns were sung to the gods, rhythmic accounts of their great deeds were chanted. Gradually, the figurative manner of speech, the musical form without the music, began to be used in writing of other things than religion. Naturally enough-for the step from the gods to the heroes was not a great one with primitive peoples-the deeds of the men of might were celebrated. Thus narrative poetry, the ambitious epic and the simple ballad were among the

Theoe peeres, er coage, wiee handed down by woed of mouth from gramation to guemation, conmeximen through cunkurive, belore thay wure at dowe in writhy. Thus, when we suod an old ballad, avch as the "Robin Hood" mallad which if given on page 858 of this volume, we may foel that we ave reading what our ancentors in Great Sritain, hundrede of youns ago, heand mpeated or chanted to the music of the harp, as they mit about their huge hearth fires.
Long before the inveation of the priating proes
is the athocoth coutary prove liventers in bogun to serume an importance; bur from the time ca tes traportance licreased imsumanely. If a sman wibhad to ruach masy peoph, bo owil do ta more casilly and more murely by mitin what ho wibted to may and hoving is prined ith by any otber mechod. Religious argama, political theoria, discumions on anciena Mer-ture-all avch subjects were deak wilb; bu it wes some time betore a really artindie prow literature bogan to grow up.

## ENGLISH LITERATURE



Tranclations.


$=$




b
2. $G$
4. Elaz
a
b.
2. Pro
a

## Itcoratere

If it Iacd Itcoraters. It is not neeve--7 E mphanas here the limportant part which mil monure plays in tho building of character Id incelloct. But it is not enough that one all mad; one should read syitematically, - It a purpose. This does not mean that all theros of the eiphteenth century should be -Whlore those of the nineteenth are touched, - lina cmays ahould be read one yeur and tham the nect. But there is an immense gain a commeting reading in tome way with what to peo before. To follow, for inatance, the porith of the Eaglish novel through the two anuine and a hall of its exintence will give one - mon mel knowiedge of that most popular of Uh hros of literature than years of scattered mondrading cun do.
Owheos. The outlines on English and Averimas literature which follow are inteaded ax edy to give a general, comprehensive view ding Finernture of those two countries, but to mhe pomible some such aystematic plans of maliz In comnection with the articles on the miome outlines and on the various forms of thenture given in these volumes, these outlines ay be wed in many ways to suggest schemes of moding:

## Fagich IIterature

## I. Elily Limarituri

1. Before Chaucer
a. Poetry

Beowulf
Caedmon's Paraphrase
Vision of Piers Plowman
b. Prose

The Vencrable Bedo
King Alfred
John Wyclif
2. Geoffrey Chaucer

Legend of Good Women
II. Eusaberman

1. Poels and Their Principal Works
2. Non-Dramatio

Edmund Speneer. 1552-1509
Shephcardes Calendar
Faery Queen
b. Dramatic

William Shakespeare. 1564-1616
The Merchant of Venice
Hamlet
Macbeth
Ben Jonson. 157,-163 Every Man in H. Humor
Christopher Marlowe. 1564-1593
Tamburls...
Proce Writers and Their Principal
Worts
a. Bistorical

Sir Walter Raleigh. :552-1618
History of the Wor

## Iteratare

b. Theologiteal

Riehard Hooker. 1803-1000
C. Philonophieal

Eranolie Baoon
Novum Organum (Now Inatru. ment)
III. Tui Aas or Minton

1. Poote and Thelr Princlpal Worta
a John milton. 160s-1674
Paradios Loot
L'Allegro
II Penseromo
b. Abraham Cowloy. 1018-1067 Davideis
2. Proen Wirlicers and Their Pricelpal
a. Izant Walton. 1503-1083 The Complear Angler
b. Joremy Taylor. 10131007

Holy Living and Holy Dyins
o. Dr. Richard Baxter. 1615-1م91

Tho Baints' Everiasting Reat
Call to the Unconverted
d. John Milton

Areopagitlea
Tenure of Kinge and Magiotraten
IV. The Age or Remoration

1. Poeta and Their Prinelpal Works
a. John Dryden. 1631-1700 Alexander's Feast Roligio Laici
Hind and Panther
2. Prose Writern and Their Priselpal

Works
s. Johr Bunyan. 1628-1088

Piigrim: Prosiress
Life and Death of Mr. Badman
b. John Loeko. 1632-1704

Essay Concerning Human Understanding
0. Sir Isaac Newton. 1642-1727 The Principia
Optiem
V. Augugtan Age

1. Puets and Thnir Principal Works
a. Alcxander 1'ppe. $1688-1744$

Essay on Man
Iliad
r)unciad
b. Edward Younge. 1681-1765

Night Thoughts
Revenge
2. Prose Writers and Their Irrincipal
b. Joseph Addison. 1672-1719

Sir Ruger de Coverley Payers
Essays
b. Richard Steelc. 1672-1729

Essays
c. Jonathan Swift. 1607-1745

Gulliver's Trayels
Journal to Stella
d. Dantel Defoe. 1661-1731

Robinson Crusoe
Journal of the Plague Year
VI. The Age or Johnson

1. Poets and Their Prinelpal Works

Yematers
846
a. Thoman Gray. 1716-1771

Ficer writtia in a Country Caurehyard
The Bard
b. Oliver Goldmith. 1728-1774

The Viour of Wakefield
The Travelikp
She Stoope to Oonquer The Desorted Villait
c. William Cowper. 1731-1800 The Tank The Diverting Elistory of John Gulpin
d. Robert Burne. $1750-1796$ Cotter'a Saturday Night Tam O'Shanter
2. Prowe Writern and Their Principal Workn
a. Samuel Richardson. 1689-1761 Pamels
b. Heary Fielding. 1707-1754 Tom Jones
a. Bumual Johnsoa. 1700-1784 Ramelas
d. David Hume. 1711-1776 Hintory of England Emay
a. Edward Gibbon. 1787-1794 Docline and Fall of the Roman Empito
\&. Edmund Burke. 1729-1797 On Conciliation with America
VII. Aam or Scomp

1. Poets and Their Prinelpal Works
a. Walter Scott. 1771-1832 The Lady of the Lake Marion
Lay of the Last Minetrel
b. Georse Gordon Byron. 1788-1824

Childe Harold'A Pilgrimage
Don Juan
The Ginour
0. John Keats. 1706-1821

Endymion
Eve of St. Agnen
Hyperion Iamia
d. The Iake School

William Wordaworth. 1770-1850
Ode on Immortality
Tinnes on Tintern Abbey Tise Excursion
We Are Seven
Samuel Taylor Coleridge. 17721834
The Anclent Mariner
Kubla Khan
Christabel
Robert Southey. 1774-1743 Jonn of Are Roderick, The Last of the Goth The Curse of Kehama
Percy Bysuhe Shelley. 1782-1822 Queen Mab
Ode to the Weat Wind Ode to a Skylark
2. Proee Writers and Thoir Princlpal Works
a. Noveliot

## Iteorature

Waltar Soott. 1771-1832 Iranhoe
Kenilworth
gueatin Durward
Guy Mannering
b. Emaint

Charlee Lamb. 1775-1834 Tales from Shakespeare Eeony: of Elia
VIII. Victontar AaI

1. Poote and Their Princlpal Worka
a. Alfred Tennywon. 1809-1802

The Princeas
In Memoriam
Idylla of the King Maud
b. Elinabeth Barrett Browning. 1806

Bonnets from the Portuguew
Aurora Lelgh
Prometheus Bound
a. Robert Browning. 1812-1880

My Last Duchess
Andres del Barto
The Fing and the Book
Rabbl Ben Esra
d. Thomas Babington Macaulay. 1800 1859
Inys of Anclent Rome
The Battle of Iry
e. Jean Ingelow. 1820-1897

Divided
2. Prove Writers and Their Principel Works
a. Historical

Thomas Babington Marsulay History of England
Henry Hallam. 1777-1850 Constitutional History England
Jamee Anthony Froude. 1818 . 1804
History of England
Thomas Carlyle: A Hirtory
b. Essayisto

Thomas DeQuincey. 1785-1859 Confessions of An Opium Eatar Joan of Arc
The English Mail Coach
Thomas Carlyle. 1795-1881
gartor Resartus
French Revolution
John Ruakin. 1810-1800
Seven Lamps of Architecture
Stones of Venice
Sesame and Lilies
c. Theological

John H. Newman. 1801-1890 Apologia pro Vita sua Lead Kindly Light
C. H. Spurgeon. 1834-1892 The Eaint and His Saviour Speeches at Home and Abroed
d. Bcientific

Sir William Hamilton. 1788-18sp Discussions on Fhitosophy and Literature
Sir Charles Lyell. 1797-1875 Elemente of Geology

## Kiteraters

## Antiquity of Man

Charlon Darwin. 1800-1822
Origin of Epecies Deweat of Man
Thomes Huriey. 1825-1895 Man's Plece in Nature
Elements of Comparative Anatomy
Eerbert Spencer. 1820-1902
Firut Priadiplem
a. Novelinte

Charion Dlokens. 1812-1870
Pickwick Papers
David Copperfield
Nicholas Nickleby
Willinm Makepeace Thackerny. 1811-1863
Heary Erenond
The Newromed
Vanity Fair
Ceorbe Eliot. 1810-1880
Bilas Marnor
Adam Bedo
Felir Bolt
D. Monymar Praiod
4. Poetr and Their Prinofpal Work
2. Dante Gabriol Rometti. 1828-1882

The House of Life
The Blomed Damosel
b. Matthow Arnold. 1822-1888

Sohrab and Ruetum
Dover Bemch
a. Algernom Charles Awinburne. 18371800
A Song of Italy
Pooms and Baliads
2. Prow Writers and Thelr Principal
2. Charies Kingaloy. 1819-1875 Hypatio
Westward Ho
b. Robert Louis Stevenson. 1850-1894

Dr. Jekyll and Mr. Myde
Treasure Island
a. Rudyard Kipling. 1865-

The Jungle Book
Kim

## Amordenn Ifterntame

L. Olontal Pemod

1. Poets and Their Principal Works
a Anne Dudley Bradotreet. 1612-1672
The Tenth Muse
2 Proce Writers and Their Princlpal
a. Thomas Hooker. 1586-1647

Fundamental Onders-Finst Wric. ten Constitution
b. Cotton Mather. 1667-1728

Witcheraft
Wonders of the Invisible World
Magnalia
a. Jonathan Edrande. 1703-1758

Freedom of the Hin
d. Benjamin Franklin. 1798-1700

Poor Richard's Almanac
Esayy:
Autoblography

## Ittarature

II. Revoluinonaliz Pamod

1. Poets and Thair Prineipal Woto
a. Philip Fremenu. 17.2-1832 The British Prison Shlp Politioal Poem
b. John Trumbull. 1750-1831 McFingal
C. Frandis 8oott Key. 1780-1843
2. Prowe Writare and Banner
a Aloritars and Thelr Worlon The Federalist 1757 -1804
b. Thomes Jeffermon. 1743-1820 Rights of British America Deolaratlon of Independenco
O. Jamen Madison. 1751-1836

The Fedoralist
a. Charlea B. Brown 1771-1810
III. Namonab Priad

1. Poets and Their Prinoipal Worke a. Willinm Cullen Bryant. 1794-1878 Thanatopair
MY Country's Call
The Ases
Flood of Yeare
Tranalation of the Ilind and
b. Elemr

Odywey Werth 1807-1882
Evangeline
Biawntha
The Opanish Student
The Courtahtp of Miles Standish
a. John Greenleaf Whittier. 1807. 1892
The Barefoot Boy
Enowbound
Among the Bill.
d. Edgar Allen Poe. 1800-1849

Annabel Lee
The Raven
-. James Russell Lowell. 1810-1801
The Commemoration Ode
The Vision of Sir Launfal
The Cathedral
4. Oliver Wendell Holmes

Old Ironsides
The Poet at the Breakfat Table
The Chambered Nautilus
The Last Leaf
Wonderful One-Hoes Shay
8. James Whitcomb Riley. 1853-

The Old Swimmin' Hole
Afterwhiles
Rhymee of Childhood
h. Eugene Field. 1850-1895

Littlo Boy Blue
Jes' 'Tore Caristana
Beein' Thing
2. Prose Writers and Their Mrincipal

Esea ytetis
A. Ralph Waldo Emerson. 1803-1882 Representative Men
The Conduct of Life
b. Fenry David Thoreau. 1817-1800

Walden
The Maine Wcode

Iltorature
(c) William E. Channing. 1700-1842 Sermons and Reviewa

## Crirtcs

(a) James Russell Lowell. 1819-1891
(b) Edmund Clerence Stedman. 1833-1908

## Hotortinss

(a) George Bancroft. 1800-1891

The United States of North America History of the Revolution in North America
(b) Richard Hildreth. 1807-1891

The White Slave
History of the United States
(c) William H. Prescott. 1796-1859 Conquest of Mexico Conquest of Peru
(d) John L. Motley. 18141877 The Rise of the Dutch Republic The United Netherlands
(e) Francis Parkman. 1823-1893 California and the Oregon Trail The Jesuits in North America Montcalm and Wolfe
John Fiske. 1842-1901 Outlines of Cosmue Philosophy The American Revolution
(g) Theodore Roosevelt. 1858American Political Ideals

## Novelists

(a) Nathaniel Hawthorne. 1804-1869 The Scarlet Letter The Marble Faun The House of the Seven Gables
(b) James Fenimore Ccoper. 1789-1851 The Spy The Pilot The Last of the Mohicans
(c) Harriet Beecher Stowe. 1811-1896 Uncle Tom's Cabin
(d) William Dean Howells. 1837A Modern Instance Venetian Life A Foregone Conclusion
(e) Mary E. Wilkins Freeman. 1862Jerome, a Poor Man The Portion of Labor
(f) Henry James. 1834Daisy Miller A Passionate Pilgrim

## Humorists

(a) Joel Chandler Harris. 1848-1908
(b) Samuel L. Clemans. 1835-1910

Miscellaneous Waters
(a) Washington Irving. 1783-1859
(b) Bayard Taylor. 1825-1876

## IItorature

(c) J. G. Holland. 1819-1881
(d) George Ticknor. 1791-1871
(e) Charles Dudley Warner. 1829-1900
(I) Slas Weir Mitchell. 1829-
(g) Thomas Bailey Aldrich. 1836-1907

## Ganadian IIterature.

The literature of Canada may te very properly separated into the following divisions: period of exploration and discovery; period of rettlment; pre-confederation period; period since confederation.
The period of discovery and exploration begins with the earliest accounts of those who ath tempted to plant on this continent a new civiliztion. The very beginnings of this literature lie far back in the old French annals. The chid of these works reach down to the very bedrock of Canadian history. The chronicles of Cartie's voyages; Champlain's narratives; the histories of Marc L'Escarbot and G. Sogard; the writings of Father Hennepin; the annals of Father $k$ Clerq, and the history by Pierre de Charlevois are the most important. These furnish the basis of the early literature and are the most important source of history. It is as true of Canada as of any other country, that the development of the institutional life of the country colors the litersture of any particular period.
Francis Parkman was one of the early writen on the period of settlement, and it must be addel, one of the most interesting. Though not a Canadian, Parkman is the acknowledged authority for the colonial period of North Amerian history. He was one of the first historims to study the Indians and their point of viem. His books are remarkable for their impartinlity, accuracy and clearness.
Of the later authors who have written of the early period of Canadian history some mention should be made here. Douglas's Old Prance in the New World offers a good survey of Canada in the seventeenth century. The romantic story of Quebec is admirably told in Arthur G. Doughty's Cradle of New France. Chastes William Colby's Canadian Types of the Old Regime treats interesting aspects of French colonization. Colonel William Wood's Fight for Canada is a populai and thoroughly ecounte account of the cvonfict between England and France. Sir Alexander Mackenzie's Voygaes, published in 1802, La France's Exploration of is Country Adjoining Hulson Bay (1744), Hearne's Journeys (1795), Henry's Narrative (1809), and Ross' Red River Settlement (1856), diseuss in a

## Ilterature

moti interseting manner the lives and labors of the priod of settlement.
The ax of the settler and the pen of the pioneer dike murk the progress of the settlement of this country. One of the earliest antive productions ma the Bistory of Canada by Francois Xavier. It holds a very important place in the literature d the country. Biband's Hitory of Canada Ondertion Prench Regime is a wort of much value. With the War of 1812 came a list of writers, mary of whom are deserving of notice. Auchinhat wrote the Hittory of the War of 1818 (1855), ad Bouchette gave us British Dominions in Nooth America (1831). These writings, numeran and varied, belong directly to the period between that of the settlement and the confedention.
The first half of the nineteenth century is further marked by a flood of political literature, most of which is now of no value except to the bitarian. The writings of such men as Wilfim Lyon Mackenzie on the one side, and of Bibop Strachan and Sir John Beverly Robinman an the other, must be excepted from a genend statement. Though thoroughly partisan, their mritings are brilliant.
The fur trade has been so extensive and so vithly connected with the development of the combtry that we may reasonably expect it to vied an important influence on Canadian Hterature. This influence has persisted to the preent day, especially in fiction and poetry. Eppecinlly noteworthy are the novels of Sir Giblert Parker and the poems of William Henry Drummond. Agnes C. Laut's Conquest of the Grad Northooest and Dr. George Bryce's Remetable Hitory of the Hudson's Bay Company ve valuable books of reference which are also $d$ interest to the general reader.
With the coming of the Confederation came a distinct development of literary activity in the porincess. Some have characterized it as the aration of a new literature. The speeches which had for their purpose the arousing of a pritiof unity come down to us as a distinct type $d$ litrature. For example, read those of the Hoon Joseph Howe and the Hon. D'Arcy McGee. Puappe the most important historian of this paiod mis J. Charles Denc. In his Last Forty Prer (1841-1881) and his Rebellion of 1857 he poduced s series of volumes invaluable to the tradent of this period. Other important histria are those by J. M. MacMullen, Dr. W. I. Writhow and Dr. George Bryce, each of tham mote eutertainingly.

After the confederation the great Northwest came into prominence and there grew up a mass of descriptive and historical literature. The North-ween Passage by Land by Lord Milton and Mr. Cheodle, Great Lons Land by Butler, Highoay from Ocean to Ocoan by Cumberland, Columbia and Canada by Rae, Red River Rebellion by Huyshe, The Canadian Dominion by Marshall, A Sketch of the North-oest of America by Archbishop Tache, From Ocean to Ocean by Rev. George Monro Grant, are a few of the many which are beautifully descriptive of the country.
The Confederation period is rife with a new spirit, and the gradual growth of the literature of this period is worthy of careful study. A Canadian national spirit first asserts itself, and perhaps for the first time a truly national literas. ture crystalizes. Heroic ar' 'ievement, apprecistion of sacrifice, scenery and just pride in home and native land, inspire the author and poet. Not alone do we see the kind of literature which expresses itself in history and adventure and travel, but the literature as expressed in the educational, scientific and political journals of the day deserves attention. The various historical societies are producing a literature distinetly Canadian, yet of such importance that we may say it is sure of universal acknowledgmes
Biob. hy has been devoted mainly to political subjects, especially the statesmen of the period immediately preceding and following Confederation. Among the best of these are Joseph Pope's Memoirs of Sir John Macdonald, Sir John Bourinot's Lord Elgin, D. C. Scott's John Graves Simcoe, Charles Lindsey's William Lyon Mackenzic and A. D. de Celles' Papineau and Cartier.

In fiction Canada was for a long time far behind the rest of the English-speeking world. She had authoritative historians and famous poets long before any novelists were known outside her borders. Towards the close of the nineteenth century Canadian novelists rapidly came to the front and many of them now rant among the best of English writers. Sir Gilbert Parker easily siands first among contemporary Canadian novelists. Among others who have a secure place are the following: Joanna E. Wood, Sara Jeanette Duncan (Mrs. Everand Cotes), Grant Allen, Robert Barr, P. J. O. Chauveau, James de Mille, Margaret Marshall Saunders, William Kirby, Charles G. D. Roberts and Ralph Connor (Rev. Charles Gordon).

## Iterature

In pootry Canada denarves a kijh plece. Louis Honort Frechette, who rectived the Iaureated approval of the French Academy, and who has been termed the chief of the FrenchCanadian authores, is, perhapes the greatent witer produced in this country. Charles Hiengyige was the author of Saul, probebly the moot remartable poem ever written by a Canadian. William Kirby, author of The Colden Doy, a fascinating romance of exrly Quebec, also wrote excellent verse. Charles Sangster, Ales. ander Molachian, John Roado and Isabella Valancey Crawford hold high rank amone the carlier poets of English-apenking Canada.
Othar poets of note are J. J. Proctor, Isidore G. Ascher, Helen M. Johnson, William Murdoch, Evan McCall, Alexander McLaughlin, Jenn Blewett, S. Prances Harrison, Williem D. Iighthall, Duncar Campbell Scott, Charles G. D. Roberth, Harriet Annio Willins, Chartes Mair, Blise Carman, Archibald Lampman, William Heary Drummond and Robert W. Service.

No account of Canadian literature would be complete without reference to two remarkable men, Thomas Chandles Haliburton and Goldwin

Smith. Each in his feld won a place secood to none: Haliburtom as a humorist, Smith os publicist. Filiburton's stories, under the pen name of Sam Slick, won for him the place of Canada's greatest humorist. Had he known how to conatruct a plot he would certainly rank as a great novelist. But ho knew human nature in all its phaces, and the characters bo created live and talk naturally. To read his books merely for their humor is to lose much of their value. Goldwin Smith, on the other hand, as toacher, author and lecturer guined world-wide fame for his influence for progrem and sanity, eapecienly in political affim Though his views were not always those of the majority, his high standards of thought and action won for him a unique pocition in the affections of Canedians.
Canadian literature has won a distinct place as one of the productions of the Englishspeaking rece. For a more extended view of the subject read Lareau's History of is Literature of Canada, Dewart's Selections from Canadian Literature and G. Mercer Admms' Oudine Hidory of Canedian Lilerature.

## Drams

## 1. Forasa

1. Tragedy.
2. Subject matter serious or classic.
b. Language dignified and graceful.
c. Motive of presentation-purification of pasions.
3. Comedy.
4. Less serious than trigedy.
b. Treatment somewhat light throughout.
c. Originally used as means of ridicule.
5. Opers.
6. General-Dramatic composition set to music and sung by artists, eariched by costumes, scenery, music, etc.
b. Grund-Usually serious or classical themes. Generally heavy and impresire treatment, although it is sometimes of a lighter vein.
c. Comic-Light, fanciful or humorous. Treatment light and graceful. Oftentimes means of ridicule.
7. Pestoral.
8. Aimed at a fanciful portrayal of Arcadian and mythological scenes.
b. Treatment quiet and in keeping with the subjects.
9. Burlesque.
a. Depicts dignified and serious subjects of life in a ludicrous manner, or vice rese
b. Means of satirical criticism.
c. Modern-Misture of travesty, vaudeville and ballet.
a. Farce.
10. More extravagant and ludicrous than the comedy. Any abourdity or impeobability is allowable.
b. Motivo-To escite laughter in any event.
11. Mysteries.

## Mteratare

a. Rude drumas presented at solemn feativalo; religious in character.
b. Objoct-To strengthen Cariatian church.
c. Extended from twelth to sirteenth centurieo. Passion play, Oberamusergen, it 8. Moralities.
a. Allegorical plays. Moral diccourrees praising virtue and condemning viee.
II. Divilomiant.

1. Old Testament.
a. Job.
b. Songs of Solomon.
2. Indin.
a. Drama much inferior to Greek or modern Europena.
3. China
a. Dramatic writings extensive, but unknown to other peopies.
4. Greece.
a. European drama originated in Greece, foremost nation in literature in early timece.
b. Drames at first were celebrations of festivals of Bncchus, god of wine.
c. Aerchylus, first writer of Greek tragedy, wrought many changes in chorus, number
5. Rome.
a. Drama borrowed from Greek. In a sense imitators.
a. Italy.
b. Became powerful and influenced modern literature more forcibly than did Greece.
a. Foundation of the drama as produced by Shakespeare came directly from Italian.
b. At first chamic models were followed.
c. Great periods were during fourteenth, fifteenth and sixteenth centurics. Noted pastoral dramas were written.
d. Interest waned in serenteenth century.
6. France.
a. 1684, early school of dramatic writings flourished.
b. Corneille, Recine and Moliere, the distinguished dramatists.
c. 1820, a new school of art was formed, called the romantic, in contrast to the former classical school. Hugo largely promoted the former.
\& Spain.
a. The drama flourished at the same time as the English and rose to its height at
7. England.
a. Last half of the sixteenth century marked the hright of the most brilliant period
b. of the English drama.
c. Thersensonson, Shakespeare, Marlowe.
d. With Charles shut up for thirteen years by Puritans.
8. German
a. At first merely translations from the French.
b. Original works appeared leter on.
c. Schiller and Goethe greatest of modern dramatists.

## Iiterature

## Envention.

1. Beet education grammar achool offered.

## Mirnhar.

1. Nineteen years of age. In 1502 cstablished in London, engaged in literary work, and abo took some of the leading parts in plays.

## Cmanctrar

1. Ben Jonson said: "I loved the man and do honor to his memory, on this side idolatry, w much as any. He was indeed honest and of an open nature; had an excellent phameses, brave notions and gentle expreasions."

## Whitivas.

Int Period.
a. Experimenting in characterization; looseness in construction. Feeling after his powers
and testing them. and testing them.
b. Writings-Love's Labor Lost, The Comedy of Errors, A Midsummer Night's Dream, Richard III.
${ }_{2} 1$ Period.
a. With increased assurance follow his brilliant portrayal of English history and comedy of life in general, and one great romantic tragedy, King Richard II.
b Writings-Parts I and II of Henry IV, King John, Romeo and Juliet, The Merchant of Venice, Much Ado About Nothing, As You Like It, etc., etc.
$3 d$ Period.
a. Master of all the resources of his art.
b. Personal experiences portrayed in writings. Comedy becomes bitter; tragedies black with human experiences.
c. Writings-Mensure for Mensure, Julius Cessar, Hamlet, King Lear, etc., etc.

4th Period.
a. Attains glad serenity of mind, enabling him to write his last romantic plays.
b. Writings-Chiefly poetry.

Deatu.

1. Dies in 1616. Buried in Stratford church; a monument with bust and epitaph was soon afterward set up.

## Questions

What is the nature of Haliburton's humor?
To what period do the writings of Champlain and Father Hennepin belong?
For what characteristics are the histories of Francis Parkman remarkable ?
What can you say of the influence of the fur: trade on Canadian literature?
Who is the leading contemporary Canadian novelist? Name some of his best-known books.
In what branches of literature did Goldwin Smith excel?
What kind of books has Ralph Connor (Rev. Charles W. Gordon) written ?
What has been the character of most Canadian biography?
What was the hermit period of Thoreau's life?
When was the first edition of Weboter's dictionary published?
In what philanthropic work did Walt Whitman ruin his health?
What distinct style of literature did Addison found?

Who described Francis Bacon as the "riseat, brightest, meanest of mankind"?
Which is the longest and most polished of Ms. Browning's works?
To what romantic circumstances was the publication of Burns' first book of poems due?
For what calling was Carlyle trained? What educational endowment did he make!
Which of Dickens' works embodied his eppriences in America?
Which are Henry Drummond's three bestknown works ?

What was the novel that established George Eliot's high rank ?
In the verse of what language is Thoras Gry almost unsurpassed ?
What is the elegy in which Shelley has hooored his friend Keats?

In what novel do Kingsley's opinions on sciel and economic questions appear?
At what exceptionally early age was Pope recognized as an able poet?

IHeratare
Which of Charles Rende's novels was directed anind the English prison system ?
Whas devire of Walter Scott eclipeed even his Elenry ambition?
Thet class of people did Swift try to better and to what end did he bequeath his fortune?
When did Tennyson become poet laureate and *hat was the first great poem written after the men?
What career did Thackeray first plan for himell and why did he give it up?
To what suhject is the literary talent of Israel Zungmill devoted?
What work of Hans Christian Andersen was mittea by him in English ?
Whet wis the period of Goethe's and Schiller's intimute association?
What constitutes the strength and what the defectire element in Jean Paul Richter's works?
What was the tragic death of Fisop?
How does Aristophanes rank in Grecian Henture?
How did Herodotus prepare himself for his great work? What well-known appellation has been given him?
In which of his writings is Horace at his best ?
What mas Livy's great purpose in his works?
What peculiar circumstance directed Virgil to-
mod s literary career?
Whace translation of the Aneid has become mod popular?
For what reason has the history of Dante's We beoome half mythical?
Hes Dumas a rightful claim to the 1,200 whmoses which bear his name?
What is the characteristic of Jules Verne's nitinge which makes them appeal to readers dill agen?
For what is Emile Zola noted?
What positions did Bjornson and Ibsen hold magther during their lives?
What is literature? How old is it?
What is the first account we have of a book? On what was it written ?
How old is Sanskrit Literature? Chinese? What is Poetry? Prose? What is a Lyric? In Epic! A Sonnet? An Ode?
dime the divisions into which prose is sub-
dridod.
What is the difference between an eassay and
aration?
Theand Chaucer live? What is he popularly aled becuuse of his relation to English Poetry? What, where, and by whom was printing in? When was the first book printed?

## Literatere

Where and when was Shakeopeare born ? When did he die? Where is he buried? How does Shakespeare rank as a dramatist? Name five of his most noted productions. Name five contemporary writers of Shakespeare.

Who wrote "Paradise Loot"?
For what was Spenser noted?
When did Burns live? Name some of his soted poems.
Is Walter Scott more famous for his poems than for his novels? What caused Scott to give up poetry for prose? What are his most famoun novels? Name three.
When did Tennyson live? What is the character of his poems !
What famous American orator lived during the Revolutionary War?
For what was Franklin chiefly noted in the field of literature ?
What poem established the reputation of Charles Heavysege?
Who is the greatest French-Canadian poet?
For what qualities are the poems of Robert W.
Service remarkable? William H. Drummond?
How does Bliss Carman rank as a poet? Why is Charles G. D. Roberts famous?
Name three prose ariters and three poets of the United States living today.
Why is the study of literature so important? Give three reasons for your answer.
Why was Whittier called the Quaker poet?
For what production is Oliver Wendell Holmes best remembered? Lowell? Hawthorne?
Cooper?
What is known as the Golden Age of French literature?

What was the Spectator, and when did it appear?
Why is King Alfred known as the Father of English Prose?
Who were the Minnesingers? With what subjects did their compositions deal?
What is a masque? During what age and in what country were masques especially popular?
To the influence of what nation is to be traced much of the correctness and elegance of the literature produced during the age of Queen
Anne?

What is the theme with which the Iliad deals? How does this epic rank in ancient poetry? What is the greatest of the German national epics? Tell the story of this poem.
How does William Dean Howells rank among American novelists of today?

## Selections for Memorizing

Wo dive here axy solections trom 0 many

 crify, truch, wiedom and kindred subjects, supplemmated with the lives of their guthoren, as plom in The Nex Puctrait Revisumes Limenar, choold prove of groat value.
mittad to mamory meh woek and a atody mote of the life of th author, the wedent would ham a krowidede, at the clowe of a yeur, of comed the choleent myinge of the agse. Aside fivom this deliffrtenl sccomplishment, the sequaintano formed with the gromeet wittere would prow is daily source of plocesure.

If but one of these quotations wase cons-
Talk not to me of the atok wheace you grivi,
But abow me your atock by what you enin do.
 dinnoed minution. No roward io difered, for they are gone forown.
-Honeco Mama
Broethen there a man with soul co dead, Who nover to himeot hath cild,
"This to my own my, mativo hand?"
Whom heant hath ne'er within him burned,
At home his footitepe he hath turned
From wasdering on a formign atrand?
-Sir Waller Scoth
Do not look for the flawe ne you go through Mife,
And oven when you find them,
It's wite and kind to be nomowhat blind, And look for the virtue behind them.
-Wilcos.
Lacinem grow on peoplo; it begins is cobwobe and ende in fron chains. The more buinew s man has to do, the more bo in able to socomplish, for he learns to coonomise his time.

Do the duty whob liee neureut thee, which thou lonoweit to be a duty. Thy wecond dak alrendy have become clearer.

I would not enter on my liet of friende
(Though graced with polished manners and fine cease,
Yet wanting penaibility) the man
Who needlemly rets foot upon a worm. -Cowper.
If a task is once begun,
Naver leave it till it's done;
Bo the labor great or manall, Do it well, or not at all.
-Phosbe Cary.
Happy hearty and happy faces,
Hippy play in criey placoe-
That was how, in ancient nges,
Children grew to linga and magee.
-Robert Louis Stevenom.
Diving and finding no pearlo in the eee,
-Alice Cary.
Blame not the oceun: the fault is in theo.
wo wow a thouint add map an cot:
 Proph midom tmprove when they have no other "A Fool of Nature" In good aye.
Ah, fulthful to IItto Boy Bhe thoy atand, Eech to the came old plece
Awaluing the tovah of a littlo hasd,
The amilo of a littlo feos.
And they woonder, se watiing thow lone youn through,
In the duat of that littlo chair,
What has beoome of our Littie Bor Blue
tivoe bo tifrod them and putt Bhen there.
"Little Boy Blue," Eugone Piedd.
Then here's to our boyhood, to old and ite gray!
The otaris of It winter, the dowe of lite May
And when we have done with our lifo lacting conc,
Dear Father, take care of Thy children-Tho Boyn.
-"The Eoys," Oliwer Wondeal Bolmac.
Do you count your birthdayy by the your,
And thank the foode with gladnown and good cheer,
O'erlook the failinga of your fricode, and know
Geatler and better as your mads run low?

> Trandation for Bramth and Content.
> Hormoo" by Conington.

With mellose toward none, whith oharity for all; with firmnew in the right, an Ood givee ve to dall have borne the battle and wo are lo-to bind up the nation's woundt; to care for him wividh a juat and hating peeco among widow and hin orphans; to do all which may achiove - From second In all nations.

He who, from sone to sone, Guides through the boundlems uly thy certain light,
In the long way that I murt treed alone, Will lead my atope aright.
-"Ode to a Waterfowl," William Cullen Bryane.
Errora, like strawe upon the surface fow;
He who would search for pearise munt dive below.
In battle or busineen, whatover the game,
In mar or in love, it's ever the same;
In the etruggle for power, or scramble for pelf,
Lot this be your motto, "Rely on yourself."
Oux greateet glory consista not in never falling, but in in Sass.
Iy mon, observe the pootage etampl Ito rintil it geta there. Jooh Billinge.
Oh lose of sight, of thee I mot chief of all,
Blind among enemies, 0 worse than chain
Dungeon, or beggary, or worse than chains, Light, the prime wry or docrepit 9801
And all her vatious oblects of, to me's extinct,
Annuiled, which might in of delight
Inferior to the vilest now become grief have eased;
Of man or worm the now become
They creep, yet the vilest here excel me.
To daily fraud, conti, dark in light, exposed
To daily fraud, contempt, abuse and wrong,

Whitha doors of wheout, still eo a fool Is powe of ofthest never ta my owe
Boaro hall I man to llive, dend more thea hal. -Minm

 1 burat with a doaite of bleoding for heri and the momeat I thall be ablo to wervo her at ney the of in any part of the world, will be the happlate ane of my life.-Lafayctio.

I aral by lawne and erany plotes,
I allide by hame covorn;
1 move the awot forget-mo-note
That grow for hoppy lovers.
1 chacter, ohatter an 1 dow
To jola the brtanming river;
For man may come and man may so,
But I so on forovor.
It is mearly ao axdom, that people will sot be better than tho books they read.
-Biariop Pom.
We grow like what we think $\alpha ;$ no let us think $\alpha$ the good, the true, and the benutliul.
-Philitipe Broota
Ponder well, and know the right, Onward, theon, with all thy mightl Hanto noti years can noorer atone For one reozlem section dose.
-Coven.
1 hope I thall alwaye poseven firmneee and virtus enough to meintain what I consider the nath eaviable of all fillee, the charseter $\alpha$ an "Honeat Man."
-George Wacingion
My idea in thie: ovar onward. If God had intended that man should so beckward, He mould have celven him an eye in the beok of his head.
-Vidior IImen.
Boys lying kitoe haul in their white-winged birds;
You can't do that way whem you're flying words.
"Carsulul with fire," tin good advice, we know;
"Careful with words," If ten timee doubly 80.
Thoushta unexpremed may zometimes fall back dead;
But ood himeel can't kill them when they'ro said.
The next gale that sweepa from the north will bring to our ear the clash of resounding ame Our brethren are alrendy in the fioldi Why are we here idle? What is it that gentlemen rid!? Whe it would they have? Is life so dear or posce so aweet an to be purchased at the price d chime and alavery? Forbid it, Almighty God! I trow not what course othern may take; but af for me, give me liberty or give me death.

- Patrict Heny.

So, Willy, let you and mo be wipers
Of soores out with all men-espocillly Pipers;
And whether they pipe us free from rate or from mice,
II we've promised them aught, let ua keep our promise.

- "The Pied Piper of Hamelin," Robert Browning.

Which is the wind that bringe the heat?
The South wind, Katy; and corn will grow
And peachees rodden for you to eat,
When the South begins to blow.
-"What the Wind Brings," Edmund Clarence Sindrace.
He prayeth best who loveth beat
AII thinge both great and small;
For the dear God who loveth uns
He made and loveth ali.

## Itcorature


The dart unfacthoped once of ocecin bear
Null many a fowor in borm to blunh unecona
Aad waito ite onveramen on the dowert if.
-"Engey to a Country Churohyand," Thomae Cray.
Nothing umion hand low,
Each thloge to the place in bat;
and what reema but fdib show
Rrongthear and cupporta the rut.


Efthem who follow it for meriona wort in tho world. and, above all, it is a lifo which ultmatety
Honor and shame from no condition rise: net wall your part, there all the boaor lion.
Not what wo dre, but what we charo,
For the girt without the civer is bare;
Who sime his huagereriag nelghbor and me.
Bo cood, dear child, and bet who will be clay
Do noble thinge, and bot who will be clover,
And to make life, doath, and thet rat day long;
Ono grand oweot nong.
Buriko-for your altars and your firea.
Barito-aill the late armed your firea; suriko for the green gravives of your at Cod-and your nativo landl

- Fits Greenc Hallock.

There is a tide in the affilis of men, Which, taken at the lood, louds on Omitted all the voyase of their life 10 fortune; Is bound in ahallowa, and in miserieu.
Ho mote the rock of the national recource, and
Br louthed the dead corpse of Publio Credit, and it abundant atreams of revenue gushed forth. - speoch on upon iti foet.

But words are thinge, and a mali drop of ink,
Falling, bike dew, upon a thought, produces
That which makes thourande, perhape milliona, think.
Unanchor'd ahipe, they blow and blow,
Sali to and tro, and then go down,
In unknown meas that none shall know,
Without one ripple of renown.
Poor, drifting drommers miling by,
They soem to only live to die.
I care not that abarp thorns grow thick bel
And wound my hand srow thick below
I only care to know God's mon scar my anxious feet:
And I may somewhere fond grow,
-"Care and Carelesances," Frank W. Guneaulus.

That is Meneyt You will probably say, "That is a foolith quemion; everybody know what mosey in $\mathrm{P}^{\prime \prime}$ If you go to the more to buy - pair of shoes, you pay for them with money. Suppone you were a stranger and had no money? Would the owner of the shoe store give you a pair of ahoes? No, indeed. The money was the moans by which you got what you wanted. In other worde, the first purpoes of money in to be the means of exchange.
Let us ouppose that no such thing as money existed and that instead of money you had a barrel of flour which you wanted to trade for ahoes and alippers. Unfortunately for you, the aboemaker did not want flour just then, but wanted sugar. You would have to book for somebody who would take your flour and give jou sugar in exchange. You might have to trade several times before you could get sugar worth as much as your flour. If men had money you could may that your flour was worth so much money, you could sell it for money, and with the money buy your shoes. When we suy that a thing is worth 85 , or costs 85 , we are thinking of money as a measure of value. This is the second use of money. There is still a thind function of money-a standard by which to mensure future debts, but this does not concern us here.
Primittive Money. You can see how difficult it would be to carry on business simply by trading without money. Every person who had things to sell would have to search till he found somebody who wanted to buy and had other things to trade which the other man wanted. Among very primitive races such a condition of affairs is sometimes Iound. Even most saviges, however, speak of value in terms of a common denominator. Many years ago the Chinamen upoke of things being worth "so much rice;" the Bedouins of the desert spoke of thing being
worth "so many pounde of dates" of "so mant camelb;" the ancient Hebrews mid "momy oxen."
There are obvious objections to using cundh, oxen, rice, etc., as money. The main ulimerioni that their size may be inconvenient; in the mood place, they are not divisible. How could you sell a barrel of flour for half a camel! Hundind of years ago people realizel this difficulty und so you do. So we find such small thing u mampum beads used as money by the ladine, tea by the Russians, and tobareo in Maghad and Virginia by the colonists. These thing wem divisible into small portions.

Motal Mones. Even better that such womodities are metals. The ancient Spartan mod bars of iron, but this money was open to prim objection on account of its weight. It is das acteristic of the Spartan simplicity that they nax using base metals when their Atheninn neidbon were using silver and gold. The groat adrutages of the precious metals are clear: small bulk divisibility, durability. Furthermore, they ev comparatively soft and can be easily made im coins. The carliest pieces of metal used as mey went by weight. The next step, of course, to stamp the coins so that they would not to be weighed each time. First, only the at were stamped, as in Greece and Rome, but left the elges unstamped; divhonest poople detected elipping off small pieres. Merchans 5 bankers refused to take clipped pieess, beay they were too light. To prevent clipping, edges were stamped, sometimes with an incrith, tion, a crown, or stars, sometimes with ridges. When the coins are stamped with rid they are said to be "milled.".
The next step in the development of was the restriction of the right to coin in ${ }^{2}$ Middle Ages almost every nobleman and of the cities, besides the rulers of the

Whe riatt to cons money. Wo ces fimagine minales confuvion. Many of the colme were chin that ins they were actually worth lewe no the stamp mid thay were. A poor nobloan wind tuke tweaty coats worth of silver, at atump on it and cell it uee dollar's mort To rmmedy thin dituation the privmod coinare was gradually reserved to the nir of the country. Tolay the money ith moold is onined by the goveraments dry soce papere meoney, to be surs, is io nol the name of aational banks, but it uphined by the govornment, which also lim-
or "ten dollars," an the cave might be. Tlare wae so promice that the eovernmont would rodeon the papers for coin. This is a good exemple of "Bat" money. "Fiat" if a Latia wood monaing "let it lo done," and thus "lat money" if money which the government hao amply dornod to bo worth a everain amount. Some of this old money is atill in umo today, but most of the paper money mavis on its fece that fo in a promise "payable on demand "is gold oe ailvor coin, as the caso may be. You can mon that ant money may not always be worth its feco value. If the government is week of ebout to go bank.

the quantity and places saleguards around amulation.
hppr Money. Just as the introduction of mped metal coins was a great improvement the we of cattle and camels as money, so meof paper money for large sums was a great antage over the use of metal. A thousand ar' worth of gold or silver makes a large ; the mane amount in paper money may be than a hapdiful. Paper money in general is rokinds, "convertible" and "inconvertible," ater morls, "exchangeable for gold" and eachargeable for gold." During the Civil the United States issued "greenbacks," "d paper which were called "five dollars"
rupt the fiat money wil ic alizost worthless. So when we read that four was wcrth about $\$ 300$ a barrel in New Orleans in 1864, we must remember that these were Confederate dollars, each worth only three or four cents in gold. Almost all civilized countries in the world have gone through a similar experience, but that experience has made them wise. If the credit of the govern. ment is unstable, a fiat currency will fluctuate in value. We can appreciate the difficulties of carrying on business in the United States in the thirties of the last century when every merchant needed a directory of banks to tell him whether his paper money was worth two cents of one hundred cents on the dollar.

Gold as a Itandard. It has taken a long time for people to realize that the safest money in the soundest, that the best possible form of money is money which has an intrinsic value as weil as a legal vilue. To possess value of its own this material must be in constant demand with very little change in price. No commodity satisfies these requirements better than gold. Gold has a high value in itself; there is a steady demand for it in the arts; and the supply is practically unchanged, 'or the world's atock of gold is so large that che annual product of the mines, in millions though it is, is merely a percentage too small to affect the total. The realisation of the fact that gold is the best material for money has caused the civilized world to adopt the gold standard.
Canadian Ourreney. It is only in recent years that the Canadian aystem of coinage has become fully developed. Until 1906 all Canadian coins were minted in England. The Ottawa branch of the Royal Mint was established in 1907 but it was not until 1910 that a law was passed by Parliament authorizing the government to provide a gold currency for the country in denominations of $\$ 20,810, \$ 5$ and $\$ 2.50$, and it was not until May, 1912, that the first $\$ 5$ and 810 pieces were issued by the Mint. The British sovereign continues to be legal tender for \$4.86 2-3, but in fixing the standard for the new Canadian gold pieces these are made to correspond exactly in intrinsic value with the gold coinage of the United States. Gold pieces are accepted at face value in almost every part of the world, because their face value is their real value. The Canadian $\$ 5$ and $\$ 10$ gold pieces have five and ten dollars' worth of metal in them.
The Canadian silver pieces, on the other hand, do not:-ontain silver worth the face value of the coins; it is the government's stamp on the coins and the acts of Parliament making them legal tender that give them value. "Legal tender" is a new phrase in our study; what does it inean? Sumply that Parliament has passed an act authorizing a debtor to offer and requiring a creditor to receive certain coins in payment of debt. The words "legal tender" originally meant simply the "offer to pay in currency authorized by law," but in the course of time they have come to mean the money itself. The Dominion government issues five, ten, twentyfive and fifty cent pieces in silver. The Currency Act of 1910 also authorized the issue of a silver dollar.

There are two kinds of paper money in an culation in Canada today; these are the curnemy notes issued by the national government. und the notes of the chartered banks. The goverment is authorized by otatute to issue hal tender notes to the amount of $\$ 30,000,00$ against a reserve of 25 per cent and in excand $830,000,000$ against a reserve of 100 per centin apecie. These government notes are divided into twu kinds, the "legal tenders" and "bank kegh" The legal tenders are in denominations of 4 , $\$ 2, \$ 4, \$ 5,810, \$ 20, \$ 50,8100, \$ 500$ and $\$ 1,000$. According to the latest returns, the total issved these notes is about $\$ 20,000,000$. The Dominine government also issues "bank legnls"; these art bills in large denominations, generally $\$ 5,000$, which the banks use among themselves for the purposes of the clearing house. They get thees bills by depositing gold specie for them in the government treasury and hold them for use in clearing or for conversion into gold the moment it is required. The second kind of paper money is the bank note, which we shall study under tire heading of chartered banks.
Moaning of Oredit. Let us now go back to the store we visited when we first spole d money. This tume we have no money when we tell the owner we want a pair of shoes, but te knows us and he says, "That's all right, III tuss you." He is giving us "credit," which mama simply that he believes in us and believes ve nill pay him as soon as we can. We tell him that me shall come back in a month and pay him the $\$ 2.50$ for the shoes. At the end of the monih we offer him $\$ 2.50$, but he says that the abou will cost $\$ 3.50$, because the leather has gone $\varphi$ in price since we bought our shoes. The orve of the shoe store is wrong, because he has alredy sold us the shoes for 82.50 . If he had suid, 'I'll sell you the shoes for half a barrel of four,", and the value of the flour had risen from fi: $: 0$ to $\$ 3.50$ we would still owe him the half bant; but that would be unfair because we should ham to pay more than the shoes were worth. We do not owe him half a barrel of flour; we one him $\$ 2.50$. That is the third principal function of money; a standard by which to mesare future obligatiors.
Without some such standard for future pry ments the general use of credit would be im possible. More business is today carried oa br credit than by cash payments, simply becusex is more convenient and because we can tre other people. We trust the government the we accept its paper money. We trust eachoim

## Lomoy and Banidnc

owng day. As long as business transactions ces confined to a amall wres this credit, which th generally celled "book credit," because the cocount was kept in the books of the firm, did dit that was required of it. But when a merchant 11 Montreal buys goods in New York and later alla them to a man in Alberta, more complex medhnery for handling business is necessary.
Senks. The main feature of this machinery b culled a "bank." The earliest benks wo might call "exchange banks," or benks to facil incto exchange. Their object was to turn the ruves they received into "current money" or "bank money;" that is to may, into money which nu immediately accepted by merchants vithout the mecessity of testing the value of the coin or bulion brought to them. Por this service they cherged a amall fee. The main business of these buks was in foreign commerce. "Current moxy" or "bank money" was merely the dundurd by which other moneys were measured, wo the "mark" of the Bank of Hamburg was mady the equivalent of an equal value of pure ylve. While the bank at first was practically mothing more than a money exchange, many of the banks soon combined the functions of exchanging money with those of lending and borrowing money.
When we say lending and borrowing money, what do we meant $A$ bank lends us money whea we have security or crodit to cover the mount of the loan. On the other hand, when edeposit money in the bank are wo not lending money, and does not the benk borrow? Puhaps few of us think of deposits in that way, but every bank's accounts will show that the maney there on deposit is considered a debt. Wedeposit money in the bank for safekeeping. for convenience, and for the interest, but that money does not lie idle. As soon as possible the banks lends or invests it again, or as great a put es the law allows. A bank, however, to arry on business sucuessfully, must possess afficient capital of its own to give it the standing which will lead other people to trust it with thair money. Most of the bank's funds are haod to men and firms engaged in productive industry; in other words, the money not only bring to the bank a profit but assists the busimandevelopment of the country.
The eurly banks, then, received money on dpposit, for which they issued receipts. When the depositor surrendered his receipt he could methis money back. Our modern savings banks arbed on this plan. We deposit our money
in the bank and receive a "pass book," which shows the amount to our credit. If we wish to draw out this money we must 80 to the bank and present the pass book.
Governmont Eavinge Bank. Since Confederation the Canadian government has conducted two kinds of savings banks. The first of theso, known as the Dominion government savings bank, was established by the Maritime Provinces and was assumed by the Dominion after Confederation. As far as posible the sccounts in these banks have been transferred to the postoffice savings banks. This postal savings aystem is nothing more or lese than a national aavinge bank conducted by the postoffice department. Money is deposited just as in any bank and interest at three per cent is paid on deposits. Any person may have a deposit sccount-the eccounts of children, however, are protected by special regulations. The total deposits made by an individual in each fiscal year (ending June 30) may not exceed $\$ 1,500$ and the total balance, exclusive of interest, to the credit of any sccount is limited to $\$ 5,000$. A depositor in any of the savings bank postoffices may contirue his deposits at any other ouch offices and he may withdraw money at that office which is most convenient to him. For instance, if he makes his first deposit at the savings bank at Regina, he may make further deposits at, or withdraw his money through, the postoffice at Moose Jaw, Banff, Winnipeg or any place that may be convenient to him, whether he atill lives at Regina or has removed to some other place. In 1911 there were over 1,100 postoffices holding a total of $\$ 11,000,000$ in savings deposits.
There is a third class of government aavinge bank; this is known as the "school savings" or "penny savings" bank. The Penny Bank of Toronto, with total deposits of $\$ 150,000$, was the first one to be founded. It has a charter from the Dominion government, granting the right to receive school savings from any part of the Dominion. These savings, according to statute, must be deposited with the government. Banling in Canada. It was not until 1792 that any serious attempts were made to establish banks in Canada. In that year a number of merchants in Montreal applied for a charter for the Cenada Banking Company, but the charter was refused. In 1807 Quebec tried to get a bank, but failed; again in 1808 both cition failed. During the War of 1812 the exportation of specie was forbidden by the parliamenents ol

Opper and Lower Caneda, and paper currency, known as "ermy bills," was in general circulltion. The experience of the country with an elartic paper currency was so satinfectory that in 1817 the first joint atock bank, the "Montreal Bank," was formed as a privato institution. It wes later chartered by the government and is now famous throughout the world as the "Bank of Montreal."
Banking wes placed under the sontrol of the Dominion government by the British North America Act of 1867. In May, 1870, and in April, 1871, were passed the acts on which the Canadian banking system is founded. Banks are chartered for ten-year periods and a revised bank act has been passed every decade. The later lawe have made few changes in the essential features, though they have aided to the rafety of the system. In 1890, for example, a bank circulation redemption fund was crested by a cash payment to the government of five per cent of the maximum circulation of each bank. As this fund may be drawn upon in case the assets of any bank are insufficient to pay its notes in full, it is clear that all the banks ame responsible for the payment of the notes of every individual bank. Again in 1000 the bank set provided for the formation of the Canadian Bankers' Association,which exercises a general supervision of the affairs of each bank. Every chartered bank becomes by law a member of the asocriation.
To secure a charter from the government a bank must have a capital of $\$ 500,000$, of which one-half must be paid in cash before the charter is granted. During the process of organization this sum of $\$ 250,000$ must be deposited with the government, which returns it when the organization is completed. As directors are supposed to direct, the law compels them to hold what it considers a sufficient amount to make it worth while for them to give proper attention to the bank's affairs. This amount is graded according to the paid-up capital; thus when the capital is a million dollars, a director must hold at least thirty shares. Since 1890 the par value of bank shares is fixed by law at $\$ 100$ each. The most important feature about bank shares, so fur as the public is concerned, is the "double liability" of the stockholders. This means that for every share of $\$ 100$ the owner is responsible for another 3100 in case the bank becomes insolvent and the asoets are not enough to pay the debts. If, therefore, the capital of a bank is $\$ 1,000,000$, the creditors have security to the amount of
$82,000,000$. As it is very important to persomen who are dealing with benks that the shareholden should be good for this amount the law requires the publication each year of a list of the shareholders in all the chartered banks with the number of shares held by each. As a rule, the wides distribution a benk's atock has, the anfer it is; other thinga being equal, a man is mors likely to be good for double the value of a amall number of shares than for dor'hh the amount of a large number.
Benk zenorvos. One of the importunt problems connected with the operation of a bank is the amount of cash reserve. By reserve is meant the necessary balance of cash which the bank keeps on band to meet its obligations. This money, of course, is lying idle in the vaulus and is carning no interest. From one point od view, therefore, it is to the bank's interest to keep as little cash reserve as possible, in order that the bank may hive the use of all its funds. But such a course would lead to popular distrust of the bank. In the United States the antional hir requires the banks to maintain a cash reserve of a fixed per cent of their liabilities, but in Canada there is no such thing as a "fixed re serve." The oniy requirement is that 40 per cent of whatever reserve a bank does keep must be in "legal tenders." A detailed statement of the position of every bank is sent to the government each month, and this is published in the Canada Gazettc. These statements contain all the information necessary to enable any intelligent person to find out the strength or weakness of any bank. Thus one of the best possible safeguards is established when public opinion may be based on an exact knowledge of the position of any chartered bank.
Bank Rotes. If there were no money in Canada except the paper and silver currency issued by the Dominion government, there would not be enough to transact all the business. We may now study the bank note or bill, the second kind of paper money in circulation. When we speak of money in circulation or of a bank's circulation we mean moncy in actual use or the bank notes in use in transucting the business of the country.
The right to issue paper money, or "bank notes," is a great privilege. Let us try to underatand why. Any bank, as we have seen, must have a paid-up capital of at least $\$ 250,000$ belore it can begin business. This capital is inverted directly in the business operations of the bank The government allows the banks to make
duable use of this money by issuing bank notes to the full value of their paid-up capital. Thus the capital is not only invested in the business but is used aguin as the basis of increasing the bent's ewrning power by 100 per cent. It is seldom that the banks issue notes to the legal mximum; in 1012, for example, the amount of benkotes in circulation varied from 85 to 95 perecent of the capital of all the banks. This doubling of the earning power makes it right that shareholders should be liable for double the rulue of their sharen.
The Branch Systom. In the United States the minimum capitalization of a bank organized under the National Banking Act is $\$ 25,000$. Many small towns, in consequeace, have one or two national banks, each with a small capital, jute enough to transact the local business. In Caneda, on the other hand, the large amount required as capital made it impossible to establish -ilependent tanks in all the cities which needed banking facilities. This led to the developmant of the present system of branches. All the lare banks have numerous branches throughout the country. The business of these branches is cooducted just like the branches of any firm; they have their own local managers and their onn books, but they are directly responsible to the central office of the bank. There are today

## Money and Banldag

company was often employed oo administer large estates. This is still its principal function, but in the course of time a general banking business has been developed. The great advantage possessed by these companies is that, as a rule, they are less restricted then the chartered banks. They may be incorporated by the Dominion or provincial governments; in Ontario and New Brunswick they are subject toinspection if a elient demands it. The trust companies have developed a great savings and safety deposit vault business. Most of the funds thus received or controlled by a trust company remain in their hands for a long time; it can afford to pay interest on such accounts. The payment of interest has gradually led many small depositors to patronize trust companies, whereas the chartered banks, in the main, are more likely to attract commercial accounta.
Bank Ohecks. For people who want to leave their money in a safe place for a long time, a savings account is good, but most business men can not afford to waste so much time running back and forth for money. One of the first improvements to be made in our modern banking system was the introduction of "checks" or "cheques." The check is usually a printed form filled out by the depositor, somewhat like the one below.


Tre 2,500 branches of chartered banks in the Doxamion.
Inat Oompanios. The trust company is a mponation, with a large capital, authorized to ut as agent for the living or dead. As the tame indicates, trust companies were originally dertered to act as trustees. Thus the trust

A "certified check" is one which the bank promises to pay-that is, it certifies that the drawer of the check has enough money on deposit to cover the amount, and it agrees to hold enough money to pay the check. Carro!! signs his name on the back, that is, "endorses" the check, to show that he has received tho
small share to the expenses, which are vir sanall, as the clerks are already employes of the banks and the chief expenso is a room or building in which to meet.

Drafts. A check is not the only way in which we may "remit" money. Let us suppowe that Alexander Smith lives in Calgary, Alberten and John Jones, to whom he wants to piy bill, lives in Halifar, Nova Scotia. Instend d sending a check $S$ mith will rend a draft, whichis an order from Smith's bank, the Bank of Mor treal, to its agent in Halifax, to pay to dome the $\$ 100$ due him. The advantage of a drat lian in the fact that it is good on its face, becauseitis an order from the bank, which agrees that is will repay the Halifux bank. The cashier at the Halifax bank knows at once that the dint is good, wherens il a check on a Calgary bank in presented to him he has no way of knowing then the check really comes from a reliable depoive. When the drait has been paid it goes through the clearing house in the same manner as a chek.
A draft is also an exceedingly conveniant means of exchange whereby debts may be cre celed between private parties without the intar change of cash. Let us suppose that Cyros Adams of Calgary owes William Case of Qwe bec one hundred dollars. Now it happens that Vernon C. Brown, also of Quebec, owes Mr. Adams an amount which is at least one hundred dollars. It is evident it Mr. Brown will hand one hundred dollars to Mr. Case, Mr. Case nill be willing to accept it as cancellation of the debt owed to him by Mr. Adams, and it dos not matter to whom Mr. Brown pays the money If in making the payment he can decrese lis indebtedness to Mr. Adams. Therefore, Ms: Adams writes a draft addressed to Mr. Brom asking him to pay to Mr. Case the sum named, and he gives this draft to Mr. Case, who in turn presents it to Mr. Brown, and the latter honors it. Thus the money changed hands but once, bus a debt of one hundred dollarsis satisfied on the books of three people. The illustration on next page shows the form d the draft in question.

Foreign Exchange. So far we have corsidered banking at home. A very important factor in banking is foreign business. Whydo me send money abroad? To pay for goods we have bought, to pay for services, such as transpotrer tion and insurance, to pay the expenses of Canadians traveling abroad. To send money abroad we generally use a draft, but we rallita "bill of exchange," to distinguish it trom the
tuft med at home. The bill of exchange is an more from a Canadian bank to its agent in Losdoa, Paris, Berlin, or other city, directing the seat to pay a certain sum of money to a third peaty.
You will see that wo have traveled in a circle in our study of banks. We noticed that the first fraction of the early banks in the sixteenth canary was to facilitate exchange; in the twatieth century this function is more widely denloped. The large banks have their agents - correspondents all over the world. It is no here necessary to speak of "current money" a "bank money," though we still use express nome such as "pound sterling," which are relics d the days when such a standard was needed.

## Money and Banking

sidered, and doses of cities betides Montreal in the Dominion. In the general circle of transactions of this kind the city which has the largest number of transactions will have the turgent number of debtors and enalitors and will offer the beat facilities for one compenaeting the other. Thus it is that London has becomes the central money market, where all the debits and credits of the word may be said to meet and cancel each other.

If, now, the debits and credits of Montreal and London balance exactly, there would be an equal demand on both sides for bills of exchange. To pay a debt of $£ 100$ in London the Canadian merchant would buy a draft with the exact equivalent in Canadian money. This would be


Tody, with better means of communication, we spat of a rate of exchange. It is not necessary aah time we buy a bill of exchange to have ore money changed to an internatic neal standard, nod then ship it to England. In theory, if A in Montreal buys goods of B in London, the implest way to pay would be to ship the gold; bat in practice this is not true because of the eppese of shipping, of insurance, and the intract lost on the money while idle on board ship. Rote of Exchange Explained. No doubt pun are puzzled to know just what this expresion, "rate of exchange," means. In order to mersund the situation we must imagine thousdid of transactions like our sale of goods by B to A. The total of the payments to be made by Montreal to London must be balanced off taint those of London to Montreal. But you nat remember that not only London but tran of other cities in England must be con-
the normal or standard rate of exchange. But this belance seldom, if ever, exists; there is usually an excess of payments to be made to one point or the other. When Montreal has more to pay London there is naturally an excessive demand in Montreal for bills of exchange. Merchants in Montreal will be willing to pay a premium rather than $g \circ$ to the expense of shipping gold. The fact that they can ship gold, however, will generally keep the premium down below the cost of shipping. If it rises higher, gold shipments will begin, and the premium will immediately begin to drop, because there will be less demand for bills of exchange.
It is clear if the rate of exchange is high in Montreal it will be low in London; in other words, there is less demand in London and bankers will be willing to grant a discount to the English merchants rather than be flooded by Canadian bills.


Importames of Menic. Someone has said that "muvic is our fourth great material wantfrut food, then raiment, then shelter, then music." It may seem at first reading that this statement exaggerates beyond all bounds the importance of what we too often look on as a "mere art." Surely a man can live without music, we think; and too surely the most of us do-without real music. But whether we recognize it or not the want in there; there is that in every one of us which calls for something that only music can supply. So large a part of our lives is of necessity spent in a rush and grind which almost inevitably dulls our finer sensibilities and blinds us to the better things of life that we owe it to ourrelves to take time for those things which make for relaxation and for uplift. And among these uplifting agencies music certainly ranks with the first. It makes no attempt to instruct us, to tell us a story, to put facts before us. It simply appeals to the love for the beautiful and excites emotions of pleasure, and for these remons it is considered the purest of the arts. For many people to whom religion makes no appeal, music is almost the only bond of connection with the world beyond the purely physical; and for all of us it may, as Carlyle says, "iend us to the edge of the infinite, and let us for moments gaze into that."

Of course no one can learn to be a musician by moding articles on music, nor can one learn in that way to compose music; but it is possible to learn much which helps in the understanding and appreciation of the art. An orchestra concert is much more interesting if the hearer knows something about each instrument-what its musical value is and just what it adds to the effect; a famous song gains much if we know by whom and under what circumstances it was written, and perhaps by what great singers it has been used.

Bow to study about Mudia in Theso Books. The New Practical Refrarence Labuat deals with the subject of music in three difiemes ways; there are articles on musical terms, on musical instruments and on the lives of famous musicians. There are, moreover, a number d special articles on such topics as $M_{y m n s}$ and Hymn Tunes and Hymns, National, and a general article Music, with subheads on Nature and Terminology of Music, Notation, ard History.
Perhaps as interesting a way as any to bexin, not to study music but to study alout music, is to take up the history of the art. The artick Music has as its third subdivision History, which will serve as a good starting point. Emphasis is placed, in this section, on the distinctions between the musical ideals of the dififent nations, and numerous references to the groat composers make it possible to pursue this iden of nationalism in music yet farther. The nams in the lists of cross references are arranged in chronological order, so that the historical ides is carried out. If all of these topies are care fully looked up, the result is bound to be a fairly comprehensive view of what each of the great nations h. $s$ accomplished in music.

By no means all, however, of the great composers are listed in the article Music, while buts very small proportion of the world's great singers and instrumentalists are there mentioned. For further information we turn to the Classificd Index, where we find a list of over a hundred musicians. They are there classified by countris, but perhaps that may not be the most sutiofactory way to take them up. If a person is particularly interested in vocal music, it is de great singers he wishes to study. The following list shows how much Tre New Prachell Reference Librart has to offer on the subjer of the world's great singers:

Mado
Abeni, Emma
Mboni, Marietts
Care, Emum
Campanini, Italo
Cutalini, Angelica
Eamer, Emma
De Recake, Edouard
Do Rearke, Jean
Farinelli, Cario
Gadelk, Johanna
Garcia, Manuel
Heachel, Georg
Eellogs, Clura L.
Lhd, Jenny
Malibran, Maria F.
Mario, Giuseppe
Melba, Nellie
Nilison, Christine
Nordica, Madam
Putti, Adelina
Reeves, John Sims
Schumann-Heink, Ernestine
Sembrich, Marcella
Sontag, Henriette
4 lix of composers includes the following:
Auber, D. F. E.
Buch, Johann Sebastian
Balfe, Michael W.
Barnby, Sir Joseph
Beethoven, Ludwig von
Bellini, Vincenvo
Berlioz, Hector
Biset, Alexandre
Bnhms, Johannes
Buck, Dudley
Bülow, Hans Guido von
C. .ndwick, George W.

Chaminade, Cecile Louise
Cherubini
Chopin, Frederick Francois
Coleridge-Taylor, Samuel
Corta, Sir Michael
Cerny, Karl
DeKoven, Reginald
Donizetti, Gactano
Drorak, Antonin
Elgar, Sir Edwand
Motow, Friedrich von
Poote, Arthur
Fruck, Cessar
Gode, Niels W.
Gluck, Christoph
Godard, Benjamin
Gottschalk, Louis M.
Goumod, Charles Frangois

## Minde

Grotry, Apdx Erweat
Grieg, Edvard Hagerup
Guilmant, Pelix Alerandse

## Halery, Jacques

Handel, George Frederick
Haydn, Joseph
Heller, Stephen
Herschel, Geors
Herbert, Victor
Humperdinck, Engelbert
Jommelli, Nicolo
Lisat, Pranz
Mac Farren, Sir George A.
Massenct, Jules
Mendelssohn-Bartholdy, Felix
Meyerbeer, Gincomo
Monteverde, Claudio
Moszkowski, Morita
Mozart, Johann Woligang
Nevin, Ethelbert
Ofienbach, Jacques
Palestrina
Parker, Horatio
Raff, Joachim
Root, George F.
Rossini, Gioachino
Rubinstein, Anton
Saint-Saens, Charles
Schubert, Franz
Schumann
Sinding, Christian
Smetana, Friedrich
Stainer, Sir John
Strauss, Johann
Strauss, Richard
Sullivan, Sir Arthur
Van der Stucken, Prank
Verdi, Giuseppe
Vieuxtemps, Henri
Wagner, Wilhelm Richard
Weber, Karl von
The person who is particularly interested in instrumental music and its chief exponents will
find articles on the following:
Bach, Johann Sebartian
Bloomfield-Zeisler, Fanny
Bull, Ole Bornemann
Bülow, Hans Guido von
Chaminade, Cecile Louise
Chopin, Frederic Francois
Corelli, Arcangelo
Czerny, Karl
Damrosch, Leopold
Eddy, Clarence
Gade, Niels W.

Gottrehalk, Touis M.
Grive, Ddvard Hagurup
Guilment, Pelix
Handa, Gvorg, Predarick
Hialler, Sliephea
Herbert, Vietor
Holman, Joed
Jonchim, Joseph
Kubolik, Jan
Livet, Prans
Mooskowald, Morits
Paderewaki
Pagenini, Nicoolo
Remenyi, Edounrd
Rubinstein
Schubert, Fruns
Smetans. Friedrich
Stainer, Sir John
Thalberg, Siginnuad
Uroo, Camilla
Vieuxtempa, Heari

## Intorenting Frets About Eymss

It has been extimated that there are at least 400,000 hymns in all languages. The greatest number of these are in German, the next greateat number in English.

The Hebrews produced the most noted hymns beforc the Christinn era.

The Mohammedans have no hymns.
The most ancient Christian hymn of any length which we possess today is the well-known To Deum-"We praise thee, O God." It has come to us through the Latin from a very early Greek original.

Martin Luther's great hymn, Ein fevte Bury (A Mighty Fortress), was a great force in the apread of the Reformation. The tune to which this hymn is always sung was also composed by Larther.

Four hymns, When I Survey the Wondrous Crom, Rock of Ages, Jesus, Lover of My Soul, and Coronation are printed in more collections, translated into more tongues, and used in more congregations than any others. Some authorities, among whom is no less a critic than Matthew Arnold, consider When I Survery the Wondrous Crose the finest hymn in the English language, others phoce it second to Rock of Ages. This latter hymn has been translated into almost as many languages as the Bible itself, probably over three hundred. Gladstone translated it into Latin, Greek and Italian.

One of the best known hymns is Blert Be the Tic That Dinds, by John Fawcett. Fawcett
wee an English Baptict pastor, who served lee yanra a litile congregation at Waingate, mevivisy from them a very amall miary. Pinally be docided to accept a call from an important churt in London. but atter his goods were pracked in decided that be could not have his propte, It was on that cocenion that he wrote this hyman.

One Sveedly solemn Thought, by thates Cary, was composed in a little chamber of a village cottage one Suanday morning, after church. It has been trmalated into ncarly all languge of the civilized wortd.
Charien Wesley's moat famous hymn, Jowes, Lover of My Soul, was written immediately anat a nanrow cecape from death by shipwiot Henry Ward Beecher mid of it: "I woukl mether have written that hymn of Wesley's than to have the fame of all the kings that ever sat on carnh."
Heary Francis Lyte wrote Abide urih Mow the close of the service at which, "searee able to cravl," he had taken part in his luat comer munion with the congregation which he had served for twenty-five years.
The most famous hymas written by women are Nearer, My God, to Thee, by Sarah Flower Adams, Juat as I Am, by Charlotte Eilliott, 0 m Sweetly Solemn Thought, by Thocbe Cay, Battle Hymn of the Republic, by Julia Ward Howe, and Take My Life and Let lt Be, by Frances Ridley Havergal.

## Questions

What is a note? a scale? a bar? a clef? time signature? Define forte, pianissimo.
What is an oratorio? an opera! Mention a number of famous oratorios and of lamom operas.
Name five noted composers, five singers and five instrumentalists.

Is there any difference between a band and an orchestra ?

Why may it be said that violin music is more agreeable to the thorough musician than pinao music \&

What is the chief distinction between anciast and modern music ?
Who is regarded as the most celebratod d modern composers?

Why of all the arts does music appeal mat to the popular taste?

What did each of the following nations try 10 emphasize in their music: Italy, Germany, ingland, Scandinsvia, and France?

What were some of the ancient musical io struments ? Give a list of ten modern instrumatich


Wh think sometimes of mytholory as the milion of the ancients, but it was much more that that. It was their religion, their science, mach of their literature. And yet it was none $d$ thee things, in just the sense in which we mantand the words. All mythologies of which m have any recond tell of the supernatural teig who had made and who controlled the cineme, and in this sense they were religions; bew fer of them made any attempt to make popla better morally, and in that they differed tomereligion, as we understand it. The primitive milions, in fact, concerned themselves little anugh with morals. They demanded worship dithe gods, forms, ceremonies, observances; they brtade, as the worst of sins, anything which might be tranulated as alights to the deities, or y cremonial carelessness.
So hr as science was concerned, it was really rince in only one sense-in that it concerned well with the explanation of things which the maple san about them. It did not ohserve and mee cuuses; it simply invented supernatural ephostions for the facts and the happenings of we word of nature.
All of the striking characteristics of mythology ure we found in Greek and Roman mythology, the bet known and in many ways the most hatesting of any of these ancient collections of als and legends. We find stories which concon dhenselves entirely with the actions and dencers of the gods; we find other stories which piverphnations, often beautiful and poetic, but tr from scientific of nature; and we find still whe whes which seem to have no other purpose tapp to give pleasure-no value except a lingrone. It will be interesting to read stories dhee rrious kinds and to become acquainted is sme measure with the imaginings of that madeful poople, the Greeks; for the most that
is beautiful and attractive in what wo call Grecian and Roman mythology comes from the Greeks.
We must remember, when we read stories of the gods, that to the ancients these supematural beings were not of necessity better, purer, more self-controlled than men. They were only stronger, more clever, more resouriceful. When they were angry, they were more angry than men; when they loved, ther luved more fiercely; when they were jealous they were more bitter, more relentiess, than men. In fuct, the beinge whom the ancients worshiped as gods were simply beings who did what the people who created them would have done had they beea powerful enough.

One of the best-known atories of Jupiter, the king of gods and men, is that of Europa. Minerva, too, entern into this story.

## Slory of Europa

Europa, the daughter of Agenor, king of Phoenicia, was so beautiful and charming that everybody who booked at her loved her. But she was voung and all unconscious of her charm, and carel littie for anything except playing with her young companions in the fields; and there they would stay all day gathering the narcissus, the crocus, the violet, the crimson rose, and twining them into wreaths for their hair and their robes.
One day as they wandered, now here, now there, about the fields near the seashore, calling to each other and holding up any unusualiy brilliant blossoms which they might find, their attention was attracted to a beautiful snow-white bull that had entered the field and was coming toward them. Ondinarily they would have been frightened at the sight of such an animal; but this bull looked so intelligent, so gentie, so almost
declaring that sut sifly to hin feet and atarted acroon the fielde to the sea. Fater and faster he went, and Europan itrectched out her hands toward her companions and called to them. Run as they might, however, they could not overtake her, and when the bull gained the shore of the sea, they were started and horrifiel to see him plunge at once into the water. With one hand Europa grusped a horn of the bull; the other the strectchod toward her companions. As she found out, however, that no harm came to her, that ahe was as nafe on the bullis back as she could have been in her father's largest sailing vessel, her lear gave phace to curiosity and wonder.
"What does this mean?" she asked of the bull, feeling sure that as he had understood when she spoke to her mmpanions, he would surely understand her now, "and where are you carrying me? How does it happen that a bull is able to move in this way as safely over the water as on the land?"
And what was her astonishment to have the bull reply to her in a deep voicr:
"I am no bull, though to the most carreful eyes I look so. I am the goxd Jupiter, and seeing you in the field, I loved you, and assumed this diaguise that I might carry you off and make you my wife."
With these words he comforted the girl, and we may be sure that her pride was great in having so gained the attention and the love of the grentest of all the gords.
At home, however, Europa's parents knew nothing of this side of the story. Euror י's
tremed at her loss. He net out, therefore, and journeyed, day after day, inquiring of all the met as to whether they had seen a white will carrying on his back a beautiful girl. All ove his own land and far into foreign lanis he went; but never a word could he hear of his lot inver. Knowing well his father, and what his math woull be if his command were disobered, Cadmus did not dare to return to Phoenicin; but where else could he find a home?
At length he decided to consult a hamow oracle of Apollo in the Cestalian cave. Don into the darkness of the cave he went to where the priestess of the god sat, waiting to hear de questions of those who came seeking information. Cadmus put his question:
"Where shall I find a home, now that Im longer dare to go back to Phoenicin ?"
Strange sounds came up from the groud which Cadmus himself was unable to interpert. The priestess, however, translated them for him
"Follow the cow," she said, "follow the con."
In vain Cartmus begged for a full explanation; the priestess would say nothing more, and be returned to his companions from the darkes of the cave not much wiser than when be hed entered. What cow was he to follow 1 As le stood in deep thought he lifted his eyes and sr a cow walking in a leisurely manner down a path but a little distance from him.
"This as well as any other," he said, bectooing to his companions, and they set of to follor her.
She went on for some distance, Cadmus keep ing close behind her, and at length she stoppech,


hruand the stonee, there cume from the depth ditecare a monstrous serpent, the guardian $d$ the apring. In vain the men mcrambled to thir foe and attempted to slee. Terror held moted to the ground, and the venomous drome wes upon them; and not one of them cappd the monster's fangs or tightening coils. Cadmus maited long for his companiones and the when they did not come, he set out in search dine In the little grove which he had meen 4anester he too heand the cound of running mar, but when he came to the side of the Finge he found his dend companions with the inering serpent coiled up beside them.
Atere a serese struggle, in which he more than me deppaired of his lift, Cadmus slew the aryou, and as he trood loolding down upon the mamer, he heard a roice say, close beside him:
"Bry the dragon's teeth and see what will црpen."
Bie booked about hastily, but could see no one. 4 me indeed the goddess Minerra, who, inithth to him, had watched the conflict and was or giving him advice.
Codmus plucked out all the teech of the dypa, and a great number there were, for the wouth had had three gleaming row. Tow ho took back to the field and planted in that, moiss earth. He had not fong to wait ware something bright began to appear above in unfoce of the ground. Firse the tips of pas, then the glimmering points of helmets, wan he hends and shoulders, and, finally, the thle bodies of stalwart men pushed up through tor round before him until the feld was full of

And thus there wis begun in this plece, where no city had before exinted, a city which grew and becume powerful and attructed to it people, from all nearby honda. But Cadmun, the king. never heard agmin of his aiser Europa, whow lous had been the beginning of all hin adrenturee.

As proof that the godes and even the goddemen could be very cruel when mortale did not act to suit them, we may take the story of Arachne.

## Tho Story of Aneine

Arachne had many things of which she might have been very proud; sho was young, beautiful, and had many friends. But she cared loes for any $o$ these things than she did for the face that ahe was a very akilful wenver. People came from all the country near her home to mee the beautiful patterns which she wove on ber loom; and as they watched the web grow under her Angern, they would exclaim:
"Surely Minerve herself must have taught you; in no other way could you have learnod to do such wonderful work."
Most giris would have been proud to have been taken for a pupil of the wisex and mont akillul of the goddesses, but Arachne was so proud that ahe could not bear to have people think that even Minerva ever could have taught her anything. Finally her boads came to the ears of Minerva hersiff. Now Minerva was not naturally cruel or revengeful, but there was a wickedness in any mortal's setting hereelf up to surpass a deity which even Minerva could not pardon. Determined, however, to give the

> Mgitecieg
human, that they could not feel afrinid of him. He advanoed undll he wain in their milat, and they bequan to throw about tion reck and horne the llower mreathe which they had been weavinge. At leagith, Europu mid:
"I haow what we shall do; wo shall mount on the beck of the bull and he shall carry wo hat over the fiode and mendows. I know he will not hurt as. Seel he coems to undentand just what I am maing and to be telling us that he - willing to have us ride on his back."

For the bull hed hain down on the green at the feet of Furopas and her companions. Buropm first meated herrelf on his back, and a beautiful picture she male with her purple robe and her fower-wrea thel hair.
"Come," she said, "he can carry several of ue at once."
But as ahe said these woris the bull, as if declaring that he had no dexire to do such a thing, fot owiftly to his feet and started acrose the field to the sea. Faster and faster he went,
fribhtened companions had rusbed to the pheme, ceiling aloud how the bull, the beautifle, nt. bull, had run of with their dear cummon.
"Into the rea be plunged," they cried, "m nathr as eyou could resech, we coull men the awlmming mely, while Europa's purpto menter apread oust behind ber like a mail."
The king wan in deupair, lor he loved his ciry doughter, and felt that his pulace, and momed his whole kingdrim, woukd be but a worty phan without her. So be called to him hid 0 mon Cadmus, and sind:
"You are strong and wive for no proms man. I canuot keave my kinglom and my people, but you may set forth now, at mane, and starch for your sibter; and do not, wht ever happens, veature to come back wibuat her."
Cadmues was willing enough to search for his sister, for he had loved her and was much dier tresed at her loss. He set out, therefore, ad journeycd, day after day, inquiring of all be

maid abouk, and quibity hy down. This then, ratren had undortood ine orache arifith, wo - He the future home. He soooped down and thed tround and made his followes do tr mom; and he then went them out to wo
 dare mero. They carriad with them jure whle - ${ }^{7}$ wev to bring beck full if poevible. They rod seroee the clelds into a littele crove which hand wild and untouctiod as thoumh no man Wowe foot in it. Prowently they hand a ond gubing witer and looked about them Ephill. Yow, there out of the darkseme of a an then Alowed a cloar little stream. They bine and drak, and then lowered their jugg into themr. Th.s juge begen to fill with a gurgling mod which ans plomant enough to their carri bat mon they haard anothers sound which cmued than to book up in turror.
Doneding his glittering length scrom the huru and the noosen, there came from the depth d the care a monstrous serpeat, the guandian
armed mas in ranke. Wres thbo a momenemy which he had to fidel 11 co, be mithe mes woll begin the conflice firx as hx, and be nubiod comand the nearest man. Before he ruched him, howwer, thib man eried out:
"What part have you in our civll war?" and turning to the moldier naniex to him, who was so exartly like him that Cadmue could nover have told the dififeresce, he utruck him a sharp blow with hib apear. Intead of triking back, thin soldier thrust hie apous at the man on the other alde of him, and suon the whole field was in an uproar. But in an incredibly short apace of time the dragon-tooth warrios had almoot all perished; indeed only five remained. Theso coned their atrile and came and knet down belore Cadmus, mying:
"Let ue help you to build your city. We chooe you here is our king."
And thuse there was begun in thin place, where no eity had belore existed, a city which grow and became powerful and attrant in is ant

(ANSH and ISO TEST CHART No. 2)

boactul girl a chance, Minerva took the form of an old woman and went to Arachne's bome.
"Foolish girl," ahe mid, "how do you dare to set yourself up as an equal in skill to the goddens of the arts? Do you not know that she could punist you severly for such boasting?"
"Let herl" mid Arachne. "I am hur equal, and I am willing that ahe should know what I have anid. Let her come and match her akill with mine. And iil am beaten I will pay the penalky."
"Foolinh girll" cried the goddess, dropping ber diaguise and appearing in her own radiant form; "the trial shall take place here and now."

All those who stood by were terrified; some of them fell at the feet of Minerva; others besought Arachne to yield before it was too hate. But the proud girl remained defiant, unafraid.
So the goddess began, while the bytanders stood breathless with fear and admiration. Minerva at her loom worked rapidly, the shuttle seeming to fly as she passed it back and forth through the threads; and a marvelously beautiful pettern soon began to show itself in the web. But Arachne's web seemed, to those who watched, little, if any, less perfect than that of the goddess herself. Only what was this which the reckless girl was daring to do? Not content with defying one of the gods, she chose for her subject in the web ahe was making the faults and fairings of the dwellers on Olympus, showing them so clearly that nobody could mistake.
Her own web finished, Minerva turned and looked at Arachne's. It was wonderful-the goddess could not but admit it to herself. But the presumptionl the wickedness of itl thus to hold up the faults of the gods before these staring people.

With her shuttle she tore the beautiful web of Arachne from top to bottom, and then turned to the girl herself.
"Your sin merits death," exchaimed the angry goddess, "but death shall not be your portion. Since, however, you have been so fond of weaving, your punishment shall be, that forever and forever you and your descendants shall make your threads and weave your webs. And wherever men see you they shall tear your webs as I have torn this, and shall drive you from them as I drive you from me now."
And touching the giri upon the forchead, she transformed her into a spider.

This story has a hint in it of the nature myth. We can perhaps imagine that watching the
spiders spin their endiens threads may have suggeted to some imaginative Greek the porsibility of the spider's being but a mortal trans. formed to this low form as a punishment. In other wories which we may atudy, however, the nature element is far atronger.

## Phecthon

When the boys with whom Phaethon playod about the ficlds and river banks boasted of their fathers, Phacthon was silent. His mother, be knew, was more beautiful than the mothers d his friends; his grandfather was a wealthy, honored man; but his father-he knew nothing whitever about a father. This was bad enough, but when his playmates began to see that such was the fact, they made him suffer constantly.
"No one can play in this game unless he can tell who his father is," one would ar mischievously.
"Let's spend our time telling about the greatest deeds our fathers ever did," another would suggest.
And Phacthon, ashamed and angry, would rush home to his mother and pour out his wnith and shame.
"Some day, Phacthon," she would assure him, "you ahall know about your father, and then none of the other boys will dare to tuunt you."
"But I want to know nowl" Phaethon would insist, stamping his foot.
"You are too young yet, my son," Clymene would reply, looking sadly at her son.
At length one day when Phaethon had gromn to be a tall, handsome lad, he came into the house in a fiercer state of anger than usual.
"I will endure this no longer!" he cried. "Either I shall :- able to tell those insulting boys tomorrow who my father is, or I shall nere look them in the face again."

Clymene smiled. "Come here, Phsethon," she said,"and let me whisper something in your car."
What he heard made the boy look first astorished, then delighted; and he rushed out-ol-doons and back to the place where he had left hir comrades, radiant with joy.
"Now let's tell tales of the deeds of our fathersl" he cried.
And the other boys looked at him in surprise
"But you have no father," one of them declared.
"O haven't II" replied Phaethon, no longt angered by the taunt which had so many timat
sung him. "You sec him every day when he thives his chariot acroses the highest part of the havens. He is Apollo, the sun god."
A burst of laughter greeted this proud statomant
"Oho!" cried one boy. "Why.could you not lave made up that atory some years ago and ared yourself a great deal of embarrassment?"
"Do you actually expect us to believe that?" acked another, with a sneer.
Disappointed, angry, Phaethon turned again tomard home. Having a father was as bad as rot laning one, if you could not convince other people of his existence.
But his mother was ready to help him out of die difficulty. Looking at him proudly, she said:
"No father would be ashamed to acknowledge you as his son. Tomorrow morning you may go to Apollo, and ask him whether what I have wold you is not the truth."
The impatient boy could scarcely wait for the moning to come, and long before daybreak, white the stars and moon were still to be seen in the sky, he started off toward the East, traveling as rapidly as he could. At last he came to the gorgeous palace of the Sun and was admitted within the doors to the very throne-room of his Inther. There, on the diamond-studded throne, met the radiant god, wearing a purple robe and bearing on his head the crown of beams.
"Who are you," he asked, "who have come bere to my palace? It is almost time for me to set out on my day's journey and I have not bong to talk with you."
Impulsively Phaethon poured out the story of his wrongs, and ended with a plea that his hather would give him some sign by which he might convince his skeptical comrades. Apollo hid aside the beams from about his head, which ree so dazaling that the youth could not approach closely, and called the boy to him.
"To be sure you are my son," he declared, "as son whom any father might be proud to own. I am willing to give you any proof of the fact, and I swear by the River Styx-and that is an ant which even the atrongest of the gods would sot dare to break-that I will grant you any mish which you may ask of me.
This was precisely what Phaethon had hoped for, but had hardly dared to expect, and it did no tuke iim long to give his answer.
"There is one thing," he declared, "which mill relly be a proof. Let me drive for one day jưur great chariot across the sky; then no one tho nes me can doubt that I am your son."

Now Apollo was very sorry for the rach promise which he had made.
"Choose something else, my son," be begged; "what you have acked for is not anfe. You can have no idea of the dangers of the path across the heavens. The road at the beginning of the journey slopes upward so steeply that even my horses can handly climb it; the middle of the road is so high above the earth that even I, myself, become dizzy when I look down; and the hast part of the road slopes downward so rapidly that it is almost impossible to bold in the horses. If it is hard for me, think what it would be for you."
But Phaethon refused to think. He had net his heart on this one thing and this one thing he would have. He knew his father could not break the oath which he had aworn by the River Styx, so he persisted in his demand. At last, attended by the Seasons, the Days, the Months, the Years, and the Hours, Apollo led the way to where the sun chariot stood waiting. It was the most gorgeous chariot that Phaethon had ever looked upon-of gold and silver and precious gems; and his heart beat proudly that he was actually to have the guiding of the magnificent car for a whole day. The borses were led forth and fastened to the chariot, and Aurora, the goddess of dawn, threw open the doors of the East, through which the sun in its splendor was presently to rise. After a final plea, which Phaethon stubbornly resisted, Apollo anointed the boy's head with ointment so that he might not be scorched by the brightness of the beams, and then set the crown of rays on the young head.
"Remember, my son," he said, "do not drive too high or too low; a middle course is best. Above all, do not attempt to use the whip, for the horses are spirited; and hold tight to the reins."
Only half heeding his father's instructions, Phaethon sprang into the chariot, grasped the reins, and shaking them over his steeds, started out through the open door.
It did not take the hoises long to feel that it was an unpracticed hand that grasped the reins, and, taking the bits in their teeth, they dashed out of the traveled road and wildly up the heavens. The courage with which Pheethon had started out did not last long. Below hima dizzying, sickening distance below-was the earth and the rea. That if he should drop from this awful heightl And there, when he looked about him in the heavens, were even worse sights;
the Big Bear and the Little Bear, the Scorpion and the Lion, the huge Crab-all of these seemed to be reaching out toward him as he dashed among them. Up, up, up, went the borses, and then as suddenly downward, almost taking the breath from Phaethon's body with their rapid plunge. They came so close to the earth that mountains which for thousands of years had been snow-crowned lost their snow-caps and stood bare and brown; rivers were dried up; a great part of Africa was burned to a desert; and many of the people were scorched almost black.

Phaethon had long before this dropped the reins, and he stood shaking with terror. Cries came up to him from the earth, cries of pain and terror and fright from the people of the countries

Mithology
It may seem to us as at first we read thin story through that it is simply a fairy tale, like those we have been used to hearing all our live; but to the people who created the tale in the far-off country and the faroff time it was much more than a fairy tale. They could not understand the periods of drought which occuned sometimes and dried up vegetation and river, and made fresh lakes shallow and stagnant. Why should Apollo, the god of the sun, allow his chariot to cause such destruction? There wa only one way to account for it-somebody else must be driving the chariot. And thus graduully grew up the story of the rash son of Apollo, who compelled his father to let him take his place and caused such great destruction thereby. The lightning-bolt which Jupiter hurled at the boy


THE HORSES DAGEED OUT OF THE TRAVELED ROAD
over which he was passing. But he was too much afraid for his own safety to worry about others.

The cries did, however, reach the ears of Jupiter, the king of the earth and heavens, where he sat on his throne on Olympus, and he, horrified, looked out upon the course of the wild boy. The other gods and goddesses gathered about him and besought him to save the earth.
"There will be no beauty, no freshness left," they cried. "There will be no cool springs and lakes for the nymphs to live in; no great trees and forests where dryads may shelter themselves."
"I call you all to witnessl There is no other way to save the earth but this!" cried Jupiter, and he raised his arm and hurled a bolt of lightning at the luckless Phaethon.
Struck from the chariot, the boy fell headlong into a great river, while the horses troted quietly across the remaining part of their course and disappeared into the doors of the West.
signified to them the thunder-storm which so often follows a dry period.
We are not to think that any one man or any hundred men ever said: "Let's invent an explanation of drought," and then made up this stor!. The tale grew up gradually, a little here, a litile there, until it came to have the form in which we have just read it.

There is another nature story which is to the full as famous as that of Phaethr... It will be interesting to see, as you read it, whether you can get, in any degree, the meaning of the story. However, you need not be discouraged if you do not, for the tale is in itself interesting enough, even if we did not know that it had a meaning.

## Story of Proserpina

Ceres, the goddess of agriculture, was one ot the busiest of the deities. In the springlime, she had to go about from field to field all ort
\%
in the
gins
bout
Hea
mplat
siil,
lome
mbom
Like
patorn
thoer 0
foreses,
crows
butter
all, wh
be tim
ing the
One
the bo
op
boxea
ms con
in terro
topped
reing
Lis chat
compani
banea
nofolion
eqhine
dal th
beand
Proser
"I mu
gind wh
nod rher
But P
"She
dechered.
While
w the ma
their pas
nith the
arth ope
bis under
The do ater the dightful the glare nacting 1 bea use ${ }^{6} 0$ dark;
beblacki
"You
to erth, attending to the sowing of the seeds; in the mummer, she watched the growth of the gnins and fruits; and in the autumn, she went about from place to place blessing the harvests. Hea cur bore her awittly, and she so loved the buplul work she did that she never grew tired. stin, the was always glad to come back to her tome and to her beautiful daughter Proserpina, mhom she loved very dearly.
Lite her mother, Proserpina had her duties to paform, though they were not as difficult as thoe of her mother. She had charge of all the lowes, and in the springtime, when she walked acros the meadows, violets and daisies and buttecups sprang up in her footsteps. Naturully, the loved the flowers, and apent much of be time in the fields with her companions tending them and gathering them for wreaths.
One day, as the girls played in the meadows, theg beard a strange rumbling sound and looked up hatily. A huge, dark chariot with dark boneand a handsome hut gloomy-looking driver mas coming toward them. The girls screamed in teror and started to scatter. But the driver topped his chariot, leaped to the ground, and ring Proserpina, bore her away with him in tis chariot. Tne frightened girl called to her companions and to her mother, hut the hlack bones carried them on too swiftly for any help wollow her. Meanwhile the stern-looking man ephined to Proxippina cis:at he was Pluto, king dall the regions we. $2 w$ the earth; that he loved be and wanted her for his wife.
Procerpina answered:
"I wust tell my mother; she will be wild with ginf when she finds that I am gone and knows nod rhere to look for me."
But Pluto shook his head.
"Sthe would never let you go with me," he dellered.
While they were talking thus, they had come whe margin of the River Cyane, which opposed their pasage. Angrily; Pluto struck the gr .nd mith the great trident which he carried, and the arth opened and made him a passage back to bis underground kingdom.
The darkness in whinh they found themselves atter the earth deightfful to P ! closed behind them was the glare of the sun; hut to Proserpina it was mating less than horrible. All her life she had bean used to living out of doors from daylight thark; and now this was far, far worse than the blackest night she had ever seen.
"You will like it when you become accustomed
to it," suid Pluto, noticing that the girl trembled as ahe sat beside him.
Gradually the way grew lighter, though the light was white and ghootly-not like the beautiful golden sunlight of the upper world.
When they came at length to the huge palace of Pluto, he expected Proserpina to exclaim with delight over its gorgeousness; for Pluto owned all the gold and silver and gems that lay hidden in the earth and had made good use of them in decking his palace. But Proserpina was not used oo gorgeousness. She and her mother had lived simply always, and the rich gems which she saw about her were less to her than a handful of fragrant flowers would have been. And all the jewel-studded lights, which to her seemed to serve only to make the gloom more noticeable, ahe would have exchanged for one look at the stars.
It was the same way with the food. All her life she had eaten hut the plainest dishes-simple grains, fruits, hread and milk. And the rich food which Pluto ordered to be placed before her seemed so strange to her that she would not even taste it. This went on for several days, Pluto, in great distress, urging her to eat, and she as steadily refusing.

Meanwhile her mother had been almost distracted with fear and grief. The girls with whom Proserpina had been playing could tell her nothing except that a man in a hlack chariot had carried off her daughter. Who the man was, she could have no idea. She sought day and night through one country after another for her daughter. The sun, when he came through the
doors of the East in the doors of the East in the morning, saw her wa - - ing on, stopping everyone to inquire for her lost girl; and the evening star found her still at her task. One day, as she sat for a few minutes resting on a stone, an old man with a little girl passed her. The goddess bore about her no signs of her divinity; she looked like a poor, worn-out, old woman, and they took pity on her and begged her to go home with them. At last she cens nted to do so, and as they walked the old man told her that his little sot was very sick of a fever.

When they reached the house they found that the child had grown rapidly worse, that he was, in fact, almost dead. You may imagine the delight it caused when Ceres, taking the child in her arms, kissed him and thus restored him instantly to health. Then she asked that she might be allowed to take charge of the boy. Of course the family was only too glad to have so
eweellint a nurxe; but the mother, over-anxious for the son in whose sudden recovery she could scarcely yet believe, determined to hide and wru? what happened; and it was, indeed, a cartling sight which she saw.

Ceres bathed the boy, murmured some magiosounding words over him, and then, stepping to the hearth, raked a hollow in the glowing conla and laid the boy within it. The watching mother sprang forward with a cry and snatched her child from what she believed would have been its death. But what was her amazement, when ahe turned around, to see before her not the feeble old woman whom her husband had brought bome, but the radiant goddess Ceres, with her hair of gold and a wreath of wheat and scarlet poppies. Ceres spoke sadly but not angrily:
"I would have given to your son," she said, "immortality. Now you, by your failure to trust me, have taken from him that gift."
And with these words, the goddess vanished.
Her search still continued, and finally, when it seemed that everything was in vain, Ceres became angry with the earth which had failed to aid her in her search and laid her curse upon it. Drought and famine, she declared, should extend over the whole earth; nothing green should grow; there should be no seedtime, no harvest, until her daughter should come back to her. In vain the people implored her, in vain tales of their suffering cume to her ears; she, usually so gracious and kindly, was cruel enough now.
At length she found a clew. The river Arethusa, which comes up from the underworld, had seen in the kingdom of the underworld a queen who looked, she suid, most like Proserpina. She was pale and sad, and the white poppies which she wore in $h$ is hair were very different from the bright flowers she had been so fond of wearing. But still, beyond a doubt, thought the rivcr Arethusa, it was Proserpina. Ceres knew not whether to be glad or sorry. Her daughter was found, but found where? She went to the meet-ing-place of the gods on Olympus, which she had not visited since the loss of her daughter, and implored Jupiter to use some means to have her daughter brought to her. All the gods felt sorry for Ceres, and they felt sorry, moreover, for the people on the carth, whom Ceres' grief was causing to suffer. At length Jupiter summoned Mercury, the messenger of the gods, and sent him to the regions of the underworld.
"I will do my best," said the king of gods and men, "but the Fates are even stronger than I, and they have declared that if your daughter
has enten anything while ahe has been in Plutor realm she may not again come back to the ligta of day."

When Mercury reached the kingdom of Putuo and stood before the king and the andeyad queen, he 'uimself felt sorry for her and hoped that he should be able to take her back widh him. When it became known, however, that Proserpina had caten a few of the seeds $\alpha$ a pomegranate, Mercury shook his head in despuir.
"It cannot be," he said, and he went medly back to the assembly of the gods, leaving Proserpina more hopeless than before.
At length, however, the Fates agreed to make a decree less severe, and declared that though Proserpina must spend six months of every your with Pluto in the dark underground kingdom, the remaining six months she might spend rith her mother on the earth.
You may imagine the delight of Ceres when it came time for her daughtcr to return to bar for the first time. She stood anxiously at the door of her cottage, waiting, watching while the former companions of Proserpina stood about where they might welcome hcr. Suddenly there seemed to be a new freshness in the air; the gres in the meadows, long dry, grew green before their eyes, and purple violets and yellow butterecups started up all about them.
"She is comel" they cried, and sure enoogh, she was advancing toward them aeross the madows, her hands outstretched, her garments blor. ing in the breeze, no longer the sad, whitefaned queen of the underworld, but the old glad Pror erpina who had left them long before.

This is a weather myth. Why, the old Greds asked themselves, should the goddess Ceres, so kindly, so bountiful through a part of the gar, withdraw all of her blessings through the winter months?
It must be, they declared, that she was grieed or angry about something; and gradually this tue grew up of the lass of her daughter and her long seareh. The descent of Proserpina each yar to the uaderground regions meant the coming of winter, when no flowers bloomel and no seds sprouted. The return to the upper world, on the other hand, marked the coming of spring.

There are some of these old myths which my possibly have meant to the Greeks more thin they mean to us. The following story is tow but a story; we can see in it no figurative maning It is, however, possible that sueh a meaning my
ciginally have existed. But the tale is intereating coug simply as a story:

## The Story of Atalanta

The king of Boeotia had one daughter, Atatuta. While she was more beautiful than any abee girl in her father's kingdom, she remained a maiden at home in her father's house, long ather all her companions were married. And this ma not because she lacked suitors. Young men, mandsome, strong, rich, fearless, came constantly to her father's palace, seeking her in marriage, and it mas not because the king refused his consat that they went away unhappy.
Atalanta herself was the cause of their unhappinas, for she had made a vow that she would sod marry, but would devote her life to the chase,
certain to find it was no match for hers. A number of suitors had met their deaths by reason of their love for her, and the people of her father's kingdom were beginning to murmur among themselves at her cruelty. One day there acted as judge in one of the races a youth, Hippomenes, by name, who had never before seen Atalanta. As he took his place in the judge's seat, he said to himself, looking around it the crowd which had gathered to witness the race:
"How can any man he so foolish as to risk his life for the sake of this one girl when there are so many beautiful girls to choose from?"
But when he saw Atalanta step forward, ready for the race, he changed his mind; for never, he felt sure, had he looked upon anything so beauti-


ATALANTA'S RACE
From the pelaliag by Poyater

Iike the goddess Diana, whom she so much admired. It was hard. however, to be constantly rusuing without having any good reason that ms apparent, so she made up her mind to give a different answer to her suitors-an answer which would leave them no argument. Accordmady, when the next youth presented himself, she
applied: rplied:
"I shall marry the man who can defcat me in a mete; but everyone who tries and fails shall be put to death."
This may sound as if Atalanta was a very cuel princess, but her idea was simply to keep pepple from bothering her with the question of marizge. However, her resolution did not have He effect she expected, for there were still found pung men who were anxious enough to have the princass for a wife to submit to the trial which te proposed.
Now, Atalanua could ren as swiftly as the deer se hunted in the forests, and however much a jurh might pride himself on his speed, he was
lul, and he found himself hoping that the youths who ran with her would be defeated.
And as she ran she looked even more beautiful. Her bright hair blew backward in the breeze, a lovely color flushed her face and her gracefulness in running was wonderful to look upon. Of course she won, as she always did, and the youths who had made trial of their skill with hers were mercilessly put to death. Even this, however, did not frighten Hippomenes.
"What glory," he said to her, "can there be in defeating weaklings like those who just ran with you? Tomorrow, if you will, I shall try my speed and endurance against yours."
As Atalanta looked at him, she felt that she would scarcely wish to defeat this young man, so handsome did he look, so brave, so worthy to be her partner. Still she only nodded her head and made up her mind that she would give him as hard a trial as she had given the others.
Now, Hippomenes knew, having seen her run,
roems, the Iliad, the Odyavy, and the Aewid, hich have made the atory of the siege of Troy und all the wonderful happenings which ree cassed by it, so well known to us. Attempts at historical accuracy are mingled in all thre of these poems with accounts of the part uhen by the gods in human affairs.

## The Trojan War

The original cause of this fierce conflict mu simple enough. The sea nymph Thetis, at the time of her marriage with Peleus, invited to the wedding all the immortals, except one-Eis, the goddess of discord. If Thetis had thought, however, to avoid trouble by slighting Eris, ste soon found her mistake; for the goddess, enned at the slight. threw among the guests a golden apple on which were inscribed the words, "For the fairest." Juno, queen of the gods, Venus, goddess of love and beauty, and Minem, goddess of wisdom and the arts, each chimed the apple, and they appealed to Jupiter. He, however, was unwilling to bring upon himell the wrath of two of the goddesses by deciding for the third. And he therefore sent all thre to another judge.

The judge chosen in the delicate matter wa Paris, son of Priam, king of Troy. At the birth of the prince it had been foretold that be roudd bring much trouble to his country, and in at attempt to avoid the outcome of the prophey Priam had Paris exposed to die on the mometain side while he was but a child. A shepherd, however, who found the beautiful boy, brought him up as his son, and at the time that Paris me called upon to make his momentous decision be was acting as shepherd on Mount Ida.
The three goddesses appeared before him and stated their case, and not content to allow him to judge as his eyes directed, each of them offered hin a bribe. Juno declared that the decided for her, he should have power and riches; Minerva promised him lame in mr; Venus, the most beautiful woman on certh es his wife. Paris was not influenced by this ofar of Venus, for he had a wife, a beautiful a nmph, Oenone. However, looking upon the mandously beautiful face of Venus, he felt that t . could not award the prize to anyone else. By this decision, he won for himself the hated od Juno and Minerva.
Inspired by Venus, although he did not relm that fact, Paris shortly after journeyed io Greer, where he was entertained by Menelaus, ting d Sparta. The wife of Menelaus, Helen, weide

Some of the myths told by the ancient Greeks were on the border-land between mythology and history. It is probable, for instance, that the tale of the Argonautic Expedition (see Jason and Argonauls) had its rise in a voyage of discovery, although, of course, all historical reference to such a voyage is now lost. The story of the siege of Troy, likewise, the most famous of all the tales that have come down to us, was, probably, an outcome to some war which Greek chieftains waged with some people in Asia Minor. The innumerable legends which grew up around this conflict were used by Homer and Vergil as subjects for their great poems, and it is these


moot beautiful of all women, and it was abe whom Venus had promised to Paria.
Urged by Paria, and driven to a davisinim by Venua, Helen consented to leave her misband and journey with Paris to Troy. Menthus, when he discovered the treachery of his gereas and his wie, called upon all the chiefrains of Greece to give him aid in punishing the one and bringing back the other. Most of them responded willingly enough to his call-Agumemnon, king of Mycence and bruther of MeneLaus, Ajax, Diomede, and Nentor, the oldest and wiscst of all the Grecian chiefs. Ulyases and Achillen did not wish to go, and various means had to be adopted to gain their ald; for all felt that without these two the expeclition was certain to be a failure. Ulyasea, the craftiest of men, would be able to give thern counsel in many difficult places, and Achilles was booked upon by all as the greatest of all Greek heros. He was the son of Peleus and Thetis, and might well be brave in the presence of enemies; for his mother had bestowed upon him a wonderful gift. She had dipped him, while he was . ung, in the River Styx, and had thus made his body invulnerable to any weapons; only one place, a spot on the heel by which she had held him, could be injured by mortal weapon.

It took several years for the Greeks to prepare for the expedition-to get ready the supplies, the arms, the provisions which would be required by so large an army. But finally everything was ready, and the chieftains with their thousands of followers assembled at Aulis in Boeotia, ready to embark. But here a vexatious delay awaited them. While hunting, Agamemnon, the com-mander-in-chief, killed a stag which was sacred to Diana, and the goddess of the chase would by no means allow him to go unpunished. She brought a pestilence upon the army and produced a calm which made it impossible for the vessels to leave port; and the soothsayers, after trying all their arts, declared that the wrath of the goddess could be placated only if Agamemnon would allow his daughter, Iphigenia, to be offered up as a sacrifice.
Agamemnon refused, absolutely, at first, but as there was no other way to appease the angry goddess, he finally sent for his daughter, giving as his reason that he wished to marry her to the hem Achilles before the experition should set out. The princess was laid on the altar and the knife was almost at her throat, when the goddess, seeing her beauty and innocence,
relented, and bore her away in a clowd to be priestess in a temple to Diana.
Pavorable winds were now granted, and the fleet set rail for Troy.
Mennwhile, the Trojans had been preparing for the coming of the enemy. Priam, king of Troy, was an old inan, and unable to lead bis forees in battle, but his sons were strong, active men, and particularly wis Hector a kader of whom ar.j army might have been proud. Aenou, a relative of Hector, was one of the strong defenders of Troy.
When the news apread through the city that the Groek fleet was approaching, the Trojes forces gathered on the shore, but the Greiks drove them back and casily effectel a landing.
For nine years the struggle went rn. First the Greeks would gain the advantag then the Trojans; and by the close of the ninth year the affair seemed apparently at a standstill. The Trojans had withdrawn their forces within the walls of the city, and the Greeks were lexikging them. At the beginning of the tenth year an event occursed which promisel badly for the attacking forces. Achilles, the great pride of the Greeks, becune angry with the leader, Agmemnon, on account of a real or fancied insult, and he left the struggle absolut-ly, taking reluge in his tents and withdrawing wil of his foress. This was indeed a blow, and the Trojans might have profited largely by it had it not been jus: at this point the gods and goddlesses began io take a part in the struggle. Juno and Minems because their claims to beauty had been ignoomd by the Trojan Paris, took part against Troy, while Venus and Mars favored the Trojans. Jupiter remained, for the most part, neutral, though often one goddess or another was able to influence him.
Partly because of the withdrawal of Achilles, partly because Thetis, the mother of Achillea, angered at the slight to her son, had pecitioned Jupiter to grant a Trojan victory, the forese d Troy defeated the Greeks utterly, in a bartle, and drove them to their ships. A council of war was called, and Nestor, to whom all booked for wise counsel, declared that he could see no way out of the difficulty unless Achilles could be persuaded to return.

Agamemnon at last consented to humble himself before the hero and to petition his aid, and rich gifts were sent by the messengers who were dispatched to Achilles. The later, however, wie firm; he had been slighted and the Greeks might get along without his aid. He even announood

## Mgtholecy

the ho wis going to return to Girece at
Ine Greeks had bull: a mampart around their tipo and the Trojons were besieping them there. Emounged by the new: that Achilles had noued to take part against them, the Trojans troka through the Greek ramparts and woukl meves Aro to the ahips had not Neptune offered id to the Greeks.
There remained one last way of making a pled - Achilles. Patroclus, his relative and his darset friend, was persuaded to go to him and 0 report the sorry state in which the Greeks hand themselves. Even this, however, did not move Achilles, but he did finally consent to allow Putroclus to don his armor and to place limelf at the head of the Myrmidons, Achilles' one special troops.
When he returned to the field, Patroclus found a ferve latile going on. He dashed into the mide of it as the head of his men, and the Trojne, terrified at the supposed sight of the one whem they so dreaded, fled in dismay, even Hector being obliged to flee.
The Trojens, however, rallied and returned to the conflict, and suddenly Hector and Patroclus bund themselves face to face. The Greek rriens who tell us the story cannot, apparently. bere the thought of Patroclus being really vanquithed in fair fight by Hector, so they tell us Apollo took sides against the Greek warrior, and deprived him of his helmet and his lance. At any mite, Hector obtained the arlvantaga and Ptoroclus fell, mortally wounded by the Trojan's spar.
Ahilles, when he heard of the death of the man whom, mone than any other, he lo was wid with remorse and anger. He wi at to rash unarmed into the fight against Hector, who had arrayed himself in the armor of Achilles which he had stripped from Patroclus. But Thecis, his mother, persuaded him to wait until she could get from Vulcan another and finer suit of armor for him.
Impatient at the delay, but recognizing the midom of his mother's request, Achilles spent the night in grief for his friend and in ragings yainst the slayer. In the morning the armor mu rady, and a most wonderful suit it was, mith its elaborate trimmings of gold. First Achilles proceeled to the council, where he wrame reconciled with Agamemnon, and then, aring ali the Greeks to follow his example, he medel forth to battle. The Trojans could not and against the Greek forces, inspired as they
were with new courage by the prosence of Achillen, and they rushed luack into the city.

Hector, however, remained without the walls, determined not io flee; but when he naw Achilles npproaching in his flushing armer, with his ajear poisel, he Incame tertifirl and turned to flee. Amound and arouml the walls of the city they fled, Achilles gaining not at all upon Hector; and It is uncertain how the race mighe have terminated had not Minerva interf ed $: 11 \mathrm{it}$.
She assumed the form of Hector's bravest brother, and appearing at Hector's side, urged him to turn and dely Achilles, promising aid. Hector, wisuch delighted, for it was far from being his detire ever to run from an enemy, atood to give battle and Instantly hurled his apear with all his strength. Turning to ask his brother for ano her spear, Hector found that he wis alone, and understood that he had been deceived by some deity. Now Achiles advanced upon him and launched his spear with such true aim that Hector sell to the field, mortally wounded. His last words were an appeal to Achilles to allow his body to be carried back to Troy and given proper burin? rites, but Achilles answered him brutally. Tying the body of Hector by strong cords to his chariot he drove back and forth before the gates of the eity in full view of the 'Irojan forces and of the griefstricken parents of Hiector. No pleas seemed to move him; he would have vengeance on the dead body of his enemy.
That night, however, the old king Priam went to Achilles in his tent and finally prevailed upon him to give up the boly of Hector and let it be borne back to Troy. A twelve-day truce was pledged, that the Trojans might have time for the funeral ceremonies which they felt were the duc of their dead leader.

Achilles himself did not live long after the death of Hector. One day, during the funeral ceremonies of Hector, the Greek hero saw a young woman who seemed to him the ma: teautiful and charming person he had ever seen. Eagerly he inquired who she was, and what was his dismay to learn that she was a princess of Troy, daughter of Priam and sister of Hector. However, he was not to be turned from his purpose; he had determined when first he set eyes on the maiden to make her his wife, and he immediar ly sent messengers to Yriam declaring his desin. For some reason, Priam decided to look favorably upon his suit-perhaps because Achilles had yielded to his plea for Hector's

## Mytholocy

body, pertape becauve he thought that the Greek hero might Inturence bis people in favor of the Trojana.
At any rate, a conference was artanged, and the partien mes in the temple of Apollo. Parin had not been invited to be prement, but he apprared during the course of the nepotintions, and hin coming meant no good for Achilles. Puris knew that thin man was invulnerable in all but one spot, and it was at this spot in the heel of Achilles that he aimed his poisoned arrow. The arrow dew true to fur mark, and Achllles fell, mortally wounded. Paria, however, did not enjoy his triumph long, for a Grecian chlef in his turn ahot Parin with a poisoned arrow. Thus died the man who had caused all the trouble, who had brought dintrees to two entire peoples and death to hundreds of brave men.
And now a prophecy came to the ears of the Greeks. There was in the city of Troy a statue of Minerva, supposed to have fallen from heaven. It was called the Palladium, and was looked upon as the guarr'in of the city. Vintil the Greeks ahould gais lisession of thi lum, the prophecy ran, the, could not hope to capture Troy. At the risk of their lives, for the statue was well guarded, UI; seen and Diomede entered the city in diaguise, stole the statue, and bore it off to the Grecian camp.
But even this did not seem to bring decislve victory to the Greeks. Their confidence in their own power was lessening, and they began to argue that if they could not subdue the Trojans with the aid of Achilles, they could never make head against them now. Here the crafty Ulysses came to their aid.
"If we cannot take the city by force," he declared, "we can do it by stratage..." And he laid a plan which all the Greek leaders deelared to be certain of auccess.
First they allowed it to be noised abroad, so that it enme to the ears of the Thojans, that they had given up the siege and were returning to Greece. And they did indeed, withdraw their ships and hide them behind a near-by island. They left something behind them, howeversomething which filled the Trojans, when poured forth out of the city gates and across the plain, with curiosity and amazement. This was a huge wooden horse, the purpose of which they could not guess. Had they known that it was hollow and fill of armed Greeks, they would have left it on the sands, or have burnt it, but as it was they gathered about it and wearied themselves with conjectures as to its use.
"Let us take it into the city," eried won, "and prewent it as a gift to Minerva."
"Let wo not touch it,". exclaimed othens "Who knows what harm if may do us?"

Most determined of all in his moumand that the horse be let alone was Lacoosn, pries od Neptune.
"What would you do?" he cried. "Han you not learned that the Greeks are never to be trusted? For my part, 1 fear them evee when they offer gifts." And with thase worts is struck the side of the howe with his hase.

Hild the people been wive, they might han guessed the truth from the hollow wound and the clanking at of armor which followed the bbre, but they could not quite pernuade themselves io give up this eurious sbject.
Meanwhile, another part of the scheme d Tlysees was put in action. A Greek was ben dragged forward by cager Trojans, who dochend that they had captured him and demanded int he tell his story. With apparent reluctanco and terror, he replied to their queations. Yes, is was a Greek. His name was Sinon, and be ind been cruelly treated by Ulymes, who had paro suaded the Greeks to a bandon him whea thy set sail from Troy.
"But do you know the purpose of the woode horse?" cried his captors.
"O yes," replied the wily Sinon. "It mo built to propitinte the goddess Minerva, who wim angry at the theft of the Palladium."
"And why is it so huge?" asked the Tropm
Again Sinon pretended to be reluctant io thin but at length he said:
"They have deserved no good at my hands, and I will tell you the truth about the wooken horse. Calchas the prophet assured them dhat if the Trojans succeeded in getting the boose within their city they would assuredly triumph over the Greeks, and they built the horse hrees so that you could not get it through the gites."
While the people booked at each other, nox quite convinced as to Sinon's good hiith, a remarkable portent occurred. Out of the sat there glided two monstrous serpents, so verrible to look upon that all the crowd scattered it fright. The serpents, however, paid no attention to the crowd; they made their way st once is where Laccoon and his two sons stood. All atruggles on the part of the three were unamiling, they were crushed to death in the coils of the monsters, and the people saw in this porears a sure sign of the displeasure of the gode at Laocoon's trentment of the wooden insse.

Wheor delay they incaged the hugs horse two the ethy, forming a joyous procemion abous n end inging and dancing in triumph. But twe trumph was chort-lived. In the night de tritor Stinon let out the men who were ahut It hone's body, and they in turn opened the * pites to the Greek forces, which had returned eder cover of darkneen. Immediately the whulo dy wes full of the enemy. Fires were started in wry quarter; men, women and children were

Penees, are lokl in the Odyony and the Acwith There are good inanalations, both in proce and in poetry, of these three wonderful old poems, and girls as well as boys will find much in them chat is aboorbing and iclighttul.

The New Puctical Refiaence Limanar contrina much on the subject of mytholory. scattered through the Ave rolumen. All of this material is made carily a vailablo by the Chavibed Index in this volume, all the titce pertiniaing to


pot to death; and the few who escaped the mond took refuge in flight.
Troy had fallen, not through force but through trachery; and the long struggle was at an end.
This story of the siege of Troy is of necessity biné, but the full account is interesting enough to rpey detailed study. Homer, in the Iliad, give the story, in most fascinating form, of the he your of the war, from the time when Achilles acomes angry to the denth of Hector. The tory the wooden horse, of the final fall of the dy, d the wanderings of Ulysses and the Trojan
the subject being there grouped under the heading Mythology.

## Outiline

## I. General Meaning <br> II. Divisions

1. Myths of explanation of questions asked by primitive man in regard to creation a. What am I?
b. Whence did I come ?
c. What is the world ?
d. Whence came all nature ?
e. Causes of light, darkness, life and death, etc.

## Mytholers

2. Myths of entertainment
a. Tales of adventure of gods and heroes
III. Origin and Theories
3. Gods were mere men remembered after death by their great deeds
4. Wise men invented them for the purpose of establishing law, through the gods appealing to mankind
5. Inventions of poets, story-tellers, etc.
6. Myths explained all physical phenomena

## IV. Grecian and Roman

1. Creation of all things explained by myths
2. Planets as rulers of universe
3. Universe divided and rulers take different abodes
4. Abode of lesser deities
V. Scandinavian and Northern Mythology
5. Explanation of creation
6. Giant Ymir first created
7. Bori, father of all gods, appears
8. Earth then formed from Ymir by Bori's grandsons
9. Twelve gods and twenty-iour goddesses
10. Gods beneficent and kind
VI. Egytian
11. Many religious myths
12. The stronger eventually led
13. Distinctive belief, soul of man was immortal
VII. Comparison of Different Myths
14. Points of resemblance
15. Points of difference
16. Underlying principle same throughout

## questions

What great benefits have accrued to the modern world on account of mythology?

The founding of what city famed in history is based on mythology?
Who was Achilles! Give the story of Hercules.
What was the foundation of mythology? What is its substitute in modern days?
What marked the decline of mythology? What effert would authentic history have upon it?
How does a people outgrow its mythology?
What are the three systems of interpreting the origin of myths?

Of what monsters was Uranus the father? Who was his wife?

Which of the Titans dethroned his father and what was the ultimate fate of all twelve?

## Matholog

What was the ancient conception of Jupiler? What was the peculiar relation of Mars to the Romans? How is he represented in art ?
Who were the parents of Apollo? What did he mean to the Greeks and Romans?
With whom did Diana come to be identifed!
What are the varying accounts of the parentage of Venus?

Who was Mercury's mother? Over what did the god preside?
Who were Vesta and the vestal virgins?
What was the original number of muses?
Who was the muse of comedy?
What goddesses in northern mythology corre sponded to the Greek fates?

What did Nemesis personify?
What animals were sacrificed to Ceres?
Who were the children of Ceres?
What is a common representation of Neptune!
What expedient did Ul ysses use by which be and his crew escaped the Siren3?

What terrible fate befell all those who looked upon the Gorgons?

Into what inanimate object did Zeus change Niobe?

What was Acteon's harsh fate?
In what way was Diana associated with Endymion?

Of what was Psyche a beautiful personific. tion?

Why was Orpheus an important figure in Greek mythology?

Of what was Aurora goddess?
In what way did Perseus escape an carly death?

Through whose aid did Jason serure the Golden Fleece?

What famous riddle did Edipus solve?
What oath were the suitors of Helen compelled to take?

How did Odin inform himself of what took place on earth?
According to Norse mythology, which was the first of all things to come to life?
What is a vampire?
How is our word tantalize naturally derived from Tantalus?

Who dethroned Cronus and became rule of the world?
What Greek god was identified with be Roman Jupiter:
phax
conl
It
the
in
cart
and
be
loug
A
of
to b
How
his
$s x_{1}$
has
the $n$
hesa
dome
to dis
and t
Im
sudy
hund
is of
mentr
of us
dran
and
we le
tuion
ireet
romel
ane
moner


Indure Arabject to Man. Man's relation to plant and animal life was the first great factor confronting him in the prohlem of existence. He at fust faced nature empty-handed; was given the injunction to "subdue the earth," and only in the scoomplishment of this lay his safety. The arth had to yield him his living; good plants and worthless were to be recognized-the one to be cultivated and improved, the other to be bought and exterminated, so far as possible.
Animals that could be hrought under suhjection and made to contribute to the well-being of man in ways that he should discover were to be distinguished from those that defied him. How to render the latter less harmful was one of his problems. His progress from a state of sangery to the highly complex civilization he has reached is the history of his struggle with the mysterious forces of nature, during which he has assorted and classified the plants and animals, domesticated many of the species, and learned to distinguish among insects those which benefit and thase which war upon man and his efforts.
Importance of Nature 8tudy. Since the sudy of nature in its various forms has been the bundation of all the world's progress, it su. oly is of importance to us today. The loveliness of mature appeals to every normal mind; everyone of us, from the little child to the person of wanced years, is constantly framing questions und never satisfied until we get our answers. We are learning through observation and experimenation and in noting the results of the careful ibretigation of others. Enthusiastic men and romen are continually announcing new discovcine and putting them into form for us to molestand.
We wonder at the marvelous scheme of life avond us and study its unfolding with ever depening interest; it is no less a delight to the
child to know those things in nature that are well worth knowing; before he is aware of it the lessons thus learned have instinctively taught him the wisdom of doing those things that make life well worth living. As his knowledge increases his sympathies hroaden, his sphere of usefulness enlarges, he becomes better fitted to occupy his place in the world.
suggentions for 8 tudy. The makers of Tre New Practical Reference Library recognized the importance some phase of this subject assumes in most courses of reading and in every carefully outlined plan for general study. The investigation of every phase of nature is quite naturally never attempted by any one person, yet some of its departments are constantly drawn upon by young people in many ways to furnish contributions to their classified knowledge. The General Index at the end of this volume justifies its presence there in connection with one's study of any topic, and in no other instance more fully than when nature study is under consideration. Literally hundreds of articles appear in alphabetical order in the volumes which in authoritative manner explain the facts of plant and animal life. There is, in addition, a good account of the general topic, under the heading Nature Study.
Let us bring together from the General Index those headings which refer to our subject, not forgetting that there are from five to scores of articless listed under each. heading, and to each of these readers and students have ready access, in the orderly alphabetical arrangement of the books.

Birds. Children are interested in birds, and while they cannot classify the species and families, you, teacher or parent, will find such classification helpful in your work with the little people and useful in your own advanced study. Without
mentioning one of the 221 dififerent binds discused in the six volumes we give below their divisions, as grouped in the Index, and one group can ensily be studied without reference to any other:

|  | girds |
| :--- | :--- |
| Bee-Eaters | Runners |
| Binds of Prey | Scratchers |
| Blackbirds | Sea Binds |
| Cuckoos | Swallows and Alies |
| Creepers | Thrushes |
| Crows | Titmice |
| Finches | Waders |
| Fine-fenthered | Warblers |
| Fishers | Waterfowl |
| Fly-Catchers | Weak-footed |
| Possil | Weak-winged Divers |
| Parrots | Woodpeckers |
| Pigeons | Miscellaneous |

Planta. The wonders of nature are nowhere more strongly emphasized than in the study of plant life. The subject is exceedingly broad; children are most interested in flowers, becuuse attrected by beautiful forms and coloring; hater they see other marvels in growing leaves and stalks, and the great diversity of phant life makes an appeal it is difificult to resist.
The Nem Practical Refinavce Lbbarit lists in its General Index more than six hundred specimens of plant life, and each is described in its proper alphabetical order in the volumes. The student, teacher or parent can quickly arrange a study plan based on any phase of plant life by exrmining the following table of sub-headings under which the hundreds of articles are appropriately grouped:

| Animal-eating | PLANTS <br> Herbs <br> Medicinal |
| :--- | :--- |
| Aquatic | Mosses and Lichens <br> Crepers |
| Desert Plants | Nuts |
| Diseases of | Parasitic |
| Dye Plants | FFuits |
| Ferns | Fungus |
| Fiber Plants | Garden Vegetables |
| Flowers | Grains <br> Forage |


| Pa-ia of Piants | Spice-yielding |
| :--- | :--- |
| Plast Products | Treess |
| Seareeds | Tropical |
| Shrubs | Weeds |
| Small Fruits | Unclassified |

Insects. It is a mistake to chase all inecon as injurious. Many are perts, it is acknowleded, but this is untrue of some. We often wonder what reason there can be for the existence d numerous species of insects; possibly we have ant classed them as injurious, but at least we have maintained a strong prejudice against them This has been frequently brought to our atter tion when an investigator, studying insect ${ }^{1 / t}$, has proved that some particular object of orr disapproval is of great benefit to man, in oue way or another. For instance, we know that the ladybind, which is not a bird but an insect, protects vegetables from plant lice. So far as me yet know, the world would be better of without our great variety of insect life, but we may lam in time that our present views must be greuth modified.
Insects are very carefully classified in the General Index, and each one there named is described in thene volumes in regular alphabetioal arrangement. The following list of sub-hed ings will assist the investigator in prepuring material for nature study along this particultr line:

Ants
Bees
Beetles

> nssicts
> Butterflies and Mobe FFies Straight-winged

Bugs
Extending our investigations farther, we find that it will profit us, in seeking a well-rounded view of nature study, to refer to the geneal articles on Zoology, Botany, Insects, Birds, tic, not forgetting to study the colored illustrations showing orders of birds and animals.

In the pages following we give several tppe studies of plants, animals, birds, insects, ants, trees. The general form of each may be used in connection with other lessons relating to dir. ferent members of the same species; thus the value of the studies is particularly emphasinad.

## Lessons on Plants

Cenoral suggestions. 1. Let the leasons conform to the arrangement in your course of study, even though you think you might improve upon that arrangement.
2. Remember that children of the primary and
intermediate grades are more interested in statr. ing objects as wholes than they are in studing them by analysis. Do not attempt minute a extended amalysis in these grades.
3. Lend the children to do the work mole

## Wature Ittedy

Ner direction. Ank them to look for that which joen winh them to obeerre and then give them the opportunity to tell what they saw.
4. Remember that through the nature-study konong you can easily aud logically correlate the aber branches of study in the course. See that low lasons contribute to the work in language, mamber, geography and literature.
5. Enter finto the work with enthusiasm yourself and the children will become enthusinstic. Surdy to make your questions and descriptions kid, pointed and plain. Do not use technical trin aor hagguage that the pupils cannot readily mderstand.
-6. Make all preparation for the lesson before alling the class, so that the lesson will begin promply and continue to the end without internution.
Sobotion of Plants. 1. In selecting plants for tudy in the primary and intermediate grades, bar the following points in mind:
Prex, the study of plants in these grades should the place in the spring and early summer becuse the plants which appear and blossom anty in the season are more simple than those reching maturity later.
Sceond, other things being equal, plants common to the locality should be selected. It is of great adrantage if enough specimens can be mared to provide every pupil in the class with $t$ phant.
Third, select plants large enough to have their puts easily recognized. Young children should not be called upon to observe minute objects.
Pourth, whenever possible, have the pupils colloct the plants themselves. With children in the first and second grades this will have to be done under the direct supervision of the teacher of an assistant. Plants should be carefully remored from the soil, so that the roots will remin intact. Before distributing the plants for the lesoon, hold the rooks under water until all the soil adhering to them is washed off.

## Ilistrative Iessons

Purts of \& Plant. The yellow adder tongue, abo toom as the dog-tooth violet, is an excellent phat with which to begin this study. The trilham, the hepatica, or liver leaf, the claytonia, a apring beauty, or a violet can also be used. Aruent the study according to the following plan:

1. Collect and prepare the plants.

2 Oull the class and distribute the apecimens.
2 Study the plant as a whole.
2 Nirr. Does anyone know the name of this
plant ? Possibly some of the children do know its name. If not, give the name.
b. Harrat. Under this head lead tin children to tell you what they know about the place in which the plant grows. If they have helped to collect the specimens they can reudily tell you in what places it is found. If they do not know where it grows tell them, and if the specimens can be found near the schoolhouse, go with them or have one of the older pupils go with them to find the specimens.
4. Study the parts of the plant. The childrea will be interested in the large leaves with their


DOG-TOOTE VIOLET
beautiful green and brown surfaces and in the single bell-shaped flower at the end of the stem which grows between the leaves. Let the lesson at first follow these lines of interest.
By skilful questioning learn what the pupils have seen.
How many leaves has the plant?
What is their color!
Are they colored alike on both sides?
What is the shape of the leaves?
To what are the leaves attuched?
What is on the stalk which grows between the leaves?

How many flowers does each plant have?

Hature study
What is the color of the flower?
What part of the plant grows under the ground?
What do we call this part?
What joins the root to the leaves?
5. Conaments. Answers to these questions will lcad the children to see that the parts of the plant are root, stem, leaves and flower. The questions above are arranged to follow the children's interest instead of in the logical order that would suggest itself to the mature mind of an adult. By stimulating the child's jinterest in those parts of the plant which most easily httract attention, the teacher can easily direct hisinterest to the other purts which she wishes him to ohserve.
With the first or second grade class the work suggested above will be enough for one lesson, and the time devoted to it should be from ten to fifteen minutes.

Parts of the Fower. With a strong second grade class and with classes in the third grade and beyond, the parts of the flower can be studied with success. The extent of the study should be kept well within the capacity of the pupils, and it is seldom wise to analyze stamens and pistils with classes below the fourth grade:

Call attention to the size of the hlossoms on the different plants.
Are they all the same size?
About how long-are they?
What is their shape?
What is their color?
How many leaves has each hlossom?
How do these leaves differ from those on the stem of the plant?
Are all the leaves of the flower alike?

## Jature Atuds

## What color are they?

What do you see in the flower-cup?
How many of these little organs can you find: Are they all alike?
One or more flowers from specimens in the teacher's possession should be cut open to display the parts, as illustrated in the cut. If the class is far enough advanced in the work, pars of the stamen and pistil and the pollen can be touched upon in this lesson.

Other Lessons. The foregoing are types d lessons that can be given on other planis. As the work advances the lessons should extend to the study of parts in more detail, as the form, size and structure of the leaves and the way they are joined to the stem. The stem also should be studied, special attention being called to the difference in appearance of the portion abore ground and beneath the surface. Lead the pupiss to notice carefully the distinction between the hulh and the roots.
In the fall term these spring plants should again be considered, and a brief study made $\alpha$ the seeds. The plans presented above can be used in the study of any plant or flower. If the structure is complex the study need oniy be extended to include the new features. Howere, these complex structures should be approcthed with care. Teachers occasionally fail in nature study work because they attempt too much, or because they present subjects that are tro diffrcult. It is far better to do a few things well and in so doing estahlish in the pupils the habit of close and systematic observation than it is to dissipate their encrgies on so many subjects that they acquire careless halits of study.

## Lessons on Animals

General Suggestions. 1. Lessons on animals can be introduced as soon as the pupils have had enough lessons on plants to become accustomed to the plan of work.
2. All children love pets. A kitten, a dog, a canary, or possibly a rabhit or a squirrel, is doubtless enshrined in the heart of every child in the class. Be guided by this interest and let the first lessons be upon some animal with which the children are familiar.
3. If a squirrel or a rahhit can be kept in a large cage in the schoolroum or in an adjoining room a few days before the lessons begin, the chiildren will become interested in the little animal and their ohservations will give them facts upon which to base their first lessons.
4. The chief ohject of these lessons in the primary grades should be to lead the children to become acquainied with the needs of the animals about them and to discover how they can contribute to these needs; also to tearh them to be kind to these animals and to prevent unnecessary destruction of animal life.
5. The following lesson plans, hased on the study of the squirrel, will serve as molels for the study of any animal. The teacher should begin with the study of the animal most accessible.

## The Squirrel

Coneral Description. Because of their sprightliness and grace, squirrels are intersting pets. They do not like confinement and it is

Hature 8tudy
eddom afe to handle them, but under kind tratment and regular feeding, they will become quite tume and be very much at home about the gounds and house. Occasionally one become. so friendly that it will sit on your shoulder and rife your pockets in quest of nuts. All ehildren are fond of squirrels and like to have them about weir bomes. The following lessons will be mueh more interesting if you can procure a tame

## Nature Itudy

Can it run fast ?
Study the feet. Are the forefeet and hindfeet alike?
Ask the children to compare the squirrel's forefeet with their hands. Does the squirrel use its forefeet as hands?
Why can the squirrel elimb a tree su casily?
The most striking object about a squirrel is tail. Ask the chillren what the tail is used for.


A FOX SQUTRREL
\#yuirel for the ehildren to observe. If this cannoo be done ask them to wateh a squirrel in the parks or almut their bomes.
study the general structure. How many legs does the squirrel have?
Lead the children to see the differe:ice hetween the forelegs and the hindlegs. For what are the hindlegs used ?
Ask the children to compare the squirrel's forelegs with their arms. In what respects are they alike?
What uses does the squirrel make of its borclegs:
How does the squirrel walk?

Call attention to its size and shape. What gives it its bushy appearance?
They will neel to olserve carefully and at different times to discover all the uses of the tail.
Why can the squirrel jump so far without injury?
The squirrel's coat next needs attention. What color is it ?
Does it contain hair of more than one color? Are some parts finer than others?
Is it the sume thickness in summer and winter?
What are squirrel skins usel for?
Why are they valuable for this purpose ?
It will require at least two lessons to discuss

## Ilature Iticdy

in a entiffactory manner the points suggested above.
Eoomass of the Rences. Ask the childrea to obrecre the squirrel's head and notice how its cyes are placed. In how many directions do you think the aquirrel can see at once?

In how many directions can you see at once?
Where are your eyes?
Does the squirrel need to see ia more directions at once than you? Why?

Can the squirrel hear faint sounds?
Why do you think so?
Do you think it can hear sounds that you cannot hear?

What renson have you for thinking so?
If the children cannot answer these questions, ask them to watch the aquirrel and see what they can discover. It may take them some little time to obtain all the information desired. In a like manner lend the children to compare the squirrel's sense of amell with their own. These comparisons will ahow that those senses upon which the aquirrel depends for its safety are keener than the same senses in man. A few questions in connection with this topic will also lend the class to vee that all animals which depend upon flight for melety, auch as the rabbit and deer, have equally keen senses of hearing, sight and smell.

Eabits. Ask the children to feed the aquirrel nuts and kernels of corn, and see how it eats them. How does it get the kernel out of the nut ?

## How does it hold the nut?

What sort of front teeth has the squirrel?
Ask the children to examine the teeth of a dog or cat and notice how they differ from those of the squirrel.
What do the squirrels eat besides nuts and com?

Do they eat meat?
By questions and observations you can casily lead the children to see that the teeth of any animal are adapted to its food.

Call attention to the squirrel's home and ask the children to discover where the squirrels
make their nents, but caution them not to dinub the neth.
The ease with which the equirrel acaumen dit ferent positions is very intereoting, as is also the playfulnese of these little animala.
Lead the children to discover what the rquind does for food in the winter in places where these is no one to feed it.

From the information gained, lessons on thrit and industry may be drawn. Unless frightened, the squirrel is always happy. It is therefore a good example of cheerfulness.

Othor Lessons. A rabbit, a kitten, a dog or some other animal with which the children are somewhat familiar should be taken up next, From the study of such animals as these, proced to that of less familiar animals, as time permitu
Animals are more difficult to study than plants, and with classes in the primary and intermediate grades technical points and minute analyis should be avoided. In connection with the advdy of the squirrel, teach the children Emersoc's famous poem:

The Mountans and the Socirem
The mountain and the squirrel
Had a quarrel,
And the former called the latter "Litte Prig"; Bun replied,
"You are doubtless very big;
But all sorts of things and weather
Must be taken in together,
To make up a year
And a sphere.
And I think it no disgrace
To occupy my place.
If I'm not so large as you,
You are not so small as I,
And not half so spry.
I'll not deny you make
A very pretty squirrel track;
Talents differ; all is well and wisely put;
If I cannot carry forests on my back,
Neither can you crack a nut."'

## Lessons on Birds

General Angrentions. 1. An eminent authority on nature study says: "The way to a bind's heart is through its crop." Success in bird study depends upon our ability to approach the bind, and birds can be tamed only by feeding them. Some of the first lessons should be devoted to giving instructions about feeding and taming binds.
2. To be successful in this work, the texcher must bave a much more extended knowledge than it will be possible to use in class. She must know the size, color and song of the bird, and be able to distinguish between the male and femak, and in addition to these facts she must how the bird's habits, its haunts, what it feeds upou, how it apprehends its food, when and wher it


## Iaturs Itindy

nets, when the young appear, how long the Aeddinge remain in the neet and the dangers they are subject to when they leave the neat. The tencher ahould be able to show the children bow they may assist the young birds in escaping there dangers. At this atage many bi is perish from the want of proper care Moreover, only young birds can be tamed.
3. Bind study is pre-emimently an outdoor exercise, and but little time can be profitably spent upon it in school.
4. Time spent in class should generally be devoted to hearing reports and giving directions for furcher observations. When the study of a bird has been carried far enough for a review, thin ahould be given as a class exercise. The review should then be written, thus furnishing a good drill in language.

Booides the achool record, each pupil abould keep a recond for himsell. Give complete and careful directions for observing birds. This work is unually more succeasful when the puph make their observations alone or in companies of not more than two or three. Birds are cusily frightened by noisen or by the approach of any living thing that they consider an enemy. Your directions should include the following poins:
a. In studying birds one should wear clothing of a dull color. Shades of brown which harmonize with the color of the ground and trunks of trees are the most desirable. White and bright colors which attract attention should not be worn.
b. One must move quietly and cautiously, taking the greatest care not to frighten the bind. In general, the bird can be approached more

5. Valuable information relating to the study of birds will be found in the articles Birds, Egg and Nest, in the New Practical Reference Labrary; also in articles describing the different birds, such as Bobolink, Robin, Swallow; the color plates Common American Songsters and Orders of Birds, with the article Birds; Birds' Eggs, with the article Egg, and Birds' Nests, with the article Nest, will give both teacher and pupils excellent ideas of the color and form of the objects illustrated. These articles and color plates should be frequently consulted.
Directions for Observations. 1. All children are interested in watching for the return of birds in the spring. Ask them to report the first birds they see. Keep a recond of these reports, as follows:
The first crow, March 1.
The first robin, March 10.
successfully if the observer pretends not to see it and appears to be in search of something else.
2. Insist upon careful observation and train pupils to describe only what they see. It is very easy to imagine that we see what we are looking for, even when it is invisible.
3. The opera glass is a convenience but not 2 necessity, but some work, such as Chapman and Reed's "Bird Guide" or Chapman's "Handbook of the Birds of Eastern North America" is indipensable. Two or three books of this type should be in every school library.
4. Pupils should carry pocket notebooks in which to record their observations on the spot. Otherwise some valuable points will be omitted
Parts of a Birud. The diagram abore shom the parts of the bird, with the names attached. Since the terms there used are found in all bird books, the pupils should become familiar with

## Mature Itedy

the but with the younger children, atteation culd be called to the mox prominent partis only, shad, wings, tail, ele.

1. A live bind, a mounted apecimen or the th of the bird should be compared with the angum and the children be asked to wime the correspond--1 parts. Let the first lemons be on the parts moot ensily mognised, as the head, mandibles, wings, legss and tail. Meaure the specimen from the point of the beak to the end $d$ the tail.

## How long is it ?

Spread the wings and measure them from tip to tip. What is the distance?
How does this distance compare with the length?
2. Begin the second lesson with a review of the preceding one to make sure that the pupils remember what they duarred. From the review proceed to a atudy of the more inute parts. Do ihis in a systematic manner. To illustrate: ake firt the parts of the body; head, nape, breast, beak and rump. When these parts have been learned, proceed ina like manner with the wingo, tail and lega. Classes a bove the ath grade should be able to distinguish and name all thee parts, and an occasional exercise in connection with the other lessons will enable them to do so.
2. The adaptation of structure to the life of the bird is of special interest. Lead the older classes to see the differeace in the beak of a bird of prey and that of one which feeds ypon insects and fruit; alse the difference in the food of these binds. Figures 1-9 show the chief types represented in our common birds.
Figure 1, scratchers, such as the turkey, common fowl, grose.
Figure 2, pigeon and doves.
Figures 3 and 4, birds of prey, such as the hawk, owl, buzand.
Figure 5, parrots.
Figure 6, cuckoos and kingfishers.
Figure 7, woodpeckers.
Figure 8, swifts and humming birds.
Figure 9, perching birds.
Protection of Birds. The chief purpose of these lessons stould be to increase the children's interest in and love for binds, to impress upon them the value and importance of the binds to the farmer and gardener, and to enlist their services in protecting the birds and in inducing them to return to the sme nesting places from year to year. The following are some of the means that can easily be employed to this end:
a. Encourage the children to feed the birds, especially
then they first return in the spring, and to proide them through the season with plenty If Ifrst water. A running fountain in the anden or yand, at which they can drink, is dmys a source of attraction to them. In nearly
eng bocality there are birds which remain
storms and is in a convenient place will attract the birds as a suitable place in which to build a nest. The illustration on next page shows a number of structures for bind houses, any one of which can easily be constructed by a boy who knows how to use a hammer and saw.
c. Proweling young bloco from cates and ocher antolien and aloo cocing that they aro fod. Many of them birde are practically holplow wivo they fina lonve the gexi, and in this condition andiy sull a prey to exte or other animale which fend upos thow. Theoe young bircis have not banned to feed themeolves when they lave the men, and unlues fod by the parsets, meany of thom powth from ctarvation. If the young bed foumd to this condition is approsched carefully and fed, it is at oace tamed, but y arightened at
II. Avatomit
(1) Stecivion
(2) Muculara ayitem
(3) Orgese of name
(1) Organ of checulation
(b) Rempiratory ayitem
(0) Diparive orgme

## III. Cumincation

(1) Biede of prey
(c) Buzzard
(b) Condor
(d) Falcon
(e) Hawk
(1) Kite
(c) Owl
(h) Vulture
(2) Perchers
(c) Blackbind
(b) Crow
(c) Cuckoo
(d) Finch
(e) Paradise-bird
(I) Thrush
(g) Warblet
(8) Climbersand creppas
(b) Parrot
(b) Woodpechere
(c) Toucan
(d) Wren
(e) Mouse-bird
(I) Trogon
(4) Seratchers
(a) Bustand
(b) Grouse
(c) Pheasant
(1) True phas ants
(2) Turkey
(3) Chicken
(5) Runners
(c) Apteryx
(b) Cansowary
(c) Emu
(d) Ostrich
(e) Road runne
(6) Waders
(b) Crane
(b) Flamingo
(c) Heron
(d) Ibis
(e) Snipe
(7) Swinmers
(a) Auk and penguin
(b) Duck

ORD
ruide
the dar
pupids
mets
those
copes
mork th
mido
bet the
and alo
man
to tole

## Suctess itiols

(c) Goow
(d) Gull
IV. Brose' Eoce
(i) Componition
(2) Sive
(3) Shape
(4) Color
V. Nets
(1) Position
(2) Shape
(3) Material
II. Sprcial Cbaractrantics
(l) Migntions
(2) Sons
(B) Brilliant plumace
(4) Kinde of food
(0) Mating
(o) Care of the young

Qeactlans
Name three general charncteristics that disinginh birds from other animals.
Thet onders of bircs are already provided midh leathers when they are hatchod?
What adrantage are feathers to theoe young tiob?
Flave birds any teeth? Ears?
How in their lood digented?
On the binds that flit from bush to bush are long distances in a aingle fight?
Why are the muscles which move the wings "I ytrong?
Why do some of the bones contain air cavities ?
Of what use is the tail in flying?
What is the wing? How is it formed?
What is remarkable about the eyes of a bird ?
Which senpes are the most acute? Which are dull!
That kiveds of birds are the best singers?

## Matars atedy

Do both male and female generally sing? Why dow not the perching bied fall when seleep?

What in mouet by the "homing inctinct "? In what way do binds benetit the farmer and fruit grown?

Do they injure the crop in any way?
What are the seven principal groupe of birde?
Name at feist three well-known bind faralliot under each group.
To what group do the following families bo-
long: Eande, hawk, crow, parrof, crane, pheasant, wrea, thruah, onlpe, goose?
To what family does the turkey belong? Sandpiper? Robin! Sparrow? Meadow hark ? Peacock : Magpie ? Nightingale? Lark? Where do water fowl generally build their nents?
What bind will never keave her nest until abe has safely covered the eggs with leaves?
What in peculiar about the kingtisher's next? Where is it buile?

Of what does the robin build a ness?
Why in the "tailor bind" so called?
What is the shape of the weaver's nest?
Where does the meadow lark generally bulld
is neat?
What are the parts of an ege?
Of what is the shell composed ? The white?
How is the bind nourished while in the shell?
How long does it tuke for a hen's egg to hatch ?
Which end of a bird's egg is the more highly colored ?
How does the shape of eggs, like the hen's, which are laid on the ground, protect them from blowing away?

Where are the eggs of sea binds gathered and used for food?

## Lessons on Insects

Quart! saggestions. On page 17 in the uride Agriculture we have shown something of thedamage done yearly by insects. Assisting the pupisto gain a knowledge of the habits of these monts and of the means of destroying those whoee marages cause widespread destruction to appand trees is some of the most practical mort that the school can do. Therefore the chief nde to be srught in lessons on insects should be the gining of a knowledge of their life history, and along with this an understanding of practical mans for preventing their ravages. In this worl th hlowing suggentions will be helpful:

1. Only a little work of this sort should be attempted by children below the fifth grade, and this should be of the most general character.
2. In beginning the study, select insects large enough to enable the pupils readily to see the principal parts. The grasshopper, butterfly or moth are good specimens for the first lessons.
3. Place a number of the insects to be studied in a cage where the children can observe them for a few days before beginning the leasons.
The cage can readily be made by taking a box and cutting away a part or all of one side and covering the opening with a wire screen, being
eres that the melker are fine conough to prevent the ceape of the freocts. A fow perctoes should be pheed in the box, and the one having is in charge should soe that the linects are kept supplised with frein haves from the plants upon which they feed. A dally aprinkliag of theoe lavee will provide all the water necemary.
4. Prepare an insect net. To do thin, procuro to is of five feet of No. 12 wire from a hardware - Te. Bend th around a flower pot or nome wher eylindrical object so as to form a loop about a foot in diameter, croming the wire six or cighe inches from the end and giving it two firm twines. Clamp this hoop into a riee and twist the ends clocely together. Take a broom handle or any other atick of '" ailar size and faten the twined and of the wire to this handle. Procure about a yard of tarletan or cheesecloth, and make a conical bag having a mouth the size of the loop. The bag abould be at leatt two and onehall times as deep as the frame is wide, 20 that th will hap over easily when the insect is caught. With a little care and akill one soon becomes expert in capturing insects with this little apparatus, and it furnishes the children with a great deal of sport and outdoor exercive.

5. P-ovide yourself with a magnitying glass. A small microscope costing less than a dullar will answer for all ordinary purposes. The glass should be kept where it can be used by the pupils when they need it.
6. Accustom yourself to handling insects without aversion. The teacher who cringes at the appearance of a June bug or screams at the sight of a caterpillar will never succeed in giving leasons on insects, because instinctively the pupis will acquire the teacher's attitude.

## Elveres Itedy

7. Begla the lemons with some inmet whid the chilifren aro acmutnaced to haaile, in to grauchopper or betteraly. Proceed from the endy of thin lneect to that of another nearly as hamiling and in thin way kead the chilliren by may mem. to the dudy of any insect that you devive io tuke up.
Farts of an Insect. The accompanion diagram shown the parts of an insect. It shoukd be uned in the mame manner as the diapman showing the parts of the bird.
8. If pomible, procure a number of hare fiew, so that every pupil in the class can haves specimen. Collect the flien without injuring them before distributing them to the clas. If large flies cannot be obtained, the common howe fiy will anawer the purpose.
9. With the specimens in hand, ank the children to observe the three parts into whird the body of every insect is dividel: heal, thons and abdomen.
10. Next call attention to the other prominam parts: legs, wings, eyes, etc.
How many legs does the fly have?
To what parts of the body are they attached!
Do all insects have the same number at legs ?
The answer to this queation shouli be let the the children to discern by examining $a$ aumber of insects.
Are all the legs the sair- length?
Can you see any reasc- . he difference in kength ?
How many parts has each leg?
Compare these with the parts of your lesp.
What sort of a foot does the fly have?
Why can the fly walk upon the ceiling and upon the vertical surface of glass?
How many wings does the fy have?
To what part of the body are they attacted?
Do all the wings have the same structure?
Do all insects have wings?
Do all winged insects have the same aumberd wings?
How do the wings of the butterfly compar with the wings of the fly in size and structur?

Use the magnifying glass in finciing answers to these questions.
Study the head in the same manner. Led the children to observe the structure of the eps annl the turgue. Phace a drop of molasere milk where a live fly can get at it, and see ber it eats.

Danger from Fies. The practical purpee of the study of the fly is to impress upon the

## Instere iltedy

clase the fact that this insect is a constant source of danger to health.

1. Ask the class to study the habits of the fiy.

Where are flices found in the largest numbers? On what do they feed?
Atter the fiy crawls over the garbage and other filth what is the condition of its feet?

When one of these insects flies from the garbage to the dinner table, what does it carry?

When this fy crawls over the food, what does it leave upon it?
These and similar questions will awaken new trains of thought in the minds of many children who have always considered flies harmless.
2. Attention should be called to the rapidity with which, under favorable conditions, flies multiply.

Where does the fy lay its eggs?
When the eggs hatch, what do they form?
Upon what do the maggots feed?
How long before they become flies?
How many broods will be produced in the summer! See the article Fly, in Volume II.

In connection with these lessons, means of
preventing the multiplying of flies and of excluding them from houses should be discussed.
Ifis Fistery of Insoctr. Pupils in the odde classes should learn how to study the life history of insects. These studies will require a series of lessons extending through the season and frequently through the year. The study may begin with the egg or with the mature insect, but it must continue until the cycle is completed. To illustrate: if the study begins with the mature insect, it must continue until the mature insea of the next brood is produced.

The only way to prevent the damage caused by noxious insects is first, by knowing their lile history, and second, by knowing how to destroy the existing broods and how to prevent the multiplying of these insects in the future. The Colorado beetle or potato bug, the codling moth and chinch bug and the gypay and brown-tail moths and the cankerworm are good examples of insects that should be studied in this way. See Agriculture, page 13; also articles on these and various other insects in regular alphabetial arrangement in these volumes.

At kave tinds Do Hem Whe ant? rame Can the col If th above those they wi The given $a$ children ecurut mods f in autur Some which w change

## Lessons on Trees

Importance. "Next to the earth itself the forest is the most useful servant of man. Not only does it sustain and beautify the land, but it also supplies wood, the most widely used of all materials. Its uses are numberless and the demands which are made upon it by mankind are numberless also."-Gifford Pinchot.
Notwithstanding the value and usefulness of our forests, the American people have been exceedingly prodigal of them, and millions of acres of forests which should have been preserved for future generations have been ruthlessly destroyed. All too late they are beginning to realize the damage done, and both state and national governments are taking strenuous measures to protect the forests that remain, and to secure forestization o! some of the regions from which the forests have been removed. The school can and should do much toward assisting this movement.
General suggestions. 1. Thousands of young trees are destroyed every year through thoughtlessness. Children as weil as adults engage in this destruction. Attention, therefore, should frequently be called to the -nportance of preserving and caring for these trees.
2. Success in securing the children's interest in caring for trees will depend upon the teacher's
ability to secure the interest of each child in some perticular tree. A good way to do this is to ask each pupil old enough to engage in the work at the beginning of the fall term to select a tree which he may call his tree for the year. The tree chosen may be in the schoolyard, by the roadside, near the child's home or in any oher place where it can be frequentiy seen.
3. From the study of this particular tree lead each child to study trees in general. The first lessons in the fall should have this end in viem.
4. Observations upon which the study of trees may be based require time. It is not wise to give lessons upon this subject daily. Usualif one lesson a week is all that shouid be attempted. More may be given if the time at the teacher's disposal and the ability of the class warrant, but in all cases the pupils should be given opportunity to prove by their own observations the facts discussed in the lesson.
Fall study of Troos. Preparation ror Winize. In the study of natural objects it is wise to begin with the study of conditions that prevail at the time that the lessons are given. This is particularly necessary in the study d trees.

Call attention to the autumn tints as dx gradually appear.
the older
not har, a the ches blow the wos and hin

## Mature Iltady

Ask the children to collect and bring to school haves of difierent colors. How many different hinds of trees are reprevented in the collection?
Do all leaves from the mame sort of trees have He meme color or varying shades of that color?
What is the prevailing color of the leaves of the ant Of the maple? Of the beech? Of the rame?
Can you tell the sorts of trees in a forest by the color of the leares in the autumn?
If the trees to which attention is called in the stove paragraph are not common to the locality, thooe that are common ahould be selected and they will answer equally well.
The answers to the lest question cannot be given offhand, but by frequent observation the dilitren will be able in time to judge quite cocurutely the prevailing species of trees in any mods from the general appearance of the leaves in autumn.
Sonic Causes and Efricts. Another question which will require thought is: Why do the leaves change color, wither and fall? Of course, only


FIGURE 1
the older pupils can pursue this line of thought mothr, and it may be well to let it stand before the clase throubh the entire season, as they blow the putting forth of the leaves and blosnoms and the developing and ripening of the

Do all trees shed their lesves in winter?
What trees in your locality do not?
Discussion of these facts will ensble you to divide the trees into those which shod their leaves, or deciduous trees, and those which do not shed their leaves, or non-deciduous or evergreen trees. It will be interesting to have the class compare the kinds of leaves from the two classes of trees.
Of what advantage is it to the deciduous trees not to have leaves in the winter?

Winter fitedy of Trees. Several lessons can be devoted to plans of branching. When the trees are free from leaves these plans can be easily reen. Two general plans of branching are lound; one, in which the trunk extends through the crown to the highest point in the tree, as in Figure 1. The pine and the beech are familiar examples of trees having this plan of branching.
The second plan is seen when the trunk divides into a number of large branches, from each of which other branches extend, as shown in Figure 2. The elm and the apple are good illustrations. Spead one or two lessons in discussing the rela.


HGURE 2
tion of these plans of branching to the ahape of the tree.
What shaped crowns do the evergreens have?
What shaped crown does the elm have?
The arrangement or Buds and Branches. Ask the children to study the arrangement of

## Hature stendy

branches on the evergreens. A pine, spruce or balsam will answer the purpose. They will discover that the branches are arranged around the trunk in whorls.

What does this arrangement have to do with the ahape of the tree?
Have the pupils bring to school small branches from the elm, the maple, the apple tree and cottonwood. Other trees common in the locality will answer as well. Perform the following experiment with the branch from each tree. Stick a pin in the bud near the lowest end of the branch. Fasten a white thread to this pin, extend this thread to the next bud, then to the next, and so on, winding it around the branch as may ke necessary to reach each successive bud. Continue until a bud practically over the first is reached.
How many buds were passed?
How many times did you wind the string around the branch?
The answers to these questions will vary with the different branches, and the experiments will reveal the following facts: first, that on some trees the branches appear opposite each other; secondly, that on most trees the branches appear on alternate sides of the stem; thirdly, that this altermate arrangement varies in different species of trees.

Study of Structure of Buns. The same branches may be used for this purpose. If placed in water for a few days, in a warm room, the buds will swell and their parts can be easily seen.
What is the puirpose of the scales and of the gum-like substance found on some buds?
If possible. procure some buds from the horse chestnut. What is the purpose of the cotton-like substance in these buds?
Study of tee Bark and Wood. Have some pupil procure a section of the branch at least one inch in diameter. A large branch is better. The section should be at least six inches long. First study its external appearance.
What is the color of the bark?
Examine the end of the branch. From this, how many layers of bark can you discover?
How are the layers of wood arranged?
What is the dark portion in the center?
Split the branch through the center. Smooth the surfaces with a plane or sharp knife. From the study of these surfaces, how many layers of bark do you discover?
If you have an opportunity to secure a section of the trunk of a tree, six inches or more in
diameter, you can teach the pupils to pursve their studies still further. Saw one end of the section of with a fine naw, then smooth the surface with a draw knife or plane. When this is done, ask the pupils to note and count the rings or layers of wood, showing that each layer represents a year's growth. How old is the tree? Split the section through the center and smooth and examine the surface of one piect. Can the annual growth be traced on this surface? These sections make very fine cabinet specimens, and where they can be obtained without destroy- sEction OF A BRaNcI ing the tree for the purpose may be preferred to the specimens which are described a little later in this article.

How many kinds of wood are there in the branch?

How do these kinds of wood compare with each other in color?
Following these exercises, ask the children how many trees they know by the appearance of the bark. It is well for each to make a list of the trees he can recognize in this way.
A very pleasant and valuable exercise connected with the study of trees is the beginning of a school cabinet of native woods. The specimens should be at least four inches in diameter and may be cut in the form shown in Fiqure 3, or one end may be slanting. The specimens should be sound and thoroughly dried, and then the exposed surfaces should be smoothed and oiled or varnished, so as to bring out the coloring and graining of the wood. In the spring and summer leaves of these trees may be pressed and the flowers and fruit gathered and mounted. If these are placed on stiff cardboand the cant can be put in the cabinet back of the specimen showing the kind of wood. Thus there is a complete exhibit of each tree in the bocality.
spring and Eummor Studies. Earir blossoms and Frutr. Ask the $e^{\prime} ; s$ to watch the theses in the spring and notice which ones put forth their blossoms before the leaves appear. Samples of these difierent blossoms should be gathered and brought to class for study. Bloosoms are small and it is not wise to attempt to study their different parts at this time. The chief thing is to notice the different forms. Good
trend shrubs to compare are the soft, or red, male and the willow, as the two typical forms of brooms are produced by these trees. Ask to pupils to follow the development of the seeds


MURE 4
co a these trees and to notice also the way in which the reeds are scattered.
How soon do the maple seeds germinate?
Study of Leaves. Ask the class to observe when trees put forth their leaves first.
Which ones put forth their leaves next?
Which are the last ?
When the leaves are fully developed, ask the children to bring leaves from the elm, maple and
base to the apex, as illustrated in Figure 4, which shows the leaf and blossom of the elm. The second plan shows several large veins or ribs radiating from the end of the leal stalk, as shown in Figure 5, which is an illustration of the maple leaf. After these plans have been studied, pupils should be asked to find as many diffreent trees and shrubs as they can, having these different sorts of leaves. They will discover in their search that the shape of the leaf in all cases depends upon its plan of veining, or the arrangement of the large veins or ribs.
Some trees do not produce their fruit early in the season. This is particularly true of those that bear nuts, such as the oak, beech and hickory. Children should be encouraged to watch these develop through the summer and to gather specimens of fruit as soon as they are ripe. These specimens will furnish material for lessons next fall.
Planting Tres. The great purpose of lessons on trees should be to secure such an interest in them on the part of the children that they will want to care for those about the school and their homes, and that they will also want to increase the nur..wer by planting others. This may be done in one of two ways: first, by planting

mature 5.
ak. Compare these in size, form and structure. This comparison will show that leaves of decidumex tee are constructed on two general plans: first, the plan having one large rib known as the midrib and seemingly the extension of the hal stalk, extending through the leaf from the
the seeds of the trees; second, by transplanting the trees taken from localities where they are not needed.
The children will be greatly interested in planting seeds of trees, such as the seed of the maple. If there is a school garden a small section may
be set apart for this purpose. The soil should be made mellow to the depth of twelve to four. teen inches and the seeds placed in it with only a slight covering of earth, the general rule being to make the covering equal in depth to the dimmeter of the seed. If these seeds cannot be planted in the school grounds they can be planted in flower pots or boxes. After planting, the moll ahouid be thoroughly wet and be kept remsombly moist until the seeds germinate. It is interesting to care for these young plants through the season and notice how fast they grow. If carefully protected from injury, the second year they will grow still more rapidly and in a short time become large enough to transplant. Children who watch the growth of trees from the seed in this way bocome acquainted with their appearance and from this knowledge are able to protect thousands of young trees which are destroyed through ignorance.
Teachers should thoroughly understand transplanting of trees and be able to give practical lessons on it. This can usually be done mont successfully by directing the pupils in planting one or more trees in the schoolyard. Most arbor day manuals contain specific directions for this work. However, the following points, taken from Tree Planting on the Prairics, Bulletin No. 1, Forestry Branch, Department of the Interior, are so plain and practical that they are here roproduced for the benefit of those who wish more extended directions than are usually found in these manuals. This bulletin is excellent authority and those who carefully follow directions here given may feed sure of success.

## Bow to Plant the Trees

Proparation of the 801l. Thorough preparation of the soil should precede the planting. Where blocks or belts are to be formed, the ground should be plowed and prepared as for a garden crop. Clay soils are best plowed the previous fall, in order that the gricund may weather over winter. On such soi. subsoiling is beneficial, and should precede the planting by at least one season. Just before planting time the ground should be pulverized with a roller or harrow. If the planting is to be done in rows, the ground should be marked of lengthwise and crosswise and the trees set at the intersections. It is sometimes desirable to mark off the ground only one way aw! run furrows the other. In arid regions the furrows may be deepened into trenches, so that rain water which falls on the surrounding ground may be drained to the tree.

On the other hand, in regions having a copion rainfall it will frequeatly be necessary to pham the trees on a rised portion or mound of carth in order to keep the soil dry enough for them to thrive. The holes ahould be dug large enough to contain all the soots fully spread out, and deep enough to allow the tree to stand about three inches lower than it grew as a seedling.

Time and Manmor of Planting. South of the thirty-eventh parallel, fall planting is are and often advantageous. North of this, spring planting should be the rule, as fall-planted troes can scarcely develop sufficient roots to sustain themselves during the winter. The most suee r ful nurserymen practice early planting for deciduous trees, beginning operations as soon as the ground ceases freesing. Evergreens are not planted until later; some even wait until the young growth is starting. It possible, planting should be done on a cool, cloudy day. Uniles the day is very moist, the trees should be carriad to the planting site in a barmel half filled rinh water, or a thin mixture of earth and water, and lifted out only as they are wanted. Even a minute's exposure to dry air will injure the delicate roots-the feeders of the tree.
The roots should be extended in their naturl positions and carefully packed in fine loam soil. It is a good practice to work the soil about each root separately and pack it solid with the foot. As the hole is filled, the earth should be compacted above the roots and around the stem, in order to hold the tree firmly in place. The hast two inches of soil should be very fine, and shoukd lie perfectly loose. It will serve as a mulch to retain the moisture.

Trees should be planted neither in very wet nor in very dry soil. If the soil is wet, it is better to wait until it is drier. On the other hand, if good cultivation has been maintained the year previous to planting, the soil is $\mathrm{p} \alpha$ likely to be so dry that trees will not start. Be sides insuring a supply of moisture, such cultiva. tion puts the ground in good physical condition for planting.
With this treatment, watering will scaredy ever be necessary. If it is, the holes may be dug a few days beforehand and filled with water. They should be refilled as the water soaks any until the soil is fully moistened. A thorough irrigation, when that is possible, is still better. As soon as the soil becomes somewhat dry the trees should be planted. While it is a common custom to water at the time of planting, thow who do no watering are usually the most succere.
fith,
is uk
hont
It the
tated

$$
\text { than } 1
$$

$d$ the
nhea

$$
d \mathrm{~mm}
$$

## Haterse Itendy

4. Even in the semiarid regions some succensH growers apply no water, but keep up an caxelant system of cultivation, thereby retaining the soil moisture.
The spacing of the trees is not so important in athoolground planting 23 in forest plantations, fatin is worth consideration. The trees should ax cand so neur together as to produce long, stadere poles; on the contrary, short, think truriks are docinable, to support large tops and withand heavy winds. From 8 to 12 feet apart will be citable spacing distance. Where large blocks ur to be planted the trees may be closer, but it is surcely ever desirable to plant them closer then 6 by 6 feet.
Why Trees Dio in Transplanting. To many persons it is a mystery why trees dic after being transplanted. They do not die without cuse, however, and when one begins to wither samething is wrong. Oftentimes the result in not to be noticed until weeks after the injury; in ohere cases it is apparent in a few days. After due injury has been done it can be overcome only bf the subseryuent growth of the tree. All the wistance that can be given is to make the surmumdings of the tree favorable for growth. The adlowing are some of the causes of death among trasplanted trees:
Lose or Roors. The loss of the principal put of its root system when the tree is being uken up is a great shock to its vitality, and finquently causes its death. A very large part $d$ the root must be cut off, for usually the space surnounding the tree is filled with fibrous rootlets, myinds of which can scarcely be detected with the naked eye. Almost all of these are lost, as well as many of the larger roots. Mr. D. C. Burson, of Topeka, Kan., last year dug up and mesured as much as he could of the root system di s rigorous Hardy Catalpa seedling that had grom from May till November. This sixmonthsold seedling showed over 250 feet of root gowth. By the methods in common use only a fith, or perhaps as little as a tenth, of the root is unken up with the tree in transplanting. Such has throws the root out of balance with the top. It the top is not shortened, or in some way proteved, the leaves may evaporate more moisture than the roots can provide, resulting in the death of the tree.
Expesire Before Planting. With proper mhequent treatment a tree can endure the loss a many roois, but instead of the needed promation it often gets much unnecessary exposure b mim and dry air. This may be in digging,
packing, shipping, unpacting, or any other of the various handlings which it undergoes between its removal from the ground and subsoquent planting. On a warm day in March the write: saw a bundle of trees in abipment acrom the plains of Texas without the slightest covering. Before the destination was reached the roots became withered and almost dry, having suffered a hundred times more exposure than the ordinary tree can stand without injury. Not many persons would be guilty of such grom neglex, but the fact remains that exposure causes the death of more trees in transplanting than any other single cause. Exposure can usually be casily prevented, and no one who persists in neglectiul practices can hope to be successful.
Farluaz to Plant Well. The faiare to pack the soil tightly about the roots is a common error in planting. It causes injury in two ways: It leaves the tree unstable, to be rocked to and fro or even blown down by the wind; it also prevents the first growth of rootlets from absorbing food. This they cannot do unless good, fine soil is firmly packed around them. Clods will not pack snugly. Likewise manure or litter of any kind mixed with the soil may prevent firm packing. Anything that prevents the soil particles from coming into close contact with the oots is sure to be injurious. Another error is in shallow planting. This allows wind and water to lay bare the roots, and in a short time the tree dies. Crowding the roots into too small a hole is a similar difficulty. Such errors are more often due to lack of experience and skill than to haste. The unskilful planter will hardly plant well, however slowly he may go.
WET SoIL. Trees are often injured by being planted in wet soil. Whether the excessive moisture is a permanent or a temporary condition is likely to make little difference in the results. If it is permanent the water prevents the air from reaching the roots, while if it is only tempormry the trampling of the soil over them causes it to stick together so that on drying it becomes baked, leaving them impacted in a hard luup oi earth which excludes the air. Excessive air currents in the soil cause injury by drying the mots, but a constant permeation of the soil by the air is necessary to supply oxygen. This process is precluded by either the saturation or the baking of the soil. Undrained pockets oceur here and there even in well-drained fields, and arp al ways difficult to deal with in tree growing.
Dring Out of the Soil. Another cause of death is the drying out of the soil. Summer
droughts are not unknown in any part of the country, and are very frequent in parts of the Misuissippi Valley and on the Plains. . Occasionally they are so intense and long continued that it is difficult to make recent transplanted trees survive, even when carefully planted and cultivated. In such a time, those which are poorly planted and cultivated are almost sure to dia. Frequently, too, weeds and grass grow up in the plantation and draw of the moisture, thereby greatly diminishing the supply for the young trees.

On a school ground there is likelihood of the trees being injured by the trampling of the soil. The pupils will naturally wish to play among them, and unless they are restrained the soil will soon become compacted. It then dries out very quickly, and in time of drought the trees are sure to suffier, and may be killed. By proper care and kindly suggestion, the children can be persumded to help the tree in its struggle for life by keeping away from it until it is well rooted.

## Nature intedy

## When We Plant a Tree benay abber

What do we plant when we plant the tree? We plant the ship which will cross the sea; We plant the mast to carry the sails; We plant the plank to withstand the gales, The keel, the keelson, the beam, the knee: We plant the ship when we plant the tree.

What do we plant when we plant the tree? We plant the houses for you and me; We plant the rafters, the siningles, the floors; We plant the studding, the lath, the doons, The beams, the siding, all parts that be: We plant the house when we plant the tree.

What do we plant when we plant the tree? A thousand things that we daily see;
We plant the spire that out-towers the crag; We plant the staff for our country's flag; We plant the shade from the hot sun freé We plant all these when we plant the tree.

## Lessons on Dogs

Genoral Deseription. Most experts believe that the dog is descended from the wolf. There is one difference, however, which should be noticed: the eye of the dog of every breed and country has a circular pupil, but the wolf has a narrow, oblique pupil, more like a slit. Young wolves have been trained to follow and recognize their masters just as the average boy trains his dog. There are instances on record of domesticated wolves who recognized their masters after eighteen months and even two years. Thus we see that there may be a marked similarity in the relations between man to wolf and man to dog.

The dog has been almost universally the most intimate friend of man. The annual overflow of the Nile which makes cultivation of the valley possible comes at the same time as the appearance of a certain star above the horizon. The ancient Egyptians called this Sirius, or the "dogstar"; they associated the faithfulness and watchfulness of the dog with the star which appeared as a blessing on their industry. Some nations, especially the Hebrews and Hindus, regarded the dog as unclean. In Mohammedan and Hindu countries the most degrading epithet that could be applied to anybody was "dog." This epithet seems to be due to their hatred of their enemies rather than to a dislike of the dog: when the Israelites saw that their Egyptian enemies worshiped the dog, their hatred of the

Egyptians made them think of the dog as an enemy. So, too, the Mohammelan or the Hindu, who saw the affection of the Chrisian for his dog, disliked the dog just as much as be disliked the dog's master.

Until the beginning of the Christian ena the dog seems to have been used only as the defender of the home and a friend and companion of the master. Now he was trained to pursue other animals. Whether this training developed the peculiarities of the "hunting dog" or whether only dogs that showed these peculiarities were chosen for training, is not important. The fat remains that for many years dogs were roughly classed as "sporting" and "non-sporting." The swiftness and the highly developed power of scent are most noticeable in the sporting doge, such as the pointers, setters and terriers. It is not unlikely that all dogs sprang from one common source, but climate, food, and cross-breeding caused variations which in turn led to further breeding for special purposes. These rariations have made some dogs better fitted for some purposes than any other dogs and so the breeding has gone on till there are now alout two hundred breeds of domestic dogs.

Characteristics. There will be no ${ }^{1}$ ficulty in interesting the children in the subject of dogs. Urge them to notice the different points of dogs. Let them treat the dog not

## Notare Atedy

sendy as an object of study but as a friend. No bewes lemon than unselfishnem and kindness tomard weaker creatures can be taught children. Let them seef for themselves that a dog appreciates a hind deed as much as the child does. Every chidd has seen a dog wag his tail with pleasure at the ight of his mester. What effect does a xolding have on the dog?
Watch a dog eat. Does he gnaw or bite?
Sudy the head and muzale. The different chapes will help to identify the breeds.
Notice the size and shape of the teeth.
Difierences in the shape of the ears are noticeable. The ear which droops over at the top is alled a button ear. What are some other slapes of the car?
Compare the pusition of the eyes with the parition of the eyes in a rabbit.
Are all dogs' eyes of the same color?
Is there any difference between the forefeet and hindfeet of a dog? How many toes are there on each foot?
Each child should observe one dog for several dres. This is a much better method of teaching the habits of a dog than a general explanation.
Let the child see that the dog is : ible to care lor himself in a great many ways. Surely every dild has seen a dog bury a dry bone at some time or other. Why is it that another dog acasionally finds the bone?
Have all dogs an equally developed sense of mell? Of hearing?
Thids. There are so many kinds of dogs thet it is impossible for the child to learn even the names of all of them. But he should know the chief classifications and some of the charsceristics of each. Under the separate headings of spaniel, wolfhound, etc., will be found desriptions which will be of great assistance in this study.
Name some of the breeds of large dags. What dancteristics make them especially useful to man?
Most of the small dogs are merely companions.
That are some of them?
There are wild dogs found?
Why are bloodhounds so named?
That other animals are included in the amily to which the dog belongs?
How do dogs compare with other animals in intelligence and affection?
From what does the St. Bernard dog derive its men? For what is it famous?
What dog was used by Landseer as a subject tro one of his famous paintings?

## Metars atudy

What are some of the traits which make the Newloundland dog popular?
Which is the moot celebrated of all strains of ahepherd dogs: What characteristics especially fit it for the care of sheep?

What is the chief use to which the Eskimo dog is put?

What is the most distinguishing feature of the greghound? From what is the name probably derived?

What special sense marks the difference between the hound and the greyhound?
The Dog as a Friond. We know that the dog has always been the companion and friend of his master. A dog will recognize his master's step or his voice; even if the dog cannot see or hear him he will recognize the scent. No other animal is so faithful to man; man appreciates and returns the devotion of the dog. One of the noblest tributes to the dog is part of an address to a jury made by Senator George Graham Vest during the trial of a man who had shot a fine dog belonging to a neighbor. The eulogy is so remarkable for its simplicity and dignity that we quote it in full:
"Gentlemen of tae Jury: The best friend a man has in this world may turn against him and become his enemy. His son or his daughter, that he has reared with loving care, may prove ungrateful. Those who are nearest and dearest to us, those whom we trust with our happiness and our good name, may become traitors to their faith. The money that a man has he may lose. It flies away from him, perhaps when he needs it most. A man's reputation may be sacrificed in a moment of ill-considered accion. The penple who are prone to fall on their knees to do us honor when success is with us may be the first to throw stones of malice when failure settles its cloud upon our heads. The one absolutely unselfish friend that man can have in this selfish world, the one that never deserts him, the one that never proves ungrateful or treacherous, is his dog. Gentlemen of the jury, a man's dog stands by him in prosperity and in poverty, in health and in sickness. He will sleep on the cold ground, where the wintry winds blow and the snow drives fiercely, if only he may be near his master's side. He will kiss the hand that has no food to offer, he will lick the wounds and sores that come in encounter with the roughness of the world. He guards the sleep of his pauper master as if he were a prince. When all other friends desert he remains. When riches take wings and reputation falls to pieces, he is as

## Siatere turis

conatamt in his lowo as the oun in ite journey through the beavens. If fortune dirven the manter forth an outcont in the world, fritiodlen and bouselom, the faithful dog aclos no higher privilege than that of cecompanying him to guard againat danger, to fight againat his enemics. And, when the lat scene of all comeen, and death thees the moter in its embrace, and his boty is laid away in the cold ground, no mattere if all other friends pursue their way, there by his gruveride will the noble dog be found, his head between his paws, his eyen mod but open in alert watchfulnew, faithful and true even to death."
Por the very reason that the dog stands so close to nan, we sbould atady him; not only one dog, but all doga. To help the atudent in this atudy is the purpose of the following outline:

## Octline

## I. Descintion

(1) Structure
(2) Size
(3) Characteristics
II. Uses
(1) Companionship and protection
(2) Hunting
(3) Work
III. Clasbincation
(1) Wothounds

## Itacurs andy

(a) E-kimo
(b) Shoop-dog and collies
(2) Greytounde
(a) Englich
(b) Scoich deertound
(c) Rumana
(d) Lareber
(e) Italinn
(3) Spaniels
(a) Setter
(b) Retriever
(c) Newfoundland
(d) St. Bernard
(e) Poodle
(4) Hounds
(a) Bloodhound
(b) Staghound
(c) Foxhound
(d) Harriess
(e) Pointers
(b) Mastiffs
(a) English mastiff
(b) Bulldog
(c) German bonr-hound
(d) Great Dane
(e) Pugdog
(6) Terriers
(a) Fox terrier
(b) Scotch terrier
(c) Skye terrier

## Lessons on the Ant

An Absorbting Topic. There are few things in the animal or insect world that furnish more interesting material for study and investigation than the ant. In the pages that follow, we have aimed to develop many of the characteristics of these tiny insects, and believe that tenchers, pupils and parente may use the lessons to great advantage. It is hoped that what may be learned here may serve as a basis for further investigation and inderendent rescarch. We are asking the student and reader at the outset to provide a temporary home for the ant, such as we shall deacribe, and to study the ant at close range; one will then be better prepared to understand the later explanations in this article, and will develop, at the same time, zest for the work.
Bimple Matorial Boquived. There will be no difficulty in securing a varicty of specimens of ants for purposes of study, but some trouble will be experienced in finding specimens of a size to render carcful observation a matter of case. The ant is a very small insect; the largest
of the species cannot successfully be studiod without the use of a magnifying glass. Such a glase-a common microscopic lens-may be purchased for less than fifty cents, and posacaion of one of these is strongly recommended.
$\triangle$ Tomporary Eome for Ants. Every boy and girl who is interested in securing firsthand information about the life of ants will construt an observation house, or temporary home, lot them which can be kept in any room of a meidence without the slightest misgiving on the part of any member of the family. Indeed, it is quite likely that your enthusissm in the work will spread to the entire household before the invatigation has proceeded far.
If you were a learned scientist you wouk call this temporary home or nest a forminarim, which is a Iatin term derived from formion which means an ant's nest or an ant hill. It is easily constructed. Secure a glass tumbler, ws deep as possible but of a widih not exceediny three inches. In this place a portion of an

- 0 which jou may find in your back Pd. alling the tumbler about half full. Led jur percimon comalian an many of the bitile Indinats as poentble You caranor hope to Murw the form of the sme, so mak se so attempt w ib an. One of tho invoruating thing you are ping to obeerve is the rebuilding of this new. I moder to arrive at jout coaclusiona and to inve correct inferences in the tudy of ante it is moverary that thate circumatances and surrondings should be, as fur as poseible, thove of mans. This artifcial howe ahould be of suinidina dimensions to troure to the little people pratar freedom or sation and to enable thea to met the demande of their domeatic economy and to obey with precilion every prompting of rrinct. In ordes that ther movementer and patormances may be rygitered by you, as the hithtul expressions of the exercies of their intinat, they should be perfecty free to set in any diection and in any manoer that the suggeation $\alpha$ thit nature may dictate.


A TEMPOZARI HOME FOR ANTS
A Formicarium
The illustration herewith will help the gouthHimexigator in preparing every detail necessary to neresoful observation and study. The glass, rith iss contents, should be placed in an encircling tread filled with water, to prevent escape of
Ansery much dislike light in their nests, polably herause it makes them feel insecure, mit this statement must not be accepted as maning that they always shun the light. At mes, hey seek the light with every manifestain o ploasure, but their nests are so arranged
that lifter in excloded. This is doubtiven for manitary and protective reasonas. Such an arraggemant in demanded in order to promoto the health of the colony, to provide anfo retreats in cuse of henvy rains or violent causes of dis turbance, to forwand the development of the young, which are very semitive to changee and degrees of temperature, and to make preparation for their long winter sleep. The differeant apecies of antes pam the winter months in muitable cham. bers many inches below the surfece of the ground. Therefore, in preparing the new home for your captives, wrap a dart cloth around the tumbler and remove it only for purposes of observation. Leave the top umially uncovered. Place on top of the material in the tumbler a few fine crumbs of bread, part of a pulverized nut meat and pomibly a drop or two of honey.
Within a day or two you should be able to anower mont of the following questions, if you have been observing:

1. What change has been wrought in the appearance of the neet?
2. Under your magnifying glass do you note differences in the appearance of the little inhabitants?
3. Have you seen ants carrying tiny burdens up from the depths and depositing them for a time in the sunshine and warnth and later returning below with them ?
4. Have you noticed any ants with wings engaged in work?
5. To what extent have you observed that ants are attracted by light and heat ?
6. Have you noticed any dead members of the colony?
For your encouragement we are going to answer the above questions. Note whether your experience coincides with the views we set forth. If not, continue your inquiries and submit your ant home to various experiments:
7. The portion of the ant hill thrown into the tumbler has assumed new forms; there are winding avenues and little grottoes visible, and we may assume that the same formations extend to those sections which are not visible to us. The ants have constructed their home.
8. There are three kinds of ants; doubtless all of them are represented in your tumbler. They are males, females and workers. We shall learn that males and females have wings at one stage of their existence but do not possess them all their lives; the workers are wingless.
9. If you have noted these tiny burdens you doubtless wonder what they are. The ants pers
times called pouters, and they abound h mat gromer numbers than the other two. Ener colony has at loart oas quecea; as a rule, mend Thew hatter are larger than ocher ants, an frequently more deeply colored and have wry delicate winge with ecaly flousces. Every quan proides over a colony of from one thouseind in two thoumand or more ants. The mate ant of many specien it winged, as is also the lemene. Their courting and mating is carried on in the air, with every opportunity for romance; cettindy there is known to be choice 'and selection u among human beings. The female loses her wing as soon as her semon of ege-taying begim; the male dies by the time hir progeny reach this natural form, and long before full gromth is attained. The workers are charged with the arfety of the eggs, later of the little ants in the progremive stages of development, and raill hues with that of the ants too young to protect theme selves. The workers show very tender care and solicitude for the young, in this virtue not being excelled either in the animal or insect world Besides, the workers perform every other kind of labor in their community. The males and femenes do not labor at all.

Moaning of Einad Wordis. There is a atrous temptation to akip all words of a technical nature in ordinary reading and studs. Especially ane young people likely to do this. It is not right You poosibly follow this practice because "the words are hard," and because you "cannot understand them, anyhow." May we show bow you are in error in this?

The technical words in any text are there because very long ago there was the beat od reasons for applying them. They are derived largely from the Iatin and the Greek, and moat of them were applied when those languages reer solely used by scholars. Later, when new discoveries necessitated new terms, the same inguages were drawn upon, that uniformity and good order might be continued. We must ons clude early in our scientific investigations that these terms cannot be altered to suit our cont venience, so, whenever we find a new word, lat us patiently examine it. It will soon be a comb mon word in our vocabulary.
As an illustration, did you have much troube with formicarium, printed in the thind pargrgiph of this lesson? It was pronounced by you io the most natural way, with the accent on thind syllable, and we told you from where the word came. This was done as a matter of encourre ment, for you might not have scarched for the


THE ANT

- Battle of ants. 2-Kescuing a comrade. 3-Red ant. 4-Parts of ant [1, Hagellum: 2, grape; 3, lateral es

 ol ant litl. 11-Cocoon. 12-Exterior of o.dinary nest or hill.

Maters Itendy
son and derivation, slehough any erwal 4 to would effer full explunation.
ow ya woil many lines furtirer yom ano कnd the word ankena, with its (wn atepr and Muyellum. The first wunl of on the aevinal ayllable, atal its ham - ©mumed like binge ei the mentral is ox exuelly an muellolf; the thinl is of the wrown syllable, with the $g$ whof; - wo Amn rarefully. We explain the * I artonna in the text; momper is a * लat the Latin, ant means atem ur mas trant why? filugithom in froms
 numa to whip. Cill we imatine. Le seygetivet is momething that whigei - ans, sathing thitres will which it wey 8 'There you have it; the ton shrufer juar of the ombemara, the Exum the loxly. Frum the elefinitions sew the uthive this little orgas pro - man tally exphinidel later.
in we may amilyae with sone sod alout the nuts mes you - 1.i. it. Your dietiomury siny … bar, the singular Inoug owrliu. 1. iLam, and ill forms indienters - wh gives us for a definitien, - Unerly, a litule farther on.
$\because$ h tathes is reverumply intire
 - Sote the rematuring bation * For that in the erdervel phate: 17.9 ges ait rach.
 be aurkers are whan in tho "The digaram of the parts * seferrel to frequenty. I'xe **w he inhali'snts of your
 a.. inleatify and know thom

- is a wonderful ormani-m. -ate under the microwinge we ore, which som heow in all - lormend of a tine betwork rathemont whe werle of - "ere are immenable, hatz:" - moh in fact leting atr cye - mombe to see in as anany
 - is human beings arr ahbr "Mess the power we rijoy * the lens so as so atint


## Wature Etady

the right th nime the eligene ef etan: the


 Why they are furnusters with the ef yis .. stes

 where they nete mavit to :w-
 theae companimel eye tat trith wite of the lebs, mit far luck whom we notill maturally wipet in







 novenems meitely hy well, which fact is trus. in great necanare if every variety of ant. The
 tharir mone ed smell in ment ic thes. Lua may test their vi ion liy roli-ving an ont of a thoriten is
 shon dastanto and you aill fro, the insen on
 thenet mu olstacte interverime for hat a fer in vimi.


 the 1 lace where we woude naturally eve. lio
 notn wet: thoo mughar number is antenta, is

 ins storer. the other hav, as a roio, o e divent, fitting im, end onther the $1 \because$,
hexing lihe a string of padie and hende, is.



 lary arephatal will. . . the arks.


 whe the cllye... ${ }^{2}=$ ?


mang
dictimary
Before
going to divicione, is sccente ylable is prosounce ccented O prosounce meaning derivation shaft; cun the Letin, late, which then, that or beats a comes in fayelum is one farthest pou almost borms, but One mor are. Whe mill find th it is plural $i$ This is from the diminut bitle cye. this applies. The study esing; you many are at in the diagr and trace th Pats of male, female acompanyin of an ant sho pour magnify mts' house, ! be able at al by name.
The eye of Itre examin find the oute ors as the $c$ of lenses sim the honeycom tre number o to enable the directions as
annot tum 1
band they d
daltering th

## Nature Study

maning and derivation, although any good dicionary would ofier full explanation.
Before you rend many lines further you are ging to find the word antenna, with its two diviona, asape and flagellum. The first word is scerented on the second syllahle, and its last whlleble is sounded like long e; the second is propounced exuytly as spelled; the third is cconted on the second syllahle, with the $g$ soft; pronounce them carefully. We explain the menning of antenna in the text; scape ir a derivtion from the Latin, and means stem or shafts can you learn why? Flagellum is fr:in the Latin, and our English cognate is flay \%. lat, which means to whip. Can we imagirs, then, that the flagellum is something that whips or beats around, striking things with which it comes in contact? There you have it; the fagelum is the slender part of the antenna, the ove farthest from the body. From the definition pou almost know the office this little organ perboms, but it is more fully explained later.
One more word we may analyze with some are When we read about the ant's eyes you nll find the word ocelli. Your dictionary says it is plural in number, the singular being ocellus. This is from the Latin, and in form indicates de diminutive, which gives us for a definition, bithe eyc. See how nicely, a little farther on, tis applies.
The study of such names is extremely interesing; you can master them easily, if not too many are attempted. Note the remaining rames in the diagram of the ant in the colored plate and trace the meaning of each.
Parts of the Ant. Good illustrations of the made, female and the workers are shown in the mompanying plate. The diagram of the parts din ant should be referred to frequently. Use pur magnifying glass on the inlabitants of your mus' house, locate the more important parts, and be eble at all times to identify and know them by mame.
The eye of the ant is a wonderful organism. II re ceamine the eye under the microscope we ind the outer surface, which you know in all ywa as the cornea, is formed of a fine network d lenses similar in arrangement to the cells of the honeycomb. The eyes are immovable, hence te number of lenses, each in fact being an eye a cable the little people to see in as many diactions as there are lenses in the eye. They amox tum their eyes as human beings are able tond they do not possess the power we enjoy dituring the form of the lens so as to adapt
the sight to meet the object of vision. The outer surface, or cornea, and the optic nerve are always at the same distance, so the ant is unable to see near objects. This is douhtless the reason why they are furnished with the sensitive and delicate feelers, with which they may, like a hlind man with a stick, feel things close at hand where they are unable to see.

In nearly all species of ants there is one of tase compound cyes on each side of the head, set iar berk is tre we would naturally expect to find ears. Nors. species, in addition, have three simple cyes, salled ocelli, on the exact top of their heads. In one species of ants no eyes inurie irm discovered. These insects seem to have no settied dwelling-place, hut are always on the march, searching houses for their prey, and crossing streams hy forming floating hridges of their own bodies. They must be guided in their movements entirely by scent, which fact is true in great mensure of every variety of ant. The ant vision seems very imperfect, and we know their sense of smell is most acute. You may test their vision hy relieving an ant of a hurden it is carrying; remove that burden only a very short distance and you will find the insect will have great difficulty in finding its lost treasure, though no obstacle intervenes to hide it from view.
We referred above to the feelers, or antennae. They are long jointed horns fixed into little sockets not far from each other, and located in the places where we would naturally expect the eyes. The word antennae indicates the plural number; the singular number is antenna, which means feeler, or horn. Each horn of the antennae is in two parts, the one nearer the head being the shorter. The othcr has, as a rule, eleven divisions, fitting into each other like little cups, looking like a string of polished beads, the last three being formed into a club. Observe this fact through your microscope. These feelers can be moved in any direction at the will of their little owner. They in no way hinder sight, since they are placed well inside the organs of vision. Since you are so well acquainted with the word antennae, you will be interested to know that its shorter arm is called the scape, and the longer one, with the eleven subdivisions, is the flagellum.
Now pause for a moment and reflect how easy it has been for you to master these seemingly difficult words. It will prove no more irksome to continue an inquiry into the remaining hard words in connection with the color plate. When you have completed this study you will be so
as slaveowning ants capture their prisones in battle and keep them in subjugation as effectively as once did the Roman legions.

An Ant Funeral. Knowing that ants are cleanly in their habits, that they spare no puins to free their community from all impurities, and that they venerate their dead, we may assume that ant communities observe burial rites. This has been proved a great many times by actual observation, and the student of this lesson will be much interested in reading the complete details of one funeral witnessed not long ago:

One day a little boy about four years of age threw himself down on a grassy mound to rest Shortly after his parents were startled by sudden screams; going at once to his relief it was discovered that he was covered with large ants, on whose nest he had laid himself down. Numbers of the ants were still clinging to him with their forceps and continued to sting the boy. The parents relicved the lad of his tormeaters and killed them. At length about twenty were throm dead on the ground.

Within half an hour one of the parents returned to the same spot and saw a large number of ants surrounding the dead ones. It was determined to watch the proceedings closely, and the persoz followed four or five that started of toward a hillock a short distance away, in which was an ants' nest; this they entered, and in fire minutes they reappeared, followed by others; all fell into rank, walking regularly and slowly wro by two, until they arrived at the spot where lay the dead bodies of their comrades. In a fer minutes two of the ants advanced and took up the nearest dead body; then two others, and so on, until all were ready to march. First wallied two ants bearing a body, then two without a burden; then two others with another dead bod, and so on, until the line was extended to about forty pairs. The procession moved slowly, followed by an irregular body of about two hundred ants.
Occasionally the two laden ants stopped and laid down the dead body; it was taken up bp the two walking unburdened behind them, and thus by occasionally relieving each other they arrived at a sandy spot near the water. The body of ants then commenced digging with their jaws a number of holes in the ground, into earh of which a dead ant was laid; then they lubored on until all the graves were filled.
This did not quite conclude the remartalle circumstances attending this particular funenl. Six or seven of the ants had attempled to sim
of with digging whereup body of single g were all

## Naturs 8tudy

of without performing their share of the task of digging; these were caught and brought back, whereupon they were at once attacked by the body of ants and killed upon the spot. One aingle grave for thein was quickly dug aad they were all dropped into it.
$\triangle$ Battlo Betweon Ants. There appear to be occasions in aat life when conflict between species and varieties cannot be prevented. Battles between ants are not at all rare, and many have been witnessed with profound interest. Our great American naturalist, Henry D. Thoreau, once witnessed a battle of this kind, and it caanot better be described than in his own language:
"One day when I went out to my wood pile, or nther my pile of stumps, I observed two large ants, the one red, the other much larger, nearly balf an iuch long, and black, fiercely contending with one another. Having once got hold they oever let go, but struggled and wrestled and rolled on the chips incessantly. Looking further. I mas surprised to find that the chips were covered with such combatants, that it was not a ducllum, but a bellum, a war between two races of ants, the red always pitted against the black, and frequently two red ones to one black. The legions of these Myrmidons covered all the hills and vales in my wood yard, and the ground was alrady strewn with the dead and dying, both md and black. It was the only battle which I hare ever witnessed, the only battlefield I ever tod while the battle was raging; internecine war; the red republicans on the one hanr' black imperialists on the other.
"On every side they were engaged. combat, yet without any noise that 1 cou. , ucar, and human soldiers never fought so resolutcly. I ratched a couple that were fast locked in each ather's embraces, in a little sunny valley amid the chips, now at noonday prepared to fight till the sun went down, or life went out. The smaller red champion had fastened himself like a vise to his adversary's front, and through all the cumiblings on that field never for an instant ccased ${ }^{10}$ gnaw nt one of his feelers near the rot, haring already caused the other to go cale band; while the stronger black one dashed him from side to side, and, as I saw on looking nearer, had already divested him of several of his ombess. They fought with more pertinacity an bulldogs. Neither manifested the least disposiino to retreat.
"It was evident that their battle-rry was Conquer or die.' In the meanwhile there

## Nature 8tudy

came along a single red ant on the hillside of this valley, evidently full of excitement, who either had dispatched his foe, or had not yet taken part in the battle; probably the latter, for he had lost none of his limbs, whose mother had charged him to return with his shield or upon it. * * * He saw this unequal combat from afar-for the blacks were nearly twice the size of the red-he drew near with rapid pace till be stood on his guard within half an inch of the combatants; then, watching his opportunity, he sprang upon the black warrior, and commenced his operations near the root of his right fore-leg, leaving the for to seleci mmong his own members; and so there were three united for life, as if a new kind of attraction had been invented which put all other locks and cements to shame.
"I should not have wondered by this time to find that they had their respective in sical bands stationed on some eminent chip, and playing their national airs the while, to excite the slow and cheer the dyiag combatants. I was myself excited somewhat even as if they had been men. The more you think of it, the less the difference. * * * For numbers and for carnage it was an Austerlitz or Dresden. * * * There was not oae hireling there. I have no doubt that it was a principle they fought for, as much as our ancestors, and not to avoid a three-penny tax on their tea; and the results of this battle will be as important and memorable to those whom it concerns as those of the battle of Bunker IHill, at least.
"I took up the chip on which the three I have particularly described were struggling, carried it into my house, and placed it under a tumbler on my window sill, in order to see the issue. Holding a microscope to the first-mentioned red ant, I saw that, though he was assiduously gnawing at the near fore-leg of his enemy, having severed his remaining feeler, his own breast was all torn away, exposing what vitals he had there to the jaws of the black warrior, whose breastplate was apparently too thick for him to picree; and the dark carbuncles of the sufferer's eyes shone with ferocity such as war only could excite. They struggled half an hour longer uader the tumbler, and when I looked again the black soldier had severed the hcads of his foes from their bodies, and the still living heads were hanging on either side of him like ghastly trophies at his suddie-bow, still apparently as firmly fastened as ever, and he was endeavoring with feeble struggles, being without feelers and with only the remnant of a leg, and I know not

## Mature stedy

how many other wounds, to divest himself of them; which at length, after hall an hour more, he accomplished. I raised the glass, and he went off over the window sill in that crippled state.
"Whether he finally survived that combat, and spent the remainder of his days in some Hotel des Invalides, I do not know; but I thought that his industry would not be worth much thereafter. I never learned which party was victorious, nor the cause of the war; but I felt for the rest of that day as if I had had my feelings excited and harrowed by witnessing the struggle, the ferocity and carnage, of a human battle before my door."
Lensons trum the Ant. We have added a good deal to our scientific knowledge from the foregoing lesson outline on the ant, and have found the theme so interesting that the investigation is likely to be continued in books devoted solely to the subject. In addition, we have learned something else, and something which can in a direct way be applied to ourselves. Human beings are not always models of propriety; their everyday actions cannot always be commended. Observers have never discovered an instance where the personal life of the ant is a matter of reproach; it lives under system; the laws of the species are rigidly forced, as we know from the good order always apparent; it is a hard worker, and there is instant punishment me out to the one that shirks; there is marked car and affection for the young; the spirit of willing helpfulness prevails; personal cleanliness is a cardinal principle.

## Hature Stedy

When Solomon, in calling attention to certuin virtues, amid. "Go to the ant, thou sluggard consider her ways and be wise," he paid a worthy tribute to this immense throng of happy labores.

## grestions

Does the male ant do any work?
What are the household duties of the female?
What is done with the larvae on wamm days?
Do ants tunnel under rivers and build bridges?
Of what does ench community of ants consist ?

Which members are wingless ?
What are some of the duties of the worken!
Why are some of the workers known as soldiers?

Where and how do most American ants luild their nests?

Do they require food in winter?
Why do ants sometimes herd lice on plants?
How do they draw the sweet fluid from these parasites?
What are some of their acts which show wonderful intelligence?
How do some species dispose of their dead! Why is the umbrella ant so called?
How does the honcy ant come by its name?
Name some of the peculiarities you have noticed in your observation of ants.

What are white ants?
Proportionately, how much stronger would you say ants were than some of the large animals like the bear, the elephant?

Mothod of study. The general suggestions for lessons on insects and the special directions for studying the fly make it unnecessary to repeat these instructions for the bee. The same method of study should be used, for the familiarity of the pupil with one insect will be of great help in enabling him to study another. There is the obvious difficulty that small children should not be allowed to handle bees. In small classes the teacher may need only a single specimen, which all the pupils may study together. In larger classes, especially if the children are older, they may be divided into groups. For class-room work a dead bee will be fully as useful as a live one. Extreme care should be taken that none of the children are exposed to the dangers of a sting. If a neighboring beuceeper happens to have an empty hive
he will probably be glad to show it to the class, so that they may study something more than the anatomy of the bee. The opportunities offered and the good judgment of the teacher or parent must determine how extended the study may be. The following outline and questions have been prepared to heip both pupil and teacher to gain a thorough knowledge of the bee and its habits.

## Outline

I. General Description
(1) Insect
(2) Characteristics
(a) Hind feet dilated
(b) Hairs of the head feathery
(c) Tongue adapted to sucking liquids
(3) Habits
(a) Feeding

## Nature Stady

## (1) Larvae

(2) Aciult
(b) Use of their senses
(1) Especially sight
(2) Touch
(3) Smell
(4) Hearing
(5) Taste
II. Classimcatton
(1) Solitary
(a) Carpenter
(b) D igger
(c) Cuekoo
(d) Leaf-cutter
(e) Mason
(I) Potter
(g) Parasites
(2) Social
(a) Bumblebee
(b) Honeybee
III. Solitary Bees
(1) Only perfect males and females
(2) No wax-making power
(3) Nests
(a) Many burrow in the ground
(b) Hollow stems of shrubs or dry wood
(c) Earthen cells above ground
N. Social Bees
(1) Bumblebees
(a) Classes
(1) Male
(2) Female
(3) Neuter or worker
(b) Live in communities
(1) Only for a season
(2) Female founds new colony each spring
(3) Seldom over 200 in a colony
(c) Males die during winter
(d) Only enough honey for the season's needs
(2) Honeybees
(a) Classes
(1) Queen
(a) Largest body
(b) Fully developed
(c) Lays egzs
(2) Male or drone
(a) Smaller than the queen
(b) Dies or is killed by the workersaftera few months
(3) Worker
(a) Undeveioped female
(b) Smaller fury than male and queen

613

## Neture Ittudy

(c) Largest class
(d) Gather the honey
(e) Feed the young
(I) Rulers of the hive
(b) Nest
(1) Made of beeswax
(2) Divided into cells
(a) For queens
(b) Drones
(c) Workers
(c) Eggs
(1) Laid by the queer
(2) Size
(3) Shape
(4) Color
(5) Hatch in three days
(d) Organization of a colony
(1) Controlled by the workers
(2) Dependence of the other classes
(3) Swarming and fortuation of new colouies

## Quentions

To what great class of animals does the bee belong?

About how many species of bees are known? What are the two great divisions?
Name five kinds of solitary bees.
To which division does the bumblebee belong? What is a swarm?
What is a drone? Why so called?
What is a worker? What are its functions?
How long does it take for the eggs to hateh?
How many queens are there in each swarm?
By what means is the queen-bec developed
from the ordinary larva?
What distinction is made between the eggs that give birth to workers and those that give birth to drones?
Is any distinction made between the eggs from whick queens are to be devcloped and those from which drones and workers are to develop?

Which is the most numerous cless of bees?
How are the larvae fed?
When are the larvae sealed up in the cell?
How long a period elapses before the adult bee emerges?
When is a new queen allowed to appear?
What becomes of tie old queen?
What do the bees do in winter?
What is the food of bees?
How is it obtained?
How is it stored?
What plants furnish the best honey?
What are some of the enemies of bees?

## Butterflies

Like the fly and the bee, the butterly belongs to the insect family. With experience already gained in the study of these other insects, the butterfly should present little difficulty. Many apecimens can be found in every part of the world; $a$ little watchfulness and care wili probably enable the teacher and pupils to secure several difierent kinds. The greater the difference, the more valuable the specimens will be for study.
To study the life history of a butterfly we should properly begin with the egg. Unfortunstely the pupils may not always be able to find eggs; in that case, they may begin with the second, or caterpillar stage. Teachers and parents will find that the children will take a lively interest in the development of the caterpillar. A caterpillar may be kept in a glass


LITE HIETORT OT A BUTTEERLT

1. Eggs, highly magnified. 2. Caterpillar.
2. Chrysalis. 4. Butterfly.
case, set in a sunny place; if he is fed and given a twig and leaves to build a cocoon, the class may soon see him spin himself into his retreat and finally emerge a perfect butterfly. Let the children keep a record of daily observations of anj changes they may notice. Not only will they be interested in the caterpillar, but they will, unknown to themselves, be learning how to observe carefully and systematically. Incidentally the teacher will find many opportunities to teach the lesson of kindness to animals.
The sccompanying illustrations should be of i slue to all who study the butterfly; the four
states in the life of the swallowtail, one $d$ the conmonest North American butterflies, are clearly shown. It is not necessary to give detailed instructions as to the order in which the different phases of the subject may be considered, but the following outline and questions are suggested in the hope that they will enable the student to see the field of study at a glance and devote himself to it in a systematic way.

## Outline

## I. General Description

(1) Insect
(a) Different from moth
(1) Shape of antennae
(2) Position of wings at rest
(3) Time of day when it tlies
(2) Anatomy
(a) Head
(1) Antennae
(2) Eyes
(3) Tongue
(b) Thorax
(1) Legs
(a) Number
(b) Structure
(2) Wings
(a) Number
(b) Structure
(c) Abdomen

To wha butterfiy $b$
In what be moth?
(3) Color, size and form
(a) Variations
(1) Due to sex
(2) Due to climate
(4) Habits
(a) Feeding
(b) Hibernation
(c) Migration
II. Classification
(1) North America
(a) Brush-footed
(b) Metal marks
(c) Blues, coppers and hair-streaks
(d) Swallowtails
(e) Skippers
(2) Arctic Regions
(2) Temperate zones
(4) Tropics
III. Life Histort
(1) Eggs
(a) Where deposited
(b) Number
(e) Time required for hatching miem

## Mature Itady

(1) According to species
(2) Locality
(3) Season
(2) Caterpillar or larva
(a) Definition
(h) Duration of this atage
(c) Anatomy
(1) Head
(a) Antennac
(h) Eyes
(c) Mouth
(2) Body
(3) Organs
(d) Food
(e) Method of self-defense
(f) Molting
(3) Chrysalis or pupa
(a) Apparently lifeless
(h) Protected
(1) By cocoon
(2) By chrysalis
(c) Duration of the stage
(4) Butterfly or imago

Guestions
To what great division of animals does the butterfy belong?
In what respects is the butterfly difierent from the moth?
What are the three parts of the butterfly's body?
What are the antennae? Ocelli?

## Wature 8tudy

What is the position of the tongue when not in use?

To what part of the body are the legs and wings attached?

How many legs has a hutterfly? How many wings?

What is the structure of th? wing? What are the usual shapes?

To what is the brilliant coloring of the wings and body due?

On what do hutterfies feed? How is this food obtained?

What are the principal causes of variations in color and size?

Where are the largest varieties found? How large are they?
Name the five principal classes of butterflics found in North America.
Where are the eggs deposited?
How long is the period of incubation? Is it uniform in all climates and in all seasons?
What is the larva?
What is the duration of this stage in temperate climates? In cold regions?
How do caterpillars attach themselves to leaves or hranches?

How does the insect breath during the pupa stage?

What is a chrysalis?
What is the appearance of the imago when it emerges from the chrysalis?

How long before it is ready for Gight?


Dofinition. The word orthography is derived from two Greek words, orthos, which means straight or correct, and graphein, which is the Greek for to wrile. Orthography, then, may be understood as a branch of the art of speaking and writing correctly; however, the subject is confined to worde, not to sentences or paragraphs, and relates to spelling alone. We are studying orthography when we seek to learn the sounds a word contains, to know how to divide it into syllables, and to pronounce it correctly, every letter given its proper sound and accent placed on the proper syllable.

The mastery of this subject, in most particular detail, is the work of the expert in the department of language, but the general principlesentirely sufficient for the average man or woman -may be easily understonal, and such a grasp of orthography is plainly necessary if one would speak and write correctly those words we ordinarily use. Unless one knows how the various letters in the written alphabet stand for the sounds in the spoken language, and is acquainted with the general rules for combining letters in the formation of words, he will always be liable to embarrassing errors in pronunciation and spelling and must be decidedly at a disadvantage in both his social and his business life. To meet the needs of the general reader who wishes to make an elementary study of orthography, the essentials of the subject are set forth in the following paragraphs.

## sound ens symbois

" there are many more spoken sounds than letters to represent them. The letters are twenty-six in number, and one of these is not really needed; there are forty-three sounds, most of chem very important and not difficult to utter, while a few express tones seldom sounded correctly in our
speech. The letter with which we could dive pense is $c$, for its soft sound, as in the wond ice, and its hard sound, as in call, might well be represented by the letters \& and $k$.

As there are forty-three sounds in the English language and only twenty-six letters to represent them, it is evident that a single letter must serre to represent more than one sound. The various sounds of a letter as used in different words are represented by means of symbols, or signs, placed either above or below the letter, as a guide to pronunciation. When once the exact love demanded by a symbol is learned, the ability to pronounce correctly has been acquired.
Olassification of Sounds. According to the kinds of sounds that they represent, the leters of the language are divided into two classes, known as vowels and consonants. Vowels are open sounds made by an unobstructed passere of the breath through the vocal urgans. The letters that indicate these sounds nre $a, e, i, o, u$ and sometimes $w$ and $y$. Consonants are sounds formed by a str: page of the breath in the mouth or the throat.

Sounds are said to be vocal when they hare a tone or voice quality, and aspirate when bey are merely breath sounds. The vowels are pure vocal sounds since they have tone qualities that are expressed without any obstruction. In the case of several of the consonants, howerer, the tone quality is suppressed or obstructed by the organs of speech, and the sounds are therefore known as subvocals. When two vocal sounds are combined, as in $\dot{o}$ in roice, the resulting sound is known as a diphthong.
In the paragraphy which follow, all the sounde of the vowels are classified and explained by proper diacritical marking; in each instance, the sound of the letter as marked is indicated by examples of words in common use.
(2) T

## Orthography

## Vowole

A rowed sound in a free and uninterrupted and of the voice. The various vowel counds meodised by changed pooitions of the tongue ad lipa. A study of the following paragraphs mill emble you always to pronounce any word hadd in the course of your rending.
In Fowol A. There are eight sounds of the mila; cach is expluined below.
(i) The long sound of the letter is called its
nume litter. In the words-
4se may piate
te long sound of the vowel is represented, and the sound is denot ' ${ }^{2}$ by a straight line above de ketter, called a macion.
(2) The short sound of $a$ is heard in the mont

> milt hăm pluid
and is represented by a curved mark directly above the rowel called a breve.
(3) There is a broad sound of $a$ heard inall call etalk
and it is always represented by two dots, called a diemes, placed below the vowel. The former spelling of this name is diaceresis.
(4) One of the common sounds in $a$ is heard in-
arm fár palms
and is called the "Italian" sound of the letter, becuuse characteristic of that language. It is band as well in the Spanish and German. The mark is the dieresis above the $a$.
(5) The soft Italian sound is heard inask pass bath
ad the single dot above the vowel is its mark. The sound is about midway between the short suund, as in pat, and the Italian sound, as in lom
${ }^{(0)}$ A sound of $a$ which is like the short sound $d$ o appears in-
was what swan ud demands a single dot below the vowel.
(7) A sound of a very similar to the short sund of $e$ (see below) is noted in-

$$
\text { senate } \text { village }
$$

uod the mark is called the suspended bar and is pleced under the vowel.
(8) A somewhat difficult sound of a appears incare paret.: Aboot the easiest way to explain this sound is way that it is nearly equivalent to the sounds $d$ and $e$ short, run together. The mark above te letter is called a circumfiex.
The "owal \&. The three sounds of the letter iure graphically illustrated below:

## Orthography

(1) The long, or natural, cound is heard in-
evo stram The mark is the macron, above the letter.
(2) The short sound of the letter $c$ is found in the words-
mêt End triend
and the distinguishing mark is the breve.
(3) In a fairly large list of words such asers her fern
the vowel has the same sound as $u$ in urge and $i$ in sir (see below). The diacritical mark denoting this sound is called a tilde, or wave. Tilde is pronounced in two ayllables, tirde. The name comes from a foreign language, the Spanish, where it is used over the letter $n$ to denote a following nound similar to $y$, as in canon.
The Fowrel I. (1) The long sound, or name sound, of $i$ is heard in-
The distinguishing mark is the macron.
(2) The short sound of $i$ is heard in such words as-

$$
\text { btt } \quad \text { tln akfm }
$$

and, as in all other short counds, the distinguishing mark is the breve.
(3) In a considerable number of words $i$ takes the sound of other letters; in-
machine quarantine
the sound is that of long $e$, and the mark is the two dots above the letter. In fir
sfr
stir
the tilde denotes the same sound as uttered in $u$ in um and burn.
The Vowel 0. The sounds of oare marked with the same devices as the preceding vowels.
(1) The long, or natural, sound of 0 is heard in-
Oar for tône
and the macron is used above the letter.
(2) The short sound of $o$ is used in such words as-

$$
\text { nott } 18 t \text { spot }
$$

and its distinguishing mark is the breve.
(3) In a large number of words such asmove
prove
the sound is the same as though oo were present; as, proof. When this sound is to be uttered and there is but one 0 , the dieresis is used below the vowel. In such words as-
moon son
if it is dessired to use a mark of pronunciation the double macron is used above the letters.
The Vowel J. (1) The long sound of $u$ is heard in-
aso daty cabe

## Orthegraphy

and it dibinguished by the macron above the letter.

## (z) The short nound of $x$ appears inbet d olin otdmp

 and its mark is the breve.(3) A common use of $u$ in found in such words an

## arn arge

and the vowel in riarked with the circumfiex.
Diphathonga. A diphthong is a sound produced by running together two vowel sounds in the sume ayliable. It is called a proper diphthong if both vowels are sounded. Examples are oi in the word oil, oy in boy, ous in out, and ovo in cov. An improper diphehong, or digraph, is merely a union of two vowels in the same ayllable, only one of which is zounded. An example is found in the words rain, teach, audible.
Triphthonge. A triphthong is a sound produced by running together three vowels in the same aylable. Technically, a proper triphthong would be one in which all three of these vowels are sounded, but there is no such instance in the English language. The only triphthong is the improper, or trigraph, in which three vowels appear in the same sylable but only one of thein is sounded. Examples of the improper triphthong, or trigraph, are found in the words adieu and beauty.

Voen Equivolsnta. The leacias, parent or student will find much help in earning correct pronunciations of words if the following table of vowels and their equivalent sounds is studied until it is thoroughly understood.

Consonants. The consonant sounds of the alphabet are best learned by observing how the ketters they represent are sounded in spoken words. The following table of aspirates and subvocals will materially assist one to mastes theici sounds:


## Ortl draphy

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { as in joy } \\
\text { as }
\end{array}\right. \\
& \text { mos in men } \\
& \text { as in nove } \\
& \text { ng } 20 \text { in oung } \\
& \text { s } 25 \text { in tar } \\
& \text { th as in then } \\
& \text { as in vain } \\
& \text { - } s a \text { in went } \\
& y \text { as in yacht } \\
& \text { 2 as in sinc } \\
& \text { - as in treanure } \\
& \text { ai as in version }
\end{aligned}
$$

In the spelling of Eaglish words we cocacionally use a letter whoee sound in the word is thel of another letter or other lettera. As an illumtantion, In the word onion, the first $n$ is sounded as though it were ny. Other equivalents will be noted in the following table:

| - |  |
| :---: | :---: |
| $8$ | as in lifer er |
| C | as in there 2 |
| - | 28 in they a |
| 1 | as in police |
| 1 | as in firm 8 |
| 0 | as in Ought |
| 0 | as in somo a |
| 8 | as in tailor e |
| $Q$ | as in to 6 |
| $\bigcirc$ | as in world oo |
| $v$ | as in mule 80 |
| $\mu$ | as in fur or |
| y | as in cry |
| \% | as in badly |
| 5 | as in myrtle 8 |

Subvocal and Aspirate Equinalemts


## byliabication and Aecent

Consonant and vowel sounds are combined in groups known as syllables, and these groups are in turn united to form words. Sometimes a single vowel may form a syllable, but a coaso-
uat cun
be comb
which 8
for in ps
word is
urent, in
and in
parts of
of line
miablec.
rord into
berween
and that
no rowe
nond vo
wrlable, p
mel ettera is compoo sullables, one of the

Marain
conect ant
rond and
menarte of
pell corre
andul obs
sisent effo
anlly and
the who
sually lac
patling. 1
spelling the
be of muct
main in
Among the.
ts the most
Iules 0
asully dro
the sufixi in
Monds en
change $y$ t
consonant
Wionds en
tey in add
Monosylle
alble, end
by a single
beore a suf
liting; begi
Horis en
the a suffi
an reidue, 1
Hionds en

## Orthography

mar cannot be thus used alone; it muat alwaya be combined with a vowel. The ayllablen of which a word is formed must be carefully noted, lore in pronunciation one of the syllables of the roed is distinguishod by apecial emphasis or ment, and the others must le clearly equriciated; and in writing It frequently happens that the pars of a word must be sejarated at the close da line, thus requiring a proper division into grlables A general rule for the division of a rond into syllables is that if two consonants occur berwen tro vowels, one goes with each vowel, and that when but one consonant comes between tro vowels the consonant usually goes with the suond rowel. When a word consists of but one srluble, pronunciation depends wholly upon cormo uttennce of the sounds of which the word is composed; but when there are two or more sthbles, proper placing of the accent becomes ase of the essentials of pronunciation.

## Apolifing

learaing to Spoll. Quite as important as conct articulation of the sounds that form a rod and the proper placing of the accent, is meuncte spelling of the word. The ability to pell consectly is cultivated largely by means of andul observation in one's reading and by persisent efforts to be exact in spelling words both oully and in writing. Especially is this true of tase who use English, since our language is ssully lacking in uniformity in the matter of pelling. However, there are several rules for pelling that are so generally appreciable as to bed much value to those who do not readily main in memory the exact form of words. Imong these rules the following may be stated withe most important:
Rulos of spelling. Words ending in ie saully drop the $e$ and change $i$ to $y$ in adding de sufixi ing; as, lie, lying.
Mords ending in $y$, preceded by a consonant, dange $y$ to $i$ when a suffix beginning with a cosonant is added; as, bounty, bountiful.
llonds ending in $y$, preceded by a vowel, retain trey in adding a suffix; as, joy, joyous.
Honosyllables and words accented on the last yrlbble, ending in a single consonant, preceded or a single vowel, double the final consonant boore a suffix beginning with a vowel; as, hit, liting; begin, beginning.
Hionds ending in silent $e$ drop this final $e$ mea a suffix beginning with a vowel is added; m, miduc, residuum.
Wiords ending in e usually retain this final
letter when adding a suffix beginoing with a consonant; as, resolute, renolutenest
When a ayliable is added to a word ending in n double consonant, this consonant is unually retnined; as, still, atillnesm.
Nouns reqularly form their plurals by addling a; as, table, tables.

However, when the alngular noun ends with a sound that does not unite with $s, e s$ is added; as, church, churches.

Nouns ending in $y$ preceded by a vowel form their plurals by adding sias, monkey, monkeys.

When final $y$ is preceded by a consonant, $y$ is changed to $i$ and $e s$ is added in forming the plural; as, city, cities.
Some nouns ending in $f$ or fo change the $f$ or $f e$ to $v$ and add es to form the plural; as, shelf, shelves.
Nouns ending in $o$, preceded by a consonant, sometimes form the plural by adding - but more frequently by adding es; as, solo, solos; motto, mottoes; potato, potatoes.
Root Words and Derivatives. Interesting recitations in the formation of derivatives from root words may prove of much assistance in teaching children to analyze the building up of words when they find difficulty in apelling them. A root word may be chosen and as many derivatives as possible formed from it ly adding prefixes and suffixes. The same lesson may prove doubly profitable hy defining the root word and showing the changes in significance after the addition of the prefixes or suffixes. The following is offered us a suggestive exercise:
tract-mraw

| Tractor | or=that which. |
| :---: | :---: |
| Tract-ion. | ion = act of. |
| Tract-ile. | ile= may be |
| Tract-able | able $=$ able to be. |
| Abs-iract. | abs=away from. |
| Al-tract. | at = near to. |
| Con-tract | . .con=togetber. |
| De-tract. | . . de=away from. |
| Ex-tract. | ex $=$ out of. |
| Pro-tract. | pro=out. |
| Re-tract. | re=hack. |
| Sub-tract | ubin from under. |
| Attract-ive | ive $=$ tending |
| In-tract-ishle. | . $\mathrm{in}=$ not.... able $=$ |
|  | able to be |

Explanation. A tractor is an instrument which draws.

## Orthegraphy

Thecioa is the state of being drawn or the act of draving，os the trection of a muocke．
Gold is o trectle metal，oo it may be drawn out in thin stripe．
A tractable pernon in one rasily drawn to a proper course of conduct．

An abotract manner revilts when the mind is drawn away from surrounding objeets．
To attract people we must have power to druw them to us．
To detract from value is to lemen or draw －way from It．

An extract from a hook is a part wide in drawn out of th．

A protracted meeting is one which in drm out of extended beyond the unual time．

When a matement in retracted it is witham －＂taken back．＂

When a number is drawn from under or them away from another we subtract it．
＇Ihat which tends to draw me to it it attractive．

An intractable atedent is one who is not cily drawn to diselpline．


Nating among the Greeks. The Greeke ind a prety legend about the beginning of drawand painting in their country. A girl whowe bwe wis going away, and who was brokenmived at losing him, mw his shadow cant upon a will and drew a line about $h$, that she might bre the cemblance of him with ber alwaya.
Ainting never grew to the importance in Greve that sculpture attained, but it assumed tro chracterixtic forms, beaides the painting of pitures. These were the decoration of vases and de coloring of tratues. Great numbers of vases hre beas found, moaly in tombs, and these give -a mery clear lden of what the vase painting nh. Some of the figures on the earlien, crudest mare amply outlines of men and of animals nughly dawn, showing little lifelikenean. Later de at grev, and some of the vases which are deonted with pictures representing stories from aythology are really exquisite.
$t$ is only comparatively recently that it has bean known that the Greeks used to color their atues. From most of the recovered sculpture de coloring has worn off, and thus the finders hre almays taken it for granted that white was de criginal color. It was not the common matice, apparently, to use a flesh color on the atures, though rare examples of that have been hand; bat the hair and lips and eyes and clothing wat puinted. Care was not always taken to mete the colors lifelike; horses were sometimes med blue, and lions red.
He posesss almost no fragments of Greek pitures, but ancient writers have left assurance in the Greek painters were masters of form, alapoation, color, light and shade, and perspecm. An ofd story, which is interesting even if mive, is told of a contest between Zeuxis and hurmaius. The une who painted the most lifeBe picture was to have a prize. When the
judges had grethered, Zeuxias prosented his paintIng - beautiful bunch ol grapen. So lifelike were they that the birds came and tried to eat them, and the judges exclaimed "Zeuxis has woal He has deceived the birda" But Parrhasius advanced to abow his picture, which was apparently covered by a curtain. "Withdraw the veil," mald Zeuxis, "that we may see the picture." But when he reached out to touch it, he found that the curtain was the picture, and the judges awarded the prise tu Parrhaciun, who had deceived even his competitor.

Roman Paintalas. The Romans really had no art of painting that amounted to anything. They copied Greek works and produced some feeble ones of their own, vivid in color, but with small artistic value. When the buried city of Pompeii was excavated many of these wall paintinga were found, but they changed in no way the eatimate already pleced on Roman art.
Eoginnings of Painting in Italy. But if Italy had aothing artittic whereof to boast in Roman times, she had later more than any other country. The first Italian painter who really developed an individuality and who made even a distinct attempt to make his figures lifelike was Cimabue, who lived in the thirteenth century. The story goes that once as he was walking in the mountains, he saw sitting on the ground while his sheep rested around him a shepherd boy. The boy had in his hand a piece of slate, upon which he was scratching with a lump of coal. Cimabue, always interested in anything relating to drawing, approached and examined what the boy was doing, and found that be had drawn a lamb, very like those which lay about him. Mueb impressed, Cimabue begged for and obtained permission to take the boy to his studio and train him as his pupil. This shepherd boy was Giotto, the first great modern painter. He understood
on the wall of a church at Milan, and as the wall was plastered, and the material used mu distemper, the wonderful picture scaled and ideded until little of its beauty remained. Just of hte, however, some very akilful work has been done toward restoring the picture, and if the saling and fading can be prevented in the future the people will have a chance to see the masterpiex in something like its original beauty. Leonardo da Vinci spent four years in the production $d$ this painting, and to everyone who knows is it has seemed unnccessary for any other paintre, no matter how great, to attempt the same subject. Christ has just said to his disciples, "Onc of you shall betray me," and they have broken up into excited groups.
Another great picture of Leonardo's is the "Mona Lisa." This is a por trait of the wile d a Florentine man named Del Giocondo, and ite picture, regarded as the greatest pormait eree painted, is often called "La Gioconda." The hands are very beautiful, and the face, while not beautiful, has a wonderful, inscrutable smik, which makes it always mysterious and intereting: While painting the portrait, on which he worked at intervals for four years, Ieonardo had music played, that the rapt expression might not fade from the face of the lady. The "Mona Lis" was sold to Francis I of France for four thousund gold florins, and was one of the chief glories od the Louvre, but in 1911 it was stolen.

Andres del sarto. Another interesting Ituian artist was Andrea del Sarto, known as the "Faultess Painter." Browning has a wondeftul poem, a dramatic monologue supposed to hare been spoken by Andrea, in which we see what he himself regarded as the great failing of bis art-the lack of soul.

Behold Madonna!-I am bold to say I can do with my pencil what I know, What I see, what at bottom of my heart I wish for, if I ever wish so deepDo easily, too-when I say, perfectly, I do not boast, perhaps: yourself are judqe, Who listened to the Legate's talk last week, And just as much they. used to say in France. At any rate 'tis casy, all of it!
No sketches first, no studies, that's long pas: I do what many dream of all their lives, -Dream? strivc to do, and agonize to do, And fail in doing. I could count twenty anch On twice your fingers, and not leare this tomi, Who strive-you don't know how the oblees strive

To pair
Carchen
Yat do
(I hoow
Well, l
There b
In their
bri
Hoart, 0
This lon
min
Their
1 kx
Beach m
Emer an
Though
mor
My worl
The ande
Prise th
4 peintin
Soow wl
Or their
Yorello's
His bue
Rightly to
Speak as
care?
alh, but a
Or what's
Phid an
I how be
And jet
"Hhad I b
Our head
No d
Yonder's
The Urbir
(Tis copie
Hell, I cal
Pouring hi
Reaching,
Abore and
Thet arm
1 tault to
la body, s
He means
Sith, what
a all the
Ont of me,
had you
He might
My, Ine,
Yare than
had yo

## Palinting

To pint a little thing like that you smeared Carlonily pacing with your robes aflont,iu do much lem, so much less, Someone says, (I foow his name, no matter) - $\$ 0$ much less! Well, less is more, Lucrexia: I am judged. There burns a truer light of God in them, In their vered beating stuffed and stopped-up bnin,
Blert, or whate'er else, than goes on to prompt This low-pulsed forthright craftsman's hand of mine.
Their works drop groundward, hut themselves, I know,
Becch many a time a heaven that's shut to me, Bner and take their place there sure enough, Though they come back and cannot tell the world.
My works are nearer heaven, hut I sit here. The audden hlood of these men! at a word-
Puise them, it boils, or hlames them, it boils, too.
4 , pinting from myself and to myself,
Koow what I do, am unmoved hy men's hlame Or their praise either. Somebody remarks Yoredlo's outline there is wrongly traced, His hue mistaken; what of that? or else, Righty traced and well ordered; what of that ? spat as they please, what does the mountain cre?
Ah, but a man's reach should exceed his grasp, Or what's a heaven for? All is silver-gray Phcid and perfect with my art: the worsel I how both what I want and what might gain, And yet how profitless to know, to sigh "Had I been two, another and myzelf, Our head would have o'erlooked the world!" No doubt.
Yooder's a work now, of that famous youth The Urbinate who died five years ago. (Tis copied, George Vasari sent it me.) Trell, I can fancy how he did it all, Pouring his soul, with kings and popes to see, heacting, that heaven might so replenish him, sbore and through his art-for it gives way; Thet arm is wrongly put-and there againA huult to pardon in the drawing's lines, to body, so to speak: its soul is right, He means right-that, a child may understand. sill, what an arml and I could alter it: Bat the the play, the insight and the stretchOun of me, out of me! And wherefore out? had you enjoined them on me, given me sull, Ne might have risen to Rafael, I and youl My, Lave, you did give all I asked, I thinkHore than I merit, yes, by many times.
Bind you-oh, with the same perfect hrow,

## Paintinc

And perfect eyes, and more than perfect mouth, And the low voice my soul hears, as a bird The fowler's pipe, and follows to the anareHad you, vilh these the same, hut hrought a mind! Some women do so. Had the mouth there urged "God and the glory! never care for gain. The present hy the future, what is that ? Live for fame, side hy side with Agnolol Rafael is waiting: up to God, all three!" I might have done it for you. So it seems: Perhaps not. All is as God overrules. Beside, incentives come from the soul's self; The rest avail not. Why do I need you? What wife had Rafael, or has Agnolo?

The poem gives us, too, what was probahly one greai reason for Andrea's weakness-his love for the selfish, wicked woman who was his wife. He used her face as a model in painting his madonnas, hut while she was a beautiful woman her face had none of the sweetness or tenderness needed for a madonna.

Michelangelo. Like Leonardo da Vinci Michelangelo was painter, sculptor, architect. He himself chose sculpture as his profession, and for a long time refused to consider himself a painter at all. But other people had more faith in his powers than he had himself, and Pope Julius II chose him to paint the ceiling of the Sistine Chape! in the Vatican. Michelangelo protested in vain-the pope would have his way. We may imagine the great man shut up in the Chapel with his prohlem-what theme was wonderful enough to use for such an undertaking? Finally he planned to represent the world from the creation of man to the flood. At first he intended to have other painters work from his designs. hut they could not satisfy him, and at length he decided to do all the work himself. The ceiling paintings. of which the "Creation of Man" is regarded as the greatest, occupied him for about four years, and when we consider that in doing this work he was for the most part forced to lie on his back we can see what a tremendous task it was that the pope had set for him.
Later, the successor of Julius ordered Michebangelo to paint one more picture for the Sistine Chapel on the end wall by the altar. This picture, which it took the artist almost eight years to complete, was the "Last Judgment," probably the most famous single painting in the world. It contains three hundred fourteen figures, which represent almost every conceivahle physical attitude and expression and the various mental and moral states.

## Patatang

His grest painting of the "Transfiguration," by some critices reganded as the greatest painting in the world, was unfinished at the artist's death. The upper group, Christ, Mooces and Elias abore the mount, and the middle group, Peter, Jawa and John upon the mount, were completed, bat the lower group of the demoniac. his parents and the people was not finished. Raphael's body was hid out in his studio, by the side of his unfinished masterpiece, and all Rome flocked to the place to do honor to the "prince of painters."
Pieture standy. Picture study serves an : delightful recreation in school, provided the study is so presented that it appenls to the children. To be successful the teacher showld heed the following suggestions:

1. Choose simple pietures of subjects which the children can understand and which appeal to their own experiences.
2. Remember that pictures representing action are of greater interest to children than thooe which represent repose.
3. The picture should be large enough $n$ enable the objects represented to be casily sean.
4. The pictures should possess artistic marit as to both color and form. Cheap colored pinth ings and pictures poorly drawn should be avoided.
5. If possible, give the children the opportunity to live with the picture several days before beginning the study.
6. When the picture is first placed before the children give a brief description of it.
7. During the study call attention to and ack questions about only those features which the children can understand and enjoy.
8. Do not attempt a complete analysis.
9. Do not moralize. If the picture has a moral the children will find it.
10. Give a brief and interesting sketch of the artist, calling attention to at least one of tho of his other works.
The "Melon Eatern." This is the picture of some street urchins who lived in the city d Seville, Spain, a long time ago. From thei surroundings we should judge they had gome into the country for vegetables, and when returning had loitered by the way. Their clothing indicates that they are from poor families, bat the expressions on their faces show them to be contented and happy.
Notice the attitude of the boy about to at the piece of melon. How eagerly his gax is fixed upon itl The expression of the other bor indicates that he is enjoying the sport as much


The do
See how
bis with
rould lite
Notice 1
pae of the
the for
canbine
All these
work of a
out meing
Murilo wo
phes of his d it chik minid This pic cilly to bo duction. I and the a Mareover, 1 pinter. 7 minthe for Grostion see they $b$
Which b tink so?
Where do
Where an
That obj
this opinion
Where an
What are
Are they
tink so?
What is 1
What do
What do
Have you
rrist? Can
The Anti
Yvillo in
tonel facts
te stady.
opportumity
Ther a $y$

- decorate
ame in his Marillo's
repgized
duned at ar


## Peinting

- His companion. Pomibly the frat boy is doent to attempt to swallow his piece of melon an a mege. At all events, the recond boy is so Haratad in what hin companion is doing that by me delayed eating his own ahare.
The dog is ilikewiee interested in the sport. See how engerly he is watching his master, and He vittul expression indicates that he also rould lite to ahare in the fenst.
Notice the perfect proportions and the natural pre of the figures. The details of the vegetables in the foreground and the shrub at the right cuntine to preserve the balance of the picture. All thee features prove that this picture is the woit of a great artist. We cannot study it without reing in our imagination the young man Marilo wandering about the streets and market phese of his native city and making careful study d it child life-life which he portrayed with and vindness end strength.
This picture is of interest to children, especilly to boys of the age of those of this reprodaction. Its reality to life, the action expressed, and the composition all $\varepsilon$ ypeal to the child. Horeover, this is a work oi the greatest Spanish pimter. These conditions make it especially mintble for school use.
guotions. How many boys in the picture? An they brothers? Why do you think so?
Which boy owns the dog? Why do you think 30 ?
There do you think these loys have been?
Where are they going?
What objects in the picture lead you to form dis opinion?
Where are the boys seated?
What are they doing?
Are they having a good time? Why do you tink so?
What is the dog doing?
What do you think he wants?
What do you like in the picture? Why?
Hare jou seen any other pictures by this
urist? Can ou name them? urit! Can you name them?
Tho Artist. For a biographical sketch, see Yuillo in Volume IV. The following addisoal ficts should be used to lend interest to te stady. Others can be added if time and
opportumity permit.
When a young lad, Murillo was accustomed - deoarte with his sketches whatever objects
amen in his way.

Manllo's parents were poor, but they clearly noguized the artistic talent which their son thed at an early age, and placed him under

## Patinting

the care of his uncle, who was a priater and a draughtaman, and under whom he obtained his early training.
Murillo early learned to paint pictures of the children frequenting the streets and market plecess of the city of Seville, showing their many grotesque sports and pranks. The picture used in this study is one of these sketches.
When Murillo was twenty-two his uncle removed to Cadiz. Murillo remained in Seville and supported himself for a time by painting inexpensive pictures for the public fairs. Though hastily executed, some of these pictures reveal the strength and skill of the artist to a remarkable degree.

Murillo merited and won the love of Seville, and his home became the resort of artists and lovers of art.

Murillo's most famous paintings are on religious subjects. One of these, the "Immaculate Conception," was sold in 1852 for over $\$ 120,000$, the highest price that had been paid for a painting up to that time.
Murillo is described as a pious, patient, brave man. He worked incessantly, sold his paintings for a high price and acquired a large fortune.
The Gioanors and the Angelvs. The two pictures shown here are among the world's famous paintings. The first one, "The Gleaners," shows a part of a harvest field on what is, apparently, a large farm. In the background are farm buildings, haystacks, a wagon, and figures of workers; in the foreground, three peasant women, in simple peasant costume, are bending down to pick something from the ground. What is there in that to make a picture beautiful and famous?
That is the very question which some people asked when the artist, Jean Francois Millet, began to produce his pictures of peasint life. Classic pictures of the Greek gods, portraits of highborn gentlemen and ladies in gorgeous raiment, idealized shepherdesses with snowy flocks-these they could understand and appreciates but there was nothing lovely in peasant life. As Millet continued to produce his paintings, however, the critics began to realize that there was something about them which they had not grasped at first, and that was a perfect sympathy with peasant life, which made the paintings not so much pictures as glimpses of real life.

Now how did it happen that a great artist had so perfect a sympathy with the lowest class of the French people P A little study of his life will show us that Millet was himself of peasunt
family, and apent his boybood working in his father's fields. Although it is pomible that no one noticed the difference, the boy must have been different from the other boys about him; he suw things which they never suw, things which he was afterward able to put on canvas and thereby enable other people to see them. And very early he found that there was something besides working in the fields in which to interest himself. In an old Bible which was almost the only book in the peasant's hut in which they lived there were some old engravings which stirred his ambition, and he began to spend all of his leisure hours-and they were none too many-in drawing. His father, unlike many peasant fathers, did not discourage his son in an attempt to be something which his father had not been, but took some of his drawings to a painter in Cherbourg and asked him to accept the boy as a pupil. The artist at once recognized the boy's talents, and promised to receive him in his studio; but in a very short time the older Millet died, and the oldest son, then twenty-one years of age, returned to the field and took up his father's work.
Circumstances afterward became a little better, so that the young man was able to go to Cherbourg, and iater to Paris to study. At the very first he did not confine himself to the subjects which later won him fame, but painted "The Golden Age," "Oedipus Unbound," and other classical pictures. Recognition of his great genius was very slow, and he suffered the most extreme poverty; but we are glad to know that before he died he knew that his work was appreciated, and gained by his art enough so that he was no longer really poor.
Now we can see why Millet was able to paint with such sympathy and exactness his three gleaners. These women are not workers in the harvest-field; their "gleaning" does not mean helping to get in the bounteous harvest. From the earliest times there has existed in certain countries a sort of an unwritten law which declares that after the harvesters have gathered in the grain the poor peasants may come into the fields and pick up for their own use what is left. The Book of Ruth, in the Bible, is chiefly built around this custom, and we find many references to it throughout history.

The lower picture, "The Angelus" may mean even more to us than "The Gleaners." This, too, deals with an old custom, which still prevails in some Catholic countries. At morning, noon and evening the church bells are rung to
remind people to stop in their work and ay a prayes. This prayer is a bried one beginning "The Angel of the Lord," and is called the Angelus, from the Latin word for angel. In the picture, the bell is just sounding from the church spire far in the distance, and the tro peasants at work in the field have sopped their work and bowed their heads to pray. A soft, evening light fills the picture, and we an tell from the attitude of the peasants that it is no mere formal prayer which they are repering. The atmosphere of reverence is over the entire picture. These two paintings of the grat peasant artist of France well repay study.
study of "Aurors." The following study d "Aurora," by Guido Reni, can be made to sere two purposes: It may help to instill a bove $\alpha$ pictures into the minds of the children, and it may be of great assistance in teaching languge or composition work.

First, if possible, let each child have a copy of the picture in his own hands that he may study it carefully. Second, let each child tell, us fully as possible, what he sees. Then the for lowing series of questions will help to bring out the points of the picture. Some of the quetions the children can answer themselves from their observation, but a number of them the teachra will have to answer for them.

1. What is the name of the picture? "Auron."
2. Why is it so named? "Aurora" mens "Dawn." and this is a picture of the dara $\alpha$ the morning.
3. Which is Aurora in the picture? The draped figure that is leading.
4. Who was Aurora! The Greeks belizeed that she was the goddess of the moraing, who went ahead of Apollo, the sun god, sattering flowers in his way and opening for him the doors of the morning.
5. Who is riding in the golden chariat! Apollo, god of the sun.
6. How many horses are hitched to the chariot? Four. (If the children cannot the cover four horses let them count the noese).
7. Has Apollo any other attendants leik Aurora, in this picture? Yes, there is Lucites the torch-bearer, called son of the morning, 2 . the graceful figures of the Hours.
8. Which way is Aurora looking! At Aprilh to see whether he is ready to have her opea wide the gates of morning.
9. Are they traveling on the earth? No , a the clouds. You can see the earth below.
10. Are they traveling slowly or mpidly



## Falationg

Why do you think sol (Call attention to the bormer manase, and other aigns of action.)
11. Which in the moat benutiful face in the picture?
If there aayone in the picture who has nothing to do?
12. By whom was this picture painted? Guido Reni. He was born at Bologna in 1575 and died in 1642. His father, who was himsell a muicinn, hoped that his son would be a musicion abo, and the boy studied music for some time. He finaliy made up his mind, however, that he would never be happy uniess he became a puinter, so his father allowed hlm to have an artiax's trining. He painted many other pletures,

## Fatating

How many centuries before Chrise was painting practiced In Egypt? Was the ant clocely related to religion! In what relation was it held to sculpture and architecture?

Was any attempt made by the Egyptian artits to imitate nature?
Of what great historic value are these carly Egyptian paintings? Give three reacons for your answer.
By whom were the principal works of Roman art produced?
Describe the conditions of Roman painting for the first three centuries after Christ.
What were the Catacombs ? How were they built? Decorated? Protected? Inhabited?


AURORA
some $d$ them very beautiful, but this is the best thown of all his paintings.
13. Where is the original painting? On the celing of a pallace at Rome. (Explain that when theer beautiful paintings are on the ceiling, boting glasses are placed below them so that paple can see them more easily.)
14. Have you any questions that you would Iire to ask about the picture?
Now ket each child give a description of the pidure, or let the whole class compose the deription orally and then allow each child to mite it out. Studies similar to this may be made $\alpha$ any picture.

## Questions

What is oil painting? Water color! Fresco? Emamd? How produced?
How and on what were the early paintings of the Egyptians, Greeks and Romans executed!

By what art in the Catacombs did the early Christians indicate their religious devotion?

What characterized the Umbrian school?
What was striking about the Florentine school?
When did art in the United States take on an individuality of its own?

What are the strikingly distinguishing marks between American art of 1855 and 1900 ?
Name five well-known American painters, with a great painting from cach. For what was Whistler noted?

What are the twelve greatest paintings in the world; by whom, where found, and when produced ?
What discovery of the Van Eycks produced a revolution in the art of painting?
By what process are mosaics made?
What are the only examples of pure Grecian painting?
What was the Byzantine influence on painting?


Inter
ton to
porvi 47.
te ing
cunditio lus forc is not 0 dionlute holeh. Soyt hy of - citien ith tene dapived quacies ova, m csupati whes posi wane or Unles t treagthe conven un Poorly
38, ocel
te resp
perent
cllare b
Sone I
s batale in
ne many
celoness.
tus can
bining
path. It
de to the
Shine


Mrrodection. Never before in the history dour country has there been a time when attenton to health and the means for recuring and merving it were so general as at the present dy. As a people we are beginning to realize e importance of the proper care of the body. Whate been brought to this viewpoint by the cunditions of living which our industrial system m forced upon us. Physical culture, therefore, is not only beneficial to all, but it is to many abolutely emential to the preservation of tralh.
Sonz Causes or Poon Healtir. Nearly ono4y of the people of the Dominion are living in citien, and many of this number are crowded ith enements where they are partially or wholly dprived of pure air and aunlight-the best yemeies for the preservation of health. Moreenr, many men and women are engaged in ocupations which confine them for long hours in mad positions as to cause a constant strain upon wne organs, while leaving others inactive. Unken these people take exercise calculated to semgthen these inactive organs, the system bewom unbahnced and health, fails.
Poorly ventilated factories, stores and dwellys, occupations which prevent free exercise of *e respinatory muscles, in many instances perent proper purification of the blood and had to disease. For all these rensons physieal alkere becomes a necessity.
Some Rensons yor Our Farlures. Life is shatte in which victory goes to the strong. We *e many failures in life because of physical malness, and in numerous instances this wrakthen an be traced to neglect of proper physica! uning during the period of childhood and preth. In other instances physical weakness is de to the individual's neglect of proper exercise, He hilure to obtaim sufficient sleep, his carcles-
nese in regard to ventilation, and his excemive indulgence in highly seasoned food and in stimulants.
Under the heading "Phynical Culture." we aim to present in a clear and simple manner a discussion of the progress which the scientific world has made in recent years in the direction of health culture. Civilization is adrancing by leapa and bounds. Man is conquering the forces of nature, and in no field of investigation has advancement been more rapid than in that of the prevention of disease and in general health building. Some of the greatest scientific minds of Europe and Armerica have been long engaged in working out laws of health, and now fixed principles may be laid down by which humanity seems deatined to be restored to its rightful heritage-perfect health.
Present Oonditions. Problems still remain to be solved, but there are many universally accepted rules by which a systematic course of physical improvement may be prescribed for general guidance. The leading universities of the worid have awakened to the importance of health culture and disease prevention, and are estahlishing departments under one name or another for studying and disseminating knowledge about these subjects. Wealthy philanthropists are giving their means and time to sustain scientific study of disease, and the result is of inealculable value to the race. The public schools have joined in this movement and in many schools physical instruction for both pupils and teachers is regarded as an important part of the work.
Few people today have the time or the inclination to review technical and exhaustive bealth treatises, or to analyze tables of laboratory or training-camp experiments, and are therefore deprived of knowledge of great value.

## Phyitel Oultres

## Tharden Outtuse

Ioctu Mot a Metter of Erek Minny parentes are aill llving in the belief that he ath a matter of good or ill huck; that illmen comes to uen the revult of divine dipplenare erif in ititsereace. Probably they do not know thut there aro definite hwas of health, jurt es there ary: lavis of bevineem of government. Perhape they thinik there are too many complicated influences surch
 mean, germs and other intungible forre: :. 'graxl of ill for them to reckon wleh. Oth shy, "Oh, Inl leave those maters to th. antily phyician. II the children gee illl ic i ili... wo end for the phymikinn." We quite ap cic that a skilful physician is one's best triend to tim: sicknem. The physicimen and aurge.." 'ni: very important mission in the worlh, al ' it. one of the noblest altributes of a ra ble ;itr.o. fescion that it is concerning iseeff os mo ho wih the prevention $a s$ with the cure of diseal :
Aotion Nocosers. But why wait ti': illncas actumlly comes before concerning yourelf with the question of health? Why not builh up and forrify your system and the systems of your children agninst the attack of germs? Why not attain such degree of vitality and power of resistance to disare that you no longer live in terror of drafts. wet feet and contagion? Why not give the chilldren of the land surch a degree of vigor that they will go through life enjoying every minute of existence and be able to overcome cheerfully obstacles and dise uragements which erush others not so well prepared?
1 Lession trom the Greoks. The ancient Greeks, in this respect, were far ahead of us today with all our boasted civilization. The care of the body then was of equal importance with the cultivation of the mind, and through systematic habits of exercise and diet, the Greeks attained a perfection of mind and body, a harmonious adjustment of the mental and physical that made them the wonder and admiration of the pagan world, and even today we must go to the Greek statues and the Greek philosophers for our highest ideals of physical and intellectual perfection. The Greek tutors and parents understood better than we of this enlightened age the necessity of giving the mind a healthy, vigorous body from which to derive its power, and the almost universal success they achicrad in botily training shows how well they understood the prisciples on which such training should be based.
Woshnoss and Disoase Rosult from Oause. It is to be regretted that a large per-
cent of the ill of humanity in due to ixnomace of the lawn of health. Thousands of actood children struggle for an education under serbos disadvantages of physical weeknes, it not d actual divene, when the trouble lies wholly in the mode of living adopted of permitted by the parents. This condition $\mathbf{6}$ almply the semult of the law of cause and effect, a $\mathrm{h} w$ which in new auppremed in nature, If chillien are werk, nervous, anemic, irritable, atupil or inattrative, there in a rewson for it, and the parent ahoukd itace back thin remson from effect to cause. The raggations on the following pagen are desinn! to assis' not only parents but all othem to apply the health principles in a practical walj.
Many ;atents say that their children are not , is Li is well and strong. Then it is I) , $\because$ : ilul parents to keep their childmen condition. However, we should hear is that their vigor may be more apparat th ain real. Big biceps and a bigger appetite do mun atways indicate vital power. Murcuks development secured at the expense of be nervous system is a menace rather than a met guard. Keep ever in mind that endurance and recistance to disease are thinge to be desived.
What Power of Endurasice Indiention. a boy or man may have a fine physique; he my be able to lift great weights, and yet be vulnenble to disease germs. The test lies in endunnce. Endurance means the power to sustain work for a great length of time without undue fatigue or exhaustion. F'atigus comes from the aceumulo tion of body vastes. High power of endurnme indicates that the body is comparatively free from these wastes or poisons.

Endurance has been one of the secrets of success of the workd's great men, such as Wadtington, Napoleon, Glalstone and ex-Presideat Roosevelt, whose achievements are so reent that they are ensily recalled. liet this man of iron will and almost unlimited endurance was at ore time in poor health and obliged to remove is the plains and live for a while in the open air. However, while in certain cases a change of climate or scene is beneficial, you can beqim, right in your own home, the work of hentit building, and in nearly all cases carry it to a successful issue.
Exercise. The valur of exercise as a healthbuilding agent is coming to be generally reoge nized. That pronounced physiological efiects may be produced and morbid conditions reliend by exercise is universally admitted. Howera, we must remember that exercise may be mode
 hi it thered nan cons unde din mety the v idividual' tor in a macke of ad that raible to a derefore undominal
aterior mit meaghene

Evernse - $\log$ and prition. Eurcise: the until ancrise for
Exercise 3 fands chers iting positi Euencise 4 the side ho Fint, ale
Ruacice 5
4 角 45
Se Pig. 5.)
 ruanior of cercien in proper kidess and -rucu cult for the mont exacting and mature Hrant it it not uneommon to hear people in int exserice doee not aypeo with them. Donidem the fuult in not in the exerche liedl. whin the way in which it $h$ applied.
Artoritien agreo that an impoaing muacular - io not a sure indication of bealith. Health dipher on perfect functional activity, that h, bramalow aection of the vital organs, such as to momech, the heart, the kkineys, the liver ad the lumes. These orpans are all encesed in * mank of the body. It may be said that it in the trunk that the individual llives. This is the human power house. The limbe may be chatand and yet the vitul organs will go on ding triti work as before, and the individual ef aipy good health. But once impair the sitany of any of there viual organs, and you Inv a condition of ill health to a greater or a minder.
fio Alm of Modora Phyicen Oultare. thi deerfore to the trunk of the boxly with its rime conkents that modern physical culture equet direct their attention. The mare pernofy the ritul organs cosirdinate, the hicher the dridulu's riuality. It has been found that tun in a clase aympathy between the exterior mode of the trunk and the internal organs, od hat by atrengthening these muscles it is mide io invigorate the underlying organs. It i dererore of the greatest importance that the ubseninal muscles be developed and that the atrior muscles over the heart and lungs be anghenened through suitable exercise. This, in
irver, in the sim of phycical culture toclay, and the exercimen ahown on the following pages aro planned aystemationlly to build up and strengethen the muscles of the trunk.
The exercieas preseribed can be taken in your own home, withoun any expenditure for upecial cloching or apparatua. It in Important that the exercisea be taken in a well-ventlisted room, and that mufficient loose elothing be worn to protect the aymem from cold. To the beginner a caution it necemary: One unaceustomed to these exercies if very liable to Indulge too freely at the tan. When this happens, muscular worences and hmenea follow. It in far better to do too little than $t 00$ uuch, and the exercise should be continued only long enough to produce mild fatigue, never to the point of exhaustion. The amoumt of exercive should te inceresed gradually as the atrength improves. While the mat desimble hours for these exercises aspe just before miring at night, or when one rises in the morning, they may be tuken at any thme if other hours are more convenient.
It is not supposed that one will attempt all d the following exer- ises at the beginning. Only one or, at the outside, two should be practiced at first. After this, one exercise after another can be added as the arength increases and the aystem is invigonted. Doublem but few will care to prectre all of the exercises given. Neither is it necessary that they be taken in the order in which they are named; mome may prefer to seleet certain numbers, others another series of numbera. The chief point is that a certain amount of exercise be taken with regularity and that the exercises adopted be such as to bring all the muscles of the trunk into activity.

## Exercises for Practice

Emarze 1. Lie flat on the back. Raise first - kg and then the ocher to a perpendicular ribon. (See next page, Figs. 1 and 2.)
Everise 2. Raise and lower both lega. Conine until mildly tired. This is an excellent anais for the abdominal muscles.
Eurrise 3 Same position as in Exercise 1. Hand clesped behind the head. Pull up to ting position. (See Fig. 3.)
Rercise 4. Stand erect, arms outstretched to 4 ide borizontally. Twist to left as far as Nu, ithen iwist to the right. (See Fig. 4.)
Reariex 5. Hands on hips. Bend firs to right y $\sin \mathrm{a}$ aposible. Then repeat to the left. Sot $\mathrm{P}_{8.5}$.
Rerrier 6 . Stretch hands overhead. Bend
back as far as possible, repeating until tired Alternate by bending forward and trying to toucl: toes. (See Fig, fi.)
Exercise 7. Hands on hips. Twist the trunk around in a circle, first one way, then the other. (See Fig. 7.)
Exercise 8. Hands on hips. Lewer he trunk to a squatting position and ma e to standing. (Sec Fig. 8.)
Exercise 9. Tense the muscles of the neeck and turn head fmm side to oith makiry sute of of muscles resist the other in che movement. In the same manner turn the hear forvand and back and around in a circle, frst to the left, then to the right. This is to develop nnil strengthen the neck. A large neck indicatc power. It

Shyiled Oritare
Physical Oaltare



## Mhgiteal Oalkure

tanares a good blood supply to the brain. (See Fig 9.)

Exercise 10. Plece the palms of the hands together in front of the breast and press hard. (See Fig. 10.)
Exercise 11. Lock the fingers together in front of the chest and pull one hand against the other. (See Fig. 11.)

Exercise 12. Lock the hands behind the back and alternately pull one against the other and push them together. (See Fig. 12.)

Exercise 13. Arms outstretched horizontally. Make the hands describe a full circle forward and back. (See Fig. 13.)

Exercise 14. Place the hands on the floor, the body outstretched, face downward. Raise and lower the body from the floor, dipping the body untd the nose touches the floor. (See Fig. 14.)
Exercise 15. Hands on back of a chair or table. Raise and lower the knees rapidly, as in running. (See Fig. 15.)
Caution. It is not intended that all these exercises be taken at any one tume. Selections may be made from them according to taste. If the doing of these exercises becomes drudgery to th: child, stop a while, but resume them again as soon as possible. Let there be one day in the week of aboolute rest.

## Food, Air and Ventilation

Fise Elolection of Food. Fcod is closely related to bealth. The quantity and quality of food abould be suited to the needs of the individual. This means thas it depends very largely upon age, climatic conditions and occupation. In general, one engaged in an occupation which calls for vigorous and prolonged muscular exercise in the open air requires a harger quantity of food and more stimulating food than one engaged in sedentary occupations. There are, however, exceptions to this general rule. These exceptions are very apparent among certain chases of people who take directiy opposite views in regard to the value of meat as an article of food. Those known as vegetarians exclude meat from their diet entirely, while we find others who subsist almost wholly upon meats. Hurever, the great majority make use of a mixed diet, in which vegetable foods and meats are mingled in varging proportions.
In the last analysis, the $q$ antity and nature of food depend upon the individual. Neither medical science nor the systematic study of disense have yet been able to disprove the truth of the old adage, "What is one man's meat is another man's poison." In other worde, those articles of food which seem to be perfectly adapted to one individual, and by that person easily digested, are to another almost entirely indigestible and cannot be eaten without injury.

Food should be nutritious, readily digestible and free from an excess of condiments or other substances which highly seasoned food contains. For all such substances as need cooking, thorough cooking should be done. In winter one needs more food than in summer, and usually one eats more meat and more fats in winter than in summer because of the heat-producing quality of these subtancer

Tew Tnow Eow to Iat Properiy. More attention should be given to the manner d enting than is bestowed upon it hy a large number of people. All vegetable substances contain more or leses starch, and unless starch is digesed, it furnishes no nutriment. One should remember that the digestive process of starches begins in the mouth by the mingling of saliva with the food. Therefore, food should be thorougbly masticated. One should eat slowly and chew the food until the saliva is thoroughly mingled with it. By doing this the food becomes more thoroighly digestible, furnishes a larger proportion of nutriment, and consequently a less quantity supplica the needs of the system. Those who eat rapidly invariably eat too much and overwork the digetive organs. This practice in the course of time cannot fail to lead to the weakening of these organs and consequent ill health.

Food should be taken at regular intervals. The digestive orgains are rhythmic in thcir action, and when they become accustomed to act at certain intervals, they perform their duties more satisfactorily if this custom is followed. The avenge adult eats three meals in twenty-four hours; some believe in eating but two. However, il other conditions are equal, the person eating tro meals 2 day will take and assimilate as much food as the one eating three; the first simply mats more at a time. Young children need to eat more frequently than adulis, and this need should always be met. However, it should not degererate into a habit of constantly eating betwen meals, after the children have reached such an age that there is no necessity for their caling more frequently than adults. Another very injurious habit which children are sometimes allowed to form is that of constantly munching. Thin

## Phyicical Orlture

amajy keeps undigeted food in the stomach, ad tands to overwork that organ and conseFhy to irritate it.
Ruo Air a Necoselty. Pure air is as nandil as pure food. One can live for hours and even days without food and drink, but ec canact live five minutes without breathing.
We pay too little attention to proper ventilaion Defective ventiation is one of the most polifice sources of tuberculosis and other lung trubbles. The home, and especially the sleeping noms in the home, should be thoroughly venuibted People are recognizing the importance d pure air, and in most modern dwellings good spems of ventilation are provided. However, in moy of the older houses these are either defecine of wholly wanting. In such cases, care doud be taken to let in air from the outside ufrequent intervals. One should remember that odd cuir is not necessarily pure air, and a room the temperature is below freezing may, from disis poins of view, need ventilation as much as m urich has a temperature of $70^{\circ}$, or even more. sthatrooms and all other public buildings dold be thoroughly ventilated every time they me noted. At each recess the doors and wintras of the schoolroom should be thrown open, wan in cold weather, for a few minutes, to let de foul air escape and pure air enter. This wald be done when the building is provided nith a good system of rentilation, for no system prides a sufficient circulation to remove all the kel air and provide each recupant with all the thah eir necessary.

Physical Oulture
Bresthing Exarelses. Breathing exercises in the open air, except in cold weather, are very beneficial and strengthening. In taking these exercises one should stand erect with hands on hips and head thrown back a little. Air should be inhaled slowly until the lungs are filled to the utmost capacity, then the air should be expelled from the lungs as completely as possible. Exhalation may be slow or rapid, or the alow and rapid movements may alternate. The same effect is secured by practicing these exercises in a room with windows open so as to give as full a circulation of air as is obtained out of doors. In all cases the air should be inhaled through the nostrils.
Breathing exercises are beneficial to everyone, but they are necessary to the maintenance of health for those who are engaged in sedentary occupations. In such cases breathing exercises should be taken at least twice a day-morning and evening. These more formal exercises may be supplemented by an occasional full breath taken while at work. Let the worker pause for a moment, throw the head and shoulders back and inflate the lungs to their full capacity. This secures relaxation of nerves and muscles, and helps invigorate the blood.
In the beginning breathing exercises, like muscular exercises, should be taken lightly, for they can cause more or less of a strain upon the system. As one becomes accustomed io them, they can be increased in length and vigor. But if indulged in too freely at first, they are linble to result in injury.


Introdection. When we study the hects of nature we study what are called physical phenomena. This word phenomena (the plural of the noun phenomenon) may confuse us at first, but if we once have its meaning firmly in mind it will help us to understand our subject. In Greek this word meant any fact or event in the sense that it was changing and could be seen; the Greek distinguished between the "phenmenon," or the nature of a fact as it appeared at a particular moment, and the "essence," or real nature. Today when we speak of a phenomenon we study not only the action, but the law. We say that the fall of an apple from a tree is a phenomenon. Yes, but why? We are not content to accept the fact, and say, "Yes, the apple fell because it was over-ripe." Why didn't the apple fly away into spece? Why did it fall to the ground ? Did this particular apple do something that no other apple ever did or could have done? Of course not. But we refuse to accept each phenomenon merely as a fact; we want to understand as well as see. In a word, we must study the general principles. When we understand these we can see the connection between facts which formerly seemed unconnected. We can make our own experiments.
Propertion of Mattos. Physics is called the science of matter and energy. Just what matter is, nobody knows; we identify it by its characteristics or properties, that is, the facts that are peculiar to it. Thus all matter occupies spence. But some matter, like window-ghass, lets light pass through it and lets us see through it; it is transparent. Some things allow light to peas through but do not let us see through; these are translucent (from the two Latin words trens, which means through and lux, which means light). A piece of slate does not let light pass through it; it is opaque. A watch apring or a
rubber band recovers its shape after we badi it; it is clastic. A strip of lead, on the other hand, will keep the shape into which it is bent; it is inelartic.

All matter occupies spece: it has three dimersions, length, breadth, thickness. It has cubic contents, and it has mass or weight. One of tire most important properties of matter is its tendency to continue in whatever state of reto or motion it happens to be. We all know that a stone lying in the road cannot run amay. It it an object which cannot move uniess sometbody stumbles over it, or picks it up, or a horse licts it aside, or something of that kind happens. The stone has nothing to do with the motion; if nothing interfered with it, it would remain in its place. This property is called inertia, or sometimes incertia of rea, when it refers to a body at rest. The word "inertia" means "without motion of its own." On the other hand, ii a galloping horse suddenly stops or shies, the rider is likely to fall forward over the horse's head The horse and rider have been moving formand rapidly; the horse stops; but the rider who has no control over his motion, tends to keep on This is sometimes called inertia of mation, to distinguish it from "inertia of rest." We know now that if a moving body is stopped, the cuse is always outside the object itself; and if a body at rest suddenly begins to move, we know the motion must come from some outside source. Anybody can try a simple experiment, without the danger of falling from a horse. Hing a heary weight or ball by a string, and to the under side fasten a similar piece. It you pull stendily downward the string above the wridt will break, because the weight and the standy pull produce greater strain than the pull alox; if, however, you pull downward suddenls, the string will break below the weipht. On accoumt

The most m, first, to mond, chan wate of s "velocity a a nte of me; the spec iequal to ve thin the bo - mandint, tenme. product Wide the bo dierose in
te s decteres帾 from $r$ al $(0+\infty)$,
it rexads

## Physiden

d tes inatia of the hoavy weight, the lower - In tralls before the modden pull reaches the

s. HALL AND EMRINe EXPCRIMENT upper string. For the same remon, to drive a handle into a hammer head westrike thehandle, not the head, agninst the floor or an anvil. The head, because of its inertia, tends to keep on moving after the handle has stopped. Inertia, then, is that property of matter by which a iody at rest remains at rest, and a body in motion remains in motion in a uniformly straight line rian acted upon by some external force.
Mochanden of Solids. As soon as we try to dange the position or form of matter we must mider a new subject-energy, or force. It is a Ir of the universe that energy cannot be lost; is oaly transferred. This transfer of energy than one object to another is called "doing mat" When we have studied the different trms of energy and the change from one form to mother, we ahall understand why no energy is nem masted. The division of physics which int with forces is called mechanict, because it with the principles used in constructing madines.
The most obvious effects of force on matter $m$, frest, to produce change of motion, and zood, change of size or shape. To speak of trute of speed with which a body moves we " "relocity." If a body moves for five seconds a nte of ten feet a second it will move fifty筫 the appece passed over by the body in motion ingal to velocity multiplied by the time during tid the body moves. This is called uniform, a mandme, motion, because the speed remains terme. The final velocity at any moment is product of the number of seconds during Widh the body has fallen and the uniform rate dinrease in velocity. This increase, or it may la decrease, is called acceleration. If a body nes form rest, the average velocity for $t$ seconds il ( $0+a 4$ ) or $\frac{1}{2}$ at. The distance pased over it mands is then 1 ard $X t$, or $\frac{a e^{p}}{2}$. Remember
that a wands for 'coceleration, and it the time expreseed in seconds. If wo let a equal distance or space pased over,

$$
\begin{align*}
& s=\frac{a}{2}  \tag{1}\\
& \text { Then } a=\frac{2 s}{a^{2}}  \tag{2}\\
& \text { and } t=\sqrt{\frac{2 s}{a}} \tag{3}
\end{align*}
$$

Combining (2) and (3)

$$
\begin{equation*}
s=\frac{a^{9} v^{2}}{2 a}=\frac{v^{y}}{2 a} \tag{4}
\end{equation*}
$$

Or $\quad v=\sqrt{2 a s}$
With these formules we can get the velocity of any body moving with a uniform acceleration, no matter what the force moving it. Suppose a body starts from rest with an acceleration per second of 20 feet per second. What spece does it pass over in 6 seconds and what is its velocity at the end of that time? We substitute our values just as we do in any algebraic equation:
(1) $v=\frac{a a^{2}}{2} \quad v=\sqrt{2 a s}$
(2) $-=\frac{20 \times 36}{2} v=\sqrt{2 \times 20 \times 380}=\sqrt{14400}$
(3) $v=360 \mathrm{ft} . \quad v=120 \mathrm{ft}$.

Toward the end of the seventeenth century Isaac Newton discovered the law of universal gravitation: every particle of matter in the universe ittracts every other particle with a force whose direction is that of a line joining the two particles, and whose strength varies directly as the product of the two weights, and invernely as the square of the distance between them. In our study we may neglect all forces of gravitation except that of the earth. The mass of the earth is so great that no other object near it is strong enough to act in an opposite direction. The bodies greater in size than the earth are tro far away to influence its laws of gravitation.
If you were asked, "Which falls faster, a feather or a ten-pound weight?" you would probably laugh and say, "the weight, of course." And you would be right, because you are thinking of dropping the objects in air. If you could drop the feather and the weight in a perfect vocuum, that is, a place "empty of air." you would find that both fell at the same rate of apeed. Galileo was the first to find out this truth by dropping various bodies from the top of the learing tower of Pisa. In air the lighter bodies fall slightly slower than the heavier ones. but this is due to the resistance of the air. Thir

Phyales
uniform attraction in due to gravity. Juat what this magretic power is we do not know. We do know that it draws objects toward. the earth with a velocity of 0.8 metres or 32.15 feet per second.

We have already found that $v=a t$

$$
\text { and } s=\frac{a t^{n}}{2}
$$

Substituting $g$ or gravity for $a$, we have $v=g t$

$$
\text { and } \quad s=\frac{g^{n}}{2}
$$

If now we throw a body upward we shall find that our law still holds true. The acceleration is negative, and the initial relocity is diminished each second by $g$ units. If, for example, the velocity is 1470 centimeters a second, the time of ascent would be $\frac{1470}{980}$ or 1.5 seconds. (We had $v=g t ; \therefore t=\frac{v}{g}$ ). The time of ascent is the time of descent again to the starting-point; and the body will return to the starting point with a velocity equal to its initial velocity in the opposite direction.

Mochenics of Firids. A solid has rigidity or elasticity of form; its form can be altered by applying pressure; but a fluid has no form unless it is supported by a containing vessel, or, to be more exact, it conforms to the shape of any vessel in which it is placed. Fluids are divided into liquids and gases by means of two distinguishing properties:

First, a liquid, such as water, is but slightly compressible, while a gas offers relatively small resistance to a pressure seeking to reduce its volume. Water is reduced only .00005 of its volume by a pressure which will reduce air onehalf of its volume.

Second, gases are distinguished from liquids by the fact that any mass of a gas in a closed vessel always completely fills it, whatever its volume. A liquid has bulk of its own, but a gas has not. The particles of a gas will always expand to the boundaries of its containing vessel.
Probably you have never thought of fluids as exerting a pressure in all directions. Yet it is true. A board on top of water is evidence that there is pressure holding it up. We know water has weight and therefore exerts pressure downward. It is a fact, too, that there is pressure on the sides. The pressure of a fluid is always at right angles to any surface on which it acts. Furthermore, if we neglect the weight of the

Aluid, pressure in the same at all point in th mase of the fluid. II, therefore, we apply pro sure to any area of an encloned fluid, the prowir acts equally in every direction.
The preseure of a liquid on a body mmmend in it is a vertical force upwand; this upmond pressure in called "buoyancy." For exmple, suspend a weight by a string from the hook of an ordinary spring balauce and note the reading. Now submerge the weight in water. The weight will be less. The haw of buogancy in aid is b we been discovered by Archimedes about 210 B. c.: a body immersed in a liquid is buoped y by a force equal to the weight of the liquid displaced by it. When a body is immersed in is fluid, it may displace a weight of fluid kew than, equal to, or greater than its own weight. In the first case, the upward pressure will be las then the weight of the body and the body will sink In the second case, the upward pressure will just equal the weight of the body, which nill remain in the fluid wherever placed. In the third case, the upward pressure will exced de weight of the body, which will then rise to the surface. For jurposes of experiment we $\mathbf{~ w e}$ the weight of one cubic centimeter of witer at $4^{\circ}$ Centigrade as unity. The density of a body is the number of units of mass of it coostained in a unit of volume (e. g. grammes pa cubic centimeter). The specific gravity of a body is the ratio of the mass of any volume of it to the mass of the same volume of pure water at ${ }^{4}$ Centigrade-in other words, it is only mative density as compared with water. To find the density of a body it is necessary to know its mas and volume. Its mass is easily found by weidhing it. The most accurate and conreniment method of obtaining the volume, especially it the solid is irregular in shape, is as follows:
The buoyant effort of a liquid equals be difference between the weight of the body in in and its weight when immersed in the liquid This difference is the weight of a volume of the liquid equal to that of the body. Hence, it this difference be divided by the density of the liquid, the quotient will be the volume of the liquid and also that of the body. The ne divided by this volume will be the density. Foexample, a body heavier than water,
Weight of body in air. ..............10.5
Weight of body in water............ 6.3
Weight of water displaced.......... 4.25 Since the density of water is 1 gramme per ctit centimeter, the volume of water displaced is 4
$\frac{2}{\circ}$
adie cratimoters. This is alvo the volume of $t$ body. Therefore, $19.8+4.2=2.5$ grammes per cublie centimeter, the density.
To find the density of a liquid the simplest method in to weigh a glam alnker or atopper in th, than in the liquid. The difierence will be te mase of the liquid displaced by the atopper. (Why) Thea weigh the sinker in water; the ben divided by the density of water will be the whame of water displaced by the sinker, and hace the volume of the liquid whose mass has weas found. Divide the mase of the liquid disphood by the volume displaced and the quotient mill be the density.
Pew of us think of the air as having weight. When the wind blown we know there is force in it but who of us has thought that the air at net has pressure? Years of experiment have mily proved that the presure of the air is 10333 grammes per square centimeter, or 14.7 pounds per square inch. One of the easiest methods of testing air pressure is by a barometer. The density of mercury at 0 Centigrade is 13.586. With the use of these facts we can make our ona harometer (see The Boy's Workshop in this moume) and perform interesting experiments. A burometer reading of 76 centimeters is the mormal reading at see level. The diameter of the column of mercury does not influence the reding. Why!
Amoches interesting experiment is with a "diphon," in its simplest form a U-shaped tube d dhes or rubber to carry liquids from one read to another at lower level by means of air peasure. First invert the tube and fill it with mber. Then put the tube in position with the hog arm at lower level. Water will flow from ase ressel to the other as long as the liquids are at different levels. The longer the arm-in other words, the greater the difference between the kevels-the more rapid the flow of water. Let us try to explain the action of the siphon:
Let $p$ represent the upward atmospheric prasure at the end of the tube $d$. Then the presure $h$ of the liquid in that arm is downmand, and the resultant pressure acting upward in the tube is $p-h$. In the same way, if $h^{\prime}$ is the pressure of the liquid in the leng arm, then the upward pressure in that arm is $p-h^{\prime}$. The difference between $p-h$ and $p-h^{\prime}$, or $k-k$, is a force acting toward $b$. In other ponds, the force which causes the liquid to flow is measured by the pressure of a column of the liquid whose height is the difference between the mingts of the arms. This principle of the siphon
explains many thinge we have never tried to explain. For instance, why does water fow from a tank on the top of a hill down through pipen

of a house? Now that we know what a siphon is we see that our system of water pipes is merely a simple siphon.

We have already noticed that pressure on liquids has much less effect than on gases. After years of experiments Robert Boyle, an English physicist, found that the volume of a given maso of gas varies inversely as the pressure exerted on it. If the pressure is doubled the volume is diminished by one-half. If $p$ and $p^{\prime}$ are original and final pressure, and $v$ and $v$ are original and final volume, we have the proportion $p: p^{\prime}:: v^{\prime}: v$, or $v^{\prime}=-\frac{p v}{v^{*}}$. For any simple experiments this rule will do; but scientists have found that it is not exactly true, especially if the temperature changes.
Bound. Sound is a disturbance of the atmosphere which affects the hearing. Yes, you will say, but that is not a definition. It is true of sound as well as of light, heat, electricity, etc., that the definition properly comes last, bocause it has taken years of experiment to come to a conclusion. Even today definitions vary:

## IIget. Une cound, fitht is produed by

 vibentions of wave, but these are cevoral is. pormant differuace. In the firt plece, it in not a vibrution of air, but of a fimer medium, know as atber, which peactestion botweea the amell partioles of ordinary mative. Juat what ether is, nobody known; cicatists asoume that it exinta Another difiesesce in that sound may trull around corsers and curve-chat sound wave need not flow in a straight lime-but light waw fiow only in atraight linea. Light, moreover, travele at the tremendoves apeod of 186,000 miles a scoond, wherews sound travels only 1000 fet a accond when temperature is at the freeving point. Thin fact explaines why we usually we a lightning fiach several scconds before wo hear the thunder clap. For all diatances on the carth light in practically instantaneovs.

We can performa few simple experiments in illustrate some of the principles for the saxdy of light. Hold a ball or round bit of cardboard between a light and a white screen. The space behind the object from which the light is ex. cluded is called the shadov. You will find that the center of the shadow is darker than the edges; the diagram shows why. The flame is $\mathbf{\infty}$ large that some light streams to $A$ and $B$. The darker part of the shadow is called the umbn, the lighter part the penumbra. Now try experiments with a amaller flame, also vary the distances between the light and ball, and between the ball and screen. What general conclusios do you derive from these experimerts?

No doubt you have often wondered why some images are upride down. Why for instance is the image of a tree upside down in the water? It will help us to understand if we remember one fact, that the angle at which a ray of light strikes a refector is the same angle at which the ray is reflected. Take a mirror and make the experiment. Now is it clear why the bothon of the tree is at the top of the image is water? In the diagram, E is the eye, wh. acts as reflector; $\mathbf{A}$ is the top of the tree, ar. $A^{\prime}$ the top of the reflected image; $C$ is the bse of the tree. The angle AEC must equal ABC, the line EC being the surface of the water. So

Phyides
-twop of point A, the top of the tree, in nand by the age to A. And every point

 AC repremente a tree; CA' the refleotion
hatrean $A$ and $C$ will be reffected so that every pint on the image will form an angle with the ntree equal to the corresponding angle from in treen
Have you ever atopped to think why the if in a camera is upside down? The lens d co cumers is much smaller than the object the reflected. But rays of light travel in

might lines. Therefore, a my of light from C must travel through the lens or hole $\mathbf{H}$ in the dinetion CF; and a ray from $\mathbf{D}$ must pass trough H in the direction DE. If we hold a newast $B$ the image is caught in the position EF, gide down. For the same reason you always put the slides in a magic lantern upsinde down. Can you explain that to your own satisfaction?
Iont. If you take hold of an iron rod that in just been removed from the fire, it feels hot; out the other hand, if you touch a piece of ice, it hets cold. The cause of these sensations is nid to be heat. The warmer body always gives of heat to a colder. For many years it was belied that heat was a fluid, called "caloric;" wome the middle of the nineteenth century the appriments of Joule proved that a definite monut of mechanical work is equivalent to a dfinite form of heat. In other words, heat is s/one of energy. Heating or cooling is merely itrustormation of temperature or "heat level," - before we might have spoken of a higher mire kere. To measure temperature the
simpleat instrument to use in the thermoneter, a long glaes tube on one end of which is a bulb partly fillod with mercury. The tube is open at the upper end after the mercury in poured in. The bulb $b$ then heated till the mercury rieas to the top, when the tube is scaled by means of a blow-pipe. As the bulb coole the mercury receden, leaving a vacuum at the upper end of the tube. It is clear that there muat be some point at which all thermometers agree. Careful investigntions have made it cers tain that under unilorm conditions the temperature of melting ice and that of scomare invariable. These points are generally known as freazing point and boiling point. On the centigrade scales (centigrade from centum, meaning hundred, and gradus, meaning steps) the freezing point is marked $00^{\circ}$ Centigrade and the boiling point 100 . On the Fahrenheit scale (namod after the German scientist Fahrenheit) the freering point is $32^{\circ}$ and the boiling point $212^{\circ}$. Most household thermometers are marked in the Fahrenheit scale, but for scientific purposes the Centigrade scale is much better, because it is readily reduced to decimals.
It frequently happens that we are called on to change temperature readings from the Centigrade scale to the Fahrenheit,
 or from Fahrenheit to Centigrade We know that The theamometer $100^{\circ}$ C. equal $212^{\circ}-32^{\circ}$ or heit and Centigrade $180^{\circ}$ F. (the abbreviations ecales C. and F. are commonly used instead of writing out the words). We are asked to find the equivalent in Fahrenheit degrees if reading of $60^{\circ} \mathrm{C}$. We know that

$$
100^{\circ} \mathrm{C} .=180^{\circ} \mathrm{F} .
$$

Then $\quad 1^{\circ} \mathrm{C} .=1^{\circ} .8 \mathrm{~F}$.
Therefore, $\quad 60^{\circ} \mathrm{C} .=108^{\circ} \mathrm{F}$.
soften and then paee more or leas alowly fine the condition of a thick aicky fuid. Mow submarras occupy a hrger volume in the liquid mite than in the solld. A few subatances, including wite. expand when they become solide. When wates ifrezes its volume increuses nine per cent-tha is the rencon water pipes often burat in wrimes. When a body pacies alowly from one tate to another, there in no rive or fall in tempentura. When a solid fuses, a quantly of heat is. appearn; and, conversely, when the liquid solidit hies, an equal amount of heat is genented as was before loat. The heat required to mak oue gramme of a subatance vithout a change $\alpha$ temperature in called the heat of fusion of course, we undertand that when we apeat d the heat of fusion of ice as 80 calories, that we are seferring to an aboolute unit, merely a venient method of measuring.
No doubt you have often noticed the "mearing" of pitchers of ice water, or the dew on grav and flowers, bat have you ever tried to exphin these facta? You have probably said that it mu cool last night and the "dew fell." The exphoation is simple; the plants give up their bes very quickly after the sun sets and the moisture of the air then condenses on the cooler surlace of the plants. Perhaps even more typical is the "sweating" on the water pitcher. This cocurn in the same way. The colld pitcher give the moisture in the warmer air a chance to condens.
The word "conden se" is inew to our study, but surely moot of us know what it means. When team changes to water we say it condenses Condensation is the change from vapor or gas to liquid; evaporation is the change from liquid to vapor. Like the heat of fusion, or the amoum of hest required to change a solid to a liquid, there is a heat of vaporization, or the amount required to change a liquid into a vapor. This heat of vaporization is 536 calories. In other words, this amount of heat is lost before boiling water evaporates.

But we have already said that no eneng is ever lost, anu is not heat a form of enerys! So what becomes of this heat? It remans in the water as energy, which will later hare the power to do work. One of the simplest illusntions of the use of steam to do work is the stam engine (see Steam Engine in Volume V and The Boy's Workishop, in this rolume). Let us fer to trace this energy. The great source of energ is the sun. The sun's rays give life to trees, which are cut into logs, which feed the fires, which beas the water into steam, which runs the tom
mpats aperimen nato und Magneti ribs ama ifor mag ab power Yignet nenal to of it are of th he end meonds
mons mill

## Renioe

ata, which oponter a mm-mill, etc. Wo cedt 80 on indefiaicely. only to find that the argit moly tranderred. Por a time it may wio in ura, but it will hes the power whon it 3 mond
Twer are chree waye of transmitting heat. Theo ooe end of a metal rod in a gus fame at the aber end in melting ke. It will be mod that hout pawes along the rod and melts in for Hold your hand above the flame; it -I be marmed by a rising current of hot air. Bind the hand by the side of the Alame; again tre will be a renction of heat. This simple equiment illustrates the three ways in which mamy be tranumilted from one point to anuntr. The firt in conduction, in which the merer conducts the heat without any vinible salia of the matter itvelf. It is pased on from the botter to the colder particles. The second mabod is called convection, which means to ewry. A current of hot air or a flow of hot - the through pipes is a visible transfer of heat; tis is conrection. The thind method is radioina, by which heat is transmitted like light, by swre motion in the ether. "Radiation" means aply that the heat traveis in raya from a center; it in in this way that heat and light reach us tran the sun.
Hegnotiam and Eloctricity. Certain ores, aniting of iron and oxygen, sometimes have marac properties; they are called natural maneas. Bars of iron or steel that have been mde magnetic by contact with a natural magnet - aher force are called artificial magnets. Autably you have one of the common horse-shoe


## 

mance. There are many interesting yet simple aperiments with magnets. Two that will help uto understand the subject are as follows:
Magnetize a piece of watch spring by contact ribs a magnet. Then heat it red hot and test it for magnetism. It will be found to have lost it power of attracting other metals.
Yingneize a knitting-needle and find by menal trials how many tacks can be lifted if it Now hold one end firmly against the dee of the table or in a vise, and pluck the hee and so that the needle vibrates for several moods. The power of the magnet to pick up ads mill be found to be considerably less.

## Thydes

What conclusion can we derive from theow experimenta? It in elear that in both of them we have reduced or removed the magnetic power. The fact in that boating the apring or caucing the needle to vibrate rearranged the tiny particles of matter of which the apring and needle are formed. Thece particles aro called molecules, a long word for a "amall object," which in a literal tranalation of the Latln parts which make up the word. Magnetiom is really a atrained consdition of the molecules, so that their power of attmetoa is greatly increased. We have noticed that a general "law of attraction" mya that all matter pomemex a degree of power to attruct. The carch and a falling bar of iron attruct each other, bur the bar of iron being amaller, moves eavily and yields to the attraction of the earth. Magnetiom increases the force of thin natural attrection.
Clowely connected with magnetima, because many of its effects are similhr, is electricity. Bodies which show the power of attracting light bodies after being rubbed are mid to be electrified; there are ofher methods of electrification, but rubbing is the simplest. Rode of glace, very dry wood, sealing-wax, etc., if rubbed gently, will attract bits of paper and light objects of various kinds.

We all know that a hard rubber comb will sometimes be so full of electricity that it will make hair stand on end. How did this comb become charged with electricity ? This is called electrification by induction. There is $s 0$ much electricity in the air that the hard rubber of the comb becomes charged. Perhaps you have received a shock from touching a water pipe or some other metal about the house; probably you could not explain the accident. If you could investigate you would find that the metal was near some surface charged with electricity. The metal or hard rubber literally induces the electricity to jump through the ether.
One form of electricity with which everybody is familiar is lightning. In 1752 Benjamin Franklin proved that lightning is the same as an electric spark, by sending up a kite during a storm. He found as soon as the hemp string became wet, long sparks could be drawn from a metal key attached to it and various effects of electrification could be produced. That in a simple experiment any one could perform. Just how does lightning occur? If we hold the tip of a finger nail near a glass rod highly charged with electricity there will be a spark. The electricity jumps the air space between the two conductors.
(A conductor is a emberasen wheh will take or tranamit clectricily; s mon-conductor is one whill will not tranmit dectriciy) A lightaing flach acta lo the mame way. The clectrichy Jurape frow ane doed to anotive or from a cloud to tho earth juit ac soon as $\%$ bocomen crions enough to fump or crate the atr batween. This fanh of lifhaning rupturow the air aloag the peath, and produces a partial vacuum. Slace the pros. arre on the wallo of thin opeatag in the alr in aloces 15 pounds per squaro lact, the wallo comp togetber with a boud crach. This erach mingleo with echow to produce thunder.
There ase of ber waye of producting electricky: in thet, wech experiments an can bo performed by rubblag objects to produce clectricity are of Iutche prectical value. Wo hare ceen that clectrietty in a condition of trala in the object and the murrounding poo-conductor. If thil charge In diacharged through a wise, there is produced in and around the wise a state callod an eloctrio ourrome If the state of strinin is again produced as fatt as it in relieved by the conductor, the rualk in a continuous current. Obvioualy to do thie requires work; therefore an electric current repremante energer. We should bear in mind our goneral law of phydica that no energy io low; it is merely transiferred or tranaformed.
One of the simplest means of producing an dectric current is a cell or battery. The simple volvaic cell, mamed after its diccoverer Volk, may


A BIMPLE BATTART be made of two stripe, one of bexvy sheet zinc and one 1 ! sheet copper, each about 10 centimeters long and 3 centimetera vide. The zinc must be polished withemery paper till it is bright. Support these strips side by side in a glase vesel nearly full of diluted sulphuric acid (one part acid poured into twenty of water). When the stripe are connected by wires at the top, innumerable bubblea will rise from the coppers strip and some also from the sinc. The copper plate is called the poritive element or aulhode, and sinc the negative element or anode. A current always leaves a cell by the cathode
("the way down or out"). Than an man forme of batteries er celle which may be mald to advantage is electrical expmiments; detainh suand to thoe will be found under the liation. "Buneen's Battery," "Danidl Battery." "Rlio tric Battery," "Aceumulator," in slphabtion order. A more clementary troatment may io found in The Boy'o Workoliop in this volume.
We mw in our coneldornetcon of magnetion the we could make antiticin magnots. This is m of the chled unes of electricty, as In the telegraph, wlaclesa telegraph and telo phone. In the telegraph the prewing of a key allows the curreat from the battery to flow through a magb net which then attracts a small bar ofiron. Whea the key is $50-$ leased the tron bar flies back witheclick. The arrangement of clicks into a code has been made pomible by varying the time bo tween them. The telephone also
 axcerver depends on a magnet for its efficiency. A small round piesed sheet-iron a, fastened at the edges but free to vibrate at the middle, is the part attracted to the magnet. This sheet-iron is so close to the magnas that the ribrations caused by speaking into the mouthpiece cause the sheet-iron alternately to vibrate to and from the magnet 0 . These morements of the disk alternately make and bruat ibe electric current, which in turn controls the vibr tions at the other end of the line. Thus the dista at both ends vibrate in the same manner and the sounds are repeated. Perhaps the commona use of an electric magnet is the ordinary door bell. When the bell rings you will see that tht magnet alternately attracts and releases the ham. mer. Eramine any door bell; you will understand more about it than if you read several proud technical description.

## Rivales

A tort time ago we mented that electriclay ba form of evergy. That thit energy may be monformed linto beat and thea lightim proved yon oloctric light. Electric lights are of two finds, ow and inomidecent. The are lighe is apoend of two carbon rode pheed in conmotion with an electric current. When the corimat 4 tarmed on, the two carbon aticla should b truching. The curhon gradually divinmanes as the current continuen. But the curnot neeto realatance from the heated atir which caumulatee between the ends of the carbon adke. The hent becomes so grent that the curben glow wh a white heat. The modern ar hap has an automatic deviee which keepe te eads of the carbons at the sume divtunce frem ench other. The incandescent light (mandecent menne to become warm or hot) in fine whe or carbon fiber enclosed in a glase Wilb from which the air has been exhaumed to fres a racuum. The wires or fibers have a high ruinace, so that the current heats them to a mady glow.
When you realise that the great physiciots inve epent years in atudying phenomens and In you must not be disappounted that you cus mady caly a part of the subject. It in impossiblo - Do more than summanize the natural laws Hind belp us to understand the world in which $m$ lire. For the student who would like to male nome of the instruments of which we have poken there are directions in a special section - The Boy's Workshop. For the student who muss to adrance in his knowledge of physics in macal, reference should be to the Correlative Index at the end of this volume, which will show him where to find information on the many mbjects that could pot be adequately treated in thin short sketch.

## Outhing

## L. Itiroduction

II. Piopmaties of Mattir
(1) Occupies space
(2) Special properties
III. Mbcrinics or Solide
(l) Energy
(2) Motion and velocity
(3) Gravity and laws of falling bodiea
(4) Curvilinear motion
(5) Work
(6) Machines
IV. Mecrunics or Flutds
(1) Characteristic phenomens
(2) Laws of pressure in fluids
(3) Density and specific gravity

## Phaydea

(d) Proware of the stmorphere
(b) Machises depanding on air prowere
V. Sound
(1) Ware motion
(2) Thanamimion and relocity
(3) Intensity and loudneng
(4) Bent
( 5 ) Pich
(a) $O 1$ atriage
(b) Of pipes
(6) Quality
(7) Hiarmony and dhooed

## VI. Lialrs

(1) Nature
(2) Reflection and refraction
(3) Lenses
(4) Color
(5) Optical instrumenta

## Vil. Heat

(1) Temperature
(2) A cause of expanion
(a) Solids
(b) Fluils
(3) Measurement of
(4) Change of state
(5) Transinisvion
(6) Heat and work
VIII. Magetism and Eliectrucitt
(1) Magnetic action
(a) Nature
(b) Effect
(2) Electricity
(a) Electrification
(1) By induction
(2) By conductors
(b) Current electricity
(1) Nature
(2) Effect
(c) Electrical qualitios
(d) Machines

## Questions

What do you understand by physics?
What is meant by properties of matter?
Explain transparent, opsque, elastic.
What is meant by inertia ?
Define the two kinds of energy.
What are the two obvious effects of energy or force on matter?
What is work?
What is velocity? Acceleration?
What is the simplest examplo of unfform acceleration?

What is gravity?
What is the law of universel grevitation?

## Phyales

On what does the loudness of sound depend? What is an echo?
What is pitch? What is an octave?
How is light produced ?
What is the velocity of light?
What is the relation between the angle at which light strikes a reflector and the angle at which it is reflected?

Can you give any reasons why this hwis important? Illustrate by exaunples, if powible.
Explain why the slides in a magic lantern must be put in upside down.

What is a mirage?
What is the cause of twilight?
What causes a rainbow ?
What is heat?
When both are in the same temperature, which seems colder, marble or wood? Why?
What is meant by the term "cold"?
Why does fire produce heat?
What instrument is used to measure heat? Define "caloric," "fusion," "heat of vaporisution."
What is dew?
Why are clear nights usually cold?
What causes frost? Fog? What enables you to see your breath?
Explain three ways of transmitting heat.
How does the sun heat the earth?
What is magnetism?
What are the poles of a magnet?
What is the law of attraction and repulsion of the poles of the magnets?
What is the magnetic field ?
Explain lightning and thunder.
What is an electric current?
What is an electric cell?
Define anode and cathode.
Explain the operation of the telephone.


Impertanee of the Irbjoct. It is doubfful if physiology ranks as high among the sciences studied in school as its importance merits. As prepared for work in achool, physiology really embraces elementary instruction in three distinct aciences; these are anatomy, which treats of the structure of the human body; phyriology, which describes how the rarious parts of the body work together to perform their functions; and hygiene, which instructs one in the ways by which the body may be kept in health.
The human body is at once a home and a machine. It is the home of the mind and the soul; what the latter is we doubtless will never know as long as we remain alive; we know little about the mind except that we have by observation and atudy worked out many of the laws by which it operates. The mind and the soul may be one and the same thing, for aught we know. With these physioiogy is not concerned, except as we view the mind and body as landlord and tenant.

A Ischine Which Ropairs Itsoll. Viewed as a machine, the human body is the most wonderful mechanism of which the mind can conceive. In a general way, each of us is acquainted with this matter-of-fact statement. So perfect is the body in the performance of its various functions that almost instinctively we become negligent in its care, essuming that so wonderful a machine has within itself such powers of recuperation that special care is not needed to keep it in perfect condition. If we indulge this view of the case we are in serious error, although it is true that the body will stand more abuse and show fewer signs of damage than any other machine or organism. These are only surface indications, however.
The use of physiology as a school subject
should be largely to acquaint the child with s general iden of the structure or framewort $d$ the body, the names, locations and functions od the various parts, all to the end that there may be systematic care of health and conservation of strength and energy. The one who realizes in what state the body must be kept to be in health is most likely not to do those things which an injurivus.

Some Mrects of Wrong-Doing. The skin contains more than two million openings, and each opening is the outlet of a aweat gland Each sweat gland is designed as a river to carry off waste matter of the body; each perspiniong duct is nearly one-quarter of an inch in keggb, and they-have a total length in the body $\alpha$ nearly nine miles; yet by refusing to buthe regularly countleas millions of people dam $\Psi$ these rivers of health.
The full capacity of the lungs is nearly 320 cubic inches. These lungs must be fed with pure air, the life-giving principle of which is oxygen; yet we will work and we will sieep in rooms in which there is practically no circulhtion of air, and we starve our lungs and poison ourselves by breathing over and over again the air which the lungs have already expelled as unfit for further service. Scientifically stud, the exhalation from the lungs is carbonic aid gas, a rank poison. Regular breathing is at the rate of eighicen times per minute, and and hour there is inhaled about 3000 cubic feet; in the course of one hour, therefore, the erhalations of impure air are about 375 hogsheads, for the quantity of air exhaled is equal to the amoumt inhaled. A simple problem in arithmetic mil demonstrate how deadly the air in a closed room will soen become.

The stomach daily produces ncarly ten poumb

- trapt

Why of menal to demeu troog ini Iow doold be $d$ new it Ow boor drention one bodil Mormatio lathbooks. ateationa sexdpoint bodf, to p mon will theve to ind every inestigatio
1 lew s wid the inve ond of this rated art ange of mader or: denificatio Phyiology When Bed rical posi
mion into
d patric juice for the digertion of food. This is ample it we ent properly, manticate thoroughly, and do not overtond the stornech. Surely that wein in made to suffer when bonded beyond puper capacity and unable to provide sufficient guive finide to care for what is consigned 0
Trreofourthe of the weight of the human lody is mater and ono-fourth is animal matter. There is mpid absorption of liquids to all the pretis of the body, resulting in the sensation we how as thirat, which is simply the call of the tay for more liquid. The only drink a person mads in pure water, yet immense industries with thalows sums of money in capital exist throughant the civilised world to provide harmiul and nou dangerous drinkes and stimulants to take we phece of pure, free water. One of the reesons for the study of physiology is that the lawe of pactically every atate demand that the child be undt the evil effects of strong drink upon the the of the body. We really believe that too lute practical teaching is done along this pardenhr line. No other one thing contributes more 0 lup the body in health than to drink plentiWhy of good water; there is nothing so detrimatal to the health of a man and so destructive d mecular, digestive and servous tissue as troy tirink.
Ion to Itnady Physiology. This subject dould be studied from a most practical point d rier il results are to repay the tirne spent. Om trowledge of physiology is gained by dermation, experiment and the study of our onn bodily conditions, and a portion of this urmation can be gained quite easily from tarbooks. What we learn is of value from an atoational standpoint, and, as well, from the mandpoint of health. We learn to care for the body, to prevent disease and to develop powers whicn will build up better physiques and conthite to greater length of life. Every home merery school should be the center of such ivestigation.
A few suggestions at this point may greatly id the investigator. The Correlaive Index at the od of this volume brings together thousands of rtated articles covering practically the entire anpe of knowledge required by the average moder or student; if we turn to the Index for a derification of topics treating on Anatomy and Phyiology we shall find a list of more than 130 then. Each topic is ably discussed in its alphameical position in the volumes. If one's investimina into the subject of Physiology is to be
extended, then he will not terminate his study until the entire list of topics has been covered. If his desire is to include in his effort only the most important titles, he will condense his list, leaving sub-topics for later consideration.
The outlines below are developed from descriptive material in The New Practical Refrabince Libmart; these are valuable bocause all important topics are presented is segular order and atudy is thus made lewe difficult.

## Outhine for Btady of the Erman Body <br> 1. Onions or Lise <br> (1) Cell

(c) Protoplasm
(b) Nucleus

## II. Tumsurs

(1) Osseous tinsues or bonces
(a) Function
(b) Number
(c) Structure
(d) Growth
(e) Divisions
(I) Joints
(1) Movable
(2) Immovable
(g) Hygiene
(b) Disease
(2) Muscular tissues or flesh
(a) Structure
(1) Striated
(2) Unstriated
(b) Kinds
(1) Voluntary
(2) Involuntary
(3) Skeletal
(c) Functions
(d) Characteristics
(1) Contractility
(2) Elasticity
(3) Tonicity
(e) Hygiene
(I) Diseases
(3) Other connective tissues
(a) Areolar
(b) Adipose or fat
(c) Cartilage or gristle
(d) Marrow
(4) Nerves
III. Circtultion
(See special outline below)
IV. Respiration
(1) Organs
(a) Nasal cavities
(b) Pharynx
(c) Laryax
(d) Traches
(e) Bronchi
(t) Langs
(2) Function
(3) Movements
(a) Normal reapiration
(b) Frequency
(c) Depth
(d) Types
(1) Abdominal
(2) Chest
(e) Mechanics of reppiration
(1) Inspiratory movements
(2) Expiratory movements
(I) Abnormalitica
(1) Cough
(2) Clearing the throat
(3) Sneese
(4) Snore
(5) Crying
(6) Sigh
(7) Laugh
(8) Yawn
(9) Hiccough
(4) Hygiene
(5) Diseases
(a) Bronchitis
(b) Tuberculosis
(c) Pneumonia
V. Diapstion
(1) Organs
(a) Stomach
(b) Intestines
(c) Liver
(d) Other organs
(2) Processes
(a) Absorption
(b) Secretion
(c) Elimination of wasto
(3) Hygiene
(4) Diseases
Vi. Nervous Stbtem
(1) Definition
(a) Nerve centers
(b) Nerves
(1) Sensory, bringing impulses to the center
(2) Motor, impulses from the center
(2) Divisions
(a) Cerebm-spinal
(b) Sympathetic
(3) Organs
(4) Functions

## Paydoles

(a) Gentral
(b) Special
(1) Touch
(2) Tuste
(3) Smell
(4) Sight (See outline on the eye)
(5) Hearing (See outline on the exr)
(5) Hygiene
(B) Disences

## Guestions

What are the omeoous tissues?
How many bones are there in the human body?
In what way is a combination of strengit and elasticity secured for the spinal column?

Explain, in a general way, the functions of the spinal column.
How many bones are there in the head?
How are the bones of the head united?
When do the bones reach their perfection?
Why are the bones more likely to break in old age than in youth?

Are the teeth a part of the skeleton?
What is the difference between the joints at
the upper end of the ulna and the humerus?
Why should this difference exist?
Describe the bone formation of the wris.
How many ribs has man?
How many bones are there in the spine?
What is the collar bone?
What is the function of the muscular sydem?
What are the two forms of muscular tisve?
Explain unstriated muscle.
Nanue the three classes of muscles.
Explain what is meant by "goose flesh."
What are the peculiar characteristics od muscles?
What is areolar tissue? Adipose?
What is the chief function of fat?
Explain cartilage.
What is marrow?
What is meant by a vital organ? Name and locate the vital organs.

What is respiration?
Name the organs of respiration.
Describe the lungs and bronchi.
What is the larynx? Why is it important is an organ of respiration ?
What is the norm- 1 frequency of respintion? Of the pulse?

Of which sex is abdominal respiration typian!
Explain five abnormalities of respiration.
What is meant by the expression "out od breath"?

What
What
8ph
What
What
What
Whet
What
Eqhi
motor ne
What
y, mem?
What
slem?
What
Exphir
nim?
It then
ond the
How d
Why is
Exphin
then one
What is
What is yxam?
How ca
What $e$
wd tobeo
Whet a
Bphain
hit po
ins been i
What is
What is
Exphain
Thet a cuacinually
Exphain
Exphin
Is there
bearin?
Exphin
acepothy
What is
In what
That do
Ocling
L. Ono
(1)

## Eligudolos

What is broachitin! Tuberculonis?
What is the function of the salivary glands?
Ephin the work of the tomech.
Whet part doee the liver play in digertion?
What are some of the causes of indigection ?
What are the causen of appendicitio?
What do we mean by the nervous syitem?
What in a nerve?
Byhin the difference between sensory and nator nearce.
What are the two divisions of the nervous gutan?
What organ is the center of the nervous gram ?
What is the average weight of the brain?
Eqphin cerebrum, cerebellum, medulla oblonm?
Is there any apparent relation between idiocy ad the sise of the brain?
How does the skull protect the brain?
Why is such great protection necessary?
Eqphin the nerve process that takes place when one hys his hand on the point of a tack.
What is meant by reflex action?
What is the first requisite of a healthy nervous yxem!
Hor can we secure this requisite?
What effect has the use of alcoholic liquors ad tobear on the nervous system?
Whet are the organs of special senses?
Ephin the process of amelling. Of tasting.
II it possible to hear after the external car Ins been injured? Why?
What is the function of sleep?
What is a dream?
Exphin insomnia and somnambulism.
What are the two great series of changes curinually going on in the human body?
Ephin the growth of the hair and nails.
Explain the "germ theory of disease."
Is there any difference between germs and batem ! 1
Eqphin the difference between allopathy, meoputhy and bomeopathy.
That is the stethoscope? Why is it used?
In what parts of the world does cholera occur?
What do we mean by chronic diseases?
Oating of the Oircenlation of the Blood I. Oroaiss
(1) He, it
(a) Shepe
(b) Size
(c) Position
(d) Weight

## Phyidolocg

(e) Structure
(1) Parts
(2) Valves
(3) Action
(t) Nerve supply
(g) Function
(2) Arteries
(a) Distribution
(b) Structure
(1) Conts
(2) Capillaries
(a) Definition
(b) Function
(c) Size
(d) Structure
(c) Circulation in arteries
(d) Anastomosing
(e) Pulse
(3) Veins
(a) Definition
(b) Purpose
(c) Siructure
(1) Conts
(2) Valves
(d) Circulation in the veins
II. Syitreas
(1) Pulmonary
(a) From the right aide of the heart
(b) Through the lungs
(c) To the left side of the hoart
(2) Systemic
(a) From the left side of the heart
(b) Through the body
(c) To the sight aide of the heurt
(3) Portal
III. Blood
(1) Definition
(2) Amount
(3) Temperature
(4) Composition
(a) Corpuscles
(b) Serum
(5) Coagulation
(6) Functions
IV. Causes of Circulation
(1) Force of heat
(2) Elasticity of arterial walls
(3) Contraction of the heart
(4) Muscular action
(5) Act of breathing
V. Functions
(1) Nourishment
(2) Purification
(3) Elimination of waste
(4) Warmth

Proulcing
V. Hyemen
(1) Air and manlifid
(a) Exercins
(3) Hent and cold
(1) Precmura
(b) Acoidente
VII. Dutzine
(1) Congutions
(3) Infammation
(3) Scrofula
(4) Colds
(5) Catarth
VIII. Amocuttio Procmas
(1) Abeorpxion
(2) Acimilation
(3) Securion
(d) Exaretion

## greations on Orevilation

What in circulation? Name the organs of circulation.
Describe the heart. Define arteriea; reinge.
Exphin auricle and ventricle.
Dencribe the circulation of the blood.
Of what is blood compoeed?
What ase the uses of the blood? What is the cormal temperature of the blood?
What in the color of the blood in the veins? In the arteries? What cesuses the change?
Decaribe congulation. What ase the parte congulated?
What in the carum?
Give the functions of the red corpuscles.
Whe the circulation of the blood known at the time of the discovery of America?
Who fint eremined the circulation of blood in the wob of a frog's foot? Whea?

Ditinguish between the pulmonary and sytemic circulation.
What veln carries the blood to the liver? What in the function of the hepatic veina?

How long does it take the blood to make a complete circuit of the aytem?

## Styiding

How loas som tit the the whole ancound blood to peos through the harit
What part of the waithe of the body in the bloodi
The chelatom of an edrate $t s$ mid to weld $u$ pounde. Does the blood wolgh more or hal
A perice of avereye wight (154 poundi) is ald to bave approximately 100 pounds netu, 60 pounde musele, 14 pouads bone, 12 powal blood and 4 pounds brain. How do you reco cile theon faturen

What forces propel the blood?
What in the arch of the sorta? Doee the sath pan through the diaphragm?
Name the divisions of the eorta which arpid the polvie and lowrer catremitiones

What in the name of the minute endings dive artorices coanecting them with the veins?

Why if the inner cont of the arteine smooth?

Which cont of the atteries amists in propelling the blood? How ?
When does an artery become a capillary!
What do you underikand by the term "man. tomonis"? Explain its function.
How may one check the flow of an artey when wevered?
Whese are the capillarien the hrgeat? Where are the smallest copillaries? How can you illutrate their aise?
How in the beart suspended in the chea? With what ho the beart surrounded?

What is the effect of iron on the blood?
Explain the action of blood in cas of : wound.

Why has blood a milty taste?
Could a perico blaed to death from a mall wound
In ences of general debility, in what condition would you find the blood?
What do you know of William Harrey?
Trace the flow of blood from the left vearich through the body,

## The Ear

An article on the aructure and functions of the ear, together with an accurate illustration of its parts, is presented in Volume II. This should provide abundant material for the atudy of the ear, and the following outline and text questions will be of value in preseating the subject to pupils or in home atudy. In addition the outline may erve as a guide to thowe who deaire to parme further the study of this organ.

Outhine of the Iut
I. Fonction
II. Postrion

## III. Anatoig

(1) External ear or concha
(a) Shape
(b) Composition
(1) Cartilage
(2) Muscular conet

Ravilologe
(3) 81
(c) Part
(1) Heltr
(i) Trague or protecting Anp
(8) Lobule
(4) Auditory canal
(d) Punctions
(1) Collect nound weven
(2) Consentrate them on cardrum
(x) Middle ear or tympanum
(a) Situation
(b) Sise
(c) Part
(1) Membrane or cardrum
(a) Ponition
(b) Composition
(c) Function
(2) Cavity
(a) Filled with atr
(b) Orsicles
(1) Number
(2) Names
(3) Arrangement
(4) Action
(5) Punction
(3) Bustachian tube
(a) Definition
(b) Function
(d) Function
(1) Transmission of vibration to internal ear
(3) Internal car or labyrinth
(a) Bone
(1) Vestibule
(a) Opening into tympanum
(b) Opening for auditory nerves
(c) Opening for cochlea
(d) Five openings into semicircular canal
(e) Otoliths
( $)$ Fluid
(2) Semi-circular canals
(a) Number
(b) Names
(c) Position
(d) Function
(l) Not connected with hearing
(2) Tomaintainequilibrium of the body
(3) Cochlea
(a) Divisions
(b) Organ of Corti

Fingiolory
(b) Membrume
(1) Porm
(D) Fuidr
(c) Pumetion

## Greations on the Iter

## What in the ear?

What in the external eari What eqparates it from the middle ear ?

What substances make up the outer ear?
What ano ite importuat parte? Deacribe ench.
What are ita function ?
Decribe the cardrum and the manavers in Which sound in tranemitted to the middle car.
Name the three bonce of the middle car.
Deacribe their action.
Where in the middle ear?
What is the Eustachinn tube?
What in the internal ear?
What in the cochlea?
What is the function of the secul-atrenalar canals? How are they connected with the vestibule?
What is the organ of Corti?
Of what is it composed?
Truce the transmission of sound from the outer ear to the brain.
What kind of an act 16 the final act of hearing?

State throe waye of influencing the propagation of sound to the tympanum.

What are the names of the nerves of hearing? Of what use in the fluid in the internal car?
What parts of the inner ear operate in the mame way as the strings of a piano?
What regulates the tension of the cardrum?
How are we enabled to recognize auch a variety of counds?
What is the educational value of training the sense of hearing?
How does the study of instrumental music develop the sense of hearing?
Why should the teacher thoroughly understand the mechanism of the ear?

What can you say of the ear of lower animals and its capmeity for receiving sound?
Give three proofs of the delicate sense of hearing in birds.
Do you know of any animale notably hard of hearing?

What other animals are noted for their keen sense of hearing?

Is it possible for animals to hear some sounds inaudible to the human car? How can you
explain your answer?

One of the oryane moot necemary to happinees and comport is the age. To underntand its operation and to take proper care of it ahould be a self-impoeed duty. Not only this one part of the body but every part should be well cared for. A healthy body is comontial to a healthy mind, and a healthy mind is emential to ancoem and happinems.
The article on the eye in Volume II contains - complete description of the organ and an illustration ahowing the postion of the eye in the hand. The sketch below will make clear the pocition of the differeat parts of the eye.


CROED-EECTION OF THE ETE
Parta: co, cornea; 1 iris; ${ }^{2 q}$, anterior chamber of aquoous humour; $L$, lens; cp, ciliary procom; se, selerotic conat; R, retina; ch, choroid; $v$, vitreous body; $m$, yellow spot; bs, blind apot; 0, optic nerve.

THE ETEBALI IN BECTION

Co, cornem
8e, melerotio
Ch , choroid
Cp, ciliary procemes
I, , $r$ is
R, rotins

O, optic nerve
be, blind apot m, yellow spot
L, crystalline lens
ag, squeous humor
V, vitreous humor

Most diagrams of the eye omit the yellow spot. When the retina is looked at from in front two small marks may be seen on it. One of these is an oval depression about three millimeters across, of a yellow color, and is known as the yellow spot. It is situated directly in the horizontal axis from front to back and is the point of acutest vision. To one side and a little below is the blind spot (for explanation see Eye, Volume II).

## Octline of the nye <br> 1. Gemeal Decrartion

(1) Position
(2) Function
(a) Sight
(b) Principles of physices involved

## II. Aratomy

(1) Eyeball
(a) Conts
(1) Sclerotic and comea
(2) Chotoid
(3) Retina
(b) Iris
(1) Pupil
(c) Humori
(1) Aqueous
(2) Vitreous
(3) Crystalline lens
(d) Arteries and veins
(e) Muscles
(2) Eyelids
(a) Skin
(b) Muscles
(c) Eyclashes
(d) Mucous membrane, or conjumelin
(3) Lachrymal glands and canals
III. Dufects and Diseabes
(1) As a double organ
(a) Lack of association in movemant
(b) Difierence in focus
(c) Nearsightedness or myopia
(d) Farsightedness or hypermetropin
(e) Color blindness
(2) Each as a single organ
(a) Conjunctivitis
(b) Tumors
(c) Inflammations of the comes
(d) Scleritis or inflammation of the sclerotic coat
(e) Cataract
(i) Glaucoma
(3) As a result of other diseases

Quentions on the Eye
What is the shape of the eyeball?
How large is it?
What is the sclerotic? Cornea? Choron? Iris ?

What is the pupil?
A person going from a brilliantly lightod room into a dark one cannot see anything at finct Why?

How is the amount of light that enters be eye regulated?



Dofentlees. It is not difileult to undertand the meaning of the word poycholcgy, and from this righaly to judge the place of the science in aducation. Paychology is from two words, which mean to see the coul or mind. It is, then, a science which treats of the mind, the mental tates and their procemes, and of the principles and laws governing mental activity.

Podagogy is amply the arience of teaching, of imparting indruction. In the zudy of pedagogy wo learn how to apply ous knowlodge of the mind to the teaching of any subject, so that this instruction may be in harmony with the principles of paychology. Pedagogy nay then be called, in bried, paychology applied to the art of inctruction.
The Dovolopmont of Paychology. There are numerous methods in use for inventigating facts relating to the science of the mind. One may set himself to study his own mind; be may keep close watch upon the origin of his own thoughts and their progrese toward conclusions; be may analyze them as they come and go and note their connecting links. Such a method is called introupection, which means looking within.
There is another method called the expertmental methul. Many of our ideas come to us through the connection of mind and body in the form of sensations. Many of our desires find expression through the body. The reason that we call such a method the experimental method is that we may experiment with our organs of sense as a means of judging our ideas.

Another method is the objoctive method, or the method of learning through the observation of others. We may observe children with a view to ascertaining the gradur! development of mind and thought, or we may study animals with a view to learning about their instincts, or we may

Inventigate the minds of those who are drfetive in any way, like the blind, the dral, of the insmm and through them discover the effect of the absence of any physical or mental quality. in wudying paychology, therefore, we tudy our own mental pmeewes and growth, we experimena to see the effect of various mertal pmerman combined with senemtions, and we observe and compare the mental processes as exhilititel in actions of others with our own mental prowsm under like circumatances and conclitions. Thesia has been pooeible without difficulty to extabiah the general laws under which the mind od man operatea. Paychology is an old science, detimg back to the days of Pythagoras, in ancient Greme.

Place in Edreation. Paychology and pedagogy are two sciences regarding which the child has no knowledge and needs none, epp cially in its early years, but it is ol first impor tance that fathers, mothers and all tenctern should understand their principles and theory. No young man or woman should leave actiool without having atudied paychology, at leat: little; none other than those whose duty it in to instruct the young need add to psycholog the principles of pedagogy. In this latter class $\pi t$ may include not only teachers, but parates, especially those who are not unmindful of the wonderful opportunity at their command to assist in the education of their childref. To these a knowledge of the theory of pedagngy is a valuable help.
The laws of pedagogy, with their direet appliattion to practical methods of tenching, mus rex upon definite knowledge of the activities of the mind and of the laws governing those actixtitics Pedagogy is important, therefore, beczuse it the development of the natural processes of 这 mind. Methods of teaching are discredied ely


## MEROCON WESOUTION TEST CMART

(ANSI and ISO TEST CHART No. 2)


| MPPLIED IM <br> 1653 Eeat Main Strevt <br> Rochester; Now York (718) $482-0300-$ <br> (718) 200 - 5908 - Fox |
| :---: |
|  |  |

## Pagehology and Podagogy

when they develop into mere mechanical devices. One instructor may use a certain method with excellent discrimination and reach commendahle resalts; another lacking the spirit and aim of the first may imitate the manner of use of the same method and miserably fail. It is the sane and reasonahle adaptation of any method to known mental processes which distinguishes the teacher as an artist; lack of such ability marks the experimenter.

Imitations of Payehology. Psychology cannot be applied always to individual cases It is a science, and, as such deals with classes. It develops the laws of the average mind, but takes no acrount of exceptional mental operations in particular cases. Paychology cannot lay down laws by which the mind of Willie Smith or Mary Brown will always respond to impressions; but it can tell what the average mental activities of all the Willie Smiths or all the Mary Browns will be. The subject, then, deals with averages of mental activity; it points out what is true in the aggregate.
What In Included in Puychology. The following outline presents the essential clements of Psychology, arranged in suggested onder for tudy:

## Pbychology: The Montal Powers

I. The Intellect
(1) Perception
(a) Sense perception
(b) Self-perception
(c) Its cultivation
(2) Representation
(a) Memory
(1) Laws of memory
(2) Cultivation of memory
(b) Imagination
(c) Phantasy
(3) Thought
(a) Concept
(b) Judgment
(c) Reason
II. Feeling
(1) Sensuous
(a) Special
(b) Organic
(2) Ideal
(a) Altruistic
(b) Egoistic
(3) Intensity of feeling
(a) Depends on-
(1) Amount of stimulus
(2) Prolongation of stimulus

Paychoiocy and Podagors

## III. The Will

(1) Interest
(2) Atteacion
(a) Voluntary
(b) Attracted
(c) Development of
(3) Choice
(4) Action
(a) Reflex
(b) Instinctive
(c) Impulsive
(d) Result of purpose

## Grestions on Paychology and Pedagogy

Which phase of mental activity, knowing or feeling, is first in consciousness?
What is the most difficult stage of thinking? What can you say of its development? What are the two general methods of reasoning?
What is the first act of the imagination in constructing the image?
Distinguish between memory and imagination.
What power of the mind would be exercised in thinking of the human head joined to the body of a horse?
Fairy tales belong to what phase of imagination?

Why are they adapted to the child mind?
During what period in life are most of our habits formed? Why?
In what way does interest differ from desire?
What is the relation of psychology to physiology ${ }^{\text {Y }}$

What are the processes of obtaining an idea?
Explain how an action becomes a habit both from the mental and from the bodily standpoint.

Why is it true that good habits are our hest friends, and that bad habits are our worst enemies?
Compare the child's process of obtaining knowtedge with that of mature minds.
What powers of mind are cultivated in the moral education? The mental? The physical?

What three steps are necessary in thought? Explain them.

What do we mean by the term logic? Logical mind?

What are some of the actions in life taken care of through habit?

Give processes of acquiring habit.
If it were not fir habit how would the higher powers of the mind suffer? Would there be any development? Why not?
Why is it difficult for people to change their views or channels of work in middle life or old

## Paychology and Podagogy

gee? Of what great benefit is this to the progress of the world?
Through what channels is the mind aroused?
How is perception related to sensation?
Are ideas obtained through sight and touch to be depended upon?
Which of the senses are the most reliable and gnerally most accurately trained?
How can perception be trained?
What is the difference between conception and pereption?
What is the chief thing accomplished by thought?
What stage of thought is judgment? What is is particular work?
Reason is what stage in thought? What is its work?
Why are subjects that appeal to observation and thought power valuable for memory training? What depends in later life upon formation of comect concepts in early training?
Define interest; imagination; attention; appropeption.
Where is the force of habit stronger, in the physical or the intellectual powers? At what times ishbit a protection from a physical standpoint ? The intellectual standpoint? The moral standpoint?

## CHILD STUDY

What is included in child study? What is the aim? How can both teacher aud parent wsist in this?
By what is a child's ability limited?
Why should a teacher have knowledge of the drical condition of the child? Is this often pored? With what results?
Why should a teacher be familiar with a didld's environment at home? How does this fect her treatment of the individual child?
What effect does the mind have upon the body? The body upon the mind?
How has the subject of discipline changed? Wihh what results ?
What beneficial results have followed in the nhe of kindergartens, normal schools, indinitual work by teacher, etc., in home, schools, anmunity and to the child?

## METHODS

That is meant by the term "method"? Upon mat should it be based?
What is a "device"? Its general use? Is it Wemful? When?
Why is application, or use, the true test of all

## Puychology and Pedagogy

What in general should be the aim of a teacher in her methods?

What is the great end and aim of education?
Which are the more important, principles or facts?

## SENSES

In what order are the senses developen' ${ }^{n}$ What sense gives us the widest range of knowledge? What is the next in importance?
At what period of growth are the senses very keen?

Should any of the senses be trained to the neglect of the others? Is this often done in the schoolroom ani home? What are the results? Upon what powers of mind is the acquiring of knowledge based in the primary grades ?

## ATTENTION

## How does fatigue affect the mind?

Distinguish between voluntary and involuntary attention.
in presenting a subject what are the processes in securing the attention of the child?

Why should a lesson be conducted from the known to the unknown?

Upon what does attention depend?
Why is it easier to secure the child's attention in the early hours of the morning?
Why are recitations often dull? What is lacking?
Why is it that many people make a failure of life in a certain sense? Where and how could this have been remedied?
What are some of the methods of training the attention?

What is the importance of attention in the development of the mind?

What are some of the methods of awakening the interest of the pupil?
Distinguish between interest and desire.
Why is it easier to interest the child than the adult?
What should govern the length of a recitation?
What are some of the ways of stunting mental growth?
How does interest in the subject affect the memory?
How can a child be taught to observe carefully and correctly? What is the importance of this? What powers of mind depend upon correct ubservation? At what time in life is observation the most important source of information ?

## MEMORY

Upon what does memory depend? When is it especially active?

## Paychology and Podagocy

What are some of the devices a tencher may use to strengthen memory?
Is it possible to have knowledge without memory?
Is a child supposed to memorize what he does not understand? If so, how far is it practical to do this and with what end in view ?
Why is memory of so much importance? Is it really a part of every other power of the mind ?
What studies are especially valuable for training the memory?
How is memory affected by repetition ?
How does interest in the subject affect the memory? What is the importance of interest in clase recitals from this standpoint?

## HABIT

To what does a repetition of an act finally lead ?
In what ways does habit arfect the physical, intellectual and moral nature?

What do we mean by a plastic condition of the mind or nervous system? Why are brbits formed more easily in early youth? After what age are important habits seldom formed ?
In what ways can a teacher assist in the formation of good habits ?

How does habit determine character?

## REASON

At what $\mathrm{p}^{-}$is a child supposed to begin to
reason! What studies in the lower grades dovelop the reasoning powers?

What is the importance of judgment in reasoning and upon what does it primarily depend?

To what grade of school work is the inductive method of reasoning best adapted?

What is the deductive method of reasoning and to what department of school work is it best adapted?

## WILL

What is instinct? What finally results from it! What is the difference between an impulse and a desire? In which is the will brought into action?

What is meant by deliberation! To what action does it lead? What is the difference between a mature will and that of a child?

Why does choice involve so many difficulties?
Is will the means of preventing action as well as performing it? Give examples of both states of mind.
How may the will be cultivated? What factor is it in the formation of habist?

Upon what is stubbornness based? Is it an action of the will?

Will exercises whet control over the felings! Does its control extend at last to all mental powers? With what effect ?

Why is will the highest of the mental powes?


4 Mont Valusble Itudy. When a child has lurned to read, he has come into possession of de key to all knowledge. The extent of his hter reading and its quality determines to a conideable degree what manner of man he is to be. The reading habit is instinctive; the minds of te boy and girl naturally reach out toward the minown for facts which may be made their own ad made to serve some purpose in their lives. Some like to read nuch better than do others; and this is due to more thian one reason. The Iliteate boy and the one with low ideals may hre had no home encouragement in the direction a good literature and possibly even may bave hean discouraged in seeking it. His ideal is Haceij to be the town bully, and his literature the hind pages of the nickel novel. Let no one beliere that such a boy reads nothing; the instinct in something from the printed page which he an unite to his own experience is alive in him $\because$ in the boy of other caliber.
Onoice Hood Reading. Every boy and it hass a hero or a heroine-possibly manyod these are determined li.rgely by their choice $d$ reading. If one chooses the stories of King Arthur in early boyhood and reads them with pasure, the lessons are going to be reflected in htre years. It does no harm for the youthful sind to dwell upon the stirring plot of Jack the Gunt Killer, for th re is a high moral lessn thich is sure to be learned and later remembered whore the gory elements of the tale itself.
Every intelligent parent knows the importance
and difficulty, in these days of rapidly multiplying books and sensational newspapers, of making a wise selection of reading for the child in the home. It can be set down as almost an axiom that the boy and the girl for whom good books are pruvided will not of their own volition seek the worse books for themselves. We refer now to the average boy and girl, the great majority of them; here and there we must note exceptions.
The teacher in the school has a duty in connection with formation of the life habits of reading by pupils almost as great as the parent in the home. A considerable portion of what follows is addressed directly to the teacher. Upon her shoulders is the responsibility of making good readers of L or pupils. This is the first requisite, for unless one is fairly proficient in reading no amount of persuasion later can induce in the child a desire for the right kind of literature The teacher, therefice, should read with extreme care the suggestions on reading in the section which follows.
Foed of Oral Roading. It is absolutely necessary that pupils should be required to do a great deal of reading aloud. It would be well if this could be done at home as well as in the school. Through oral reading teachers and parents learn whether boys and girls are pronouncing their words correctly and are thus laying good foundations for their silent reading. Almost all the reading one does is of the silent kind. A very little in later years is oral and is resorted to only for the pleasure or profit of others.

## Suggestions on Reading

That the reading exercise may not conduce to hd habits it is essential that careful attention be then to the selection of the reading matter and it it be adapted to the student's needs. We
believe the thoughtful teacher will give every attention to this important matter, and by spicing this exercise with the suggestive material here presented, every lesson will prove an ingpiration
and result in especielly fitting the pupil for the undertanding of other subjects, since reading muat eater largely into thin knowledge.

Be sure that pupils are thoroughly familiar with all the words in the lesson, their pronunciation and meaning, befo cexpecting them to read a selection correctly.
The ceacher should study the sense of the piece and see that the pupil understands it also.
Bemember that reading, not elocution, is the subject to be taught.
Beginners should not have too many new words presented to them at once.
There is a possibility of laying too much atress upon exactress in some vowel sounds.
It is adrisaile that pupils should stand while reading, that the teacher may see the entire person and be able to criticize the position.
Monotony of expression can be remedied by having the pupil read with the teacher and by persistent drill.
Reading by the individual is always more important than reading by the whole class.
Cultivate a feeling of ease and freedom from embarrassment on the part of the pupil; it will help him greatly.
Care should be taken not to train the pupil merely to imitate the teacher in reading after her.
Pupils must be trained to take in the sense of a line at a glance. This is absolutely necessary to insure intelligent reading.
Allownince must be made for natural wealness or other defects in the voice.
Let the teacher give several sounds common to a number of words and then ask the pupils to give the words containing them.
Pay careful attention to the position of the pupil while reading; he should stand straight, well balanced on his feet, and should hold the book easily at a proper distance from his eyes.
Practice should be had in giving the elementary sounds when the word is spoken, and vice versa.
Let the pupil form words by combining vowels with consonants given him by the teacher, and vice versa.
Let the pupil reproduce in correct spelling words written phonetically on the board by the teacher; or let them spell the word phonetically from seeing it written in the ordinary way.
Have the class form other words from seeing the sounds of one word indicated phonetically on the board.

The pupils should be allowed, even encouraged, to criticize one another, but always in the right spirit.

Let the rame paragraph be read in succession by difierent members of the class, and let corrections be suggested on the reading of ach before the next mads.
The tencher's first duty is not to criticize nor to judge the pupil's work, but to teach him to appreciate the beauties of the selections being read, and to read them himself in such a my that others may appreciate them also.
Mistakes in pronunciation should be corrected wherever and whenever they occur.
Wherever possible the tencher should, by come ment, explanation and illustration. connect the matter of the reading lesson with the every-day life of the pupil.
Exercises in spelling will often enliven the reading lesson.
Questions on the reading lesson should be adapted to make pupils observe and think for themselves.
Most interesting reading matter may be found in historical stories.
Train the pupils often and thoroughly in pronouncing elementary sounds, syllables and words chosen for the purpose.
Young children cannot be expected to profit much by rules; they can learn best by imitating the teacher. Her pronunciation, therdore, should be perfect.
Encourage the pupils at all times to seek help in pronouncing difficult words and be ever ready to assist them.
The vocal organs of the children will recerire no training that the teacher does not give them
Advantage may be derived from hearing children with similar voices or faults read in the same division.
Do not fail to illustrate the thought of each paragraph so plainly that every pupil will comprehend it.
Every helpful, ennobling thought occurring in the lesson or suggested by it should be strongly impressed upon the pupil.
Dialogues will be found well fitted for reading lessons. Assign a part to each pupil and make a special effort to securethe best expression possible,
At times. especially in reviews, allow one pupin to read several paragraphs without interruption. It will tend to give him ease and freedom in reading.

The pupils should be questioned on the points of the story, both at the opening of the recitation and during its progress.

It may be well to mark emphatic words on the page, or have them written on the bourd, and

## Eoading

m that in the reading they get the emphacis tho them.
Efort should always be made to recure the *erext of pareats in having the children take their books home and read there.
As the primary object $\alpha$ learning to read is to recure information, getting the thought of the pangraph should be considered as of even more mportance than correct pronunciation.
A tault abould never be corrected without dowing the pupil the right way. The lesson sould be carefully looked over by the teacher in advance and no lesson beyond the powers of the pupils assigned.
It may be well in particular cases to make re of exercises chosen especially for their diffianky and to drill the pupils systematically in proouncing these difficult sounds.
Great benefit will be derived and a special fiort will be secured by having certain pupils the a conspicuous place before the class and rad a selection, being then criticized by all.
Careless enunciation should never be tolerated.
Have the teacher give the meaning of certain monds occurring in the lesson, and with this information let the pupils locate the word.
Renewed interest can be secured by taking a sood story from a magazine, cutting it up and pring the pieces around to be read by the pupis in class.
Have the pupils siggest synonyms for suitable mords occurring in the lessons.
Patience must be exercised with the slow and d
It may be discouraging to a pupil to interrupt tin while reading in order to correct him. Good jidgment must be used in this.
Let each pupil present a list of words which be found difficult to pronounce; then have the bighter pupils try them, before the teacher.
Let the pupils give words of opposite meaning
to difficult words occurring in the day's lesson.
The pupils may be asked to change statements t questions and affirmations to negations, etc. They may also be asked to change stanzas of podry to prose.
Older pupils may be required to write a whole pragraph in other words than-those used in the book, hut giving the same sense.
Draw the pupils' attention to the different Henry qualities by having them select paramphs especially illustrative of those qualities show he importance of punctuation by special suntences, such as the following: "What, do you Hink I can walk to school in the rain?", "What
do you think? I can walk to school in the min."

Constant drill should be given to remedy reading too fate or too slowly.
Do not neglect any opportunity of enlivening the lesson and broadening the pupils' information by having them look up all references to history, science, etc.
Where occasion offers, show how a different meaning may be given to the same words by altering the emphasis.

The pupil should not be expected to profit by the exercise of reading a whole paragraph aloud after the teacher; take a sentence only, or a clause.

Endeavor to have the pupil feel confidence in himself; it will make his reading casier for himo. Pupils can be laught to read more slowly by having them make a pause after each word, or by having each pupil read a word in turn.
Give your pupils occasional drill in such fundamental things as the sounds of the letters, pitch, stress, etc.
Require correct spelling of all or a part of the words in the lesson each day.
Plan your work carefully at least one day ahead.
Increased interest can always be secured by introducing some supplementary reading.

Make as much study as circumstances will permit of the lives of the authors read in the supplementary work.

Have one pupil read until a mistake is noticed by one of the others; then let the latter continue the reading.
At times have the older pupils in succession take charge of the class and conduct the recitation, the teacher always guiding the work.
Have a slow reader and a rapid one read together and insist on their keeping together.
Beware of drilling some one pupil too long on the same thing. He must not be tired out or discouraged.
Another useful exercise to remedy too rapid reading is to hare the pupil read backward.
Endeavor to look at the difficult things from the pupil's standpoint as well as from your own.

Show the pupil just how the incorrect manner of reading impresses the hearer by reading incorrectly aloud yourself.
Allow the pupils occasionally, where it seems advisable, to suggest readings from papers or magazines, and vary the work by having these read in class.

Have some especially good pieces of literature,
both prose and poetry, committed to memory by all.

Cons. that method beat which bringe into the class the mout interest and efiort, and to the pupils the greatest improvement in reading.

With very young children it will be well to read to them considerably, rather than to tire them by too much drill.

Select your supplementary reading matter with a view, at least partly, to the educational value of the information it contains.

With older pupils have supplementary selections read in class by certain ones, and lay stress on the importance of learning to read as a means of acquiring information.

You should have in your school library books especially chosen for their fitness for use in supplementary reading, on such subjects as science, manufactures, business, transportation, history, literature, biography, etc.

Do not work directly through your reader in the order there used with any one class, but alternate the selections of the reader with the supplementary work.
Strive in every way possible to develop the imagination of the children; teach them to picture in their minds what they read.

Have narrative selections in which conversation oceurs put into dramatic form, and vice versa.

Vary the reading matter to meet the interest of the children; they cannot profit by reading a selection in which they are not interested.

Give the older pupils constant training in using the dictionary.

Much interest can be introduced into the reading lesson with older pupils by having occasional exercises in the derivation of words and their analysis.

If you can create an interest among your pupils to read the books in your school library you will secure greater interest in the class work also.

While reading the children's popular classics, put to the pupils questions on the text, having them answer in the words and expressions of the author, as describing characters, situations, etc.
In this work in the classics among the older pupils, freedom of discussion on characters and plot should be encouraged, and possibly debates should be arranged on similar subjects.

It may be that you can interex your pupia in drawing on the blackboard scenes illustrative $d$ the text.
The acting out of some part of a classical play read with the advanced classess may sometimes be done to advantage; of of some poem or sory that the clases has dramatized.
The assigning of definite topics to be prepand by the pupils will be found to be helpful in studying the classica.
Ask questions on the text that will make the pupils think and ree the important points, quarities or characteristics.

## Octine on Readiag

1. Purpobes of Study of Readina
(1) Thought getting and thought giving
(2) Acquiring general knowlelge
(3) Development of taste for best liternaure
(a) Increasing general culture
(b) Promoting scholarly speech
(4) Training the mental powers
(a) To strengthen memory
(b) To develop the will through increasc of knowledge
(c) To render choice easier
(d) To strengthen imagination
II. Reading in Primary Grades
(1) Purposes of primary reading
(a) Aequiring thought
(b) Adding to vocabulary
(c) Correct pronunciation
(2) Material used
(a) Courses of study as provided
(b) Kegularly adopued texts
(c) Supplementary readers and primers
iII. Reading in Interwr ate 'irades
(1) Purposes of th
(a) Mastery oi
(b) Adding te
(c) Inducing:
(d) Correct inth
.nd expression
(2) Material used
(Same as II, (2) above)
(3) Devices for increasing interest
(a) Discussions and explanations
(b) Geographical references studied
(c) Mythological references explained
(d) Historical setting made clear

## Study of Authors

It has been a very special effort on the part of the editors of Tue New Practical Reference Library to give to literature and biography the
space and importance it merits. There is also a carefully prepared treatment of the best melbods of teaching reading, in Vol. IV.

We conadder it not enough sevim in an abtract way the value of literury productions and to place on recond certain estimates of uthor, but in addition believe it highly desirabe and profitable aiike to teachers, parents and pult to give carefully arranged studnes of wathors and melections which may serve as type on which still other lessons may be planned. On page 126 of this volume there is a discussion d tiography for children in the school, and s series of scarch questions on the general subject of biography. Below we go still further into detail, and by careful outlines show bow to atudy an author and selections from his worke.

## EHRY WADBWOBTH LONGFLLLOW

The poems of Longfellow are possibly more merenlly studied than are those of any other miter. He addressed himselः in many of his poems particularly to children and achieved the mene of the "Children's Poet."
Elography. The following outline for the ady of the life of Longfellow is offered as a moder which can be used in studying the biganphy of any other writer. Its arrangement is woch that it can be adapted to any changed conditions and can be studied by sections. Not all $\alpha$ dhe outlines below should be offered to younger pupis; the teacher or parent must exercise poper judgment in determining to what extent we amaller boys and girls should be introduced b biography.

## L. Eariy Lafe

1. Boyhood and youth (See "My Lost Youth," also "Prelude" to "Voices of the Night")
2. Education

Portland Academy
Bowdoin College
Classmates
Poems
II. Professor in Bowdons

1. Attempt to study law
2. Appointment at Bowdoin
3. Residence in Europe
4. College work
5. Marriage
6. Second trip to Europe
7. Death of Mrs. Longfellow

## III. Proyrasor at Harvard

1. Resilence in the Craigie House
2. F̈riendships

Felton, Cleveland, Sumner and Hawthorne
8. Work in the university
4. "Ilyperion"
6. "Voices of the Night"
"Prelude," "Hymn to the Night," "A Pxalm of Life,"" "The Reaper and the Flowers," "'The Light of Stars." "Footstepss of Angels," "Flowers," "The Beleaguered City," and "Midnight Mass for the Dying Year"
6. Ballads
"The Skeleton in Armor"
"The Wreck of the Hesperus"
"The Village Blacksmith"
"Excelsior," and others
7. Poems on slavery
8. Third trip abroad
9. Second marriage
10. "The Spanish Student," and other poems
11. "Kavanagh"
12. "The Building of the Ship," and other poems
IV. Later Life

1. Retirement from Harvard
2. Important poems of this period
"Evangeline," "The Courtship of Miles Standish," "Hiawatha," "Tales of a Wayside Inn," and "Birds of Passage"
3. Celebration of Longfellow's seventysecond birthday
The presentation of the chair
Whittier's poem, "The Poet and the Children"
"From my Armchair"
4. Death, March 25, 1882
V. Estimates of Longfellow as a Poet

## The Study of Selections

In the study of literature selections, whether of patry or prose, the teacher should observe the bollowing points:

1. Be sure that the selection is adapted in though and sentiment to the age and capacity $d$ dhe class. Inexperienced teachers of ten make the mistake of using selections too difficult for te pupisa
2. See that the subject is such as will enable the pupils to grasp and enter into the spirit of the selection. (Note directions for the study of "The Village Blacksmith," below.)
3. Be sure that the pupils know the meaning of all worls in the selection, and that they understand all the obscure and difficult pessages.
4. If necessary, assist the pupils in forming


Ronlting
manal pleturue of the conen and objecte maribed.
6. Add such intervating items and information - youl can obtain. Por imatance, pupile are alvays interested in the history of the selection andied. They like to know how Longellow ame to write "Children," "The Children's Bour," "The Village Blackemith," and all poems in which they ase invercented. The melher who can give information of this cort is divery sure to have an interested clase.
Q. or the purpose of making practical applices. tion of our suggention, we here give plani for * atudy of the poem "The Village Blackminh"。

## The Fillage Eleatumith

"The Viliage Blackemith" firnt appeared in a rhame of Longfellow's poems entitied "Ballads and Other Poems."" The smithy alluded to was a Bratte Street, Cambridge, and was partially owerarched by a hrge chestnut tree. In his miks, Mr. Loagteliow frequently mw the minh at work. Years aftesward, the smithy me removed, a dwelling house was erected upon the rite, and some of the branches of the tree were loppeal of to make room for the house. This gave the troe euch an unsightly appearance, that some montha later it was ordered to be cut down by the village authorities. Moat of the dipe were carried a way by the people of Cambridge as souvenirs. From the wood of this tree was made the chair which the children of Cambridge presented Mr. Longfellow on his verenty-tecond birthoiay.

## THE VILLAGE BLACESMITH

Uoder a spreading chestnut tree
The village smithy stands;
The smith, a mighty man is he,
With large and sinewy hands;
And the muscles of his brawny arms Are strong as iron bands.

Eis hair is crisp, and black, and long, His face is like the tan;
His brow is wet with honest sweat, He carns what'er he can,
And looks the whole world in the face, For he owes not any man.
Week in, week out, from morn till night, You $r$, hear his bellows blow; You can hear him aving his Leavy sledge, With mensured bent and slow,

Like a maxtoa riaging the rillige bell, Whoa the evening sum in low.
And childrean coming home from school Look in at the open door;
They fove to ace the flaming loges, And hear the bellows roar, Aad catch the burning aparks that fy Like chat brom a throlhing fioop.
He gree on Sunday to the church, And wits among his boys;
Ho heart the parson pray and preach, He hear his daughter's roice, siaging in the village choir, And it makes his heart rejicice.
It sounds to him like her mother's roico, Singing in Paradivel
He needs must think of her once more, How in the grave ahe lies;
And with his hand, pough hand he wipea A tear out of his eyes.

## Tolling, rejoicing, sorrowing,

 Onward through life be goes;Each morning sees some tapk begun,
Each evening sees it elose;
Sounething attempted, something done, Has carned a night's sepose.
Thanks, thanks to thee, my worthy fi wd, For the lesson thou hast taughtl
Thus at the flaming forge of life
Our fortunes must be wrought;
Thus on its sounding anvil ahaged
Each burning deed and thought.
Toschor's Proparation. 1. Make a careful atudy of the poem befure presenting it to the chal
(a) Be sure you can explain by concrete illustrations ne meaning of all terms used in the poem.
(b) Separate the poem into parts, having each part contain a unit of thought or repto sentation. There are four such divisions in "The Village Blacksmith."
(1) The amithy and the amith (Stanzas 1-3).
(2) The children at the smithy (Stansa 4).
(3) The smith at churci (Stanzas 5-6).
(i) Lessons drawn from the life of the smith (Stanzas 7-8).
(c) Learn the history of the poem and be propared to tell it to the pupils.

## Tanlte

Presontatios. 1. Toll the otory of the poom-what led to writing it, and whoe it was witton.
2. Study the poon by coctions with the clacs. The firot otedy will iselude the firat three atanges.
3. Select the words whow meaning the pupilo may not undorotand.
4. Seloct the objecta named in the pleture which the pupils may not have seen. To soime city puplis the saithy and the choutraut tree will be strange objecte. The bellows and the sledge may also be unfamiliar. Sozton may aino need attention.
6. Have the pupils deseribe the pleture. The description must leclude a description of the chentnut tree, the smithy and the smith.

Redtation. 1. Have the clase rad the firut atanza.
2. Watch for faulty expremion. This Indicates lack of connprehonalon.
3. Read the socond and third atamses in a similar manner.
4. Call upon the different members to sead the three stansas This will reveal their dogree of comprobension of the division studled.

Other lections. The second and third divisions can probably be taken at one lesson. The aceas in the amithy will neod explamation to the children who have not ceen a forge. The fiame is amail and the rour of the bellows Is the sound made by the current of air forced through the fire. The pupils may not know what chafl in. Be sure that the childrea get a correct mental picture of the amithy.

The fourth and fith stanass need but little explanation. The chief thought to bring out ia that benenth a rough exterior the smith carries akind and loving heart.

The last division should be taken at one lesaon. The first stenas teaches the iesson of industry and ahows the satisfection arising from completing one's task. The last stanza refers to the lesson which the smith's life teachen, and compares his work at the forge with the roork of each individual in shaping his charar.-. The poem is usually read before the po. - can fully grasp the thoughte in this stanza, yet they will get come comprehension of them. It is well to carry the study only so far as they can readily follow it.

Roviow. 1. After the entire poem has been studied according to this plan, have the members of the class read it. Each member should read the entire poem.
2. Have the clase meraorise the poem. The pupli's fauaillarity with it will make this eavy. It will be wies, howover, to defor this revion uatil the pupils have otudiod one or mone alections on other subjecta.
fanmary. Wo havo herowith given complote plani for the atudy of thls poem. Theen plane can readily be appiled to the atudy of any literary selection suitable to the pupils of this grade. If the pupila are older, they ohould make a more detailed atudy of the selection, and the finer shades of meaning should be brought out. The main features of these plans are common to the atudy of all eelections. The minor features must be determined by the teacher from the character of each selection. The underlying principle is, Comprehonsion of thought mur precede as. proscion of thought. Therefore, before oral reading is attempted, all obscure mesning muat be made plain. Much of the faulty expression in oral reading is due to th fect that pupils are called upon to read relections which they do not underitand.

## ALTEED TEANYBON

The following poem, "The May Queen," Io chosen for study because it is popular with all classes of pupila and will serve as a type for many other selections for later anslysis.

The May Queen. "The May Queen," poem in three parts, commemorates the an. aual celebration of May Day. This festival is supposed to have originated in the celebration which the ancient Romans held yearly in honor of the godiess Flora. It is still customary in the rural districts of England lor the young peopie to go to the forests early in the morning and colle:t evergreens and flowers. At the exercises which follow, the young lady previously selected for the honor is crowned Queen of the May. In the incident described in the poem, a black-eyed beauty of the village is to be queen. Fearing that she will sleep and be late, she begs her mother to awake and call her early.

The first part of the poem expresses the giri's joy at the honor conferred upon her. The second part tells of her illness snd approaching death, and the third of her resignation to God's will. The first and second parts were published in 1833, but the third part did not appear until 1842. Only the first part is here given. "The May Queen" is well suited to securing an interest in Tennyson.

## THE MAY QUEEN

You muat wake and call me carty, call me early, mother dowp; Th-morrow 'ill be the happieat time of all the glad New-year; Of all the glad New year, mother, the madleot, merient day, For I'm to be Queen of the May, mother, I'm to be Queen of the Mug.
There's many a black, black eye, they may, but none mo bright as mino; THen 's Margaret and Mary, there's Kate ant Casoline; But nove so fair as little Alice in all the land they say, So I'ra to be Queen of the May, mother, I'm to bo Queet of the May.
I sleep so sound all night, mother, that I shall never wake, If you do not call me loud when the day begins to break;
But I must gather knots of slowers, and bads and garhads gay.
For I'm to be Queen of the May, mother, I'm to be Queen $\because$. ine May.
As I came up the ralley whom think ye ahould I see But Robin leaning on the bridgo bencath the hazel-tree? He thought of that aharp look, mother, I gave him yestenday, But I'm to be Queen of the May, motber, I'm to be Queen of the May.
He thought I was a ghout, mother, for I was all in white,
And I ran by him without speaking, like a flash of light.
They call me cruel-hearted, but I care not what they say,
For I'm to be Queen of the May, nother, I'm to be Queen of the May.
They say he's dying all for love, but that can never be;
They say his heart is breaking, mother-what is that to me?
There's many a bolder lad 'ill woo me any aummer day.
And I'm to be Queen of the May, mothrr, I'm to be Queen of the Niay,
Little Effie ahall go with me to-morrow to the green,
And you'll be there, toin, mother, to see me mado the Queen;
For the shepherd leds 0.1 every sid, "ill come from far away,
And I'm to be queen of the Mis.y ?, sher, I'm to be Queen of the May.
The honeysuckle round the porch 1. roven its wavy bowers, And by the meadow-trenchics blow the faint sweet cuckoo-flowers; And the wild marsho.naricold shines like fire in swamps and hollows gray And I'm to be Queen of the May, mother, I'm to be Queen of the May.
The night-xind come and $5 \cdot$, mother, upon the meadow-grass, And the hariod stars above them seem to brighten as they pass; There will not be a drop of rain the whole of the livelong day, And I'm to be Queen of the May, mother, I'm to be Queen of the May.
All the valley, mother, 'ill be fresh and green and still, And the cowslip and the crowfoot are over all d.e hill, And the rivulet in the flowery dale 'ili merrily glance and play, For I'm to be Queen of the May, mother, I'm to be Queen of the May.
So you must wake and call me early, call me early, mother dear,
To-morrow 'ill be the happiest time of all the glad New-year;
To-morrow 'ill be of all the year the maddest, merriest day,
For I'm to be Queen of the May, mother, I'm to be Queen of the May.

Flas for limedy. The pupils will need but litile exidance in interprecing the poem. Their attention, however, should be called to the moods which follow each other in the mind of Alice, and to the emphasis and completenees of the thought brought out by the lat tanna, which is a reperition of the first. The peculiar use of the apotsophe in this poem abould also be noticed.
The firt three stansan show Alice as a joyful, envious girl, anxiops for the morrow. The fourth, fifth and sixth stansas tell of her feelinga tomands one who is in love with her, and show that she has little or no sympathy for him. In the eeveath tanza her thought is brought back
to ber sater and mother, and she expreseen a deaire that they may abare the pleasure with ber. The eighth, ninch and tenth show the girl's love for Nature, and contain benutiful pictures which form a proper setting of the scene. As far as is necemary, the temeher abould asaist the pupils to see these pictures. The lat stanza is, as mid above, added for emphacia and completenes.
Other Poems. Other short poems suitable for achool use are "Enoch Arden, " "The Brook," "The Charge of the Light Brigade," "Break, Break, Break," "Columbus" and "Crossing the Bar," and from "The Princess," "The Bugle Song." "Sweet and Low" and "Home They Brought Her Warrior Dead."

## Interesting Facts about Authors

## I-Iongfollow

William Longfellow, from whom the family in Americu descended, came to Masmechusetts in 1651 and settled in Newbury.

The poet's paternal grandfather was prominent in hw and politics. He represented his town in the General Court of Massachusetts for cight years was several years Senator from Cumberland County and for fourteen yeara was judge of the Court of Common Pless.

Longfellow's father was a leading lawyer of Porthand. He held many offices of trust in his city and county, and was a member of the Eighteenth Congreas.

On his mother's side, the poet was a descendant of John Alden, who came over in the "Mayflower "and whose wife, Priscilla, Longfellow immortalized in his "Courtship of Miles Standish."

Longfellow's carly education was obtained in a private school and at the Portiand Academy, where he prepared for college. In the poem "My Lost Youth" he gives a description of Portand and the surrounding country is they were at that time.
Iongfellow's first published poem, "Lovewell's Fight," appeared in the "Portiand Gazette" when he was fourteen.

Longfellow entered Bowdoin College with his brother Stephen in 1821. Among his classmates were John S. C. Abbott, the historian, and Nathaniel Hawthorne, who became one of the most distinguished American men of leters.

Longellow's college life was unerentiul. His charming manner and studious habits made him a favorite alike with students and instructora. While in college he wrote a number of poems,
which were first published in the "United Staten Literary Gavette." From this journal they were copied by other papers, and thus received a general circulation throughout the country. Only seven of these poems were included in later editions of the author's works.
Longfellow's father intended that he should be a lawyer, but a year's trial in his father'a office convinced the young poet. that he would never succeed in the legal profession. About this time he was chosen Professor of Modem Languages in Bowdoin College, and his life work began.

The origin of some of Longfellow's mast popular poems is of special interest. "The Psalm of Life" was written on a bright summers morning, as the poet sat at a small table, it is said, looking out over the landscape. "The Wreck of the Hesperus" was written by chance, after a violent storm. The story came into his mind in the evening. He went to bed, but could not sleep, so he arose and wrote the poem. "Excelsior" was suggested by his seeing that word upon a scrap of paper which he picked up on the street. He took from his pocket a letter which he had just received from Charles Sumner, and sitting upon the curbstone, wrote the poem on the back of the leter. The story on which "Evangeline" is founded was given to him by Hawthorne, who had received the facts from : friend. This friend thought Hawthorne could write an excellent novel on the incident, but he did not see anything in it for a story, so be gave it to Longfellow.

## E-Tennyion

Tennyson's first volume of poems was pub-

## Roading

Fibed by himself and his brother Churles. Both bogs contributed to its contents, and it is difficult to cell which one wrote the various poems. The wolume appeared when Tennyson whs seventeen. Tennyson was a general favorite in college wod formed many friendships. His closest friend ws Arthur Halliam, son of the historian. Hallam dicd soon after leaving college. "In Memoriam" - Tennyson's immortal monument to his friend.

The general recognition of Tennyson as the gruted poet of his time dates from the publication of his famous volume in 1842. Among the poems in this volume were "The Talking Oak," "Dom," "Locksley Hall" and "Sir Galahad." In 1883 Tennyson was offered the peerage by Queen Victoria, and was designated Baron of Aldworth and Farringford, January 18, 1884. Thereafter he was known as Lord Tennyson.
"Locksley Hall" was published in 1842. In 1886 appeared "Locksley Hall Sixty Years Ater," written when the poet was in his seventyeighth year; yet the latter poem shows no lack $d$ mental vigor.
Tennyson died October 7, 1892, and was bunied in the "Poet's Comer" of Westminster abbey.

## III-Whittior

Until he was a young man, Whittier lived and worked on a farm. This was before farm machinery had been invented, and all work was performed by hand labor with the simplest tools. To his early training is undoubtedly due Whitier's sympathy with all forms of common labor. His interest in the lives of the working people $d$ his time is shown in the series of poems known «"Songs of Labor." "The Shoemakers" and "The Huskers" are two of the best-known poems $d$ dhis series.
The old farmhouse near Haverhill, Massadwestls, in which Whittier was born, and which he described in "Snow-Bound," was built in 1688. It is still standing, and with its furniture is arfully preserved. Many of the rooms are opea to visitors.
When Whittier was fourteen, the schoolmaster mom he describes in "Snow-Bound" brought whis home a volume of Burns' poems. In reading this, the boy obtained much inspiration. The book influenced all of his life and many of his peress. In his poem "Burns," he speaks of this

[^1]
## Roading

No longer common or unclean, The child of God's baptiving!

> With clearer eyes I sw the worth Of life among the lowly; The Bible at his Cotter's hearth Had made my own more holy."

Whittier's first slavery poem was published in the local paper when he was eighteen. The lines attracted the attention of William Lloyd Garrison, who was then but twenty. He went to the Whittier homestend and urged Whittier's father to give him an education. To his plem the father replied, "Sir, poetry will not give him bread." Whittier's schooling was limited, being confined to attendance at the common school in his district, and two terms at the Haverhill Academy.
He began his literary labors as the hired editor on the "American Manufacturer," though while attending the academy he wrote nearly one hundred poems, many of which appeared in in the "Haverhill Gavette."
Whittier early became interested in politics, and when a young man was favorably considered for a congressman. His love for liberty, however, caused him to join the Abolitionists, and this ended his career in every party which at that time was laboring to succeed at the polls.
He was one of the leaders in the movement to abolish slavery, and did much by his writings and influence to accomplish this result. Whittier was a friend and admirer of Charles Sumner, and was largely instrumental in securing his election to the United States Senate.
"Barhara Frietchie," considered to be one of the best hallads of the Civil War, was written in 1863. There has been a good deal of controversy as to whether or not the hallad was founded on fact. Whittier said that the poem conformed strictly to the incident as he leamed it from trustworthy sources. Barhara Frietchie was a gentlewoman highly esteemed in the community in which she lived. She was a stanch Unionist, and it is said that when the Confederates entered her yard, she denounced them and shook her cane in their faces, and drove them out. It was also stated that May Quantrelle, a lady living in another part of the city, did wave the Union flag at the Confederate forces. In the narrative as it reached Whittier, the incidents were probably confused.
Notwithstanding his power as an anti-slavery advocate, Whittier lived a quiet, retired life.

## Toeding

When he left the farm, he remored to a amaller house near Amesbury, Massachusetts, where he lived during the most of his life. He died at Hampton Falls, New Himpohire, September 7, 1802.

## IV-Eiolmos

Holmes was a cousin of Wendell Phillips, and a direct descendant of Anne Bradstreet, the first American poetess. The Dorothy $\mathbf{Q}$ described fm his poem of that name was Dorothy Quincy, his great-grandmother.
The dencon who built the "one-hoss shay" wes David Holmes, the poet's grandfather. He was a captain in the French and Indian War, and a surgeon in the Revolutionary War.
"Oid Ironsides," one of the most famous of Holme's poems, was written in 1830, and was inspired by the order of the Secretary of the Navy to destroy the frigate "Constitution." Holmes read the order in a newspaper, and on a scrap of paper with a lead pencil he wrote the stanzas at once, and sent them to the "Boston Daily Advertiser." The poem was copied by the press throughout the country, and was even printed on handbills and circulated about the streets of Washington. It created such widespread indignation that the Secretary countermanded this order, and the old ship still flosts. This poem wns written when Holmes was a law student and only twenty-one years of age. This is probably the only instance in history where the verses of a haw student reversed the policy of the government. His "Plea for the Old South" performed a somewhat similar service.

Holmes graduated from Harvard College in 1829. Among his classmates were a number of men who gained a world-wide or national reputation in their respective callings. In his poem "The Boys," written for the class reunion of 1859, he refers in a pleasant way to some of these distinguished classmates. The "judge" of the poem was George T. Bigelow, ChiefJustice of Massachusctts. The "boy with the three-decker brain," was B. R. Curtis, a justice of the Supreme Court of the United States. The "boy with the grave mathematical look," whe Professor Benjamin Peirce of Harvard, one of the most celebrated mathematicians of his time. James Freeman Clarke and Revesend Samuel Smith, the author of "America," were also members of this class.
We often hear Boston referred to as the "Hub of the Universe," but we seldom ascribe the origin of this expression to Holmes. In his "Autocrat of the Brealfast Table," he makes

Readins
one of his characters my, "Boston State Home is the hub of the solar aystem. You coulda't pry that out of a Boston man if you had the in of all creation straightened out for a crowber.?

Holmes also was the originator of the name of the "Atlantic Monthly." When it was decibed to start this periodical the editorship was ofleind to James Russell Lowell, who consented io accept the position only on condition that Holmes should be secured as a regular contitibo utor. To this Holmes replied, "You see, the doctor is like a bright mountain stream that hu been dammed up among the hills, and is miing for an outlet into the Atlantic." From this incident the periodical took its name.

Holmes fame is not confined to the realmsod literature. He was for thirty-five years Profuase of Physiology and Anatomy in Harvard Collogn and was one of the leading medical authorita of his day. It was due to him that the micm: scope was introduced into medical practice is the United States.

## V-Iowell

Lowell came of a family distinguished in many fields of activity. His father, grandfathe and great-grandfather were graduates of Harmd College; his father was pastor of the First Chumb in Boston. His grandfather, John Lowell, wa member of the Constitutional Convention d Massachusetts, introduced into the Bill of Ridht of the state a clause abolishing slavery.
An uncle of the poet, Francis Cabot Iowel, was a successful manufacturer, and the city $\alpha$ Lowell was named for him. Another und founded the Lowell Institute in Boston.
One of Lowell's ancestors on his mother's side was a signer of the Declaration of Independeroc. - During his college life, Lowell came in contat with many distinguished men of letters. Among his teachers were Benjamin Peirce, the msthe matician of Holmes's "famous Class of '29," and Longfellow. Lowell himself tells us that be read, while in college, "almost everything exepx the text-books prescribed by the faculty." During his senior year he became so indifferat to college regulations that the faculty requested that he study for a time at Concord, under a tutor. It was here that he met Emerson, od whom he later became an ardent admires. It was also at this time that he first felt the sininimp of his anti-slavery conrictions.
Lowell was married in 1844 to a sister of one of his classmates, Maria White. She was a moble woman of lofty poetic genius, and by he it-

hm
dS
him
$d a$
in
mss
just
the 1
by t
mint
broo
piration she greatly influencod her gifted hubend. Some of the most touchingly beautiful d Lowell's poems were written about his wife and children. "The Changeling" and "She Cume and Went" were written in commemorntina of his first child, Blanche, who died when tno years of age. His poem which all children tnow and love is "The First Snowfall." In tiishe speaks of his second little daughter, Mabel, and of her sister "folded close under deepening mon." When he sent this poem to the periodical in which it was published, Lowell wrote, "Print that as if you loved it. Let not a comma be bundered. * * * May you never have the key which shall unlock the whole meaning of the poem to you."
"The Burial" in part was written after the denth of Lowell's third daughter, Rose, who lived only a few months. Into it is interwoven the memory of his oldest child, especially in the hats stanza, where he speaks of the little shoe in the corner. One of Lowell's biographers mer tions that after Blanche was buried, her father took her tiny shoes, the only ones she had eren worn, and hung them in his chamber. There they stayed till his own death. Of his vite's death he says, "Something broke my life in two, and I cannot piece it together again."
Lowell was essentially a nature poet. In the hamous "Prelude to Part Second" in his "Vision of Sir Launfal" he describes a scene which he himself enjoyed. In one of his letters he tells of a walk he took to Watertown over the snow in the moonlight. In his own words, "Orion mas rising behind me, and as I stood on the hill just before you enter the village, the s'ilness of the felds around me was delicious, broken only by the tinkle of a little brook which runs too snittly for frost to catch it. My picture of the trook in 'Sir Launfal' was drawn from it."
Lowell was our representative man of letters. He mas a great critic, an essayist, poet, diplomat and scholar. As a poet he had a wider range than any other of our American poets. In his poetry be was an appreciative lover of Nature, a humorist, a patriot and a satirist, and he also mote poems of sincere thought. His versatility sequaled by no other American man of letters.

## VI-scott

Sir Walter Scott came of a well-known Scottish family. Scott himself said that his birth mas "neither distinguished nor sordid"; in the common language of the country the Scotts were "gentefolk." Pride of family Scott considered

## Reading

"natural to a man of imagination." This pride sometimes led him into courses to his disadvantage, but at the same time it constantly spurred him on to exertion and to a high conception of duty. On the ceilings of Abbotsford are displayed the arms of about a dozen Border families with whom Scott's family claimed relationship.

In his autobiography Scott gives many interesting details of his boyhood. For example, he was sometimes called a dunce and an idler. Very carcfully he explains why some people who did not like him might misrepresent the facts. As an infant of two years he had suffered severely from a fever which left its influence on him for life, his right leg being a trifle shorter than his left. His health as a boy was uncertain and his attendance at school was consequently irregular. Thus his studies suffered from forced inattention. Even as a child he seems to have been a favorite with his elders, and hc spent many happy hours listening to the stories they gladly told him. As he grew older he steadily pursued his favorite studies of history and romance. He acquired a reputation among his schoolfellows for queer bits of knowledge and for story-telling - a reputation he worked hard to sustain as compensation for his indifferent standing in the regular school work. He studied French and Italian in order that he might read more romances in the original. This willingness to study hard in the pursuit of his pleasure was characteristic of Scott. He ransacked libraries foi new material and by the time he was twenty-one was known for his ability in deciphering old manuscripts.
It was as a poet that Scott first established a literary reputation. In 1796 he published a number of translations from the German, and six years later issued the first part of his collection of The Minatrelsy of the Scuttish Border; but it was not till 1805 that the Lay of the Last Minstrel placed him among the famous poets. This was followed by Marmion and the Lady of the Lake, both of . hich added greatly to Scott's popularity. Meanwhile he had been writing, though anonymously, the remarkable series of Waverley Novels. Not until five years before his death did he publicly acknowledge the authorship of these books, but the fact had been more or less of an open secret for a number of years.
The last years of his life were filled with trouble and sorrow. His business ventures turned out unfortunately and he was forced into bankruptcy. He labored in every way to pay off
the enormous debt of his partners. In 1830 he suffered a stroke of paralysure from which be never fully recovered. The last months of his life were pathetic, as be died happy in the dolusion that he had paid all his debte. No man ever showed a nobler sense of duty than Scott, when he literally wore himself out to pay obligwtions he could earily have avoided.

## VII-Iovies M. Aleott

Louin M. Alcott, the best American writer of children's stories, was of English ancestry. Her avcestors on her father's side were connected with the founders and governors of the chief New England colonies, and her mother was descended from a distinguished New England family. Miss Alcott's father, the famous Amos Bronson Aloott, was an unprectical idealist, though a very scholarly man. Her mother was a woman of fine mind, broad sympathies and unselfish generosity. Their gifted daughter seemes to have inherited striking traits of both parents.
When Louise wis two years old the family removed to Boston, where Mr. Alcott opened a achool. During this period, Louise began a journal at the age of seven, which she kept for many years. Her personal experiences and those of her family, as there recorded, furnish very interesting reading.
In 1840, when Louisa was eight years of age, the Alcotts removed to Concord, Massachusetts, where some of her happiest days were spent. Among her neighbors were the little Emersons, Channings and Hawthornes, a noteworthy group of playmates. Some of their childish plays she afterwards reproduced in "Little Men."
Amos Alcott was a man of scholarly attainments and lofty ideals, but he lacked the ability to carn a comfortable living for his family. For many years his devoted wife and children suffered many privations, and the burden was not lifted until Louisa was old enough to shoulder some of the responsibility. The Alcott children were taught by their father, who had peculiar views on education and favored the Socratic method of questioning. Their minds were led to develop gradually and they were encouraged to express themselves freely and naturally.

In 1845 the family acquired a home in Concord, which is described in "Little Women," Miss Alcott's masterpiece. That story, best beloved of books by children of two generations, is based on the actual experiences of the Alcott family. The Meg of the book is the elder sister of Louisa.

The wayward Jo is Louim herself. Beth is a younger sister, Elimbeth, and Amy is the pretly and graceful May Alcott. Mra. March is a reproduction of Mres. Aloott, only, as Louisa syy, "Not hall good enough." The charming Launie is a Polish lad whom the authoress met in Europe. The great charm of the book is its naturalness It rings true. This can be easily understood when we consider that Miss Alcott was writing about her own life and that of her family. The brok has been translated into French, German and Dutch.

Louisa wrote shymes and plays when a girl, and had a story published which she wrote when she was but fixteen. Her real literary career began, however, when she was twenty-two, when she published a book of stories for which she received $\$ 32$. For several years she devoted berself to making the family more comfortable, and she taught, sewed and wrote. After buying bconets for the sisters with s.oney received from writing, she said, "The in side of my head an cover the outside."
During the Civil War s'se became a nurse in a hospital, and has reproduced some of her experiences in "Hospital Sketches." This book has deservedly become very popular. The nursing resulted in a severe illness, and her health mu never so robust again. "Old Fashioned Girl" is a bright and cheerful story, but it was written under vary depressing circumstances. In her bast books, Miss Alcott seems to be all humor and gcod cheer, but her life was a hard one, full of work and responsibility and saddened by the death of her mother and two younger sisters.

Her influence has been of the best. Her buis for children, by which she is best known, are both wholesome and entertaining, and undoubtedly will be the delight of young readers for years to come.

## VIII-Hawthorne

Hawthorne was a descendant of William Flin. thorne, who came to Massachusetts from Eng. land in 1630. This ancestor was a stern Puritan and his son was one of the judges who conderned to death some of the victims of the Salem withcratt. The Hawthornes became seamen; :he grandfather of the novelist commanded a priveteer in the Revolution and his father was a captain in the merchant marine.

Hawthorne's early days were spent in Salem, full of reminiscences of the stern old Puritan days. As a child, he read Shakespeare, Mitton, Pope, Bunyan and Thompson, and with his own

## Roading

money bought a copy of Spenser'd "Faery Queene." Among his teachers was Worcester, the famoua dietionary-maker.
A part of hia boyhood was spent in Maine on his uncle's estate. The wild scenery of the sparsely settled region and the primitive manners of the people gireatly stimulated his imaginstion. H3 says of this period, "I lived like a bird of the air so perfect was the freedom I enjoyed." During the moonlight nights he would s' to until midnight all alone upon Sebago Lake, "with the deep shudows of the icy hills on either side."
He entered Bowdoin College at the age of seventeen. Among his classmates were Longfellow and Franklin Pierce, the latter of whom hecame his lifelong and well-beloved friend. It is said that in college he ranked low in mathematics and metaphysics and that he found the required chapel declamations appalling. For twelve years after leaving college he lived in retireme 7 t in Salem, where, in an upper room of his mother's home, he wrote and dreamed. He speaks of this room as a place where he sut a long, long time, waiting for the world to know him The result of these long years of effort was "Twice-Told Tales," his first important work.
Hawthorne was thoughtful, reserved and quiet, but at times he enjoyed fun and jokes. His friend and biographer, James T. Fields, tells us that while they were in England together, they attended a reception given by an intelligent English lady, who asked, Hawthorne to write in her autograph album. Hawthorne implored Fields to tell him what to say, and the latter, in a spirit of fun, suggested the old doggerel:

> "When this you see Remember me."

Tie famous romancer immediately wrote the couplet nad signed his name to it.
On the way home from Europe, Mr. Fields found the Atlantic too much for him and suffered greatly from seasickness. Hawthorne was a splendid sailor and used to console his friend by suggesting all sorts of fanriful dishes. "He would lie by my side," says Mr. Fields, "and tell me to try a few roc's egrs beaten up by a mermaid on a dolphin's buck, or gruel made from a sheaf of Rohin Hood's arrows. He thought the proper dothing for a sea trip to be raven-down storkings, and sable clouds with a silver
liming."

## Eoading

Hawthorne's last days were spent quietly in Concord. Emerson was one of his neighbors, and he speaks of his coming to call with a "sunbeam in his face." Just before he died he started a new romance, and the unfinished manuscript was laid upon his coffin. He was buried under a group of pines on a hillside overlooking the historic fields of Concord. Among the friends who saw him laid to rest were Emerson, Channing, Agassiz, Lowell, Alcott, Holmes and Franklin Pierce.

## IT-Thackoray

Unlike Dickens, his great contemporary, Thackeray worked for many years before he was appreciated by the public. His personal character, moreover, was such as to make him avoid publicity. He was extremely shy, modest and nervous, and disliked continuous work. His school friends remembered him as a "pretty, gentle and rather timid boy," who: "was known for his skill in caricature drawing but not for diligence in study. His extreme sensitiveness is apparent in many of his books, especially when he writes of his school days.

The loss of his small fortune in ill-chosen ventures and the necessity of supporting his family forced Thackeray to hack work in 1837. He contributed humorous articles to Punch ind other magazines and slowly won a reputation for this sort of work. His illustrations, though often poorly done from an artistic point of view, invariably caught the spirit of the article so that they greatly added to its effectiveness. Thackeray, in fact, spent a year in Paris in order to study drawing and painting, but $h^{\wedge}$ never succeeded in attaining correctness in design.

In his novels Thackeray displays his characteristics to best advantage. He uncovers the weaknesses of society in a gentle, yet firm manner. We realize that he is in deadly earnest in his satire, yet we are not offended, because his satire does not sting. Vanity Fair is gener - considered his greatest novel. Nonc of, aracters are perfect, but the story is onliv by an abundance of real human nature. Many readers consider Henry Esmond a greater and more enduring work. In it Thackeray gives a wonderful picture of social life in the eighteenth century; he even goes so far as to disguise his own natu-al style and to imitate eighteenth
century prose.


Eow a Btatue Is Made. Perhaps when some of us see in a museum a beautiful marble stetue, we picture to ourselves the artist, a broadbrowed man of genius, standing before the marble, chisel in hand, with the light of inspiration in his eye, hewing out the statue. And it may be something of a shock to us to realize that in almost all cases the artist does not touch the marble-that he merely makes a clay model, from which skilled workmen copy the statue. Yet this fact does not detract in the least from the genius of the artist or the worth of the artistic product. It is the iden, the inspiration that makes the statue great.
Treatment of senlptore in These Volumes. A detailed account of the making of a statue, whether of marble or of metal, is given in The New Practical Reference Library in the article Sculpture, under the subhead Processes. The same article also contains a history of sculpture, from its earliest beginnings in Egypt to its latest development in the United States. This article is of necessity limited, and needs supplementing; and much of the necessary supplementary material may be found in the biographies of famous sculptors, of which there are fifty-five listed under Biography, subhead Sculptors, in the Classified Index. Other articles which will be of interest in connection with the general subject of sculpture are as follows:

## Alto-Rilievo

Bas-relief
Byzantine Art
Carving
Cast
Creatness of Anciont sculpture. We have grown so accustomed to believing that increased knowledge and increased practice mean increased skill and ability that we are often in danger of thinking that things modern must in
all ways surpass things ancient. We lorget, sometimes, that the greatest epic was written literally thousa "u's of years ago; that some of the most beautiful buildings in the world were created long before the beginning of the Christian Era; that perhaps the very highest mark in art was reached far back in the early days of Greece. It is this last statement which calls for emphasis here. Of course mere verbal defense of such a statement can do little; nothing but a study of the works of art themselves can convince one of the justice of the judgment of the critics when they say that Greek sculpture is probably the greatest manifestation of art which the world has ever seen. But since we cannot have the sculpture groups to look at, we may study about some of the most famous of them. that we may look at them with more apprecis. tion when we do see them.

Myron. One of the first noteworthy Greek sculptors of whose work we possess any example was Myron, who lived about the middle of the fifth century b.c. All of his statues were in bronze, and the examples we have are but copies. Of these one, the "Discus Thrower," is one of the most famous of ancient statues. It shows the athlete, every muscle strained, with his arm stretched back and about to hurl the discus. While the body shows perfectly the effort that is being made, the face is calm and almost expres. sionless. And that is the chief criticism that is made on Myron; he can show motion, but not emotion.

Phidias. It seems strange that of the work of the greatest of all Greek sculptors we should have no example. But for our estimate of the work of Phidias we are dependent on the testimony of ancient writers, who rank his work, whether in marble, ivory or bronze, above that of anyone who preceded or followed him.
anctino cuvoawovit mot axzerpone

|  <br>  <br>  That semana <br>  <br>  <br>  <br> $\because$ : <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |  <br>  <br>  SWZOA <br>  <br>  <br>  <br>  zasio $z$ <br>  sussionyd <br>  NOIIINLEC |
| :---: | :---: |

Some few coplen, probably of works of Phidian, remain, and modern critics differ in no way in their eatimate of the sculptor from ancient critics.
Apelle Ealvedass. Many of the most tamous atatuee from antiquity can be assigned to no sculptor with any certainty. Thin is true of the celebrated statue of the "Apollo Belvedere," so called from the Belvedere court of the


THE "DISCUS THROWER"

Vatican, in which it now stands. This figure of the youthful god shows him as marvelously beautiful, yet the face expresses a divine wrath, which makes us feel certain that, with his bow in his outstretched hand, he is about to right some wrong or punish some evildoer. The statue loses none of its beauty for us because we know that what was long thought to be a Greek original is only a skilful Roman copy, or because the left hand and right forearm, which had been broken off, were restored by a sculptor in the time of Michelangelo. Notice the wonderfully graceful yet strong pose of the figure, the beautiful fall of the drapery, and the motion expressed in the whole composition.
Vonus of Milo. When an ancient Greek sculptor really believed in his gods and in the
besutiful mythe told regarding them, there murt have come, to him when making atatues of them an inspiration which could come from mo other tank. Such an inspiration must have come to the unknown sculptor who carved the statue found in 1820 on the island of Melas, in the Aegean Sea, and so called the Venus of Milo.


APOLLO BELVEDERE

We do not know even approximately the date when this work was produced, whether it was in the fourth or the first century b. c.; but we do know that in the opinion of the crities there is nothing else in art which can compare with this wonderful statue, and that almost anyone who will take the time to become well acquainted with it must be of the same opinion. The bady and the draperies are battered, and both arms are gone, so that no one can le absolutly certain as to just what the position of the goddess was; but the nobleness of the ideal portrayed, the lines of the figure and the youthful beauty and majesty of the face make this Venus the chief glory of the Louvre, where so many priceless art treasures are gathered. The most plausible idea as to the position of the goddess is the

## toulpturs

which mugents that her left foot rested on a belmet and that a shield was supported on ber left thigh.

venus or mino
It is passible to get, very inexpensively, copies in plaster of the Venus of Milo; and no one who makes such a purchese can ever regret it. It will be a possession of which one can never grow tired, and will show new beauties every time it is looked at thoughtfully.
Leocoon. A very well-known work of ancient sculpture is the "Laocoon," found at Rome and now in the Vatican. Although nothing definite can be determined as to the time of its production and the artist, it was probably produced in the second century b. c. Vergil tells the story which this group illustrates-how Laocoon, priest of Apollo in Troy, warned the Trojans aginst recciving into the city the wooden horse left by the Greeks, and how Apollo, to punish him, sent two huge serpents who attacked the prises and his two sons. The artist who made this statue bas chosen to portray the moment of
fiercest struggle, and thus there is something horrible about is. But the figures are so securats anatomically, the passion and the pain abown on the freses and in the atraining muscles are so real, that the group must mank with the great works of art of antiquity which have come down to us. No less a critic than Goethe held that the older son, the one to the left of the father, is not in pain, but is simply horrified at what


LaOCOON
he sees his father and his brother suffering, and that he is about to push off the coils of the serpent and stand free.
The Victory of Bamothrace. Between 1863 and 1867 French archaeologists were exploring the site of an ancient town on the island of Samothrace, in the Aegean. They found various objects of interest, but the greatest find of all was the statue which is called the Nike, or Winged Victory, of Samothrace, which is now in the Louvre. This statue is in a sadly mutilated condition; the head is gone, the arms are gone, the drapery is chipped. And yet it ranks with the Venus of Milo, and other of the most beautiful and famous works of art. Look at the sketch of the statue given here. Even in this form there is enough to make clear to us the reason for its ranking by the critics. Notice the wonderful poise; the lift of the wings, the sweep

## Sontptere

of the draperies. If gives one a foeling of light. mem, almoat of the ability to Ay, Juat to look at it. Nike, or Victorio as the Romans called her. was the godden of vietory, and this atatue was aet up by the Groek ruler Demetrius in


WINGED VICTORY
303 в. c., after he had defeated the king of Egypt in battle.

Niobe. After the time of the great sculptor Praxiteles a group of sculptors grew up, who. from the type of subjects in which they delighted, were known as the Pathetic School. The Laocosn was a product of this school, as was also another famous statue which is preserved in Flicrence, and which is probably the work of a pupil of Praxiteles. This is the "Niobe and Her Children." Niobe was the wife of the king of Thebes and the mother of six beautiful daughters and six handsome sons, of whom she was very proud. In her pride she boasted that she was superior to Leto, the mother of Apollo and Diana, who had but the two children. Moved to wrath, Apollo and Diana let fly their arrows at the children of Niobe and killed them one after another. Finally only the youngest
daughter remained. The atatue show Niobe in an agony of grief, trying to shicid this lust child from death. The atory goes that che was unsuccemful, and that Jupiter, in pity for her griel, changed her fato a atone which shed tears. A' sketch of thin atatue is given with the article Niobs in Volume IV.
cator Worts. Theme are the grestess statues of the greateat age of art-the most famous of the masterpieces to which modern sculptorn look for inspiration. It woukd be imponilble to describe even briefly the famous atatues which have been produced since the days of Greece; but we may take time to look at i very few of them.
Some critica maintain that the "Moses" of Michelangelo is the greatest of human atatuary, and certainly when the method of its production is considered, it appears moat wonderful. It was hewn from the marblo without a model, a by "a chisel of tame. A finer expression of the great legislator of the world, with the $h$ w in his hands, could not be conceived.
Another wonderful achievement of Michet. angelo's was the "David." Forty years belore, another sculptor had left as ruined a huge block of marble, on which he had begun to work. Michelangelo took ciose note of the dimensions of the block, and planned a colossal statue of David, of such proportions and in such a pose as exactly to utilize the discarded stone and yet not to hamper himself in his work. Sling in hand, the young Israelite stands, poised and waiting for Goliath, frowning, but beautiful, triumph of the genius of the great artist who created him.
The Itudy of Statuary in school. It is much to the advantage of the school to have one or more groups of statuary so placed that they may be seen daily by all the pupils. Excellent casts of the best works of the great masters, both ancient and modern, cau be procured at such small cost as to make it possible to procure these works of art wherever a desire for them is a wakened.
In giving lessons on statuary the teacher will be aided by the following suggestions:

1. If possible, let the lessons be upon the statue instead of upon a photographrof it. However, it is better to give lessons upon the photographs than not to give them at all.
2. Select the subject with care. Some people object to the nude in art, and if the lessons are to be successful with all pupils these objections must be heeded. Remember that the actions of


THE SUN VOW


## Sculpture

dive appeal to the pupll, and no far a malto chooes subjecte containing children.
2. If photee muici be ued, try to heve enough - Ini jous cas place a copy la the hands of each cher of the ches. It will be well to diatribute the pictures a day or two before giving the tan hoon.

- A statue sequires more atudy than a pleture Thetchowen for a picture study lowen. ThereIn the statue aeeda more time upon It.

4. At firt meleet only the mont striking iertures. the chan showi ho ability to graip detaili yy in be introduced.
a. Xake the lemon abort and unually let neveral tr h iervene between succeeting lewwons. One of the most two lemons a week are enough brubpete of thle nort.
5. Whea the study is completed, require the ris in the older clasees to write a dencription it atarue. Pupils in the rrimary grades dind be called upon to give oral descriptions. tras Vow. The subject of our lesson. "The Sun Vow," is the embodiment of a long standing among the American According to this Jegend, before a could be recognised as a man and be and to take his place among the warriors of Withe, he must ahoot an arrow at the sun as a tellis strength and okill. If truly aimed and twolly spod, the arrow went far out of sight the ann's rays and the yout'i was deemed wiv. Otherwise he remained longer with trymus. The group further represents age cin to pass from earth and youth about to Tr pon the activities of life. This idea io Whertrayed in the contrast of the figures dit dd chief and the boy.
4 children are hero worshipers, and boys chally like the heroic. Therefore the , boup Wher for our study will be of special interest
1 Kake a careful study of the group and what you wish to bring out in the belore presenting the subject $I$ class.
6. haroduce the leasun by telling the legend parch the work is based. Ask the pupils if menh customs of the Indians as are espeifferteri to this legenl, such as their weapons dindure and mariner of dress. Bring out the 4 hat in some tribes children and youths Witen unclad.
$\$$ Notice the perfoct muscular development it youth.
Callattention to the position of the arm and thlow. Are these natural?

## Solipture

4. It aray lend interemt to the mexdy to have some boym make a how rad anow and hit memberif of the class take turns in shooting the arrow into the alr. Have the other membern of the clases compare the position of the one chooting with that of the one in the statue.
5. Contrunt the angular figure of the ofd chief with the beautiful muscular figure of the youth.
B. Apeln contract the expremion of calm reilenation of the old man whith that of enger expectancy on the countenance of the youth.
Doen the old man want the boy to succeed?
What does failure mean to the boy?
Bringing out fhese contrmats will reveal the remarkable delicacy and skill of the sculptor as well as the chorough knowledge of his subject. It in given to but few to work clay, marble or bronze so delicately as to portray accurately the thoughts and feellings indicated by the countenances in this group.

Call the attention of the older members of the class to the composition. Notice how perfectly the group in balanced. Notice how natural in the position of each figure, and especially the lifelike appearance of the group as a whole. Lead the pupils to that these characteristics, together with the contrusts to which attention is called above, make this group not only an object of beauty, but a work of the highest art as well.

## Grestions

Who created the "Discus Thrower"? The "Niobe"? The "Moses"? The "Sun Vow"? Mention some great statues of which we do not know the creator.

Who is considered the greatest of all Greek nulptors?
On what do we base our estimate of his wonk?
Where is the Venus de Milo? The Lacooon? The Victory of Samothrace?
What is remaricable about the way in which "Dichelangelo's "Moses" was produced? ILis "David"?
Who is the greatest sculptor America has produced?
How are most marble statues produced? How are bronze statues produced?

What are the three forms of sculpture?
Where was sculpture first developed?
What are the chief characteristics of Egyptian sculpture?

What are the chief characteristics of Assyrian sculpture?
Mention a great French sculptor, a great German, a great English and a great Canadian.


The Desire for Itcories. Perhaps there is no combination of words which the average child uses oftener or speaks more eagerly than. "Tell me a tory." From the time the child is able to talk until long after he is well able to read stories for himself, mother, father, big siter hear the words over and over-"Tell me a tory." There is a popular fallacy that anybody can tell a tory; almost anybody will attempt to. But the results are often so confused, tedious and pointlese that we can imagine that only because the need for a story is to the child a very pressing oae would he mocept such results.
Wo sometimes hear the words "the art of aory-telling," and the expression is none too strong. Story-telling is an art, but that need not frighten anyone, for it is an art which anyone may master sufficiently well to make the telling of a story a pleasure to the one who does it as well as to the children who listen. There are no \%absolute rules to follow, but certain points must be kept in mind if the results are to be as satisfying as possible.
The Main Purpose of Itory-Telling. The first important point that needs consideration is the purpose of story-telling; for only as the purpose is understood and accomplished can the success or failure of storytelling be judged. If we ask a child why he demands stories so constantly, we shall without doubt receive some such reply as, "Because I like to hear them." And that is, after all, the real purpose-to give pleasure. If the story fails in this it fails in all. The art of story-telling is first, last and all the time an art of entertainment, and if it does not enter$\operatorname{tanin}$ it is no art.

Other Purposes. There are, to be sure, other values to story-telling; it accomplishes certain things whicis, with the child, can be brought chout in no other way. But theee are secondary
results, and are by no means to be attainod without the primary one-the giving of plesure

One of the very practical results of stortelling is that it encourages concentration. It will almont always be found that a child who is used to listening to poems or to stories bous better and more easily than a child who has not been so trained. Then too, a child who has heard all his life good stories well told usss without effort words which are entirely foriga to the vocabulary of another child.
Some people object to having fairy stories told to children because they fear that the imagina tion may be ovendeveloped. There is, howere, little fear of this. There is far more danger that the imagination will be underdeveloped, and it is just this danger which the telling of wholesome stories helps to guard against.
One of the most important of all the benefits which a child may derive from listening to good stories is the broadening of his sympathies and comprehension. Most of us live but one lind of a life, and have little opportunity to come in touch with lives spent in totally different surn roundings and under totally different circumstances. This has an inevitable narrowing tend ency, and there is nothing which can so effectrally offiset this tendency as good stories which arouse interest in other lives, other conditions, other creatures, other lands.

Tolling storios Bettor than Reading. A person who feels no ability to tell stories is likely to think that reading aloud can supply the need; but anyone who has tried both knows that there is a great difference. The personal elemeat is almost entirely lacking in reading aloud. The eyes of the reader cannot meet and bold the listener's eyes, and the child is far more lisely to become restless and lose interest.

The Ineontinis of a Good Story. Eventh

abilful of atory-ellers cannot make all mies interexing to childrea; widely as the diffacas kinds of tales which are capable of interwing children differ, they all have something in compon-there are certain qualities which a ming must posecss before it can ever be a wiverite or even be tolerated.
Frit, it must have a definite beginning and a dinite ending. No long introductory explanathen are possihle in a child's story; the action macgin at once. And the action must have. woned itself out to its logical end before the ing closes. The desire to make a tory a "piece out of life" has led many writers of short dories for grown people to end thcir tales in the nguest, most indefinite way; we do not know ulat really happened to the hero or heroinere can only conjecture. But the child must hoor absolutely what happened, and if he can how that his story people were not only happy when the story closed hut "lived happy ever ater," so much the better.
Another requisite is that the story have action from first to last. Asides, moralizing, description, mben they are very hrief, will not do. The dhancters must be moving, accomplishing someting all the time.
The child's invariable desire for a happy ending ba story is simply an outgrowth of his feeling of jutice. If the bad person is not punished and the good person rewarded, the child feels, the mord is all wrong. As people grow older and $x$ the many apparent failures of this principle $d$ justice to work out, they accustom themselves othe same thing in literature; hut the desire for a luppy ending is innate in everyone, and it is widom if ever that a child should be harrowed what tale in which the hero or heroine comes to gid.
There is one point which everyone who has told taries to children must have noticed, and that is their fondness for certain little details which wan adult seem absolutely unessential. If there is bit of color somewhere in a story, and it is hat out in the fifth or the eighth or the tenth Wling, the child misses it and feels disappointed. One roman declares that when she was a little aid the story of the Ugly Duckling never seemed pite the same to her if the old Spanish duck whe the red rag around her leg was left out.
One derice which is not really necessary in thilden's stories hut which adds greatly to their utheciveness to the child mind is the repetition dertain words or phrases. This may take the thm of a simple repetition of descriptive adjec-
tives applied to a character, as the "little monll wee bear" in the story of the Three Bears, or it may be more elaborate-the repeating of several lines of a speech. Just why this makes so strong an appeal to children is not quite plain, but it is certain that it does so. One worker. who had had much experience telling stories to children, made systematic inquiries as to what tories children really like best, and discovered that the prime favorites were The Three Bears, The Threc Little Pigs and The Little Pig That Wouldn't Go Over the Stite. Each of these zories has much repetition, and doubtless this fact has something to do with their popularity, though the stories have all of the characteristics of good children's stories.
How to Toll a story. Now a story consists of the gathering up of one set of emotional events from a possible million. What makes a tale tedious? Trying to mention as many of the million as possible, instead of keeping to the one set. What makes it confused? Trying to give the events without keeping in mind that they are in one set-that is, related definitely to each other. What makes a story pointless? Forgetting that, as the set of events is emotional, it must lead to some climax, some happening or point.
Once we get the idea of what a story really is, and hold to it, we are pretty likely to find that we, too, can tell a story well, after a little practice. Your "natural" story-teller-the one who seems to have a veritable "gift" for telling stories to children-is keenly alive and constantly awake to what a story is, and because she is so, follows some such rules as these:
Know Your Story. Know it so well that you feel free while you are telling it-certain just where each point is to come in, and sure of your climax. A few stories well learned is a better plan than many imperfectly known and thus poorly told. Do not feel that a story must always be told in the same words. Probahly it will not be told twice alike, for the circumstances of its telling are never twice the same. If, however, there are conversations or familiar passages or some of the repetitions of which children are so fond, they should not be changed.
Be IIappy In II. Your enjoyment and appreciation will convey themselves to the children. "Teacher makes us all laugh when she tells The IIare and the Tortoise. We wish she'd tell it every day." No one can tell really well a story which seems to him pointless or foolish or uninteresting.

## Etars Tolline

## Atory Tolling

See As You Tcll. Live over again the events of the narrative as you talk. Try to see the things happen, rather than to think overmuch about your words, and the wory will unconsciously become vivid, dramatic and interesting.
Keep the Poins in Mind. Let the story shape itself. gradually, always with this one group of emotional events in mind. Don't drag in anything, however interesting, that is not closely connected with the business of the story. Let all you suy illuminate your text in some way.
Tolling "The Thres Goats." The following story wha told just as it is given bere, by a teacher familiar with the principles of good storytelling. Notice (1) her familiarity with it, (2) her own evident enjoyment of it, (3) its vividnesa and action, and (4) how all that is told helps on the movement of the tale. There is no attempt at moralizing, and yet how plainly the results of the various actions come outl

## The Three Goots

Once upon a time there were three goats who were going to the green pasture across the river to eat, and cat, and eat, so that they would become very fat. They all three happened to be named "Gruff."
Now a great ugly troll lived under the bridge they had to cross to reach the green pasture. Ah, but he was a monster; his eyes were as big as plates and his wiggly nose as long as a hoehandle!
The youngest goat Gruff stepped upon the bridge first.
"Trip trapl Trip trapl" whispered the bridge.
"Who is tripping over my bridge?" called the dreadful troll
"Ohl it is only $I$, the very smallest of the goats Gruff."
"I'm coming to eat you up!" roared the troll.
"Please, please don't I wouldn't make a mouthful for you. Wait till the second goat Gruff comes. He is much larger than I am."
"Trip on, then. I want a bigger mouthful," growled the troll.
Soon the second goat Gruff came along.
"Trip trapl Trip trapl" said the bridge.
"Who is tripping over my brid e?" called the dreadul troll.
"It is I, the second goat Gruff," said the goat in a voice like yours or mine.
"I'm coming to eat you upl" roared the troll.
"Please don'tl I'm not very big. Wait till the third goat Gruff comes. He is much larger than I. He'd be well worth eating."
"Trip on, then. I want a very large mal" replied the ugly troll.
Very soon the big gont Gruff came.
"Triptrapll Trip trapll" called the bridge at was ready to break with the weight.
"Who is tamping over my bridge?" called the dreadful troll.
"IT IS I, THE GREAT GOAT GRUTF?" called the largest goat in a voice as loud us the troll's.
"I'm coming to eat you up!" roared the trol
"HOI COME ON, THEN, COME!" Mamd the great goat Gruff.
And the troll came. The great goot Gnat butted him with his great horns and threm hin into the river in a hundred pieces. He neveate up anyone again who tried to cross the bride
Then the three goats Gruff ate, and ate, nod ate, in the green peasture. Unless they him stopped, they are eating there still.
Sinds of Etories. Almost any kind datery provided it has action and a definite beginimy and climax may be told : $د$ as to interest children, but there are certain kinds which seem of igter to belong to the child. First of these, pathipg is the fable. Even very young children like and can appreciate fables, and the endowing of umimals with human characteristics is no strin on their imagination. (This subject is treated mida Language and Grammar, on page 408 of tin volume, and a number of fables are there gival
It is likely that if any group of children wer asked what kind of stories they liked best the majority of them would say, without besituion. "fairy stories." By this they mean not ody stories in which real fairies take a part, but wy stories in which supernatural events occur. The introduction of the supernatural troubles them not at all. It is to them the one great essenin that virtue should be rewarded and wickednes punished, and if the reward and punishmant are dealt out by fairy golmothers, enchanted princesses, kings' sons who are disguised es animals, so much the better. And the mot dof the old fairy tales present to the child monl truths and give him lessons in kindliness and industry which he could receive so aceeptably in no other way.
The ancient myths, many of them, hare that in them which appeals powerfully to chidread These should, of course, to the young child bo told simply as stories, with no intimation that he is being instructed in the religion and scinoo of the world in its childhood days.
fhe world in its childhood days.
Humor is an element which is an too atace moneh.

[^2]
## As an or

 luppened tros, and One, howe dithe sad "And, mol an such a "Wes it loving $h$ aid the litt -"Well. w wither sp is no use $w$ it, for wold not b mach anno rind to inc mied.Youst

## stiory Tolling

divat trom children's literature; and that didren do enjoy it is abown by their appreciathe of nonsense tale-tales which have in tan little of story, but plenty of just that qulity which appeals to children as "funny."
The mature story may be made very valuable, tue the danger is always that it will be overdunn; that the children will be given ideas of ting in the world about them which are untrue. Thin does not menn that no tales should be told in which animals talk or show human charexterstics; it does mean that care should be nimen not to humanize too much the dog, the betuefly, the violet waking in the spring.
Histroical tales and Bible tales, well told, mere hil to interest children, and the lessons wida they carry find their way into the minds $d$ the little listeners without the necessity ior emphasin on the moral.
A number of stories illustrating these different dwas are given here, some of them, the real davics, being given jusi as they were written; abas have been specially adapted for telling, ln it is one of the essential points about story-
wiligy that a story which is adepted uling that a story which is adapted for reading i noy often not ada ted for telling. Other miris are found in the niindergarten department $d$ this volume, while numerous fables and some mory poems are included in the department of Lampage and Grammar. Under Mythology, uboin this volume, is to be found a representative wlation of myths.

## The Frog and the $0 x$ <br> a fable

As an ox was grazing in a marshy meadow, he lippened to set his foot on a family of young togs, and trod almost the whole of them to :leasth. ame, however, escaped, and, telling his lvzi,er dithe sad fate of the rest of her family, he said, "And, mother, it was such a big beastl I never nr such a large one in my life."
"Wras it as large as this ?" said the old frog Woving herself as much a possible. "Oh!" nid the little one, "a great deal bigger, mother." -"Well. was it as big as this ?" and she puffed wer her speckled skin still more. "O mother, tis no use your trying to make yourself as big nit, for were you even to burst yourself you mold not be near its size." The motherfrog was mind annoyed at this remark: so she once more find to increase her size, and she burst herself meal.
Mouli-Do not covet that which is beyond
mur mach.

## The Donkey in the Eloz's 8tids

## a mable

A donkey, having found the akin of a lion, put it on, and, going into the fields, amused himself by frightening all the animals he met. Seeing a fox, he tried to alarm him also. But Reynard, perceiving his long ears sticking out, and hearing his voice, at once knew who it was. "Ah1" said he, "I should have been frightened too, if I had not heard you bray."
Moral-It is not wise to judge a man by the coat he wears.

## Trax Eillo <br> a matry tale

There was once a widow who had two daughters; one was as pretty as could be, and worked hard for her living; the other was ugly and idle.
Now, it chanced that the widow loved the ugly dauchter better than the pretty one, because she was $h$. very own, whilst the pretty maiden was only her step-daughter. So, besides doing all the work of the house, the poor girl was sent every day to sit beside the village well and spin a bundle of flax into yarn. Sometimes she had to work so hard that her poor little fingers were covered with blood; and one day, when this happened, and a few drops of blood had fallen upon the spindle, she bent over the well to wash it clean again, and dropped it in.
She ran weeping to her step-mother, to tell her what had happened, and the angry woman scolded her without mercy. "As you have let the spindle fall in," said she, "you must just go and fetch it out again."
So the poor little maid went back to the well, and in her sorrow and despair, she jumped straight into it, to see if she could find her spindle. At once she lost all consciousness, and when she came to herself again she found that she had fallen into a heautiful meadow, decked with every sweet and lovely flower, where the sun was shining brightly.
As she strolled along the meadow path, she came wan oven full of bread. "Take us out! take us outl or we shall burn," cried the loaves; "we are just baked enough."
So the girl opened the oven door and took out the bread. and then went on her way again. Presently she came to an apple-tree weighed down with fruit, and it called to her as she passed: "Shake me! shake mel My apples are all ripe." So she shook the apple-tree till the apples fell like rain around her. When there were no more left upon the tree, she stacked them in heaps, and went her way.

At length she reached a littlo house, where an old woman was booking out of the window. The girl whs afraid of her great big teeth, and would have run away, but she called to ber: "Do not be afraid of me, dear child; I am Frau Holle. Stay with me, and help me with the housework. If you are a good girl, all thall go well with you. But you must take great pains to ahake up my bed and make the feathers fly, or else there will be no snow to cover up the earth."
she was treated a thousand times better than ever she had been at home, ahe had a grat longing to go back again. So she went to the old woman and told her how she felt.
"I have been very happy here," she said; "but I have such a longing to see my own people once again that I can stay here no longer."
"It is right you should wish to go home, my child," answered Frau Holle. "You have served me faithfully all this long time, so I will see that you have a mife journey back."


## THE FEATERRS FLEW LIEE GNOWFLAEFg

The old woman spoke so kindly that the girl took courage and agreed to stay with her.
She worked as hard as she was able, and pleased the old woman in everything she did. She shook the bed with such a will that the feathers flew like snow-flakes. So she led a happy life, with never an unkind word to grieve her, and had boiled and baked meats to eat every day. Time passed on, and the little maid grew pale and sad, though she herself could not tell at first what ailed her. At length she thought it must be homesickness, for, although

She took the girl by the hand and led her toa great gate, which stood wide open. As soon 23 she passed through, a shower of golden rain tell and covered her with glittering gold from head to foot, so that she looked as though she were clad in a golden mantle. "That is my gift to you, because you have been a gool, hard-worling girl," said F:au Holle, and then gave her, as well, the spindle which she had let fall into the well so long ago.

Immediately afterwand the gate shut with a clang, and the girl found herself back in the

## Cury Tolling

wand ance more, and quite near to her mother's than. As abe entersed the courtyand, the cock leyan to crow:

## Cock-e-doodle-doo-doo-dool

 The griden girl's come beck to youl" Then the little maid went in to her mother ad inter, who made a great fuss over her, now int he had come home covered with gold.Sto told them all that had happened, and ta the mother heard how her pretty daughter In come by her fortume, she was anvious that br udy daughter should have the same good hat So she sent her to sit by the side of the un, and put a spindle into her hand. The Hi-1 had never pricked her fingers with spin-- but she thrust her hand into a thorn-bush, - ins it might look as though she had.

Tha she threw the spindle into the well, and ined in after it.
in tell just as her sister had done, into a mititul flowery meadow, and followed the nonth.
Tha she came to the oven, the bread cried Ww before: "Take us out, or we shall burn. There just baked enough."
The hyg girl answered: "I am not going to "whands for you."
sine she came to the apple-tree. "Shake mel 4ty mel my apples are all ripe," it cried.
Lut the girl tossed her head und went on her 19. "If I were to shake you," she said scorn"I "I might get a bump on my head from -d you for my pains."
Insa she reached Frau Holle's house, she -riz looking out of the window, but was not it teast afraid of her, because she had Ind beforehand of her large teeth. She and herself to the old woman, and at first (4) weat very well. She remembered the whe would receive at the end of her service, didid her work as well as she was able.
But very soon she grew lazy, and would not n p in the mornings. Then, too, she neglected han Holle's bed shamefully, and scarcely shook It all, so that there was not a feather $t$ be me So her mistrpes enon tired of her, and tif her to go home.
Yiss Lazybones was delighted, for she thought (thime had now come for the shower of gold, H nhen Frau Holle led her benenth the great Meny, instead of gold there fell a shower of Mh. "This is the reward for Juur services," dhe old woman, and banged the door behind tille giri.
and so, when she reached home, covered with

## Alory Polline

pich, and as black as a sweep, the cock, perched on the wall beside the well, began to crow: "Cock-t-doodle-doo-doo-dool
Your dirty girl's come back to you."
And dirty the girl remained all the days of her life, for, try as much as she would, she could never wash the pitch off again.
This is one of the tales that has a very plain moral-so plain that it need not be pointed out to the youagest child. Even children sometimes obje:t to the "goody-goody," "Sunday School" stories with their obvious lessons; but the wonder element in this story, the striking chamater of the reward and the punishment make the story wiry attractive to children.

## The Cittlo Ifig That Wouldn't Go Ovor the stile

## 4 nonsense tale

One day, as a little old woman was sweeping her little house, she found a crooked sixpence, and she said, "I will go to the market and buy a little pig with this crooked sixpence."

So she did, and as she was coming bome she came to a stile.
"Little pig, little pig, go over the stile," said the little old woman; but the little pig would not.
She went a little farther and met a dog, and she said: "Dog, dog, bite pig; pig won't go over the stile, and I shall not get home tonight." But the dog would nct.
She went a little iarther and met a stick and she said: "Stick, stick, beat dog; dog won't bite pig; pig won't go over the stile, and I shall not get home tonight." But the stick would not.
She went a little farther, and she met a fire. So she said:
"Fire, fire, burn stick; stick won't beat dog; dog won't bite pig; pig won't get over the stile; and I shall not get home tonight." But the fire would not.
She went a little farther, and she met some water. So she said: "Water, water, quench fire; fire won't burn stick; stick won't beat dog; dog won't bite pig; pig won't get over the stile; and I shall not get home tonight." But the water would not.
She went a little farther, and she met an ox. So she said: "Ox, ox, drink water; water won't quench fire; fire won't burn stick; stick won't beat dog; dog won't bite pig; pig won't get over the stile; and I shall not get home tonight." But the ox would not.
She went a little farther, and she met a
butcher. So she mid: "Butcher, butcher, kill ox; ox won't drink water; water won't quench fire; Are won't burn atick; atirk won't beat dog; dog won't bite pig; pig won't get over the atile; and I shall not get home tonight." But the butcher would not.

She went a little farther, and she met a rope. So she said: "Rope, rope, hang butcher; butcher won't kill ox; ox won't drink water; water won't quench fire; fire won't burn atick; stick won't beat dog; dog won't bite pig; pig won't get over the atile; and I shall not get home tonight." But the rope would not.
hay, I'll give you the milk." So away went the old woman to the hay-tack; and ahe brought the hay to the conv.

As soon as the cow had eaten the hay, she gave the old woman the milk; and away she weat with it in the mucer to the cat.
As soon as the cat had lapped up the milk, the cat began to kill the rat; the rat began to grow the rope; the rope began to hang the butcher; the butcher began to kill the ox; the ox began to drink the water; the water began to quench the fire; the fire began to burn the atick; the atick began to beat the dog; the dog

"little pig, little pig, go over the stile"

She went a little farther. and she met a rat. So she said: "Rat, rat, gnaw rope; rope won't hang butcher; butcher won't kill ox; ox won't drink water; water won't quench fire; fire won't burn stick; stick won't beat dog; dog won't bite pig; pig won't get over the stile; and I shall not get home tonight." But the rat would not.
She went a little farther, and she met a cat. So she said: "Cat, cat, kill rat; rat won't gnaw rope; rope won't hang butcher; butcher won't kill ox; ox won't drink water; water won't quench fire; fire won't burn stick; stick won't beat dog; dog won't bite pig; pig won't get over the stile; and I shall not get home tonight." But the cat said to her, "If you will go to yonder cow, and fetch me a saucer of milk, I will kill the rat." So away went the old woman to the cow.

But the cow said to her, "If you will go to yonder hay-stack, and fetch me a handful of
began to bite the pig; the little pig jumped orer the stile; and so the old woman got home that night.

## The Ugiy Duckling <br> a nature story

It was glorious in the country; it was summer; the cornfields were yellow, the oats were green, the hay had been put up in stacks in the green meadows; and the stork went about on his long red legs, and chattered Egyptian, for this wz the language he had learned from his mother. All around the fields and meadows were gread woods, and in the midst of these woods detp lakes. Yes, it was right glorious in thr country.
In the midst of the sunshine there lay an old farm, with deep canals about it; and from th wall down to the water grew great burdocks, high that little children could stand upright unde the tallest of them. It was just as wild then

## Atory Tolline

- in the deypent wood, and here mat a Duck poo her neat; she had to hatch her ducklingr; Ho tho was almost tired out before the little mame; and ahe seldom had visitors. The atra ducks liked better to avim about in the all than to sun up to sit under a burdock, an abble with her.
At hat one egg-shell after ancther burst open. "Pipl pipl" ench cried, and in all the eggs tue were little things that stuck out their heads.
"Quackl quackl" said the Duck, and they dil cume quacking out as last as they could, mling all around them under the green leaves; of the mother let them look as much as they "ud, for green is good for the eye.
"Blow wide the world isl" said all the young m; for they certainly had much more room - than when they were inside the eggs.
"D'ye think this is all the world ?" said the mile. "That stretches far across the other wh of the garden, quite into the parson's field; WI have never been there yet. I hope you will together," and she stood up. "No, I mon not all. The largest egg still lies there. Hon long is that to last? I am really tired of ${ }^{2 \prime}$ And so she sat down again.
"Well, how goes it?" asked an old Duck who - wrome to pay her a visit.
"It takes a long time for this one egg," said te Duck who sat there. "It will not open. Non, only look at the others 1 They are the
mettiest little ducks I ever saw. They are all prttiest little ducks I ever saw. They are all the their father: the rogue, he never comes to me."."
"Let me see the egg which will not burst," nid the old Duck. "You may be sure it is 1 turkey's egg. I was once cheated in that way, wd had much care and trouble with the young wen, for they are afraid of the water. Must I ny it to you? I could not make them go in. I quacked, and I clacked, but it was no use. ler me see the egg. Yes, that's a turkey's egg. Les it lie there, and do you teach the other dildren to swim."
"I think I will sit on it a little longer," said te Duck. "I've sat so long now that I can sit "
"Just as you please," said the old Duck; and
to enent away.
At hast the great egg burst. "Pipl pip!" said te litule one, and crept forth. He was so big "uply. The Duck looked at him.
"It's a very large Duckling," said she. "None d the others looks like that; it really must be I turkey chickl Well, we shall soon find out.


## Into the writer shall he go, even if I bave to push him in."

The next day it was bright, beautiful weather; the sun shone on all the green burdocks. The Mother-Duck with all her family went down to the canal. Splash1 she jumped into the water. "Quackl quack!" she mid, and one duckling after another plumped in. The water closed over their heads, but they came up in an instant, and awam of finely; their lega went of themselves, and they were all in the water; even the ugly gray Duckling awam with them.
"No, it's not a turkey," said she; "look how well he uses his legs, how straight he holds himself. It is my own child I On the whole he's quite pretty, when one looks at him rightly. Quack! quack! come now with me, and I'll lead you out into the world, and present you in the duck-yard; but keep close to me all the time, so that no one may tread on you, and look out for the cats."

And so they came into the duck-yard. There whs a terrible row going on in there, ior two families were fighting about an eel's head, and so the cat got it.
"See, that's the way it goes in the world!" said the Mother-Duck; and she whettea' her beak, for she too wanted the eel's head. "Cnly use your legs," she said. "See that you can bustle about, and bend your necks before the old Duck yonder. She's the grandest of all here, she's of Spanish blood-that's why she's so fat; and do you see? she has a red rag around her leg; that's something very, very fine, and the greatest mark of honor a duck can have: it means that one does not want to lose her, and that she's known by the animals and by men too. Hurryl hurry!-don't turn in your toes; a well-brought-up duck turns its toes quite out, just like father and mother-sol Now bend your necks and say 'Quack!'"
And they did so: but the other ducks round about looked at them, and said quite boldly:
"Look therel now we're to have this crowd tool as if there were not enough of us alreadyl And-fie!-how that Duckling yonder looks; we won't stand that!" And at once one duck flew at him, and bit him in the neck.
"Let him alone," said the mother; "he is not doing anything to anyone."
"Yes, but he's too large and odd," said the Duck who had bitten him, "and so he must be put down."
"Those are pretty children the mother has," said the old Duck with the rag round her leg.
"Ther'se all pretty but that oes; that in rather unlucty. I wiah abe could have thas oae over amin."
"That canaot be doas, may hdy," wid the Mothen-Duck. "Hi is not pretty, but he hat s ruilly good temper, and swims as well as any of the others; yee, I may even my it, a litile better. I think he will grow up pretty; perhapa in time be will grow a little amaller; he lay too long in the egs, and therefore he has not quite the right chape." And she pinched him in the nock, and amoothed his feathers. "Besiden, he in a drake," she mid, "and so it does not matter much. I think be will be very trong: be makes his was already."
"The other ducklings are graceful enough," mid the old Duck. "Make yourself at bome; and i"you and an eel's head, you may bring it to me"

And now they were at home. But the poor Duckling who had erept lant out of the egg, and looked so ugly, wai bitten and pushed and made fun of, as much by the duckes as by the chickens.
"He is too big!" they all mid. And the turkey-cock, who had been born with apurn, and 00 thought he was an emperor, blew himself up, the a ahip in full mil, and bore stmight down upon him; then he gobbled and grew quite red in the face. The poor Duckling did not know where he dared atand or walk; he was quite unhappy because he looked ugly, and was the aport of the whole duck-yard.
So it went on the first day; and then it grew worse and worse. The poor Duckling was hunted about by everyone; even his brothers and avsters were quite angry with him, and said, "If the cat would only catch you, you ugly creature!" And the ducks bit him, and the chicken beat him, and the girl who had to feed the poultry kicked at him with her foot.

Then be ran and flew over the fence, and the little birds in the bushes flew up in fear.
"That is because I am so uglyl" thought the Duckling; and he shut his eyes, but flew on farther; and so he came out into the great moor, where the wild ducks lived. Here he lay the whole night long, he was so tired and sad.

Toward morning the wild ducks flew up, and looked at their new mate.
"What sort of a one are you?" they asked; and the Duckling turned about to each, and bowed as well as he could. "You are really very uglyl" said the Wild Ducks. "But that
is all the mave to ve, 20 long ace you dom manry into our lamily."
Poor thingl he certalaly did not thind d marrying, and oaly dared ack leave to linames the reede and drink some of the swamp rian
There ho hy two whole day; then am thither two wild geese, or more truly, two will ganders. It was not long since each hod omp out of an egs, and that's why they wer a mucy.
"Listen, comrade," said one of them. "Yoin so ugly that I like you. Will you go midi u and become a bird of parange? Near bare it another moor, where are a few sweet lowely mid goese, all unmarried, and all able to my 'Quad" You've a chance of making your fortune, ut as you are."
"Pifll paifl" sounded through the air; and both the gaoders fell down dead in the nomh and the water became blood red. "Pifi! pafl" it mounded again, and the whole flock of mik geese fiew up from the reeds. And then than was another report. A great hunt was ging on. The gunners lay around in the moor, ud some were even sitting up in the branches od the trees, which spread far over the I ls. The bhe smoke rose like clouds in among the dark treat and hung over the water; and the hunting dops came-splash, splash !-into the mud, and the rushes and reeds bent down on every side. The was a fright for the pror Ducklingl He tunad his head to put it under his wing; and thal at very moment a frightful great dog stood dhe by the Duckling. His tongue hung far ous $d$ his mouth, and his eyes glared horribly. He put his nose close to the Duckling, showed his shup teeth, and-aplash, splashl-on he went wibout seixing it.
"Oh, Heaven be thanked!" sighed the Duct ling. "I am so ugly that even the dog does not like to bite mel"
And so he lay quite quiet, while the shos int tled through the reeds and gun after gum ms fired. At last, late in the day, all was still; but the poor little thing did not dare to rise u; he waited several hours still before he looted around, and then hurried away out of the moor as last as he could. He ran on over fied and meadow; there was a storm, so that he had bard work to get away.
Towards evening the Duckling came to : peasant's poor little hut; it was so tumbled don that it did not itself know on which side it should fall; and that's why it stood up. The storm whistled around the Duckling in such a
my thet to had to att down to keep from blowHywy; and the whad blew worne and worse. In bo moticed that one of the hingee of the the had civion way, and the door hung so curing that he could alip through the crock no the room; and that is what he did.
Boos lived an old woman, with her Cat and in Hen. And the Cat, whom she called Sonth, could arch hin back. and purr; he could ma cive out aparks: but for that, one had to moke his fur the wroag way. The Hen had qio amall, abort lega, and therefore abe was alled Chictabiddy Shorthhanks; she haid good这
If the morning they noticed at once the drage Duckling, and the Cat began to purr ad the Hen to cluck.
"What's this $7^{\prime \prime}$ said the woman, and booked All around; but she could not see well, therefre she thought the Duckling was a fat dock that had otrayed. "This is a rave prizel" de mid. "Now I shall have duck's egga. I lope it is not a drake. We must try that."
And so the Duckling was taken on trial for tree weeks, but no eges came. And the Cat mas master of the house, and the Hen was the bdy, and always said "We and the worldl" for bey thought they were hall the world, and by tr the better hail. It seemed to the Duckling that one might have another mind, but the Hen would not allow it.
"Can you lay eggs?"
"No."
"Then will you hold your tonguel"
And the Cat said, "Can you curve your back, and purr, and give out sparks ?"
"No."
"Then you will please have no opinion of pur own when sensible folks are speakingl"
And the Duckling sat in a corner and was in br spirits; then he began to think of the fresh in and the sunshine; and he was seized with soch a strange longing to awim on the water, that he could not help telling the Hen of it.
"What are you thinking of 9 " cried the Hec. "You have nothing to do, that's why sou have these fancies. Lay eggs, or purr, and they will pass over."
"But it is so charming to swim in the water," nid the Duckling, "so nice to feel it go over "Yead, and to dive down to the bottoml" "Ye, that's a fine thing, truly," said the Boa. "You are clean gone crazy. Ask the Cat thout it-he's the cleverest thing I know-

## Etory Tolling

ack him it he likes to swim in the water, or to dive down: I won't apeak about myell. Ank our mintrew hernelf, the old woman; no one in the work knowa more than she. Do you think she wants to swim, and to ist the water close above her head $?$ "
"You don't understand me," mald the Duckling.
"We don't understand youl Then pray who is to understand you? You surely don't pers teed to be cleverer than the Cat and the woman -I won't say anything of myelf. Don't make a fool of yourself, child, and thank your Maker for all the good you have. Are you not come into a warm room, and have you not folks about you from whom you can leara something? But you are a goose, and it is not pleasant to have you about. You may believe me, I speak for your good. I tell you things you won't like, and by that one may always know one's true friends 1 Only take care that you learn to lay eggs, or to purr, and to give out aparksl"
"I think I will go out into the wide work," said the Duckling.
"Yes, do go," replied the Hen.
And so the Duckling went away. He swam on the water, and dived, but he was shunned by every creature because he was so ugly.
Now came the fall of the year. The leaves in the wood turned yellow and brown; the wind caught them so that they danced about, and up in the air it was very cold. The clouds hung low, heavy with hail and anow-flakes, and on the fence stood the raven, crying, "Croakl croal!" for mere cold; yes, one could freeze fast if one thought about it. The poor little Duckling certainly had not a good time. One eveningthe sun was just going down in fine stylethere came a whole flock of great handsome birds out of the bushes; they were shining white, with long, supple necks; they were swans. They uttered a very strange cry, spread forth their glorious great wings, and flew away from that cold region to warmer lands, to fair open lakes. They mounted so high, so highl and the ugly Duckling had such a strange feeling as he saw theml He turned round and round in the water like a wheel, stretched out his neck towards them, and uttered a cry, so high, so strange, that he feared as he heard it. Ohl he could not forget those beautiful, happy tirds; and as soon as he could see them no longer, he dived down to the very bottom, and when he came up again, he was quite beside himself.
He did not know what the birds were, nor where
they weve filing tor but be loved them more than bo had ever loved anyone. He did not envy them at all. How could he think of wishing to have auch bovelinem as they hadi He would theve been glad if only the ducks would have let him be among them-Lie poor, ugly creaturel
And the winter grew so cold, so cold 1 The Ducking had to swim about in the water, to keep it from freezing over; but every night the bole in which he swam about became smaller and amaller. It trose so hard that the icy cover counded; and the Duckling had to use hin legs all the time to keep the hole from freesing tight. At hast he became worn out, and hy quite still, and thus froze fast in the ice.

Barly in the morning a peasant came by, and found him there; he took his wooden ahoe, broke the ice is pieces, and carried the Duckling home to his wife. Then the Duckling came to humself again. The children wanted to play with him; but he thought they wanted to hurt him, and in his terror he flew up into the milk-pan, so that the milk spilled over into the room. The woman screamed and shook hes hand in the air, at which the Duckling flew down into the tuh where they kept the hutter, and then into the meal-barrel and out again. How he looked thenl The woman screamed, and struck at him with the fire tongs; the children tumbled over one another as they tried to catch the Duckling; and they laughed and they screamed-well was it that the door stood open. and the poor creature was ahle to slip out between the hushes into the newly-fallen snow. There he lay quite worn out.
But it would be too sad if I were to tell all the misery and care which the Duckling had to bear in the hard winter. He lay out on the moor among the reeds, when the sun began to shine again and the larks to sing; it was a beautiful spring.
Then all at once the Duckling could flap his wings: they beat the air more strongly than before, and bore him stoutly away; and before he well knew it, he found himself in a great garde.1, where the elder-trees stood in flower, and bent their long green hranches down to the winding canal, and the lilacs smelt sweet. Oh, here it was beautiful, fresh, and springlikel and from the thicket came three glorious white swans; they rustled their wings, and sat lightly on the water. The Duckling knew the splendid creatures, and felt a strange sadness.
"I will fly away to them, to the royal birds!
and they will beat me, becuuse I, that am a usly, dase to come near them. But it in all the mame. Better to be killed by tuem than io bo chased by ducks, and beaten by fowh, and puabed ahout by the girl who takes care of the poultry-yand, and to suffer hunger in winter!" And he flew out into the water, and awnm onward the benutiful awans: these booked at bim, and came ailing down upon him with outspread wings. "Kill mel" said the poor crealure, and bent his head down upon the water, and waited for death. But what saw he in the clear whter! He saw below him his own image; and, bol it was no longer a clumsy dark-gny bird, ugly and hateful to look at, but-a swan
It matters nothing if one is born in a duck. yard, if one has only hain in a swan's ega.
He felt quite glad at all the need and had times he had borne; now he could joy in thin good luck in all the brightness that was round him. And the great swans swam round him and stroked him with their beaks.
Into the garden came little children, who threw bread and corn into the water; and the youngest cried "There is a new onel" and the other children shouted, "Yes, a new one has comel" And they clapped their hands and danced about, and ran to their father and mother; and bread and cake were thrown into the water; and they all said, "The new one is the most beautiful of alll so young and so handsomel" and the old swans bowed their heads before him.
Then he felt quite ashamed, and hid his beed under his wings, for he did not know what to do; he was so happy, and yet not at all proud, for a good heart is never proud. He thought how he had been driven about and mocked and despised; and now he heard them all saying that he was the most beautiful of all beautiful birds. And the lilacs bent their hranches straight down into the water before him, and the sun shone warm and mild. Then his wings rustled, he lifted his slender neck, and cried from the dephs of his heart:
"I never dreamed of so much happiness mhen I was the Ugly Duckling."

We are not accustomed to thinking of this as a nature study, but it has all the elements of the nature tales which modern writers of stories for children produce in such ahundance. The curr phasis, to be sure, is on the human side of the ani. mal characters; but the other side is not neglected. As we read, the ugly duckling seems to us like



## Itory Tolline

they were flying to: last he bowl liem more than he fral ever hivel anyome. He dial not this them at all. How cwold lie think of wiwhing to have surh bovelinesen as thry haw! Ife wothit have Inent ghad if omly the dowh would have
 chrel

And ilu winter grew wo rwhl, wo cohll 'I ho Durhling liad to ssim almollt in the alleer, to kevp it from frivzitg onv: Inti atory hight the
 and mallar. It froze se hand that the Hey chvor
 all the time to krep she low from irrezing tight. It last hee leotmur worn mit, uidl lay quite atill, atal shas frugr fast ill the ice.
fiarly in the morniug a lwatant come by, and found hinu therri; he low, his noxntin shome.
 ling hemer 16 his wife. 'Then she Inckling

 fourt hilas, antil in his respor ha flew ilp intos the: milk-pwin sut that the milh spilleal ower into tha
 hand in the air. at whidy the Jhehliug flew down inte, the tuh where they kepo the hittics. and then into the mealderred :th! whe agen, How he limital then! 'I lo wommorn wermet. and wruek at hitu with the fire tonise: the chal-

 sereitheyl! - well was it thot the demor sement

 'There lie lis eptite bortion
 the mingry and rate whith the tiaklinge latal wherer in the haril witur. It. h.e. eme on the:

 bematul 'priag.









 on the water. The I hackling heress the uphenetil

"I will t! away to horm, in the proval hirnk!
nowl they will lant hur. lavitla |
 marie. Iheterer the tw killiol 1: fish .. chaver ly ducke, w-: batir, 1, preatirl alume by the mat? whre itio



 wimgs. "hill me!" si. '.i
 wuiterl for strath lint Fi... clear watery 110. siw Indon $1 . a \operatorname{c}$ "nal, lo! it wad me hillater !


It wature twhtiliz if un,


He folt quise chat at alt et.

 him. And :he greet atalies as und wiroherl liere wiht therr 'bor
 thresh hroud and rome inter - Al
 Biher ehwhtrell Fhesited.


 woller; ant lie all mit.
 seme!": :In! dire wh! swat Iefore him.

 vor) He whs ol haply, a\%: fur a grant theirt i, ti".... i.t


 - Wut lia lita, beat ther on he

 fifterthisishader arah, otsu! rimity ... of his herere.






 nall thamern: las the wher indod.



This is who lived wonderful Siif, Tho blie eyes, hair! It erer growt and fine, n let it dow like a pol proud of
it too and that it sho fan in the
One mo
her hair !
A book int
aperson, but he also seems like a duckling. The atitude of the other ducks toward the ugly duckling, who is near enough like them not to seem astranger, and yet not exactly one of themselves; the instinct which makes the duckling, all unconscious that he is himself a swan, cry out when he sees the other swans; the instinct which keeps the hunter's dog, trained to pick up dead geese, from $t$ :rhing the live swan-all these are true © ${ }^{2}$ atic
The lesson of the :'ory, which is very plain, is a nust heaxtiful orv, and one which parents and teachers canns; afford to miss. There is man. $r$ chill', awk ard, conscious, large for his age, wao is mistrated, laughed at, sometimes eren abused, just because he is not like other children. And then, perhaps, later it is found to be just a repetition of the story of the ugly duckling; the child did not seem like other children because he was not like other children. He was something bigger, stronger, more beautifut than they, and for that very reason it took him longer to develop.
We might read over and over some such statement as this: "Just because a child is different from others, just because he is not attractive as a child. we cannot judge what he will be as a man. Perhaps he will amount to more in the end than all of his normal associates." But would such a statement make much impression on us? When we read The Ugly Duckling, however, we find it impossible to forget the lesson it teaches, and we find ourselves more ready to say, when we see a misjudged child, "Look out. He may turn out to be a real ugly duckling."

## The Gifts the Dwarts Made

A NORSE MTYTH RETOLD FOR CHILDREN
This is a story about dwarfs, little dark inen who lived far down under ground and made monderful things.
Sif, Thor's wife, was most beautiful, with her blue eyes, fair skin, and golden hair. Her hair! It was the most glorious hair that had ever grown on anyone's head-bright and soft and fine, and so long and heavy that when she let it down it covered her from head to foot like a golden veil. Of course she was very proud of it, and of course Thor was proud of it too and loved to watch her shake it out so that it shone and rippled like a golden watertall in the sun.
One morning when she woke, Sif found that ber hair had been cut off close to her head. A look into her polished silver mirror showed her

## Story Tolling

that the most of her beauty had gone with her hair, and she scarcely dared face her husband; but when she told Thor his anger was terrible to behold.
"It is Loki, the wicked Loki, who has done this," he cried, "and he shall suffer for it."

For Loki was a crafty schemer, always trying to annoy someone, and particularly fond of troubling Thor.

It was no easy task for Thor to catch the thief, for Loki had the power of changing his shape to that of anything he chose, and he made good use of this power now. Finally, however, Thor found him and grabbed him by the throat.
"Confess," he cried, "that you stole Sif's hair."
But his grip was so strong that Loki could only gasp and wriggle.
"Unless you give it back," Thor continued, "I shall kill you here and now," and he loosened his grasp that Loki might answer.
"I did it," confessed Loki sullenly, "but I cannot give it back, for I opened my hands and scattered it all over the earth."
"Then you shall die!" thundered Thor, and would have kept his word had not Loki promised to get for Sif a new head of hair as beautiful as the first.
"Go then," commanded Thor, "and make haste."
Loki slunk away and crept into the earth where lived his friends the dwarls. They were ugly and not always very pleasant, but Loki knew their skill and knew that they were proud to be called on to show it. So he implored them to make for him not only the golden hair, but gifts for Odin and Frey, Thor's powerful friends, of whose anger Loki was afraid.
To anyone else it might have seemed like a very difficult matter to have to make a head of golden hair, but the dwarfs thought nothing of it. They brought their gold, and when they had softened it they spun it out into countless fine hairs. These they braided into a huge coil and gave to Loki.
"It may seem dead now," said the mastersmith, "but when it touches Sif's head it will at once become alive and begin to grow, yet it will always be real gold."

Wonderful as this was it was not the most wonderful of the dwarfs' gifts. For how could anything be as wonderiul as the spear which they made for Odin, the spear which however it was thrown never missed its aim; or as the ship which they made for Frey? For this ship,

8tory Tolling
most wonderful gifts shall have the other's head."
Without a word Brock turned and hurried to his brother's smithy, where he told his story; and Sindri, proud of his brother's faith in him, at once set to work. But first he said to Bruck:
' You must blow the bellows while the gits are being made, for I must go outside and work my magic spells or I shall not be able to accomplish anything wonderful; and whatever happens never leave off blowing the bellows." And with
while it could be folded up and thrust into the pocket, could be made so large that hundreds of people might ride in it in comfort, and it sailed as well in the air as on the water and always in just the right direction, no matter which way the wind blew.
No wonder Loki was pleased, and no wonder be cred aloud to the master-smith:
"You are surely the most clever smith in all the world. No one else, I am sure, could make such things."


IN THE DWARFS' sMITHT

But someone was passing and heard these words and was not pleased to hear them; this was the dwarf Brock, who belonged to a different family of dwarfs. When he heard the flattering words of Loki, whom he hated, he stopped and said:
"I do not know what your gifts are, but I know that whatever they are my brother Sindri can make something more wonderful."
"Let us make it a wager," cried Loki. "I will meet you tomorrow in Odin's great hall, and you may bring with you there three things made by your brother to present to Thor and Odin and Frey, and then we shall see what we shall see. And whichever one of us brings the
these words he tossed into the fire a pig's skin, and thrusting the bellows into Brock's hands left the smithy.
Now Loki, for all his boastful words, was a little bit worried, and to be on the safe side he came to Sindri's smithy to see what was going on there. But Brock did not see him-Ioki was not so foolish as to let himself be seen. He turned himself into a gadfly, and settling on Brock's hand, stung him until the pain was almost unendurable. But Brock blew the bellows and blew the bellows and nerer left off for a minute. When Sindri came back he said: "Good brother"; and he drew out of the fire a boar with shining bristles of gold.
to wor
over h
blood
se wh
have I
his han at that
"Yo
brand
beavy
been cl
him the
handle
"Lok
were ac
they we
things.'
Sindri
Brock's
Hine.
The $n$
the a
ys while
"It is
declared
the new
"And
anemy w
now."
"But $n$
use it. crowd ide in th "Wait, too, to of "What, course we But le Brock pu for he he
benutiful

## 8tory Telling

Next he threw into the fire some gold, and wraing Brock once more to he carefill never to cense blowing the bellows, he again left the smithy. This time Loki settled on Brock's dheek and stung even more sharply than before, so that the poor little dwarf had to set his teeth hard to endure the pain. But still he never keft off blowing the bellows, and when Sindri ame back, there was found in the fire, instead of the lump of gold that had gone in, a heavy ring of gold, carved most beautifully.
"Once more," said Sindri, as he threw a lmp of iron into the fire; "and this time be atroc careful about the bellows." Brork turned w work bravely, but the gadfly Loki setued just ore his eye, and stung him so fiercely that the thood ran down into his eye so that he could not ve what he was daing. The pain would never have made him stop, but he just had to put up his hand and wipe the blood from his eye, and at that moment Sindri entered the room.
"You have spoiled it1" he cried, as he sprang wrand the fire; but when he drew out the beany hammer to which the lump of iron had been changed, he comforted Brock by telling hin that it was not entirely spoiled-"only the hande is too short," he added.
"Loki declared," said Brock, "that his gitts wee not only beautiful and useful, but that they were magic gitts and could do wonderful things."
Sindri smiled, then whispered something in Brock's ear whicb made the little dwarf's eyes dime.
The next day he was at Odin's hall promptly the appointed time, and he stood patiently Jy while Loki gave his gifts.
"It is even more beautiful than the old hair," declared Thor, as Sif shook out about herself the new golden tbreads.
"And such a spear!" cried Odin. "No enemy, will ever be able to stand against me
now."
"But mine is best," said Frey, "for we can all wee it. Come," he went on, turning to the crowd which had assembled, "let's go for a ide in this wonderful new ship."
"Wait," cried Brock, "I have something, mo, to offer."
"What, more gifts?" exclaimed Odin. "Of course we will wait."
But he looked a little disappointed when Brock put into his hand the heavy gold ring, lor he had rings a-plenty, some of them as beautiful as this one.

## Story Tolling

"It is a magic ring," said Brock; "every ninth night, eight rings as large and heavy as this one will drop from it. That one ring alone would make a person rich."
Then he pulled from his huge sack the golden boar, glittering in the sunlight.
"It is named Gullinbursti," said Brock to Frey, "and it is a magic boar. On his back you can ride through the air as fast as a thought can fy, and even in the darkest night it need never be dark to you, for the bristles of Gullinbursti will give out light as he flits across the sky."
"I like him even better than the ship," said Frey; and Odin, who had been looking at his two gifts in silence, now said:
"And I like the ring better than the magic spear."
Brock grew more and more cheerful, and Loki's frown grew blacker and blacker, but he smiled again when Brock drew out and handed to Thor, the ugly, short-handled hammer. Thor himself looked none too well pleased. Was the dwarf making fun of him? Hammers of this sort were to be had any day for the asking.
"But it is a magic hammer," exclaimed Brock. "It hits anything at which it is thrown and it never hits in vain. The strongest mountain will split, the strongest giant will die at a stroke of this hammer, and no matter how far it is thrown it will always fly back to your hand."
At the word "giant," Thor's look of displeasure changed. For were not the giants, the huge, ugly frost-giants, his worst enemies? And had he not always, up to this time, tried in vain to overcome them?
"Sif's hair is beautiful," he said, looking at his wife with pride in his cyes, "and the hammer is not beautiful, but I like the hammer better."
"Brock has won! Brock has won!" cried the crowd, who had heard of the wager and were none too fond of Loki, "and he may have Loki's head."
Brock turned for vengeance oll Loki, but Loki had disappeared.
"I gave you the hammer; you will help me to find him," said the dwarf to Thor, and because he hated Loki and was grateful - 3rock, Thor soon brought Loki back.
"You may take my head," said Loki; "it is yours by the terms of our wager. But if you touch my neek, or spill one drop of my blood, you will be taking more than belongs to you, and you must die."
"I am afraid that is right," said Thor, and Brock was in despair.

Itery Tolling
But at last he decided that if he could not have Loki's head he would at least sew up his lying, boastful mouth; so he borrowed an awl from his brother Sindri, made holes through Loki's lips, and fastened them together with a leather thong.
And so for a while there was peace. because Loki could not make trouble with his tongue. But it was not for long. Loki managed to cut the cord and was soon going about making trouble just as he had always done.

## The 8tory of Arnold Winkeirfed

There have been brave men in every age and in every country, but there have been few braver than Arnold Winkelried, who was not a king, not a general at the head of his troops, but just a poor Swiss peasant.
Over five hundred years ago, ihe little cantons of Switzerland had banded together and were making a desperate struggle for liberty; for the rulers of Austria, who ruled Switzerland too, oppressed the Swiss people terribly and gave them no rights of any sort.
At last, in the summer of 1386, a great battle took place. The Austrian army, led by Duke Leopold, had four thousand horsemen and fourteen hundred foot soldiers, while the Swiss army had only thirteen hundred men altogether.

The Swiss are a brave people and the difference n the strength of the forces did not daunt them; but rihen they came to the actual conflict it seemed as if there were no way to begin the attack. The Austrian army looked like a wall, but a wall which bristled with spearpoints. Nowhere could the Swiss find or make an opening, and until they could, they knew that they should hur! themselves in vain on their enemies.
In the front rank of the Swiss there was one man, Arnold Winkelried, who was even braver than his comrades. His quick eye saw the difficulty, his brain told him the one way that it might be overcome, and he was brave enough to take that way: but the thought of hisfamily held him for a time. Cculd he sacrifice them?

Still the two armies stood facing each other; still the Austrians in their pride looked scornfully at the little Swiss company. There should be a break in that solid phalanxl With a cry of "Make way for liberty ${ }^{\text {" }}$ Winkelried sprang forw - d , spread his arms, and gathering several of the enemies' spears, pressed them into his breast.

His deed was an inspiration to the Swiss, and they pressed forward into the little gap which he had made, and before the close of the day,
the Austrian army had fled from the feld, leav. ing fourteen hundred dead, and the Swisa had won a complete victory. Five hundred yarn later, in 1880, a monument was erected on this battlefield in honor of the heroic self-sacifice of a common Swiss soldier.

It is not to be understood that all historical stories told to children are to be stories of hravery on the battlefield. It is, in fact, true that while such tales stir the blood of young people, they cannot have the same effect that stories of the heroes of peace may have, for very few will ever be called upon to show bravery on a batthe. field. However, young children are much more interested in stories which have vigorous action, and it is only as they grow older that they are really interested in the struggle and accomplistments of even the greatest statesmen.

## Joseph and His Brothers

Jacob, the patriarch, had many sons; but d them all, Joseph, the youngest, was his favorite. Nor did he attempt to conceal this from the other ten sons. Naturally they were jealous of Joseph, and this jealousy was increased when their father gave to the boy a most wonderful coat-a coat of many colors.
Joseph, though a good boy, was somerthat spoiled by his father and was not always wise in the way he talked to his older brothers. For instance one day he went to them in great glet and said:
"Hear this dream which 1 have dreamed; Behold, we were binding sheaves in the field, and my sheaf arose and stood upright, and your sheaves bowed down and worshipped it"
This made the brothers very angry, and they cried:
"And do you really believe that you shall reign over us?"
But their anger was no warning to Joseph, and a few days later when he dreamed that the sun and moon and eleven stars bowed down before him, he foolishly told this dream to his father and to his brothers. And his father, see ing the effect it had on his older sons, rebuled Joseph.
"Shall I and thy mother," he said. "and thy brothers indeed come to bow down ourselves to thee to the earth?"
Now Jacob had many sheep, and the ten older sons had gone with them to a fine feeding ground in Shechem. One day Jacob called Joseph to him and said:

[^3]not ing : brol Doth As seld, "Beh to pk nigh On drop fither him. becor the of

them n pit whic when th sare Jo
After they sa might de coming with can One hrol perhaps suggestec to be sol This tl to tell th trok Jose in the blo Even nov ay, "Yo
bin the c

## Itory Tolling

"Go and see whether it is well with your brothers and with the flocks and bring me word." But when Joseph reached Shechem he found no trace of his brothers. At last, after wandering about, he met a man who told him that the brothers with all of their flocks had gone to Dothan, and there Joseph found them.
As the boy advanced toward them across the fedd, one of them said scornfully to the others, "Behold the dreamer cometh," and they began to plot in their envy and their hatred how they night put the boy out of the way.
One brother suggested that they ? 4 ll him and drop his body into a pit and then return to their father, declaring that some wild beast had eaten him. "Then we shall see," he said, "what shall become of some of his dreams." But Reuben, the oldest son, had pity on the boy and advised

## Itory Telling

you tell whether this is our brother Joweph's
coat?"
And Jacob knew it instantly and said, "It is my son's coat. An evil beast has devoured him."
Meanwhile, Joseph had been carried by the merchants to Egypt and there sold to Potiphar, an officer of Pharaoh the king. And from the very fir $\ddagger$ the young man prospered; for Potiphar found that he could be trusted. His master's wife, however, became angry with him most unjustly and told false tales of him to Potiphar, who in his wrath had him put into prison. But even here Joseph was fortunate, for the keeper of the prison soon discovered that he was wise and trustworthy, and gave him control over all the other prisoners.
Now, in the prison at this time there were


JOSEPH CARRIED INTO EGYPT
them not to kill him but to put him iato a deep pit which was near at hand; for Reuben meant when the other brothers were out of the way to swe Joseph and send him back to his father.
After they had put the poor boy into the pit, they sat at their meal discussing what they might do with him; and as they talked they saw coming toward them a company of merchants with camels, who were going down into Egypt. One brother, perhaps because he was avaricious, perhaps because be did not want Joseph kiiled, suggested that they sell the boy to the merchants to be sold again as a slave in Egypt.
This they did, and then, because they feared to tell their father of what they had done, they took Joseph's coat of many colors and dipped it in the blood of a kid and took it to their father. Evea now they did not lie to him outright and my, "Your son has been killed"; they showed bin the coat stained with blood and said, "Can
two servants of Pharaoh the king of Egypthis chief butler and his chief baker.
One night each of these men dreamed a dream, and when Joseph visited them in the morning he said, "You look sad. Has anything troubled you?"
And in reply they told him of their dreams and bremged him to interpret them for them; for in those days people believed that things which were to happen in the future were foretold by dreams. First the butler told his dream:
"In my dreami, , hold, a vine was before me; and in the vine $7:-$ three branches, and it was as though it buci 1 and her blossoms shot forth; and the clusters thereof brought forth ripe grapes. And Pharaoh's cup was in my hand; and I took the grapes and pressed them into Pharaoh's cup, and I gave the cup into Pharaoh's hand."

And Joseph interpreted thus:
"The three branches are three days. Yet within three days shall Pharaoh lift up thine head, and restore thee unto thy place; and thou shalt deliver Pharaoh's cup into his hand, after the former manner when thou wast his hutler. But think on me when it shall be well with thee, and shew kindness, I pray thee, unto me and make mention of me unto Pharaoh, and bring me out of this house. For indeed I was stolen away out of the land of the Hebrews, and here also have I done nothing that they should put me into the dungeon."
The baker, pleased that the butler's dream had been so happily interpreted, then told his:
"I also was in my dream, and, behold, I had three white baskets on my head; and in the uppermost basket there was of all manner of bakemeats for Pharaoh, and the birds did eat them out of the basket upon my head."
But Joseph's interpretation of this was by no means so happy. He said:
"The three baskets are three days. Yet within three days shall Pharaoh lift up thy head from off thee, and shall hang thee on a tree, and the hirds shall eat thy flesh from off thee."
And it all happened as Joscph had predicted, for in three days the chief hutler was restored to his place, while the chief baker was hanged. But the hutler promptly forgot the promise he had made to Joseph to remember him when he was restored to his place, nor did his promise occur to him for two full years. Perhaps he would not have thought of it even then, had not circumstances called it to his mind.
One night Pharaoh the king dreamed two dreams which troubled him strangely. All the magicians of his kingdom were sent for and questioned, hut not one of them could give him an explanation of the strange dreams. Now it was that the hutler remembered the young man who had so wonderfully interpreted his dream in the prison, and he told Pharaoh of Joseph. Joseph was summoned to appcar before the king, and when he stood in the royal presence Pharaoh said:
"In my dream I stood upon the bank of a river, and there came up out of the river seven kine, fat and well-favored, and they fed in a meadow. And soon there came up out of the river seven other kine, lean and ill-favored, worse than any I have ever seen in the land of Egypt; and the lcan kine ate up the fat kine, nor were they, after they had eaten, any less poor and ill-favored. The second dream was very like the first. Seven good, full ears of corn
came up on one stalk, and seven withered, thin cars, blasted with the east wind, sprung up atere them and devoured them. Both of these drams I have told to my magicians, hut they were unable to interpret them.

Without hesitation Joseph replied:
"The seven good kine and the seven good ears are seven years; the seven thin kine and the seven hlusted ears are another seven years. This means that there shall be seven years of great plenty throughout all the land of Egypt, and then seven years of famine so severe that all the plenty shall be forgotten in the land $\alpha$ Egypt.
"Now the wise thing for the king to do is to choose a discreet man and put him in power over all the land, and let this man see that during the seven good years much food is stored up against the seven years of famine."

Pharaoh was much impressed hy the advice of Joseph, and when he catne to choose such a man to set over all his kingdom, he decided that there was no one among his own people whom he could trust as he could this young man. Thus, at the age of thirty, Joseph became practically ruler over Egypt, second in rank only to the king.

Everything happened as the dreams had foretold, and during the seven years of plenty Joseph and his officers were very husy getting food into the storehouses. Thus when the years of famine did come there was food for all who came to Joseph to huy.

Now it was not only in Egypt that the famine was severe; all the neighboring countries were suffcring, and men from all countries came into Egypt to Joseph to buy corn. And among those who came were the ten hrothers of Joseph. The youngest hrother, the child Benjamin, they left with their father in Canaan, because the oid man was so devoted to the child that he could scarce live away from him.
When the ten brothers of Joseph appaared before him, he knew them instantly in spite of the years that had passed. But they did not recognize, in the splendidly garbed favorite of the king, the hrother whom they had sold, and who they imagined had died long since. To test them Joseph spoke to them roughly and even accused them of being spies; but they told him the truth about themselves-that they were all sons of one father and that they had one young brother at home in Canaan, and had had another. We can imagine Joseph's feelings when they sa.d, "One brother is not."

brothers $h$ grain. Th that they money. Jacob, tl be heard $t$ jmin dow to them: "You $h$ doseph is ake Benja noused to

Pinally Joseph declared that he would sell them corn and allow them to go back to their onn country only if one of them remained as a pledge that the other nine would return and bring with them their brother Benjamin. Simeon mas the one chosen to remain, and the others departed without him. with their beasts of burden carrying saeks full of g:ain.
Now Joseph had commanded his servants to phoce in the sacks of grain the money which the

## story Tolling

At length, however, the famine hecame so severe that it was absolutely necessary that they should in some way obtain more grain, and finally Jacob consented to allow Benjamin to go with them, Judah, one of the older brothers, pledging his own life that the boy should return unharmed.
When the brothers with the young Benjamin appeared before Joseph he was strangely moved, and he commanded that a feast be prepared for


JOSEPH MEETS HIS FATHER
broxers had hrought with them to pay for the grim. Thus when they reached home they found that they had not only food, hut all of their money.
Jacob, their father, was much distressed when be heard that they had promised to take Benjmin down to Egypt with them, and cried out to them:
"You have bereaved me of my ehildren. Joseph is not and Simeon is not and you will ake Benjamin away." And for a long time he noused to let them return to Egypt.
them in his own house. Joseph ate hy himself, the Egyptians by themselves and the brothers hy themselves, as the law of the Egyptians forbade them to cat with the Hebrews.

When the menl was over, Joseph commanded his servants to fill the brothers' sacks with grain and again to place each one's money in the mouth of his sack. In addition to this he ordered that his own silver cup be placeri in Benjamin's sack.
The next morning when the Hebrews had gone but a little distance from the city Joseph's
teward san after them and overtook them and cried:
"Why have you repaid my master with evil when he did you nothing but good? One of you has stolen his silver cup."

The brothere protested that they knew nothing of the cup and declared that if it ahould be found upon any one of them, that one should die and the rest ahould return as servants to Joseph. But when the senach was made, the cup was found in Benjamin's sack.
Sadly the little procession which had started out so joyously turned and went back to the palace of Joseph. They could not understand what had happened; they felt certain that Benjamin had not taken the cup, but how could they prove this? And they were responsible to the boy's father for his safety.

Joseph, when he met them, pretended to be very severe, but when Judah declared that they were all ready to be servants of Joseph. Joseph refused, saying:
"You may all go in peace, except the one in whose sack the cup was found. He shall be my servant." Then Judah stepped out before the rest of the brothers and told Joseph how he had become surety to his father for the boy, and begged Joseph to allow him to remain as bondman but to let the boy go back to his father.
"For how," he concluded, "shall I go up to my father and the lad be not with me?"
At this Joseph could restrain himself no
longer. Sending all his servants and ofleens from the room, he cried:
"I am Joseph. Does my father yet live?"
Of course the brothers were afrid of his vengeance, but he comforted them and forpate them, assuring them that they had done him no harm, but only good, by selling him into Egypt.
"For "iod," he declared, "did send me before $y$ it to proserve life."
The joy and relief of the brothers of Joseph was beyond bounds, and Joseph himself was mo less happy. Even Pharaoh, the king, when he heard that Joseph's brothers had come, was pleased, and sent word iat they were to retum to Canaan for their father and their householids, and that they were then all to come down ino Egypt, where he would allot to them for their homes the best land in the kingdom.

Joyfully the brothers returned home and wold their father the wonderful story, which the old man could not at first believe. When he rasat last convinced, he exelaimed:
"It is enough! Joseph my son is yet alive. I will 80 and see him before I die."
With their families and their servants, their flocks and their herds and their heasts of burden, the father and brothers of Joseph journeyed down into Egypt. They found that Pharaoh was as good as his word. He gave them land in plenty and they settled down in the strange land whikh yet did not seem strange to them because Josesh was ruler over all of it.

## Games and Plays

Falue in Play. The educational world is beginning to recognize the importance of play in the development of a rhild's character, and many public school system make provision for games and plays in their course of study. Large cities are not only establishing playgrounds at public expense, but are also providing attendants who can ceach the children interesting and healthful gar. 3. The suggestions here given are for the purpose of assisting teachers and parents who wish to teach the children under their charge to play in the right way.
"Play is not trivial; it is highly serious and with deep meaning," says Froebel. Play is one of the ways in which the child expresses himself. Games furnish one of the means of securing at least part of the development stated in the duecational ideal-"a healthy mind in a healthy body." Games aid in the cultivation of social
and of competitive activity; they afford an opportunity for ethical training.
The play time furnishes an opportunity of so refreshing the body and mind, stiffened or fatigued from close application to work, that the work itself will be more advantageously pursued. and the time used in exercise more than made up because of renewed interest and attention. Because little children become easily fatigued. frequent brief play periods should be provided for, rather than one long one.
Cims. This work in physical training must be:
(1) Hygienic, adding to the health of the child through its good effects on circulation, repirinrion, etc.
(2) Corrective, tending to correct the deferts in posture and movement caused by stooping over desks, etc.
(3) Educative, training the brain, nerves, and

## Cames and Plays

ades to alert, controlled action: the harmoniwow worting of body and mind.
(1) Recreative, furnishing relaxation, fun, joy, al d which increase the value of the work for te pupil.
Now every game cannot have all these four nhes. The game, the aim of which is educative, w ring toss, which requires procision of movemat and quick response of the body to the mind, should be played often, but not to the exctusion of others whose main aim is, let us my, hygienic, as racing, which gives a healthy simulus to the circulation and respiration. Vary jour games.
Somo Simplo, Practical Iuggostions. Do not maste the short play time in making elaborate plans about what is to be played; get right to besiness and keep things moving.
During the game period, throw open the windoris so that the air may be completely changed. Let the teacher enter into the spirit of the phy, making it a period, to an extent, of recreation to herself. She needs it.
Encourage the children to get into the habit d tuking deep, full breaths to "wash out" the lungs. Tell them to take three such breaths erey time they step out of a door into the air.
The best method of teaching a game is to make a full explanation of it before the pupils ake their places to play. Never try to teach ad play a game at the same time.
As a rule let the children choose the games. Encourage "team" work, trying with all their might to win for their side.
Insist on holding to the simple rules of the ame-to the honest winning or losing of a ame.

## Cames for Young Children <br> In the Schoolroom or the Home

1 Sax. A child in each row tells of some attion he has seen, as a duck flying, a soldier marching, or a train speeding, at the same time illstrating it. Each row in turn follows its lader around the room, imitating the action down.
Express Train. Children are chosen for mgine, headlight, bell, wheels, conductor, pasxngers, etc., and run in a row up and down the istos, executing the action appropriate to each prit "Train is stoppingl" calls the teacher. It comes to a standstill, children take their seats, and another train is "made up."
Spuirel Game. The children blind their eyes mith heads upon their deaks, and one hand open, in the hope of getting a nut which one child, the
"rquirrel," may drop into lt . The child who receives the nut runs on tip-toe after the squirrel and tries to catch him before he reaches his seat. If he dnes not, then he is "squirrel."
Hole in the la. The "hole" or "era.k" in the ice is represented by two chalk lines on the floor. One row of children at a time runs or jumps, in turn, trying to jump over the "hole." If any one touches the floor between the lines, instead of going home to his seat he must first come to the front of the room, while the other rows are jumping, and dry his feet by running on tiptoe "on place." The width of the "crack" may be gradually increased. This game is good for circulation and respiration.
Follow the Leader. A competent child leads the class around the room, up and down the aisles, skipping, then waving, stepping high like a horse, clapping, etc., changing quickly from one to another. The other children imitate. This and the following are excellent for brief recreative exercise.
Review Roundel. (This may be sung to the tune Yankee Doodle.)
"There you stand before us all
To teach us what to do, sirl
Now show a motion you recall

> And we will follow you, sir!"

The pupils should stand at their desks or in a circle. The pupil chosen for "teacher" stands in front. The pupils march forward on lines 1 and 3, and backward to place on lines 2 and 4, singing as they step. At the close of the song, the "teacher" shows a favorite exercise, as sawing wood, touching the floor with the finger tips with knees sprung back, etc. The rest of the class imitate it. "Teacher" may mark the rhythm hy singing la to Yankee Doodle tune, as the pupils take the exercise. This game gives all a little exercise at once.
Bean Bag Games. The following games can be played with bean bags about 5 inches by 5 inches made by the children (a set of these should be in every schoolmom for games), or with a large, light rubber ball. Some games can be played out of doors.
The teacher may open the game as follows: As many pupils as possihle may take places on a chalk circle drawn on the flow in the front of the room, or where there is a vacant space.
The pupil who is "it" or "teacher" tosses the bag to any pupil in the circle, who becomes "teacher" if he catches the bag, or must take his seat if he does not. The pupils for whom there was not room at first, may fill vacant spaces.

The gume may be varied by the "reacher" toestag the bag in the air and calling the name of a child, who bocomes teacher is he jumpe forward and catches it, or takes his meat if he does not. This latter variation of the game ahould be played very quickly.
Cat-Stitek, Number the row or ailies of children, 1, 2, 3, 4, etc. The pupils thould stand, exch even row facing the nearest odd row. The frst pupil in the even row topees the bag to the second pupil in the odd 6ie, the bag continuing in a rigzag course to the last pupil, who tomes it directly across, so that after returning in a zigzag course, the first pupil in the odd row will have the bag. Count may be kept to see which double row finishes, without dropping the bag, frat. Allow laughter, but insist on attention.
Touch Ball. The ball or bag is passed rapidly from one to another of those forming the circle high or low, across the circle, or in any direction, stated by the teacher. A player, or "it," in the center, tries to touch the ball or bag, and changes places, when successful, with the one who had it when it was touched.

## Out of Doors

Play out of doors when possible. Some of the following games may be played indoors, if space permits, in stormy weather:
Cat and Mouse. The players form a circle, grasping each other's hands and standing about an arm's length apart. The cat stands outside the circle; the mouse to be caught stands inside. The pupils forming the circle may favor one or the other by raising arms to allow passing in and out of the circle, or may lower arms to prevent it. As soon as the mouse is caught, other players are chosen.
Hawk and Hen. About ten or twelve children stand, one behind another, with their hands on the shoulders of the player in front, and represent hens. Another player, the hawk, tries to catck the last hen in the line, and the first hen tries to prevent this by getting in front of him, and by raising arms, etc., while the rest try to keep out of the way of the hawk. As soon as a hen is caught, she is out of the game. Choose an alert mother hen to head the line.
Moon and Morning Stars. This game is played when the sun is shining. One of the players is the moon and takes her place in the shadow of the sehoollouse, a tree, etc. She must not go into the sunshine. The other players, the morning stars, dance from the sunshine into the shadow near the moon, calling:
> "O the Moon and the Morning Stanl O the Moon and the Morning Starl Who will atep- Oh , Within the shadow?"

The moon tries to tug the stars, and they mas either be kept with her or change places wiith her, as the playess decide.

Daw Baw. A line is drawn milway betwen the gooli. A catcher stands at each end of this line. The other players run back and forth between the goals; they may not be tagged when in the goals or on the base line, but they may not pass back to the goal from which they starred untill they have gained the opposite grai. Thase who are caught are put out of the game, or they may be made catchers.

Black Man. One is counted out as Black Man. The rest come round, crying, "Who is afraid of the Black Man ?" Suddenly the Black Man begins to chase. When one is caught, he is Black Man, or else he may be the Black Man's Helper. The game closes when all are caught. Bounds must be set beyond which no one may run.
Frog in the Mfiddle. Any number may play this. One player is chosen for "frog" and sits in the center with his feet crossed. The other players stand in a circle amund the frog, repating, "Frog in the middle can't catch mel" They dance forward toward the frog and back, taking risks in going close. He must keep his position while trying to tag his tantalizers. The one tagged is frog.
Other Games. Among other games sugkested for young children are the following: Mulbery Bush, Farmer in the Dell, Jacob and Rachel, Oats, Peas, Beans, Drop the llanilkerchief, London Bridge, Ilopping, Three-Legred and Backward Races, Stoop Tag, Wool Tag, Pussp Wants a Corner, Bean Bag Throw, ItisketItasket, Shadow Tag, Follow Chase. Most of these one child or another will recognize by name and will gladly lead.

## Games for Older Ohildren

In the Schoolroom or the IIome
Many of the games suggested for young children remain favorites and may be continued as the children grow older. As children grow oher they enjoy the "team" element in games and are more anxious for their side to win than are the young children, who love more the mert activity of the game. Races, especially relay races of all sorts, appeal, therefore, to older children.

Dann Beg Reow. Bean bege, boolo, emsers, - munds are hold above the heads by pupils and in the froat ceate. All the children sit out with armes mined bockwands above heade by puplif until the lest pupils ase seached. These prs them forward in the same manner. The pupil in tront frrat receiving the bag rives to thow which row has won. Allow the enthusiusm tow exprecsion in this most valuable gume.
Fired In, Firch Out. A group of three erasers, or bean bage, elc., in placed in a chall-marked ayare on the fioor in tront of alternato rows. The players, beginning with the pupit in the froot ceates of these alternato rows, take the objects one at a time from the aquare and place them in a similar square at the back, running down one aille and returning by the other. When all are gathered, they are returned in the meme manner, and the pupils in the second seats, without pause, continue the game. The row mboce pupils finish first indicate it by clapping. This game is full of furr and excitement and a prat outlet for the repressed energy of the child from ten to fourteen.
The same rules apply to the game of running $t$ touch front and back wall in succession, and then taking the meat, which can be played when time isvery limited and relaxation for all is desired. Running Relay. The room may choose sides to hat for 4 week. These sides may stand in dose fows in the two center aisles, leaving aisles for nunners at each side. Each leader has one bean bag. At the teacher's word "Go," the bog is passed rapidly down the line. The last pupl runs to the head of the aisle with it and the passing continues, the line gradually moving down as the children come to the head. This hots until the first player is in his position again as keder. The side whose leader is first in place indicates winning by clapping.
Toasing Tally. Let pupils, one from each row in turn, stand at a given distance from a slanted board, two by three feet, with an opening eight inchess square in the center, and throw bean bags. Bags passing through the center sore ten points; those landiing on the top of the bourd score five points, and those landing on the floor diminish the score by five points. Bags displaced count for the rows by which they are displaced. The score should be 100 .

## Out of Doors

Three Deep. The players form a double circle, one within the other. The distance betheen the players must be two steps. One
player atands direetly behind another. There are two "its," one trying to tag the other as bo runa around the outer circle. Juat as be if about to be tagged, the runner quickly moves to the inside in front of a pair of players (making "three deep"), and then the hat, or outaido player, must run. If the tagger succeeds in touching the runner before he jumpwinside, they reverse the running, the one who has taged trying to get $\ln$ front of a pair at once. The children should never run across the circle or between circles to reach Inside. This game in a particular favorite with older children, and miken for alertness as well as for general physical development.
Fire on the Mountains. Places are marked in a circle by sticks or atones, with considerable space between, providing for two less spaces than there are players. One of the odd players is a leader, and sits or stands in the center; the remainder, or "circle men," take the places marked. The other odd man stands anywhere between the bases or marked places. The object of the game is for the "circle men" to change places on a signal from the leader, each player trying to avoid being the odd man by losing a place. The longer the distance between the bases, the better the sport. The running must be done in a circle outside of the bases and no cross cuts through the circle are allowed. The player in the center calls:
"Fire on the mountain, run, boys, run! You with the red cont, you with the gun;
Fire on the mountain, run, boys, run!
Base!"'

Then the changes must be made, the center man and the other old man trying to get a base. Those left out arc the "its" as the game continues. Forfeits may be used in this game.
Last Couple Out. This game requires an odd number of players. One is chosen for catcher, who stands with his back to the rest, not less than ten feet in front of the rest of the players. The rest of the players stand in couples in a long line behind him, facing in the same direction that he does. The catcher calls, "Last couple out!" Then the last couple in the line rurs toward the front, the right-hand one on the right side of the double line, and the lefthand one on the left side, and try to join hands in front of the catcher. The calclier must not chase them before they are in line with him, and must not turn his head to see them as they come. They should try to confuse him by circling far out beyond him on either side, or
by one keeping doman and the other ctreling out, occ. If the carber suceesedo in carching one of the playen belore that plajer can cluap hands with his partnee, these two; catcher and caught, form a couplo at the head of the line, which moves back a step. II neither in caught they are free, of out of the game.
Trode Gams. A few players atep amide and decide on some trade to represent. They advance to the others, saying: "Here we come!" The others respond, "Where from 9 " "New York," they reply. "What's your trade P" The lew then show in pan tomime some trade, either all taking the same action. or various actions used in the occupation chosen. The first one to guess the trade chases the players, trying to tag those desirad for the next trade game, which the guesser promptly gathers a few players to decide upon. This is one of the most valuable of the "guess-action" games, which the teacher can vary to suit the needs of the school.
Othor Games. Among nther gamen sugpested for older children are the following: Potato Relay Race, Black Tom, Hound anil Rabbit, Irisoner's Basc, Indian Club Race, Vaulting Relay, Fox and Geese. Tug of War, Poison Snake, and Medicine Ball. Most of these the children will ncognize by name. Discussion of the rules in school helps greatly when the games are played.

## Quiet Games

The following quiet ga mes, with fewer physical values, are yet of great value for recreation and for mental training:
Magic Music. An ohject is hidden after one child has been sent from the room. Upon his return, those in the room help him to find it by humming a familine tune or by clapping, softly at first, but loudly as he nears the hidden object. This is good for car training and motor control.
Beast, Bird or Fish. One child comes to the front of the class and says: "Beast, bind or fishl-Bird Marthal" Before the child in front counts to ten, Martha, or whoever is chosen, must call out the name of a bind or else come to the front. Beast and fish are called in the same way.

IIoms Up. Hands should be pleced with thumbe up, es in "Simon Says Thumbs Up." The leader calls: "All horms upl" "Iugis hom upl" or "Cow's horn upl" As he appats, be lifu his own thumb up. When he names as animal that really has horma, all playes lifi their thumbs; when the names one that has no horas, any player that points his thumb up is out of the game.

My Thought. Tracher: I'm thinking of a word that thymes with "pat."

Pupil: In it what you wipe your leet on?
Tracher: No, it inn't "mat."
Pupil: Is it an animal that catches mice?
Tracher: No, it isn't "cat."
Pupil: Do you play ball with it?
Tracher: Yes, it is a "bat."
The name guessing iklea may be carriel out by sending out one chilkl while the rest choxse on object in the room, and then giving the chill the right to ask ten questions of the pupils, in his attempt to guess the objeet. Ilis first questions should determine whether it is animal, vegetable or minerul.

Guess Again. The teacher has sets of cands in Geography, History, etc., on which she has written the principal seas, cities, proxluctions or the like, already learned by the chililren. She picks up one card at random on which may be written Pacific Ocean, and calls, "An ompanl P." Before the teacher can count ten the child she calis upon must name an ocean beginning with the letter P. There are many variations of this review game which will suggest themselves to the teacher.
Acting Charades. Children heartily enjoy "making up" plays, as in acting charades. Sides are chosen and each side in turn selects some word to be guessed by the other side. For instance, if Washington is chosen, it may be divided into "washing" and "ton." The act of washing may be represented, and then the act of weighing, after the explanation has bern made that it is a proper noun of three syllables to lo played in two acts. This game, too, is capable of great range, and cultivates great ingenuity on the part of the children.

[^4]Prot
$d$ Iwo
old rag
ticks
page,
Most
conmo
One of
sxks $s$
either
lies $m$
below
siz. I
lng by
tikess it
long stic and the
$t$ in. $b$
made 12
should 1
1 aunce


Introductory. Every normal boy wants to bow from cerlicut ago how things are made; to ald quections innumerable of his elders, and wase morry that nometimea in his proper quest ho information be in frequently discouragerl. Prents and friends become tired of censeless pations; this often may be pardoned in the hiter, but It is the duty of parents to gratily isis commendable curiosity of the child just as treses they are able to do so. As the boy grows dder, he takes it upon bimself to do thingy. He palls apart his thys to see how they are mode and then with infinite parience again attemptes to construct the original.
The average boy is inventive. He scen a simple piece of machinery and attempts to dupli-
ente lt; he even enters the realm of difficult constructive work, as witness literally thousands of amateur wircless telegraph stations all over the word male by boys-and a few giris-and in suceewful operation by them. Our young people should be encournged in these mechanwal eflorts, for though the inventive faculty may at times lend to the construction of things of no value, yet there is poing on all the time alucntion of minsl and hand, which will later be utilized in the construction of things of greater moment.
In this division of the present volume we have aimed to direct the boy's attention to the conutruction of various devices along the lines of the average boy's thought.

## How to Make a Kite

Probably every boy has made the common kite, $d$ wo crosed sticks, a bit of string, paper, and dd rags. If this shape of kite is made with three sides as shown in the illustration on the next Prge, the kite will fy better and last longer.
Mosk boys do no remain satisfied with this conmon kite; they want something different. One of the easiest to make is a box kite. The strks should be made of straight-grained wood, either spruce, basswood, or white pine. Box Lies may be different sizes; the dimensions given below will be found useful for a kite of good siz. The kite when finished should be 42 in. lng by $18 \frac{\mathrm{in}}{} \mathrm{i}$. wide. In cutting the clotb and tieks it may be well to allow for errors. The long sticks should be $\}$ in. square by 42 in. long, and the four diagonal braces sbould be $t \mathrm{in}$. by $t$ in by 26 in . Two eloth bands should be made 12 in . wide and 74 in . long. These bands sould be fastened to the four long sticks with 1 aunce tacks. Care should be taken to see
that the sticks are equally distant, for the sides of the kite must be of the same size. It will strengthen the bands if the edges are hemmed and the ends turned over for half an inch. Nainsook or cambric make the best cloths, but any light weight stufl will do.

The diagonal braces should be cut a little too long, so that they will be slightly bent when put in position, thus holding the cloth out taut. The ends should be notched to fit the long sticks and then wound with coarse thread or fine wire to prevent the braces from slipping. If made as described the kite may be taken apart and rolled up.

The bridle or guiding ropes should be fastened as illustrated. II is a square knot which may be casily loosened and shifted to a different position on the bridle. A bow-line knot may be tied at $J$ to prevent slipping. For flying in a light wind loosen the square knot and shift nearer to $G$, thus shortening $G$ and lengthening $F$; in a
strong wind lengthen $G$ and ahorten $F$. If the wind is exceptionally trong it is better not to use the bridle but to taten the string at K .


## COMMON ETTE

Another kite interesting to make is not as common as the box kite; this is the Chinese kite. From a sheet of thin tough tissue paper about 20 in . square the Chinese boy gets a perfectly square kite that is light and strong. First he shapes two pieves of bamboo, one for the backbone and one fo; the bow. The backbone is flat, $\frac{1}{} \mathrm{in}$. by $3 / 32 \mathrm{in}$. and 18 in . long; this is pasted diagonally to the paper. Over the ends of the stick should be pasted triangular bits of paper to prevent tearing. The Chinese generally use boiled rice, but any quick-drying paste will do. The bow should now be bent and its ends fastened to the other corners of the paper. In cutting the paper it is best to leave little projections at the corner to fold over for this purpose, but separate strips may be used. The difficult task of fastening the bind or bridle comes next. This must be done by experimenting, till the kite balances perfectly. The string is fastened by a slip-knot to the band and moved back and forth until the kite flies properly; then tho knot must be tightened.

## The Boy's Wortahop

- With a little practice boye will have no trouble in flying these kitea. Chinese boys often have battles with them. One of them will be flying a pretty kite, perhaps from a low flat-topped roof in some big city. Several hundred feet away on another roof appcars another boy, who begins maneuvering to drive his kite across the wind over to the first kite. First he pays out a large amount of string till his kite wabbles to one side, with its nose pointing toward the first kite; then he tightens his line and commences a quick steady pull. If properly done his kite will cross over and above the other. The string is now played out until the second kite is hanging over the first one's line. It will take some skiltuil work now before the first boy's kite can spear the other one or perhaps cut the kite string. As it is not considered fair to haul down the other boy's kite the battle may be long and exciting.
There is almost no end to the variety of sizes and shapes of kites. An easy one to make is called the butterfly kite. To make this get two thin kite sticks of equal length. Bend each into an arc and tie one end of a strong string to one end of each stick and the other end of the string to a point about 3 in . from the other end of the stick. This leaves one end of each stick fret; now tie strings to each of these free ends and tie


BOX EITE
A, frame, with B, crosspiece; C D, details of joints; F G, bridle; E, string joined to bridle; H J, knots.
the other end to a point 3 in. from the oppasite arc. Be careful that the two sticks are now in exactly the same shape. Then use thread to fasten the two frames together so that they
owerlap as shown in the sketch. To make the bettefify's head secure two heavy broom straws a cout wires and attach them to the top part

fRAMEWORE OF THE BUTTERALT ETTE
d the wing frames near the intersection of the ticks, so that the wires will cross. These are the "antennae" or "feelers." Over this frame paste any colored paper you choose. First lay the paper on the frame, then cut out the paper to the right shape, but leave about one-hali inch margin for pasting. Cut slits about 2 in . apart sround the curves and at all angles to keep the paper from wrinkling when it is pasted. When the kite is dry decorate it with paint or trips of colored paper. Add the usual tail.
Another interesting kite is the boy kite. To construct the kite use two straight sticks, say ${ }^{34}$ f. long, to serve as legs and body; another stright stick about 2 ft . 4 in . long forms the spine; a stick about 3 ft .3 in . for the arms. If a light tough stick is at hand this can be bent in a circle about 7 in . in diameter for the head; bind the ends firmly with twine. Fasten it to the spine, then tack on the arm stick three inches below the circle so that the arm stick is divided

## Simple Spr

Most spring boards depend on the bending of the wood for its spring. Here is one for which

in the middle. The leg stickes should be fastened to the arm stick about 6 in . on either side of the spinal column and croseed so that the other ends are 3 ft . apart. Small hoops and crow stick of the same material as the head frame should be fastened to both ends of the arm stick and the lower ends of the leg sticks for hands and feet. See that both hands are of equal slize; likewise the feet. No boy will want his kite to be a cripple any more than he would want one leg or one arm shorter than the other. The doted lines in the diagram show how the atringe should now be fastened.
To cover the kite select your paper, cut it to the shape of the frame, but allow one-half inch


## FRAMEWORE OF THE BOT EITE

all around to paste over, and make slits 2 in. apart around the head to prevent wrinkles. ring Board
almost any heavy two inch plank will do. All sorts of devices are used with which to fasten the end. An easy way is to fasten the lower end with a rod bent at the ends so that they may be run through holes in the planking and bolted on the under side. On each corner of the lower ends of the board fasten a piece of strap iron about 1 ft . long with the lower end projecting so that the rod may be passed through holes drilled in the strips. Then bolt a pair of light buggy springs to a square bar of iron at least as long as the width of the plank. Fasten this bar to the plank with several bolts. If the springs are too high they can be moved forward.

Every faberman murt have a firhing-rod. To make one is an eary matter. Firt recure a long; traight, elactic pole. Then secure some pins and a mall piece of wire. File of the heads of the ping, bend them in the shape of the letter U and drive them in the rod on the ame side at regular intervals, beginning about 21 ft from the handle. Drive the pins just tar enough to permit the line to pass freely under the loop. For the tip use the piece of wire bent into the form of a loop and bind it to the end of the pole. If there is enough wire on hand it is better to use it instead of pins. Loop pieces about 3 in. long and with more wire or atrong waxed thread bind them to the rod, as shown in the esketch below.
A harge wooden apool, an old tin can and a thick wire will serve to make a firt-class reel. Bun the wire through the apool and wedge it tightly so that it projects for one inch at one end and three inches at the other. From the side of a tin can cut a piece in the form of a cross. At equal distances from the ends punch a hole in each of the short arms, which should then be put upwards to form supports for the add. Insert the ends of the wire in the holes so that the spool revolves freely, and then bend the long end of the wire in the shape of a crank. Bend or hammer the tin over the rod until it fits it snugly. The reel may be acrewed to the rod or kept in place by wire rings slipped over each end of the tin.
A good landing net may be made from a forked stick and a piece of mosquito netting. Almost every tree will have several branches which may be used for this purpose. Bend the two ends until they overlap and then bind them tightly with waxed twine. Sew the netting into the form of a bag and fasten the open end to the loop formed by the forks. A better net may be made by using heavy wire for the loop. This can be firmly bound to the forks by lighter wire. The beat way is to bend the wire into a loop and twist the ends together, as shown in the illustration. For a handle one may use an old broom tick, or any similar rod, into one end of which a hole has been bored just large enough to allow
the wire to be firmly wedged in. For the nat ure twine; the process in not socasy, but the net will be better. First facten the pole in a handy

poLe and landing net
place, with the loop as high as the shoulders. Cut a number of pieces of twine about 8 ft long. Double each piece and slip it on the loop with the loose ends hanging down. Hang these strings at short intervals all around the loop; the distance apart determines the sire of the mesh, that is, the openings in the net. To make the net take a string from each adjoining pair and make a simple knot of them, as shown in the dingram. Continue all the way around the loop, knotting the strings in this way. Now begin on the next lower now, putting the second row of knots as far below the first row as that row was below the rim. Of course the medh may be of any size you desire. Now take the third row, and so on until you think the net ought to began to taper or narrow dow.u. This is done by knotting the strings a little closer together and also by cutting of one string of a pair at four equally distant points in the sme row; that is, only four strings are cut. Then continue knotting until you come to one of the cut atrings; here take a string from each side of the cut line and knot all three together, being careful to make it come even with others in the same row. Cut off the single string just below the new knot, but be sure it is the right one. This is casily done by pulling it through before tying the knot.

## The Gymnasium

At the same time that the boy develops his mind he should develop his body. Gymnasiums are not always availeble for the boys who like exercise. An equipment of horizontal and
parallel bars, horse and rings and dozens of other things, is expensive, if all the parts have to be purchased. Two or three boys with a fert simple tools and the necessary lumber, bolts, and

The Sos': Wrertahep
rope, cun make a first-clase gymnasium. The nubber should be purchased, if powible, squared and eut to lengeth.
Facisontel Bar. The most important piece Qapparatus in the gymnasium in the horizontal br. As many boys may not have place indoors bor this apparatess, set it up outdoors. Once we have accomplished that much, we shall find it eay enough to bring it indoors if necessary, or ut up a new one. The material we need is as follows: two pieces of wood, 4 in . square by
 4 pieces, $\frac{1}{2} \mathrm{im}$. by 3 in . by 3 ft .9 in . long; and 1 piece, $2 \frac{1}{1} \mathrm{in}$. square by 5 ft .7 in . long. This hat piece abould be well-tensoned, straight.

## The Boy's Wortahop

the boles were bored. Two of the filler pieces should now be fastened in each channel so as to make the space fit the squared end of the bar. The ends of the boards with the holes should be level with the top of the post, so thac each pair of holes in the 7 in . bonards coincide. Dig two holes 6 ft . apart, each 3 ft . deep, and remove all loose dirt. Set the poosts in these holes on bricks or small stones. A mixture of one part cement. two parts anad and three parts smali stones will make a better foundation. Be careful that not too much water is used in mixing. The channels formed by the boards must be set facing each other with the inner surfaces of the posts parallel, 5 ft .8 in . apart. Fill in the holes

horizontal bar
grined hickory, to make a bar. For the other pinces it is best to use cedar, as that wood rots try slowly, but ordinary yellow pine will do vor well. If possible, the four 7 in boards should be of hand wood. Besides the timber you
 16 screws, 3 in. long; 4 heary screw eyes with tro $\frac{1}{2}$ in. shanks; 50 ft . of heavy galvanized vire; 80 fl . of $\frac{1}{2}$ in. manila rope and 4 pulley block. Four cleats are also needed; these can be made at hoime.
Draw a line on the four 7 in . boards along the side of each from end to end, $1 \%$ in. from ane edge. Berginning at one end of each board meke 8 pencil dots on this line 5 in . apart. Bore holes through the board at these points with a thin. bit. Fasten two of these boards on each poot with the 3 in . screws, as shown in the top nien, forming a channel of the edges in which
and tamp the ground well. Each post must be well braced to keep it rigid while a person is swinging on the bar. Place four anchors in the ground at the corners of an imaginary rectangle enclosing the posts, so that the posts are 8 ft . from the short sides and $1 \frac{1}{2} \mathrm{ft}$. from the long sides. These anchors may be made of pieces of wood 2 ft . square, around whose center four strands of heavy galvanized wire are twisted, then buried to a depth of 2 ft . The wires should be carried above ground at an angle of about 45 degrees. The heavy zcrew eyes are turned into the posts at the top and lengths of rope tied to each. These ropes or guys pass through pulley blocks, which are fastened to the projecting ends of the anchor wires, and return to the posts where they are tied to cleats. Do not tighten the guy ropes without the bar in place, as to do so will strain the posts in the ground.

For the mame reesos do not change the elevation Of the bar before alacking up on the ropes.
For the bar you have secured a long hickory plece, which should be plased, scraped and sandpapered until it is perfectly smooth and round, except for 3 in. at each end. Through both square ends bore a hole to admit the $\frac{1}{3} \mathrm{in}$. bolts which will hold the bar in place. The bar should be oiled and reversed occasionally to keep it from curving and drying.
To set up such a horisontal bar indoors is juat as easy. The posts should be 3 ft . shorter. Instend of the anchors we should use heary screw ejee, which need not be set as far apart as the anchors were outdoors. To hold the posts in position you need I-shaped iron braces such as can be bought at any hardware store.
Parallil Barn. Exercises on parallel bars are among the best means for the development

## The Eag's Wortahop



## PARALLEL BARS

of the back and shoulders. One can make a set of these bars with very little trouble, if one has or buys the following material: 4 posts, preferably cedar; 4 in . square and 6 ft . long; 2 base pieces, 4 in . square and 5 ft .6 in . long; 2 cross braces 2 in. by 4 in. by 2 ft. 2 in. long; 2 side braces $2 \times 4$ by 7 ft. 8 u.. long; 4 knee braces $2 \times 4$ by 3 ft .8 in . long; 2 bars; 2 bars of straightgrained hichory $2 \times 3$ by 10 ft . long; 4 wood screws 6 in. long; 4 boits, 8 in . long; 8 bolts, 7 in . long; and one dozen large spikes.
First bevel the ends of the base pieces at an angle of 60 degrees. Chisel out two notches, 4 in . wide and 1 in . deep, beginning at a point 9 in . from either side of the center; these are to receive the lower ends of the posts. Bevel the two sides of one end of each post down to a width of the finished barmalittle less than 2 in .

Cut notches in these ends to receive the oval bars. Bevel the ends of the knee bruces, and thasten the lower ends to the beveled ends of the bases with apikes. The upper eads of the knee braces ahould be fastened to the uprights with 8 in . bolls put through holes bored for the purpose. It will be best to countersink the heads of the bolts-that is, they should be below the surface.
With 7 in. bolts fasten the end braces with their top edges 2 ft .6 in . from the bottom of the base. Drive nails slantingly into the ends of the posts, merely to hold them to the base while the apparatus is being handled. Now we must dig two parallel trenches, $2 \frac{f}{f t}$ deep, about 5 ft . long, and 7 ft . apart, for the end braces and two more trenches just deep enough to hold the side braces. These side bracs should be bolted to the posts just below the cross
braces, so the bolts in both will not meet. The bars should be dressed down so that a crose section is oval as shown in the end view. Use the 6 in . screws to hold these to the notched uprights. Countersink the holes so that they can be filled with putty after the screws are in place. It would be wise to oil the bars with linseed oil to protect them from the weather.
It is not necessary to use dressed lumber from the mill for this apparatus, except for the bars. If mill-cut lumber is used, it should be undresed, and if round is used, it should be left with the bark on it, to protect it from the weather. If the timbers, except the bars, are painted, the wood will last for ycars, but even unpainted cedar is very durable.
The Eorne. The horse may be used as an obstruction over which to leap, slide, or swing,
wich she cett roux holda in The bo the poots Tro post: 2 adjustis. troce $2 x$ 4 keee b balts, 9 is te top; the lnee 1 anas brace - the por mathes, o $\alpha$ the poot

## The Eog's Workahop

-1 aloo as artificial back for a peculiar Whe of leap frog, and many, other gumes which bops are constantly devising.
First, one must secure one-half of a tree trunk tom a tree 9 in. to 15 in . in diameter- the hrger the better-and 5 ft . to 6 ft . long. The numd part must be planed, scraped and andpupered until it is perfectly smooth. Make two panlel aw cuts 2 in. apart, straight down in the round surfice of the log until each. cut is 0 in long. 18 in . away make two more cuts of te mme sise. Chisel out the wood between edn pair of cuts and insert the two hand holds,

## The Dog's Wostahop

a slanting notch 6 in . from each end for the knee braces. Bevel the ends of the knoe braces, put them in place and fasten with bolts, the upper ends with a 9 in . bolt, the lower with a 7 in. bolt. Beginning $1 \frac{1}{\mathrm{i}}$ in. from the top, at intervals of 3 in., bore in . holes through each post parallel to the base. Nine or ten boles will be enough. The adjusting pieces sbould be bored in the same manner, then mortised into the flat side of the $\log 15 \mathrm{in}$. from each end and secured with screws put through the top and into the end of the adjusting pieces.
When the posts and knee bruces have been

which should be made of two pieces of $2 \times 4 \times 9$, cut rounding on one edgc. Nail these handbolds in place.
The body of the horse should be fastened to the posts so that its height may be adjusted. Two posts are needed, 4 in . square by 5 ft l long; 2 adjusticy pieces $2 \times 4 \times 3 \mathrm{ft} 3 \mathrm{in}$. long; 1 cross 4 heree braces, $2 \times 4 \times 3 \mathrm{ft} ; 2$ one-half inch bolte, 9 in. long, to fasten the knee braces at the top; ten $\frac{1}{2}$ in. bolts, 7 in . long, 4 to fasten the hree braces at the bottom, 2 to fasten the tran brace, and 4 to fasten the adjusting picees b the posts. Cut mortises, that is, cut out moldes, on the bases so that the bottom ends $d$ the pootes are exactly in the middle; then cut
securely fastened to the bases, these should be buried 2 ft .4 in . in the ground, parallel to each other at the same distance apart as the adjusting pieces mortised in the horse top. Then bolt the cross brace with its lower edge resting on the ground.
After the ground has been tamped hard the horse is ready for use. The height of the horse is adjusted by changing the bolts in the different holes connecting the two adjusting pieces with the two posts. All sorts of jumps and leaps will be devised to keep the horse in constant use.
With some slight changes any of these pieces might be used indoors. The uprights would be shorter by so much as is now buried in the ground. The braces would have to be bolted
at difiereant anglec. Probably the bases would have to be fasteaed to the floor to keep the uprights from upsetting. The apparatus bought for regular gemnasiums is made with heary metal bease, but our apparatus will do fully as well if it is fastened to the floor. If we can weight it in mome way, so much the better. Whatever we do we shall be sure to enjoy making the apparatus, and once it is made, how much prouder and happier we shall be than if we had bought everything readymadel

Damb-Bolls. No gymnasium, whether indoor or outdoor, can be complete without a pair of dumb-bells. Any boy can make as many as he wants. First get two large tin canssuch as a quart fruit can-and cut out the ends. Shape four round pieces of wood just large enough to fit tightly in the ends of the cans.

Then cut a hole in the center of each juse large enough for the bar, which may be any piece of hand wood from 12 in. to 18 in . long. To one pert of cement and two parts of sand add water till the and and cement have thoroughly mixed. Pack this mixture tightly into the cans and insert the wooden disks in the ends. Push the hardwood bar through the holes in the inside disk so that it runs past the center of each cun of cement and leaves a proper length of rod between. The two inner disks should first be atrung on the bar and a few nails driven into the cement tc give it a good grip.
After several days the cement will be dr. Then remove the tin and wooden disks. The cement may now be filed into any shape desired. If a dumb-bell of this kind is not heary enough it may be weighted with stones or metal mixed in the cement and sand.

## How to Make a Barometer

The barometer is an instrument used to measure atmospheric pressure. The meaning of the word is obvious if we think that it comes


THET RAROIRETH: from the Greek "baro," meaning weight, and "meter," meaning to mensure. The necessary parts are a glass tube $t$ in. internal diameter and about 34 in . - long, a bottle 1 in. inside diameter and 2 in . high. Seal one end of the tube by holding it in the flame of a gas burner till the glass is so soft that it can be pinched together with pliers. Put a little paraffin in the bottle and melt it by holding over a small flame. When cool, the paraffin should cover the bottom to a depth of $1 \frac{1}{6}$ in. The tube should now be filled with mercury, which should be "redistilled"in other words, there must be no air bubbles separating the particles of mercury. In filling care must be taken to see that the mercury completely fills the tube. The glass bottle containing the wax covered bottom is now placed over the end of the tube and pressed frmly to
insure an air-tight fit. The bottle and tube should now be inverted. After a few ouncea of mercury have been poured into the botle, the tube may be raised out of the wax, but the edge of the tube must not be brought above the surface of the mercury in the hottle.

The instrument ahould be laid aside while the base is being made, or, if your prefer, make the base first, so that it will be ready. Cut a wooden base 3 in . wide, 40 in . long, about $\boldsymbol{f} \mathrm{in}$, thick. Chisel a groove lengthwise to fit the tube; and at the bottom deepen and widen it, so that onehalf of the diameter of the bottle rests below the surface of the board. Brass strips, or lenther, if brass ones are not available, should be used to secure the tube and bottle to the hase. After the instrument is in place put enough merrury in the bottle so the depth of the mercury abore the bottom end of the tube will be about $\frac{1}{1}$ in.
Make the scale on a strip of cardboard 2 in. wide. Mark off 6 in ., divide them into sirteenths, and number from 26 to 32 . The sale should be fastened to the base with glue or tacks, either beside or behind the tube. priferably the latter because readings can be more easily taken. Before fastening the scale compare the instrument with a standard barometer and adjust the scale so that the readings are the same.

The normal pressure of the atmosphere will keep the mercury a trifie below 30 in . In general a drop of the mercury indicates storay weather while a rise indicates fair weather.

tabe of t tabe bein ing D. I ion whee ap pulley hige for piece of $h$

## How to Make a Steam Engine

A tos of model engine can casily be made from maverial found in nearly every home. The cyinder A (Pig. 1) in an old bicycle pump, cut iin hall. The cteam cheat 3 is part of the piston


TOI BLTAM mianse (Fig. 1)

tube of the same purap, the other parts of the tube being used for tie bearing $C$ and the bearing D. The fly-wheel E may be any small-sized ivon wheel, such as an old sewing-machine wheel ${ }^{a}$ a pulley wheel. It the bore in the wheel is too hrge for the shaft, it may be hushed with a pree of hard wood: to bush the bore cut out a
circular piece of wood to At tightly into the opening; in this piece of wood then cut a circular hole just large enough to admit the chaff. The shaft may be made of heary ateel wire, the aive of the hole in the bearing $D$.

The base ahould be of wood on which are fastened two hlocks $F$ and $G$, $i$ in. thick, to support the bearing $D$ and the valve crank $H$, which is made of tin. The bove K leade to the boiler. The clips M are soldered to the cylinder and nailed to the base, and the bearing $D$ in factened by staples.
The piston is harder to make, because it muat fit clooly into the cylinder and yet move freely. It may be made of a stove bolt 1 (Fig. 2), with two washers FF whinh just fit the eylinder. Around the bolt winu soft aring to the width of the washers. Before winding it would be well to saturate the string with thick oil. A alot muat be cut in the end of the bolt $A$ to receive the connecting rod C. Solder or a pin as ahown in the diagram may be used to hold the rod C in place. The valve D is made of an old bicyclo spoke $E$, with the nut cut in half and the apace between filled with string and oiled, just as was done with the stove bolt. Bore a hole in the bottom of the cylinder and another of equal size in the side of the piston tube in which the valve D works. Then solder these picees together $s 0$ that the holes leave a free opening. The valve crank H (Fig. 1), already mentioned, may be cut from a sheet of heary tin or gat vanized iron, and is moved back and forth by a crank on the shaft. This crank must be at right angles to the main shaft.
The boiler may be an old oil, powder, or syrup can with a tube soldered to it. This tube should be connected to the engine by the subber E of Fig. 1. A good Bunsen hurner or small gas stove will furnish enough steam to run the engine at high speed.
Now that we have set up the engine we may study the manner in which it works. The water in the boiler becomes steam when the heat underneath is sufficiently great. Through the tube $\mathbf{K}$ this steam is let into the sylinder when the valve D (Fig. 2) is at the leit of the opening. The pressure of the steam forces the piston upwards, thus turning the crank C and the fly-wheed E . The turn of the fy-wheel works the valve crank H which in turn forees the valve D to the right. When the valve is to the right of the steam in-let the steam will rush out as shown by the

## The Eoy's Watahep

suow in Fis. 2. Now that the cylinder A is empty, the piston will return to the botrom, thus turaing the dy-wheel again, changling the poaition of the amall valre B (Fig. 2) so that mons acom will enter the cylinder at A. As long as there is enough seam
in the boiles this process will continue. The operator should be careful that no semem cempess at the joints or connections. When the machine is in good running order wo can sun a belt over the Gy-wheel and let it wort for us.

## The Woodsman and Camper

There comes a time in the life of every boy when he wants to go camping. Thin is a natural deaire which abould be encouraged and led into proper channels rather than suppremed by the objections of parents. The wiah to go camping may be due to a variety of reasons, but it is inevitably a healthy desire. Nobody but the verieat "teaderfoot" now thinks of camping as neceuitating hardehips; the camper, young or old, can be just as confortable as he is at home. Not oaly has be comfort, but he has the freedom of all out-ol-doors.
Equipmont and Mothing. In an article of limited scope it is possible to give only a few ruggentions which may prove valuable to all campers. Each party must determine for itself what camp and personal equipment shall be taken. The question of food is abo a matter which must be determined according to the likes and dislikes of the individual members. Each member of the party, if poseible, should have his waterproof canvas bag for clothing-the lesa clothing the better. Four pairs of woolen socks, two gray flannel ahirts, two sets of woolen underwear, a suit of woolen pajamas, a pair of trousers and a woolen sweater will be all the extra clothing needed for camping in the woods in the fall or early spring. Woolen garments are better than cotton, because they dry more mapidly if wet, and generally keep the body at a more even temperature. The best sort of $a$ hat is an old soft felt one, with a moderate brim which will shed the rain. For summer outings some light clothing will be necessary, but even in the hottes months woolen clothing and a sweater should be on hand. Just what additional things to take one will know only after he has camped out several seasons. Take an extra pair of shoes and a pair of moccasins if possible, some threed, needles, buttons, a pair of scissors, a toothbrush, a pocket comb in a case, several towels, a small mirror, a note book with a place for a pencil in the beck. Do not take ink. A compass and a waterproof match safe will be useful, especially in the woods. Keep this match mie only for emergencies and never leave camp
without it. In any camp there musk be serend good jacklcnives, a $m$ m, axe, nails and twine The average boy will find that a magnitying ghen and a field ghe will add to his enjogment, for both will enable bim to get in clowe touch with nature.

Ohoosing a Bite. Strange as it may meem, not many people are able to select a good camp ing ground. Few people think that a camp seally is a camp unleas they can see water from the tent. There is always the temptation to make camp on the edge of a lake or stram. This should never be done, as the low ground is damp and generally infeated by mosquitoes. If there is no high land near the shore make your camp on some point projecting out into the water, where the cursents of air keep mot of the moequitoes away. It is more important to have the camp near a good supply of wood, as it is easier to carry necessary water than the firewood. If you can find the right sort of a place make your camp on ground sloping to the south; this will give the sun a chance to shine into your tent. Never build a camp in dense woods, on account of falling timber, or where water will settle after a rain, or near dead wood or underbrush, which is always a breeding plece for mosquitoes and other insects.
Oamp Fires. After locating your camp the first thing to do is to get a fire started-easy enough when there is plenty of dry wood, but difficult, when there has been a long rin and everything is soaked with water. In raing weather, if you cannot find dry wood, hunt for a cedar, as it splits and ignites easily. After you have chopped it into firewood, take some of the smaller pieces and stack them in a pyramid to make a draught. Then from the dry heart of the tree whittle enough shavings to start the fire. If you cannot find a cedar you can genernlly get some dry birch bark on the lee side of a tree and some dead twigs which will give enough of a blaze to dry the firewood. There may be no birch or cedar; then the only thing is to chop into a fallen tree for dry wood and whittle shavings. If it is still raining, build the fire

## gio Elegre Wortabey

whe tee side of come tree or boulder. Never aderesimate the amount of Arewood required tre the nighe; it is better to have too much than whunt around for more brfore daybreak. In th winter time never make camp fire under a tow covered with snow, as the heat will melt mow and the water may put the fire out.
Thare are various ways of building a night fiv; caly one of the simplex will be described wre. Pirst eut two green ctakes and drive them mexiagly into the ground. At right angles to a the between the rakes lay on the ground two hrge, green logs for fire-dogs, and on these pile all auff and dry wood. Pile fivefoot logss geinat the stakes and then drive two more merkes to hold them in position. As the bottom ho aginst the stake burns away the one sbove

For cooking and baking, a bed of hot coels is generally better than live flame; only the novice piles on more wood when be begins to cook. There are a great many ways of building the fire for cooking and as many waya of arranging and supporting the utensils. If a high wind is blowing and the camp is in an unprofected apot, it may be wise to dig a fire hole, so that the hot coals will not be blown away. The simplest way, however, is to level of the tops of two green loga, and after laying them eight inches aport at one end and four at the other. to build a fire between them. Another method is to hang the coffee-pot or tea pail from a crane made by driving a crotched atick into the ground and resting a long green pole in the crotch, one end being held down by a atone or


## THREE WAYS OF BUILDING A CAMPFIRE

in ill drop in its place and you will have a tee which will burn evenly all night.
One glance at the fire will tell what kind of 1 cumper built it. The log fire just described nill throw its heat forward into a tent or man-to, and will last for hours, but it is useless br cooking. As a general rule, hardwoods make sood, olow-burning fuel that yields lasting coals, and aftwoods make a quick, hot fire that is mon spent. The following woods will burn mancly at all when they are green: Aspen, bhat ash, balsam, boxelder, pitch pine, sycawor, tamarack and popular; chestnut, red oak and red maple burn very slowly when green. all of the soft pines crackle and are likely to ppp; certain hardwoods such as sugar maple. bach and white oalk, must be watched for a time atter the fire is started, because the embers they hoot out are long-lived and hence more dngerous than those of softwoods. The best dill firewoods is hickory, green or dry; it mies a hot fire, lasts a long time, and burns durn to a bed of hard coals that keep an even
bat for hours.
a $\log$, the other end being over the fire. The common way, however, is to set two crotched sticks in the ground one on each side of the fire, and put a cross piece from one to the other; from this cross piece hang forked sticks, with nails driven into them at various heights to hold the pails. Frying may be done over two logs rolled into the fire. In a permanent camp three pieces of lead pipe, wired together, are often used as a rack.
thelter. The most quickly constructed shelter is made by leaning three seven-foot poles against a fallen tree, and then spreading your tarpaulin or rubber blankets over the poles. $\mathrm{Be}_{\mathrm{e}}$ sure the tree is flat on the ground or there will be a draught under it. The most popular brush camp is the lean-to, the only practical brush camp to have when there are more than three persons in the party. First drive two crotched sticks into the ground about eight feet apart, and on these put a stout sapling. Against this lean poles, about a foot apart, making them secure at the bottom by sticking them into the ground or by rolling a log against them. On
the framowerk, and up and down the siden lay mamiock or epruce boughe, which should be lopped like ollinglee wo that they will abed the nin.
Theo brumh sheltern are good enough for a temporary camp, but if you are to cmpp for a comiderable length of time a teat will be a great convenieace. She kind of tent you buy will depend oa the number of people who use it and the price you areowilling to pay. A good teat is a luxury, but a poor tent is an abomination; buy the beet one your purne can afford. A twat abould be easy to set up. It ahould shed hoavy zuina, and should atand securely in a strong wiad. It ahould keep out inemets and cold drafts, but let in the rays of the camp-ife and pleaty of pure air. It ahould be cool and siry on summer dayn, but warm and dry at night.
in recommionded. In this cuse poler are not abo Iutely necemary; a strong tape may be nund along the ridge of the teat, ending in a loop at each end from which a light rope in atretctod between two treee, the ropes being made tuut by two poles bracing it at each end and outide od the tent. In aeting up an $A$-tent most campen uee center poles at the front and back to suppon the ridgepoles; the accompanying sketch show a simple method of setting up a tent without using the center poles. First cut a ridgepole and four diagonal supports of the proper length. Tie two of the supports with marline two feet from the ends to hold up the front end of the ridpepole, and tie the other two poles in the mume way for the back end. Through the top of the tent sun a rope about two and a hall times as long as the tent; then lift up the ridgepole and

three mtilis or tinve

Probably no single tent has ever been devised which will fulfill all of these conditions at the same time; certain kinds of tents are better for

one purpose than another. For a fixed camp, a wall tent is generally preferred, because it is easy to set up and has plenty of head-room. For extreme lightness and ease of pitching the $A$-tent
the tent and support it by the diagonal braces. Tie the long rope to short stakes driven into the ground about ten feet from the front and back ol the tent, then spread the braces till the tent just touches the ground and is ready to be pegged down. When the tent sags, as it always will during s rain, you have only to pull in the poles at the bottom in order to make everything taut again.
After the tent is up the first thing to do is to level of the ground. You should decide how you will hay your bed and level the ground so that your feet will be lower than your head. The details of furnishing a tent can be meedy mentioned here; racks and hooks for pots, guns, tools, clothes and game will be needed. If you have a fioor cloth, spread it out; if not, cover the ground with balsam or cedar twigs and shoots. If your tent has an awning in front, that is just the place for a dining table. Inexperiened campers generally omit one other detail which is necessary to comfort. If the ground, as it should, slopes from the hack of the tent to the froat, dig small trenches at the back and sides, about six inches or a foot outside the tent. In severe rainstorms no other devices will keep the insido of the tent dry and comfortable. A little expo

## The Dog's Worturiop

his outat from yese to year. Lack of experimen chould mever deter any ose from cempline.

## How to Build a Punt

The olmpleat kind of boat to build in a punt, - fuchottomed boat; any boy who known how - luade ordinary toole can build one. It in not mecuary that he have any tools but a hamuner, manevl, handenw, and some naila; but the addi: in of a ject and amoothing plane, tenon marr, rib, aquare and bevel will reuilt in quicher and buer work. Almoot any wood may be med; ad for naile, common iron nail, is hented to a dill ned in the fre, and then allowed to cool gmolully, will do. Better nails ahould be umed, "pomible, but the amateur craftaman should ato lann to make the best of the materinal on mad.
Batore designing a punt, the builder alrould thow the purpose for which It it intended. Inci-
llaving fixed on the dimention, you murt melect the material; for thin red phate of apruce will be beat and cheapest. For mails uee copper bont naile or, if these are not available, gulvanleed irom nails. A fow atrong hron screws will atoo be neaded. Before beginaing to bulld the boal It will be best to sot up two horms or treaten, so that you may work on the boat at a coonvenient height. These horses may be firmuly fustened to the ground, if you are working out of doors, by burying the loge a few inctices in the soil.
1 For the sides of the punt une two planks, 8 ft . long, 1 ft , wide, 1 in . thick. First draw a line from one edge. 18 in . from each end, to within one inch of the other edge and end of the
of the plankes so that the ende will be juat $2 \mathrm{te}-\mathrm{th}$. apart. The punt vill have as oven better chape It the botiom edige are only 2 ft . apart and the top edgea $2 \mathrm{fth}-\mathrm{f}$ in.; the bottom edree may cacily be drawa in to the deused width.

For the two side atringers cut stripe of pine 3 fl , long and 1 in . square; each of thees must tor carefully nailed inaide the punt to the bottom alfe of the planks, no that they project about u. eighth of an inch. This is done so that when the sottom of the punt in put on there may be a lit le reeem lor calking (as at B, Figure 2).
met. The ammateur must exercice great cars the theo are all on the mame hevel with the botm of the stringur, otherwie they will make it dis cult to put on the bottom. The botiom artip, ahould all be pus oa the sume silles of the aite frames, to that the spacer between them may be even.

The ends remain to be finisherl. Pist, cuta pine atrip an inch aquare juat long enough o fit firmly between the ends of the stringen; thin must be placed so as tos project a little begood the bevel of the side planke, (as shown by the doted lines at A) and on a level wilh the


Fie. 3.

The two planks forming the well will interfere with the placing of the stringers, so they must each have a small recess cut into them to allow the stringers to pass through. In nailing on the stringers nals must be driven from the outside and riveted or clouted before proceeding further.

Now cut out twelve knees ( $\boldsymbol{A}$ in Figure 2) of one-inch hardwood planks; these should be placed 12 in . apart on each side. Light iron knees are preferable; but the wooden ones, if carefully selected so that the grain runs as far as possible with the curve and for some distance up the long arm of the knee, will be fully satisfactory. For bottom strips cut pine one inch square of the length required to fit snugly across the punt. Put in each set of side knees and bottom strips complete before putting in another
stringers. To hold this in place nail a hardwood knee 1 in. high, each arm six inches long, on each end, (as shown at B, Fig. 3). Now put in a stringer from $A$ to $D$, and knees and botom strip at C. Plane the ends as shown in the illustration. All the nails must now be carefully rooved and riveted or clouted as shown.

The bottom must now be put on. If possible use three planks matched and groovel, 5 tt. long. by 1 ft . wide and 1 in . thick. Bore hols for all the nails that go through the botom planks with a fine bradawl. Now bring the firt plank down on the frames at each end and secure it lightly with one nail. Do not drive the nais home till you are sure the planks fit property. The ends of the planking will probebly projet at each end of the punt; these projections may
tho at w the All minting cllking ppring much th
it orers:
mexp it
oot catcd
wick inte
in in colk the stick thlow in in: it th man be

## Introd

 to ty to $u n$ paple bel te suill sp Te peak ve iare lo isoly 10
## The Sog's Wortatiog

 bannd efl heer. A cont of thick paint on the nave and grooves juat belore the phanke are pan will holp to keep the bottom water-iight, ter be careful not to put in too much, eleo the phale will not clowe logether. If the botiom fits pupely drive bome two more nalls through each thit where it cromes the frame. You will mobely neod an assbtant to back up these naile the a heavy hammer or anvil while you rivet - dout them. Now saw of the enda of the pinks and the end frume an shown at A (Fiz. 3)
## The Beg's Wertatheg

that will fit nicely into the seam to be stopped when it in comproseed under the mallet; dip the oakum plece by plece into the hot plich itll it becomes maturated, and then drive it into the opening: with sharp, quick blows of the mallots and chisel. Some experience in mended to calk well, but several trials will enable even an amatour to do creditable work. Fill the cracks quite full, going over them two or three times if necemary. The chinel will constantly atick to the oakum and draw It out of the scams unlens it to dipped into


FIG. 4
tho as $D$. Put in the ends, in the same manner $w$ the bottom, and clout the nails.
All that remains is the calking of the seams, pinting and Atting. For calking you need a alking chisel made of hard wood, and any light pring mallet; if you bave a calking iron, so much the better. In preparing pitch first melt it over a gentle fire, mix a little tallow with it, leep it well stirred, and be careful that it does eot catch fire. To test the quality, dip a little wict into it and cool the pitch that adheres to is in cold water. If the drop that hangs from te ntick is brittle it shows there is not sufficient allow in it, so more must be added and mixed i: it the drop is soft and sticky more pitch max be added. Wind oakum into a loose evind
oil whenever the tendency to stick appears. After all the seams have been calked give the inside of the boat a thin coat of pirch; finslly, after the pitch is thoroughly dry, the inside should have a coat of paint to fill up all the little cracks and joints. The builder may it he desirea, deck the ends and the box in the middle; this is such a simple matter that explicit directions are unnecessary. For painting, dark gray or green is the best color; two or three coats should be applied at intervals of five to seven days.

The putt is now completed. If you have built with or moderate skill you will yet have a serviceaur craft that will lest for many years. With a pole or an old oar you will be able to prope 1 your lioat in any direction you wish.

## Electricity for Boys

Introductory. Before we study ome of the to which electricity can be put, we should try to understand its nature. Many years ago peaple believed it to be an incrisible fluid. So Tre stiit speak of currents of electricity, just ess reppeak of currents of atr or of water, though me inve long since realized that the expression is my a comparison.

Let us see where this resemblance lies Our diagram represents a pump $\mathbf{P}$, from which flews a stream of water controlled by a valve V. When Fe open the valve $V$, the signal apparatus $D$ enables us to perceive the flow of water. Thus we see the "circuit" completed or "closed." When we close the valve the stream of water ceases to flow. Meanwhile, the pump drives a

## Two Poyis Wortolhoy

atendy tream of water; in other words, it supplies - water-driving or water-motive force.

Instend of the water "circuit" let us now andy the aimple eloctric círcuit. Wie have wires inctead of pipes; a battery instead of a pump, a tranemitting (or sending) key instend of a valve; instead of the signal apparatus $D$ we have a "receiver" or "sounder;" instend of water we have electricity. Before, we had water-wnotive force, now we have electro-motive force. If we apply presure to a atream of water, the particles

of water will first resist, then slowly change their course. These tiny particles are called "molecules," from the Latin word "moles" meaning mace, and the ending "culus" meaning small. In much the emme way a wire and the air about it resist an electric current. If the molecules yidd quickly and take up the electricity we speak of a "low resistance." Just as a long small pipe will offer considerable resistance to a large stream of water, so a long thin wire offers a "high recistance" to an electric current. Thus we see that the electric circuit its very much like the water circuit. Yet it must be remembered that electricity is not a real fluid, like water. Scientists today are coming to believe that electricity only travels along the wire, that is, really in the air, not through the wire at all.

Now you will ask, "Where do I get this current?" and "What is a battery?" For the purposes of experiments such as boys can perform at home we use "aills," or groups of cells called "battrries." Any boy can make enough cells for a home-made telegraph or wircless telegraph system, as well as for doorbells and dozens of other useful things.
Tools. Before we start work of any kind we must have tools. It is not necessery to begin by purchasing an elaborate set. Little by little, additions can be made as they are needed. Still, here are certain tools that are indispensable:

1 large pocket-knife.
Fine pen-knife.
Drill and bits.
Pair of cutting pliers.

## The Eog's Wortahop

Pair of large scimors for cutting metal.
Pair of amall sciseors.
Several files, lurge and amall.
Hammer.
Mallet.
Brad awl, gimiet, pincers.
Small bench vise.
Small anw.
Soldering iron.
Spirit tamp.
Wheel glass cutter.
Pair of compasses.
A two-foot or three-foot rule.
Of course, such tools as planes, chisels, screwdrivers, will always be used. A pair of old gloves will be found useful, especially when working with batteries.

If the amateur plans to keep a little stock of materials and tools as he needs them, and especially if he keeps his workshop in order, be will do better work than if he has many useless tools but is careless and slip-shod. The folloring materials, however, should be kept on hand:

Glass rods, from $\frac{1}{}$ in. to $\frac{1}{2}$ in. in diameter.
Ebonite rods, from in. to $\frac{1}{2}$ in. in diameter.
Glass tubes, from $\frac{1}{f}$ in. to $\frac{1}{2}$ in. in diameter.
Guttapercha.
Glass bottles.
Sheets of glass; every piece is useful.
Tinfoil.
Sheet ainc and sheets of tinned iron (such as clean beef tins or sardine tins, which may be cut into pieces).
Shet copper and brass.
Brass rod, about $\ddagger$ in. in diameter.
Solder and soldering iron.
Chloride of zinc, rosin, needles, watch springs, white hard varnish, red lead, glue, copper wire of various sizes (better buy as needed), and at leest a dozen telephone terminals or binding posts for making good connections
Battorios. We are now ready to study some of the simpler forms of cells and their arrangement into batteries. Cells may be classified as single-fluid and double-fluid. To the first class belong all such as do not require a partition of any kind between the fluids surrounding the tro plates (or "elements") in the cell.
The second class includes all those in which the fluids are kept from mixing directly. This may be done by a porous cup, sawdust, sand, difference of specific gravity or weight, ect. Most of :. - erials can be purchased chapply from any electrical supply house. Many of thers L... 3 dade or found at home. Ofd

## The Boy's Worlohop

ghes fruit jars can always be used as containers. Acid-proof cells may be constructed hy gluing together with good hape, roquired. After they are thoroughly dry, these cells must be sonked for a few minutes in hot melted paraffin wax, and then allowed to dry and harden. Cells of this kind will withstand any acid, and even a solution of copper sulphate. Porous cups for the double-fluid cells are cheap, but they can aloo be made from any good clean yellow clay, kneaded to free it from stones. This may be moulded to the desired shape, allowed to dry perfectly, and then gradually heated to redness in any ordinary fire. The addition of powdered grphite or even charcoal will improve the quality. The simplest cell is known as the "simple voltaic, " named after Volta, an Italian physicist. This consists of two plates, one of sheet zinc, the other of sheet copper (or graphite) set in a


A BIMPLE BATTERY OR CELL

## The Boy's Workahop

with a rasp. Round the edge of the cover draw a line $\frac{1}{3}$ in. from the top; then with a flat rasp or file make a shoulder hy rasping away the wood on one side of this line for a depth of $t$ in., so that the cover can enter loosely into the neck of the jar and rest on the shoulder. The cover should be soaked in melted paraffin wax, till hubbles cease to appear, evidence that the wood is now waterproof and will act as insulator. It will now be necessary to bore holes through which the wires from the plates in the cell may pass. To hold the wires regular "terminals" or hinding posts should be used, if possible. For amateur work in general it is better now to connect the "negative pole" (that is, the wire coming from the copper plate) of one cell with the positive pole (that is, the wire coming from the zinc plate) of the next. These wires should be soldered to the plates or otherwise fastened so that the connection is clean.
A useful cell for amateur work is known as the "chromic acid cell," which gives a heavy current for a short time. Two carbon plates and one zinc plate give excellent results. The zinc plate must be amalgamated hy moistening with diluted sulphuric acid (1 part acid to 20 parts water), a drop of mercury being put on the surface of the plate while the ruhhing is going on. The zinc must be polished till it shines, then rinsed and allowed to dry. To charge the cell, the following mixture may be used: Chromic acid. ..................... 6 oz. Water. ........................... 1 qt. Chlorate of potash.................. $\frac{1}{1}$ oz. Oil of vitriol (sulphuric acid)....... 6 oz. Dissolve the chromic acid in water; add the chlorate of potash, and stir till dissolved; then add sulphuric acid slowly and allow the mixture to cool.

When not in use the plates should be removed froin the cell, kept in boiling water for five minutes, then allowed to dry. Extreme care should be used in handling sulphuric acid, to avoid splashing, as a drop of this acid on the hands will cause a bad hurn.
To give a list of all cells made today is impossible. Different manufacturers give different names to cells which are essentially the same. Iractically all cells in commercial use today use zine as the negative clement; it is with the positive element and with the exciting fluid that new combinations are formed. There are a number of standard cells, however, which are of use to the amateur and may be bought from any dealer. Below are a few of the better known:

The Eog's Wortmhop

| Nang or Cixl | Nraativz |
| :--- | :--- |
| Bunen | Zinc |
| Daniell | Zinc |
| Grove | Zine |
| Lalande | Zine |
| Leclanche | Zine |

Poartive<br>Graphite Copper Platinum<br>Copper or lron Graphite<br>The Boy'a Fortahop<br>Excringa Flutd Diluted sulphuric acid Zine sulphate solution Diluted sulphuric acid Caustic potash solution Ammonium chloride solution

Dealers' catalogs and books will give informetion about dozens of other cells. In putting together a double fluid cell care ahould be taken that the plates do not touch each other. One plate must be set in the porous cup and the other in the container. The ingenious boy will cesily arrange these details when he has the materials at hand. In any case, it is wise to ask advice of experienced electricians, who will always be glad to answer intelligent questions.

Storage Battory. No doubt every boy has heard of a storage battery and has wondered how to make one. For connecting door bells and other uses for which a murrent is necessary for a long time. a storage battery should be used. It must be charged from a working battery, but it has then stored enough electricity to serve a long time. Take two sheets of it in. lead, each about 6 in . wide and of any convenient length. Place one on a flat table, then place lengthwise on this sheet three strips of india-rubber (asbestos cloth or other insulator), but only $\frac{1}{} \mathrm{in}$. wide, at equal distances frem each other. Over these lay the second lead shect, over this three more rubber strips. Roll the aheets into a tight spiral on a wooden cylinder and solder a strip of lead or "lug" to one end of each sheet to make connections. A glass or glazed earthenware jar should now be fitted with a cover of paraffined wood, such as has already been described, with two small holes for the connections. The spiral should be tied together on the outside with a guttapercha or indian rubber band. Pour a mixture of ten parts of water to one part sulphuric acid into the jar and then insert the spiral. In mixing sulphuric acid with water it must be remembered that the acid must be added in a fine stream to the water, and must be stirred, preferably with a glass rod. Never add water to the acid. We now must "form" or "charge" our battery. A current of electricity must be passed into it until small bubbles show themselves at one of the plates. Then reverse the current, by reversing the wire connections. This process will probably take a week or more, till the sheets have become sufficiently spongy to hold a considerable charge. An easy way to shorten the time of
"forming" is to dress the surfaces of the plates with a paste made of red lead and sulphuric acid before rolling the sheets. Two or three charges will then probably be enough to "form" the storage battery.

## The Tolograph

We have now reached the point at which we can begin to make use of the principles we have studied. We can explain only a few of the uses to which the boy with a turn for mechanical or electrical work can put this knowledge. Once he has grasped the chief principles be will find many uses for their application.

One of the first uses to which this knowledge may be put is in the construction of a telegraph aystem. Our diagram illustrates a simple teve

SMPLE TELEORAPH SYSTEM
graph circuit, in which LL is the wire, $A$ and B are the stations, C is the battery, and $G$ and G are metal plates, water pipes, or any metal that will conduct the current into the ground, thus completing the circuit. The simplest instrument is the sender. Any boy can make one with a piece of hard wood, planed and squared, about $5 \times 2 \frac{1}{2} \mathrm{in}$. $\times \frac{1}{1} \mathrm{in}$. for the base; a piece of thin spring steel (side stee! such as used in corsets will do) 4 in. long and $\frac{1}{1}$ or $\frac{7}{3}$ in. Fide; 2 the phone terminals, or nuts and bolts, one thumb tack, one $\$-\mathrm{in}$. wood screw, a strip of thin shet brass $j$-in. wide and 1 in . long, a bit of rouad


Honak
it tho
danne
moned
and 80
phoce
paritio
strike
apring
faishe
make. cletro magret

## The Eoy's Wartahop

bress rod $\frac{i n}{}$. long and it in. in diameter. Drill a hole through the brass atrip, $\{$ in. from one end, just large enough to admit the shank d one of the "terminals" or bolts. At onehalf inch from the opposite end make another hole jurs sufficient to let the point of the drawing pin pan through. Place this brass strip on the base bourd with smaller hole inward, as shown in the stectch. Drive the thumb tuck through this hole, giving one or two taps with the hammer to make sure that the head of the drawing pin makes good con-


TRANBMITTER, OR EEY thet with the brass strip. Then fasten the bolt. To get the seed spring in proper shape heat the ends over the flame of a spirit lamp till they become dull redhot. Allow the steel to cool padually, then, at 1 in. from end, bend the pring to an angle of 45 degrees. Punch or bore an $t$ in. hole one inch from the end, large enough for the wood screw; another hole a half inch from the end for the other terminal. About $\ddagger$ in. frum the other end of the spring drill a hole to admit the it in. bit of brass rod, to which a bras button or piece of polished hard wood hould be fastened. If the brass button is used it should be soldered. The spring should be clanad with emery paper. Then place the butmood rod half way through the hole last made and solder it at right angles to the spring. Then plece the spring on the kase board in such a position that the projecting end of the rod shall strike the center of the thumb tack. Fasten the spring with screw and bolt. The key is now
finished.
The receiver or sounder is a little harder to make. In its simplest form it consists of an dectro-magnet-i. e., iron which becomes a magnet when an electric current passes through


DSCEIVEA it-with an "armature," or arm, which is attracted to the magnet when the current passes through the circuit. Thus when the key is pressed down the current flows through the magnet, which attracts tice armature. When the key is released the arm fies back to its original pasition. All sounders in common use have an additiona! brass pin or other mubuance which the arm strikes when it flies bact. The tap and release of the key there-
fore causes two taps of the counder. A code of taps can emily be learned.
To make the electro-magnet, 2 piece of soft iron or iron wire is needed as a core or center. If wire is used the process is simple. Around a smooth pencil or rod i in. in diameter roll six or seven turns of stout brown paper 2 in. wide, fastening down each successive turn of paper after the first with a little paste or thin glue. Cut two disks of stiff cardboard 1 in . in dimmeter with a hole in the center just large enough to fit over the roll. These disks should be firmly glued to the ends of the roll so as to forma a spool or bobbin. Fill the tube with io sufficient number of straight pieces of iron wire, each exactly 2 in . in length. The ends of the wiree must be flush with the tube at one end and project about $\frac{1}{l}$. at the other, where they must be filed perfectly flat. At this projecting end a small piece of platinum wire is pushed in between the wires and the external portion coiled round upon itself so as to form a little button about $t$ in. in diameter; this should be tapped to lie tlat and smooth. The bobbin should now be wound with No. 36 silk covered copper wire, leaving a length of 3 in . free at the start and finish. Wind regularly and evenly from end to end, backwards and forwards, until the wire is wound on in layers. In order that the finishing end $3: 3$ not fy back and uncoil, it must be tied down, e bobbin by means of a length of fine silk thread. This completes the electromagnet.
To make the armature we file a small piece If soft iron till its dimensions are 1$\} \mathrm{in}$. long, of in. thick, and in. wide. At one end drill

on each narrow edge a hole, exactly in line, with a small urill (for example, a $\frac{15}{2}$ in. drill) to the depth of about in in. Across the broed edge, and about ${ }^{3} \mathrm{in}$. from the other end, place a piece of platinum wire, and having bent the ends round to the thin edges, solder the platinum to the rim at these edges only. Now we need a bracket for the armature. For this take a strip
 and bend it to the shape ahown in the illustration. A pin point $\}$ in. long is soldered to the center of the lower projection at A. Directly opposite in the upper projection drill a hole into which
still remains the problem of connecting the wire to the instruments. Telegraphic circuits may be divided into two kinds, the clowed-circuit and the open-circuit. For our purposes the open-ircuit is much more umeful, beckuse it doee not work the batteries when the line is idle. The closed circuit has a switch which "throws" the circuit "open," thus allowing the operator to open and close at will by the use of the key. We need not concern ourselves with these details. Nothing remains but to fasten the wire from the sender to the wire from the receiver, put the batteries in connection, as has already been explained, and then run a wire from each end to conneet with a waterpipe or into the ground. The earth, being a good conductor, completes the circuit of the current. This is known as the simple groundcircuit, and is commonly used today. The cut shows a simple arrangement for a short distance line. Closing either key will operate both sounders.

The boy who has studied the telegraph carefully will see many points and improvements which will make this amateur line more like that used by the great telegraph companies. For


CIBCUTT WITH TWO KEYS AND TWO SOUNDEBS instance, he may introduce into the circuit a second sounder, in the same room with the sender. This sounder will repeat the clicks of the key so that the operator can tell just what sounds are being heard at the other end. Then, obriously, he may insert a switch and have a receiver and sender at each end so that messages may be sent from both ends.

A two-point switch can be inserted so that by throwing it to one side the transmitter is put in circuit, and by throwing to the other side the receiver is connected Of course there must be a switch at each end. In this simple diagram the arrangement of wires and switch is shown when $\mathbf{A}$ is telegraphing to $B$. When $B$ wants to telegraph to A the switches must be thrown to the position indicaied by the dotted lines $C D$,
tuse reversing the connections. In a case of this kind it makes no difference at which end of the wire the betterices are pleced. Only one ground


TYuraRAFE CECUTX wireis necemsary ateech end, for the wires from receiver and transmitter may be connected and only one buried in the earth. After a little exa thind boy into the circuit would be easy to bring the line the more power is needed. The boy will then learn and enjoy much by using his ingenuity to work out new details once he has mastered the principles.

## Wiroloss Tolograph

Many boys have doubtless thought that they would like to experiment with wireless telegraphy, but have not tried because the principles seemed hard to understand or the expense too great. A set suitable for short distances can easily be conatructed at small expense. Instead of a wire for trunsmission we have to work with the atmosphere; wo produce a current of air, not in a stendy stream, to be sure, but in waves.
To produce these waves we need a sparking derice, or "oscillator." If we consider the origin of this word it will help us to understand what the instrument is; the word is derived from "occillare," which means to swing or vibrate. What we want, therefore, is a device which will cuse ribrations of the air. One of the simplest "sparkers" is an old buzzer or electric bell, conmeted to the key and a coil (or electro-magnet) similar to the ones we have already described under the heading Telegraph. Good spark coils suitable for this and many other experiments can be bought for a dollar or more, but the homemade will do. The key, coil and buzzer should be connected so that when the batteries are connected and the key is pressed the buzzer will "burs." Connect the binding post $C$ to one side of the interrupter on the buzzer, as shown at $H$. The other side is connected to one point of a tro point switch, whose blade is connected to a second binding post. One of these posts should be connected to the ground and the other to the "uerial." The "serial," that is the part in the air, consists of several wines placed as high as posable perhaps on the roof, and insulated from all surrounding objects.
The receiving apparatus consists of a telephone reciver and a "detector." The detector is a

## The Eas's Warteriop

piece of "silicon," which may be panchaval from any supply house, beld in place by two uprigh stripe of epringy bram beat to shape $0^{0}$ that presure is sufficient to hold the silicom. One of these at rips should now be connected to one point of the switch and the other lead to the ground. Another good detector can be formed by uaing two upright sticks of carbon, sharpened to wedfe shape at upper end, across which a needle may be placed. Two or three chromic acid cells will furnish enough power. Such an apparatus as this will serve to instruct as well as amuse the beginner. The better the instruments, the bettry the results. A better spasker can be made of three round brase bedstead balls (or brase rods). The middle one is fastened to a base board by means of a paraffined wooden peg screwed into the flange of the hall. The other two are fitted with 6 in . lengths of $t \mathrm{in}$. brass rod pared through a plug of wood which is then screwed into the ball. Care must be taken to ensure good contact of the brass rod and the inner surface of the ball. Remove all lacquer from the ball by means of fine emery paper, and always keep the balls polished by rubbing with chamois. If the terminals are fastened to the upright pegs as shown, the apparatus is ready for wiring, one of the terminals to be connected with the battery and the other with the coil. When the key of

spariter the sender is pressed down a practicallycomtinuousstream of aparta should flow between the three balls. If not, they must be moved back and forth till thesparks fly continuously. If three balls are not at hand almost as good results can be obtained by using two, by simply leaving out the center one.

A more elaborate device for receiving can be made if the operator desires further to improve his set. Lut uc legin by making a base board $12 \times 6 \times \frac{1}{3}$.; it we make a groove 1 in. deep and $\frac{1}{2}$ in. ide centrally along the length of the board. Glue another boand of the nume size with its 12 in . edge in the groove; two acrews reaching into the upright board through the lower board will help keep the upright in
place.
The first part necessary is the electro-magret, which we have already used as sounder for our telegraph line. We may use the sounder just as it is mounted. Then we must make the "coherer." We shall see in a moment why it is called "coherer." A small empty bruss cars
that the hammer of the bell just clears the tube of the coheres, 80 that the hammer taps lighty on the tube when the bell rings. $A$ wire from the right terminal of the electro-magnet should be inserted in the left terminal of the coherer. Connect the right coherer terminal with a binding-post near the bottom of the left-hand corner of the upright boand. About 1 in . from each end insert a terminal in the top edge of the upright. From the top right-hand terminal of the sounder lead a wire to the top righthand terminal on the edge of the upright. A second wire is made to connect the top right-hand terminal of the relay to the top of the bell; finally a thind wire is brrught from the top right-hand terminal on the edge of the board to the lower terminal of the bell. To complete the receiver connect the terminal of one dry cell to its terminal, and the terminal of another dry cell to their terminals. The cells should be placed at the sides or behind the apparatus, as it is essential that no metal be in front of the coherer. If all the connections have been properly made this receiver should give excellent results over a distance of four or five miles.

## The Tolephone

If we have gradually mastered the principles of electricity we shall find their application not as difficult as it may have seemed at the start. The telephone is one of the most interesting i-: struments with which to experiment. In its simplest form it consists of a bar magnet, around one end of which is coiled a fine insulated copper wire; the ends of this coil of wire are attached to two binding screws or terminals, by means od which connection is made to transmitting wires; in front of the end of the magnet around which the wire coil is wound is a circular plate of very thin iron, gripped at its edges but free to vibrate at the center. Nothing more is essential to the construction of the telephone. To carry on : conversation two identical instruments may be employed. The sound waves of speech striking the disk of iron cause it to vibrate sufficiently to touch the magnet; these vibrations are carried by an electric current to the magnet at the other end, where these vibrations are repeated. It is interesting to notice that we may still keep our figure of speech by speaking of sound waves that induce electric or magnetic waves.
To construct a telephone capable of truns mitting to a distance of two or three miles we need a pair of square bar-magnets, about 3 in . long. These should be capable of
closed end. The inside of the shell should be polished aga 1 before we pour in clean nickel or iron filings until the shell is about half full. The fllinga must be free from rust or grease. Now insert the stopper. When the current passes through this shell the filings eling together, or cohere-hence it is called coheser. Instead of the brase cartridge, a small ghass tube with corks for the ends may be used.

 , aerial; $Q$, binding post to aerial; $\mathbf{C C}{ }^{\mathbf{C}}$ points or sounder; G , detector; A , armature of busker; or sounder; G , detector; A , armature of busser; ing post, connect to battery.
In addition to the sounder and the coherer we need an electric bell and several dry cells of any need an electric bell and several dry cells of any upper right hand corner of the vertical board, upper right hand comer of the vertical board,
with the hammer of the bell downwards. A single screw through the center and near the top of the smaller board on which the sounder was
originally mounted will probably hold this in originally mounted will probably hold this in position in the left upper comer of the vertical position in the left upper comer of the vertical
board. Just below the level of the bell, at 3 in . on each side of the bell hammer, insert two terminals. Insert the coherer wires in the holes in the terminals, and adjust the wires so
tridge stell should be brightly polished both inide and outride with emery. To the center of the clowad end we solder a 4 in . length of No. 18 bave copper wire; to the open end we fit a topper cut out of any hard wood, which should. enter into the cartridge shell only to a depth of At in. Through the center of this stopper we drill a small bole to admit one end of another 4 in . length of copper wire. The wire should be pushed into the stopper to within $\frac{1}{3} \mathrm{in}$. of the te tern
maining ewch other it the marked end of the en be prosented to the unmarked end of the ather. In addition we need two amall boxes, pulembly round, about 21 in . in diameter and if in deep, a pair of thin iron plates such as are ued for "tin-types," two pairs of small binding screws, of any pattern, so long as they are amall, a piece of cylindrical white wood$a$ thick broom handle would do-about 1 in . in dinmeter and 12 in . long, and onefourth ounce d No. 36 silk covered copper wirc.
Let us first cut off two pieces of the wooden rod $4 t$ in. in length, and with a sharp knife split each one down the middle. With a $\frac{7}{i} \mathrm{in}$. chisel we cut grooves in the fiat face of each half cylinder just deep enough to allow the magnets to lie between halves when these are fitted topather. The grooves should extend the whole length of the rods, but at one end for a length $\alpha$ two inches the channels should be a trifie wider than the bar-magnets. The half cylinders wust now be glued together so that we now have tro cylinders with a square channel through the middle. Next we cut a round hole, of exactly the meme diameter as the wooden cylinders just faished, in the center of the bottom of the little boo. The top end of the cylinder (the end at which the groove is amalles) is then thrust into the bottom of the box from the outride, until it is just flush with the inside of the botom of the bor. A little glue should be used to make sure that the cylinder will not shift. Now in the center of the lid of the wooden boxes cut a circular hole 1 if in. in diameter, then glue a cone of stiff pasteboard into this hole. The cone should open and extend outwards for about an inch and be cut off flush with the inside of the lid; its purpose is to collect and reenforce the sound waves crated when we speak into the telephone. The next step is to cut two circles out of the tin-type plates of such a size as to fit exactly into the inside of the lids of the boxes. As any dents or links would destroy the usefulness of the plates etreme care must be used. Having measured the eract diameter of the inside of the lids, lay out a corresponding circle on a stout piece of cardboand; cut out this piece with scissors, and then, laying this cardboard piece over the iron plate, scratch lightly a line all around with the point of a pin. It is easy now, with sharp scissors, to cut the desired plate to size.
An even simpler reeciver can be made from at old baking powder tin-one-hall pound size it hrge enough. Solder a piece of heary wire a the inside about 14 in. from the bottom. If
we have a piece of hand neel or piece of an old file we can make the magnet either by contict with another powerful magnet or by pacing a trong current of electricity around in. One end of the core should now be wound with wire, just as was explained above.
For short distance experiments no farther materials are needed; for longer ditances it will be necessary to introduce an electro-magnet near the permanent magnet. The details of the many varieties do not interest us now. Put the magnet in its wooden cylinder, the iron disk in the round box so that the magnet is just clear. The magnet can easily be adjusted by aliding in in the grooves. In practice a gentie tap on the disk will tell whether or not it is touching the magnet-a clear ring shows it is free to vibrate; a dull thud that it is touching. The coil of the magnet should be at the further end from the disk. A disk of wood or stiff cardboand can be screwed or pasted to the end of the cylinder, holes cut through it to allow wires to be connected to the coil around the magnet. All that remains is to string wires between the devired points and connect the outside wires with the inside, as was done with the telegraph line.
No boy will be satisfied with the telephone as here outlined. In an article of this kind there is no space to devote to making suggestions for finishing or polishing the wood, making brackets, etc., for the instrument, and the many fine points which will be developed. It will be easy to make the instrument look more like the Bell telephone in commercial use hy using more expensive materials. Several dry cells connected with the magnets will help to make the experiment useful for greater distances. In short, there is almost no limit to the improvements which may be made.

## How to Make a Lightning Arrester

To prevent lighting from damaging any apparatus we can make a "lightning arrester." The sketch shows how to cut and mount three pieces of hrass 1 thin. thick. The upper binding posts on A and B should be connected to the live wires; the lower binding posts to the in-
 strument, and the Lammano anazotra post on $\mathbf{C}$ to a ground wire. Any charge of lighting will jump from $A$ and $B$ to $C$ and will rum into the ground without harming the instrument.


Why Wo thould Itedy Eodiong. We are all intereted in animals, and like to watch them and to leam about their habits; but it does not often occur to ue that such an interest has any connection with a acience with so forbidding a name ans soblogy. And indeed zoslogy is much more than a knowledge of the looks and the habite of animals; in its various branches it considers the form and aructure of organisms, their activities and their relations to one another and to their surroundings.

To be sure, one may be happy and prooperous and fairly well equipped mentally if eoblogy be never atudied, but certain facts relating to this aience ahould be known by everyone. An elementary knowledge of the subject will save one from frequent embarrassment. For instance, if the statement be made that a whale and a man belong to the same class of animals, the uninformed person may be tempted to deny the fact. The household cat and the lion, king of beacts, are related, and only a little study is required to trace the relationship and to learn why scientists so classify them.
The fact of these relationships has not always been known even to scientists; indeed, it is only In comparatively recent times that exact classifications of animal life have been made. Far back in ancient times, Aristote made studies of animal life, dissected specimens, and mado a certuin classification, and his work stood for the most part unquestioned until after the Middle Ages Some of it is accepted today, modern scientific investigation having confirmed the theories of the old Greek scholar.
Manta and Animala. The word "biology" means "science of life," and the science of biology treats of all forms of life, plant and animal. The fact that this one science of life
is compored of two distinct sciences, one of which-botany-treats of plants. While the other-soblogy-treats of animals, indicates that the two forms of life are distinct. Indeed, it seems to be a very aimple matter to distinguish members of the plant world from animats Usually it is easy; a bee on a flower, an ox grazing in a field of grass, a moth fluttering on a blowom are instantly classified. But there are among plants some with very simple 'r anisms and among the lowest species of animals some whose organisms are not in the least complex; to tell which is plant and which is animal is difficult indeed. One may say that the animal is alive and can move, while the plant, though alive, has no power of motion. This is an emror, as witness the sudden closing of the Venus's lytrap (page 200) when it entraps its food, the turning of some flowers so they will continually face the sun, and the twining of tendrils around sticks and strings. Most green plants live on inorganic matter-on carbon and carbonic acid gas-and this is what gives them their yreenness But some plants, the fungi, live on orpanic matter and are not green, and exist berause they are able in a wonderful manncr to change the organic matter they select for food into inorganir substance. Wher a plant substance is singlocelled and has cell walls in many respecta like those of single-celled animals, it is impossibic for the wisest scientist to tell them apart.

What All Animels Soed. A fish that has been taken from the water and left high and $\therefore$. on the shore will not live long; a cat or a if. or a man will die in even shorter time it 1. under water. This does unt mean, howrever, that a fish and a land animal breatbe diffierent substances-that one breathes water and the other breathes air. They both require



## Eaineg

the mane subutance, and cannot live without it; that metriance is als. But a fich is wo formed that " druwn the air is aeede from the water, which a had saimal canact do. No animal, trom the lowest to the highed, can live without aif, or mether withour that element of air which in called oxy gen.

Relettonatiph. Fartier in this discumion brief refersuce was made to some of the odd relationshipe that exirt in the animal world. This hom of the moat interexing toples with
ence. If we can imagite ourselve an meve having reen aay of the asimale before and the as being shown a woll, a collie and a litith black-and-tan, we will admit that we should be likely to acoume that the wolt and the collie were more clonely related than the collie and the little terrier. Wo have all watched cattle and aheep gruzing in a field, but it has protably never occurred to any of us to think of them as belonging to the mme family. And git a stady of the picture on page 748 shows witha

the cat pamilt

## 1. Cat. 2. Jaguar. 3. Lynx. 4. Lion. 5. Tiger.

which zoology deals. The word "cat" ordinarily means to us the little animal, gray or white or black, which plays "bout our homes; but after we have made the acquaintance of this science, the word "cat" gains a new meaning. It means the powerful lion, the lithe tiger, the graceful leopard, the sharp-eyed lynx-all wild, ferocious bensts that seem as different as possible from the household pet which we are used to thinking of as the most domestic of the animals.

The dog family is not so surprising. The woll, the dog, the fox, the coyote look much alite, despite their numerous points of differ-
not only these animals belong to the ox family, but the goats, buffalo and the bison of our western plains as well.
The bob white is a plain little bird, dreaed in quiet colors. Who would ever suspect for a moment that he belongs to the same family as the great bronze turkey or the gorgeous peacock \$ He may, however, claim such a reationship; and the guinea fowl, the partridge and our barnyard hens and roosters are members of the same family, together with the bird which has given its name to the whole group-the pheasant.

pares ben bar cam cores th white the regionsmin there mas moce in $c$ Lat us mon, a b

## Eellogy

## 208308

ramm Masce. Among the mow intereating ase maxy wonderful fects about the animal wodt with which soslogy ecquaints us is what b tiown as resemblance or mimicry. We have pathipe looked, in a soblogical garden, at the buri- the grizely bear, the cinnamous bear, the
huge brown bear, and mands out with atartling diatinetnew againat the white ground. Would he ever be able to come clow to his prey unobservedi But the polar beur harmonizen with his muroundings, and is almon unnoticeable against the white background. In the lorest

TRE DOG FAMILY<br>1. Saint Bemand 2. Foze doo Famin<br>2. Fox terrier. 3. Fox. 4. Coyote. 5. Wolf.

poler bear; and wo have known that the polar ber came from the arctic regions where snow wers the ground during most of the year, while the other bears come from more temperate negions-regions of forest and rock and mounhin. But probably it never occurred to us that there mes any particular reason for the differmase in color.
Let us imagine, in the region of perpetual mon, a bear creeping upon his prey. He is a
regions or mountain regions a white bear could be seen a long way off, while the darker-haired animals are much less conspicuous. The foxes and hares of the polar regions are pure white also, while a errtain kind of wensel which lives in a region where snow covers the ground during only a part of the year changes from its summer cont of reddish brown to a winter cont of white.
'There is one example of this changing of colors
with which we ase all favilliar; that if in the Mutie linard which we call the chameleom. Its obliliz to make ho eotor matel that of is surroundiage is commoaly overvatimated-it cannot change to any or every color; bus is does grade through various shades of brown and green.
Pertape the mois wonderful of these resemblances are shown among the Insecta. There is the locect known as the walking-utick, which,
bookes so exnclly like a withered loal that em eloce servetiny camnot alwayw diva inguish it. The deadteal colop in there, the short tail which looks exaetly like a leot salk, the mivlith, tho vein, and even the two colortess spms whinh resemble holes eaten our by inucta.
There in one other type of resemalanee of minaicry. This is men In the rase of the bam. by, noo-poimonous insects which iminate exanty


TEE OX FAMILT

1. Cow. 2. Head of antelope. 3. Rocky Mountain poat. 4. Sheep. 5. African buffalo. 6. Biton, or American buffalo.
with its long, slender, wingless body and its dull color looks so like a dead twig that when at rext it cannot be distinguished from the twigs to which it atteches itself; there is the greenlen! insect, which has broad, leaf-green wings, which show the veins, the markings and even the discolorations of leaves; and most wonderful of all, there is the huge dead-lea! butterfly. The upper side of this remarkable butterfly's wings are dark, with orange and purple markings; but when it settles on a branch to rest it folds its wings close over its back, hides its heid, and
in their color and markings certain poisoonss insects which really differ from them widely. By this mimicry the harmless insects are saved from the birds which would otherwise devour them. (See color plate Mimicry.)
When we use the words mimiery and rexmblance, we must constantly bear in mind one fact: that is, that there is no consciunustes, go intention on the part of the mimic. The insert or animal does not voluntarily imitate.
The Etraggle for Edistence. If all the animals that are born were to live, in a very
pecinal poben mention Past the ins fight Then the peries, or bores anly eno minats, Eigut. $d$ all spe dentic
就 may

## Edrloge

trit then the earth mould be crowded to suffo cman. For matance, it in stated that is all the Tw Ihil by tho congened wero hateched, and mir) luth enl grow and reproduced itsell, is mand tuko how than ten years for the sea to mones solidily full of conger-eela. It is clear the oaly a very small proportion of the animals ten marive. So fiere, indeed, in the aruareste, the $t$ is usually onaly by means of superior mincth, cunning of agility or by means of some

## Eoidog

meams the animal population of the world is kept down. In mone diatriety which are unlmhablted, the number of a certain apacies of animals retmains nearly constant; where man joins his dexructlve forees with thome of Nature, the forms of wild life diminish mpldily.

Zotlocy in thow Zooks. Trie Nisw Pruco tical Remazence Lamary has an extensive department of sobligg. Brallen the mumerous


## THE PILEABANT FAMILY <br> 1. Peacock. 2. Turkey. 3. Domestic hen and rooster. <br> 6. Bob white. 7. Golden phear. 4. Partrics.; ; ivimat fowl.

peial protective device, such as the mimicry poken $d$ in the last paragraph or poisonous mertions, that animals can live and thrive. Fiss there is the struggle within the speciesbr fights against fox, and the stronger wins. Then there is the struggle with animals of ofher pacies, and finally with the conditions of life, a fores of nature. If, in any given locality, any enough food exists for a certain number of mimats, all above that number must starve or ginte. Innumerable birds, insects, fish, animals d all epecies die of starvation; many die from dimatic conditions; in setted parts of the county many are killed by man. By all of these
are general articles on such topice as Zoclogy, Mimicry, Paranites, etc. All of the articles which bear on the topie will be found listed in the Classified Index under Zoology and Animals.
In preparing an outiine of a science a serious problem presents isself at the start: shall it be technical or shall it avoid seientific terms and arrangement? An elementary treatment of a subject, proparoul for teachers :unsl young pupilt, must aroid the technical phraseology of the specialist; the outline below ineludes all the important divisions of animals and disregards the many forms of life of which only the expert can take notice. It differs somerwat from the
clarification adopted in the article on 2oology in Volume VI, but only in the omiscion of matter that seeme uncmential to a general study of the subject. The derivation of technical words is expluined briefly, in ordes that the pupil may undertand that they really mean something and are more than a mere jumble of letters.

## Outling on Soolocy

I. Demintion
II. Divisions
(1) Systematic soblogy
(2) Distributional zoblogy
(3) Animal morphology
(4) Animal physiology
(5) Ecologic roblogy
(6) Evolutionary zotlogy
III. Classincation of Anhal Lifz
(1) Protvzon (first + animal)
(a) Monera (single + substance)
(b) Rhizopoda (from two Greek words meaning "root" and "foot")
(1) Foraminifera (having an opening or orifice)
(2) Radiolaria (so called because of the spiny projections which radiate from the center of the body)
(c) Infusoria (so called because found in infusions after exposure to air)
(2) Coelenterata (hollow + intestine)
(a) Medusme (so called because of the fringe supposed to resemble Medusa's locks)
(b) Polyp (polypus, meaning manyfooted)
(1) Sponge
(2) Coral
(3) Sea anemone
(3) Worms
(a) Platyhelminthes (flat + worm)
(1) Flat-worm
(2) Tape-worm
(3) Fluke-worm
(b) Nematelminthes (thread + worm)
(c) Star-worms
(d) Annulata (so called because of the ringed markings)
(1) Leech
(2) Earth-worm
(3) Sea-worm
(4) Echinodermata (spiny + skin)
(a) Crinoidea (lily + like)
(b) Star-fish
(c) Sea urchin

## Eoblocs

(d) Sen cueumber
(3) Mollusca (originally meant a solt body) (a) Bivalves
(1) Oyster
(2) Clam
(3) Munel
(4) Scallop
(b) Cephalophora (hend + to bear)
(1) Whelk
(2) Snail
(c) Cephalopoda (head + feet)
(1) Squid
(2) Cuttle-fish
(3) Nautilus
(4) Octopus
(6) Arthropods (jointed feet)
(a) Crustace:
(1) Water-flea
(2) Shrimp
(3) Lobster
(4) Crab
(5) Barnacle
(b) Myriopods (numberless feet)
(1) Millipede (thousand feet)
(2) Centipede (hundred feet)
(c) Arachnida (from the Greek word for spider)
(1) Spider
(2) Scorpion
(3) Mite
(4) Tick
(d) Insects
(1) Thysanura (fringe tail)
(2) Dermaptera (skin + wings)
(3) Orthoptera (straight wings)
(a) Grasshopper
(b) Locust
(c) Cricket
(d) Katydid
(e) Cockroach
(4) Platyptera (flat + wing)
(a) White ant
(b) Bird-lice
(c) Bookworm
(5) Hemiptera or bugs (hall or semi + wing)
(a) Louse
(b) Squash bug
(c) Chinch bug
(d) Locust
(e) Cochineal (from the Latin word for scarlet)
(6) Neuroptera and allied groups (nerve + wing)
(a) Dragon fly

## Eoblocy

(b) May fly
(c) Scorpion fly
(d) Caddis fly
(7) Beetles
(8) Flews
(9) Dipters (two wings)
(a) Fly
(b) Mosquito
(10) Lepidoptern (scaly wings)
(a) Butterfly
(b) Moth
(11) Hymenoptera (membrane + wing)
(a) Bees
(b) Wasps
(c) Ants
(d) Gall-flies
(7) Vertebrata (having vertebrae or bones)
(a) Fishes
(b) Amphibians (from the Greek word meaning "double life")
(1) Salamander
(2) Frog
(3) Tond
(i) Blindworm
(c) Reptiles
(1) Lizards
(2) Snakes
(3) Turtles
(4) Crocodiles
(d) Birds
(See detailed outline, page 603)
(e) Mammals
(1) Duck-billed platypus
(2) Marsupialia (having a pouch)
(a) Opossum
(b) Kangaroo
(3) Edentata ("without teeth," but the term is misleading, as most of them have teeth)
(a) Sloth
(b) Ant-eater
(c) Armadillo
(4) Rodentia (gnawing)
(a) Rat
(b) Mouse
(c) Squirrel
(d) Porcupine
(e) Beaver
(f) Hare
(5) Insectivora (insect + to devour)
(a) Mole
(b) Shrew
(6) Chiroptera or bats (from words meaning hand and wing)
(7) Cetacen (from the Latin word for whale)
(a) Whale
(b) Porpoise
(8) Sirenis (i. e, sirens)
(a) Manatee
(b) Dugong (Malay word)
(9) Proboscidia or Elephants (bo fore + to feed or graie)
(10) Ungulata (from ungula, a hoof)
(a) Odd number of toes
(1) Horsc, ass, zebra
(2) Rhinoceros
(b) Even number of toen
(1) Tapir
(2) Pecciry
(3) Pig
(4) Hippotamus
(5) Deer
(6) Sheep
(7) Ox and bison
(8) Camel
(11) Carnivora (flesh + to devour)
(a) Aquatic
(1) Walrus
(2) Seal
(3) Sea lion
(b) Land
(1) Bear and racoon
(2) Mustelidae (from muotela, the Latin word for weasel)
(a) Otter
(b) Skunk
(c) Weasel
(d) Badger
(e) Mink
(3) Dog family
(a) Fox
(b) Wolif
(c) $\mathrm{D}_{\mathrm{og}}$
(4) Cat family
(a) Hyena
(b) $L \operatorname{lnx}$
(c) Panther
(d) Leopard
(e) Tiger
(f) Lion
(12) Primates (from the Latin primus, meaning first or highest)
(a) Lemur
(b) Marmoeat
(c) Monkey
(d) Ape
(e) Man

## (ymonions

Nors-For addikional quacione on animal We refer to Nature 8tudy. In that departwant will abo be found internting outlinem an animale, birde, fimh, inoecte, ete.
What in soclogy?
What in the derivation of the term soblogy?
What does "cold-blooded' agraify when applied to animals?
What are the diflicultics of clavification in the case of the loweat forms of animal life?

What are the causes of the migratory habit of animals?

Which are the more abundant, the higher or lower forms of life? Why?
What animal in born without a covering? Why?

What are the mot useful animals to man for domeatic purposes?

What animale are known as ruminants?
What pasts of the deer are of commercial value?
How are flech-cating animals equipped to eal their food? To obtciin it They are satisfied with one meal at a time, eaten rapidly; whyt
Why does live tuck have to graze so continuously?
What is the difference between an animal and plant?
Name some of the many ways in which nature has provided for the affety and preservation $\alpha$ wild animals?
What animals produce the mot expensive furs!
What do you mean by vertebrates?
In general, what one part of wild animals is of commercial value?
Name the domestic animais in what you think to be the order of their uedulness.

## INDEX TO VOLUME VI-THE EDUCATOR

This Index, extending to page 749, classifies and summarizes the contents of Volume VI only, enabling one to locate by page numbers all topies and mb-topice of the Educator volume together with the outlines, charts and sraphic illuatrations. On page 751 will be found an index to the entire six volumen.

## A

Avesy Tent, When We Plant a Tree, 604.
ANow Tin Jot J. $0_{5} 185$.
 Man in matiat, 252.
ACrition 58: Downot, 185.
11; chart, 32 ; In al 5 bro; addends, 64; rapld, Monte, 2,
Trunity dotit 215
Hereve 18.4 315.
ontific firming developins eclence, 18; almacbinsry, 15 ; 14; meert, 14: sericultural dismanes, 17 ; the dall, 16 ; Insect and plant agriculture in rural schools, the sllo, 20 ; school work in rotation of crop, practical school Work in rotation of crops practical vork of Luther Burbank, 27; Irrication, 82; Minays on corn. 36.
Ming, vale oor, 185 .
48b; brepindom, 684; pure alr a neceasity, breabin exerclsee, 635
309; questions, 311 , 33; Items of Interest alue, questionse 311.
Trown, 2 Inanterestins facts about, 674.
parontheses 108; addition coemclent, 103;
105: multiplication ple equations, 108; 106; division, 106; simm 108.

Anim,
Min, jurne 188 contera, 136.
The, frat 186.
ATprit, Nova Scotls, 818.
nurit, ton Je.res. 136.

Antis dal mato, 62

Anger, Arrirte isent 186.

birds, 580 ; Insect on, 583 ; the mulrrel, 588 ; bees, 612 ; butternites 69 ; doge, 604 ; ants, 606 ; -
4t Lessons on the Ecotla, 318.
for ants, 608 ; males, 606 a temporary hon.e cos; part of an malem, females and workerw, 810: part of an ant, 609: soclal ilfe of ants. 10: an ant funeral, 610; battle between ants, 611: lesems from the ant, 612; questions, 612.
Antroninh, Nova Scotla, 314.
4pat, seedless, 2y: study of. 431; amons
orld's Ereatent crops, 431; principal Cana
outing irult. 431; essentlals to growth, 431
twino Be, 131 ; questions, 482.
Litane Etory of 878.
Amate Etory of, 571

45: the 45 ; a fine art, 15: home-bullding.
0f: the mky-snraper, 47: method for study
of, 47; outline, 18 ; questions, 19.
Avols Saskatchewan. 814 .
Arin Ninth Duke of. 136 .
dutuntio, 50; frst year, 53; mecond year. 67:
third year. 61; fourth year, 65; analyele of problems. 88 ; fift year, 69; mixth year 75 . and time, 38 ; ${ }^{2}$; elfhth Fear, 80 iongitude root and sub; cuble manare, 80 ; square root and cube root, 92 ; common ineanuare mente, 95 ; Eeneral rules In menmuration, 98; bumlnes forms, 98; percentace, 99; an, plications of termes, op ; percentaze, 99 ; apm centase. 102 . -
Armetuon British Columbla, 314.
Arevtory Ontario, $18 \%$.
nuowher Ontarlo, 314.
Ginms, Eir Grltish Columbia, 814.
Artars Sir Georke, 187.
Crins, Jalls, 187.
Aborot, Britlsh Columbla, 314.
Apgrie, Fraphic Illustration, 855
mont wonderful the earliest eclence, 111 : planety, 112 ; discovery, 111; attraction of Winter heavens, 112; chart, 113 , heaveng, 116 ; msthod of study, 116: quer. tions, 117
Atrintion, Story of, 577.
hockey, 122 ; bestrif, 118; lacrosee. 121 :

Ation, Britioh Columbla, 314.
Abors, 232
Atantion, Questions on, 660
ABien, 5eme Jithan, 137.
Arout, Eye, 626.
Cutmen jrise 503.
Clawroth, Eit Ailos Erimtol 137.
Fimer, Quebec, 814.
Crimer, Tord, 187.

## 3

Zadacos, Nova Ecotla, 314.
Bepot, AT Oharien, 137.
Zaicer, lieren 137.
Savaim, robest, 137.
rom
Lord Ullin's Daughter, 526.
Wreck of the Hood the 8tranger, 636.
Inreck of the Heenerus, The, 526.
Ean, Alberta Gee Volume 1.
Eny oncers 563.
Eant icna, Alberta, 314.
Eandit: Bee Money and Banking.
Lante, 561 .
zernex, Goorye Eomy, 138.
Besometer, how to make $a, 712$
Exty 2obort, 188.
Zarion Ontarlo, 314.
2aeotill, 124.
Zapretbell, 123.
Zacmang Alberta. 314.
2athrut, New Brunswick, 314.
intiores, Bimple, 720 : storage. 722.
Batiorora, Saskatchewnn. 316.
Enamjowr, Manitoba, 315 .
Eect, Nam, 138.
neok, Floholy Dominie, 138.

Wer. 618; mothod of atudy, 818; outline on. 811: guatione, 18.
zonis pratri; 188.
cot 20 vert, 188.
colovile, Ontaria. Eoc Volume 1.
olleche Abort, 818.
-
cerone 3012 nicen. 133.
guil, Ontarip. Hoe Volumi 1.
Hh A Hem Gemkitchowan, 815.

chephy 183; for chlldran 126; Charles Dickona, 186 in the achoo, 180; General Wolra, 181; method of atudying, 183; Canadlan, 185; quentions. 192; latereating factu about authors: Longtsllow. 670; Tannynon, 670; Whittler, 671: Holmes, 672 ; Lowell, 678: Beoth 678 i Loulma M. Alcoth 674 ; H7s; Beoth, 678 : Lhoulma M. AA
Metor 885 ; lownons on 590 ; gens ral suggestlons, 500 ; chart on, 891 ; directions for obgervation 592 ; parts of a bird, 592 ; protoction of blrde, 393; outllne, 594; questions, 585.

Mrict, Manltoba, 118
Burpom Bjomitjorne, The Tree, 497.
Elbormertic 35.
Thirmery Alberta, 315
Tiate 2urash 139.
Jowner San, 189.
Zetaprati, Manltoba, 816.
20975 Joner 138.
zosten, ir ceacetot Furiam, 140.
20xics, roloct felira, 140
otany, 195; outline, 198; chart, 197; weods, 198; paraltes. 199; Insect-eating plants, 199: dante that store food, 200; plant famlliss, 300 ; the acatterine of ceeds, 205; the Etruslo for existence, 208 ; questiona, 207.
2ottioel14, 823.
Zonumish ceast 140.
Zonirity ins Jont cerye, 140.

coweot, Filitan Sm 160.
Eoy 4,50 nt 140.
Toye and drien To the, 9.
Roys mome 512
20y" Dosteriop, Tha 705; how to maks a Klte, 705 : slmple springboard, 707; 1shing tackle, 708; the symnaslum, 708; how to make 2 berometsr. 712; how to meke 4 team ongine. 718; the woodsman and camper, 714; how to bulld a punt, 717: slectricity for boys, 719.
zmanpton Ontario, 815.
Exarion, Manitoba, 815.
Exampora, Ontario. see Volume 1.
Ereatint Eyeselace, 635
Dreats orarion Iomis, 141.
Erioty Eusay on, 522 .
Nratume Nova Scotia, 215.
Extith columbion lirigation in, 33; ltems of interest, 895; questions, 297; admitted to Confederation. 400.
zrownow, gaskatchewan. 315 .
Ereotribe Ontarlo. See Volume 1.
Erocous, Jonll Zhulippe, 141.
Ineotere Alberta, 815.
nrowh porte 141
nsown hore Whinam, 141.
neownlat, eobore, quotation from, 622.
2rown Euruct, E2he, 504.
Eurohent root sor, 工ouil P. J., 141.
2ryant Willam Gullon: Robert $0^{\circ}$ Lincoln. 504: Ths Plantlng of the Appls Tree, 515.
Eryee, 207. acoze. 141
Exytuen, willint, 142.
Enore, Hichara Fravioe, 142.
Erokingham, Quebec, 316.
zulgen zio, 314.
Juyen aporte calioy Tiekarn, 142.
Eurbaty, Euther, the work of, 27; what plant breeding means. 27: the law of nntural sslectlon, 28; Burbank potato, 29; blackborrles, 29: seedless applex, 29: plums, 30 Shata dainise, 30: splnsless cactus. 30 coblest corn, 31 .
Turent scouries, 142


Puenis Fintim 148
urtor me cospi 148
uncen, Sov. Ent 12ilid, 148.
therlice, 814; outine on, 314 ; quentiona, 615.

59, dolonal Sorn, 148.

## C

Cawe Itudy of, 480; Increasing trade. 430:
how cocon and chocolate are manufactured, 480; outins, 430; quentlonm, 480.
Copition Dpandere, 80.

onsary, Alberta. See Volume 1.
on wores citce Bens 148.
therox most Ixquias 143.
ons twin 0014 2, 148. 148.


## 88.

ongplen, wima wirgen, 143
Dasproliteri, Ontarlo, 816.
Campliton, New Brunswlek, 816.
nrper, 5 you gee Woodsman and Camper, The.
0.
gamyoge Alberta, 816.
arant croverument 208 ; executive department 208 ; leslalatlve dopartment, 211 ; judiclal department, 215 ; local government, 216 ; provincial government. 217: territorial govsrnment, 219: Royal Northwest Mounted
Police, 220: taxation, 222: sducation, 225; public lande, 227.
ontrain 2 orther mativat, 449.

Oammore Alberta, 816
onavir, Wiviter, 144.
0amorw gavkatchowan, 317.
Othe, Nova Bcotla, 817.
Garbersy, Manitoba, 817.
oasintom, Alberta, 317.
oarlotom Zlace, Ontarlo, 817.
Oandice 14530 年, 144.
Oarivie. Manltoba. 317.
orris larenen 144.
Oarman, Manltoba, 817.
darman Bef. Abost, 144.
oxzan, Suse, 144.
gathan, Easkatchewan, 317.
onvor, Soneph Dawaras, 144
oxton 200 Dadard 144.
0erwoll, Tewta, The Walrus and the Carpenter, 505.
Onstios, if acosymen zitunne, 144.
onterootton, Fixnole ton 14 .




onamperiatm, ipoterace 145 .
Ohn bly, Qusbec. See Volums ${ }^{1}$.
Ongplotw, its Someph Molpla, 145.
oneriotrotown Prince Edward island. See Volume 1.
Chartit
American llterature, 544
Antronomy, 113.
Birdis. 591.
Botany, 197.
Chemistry, 231.
English Literature. 543.
Gsneral History, 372.
Geology, 348.
Insects, 597.
Paintlng, 628.
Physical Cuit
Physiology, 655.
Gculpture, 6:7.
Unlted states IIstory, 3:3.
zoology, 729.
Chntham, Now Rrunswick. 317
Ohnthem, Ontarin. See Volume I
Cheoler, 2 Tanet, $5 \times 3$
Ohemintty, $239 ;$ beginnings of, 229; chemical
olcasents 388: ohersical compounde, 280; 317; quetionem. 255; chemicul nymbole. 2 2rem quebec. $81 \%$
4hers own rien 811.
ovirent Britiot Colump.
dian ant, Britifh Columbla, 217.
gren rephlo illustration. 3 s 4 .
$1 \rightarrow$-a Cacmo
larrent 318
4if tudy of, 28t; outline of $\mathrm{a}, 28 \mathrm{~s}$.
Nath ITR Alberta, 117.
a 7 in laderenten 148.
-0-meren work, 474.
mi mindy 0 . 6
ply of. (48: prodie importance of, 44: mup.
foo, 144: quoptionction in Canadi, 448: out-

Ontrina $818^{21}$
goters, Ontario. gee Volume I.
3) Cucts. 148.
th 108.
1are mtudy of, 128; nource of mupply, 428: hrgent coneumers, 428; how buminem it handled, 428 ; outilin of, 429; quentione, 429 . oftrin Mros 146
da wor
dering Liborth, 118 . 146 .
nlm 818.
rampar ancuter 95
ampondion, in drawing, 250.
fourtb year sit? in third year, 510; in afth year, 568. in type emays, 517-528; in rear, 535; In oithth, 540 ear, 529 : In meventh rantev 2 ish 540 .
to che bure 0f, 146.
a manant 12.
Cin coblen 81 ; 4 tug 498, 501
of, 18: What 81 itudy of, 112; Importance ducine What becomen of. 113: cont of pro dinetng 413: lon tbrougi waste, 118: outIfme $114 ;$ quentiona, 115.
one won, zita, 512, study of, 518.
quanall Ontario 818.
curni Cerna 451 .
ancurila, 624.
Cunct Joll., 146.
owne mindy of 118 146.
induetry fly of, 418; hitory, 418; Erowth of mavaty; 118; world's mupply und consumpLion, 418; outime, 419 ; quemtionm, 420
214. sovernment of, 216; in seography.

P1, rey 147.
tris is race 5 enst, 147
uns, Bankatchewan 318
2enneol, British Columbla, 818.
Oxurion ime the 470 .
curtion meanine of 5147 .
avith, meanin of 560 .
cmen British Columbia. 818.
cure onarice Filsers 147 .
anell sia, traphic Illustration, 878.
atera, Hisulten 318
H. mout, 98.

contang Britioh Columbla, 318.

Peed, 20; the 18 ; the herd, 18 ; the table, 20 ;
feed, 20; the alio, 20 ; milik, 21 .
Induntry, 426: chees of, 426 : history of the In Canada, 427 , outilne making, 426 ; dairying Eathonde, New Bruntine, 427 ; questions, 428. Enith, Fether Brunawick, 818.
nume Father Antony. 147.
Entinh Norn, Scotia, 818.
merhy Manitoba, 818.
Tut, tetue of, 680.
hutren, Bankatchewan, 318 .
onven, It Toult Touty, 147.
Denter Iukon, 812.
owner the 6 man 147.
on fot 5 en sor 148.
opints ter zt is 118.
Fear, 76. 7 ; vixth
Tecmitw semps, 285.
orivis Manitoba, sis.
xerine of 142.
Bramiringie crayler, 148
year, 57, so: third year, E1. yeur, 52; mecond brth yeir. fo: 77: olfhth rear, 80. year. 75; moventh year,
Demonvils, ritarife
Bovit, concritis ie, 148.

Dimeon cistar 416.
Diotome ofty Alberte, 819.
prioter 126
Dres, Nove gcotis 318.
Direr Nove Ecotia, 219.
Dreotten, in drawing, 251.
Dicout zies Gee Invontion and Discoverios.
Dtitiom, table of 67.
cation, 10; In aisabri, 106 chects on muitlpli-
Dere. Euctem asmin. 106.
604 ; characterimtice 04 ; Eenorat deceription at a friend 505 , 0 : family 731. 605; outline, 606; the doE sonert ore
Bosmentio Marion topep, 148.
portance of, 235. 234; reamons for, 234; Im
Water, 287: milk; what the body needs, 236
tarchy foods. 238 ; egne 238 ; meats, 239:
tion. 242. Outilne. aanitation and ventila.
Dominies, Nova Ecotia; quentionm, 244.
Dominios tho scotia, 319.
Bolter fis outline of, 288 .
Dozancter, Nevior Brumatic 278168.
Dorion Not New Brunawick, 819.
porion,
gongai, Jom nalyath, 149
Douren, Thy 149.
porysty, Atzur, 149.
Dovite, fir Jamee, 149
Dratire git 584.
Dreme outili
Drawir outine for study of, 550.
249; composition Iree-hand, 247 : perspective
tion, 252. decoran, 250; direction, 251; ac
paraliel drecorative dealgn, 255 ; form, 250
ormuroed ming. 282.
Drutmon, wint crion, 149.
Dar, Jame, Fiocian Eakry, 149
Due Pr an Pack 150
pareoth and are, ciamula of, 160
mablellt, 712

oundes ontiato, 819.
Duynuit, Jimer, 150
Datinm, 2tarl of, 150 .

## E

Tlrapy St Jamee Divia, 150 .
Thoontor, Nimeta, See Volume II
Elaon, Alberta, 319 .
Crene Aiberta, 319 .
place of psychology in ural education, 227 ; ETre, as Rood, 238

657
GOM, Eraphic ill
ustration 858
leotriaty, 643. 212
batterles. 720 ; mor boys. 719 ; tools, 720 ;
Eraph, 722; wireless battery, 722; the tele-
phone, 726; how ess telegraph, 725; tele-
phone, 726; how to make $n$ IIrhtning er-
Irrinetce, Ohematon, 229.
5ifne Des ox, 151.
Enfrern, Manitoba, 319.
2 Hiters, yjoe, 151.
Buncron, Manitoba, 819
Equirrel. 690 . Waido, The Mountaln and the
maty, ETV. Jomoph Iewasa, 161

The Britioh columbl 1 it
opac Exiphio lluwerations; Eagland be Topo the Forman Conquet, ins durins the Yiade ara, 879 : under lho Etuarth, 331 etpee the aoceioion of Vietorta, 885 .

## vacere 187.

trexare In aliobry 108.
eme costrene in ehire year, s08: in rourth 7eap, 314: im sixth year, 580.
-heral, Bricish Columbla, 819
61\% on corn, 8 it on lron, 617 ; on plantor 518: on Flame 51, on paint. 580 ; on wall Eaper, 52I: on brick, 822 ; on stonc, 818.

wroars acope of subject, 378; richt and deale 376; onvironment 377 ; montal 874 : tude, 377 ; Eello-restraint, 278 ; mol8-reliance, 878: ramion and Judarione, 278 ; questions por diecuealon. 371.
teremptory of sis iss; rate of, explained, 36.

## Peoneme goast ${ }^{815}$ 217. <br> 3everen 10.

in phyateal culture, 681-184.

## F

ralat
Donkoy in the Lion's Skin, The, 688.
Fox and the Crow. The, 490.
Fros and the 0 In The 686.
Coome That Laid tho Goiden EFEw, Tho, 507,
Hare and the Tortolee, The 459.
Lion and the Mouse The 499.
Fice and the Cat, The, 800.
shephord Boy and the Woiven, The, 807.
Forf and the Lamb The 808.

ramer quebec, 119.

arine Britich Columbla, sis.
goncimen and onvaly, graphic illustration, 377.

Fiitpo trive 622
cotis, oration Wrontencos, 152.
qenter 57 ineog artinu 152 .
Fincerion study of, 140 ; extent of the Indus-
try, 44 ; value of, 440 ; the nehermen, 411 ;
ajh breeding, 441; outline, 411 ; questions, 418.
ing not 708, 708; reel, 703; pole and landing not 708.

ing atudy of, 398; outline, 395; queatlons, 156.


sherver, itudy of a, 63 .
Juine, Tromanien of, 638.
Feon, 144 ; wise melection of, 634; Row know how to ent properly 634.

porerp arahance s64. cat'e uaefulnens, 433; forestry in Amerien. 434; forest reacrven, 415; the forestry branch, 485: lumbering 436; lumber-producins countrien, 436; divisions of the indumery, 486 ; lumber production, 437 ; outline 459; quentions, 489.
Frowe thate 2, 151 mull, 153.
poent, zolotphe, 151.
fore in drawing. 369.
Port maitatehown, Aiberta, 320.
rext ruilam, ontario, 320.
Fottes, Goorte Sula, 153 .
yoy ara the Orow, The, 499.
roy, jame socopp, 153 .
mexione, nrst year, 53 ; mecond year, 87 ; third year, 61, 63. pourth year. 65: nfth yenr. 7n, 71, 74; sixth year, 74, 75; seventh year, 77; elighth year. 80 .
srien, graphic Illustrations: France during
the Midaso Agea, 374; Frepeh Ravoluilon 318; from the Consulate to the present then 38. Fancis Albarta 820
anem, Dumen 163 arme, 138.
zencerith, Guebec. Eeo Riviore da Loup.
2mentert 75.
zarenote, zomle zemore, 168.
Ewertetom, Naw Brunswlek. Bee Velumis 12. cuen evoithos, Graphic illuatratlen, 888. cepara rictict s60-466.

144; the hundrea anoociate, 414 , trappary,
116; fur monoy, 46; fur markoti, 447; pro
paring the fur, 447; quentionn, 447.

## G

Garen, Drecet 154.
-xh Ontario, 180.

Ni, Sosw, 164.

## 461,

-at There 700; value in piay i00. alma, 700 ; tames for youns chidren, iv! I saw. 701 Expres. Traing 701; Equirtel Game, 701: Llole in the Ice, 701; Follow the Leader, 701; Revisw Roundel, 701; Bean Bar Camen, 701; Cat-Stitch, 702; Touch Ban, 708; Hawik and Hon, 702; Moon Touch Bali, 702; Hawly and Hon, 702; Moon and Morning Btara, 702 ; Dare Bame. i02: Black for older children: Bean Bar Race 708 ; Firet In, Flret Out, 703; Runninc Relay, 708: Toming Tally, 70s; Three Deep 70s:
Fire on the Mountalne, 70s; Last Couple Out, 701: Trade Game, 704. Qulet Games: Masic Music 704; Beast, Bird or Fish 704: Horns Up, 704; My Thourht, 704; Guete Again, 70s; Actins Chirades, 704.
artain, ${ }^{705}$ ontins 80
ghenes, , ontario sino. 184.
Camen. 212.
Crepinghy 280: its divisiens, 280: study by topice, 2s1: geosraphy presented by outIInes, 288; the rehooi dietrict, 283; the townohip, 234; the county, 284; the city, 285; the province, 286; the Dominion, 28s: North Americg, 200; methodis of teachins. 893: Alberta, 293 ; Britin Columbla, 215: Manitoba, so's; New Brunswlek, 299: Novi Bcotia. 101: Onterio, 803 : Prince Edward Imiand, 806; Quebec, 207; Snskatchersh, 109: hundred Iargent citiem. 312: Ottawa, our capital city, 112 ; clile and towns, 313 . cooicti 141; outline, 241 ; and mytholosy 14: beginningis o2, 342 : in the Midale Ares. 842: ate of the earth, 342; chart. 343; division of time, $144 ;$ present geologle changen. 346; quentlons, stf.
chosio $\frac{1}{1}$ din of Sariand, 154
Termery, craphic lilutiration, 386 .
cervile
chet the owner Fina, sho, 698.
Cfren ancoryurton. 461.
Gubot Datm, Manitoba. 320 .
C115, omarice face, 155 .
Gomis, Manitoba, 820.
alsoe tat, Nova gicotis, 320.
criantem, Manitoba, 320 .
cians, eanay on, 519 .
Cremenerway on, 518 . 825 .
Cleteher, Alberta, 320.
Gororioh Ontario, 321.
Golace, British Columbla, 321.
Golf, 110 .
Goote stist THAA the Goldme ITP; The, 507.
Gorion, rev. Chasien wiusm, 15,
Gorion, W. Daniol tiner. 156
corernos-cuatin the, 208 .
cremen, worte roxty, 156.
cathan, reorce 417 .
 ramanar, approach to, Grammar.
aramby, Quebec, 821.


## H

Sath, 458 ; questions on, 660

Cingmity Ontario 821 .
ain trem Fizmer ruas, 167 .
Miter, Nova Scoti omalex, 187.
Thite, Nova Scotla. See Volume II.
fmilies, Ontario. See Volume II

Emiote, Manitoba, 821.
Tangton, Now Brunswlek, 321.
Fants, Juitiam Joln. 138.
Faroent, thath, 158.



Earich, Oquice Abort Zawin, 158.
Fariog, Manltoba, 321
farver, cortoe, 188.
ravini $1250 \mathrm{M}, 158$
Ematity, Preforfor Filitam, 159.
Etantentury, Ontario, 321 .
rawhorme tiethentel
674.
(97) Charlo relvillo, 159

Fend Jom Douctes 159 .
Cha, is parara Nelker, 159
cale, 630 , mete Jomen 159 .
calin, 630.
Come 641 .
Foms 641.
Empracs charies, 160.
fourw gaskar, Eraphic illustration, 388.
Corwet, Tomatriewnn, 322 .
dawneth selection $1 \mathrm{pa}_{1} 16$
Ith inves,
Tingeret, Alberta. 322.
nomberent Alberta. 322
Theting ity New Brunswick, 322.
tiotory, 348 ; outlis, 160 .
netory, 348 : outling on methods of teaching

350; anclent history, 381; outilne of anclent history, 253 ; chart of recrothen histery 253: churt of Chinees hivtoryptian history Chaldean. Porplan and Areyrian hiter ass; chart of Hiblew history, ass; chartery of history history, $267-280$; charts of Roman 388: misi-3as; chart of Mohammedaniam llne andeval and modern history 388; out line on medieval histor modern history, 570 ; sene sa: outine on 72: United betate: Beneral history chart Graphic lliumtratlons: ABtory chart, 873. Midale Ares, 74 : man Conqueat. 7 is: and berore the Nor. pire, 178: Feudaism the Holy Roman Fm Crumade, ciscalsm and Chivalry, 877: the Ares, 87: the peland durins tbe Made under the the Renalsamace, 300 E Enfland French peroluarte, 81: Rumala, 812: the ont tlme, 884: Enfland since the the prepe of Vletorla, 82s: Germany, 88s: Unlincation 88s; Christopier Co Norsomen in Americn study of the American lis. 389. Outilne for on American Indians indans, 890 ; Eraphic for the study of ins, 81: flare, 898; outine tlons and diacoverles, 385; famous invenada aince Contederisios; history of Cansvente, 405 ; outederation, 388 ; Important 407: question outine or Canadian hletory ruler questions on Canadian blistory. i10: reater of the world, 411.
rogry, 122.
congli, Joha moonse, 160.
zont
about 872 Wcmali, interestinc fncts
ci
tion, 376.
omenteat. 228
ophan, Joh Ongten, 131
Tocioumal 2ax, 709
710.
$-710$.
Comace, Britimh Columbla, 322
row of Gomanare 212 .
30w to cinctor in the rlomath 471.
com zo masy:
Agriculture in Schools, 28-27.
Anlmais, 88
Ant, The, 606-612.
Apple. The, 431.
Architecture. $4 \%$.
Astronomy, 116 .
Bees. 612
Blocraphy, 133.
Birds, 585,1890 .595.
Biood, Clrculation of the. 651
Butterfles, 614
Coal, 442.
Cofree, 428
Corn, 413.
Cotton, 418
Dalry Prodi
Dairy Products, 426
Doge 608.
Far, The, 652
Eye, The, 655
Fishertes. 440
Flags. 39 s.
Forestry, 433.
General Sugrentlons. 6.
Georraphy. 281
Geology, 341.
History, 349.
Indlans, 390.
Indians, 390.
Industrlem. 19
Insecta, 1\%. 586, 595-598.
Lumberlne. 436.
Music. 56 6.
Mythology. 583
Peach, The, 432
Phymics, 645.
Phyalology, 619.
Pletures, 624.
Plant Diseases, 18.
Plants, 586
Salt. 425
Silk, 422
Squirrels, 588.

Tutuary ${ }^{630}$
Trion, 8is-804
Whath 110.
Wool, 480.
nean
Additiom Rapla, 81.
Amalyste in drithmotic, 60.
Arithmotic co; numbar iomeons, 51 : frat year be; gecond year, b7; third year, 61: gurin year, os; ifth yoar, se; elzth your, 76; eoventh year, 77; oirhth year. 60.
Componitione, 814, 587, 51, 536, 540.
Cublo Zomure, 10.
pate Une, Intermational, 87
Drewing 840: freehand, 647: perupective. stej cogropition. asi ${ }^{2}$ direction. 651 : cetion, cES: decorative demien. 6BS: form. cot paralil draming. 206.
Fect writins. 612.
Fablas. 007.
Geography 868.
History, 60.
intorest, 76.
ciadorgartio. 485-401.
Lancuage and Orammar, 486; frat year. 402; ceoond year, 500: third year, 508 : rourth year, 514; firth year, 664; aixth Zear, sis; eoventh year, 661; elghth year. 607.

Longitude and Tlme 86.
Menpuramente, $68-68$.
Moraln, 678.
parts of Epeoch, 582-535, 567-540.
Percentage 66.
Pooms in the Gradew, 188, 505, B11, 518, 535, 850 , 865.
Reading ic1-470.
implesentence, The, 561
gquare Root and Cube Koot. 12.
Btandard Time. 89.
Etorico. 51\%. 610.
Word etudy, 830.
zown Jeceph, 181.
yetici 1.

Eut Quebec 600 Volume
moles, Eakatchowan, 0 is.
Eminer, Coxion, 111.

## I

Tecente 876.
Zhation, joma, 162.
zeyothit Ireate, table of, 405.
yenime 674.
manar 1 ced, gankatchewan, 622.
matase, Amertical, outilne, 380: sraphic illustration, 691; questions, 392.
manestice, 412 ; corn, 413; wheat, 416; cotton, 418: wool, 420 ; Iron, 422; sugar, 424 ; malt. 125; dairy producta, 428 ; ton and corree, 428 : cacao, 430; apples, 431 ; peaches, 132; for: entry and lumbering. 432; finherlea, 440: coal. 442; the fur trade, 144 ; tranaportation, 14.; trade and commerce, 152 .

## mineotiom, 53 s.

Incolow, Jeal, Seven Times One, 407.
zarersoin, Ontario. 326.
Entine Borerwe. 223.
Enitaral. Alberta. 822.
Emoeot-antiag Jhanta 199.
rapeoter, 17. 242, 586 ; lessonm on, 895; reneral nutgestions, 595 ; parts of an Insect, 596; danger from nies. 596: chart on insect., 697; life hiatory of insects, 598 ; lessons on the ant. 606; beet, 812; butterfies, 614.
Inmeincs, 458 .
ymetcoolontal gallway, 448.
metorest, methods. 75.
Imtornational Dato cime. 87
In che $0^{\circ} \mathrm{S}$ ewly 528 , etudy of, 528.
zntrondetery, ${ }^{5}$. Thit volume snd ite object, 5 ; how to ltudy, 6; to the ambitioum young man and woman, s; to the boys und EIris, 9 ; to the tearher, 10 ; to parent., 11.
mremtion and Dicooverith Finome 396; table of, 897.
mivermen, Novi Scotia, 822.
are study of, 428: importance of, 438; adoplablity to use, 48: production, 488; outim 188: qucolion, 48 .
in Britis dolund valume and molature. as: in prition Columbia, $c i$ in Alberta and san kateheman, 6 ; future of, ©6: outine for study.
ztaig, unincation of, Erephic illuetration, 388.

Seproen, Solde Eum Octobor' Bright Blue Weather 46

orive ranityo 161
giots guebei, 180.



## 83

Eamionse Britioh Columbia 228.
Seato British Colyman. $C 08$.
gento, British Columbla 806.
alowey Britich Colvmbie, ses.
mor ontario cht 166. Ontario, 6 Co.
comethe Nova Ecotia, 286.

dintreop, Mantobitiol, 162.
rincepe Manitoba, 686.
 bel, 4bs; atarting point in education frof proventive of wrons activity. 465 : value play. 467 ; unity contributes io growth, 157 : plan of the kindergarten, 457 ; frat training In the home, 167 ; roforences, 468 ; rolation of child training to natural impuisen and to habits, 456 ; hablt, 455 instinct. 458 ; childo: natural impulee, 459 ; tendency towirds atc. tivity 480 ; When to develop inatincte, 455: deacripetion of the kindergarten, 459 ; plan of oxerchees, ise; kindergarten applien, 400; kindergurton dith, 111 ; Kinders arten famen, ${ }^{186}$, toryotelline, 463 : Three Bearm T14, The Three Tiny Plge, 965 ; The Litle Red Hen and the Grain of Wheat, 467: The TWo Green and Glittering Gold-Chifers. 488; The Pancate. 46s: The Crone Expresi, 470; The Mualclan and the Dancer, tio: How Baby Ray Got Up in the Mornine 471: 11at of atory book suesested, tis: home occupations for children, 478; itring. Int: 474 ; cand, 474 ; clay. 474 ; paper polding. 47\%, direntione for cardboard boxer and fur: niture, 478 ; making lantern, cage. etc., 478 ; free paper cutting, 479 ; uspestions for mand-table. 481: Keeping Chrintuane 481: ecrap-book. 482; for a Iek child. 482 ; outdoor amusementi, 4cs: home dincipline end overmment, $48 t$; freedom. under ipmitation 484; train to sieet dimcuities. 484; peril: 484; train to z.3eet dimculties. 484; perils drawn from play. 485 ; lint of recommended booke for parenti and teachers, 486: harmlesa animall en companions. 485; the primary department, 486: seat work, 188: number work, 486; scrap-books, 486; אand-table. 487; inature atudy. 487: gamel ior primary chidren. 487; the Montensort method, 489; outline of kindergarten work, 490.
zindosioy, Bnskatchewn, 323.
Kime W.

Enticoforth winila, 168.

Earioy, Winiam, 163.
Eito, how to make a, 795: common kite, 705: box kite. 705: Chinese kite. 706; butteray kite, 70s: boy kite. 70?
riotin, Otto sultun, 1 Cs .

Isohing, Quebec. See Volume 3.
Itomin ontal, 451 .

youtchAlberta, 323 13. Memarcen, 163. 131.

2,wi Britich Columbia, 182
anciti British Columbin 323.

nver, Antiva, 104.
Hat 7 , Banter P. A, R., 164.
mari, Davia 8 . 164.
compine me manuedy Savioy 164.

 194 utudy of a noet 100 inmmury work 49: nature atuatem, is:; nonmonre vernem, ture nature mecuales, 498: Pablen 488; pleturew, 800 . 8econd year, 500 : written work, Sooj formal languate work, s01; nature thudy 501 : convermation exerclees, 5 ni: act: Ins atorlen, s01: memory poemn. 802 : type tudy of a poem, 806 ; tablea, 807 . pletwo study, s0s. Third yoar, 50 s ; correction of errorg s08: componition wisk, 510 ; pooms. 811: Etorlee, 813 ; pleturo itudy, 813. Fourth yeir, 811 ; correction of errors, 814 ; compoaltions, 814 ; related toplce, 815 ; poemn, 816 ; atorles, 816 ; types of enmaye, $517-523$. Fifth year, 824 ; pproach to Erammar, 834 poeme, 525 : composition work, 528 ; related coples, 529. Slxth year, correction of errore 123; word study, 530; poemeton or errorm. Eltion Work, 631. Bevonth year, 831 ; the almple mentence, 531 ; complomenta, 581 ; the aoun, 532: the pronoun, 532; the verb, 533: the Infectlon. 633, the adjectlve, 534; componltion work, Bss; poemn, B35. Elenth year. 837; noung, 537; pronouns. 538: ad Jecllven 538: verbm, 639: parmlne. 839; com positlon work, 540; poems, 840.
2nican, factacolowny 323.

## Reveer, 2 an 675

trum, Emay, The Brown Tlirush. 604
Eander tir rista, 165.

7-40, Quebec, 323 .

417. Bamat, The Owl and the Puasy-Cat, 47
Felte, Alberta, 888.
roptintive A 18.

tomario an Finct, 693
mandirr, Alberta, 321.
Poverwrith 511 .
Zvis, Quebec. gee Vol. 111.
apt 10 ,

thetrinc druesex, liow to mitke a, 727
time Ontarlo. See Volume 111.
chan the Toune, The, 499.
tom, $7142 p_{0} 622$.
mins, 工ord, 168.
of Encil 41 poetry and prose, 511; outllne lluh ilterature sature, 543 : chart on Eng erature, 54 e , chart on American llioutline, 544: how to read ilterature, 545 : outilne of Engllwh literature, 545: outline of Amerlcan ilterature, 54:; Canadian ilt erature, 848 ; outllno on the drama, 550 Ilt line for the study of Shakespeare: out guestlons, 562; velections for memorizing, 684. Interesting facts for memorizing: Longfellow, 670 : Tennyson, 670 ; Whittler, 671; Holmes, 67: Tennyson, 670; Whlttler: Louina M. Alcott, 674; Hawthorae, 674: Thackeray. 675 .
Hetm Fir whet Foulant Go over the Etio,
4ith? sea Iom and the Grain of Whent, rhe, 487.
hiverpool, Nova Scotla. 324.
hloya, 2ev. Georce Ixton, 166
toydmintor, Baskatchewan, 324.
vacos Ontarlo. See Volume III.
nerthow, iensy Fadnworth, outline blog-
raphy ot, 88 : intorasting tact about 670
Tha Day la Jone, 80s. The Chlldren't
Hour, 811 . Wreek of the Hesperus, 88 . map 4 : and time. 83; iniroductory, 8 : tlonal date plan for teaching 8; intorma Pen ranti, Quebo, 7 ; tandura titue, sy.
sen ofit, Quoboc. 124.
pere Marg Datrites, 686 ,
Butherland Campoell, Arcyll, Juhn Dourlae sour reen, Jamea Mine Dien oh.

Fewolt Sances dumeds, Intereating about 172.
znnerin
Smeder Baskatchewan fy and Lumberlac.
zerom, Finikatchewan, 824

## M

Mater Jumee Fint, 166
conrict its riolisit. 166
rodetalt, surl Soln, $16 \%$


cocorsi, tr Fimiam o. 168.
rocionnoll, Hormanis 168 .
Rapowrun puism, 188.
vocien rim, Dunagy Tavily, 168 .
menex cyomat B'Asey, 168.
-raphat, Arnea, 169.
15: care of mathimal, 15; improvement in, Faohey zow, mobert 168 .
Fiotente, Mis clozant 168.
7roterate, ducrincter, 168 . 169.
Thetenti popancer, 168 .
Fisoronite, cis fintamel veorfe, 159.
Frotemen fisk filiam 170 .
Fordrimo, Donat alarandio.
roont wuine Xisalisy, 170
nownou, Alberta, 3:4.
oncon, song Fursen, 171.
von+ter. Whing 171
c)


To- milipe Alt sata cemid 171 .
Tis rawper 643 manara, 171.
Trenctan, 643.
-reg Quebec, 324.
rath Alberta, 3:4.
raty Onasies 171.
ratuonnouve, Queber, 324
Thigonnemve, Gr Faú, 172
299; or ltems of Interent, 298; queations
mation Manzed $\frac{1}{2}$ province, 400.
Than. pir jomaba, 3.4 .
rane Eis Domald, 172.
Mople Oreat, Sawkitchewan, 324.
Grevi, Chatios, $17:$.
Thythal Dupean forions, 172.
Fartievile, New Hrunswick. 324.
risthenos, crthur James, 172 .
Kistherom, Kont Lev. Emanel 3 ., 178.
Fie tes. Froparte of, 636
Yraneon. 172
Frenarine, the, 669; mitudy of, 668, 670.
thlrd year, 61: Year, 53; mecond year, 67 ;
catrd 539: way 0 ,
bolling. 240; frying cooking: braillng. 240;
reohanios: of moliden. 2il: soun-minking, 241.
Tediotise Lat, Alberta, 33 ; of fulds, 638.
roliort, sask, Alcherta, 324.
Toltte Mantotchewan, 325
olon zatory 9. 2.5 .
colvine Saskatchewan. 326
Tonspr, Questlons on, 659
year, 75 : seventh of, fifth year, 70: slxth
year, 75: seventh year, 77; eighth yenr. 89:
cuhic measure, 90 , 91 ; common measure:
ments, 95; general rules, 98.
Craier, omore, 172.
Coredith, Bir Wilism Zalph, 173
Territs, Brltlsh Columbla, 325 .
ETotelra, Lasom, 173.
Fice and the Cat, tho, 800 .


## N

Tanatmo, Britioh Columbla, 326.
Eaviel, wirma Jruico, 176.
Irutos Alberta, 226.
Iatural enpotion san 08, 88.
565: importance in 585 , subject to man, atudy, 556: birde 585. 565 : unfeations for 366: losens on piants; plants. b88; Inaects 87. parte of phant. bab; parti of a plant mis parte of a nower. 668 : leamona on antmais, 60 ; the squirrel. 688 ; leasons on bird, si2; chart on birde s91; parta of a bird, 812 ; protection of birds. 558 ; outline on blras, 594 ; questions on birdm, 805 : lessons on insecte, 595 ; parts of sn insect 598: chart on insectes. 597; 11 fo hintory of inscets, 598: lessons on treen, 596 ; 8all study of trees, 598: winter study of trees $59{ }^{2}$ apring and nummer studice 600 : plinine trees, 601. 602 : leseons on doge, 604 ; characteristics of dogs, 604 : lessons' on the ant 608: $n$ temporary home for ants, 608 ; males. fomales and workera among ants, 608; parts
of the ane, ceo: wotal life of ance, 10 an sat funera, 110 a batio botwea anti, 11 cocone from the ane sis, quateto ant 12 ; been 128 outim on bere 12 quentions on beets 181 buttornites, 11: out ine on butterate, 614 ; quevtions on but terillews 610

otht Manitocoting see Volums iv.
ates nalout 175
 tione 201.
Townetic, kyw Bruagolek, 88.
ow Late Nova Reols 178.
Yeturat ine Brillah Columbla. see Volume 17.

Ontarta 288
ICin Brition Columbia, 28 .
nentes 81.
whenle Mr hritchewan, 880
13: Wal Orwe: Ow and the Pumay (Cut, The
613: Walrus and the Carponter, The, but. 838.

Sorth Amples outline sor study of, 290.
2orth Zantiosora, dathatchewan, 886.
Ont 7 Ontario 837.

$$
\text { RGo Nove Gcotla, } 227
$$

serent, Ontario 337.
out vareatoc, Britigh Columbla, 387.
orthen rouiterite 81 D .
ond yen ana marnidem, firut yeur, 83 ; second Year, 87 it ind y atr, 81 ; sourth year, 65 . Pens 2n 231.287.

## 208.

number Fert in home and kindergarten, b1;
firat yoar, 58; second yeur. 57; third year,
61: sourth year, 65 .
ziruseng anjuen; 404.

Oal Inare, Manitoba, 187.
 183.

Op cervas, thomath 175.
Tl Ce, Alluerta 327.

olver perta. 327.
omenio, 1 1ems of interest, 303, questions, 203.
orilic, Ontarlo, 327.
ozontyintrat 176.
diacritical 816 ; sounds and symbois. 616 ; diacritical marks, 616 ; clanmincation of counds, 616; vowols, 817; consonatis, 618 ;
syllableation and accent, 618; spelling, 619.
Qutame Ontrio 327.
Onos, Eatrad Loza, 176.
ooles: whilam 176
Quaw, Ontario 312. See also Volume IV
Ouawnericeas oarale, 451
Oteci Whiam Dillon 176.
outhere 802 mitas of:
American Indlans, 390.
American Literature, 547.
Anclent History, 351 .
Apples, 432.
Architecture, 48.
Astronomy, 116.
Bees, 812.
Birde, 694
Botany 195.
Buttorites, 614.
Cacao. 480.
Canadian History, 407.
Circulation of the Blood, 641.
City, 286.
Coal, 44.
Cofree, 429.
Corn, 414.
Cotton, 419.
County 264.
Dalry Producta, 487.
Dorme 606 .

Pemprite cotance 818.
grainto 368.
$77^{2} 1068$
amith Litrature, 46.
Ye reme 81
negut
gaples 141
Gavery, 341.418.
rom 13.
rfistion. 6.
stamertrten 480
Lomplollow. 8
Medieral Itiotory, 385
Mantal Powors, ise.
Mothel of Temchine Geography 388.
Mothea of Tachin Hitetory. 6
Mesore Hiatory, 70.
Yytholocy, 58.
Sorth Aumorica, 850.
rachers 45.
myoles 846.
rovince, 387.
Tendinc. 64.
Rulare of the Worid 411.
Calt, 483.
Chool Dimtrict, 885.
hakempenre, ©31
marer 484
ca, 18.
Townohip, 884.
Whent, 117
Wool. 182.
20010yy 184.
cunco Bamkatchewan, 827.
wa bone Ontario. Bee Volume IV.

antratcheran 337


## chet mallway moanda, 400

chen ameay on, 880.
parthe kimong the Greck, 821; Rotnan piliting esi: oefinning of. in 1ealy, oft Tilippo Lappl, 8se: Botticelif, 23 : Leonardo anvio. 28 : Andrea del Barto, 8 ; Michnf
antelo. 88 : Corrercio, 54 ; Raphiet,
pleture atvdy, 54 quentlong, 87 ; chart 18.

Luer Jolite 48

maxiol $2=10$.
grunt bent 110.282
rumber itc.

crin Ex. 11.
4whe Ontarlo, 887.

tring acest 205ect 177 .
Prier Tre
anter Nor 177
hat Buida. Ont
ratie 53.
2turnes, Filitan 177
fathower, Samen Dololveoke 178
48tin otudy of. 482: Importance of crop 43t: hindi of, 48: outilne 4 is: questiona,
Felloticer, Pis olecien Aymomex, 178.
Fellotice, Pouly Plilyoe, 178
Italrote, Ontario. 828
maptan Tichers. Ontarlo, 28.
Tutbet, Britinh Columbla, sis.
ment, 6\%. Eeyenth year, 78; epecial treatment, 19.
cisen. reory Ealeo5: 178.
wity, Sraphic iltuatration, 355
wis. Alomrosth Somen, 478.
tugeotive, In drawing, 846.
tuit Ontario, ${ }^{3}$ E.
survoron 1 Ontario. See Volume IV

Armety Ontario. 888.
4Thent
rition Columbla, 888
soalth, 88 ; Drement condlion cunes of Eopt not a mattor of fuck sibi acton mi honth
 noe and dismare roult irem envi wey. whit power of undurance invienten $130:$ What power of endurange inaleatof, 6 cutture. Cet: exercime of medern phyalco Ilvatputve cherte, fos: poo practlee est: lation fe4: Wime, iseliong alr and ventl snow how to ett protion of rod, 684; fow neeesity sof; Breathine presetin pure air a

chanlew of colider 337 ; mechmater of into set mound ceilithe, 440 i hene. 11 , mine. netiom end eloctricity e4B; ovtifae of phy tes 48 ; quentions, 1 .
machine importhence of the mubeot, 140: frets of wronen ropairs tteols. 44 ; mome of outitne por meudy of the how to tudy. st guemilona for atuay eso: human body. 41 cutation est; aucitione. outine of the elf. the car, ese; outinen on eirculation, 033;



then Ontirio. 85.
fritur Nova Ecoth. 385.
chation atudy of, 800,605, 18, 854. 687
rowerngen aloprta.
anch Ew. Airin.
tanc viccace 18.
thine es in ADIt-grey, 14,518
brodiac. 17 ; burbant potato $t$ is plant apple, Dlum, dalay, cmetuato, boblackberry. entine weads, tis: peracites, 181: incort cotine plants, tes: plante that itore pood
coi Diant famitiea 800; lationm on plant
parta of bow of. 517 ; parte of a plent, 857 ;
parts of a hower sisi leamons on trese, set
H2 5e Beno 18.
c-2
Lumar. B4s.
20en
Autuman Fires, 50 s .
Boy sone, A, $5 t \mathrm{~s}$.
Brown Thrugh, Tha B04.
Chitaren'a Hour, The, Eil
Corn sone The, 5 ts.
Day Is Dona, Tha, 80 .
in TIme'm BWing, bes.
Lord Ulitn's Dauchter. 524.
October' Briaht Blue Weathor, 485
Old Gaetic Lultaby, SOS.
Owi and the Puayy-Cat. The 4th
Pianting of the Appte-Tree, The, 515.
Rain, 497
Robert of Lincoln. 504.
Robin llood and the Stranger, 60.
Seven Timen One, 497.
Bwine, The, 497
Tree, The, 467.
Vinit from 8i. Nicholan, A, E1t.
Wairun and the Carpenter, The, bos
What Doen litite Birdie Bay? 497.
Where Go the Boate? 503 .
Whind Shepherds Watched, 508.
Wind, The, 496.
Windy Nichtm. 504
Winter, 5 ts.
Wreck of the Hesperum, 586

## rowty. 541

ponort, Alberta, 168.
jeper Jomenh, 778 .
Forvipla Ontario, 188.
corta 15 Eratic Manitoba. 329
Port herth, Brition Cot umbla. 886.
rox Mrats, Ontario. 829.
Fort Eoce, Nova gcotin, 388
rort zepe Ontario. 818.
Por troot, Britioh Columbla, 380
cort fimpron, Brttah Columbia, sso.
pontrineoter minaly 28



APPLIED MALEE Inc
1853 Eont Moin Street
Rocheter, New rook 14809
USA
(716) 482-0300-mone
(718) 208 - 5305 - Fex

Eremitex, Sina, 210.
peotert Ontarlo, 330 피 Georre, 179 Dognsticirt, $486-489$.
stine Aluet, Samkatehewan, 330
gueations 307 mand, !tems of intereat, 306; questions, 307.
Parnoe Zuppri, Britlish Columbla, 330.
Fancotich Brltah Columbla, 380 .

zroblem, Aravers of, 68.
erootor, harancor Phimiter, 179
Isonown, The, 532, 638.
propertion o8' yatios, 636
2reportiom, in elghth year, 80.
seme, 541 .
zroneppili, mory of, 574.
govimo government of, 217; study of a, 286; outline of a, 287 .
656 development of pory, 656 ; definitions, 656; development of psychology, 656; place In education, 656; chart. 657: IImitations of paychology, 658; outline of the mental powers, 658 ; questlons on psychology and pedasogy, 658; questions on chlld study, 659 : methods, 659 ; senses, 659 ; attentlon, 659 ; memory, 659; hablt, 660; reason, 860; will; 660.

Fallio 工ande, 227
Pareloy, चiluam, 179.
print, how to bulld a, 717.
2rmo, 20bert Milan, 179.

## Q

Ow' Appalle, Saskatchewan, 330.
Cunpeo, Quebec. See Volume IV.
Cuobee (province), Items of Interest, 307; questlons, 309.
Guobeo coreontonary Oelobration, 403.
Craconetown, Alberta, 330.
Cunthosin:
Alberta, 295.
Apple, 432.
Astronomy, 117.
Athletles, 125.
Attentlon, 659.
Bees, 613.
Blography, 192.
Biras, b95.
Botany, 207.
Brltish Columbla, 297.
Butterfiles, 615.
Cacao, 430.
Canadlan hlstory, 410.
Chemletry, 234.
Chlld study, 659.
Clrculatlon, 652.
Coal, 444.
Coffee 429.
Corn, 415.
Dalry Products, 428.
Domestlc Sclence, 244.
Ear, The, 653.
Eye, The, 654.
Fish and Flsherles, 442.
Flags, 396.
Forestry and Lumbering. 439.
Fur Trade, 447.
Geology. 347
Hablt, 660 .
Indlan, Amerlcan, 392.
Iron. 423.
Literature, 552.
Manltoba, 299.
Memory, 659.
Methods, 659.
Musle, 568.
Mythology, 584.
New Brunswlck, 301.
Nova Scotia, 303.
Ontarlo, 305
Palnting, 627.
Peach. 433.
Physlcs. 645.
Physlology, 650.
Prychology and Pedagogy, 658.
Quebec, 309.
Reason, 660.

Salt, 426.
gaskatchewan, 311.
Sculpture, 681.
Senses, 659
Sugar 425
Tea, 429.
Trade and Commerce, 454.
Transportation, 452
Wheat 417
Wheat 660 .
Wool, 422
Zoblogy, 736

## R

Tatis, 497.
Beppath 624.
Sapld Olty, Manltoba, 330 .
Retlo and zropoztion. See Proportion.
crmone, Alberta, 330
omatre, 661; a valuable study, 661; cholce of good reading, 661; need of oral reading, 661 : suggestions on, 661; outllne on, 664; atudy of authors, 664 ; Longfellow, 665 ; study of selectlons, 665 ; The Village Black; mith 667 Tennyson, 668; The May Queen, 669; inter: astitis facte about authors 670 . 670; Tennyson, 670; Whittier, 671: Holmes, 672: Lowell, 672: Scott, 473; Louisa M. A1: cott, 674; Hawthorne, 674; Thackeray, 675.
zeason, questlons on. 660 .
Zennme, Jompli O. 179.
Fon Dens, Alberta, 330 .
Fon Dens, Alberta, 330 .
Herermere, to irind, 400.
ommended toolis ergarten helps, 450 ; rec486; Ilst of story for parents and teachers, atin Saskatory books suggested, 472
zera, Geote A mewan.
Eota, John Downloy, 179.
Eomaiseavoe, graphlc llustration, 380.
Eemirew, Ontarlo, 331.
noptor, Manltoba, 331
Sevelfore, Brltlsh Columbla, 331.
Hohbucto, New Brunswlek, 331.
Racan camis 451.
Ret Tout 179.
Sial tobulkon, 401
Amoneld Quebec, 331.
Trers, Manltoba, 332 .
Briase du Tous, Quebec. 332.
20 bert of Inincolm, 504 ; study of, 506.
Soberte, Oharien Acorye Dourim, 180.
Poberten, Joms romm, 180 .
Sobln Food and the Etranger, 536.
Sobincom, in John Boveriy, 180.
Soblim, Eir EoAmona Palon 180.
Soohe, vinitam Jamen, 180.
Soorland Oatatiog 332.
30 Pery, Sopert, 180.
EOLna, Eranitobe, 332.
Some, graphlc lllustratlons: legendary period,
361; the Republic, 362; the Empire, 363:
Roman clvillzatlon, 364 ; soclal customs, 365 ;
the Eternal Clty, $36{ }^{\circ}$
zose, Mexander, 180 .
30su, Moxander zillion, 181.
3over ir Georse wiliam, 181.
Sone Jamea Emiltom, 181.
Sonetsen, Britlsh Columbla. 332.
zonthorm, Saskatchewan, 332
Sotration of Crops, School Work In, 26.
oulcan, Saskatchewan. 332
zopal Torthwent Tounted Police, 220. 401.
Balore of the World, table of, 411 .
satal fonoole, agriculture In, 22.
Buncul Manltoba, 332.
Butais, graphlc Illustration, 382.
Euthertord Mozander Otmoron, 181.
Browon, EPV. Erutom, 181.

## S

Emokwile, New Brunswlck, 333.
Caint Albert, Alberta, 333 .
Eatnt Andrew, New Brunswlck, 333.
Befzt Amze de Sennpre, Quebec, 333.
Tatat Eonitec, Manltoba, 333.

Fint Castiatioes, Ontario, 834.
the Hath New Brunswick, 864
That scremer Qusbec, 384.
Entet Jolth Now Brun 364.


anis Frarre, Manitobs, 834.
ang raring Ontario, 334.
nat Prepinen, Now Brunswick, 334.
nethe zhene Ontarlo. See Volume IV.
nlines $x_{2}$ British Columbla, 334
mith study of, 425; Whsre found, 425; how obtalned, 425; outiins, 426; questions, 426.
nipoati, sancatnhsw
ma, in kinders. ten work, 474.
ma-sabla, $481,487$.
mates, omarien, 182.
plumbing, 242; water 241 ; drainags, 242 ; plumbing: 242 ; water supply, 242; cleanil: nesm, 242; insects, 242; ventilation, 243.
narity Ontario. See Volums IV.
urto Alares del, 622.
matarang was, Irrigation in, 83; Itsms of interest, 809; quentions, 811 ; becomes a province, 403.
matioom, Slaskatchswan, 334.
malt Eto to Zario, Ontario. See Volums IV.
nulf Pe. Farle Oans1, 451 .
bivol Dintriot rarot Ravinail, 182. fecsraphy, 283.
Colontite Earming, 14.
cooth, Saskatchewan 335.
Cowh puzoat Oampboll, 182.
coth, Fredertok Georte, 182
coth, 花 Zlatase willam, 182.
coti, Walker, 182

colptars, 676 ; how a statue 18 mado 876 ; treatment of sculpturs In thsee volumes; 676; sreatnses of anclent sculpture, 678: Myron, 676; Phidlas, 676; chart, 677; Apolio Belvedere, ${ }^{678}$; Venus of Milo, 678 : Laccoon 679 ; Victory of Samothrace, 679 : Niobe, 680; study of statuary in ehool, cend 14: Sun vow, 681 ; questions, 681
meed 14; importance. 14 ; charactsr of good seed, 14; selection of seed, 14; storing seed, 14; issting zsed, 15; seed dispersal, 25.
coleotions 108 Thamoriting, 554 .
plutirs, Manltoba 365 .
Dllaty Eari of, 183.
mimple, zobort, 188.
Enninte, 2ro, 211.
Gumses, questions on the, 659.
entorios, atudy of ths simple, 531.
torven thens One 197.
frat zimate One, 497.
651.
651.

Lhatio Datider, 30.
mayhmensy, ist choman Georse, 184.
marimigan zalla, Quebec, 335.
Meqleo, New Brunswick, 335 .
malbutae, Nova Scotla, 335 .
gnatior, in camp, 715.
mephora, zranale J. 184.
anephast 307 and the Woives, The, 507.
menbrooze, Ontario. See Volums $V$.
moal Iake, Manltoba, 335.
morth, Adam, 184.
Artom, Arthar I. 184.
Hftom, C14
[110, The 20 .
Emeoe, Ontario, 335.
Himeoe, John Graves, 184.
simpeon, Bir aeosy ${ }^{2} 184$.
Smatalia, Saskatchewan, 335.
By-mornpes, 2he, 47.
minth' British Columbla, 335 .
moith ralla, Ontario 335 .
soil 16; value of, 16; analysls, 16; how to ${ }^{\text {study, }}{ }^{1}$
Collis, frechavion of, 687.
Rorl, Quebec, 385.
gomanger Camai, 451.
coune, 639
Zouria, Msnitoba, 835.
Iouris, Prince Edward Ieland, 885.

Horth Fancouver, British Columbla, 335
peanict 819.
ciete tonce, etmpio, 707.
2th 214, Nova, Bcotie, 836.
Wroma, Thomer nucotie, ${ }^{836}$.
ctiant jome 185.
amin 1002,
tlon, fob: keennem the, 568 ; seneral deacrip590; The Mounneas of ssnees, 590; hablte.
Exanioy, 1 crz 185
eratuar, study of, in achool, 680.
tintace
Appolio Belvedors, 678
Ths Discus Thrower, 678.
The Leof Milo, itis.
The Laocoun, 679 .
Niobe 679 y Samothrace, 679.
Nobe, 679.
Mosen, 680
David, 680
Ths Sun Vow, 681
uneas zingine, how to maks a, 713
mollartom, Nova Scotla, 336 .
Pheriee, Alberta, 3.36.
vurion, zobert zouts
Rain 197 Frex, 508.
Rain, 497
Whing, The 497.
Where Go the Boate? 503.
Wind, Ths, 496.
Windy NIghts, 504.
tovertoz, British Columbla, 336.
toze, essay on, 528 .
tomowell Manitoba, 336.
toiny Pialm, Alberta, 336.
tiorace Iattery, 722

## thoziot

Arachne, The Story of, 571.
Atalanta, The Story of, 577
Crane Expreas, The, 470.
Europa, The Story or, 569.
Frau Holle. 885.
Glifts ths Dwaris Made, 693.
How Baby Ray Got up In the Morning, 471
Joeeph and His Brothers. 696.
itile Pg that Wouldn't Go over ths stile,
The, 687.
Little Red Hen and the Graln of Wheat The, 467.
Musiclan and the Dancer, The, 470.
Pancake, Ths, 468.
Phasthon, 572.
Proserpina, The Story of, 574.
Three Bears, The. 464.
Three Goats, The, 684.
Three Tiny Pigs, The, 465.
Trojan War, The, 578.
Wo Green and Glittsring Gold-Chafers, Ths, 488.
Ugly Duckilng. The, 688.
Hinkeiried, The Story of Arnold, 696.
of a coilis, 682 ; purposes of, 682 ; essentials 0 of a good story, 682; how to tell a story. etrwhan, John, 185.
Etrachioury, Saskatchewan, 336.
Erraliora, Ontario. See Volume V.
Etrathoona, Alterta, 336.
tringer and Lount Iojal, Earom, 185.
Liriager, Arthay 186.
truat Chas ndotase, The, 206.
Whart, onarios llan, 186.
abernotion, in algsbra, 105.
Enabur. Ontario, 336.
nugar, Study of. 424; Introduction Into North
America, ${ }^{424}$; production, ${ }^{424 ;}$ beet sugar
424; outins, 42 ; questions, 425 .
suite, Bonjamin, 188.
Eummoriaria, British Columbla, 336
num
Guprom. The, 681.
Enprome Court, of ths Dominion, 215.
Eugex, Now Brunswlck. 837.
Enthorand, Saskatchewan 337.
Buthariand, whinam Oharioe, 186.
gwan Evos, Manitoro. 887.
WWeoney, Rev, Jaman Pielding, 186.

Cutas Ene, 497.
Whay. Novn scotian Reo Voiume 18. 3 Hes Rinem Nove Scotia, 887.

## T

Enber, Alberta, 387
geote Aroution Alaratios, 137.


thris on Inoith 22.

yheo mone cicor Lergudre, 187.

Tacation, 232; tarifi on imports, 222; iniand revenue, 233; 1ocal taxation, 223; graphic illustration, 224.
zariors
tar study of ${ }^{428 \text {; murce of }}$ supply, 428; targotit consumerg, 488; how butinesa it haniled, 428; outine of, 429; questiona, 429. Fonelare to the, 10 .
 tomp ${ }^{222}$; Koy, 723; recetver, 728 , circuit with two keys and two sounders, 724; wirelean tetegraph, 726 .
 What Boes Inttio Birdie Say? 513 ; The May Quoen, 669
Trite Iyice of, 716.

Therlanctis, reading the 60 .
Thetrosi yince Quebec, s37.
mompeon Davia 188.
Tyompron, Bx Jour in, D., 138.
ghosent tency $D_{n}$ quotation from, 611.
51500 Tasse, The 464.
trien Eivare Quebec. seo Volume v.

Hilog, mir curiol Ioontra, 138 .
yownigna, orasies Jmmos, 188.
glong 8tandard, 89.
gromet, Oatario. Bee Volume $\mathbf{V}$.
zoundip, covornment of, 216; in ceography. 284.
zraco and commesco, atudy of, 452; increase In forelgn trade, 452 ; leading exporters and importer, 453; principal exports, 463; principa. 1 mporta 453 ; quentions, 454.
Eniz Britien Columbia, 387
min
Graportetion study of. 447; rallroads, 447;
Grand Trunk, 448; Intercolontal, 448; Cana-
dlan Pacinc, 448; Canadian Northern, 449;
Grand Trunk Paciac, 449; Canaic 449; St.
Lawrence Canals, 451; Murray Canat, 451;
Welland Canal, 451: Sauit ste. Marie Canal,
451; Ottawa-Rideau Canale, 451: Chambly-
Lako Champlain system. 462 ; Trent CCnal,
452; St. Poter's Canal, 452 ; quentions, 452.
Exee, $\mathbf{x} 10,497$.
598: lessons on, 593; impoitance of trees,
598: ceneral sugsestions, b98; fait atudy of
trees, 598; winter study, 599; apring and summer studies, 600; planting trees, 601,
802; When We Plant a Tree, 604.
2rantion, Nova scotia, 357.
zrojan was, 27ne, 578
Txuro, Nova scotia, 337.
yrunt dompanien, 563.

Fuppers, Etr Oharim Iaibbert, 189.
amiteon, Acoinri, 139.
cuseeon, , ilitam seraliana, 139.
Twoodia, Eemmol John, 139 .
wo Grove and altitime cold-chatest, The 408.


## U

Urto malkieg, gro, 888; commont on, 692.

## v

rabortane quobec, 33 .
Feroonver Britiah Columbla see Volume V.
Thepry, coot 189.

-
Fescilit Alborth, 88.
Vominnom 848. 854.
Vame of Irio, 378.
Topricerge, sroses enntios do is, 190.
vasurite 5 Ab, 589.

- arnon Altberta, 838.

Gerion, Britith Columbla, 388.
Holiont Britit Com, speech on the Dog. 605.
Froosina Briting Coiumbla. see volume V .
Frotornilly, Queboc, 338.


Firtion Manito ${ }^{622}$



## W

Walowerpit, Alberta, 338.
Walior, ir zroa Jamuid, 190.
Waraville, Ontario, 338.
Wrincopasis ontario, 388.
चhan rupe, essay on, 521
waire and the darpontor, 2me, 505.
Waprian saskitchowan, 339.
watmon, $05,190$.
nive, importance of pure. 237; water sup-
ply. 342.
Whation, Ontario, 339.
Wations, Bankatchewan, 339.
weres 198.
wincia, Ontarlo, 839.
walian octar, isi.
Wcumprat, Quebec, 339.
Ferintio, Nova Scotia, 339.
Weqnatith, Alberth, 339 .

Leplay, saikto hevan, 339 .
Wris Doonsti jisati majp 497.
Ouzf, study oi -16 riarkets and prices, 417;
ouniline 117 ; questiona, ${ }^{417}$.

Whio oo tho zonter 503.
Whe siopheral watobed, 503.
White, Wintame ynomate, 190.
Whto EORE0, Yukon, 339 .
Whiowood Sakatchewan, 339.
Whtaje Ar Jamen Plinj, 190 .
about, ' $\quad 71$; The Corn Song intereating facts
about, 671 , The Corn Song. 512.
Whitro, sakkatchewan, 339.
Will, questions on, 660 .
Whmot, Enmiol illini, 190.
Willog, Arthur, 191.
Wileon, Erar Dainci, 191.
Hind yme 496.
Hindicoz, Nova Scotia, 339.
Wimaior, Ontario. See Vofume v.
Wma厂 merter 504.

Wimilier, Manitoba, 339 .
Finriper, Manitoba. See Volume V.
Wimit orens, Manitoba, 340.
Fintory 618.
Wrulten Pelegraph, 725.
wolf and tho mamb, the 608.
Folfo, concral Jamon, 131.
Woirchile, Nova scotta, 340
ㅍolmoto, saskatchewan, $3 i 0$.
Wood Jomian, 191.
Wood Mriltime 191.
Woodimary and Onimpor, The, 714; equipment and clothing, 714; choosing a site, 714; camp fires, 714; Bheiter, 715; styies of tents, 716.
Wooastook, New Brunswick. 340.
Woodetook Ontario. see Vofume 5.
Woon, Study ort ${ }^{420}$; history, 420; kinds, 421; Canadian production, 421: marketing, 421; outiline, 432; questions, 422.

Z
Eoojery, 728; why we should study soblory. 728; planti and animals, 728 ; What all and: male need, 728; chart, 729 : relationahips, 730. resemblance 731 , the ntruggle for expmitence,
$732 ;$ zoology in thene bookn, 733 ; outline, 734

## CORRELATIVE INDEX

## то

## THE NEW PRACTICAL REFERENCE LIBRARY VOLUMES I TO VI

In the first five volumes of The New Practical Reference Library all topics are arranged in alphabetical order, and the Roman numerals, I, II, IIJ, IV, $\mathbf{V}$, in this Index indicate the volumes in which the topics may be found. In Volume VI, the Educator volume, page numbers are indicated, as its many special features do not lend themselves to the alphabetical arrangement.

The Index which is printed on the following pages was made to correlate the subject-matter of the entire six columes of The New Practical Reference Library. By its use the teacher, parent and student will find references which will uncover without waste of time all the information these books provide on every department of knowledge.

Classifications have been carefully made. For example, under Arbica will be found a classified list of all topics contained in the six volumes relating to that continent. In the treatment of a state, all topics and special features, such as the graphic illustrations, are completely given and plainly classified; one may study the cities as a group, or the rivers, mountains, or lakes, and thus cover an entire state without repetition or confusion.

The industries, the sciences, nature study, each separated into logical groups, are classified for the reader. One who would study birds with care is assisted by a grouping of different species; he may devote himself to warblers only, or to waders, or to scratchers, and thus with ease master the facts relating to each group.

In biography the names of the great men and women are arranged in groups, as physicians, lawyers, educators, poets, statesmen, rulers, and they are classified by countries. It is thus easy to comparc, for cxample, the astronomers of all countries, or to make a comparative study of a group of scientists belonging to a single country.

All these advantages are obtained through this uniquc and exhaustive Index, which correlates the vast amount of useful knowledge found in this Library. This plan of Index, then, makes available for instant use information on all subjects treated, and is in accordance with the approved metnods of study and investigation used by the best schools of the entire country.


751

Abomey. 1
Boma, 1
Kemge Fres atate

Itaing III
Legen

Monrovit, 111

## Nefel

Durban, 11
Dagyamith, III
Nubde
Abr-ifmbel. I
Orenge River Colowy Blocmionteln, I

Senegel
Saint-Louis, $\nabla$

Slery Leowe

Frectown, II
Itmhusta, $V$
Budew
Tranovest
Johamnewhare, III
Protoria, II

## Colfa and Bass

Alson. I
Blafra, Blght of. I
Geninea, II

## Islands

Admiraity. I
Bingegce, I
Phim, IV

## Lales

Albert Edvard Njanza, I
Albert NJansa,
Bangweolo.
Nantime IV
Nrame IV
Nanganjira, $V$
Tangany
Tchad V Nyanse, $v$
Mountains
Atles, I
Drationabers, II
Trable, $\nabla$
Political Divisions
Abyndinia, 1
Alseria.
Angols. I
Aghanti, I
Barhary,
Barca. 1
Batatoland. 1
Benguela, $I$
Benla. 1
Bornu.
Britith Central Africa.
British East Africa, I
cape colony, 1
Dahometánd, II
Egypt, II
Ethfopla, II
Fezzan. II
French Koneo. II
French Eomaliland. II
French West Africa, II
Gambia, II
German cimat Airica. II
German sonthwest Africa. II
Gold Const. II
Griqualand Went, II
Gulnem. II
I vors Coast. III
Kamerun, III
Kongo Free state. III

Sordofan, 111
Lacos III
Hamhonalimd, III
Monbuttu, III
Horaceo IV
Tosamhlgne, IV
Natal IV
Nirerla IV
Numidte IV
Orange alvpr Colong, IV
Portaguene Eint Arrica, IV.
Portncuese Duinen, IV
Rhodesta, IV
Rhoderal, R $^{\text {IV }}$
Benerat,
Mierra Leone. V
Holsoto $V$
homalliand, $\nabla$
Gudan. $V$
Topoland, $V$
Transyal Colony, $V$
Tripoll,
Tunit,
Uranda, $V$
Wadal. $\nabla$
ZuInİnd, $V$

Aruwiml, I
Rivers

Gahnn. It
Gambla, II
Gambla, II
Kongo, III
Nlee, IV
Ogowal, IV
Orange, IV
genegal
ghire. $\downarrow$
zambesi, V

Unclaalfied
Kalaharl Desert, III
Marabouts, III
Bahara, $v$
South African War, $V$

## ACRICULTURS

Arave, I
Agricultural College, I
Aricultnre,
Sclentific Frarming. VI, 14
Seed, VI, 14
Agricuitaral Machinery, VI, 15
Soli, VI, 16
Insects, VI, 17
insects, DI, $17, ~ V I, ~$
Plant Diseases.
Dalry, VI, 18
Agricaiture in Raral Echools, VI. 22

School Work in Rotation of Crops VI, 26
Worts of Luther Burhank, VI, 27
Irrigation, VI. 32
Fssaya on Corn, 30-44
Agriculture. Department of. I
Agricultare in Rural Schools, VI, 22
Alfalfa. I
Allyator Pear. I
Alisplice,
Almond,
Anchovy Pear, 1
Anise, I
Aplary. I
Apple. I
Apples, VI, 431
Great Crop, VI, 431
Princlpal American Fruit, VI
431 American Fruit, VI.
Finmentlala to Growth, VI, 431
OntIIne, VI. 432
QuartIonn, YI, 432
Apples, Seedlens, I
Epe, also, VI, 20
Apricot. 1

Artichote,
Aaparagus 1
pandans
Beriey.
Bean,
Bee I I
Tlermida Grans, I
Blackberry,
Bee, almo, VI, 20
Blight, I
Blue Grage,
Breadfrult I
Breeding,
Broomeore I
Brusela Sprouts, I
Bnckwheat, I
Bnflato Grata, I
Bulrush, I
Bunt, I
Barbink, Lather, Work of, VI, 27
What Piant Breeding Mrank,
an of Nataral Sefectlon. VI, 28
Potato YI 20
Biactoberries, VI, 2 n
seedless Apples, VI, 21
Plame. VI. 80
Spinelets Cactus. VI, 30
Cohlets Corm, II, :1
Cabbase I
Cacao, VI, 439
Cactus, Bpineleas, VI. 30
Calamng 1
Canada Femp.
Canary seed. 1
Cans. 1
Cantaloupe,
Caper. I
Caraway, I
Carrot,
Catnlp.
Cattle, I
The Herd, VI, 18
The Stable, V', 20
Fanlifo VI, 20
Canilifower, I
Celery, I
Chan Cutter, I
Cherry, I
Churn, II
CIcely, II
CInnainon, II
CItron, II
Clover, II
Clover, II
Cocoanut, II
Comee, II
Source of Supply, VI. 428
Largest Consumer, VI, 128
How Business Is IIandled, Vi. 428
Ontinge, VI, 420
Questlons, VI, 429
Conservatlon, II
Corn. II
Cobless. VI, 31
Cost of Producing. VI, 41
Esmays on, VI, $36 \cdot 4 t$
Importance of, VI. 113
Loss Through Waste. VI, 413
Outilne, VI, 414
Qnestlons, VI, 41:
Whgt Becomes of the Crop, VI, 413
Corn Harvester, II
Cotton. II
HIstory, VI, 418
Growth of Industry, VI, 418
World's supply and Consump-
tlon, VI. 418
Ontline, Vi. 410
Questlons, VI, 420
Cotton GIn. II
Cranherry, II
Creamery, II
Cress, II
Cucnmber, II

Dalry, The V1, 18
Herd VI, 10
H10. VI, 20
Fithe ${ }^{2} 1{ }_{21} 20$
Dalr Products, V1, 428
IItary of Indugtry. Y1, 20

Ontiline, $\mathrm{VI}_{1}$ g27
Queatlons, VI, 427
Dameng. II
Date, it
pate Pinm II
Diseaver of Pianta 11
Bee, aleo, VI, 17
Dry Farming. it
Duck, 11
Dwarting, II
Extiant, II
Epparto, II
rarmeric Inutitnte, 11
Furming, Beleathac, $\mathbf{V I}_{1} 14$
Tertlifern, II
H2. 11
Fian, 11
porentry,
poitell Grame, II
Praits II
Gama Grase, 11
Gardening. II
Garilc, If
Goater il
Goat, II
Goose, 11
Gooneberry 11
Grifting 1
Grame, It
arape,
Grepe Frult, 11
Graseses, II
Greenboume. II
Greensage il
Grubber, il
Gisno. il
Guerin, II
Hamptoa Normal and Agricultara inatliute, III
Harsow 111
Has, 111
Ilemp: 111
Herbicidea, 11 I
IIlbicuse 1 II
Hog. 111
Horse, 111
Horne Radith, III
Horsetall Ruilh. III
Hortleulture, III
Hnckleberry, III
jecubator, III
insecticldes and $F_{1}+$ is
laseets and Plant ! is
17
Imigation, III
In British Columbla, V1, 33
in Alberta and Saskatcbewian
V1, 34
Land Values and Molature, Vi. 32
Outline, VI, 35
Job's Tears, 111
Kawir Corn, III
Knot Grabi, III
Kumquat, 111
landscate Gardening. III
leak. III
Lemon, ill
Lontil, III
Lettuce. III
LIme, III
litchi, III
Lonm, III
Loqust, III
Kacblnery, Agricultural, VI, 15
Improvempnt $1 \mathrm{n}, \mathrm{VI}, 15$
Care or, VI, 15

Madder 111
Nelt ill
Mapoo ill
rarjoran 11
Farf 11
Yelon, III
Milderis 111
In Model Detry, VI, 21
4. rood, Vi, 238

Yillet, 111
Yome 11.
Moming Marblae, IV
Malberty IV
Mnle iv 1
Natura Beloction, Law of, Vi, 2
Nectarine, IV
Nettle, IV
Nursery, iv
Oats. It
ollve. iv
Onlon, iv
Orange, iv
Papawiof, IV
Paralef IV
Pee. 10
Peack, IV
Studs of, VI, 432
Importance of Crop, V1, 432
Klode of, VI, 432
How Raise $\mathrm{HI}_{3} 438$
putine. $\mathrm{VI}_{2} 433$
Peannt ivn, V1, 433
pear, Iv
I'ecan, IV
Pepper. iv
Perslan wheel, IV
Peralmmon, $1 V$
Preapple, $1 \mathbf{v}$
Plant Greeding. VI, 27
Plow, IV
See, alno, VI ${ }^{36}$
Pomegranate, iv
Potato, IV
see, alyo, V1, 29
Poultry, IV
Prune, IV
Pruning: IV
Pumpkin ${ }^{1 V}$
Ranince, IV
Ranching. iv
Raspberry iv
Ratan.
Reaping Machide, IV
Renervolr, IV
Rlice. IV
| Retation of Crops, IV
Sep, almo, V1. 28
Rural 22 schools, Agriculture In, Vi. Rusts, iv
Hye. iv
Enaiower, IV
saifron. iv
sage. IV
Beeds. IV
importance. VI, 14
Character of Good, VI, 14
selection of, VI, 1
Ktoring, VI, 14
Teating, VI, 15
Sparator. IV
Sheep, $V$
Sheep ${ }^{8110}$.
Slisal, ${ }^{\mathbf{v}}$
smuts. $V$
soll. The, VI, 16
Calue, Vi, 18
Anslybis, Vi, 16
How to Etudy. V1. 16
Sorkhum. V
Sowlig Machlne, v


Thrashing Sackline, ${ }^{42}$
Thyme.
Timothy, $V$
Tomato, $V$
Turke, $V$
Tualepaee Norman and Indentrial
Vetch, $\vee$
Veterlaary Medlcine, $\mathbf{V}$
Weeds, VI, 198
Wheat $V$
Study of. VI, 116
Martete Crop, VI, 410
Ourtine and irtcea, VI, 417
Outilie, $\mathrm{VI}_{1}{ }^{417}$
Woot yitions, Vi, 417
grudy of, VI, 420
Illatory. VI, 420
Kladm, VI, 421
Canadian Iroduction, VI, 421

Quentlons, ث̂1, ${ }^{422}$

## Yam, V

Bee. aiso
Bee, also, Plaxts, subhear Plant Dlsesmes: liatanea AND Pathologr, nubhead Diversen of Antmale: Botany.

## Alabama

## Alabama, 1

With mubhead grarace ann
 aovacea, Aoarcultuag Manvyacteria, Commeace, Thanapoa. tation, govennient. Emucation. inatititions, Hiatoay.

## Cition and Towns

## Annlinton, <br> Ressemer.

R1rmingbam, I
Florence, 11
Gadnden. II
Huatsvilie. 111
Moblle, 111
Montgomery, III
New Decatur, iv
Relma, IV
Talladega. $V_{V}$
Tuncaloosi, $\mathbf{V}$

## Gulfa and Baya

## Mexico, II <br> Soblle, III

Mountains
Appalachlan, 1
Cumberland, II

## Rivers

Alabsma, I
Cbatraboochee,
Consa. II
Moblle, III
Tennessee, $v$
Tomblgbee, v

## AlAidA

## Alante,

With eubheads Beinfacm 4 wo omarman, CuIMaty. Mimpabif. VEOETATIOX, Aximal Life, Vian: hatme, $\triangle$ gitculteam, Thavapog-
 inaneirasta, Hiazois.

Crpes
Barpow, 1
Whhurae. 1 it
Privee of Wales, IV
Citber and Towns
Junean 111
Nome, iv
Dtike, $p$

## Iolande

Admalpalty, 1
Aleutiaty
bering.
ITIbiloI. IV
Unelatite, $v$

## Culfe and Bays

Cook Inlet, 11
Mountains
Cascude Range 1
Falrweather, Mount, 11
Kekinley, Monnt, ili
Rivere
TukOB, $V$
Unclasalfied
Kloudike, 111
Muls Glacier, iv
alBerta
Alberta, 1

## Citien and Towne

Banfi, 1
Bank Head, V1 314
Basmano, V1, 314
Bellevue, VI, 815
Blairmore Vf 310
Hrookn, VI, 316
Calsary,
Camrome, VI, 316
Canmore, Y', 316
Cardston, VI, 317
Claresholm, VI, 317
Coleman, V1, 318
Dlamond Clty, VI, 319
Dlusbury, V1' 310
Edmonton, II
Edmon, VI, 310
Fort Gasiatchewan, VI, 320
Frant, VI 320
Gleichen, V1, 320
IIth River, vit 322
Hilicrest, VI. 322
Innlsiall, VI, 322
Lacombe, VI: 323
Laggan, VI, 323
Leduc, VI, 323
Ledtbridge, VI, 323
Macteod, VI, 324
Macleod, VI, 324
Magrath, VI, 324, 324
Medtcine IIat, V
Nanton, VI, 328
Olds Vi, 327
Pincher Creek, VI, 328
Ponoka, V1, 328
Queenstown. VI, 330
Raymond, VI, 330
Ted Deer, VI, 330
Ralnt Albert, YI, 333
Stetter, VI, $\mathbf{3 n G}$
Stony Pialn, VI, 336
Stratheona, VI, 336
Stratheona, 337
Tofield, Vi, 337

Vearevilic. F1, 3 se
Vermillow, VI, 83 H
ifos.rplat, fI, 838
Fotailwis, V1, 480

## Mountalins

1100ker, Hicunt, 111
llociry, IV

## Niver and Lalze

Athabaca laki I
Athabare IIIver,
Baskutchewan Hiver, IV $_{\text {IV }}$

## AMINRA

Americu.
bre, almo, Nomet Amratca and BOU FH Aminta.

## AMUSEMENT WORLD

Amphltheater, I
Hallet 1
Comedy. 11
Danclog. II
Draman, 11
Farce, 11
IIarlequía, 111
lilppoisome, 11 I
Manque. II:
Melodrima, III
Miustrel. III
Miracle Piayn, 11
Morality Play, iv
Mystery, IV
I'mutomime, IV
I'asslon I'lay IV
I'analon l'jay IV
Quadrilie, $v^{\text {Stad }}$
Tadtermall:g,
Thatcranils
Tragedy.
Vaudevilie, $V$
Ventrilogulam, V
Wilta, $V$

## ANATOMY AND PHYSIOLOGY

## Anatomy, I

Abdomen,
Abworbents, I
Aphllips, Tendon of, I
Allmentary Canal,
Anthrometry. I
Aorta. I
Appetite, I
Appetite, 1
Assimilation, 1
Astragalus,
Ax/s. 1
Beard, I
Bieeps. 1
Blle. I
Hlood, 1
Bone, 1
Hrata. 1
Bronehl. I
Caplitarlem, 1
Carotld Arteries, 1
Cartllage. I
Cell. I
Cerehellum,
Cerehellum,
Chehrum
Cbyle. 11
Cilia, II
Clreuiation. 1
Color Bilndness. II
Connentive Tlesue 11
Cranlal Nerves, II
Decomnoaltion. 11
Ineglutition. II
Mapbragm. II
Digettion, 11
Ear, II
Gee, also, VI, 652
Emhryology, 11

Fplthelium, II
Eye. 11
thee also, V1, 654
Frelld. 1
rece, II
Piber, if
Fibrin
Fat If
ratty bereuerailon, II
peelruer II
poot. 11
Gall Bladder, II
Ganylons 11
bastrle Julce, 11
Hands. II
IIemoglohlu, 111
lialr, 111
Ileath, 11
Heart, 111
IIntology, 111
Intentives. 111
Jolnts, II
Jugular Vria, 111
Sldneys. 111
Lachrymal (Ilauds, 111
Lacteale, 111.
Laryax. 111
Lirament. 111
Liver, III
Lunge, III
Lymph. III
L. 5 mphatlen.

Vantication 11
Medulia Ohlongata, 111
Membranew, III
Disentery, III
Nouth, IV
Murus, IV
Mumrie IV
Muscular Senac, IV
Nalls, IV
Yorves, iv
Nirvous Eymtem, IV
Nighimare, IV
Nose 1 V
Nutrition IV
palate. IV
Papereat, IV
Papcreatin
I'eptones, IV
I'erlcardium. IV
Pharyax, IV
Physiology, iv
Importanee ol Subject. Wi. BHS
Some Effects of Wrongdelag. VI, 648
Llow to gtudy. VI. 640
Outine ol Ifuman llody, VI. 649
Ouestions. vi, 6.n
Outine of Cireulation, VI, ais
The Ear, Vil, 0.5
Outiliae on Eir, Fi, fion
Questlons on EAr. VI. 653
The Eye, VI, Biot
Questions on F.je, VI, 63t
Chart. V1, $65{ }^{\circ}$
Hegra, IV
Pulse, IV
Respirntton, IV
Raliva, IV
Scalp, iv
Secretion. $V$
Recretton,
Repout, Nembrades, $\nabla$
Skeleton, $V$
Gith, V
Sleep,
Smeli,
$V$
Splnal Cord, V
spleen. V
Starvation $V$
8tomach.
8weat,
Tartar,
Tartar,
Tatte, V
Temperature Sense, $\mathbf{V}$
Temperatur $V$
 ente.

```
ANRMALS ANIMALS
```

Animel, I
Anmal Intelligence, I


20 Imaccra.

## Invertobrates

Abalone, 1
Argonant, 1
Army Worm,
Barpacle, I
Cankerminm,
Caterpliliar,
Chitons
Clam, II
Coclile, 1
Conch II
Cribs, 11
Crawisad II It
Crisoldee, II
Cattlefish, II
Daday-lopicilers, 11
Daphala, 11
Earthworm, II
carile, II
ploder Crab, II
Floke, II
Gadropod, II
Gooseberry Worm, II
Hair Worm, III
Eermit Crab, III
Horsechoe Cral. III
Hydra, II
elynish, IIt

Eech, III
Lobiter. III
Lobworm, III
Menturlag Worm, III
Medues $I I$
Mites, III
Mosel, IV
Nentlus, IV
Orthocer iv
Oyster. IV. IV
Polyp. IV
pibbon Worm, IV
Scallop, IV
seorpion, $\gamma$
8en Anemone,
*e Cucumbers, 7
cen Finre, $V$
祙 Lemon,
Lee Mat,
dex Monne,
de Urchlo,
evth, $V$
dip Worm, $V$
shrimp


## Azoloth $A$ mphiblane

Bullires $:$
Mrod Puppy, IV
Nowt. IV
Ealaminger, IV
Toad, $V$
Tree Frog. $V$
Ape, I
Apes and Monkeye
Aye-aje,
I
Baboon, I
Cappehin Monkay, I
Cmpmanzee, 1
Glbbon, II
Gorilla, It
Guereza, II
IIowleri, If
IRmar, III
Mactiqne
Macaqne, III
Marmonet, III
Monliey. III
Orang utan
Qapajou, iv
squirrel Monkey. IV
Bat, 1
Bete
Fix Bat. 1
Specter hate, $\mathbf{V}$
amplre Bat, V
See Birds.
Airde
Carntrores
Anrd - I
Bad,
Beak.
Bloodhound, I
Rulldog. I
Caracal
Cat, 1
Catnmonat, I
Clifet, II
Collle, II
Dandle Dinmont, It
Dingo II •
Dog, II
Geveral Description, Vi, 604
Characteristles. VI, 00
Klods. VI, 605
Dope an Frlend, VI, $60 \%$
Ermine if VI, 606
Ermine. It
Enkimo Dog, II
Fennec, II
Forret it
Foxhou:d, II
Foz Terrier, II
Gintton, II
Greytonid, II
Halrlest Dog, III

Hownd 111
inem. ili

Nowfoundlased, iv
erelot, IV
OHter, IV
Y'anther, $1 \%$
inolnter, iv
poode, iv
ITY. IV
Puma, iv
Raccoon iv
Ratel, IV
Retriever, IV
sable, IV
ginlat lipraeri. IV
Bcoteh Terrler, iv
Gerval, $V$
Whepherd Dog, $V$
grupk V Dos, $v$
Alye Terfler
Epalel, $V$
Spectached Bear, $V$
$B p l t a, ~$
$V$
spita, V
simphound $V$
Sum Bear,
Tririer,
Ther Cat, $v$
Wrapel, $v$
Wildent, $v$
Wolf, $v$
Belngn. 1
Cefacean:
Dolphlin
Bukong, it
Grampus, II
Inla, III
Manatee. III
Narwhni, IV
Porpolne. IV
Rirquali, $\mathbf{v}$
Airenta, Whate, $V$
Whale, v
Crocodilee and Alligatore

## Alligator, <br> Cromodile, It

Ego-laying.
Duck-bllled Platypus, II

## Fithes

See Finnen.
Fosalie
Dlnoceran It
Dinornls, 1
Dlnomaurin, 11
Innotherium, II
IIIpparion, III
Iethyosaurus, III
Minmonoth, III
Mastodon, III
Megatherium, III
I'terodactyl, iv

## Hoofed Antmals

Addaz, I
Alpaca, I
Autelope, I
Aug. 1
Bnhlrooma, I
Blahorn,
Blason, I
Bleabok, 1


Bablliak, 1
Chmmeleon, 1
Drasom Il
Gracso it
Gill Monater, II
Horaed Toad, il
Horace Ton
fruma, II
Iruanodon,
Moloch, III
Moloch, III
MonIt or,
Pouchod
Cugcus, 11
Danyure, 11
Kanparoo. 111
Komer III
Opoesum, IV
Tummanian Wolf, $v$
Womhat, $V$
Redente
AsoutI, I
Bandicoot, I
Beaver, 1
Capyberm,
Capy, 1
Cblbehliin, 1
ChIpmunk, 1
Theer Mouse. II
Dormonse, II
Firine EquirreI, II
Gopher, II
Ground Sgulrrei, II
Oublen Pis, II
Hameter Iil
Hame, III

```
Ifreng in
traier 111
Yarinot, 11
vocos. if
Tumkrits 1
413. 1
porcuplate. Iv
palriadoe Iv
    abbte IV
    Mat. is
    Tewailnt, \(v\)
    Chrew Iloje, \(V\)
    quirrel, \(V\)
        Lemong on the, VI, 688
        General DemerIption, V1, Bes
        General IDew Iption, VI, 880
        Kepaper of Renemb VI, 000
        Ilabth, VI, 000
Volar \(V\)
Woodchuck, \(V\)
```

Menle cal Hea Lome
Flephant Real, 11
fur tenl. II
IIooded Eeal, 111
Heallog, $V$
Mral, $V$
Walrue, $V$
Efrgente
Adder,
Anaconda, I
A3p, 1
Bliés Namo.
Hilnd worm,
Bon,
Cohrn, 11
Copperhend, II
fer-de-lance, II
(Lartur Anat; 'I!
Milk Bpak
Morcamin it. ae, 111
I'ython, IV
RattIennuke, IV
Nea Nnalke, $V$.
Pnake, V
Viper, $V$
Sharp-foothed Inseot-catere
Rangring, I
Pedgehog, 111
Hedgehog, II
Bole, IIt
Bhrew, Ftar -nomp Mole, $V$
Tanrec, V
Aard-viark, Toethieas
Apt-eater, I
Armadillo, 1
Sloth, $V$

## Tortoleen

Boz Tortolie. I
(Hyptorinn, II
IIawlembIII, II
i.eatherback. III

Mud Turtle. IV
KIver Tortoline. IV
ganpplas Turtie, V
8ompplof Turtle, $V$, $v$
Moft-mheiled
Tertapin, $V$
Tortofer, $V$
Turtle, $V$
Inimal Producte
Ambergrin 1
Beemwar. 1
Honehiack, 1
Brintlem, 1
Grintin, II
filycerline, 11
Ivory, 111
Mother-ot-Pearl, III
Bpermacefl, $V$
Tailow. V
Tortoles shell, $V$
Waz. V
Wluslebone, V

## ANTHROPOLOGY

Anthropology. I

Acharamb, 1
Alac,
Alblinen, 1
Aarlotidnens
Arpiongines,
A풀․․
Alect
Inatee,
Tacque,
thecheana, 1
Bedoulan: 1
Repter,
pheel. 1
Irosian Aga, I
inosiats, Ara, 1
impiats, 1
Canot 1
canplbat.

C'elts, 1
Clmbri, 11
C'Irramalama, II
('II 1 Dweilers, II
Copts, II
(romencik II
Creole, 1
C'ymil, 11
CMach. II
Dorian: 11
jorianm! 11
IJwarf, it
RGikImo. 11
furanlana, 11
F1nam, II
Pulah II
isael, 11
(lallan, I
GInntm, 11
(lothm, 11
Iypmlem, 11
Iamlien, 111
IfelvetII, III
Itutfentofs, 111
Itunn, 111
mdians, Amerlcan, III
Nee maln head, Inviane.
Iranians, 111
Iron Are, 111
Jewh, 11
Juten, 111
Kamrm. 111
Kalmucke, III
Kanakan, 111
KIrzhln, III
KItchan, ifiddens, III
Kate Dwelliggm, III
Letth, 11]
Lomberde, III
Mahrattan, III
Man. 111
Mandingo, III
Menito, II
Maoris, III
Maxal, 111
Mutabele, II
Maya 111
Morul. III
Honaoik, III
Monroint
Moore, IIt Ifldera, IV
Mummy, IV
Nexrlton, IV
Normana, IV
Northmen, IV
Oтаmpos, IV
PeIangiana, IV
I'letme, IV
Pymmlew, IV
Ouichua, iv
Ifacen of Men, IV
Rablimen, IV
Sambinflites, IV
Samplten, IV
Rarncens, IY
Barmatiang, $1 V^{*}$
Earmetiang, 1
gazons, IV
Stamite, $V$
sIave $v$
SIovake, V
nomealoce y
unceit.
bliote
tanli,
griara, $V$
Peviontr Ifaces, $v$
Tnlece, $v$
TMm, V
Trontodyte, $V$
Tungum, $V$
Turinima, $V$
Turkim V
Truetrore, $V$
Toberthe,
Fandala, $V$
Prediam, $V$
Wallooms, $V$
Eulum, V

Arabla, 1
ARABLA

## Citbos and Towns

400. 1

Mecen, II
Median, III

## Culfe and Eaye

Aden, 1
Aknbeh,
Pernian, IV
Movnenias
Arerat, 1

## ARCHIECTURE

Abbey 1
Apme,
Nabpendule, 1
Arrade. 1
Arely I
drehlitect ure, 1
Fine Art, A, VI, 45
Iome Bulldine, VI, 45
aty crepapt, The, VI, 47
Outline, VI, 48
Gnaltions, $V_{1,} 48$
arlum,
Atlle, I
Baputer. 1
Aanllica,
Bay Wibdow, I
Beam, I
Bracket. 1
Bungalow, 1
Buttrome 1
Campanile.
Caplial.I
Caryatidey, 1
Castle, I
Catheiral. 1
Chancel, I
Cblmney, 1
Clmpatra'R Neediem, 11
Cointur, I
Conumb, II
Corbel, is
Corbel, II
Crocket, II
Crypt il
Cupola, II
crma, iI
Dado, II
Derorited Aiyle, II
Dopmit
Gizabrt Window, II
Entablature Architecture, II
Eacablature, II
Facadp, 11
Fin Tracery, 11
Fillet, II
Malal, II
Mamboyant, II

Gable, It
Iarpoyb
malion Arphlterture, III,
mann, ift
Mamearid IImot, III
VIamret. III
Mohammerlan Archlterturu, Ilt
Noldiasem 111
Nompe IV
Norman Architicture, iv
Ohelint JV
Priel Window, IV
lymode IV
trapel, IV
ITedimert, iv
ipadant, iv
fromentive iv
prependicular, iv
IMer. IV
IMIater, IV
jropsinem. iv
Trpamida, iv
Rib, IV
tome Window. IV
llound Towers, iv
apirr V
Temple, $y$
Towet, $V$
Tracery, $V$
Tranaept, $V$
Tudor ityle, $v$
Vinult, $V$
WIndow, $V$

## ARGENTINA

Arpatina
With mubbead treatine Gre Pace and DaAinaom, Ctimate
 Tliaz, Mandracteare, Thannpag. TATION, COMMEACE, INHADITANTA ANO LaNol'aide EDiccation, (bov Eansant and Iteluulon, IItatoay.

## Clites and Towns

Buraon Ayren. 1
Corioba, II
La I'lata, II
Nendota, III
Jomario, IV
Nan Junn, IV
Nanta Fe, IV
Tucuman, $V$

## Imlands

Therra del Fuego, V

## Mountains

AconquiJa,
River
Parana. IV
IHicomayo, IV
IVata, Illo de la, IV
galado, IV
Uruguay Vermejo, $V$

## ARIZONA

ArIeona, 1
With subheada trnatiog Ru'a Face, Climate, Mineral Ra fovacera, AORICľtine, Tmana PORTATION, FADLCATION, INETITU tions, History.

Citien and Towna
Phoenlx, IV
Proacott, IV
Tucson, $V$
Mouncaina

Rocly, 7

## Cotoraina, <br> Hile, II <br> Rrere

## arcansas

Arlangan. I
With ubhesio ipestime Bes. Gare A..S Dmainana, (Linutio Minebal: framisana, (limatm,

TATION, GovEPYMENT, EDUCATION,
imatetitiona, Ifieruse.

## Clites and Town

Fort Amith. II
Ielvan, II
Ilot Kpringe, III
ditle Hork il
in razpuld is
Tezertand: V V

## Momatalat

Ofartis IV
Ped, IV
Wimhita, $V$

## ART AND THE ART

Alto IHIIrvo,
Alualist, I
Ner, almo, fl, 48-4n
Arts, 1
Ilag-prilief, 1
Bafeux Topantry, I
duhlwort,
liurfa. 1
byadintine Art, 1
Caricature, 1
Cmrioon. 1
Carrime. I
Cmat.
Chlaroncuro
Chrome Yellow,
Corcoran Apt daliory, II
Coloanus. II
Morama, II
Dint emper, II
Drawlinh. 11
Freeht tod, VI, 247
I'erenpectipe, VI, 240
Componlelon $\bar{V} I^{245}$
Actlon, VI, $2, \ldots$
Arecoratilve

fraralipl It and
FIgla Marbles It
figin Marbipg, It
Frthrolder. It
F. 1

Fis a u ife Palmiton, :I
Wit 16.4
Etruscan Vasea, II
Fine Arta, 11
Foremhorteniag, 11
Fresco 11
Ground, II
IIoly Family, IIL
Impreanionint Echool of Puinting
1
Mearoma, III
Menzo-RIIfro III
Mesaotiat. III
Mosalc, IV
Mnic, $1 \%$
Fee, also VI, sef-u6s
Nlello, IV
Nimbua, IV
Palntine, IV
Among the Grecta, VI 621
Andpra del Sarto, VI, 622
${ }_{62 \text { ginnge of }}$ of Italy. VI.

Bottleell1, VI 622
Chath VI, 628
Corressio. V1, 624
Filppo Lippl, V1, 622
Michelangelo. V1, 628
Loonardo di Vloc, V1, 622
Quentlonm, V1. 627
Raphach, VI, 624
Romen, VI ${ }^{2}$, 62
Stnoy of Pelntings, VI, 684 ${ }^{27}$
Angelus, The, V1, 625
Aniorn. The, VI, 626
Gleaners, The, $\mathbf{V I}, 625$
Melon Eatery, The, $\mathbf{V I}, 624$
Paintliga, Thelv
Perspective, IV
Photo-Engriving, IV
Photography, 1 V
Photogravure IV
galon The, 1
Senipture,
How a'statue is Made, VI, 676 Trestment in Thene Volumes, V1, 676
Gresinets of Anclent sculpture, VI, 676
Myron. V1. 676
Phidial, V1, 676
Chart,
Apollo Belvedere, VI, 678
Divid. Statue of, VI, 680
Discus Thrower, The, VI, 678 Leocorn. The, VI, 879 Mosels, Statue of, V1, 680 Nlobe, VI, 680
Sun $\forall o w{ }^{2}$ The, VI. 681
Venua of M110, Vi, 678
Vletory of samothrsee, VI 678
8tudy of, in School, VI, 680
Quentloni, 682
Sepla, $\downarrow$
Ultramarine, $v$
Umber, $V$
Water' Colors, v
Wedgewood Were, $v$
Wood Carring, $\nabla$
Zlac Etching, $v$
See, slso, maln headn Arcirt
rectuan sed mosic.

## ASLA

Asla 1
With suhheads treatins SurFACE AND DRAINAGE, MINERAK RE sources, Climate, VEGETATION, AntMal Lifis inhabrtants, his TOET.

Cities and Towns
Aphanistan
Kahul. III
Kandaher, III
Annam
Hue, III
Cochin-China
Eatgon, IV
Muscat, IV
Oman
Lhase, III Tibet
Turkentan
Kashgar, III
Yarkand. $V$
Gee, ino. Citirs axd Towns under Chlas Indla, Japan. Perala, Slberle, Turrey.

## Political Diviaions

Atgheniston, 1
Armenla, I
Adia Minor,
Asmyria, I
Bahylonis,
Bectria, 1

Ralechistan, I
Bhutan, I
Borhart, I
Chinete fmplre I
Cochin-Chlng, il
Darfur, II
Gohl, II
Indis, III
Indo-Chlna, III
Japan. III
Johore, III
Jashmir, III
Khlve, III
Korea, III
Kurdisten, III
Menchuris, III
Medis. III
Mesopotamis $I I I$
Monsolla, IIf
Oman It
Parthia, IV
Persle, 1
Slberia,
8yrla, $V$
Tibet
Turkesten,
For Lates, Mountalns, River tee under different countriel.

## Unclassified

Levant, III
Pamir, IV
Ast M NINOR
Asta Minor, I
Cities and Towns
Abydow,
Amasle,
Brusta I
Chalcedon. I
Colophon. II
Epherus. II
Lhodicen, III
Mileturs, $11 I$
Nlcaen, IV
Tarans.
Xenthus, $\nabla$

## Countries and Diviaions

Bithynle. I
Cappadocis. I
Cllicla, I
Galatla, 11
Ionla, if
Lyela, II
Lydla. II
Phryia, III
Pontan, III

## Mountivins

Taurus, $V$

## Rivers

Cydaus, II

## ASSYRIA, BABYLONIA, CHALDEA

Assyria, I
Rabylonis, 1
Chaldea,
Graphle Illustration, VI, 355

## Cities and Towne

Bahylon. I
Hanging Gesdena, III
Nlmrud. IV
Nineveh, IV
Nippur. IT

## ASTRONOMY

Anomalistlc Tear, I
Apsides. I
Ascenslon, Rlght, I

Atcerofis,
Antroloy 1
Antronomy, I
The Barileat Sclence, VI, III
Mont Wonderiul Sclence, VI, 111
Attraction of Planets, VL, 112
Diccoverz of Neptune, VI, 112
Winter HIeavenm, VI, 112
Chert, VI, 118
Summer Hespent, VI, 115
Outline, VI 115
Onetlons, VI, 11
Astro-Photography I
Anrora
Axis. I
Belly' Bead: I
Comets. II
Conjnnction, II
Constellatlons, II
Corona II
Decllastion, II
Degree, 11
Douhle Starm, II
Berth ghlne, II
Bellpae, II
Bellptic, II
Bpleycle, II
Ppleycle, II
Bquatorial, II
Bquinox. II
Mreball, II
Fired Stara, II
Iralo, III
Harvest Moon, III
Hesvens In Winter, VI, 112
IIoroscope, III
Kepler's Lawn, III
Lez Obnervitory, III
Luna, III
Meteor III
Milty Way 111
Mural Circle, IV
Nehula, IV
Nehular Hypothesis, iv
Neptune, Dlecovery of, V1, 112
Node, IV
Nutation, IV
Ohtervetory IV
Paraliar, ity
Parhellon, IV
Perturhations, IV
Planet. IV
Planets Attraction of. VI, I12
Planetold, IV
Precesslon of the Equinozen, IV
Setellite, IV
Golar Sjztem, $V$
Solstlce, $V$
8 tars, $V$
Sun, $V$
Gymbol, V
Tranalt, $\nabla$
TWilight, $V$
Universe,
Zodilac, v
Zodisen Light, $V$

## Stars and Constellations

Algol, I
Arcturu.
Arles, 1
Aquarlus.
Bear, Great, I
Blele's Comet, I
Cancer, 1
Canla Major,
Capricornús, I
Csaslopela, 1
Ceres, 1
Donatl'm Comet. II
Evenlns 8tar, II
Geminl, II
Juplter, 111
Leo, III
Libra, III

Lneifer IIII
Mercnity III
Moon. III
Neptnne, IV
North Star, IV
Orion, IV
Place, IV
Plelsdes, IV
Pole Star, IV
gagittarius, IV
Ratinn, IV
Reorplo, $\mathbf{V}$
8irlue, $v$
Bouthern Crome $\nabla$
Taurus, $V$
Tranus, $V$
Yenus,
Virgo, $V$

## ATHEETICS

See Srorts and Gayeg.

## AUSTRALH

Australla, I
With muhheads tresting Sue FACE AND DRAINAGE, DINERAT Resourees, Climate, VEGRTATION, ANIMAL LIFE, INHABITA STE Pohitical Diviaions, II atory.

## Cities and Towns

Adelalde, I
Ballarat. I
Hobert III
Melbourne, III
Newcastle, IV
I'erth, IV
8ydnes, V

## Culfe and Bays

Carpentarla, I
Spencer, V

## Mountains

Blue, 1
Darliag Range, II
Kosclusko, Mount, III

## Rivers

Burdetin, I
Cooper's Creek, II
Daring. II
Lachlan. III
Murray, IV
Murrumhidgee, IV
States
New South Wales, IV
Quepnsland. IV
douth Anstralla, V
Tasmanla, $V$
Viletnria, $\mathbf{V}$
Western Australla, $V$
Unclaseified
Barrifr Reef, I
Bushrangers, I

## AUSTRIA-HUNGARY

Austria-Hungary, I
With subhends treating Suhpace ann Daainage, Mineaal, Resotrces, Clinate, Agricultuaf, Sanifactuae, Tranaportation, COMYEACE, INHABITANTS, $\triangle$ ND lavgeane, EDveation, Goterismest, IIISTORy.

## Cities and 'Towns

Agram, I
Aunteríte, I
Baden, I

Bowna-Seral, I
Hrinn, I
Hndapent. I
Czernowits, II
Debreczen, II
Kelegyhasa, II
Finme, II
Gratz, II
irosswardeln, II
Innshruet, III
Karlahad, III
Kasehau, III
Kecakemet, III
Klanaenhurg, III
Lemberg, III
LIna. III
Olmdta, IV
Placn, IV
Presue, IV
Srestburg, IV
Salzburk, IV
Szegedin, V
Sregedin,
Triest,
Vienna, $V$

## Divisions

Bohemin, 1
Bosnla, I
Croatla and Slavonla, II
Dalmatla, II
Gajlefa, II
Moravia, IV
Tyrol, ${ }^{\text {V }}$

## History

Alx-la-Chapelle, Treatles of, I Ajecela, I
IIoly Alliance, $11 I$
Magenta, Battle of, III
Quadruple Allance, IV
Gadowa, Battle of, IV
Seven Weeks War $V$
Buecession Wars, $\dot{V}$
Triple Alllanee, $V$
Iftrecht, I'eace of, $v$
Vtrecht, I'eace of, V V
Vienna, Congress of, V
Westphalla, I'eace of, $V$
Islands
Mrazzr. I
Franz-Joseph Land, II
Lakes
Balaton. I
Constance, II
Mountains
AIps, 1
Carpathlan, I
Ortler, IV

## Rivers

Danube, II
Drave, II
Moldau. III
Save, IV
Thelss, $V$

## Unclassified

Army of Austria-IIungary
Sce Aasy, subhead Acatro
II ringarian Army.
Hapshurg, III

## BABYLONLA

See Aastria, Babylonia, Chal-
BAVARIA
See Germany.
BELGIUM

## Belcinm, I

With subheads treating Suz face and Dainace, Minetha Re govacts, Agriculituane, Mane factraba, Transportation, Ind hahitants and Iangeages, EDU Cation foreanment and Relf GION, IIIstoay.

Citien and Towas
Antwerp, I
Bntwerp,
Brugee 1
Fontenoy, II
Ghent, II
Llege, III
Louvaln, III
Mechlin. III
Mone, IfI
Namur IV
Ostend, IV
Meuse, III
scheldt, IV

## BEVERAGES <br> Aleoholic

Abointh, I
Ale, 1
Beer, I
Benediletlne, I
Rordelals W'ines, I
Brandy, I
Burgundy Wines, I
Champagne, I
Chlea, I
Curacao, 11
Distifled IIlquors, II
Fermented LIquorm, II
Cinn, II
Port Wine, IV
I'ulqne, IV
Ithenlsh Wines, IV
Itum, IV
Sherry, V
Whlsty, v
Wine, $V$

## Non-alcoholic

Clder, II
Cottre, II
Kola, III
Koumlss, III
Soda Water, $V$
Spruce Beer, V
Tea, V

## B1815:

Aaron, I
Abel, I
Ablgall, I
Abrahsm. I
Absalom, I
Actr of the Apostles, 1
dam and Eve,
Ahab, I
Ahasuerus, I
Ahaz. I
Ahazlah, I
Amos, I
Anskim, I
Ananlas,
Andrew, I
Angel, i
Antlelirlat.
Apocalypse, I
Apocalyptlc Numher,
Aporrypha, I
Aportles, I'
Ararat, Jount, I
Archangel, 1
Ark, I
Asaph
Athallah. I
Balaam, I
Rarnabas, I
Baraabas, I
Bartholomew, I
Barueh, I
lin+1ze-bub, I
Beershebs, I
Bellal, I
Belshazzar. I
Betheada,
Rlble, I
Calphas, I
Caln, I

Calvary 1
Cananition 1
Chranicien, Books of, II
cliten of lefuge, II
codex, 11
Covenante, 1
Dan II
Danlel, 11
David, 11
David, II
Deborah, II
Deluze. 11
Deuteronomy 11
Doual Bible, II
Ecclesinote, II
Deen II
S11 11
Elyah, II
Elisha, II
knoch 11
Ephralm, II
Eann, II
Bedras. 11
Emether II II
Earm 11
Gahriel, II
Gad, $11^{\circ}$
Galatians, The Epistle to The, II
Gath, 11
Geneals, II
Gethnemave, II
Gideon, II
Gillewd, II
Gog and Magos, II
Goilath, II
Goonen, II
Goupelic, II
Habaklak III
Hagralil
Hehrews, The Eplatle to the, III
Hewetiah. III
Hittites, III
Homen, 111
Ifthe, III
Teatab, III
Ifhmiel, III
Jacob, III
Japheth, III
Jehomhaphat, III
Jehu, III
Jephthah, 111
Jeremiah, III
Jerobonm, III
Jemus Christ, III
Joh III
Joel, III
John, III
Jounh, III
Joweph, III
Joweph of A rimathaen, III
Joshua, III
Judah, III
Judas. 111
Jude, III
Judgen, 111
Judith, III
Kings, III
Lamentatious, III
Lazarus, III
Jeviathan, III
Ievilicus, III
Magdaleu. III
Manna, III
Manna III
Mcrepseat. 111
Messiah, III
Micah, Book of, III
Mlchael, Salut. III
Midiaultes, III
Mluor Prophets, The, III
Mosen, IV
Nahnm, IV
Naphtali, IV
Nehemilh, IV
Nimrod, IV
Noah. IV
Numbers, Rook of, IV
Obadiah, IV
OR.IV
Ophlr, IV

Parahle, IV
Pumover, IV
Patriarchs, IV
Peni, IV
I'eutateuch, IV
pentecont, IV
Peter, IV
I'hariseed,
Phariseef, I
Philip, the Eqaugeist, IV
Philiftives, IV
Plilate, IV
Proverbe, IV
Pralms, IV
Revelation of Balut John, IV
Romans, Epistle to the, IV
Enth, IV
8ahbath, IV
Hadduceen, IV
Samaritans, IV
Samaou, IV
samuon, IV
Samuel, IV IV
Sanhedri
Septuagiut, V
Sheol 8
Ghittim Wood, v
Bolomon, $V$
Solomon's Sout, $V$
Star of Bethlehem, V
Tarwhish, $V$
Thessaloulaum, Eplstles to the, $V$
Timothy, $V$
TMmothy, Eplaties to, V
Titus, $\mathbf{V}$
Titus,
Tytus, Epintie to, $V$.
Us $V$
Vulgate, $V$
Zehnlua, $V$
Zechariah, $V$
Zedeklah,
Zephantah,
$V$

## BIOCRAPHY

## Acters and Actreses:

 AmericanAdame, Mand K. I
Andersou, Mary, I
Rarrett, Lewrence I
Booth, Bdwiu Thomas, I
Booth, John Wilkes, I
Cnohman, Charlotte, II
Cnarman. Chariotte, II
Drew, John 11
Drew, Johu II Maule Maddern, II
Forrest, Edwlu, II
Goodwin, Nathaniel, I
Hackett, James. III
Herne, James A., III
Jauanechek, Fauny, III
Jefrerson, Joseph. 111
Keeue, Laura, III
Mausfield, Richard, III
Marlowe, Juila, III
Morris, Clara, IV
Morris, Clera, IV
Rehau, Ada, IV
Sotherv, Edward fi., V Thompsou, Deuman., V

## Canadian

Arthur, Julla, VI, 137
Engllah
Rarrymore, Nanrice, I
Booth, Junlus Brutus, I
Rurbage, Rlchard, I
Garrick, Davld, II
Irviug, Heury. III
Keau, Charles John, III
Kean, Edmnud. III
Kemhie, Frances Aune, III
Kemhle, John Philip. III
Keudai, Mru. III
Kaugtry, Inlile. III
Laugtry Lllle. III Charies, III
Nacready, Wililam Ch
Glddons. Mrs. Barah, V
Terry, Ellen, $\mathbf{V}$
Tree, H. Beerbohm, V

## Fronoh

Bermharat, Barth, I
Coquelin, Beuolt Coustant, II
Rachel, Mademolselle, IV
Tauma Francola Joneph, v

## Itallas

Duse, Eiconora, II
Rintorl, Adelade, IV
Polleh
Modjenica. Heleun, III
Adventurere
Americas
Kidd, Captalu, III
Walker, WIlliam, $V$

## Enolioh

Morgan, IIeury, Elr, IV
Italian
Cagilostro, Alessaudro, I
Spanish
Pigarro, Franclaco, IV

## Apronauts <br> Americen

Wright, Orville aud Wlibur, $V$
German
Zeppeliu, $\mathbf{V}$
Gowth American
Banton Dumout, IV
Swedtsh
Andree, I

## Archaeologiste

American
Brinton, Daulel Garrlson, I
English
Layard, Austin IIpnry, III
French
Botta, Pani Emile,
Champollion, Jean Frauçols, 1

## German

Curtius, Ernst, II
Schilemanu, Helnrlch, IV

## Architects <br> American

Cohh, Heury Ivea, II
Huut, Richard Morrls, Ill
Olmsted, Frederich Law, IV
Richardsou, Heury IIobson, iv

## English

Barry, Edward Mlddieton, IV
Berry, Sir Charles, I
Jones, Inigo, III
Jones, Inigo, III IV IV
gartion, George Edmund.
gtreet, George Edmund.
Wren, $81 r$ Chrlatopher.

## areek

Androuicus Cyrrhestes, I

## Italian

Bramante, Douato, I
Bruuefleschl. Fillppo, I
Michaelangelo III
Falladlo. Andrea. IV

## Artists, Miscellaneous

Amertean
Darley, F. O. C. II
Glhson, Charles Dans, II

Johneom, Eantmen, III
Yecutcheon, John Tinney, III
Nast, Thomer IV
Opper, Frederick Burs, IV
Pre, Howard iv
Bemington, Yrederick, IV
Beton, Erreet Thompeon, $V$
Vedder, Euhu, V

## Comudian

Bell-8mith, Frederfck, VI, 188 Beagough, Johs Wileon, VI, 130 Carjle, morence, VI, 144

## anglieh

Bewlck Thomes, 1
Bordell. John, I
Caldecott, Randolph, I
Cruilthank, George, II
Greeneway, Kite II
Eamerton Philip Gillbert, III
Hogarth, William, III
Leech, John, III
May, Phil, III
Tenniel, John, $V$

## Fromoh

Gevarni, II
Gerome, Jean Leon, II
Grandrile. II
Lehurn, Charlew, II
Plismy, Bermard, IV
Italian
Bartolossi, Francesco, I

## Apentsh

Cano, Alouso, I
Herrera, Francesco, II
Murilio, IV
Velazquer, $V$

## Astronomare <br> American

Furnham, 8. W., I
Clark, A. G., II
Hall, Asaph, III
llolden, Edward S., I1I
Laviey, 8amuei P., III
Mitchel, Ormsby M. II
Mitchell. Maria. III
Canadian
Klots, Otto, VI, 163
Danisk
Brahe, Tycho, 1

## Englleh

Hafley, Edmund, III
llerschel, Slr John, III
Herschel, Flr WIIliam. III
Nowton, EIr Isamc, IV
itocter, Rlchard A., IV
Fremeh
Arago, Dominique Francois, I
Flammarlon, Camille, II
Laplace, III
Germen
Kepler, Johann, III
Itaida*
Gatifo, II
Polioh
Copernleus, Nicholas, II

## Rustam

Strave, F. G. W. von, $\nabla$
Acotch
Somervllie, Mary, $\nabla$
Authors, Miscellaneome Amerlcan
Alcott. Amos Bronson, I
Arthur, Timothy Shay, I
Bowen, Francio, I

Boyesen, H. H. I
Burritt Elithu, II
Cook, Joeph, II
Curtis, Georie W. II
Cnatig George Wahington Parte,
Dane, Richard Henry, II
Dana, Rlchard Heury, Jr. II
De Peyater, John Watth, il
Dlekingon, Ange Gllzabeth, II
Dodge, Mary ablsali, II
Dodge M. In. M., II
Dole, Nathan H., II
Duyckinck, George Li, II
Edwards, Jonathan, II
Esteston, George Cary. II
Franklin, Benjamin, II
Frederick, Harold, II
Giadden, washlg ton, II
Godwin Parke, IL
Goodrich, Samnel G., II
Hale. Edward Everett, III
Harrison, Countance Cary, III
IIarte. Francla Bret. III
Hawthorme, Julian, III
Henty, Georte Alfred, III
II OHman, Charle Fenno, III
Holland, Jomah Gllbert, III
Howe, Jnila Ward, III
Hubbard, Elbert, III
Johnson, Rowalter, III
Judd, Orange, IIf
Kaler, Jame, Otlo, III
Keller, Helea Adams, III
Kenman, George, III
Lathrop, George, Parmona
Lathrop, George Parsonn, III
Leland Charle Godirey, III
Locke, David Rons. III
Lorimer, George Iforace, III
Mahie, Hamilton Wright, III
Matthewn, Brander, III
Mitchell, Donald Grint, III
Norton, Charles Biliot, IV
Pyle, Howard, IV
Gendder, Horace Eiltoha,
Beton, Ernest Thompion, $\nabla$
Slgourney, Mru.; $V$
Gparke Jared.
glepheng, John Liord, V
Stoddard, Rlchard Henry, $\nabla$ Stuart, Ruth McEnery. Tsrbeli, Ida Minerva, $\%$
Taylor, Bayard. $V$
Terhune, Mary Virginia, $V$ Thoreau, Henry David, $v$
Underwood, Francls Heary, $V$
Van Dyke. Heury, $V$
Wllcox, Eila Wheeler,
Wlills, Nsthanlel Parker, $\nabla$
Winter, Wlllam Farker, $V$
Woodberry, George Eivard, $V$

## Canadian

Allan, Grant, VI, 136
Barr, Robert, VI, 138
Blewett, Jean, VI, 130
Cameron, Agnes Degn, VI, 143
Cotes, Garah Jeanette, VI. 146
De Mlle, Jamem. VI. 148
Dongall, LIly, VI, 149
Gsgnon, Ernest, VI, 154
Hopklns, John Castell, VI, 161
Klrby, Wliliam, VI. 163
Laut, Agnes Cinristlina,
Laut, agnes Cnristina, VI, 165
Leacock. Stephen Butler, VI, 165
OHagan, Thomas, VI, 176
Pope, Joseph. VI, 178
Roberta, Charles George Douglas, VI, 180
Saunderm, Margaret Marshall, VI, 182
Tralli, Catherine Papr, FI, 185
Warman, Cy, VI, 190
Wetherald, Agnes Etheiwy, VI. 100
Breent Emgliah
of, I

Bownell, James
Browne, Blr Thomats, I
Bungan, John, 1
Burtow, Robert
Bnrton, Robert,
Caedmon,
Chamber, Ephralm,
Chnrchill, W. L. 8., II
Clarize, Charien Cowden, II
Croker John Wilmon, II
De Onlmeey. Thomat, II
Diarieli, Itanc, II
Dodgeon, Charies L., II
Mollwood, Chomat, It II
Farrar, Fredertck Willan, II
Godwln, Mary, II
Hatton, Joseph, III
Holinghed, Rapbsel, 111
Howitt, William nid Mery, III
Jevong, William Staniey, III
Johnson, gamuel, III
Landor, Walter Eavaze, III
Lagg, Andrew. III
Le Galllenae, RIchard, III
Iemon, Marts, III
Level, Georte Henry, III
Mallock. Wimlam Hurrell, III
Malory, Blr Thomas III
Martivelu James, III
Marvell, Andrew, III,
Monta M, Mary Wortiey. III
More, Hannah, IV
More, Thomas, IV
Morley, Henry, IV
Morley, John $1 \mathbf{V}$
Pepra, Bamuel, IV
Gkeat, Walter WIIIIm, $\nabla$
Smile: Gamuel, $V$
Smith, Gold 1 in ,
Southey, Robert $V$
Stephen, Str Lealle, $\nabla$
Sterne, Laurence. $\nabla$
Trevelyan, Slr George, $\nabla$
ITall, Nichola, $\nabla$
Walpole, Horace, $\nabla$
Walton, Irank, $\psi$
Zangwill, Isriel. V

## Frenoh

Chateanhriand, Vicomte de, I
Diderot, Deals, II
France, Anatoie, II
Grance, Anatoie, II
Lafontslme, Jewn is III
La Rochefoucaule, Du̇de, III
Lestage. Alaln Reie, III
Loti. Piprre, III
Mandeville, GIr John de, III
Merimee, Pronper. III
Montesquleu, Baron de, III
Roussean. Jean Jacque, IV
Gsint-Plerre, Jacques de, IV
Sajnt-Slmon, Lonif de Ronvroy,
gemp
scaron, Pani, IV
Stael-Holsteln, Baronens de, $V$
Tocqueville, Aiezis de, $V$

## Cermas

Arnim, Bettina von, I
Auerbach. Berthold, I
Fouque, Baron de la Motte, II Grimm, Baron 7on, II
Grimm. Jakoh Lndwis, II
Gutzkow. Karl Ferdinand, II
ITelue, Helarich, III
Munchansen, Baron, IV
Rlchter. Johann Pini, IV
Tieck, Lndwig. $V$
Wieland, Christopher Martln, $V$
Greel
Aesop, I
luclan, $1 I I$
Onkelss, IV
Plutarch. IV
Straho,

Biography

## Itellen

Amleft Edmopdo de, I
Catitillone, Baldasarere I
Norweglen
Ambjormen, Feter Chrioten, I
Bjornaon, Bjarminterne, I
Romen
Gains, 11
Martial, 111
Nepon, IV
Pling the Elder, IV
Pliny the Younger, IV
Quintlilian, IV
Suetonlas Trangulllus, $V$ Varro, $V$

Rommantan
Dora D'Intria, II
Ruasion
Gogol, Nikolai V., II
Ecotch
Ballantyne, Robert M., I
Brown, John, I
Carlyle, Thomas, I
Lockhart, John Gihson, III
Macedonild, Georre, IIf
Wllion. John, $\nabla$

## Botanists <br> Amertcan

Bartram. Joln, I
Beatey. Charles Edwln I
Coulter, John Merle, II
Rngelmann, George, II
Gray, Ana, II
Englioh
Bentham, George, I
Scoteh
Balfour, John Hntton, I
Ercedish
Linne, Karl von, III

## Stedes

De Candolle, Auguntln Prame, II Haller, Albrecht von, III

## Capitaliste

 AmerioanAddleka, John Edward, I
Astor, John Jacob, I
Astor, Wlliam. I
Antor, Wlillam Waldorf, I
Blalr, John Insley. I
Carnesle, Andrew, I
Casontt, Alexander J., I
Clafin, Horace Brigham, II
Corcoran, Wlllam Wilson, II
Donglas. Willam Lewls, II
Drew, Danlel, II
Fish, Btuyvesint, II
Gould, George Jaj. II
Gould, Jay. II
Harriman, E. H. III
HIII. James J III
Ingalls, Melvilie E., III
Mackay, John W., III
Mellen, Charles \&่., III
Packer, Ame IT
Plllshnry, Charles A., IV
Plant, Mortor $F$., IV
Pullman, George Mortlmer, IV
Rockefeller, John D., IV
Rockefller, Whllam, iv
Rocketeller, WIII,
Spencer, Samem, iv $v$
Spencer, Samuel, V
Vanderblit, Cornellus, V
VAnderbllt, WIIlam Fi., V Vanderhilt, William K., V Whltney, Wllllam C. $V$ Yerkes, Charles T., $\mathbf{V}$

## Camadian

Hays, Charled Melville, VI, 109 Mackensle, Glr Willam, VI, 170 Mancesi, Slr Donald. V1, $172^{2}$ Bhaurhneasy, Slr Thomas George, VI, 184
Van Horne, slr Wlllam Corne-
llus, VI, 180

## English

Cnnard, Sir samuel, II
Cerman
Krupp, Friedrich Alfred, III
Rothwehlld Family, IV

## Chomitats <br> Amerloan

Renwick, James, IV

## Araban

Geber. II

## English

Cavendinh Henry, I
Crooken, Sir Wlliam, II
Davy sir Humphrey, II
Faraday, Mlehnel. II

## French

Gay-Lumsac, Loul: Joseph, II Lavolsler, Antolne Liturent, IIf Pasteur, Louls, IV

## German

Bunsen, Robert W. E.i. I
Lleblg, Baron von, III

## Axcedish

Bergman, Torbern Olof, I
Bervellus, Baron, I

## Churchmen

American
Ahbott, Soman, I
Allen, Whllam, I
Ashury, Francls, I
Beecher, Henry Ward, I
Beecher, Lyman, I
Boardman, George Dana, I
Brady, Cyrus Townsend, I
Broots, Phlllps, I
Burdette, Robert Jones, I
Campbell, Alexander, I
Carroll. Archhlshop,
Cartwright, Peter, 1
Channlog. Filliam Ellery,
Clark, Francls Edward, if
Clarte, James Freeman, II
Conway. Moncure Danlel, II
Conweli, Russell Herman, II
Corrlgan. Archhlshop, II
Cotton, John, II
Coxe, Arthur Cleveland, II
Croshy, Howard, II
Cuyler, Theodore L., II
Dlx, Morgan, II
Dwight. Theorore, II
Falconlo, Cardlual. II
Fallows, samuel, iI
Farley. Cardinal, II
Feehan. Archhlshop, II Fox, George. II
Glhbons, Cardinal. II
Grithe, Willlam Ellot, II
Gunsanlns, Frant Wateley, II
Hale, Edward Everett, III
Hilis, Newell Dwlght, III
Hirsch, Embll Gustat. III
IIooker, Thomas, III
Ireland, Archblohop. III
Junes, Jenkin Lloyd, III
Jones, Bamuel Porter, III
McClostey, Cardinal, III
McLaren, Willam E., III
Mather. Cotton. III
Mllbara, Wlllam Heary. III

Moody, Dw/rht Lyman, III
O'Connell, Cardinal, I
Parker, Theodore IY
Parkhnrt, Charlea Henrs. IV
Potter, Eenry Codman, Iv
Ryan, Archhlshop, IV
Rankes. Ira David, IV
grolth, 'Samuel Franctio, $v$
Spalding. Blahop. V
gwing, David, $V$
Talmáe, Thomas DeWltt, $\nabla$
Vlncent, John Herl, V
Whlpple Henry Benjamin, $V$
Whiteneld, George Wh $^{\nabla}$
Withermpoon, John, $\nabla$

## Auatrian

Comenint, John 4 mos, II Canadian
Begin, Myr. Louif Nazalre, VI,
Brent, Rev. Charles Henry, VL,
Bruchesl, Mont Rev. Louls P. N., VI, 141
Carman, ReF. Albert, VI, I44
Danlel, Father Antony, V1, 147
181 Emery, Rev. Jomeph Edward, VI,
Gordon, Rev. Danlel Miner, VI, 156
Grisdale, Rev. John, VI, 157
Hamilton, Mont Rev, Charles, VI 158
Joussard, Rev. Celestin, V1, I62 Lapgevin, Mont Rev. Louls, Vl, 161
Le Jeune, Pau!, VI. 165
Mecdonell, Alexander, VI, I68
Machray, Rev. Robert, V1, 109
Matheson, Most Rev. Samuel $P_{4}$ VI. 172

Newnham, Bev. Jervols Arthur, VI, 175
Pinkham, Rev. WIllam Cyprian, VI, 178
Strachan, John, VI, 185
8weeney, Rev. James Flelding.
Tache, Archhlshop Alexander, F1, 187
Tascherean. Elzear Alexandre,
VI, 187

## Enolish

Baring-Gould, gablne, I
Baxter, Rlchard, I
Becket, Thomas A., I
Ilddle, John, I
Bogue, David, I
Burton, Robert, I
Burton, Robert, I
Collyer, Robert. II
Coverdale, Mlles, II
Cranmer, Thomas, II
Gardiner, Stephen, II
Harvard, John, III
Hooter, Rlehard. III
Keble, John, III
Laud, Wlllam. III
Manning, Cardinal, III
Martlneau. James. III
Newman. Cardlnai. IV
Rewman. Cardinal.
Robertson, Frederick Willam, IV
Spurgeon. Charle Haddon. $V$
Stanley, Arthur Penryn, V
Talt. Archlbald $\mathbf{C}$.,
Taylor, Jeremy. $\mathbf{V}^{\prime}$
Temple, Frederick, $V$
Thlrlwall, Connop, $V$
Wette. Isaac. $V$
Wesley, Charles.
Wesley, John $\forall$
Whately. Rlchard. $V$
Wllberforce, Samuel, $\nabla$
Wisemarce, Archblehop, $\nabla$

Ceth Theodore I
bompet, Jacque Bentrae, I
Cavin, John I
Heary, Cardinal, II
greary, caramal, il
Grepory of Intin
Laril-Montmoreney, Françole de, III
Oberiln Jean Frederlc, IV
peter the IIermit, IV

## Cerman

Caristadt, A. R. B., I
Dolinger, Johann on, II
Dek Johinn Maler von, II
Enelpp, Bebantiang III
Luther. Martin. III
Meianrhthon, Phllip, III
Tetsel. Johnnn. $V$
Thomis Kempls, $V$
ztasendorf, Nicoling Lndwis, $V$
Greek
Ortsen, IV

## Irloh

Unher, James, V
Ticlian
Arian, I
Alerander I
Aptonelil, Cardinal, I
Aquinas, Salnt Thomas I
Bonifare, I
Borromeo, Cardinal, I
Calistue, 1
Grepory, II
Greqory, II
John, III
Jultug, III
Leo XIII, III
Merfy del Val, Cardinal, III
Pand, IV
Ping IV TV
getolif, Cardinal, IV
strtun $V$
riben. $V$

## Scotch

Barclay, Robert, I
Drummond, Heary, II

## Spanion

Aben-Esra, I
Lus Casas, Bartolome de, III
Lojola, Ignatins of, III
Miscelleneowe
Batil the Great, I
Cyprianus, II
Dons, John, II
Enaeblus of Caesarea, II
Photius. IV
Polycarp, IV
Tertelilan, $v$

## Colonists

Androm, Sir Edmand, I
Bacon, Nathaniei. I
Berteley, Sir Wililam,
Blenvilié, Sienr de. I
Botetourt, Norborre Berkeley, I
Bradiond, Wlilam, 1
Bradstreet, Simon,
Brewnter, Winiliam, 1
Carrer, John, 1
Clatborne Thitam, II
Mite, Sif Thomas, II
Dela, ware, Lord. II
Dtnwiddfe, Robert,
Dudley, Joweph, II
Dudley, Thomas. II
Dummore, Jobn Mmrriy, Ii caticett, John, II
Butrhinson, Thomas, III

Fieft, WHIem, 111
Minuit, Peter, III
Monte Bleur de, VI, 173
Oglethorpe, Jamien O., IV
penn, whilam, IV
Pontrincourt, f \& V1, 179
Roife, John. IV
selkifk, warl of, VI. 183
smith John. I
Bpotionood ilezander, $v$ gtandish, Milea, V stuyvemant, Peter, v Talon. Jean Batiate, VI, 187 Winthrop, Joger, ${ }^{\text {When }}$

## Crities Amencan

Hntton, Lanrence, III
Cowell, Jamen Rumeil, III
Oanoll, Sarab, IV
,
White, RIrhard Grant, v
Dantos
Brandes, Geory M., I
Emolion
Bnrhanan, Robert Wililam, I
Collfer, John Payne, 11
8haw, George Bernard, v
French
Bainte-Beuve, Charles Augustio, IV

## Dramatiote <br> Amertran

Ade, George, I
Belisco, David,
Beinco, David, I
DMtri, Conde, ${ }^{\text {DI }}$
Herne, James A., III

## Enpleh

Cibber, Colley, II
Congreve, Whiliam, II
Gilibert, Willlam srhwent, II
Jonson, Ben. III
Knowles, Jasies Sheridan, III
Marlowe, Christopher, III
Pinero, Arthir Wing, IV
Pinero, Arthnr Wing, IV
Bhakeipeare, Wlitiam,
Shate Qeare, Wliliam, V
Shaw, teorge Bernard $v$
Sherldan, Rlfhard B.,

## French

Cornelile, Pierre, II
Dumas, Alexander, II
Halevs, Ludovic. III
Lesage, Alaln Rene III
Merimee, Erosper, III
Mollere, III
Raclo., Jean, IV
Sardou, Victorien, IV
8cribe, Angustln Eugene, v
Germam
Goethe. Johann Wolfang von, II Hanptmann. Gerhart, III
Lemenin, Gotthold Ephraim, III
Schilee, Johann Friedrirh von, IV

## Greek

Aeschylna 1
Ariaipphanes, 1
Enripldes, II

## Nomoeglan

Ibmen, Hearlk, III
Roman
Plantus. IV
Spantoh
Calderon de la Barca, I
Cervantes Saavrdra, I
Vegu Carplo, $\mathbf{V}$

## Eeonomiate

4 mericen
Carey, Henry Charlen, I
Eiy, klrhard Theodore, II
Georse, Henry, II
Jenke, Jeremfin Whlpple, III
Lavehin. James Laurence, IIl
Walter, Amasa, $v$
Walker Franris Amase, V
Weils, Devid Amen, $v$
Wright, Carroll Davideon, V

## Camodian

Bonar, James, VI, 189
Mavor, James, VI, 172
"hortt, Adam, VI, 184
Emglish
Malthne, Thomas R., III
Ricardo, David, IV
Smlth, Adeto, $V$

## Premen

Leclaire, Bdng Jean, III
Prouchon, Plerre Joseph, IV

## Iditore <br> Americas

Alden Henry M., I
Aldrirh, Thomas B.
Bntterworth Henekiah, I
Duyrklnck, twerett A., II
Gllder, Rlchard W II
IIearnt, Wlifam Randolph, IIt
White, Whllatm Allen, $f$
Preach
Bulos, Frangoit, I

## Fdueators Americam

Adames, Charlea Kendall, I
Adier, Feliz 1
Aiderman. Edwin Anderson, I
Andrews, Ellsha Benjamin, I
Angell, James Bnrrill, I
Armstrons, Samnel C.,
Barnard, Frrederlck A. P., I
Barnard, Benry, I
Barrows, John Henry, I
Bartiett, Samuel C. 1
Bascom, Jobn, I
Bateman, Newton, I
Brown, Blmore Eillworth, I
Butler, Nirholas M., I
Chadbonrne, Paui A. I
Devey, John, II
Draper, Andrew 8loan, II
Eatrin. John, 11
Elirit. Charles Whilam, II
Fairchlid, Jamen IIarris, II
Gilman, Danle! Colt. II
Hadiey, Arthur T., III
Harper, Williem Raines
IIarper, Wilifism Rainey, III
Harris, Whilitm Torrey, III
Hili, Davld Jayne, III
Hinsdale, Burke Aaron, III
Upping, Mark, III
James, Edmund Janes, III
Jones, Lewis Henry, III
Jordan, David Starr, III
Low. Seth, III
Lowell, Ahbott Lewrence, III
Mon, Mary. III
Mann, Horace, III
Mather, Increase, III
Maxwell, Wllilam Fienry, III
Nurray Lindies, IV
Nell. Edward Dníneld, IV
Northrop, CyTus, IV
Page. David Perking IV
Palmer, Allce Freman, IV
Parker, Francia Wayland, IV
Peabody Sellm Hi, IV
Pepper, Willam, Iv

Porter, Moak, IV
Goment, Ira, iv
docore, Elanry Wade, IV
Comorman, Jecos coutc, iv
Seare Banes
ceare Barres
ghacier, Nathan C..V

Bparte jareg
Betmen Whitan
Trier Iowe Colt,

Wamhin ton, Booker T., $\nabla$
Wayland, Franels, $v$
Webmier, Noah,
Wheeler Benjimin Ide, $V$
White, Andrew Dickeon, $v$
White, Emerson Eibrigiso, $v$
Whiard, Emma Hart, $\nabla$
Whiard, Emma Hart,
Woonges Theodore D., $\nabla>$
Yonne, blia Flase,
Canadion
Adame, Frank Dawnon, VI. 185
Abden, Henry Wiilam, VI, 182
Baker, Alirea, VI, 187
Burwioh, Nathanlel, Rer. $V 1$ 142
Clari, Filliam Robincon, VI, 145
Grant. Bev. George Monro, VI,
158
Hodeline, Johr George VI, 160
Highens Jamen Laughiln, $\mathrm{VI}_{2} 161$
Lloyd Rev. Georce Exton, VI,
166
Pariza, George Robert, VI, 177
Feterson, William, VI,' 178,
Ryerton, Rev. Ejerton, VI, 181
Squalr, John VI, 185
Whison, Bli baniel, VI, 101.
Yonps, Bey. George Paxton, VI,
101
Duth
Agricola, Rudolphna, I
Englion
Armold, Thomas, I
Baln, Alexander, Il
Browning Oncar, II
Pitman, Sir leasc, iv
Qulek, Robert H., iv
French
Delsarte, Francois Alexandre, II
Fenelon, Francols de sallgnac, II
Jacotot, Jenn Jomeph, III

## German

Bavedow, John B., I
Francke, Auguat Herman, 11
Froebel, Friedrleh Wlihelm, II
Mueller, Fredrich Max, IV
Btarm, John, V
Booteh
Blackie, John Sturt, I
MeConh, Jamen, III
Evole
Pentalowi, Johann Helnrich, IV

## Engincer:

A merican
Eads, James Buchapan, II
Eriction. John, II
Fulton, Robert, II
Waring, George E.,

## Camadlam

By, Colomel John, FT, 148
Fleming, sir sandford, VI, 152

## Engitsh

Armatrong William G., I
Bememer, Renry, I
Fairbalin, 81 Whiliam, II
Stephenson, George, $V$

## Promen

Fifel, Guatare. II
Lemeppe, Terdinand de, III

## sootoh

Nammith Jamok, IV
Rumell, John Bcott IV
Stovesion, Robert, $V$

## Easayiote

Amentoan
Barrougha, John, I
emarmon, Ralph Whido. II Ree, Alwo, 11, 600
Histincon, Thomats Wentworth,
II
Holmen, Ollver Wendeli, II
gee, allion VI, 672
Irvint, Washington III
Ropplier, $A$ gnew, IV
Engilen
Addison Jopeph, I
Bacon, Francta, 1
Easiltt WIILam, III
Ennt, James Lelch. III
Lamb, Charles, If
Paise, Thomar iv
Steele, Elir Richard, $V$
Fromoh
Montalgne, Michel de, III Acoteh
Stevenyon, Robert Louls, $V$

## Explorers

American
Clark, William, II
Danenhower, John W., II
De Long George W., II
Du Challig, Paul B., II
Fremont, John C. 11
Greely, Adolphus W., II
Hall, Charlea F. III
Hiyer Imac I. III
Kane, Elifha Kent, III
Lewia, Meriwether, III
Pesry, Robert E., IV
Plke, Z. M., IV
Schwatza, Frederick, $V$
Wurea, Charles, $\mathbf{v}$

## Canedian

Fraser, Simon, VI, 153
Hearne, Samuel, V1, 160
Miactenzte, Slr Alexander, VI, 160
Hoss, Alexander, VI, 180
Thompson, David, Vi, 188
Yancouver, George ${ }_{\text {VI, }} 188$
Verandrye, Ilerre de la, V1, 100

## Danish

Bering, Vitus, 1
Englifh
Bagn, Whilam, I
Baker, Slr Samuel, I
Camero: Verney L., I
Cavendish, T:omat, 1
Cook, James, 11
Drake, Sir Francla, II
Fyre Edward John, II Frankilin, Slr John,II Frobleher SIr Martin, II Gilbert, Sir Fipmphrey, II Gosnold, Bartholomew, II Hawkine, Sir John, II Hudson Benry, 111
Laing, Alexander Gordon, III
Party sir willam, IV
Raleigh, Sir Walter, IV
Roen, James Ctart, iV Scorenhy, Wlillam, $\bar{V}$ seltirit Alezsider, $V$
Spelv, Joun Hanning, $V$
Bfanley, Slr Henry,

## Fromol

Bougainpilie, Loule Antolne, I
Cartier, Jacques, 1
Champlain, Bamuel, I
Heary the Navigator, 11
Ibervile, sileur de, III
Joilet, Loule, III
La 8alie, sleur de, III
Marquette, Jacquch, III
Tonty, Bemry de, $\nabla$
Germen
Barth, Helnrich, I
Emily Paeha, 11
Roblis, Gerbard, IV

## Itallan

Ahrnsal, Duke of. I
Americun Venpuclipe, 1
Helioni, Giambattinta, I
Cabot, John, I
Cabot, wehastian. I
Coinmbue, Chriatopher, 11
Graphle Illuatration, VI, 380
Polo, marco IV
Verrasano, Glovannl da, $v$
Amundeen, Roald, I
Eric the Red II
Nansen, Fridtjof, IV
Cahral, Pedro Alvares,
Dias, Bartholomev, il
Gama Vaceoda II
Mageilan, Ferdíand, III
Fark, Mungo, IV
Almagro, Dieso de, I
Baibon, Vasco de 1
Coronado, Francisco Vasquex, II
Corter, Hernando, 11
De Soto, Fernando, il
Poace de Leon, Juan, IV
Nordenestyola, Baron, iv

Ames, Oakes, I
Belmont, August, I
Cooke, Jay. 11
Gage, Lyman J. II
MeCulloch, Hugh, 111
Morgan, J. Pherpont, IV
Moris. Robert. 1 V
Morton, Paul, iv
Allan, Hugh, Sir, VI, 135
Allan. Hugh Montagu, Sir, 7 , 136
Cox, George A. VI 147
Forget, Rodolphe, VI, 153
Macpherson, slr David Lewis, Fi,
171
Mount Stephen, Lord, V1, 174
Oslef Edmund Boyd, Vi, 176
Baron, VI, 185
Wafker, Sir Byron Edmund, 71,

Ash brarton, Lord, I
Raring Brothere, I
Paterson, Willing, iv
Colbert, Jean Baptliste, II
Fouquet, Nloolas. 11V1, 380


## Norwegian

## Portuguese

## Scotch

Epanch

Aloedtoh

## Financiers <br> Amertican

## Camadian

## Englioh

## French

[^5]$\qquad$


1

```
                                -
```

```
                                -
```

Law, Joha, III

## Ceegraphere American

Gayot, Arneld, II
Eagltah
Gulton, Brancla, II
Fombin
Mercator, Gerard, III

## Coologits

## Amorican

nane, Jamen Dwlght II
Hayden, Ferdinand F., III
Helipria, Angelo, III
HiLl, Bobert T.. III
Eitchcock, Edward, III
ing, Clarence, III
6 Conte, Joseph, III
Mnir, John. TV
Powell, Job' Weales, IV
Behoolcraft, Heary Rowe, $V$
Shaler, Nathanle! S., V
Von Hise, Charles R., V
Van Hise, Charles R., $V$

## Camodian

Bell, Robert, VI, 188
Dewson, Georve Mercer, VI, 147
Davion, sir John Wlilam, VI, 148

## Englteh

Gellete, Sir Arehlbald, II
Lyell, glr Charlew, IIt
Marchigon, SIr Rodericl., IV
Bmith, Willam,
Ecotek
Milter, Hogh, III

## Afstorians

## 4 merioan

Abbott, John S. C., I
Adams, Henry, I
Adams, Herbert Buxter, I
Bancroft, George, I
Bancroit, Hubert Howe, I
Exglenton, Edrard, II
Fiske, John, II
roree, Peter, II
Hart, Albert Bushnel I, III
Hildreth, Rlchard, III
Irving, Washington, III
Johnston, Alezinder, III
Lonsing, Benion John, III
McMiester, John Bach, III
Kotley, John Lothrop, IV
Palirey, John Gorham, IV
Parkman, Francls, IV
Prescott. WIlliam H., IV
RIdpsth, John Clari, IV
8chooler, James, $\mathbf{V}$
Thwsitei, Reuben Gold, $V$
Thennor, George, $V$
Wlosor, Justin, $V$

## Canodian

Bourinot, Slr John George, VI, 140
Brjce, Rev, George. VI, 141
Cannif. William, VI, 144
Cangraln. Abbe Henri Raymond
V1. 145
Doughty, Arthur. VI. 140
Garneau, Francols Xevler, 154
Klagatord. WiHam, VI, 163
nilte. Benjamln. VI, 186
Food, Wlllam, VI, 101
Wrong, George McKlanon, VI. 191

Manetho, III

## Eoyptian

Emolion
Bryce, Jamen, 1
Backla, Henry Thomes, I
Creasy, SIr Waward, II
Fornter, Jobn, II
Freeman EdWird Augustus, II
Froude, Jamen Anthons, II
Fuller, Thoman, II
Gardiner, Blamel Rawcon, II
Geofrrey of Monmouth. II
Glbbon, Exward, II
Green, John Richard, II
Grote, Georre, II
Hallayt, RIrhard, I
Haklayt, Richard, I
Halam, Hemry, II
Lecky, WIII定 E. II., III
Lingard, John, III
Macaulay, Lord, III
McCarthy, Justín, III
Palprave, Elr Frapels, IV
Stubhs, filliam, $\mathbf{V}$
Thiriwall, Connop, V
French
Frolumart, Jean, II
Guisot Erangols, II
Jolnvile, Blre तn III
MIchelet, Jules, III
Renan, Arnest, IV
Talne, Hippolyte Adolphus, V

## Cerman

Curtlus, Ernat, II
Holet, Hermann von, III
Mommeen, Throdor, III
Ranke, Leopold von, IV

## Greek

Herodotus. III
Polyblus, IV
Thucydides, $V$
Xenophon, $\%$
Jesoteh
Jomephus, Flavius, III
Roman
Caesar Calus Jullus, I
Livy, ItI
Sallust, IV
Tacltus, I'ubllus Cornellus, 7
Ecoteh
Barton, John IIHI, I
South Americon
Garcilazo de la Vega, II
Suciss
Merie d'Aubigne, Jean Henri, III

## Humoriste <br> American

Ade, Georre, I
Bange, John Kendrick, I
Browne, Charles Farrar,
Burdette, Robert Jonea, I
Burgess, Frank Gelett, I
Clemens, Samuel L. II
Dunne, Finley feter, II
Loomis, Charles Battelf, III
Nye, migar wilmon, IV
Shat, Henry Wheeles, $V$ Nhlllaber, Benjamla P., V Stockton, Francla Rlchard, v

## Canadian

Hallhurton, Thomas Chandler, V1 157

## Emalioh

Barham, Richard Harris, Browne, Rablot Knlght, I Burnand, Slr Francis, 1 Jerome, Jerome K, III
Smith, Sydney, V

## Intimas-Fathous

Black Hawk, I
Brant, Joteph,
Geronimo. II
Tins Philip, III
Mediliivany III
Macemolt 311
Osceole. It
Pocthontas,
locahontas,
Pontiac, IV
Powhaten IV
ited Jacket, IV
Sittins Bull, $V$
Tecumach, $V$
Uncas, V

## Inventor <br> American

Baldwin, Mathlan W.. I
Bogardus, Jamew, I
hogardus, Jame
forden, (iall, I
Irrosh, Cilailiea Francin,
Colt, Samuel, II
Cooper, Peter, II
Corisn, feorge IIenry, II
Cornell, Eara, II
Crompton, Ramuel, II
Fideon, Thomas A., II
Falrbanks, Thadieus, II
Mlteh, John, II
Franklin, Benjamin, II
Gatling, Kleharrl J. II
Goodyen r, Charles, II
Gray, bilitia II
Hray, Hllata, II
Hoe, Rlchard Msrch, III
Iotchklas, Benjamin B., III
IIOWe, Ellas, III
MeCormlet, Cyrus Hall, III
Marim, Hudeon, III
Morme, Mamuel F. R., IV
Teala, Nitota, $\mathbf{V}$
Weatinghouse, George, $V$
Whitney, EII, V
Wright, Orville and Whbnr, V
Zalinsti, Exmund Louls, $V$

## Emglish

Arfwripht, Blr Richnri, I
Cartwright, Edmund. I
IAFgreaves, Jamev, II
Newcomen, Thomas, IV
Stephenson, George, $V$
Wheatstone, Slr Charles, $v$

## French

Daguerre, Louls. II
Jacquard, Joseph Marte, III
German
Bottger, Johann Frledrlch, I
Gutenberg, Johannef. II
Zeppelln, Count Ferdinand, V
Italian
Marconl, Gugllelmo, III Ecoteh
Bell, Alexander Graham, I
Bell, Henrs, I
Drummond, Thomas, II
Watt, James, V
Sowth 4 merican
Bantos-Dumont, Alberto, IV

## Journalists

American
Adeler, Max. I
Alden. William Livinguton.
Balley, James Montgomery, I
Bennett, James Gordon, I
Bennett, James Gordon, Jr., I
Blgelow, John, I
Blgelow, Poultney, I
Bowles, Samnel, I
Brough, Juhn, I

Ciate charten Bober, il
con
enter
panciciticill
Dongree Fromerice, II
Dutith theodore, 11
Gej, itimey Howira, II
armeles, Horace, II
Hatetoid, Yarm, II
jobateon, Iomedtor, III
Hecluro Mioxinder E, III
Ledili, joreph, III
Noratho
Nooranoi. Cjarien IV
Poore icongamig Periey, IV IV
Pultiser, joreph, IV
Remoon teary J, iv
Rela, whitelam, IV
Rille, Jacoo 1 . IV
Miples, Georse, IV
wittercon, lemry $V$
wed Turion'
white, Horace, v
Toung Jobs Rumell, $V$
Oencalian
Boaraegs. Henril MI, 140
Boja, john, $\mathrm{VI}_{1} 140$
Dougai, Jobn Redpanth, VI, 140
Eernighan, Bohert Sipland, VI, 102
Lurton, Whillem Fike, VI, 168
Meclean, william Findiny, Vi, 170
Robertion, Jobn Rocen, VI, 180 Enolith
Bagebot, Walter, 1
Forbet, Areblibaid 11
Hirminorth sir Alireed III
Labouchere, Heary Duprey, III
Eill, George A, IV
Yaten, EOMund'H., v

## Pronch

Bntor Erancole, I
O'Rell Mns IV
Rocheiort, Count de, IV

> Irioh

O'Comnor, Thomat P. IV

## Labor Landere

Amerlesn
Debs, Engene V., II
Gompera, 8amnel, II
Mitchell, John, III

## Lawsers

Amerioan
Bliney, Horace, I
Bradle, Jomeph P.I
Brewer, David J.,
Brown, Hemry B., I
Campbell, John A.,
Choate, Rufus, II
Clayton, John M., II
Ciliord, Nothan II
Cooley, Thomas M. II
Curtis, Beajamin B., II
Curtis, Georze T., II
Dane, Nathan, II
Davin, David, II
Devenm, Charles, II
Donlphan, Alexander W., II
Dnane Jamen, II
Fleld, bavid D. II
Field, Stephep J., II
Fonlke, WIlliam D., I
Fuller, Melvilie W., II
Gaynor, Wilitam Jäy, II
Gray, George, II
Greshm, waitero. II
Marlan, John M. Ifi
Hoar, Bbemener R., III
Hoimes, Oilver Wendell, Jr., III

Fiolt, Jemeph III
Hopitinech Joaph. III
Joporep WifiquT III
Fent, Jamene, IIL
Feronna, Jometh III
Fermban, John, II
Macon, Jameat 1
Manon, Jeromian, ilt
Matthew, manley III
O'Conor, Charlen, iv
Palne, Robert TH
Peathing, Rufus $\frac{1}{9}$. IV
Btanbyy, Hemy
tory, Joceph,
Taney, Roger Brooke, $V$
Waite, Morrinon R.,
What, Artemne, 8
Wharton, Francle, V
White, Edward D., V
Wllmot, David, $V$
Wilson, Jamen, $v$
Woodbury, Levl, $V$
Iates, Robert, $V$

## Conalten

Ansilm, Francle Alerander, VI, 186
Bect, Nicholae Dominle, VI, 138 Brodeut, Lonis Phllippe, VI, 141 Burean, Jacqnes, VI 112
Burton, sir Georce, VI, 14
Daver, SIF Lonit fenry VI, 147
Duy, Loman P. VI 160
Falcombridse, 8 151
Fitspatrick, SIr Charle, VI, 102
Gil1, Charlem Ignace, VI, 105
Harrey, Horace, VI, 168
IIunter, Gordon, VI, 161
Idington, John, VI, 162
Jette, SIF Louls Amable. VI, 162
LaConte, Slr Alerander, VI, 163
Lamont, John Headermon, VI,
164
Mabee, Jame Pitt. VI, 106
Macdonald, James Alezander, VI, 167
Meredith, Sir WHIIam Ralph, VI, 178
Mills, David, VI. 178
Mone Sir Charlè, VI, 174
Newcombe, Edmind Leolie, VI, 175
Parent, Slmon Napoleon, VI, 176 Stnart, Charle AllEn. 71.186 Taschereau, 8 Ir Henrl Eisear, VI, 187
Townshend, Charlew James, VI, Wetmore, Edward Lndiow, VI. Wetm
190

## Englteh

Alverstone, Lord. I
Blacktone, Sir Willam, I
Bradthaw, John, I
Coke, Slr Bd ward, II
Eldon, Lord, II
Hale, Sir Mitthew, III
Jeitrey, Lord, III
Tharlow, Baron, $V$
Frenoh
Labouiaje, Edouard de, III Ecotch
Erratine, Lord, II

## Librarians <br> Amerioan

Dewer, Meivil, II
Poole, Fillilam F., IF
Sporiord Ainsworth R., V
WInsor, Justin, $V$
Oanadian
Bnrpee, Lawrence J., V1. 142
Gridn, Martin Joseph, VI, I57

## Methematicione

## Amertess

Colbure, Warrea, II

## Emgith

Ralley, Bdmund, III
Nowton, bir Istac, IV
Thomean, Hr WHitan, $\mathbf{V}$
Fromeh
Ampere, Abdra Marle, I
Legendre, Adrien Marte, III

## Germen

Eepler, Johuna, III
Fuelid, II
Greel
Hero of Alerandria, III
Italian
Torriceill, Evangellsta, V
footch
Niapler, John, IV

## Eicilian

Archimedes, I
Efole
Eivier, Leonhard, II

## Morchants <br> Amerioss

Armour, Phllip D.I
Field, Cyrus W., Il
Field, Marshall, II
Lawrence, Amos, III
Atewart, AlexanderT., $V$
Wanamaker, John, V
Washburn, William D., V

## Misojonarion

American
Ellot, Johs, II
Judion, Adoniram, Ill
Whitman, Marens, V
Belgian
Damien, Father, II
Hennepln, Loni!, III
Rennepin, Lonin, III
Smet, ${ }^{2}$ Jeter John de, $v$

## Englteh

Carey, William, I
800toh
Dnfr, Alexander, II
Livingatone, David, III
Monatt, Robert, III

> Spantoh

Xavier, Francinco, V

## Muaiciana <br> American

Bloomfeld-Zeisler, Fanny, I
Buck, Dudley, I
Chadwict, George Whittield, I
Demroech, Leopold, II
Damroach, Wafter Johannes, II
De Koven, Beginald, II
Eames, Emma, II
Eddy, Clarence, II
Eda., Clarence, II
Foster, 8tephen Colilns, I
Gilmore, Patrick Barsield, il
Got tschalk, Lonis Moreau. 11
Herbert, Victor, III
Kellogs, Ciara Lonlse, III
Key, Francis Scott, III
Nevin, Ethelbert, IV
Nordlea Madame, IV
Parter, Horatio, if
Parker, Horatio, iv
Root, deorte Fil IV
Sherwood, WIII品 Rall, $V$
Sonsa, John Phillp, V

Tromat Theodore, $V$ Uroo Camile $V$
Fander Stueton, Frank, $\nabla$
Amotrelian
Melba, Nellie, III
Amotrias
Cheray, Kafl, II
Drornt, Antomin, II
Berda, Jomeph, III
Heller, Etepien, III
Jouch m , Joweph III
Kubelli, Jan, IIII
Leat, Frams III
Remenyh Edonard IV
fmetant Erredric.. V

## Belgion

Vienstempe, Hearl, $\mathbf{V}$

## Cancdian

Hirrlas, Charles A. E., V1, 158 Paslow, Mary Eathleen, VI, 177 Denten
Gade, Nitels Wilhelm, II
Emolien
Rale, Michael WIIllam, I
Barnby, BIr Joweph, I
Coleridse-Taplor, gamuel, II
Conta, II Michael, II
Elgar, Eir Edward, II
MacFarren, gir george, III
Reeves, Jonn Sima 1
thiner, sir Joha, $V$
Bollivan, sif Arthnt, $V$
Prenci
Anber, Daniel Frangote, I
Berilos. Ilector, I
Btset, Alezandre, 1
Cr've, Emma, 1
Cuaminade, Ceclle Loulse. 1 Chopln, Frederick Frangole, II Francl, Cemar Anguate, 11
Godard, Benjamin, II
Gonnod, Cbarlea F'rengots, II
Gretry, Andrt Ernest, 11
Golimant, Felix Alexandre, II
Halevy, Jacques 1 III
Masonet, Jnlem Emille, III
Orabach, Jacquef, IV
Salat-Saent, Cbarles, IV

## German

Bach, Jobaan Sebantian, I
Beethoven, Ludwig von, I
Brahus, Johannes, I
Bulow, Hana Gnldo von, I
Flotow, Frledrich von, II
Gadkri, Johanna, II
GIack, Christoph, II
Hisndel, George Frederick, III
Henschel. Georg, 111
Humperdinet, Engelhert, III
Nendelssohn-Bartholdy, Felix, III
Mejerbeer, Olacomo. III
Mozart, Johann Woifgang, IV Schubert, Frana, $V$
Schumann, Robert. $\mathbf{V}$
Shamsnn-Helink, Ernestine, $\nabla$
Seldi, Anton, $V$
fontig, Henilette, $V$
Straus, Johann,
Strauns, Rlchard, $\mathbf{F}$
Thalberg. Slatsmand, $v$
Wagner, Wilhelm Richard, $\nabla$
Weber, Karl von, $\mathbf{\nabla}$

## Itallam

Albsnl, Emma, I
Almal, Marletta, I
Bellnil, Vlarenao, 1
Campaninit Italo,
Catmisni. Angellice, I
Cherablin, I

Farinelli, Carto, II Gnide D' Aresan, 11 Jomemell, Nicolo. III Marto, Marqule di Candia, $1 I I$ Monterpride Ciandlo, 111 paranimi, Niceola, IV Palestrina clovainal de, iv Bomela Clanchino, IV Vordi, olveoppe, $\bar{V}$

## Nomeeglen

Bull, Ole Bornemann, I Orie, Edyard Hagerup. II sleding, Chriatian, $V$

## Polioh

De Renake, Bdonard, 11
Do Remare, Jean, II
Hofmann. Jome?, III
Mogntrowisi, Morite, IV
Paderewall. Ignace Jan, IV
Sembrich, Marcella, $V$
Rucsian
Rnhlanteln, Anton C., IV Tschaitiowaky, Peter, $v$.

## Spemoh

Garcla, Mannel, 11
Malifran, Maria Fellcita, III
Pattl, Adellna, IV
Ancedion
LInd, Jenny, IV
Nilation, Chrlatine, IV.

## Anotoo

Raff, Joachim, IV

## Naturaliots <br> 4 merican

Ahbott, Charlen Conrad, I
Agasmla, Alezander, I
Aganalia, Loulo, I
Audubon, John James, I
Balrd, spencer F., I
Burrourha, John, I
Cope, Edward D. I
Coues, Elliott. II
Darwin, Chariea R., II
Goode, George Brown, II
Holder, Charles FiIII
IIJatt, Alpheus, Ii
Leldy, Joseph, iII
RIgway, Robert. IV
Wilson, Alexander, $\mathbf{V}$
Youmans, Edward'Lu, v
Canadien
Chamberialn. Montague $\mathrm{VI}_{1} 145$
Le Moine sir James VI, 165
Mnrray Ślr John. VI, 175
Ross, Alczander Milton, YI, 181

## Enolith

Bnchland. Francln T., I
Gosse, Philip II., II
IIuxley, Thomani Heary, III
Lubbock. Sir John, IIY
Newton, sir Isatac, IV
Whilte, Albert Fissell, $\nabla$
White, Gubert, $\mathbf{V}$

## French

Baffon, Connt de, I
Cupler, Baron, II
Lamarck, Jean Baptlste, III

## Germen

Haeckel, Erpht, III
Mamboldt, Baron von, III

## Evertish

Nordenakjold, Baron, IV
Naval Leaders
American

Baldwing Charlen B., I
Barroy, Joahua, I
Barron, James,
Barfl Jobn, 1
Bnace, Pranch Marvin I
Cuabing, Willam B., If
Dabipron, John 4 in
Dentur, tephep I
Dowey, Georce, 1
Du Pont Bampol II. II
EHott, Jence D. ${ }^{\text {II }}$ II
Frarragut, David ${ }^{\text {bin }}$ II
Foote, Andrew Hinil, II
Gray, Robert, II
IIohoon, Rlchmond P., III
IIUL, Inaac, III
Jones, John Panl, III
Lawrence, Jamen, III
Mcponouth, Thomat, III
Mahan, Alired Thaser III
Maury, Matthew F.iII
Perry, Mathew C.iIV
Perry, Ollver H . IV
Perry Ollver Hit I
Forter, David Dizon, Iv
Prehle, Edward, IV
Prehle, Georto hi., IV
gampmon, Willam Thomas, IV
gebley, Windeld scott, IV
femmen, Raphael. $V$
giasbee, Charlee D.,
Stockton, Robert F., $\nabla$
Whikes, Charlen, v
Whalow, John A. iv ${ }^{\text {V }}$
Engitom
Blake, Robert, I
rainburgh, Duke of II
Ilowe, Eari Rlchard, III
Nelson, Horatio, IV

## Rusatan

Rojestvensky, Sluovl, IV:

## Novelists

4 mertcan
Abhott, Jncob, I
Adams, WIIllam T., I
Acott, Ioulsa Maj, I
Bee, RIno. VI, 67
Alden, Isabella M.,
Alger, Iloratio. 1
Allen, James Lane, I
Bacon, Josephine D., 1
Barr, Amella छn., I
Barr, Amella E.,
Bates, Arlo. 1
Bellamy, Edward, I
Rrady, Cyrua Townsend, I
Brown, Charlen B., I
Burnett, Frances Hodgson. I
Cable, George Wawhington, 1
Churchill, Winston, If
Cooke, John Eaten, II
Cooper, Jamen Fenlmore, II
Crane, gtephen, II
Crawford Franels Marion. Il
Davil, Rebecca Harding, II
Davis, Richard Harding, II
Deland, Jlargaret W.. If
Egaleation, Edward, it
Foote, Mary Hallock, II
Ford, Panl Leicester, iI
Freeman, Mary E. Wilitns, II
French, Allice, II
Garland, Hamilin, II
Grant, Robert, II
Iahberton, John, III
Harland, Henry, 111
Marrif, Joel Chandler, III
Hawthorne, Nathaniel, III
See, alan, VI, 674
Herrick, Robert Welch. III
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$



$\qquad$

$\square$
-

$\qquad$

```

```

$\qquad$
$\qquad$

$\square$
-
$\qquad$

$\qquad$
$\qquad$
$\qquad$ 1

$\qquad$路$\square$12


[^6]

Auctrian
Joknal, Mawrus, 111
Oomadian
Dencam, Norman V1, 100
Galt, John V1, 164
Gordon Rev. Charies Willam, VI. 185

King W, B. Banil, V1, 183
I'ar Eer, Dir Glibert VI; 177
otriuger, Axthner, V. 106

## Danloh

Andernen, Ians Chriatian, I
Emglioh
Ansten, Jame.
Benant, gir walter, I
Blackmore, Richard Doddridge, I
Bronte, Chimiotte, I
Broate, Chariotte,
Bniver-Lytton, Eiol
Calne, Thomas
Hill, I
Colina, Wiltie, 11
Corelli Marte, II
Cralfle, Peari Bichards, II
Crall, binah M. II
Defoe, Danlel, If
Dickens, Charlen, IL
oee, 1 Co, V1, 128
oifracil, Beajamin, il
Doyle, Arthnr Conan, II
Du Manrier, Georse Lonis, II
Edgeworth, Maria 11
Edwarda, Amella Biandioni, II
giliot, George, 11
Farsum, Fredertek John, II
Farjeos, Benjamin Lh, Il
Melding, Henry, II
Gaskell, Billanbeth C., II
Gore, Catharine Grace, II
Grant, James, 11
Hargard, Henrs Rider, II:
Hartiy, Thomas, IIt
Harry, Thomag, Beatrice, III
Harrace, Beatrice, 111
Hewlett, Manrice Heary, III
Hoches, Thomas, 111
Kinguley, Chariem iII
Kinpley Henry, III Marryat, Fredertck II Meradite, George, ItI Murray, Devid Christle, IV Oliphant, Mrw, Margaret, iv Forter, Jane. iv
Qulller.Conch, Arthne IV
Indellife, And Ward, iv
Radrlite, ADD Ward, iv
Rame, Loulse de In, iv

## Reple charlet iv <br> 

ranetares, Timat intropeece $v$ Trollope, athony
Wari. Mrm, hangreg, $V$
Royme chatotoy $V, v$

## Ircuen

About, Jament, 1
Smara, Guoteve, 1
falme, Howore dis
bourtet IMal,
Char valles, Chartes guedet, Alphonse, II
Dutag, Alezander, II
Gretmana-Chatrian, II
faniliet, Octave, II
Halev, Ludovie, IIt
Itugo, Victos, 11
forere, Alala Rone, ill
Lanc hemre, IV
Fne, Mary Jomeph, $v$
Varne Jmles $y$
com, EJorman
Whers, Geory Moplts, II
Fertar, Gnatev, II
Ioge, Pami, III

## Iriok

Carteton, WHIA鼠, 1
Goldmmith, Oliver il
Hunsertora Mr, Margaret, III
Lover, Charle , Igmes, III
Lover, Bamuel, 11 II

## Polfah

Blenkiawics, Henryt, V

## Rwaoten

Corky, Marim, 1
Tolatos, Leo, $V$
Turgenler, Ivan, $V$

## Acotoh

Barrie, Jamee M., I
Black, William,
Crockett, Namuei R., 11
Macdonald Georce IiI
Scott, Sir Walter, $\downarrow$
Smollett, Toblas G.V
Etevenson, Robert Louis, $V$

> Spentoh

Cahallero, Fernan, I Sucediah
Bremer, Eiredrika, I
Orntor:
See, alwo, Bratyenant
Greek
Aeschinea, 1
Demonthenes, 11
Clcero, 11
Roman

## Painter: Amerloan

Abbey, Edwis Angtin, 1
Allaton, Wanhington, I
Brown, Johs George,
Catilin George, I
Charch, Frederict E., II
Cole, Thomas, II
Copley, John Slogieton, II
Cox, Kenyon, II
Dnrand Asher Brown, II
Homer. Winslow, III
Eiomer, William Morrie II
Enotingon, Daniel, Ill
Inman, Ilenry, III
Impen, George, III
Le Farge, John, 111
Lentre, Hmamuel, III

## Seran Themer IV <br> ralle charles 10 iv <br> corcent jote ifens, iv <br> Sonart omboter <br> Nalr, Robort Walter, $V$ <br> Wett, Ben mala, $V$ <br> Whiotiar, Jamece MeNolif, $\gamma$ <br> Awervan <br> Mantaces, Minaly, IV Beiplen

Gallath, Locte, II

## Comadion

Bryamer, Wililam, V1, 142
Calieatr, Frodefick R, VI, 148
Forber, John Collh, Yi, 152
harris Robert. Vi, ind 140
ind, George icmew, V1, 179

## Duteh

Alma-Tadoma Lawrence, I
Ihow, Gerners
Hala, Yrans 11
IIobbema, Maindert, III
Inraele, Jove? III
Remorindt if
Rnyodaal, Jacob van, IV
Stoen, Jes, $V$

## Emgltak

Bntra-Jonew, Bdward, I
Conatahie, Jobn, II
Cox, Damd, II
Crabe, Walter, il
Creewick, Thomes, 11
Cronae John, II
Frith, Wilitan lowell, 11
Gaimborough, Thoman, It
Gilibert AIr John, il
Coodall, Eredertet, 11
Haydon, Benjamin R., 111
Ilunt, William Holman, II
Landeeer, Eir EdWin, ili
Lawrence, Bir Thomas ill
Lelshton, Lord Frederick, 111
Minlata, dir John, III.
Repmolde, Bir Jonhua, iv
Roberts, bavid, IV
Romerts, Georis. IV
Rometti, Gahriel bante, IV
Ronetti, Gahriel bante
Rtotharg, Thoming, $V$
Turber, Joweph Mailard, $v$
Walter, Frederich, $V$
Watt George Fréderich, $v$
Wulle, EIr David, $V$

## Fleminh

Eyck, Eubert Fan and Jan Fin, II
Jordaens, Jacob, 111
Memilog Hans, 111
Ruben, Peter Paui, IV
Snyders, Fraps, $V$
Tenjers, Devid, $V$
Vas Dyck, AIr Anthony, V

## French

Bantien-Iepage, Jules, 1
Baudry, Panl Jacquew,
Bonheur, Roter I
Bouguerean, Wilism Adolphe, 1
Breton Jule Adolph, 1
Corot, Jean Baptinte, 11
David, Jacque: Lonis, 11
Decampa Alexandre-Gabriel, 11
Delacroix, Ferdinand Victor, is
Delaroche, Paul, II
Dore, Puul Guhtave, II
Durpe, Jniem, 11
Gelce, Clande, II
Gerard, Baron. 11
Gerome, Jean Leon, II
Greume, Jean Baptiste, II
Groe Baron, II
6) Vatry AETre [1I (il) That mecies 11 yon ale vi,

pula alcoleg, iv

whttres, Jona Letotes, $V$ Cerman
Atamber, Maz Emanuel, I
Inrotede, Alsert, 1
Conetlina, Prter yon, II
Dtres, Albrectit it
Howha, Helarics III
hodme Haze ill
asfmas Ampelice, Iv
ratlonet wilheim ros, iv
Liy, Eitr fotety IV
extioert rom Larolefold, IV

## Oreen

Apellea, 1
Pirrbealves iv
20uste, V
Ifollan
APpllice, Fru.
triolommeo, Ira, I
ciligi, Oiovanal. 1
beticelil, bagro
cunefetto, Antonio, I

carnect, Ludovico, haoition and Aapibale, I
Cloabue, Olovanal, I
Corresio, Antongo,
Docemichino, if
Franctic II
GMirlendilo, II
Giondano Eucl. II
Ghortione, II
Giotio, II
Alalla, Romana, II
Borsoll, Benomso, II
Gufor, Renh, II
LDoL PIIppo, III
ove inco, VI. .22
Michelanelo Prona rroti, II
see, aleo, VI, 223
Peraidioo, ifetro Vanauech, IV
raturicenio, 1 .
aphael Santi, IV
vee, Iso, VI, 02
20me Ealvator, IV
sarto, Amdrea del, IV
see, Also, VI, B2?
ntmorelli, Lnem, $V$
Intoretto, $\mathbf{V}$
Titan, Tíilano,
Peronese, Paul, $V$
Finch, Leomardo da, $V$
see, alro, VI, 822
Inecaro, V
Rueotan
Fereatchagin, VansII, V
Acoteh
Opchardson, TViliam Quliler, IV
Ptom, SIr Joteph, IV

## Epantoh

Yurlllo, Bartolome Erteban. IV See, also, VI, 625

Eveles
R别lin, Arnold, I

## Patriote

Ametries
Reทรaty, Janos III
Kownth, Loule, III
Canadian
Steori, Laura, V, 183
Cuben
Maceo, Antoalo, III

Doty. R1F Chariom II
RPMet. Robert. 11
O'Comelit, Jambit IV rinlian
Ninetal, Olumppe, III Polteh
Hoscluitro, TMAddevs, III
Acotch
Wallace, Bir William, $V$ Ester
Tofer Aadrmat. I
Tell, Willlam.
Winkelfied, Armold, $V$ gee, also, VI, 0

## Prllamelimephots

Amertcan
Rartoa, Clara,
Boudinot, Rilite I
Carmegle, Amdrow, I
Cooper, Leter, 11
Corcorin, Wilitam WHeon, II
Cormell, Burn, 11
Mx, Dorothea Luade, II
IDodse, William fari, is
Doremps, Mry, Garah I'latt, II
Drew, Dutale II
Dresel, A athony J., II
Durant, jleary fowle, If
GIrard, Etephes II
Goald, IIelen Milier, II
Lemoz Jamem III
Llek, Jamen, III
Peabody Georie, IV
Amith, Gerrit,
Bmithmon, James. V
Btont, James Huf
Vacmar, Matthew, $V$
Iale, Eilinu, $V$

## Amstrian

Rurdett-Coattn, Ancela,
IIIrsch, Murlice, III
Canedian
Mardoanid, Sir William C., VI, 1118
McManter, William, VI, 171

## Englah

IToward, John, III
Virhtlngale, Floreace, IV
Ralkes, Robert, IV
Jeretoh
Montelore, glr Mowes, III

## Philosophers

Arablan
Arleeman, I

## Chince

Confuctas, II
Dutch
Spinuza, Barnch, V
Englioh
Racon, Francla, I
Racon, Roger, I
Bentham, Jeremy, I
Berteley, George, I
Hohbel, Thoman. III
Hume, Davld, III
Lonte, John, III
MII, John Stnart, III
Priestif. Joseph. IF
Spencer, Herbert, V

## French

Abelard, Plerre, I
Comte, Injolore, II
Comte, Isldore, II
Cousin, Vletor, II
D'Alembert, Ii

Rander, Demedtct roen.
Flemfe, Johana (intiloty It
Ilegel, Cogre WIncla itic it
Kame, Impanuel it
leelbelte, Baron vom, III
lotme, Rudolf Itersanan

Hehopenakaer Arthur, $\gamma$
Nermums, David Y., V

## Oreat

Aneanroras
Amabmander.
Anasimimes.
Arintippus
Ariatole,
IMemoceltus. II
Hoprarm II
pmpeclaclew, I
eplctetma, II
fplcuras, II
Irpata, III
Inocrate,
Intato 1 V
Irythagoras, IV
Socrates
Theophratan, $V$
Roment
Anrrllus, Marena, I
Semeca, Luctor Ananeas, $V$
Beoteh
Tamilton, Sir Whillam, III
Phyoiciana and Sergeone Amerionn
Apnew, Daviet II., I
Ailling Joha Shaw, I
Hlackwell, Elizabeth, I
Brown-g4quard. Charley B. I
Davis, Nathan Smith, II
Iruper, Joha C. II
Filat, Austin, If
FIInt, Austin, Jr., II
Gray, John I'urdue, II
II olmps, Ollver Wendell, III
Janewat, Edward C.. II
Kane, Kinha Kent, IiI
Keeley, Lesile, III
Mchurney, Charles, III
Mltchell, gllan Welr, III
Morion, WJilam Jemen. IV
Morton, Wililam T. G., IV
Mott. Valentine, IV
I'Pterson, Frederirte, IV
[hysick, Ihllip 8inf. IV
Rush, Ifeajamin, IV
sean, Nicholas, $V$
Smitb, Andrew II., $V$ V
Sternberg, Gcorge Miller, V
Trudeau, Edward L.. V
Wood, Horatlo Cnrtis, V

## Anetrian

Toreng, Adolf, III
Nordau, Maः SImon, IV
Canadion
Bucte. Richard Mausice, VI, 142
Grant, Jamea Alexamder, Vi', 10
ironfell, Wilfred Thomison, VI
1.57
jicliachraa, Duncan McNeb, V1, 148
Oronhyntetha, VI, 176
Onler. William, Vi, 176
Shepherd, Frapels'3., VI, 184
Damah
Fissen, Niele Ryber il


Charrof: Jema Martia, peven Merro Joeph, il bovela, ciarle fouta, ill

## Connam

Hotrige Favi Adolf,
 oct. Rovert III
feom No, Frledrifi Aaton, III
Vireliow, liadolf, $v$

## oreel

machotretue, II
Galon, II
illpperatem, III
stallem
Buptachla, Bartolommea, II
Gairami, Laldi, If
Malpleth Mareello, III
Nerneoplas
Hancea, Cerlanth, II

> teoteh

Brown, John, 1
Forbes, Dir John, II
Epastus, 11
Paracelona,
Evole

Phyoidote
Amerlane
Ouyot, Ameld. 11
Heary, joweph, 111
Hehaimotitidert A. III
Ren wick, Jamer. IV
17
Rofland, Henry A., iv

## Emplioh

Cavendish, Henry, I
Faraday, Micbael il
Thoumod SIr Whithm, $V$
Tyadall, Johe, $\downarrow$

## Prench

Ampere, Andre. 1
Araco, Dominique Frapcole, 1
Curle, Plerre, and Madame
Bkiodoweka, II
Foucault, Jean Bernard, II
rantenr, Lonif, iv
Oormen
Fabrenbelt, Gabriet, 11
Franahofer, Jomeph von, 11
Heimholtz, Rerman Foa III
Ohm, Geore mimon, IV

## Itallom

Yolta. Alemandro, $V$
Torrleelil, Eveagellata, $Y$
Sootch

Brewater, AIr Darld, I
Ancedten
Bergman, Torbern Olof, 1

## Heloe

Bowegne, Wutcle ticared, IV
Phyalalegiote
Americen
Leot, Jecques, 111
Emplont
Carpantor, Fpillam B.,
Owen, wir mletare, If
Oernina
Hiflabolts, Hermang voln, 111
Whlemanes, Aaguet, $V$
Pancers
4 merlon
Ametia, Btephen Triler, I
Houne, IMalal, 1
Carcon Chrlutopher, 1
Clapt, (ivorge Ry II
Croctiett Davia II
cuiler, Manamela 11
Jamani, Jaumpth. III
dovier, Joba, IV
Cenedile
thom, Alezander, YI, ISO
Eempla Rotert, VI, 188

## Poote 4 morloen

Roker, George ileary, I
Bradatreef, Aane, I
Bryant, Whillam Cullea, I
Buther, William allen, l
Carietoa, WIII, 1
Cary, Alice 1
Cary, j'hoebe,
Drake, Joopgh Rodman, it
Duaber, pouil Laurpace, is
Amerben, Raiph Waldo. II
Meld, Eureme II
Frpacau, Mhlilp. II
IIAliert, Flis-dreeae, III
Itolmes, Oilver Wendeli, III
Bee, alio, V1. 672
Ilovey, Richand. III
Lavier, Bldaey, III
Lareom, Lact, III
Longfellow, Leary Wadeworth, 111
see, also. V1. 60.070
Loweli, Jamee riaumi, III
Ree, aloo VI, 078
Martham, Edwin, III
Miler, Clacinnatua Fipise. 111
Moulton, Ehlea Lonice Chan.
dier. iv
Pajae. john Howard, IV
Poe, Edrap Allan, iv
Read. Thomas Bnehanan, IV
Rliey, Jamen whitcomh, iv
Aaze, John Godirey. IV
Bfedman, Edmund Clareace, V
Whirman, wait
Whittler, John Greenteaf, $\nabla$
See, alio, V1, 071
Belonas
Maeterliack, Manrice, III
Canzilan
Rettu, Craven Langatroh, VI, 139 Cameron, George Frederick, VI,
143 148
Cormana, riltam FI, 144
Crawford, Isabelta ${ }^{\text {V. }}$ VI, 147
Drummoad, Wliliam Heary. VI, 148
Frechette, Loule Hoaore, VI, 153
Heavyege, Charlen. VI. 160
Johnsoa, Panilae E., VI, 162

Hothat virinelio Vi, 14
reter whila wover vi, ich
yatroch chece vi, ild

peot, ymext Camplin, V1. 182
gett. Erexpriti geores, vi, ifz


> Deglion

## Alfort Mens, 1

armoin yrucria!
A notic, Atroa
falleg. Fhlipz Jemen, I
Itale, Wilit 1
frowales glintont Earrett, 1
Hrow tres, inobort, I
drem, VAR 1
Cinple IL, Thomate, I
Cerpy, ILeary, 1
Chapman, ONutue, I
chatterton, Thoman, 1
Chatectr, Geolfres. 1
Coperthe thenei Tuylor. II
collins viliten, It
Cowley, Ahraham, II
cowper, Willay, II
Craber, Cuerte, II
IJobeot, IIeny'Amotia, II
INydon. Johas 11
megreild, edwart, II
Gay, 30ha 11
(rowert joha, II
iray. Thomate 11
fomment rellela Dill
ferrict Robert III
ITood, Thoman 11
Iunf. Jasee Lel h, III
incelon. dean, III
Kente, Johe III
Kipllos, Rudyard, III
Lipizth RugTara, II
Lytton, Edvard Buiwer, III
Itmon, covara Bul
M11tof. Johs, ItI
Himore, Coveairy K., IV
rope, Alezander, Iy
Procter, Adolalde Ampe, iv
Procter, Bryan Waller, IV
Po. Il enry James, IV
Ropern, Samuel. IV
Ronsettl, Christina
Rometti, Gahriel v relne, it
ghatripeire, Wliliam, $v$
bee, 1so, VI, \$1
thelley, Percy Bywhe, v
gidepy. -ir Philp, V
Eteltom, John, $V$
Epenser pamnad. V
Gurrey, Earl of, $V$
Ewinhurne, Alfernon Cherles, $Y$
Tennjion, Alfred. V
Tupper, Martin Farguhat, F
Waller, Edmand, $V$
Wordeworth, Wiliam. V
Younk, Bdward, $\nabla$

## French

Reranger, Plerre de, I
Blondel, Charies Emill. I
Rollean-Deapreaus, Xicholas. I
IIaro, Vletor, 111
Lamartine, Atphonane de, 111
Munset, Alired de. IV
Verialá, Pani, $\nabla$
Vigny, Connt de. $V$

## Cerman

Aradt, Ernat Moritz. 1
Ireilisrath, Ferdioand, II
Gelbel, Emannel, II

KOrner, Karl Theodor, III
faphe, Tiang, IV
Thland, Johann Lnefelg. V
Vose, Johanan Relnrich, $V$
Oreek

Anscreon, I
prophy

Purn. sobert, 1
Jrummond, Williame, II
Lunbar, William, II
Macdobald (leorise. III
Reott, BIr Walter, $V$
Bulth. Alozarder, $V$
Mrypheon, hobert Ionis, $V$
Themenn, Jamen, V

## Spenloh

Aiarcon 7 Mendera, I
Argenmola, Luperclo de and Barto-
tomeo de, I

## Scedioh

Jas. Pehr Hearik, III
Tegner, Eiallas, V
Evise
Haller, Albrecbt ron, III

## Prosideate-Anerican

Adamm, John, I
Adama, John Qulacy, I
Arthur, Chenter A., I
Suchanm n, Jame., 1
Cleveland, Grover, II
rillmore, Millard, II
Gartieid. Jamen A., II
Grant, Ulymen B., II
Hzrrion, Beajamin. III
Jarrimon, WIIJam IL., III
Harem, Rntherford B., III
Jackwon, Andrew. III'
Jefferson, Thomas, III
Jotnson, Andrew, 111
I.Jncols. Ahrahm m, III

Mckilolev, WIIIam, III
Madison, Ja mes. III
Mnaroe James. III
Plerce Frankiln, IV
Polk, Jamen K., IV
Roosevelt, Theodore, IV


Nivart, The tild l'retemere, $V$ Wivart, The Youat I'setrader, $V$ Warboct., Ibrlia,

## Prench

Chambord, Comenta de, 1
Ryontoh
Caplon de Doupboen, I

## Primere <br> Dutch

('ontrp. Inmpens, II
Elizetir, II

Englioh

('usion, Wlisian, I

## Ocrmen

Finut, Johern, II

## Paschalegiate

Amerten
IIafl, Girabpllle Mtepley, III
Jamee, WIIIlam, III
Lindd, (leorige T., III
Hinglich
Maln, IJezabdrt, I
甘ully, Jamew, V

## Publiohera <br> IImertcen

Hopner, Hobert, I
thllda, firorke William. I
Vleida, James Thoman, II

## Oerman

Tauchalty, Bapon Chrlutlan, V

## Acoteh

Itallantyne, Jamen, I Itlarewood, Willlam, I
('humbern, W'lllam, I
Cobatable, Archlbaid, II

## Roformera <br> Americen

## Adiamen, Jane, I

Anthony, Numan 1B., I
Bergh, Incमry, I
Ifocth. Maud Rallington, I
itrown. John.I
hilld, Lydia Marla, I
IMow, Neal, 11
Kiatos, INHMMD B., II
finerlmon. WIIIlam Lloyd, II
( iough John It., II
II uat. Mary Ilannah, III
I. Ivarmore. Mary A., III

Lovívood, Mplva Ann, Ill
Larejoy. Ellinh I'arieh, JIJ
Mott. I.ucretla, IV
1hillijpa, Wendell, IV
Ntanton, Ellzabeth 'mily, V
Wlllard, Francen E., V
Amatrion
PTnलm, John. III
Jirome of I'rague, III

## Canadian

Nimon. Wolfred. VI. 175
jrplafan. Lonnls Jomeph, VI, 176



Oermen
Garlatadt, Andrean Rudolf, I
Borther, Maptin, III
Mrlanacthom. Jalijo. III


## Itelien

Eavomarole, Cirolame, IV
flootel
Chalmers, Thoman, 1
Kreon, John, 111

## Evelac

Irrutaloagh, Johatum Helarich, IV
Zwlagll, Clifle, V
Daliden Lavers
INowle, Joh Alozander, II
Edaly, 3tary Thimer d., II
Mrano, NImont, III
Motamen III
Wmith, Joneph, v
ETMCnbors. Cuanuel, V
Joana, IIrfham, $V$
toroulter,

## Revolutionlate <br> Prewen

Cordiny d'Armont, Chaplotte, II
Innton, therer sen Jacquew, If
Jinrat, Jean fraul, II
MIrabeatu. Connt de III
Itobesplopre, Mam.aillea. IV
Itoland do Ia I'latlere, iv
Malnt Junt, Abtolne, iv
Hindy
Ninna, \&ahlb, IV
Itelican
Orulal, F'ellce, IV
Rulers
African
Jugurtha. III
Membon, III

## Leoynten

Finarhaddon, :
Sardanapulus: IV
Margod II. IV
Nirmiramis. IV
Mpanacherib, IV
TIglath-I'Hlewer, $V$

> Austrian

Francls Jomes h I. II
Marla Theresn, III

## Bebylanion

Nabopolasnar, IV
Nohuchndnezzar, IV
Beloian
Albert 1. I
1.eopold I. III
iropold II, II

## Chinese

Kndal Khan, 111
Dandeh
(hirlmian IX. II
Frederlets Viji, II
Margaret, III
Mweyn,


Englioh
Alfred the Great. I
Anne, 1
Arthur, 1
Atheittan. I
Boadicea I
Canute, 1
Charle I, I
Bdgar Atheilag, II
Comnnd II
Edmund II, II
Edward the Confeneor, 11
Edward the Rider, II
goward the Martyr, 11
sdward If II
Edward IIf, II
Edward III, II
Edward IV, II
Edward VI II
Edward VIL, II
EAWry, II
Esbert, II
Mileabeth, II
Ethelbert, II
Ethelbert, 11
Entheired I, II
Whthelred II II
Gthelwulf 1
Georze II II
George II, II
George IV, II
George V, II, and VI, 184
Hardecanute $11 I$
Harold II, III
Heary I, III
Heary 1
Heury IIt, III
Heury ifi, III
Henry V, iII
Heary Vh, iII
Heary Vil III
Heary Vili, III
Jame I III
Jamen II, III
John, 111
Mary I 111
Mary II, 111
Rehardi. IV
Richard It IV
RichardiIf, IV
Stephen, $V$
Victoria, $V$
Willam $1 . v$
Wiliam ÍI Rufus, $V$
WIIIam III, V

## French

Catharine de Medicl, I
Charle VI I
Charles Vil, 1
Charlew VIII, 1
Charles IX,
Charles $X, I$
Chariea Martei, I
Ciovis, 11
Eraucis I, II
Erancisill II 11
rrancis 1I, III
Ilenry III, III
Fipary IV, III
Iugb Capet, III

Jobn 11, III
Lonis 1
Lour IX, IIt
Loult रill II
Louls Xili, III
Loula XIV. III
Louls X X III
Louts XVI III
Louia XVII III
Loula XVII, III
Lovia Philippe, III
Marie Autoluette, III
Napoleon I IV
Napoleon III, IV
OrLeans, iV
Orleans, Philippe, Duke of, iv
Hepin, IV
Philip II IV
Ihilipiv, IV
Philip VI, IV

## Cermas

Frederick 1, II
prederick II, II
Frederick III, II
Frederick Whiliam I, II
Frederick William III,
Frederick Willam IV, II
Heury 1. III
Louls the German, 111
Whiliam I, V
William II, V

## Groek

Agesilans, 1
Alexander the Great, I
Codrus, II
George I, II
Leonidas III
Otto 1. IV
Philip II, IV
Hecouldan
LIIluokalani, III

$$
H I n d s
$$

Anruagsebe, 1
Hyder All, III
Ruujit Singh, IV
T1ppu Sabib, $v$
Holy Roman Dmplre
Charlemagne, I
Charles V.I
Charles VI, I
Ferdinand 1 II
Ferdinand If, II
Franclit II II
Francis Ii, II
Frederick II II
Frederick II, II
Heary IV. III
Heury VI, 11
Joseph II, III
Maximilian I, III
Otho I. IV
Otho II. IV
Otho IIII. IV
Algismund, $V$
Itallen
IIumbert I, III
Odoacer, IV
Victor EmmanueI iI, V
Victor Emmauuel III, V
Japanese
Mntsuhito, IV
Jeurish
Felix, II
Fentus, II
Herod, III
Ilcrod Agrippa I. 11 I
IIerol Agrippa II, III
IIemi Antip: III
Josiah, III
Mesican
Iturblde. III

Juares, 111
Maximilian, III
Norwegien
Hankong 111
Harold 111
Hacold III III
Margaret Om
Owear $11_{1}$ IV

## Pervian

Artaxersen, 1
Cambywes,
Cyrun, II
Darlua 1.11
Dariut III, II
Xercen, $V$

## Poltsh

Ansuatus $I_{1} 1$
Augustua II, 1
Johu III Sohlemk. 111
Stanialaua II Augustub. V
Stanidaus 1 Letrezynskl, $V$
Portugwese
Carios 1, 1
Sebantian, Dom, V

## Roman

Alexander Severun, I
Antonlus IMus, 1
Appiun Ciandín, I
Appiun Cian
Augutan, I
Aurelian, Mrarcus,
Cresar, Calus Jullus, I
Catigula, I
Claudius, II
Coustantiue, II
Craesus, II
Diocletian, II
Domitian, II
Gaibe. II
Gratian. 11
Gratian, II
Hadrian, III
Honoriut
Julianian 111
Lepldus. 1 II
Nero, IV
Nerva, IV
Numa Pomplitus, 17
Otho, IV
Irobua, iv
Servin Tullius. $V$
Sulia, $V$
Tarquinius, $V$
Theodoslus, $V$
Theodosius,
Tiberlus,
Titus, V
Trajan, $V$
Valeutiulan $1, V$
Yaleutivian 11. V
Vespaslau, $\mathbf{v}$

## Rucoten

Alexauder 1, I
Alezander İ,
Alezander III, 1
Anua Itanovua, 1
Catharive 1,1
Catharlue II, I
Ivan III, $11 I$
Nlcholá 1 Pavlovitch, IV
Nicholas II, IV

Alezander, 1
Ballol, Jons de. I
Bruce, Robert, I
Macbeth. $11 I$
Ma 7 Stuart. III
Tohert ii, iV
William, $V$

Paul I, IV
Scotch

## Sicllian

Ferdinand II, II
Ferdinand IV, II

## South $\Delta$ merioss

Atahnalpa I

## Epentoh

Alfonso XIII,
Ferdinand V, II
Isabelia 1I, III
Isabeila of Castlie, III
Maria Chrigtina, III
Phlilp II, IV
Philip V, IV
Broedtah
Charle XII I
Charlem XIV John, I
Christina, II
Guatave V, II
Gnatavn I, II
Gnstavue II Adolph ns, II
Gnatavie III, II
Gnstavus IV Adolphns, II
Mergaret III
Onear I. IV
Oncar II, IV

## Turition

Abd-ul-Asis, I
Abd-ui-Hamid II, I
Abd-ui-Medjld, I
Mahmud II, III
Selim IV $V$
Selim III, $\nabla$
Solyman II, $\nabla$
Consorts
Aibert, I
Alexandra, 1
Roicyn, Anne,
Hothweli, Eari of, I
Carollnc Amelia Bilzabeth, I
('sthnrine of Aragon, I
Darnley, Lord, II
EugeatéMarie de Montijo. II
jugraie-Marie
Josephine, I
louisa, III
Malntenon, Marquis de, III
Margaret of Anjou, III
Mnrgaret of Navarre, III
Merla Looulsa, III
Marie Antoinette, III
Orta via, IV
Intterson, Eilzabeth, 1 F

## Mtacellaneow Rulere

Agsthocles. I
Alnric I, I
Alarle II, I
Baldwin. I
Bonaparte, Jerome, I
Ronaparte, Joseph, I
Bonaparte, Loula, I
Ronaparte, Lincien, I
rharles the Bold, I
Cropsns, 11
Monyslus, II
IIsrun-ni-Rashid, III
IIssdrnhai, III
Mithridates, III
Omar I. IV
Phlllp the Good, IV
Shere Ali, V
Theodoric $V$
Zenobia, $V$

## Saints

Anselm, I
Atbanasing, I
Angustine, I
Barhsira, I
hernard. I
Ronlface,
Cecllia, I
Chrysontom, II
Columba, II
ryrll, II
Domialc, II

Dunstan, II
Francta of Asalagi, II
Georse, II
Gregory Thaumaturgus, II
IEnitlua, III
Irenaeus, III
James, III
James, III
Jerome, III
John, 11 I
Luke, III
Mark, III
Matthew, III
Nicholas IV
I'atrick, IV
I'auI, IV
Mehastlan, $\nabla$
Thereta, $\mathbf{V}$
Thomas, $V$
Vrsuia,
Vaientine, $V$
WaIpurga, $v$

## Setirists <br> Emglish

SWift, Jonathan, V

> French

Rabelaí, Françola, IV

## Scholar: <br> American

Ahbot, Exra, I
Furnesm, Hornce II II
Rohinson, Bdward, IV
Thomas, Joseph, $V$
Whíney, Wiliam D., $\nabla$
Dutck
Erasmna, Dealderins, II Grotius, IIugo, II

Cerman
Hinmboldt, Baron von, III
Italian
Petrarch, IV

## Sculptors

American
Ball, Thomas, I
Brown, IIenry Kirke, I Cievenger, Shobal Vaili, II Crnwford, Thomas, II
French, Danipi Chester, II
Greenongh, Horntio. II'
IIosmer, Harriet. III
MeMonnles. Frederict, III
Partildge, William Ordway, IV
Powers, Hiram. IV
Rogers, Randolph, IV
Rogers, Randoiph, IV
Story, Willinm Wetmore, V
Tnit, Lorado. $V$
Ward, John Qnincy Adams, V Canadian
Ferbert, Lonia Phllippe, IT, 180 Proctor, Aiexander Phimister, VI, 170

## Danish

Therwaldsen, Bertel, $\nabla$ English
Ranlan, Thomas. I
Chantrey, SIr Francis, 1
Flaiman, John. II
Glbson, John, II
French
Rartholdi, Frederic Angugte. I
Bnrye, Antolnc Louis, I
David, Pierre Jean, II
rierome, Jean Leon, II
Gonjon, Jean, II

## Houdon, Jean Antoine, III <br> Rodin, Angunte, IV

lude, Erancols, iv

## Germen

Drake, Friedrich Johans, II
Kis. Augunt, Ill
Kratt, Adam, III
Rauch, Christian, IV
Hictschei, Brant, IV
Mchadow, Johann Gottiried, IV
Schiliing, Johann, IV
Schwanthaler, Ludwis, $V$
Stoes, VeIt,
Greel
Agasiag, I
Alcampnem.
Lysippue, III
Mryon, VI, 676
Paidias, IV
Iraxitelety VI. 676
Irioh
Foley, John Henry, II
Itallem
Bernini, Glovanni Lorenso, 1
Canove, Antonio, I
Ceilinj, Renvenuto, I
Donateilo, II
Ghiberti, Lorenzo, II
Micheinngelo Buozerroti, III
Lohbia, Lelia, IV

Stecl, Sir John, V

## Socialiate <br> French

Binnc, Jean Joseph, I
Fourier, Firancols Marie, II
I'roudhon, I'lerre Joseph, IV
Slint-Slmon, Count de, It
Cerman
Lassalie, Ferdinand, III
Marx, Karl, III

## Soldier <br> African

Jonbert, Pletrus Jacohuw, 1L

## American

Alexander, Wiliam, I
Allen, Ethan, I
Andierson, Robert, I
Armstrong. John, I
Arnold, Benedirt. I
Innbcock, Orvilie E., I
Indeau, Adam, I
Baker, Edward D., I
Ifanks, Nathanlej P. I
Barlow, F'rancis C.
Barlow, Firancis C., I
Mnrry, Willam F., I
Rates, John C.I I
Relknap. William Worth, I
Bragg, Braxton, I
Rragg, Edward B., I
Breckenrldge, John C., I
Brown, John, I
Iuskner, Simon B.,
Bucli, Don Carios, I
Burnsidc, Ambrome E E. I
Ifutler, Benjamin F.
Butier, Wilinm O. it
Butterfield, Danlei, I
Cnnhy, Edwnrd R. ©., 1
Chaffee, Adna R.,
Clayton. Powell. II
('llngman, Thomaa Lu, II
Cilnton, George. II
Cilnton, James. II
Cockreli, Francts M., II
Coombs, leenile, II
Corhin, Henry C., II
Conch, Darius N., I
Crisp, Charle $\mathrm{F}_{\mathrm{o}}$, II

## Biography

Crftemden，George R，II
Crittenden，Geor Tho II
Custer，aporye A．，II
Dearbors，Henry，II
Devent Charien，II
Dis，John A． 11
Dorse Greenvilue M．，II
Domiohan．Alexander W．，II
Donhleday，Ahser，II
garly，Jnbai An I
Cllaworth，Ephraim E．，II
Evell，Richard 8．，II
Falrehila，Lneing II
rorrent，Nathan B．Il
Prankiln，william B．， 11
Frelligghuysen，Fredericz，II
Funaton，Frederick，II
Gansovoort，Peter，II
Gates，Horatlo， 1
Geary，John W．II
Gibbon，John，II
Gordon，John B．，II
Grant，Frederick $D_{\text {It }}$ II
Grant，Ulisee 8．，If
Greely，Adolphus W．II
Greebe Nathanael，iI
Hale，Nathan，III
Halleck，Henry W．III
Hampton．Wade．III
Hancock，Winfield scott，III
Gardee Whillam J．， 111
Hasen，Whiliam B．III
Henry，Patrict， 111
Herkfimer，Nicholen， 111
Hint，Amhrome P．IIII
Hill，Daniel H．， 11
Hood，John B．III
Hooker，Joseph，III
Hounton，sam， 111
Howard，Ollver O．，III
Hyll，Willam，III
Gumphreye，Andrew A．，III
Honter，David， 111
1sard，deorge， 111
Jaction，Thomail J． 111
Jasper，WIIIIAm，III
Johneon，Wliliam，III
Johnaton，Albert g．，III
Johnuton，Joseph E．，III
Kalh，Baron de，III
Kearny，Phillp，III
enton，simon，
Kerahaw，Joneph B．，III
Kerea，Erasmua D．，III
Klipatricz，Hugh J．，III
Knox，Henry，III
Lafajette，Marquis de， 111
Lanrena，Henry，III
Laurena，John，III
cawton，Henry W．，III
Lee，Charle，II
Lee，Fitzhugh，III
Lee，Henry， 111
Lee，Robert E．III
Lucoln，Benjamin， 111
Logan，john A．，III
Longireet，Jamea，III
Ludow Wliliam， 111
Lyon，Nathanlel．III
MacArthur，Arthur， 111
Meclellan．Georse B．，III
Meclernand，John A．III
Mecook，Alexander M．， 111
McDowell，Irvin， $11 I$
Macomb，Alezander， 111
McPherion，James B．，III
Magruder，John B．，ili
Marion，Francle，Ill
Meade，George Gordon， 1 II
Mercer，Hugh，III
Merritt，Wesley，III
Miten，Nelson A．，III
Montromery，Richard，III
Mortãn，Danlel．IV
Mor ${ }^{2}$ n，John Hunt，IV
Mosby．John 8 ．，IV
Moultre，william，IV
Ord．Edward O．C．，IV
Ord，Edward O．C．
Otla，Elwell B．，IV

Palmer，John M．，IV
Pemberton，John C．，IV
Plekens，Fraveli W．，IV
Pickett，Georse E．IV
Pize，Zebulon M．，IV
Philow，Glldeon IITV
Polt，Leonldas，it
Pope，John，IV
Porter，rilts John，IV
Porter，Horace，iv
Prentis，Benjomin M．，IV
prentit whith IV．， preacotr，whiliam．IV price stering，IV
Rawling John A．，IV Revere，Paul IV Reyoolda，John E．IV
Rlckette，Jamen W．．IV
Ropecrans，Willam N．．IV
gaint Clair，Arthur，IV
Schent，Robert C．，IV
Schoteld，John M．，IV
8chuler．Phillp． $\mathbf{v}$
scott，Winfeld，
sedfrick，John，$\nabla$
Shapter，William R．，$V$
Shelhy，Inasc，$\nabla$
Sherldan，Philp H．$\nabla$
Sherman，Whilamit．，$V$
Siczien Danlel E．， $\mathbf{v}$ ．
Slgel，Franz，$V$
slocum，Henry W．r $Y$ 8mith，Andrew J．，V Smith，Edmund K．，$V$ Smith，Whilam $\mathrm{E} ., \mathrm{v}$ Start，John，$\frac{1}{v}$
Stuart，James E．B．，V
gollivan，John，$V$
Sumner，Edwln $\boldsymbol{V}_{\ddot{\prime}}$ Sumter Thoman，$\ddot{V}$ Thoman，Georse＇H．．$\nabla$ Thomae，Lorenio， $\mathbf{V}$ Travis，WIII am B．，$V$ Upton，Emory，V Van Dorn，Eary，$v$
Wadsworth，James \＆．，V
Wallace，Lewis，$V$
Ward，Artemns，$V$ Warner，Seth， $\mathbf{v}$
Warren，Gonvernpur K．， $\mathbf{V}$ Warren，Joseph，V Washhurn，Cadwallader C．，V Waype，Anthony，V Webh，Alexander $8 ., V$ Wheeler，Joseph， $\mathbf{v}$ ， Witrlnmon，James，$V$ Wison，James il．$V$ Whison，Jomes M．， WInder，Wliliam $\mathbf{H} ., V$ Wood，Leonard，$V$ Wool，John E．，$V$ Worth，William J．，V Wright，Horatio G．．V Yonge，Gamuel B．M．，V Zallnski，Edmund L．G．，$V$ Zoilicoffer，Fellx H．，V

Arabian

Abd－el－Eader， 1

## Canadtan

Aylmer，Lord，VI． 137
Deninon，George Taylor，VI， 148 McMulan，Danlel IIunter，VI， 171 Otter，Fillam Dlllon，VI， 176 Perry，Aylesworth Bowen，VI， 178

Carthagintan
Hamllear，Barca，III
Hannlbal， $11 I$
Chinese

## Cuban

Garcla y Inlguez，II
Gomez y Haez， 11
Paima，Tomai Estrada，IV
Dutch
Ruyter，Michael de，IV
Tromp，Martln H．， $\mathbf{V}$

Biography

## Egyption

Arahl Pasha
Ibrahim Patha，III

## Juglah

Abercromble，Jamea，I
Amherst，Baron Jeilrey，VI， 138
Andre，John，I
Arthur $81 r$ George，VI， 137
Baden－Powell，Robert B．，I
Bedford，Dute of，I
Braddoci，Edward，I
Brock，Sir Iraac，I
Buller，Blr Redvern， 1
Burgoyne，John， 1
Campbell，sir Colln． 1
Carleton，BIr Guy，I
Carteret，Bir George，I
Churchill，Wlisaton L． s．，II
CIInton，gir Henry，iI
Cilve，Robert，II
Cochrane，Thomas，II
Colborme，Blr John，VI， 146
Colehrooke，SIr WIIIIM，VI， 1 to
Corpwaille，Charles，II
Craig，8ir James IIPary，V1， 147
Drommond，8ir Gordon，VI I 40
Eaward，The Blact Prince，II
Falriar Thoman，II
Gage，Thomar，II
Gordon，Charles G．，II
Haldimand Bir Frederick．V1， 157
Harveg gir John，il ijs
Havelock，Bir Henry，III
Head，sir Francls Rond，VI， 150
Howe，EIr Whillam，III
Ireton，Henry，III
Johneon，Bir John，III
Kitchener，Horatlo H．，III
Mariborough．Duke of，III
Middieton，slir Frederlck．VI， 173
Mont，George，III
Monmouth，Duke of，III
Moore，Blr John，IV
Murray，James，VI， 17.
Oglethorpe James E．iv
I＇azenham，sir Edward，IV
pitcairn，John，IV
Prevont，gir George，VI， 1 in
Raglan，Fiteroy Jsmen，IV
Rupert，Prince，IV
Salnt Leger，Barry，IV
Slmcoe，John Graves，VI， 184
8mith，Whiliam 8．，V
8tirilig，8ir Thomas，$V$
Burrey，Earl of．V
Tarieton，BIr Banastre，$V$ Tyier，Wat $\mathbf{V}$
Wellealey，Marquis．$V$
Welilington，Duke of，v
Wolfe，James．$V$
Bee，also VI． 131
Wolseley，Bir Garnet，$v$

```
                                    Flemith
```

Arterelde，Jacoh van and Thllip van，I
Egmont，Count，II
Hoorne，Count of，III

## French

Bazanle，Francols Achille，I
Rerthler，Alexander，I
Boulanger，Georges Erncst，I
Bourbon，Charlen． 1
Collgny，Gaspard de，II
Conde，Prince of．II
Denonville，Marquis de．VI． 148
Du Guesclin．Bertrand．II
Dumourles，Charles Francols，II
Eugene．Francols．II
frontenac．Comte de， 1
Arouchy Marguls de，il
Joan of Arc．Ill
Jourdan，Count，III
Junot，Andoche．III
Lafajette，Marquis de，III

## Biography

Ithour D'Anvergne, Theophile de, III
Mel'ahon, Manglee de III
Yalonnenve, 81 r Pan, V1, 172 Montcalm désalat-Veran, Marquits d. III

Murt. Jouchim, IV
Per, Priace. IV
Orfeany Dele of, IV
Prith, Count of, iv
Pochambean, Connt de, IV
aint-CyT, Marquis de.IV
Bare, Connt Manrlice, iV
doult, Nicholas Jean,
Turenne Visconat de, $V$
Vandrenil-Cavarnal, Marquis, VI, 189
Fllars, Duke de, $\boldsymbol{V}$
Germen
Arminins, 1
Blicher, (ehherd von, I
Bulow, baron ron, I
Onelecanu, Connt Fon, II
Maarice, Duke, III
Moltike, Count von, III
Roon, Connt von, IV
iteuben, Baron ron, $V$
TIlly, Connt of, $V$
Wildersee, Count, 7
Wallensteln, Duks of, 7
Greck
Aliliades, I
Alexander the Great, I
Ariatiden,
Aossarts. I
Cimen, II
Epaminondas, 11
Lrander, III
Silitlader, III
Sleism, IV
Pelopidas, IV
Phorlan, iv
Pyrrhos, IV
Xeaophon, V

## Ttallam

Clatdinl. Enrico, II
Garbildi, Gluseppe, II

## Japanese

Vogh, Baron, III
Oyama, Margalf, III
Togo, Admirai, $V$
Mexican
Artsts, Marisao. 1
Dles, Porfirio. II
Saata Anne, Antonlo de, IV
Philippiae
Agulanaldo, Emilio, I
Pollah
PuleskI, Casimir, IV
Romar
Axrippa. I
Bellearlus, I
Brutus, Leclmns Junins, I
Brofus, Luctus Junlus, I
Csesar, Cslus Juilue, I
Cussius Longinus, I
Ceto. 1
Clas. 11
Germinicus Ceesar, 11
Lucuilut, III
Marcellus, III
Maring, III
Pompey. IV
Refulus iv
Rlenzl. IV
seiplo, Publus Cornellus, $V$ seplo, Publlus Cornellus
Aemllianus, $V$
Ruesins
Rarelsy de Tollp, Prince, I tortchakof, Prince. II Inmetiefl, Nikolsi, III

Kuropattin, AlezeI, III
Buseppe, Ivan, III

## Acotoh

Jamenon, Leander Starr, III
Montrose, Jame: Graham, III
Bowth Americss
Bollvar, Simon, I
Inas, Jose Antonio, IV
San Martin, Jome de, IV

## Epantoh

Campos, Armene Martinea, I
Cervers 5 Topete, Don I'ascal do, I Gonsalvo de Cordora, II
Weyler, Nicolau, V

## Mincellaneows

Attifa, I
Scanderbeg, Prince, IV

## Statoomon and Politicians

 AfricanJonbert, Pletrns Jacobun, III Kruger, Stephanus Johannen, III IThodes, Ceell J., IV

## 4 mericon

Adama, Charles F., I
Adama, Charles Fo, Jr., I
Adams, Samuel, I
Aldrleb Velgon W., I
Alzer, Russell A., i'
Allison, WIIIam B., I
Altgeld, John K., I
Amen, Fisher, I
Andrew, John A., I
Bacon, Angustur O., I
Balley, Joseph W., I
Bates, Edward, I
Bajard, Jamea A., I
Bayard, Thomaa F., I
Belf, John, I
Benjamln, Judah P., I
Benton, Thomas H., I
Beverldge, Albert J., I
BIdwell, John, I
Blagham, John A., I
Birnex. James G., I
Bisself, Wilmon S., I
Biack, Jeremlah S., I
Blackburn, Joseph C. B., I
Blaline James G., I
Blalr, Francls I'., I
RIalr, Francis P', Jr., I
Blair, Francls P., J
Rlalr, IIenry W., I
Bialr, Montgomery. I
Bland, Rlchard I. I
Bliss, Cornellus N., I
Boles, IIorace, I
Ronaparte, Cbarles J., I
Boutelle, Charles A., I
Boutweli, Qeorge S., I
Bowdoln, James, I
Bragk, Edward S., I
Ireckenridge, John C., I
Breckinridge, Wlillam C., I
Brice, Calvin 8., I
Bristow, Benjamin H., I
Brooks, I'reat on 8.. I
Brown, Benjamin G., I
Brown, Joneph E., I
Bryan, Wlllam Jennines,
Buckingham, William A., I
Burlingame, Anson, I
Burr, Aaron I
Burrow.s. Julfus C., I
Butler, Benjamin F.. I
Butler, Willam O., I
Butterworth, Benjamin, I
Cabot, George, 1
Callioun. John C.. I
Cameron, James Donald, I
Cameron, Slmon, I
Cannon, Joseph G.. I
Carlisle John G.. I
Carmack. Enward W. I
Carpenter, Matthew iil., I

Carroll, Charies, 1
Case, Lewle I
Chandler, WIII哏 E.,
Chandler, Zachariah, I
Chase, 8almon P., I
Choate, Joseph H., II
Clalborne, willamin C. C . II
Clapp, Moses E., II
Clark, Champ, II
Claris, William A., II
Clay, Alezander B., II
Clay, Casmius M., II
Clay, Henry, II
Clayton, Powell. II
Clingman, Thomay $L_{a,}$ II
Clinton, DeWItt, II
Cohb, Howell, If
Cochran, WIfilian Bonrke, II
('ockrell, Francis M., II
Colfax, 8chuyler, II
Conger, EdFin II., II
Coniling, Roncoe, II
Cortelyou, Beorge Brnce, II
Corwln, Thomas II
Cox, Eamuel 8., II
Crane, WInthrop M. II
Crawford, WIIIDm H. II
Crisp, Cbarles $\mathrm{F} .$, II
Crittenden, John' J., Il
Culberson, Charles A. II
Cullom, Shoiby M. II
Cumming, Alber! i. I
Curry Jsber L. M., II
CurtIn, Andrew G., II
Cushing, Caleb, II
cushing, Thom, II
Dallas, Alexander J. II
Dallas, George M., II
Daizell, John, II
Inaniel, John W., II
Dave Cushmank. II
Davis Henry W., II
Davis, Jeffernon, II
Day, WIIlam R.. II
Ibyton, William L.., II
Ireane, Sllas. II
Dennison William, II
Itepew, Chauncey iI., II
DlekInson, Donald M., II
IlckInson, John, II
Hngley, Neison, II
IIx, John A., II'
Dolliver, Jonathan A.. II
Ionnelly, Ignatlus, II
IVorr, Thomas, II
Douplas, Stephen A., II
Inubols, Fred T., If
Edmunds, George F., II
EikIns, Stephen B. il
EIlsworth, Oliver, II
Endicott, WIIIam C., II
Figlish, WIllam H., II
Eustis, Jamea R., II
Eustls, WIllam, II
Evarts, WIIIam M., II
Everett, Edward, iI
Fwing, Thomas, II
Falrbanks. Charles W., II
Farwell. Charles J., II'
Fessenden, Willam P., II
FIsh, IIamilton, II
Flower, Ilosweli I'., II
Floyd, John B. II
Folk, Joseph W., II
Foraker, Joseph B., I
Foster, John W., II
Frankiln, Beajamin. II
Freinghuysen, Frederlck, II
Frelinghuysen, Frederick T., II
Frye, WIllam P., II
Gallatln, Albert, II
Gallinger, Jacob H., II
Geriand.Augustusil., II
Geary, John W., II
Gerry, Elbrldze, II
Giddlagn, Joshua R., II
Glles, Willam R. II
Gorman, Arthur P., II

Graham, WIILam A., II
Grant, Uipsees B. II
Greeley, Horace, II
Gremham, Waiter 0. II
Growrenor, Charien $\mathrm{H} ., \mathrm{II}$
Grow, Galusháa, II
Hate, Eugene, III
Hate, John I., III
Hamiton, Alezander, III
Haminn, Hannibal, III
Hancock, John, III
Hanna, Marcui A., III
Hansboroush, Henry Clay, III
Harmon, Judeon, III
Harricon, Benjamin, II
Earrieon, Carter H. III
Eawley Joseph R., III
Hay, John. In
Hayne, Robert Y.. III
Hementay, James A., III
Henderton, IIavid B., III
Hendricks, Thoman A. III
Hepburn, William Pit ill
Herbert, Hilary A., III
Hewlt, Abram E.,III
Ferburn, Weidon' B., III
Hicks, Thomas H., III
HIII, Benfamín H., III
Hili, David B. III
Hitchcock, Ethan A., III
Hoar, Georse F., III'
Holman, Whiliam S., III $^{\text {I }}$
Hopking, Albert Jo., III
Hopking, Stephen, III
Howe, Timothy 0. . 11 II
Hughes, Charies E.. III
Hunter, Robert M. T., III
lngalla, John J., III
Ingersoil, Jared, III
Ingersoli, Robert G., III
Jay, John, III
Johnson, Herachei V., III
Johnson, John A. III
Johnson, Reverdy, III
Johnson, Richard M. III
Johnson, Thomas, III
Julisn, George w., III
Kendall, Amon 11
King. Rufns, IiI
Klng, William R., III
Kirkwood, Samuel J. III
Kittredge, Alfred B., III
Knoz, Philander C., III
La Foliette, Robert M. III
1.amar. Lucerus Q. C. ili
lamont. Danlel $\mathbf{~ B}$., III
Lee, Arthur, 111
Lee, Francla 1.1ghtfoot, III
.ee, kichard II., I1I
Lincoln, Robert T., 111
Livingston, Edward, $11 I$
Livingstou, Robert R., III
Lodge, Henry Cabot, IIII
Loyan, John A.. III
Loxan, John A. I1
.ong. John Di, 111
10wndea, WII lam, III
McEnery; Samuel D., 111
McLaurin, Anaelm j., III
Mc,Milin, Benton, 11
Mac Veagh, Wayne, III
Mallory, Stephen R., 111
Marcy, Willam L., III
Mason, George $1 i i$
Mason, James M., 111
Mason, Jeremiah. 111
Mason, John Y., III
Memmiuger, Chrlatopher G., III
Metcalf. Victor H., III
Meyer, George, III
Mimin, Thomas, III
Milia, Roger Q., 111
Money, Rernando de Soto, 111
Moody, WIIlam H. III
Norgan, John T. iv
Marrill, Juatin S.. iv
Morrls, Gonverneur, IV
Morris, Robert. IV
Morrison. Whilinm R., IV
Morton, Jullis S. IV
Morton, LeviP.iv
Morton, Oliver P., IV

Morton, Paul IV
Mnhlenberr Frederick A., IV
Nevlanda, Franclo G. IV
Oxlesby Richard J., iv
Olney, alchard, IV
Otic, Garricon G., IV
Otin, Jamea, IV
Palmer, Joha M., IV
Parker, Alton B., IV
Paterson, Wiliam, IV
Pattifon, Robert E. IV
Pendieton, George II. IV
Pettus, Edmund W. IV
Philisbury, Johm E., iv Pinctuey, Chartee, Iv Pinctney, Charlen C. IV
Pinckney, Thoman, iv
ringree, Hazen 8. IV
Platt, Orvilie II., iv
ilatt, Thomas $C$ iv
Powderly, Terence, IV
Prentiss, kargent E.i. IV
Quay, Matthem S. IV
Guay, Matthem, if
Handall, Samuel J..
Randolph, Edmund J., IV
Randolph, John, IV
Randolph, Perton, IV
Raymond, Henry J. IV
Reagan. John H., IV
Reed, Thomas B. IV
Reld, Whitelaw, iv
Root, Elihu, IV
Ruak, Jeremlah M., IV
Russeli, WIIIam E., Iv
Butiedge, Edward, iv
Rutiledge, Edmara,
Rutledge, John, IV
Butliedge, John, IV
Saint John, John P. IV
Schenk, Robert C., IV
Schurn, Cari, V
Schuyler, Philip. $\nabla$
Sevier, John, $V$
Seward, Wililam $\mathbf{R} ., \mathrm{V}$
Seymour, Horatio. $V$
Sherman, Jamea E., $v$ Sherman, John. V Sherman, Roger, $V$ Simpson, Jerry, Smith, Charies Smith, Charies E. $V$ Splinner, Francla $\mathrm{E} . \mathrm{V} \mathrm{V}$ Spooncr, John C., V Springer, William M., V Stephens, Alezander $\mathbf{H} ., \nabla$ Steveua, Thaddeus. $\mathbf{V}$ Stevenson. Adlal E.. V Stewart, William M, V Strans, Oscar S., V sumner. Charleă, $\mathbf{V}$ Teller. Henary M. V Thurman, Alien $\mathbf{G} ., \mathrm{V}$ Thurman, Alien G.i. $V$ Tiliman. Brnjamin R., $V$ Tompkins. Daniel D., $\bar{v}$ TOombs, Robert, $\mathbf{V}$
Tower, Charlemagne, $\nabla$ Trumbull, Jonathan, $\nabla$
Trumbuil, Lyman. $\mathbf{V}$ Upshur. Abel P., $\dot{\mathbf{v}}$
Vallandíham. Clement B., $V$ Vance, Zebulcin B., V Van Rensselaer, Stephen, $V$ Veat, George G., v Vilas, William F., V Vorhees, Danlel W., Wade, Benjamin F.iv Walker, Robert J., V
Washbnrn, Cadwallader, V Washbnrne, Ellhu B. $\mathbf{V}$ Watson, Thomas E.V $V$
Wea ver, James B.,
Wehster Denlel, $v$
Welles, Gideon, v
Wheatou, Henry, $\nabla$
Wheeler. William A., V
White, Audrew D... $\mathbf{v}$
White, itugh L., $\mathbf{V}$
Williams, John E ., V

Wheon, Heary, $\mathbf{v}$
Wison, Jamen, V
Witon, William I.., V
Windom, William, $\mathbf{v}$
Winthrop Robert $\mathbf{C} ., \mathbf{v}$
Wirt, Wiliam. $v$
Yancey Wm. L., V
Yatea, klchard, $\mathbf{V}$

## Australian

Barios, Edmund, I
Dleknon, Sir Jamen, II

## Austrian

## Andrasay, Count Jullum, I

peust, Count von,
Deak, Francls, II
Kaunits, l'rince, 11
Konauth Loule III
Metternich, Prince, II

## Canadian

Abbott, Sir Jobn J. C.., Vi, 133
Alkins, Jamea Cox, ri, 135
Aliard, Jules, V1, 138
Angern, Augunte lieal, V1, 136
Archibaid, Sir Adams George, Vi 136
Armstrong, IIngh, V1, 137
Aylesworth, Sir Allen Bristol, II 137
Baldwin, Robert, V1, 137
Barnard, George Ifenry, vı, 138
Beek, Adam, V1. 138
Blake, Edward, S1, 139
${ }^{\text {Borden }}$ i 40 Sir Frederick Willam,
-1, 140
norden, Hobert Lalrd, V1, 140
Howeli, SIr Mackenzle, Vi, 1 to
Howser, Willam J., Vi, 140
Brown, George, VI, 141
Brown, George Willam. V1, 141
Bulyea, George Ileadley Vlekars, V1, 142
Rurreil, Martin, VI, 142
Calder, Jamrs Alexander, Vi, 113 Campbelf, SIr Alexaoder, V1, 113 Campbeli, Colln 11.. V1, 143
Caring, 81 J John. V1. 144
Caron, Joseph Edward. V1, 144
Caron, Ilene Edouard, VI. 14t
Cartler, SIr Georges Etlenne, II, 144
Carter-Cotton, liranels $1 ., \mathrm{VI}$. 145
Cartwright, Sir Ricbard John, VI, 145
Chapleau, Sir Joseph Adolphe, vi, 14
Cochraue, Francls, Yi, 145
Coldwell, Grorge llobson, V1, 146 Costigan, John, Vi, $1+6$
Cross, Charleg Wilson. VI. 147 Cushing, William Ileary, V1, $1+i$ Decarle, Jeremle 1.., V1, 148 Devilin. Charles Ramsery. VI. 14 Doherty, Charles Josepili. Wi. it Dorlon, Sir Antolne Almé. VI, 148 Douglas, SIr Jamea, VI, $1+9$
Duft, James Stoddart, 1. 149

Edgar, Sir James invifi, v7, 1:0 Elitson, Price. V1, 1.1
Emmeraon, 11cnry Rolwrt, vi, 151 Flelding, William Stevens, vi. 151
Flaher, Charles Wrillngton, I 152
Flsher, Sydney Arthur. V1, $1: 12$ Fiemmiug. James Kldd. V1, 152 Forget, Amadee Emmanuel, VI. 153
Fonter. George Eula 3. VI, 133
Foy. James Joseph. V1. 153
Fraser, Duncan Camerin. Yi. 1in
Galt, SIr Alexander Tlloch, V1. 154
Gervala, Honore H. A., V1, ${ }^{15 \mathrm{IN}}$
Graham, George 1Perry, Vi. 156
Greeuway, Thomas, Vi. $1: 56$
Haggart, John Graham, VI, $15 i$

## Biography

Hanne, Wiflam John V1, 158 Harconit. Hehard, VI, 10 . Hartio Arthur 8 tinyd, VI, 158 Hanifith, Frederick Wuilim, VI, 159
Hasem, John Douglan $\mathrm{VI}_{1} 150$
Hincke, $81 \mathrm{I}_{\mathrm{F}}$ Francle, $\mathrm{VI}, 160$
Howe, Joveph, VI, 101
Hushes, Bamnel, Vi, 161
Joly de Lothiniere, Blr Lenrl Onitare. VI, 162
Jonen, Allred Gilpin, VI, 162
Kemp, Albert Edward, $V I_{1} 102$
Kerr, Jamez Kirispatrick, Vi, 103
King, William Lyon Mackenalc, Itontalne.
Latontalne, SIr Lonis Elypolite, VI, 163
Landry, Charles P. A. R., VI, 164
Landry, David V., VI, 164
Langelier, Sir Francola Savier, VI, 164
Langevin, sir llector Lonis, VI, 1
Laurler, BIr WIIfrld, VI, 165
Lougheed, Jamey Alexander, VI,
160
Mciride, GIr Rlchard. VI 166
Macdonald, IIngh John, 1.1, 167
Yacdonaid, sir John Alexander, VI, 167
Jaceionald, John Sandifeld, V1, 168
MeDougill, Wlillam, VI, 168
Meciee, Thomas DArcy VI 168
Yackenile, jeter \&amuel George, V1, 169
usckenale, William Lyon, VI, 170 Klnnon, Donald Alexánder,
Mifood, Heury Fulton, Vi, 171.
Me Nab, Sir Alan Napler, Vi, ifi MeNab, Archibald Peter, Vi, 171 Mcilhilips, Albert Edward, Vi, 171
Marcll, Charles, VI, 172
Marshali, Duncan MrLean, V1, 172
Matheson, Arthur James, V1, 172
Mercler Honore, VI, 172
Monk, Frederick D., VI, 173
Morti, Auguste Norbert VI, 174
Morrismey John, VI. 174
Nowat, Mir Ollver, Vi, 174
Mulock, sir whillam, Vi, 17
Murphy, Charles ${ }^{\text {Vi, }} 17$,
Murray, George lienry, VI, 175
Nantel, Whirid Bruno. Vi,' 175
Ollver, Frank, VI, $17{ }^{\circ}$
I'aterson, William, VI, 177
Patterson, James Colehrook, vi, 178
Pelletier Bir Charles Alphonse, V1. 178
Pelletler, Louls Phililppe, Vi, 178
Perley. George IIalsey. VI, 178
Pugser, Whilam, VI, 179
Pyne, Hobert Alian, VI, 179
Reaume, Jomeph O., VI, 179
Reld. John Dowsley, Vi, 178
Roblinson, sir John Beverley, Vi, 180
Robilin. SIr Rodmond Palen, VI, 180
Roche. Whillam James. VI, 180
Roprrs, Hobert, VI, 180
Ross, SIr George filliam, Vi,
181
Rosk, Jamen Hamiliton, VI, 181
Rutherford, Alezander Cameron,
VI, 181
8 cott, Sh Rlehard Fillian, FI, 182
Srott, Walter, VI, 182

Bifton, Clifiord, ví, 184
Simpson, SIr George, VI, 184
18,

Sntheriand, Willam Chariey, VI, |Landowne, Marqnis, VI, 165 Tache, sir Etienge Paschal, VI, 187 Joneph Inrael, VI, 187 Taschereau, Lonls Aleze.bder, VI 187
Thyior, Thomas, VI, 187
Templeman, WIIlam, VI, 188
Thompmon, SIr John's. D., VI, 188
Tliley, sir samuel Leonard, VI, 188
Tupper, Bir Charica' Hihbert, VI 189
Turgeon, Adelard, Vi, 188
Turgion, Wililam Fcrdinand, VI, T
Tweedie Lemuel John, V1, 180
White, William Thomas, VI 100 Whitpey, sir James Pliny, Vi, 100
Willmot, Lemnel Alian, VI, 100 Wlison, Arthur, VI, 100
Wood, Joulah. VI, 101
Young, llenry Esson, Vi, 101

## Chinese

1,1 IIng Chang, 111
Wu Ting-Fang, $v$

## Dutch

Barneveddt, Jan van Olden, I De Witt, Jan, II

Englioh
Aberdeen Earl of, I, and VI, 135
Argyil, Dukes of, I
see, also, VI,' 136
Asquith, Henty H., I
Bagot, sir Charlem VI, 137
Balour, Arthur J,
Bollagtroke, Vlscou
Bradiaugh, Charles, I, I
Bradiaugh, Charles, I
Bright, John, 1
Brougham, Baron, I
Buckingha m, Duke of, 1
Burke, Edmund, 1
Campbell-Bannerman, sir Heary, 1
Canning, George, I
Cagtiereagh, Marquis of, $I$
Cecll, Whiliam, I
Chamberiain, Joseph, 1
Chesterfleld, Earl of, I
Churchill, Lord. 11
Clarendon, Eari of, II
Clive, Robert, il
Cobden, Hechard, 11
Connaught, II. 1R. II. The Duke
of. V1, 146
Cromwell, oliver, II
Cromwell, Thomas, 11
Curzon, Lord, II
Daihousie, James A., II
Devonshlre, Duke or, 11
Mike, sir charies, il
Disraell, Benjamin, II
Duficrin and Ava, Marquis of, II, and VI, 150
Darham, Earl of VI, 150
Elgin, Eari of, VI, 101
Enlot, sir John, II
Fawcett. Ilenry, II
Fox, Charlen J., II
Frere, Henry, il
Giadstone, William E, II
Goschen, George J., it
Granvilic, Earl, II
Grey, Bir Albert, II
Greve Eari, II
Halifax, Earl of. 111
Llampden, John. III
Harcourt, Sir Willam. III
IIariey, Rohert. 111
Hastingn, Warren, III
Head. SIr Edmnind Walker, Vi,
Head
Head, Sir Francle Rond. VI, 159 Hicke-Beach, RIr Mlehael, III

Lawrence, Lord Joht, III
Lelcenter, Eari of, 11
Lesgar, Lord. VI, 166
Lnbock, Bir John, III
Macanicy, Thomas Rahingtod, III
McCarthy, Juntid, III
Mariborongh, Duke of, 11
Meibourne viscount, 111
innto Ehri,
Monet, EMrI, VI, 173
Monck, Migeount, VI, 173
Montfort, Bimonde, III
More, Thoman, IV
Moriey, John, IV
Out ram, 81 r Jamea, IV
Palmeraton, Viscount, iV
Panncefote, Lord, IV
I'eel, 8 Ir Robert, iv
I'tt, William (Marl of
Chatham), IV
Plt, Wiliiam, IV
1pym, John, IV
pym, John, 1
Rawinson, SIr Henry, IV
Rosebery, Eari or, IV
Russel, Earl, IV
Kackilie, Thomas, IV
Sallshury, Marquiz of, IV
Shafteshury, Earl of, $\mathbf{V}$
gtanley, Earl, VI, 185
Straftord, Earl of. $V$
8tratford de fledelite, iscount, $v$
8ydenham and Toronto, Baron,
I, 186
Townshend, Viscount, $V$
Townshend, Chariea, V
Yane, SIr fienry, V
Waipole sir Robert, $v$
Walsingham, Bir Francis, $V$
Warwlek Eari of, v
Weilesley, Marquin, $V$
Weilingtor, Dure of, $v$
Wiken, John, $V$
Wolsey, CardinaI, v
Flemish
Egmont, Count, II
Iloorne, Count of, III

## French

Cambon, Jules Martin, I
Carnot, Lazare Nicolas, I
Carnot, Marie Erancols, 1
Casimir-perler, Jean l'aul, 1
C'holseul-A mbolse, Due de, 11
Clemenceau, Georges Renjaniln, II
I orlcari, Jean Bantiste, II
ipelcame, Theophile, II
Dumouricz. Charles Francols, $1 I$
IJupleix, Miarquis, 11
Faure, Jules fran Armand, II
Faure. Jules Frrancola, II
Ferry, Jules Francola, II
Fouche, Joseph, If
Freycinet, Charles Lonis, 11
Sambetta, Leon, 11
Genet, Edmon Charles, II
aregolre, Count, 11
Grevs, Jules, II
traussmann, Baron, III
IIerbert. Jacques Rene, III
Lafagette, Marquis de, 111
tomartine, Alphonse de, IAI
Loubet. Emile, III
Mazarin, Jules, 111
MIrabeau, Count dc. 111
Ribot, Alexander Felix, iv
Richelien, Cardinal IV
8leyes, Emmanuel, $\mathbf{V}$
Sully, Duke de, $\mathbf{V}$
Talleyrand-Pertmord, Dife fe $y$
Thlers, Lonis Adolphe, $V$
Turgot. ann Rohert. $V$
Waldeck-Ronsseau, Plerre, V

## Germax

Blsmarck. Sch 8 nhausen, Prlnce, I
Caprivi. Count von, I
IIarder berg, Karl August, III

Ifobealoherarthiagaturnt,
rime 0.11
Niebultr, Berthold Goors, IV
anchtor, Eugu, tv
Bteln taron von,
Bteln baron rom,
Grow
Artatiden
Dreco, 11
apaminondas, II
weurges 11
porlopidas, it
Porlcles, IV
elon. $V$
Themistocies, $\bar{Y}$
Ifamellem
Dole, Eanford Ballard, It
Irioh
Daritt, Michaet, It
Dillon, John, 11
Grattan, Hemry, II

## ftellan

Cavour Connt Camillo, I
Criph Erancoseo, 11
Farinl, Lnia Casio, II
rachiavell, Niceolo, III
Kerry dei Val, Ratael, III
Jupances
Ito, Marquil Hirohnml, II
No it, E-tex, IV
Yealoan
Dias, Portato, Il
Roman
Agricole, I
Brntue, Xarens Jnnine, I
Camillus, I
Cato 1
Cinclupatne, 11

## Rucolan

Gortchakroff, Prince, II
Ismatieff, Nikolal, III
Plehre, wjathecheslavo von, IV
Witte, Sersel, $\mathbf{V}$
Scotek
Mattiand, WHHam, III

## south 1 menticen

Baimaceda, Jome Manuel, I

## Spanton

Alra, Dnke of, 1
Campos, Arsene Martines, I
Caboraa del Castillo, I
Castelar, Emilito, I
Granvelia, Lord of, II
Narvaez, Ramon Xaria, IV
Prim, Juan, IV
Sayasta, Praxedes Mateo, IV
Torquemada. Thomas de, IV

## Eucedish

Oxenntlerna, Count Axel, IV

## Twrkish

Asll Patha, 1

## Miscellansous

Aspesia, I
Barnnm, Phineas Taylos, I
Blennerhassett, Harman. I
Blondin, Charles Emile, I
Booth, J. Wilken, I
Bridsman, Lanri Dewey, 1
Brummeli, Georse Bryan, I
Cude, John, I
Cencl, Beatrice, 1
Cody, Wilitam F., 11
Coroloman 11
Cornella. 11
Cughman, Paniline, II
Damocies, II
pares and Puthites, II
parite crace, 11
Dormak, Man Eydic, Il
on Earit, Counto
Latom, Larcarot O'Volu, II
Ecifora, Hemry 11
Fre Diavola 11
Gradrey
Grey, Lady Jane, II
Hasenbees, Sarl, III
Hood, Rohin, 111
Hutehinpon, Apme, 1 II
Jahn, Friedrich Ludwis, III
Jamen, Jenie, III
John of Gannt, III
Kropatikn, P. A., III
Lundy, Benjamin, III
Yacdonald, Flore, III
Mocet, Johann III
Pokt, Johann III $1 V$
Queeprberr, Mergnis of, IV foh Roy, If
Roemmond IV
Serretus, Michaet, $\boldsymbol{V}$
stradivirive, V
Tancred $\vee$
Turner, Nat, $\mathbf{V}$
Tweed, Willam M., V
Weratiogton, Martio, $V$ Wedrewoon, Martha, $V$
Wedzewippe, $V$

## 8ROLOGY

Acellmatisation, I
Biology, I
Botany, 1
Cell, 1
Evolution, II
Genins II,
Iferedity, 111
Longerty, III
Mimicey, ill
Onmonla, IV
${ }^{\text {Protoplanm, IV }}$ Putrefaction, IV
Bpontaneous Generation, $\bar{\nabla}$
Variety, $V$
zoolony, V
see, alno, maln headin Borany and zoowar.

## BIRDS

Birds, I, and VI, 385
Laessour on, VI, $500-505$
General 8uggestlong, VI, 500
Cbart. VI, 501
Directions for Ohservation,
VI, 592
Partit of a RIrd. VI, 592
Protection, VI, $\mathbf{5 0 3}$
Ontline, V1, 594
Queationn, V1, $\mathbf{5 P 5}$

## Beoceaters

Ree-ater, I
Motmots, IV

## Birds of Proy

Bnzzard I
Condor, II
Eagle, II
Falcon, II
Combank, II
Harpy, III
Hawt III
Hen Hawk, III
Kentrel. II
Klte, III
Lammergeier, III
Marah Hawk, III
Owl, IV
Becretary Bird, $V$
Sparrow Eiawk, $V$
Turfey Buszard, $V$
Turiture, $V$

Aneldhirls
altimere Oriole, I
Biackbipa 1
Bobolint,
Cowbira, II
Gractio. II
Gractic, II
Mendow Larts 111
OrIote, IT
Cuckoon
Ala finthers, III
Cncie0, 11
Creppers
Creepers II

## Crew

Bower-bird, 1
Crow, II
Crow Biackhird, II
Curamew, II
Jackdaw, III
Jay, 111
Mapple, 111
Nnteracker, IV
Raven IV
Starilng
Umhrelis Bird, $V$

## Fiaches

American Goldinch, 1
Bulianch, 1
Bunting, I
Canary,
Cardinal Bied, I
Chaminch, 1
Croeshillit
Dlekelasel, I
Finch, II
Fox Sparrow, II
Goldanch, II
Grosbenk, II
Indigo Bird, III
Junco, III
Lark, III
Ortolan, IV
Snowblrd $y$
Sparrow, $V$
Weaver Bird, V

## Fine-fenthered

Rirds of Paradise, I
Cock of the IRock, II
L.yre Bird, III

Peacock, IV
quetzal, IV
Sunbird, V
Trogon, V

## Fishers

Booby, I
Cormorant, II
Darter, II
Fish Hawn, II
Frigate Bird, II
Hornhili, III
Pclican, iv
Sea Eagle, $V$
Fy-catchers
Mycatchers, II
Hoopoe, III
Klyeblrd, III
Phoebe, IV
Tody, $\bar{\gamma}$
Wranta, $\overline{\text { Pewee, }} \boldsymbol{V}$

## Fonsil

Archaeopteryz, I
Dinornis, II
Hesperornis, III

## Cockstos, <br> Mach, in <br> Farmatiot, IV <br> ramet, IV

## Freone

Curtier P1geon, I
Dows II
Dado. II
pacencer IMseon, IV
Pigeon, IV
thitle Dove, $V$

Apteryz, 1
Cumowary, I
Tage II
Ontrich, IV
Phes IV
Zoed Eunner, IV

## Serftehert

Buntard I
Capercailsle, 1
Fracolin, II
Grovere I
Guan, II
Gulaen Fowl II
Jangle Fowl, II
Mound BIrd. IV
Partidge, IV
Phetant, IV
Pralite Chicken, IV
Itarmifan, IV
Quail, iv
safe Gronse. IV
Tracopan,
Turkey, $V$
Suw Binds
Albatrons. I
Pulmar, 11
Gapuet, II
Gulls, 11
KIttlwake, III
I'rtrel, IV
Sclesoriphill, $V$
Rkue, V
Tera, V
Trople Bird, V

## Swallows and Allies

Martin, III
Smallow, V

## Thrushos

Rlueblita, I
Rulbul, 1
Cat Bird, I
Mpper, II
Knigbt, 111
yorking BIrd, III
NIstivgale, IV
Ousel, is
Oreo Bird, IV
Robla. IV
Tbrusb, V
Titmice
Pothatch, IV
Itmonee, $\boldsymbol{v}$
Wadert
Adjntant, I
Arocet. I
Bittern, I
Roatblil, I
Com Crake, II
Crape, II
Curlew. II
Egret, II
Mamingo.
Geron, fiI

Ibls, 111
dablru, II
Jacana, III
KIIdeer, III
Lapwlen, II
Marmbou, ill
Opter Catcher, IV
Plover IV
Rall, iv
RuE IV
Manderilng, IV
Sandplper, IV
SnIpe,
Spoonhill, $V$
stilt, V
Stork, $V$
Turnatone, $V$
Icllowlegs, $V$
Warblars
Hiackrap, I
Chat, I
Redotart, IV
Stone Chat, $V$
Tallor Rird, V
Wagtall, V
Warblers, $\mathbf{v}$

## Waterfowl

Barnacle Goose, I
Brent Goose, I
Canada Goose, I
Canvasbuck, I
Coot, II
Dlver, II
Dnck, II
Eider Duck, II
Gadwall, II
Galifnnle, II
Goome, 11
Mergen iser, II
Merganser, III
Shoveler,
Swan.
WWian, V

## Wenlefooted

Goatsucker, II
IIumming IHIrd, 111
Night IInwk. IV
swlft.
Whip-poor-wiII, V
Weak-winged Divers
Ant, 1
I) beblek. II

Grebe, II
Guillemot, II
Penguln. IV
Pumin, IV

## Woodpeckers

Fllcker, 11
Woodpecker, V
Wrynect,
Iellowhammer, $v$
Miscellaneovs
Baya, I
Belibird, 1
Brown Thraaher, I
NIght Heron, IV
Pipit, IV
Shrike, V
Toucan $V$
Vireo. $\mathbf{V}$
Wexwlng, $V$
Woodcock, $V$

## Related Topica

## Aviary: 1

BOLIVIA
Bollva, I
With suhhends

FACE AND DRAMAOR, MYEEAL RE noumcen, Chimaty, Aaarcultunz
 Ann Lanaoane, EDUCATION, COV ERMMET, EIHTORT.

## Citios and Towns

Coch ${ }^{\text {Samban, } 11}$
1a Pas. 111
Grure, IV
Iotom, IV
ganta Crua do in slertu, IV
sucte, V
Titleaca, $V$
Lntee

Aprew, I
Mounthins
IIImanI, III
Benl, 1
Rivers
I'aracuay, IV
Pilcomeyo, IV

## BOTANY

Alr Cella, 1
Alr I'lante, I
Amarylle Famlly, I
Anglomperme, I
Araucaria, I
Aquatic Ilante, 1
Boehmerla, I
Botanlc Giarden, I
Botany. I
Ontline VI 105
Chart, VI, 107
Weeds, VI, 108
Paraitite, VI, 198
Insect-eating Plants. VI, 190
Planta That Store Food, VI. 200
Plant Familles, VI, 200
Scattering of Seed., VI, 205
VI 208 Exintence, The,
nestlone
Qnestions, VI, 207
Bryophytes,
Carnivorous I'lanta, I
Cecropia, I
Cellinlose, 1
Chlorophyll, II
Clnerarin, II
Cltrus, II
Componitae, II
Coniferae, II
Corona. 11
Cross Fertilization, II
Cryptogamoua I'lants, II
Cycads, II
Dlutom, II
Ecology, II
Endogenous Plants, 11
Fitiolatlon, II
Exogenoua Planta, II
Flower, Study of a, VI, 688
Flowers, II
Frults, if
Germination, I
Gnaphallum, II
Grass Tree, II
Grenahouse, 11
IIerbarinm. III
Lablatae, III
Leguminosae, III
I.ysimachla, III

Morphology, IV
Mustard Family, IV
Mustard Family, IV
Natural selectlon, IV
Natural selfc
I'hanerogamous Plante, IV
I'lant, IV
See, also. V1. K8G-588
Polsonons I'Inntr. IV
I'teridophytes, iv
Raftesla, IV
Rquanculus, IV
Ifwots, IV
nomagne, IV
Eap. IV
spurce fumbly, V
Btares,
Tapas.
Tarmeric. $v$
Cmbeliferne, $V$
lietoria, $V$
get, also, Phaxta
BRN11.
IIramit 1
With mphends treatiog sum yacm and Dmaimag, Mimeah Re. movgces, Climate, honjulttan,
Manujartumem. Thanafontation. inglattants and Lanutage, Edv: cation, Goveanmext and he. hioion, Eistome.

## Clibe and Town

Batis. I
Miscelo, II
Marabia, III
Ouro Preto, IV
IPara, IV
Pernambuco, iv
Rio de Jenelro, iv
Bantos IV
Llenade
Bamane, 1
Marajo, III

Amason, 1
River
Araruaj
Jurua III
Madeim, 111
Inraguay IV
parana if
San Francisco, IV
Tapajoe, $V$
Tocanting $V$
Uruguay,
Xingu,

## BRITISH COLUMRIA

Brlish CoInmbla. 1
With subhead surpace 4 ND Oraimage, Chimaty, Mintral RE HoUncen, Aqaiculturn, Lumare. ing, Fiahteiea, Trangpogration, Enucation, Govnenaext.
Frater River, II
Kootenay Hiver, III
Queen Charlotte Inlands, IV
Citios and Towns
Armstrone, $\mathrm{VI}_{4} 814$
Arrowhead, VI, 314
Asheroft VI, $\mathbf{S 1}_{1}$
Atin. Vit 814
Cbliliwaek, VI, 317
Cranhrook, VI, 818
Creston VI, 818
Cumberland, VI, 818
Enderby, VI, 819
Eaquimalt $Y 1,819$
Fernle, VI, 819
Golden, VI, 821
Grand Forks, $\mathrm{VI}_{3} 821$
Greenwood, V1, 821
Kamioopg VI, 322
Kasio, $\mathrm{HI}, 32$
Kelown VI, 822
Ladmet, VI, 828
Ladyamith VI 323
Merritt, V1, 320
Mlehel, VI, 825
Moyte, FI, 326
Nanalmo VI, 826
Nelson, iv
Nicola, VI, 826
North ancouver, VI, 327
Penticton, VI, 328
Phoenix, VI, 328

Port Alverin, V1, 320
Fort Blapson $V$, 800
pert Moody in 18
Prince Hipert, VI. 820
Revelatolve. V1, 83:
Rovelatose, F,
Rommand VI, V8, 384
Slochon, Arm, $33 \mathrm{SI}_{1}$
Houth Vancouver, VI, 886
Steventon, VI 820
Hummerland. VI, Ase
Trail, VI, 837
Yancouver, $V$
Yernom, VI, 388
Victorta. V
Islands
Queen Chariotts Ialands, IV Vancouver Itiand, $\mathbf{V}$

## Mountains

Cascade Rance, I
Ilooker, Mount, III Rocty. IV

## BUIDNC AND SUIDNE MATRMAS

Adobe, 1
Brlek 1
Buifding. 1
Buifding-itome, I
Comente, I
Concrete,
Deal, II
Pence, II
Fire tucape, II
Garage, II
Graln Eifevator, 11
Iahyrinth, III
I.Ighthouse, III
lagnthouse
Mortar, IV
Mortar IV
Paints, IV
Plie, IV
Plastering IV
Plummet, V
Stadium,
Staff, V
Stalned GIa靘. T
Etrength of Material. $\nabla$
8tueco $V$
Stucco,
Tent,
Timber, V
Wall I'aper, V
Wire Glass, $V$

## BUILDINGS AND MONUMENTS

Alamo, 1
Alhs mhra, I
Arc de Trlomphe de I'Etolle, I
Athenaeum. 1
Babel, Tower of, I
Balmoral Castle, I
Borghese Palace, I
Buctingham Palsce, I
Bunker IIIII Monnment, I
Caracalia, Baths of, I
Caracalia, Bat ha
Castle Gardea
Chambord,
Cologne CathedraI, II
Colosseum, II
Conclergerie, Lan, II
Constantine, Arch of. II
Cromlech. If
Dlana, Temple of. II
Eddystone IAghthouse, II
Editel Tower, IT
Independence HaH, II
Erechtheum, II
Escorlal, II

Fanenil IIall, 11
Faraee Palace 11
Federal Hall, 11
Golder House, il
Golden Houct II
Hadrtan'a Vileselill
Ladriap of Famo
ITolyreod laines, 111
Innes of Chapcert III
inng of Court, If
Invalder 111
Lateran, III
Liberty, sitatue of, III
Incoln Csthedra, III
Lonvre, III
LDzemboure Paluce, III
Milan Ca thedral, III
Newrate, IV
Niks Apteros, Temple of, IV
Notre Dume, Cathedral of, iv
Old Bouth Meetins IIOuse, IV
paiala Rojal iv
Pantheon, IV
Parthemon, IV
Pien, Leaning Tower of, IV
IMttl I'aiace, IV
Oulrinal raiace, IV
Rameaseum, IV
Saint Peter's. IV
Scot Monument, $V$
Beptimins geverus, Arch of, $V$
Berazilo, $V$
Sophia, Church of Saint, $V$
Theteum, $v$
Tltus, Arch of, $V$
Tower of London, $V$
Tratan. Arch of, $y$
Trajan's Column, $V$
Trianon, $V$
Trophy. $V$
Tuilerles, $V$
Uasl, V
Vatican, V
Vermalilem, Palace of, $\mathbf{v}$
Waihaila, $V$
Wambingfon Arch, V
Wanhingt on Monument, $V$
Wentminnter Abbers $\nabla$
White Ilouse, $v$
White ilouse, $V$ Viver $v$
Windsor Castie,
Winged Lon, $\mathbf{v}$

## BULGAR1A

Bnigaria. 1
gee under Turcer
Balkans, I
Danube River, II
Fantern Inmelia, II
Solla, $V$
Vama, V

## BURIAL AND BURIAL CUSTOMS

Bnrial, I
Campo Eanto, 1
Catacomhs, I
Cemetery,
Cometery
Cremation, II
Fmhaiming, II
Epltaph, II
Mastaba, II
Maunoleum, III
Barcophague, IV
Tomb, V
BUSINESS
Acconnt, I
Advertisling,
Annulty, I
Arbltration, I
Auctlon. I
Bankrupt. 1
Banke and Banking, I

fruat Compalion, VI,
ber ona Buiti
un of Dachang
ull of Ladla.
fand of Treate, 1
matheegine 1
Doycolting.
proter, 1
palfurs ing Loan A moelation, 1 buatren Collere. 1 polaer: Formm, VI, 98 Dylatil
cakuletios Machines, 1
copltal, 1
Cadh Restater, 1
creek, 1
Fex, 160 V1. $56 \%$
Gee, aloo. V1, ba
Cold Storag, II
comperte, Il
commerce, Chamber ot, II
corporation, II
Cratit, II
See timo, VI, 500
Credit, Letter of, II
Disconnt II
Erehange, is
Exchance, Forelen, V1, 864
Rate of, V1, 50
Expectation, II
Far and Fur Trade, II
roed trilit II VI, 444
Good VIII, II
Orace, Days of, II
Buld, II
Hudmon's Bay Company, III
Insolvency, III
Incorance, II
Interest, 111
intrritate Commerce Aet, III
Jolat Stork Company, III
Lloydis, III
Merchsnt Marine. 111
Mortailty, Law of, IV
Mortgage, IV
Necotisble Instruments, IV
Numbering Mschine, IV
Ordolnal Ihekse. IV
Partnership, IV
Puwabrokera, IV
Priattinf IV
Prodt, iv
Promissorg Note, IT
lectipt,
Refrigerition, IV
Refriget,
Rent, IV
Sevings Banke, IV
See siso, VI, 561
ghorthand, $V$
Stockjobblog. 8
Tradiog Companies, $v$
Truster $V$
Truat Companles, VI, 568
Typewriter, V

## CABLEs

Cable, Atlantic,
Cable, Electric, I
Ceble, Sobmariae.
Cable Paclac, I

## CALIFORNIA

Callformian 1
With subheads treating gusMo and dmainaor, Chimate Mimeal Resocices, Agmicte: fren, Hanteactures, Tpangrol fitlox, Goveanment po fion, Institutiona, histoar.

## Capes

Clpe Mendocino, 1
Cape San Lucus, I

Cliten and Towne

## Alspedta, <br> Bertaley, 1

Chlos,

## tures. 1 <br> Treme is

Loper Bemeh, 111
Lon Zareles, 111
ontata, IY
pamadena, iv Remonat, 1
Rediand IV
Hveralde, IV
Hacramento IV
gan fernarino, IV
San Dleto, IV
San Erancleco, IV
San Jone, IV
Pan Linls Obligpo, IV
Ranta And, IV
Rante Barbare, IV
Ranta Crus, IV
ganta Rom, iv
Vtockton,

## Ithends

Faralloned II

## Lalsea

Sallon Bee, IV

## Monstrins

Cascade Rangel
Congt Range, If
Rocks, IV
Elerra Nevadan, $\mathbf{V}$
Rivere
Colorado, II
Hacramento, IV
San Joaquin, IV

## CANADA

Canada, I
With subheads treating StuFace and Dqainage Climate, MINERAK REROUACEA, AODICEE TUAE, LuvmeatNo, Fianherea, Manufactueva, Taísipoatation ATD Compreace, Govennmbint And RELIOION, EDUCATION, Ilistory, popgration
Qoebec Act
for une under diferent provinces or eltleand towna.

## Canals

Chambly V1, 452
Cornwali, Vi', 451
Lachine, VI, 451
Murray, VI, 451
Rideau. IV, and V1. 451
8t. Peter's, VI, 482
Soulangeen, VI, 451
Trent. VI, 452
Wellind, $V$, and VI, \$51
Capes
Cape Race, I
Cape Sable, I

## Culfs and Baye

Bamn'a Ber,
Chalenrs BaJ, I
Fundy, 11
Georglan Bay II
Mudson Bay III
James Bay III
Lancaster Sound, III
MInis Bey, 111
Passamaquoddy, IV
Puget Sound. If
Queen Charlotte Sound, IV
Gaint Lawrence, Iv

## Hiotery

Aberta a Province, VI, 40 s
Horden roveramant TBe, VI, 400
Contcderatlon, VI, sos Tha, VI

## 401

Fathert of Confederation, The, Foreliza relationa, VI 400,102
General election of loil. VI.
104
IIfotory slace Contedertion, VI.
Imperia! Conference of 1911, VI,
important evente, tabla of, VI,
$+05$
Intaran development. V1, 405
Ianarter minataty, The, VI, $\$ 02$
Nackenale's dministrition, V1,
401 401
Manitobe province, V1, 100
Uutipe of Canadian hlatory, VI, 407
Pacilie Rallway gcandal, VI, $\$ 00$
Guebec, Battle of. IV
Guebec Aet, IV
Onebee Tercentenary, YI, 403
Rea River Rebelilon, VI, 400
Horal Northon, VI 401
VI, 280, 01 mount Iollen,
Saskitchewin province, VI, 403
lalands
Antleontl, 1
Iteile Isie, 1
Campobello, 1
Cape Breton,
Mrand Manan, II
Magaalen. II
Manitouiln, 1
Nontreal, III
I'rince Edmard, IV
Queen Charlotte, IV
dahie, IV
Thousand Islands, $V$
Vancouver Isiand, $V$

## Lakes

Athabasea, 1
Bear Lake, Great, I
Cedsr Lake, 1
('hamplaln, I
birle, II
Treat Lakes, The, II
Great Elave l.ake, II
IIuron. III
Lake of the Woorim. III
Manltoha Lake, III
Memphremegog, III
Niplgon, IV
Niplaniog iv
Ontsrio, iv
Maing lake, IV
Salnt Clair, IV
Nimcoe, $V$
Nuperior, $V$
Winnipes, $v$

## Mountains

Cascade Range, I
Ilooker, Mount, III
Laurentian, III
Rocky, IV
Saint Elias, IV
Selkith, V

## Provinces

Alberta. 1, and VI, 30n
British Colomhia, I, nnd 11,205
Manltoha, 11I, and VI. 298
New Brunswlek, IV, ind il. sm
Nova scotla, It, and 1,301
Ontario. IV, snd VI, 303
Prince Fdward Istand. IF, and
VI, 306


Aedatholen 1
Athaberes,
Chaudiere, 1
Caurehlil, 11
Coppermice, II
Fritior, 11
Gativene, 11
(1reat Yibh 11
Kootemay,
Tacrevale, 11
Monamichi, III
Nontmorpu
Dttam, IV
Red ilver of the North, iv
keaticouche iv
Ha fuevay, it
Balut johu, iv
galut jawreace iv
Ralmt Kary ${ }^{2}$ IV
galut Marmes, iv
fankatchewan, iv
Yukom, V

## CANALS

caledonian,
Canal, 1
see aleo V1, 440
Chambly, VI, 452
Chemapeate and Ohlo, I
Cormall. VI, 451
Drainere Canal, II
Erle, 11
Gancea, II
illinols and Michisan, III
Kalser Wlihelm III
Lachine, VI, 451
Manchester shlp.
Xirray, VI, 451
Nicaracina, IV
North Bea, IV
Hiden, IV, and VI, i51
8t. Petera, VI, 452
sault Ate. Márle, IV, aud VI, 401
Soulaugea, VI, 451
8uez,
Trent, VI, 452
Welland, $V$, and VI, 451

## CAPES

Agulhes, 1
Cape Ann, I
Cape Barrow, 1
Cape Blanco (Afrlca), I
Cape Bianco (Oregon), I
Bojador, 1
Cape Breton, I
Cape Catoche,
Cape Charlea,
Cape Clear, I
Cape Cod, I
Cape Colonna $I$
Cape Colony, 1
Cape Comorin, 1
Cape Fareweli, I
Cape Fesr, I
Cape Finisterre, I
Cape Fiattery, i
Cape of Good inppe, I
Cape Yatteras. I
Cape Heulopen,
Cape Henry,
Cape Horn, 1
Cape Lisburue, I

Care leoteat. I
Cap Indocino 1
Capo rizee of Wales, 1
chop rice
cape 2 mes 1
Cat atie (Canede),
capo whe Vlortan): i
cap alat viacol
cape verde. I
cap Crath,
Eat Cape
Gra-ment
Guardaful, 11

## CANIRAL AMTHICA

Amatilian, 1
Bluefinda, I
Cemtral Amorice, 1
('ostrikica, II
(luatemala (City) II
Cluatemala (mitte), it
Ilonduran, III
IIoudures, Bay of, III
Leon, III
Manasum, 111
Maseyn 11
Moequito Territory, IV
Ncarafua, IV
Nicarajua, Lake, IV
paname Congrea, IV
Pranama, Inthmur of, IV
guezaltevenco, iV
Ralvidore 1
Man Balvador, IV
Moumonate. V
Teguclgalpa, $\mathbf{V}$
CHALDEA
See Aarata, Banylonia, Chaldea.

## CHARTS

American Literature, VI, 644
Antronomy, VI, 118
Birde, VI, 601
Botany, VI, 197
Chemintry, VI, 231
foducation, V1, 657
Eingilish Literature, VI, 648
general IIIntory, VI, 372
fieology, VI, 343
Insects, VI, 507
Palnting, VI, 628
I'bysicel Culture, VI, $044.64 \pi$
I'hysicm, VI, $64{ }^{\circ}$
I'hysiology, VI, 355

Inlted siater History, VI, 378
zoblogy, VI, 729

## CHEMISTRY

Chemistry, 1
With suhheads treating IIts-
toar, Lawe of Combination,
 Benches of Chemiatay.
Chemical Compounde. VI, 230
Chemical Flement. VI. 222
Chemical symbole. VI. ${ }^{232}$
Chemistry. Hexinninge of. VI, 229
Chemintry Chart. VI, 231
Questions on Chemiatry, Vi. 232

## Eloments

Alumiunm,
Antimong. I
Argon, I
Araenic. I
Barium, I
Riamuth,
Roron, 1
Bromine,
Cadminm. I
Chessum, I


Comeral
Abrasiven, 1
Acetanilld I
Acetates, 1
Acetic Acld. I
Acetylene, I
Acld, 1
Actinlam 1
Amilty;
Alr, I
Alhumen, I
Alchemy I
Alcohol,
Alrall, 1
Altalold, I
Allotropy,
Alloy,
Alum, I
Ammonia, I
Analysie, I
Anllive, I
Antidote, I
Aqua Fortis, I
Atmosphere, I
Atom, 1
see, also. VI. 232
Atomic Theory. I
Atomic Welghte, I
Baryta, I
Bage, I
Borax, 1
Boric Acld,
Brimstone, 1
Butyrle Acld, I
Calelnation, 1
Carbohydrate, I
Carbolic Acld, I
Carbonates, I
Carbou Disuiphide, I
Carboulc-acid Gas, I

Carbatic gake
carmetic．
Contrime Waters， 1
ciloteh 1
citorate， 11
ctioroterat 11
clapelar 11
citres aed 1
con TH
conbertion． 11
Corromito philmate， 11
creopete， 1
cymeeren，II
prompenfilion， 11
Desterta， 11
Ondintina 12
Masoction
Dutiliation， 11
tectrochemintry，il
Beetrolyal II
dements 11
ther， 11
vidiometer， 11
Explonion 1
Eximet 11
Fernentution， 1
Fhoor ppap，Il
Torme Acla， 11
cimation， 1
culler＇
Gapes．V1． 282
Gelemiers ruben II
Galens． 11
fireet Yire I
Halogen，III
II drocerbone， 111
ilydrochloric Acld，III
ilydrofnortc Acld，III
Irdrogen Dlozide， 11
lodoform， 111
maertim，
Kelp． 111
stemerite 111
Lactic Acid． 11
Aughinf Gan，III
hme， 111
Liquid Alr， 111
Atmus 11
Lumar Cunatic， 111
Yorneala， 111
Iethylited Apirt，III
Ir ecnle， 111
Mordane iv
Needle Ore，IV
Nitrate．IV
vitricic Acld．IV
Nitric Acld iv
Nitronileerine，iv
Oebre，iverine，iv
Oehre，IV
Oiffant Gus，IV
Olele Acld 1
Ommonala，IV
Oxyhydrogen Blowplpe，if
Oroae， 1 V
Paramin．IV
Phoaphiter，IV
Phomphorescence，IV
Phomphoric Acld，IV
Plerte Acld．IV
Polymerian，IV
Potash，IV
Pruwic Acld，IV
Putrefaction，iv
gulaine．IV
Rust．IV
sal Ammonluc，iv
saicylic Acld，iv
Ralt，IV
Ralipetre，iv
smea
smoke，$V$
Roda．$\nabla$
golution，$V$
Soot． $\bar{\gamma}$
poataneous Combustion，$V$
rearic Arld．

## nipmates $V$ <br> appates． <br> miphureted listregen，$v$ <br> yipharie aciat <br> ypthenes．$v$ <br> Tartir bimetle，y <br> Thrtarte Acid，$v$ <br> witer． <br> Water Oleen $V$ <br> Foed Alcolol，V

Culte 1
CHILS
With uhbeads tretive sore
 movacim，CLMA1\％，AOHICULTU日，
 Inhamitanting moveafion Gov：


## Clites and Towns

Amtoragacia
t＇onceperon，
Copiapor 11
Coqnimbor 11
Iquique， 1 II
yunlioti，IV
apotiago
Tilca，$V$
Vulalitia．$V$
Valparalea，$V$

## Ialande

Jvas Prraenden，III
Tietra del Puego，$v$

Andes， 1

## Monatiane

## CHINA

Chlnese Enplre， 1
With suhbeads treatios Pobis． CAL DIVIaiona，BUHFACE AxD Daikloz，Climate，Minetal ite aouncxa，Aoarcultuex，MANU．
 COMMENCE，APHEREA OF IVFLU ANC世，INHABITANT，COEEEMENT and Relioios，Entcation ovain and litenatume，Iliaromy

## Cities and Towas

Amos． 1
Cunton， 1
Chang－Chow， 1
Chin－Kimp－ Fu ，II
fu－chow，II
Ilang－chow，111
llantow，III
IIanol．III
Kiao－Chow， 111
Maceo．III
varden，IV
Nanling，IV
Ning pe if
Ehenghai
Thanghal，$V$

## Hietory

Chlnese Excluslon． 1
Far Eastern Questlon，II

Iolands
Chuman， 11
Ilainan． 111
Hong Kong， 111

## Mountrine

Alatan．I
Altal，$i$
Altal，${ }^{\text {Thats．}} 11$
IIlmaiaya．III
kallea， 111
tiationtim $V^{\prime \prime}$

## Pclicieal Divialame

Mamemarta，III
xompolla，int
The tiv
Turtiones，$V$

## Rivere


Brabinapptya
Hompelio $11{ }^{\prime}$
yetrowe ilt
Phino iv
$Y$ Eipes $V$
Yom．
Yand－teo－Kiang，$V$

## Unclamalied

Army of Calac
bee under A amy，aublead Cn ． nem $A$ ray
Great Wallof Cblen，II
Muchatrowar， 111

## CHRSTHNTY

## 600 Relorom

## CLOTHing

## Astrathas，I

Itarene， 1
Itloomer Contnme，I
blonge， 1
Bcmbayine，I
Boots und whoes， 1
ltrocade， 1
Buil Leather， 1
Hurmoces，I
finttona，
Convan
（＇黒p． 1
Cloth，II
Corduroy， 11
crape，II
（rinoline II
Inmity if
Irest，II
Fell，II
Fiber， 11
Hlannel， 11
Gilngham， 11
Giove，II
Irana Cloth， 11
Jute．III
Kaftan．III
Kartanill
Mualln，IV
Nankeen，IV
Ilush，IV
Matln．IV
hhoddy，V
NHIE，
Ntola， 8
Tabard， 7
Tefeta，$V$
Turtan，$V$
Toga，$\downarrow$
Tunle，V
Turbun，$V$
Tweeds，$V$
Weivet，V
Worited，$v$

## COLOMBU

Colombla，II
With ubhends treating Am． PACE AND DHAINAOE，MINFAL RE． movecen，CLMATE，AOMICULTiUR Tranigpoatation，Infieitanti． a vi LanoUAOE，EDUCATION，GOY． ERNMENT，HIsTOMy．

ptien alenla. 1
chim 1
cratin
philitil
pompen in
Rivom
${ }^{\text {Camen }}$ I
Ifperth ifl, III
rata, 111
Ortacea, Iv
Tio Nein IV

## Unchaciliad

Aadon Mouatalne 1
Darion, Out of, II
COLOR: 20
Colorndo, 11
With asbheade trentlas BuyFACM AND DLAIEAUA, CMIATH,



Reyal Gorge, iv

## Clise and Temes

Colorado Apring 11
Garden of the (1ode, II
Cripple Creek, II
Denter, 11
Lendilie, 111
Aanitous 111
Treblo, IV
rutidad.
Mountrios
Laramie, 111
Mreis Pe|s, IV
Rocter, IV
Rivers
Grand. II

## CONNECTICUT

Connecticut. II
With aubhead treating surFace, CLIMATE, MIMABE Ry houncym Ahatcultuar, Mantifacsuzar Thannfomtatiox, EEOUCAslox, EIferoly.

## Citice and Towas

## Amponla, 1

Brideport,
Briatol. 1
Danhary 11
Derby II
Fnatid, II
Manchester 11
rerdeen, 111
Madietown, II
Nan atuck. 1
New Britain, IV
New Britain, IV
सew London, IV
Nornalk, IV
Norwleh, IV
Roervilie, IV
gouth Norwalt, $V$
8tamford, $\nabla$
Torrington, $V$
Wailingord, $y$
Whterbury, $v$

Eaver $V$
iflitactiv $v$

## Uneluealied

Comacelleut Alver, il
Orown Lowatalian $11^{1}$


## Curns and FWNBLDENT

Armon. 1
Agmealts, Battory, I
tortilion froter. 1
Brackmall,
filcury 1
Frivarydave.
triteral
Cepltal $/$ Lumpment, 1
Coneplect 11
couttortúling, II
Crime. 11
Clectrocution, 11
smberslotiply 11
Lalee impriconnont, 11
2ten, 11
toriery, 11
Trand II
Garrote. 11
Itander 111
Htrabindert, 111
Iomlaco, III
impriconment, 111
Kichapplot, Il
Larcemy II
Libel, It
Lotterz. 111
Lruch Liew. 111
Derder, IV
IPerfury, iv
Perjury, iv
Pillory, iv
Prollticai Offrneew, IV
Pulytamis IV
Priton IV
Reform Behools, IV
Robber7, IV
Smuctive, $V$
Starkonté Frands, $V$
Evicider $V$
Thure, $V$
Tretamill 7
Trencom,
Torture $\begin{aligned} & \text { Wres, }\end{aligned}$

## CUBA

Cubs, The Repunlle of, 11
Fith suhheads treatins BosFaca AKD Dmainaon, Cermaty, Mingrar Renocacas, Aoncotr TUAE. TMAYAPOETATION AND COY. manca, INHABITANTR AND lakgraga, EDECATION, Goveanmant Hiaxoar.

## Citios and Towas

Rahla Fionde, 1
Cardenas, 1
Clenfneses, II
Havena. II
Manaanillo. 11
Matansan III
Puerto Principe, IV
Eantiego de Cubs, iv

## Itlande

Itic of Pincs, III

## DxpICITY

Glind, Fiducation of the, 1
Blindnefan, I
Lear and Dumb, II

## Dicesce and Pathology

## Prof and Dyeby Fincation $\alpha_{1}$ it

 finot II
## DHAWAR

Delaware, 11
Fith oblbocas eruathe Mos Face Climate, Adacturume incuris Impentaing. Tmanapowta.
Tion, Govanmmant, Doccation, Filiong iliotony
Defowar Bat, li
bover. 1
whorleill Mouatalos, $V$
WIIningion, $V$

## Dmamars

Denmart, 18
Filth subbeads treather Mre. eaca awb Imainaon, Impuntime
 Ramyant amo Rinciolos. Cohs. WIAM, Lamevion and Lifilartme, HIAm, Leat.

## Cltio and Tewne

Aalborts, 1
Aarbuen, 1
Coppaherpn, II
OCemen, IV

## Llands

Faroe, 11
Grrentiand, 11
Iceland. III
Reytavit. IV
Nalnt Taoman, IV
geeland $V$
Yiria.
Went Isdlen, Dumlsh, $V$

## DISEASE AND PATHOLOCY

Amaroile, I
Antemile,
Andan Iectoris,
Anthris. 1
Aphasle, 1
Apoplest.
Appendictits, I
Apphyia. 1
Athoma?
Astigmitiom, 1
Atrophs, I
Baciltue, 1
Bacteria and Bacterlolom, I
Baideen I
Barber's Itch. 1
Reri-beri, I
Bindnean, I
Boli, 1
Bright's Disease, I
Bronehitis, I
Rurna and Scalde,
Calculus. 1
Cancer, I
Canker, I
Catalepety
Cataract,
Caterm, I
Chilbialn, 1
Cbolern, iI
Conjanctivitis, II
Corns. II
Constis. II
Cronis II
Cronp II Tremens, II
Dlptitherla, II
Dlplomania, II
Miseame, II
Elephantiasle, II
Epldemic, II
Epilepar.II
Episooty. II

ty Arephotta 11
fryenteronts 111
focept II In
Ifytert 111
Ibum 111
infoction, II
manalt: 111
intorchatlon, 111
frtis II
jall Fever 111
jancale 1 II
fung Fever, 111
Leed Potsothes, 1 II
Leproay, 111
locenoter Arazta, IBI
Lumbago, 111
Lnatery. III
Malartion 111
Mreatiph III
Monomanic, 111
yumpe 1
Yrople.
Navere, IV
Nefroua Diopamen, $I V$
frorthida, IV
feurarthenla, IV
Seurtil, IV
Netronll, IV
Palpitation, IV
parilyla, IV
pradile 1 Mneamen, IV
Philaspi, IV
Pague, IV
Pleutisy, IV
Pelcomonla, IV
Ptomalue, 1
Qulasy, IV
UL; *worm, IV
Golvt Yitun'm Damen, IV
learlet Pever, IV
Rerofula, $V$
Entry. $\mathbf{V}$
inatictuear, $v$
tmallpoz,
Tryl
quntrotiv. $V$
Tetanun, $V$
Thtamush, $V$
The Doulourenz, $V$
Trluchlulande, 7
Tubereulaals, $\mathbf{V}$
Tsphold Ferer, $V$
typhus Fever, $Y$
Vertigo, $V$
Vomitiont. V
Whooplas Cough, $V$
Younde
Tetlow Pever, $V$

## Disasees of Anisals

Authrax. 1
Broter fitna I
Cowpor, 11
Foot And Mouth Diseace, II
Foot Rot, 11
Gapes, 11
Olaudera, 11
Lomps Jaw, 111
Hange, 111

buthec of courgmas
Dietriet of Colvmens. II
Wantistos $y$
YITMO AND DYE ETUFFS
Curgthe 1
Cechnaci, 11
oyplan 11
Indica, 1
Brate
Turiterte, $V$
Wester

## ECONOMACS

## Bartep, I

bounty 1
Doycoltipe. 1
Capltal,
Comennitur. 11
Conmervation, is
Comentraption,
Cooperallon it
Cortidata, 1
Corporation, It
Cuntoma Inaties, 11
thylolon of Iabor, 11
Nitht-hour In , il
feclae Tay Il
Factory and factory Leglalation.
Famine, 11
Yree Trede, II
Greman'stiew il
Immien ration, If
mpont, 111
Brome Tax, 111
InherltanceTry, III
luterent, 111
Labor Organizatlons, III
Lalampr Falre, 111
Land lapgue, III
Money, III
Natlonal Civle Federation, IV
Nat lonal leht, IV
Pauperimen, IV
I'olltleal Economy, IV
Populatlon, IV
ront, 1 V
Protectlon, IV
Reclprocity, IV
Remel $1 \mathbf{V}$
Eingle Tax, $V$
strike, $V$
Sweathop Syatem, $V$
Tarin $V$
Trist
Trants, $V$
Unury, V
Walue, $V$
Workhouse, V

## ECUADOR

Ecuador, II
Whth suhheade treating sua Facm avo Draimage Climate Minerar hesouncha, Indu'greize INHAEITANTS A $D$ LANGUAOE Government and Religion, llis T027.
Amhato. 1
Anden Mountaine, 1
Chlmboraso, 1
Cuenca, 11
Tuagaqull, II
Japura River, III
Quito, IV
SDUCATION
Analytical Genmetry, I
Anatomy, 1

## Education

Noun, The, VI, 682
Pooms, VI, 585
Pronoun, The, VI, 632
simple Bentence, The, V1, 81
Verb The, VI, 588
sixth tear, VI, 529
Componition Work, V1, 581
Errors, Correction of, VI, 529
poema, VI, 530
word study VI, 680
Third Year VI, 608
Componition Wort, VI, 510
Errors, Correctlon of, $\mathrm{V}_{1}$, 514
Picture gitndy, V1, 513
Poems, VI, ${ }^{1} 11$
storle, $\mathrm{VI}, 513$
Language, Kethods of Temching, IIt
Lhrart, III
Manual Tralaing III
Manter of Arts, II
Methods of Teaching, 111
Montensori Method, VI, 480
Nature Eindy iV
see, also, V1, 585-615
Animeis, VI, 588
Lemsons on, VI, 588
BIrd Honees, VI. 694
Birds, VI, $560-695$
Chart on, VI, 501
Directions for' Obwerving. VI, 592
Parts of a Bird VI, 692
Pog, Lections of on the, VI , 604 406
Charscterietlea, $\mathrm{VI}_{1} \mathbf{6 0 4}$
Dog as a Friend, The VI, 605
General Demeription, VI, 604.
Kinde, VI, 805
OutIIne On Dogs, VI, 606
Eqnirrel, The, V1, 588-590
General Dencription, VI, 588
Habits of the YI, 500
Keenness of gensers of, VI, 690
50 ance of, VI,
585
Importance of, Vi,
Ant The, VI, 606-612 Battie Between Ants, VI, 011
Funeral, An Ant's, Vi, 610 Malem, Fremales and Workers, V1, 608
Parth of $\mathrm{en}, \mathrm{VI}, 600$ Quentlons on, VI, 612 Soctal Life of, VI, 610 Temporary Home for, VI, 608
Bees. VI, 612
Outilie on, VI 612
Quentions on. VI, 618
Butteriles, VI, 614 Outine on, VI 614 Questions on, VI, 614
Chart on, VI, ${ }^{\circ} 107$
Parte of an insect. VI, 506
Nature Subject to Man, VI, 685
Plants, VI, 686
Flower, IParts of a, V1, 588
Leamons on, V1, 586
I'lant, Parts of a, VI, 587
Sngrentions for Situdy, VI, 585
Trees, Lessons on Vi. 508
Fall study of, VI, 6.98
Pianting, VI; 601
Spring and Eummer Study, VI, 600
Winter Studj, V1, 689
Nepro, Fequcation of the, IV
Nobel Priae IV
Nnmber, Methods of Teaching, IV Number Work, V1, 51, $58,67,61$, ${ }^{66}$
Peabody Educational Fund. IV
Pedagogice, IV

Primary Department, 71, 480-489
Eeading iv
Authors, Interenting EFects about, VI 070.076
Alcott, Lonlog M, V1, 674
Ha whorne V1 $6{ }^{2} 4$
Iolmee, VI, 072
tongtelion, VI , 070
Loweli VI, 872
Tennyson, VI 070
Thackeraj $\mathbf{V I}$, ots
Whittier $V 1,671$
Cholce of Good, VI, 661
Methods of Tenching IV
Need of OraI, VI, 661
Outline on, VI, 664
I'oems. Study of. VI, 064-672 May Queen, VI, ө6B Village Biackamith, V1, 607
Rpasisance, IV
Rhodes Achole rablp, IV
Gborthand. $V$
Slater Fund, $v$
8loja
8tory Teling. VI, 682-700
Enaentials of a Good Story, VI, 682
How to Tell a Story, V1, 683
Kinds of, V1, 684
Purposes. or VI, 682
Tenchers' institute, $V$
Technical Education, $V$
Un'versity Extensloa, $\nabla$
Wrangler, $V$
Writige, $v$
See aleo
PETCEOLOAE scinect:

## EDUCATIONAL INSTITUTIONS <br> Ceneral

Academy, I
Agricultural College, 1
Agriculturai Experiment Stationa,
Rusiness College, I
Burgher Schools, i
Chautauqna Literary and Bcientifc Circle, I
Common Schools, II
Conservatory, II
Dental Schools. II
Evening Schools, II
Farmera' Institute, II
Migh Bchool. 111
Induatriai school, III
Kincergarten, III, and VI, 455 . 491
Activity, Tendency toward, VI, 459
Animals as Companiona, VI,
Books for Parents and Teachers, VI, 486
Cardboard Boxes and Furniture, VI, 478
Cley, Vi, 474
Description of, VI, 459
Exerclises, Plan of, VI, 450
Freedom under Limitations, VI, 484
Froebel and the Kindergarten, VI, 455
Froebel, Educational Princlpie»
of, 1
Games. VI ${ }^{46}$
IIftit, V1. ${ }^{461}$
Habit, Dl. 458
ment V1, 483 and Gorcrn-
Tome becupa
dren, V1, 473
Inatinct, ViI. 458
Keeping Christmas. VI. 481
Lantern. Cage, Etc.. Directions for Maning, VI, 478

## Educational Institutions

LIteratnre, References to, VI, 458
Montemeorl Muthod, The, V1, 489
Natural Impnlee, Childs VL, 450
Ont-door Amusements, YI, 488 Outiline VI, 490
Paper Cnttling, VI, 478
Preper Folding, VI, 479
Peris of Growing Up Alone, VI, 48
Pian of, VI, 457
Piay Comparisons Drawn from,
v1, 48
Iliay, Necesalty Por, VI, 402
Play, Vaine, VI, 457
Ireventive of Wrons Activity, VI, 456
rimary Department, VI, 486 Games, VI, 487
Nature study, VI, 487
Numbr Wort, $\mathrm{VI}_{2} 486$
Sand Table, The, VI, 487 Scrap-Booke, VI, 487
Seat Work, VI, 486
Belation of, to Child Impuisen, VI, 408
Reiation of. to IIablts, VI, 458
gand, VI, 474
Eand-Table, VI 481
Sick Child. For a, VI, 482
otarting Foint In Educatiod, VI, 456
story-Telling. VI, 463 Crane Exprese, The, VI, 470 Littie Red Hen and tbe Grala of Whent, VI, 487
Mustcian and the Dancer, The, VI, 470
Pancale. The, VI, 488
Three Beare, The, VI, 464 Three Tiny Igga, The, VI,
Two Green and Glitteriag Gold-Chafers, VI, 488
Stringing, VI, 47
Trapa to Meet Dimeuities, Vi,
484 to
Tralning
457
Unity, Contributes to Growth, V1, 457
Law Schools, III
L. yceum, III

Medical schoole, III
Na val schoois of inntruction, iv
Normal sebool. IV
Real Ischoole, IV
Beal Bchoo
Schooll, Correspondence, $V$
Secondary Schoola, V
University, V

## Specific

Agasalz Annoclation, I
Alahama, University of, I
American Association for the $\Delta$.
vancempnt of Eclence, I
Amberat College, I
Arizona, University of, 1
Artaneas, University of, I
Bologna, University of, i
Bonn, University of 1
Bonton Univeralty I
Rowdoln Collepe, $i$
Bowdoln Coliegf, 1
Britimb Association for the $\Delta d$ -
vancement of Sclence, I
Rrown Univeraity, I
Bryn Mawr Collpge.
California. University of, 1
Cambridge. University of, I Carneqie Institution, 7
Catholic Univeralts of A merlea, I
Cbarterhoune, 1
Chautanqna Literary and Sclea.
tife Clirele, I
Chleago, Ualveralty of, I

Chriat's Hoeptal, II
Cinclimnati, University of, II
Clart Univeralty, 11
Colorado, Unilicralty of, II
Colnmbla Unidrorsity, il
Cooper Unlon, II
Corneil Univerulty, II
partmouth Colle e, II
Denres, Ulifermity of 11
De Pauw Unlvermity iI
Irezel Instltute of Art, sclence and Indeatry, 11
Duhlin, Univeralty of, II
Ecole dem Beany Arts, it
Edinhnrib, Univeralty of, II
Eton College, II
Fink Univeraity, II
George Washlagion Univeralty, II Georgia, Calvarilty or, II
Girard Collere, 11
giangow, Univeralty of, II
Halle, Univeraity of, ili
Hampton Normal and Agricultura inatltnte, III
Haryard Univeralty, III
Iledelbery Univermity, III
Idaho, Univeralty of, ili
illinoli, Unl veralty of III
Indiana Univeralty, III
own state College of Agriculture
and Mechanic Arte, III
Iown, State Univeralty of, III
Jreoh Tome Institute, III
John Hopline Univerulty, III
Jonrnallag, Gchool of, II
Kamas Univeralty of, 111
Kentuck Ualyeralty, III
Lavai tutveralty. Ili
Leland stanford Junlor University, 111
Lonisiana State Univeralty and Agricuitnral and Mechanical College, III
McGili College, and University, III
Maint, Univaraty of. III
fassachusetts Institute of Technology, III
Mchigan, Univernity of, III
Milltary Academy, Unlied States, III
Minneaota, Univernity of, III
Minsissippi, University of, III
Missonrl, University of, 11
Montans, University of, IV
Neshvilie, University of, IV
Nstlonal Academy of Selences, IV
National Academy of Mesign, iv
Nebraska, University of. IV
Nevada state Tralversity, iv
New Mezico, University, of, iv
New Yort, College of the City of
-
New York, Univeraity of the State of, iv
New York University. IV
North Carollna Colinge of Agri-
cuiture and Mechraic Arta, IV
North Carolina, Univeraity of, IV
North Dakota, Vaiversity of, iv
Northwestern University, IV
Notre Dame, Univeralty of, iv Oherin College, IV
Ohlo State University, IV
Ohiahoma, University of, IV
Oregon, Valverslty of. If
anord inaiversity, IV
penner Civersity or, IV
Pramue Cnive University of, IV
Prague, University of, IV
Pratt Inatitnte, IV
Princeton Univernity, IV
Radelife College. I
Ropai Inatitution of Great Britain. IV
Royal Soctety, IV.
Rnfiby School, IV
solnt Iratlus College, IV
Smint Louls, Univerity of. IV
8mith Cotiese, $\nabla$
smithsonian Institntion, $V$ Sorbonne, $V$
Gouth Carolina, IUnivernity of, $V$
Bouth Dazote, Univeraily of, V
Byracuse Univeralty, $V$
Teachern' Colierse,
Tennemee, Unifersity of,
Tezan, Univernity of, $V$
Tokyo, University of, $V$
Tokyo Univeralty of, $V$
Toronto, Univeralty or, $V$
Tufte Collese, $V$
Tulane University of Loulaiana, The, V
Tuskegee Nopms. unc induatrial
Institnte :-
Unlted gt. ir: Indan izdustrial school,
Utah, Unls "sity u: V
Vanderhlit falvirsity, V
Vasarar Col fe.

Vienna, Unja qi* of, V.
Waghington and Lee Univeralty, Wasblagton Univeraity, V Washington, University of, V Weltestey College, $\mathbf{v}$
Wesiejan University, V
Western Reserve Iniversity, V
Went Virginia, University of, $v$ Wilifam and Ms ry College, $V$ Wiliama Collepe, $V$
Wisconsin, University of, $V$
Wyoming, Unalversity of, $V$
Yale Unfveralty, $\mathbf{V}$

## EGYPT

Egypt, II
With subheads treating SuzFact AND Drainage Minerar HEnovaces, Climate, fni'gTeies, Transportation. INHABITANTE Governarent and Rrlioion, IIIs TOHY.
Graphic Illustration, F1, 3ゴ3

## Citien and Towns

Aboultr, I
Alexandria, I
A rinnoe, I
Assuan. I
Calro. I
Inamletta, II
Fashoda, II
Khartnm, III
Memphis, III
Port Sald, IV
Slut. V
Suatin.
guez. V
Thehes, V

## Istands

Elephantinc, 11
I'bilae, IV

## Unelanaified

Dongola, 11
Frilah, II
Iummy, IV
Nile RI ver, IV

## ELECTRICITY

See Pityics, subhead Electric. ity and Magnetism.

## ENGINEERING

Aquednet, I
Breakwater, I
Bridge, 1
Calsson,
Canal, I'
Croton Aqueduct II
Bam. II

Derrick, II
Derrict Crane, II
Dredging, II
Hevator, II
Engineering, II
Ferria Wheel, II
Forth Bridge, II
Jetty, III
Levee, 11
Lock, III
Steam Irammer, $V$
Steim shovel, $v$
Virength of Materiais, $V$
Visduct, $V$

## BNGLAND

England, II
With ubheads treating sos. pace ang Drainaoe, Minemal REsocacts. Fishratin, Aoaicula TEREF MANEFACTUEES, INHABITANTA AND LANOUAOE, HiATOAF. Graphic illuatrations, YI, 375. 370. 381, 380

## Cities and Towns

Aldershot, I
Barrow-in-Fiurnem, I
Ifedford, I
Hirmingham, I
Hoackhurn, I
Hooth, I
Bolton, 1
Rradiford, 1
Rrighton,
Bristol, I
Iunfies. I
Iurion-upon-Trent, I
('anterbury, I
(arifile, 1
Chathsm,
Chelsea, I
Cheltenham, I
Cheater, 1
Chesterteld, I
Colchester. II
Coventry, 11
Croydon, II
ITerby, II
Dover. 11
Exeter, II
Alsstonhury, II
aloncester, II
reennwleh,
IIalifaz, III
IIuddrrnineld, III
Iluli. III
Kenilworth, III
Kew, 111
Lancaster, III
Leede. III
L.elcester, III

IIncoln. III
Liverpool. III
London ili
Chs ring Cross, II
Covent Gs rden, II
Misnehcater, III
MIdaleabrough, III
Newcnatle-tppon-Tyne, IV
Northsmpton, IV
Norwich. IV
Nottigeham, IV
nldham. IV
Oxford, IV
I'lymonth. IV
Portsmouth, IV
rreston. IV
Shemeld, V
Southampton, V
Scuthpert, F
Stratford-npon-A $\%$, $V$
gundariand, $V$
Yarmouth,
Yort, $V$

## Colonioa

Benin, I
British Central Africa, I

Britigh Eat Africe 1
Britich Homduran 1
Gamble, 11
Gold Cont, II
Granam Land, II
Griqualand Weat IL
Culane, Britioh, il
India III
Labuan, III
Eacon, III
Tathonoland, III
Natal. IV
Niseria, IV
Orange Aiver Colony, IV
Thodesta, IV
Bjerta Jeone, V
slagmpore, $V$
Transval Colony, $V$
Uranda, $V$

## History

Armadin, I
Balakliva,
Bowworth Fleid, Battie of, I
Bunker EIII, Bettle of, I
Cavallerm, I
Chartiem, I
Climrendou, Conatitutions of, II
Clayton-Buiwer Treaty, II
Commonvealth of England, II
Corn Laws, II
Credit Mobllier, II
Crimean War, II
Domeday Book, II
Field of the Cloth of Gold, II
Flodden Field, II
French and Indian Wars, II
Geneva Arbltration, II
Ghent, Treaty of, II
Grand Remoustrance, II
Gulliord, Battle of II
Gunpowder Plot. II
Hampton Court Conference, III
Hastiusy, Battie of, III
Has-Panucefote Treaty, III
Huudred Day, The, III
Jay Treaty, III
Klug'a Mountain, Battle of, III
Lancalter, Honse of, III
IIberal, III
Lons Parliament, III
Lousturs, gleges of, III
Magma Charte, III
Magan Charta, III
Martion Moor, II
Normang, IV
Northumbrla, IV
Parle, Treatlen of, IV
Petition of Ripht, IV
Plantagenet, iv
Quadruple Alliauce, IV
Quebec, Battle of, IV
Ralslu River, Messacre of, IV
Revolutionary War in America,
IV
Roses, War of, IV
Rouudheads, iv
Rump Parliament, IV
Runnlmede, IV
RJe House Plot, IV
Ryawlek, Treaty of, IV
Relf-Denylng Ordinance, V
South Sea Company, $v$
Sifr Chamber, 7
Stuart, $V$
Snceestion Warm, $V$
Tent Acte, $V$
Tory $V$
Trafalgar, $V$
Triple Alliance, $V$
Tudor, V
Vtrecht, Peace of, V
Vletorit Croses. $V$
Vlenva, Congreas of, $V$
War of $1812 . \mathrm{V}$
Waterioo, Battie of, $V$
Whls, $V$
Witeutremot, V
York, House of, $\mathbf{V}$

## Lslands

Alderney, I
Ancullid 1
Antirua, I
Antipode
Arcenton
Aaceaman,
Barbados,
Barbacos, $\frac{1}{1}$
Bermend
Corneo,
Cat Ialand, 1
Ceylou, I
Chauvél Islands, I
Chatham Ielende, 1
Cyprus, II
Domivica, I
Falklaud, II
Firne II
FIII, II
Furneaus, I
Gilbert, II
Greada, II
Guerncey, II
Hons Kovi, 111
Inasua, III
Jamalca, III
Jersey, III
Laccadives, III
Leeward, III
Maldive, III
Malta. III
Men iale of, III
Manitoulin. III
Maurltus, III
New Guinea, IV
New Hehriden, IV
New Zealaud, IV
Cook Islands, I
Nicobar, IV
Norfols, IV
Penang, IV
Perim, IV
Pitceirn, IV
Galnt Christopher, IV
gaint Helena. IV
Galnt VIncent, IV
Scilly, $\mathbf{V}$
Seychellem, $V$
glugapare, $V$
golomon,
Thsmaula, $V$
Thanet, $V$
Tobago, $V$
Tonem, 7
Triuldad, $V$
Turks Inlande, $V$
Vancouver, $V$
Virgin, $V$
Wett Indles, $V$
Wight, Isle of, $V$
Wludward,

## Rivers

ATOM, I
Dee, II
Meraey III
Ouse, it
Onse, Great, IV
Severn, $V$
Thimes, $V$
Trent. $V$
Tweed $V$
Tyne, $\downarrow$

## Unelassified

Army of England, see ARyT, aub head Britinh Army, I
Bristol Chanuel,
Chevlot IIIIs, I
Fast ludla Company, II
Heptarchy, 111
Land'a Eud, III
Plymouth Eonnd, IV
Btonehense, $\mathbf{V}$

## HROB

Inrope, II
With anbheads treating 8un. Face AND DEAMAGE, DinkRAL Remourcea, Climate, VegetagION, ANIMAL LIFT, INAASITANTE, POLITICAL DIVIAIONA, Historg.
for geographlcal features under diferent countrles.

## Polticel Divinione

Andorre, 1
Austria-Hungary, 1
Belglum, I
Bulgaris 1
CIrcanala, II
Geumartisin
Fruce, II
Germany, II
Great Britain, II
Greece, II
Illyricum, III
Italy, III
Lelchtensteln, III
Lithnanla, III
Luxemburt, II
Monsco, III
Montenegro, III
Netherlands, The, IV
Norwis, IV,
Portugal, IV
Rumanla, 1
Gau Marino, IV
Servia, $V$
Spalu, $V$
Bweden. $V$
Swltzeriand, $V$
Turkey, $V$

## EXPLORATION

(Thallenger Expedition. I Nurth Polar Exploration, iV

## EXPOSITIONS

Ceutennial Exposition, I
Exhlbltion, II
Falrs, II
Lewlis Ind Clart Expositlon, 1II
Loulslana Purchase Expositioa, III
Pan-American Expositlon, IV
South Carollua Expoaltion. V
Trans-Mlsslesippl Exposition. V
World's Columblau Exposltlou, V
FISHES
Anchove, I
Angel Flsh,
Angler, I
Archer-fish, I
Balloon-inh, I
Barbel, I
Bass, I
Rellows Fish, I
Blacknsh I
Bluefish,
Blludish,
Bonlto, I
Bony Pike, I
Bull-trout,
Burbat. I
Caudletieh, I
Carp, I
Catith. I
Chub, II
Cilmbligg Perch, II
Coalfigh, II
Cod, II
Conger Eel II
Cortl Flsh, II
Dab, II
Devil Fish, II
noralsh, II
Drigopet, II
Eel, II
Electrical Fighes, 4
Elephent Fish, II
Fintiog Finh, II
Fileath, II
Flatainh, II
Flounder, II
Fiylog ${ }^{\text {Mobs, }}$ II
Gar 11
Gllthead, II
Goldath. 11
Goramy, II
Graillo 1
Grant in
Grudet in
Gudgeon, II
Hsddock III
Ilestish, III
Hallbut, 111
Hemmerhead, 11 II
Hoppocampus, III
IIerring. If
Jewfoh, III
Jobn Dory, 111
Lamprez 111
Lancet Fiab III
Lantern Flih, III
Ling, 111
Lampath, 111
Mscterel, 111
Menhaden, III
Minnow, II
Mullet, iv
Oerfish, IV
Opab. IV
Paddietish, IV
Pellectin Fiah, IV
Perch IV
Pike, IV
Pre Perch IV
Plichard it iv
Pliot Flah, iv
Pipelish, IV
Pompano IV
Porgy 1
Rayg.iv
Rediah, IV
Blbbon Fish, IV
Ronnd Flsh, iv
Rudder Fish, IV
salmon, IV
Solmon Trout, IV
Saud Eel, IV
gardine, iv
Ssury Pike, iv
Suw Fish, iv
Scelbbard Figh, iv
sead, IV
Scorplon Fish, $V$
Scuipln, $\nabla$
Sha Sturgeon, $V$
Shad $V$

Kbeepabead, $\bar{V}$
Sbovel Flah, $\nabla$
Skate. V
Smelti, $\mathbf{Y}$
stictieback, $\nabla$
Sting Ray, $\forall$
Sturgeon, $\mathbf{V}$
Surker,
Suncishi,
8urmuliet, $\bar{F}$
Swordish, $\nabla$
Tarpon, $\bar{V}$
Threnher Shark, $V$
Torpedo, $\nabla$
Troint, $V$
Tunnj, $V$
Turbert, $\mathbf{\nabla}$
Weever, $\boldsymbol{V}$
Whitehalt,
While Fish,
Flanders, II

FLANDERS
squeatlons, V1, 42
anploen y
20ato $V$
Trume $V$
Turnlp
Vegetables. $\mathbf{V}$
Vervaraniom, $V$
Vinesar, $V$
Walnut
Whent
Weet also, VI, 416-418
Tam,
Wee alco Beveruana

## Proepece

Candy Maklog, I
Canulug, I
Cookery, II

## FORTS

Ehrenhrel tatel $\mathrm{n}_{2}$ II
Fort Dearborn, II
Fort Duqueane, II
Fort Maber, II
Fort Henry and Fort Doneison, II
Fort lomice, II
Fort Monitrle, I
Fort Nic eter II
Fort Plllow, II
Fort Etaumix II
Fort Bumter, II

## praves

France, II
With abheads treatine 8usFace and Dhainage, Cilmatw, Mixtmat Retouncea, Fiameminn, Aonicultusm, Mivutactunda, Thayapontation, Commence, Inhabitanta and lanounong (lovEEMMENT AND HELIOROM, HEABET Graphtc Illustrations, V1, 374,

383, 384

## Cities and Tewns

Agen, 1
Asincourt, I
Alencon, I
Amiens, I
Angere, I
Anconleme, I
arlen, I
Arfan, I
Avignon, I
Bajenx,
Bayonne, I
Bemancon, 1
Bealers, I
Bordeaux, 1
Boalogne-aus-Mer, I
Bonlogne-sur-Selife, I
Bourges, I
Bremt, I
Caen, I
Caborm, I
Calatis, I
Cambrai,
Cannen, I
Cette, I
Chalonimbr-Marne, I
Chambord, I
Chantily,
Chartrew, I
Cherbours, I
Cinny, II
Cognac, II
Creey, II
Dleppe II
Dijon, II
Dontís. II
Fontaluebleatu, II
revoble, II
favre, III
Latal III
LHe, III
Limoges, III
Lubeck, III

## Lyons, 111 <br> Gans, IL, III <br> Yartilles, III <br> Montlucou, III <br> Montpelifer, III <br> Names, IV <br> Nantes, IV <br> Narbonge, IV <br> Nevers 1 <br> Nice, IV <br> Nmes, IV <br> Orleans IV <br> Parle, IV <br> Champn ELysees, I <br> Pan, IV <br> Perplgang IV <br> Renuen, IV <br> Rhelma, iv <br> Rochefort, IV <br> Roubalz, IV <br> Ronen IV <br> Balnt Ciond, IV <br> Raint Denle, IV <br> galnt Extienne, IV <br> Gaint Quentia, iv <br> gevren, $V$ <br> Touton, $V$ <br> Tonlouse, $V$ <br> Tours, V <br> Trojes, $V$ <br> Valmy, $V$ <br> Vermalifes, $V$ <br> Colenies

Afire (Political Divistont), I
Algeria, I
Cambodita. I
Cochin-China, II
Balgon, IV
Dahomer, II
French Indo-China, II
French Kongo, 11
French Aomailland, II
Gutana. French, II
Irory Coast, III
Kartzal, III
Madagascar, III
Senegal,
Senegarnbla and Nige
torles, V
Tongking, $V$
Tanis, $V$

## Goverament

Commnne of Parle, II
Committee of Public Sarety, II
Parlement, IV

## Gulfs and Bays

Blacay, Bay of, 1
Lyons, Gulf of, III

## History

Alx-la-Chapelle, Congress of, 1
AIt-ia-Chapelle, Treattes of, I
Atnace-Lorraine, I
Barras, I
Bartholomew's Day, Salnt, I
Rastille, I
Bonaparte, Napoleon, I
Borodino, Battle of, 1
Bonrbon, I
Capetian Dynanty, 1
Carollnglana, I
Chonane, 11
Continental Bystem, II
Convention, National, II
Crimean War, II
Danton, II
Directory, II
Dreaden, Battle of, II
Emistren, II
Field of the Cloth of Gold, II
Eranco-German War, II
French and Indian Warm, II
French Revolution. II
Graphie Iliustration, VI, 388

Froude, 11
Gabelle, II
GIroudiath, II
Gulitotive, 11
Guise, II
Huguenots, III
Guadred Year' War, III
Jacohins, III
Jaconimerte, III
Jemappes, Battie of, III
Jena, Batile of, I1I
July, Column of, III
Jaly, Bevolntion of, III
Lettres de Cachet, III
Loulshare, Elegen of 111
Marenta, battle of, 11
Miniselppl gcheme, 111
Nantes, Udict of, IV
National Guard, IV
Normans, IV
Orteans IV
Parla, Treaties of, IV
Pealnentar Far, IV
Gnadruple Alllance, IV
Gnebee Battie of, IV
Ratiln River, Mfonacre of, IV
Retchatadt, IV
Roland de lim Piattem, IV
Rywlek, Treaty of, IV
Galut Jnat, IV
Gedan, Battie of, V
South African Wer, $V$
Succembion Warn, $V$
Terror, Relgm of, $V$
Tricolor, $V$
Triple Alliance, $V$
Utrecht, Pcace of, V
Valols, $V$
Vienna. Congress of,
Waterioo, Battle of,' $V$
Westphafla, Peace of, v
Zontvet, V

## Islands

Comoro Islands, II
Corsica, II
Guadeloupe, II
Madagancar, III
Marquesas Isiands, III
Martinique, III
Mayotte, III
MIquelon, III
New Caledonla, IV
New Hebridcs, IV
New Hebridc
Ratnt Plerre, IV
Soctety lsiands, $V$
Morntains
Alps, I
Cevenner, 1
Jura, 111
Mont Blane. IV
Pyrenecs, iv
Vongea Mountalng, $V$

## Provinces

Anfon, I
Brittany, I
Bargundy, I
Gascony. II
Normandy, IV
Rivers
Charente, I
Cher, I
thure, II
Garonne, II
Lolre, III
Marme. III
Mense, III
Moselte, IV
Rhone, IV
Gaone, IV
Salne, $\mathbf{V}$
Selne,
Somme.
Tarn, $V$


## CBOCRAPHY

Antarctic Circie, I
Aretic Circle, I
Aretic Resion, I
Chart, I
earth, II
Ase of the, VI, 842
Orisin of the, VI, 344
Equator II
Geogrephy, II
Globe, II
Hydrearaphy, III
Intergatlomal Date IAne, III
see, aleo, VI, 87
Isthmas, III
Latitude, III
Congitude, III
Longltude and Time, VI, ss-90
Map III
Mertdian, III
Sphere ${ }^{\mathbf{V}}$
spherold, v

## Phyien Coorupis

Acinte Line,
Artd Reglon, I
Atmosphere, I
Atoll, 1
Avalanche, I
Basin, I
Blasard, 1
Butte, I
Calmis, Regions of, I
Canyon, I
Cataract, I
Cave, I
CIIIT, II
Cimgte. II
Cloud, 11
Cloud-hurst, II
Cold Wave, II
Coral, II
Cryetaline Rocke, II
Currents, Marine, II
Cyclone, II
Delta, IL
Desert. II
Dew. II
Mamel Swamp. 11
Divide, II
Doldrums. II
Earth Currents, 11
Earthguake, II
Fromion. II
Fiord, II
Freesing, II
Frost. II
Floating Island, II
Flood IILaln, II
Fog, 11
Foresta, II
Fonntain. II
Geymer, II
Glaclere. II
Glacler Tahles, II
Guif Stream, II
Hisil. III
IIspbo: III
Hase, III
Hemisphere, III

Hit1, III
IIOreo Latitndes, III
Humaity III
I ceberse, III
Ialand, III
Itrobere II
Iaothermala, III
Jongle, III
Jnrisulc Syatem, 111
Kuro 81vo, 111
Lake, III
Liva, III
Hirhtning, III
Maeistrom, III
Marah III
Mena, III
Mirare, III
Mountaln, IV
Muir Glacler, IV
Daals, IV
Physiography, IV
Pledmont Repion, IV
Plaln, IV
IPateau. IV
Pole, IV
Prilitie, IV
Qulciraand, IV
Raln, IV
Ratnbow, IV
RIrer, IV
Selsmograph, $V$
Snow,
Snow IIne, $V$
Spring. V
Steppen, V
Storms, V
TMhteland, $V$
Temperature, $\mathbf{V}$
Terrace. $V$
The?mal Epringa, $V$
Tides. V
Tundra, $V$
Volcano, $V$
Waves $V$
Wind, $V$
Waterapont, $\mathbf{V}$
Whiripool, $V$
Zone. $V$
Colitical Geography is ditatib nted throughout the Index under varlons headinga

## Find

Chinook. I
Etesian Winds, II
Hurricnne, III
Khamain, III
Land and Sea Freezes, II
Monsonn, III
Norther, IV
Northwesters, IV
Pretsilling Wpaterliew or Antl-
Trades. IV
Simoon, $V$
Siroceo, $V$
Squall. $V$
Tornado, $\mathbf{V}$
Trisde Winds, V
Typhoon, V
Whlriwind, $v$

## CSOLOCI

Alponilan Bystem, I
Alturium, 1
Archmean Syatem, I
Azole Era, 1
Bed, I
Roulder, I
Cambrian Feriod, I
Cambrian stratom, I
Carbonlferous Perlod, I
Carboniferoun System, I
Carboniferora, 1
Cleavage, II
Conglomerate. II
Cretaceonn 8rstem, II
Devonlan Period, if

Devonias Bsyterin, II
Dike, II
Dip 11
Drirt, It
Garths, 11
Earths, 11
cocent, 11
Wrratics 11
Fault, II
Geology, II, and VI, 841-847 Age of the Earth, VI, 842
And Mytholons MI 842
Beginning of VI, 842
Chart, V, 843
Diviaions of Time, VI 344
In the Middle Agen, 84
Origin of the pharth, VI, 844
Outliue, VI, 341
Present Geologic Changes, :I, 846
Quentions, VI, 347
Giacial Period, IL
Loese, III
Mesosole Era, III
Metamorphic Eiooze, III
Metamorphlam, III
Metonicercle, III
Middene Aren, III
Midde A pen, III
Mlocene Epoch, III
Mlocene Epo
Moralne, IV Neocene Bpech, IV
Nlatara serfes, IV
Obmldan. IV
Oligocene Epoch, IV
Ordovic!an 8ystem, IV
Palesolc Era, IV
I'llocene Epoch, IV
I'rotozole Era, IV
Quarta, IV
Quaternary Period, IV
Quaternary Perio
Ripple
Stalactite, $V$
Talus, $V$
Tertlary Period, $v$
Trachyte, $V$
Trenton Scrips. $V$
Triatile syatem, $\mathbf{V}$
Tufa, $V$
Veln, $\mathbf{V}$
Rasait. 1
Roelo
Bltuminona 8bale, 1
Breccla. I
Breccia, I
Biahstone,
Diane, II
Dlahase, II
Dolomite.
Gnelas, II
Igneous Rocian, III
IImestone, III
Mlea Rchiat. III
New Red Aundntone, IV
OId Red gandstone, IV
Porphyry IV
Irumice, IV
Quartzite, IV
Rocking Stone, IV
Rocks, IV
Sandstone, IV
Gerpentine.
Shate, $V$
Sllurian System, $\boldsymbol{V}$
Siate, $V$
Soapstone. $V$
Stratified Rocke, $V$

## cEORGLA

Georgia, II
With subherda treatins grixface and Drainaog, Climate, Mineral Resources, Agricul tcre, Manufactrres, Tranafoltation, COMMFRCE. GOFETVMENT, Enveation, Histone.

## Citios and Towns

Atbany, I

Government and Politics

Erefeld, III
Leipets, III
Liegaith III
Indwishaten III
Macdebnrs. III
Mans. III
Mannheim, III
Mets III
Mnhlhansen, IV
Mnnich, IV
Munich, IV
Nuncter, IV IV
Oberammertivn, IV
ORenbuch, iv
Onnabrick, IV
Pomen, IV
Potmanm, IV
Ratiebon, IV
Rostock, IV
Stettin, $V$
8tramabnreg $V$
Stnttgrt, $\nabla$
Uim,
Welmar $V$
Wlembaden, $V$
Wittenber
Wuraburg, $V$

## Colonies

Damaraland. II
German Bat Africa, II
German Bonthweet Airica, II
Kamerun, III

## Histor

Angabnre Confention, I
Franco-German War, II
Tree Citlew, II
Golden Bull, II
Hanseatic League, The, III
Hohenataufen, III
Hohenzoliern, III
Lelpailiance, II
Litsen, Battles of, III
Outren, Battlee of, III
Ostraciam IV
Reasantio War, IV
Sadowar Battle of, IV
Gchmaikaldic League, IV
Geven Weels' War, $V$
Geven Yeary' War, $V$
Gucceasion Warm, V
Thirty Years' War, $V$
Triple Aillance, $v$
Utrecht, Peace of, $V$
Vienna, Congreas of,
Weatphalia, Peace of, v
Zollvereln, $V$

## Islonds

Admiralty Ialands, I
Biamarck Archlpelago,
Carollne Islands, I
Heligoland, III
Ladrone Ialands, III
Neumeckienburg, IV
New Guinea, IV
Pelew, IV
Rugen, IV
Solomon Isiands, $\mathbf{V}$
Mountaina

Rlesengebirge, IV

Alps, I
Black Foreat, I
Harz, III
Jnra, III
Vouges, $\mathbf{V}$
Eibe, II
Maln, III
Nlemen, IV
Oder, IV
Rhine, IV
Spree, $V$
Samon, IV
-

Vistaia $V$
Wewer, $V$

## Statea <br> Alace-Lorralne, $I$

Anhalt, I
Baden, Gruad Duchy of, I
Bavaria
Brunatick, I
fiemse, III
Oidenbris, IV
Pruminate I
Brandenburs, I
Hanover, III
Rhine Province. IV
Gchicentr-Holteln, IV
gaxony. IV
grabay, $\frac{1}{v}$
Warttemberg, $V$

## Uaclassified

Army of Germany: see under Aryw, rubhead Germsin drmy,
Constance, Lake, II

## COVERNMENT AND POLITICS

Abdication, I
Addreas, Forms of, I
Allen and Gedition Lawn, I
Ambasandor, I
amendment, I
Arbitration,
Attaindes,
Attainder
BIII, I
How It Becomes Law, VI, 213
Bill of Attainder.
Bill of Rights,
Bimetalifam,
Blue Bnoks, I
Bive Laws, I
Bounty, I
Bureau, I
Cabinet, I
8ee, alno, VI, 209
Caucua, 1
Census, I
Charter, 1
CItizen, II
City, II
Study of a, VI, 285
Canadian Government, VI, 208 . 228
Education. VI, 225.227
Agricuiturai, VI, 227
Executive Departmeut, VI, 208 211
Civil Service, VI, 210
Governor-General, The, Vi. 208
Premier, Tbe, VI, 210
Privy Councli, The, VI, 200
Judiclai Department, Vi, $21 \%$
Admiraity Court, V1, 215
Exchequer Court, VI, 215
Supreme Court, VI. $21 \%$
Legislative Department, II, 211-214
Budget, The, VI. 214
Committeen of Parllament, VI, 213
Electoral Districts, VI, 21
House of Commons, Vi 212
How a Bili Becomé R Liw
How Bill Becomen Law
VI, 213
How Elections Are Held, Fi.
212
Onfera of Parliament, Vi, 212
Parilament, VI, 211
owers of Parliament, VI
214
Senate, The, VI, 211

$\qquad$

[^7]$\qquad$
$\qquad$

[^8]$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

[^9]-




[^10]Grammar

Local Government, VI, 216-217 Provinelal Goverament, VI, 217-219
Brecutive Council, VI, 217 General Anmmary, Vi, 210 Legialative Ansemhly, VI, Lentenant-Governor VI, 217
Provincial Confts $\mathrm{VI}_{\mathrm{i}} 218$
Public Lands, V1. 2287.228
Disponal of, VI, 228
Ilomenteads, VI, 228
Surver, VI, 227
Royal Northirent Mounted PoHee, VI, 220.22:
Dnties. VI, 220
Formatlon, VI, 220
Prement Orgienlation, VI, 221
Taration, VI, 222 -225 IIInstrated Lemmon, An, VI, 224
Inland Revenue, V1, 223
Loral raxation, VI, 223
National Government Con. sildered, VI, 222
Tarifí on Imports, VI, 222
Territorial Government, VI, 219-220
Northweat Territorien, VI, 218
Tukon, The, V1, 219
Civil Service and Civil Berylce Reform, 11, and VI, 210
Colving, II
Colonlem and Colonizatloń, It
Commine, 11
Confederation, Articies of, II
Congresm, 11
Congrems of the ITnited States
Congressional Record, II
Conservation, II
Constitntion, II
Comstitution of the United states, II II
Conpul, II
Contraband, II
Contract, II
Copyright, II
Connty, II
Stndy of a, VI, 284
Courte, II
Cunadian. VI, 2I5, 218
Costomn Duties, II
Diet, II
Divime Right of Kings, II
Dominion, study of the, VI, 288
Duma, II
Election, II
Electorsi College, II
Emineat Domaln, II
Excise Tax, II
Enemy, II
Ezecutive, II
Extradition, II
Far Eantern Quention, II
Feodni System, II
Flig. II
Figg, VI, 393-396
Outline, VI. 395
Force B1Ins, VI, 396 .
Franchise il 1
Franchise, II
Franking, II
Free Port, II
Pugltive Siave Lave, It
Gome Prenerves, II
Home Rule, III
Homestend Lawn, III
Hoatage. 111
Immigration, III
Impeschment. III
Impenchme III
Impont, III III
Imdependent Treanury, III
Inherltance Tax, III
Inlsnd Revenue, VI, 223
Interstate Commerce Act, III
Jlogo, III

Junta, 11:
Lands, I'ubilc, III
Legisiature, III
Loral Option, IIt
Margne and Reprisai, Lettera
of, III
Martal Limw, III
Minintere, Forelgn, III
Ministry, 111
MInt, III
Monarchy, III
SuTwump, IV
Mutiny Act, IV
Nat loanal Debt, IV
Naturaliza ition, IV
Nanfation Actm, IV
Neutration Ac
Notary Lublic, IV
pardon, IV
I'arlement, IV
I'arilament, IV
See, also, VI, all
Pasaport ":
Imtent, IV
I'atroon Syatem, IV
reace Conference, Interna.
tional, IV
rension, IV
Poll, IV
Poil, IV
Poowers, The Great, IV
I'rivy Council, IV
Privy Seal, IV
Irotection, IV
217, Government of n. VI.
Study of a, VI, 287
Quarantine IV
Quorum, IV
fiebelilon. IV
Recali, IV
Reclproclty, IV
Record, IV
terercudum, IV
Repuriation
Repudiation, I
Republic, IV
Revenup, Iniand, VI, 223
Revolution, IV
Riot, IV
IRuiers of the Worid, VI, 4II
geal,
Sehool District. VI, 216, 283
Recret Sprvice, $\dot{V}$
Senate, V
Gingle Tax,
$\underset{\text { Sovereignty, } V}{\text { Singic Tax }}$
Soverpignty
Speakpr, $v$
Speaier, $V$
Roldiers'
Home, $V$
Squatter Soverelgnty, $V$
Ntamp, V
StampAct, $V$
State, V
Statew-General. V
Statew' Rights. $V$
Statistics, $\mathbf{V}$
Rufrage, $V$
Enpremacy, Royni, $v$
Supreme Court, $V$
See, aiso. VI, 215
Survejing, $\nabla$
Tammany Soclety. V
Tarifi, V
On Importg, VI, 222
Tax,
Taration, V1. 222-225
Graphic lifustration VI, 224
Imports, Tarif on. ${ }^{\prime} \mathrm{I}, 2 \mathrm{n}$,
local, VI, 223
Revenue, Iniand. VI, 223
Tenure of Ómce Act. $v$
Territory, $V$
Toli, V
Townibip. Study of a, VI. 284
Trade-mark, $V$
Treason $V$
Treaty
Votlig Machinc, $V$

Women' Lishts, V

## Manieipal

Clity, Ftndy of a, VI, 285-283
Common Connell, il
Fire Department, it
IIealth, Boarda of, III
Mayor 111
Municipal Government, IV
Municipal Ownerahip, iv
I'avement, IV
rollec, iv

## Political Partios

Antl-Federailats, I
Barn Burners, 1
Bucktalin, I
Constitutional Union Party, II
Fipderai Paptrart, II
Free-toli l'arty, II
Greenbactarify, II
Know-Nothings. III
Know-Nothi
Ifberai Repuhilcan Party, III
IAlieral Unloniet Inerty, ifi
Abrerty IMarty III
Loco-Foco, Ifi
Nationailst, Iv
l'olitical Partien in the
I'nlted States, IV
Eopuilifi I'ariz, iv
Prohihition I'arty, IV
IRepubilcan Party, IV
Titlea
Callph. 1
Czar, II
Dauphin, II
Doge, II
Emperor, II
Khan, III
King, III
Landgrave, III
Majegty. III
Mandarin, 111
rasha, IV
I'eer. IV
I'resident, IV
I'rince, IV
Qupen, IV
Itajah. IV
Itegent, IV
Shelk, V
Shogun. V
Sindia, $v$
Stadtholder, $V$
Sultan, V
Thane, $V$
Tities of IIonor, $V$
Vizipr. V
Wnles, Prince of, $V$
Roman
Censors, 11
Consui, II
Iecempirs. II
IIctator, II
imperator, III
IIctors. III
I'raetor, IV
Quapstor. IV
Sepate, $V$
Tribune, 7

## World Politice

Ralance of Power, I
Dlplomacy, II
Imperiailom, III
GRAMMAR
Adjective, I
Jee. aiso, VI, 534, 630
Adverb, I
Article, I
Conjunction. II
Grammar, if


Amerlen Indinne VI, sol
Bill Becomey Liv, llow a, VI, 218
cofidew, Perels, Aesyria, VI, 858
Chlne, V1, 854
Coinmbut V1, 884
Cpudes, rbe, VI, 718

custur, v1, 878, 879, 881, 885
Feodnlism and Chlvalry, VI, 877
France. VI, $874,883,864$
French Revolution vt 8 B .
Germany After 1814, VI, $88 \%$
Germany Greec. $^{2}$, 857, 858, 35 , 800


Lonstellow. VI, 60
Hohammedinimp, VI, 868
Mithologs, VI, 367
Normemen In Amerlca, VI, 88
Renmisen nce, V1, 886
Rome, VI, $361,882,864,885$,
206
Runale, VI 882
Tacntion, VI, 224
Unincatlon of Italy, 887

## CREAT BRITANN

Great Britaln, 11

scorund, Walie

## CRESCE

Greee 11
Fith suhbeas treatine sut FMCE AND DEAIMAGE, CLIMATV
 TRANAPOETATION, IXHABITAXTL
 AND LANCO Neg. LoUCAMOH, Gov. Grimplic illuntinilome, fi, \&

## Citios - Towne

Argoc. 1
Athens, I
Antle 1
Cbalele,
Corinth, 11
Delphl, 11
Hellopolia, III
Lepanto, 11
euctra, III
Marathon, III


Diviolons
Areadita, 1
Atticm, 1
Bomotia,
Epirue 11
Meacenta, III
Themaly, $V$

## History

chaeng, I
Aezonpotami, I
Aenchlnes, 1
Aetolla, 1
A peallarie, 1
Alezander the Breat. I
Amphictyonlc Council, 1
Areopagus, 1
Athens, 1
Thirty Tyrants, $V$
Islands
Aegina, I
Amaroe Island, 1
Cephalonla, II
Cortu, II
CJclade., It
Delos, 11
Fuboen, II
Hydra, 111
Ionlan Islands. 1 II
Ithacs, 111
Melos, III
Balamls, IV
ganta Maura, IV
Byra, $v$
zente, $V$

Mountaias
Felleon, 11
Oljmpus, iv
parpassuis, iv

## Rivers

Achelous, I
Acheron, 1

## Unclasaified

Acropolls, I
Cape Colonna,
Corinth, Gulf of. 11
Corinth, Inthmus of, II
Helots, 111
Lyceum. 111
Ofypla, IV
olymplad, iv
Olymplan' Games, IV
Olympus, IV
Otraciom, IV
Peloponnemus, IV
gellnna, $\mathbf{V}$
Tempe, Vale of, $\mathbf{V}$
Threce, $V$
Wooden Horse, $\mathbf{V}$

## GULANAS, THE

Oniana, Brittsh, Il
Georgetown, 11
Ouiana, Dutch, II
Paramaribo iv Cayense, I

## CULS AND BAYS

Aden, Gulf of, I
Arabal, Gulf of, 1
Alzon bay. I
Bamn's Ray.
Beuyal, Bay of.
Blarra, Blght or. 1
doteay Bay
Bothana, Guli of, 8
riotol Chapael I
ciliforate Gute
Campeche, Gulf of, 1
Carpentarte Guik of, I
Caseo Bey, 1
Cattegat,
Chalenra Bay. 8
Chemapolie Bay, 8
Cook Intet, 11
Corlath, Oilf of, II
Mrien, Oulf of
inelagon Bay, Il
Delaware bay, II
Doliapt, II
FIatand, Oulf of, II
Fiorlda, Gulf of, II
Fuady, Bay of, 11
Galvetion Bay II
Galway Bey, I
Beorgian Boy 11
Outnee, Guif of, 11
Hoaduram, Bay of, III
Irudeon Bay II
James tay III
Linctazter gound, III
Long Inland sound, III
Cyoan, quif of 111
Manar, Gule of, 111
Mamachncetti Ray, III
Mexico anil of, III
Minae Bay, III
Monile Bay III
Moraj Firth, IV
Naplea, Bayory iv IV
Ocracoke Inlet, if
Pamilico found, IV
Parla, iv
Pamamagnoddy, IV
Persian Cnif, iv
plymouth sound, IV
puget sound, IV
Queea charlotte Sound, IV
Riga, Ouif of, IV
gaint Lawrence, Gulf of, IV
gkagerrak, $V$
solway Firth, $V$
Spencer Oulf, v
Tampa Ray, v
$\mathbf{Y}$, The, $\mathbf{v}$

## HAWAII

Hawnll, 111
With auhbeadn treating 8 gr. pacm and Drainaike, Climate, induatries, Tranapohtation, is: habitants, Edication Ooizin. ment and Reliolon, Ifintolf.
11110. 111

Honolulu, 'I
Molokal, ;

## HOLIDAYS AND FESTIVALS

All-Baints Day, I
All Boule Day, I
Arbor Day, 1
Ancension Daj, I
Ash Wednenday, I
Balrem, I
Bartholomew'a Day, Baint, I
Beltane, 1
Candlemas.
Carnlial.
Christmas, II
Decoration Day, II
Easter, 11
Eplphany, II
Fesilvais, II
Fools, Feast of. 11
Cood Frlday, 11
Hallow-even, II
Hollday, IIt
Independence Das. III
Innocente, Fenrt of Holy, III
Jubllee. III
Labor Day, III

Lopercallo 111
Yound Tancins, III
Michatime III
New respabyy iv
Pall Eureay
Raturnalle, it
ghrove Treendas. 7
Thbernaclen, $\bar{y}$ fat of, $V$
Trank tivitios Daf. $V$
Trinity innary.

## HOLHAND

See Ne qralayds, The

## HOMTS OF FAMOUS PEOPL

Abbotuford 1
Monticella III
Mount Voraon, IV

## HOW TO STUD:

Agricalture ta achooln, 2\%-87 Animal!, 68
Aat The, 60a-612
Apple, The, 481
arcbitecture, 47
Attronomy, 116
Hees, 612
Blograpby, 188
Birdo. $585,560-590$
Blood. Circniation of the, 651
Batterdies, 614
Cosel. 442
Cotee, 428
Corn. 418
cotion. 418
Deiry :'roducta, 420
Dogis. 600
Bar, The, 652
cre. The, 655
Fisberles, 140
Flaga, 305
Foreatry 488
General gucentiona, 6
Geography. 280
geology, 341
IItery. 810
Indiane 390
manatries. 412
[nseets. 17, 886, 695, 898
Lumbering. 436
Mnalc. 666
Mytbolopy. 88
Peacb, The 432
myolology. 640
bysice, 843
Peturei, 624
Plant Dlemasen, 18
Mants. 686
salt, 22
81k, 422
soil, 16
8mirrels, 688
Stistnary, 680
8 ugar 42
Tea, 420
Treen, 588-604
Whent, 416
Wool, 420

## HOW TO TEACH

Addition, Raptd, Vi, 81
Aasifile in Arithmetic, VI, 50
Artbmetif, VI, 50 ; nomber lessons, VI, 61 ; arat year, VI 53; recond year, VI, 67 ; thlrd jear, VI. 61 : fourth year, VI. 65 : afth year, VI, 68 ear, eirth rear. V1, t5: epronth vear, V1, 77: elghth year, VI, 80
Compoelfions, V1, ס14, 527, E31. 535, 540
Cuble Meamore. VI, 80
Date Line, I jternational, VI, 87
Drawing. VI, 246: freehand, V1, 247: perspective. VI. 240: componition. VI. 2.00 : direction.

V1, 251; action, V1, 253 copervivis dedia. vi, 205 ormy VI, 280 ; marallel drun Eemy wrling, V1, 510
Yablee, V1, suif
Uecrraphy, $\mathrm{Vl}, 202$
IIIntory, II, 840
Intereit, Vi, 7
Kiddergarted, V1, 485-491
Langnaje and Grammar, V1, 492 : nrit year, VI, 402 ; mecond year, VI. 600; third year, VI bes: sourth jear VI, 814: Afth cear VI, 52 f: minth year VI, zear: verenth yeart VI, ©SI ; elizhth yerent. V1,
Pongitude and Time, V1, 83
Meanurcmente VI, 05-08
Morale, V1, 278
I'arta of 8peech, VI, $532-885,537$. 040
Percentare, VI, 6 日
Poeme in the Graden, V1, 408, 508, 811,816, B25, $830,685{ }^{408,}$ Readios, Vi, B6I.A70
simple sentence, Tbe, VI, 531
sguare Root and Cube lloot, VI,
Standard Time, VI, 89
Storien, VI, 613, 6113
Word Study, VI', 530

## HOW TO MAKE THinces

Barometer, V1, 112
Camp. VI, 714
Ejecirical Devices, V1, 710
Finhing Tackle, VI, 708
Gymanjum, yi, 708
Klte, Mi, 705
l'unt, VI, 717
Apriggboard, VI, 707
Steam Engide, V1, 713
HUNGARY
Nee Acstafa-llcingay ICEIAND

## Sce Dexmabe <br> IDAHO

Idalıo, 111
With ubbheads trrating sue face and Dinanage. Climate, Mineral kenourcera, climate, TURE, MANLTACTIRES, TRANARORtation asb Commerce, TovernTATION AND CGMMERCE, GOVERNIIENT, EDLCATION, INemtitutigns, Ilistorr.

## Citios and Towna

## Boive, 1

Lewlston. III
Moscow, IV
I'ocatello, IV
Wallace, $V$

## Unclassified

Ciarke's Fork. II
Hocky Mountains, IV
Spake MIver, $V$

## minnots

IIIfnois, III
With snbheads treatine SumFACE AND DIAINAGE, CLIMATE, minerat Resolrcea, Agaicultrae, hanteactcafa, traxapontation, Goyebnment. Rhecatig:, institutiona, Histoay.

## Citios and Towns

## Alton, I

Aurora. I
Reilevilif, 1
Relvider. 1
Blacomington, I

Blive Itiand, I
Calro, 1
Cantom,
Centrifia, I
Champarisn,
Chirlenton.
Cblearo, 1
Dan ilie, 11
Decatur, II
Deking,
Dixua, II
Gant gaint Lonis, II
Misim, 11
freenort if
Ereeport. 11
Galena, II
dalemburg, 11
IIarvey, III
dackmonvile, 111
Jollet. III
Kabkakee, III
Kewnnee, III
La Nalle, III
LIncojn ItI
Iftchifeld III
Macomb, III
Mattoon, 11
Moflne, III
Monmonth, III
Mount Vernon, 17
Murphyboro iv
Ottawn. IV
pana, Iv
Paria, iv
I'ekin, IV
I'ekin, IV
I'eru, iv
Qulney, IV
IRockford, IV
Rock Inland, iv
Sprlagflej $v$
Spring Valley, $\nabla$
Stering. $V$
streator, $V$
Itreator, V
Waukfgan, V

## Lalses

Michigan, Lake, III
Rivere
Fox. 11
IIlinols. III
Kaskamin, III
MIanimplppl, III
Ohlo, IV
Itock. IV
Wabash, V

## INDLA AND BRTILSH INDA

India. III
With anhhcada treating suaFace AND Draisage, CLimate, Minsial Rusouacea, Agatcuz TURE. MANUFACTUEEA, AGAIcultation. Comercreara, ThanapoaTATION. COMMNRCE, INHABLTANTA A N D LaNovions, Gavethement, IIIstony.

## Cities and Towas

Agra, I
Aliababad, I
Ambala, I
Amrltear,
Ampah, I
Bangalore, I
Barelly, I
Baroda, I
Bejapoor, I
Benares, I
Berhampur, 1
Bombay, I
Calcutfa.
Calicut, I
Cownpore, 1
Cochln, It
Daced.
DInapur, II

Colepede II
Praliop it
injorenta II
Inpar II
Jaiamohar 111
Lenores 11
Mermow ill
Madras in
Malacea, III
Maddalay, III
Manimalm II
Mymore. IV
patan, Iv
prehatwar, IV
Pondicherry, iv
poona, IV
Rangoon, IV
merlinacque, $v$
Burat, $V$
Culfa and Eage
Bengal, Bay of, I

## Islando

Andamans, 1
dephanta, Il
Leccadiven, III
Rametwaram, IV
Provinces
Amemin
Romber
fomba 1
Karital, III
Madrag, III
Ondh. IV
Rajpntana, IV
sindh. V

## Mountains

Everent, Monnt, II
IIImaiaja, III
Karatorum, III
Rivera
Brabmapatra, I
Chenab, 1
Gangen, II
godavari, II
Gumth, II
Hosil, 11
Indus. III
Irawadi, III
heiam. III
Mahanadi, 11
Nerbudda. IV
gaiwin. IV
Sutiej, v

## Unclascified

Banian, I
Buddha. I
Buddbism. I
Cape Comorin, I
Decean, II
IIIndnaitan, III
Jats. III
Nepai, IV
parnees, iv

## INDIANA

Indiana, 111
With gubheada treating sua. face and dmainage Climate, Minfral Rrsocaces, Fiamenits,
 tuans, Thankpoatation govers. MFET, EDECATION, INSITTETIONS, Histoar.

## Citios and Towas

Alexsadria, 1
Anderson,
Reriford.
Bicomington, I

Brasdi 1
Colnabes 11
Conaprevili 11
Craw ordarite, It
Cithart, 11
Civood 11
Fairmeldin, 11
fort waje, II
Prantroct, it
Gary. 11
Gomben. I
Gremabirct 11
ilartford city, 111
IInntimaton. III
ingianapolif, III
indianapolifa, III
feprionvile, III
Kotomo, 111
Laflatte III
La Porte, III
Loganaport ill
Madinon, 111
Michigan Clty, III
Mishamara, (iI Yonnt Versom, IV
Mancle IV
New Albay, iv
New Catile, IV
jerw, IV
Princetom, IV
Richmond IV
Sejmonf.
Rheingrilie $V$
South Reed, $V$
Vaiparaleo, if
Vincenien,
Wabash, $y$
Wasbington, $v$
Whiting, $V$
Rivers
Manmee. III
Ohio. IV
Wabaph, $V$
Whits.?
E!nclasuified
Micbivail, Lake, III
Wyandotte Cave, V

## INDIANS

Alsonqnin Indisna, I
Apache, I
Arapahoe, I
Artanmas Indiana, I
Assiniboin, I
Athapascen. I
Beliacoola, I
Caddoan Indiann, 1
Catawba, I
Cajuga,
Cberotepe, I
Cheyenne, I
Chickarativ, I
Chinoot,
Choctaw, II
Comanche, II
Cree $I I$
Creekn, II
Crow, II
Delaware II
Five Cirlised Triber, II
Five Natlonen, The, II
Flathead, II
Fox, 11
Hipron, 111
IIIBoit III
Iowa, It
Iroqnoilan Indians, II
Kan. III
KIckapoo, III
Klowa, III
Klameth. III
Rooteany III
LApan, Ilfi

Makaw, III
Masda III
Macmecincott, III
Yomentrow III
Miam, II
Hiteomed ill
Modoc, It
Mopare, III
Moherar, III
Mok, III
Mancee, IV
Muathogean, IV
Napraganmet if iv
Namho TV
Neutrai Nation, iv
Nempres IV
Ojibwa, IV
Omeloa, iv
omondark, IV
omage iv
Ote, it
Ottawa, IV
I'awnee, IV
Ireqnot. IV
IMma, iv
Tomen IV
irottawatoml, IV
Iruebio, 1 IV
Quapaw, iv
sac, IV
Reminole,
Megect, $V$
Rhawree, $\bar{P}$
Shomboaran, $V$
Nhowhoni, $V$
Houna $V$
sione $Y$
gtockridge $V$
Tascingora, $v$
ITe, $V$
Wampariag $V$
Winnebapo, $V$
Yazima,
Yoma. $V$
see, floo, Binorapit: whhend
Isdiage, Pamous
INDUSTRLAL TOPICS
Annealinge 1
Amajing, !
Banietry, 1
Binat-furaace, I
Binutiog, 1
Binating, 1
Biraching, I
Bookbindidg. I
Brewing. 1
Rrictiaylom. I
Caisco Printing. I
Cooperage, II
Copying Devices, II
Creamery, II
Daguerreotype, II
meminting, It
Divinion of Labor, II
Electrotyping, II
Embossing, II
Factory and Factory Leginin.
tion, II
Fisb Cuiture, II
Fisheries, 11
Ezteat of Indantry. Vil, 410
Finh Breeding. VI, $4+1$
Finh Breedinf. 41
Ontinge, VI, ${ }^{2} 41$
Quentions, VI. 442
Forentry and Lumbering. VI, 43 Diviaions of the Lumbering Imanatry, VI, 48 A
Forent Rempryes, VI 43 ,
Forentry Branch, Tbe, 71, 43
Forentry in America, VI, 43 Lomberias vis ${ }^{36}$
Lnmber.producing Countrica, $\overline{\text { II }}$ 486
Lomber Prodnetion, VI, 430
Outilipe. VI, 488
Qnentions, $\mathbf{V I}_{1} 439$

Gumalay ${ }^{1}$
doltriotiph II
falteme It
ruatru yi, 119-4E
copien 1
cocel. $V, 418$
Colen 11.12
Corm, Vi, 113
Cottom 81,18
Dalry Prodpcts, V1. 420
Findorten, VI, 810
Foreatry and Linmberlag, VI, 483
Fur Trude Tbe, VI, 44
Irov VI. 122
Peacber VI, 482
Gatt. V1, $4 \alpha_{5}$
Tes, Vn, $_{189}$
Tres, VI, 428
Trade ind Comanerce, VI, 452 Trasaportatlon, VI, 447 Fheal VI, 116
Wool, VI, 420
Inventione and Dlecoverien, VI, 216
Jepanalng, III
LAbor Oryanisatlone, III
Hibegraphy, 111
nmber, IIL
Lamberiag. gee Forentry and Inmbering
Ment Packios, 111
Mining, 11
Choti Damp, 11
Commtort Lode, It
Pre Damp, II
Monopoly, II
ponarype it
Preot. IV
Proofreadios, IV
Rabber Manufact nre, IV
had Bjert, IV
Sploning

1) mascum Steel, 11

Etereotyplos. V
Etrike, $V$
8weatinop Syatem, $V$
Tinning, $V$
Temperline. V
Trade-mart, $V$
Type, V
Whterproonitg, $v$
Ferrian, $V$
Welding. $V$
Welt Boring. V
Woolen Madufacture, V

## Manufacturea

Artificial Limbe,
Balloon. I
Barrel, I
Batket, I
Bladlag Twine, I
Rotile. 1
Brase. I
Brdip and Bit, I
Brooch, 1
Broom, 1
Bronowlet Biacte, I
Brasb. 1
Cameo, 1
Carpet. 1
Cefliptold,
Chaln. I
Chenilie.
Clgar, II
Cutiers. II
Datari. II
Damank, II
Drupen Calam, 11
Dring Machine, It
Dramite, 11
Barting II
Earelone, II
Facen, ralse, II

Fatence, II
Lan, II'
Mresractery 11
Eremopts. 1
Hownta Artiacla, is
Mux, 1
ping Maghine, 11
Giline Mil. II
frumace, 1
Geme, Artilelal, It
Giame, II
Gold Lice. II
trraphotype, II
IIal injem il
IIAmmock, If
II Preen, II
Itone, III
ILortenhog, III
Ice, III
Incomhantible Cloth, III
Ink 111
India Intr, 11
inlaglana 111
Kifeifi:
Kiter, III
Ree, also. YI, 70s-707
Enitting MichIne, III
LAcqner Ware, III
Lethe, $11!$
Leather, III
Cordovera, II
Leather, Artincial, III
Ajchting Rod, III
IfDem, II
IAnoleum, 111
Linot7pe. III
Majollea, III
Marblea, III
Mark. IfI
Matches. III
Matchea Wool, 111
Mirror, 111
Morocco, IV
Mucliage, IV
Must, IV
Nitrostycerime, IV
Ollcloth. IV
Parachute, IV
Phtchonll, IV
Perfumes, IV
flaning Machine, iv
Priatiog l'rese, IV
Paper, IV
I'apler-Mache. IV
prehment, IV
I'en, IV
Pencli, IV
PIn, IV
Pipe, IV
Plpe, Tobacco, IV
Pnenmatic TIrea, IV
I'ottery. IV
Rlce Paper, IV
Rise. IV
Rocket, IV
Rope, IV
Rouge. IV
Raddie. IV
Rafe. IV
Sealing Wax, $V$
Gewing Machine, $V$
Shagreen, $V$
Shagreen, Gu , $V$
©kI, v
Spowahoe, $V$
Spuxty
Sonn. $V$
Speaking Trumpet, 7
Spectacies, $V$
Epladle, $V$
Splaning Jenay, V Eploning Wheel, v
Strim Plait, V
Stove, V
Tapentry, $\mathbf{V}$


## Incrects

Inserter Atndy of, VI, 17. 248 688, Bus-ing 60erdis
Ant, The, VI, 000
Eerm. VI, $61 \%$
Itht teralew VI, 614
tamer ona, 1, 007
lieneral Nuguremetlopm, VI, stis
life ina on, V1, 606
Iffillutory of, V1, 60 e
l'arto of an Itreet, VI, 600

## Ants and Deon

Ant, I
Lemons on the, V1, 600-612 Abt Fuarral, An, VI, 610 Itattie, I. VI, Bil
Lermoan from Ante, VI, 61:
Iapa, Frimalea and Workerm, VI, than
Tartn of tho Apt, Vi, 000
Yuentiotim. VI, 612
nocial I.ifr, VI, 610
Inepy I Pporury Ilome, A, VI, 603
Method uf Ntuly, VI, 612
Qutipe, VI. $\mathrm{HI}_{1}$
Bumbleber. I
Carpenter.in'o. I
LILORET, 111
Maton Iher, 111
Termites,

## Beedles

Beetle, 1
Bombirdier Buntle,
Burying Beetl:,
Carpet Beetlo. 1
Click Beetle, it
(ookchafer, il
Rpath Watch, 11
Ilercules Bpat II:, III
June Rug. III
Ladyblrd, III
I'ofato Rus, IV
Scnenh, IV
squast Hug, V
Mag Reetle, $V$
Wecvil, V

## Buge

Aphlden, I
Berdbig.
Bug. 1
Chinch Rug, 1
Cicads. II
Coccua, II
IInrven Bug, III
Jigger, III
L.oume, 111

Menty Bag. 111
Mrate Insect, IV
Tlekw, V

## Butterlies and Mothe

Arown-tall Moth.
utterny, 1
Bee, atso, V1, 614
Chryanlla, If
Ctotbee Moth, 11
Death'e-head Moth, II
Gypay Moth, II
Hnwe Moth, II
Moth, IV
Sphinx Moth, $V$
Tussock Moth, $v$

lowa, 111
With anbhenda treatine McaFACE AND DEAIMAOM, CLIMATE,
 guan Hanepactuasm, Tmanarom.
 TATIOK AND CNMMBACE, GOVEAKHItrion

## Cities and Temas

Attantic, 1
Beope, I
Aurilarton, 1
Cedar ratle 1
Cectar hapids, 1
Centervile, 1
Cllaton. 11
Connell Bivers, 11
Creston, II
Daveaport, 11
Dem Molnes
Dubagae, II
Fort Dode, It
Fort Madinon, 11
Iown Clts 11
Keotuk, III
Lo Mari 111
Tarshalltown 111
Manon Clity 11
Muscative, 1V
Delwela, IV
Onraloom. IV
Ottnmel IV
Blour Clity
Wiaterloo, ${ }^{\text {B }}$

## Rivers

Des Molnes, 11
Iown. 111
Misistippl, III
Miseonri, III

## TRTMND

Ireland, 111
With rubheads treatins Sus FACP AKD DAANAOD, CLIMATM Mint and Removacen, Fintatiza,
 puaza, Thanmpontaziox, InHaint TANTE AND Language, GovenaxMant and Relioion, bdecation, Biasony.

## Batmat ? <br> cor ${ }^{1}$

outho. It
simatieg, 111
Lamerte, 111
Unecentemeiv
Bivers
Royne 1
Foyth, 11
8hanenet, $v$
Unelsealtel
Achlli, 1
Capp Clear, 1
Eres. 11
OAlvay nas, 11
Mant' Canctitey, It
Itbermite, III
Land League, ItI

## IS1~Nos

Aesla
Admatratty icland, 1
Aleutian Ialands, I
Nertar lalam, 1
Irfillos, IV
Unalasta, $v$
Argentios
Tlorre del Fuega, V

## Austriadiumgary

Rransa 1
Prams-Joneph land, II
Bran
[tanana, I
Marajo, III

## Callermis

Paratlogen, 11

## Comada

Anticostl.
Belle Isle,
Campohello, 1
(Trand ManEn, 11
Mactalen Inloade. 111
Manitouln Islands, II I
Moatreal, III
Newfoundland, IV
l'riace Edward Istand, IV
Queen Chariotte Islands, IV
Nable Island, IV
Thousand Iniands, V

## Chile

Juan Fermandes, 111
Tlerpm del F'uezo, V

## China

Chusang, II
IIalnen, III
Houg Kong, 111
Demantis
Faroe, 11
Greenland, II
Cape Farewell, I
Ieeland, III
Balat Thoman, IV
geelend. V
Vircia Inlands, $\nabla$
West Indies, Danith, $\nabla$
Benader
Catapeson, II
Eypt
Elephantiae, II
Thllap, IV


Cyprus 11
Dostaice, 11
mitriand intande. 11
aryo Itsinda 11
CJ lainnca, il
Mirucenz Iblande, 11
GIbert Intarean II
Grenad, 11
Guernery, 11
Hons Rope, 111
Ineran, 11
KImritos, IIt
Jerney, 111
lacendiven 111
loverard Inlandm 111
Makife Imands, IIt
Mancire In of ItI
Manitole of III
Manitonilm
Valetta,
Mapritlat, 111
Port Lonla, iv
New Gninea, IV
New IIebridem, IV
New Kealand, iv
Cook Inland, II
Nicobar Inlanda. IV
Nocobar Imand, iv
Penane IV
IPrim, iv
I'tealrm Island, IV
Alatat Christopher, IV
Ae Iat IIelena. If
Salnt Vincent, IV
Melliz, V
sejchellen, $\%$
Alasapore. $V$
Rolomon ílands, $\nabla$
Tmmanla, $\nabla$
Thanet, $V$
Tobago, $V$
Tongislands, $V$
Trindad, $v$
Turke Inlande, $V$
Pencouver Istand. $\nabla$
Virida Iolands, V
Weit indles $v$
Witht, Isle of, V
Wiadward Imlanda, $v$ Zanslber.

## Florida

Dey Tortogan 11
Flortia Keys, II

## France

Comoro latarada, II
Corilea, 11
Bantle. 1
Onadelonpe, II
Sradagawor. 111
Amtamanarivo, 1
Margaena Idands, ItI
Martinique, III
Majotte, II
Mquelon, II
New Caledonla. IV
New Ifebrider, IV

Remales iv
millifro iv.
Cormens
Athiraify Ianate 1
Momatil arelperage 1
chralies latases, 1
Ile griona 111
Lanceretionbur, it
Nemocelentily
[2lew, iv
Ingen, IV
Ealomon itatande, $v$
Crese
Aertan, 1
Abaroi Inlang 1
Cepasloala, I
Corlug II
Crelades
plow 11
Hydre, III
foara, III
Ithaea, Il
Melow. II
atacils IV
santa Menre, iv
gris, V
Inclis
Eephante, is
Ismeswaram, IV

Aebllis I

> Incland

Coprit 1
cilbe II
mehta, III
LJperi Imlands, III
Monte Christo, ill
Paros, IV
Santialia, IV
Cagliarl, 1
Slelly, V
Formona, 11
Loo-Choo, 11
seghalien, IV
Korem
Quelpeert, IV

## Maine

Mount Demert, III

## Massehnsetts

Governor's Inland, IT
Martha' Vineyard, III
Sinatucłet, IV

## Michiran

Igle Royale, III
Sickinec Ialand, III

## Netherlands, II:

Ataboyna. 1
Arra Inlanda,
Ball, 1
Buyce, 1
Randa Ialew, 1
Boraeo, 1
Celphem, I
Curticmo Inland, 11
Dutch East Indlem, 12
Altolo II
Rrakitoe, III
Lombol, III
Madurn, III

Molar Arcpipelaga, 111
volugce 0 m il 1
velispor, It
avertre.
deris.
bunbar
Timir
Throrlant. Y.
Went tidite, $V$
Now Hampolise
Inlen of Dhoula, 111 New York
Blactwoilia Inlead, 1
Oont Island. I
Loon Inlave ill
Minhattan filapd, 111
Stafom lalas, $V$
Norway
Lefotea, 111
Poscon
Ormbs, IV
Portugal
Anorme, 1
Blamaron, 1
Cape Verole Islande, I
Fayal, 11
Madelre. 111
Fanchal II
Tremp

## Rusain

Aland Intands, I
New siberth lelande, IV
bova $z^{2} \mathrm{mbla}$, IV
Omel. IV
Racharlien, IV
Spltaberges, v
Scotland
Arran 1
IIehrides. 111
Griney Islands, IY
Shetiand Islands, $V$
Btye, V

Balearte Ialamen
Canarlen, I
Fernando Po, 11
Majorea, 111
Ilnore, 111
Tenerfife, $V$
Smedon
Gotland, II
Turles
Crete, 11
Lembon, 11
Iesbos, III
jatmon, IV
Rhodes, IV
Ramon, IV
8rio, V
Thanon, $\mathbf{V}$
United States
Bedloe's Inland, I
Bolol, 1
Calamianes, 1
Cehu, 1
Drammond Island, II
Goternor's Inland, II
Guam. II
Exawallan Istands, 111
Kadity, III
Manltónin Iatapin, III
Nare Island, 111
Melville IsIand, ill
Molotal III
Negran IV
OAhu, iv
Palewen, IV

Peay, IV
milipelice idetede is
Porto mee, IV
prelco
[an Jus, iv
arechiv
Firy miande $\bar{F}$


Margarta, $11 t$
Wate
Anglowey, !

## Unclocelifed

Cube, 11
Inf of IPees
IIalt, IIt
Cape haytien, I
loort anfrimes, IV
Manto Domitproin
Tonsmalt, $V$
Oceanla, IV

## ITALY

IIaly, 111
With aubheade troatis Dens Faca amD Diaimaon, CLimafe Mimaigh Ramoencem, Coasetso
 tafion AND Comméce traname TANT: AND LAMGUAOR, WDUCATION. (fovaanmant Ann Ramiolon, Ilit:
Tont.
Graphic Illuntratloe, V1, 887
Cities and Towns
Acirpale, 1
Abrirentinas, 1
Ancona, I
A prele, 1
Arento, I
Aminl,
larletta.
Rebevento 1
Persamo, 1
Bologan,
Bremela 1
Campo-Formio, 1
Capnae, I
Caprara. 1
Cantellapare, 1
( ${ }^{\circ} \mathrm{mon}, 11$
Cremona, Il
Crotona, 1
Fumae, II
Florence, II
(iaeta. II
(ienon, 11
| Ierculaneum, 111
Ieghorn, 111
laci, 11
I. oreto, 111
1.ueca, III

Nantua, III
MIlan, III
Nodena, 111
Naples, IV
notin, 17
Jadum, IV
Ibarma, IV
Iravia, IV
Peruada, IV
Maceng, IV
IHsa, IV
Pompell, 17
Posinolf. IV
Ravenna iv
Rome. IV
Salerno 18
Blena, \%
Bybaris. $\mathbf{V}$
Syracuse, $V$
Taranto. $V$
Turing,

Tuaculens, $V$
Venter
Vicenas V

## Diviaione

Calabris, 1
Campanta.
Campermat arna, I
-trutis, II
Litinm, III
Lombardif III
Monaco, fli
Momaco, States 1 V
Pledmont, IV
gerdinta, Kingiom of IV
Siclite, Gingdom of the Two, $V$
Tuseany, $v$

## Ifistery

Aetipm, 1
Addis Abeha, 1
Barl, 1
Barletta 1
Baroda,
Bortic. 1
Cinlpine Repnhitc 1
Gnelpha and OMblilinea, It
Marenge Battie of, III
ormin, Iv
Renalogance, IV
Graphle Illuatration of, VI, 380
saroy, Hionee of 1
Iolande
Capri, II
Ciba, II
Isehta, 111
Lipari Iclanda, 111
Monte Christo, III
Faros. IV
sardials, IV
slelly, $V$

## Lnisen

Avernan I
Como, II
Garde II
Maxdore, III
Mountaine
Alpa, 1
Apennines, 1
Matterhorn, III
Rivere
Adilje, I
Arno I
Rnilicon, IV
Thber, $V$

## Unclassified

Army of Italy
see ArMy, aubhead Italian Army, 1
Farnese, II
Medici. 11
Naple, Bay 0, IV

## JAPAN

Japan, III
With mbheads treating SurFAca AND DAAINAGA, CLIMATE, Minemal Ragouncra, Fisucaras Aahiceltune, MA ivitac TURAE, TRANEPORTATION, COMmancy, Inhabitants amd Laxodact; Goveranmant and Rehioton, RDucation, Litmratuen AND ART, HIETOET:

## Citios and Towns

Hatrodadi, III
Eironhim, III
Kloto, 111
Kobe, III
Naginati, IV

Negoya, IV
Nilgata IV
Omekaty
Tokyo, $V$
Yorohame, $V$
Sokenula, $V$

## Hiatory

Port Arthnr, IV
Rumo-Japaneme War, IV
Ialande
Formosa, 11
Loo-Choo, III
Saghallen, IV
Pcoples
Alno, 1
Nagoja, IV

## Unelasulifod

Army of Japan
Bee Aliky, subbead Japanese Army, I
Hara-kiri, III
samural, IV

Batavia, I
Bambave,
Buraboye, V
Snrakurta, $V$

## SOURNALSM

Amooclated Preas, 1
Newnpaper, IV
Edinhurgh Review, II
Periodicals, IV
See, also, Biogaarizy, quhbed
Jontralists

## RANSAS

Kanaan, III
With snhheads treating Sus-
Face and Drainaga, Climate Mineraf Rasovecas, AGAICUE
tuad, MaNUFACTURES, TMANEPORtation and Commatace, GoveanMant, EDUCATION, INETITUTIONB, History.

## Cities and Towns

Argentlne, I
Arknnsas Clty, I
Atchlson, I
Channte, I
Coffeyville, II
Emporia, II
Fort Bcott, II
Galena, II
Hutchinson, III
Independence, III
Iole, 111
Junction Clty III
Kanasa Clty 111
Lawrence, III
Leavenworth, III
Newton, IV
Ottawa, IV
Parmons, IV
Pittehurg. IV
Rosedate IV
Topera, $V$
Wellingtop, $v$
Wichita, $V$

## Rivers

Kansats, 111
Mitalatippi, 111
Misionri, III
Onare, It
Unclascifiod
Osart Monntaing, IV

## mintucer

Kentucty, 111
With anbheads treatigg Ste. FACE AND DMAMAOA, CLIMATH, Minfeng Rasoumcra, Agicul TUES, Martyacturing, Tranapontation AND ConMages, GovishMant, EDUCATION, Imatitutioni. Hiarosy.

## Citioc and Towna

## Amhiand, I

Bellevue, I
Bowling Green, 1
Coving ${ }^{\text {Ch }}$. II
Dayton, II
Franktopt, II
Hendermon, III
Hoplinevilie, III
Lerington, III
Loulsplite, III
Maytille, III
Middiesboro, 111
Newport, IV
Owentboro. IV
Padncab, I
Whenenter, $\mathbf{V}$

## Rivers

Bis Bandy, I
Cumberiand, II
Green, II
Kentneky, III
Mlealusippl, III
Ohlo, IV
Tennemsee, $\mathbf{V}$
Unelmanifed
Appaischian Monntains, I Cnmberlamd Monntalns, II Mammoth Ceve, III

## KOR3

Korea, $11 I$
Queipaert, IV
Seoul, V

## LARTS <br> Africa

Albert Edward Nyanea, 1
Albert Nyansa, I
Bangweolo, I
Nstmi, IV
Nyassa, IV
Tanganyika, $V$
Tebad. 8
Victoria Njunaa, V
Acia
Chine
Manatetrowar, III
Pateatine
Gennemaret, II
Perala
Cagplan Bea, I
Elboria
Aral, I
Baltal. I
Baikash, 1
Capplan Sen, I
Europe
Austria-Hungary
Balaton, I
Itaty
Avernua, I
Como, II
Garda, II
Mastiore, 111
Mjosen, III

Cauplan Sex, I
Goutseha, II
Ladoge III
Onege, IV
Pelpus, IV
Evollaerlent
Constance, II
Genera, II
Lacerne, Lake of, III
Magelore, 111
Senchatel, IV
Xurich, $V$

## Creat Britain England

Windermere, $\mathbf{V}$
Ireland
Erne, II
Scotiand
Katrine, Loch, III
Lomond, Loch, III

## North Amorica

Caneds
Atbabseca, I
Betr Lake, Great, I
Cedar Lake, I
Chemplaln,
EMe, II
Great Lankes, The, II
Great Slave Lake, II
Haron, III
Latron, III Woods, III
Yanitoba, III
Memphremagog, III
Nlplgon, IV
Alplasing, IV
Ontario. IV
Ralny Lake, IV
gaint Clalr, IV
simeoe, V
gaperlor, $V$
Wlanebago, $V$
Winnlpeg, $V$

## Central America

Nlearagua, IV
Merleo
Chapala, I
United states
Carnga, I
Champlain, I
Erie. II
Grest Lakes, The, II
Great Salt Lake, II
George, ILake, II
Haron, III
Lepcb, III
Memphremagog, III
Michigan, III
Moosehead, IV
Otrepchobee, IV
Onelda, IV
Ontario, IV
Poatchartraln, IV
Ralny Lake, IV
Solnt Clalr, IV
galton 8ea, IV
seaect, $V$
Superlor, $\nabla$
Utah, $V$

## South Amorica

Marracalbo, III
Titleack, $\mathbf{V}$

## LANGUAGE

Ahbreviationes, I
Accent, I
Adjective. VI, 584. 539
Alpba and Omega, I
Ulphabet, I

Americanitums,
Aramalc, I
Chaldee, I
Complements, VI, 531
Composition Work
In Thlrd Year, VI, 510
In Fourth Year, VI. 514
Type FBARy, VI, 517-523
In Filith Year, VI, 528
In Slxth Year, V1, \$31
In Seventh Year VI. 535
In Eighth Year, VI, 040
Consonants, VI, 618
Culle 11
Cuneliorm Inseriptlona, II
Cryptography, II
Dialect. 11
Dlpthong, 11
English Language, II
Esperanto, II
Ethlople Language, II
Etymolo
Flemish Lenguage, II
French Language, II
German Language. II
Greek Lenguage, il
Hehrew Language and IIterature, 111
Hlerogiyphice, 111
Iranian Langunges, III
Itallan Language, III
Language ; see Language and
Grammar, nnder Education
Latln Langnage, III
Latin IV
Plattdeutach, IV
Provencal Language and Literatnre, IV
Romance Languages, IV
Rometta Stonc, IV
Runes, IV
Sanskrit Language and IAterature,
Semitle Language, $\mathbf{V}$
Slga Language, $\mathbf{V}$
Sygric, $V$ g
SYriac, V
Vialble Epeech, $V$
Volapak.
Vowel, V
Writing $V$
See, Also, Grummas
LAW
Amdavit, I
Age, 1
Arent, I
Allen, I
Amendment, I
Appeal, I
Arson. 1
Absault and Rattery, I
Assumpsit. I
Attachment, 1
Attalnder. I
Ball, I
Bankrupt, I
Repcfit of Clergy, I
Bill. I
R1II of Costs. I
Bill of Rlghts, 1
Blackmall, I
Bond, I
Bribery, I
Burgary. 1
Caplas.
Capltal Punlshment,
Carrler, Common, I
Charter, I
Chattel, I
Clvil Law, II
Code Napolpon, 11
Commorclal Inf. II
Common Lawi ${ }^{\text {Ci }}$
Consplracy, II
Contempt, II
Contraband, II
Contrget, II
Copyrlght, II
Corporation, II

Counterfeiting, II
Courte. II
Crime, 11
Damares, 11
Debt, II
Deed, II
Demurrer, 11
Deacent, II
Dlvorce, II
Durest, II
Easement. 11
Ejectment. II
blectrocntion. II
Emberslement, II
Entall, 11
Equity, II
Estate, II
Evidence, I
sxecutor, II
Ez Poat Facto. II
Extradition, II
Factory and Factory Leglslation, II
False Imprisonment, II
False I'retenmes, II
Free, II
Flne, II
Floteam, Jetsam and Lisan, II
Forgery, II
Fraud. II
Freeman. II
Game Laws, II
Garalshment, II
Guarantee, 11
Gbardlan, II
IIabeas Corpng, III
Hanglng, In
Helr, III
H1gh Seas, III
IIomage, III
Homlclde, III
IIUsband and Wlfe, III
Impressment of Spamen, 111
Imprisonment, III
Infant. III
Inltlatlve, III
Injubctlon, III
Insolvency, III
nsurance, III
Internatlonal Law, III
Intentacy, III
investiture, III
Jndge, III
Judgment. III
Jury and Trial hy Jnry. III
Justlce of the Peace, III
KIdnapplng. III
Larceny, II
Law, IIf
How Blli Becomes Law, VI. 213

## L.eare, III

Legacy, III
L.egal Tender Cames, III
1.1bel, 111

LIAcense, III
LJen. III
Nialle II
Marrlage, 111
Master and Servant, III
Naxlms, Legal, 111
Medlcal Jurisprudence, III
Murder, IV
Negligence, $1 V$
Nnisance, IV
Orlginal Package, IV
Parent and Child, IV
P'arllamentary Iaw, IV
Parinmentaryl.
Partnershlp,
Perjnry. IV
Pernonal Pro
Petitlon, IV
Plracy, if
Irecmptlon, IV
Prescription, IV
Press, Llberty of the, IV
Primogealtnre, IV
Probafe, IV
Procedure, IV
Real Iroperty, IV

Refereadnm, IV
Relationailp, IV
Retaliner I
Bight of Way, IV
guparian Rights IV
Robbery, IV
salie Law, IV
deal, $\bar{y}$
cearch, Risbt 0s, $\nabla$
settlement, $V$
8mugiling
statute
toppace in Trandt, $\nabla$
nicde, $\nabla$
Sumptuary Lawn, $V$
Tenant $V$
Teader
Mtie.
Tortiv
Treison, $\nabla$
Treasuro-trove, $\nabla$
Treapaces $V$
Trustee $\%$
Onery
Veto, $\forall$
Wager. $\nabla$
Warrath $\nabla$
Warranty, $\nabla$
Wili, $\nabla$
Witnece, $\nabla$
Writ, $\nabla$

## Notable Cases at Law

Dartmontb Coliepe Came, II
Dred Beott Deelsion, II
Marbary vermas Madison, III
Parmins Caune, III
siaughterbouse Cases, v

## LTRARISS AND MUSEUMS

Bodielan Library, I
Britimb M nienm, I
Library, III
Linrary of Congreas, III
Museum, IV
National Mnsenm of the United states, IV

LACHT AND SOUND gee Priaics

LIGHT, ARTIFICLAL
Candie, I
Eiectric Lisht, II
Gan, IIfuminating, II
Kerowene. III
Lamp 111
Wme Light. III
Sarety Lamp, IV

## LITERATURE

Aldine Editions, I
Alezandrian Library, I
Alezandrian 8chool, 1
Aliegory, I
Aliteration, I
Almanac, I
Anabasim, I
Anagram, I
Antholog I
Araman Fl ghte, I
Atian, 1
Bailad, 1
Bard,
Beowulf, I
Bihle, I
Bibliography, I
Ribliotheque Nationale, I
fiotraphy, I
Blank Verme,
Rook, I
Bookpiate,
Curiegue, I
Concordance, II

Deanition, II
Dretionary. II
Didactic Poetry, II
Draman 11
See, aloo, VI, 580
Edda, III
Elegy, II
Encyctop
Epigram, 1
Epithaiamiam, II
Ereay, II
Euphuism, II
Fable, II
F1 zaree of speecb, II
Foikiore, 11
[dy1, 111
Junfum Letters, The, III
Kalevala, III
Legend, II
Literature, 11I, and VI, 541 -657
American Literature, Chart on VI, 64
Americnn Literature, Outline of, VI, 547
Authora, Interesting Facte About, VI, 070-675
Alcott, Loulen M.. VI, 674 Ilawthorne, Nathanlei, V1, 674
Holmes, Oliver Wendeli, V1, 672
Longfeliow Henry Wadr. worth, VI, 670
Loweli, Jamen Russeli, VI, 672
8cott, Waiter, VI, 673
Tennyion, Aitred, VI, 670 Thacieray wililam irakepeace, VI, 675
Whittier, John Greenieas, VI, 671
Authore, 8tudy of, VI, 604-670
Longreilow VI, 665-608
Teanyson VI, 668-670
Drama, Ontime on, VI, 550
English IIterature, Cbirt on,
I. 543

English Literature, Grapbic
Outline O2, VI, 542
Engilah Literature, Ontilne of, VI, 545
How to Read, VI, 545
Memorizing. Selections for V1, 554
Poetry and Prose, VI, 541
Questiona on, V1. 852
Shakespeare, Ontilne for study of, VI, 551
Mahabharata, III
Manuacripts, III
Mastersingera. III
Nibelungeniled, IV
Norman French, IV
Novel, IV
Ode, IV
Oration, IV
Palimpsest. IV
Pamphiet iv
Parody, IV
Prose, IV
Ree, aiso. V1, 541
Romantlelsm, IV
Kaman, IV
Ratire, IV
Vacial Letters, $\nabla$
Vedas, V
See, aleo, Stomizs and Portry

## Literary Referencen

Apmeld. I
Aleddin.
Amadis of Ganl, I
Apolionius of Tyre, I
Bluebeard, I
Bnil, Jobn, I
Caleads, I
Don Quinote, II

Don Juan, II
Draciad The, II
Maro, it
Galabad, Bir, II
Orall The Hily, II
Hamlet $11 I$
Howathe, III
IHEM, III
Jew, The Wandering, III
Lanceiot of the Lake, III
Lohengrim, III
Mepbintopheies, III
Merlin. III
Norvam Organum, IV
Odyseey, iv
Ramayan. IV
RIp Van Wintrie, IV
Robineon Crusoe, IV
Roland 15
Round Traite, IV
Eodom, Appie of, v
Tanahauser, $V$
Utopla, V

## LOUSIANA

Lonlel 'na, IIT
With sinheads treating $\mathrm{Srm}_{\mathrm{F}}$
Maca and deinage, CLimate
MiNenal peaounctes, Fobiats, Agmiculture, MAN © PAC tuats, thanspoztation and Coy mance, Govenamest. Edccation, inatitutiona, Histuny

## Cities and Towna

Alezandrta, I
Lake Chariet, III
Monroe, III
New Iberia, IV
New Orieans, IV
Shreveport, 7

## Rivere

Atchafaiaya, I
Minsiselppl, 1 II
Peari, iv
Red. Iv
Sabine. IV
Wamhlta, $v$
Unclasnified
Mesleo, Guif of, III
I'ontchartrain, iv

## MACEDONA

Mrecedonia, III
Pelia, IV

## MALNE

Maine. III
With subbeads treating Srrs. face and Drainage, chmate Minerals, Forists, Finueriss. AgBiculture, MANEFAC TOREA, TRANaportation, govery. MENT, EDUCATION, INstitctions, History

## Cition and Towna

Auhurn, I
Augusta, I
Bangor, I
Rarifarbor, I
Relfast, I
Biddeford.
Rrnaswlick. I
Caialis, 1
Fastport, II
Gardiner, II
Lewiston, III
Oid Town, it
I'ortiand. IV
Ifockiand, IV
Raco. IV
South Portiand, v
Watervilie, $V$


## Unchasified

Katahdin, III
Moomehead Lake, IV
Monnt Demert, IV

## MANCHURUA

See CRINa

## MANITOBA

Manltobe, III
Wlth ubheads suarace and Deainaom, Cuicate, Mineral Re: movaches AOEICULTUAE AND Orhra induertirs, TRANsporta. fion, Citite, Goveanuent, EdUcation, Histoze.

## Clites and Towns

Beanmejonr, V1, 316
Birtle, VI, 815
Bolseevaim, VI, 315
Brandon, $\% 1.815$
Carberry VI, 817
Carlyle 41 , 17
Carme, vi 817
Cryatal Clty, 817,318
Duppin, V1 818
Deioraine VI, 818
Elkborn, VI, 819
Emermon, V1, 819
Gllbert Ilalios, VI, 320
Gladstone, VI, 820
Grand View, VI, 321
Gretna, V1, 821
IIamiota, VI, 821
IIsrtney, VI, 821
Kiliarney, VI. 323
Maniton VI, 824
Mellta, VI, 325
Minnedosa, VI, 825
Morden, VI, 326
Morris, VI, 326
Neepawa, VI. 826
Oak Lake, VI, 327
Portage in Pralrie, VI, 320
Rapld City, VI. 330
Regton, VI, 331
RIvers. VI', 332
Roland, VI, 332
Russell, VI, 332
Salnt Boniface, V1, 833
gsint Lenrent, VI, 334
Siclkirk. VI, 335
Whoni Latre, VI, 335
Nourls, VI, 335
Stomewili, VI, 383
Swse River, V1, 387
Virden. VI. 338
Winkler. VI, 330
Winnipeg. $\stackrel{\rightharpoonup}{ }$
Winnlpegosls, VI, $\mathbf{3 4 0}$

## Lakes

Cedar. 1
Msnitoba, III
Winnlpeg, $\mathbf{V}$

## Rivers

Analnlbolne. I
Churebill, il
Nelmon, iv
Ird River of the North, IV
MANNSRS AND CUSTONS
Blood, A renger of, I Blood-moner, I

Caste, 1
Celibacy, I
Chivalry
Grephle Illustration, VI, 877
Chopatcte, II
Clan, II
Curfen, II
Dirorce, II
Ductips Stool, II
Duel, II
Fagedot, II
Fateting, II
Fendal \&y
Fendal 8 yatem, II
Grapble Illuntration, VI, 877
IIalr Dresting, III
Harem, III
Ileraldry, III
IIermita, III
Inufenis, III
Marmage, III
Ordeal, If
I'oly
Sun Dance, $V$
Bnttee, V
Taboo, $V$
Talleman $V$
Thyraus,
Totem, $V$
Verdett ${ }^{2} \mathbf{V}$
Wake, ${ }^{\text {F }}$
Wampum, $V$
Zenana, $V$

## MANUFACTURES

Bee Indestatak Topics

## MARYLAND

Maryiand, III
With mbheads 1 roatlng Si:mFace and Drainaqe, Climaty, MJNEALB, FISHERIEG, Climatr, TURE, MANUFACTURES, TRASRICL turion and Comarbice Trangrorration and Comaribe, Goveins. MENT, EDUCATION, INBTITUTIONA, History

## Cities and Towns

Annapolls, I
Baltlmore, I
Iladensburg, I
Cambridge, I
Cursberland, II
Freaterlek. II
Frostburg, II
Hagerntown, III

## Unelatsified

Alleghsoy, I
Appalachion. I
Blue RIdge, I
Cheanpeake Bay I
Potomac River, IV
Sumquehanna RIver,

## MASSACHUSETTS

Maxarachnnetts, III
With subheads trating Sca. Face and Daifinane, Climate, Mineral Regodrchs, Fisheriza, Aoricultuas, Manvfactuber, TRANBPORTATION and COMMERCE, fovmanment. EDucation, Insti: rutions, IItftony

## Caper

Cape Ann, 1
Cape Cod, I

## Citios and Towns

Ahivgton, I
Adame. I
A mewhury,
Amherat,

Arlington, I
Athol, I
Attleboro,
Beveriy,
Blackstome, I
Bonton, I
Bralntree, I
Bridgewater, I
Brociton, I
Brookline, I
Cambridge, 1
Chelsen,
Chlcopee, II
Cilntom II
Concord, II
Danvers, II
Dedham, II
Fanthampton, II
Byerett, II
Fmil Rlver, II
Fitchhurs. II
Framingham, II
Frankiln, IL
Gardmer, II
Gloncester, II
Grafton. II
Great Barripgton, II
Treenfield, II
Haverhill, III
Holyoke, III
Indson, III
Hyde Part, II
Ipewleh, III
Lawrence, III
Leominater, III
Lowell, III
Lyon, III
Malden. III
Marblehead. III
Mariboro, II
Maybard, III
Mrdford. III
Melrose, II
Mrthpen. III
MIdileboro. III
Milford, III
Milton. III
Montague, III
Natles, IV
New Bedford, IV
Newberyport, IV
Newton, $1 \mathbf{V}$
North Adams, IV
Northampton, IV
North Attieboro, IV
Northbridge. IV
Norwood, IV:
Orange, IV
Orange, IV
Palmer, IV IV
Peahody, IV
Plymouth, IV
Qulncy, IV
Reading, IV
Hevere, IV
Rockiand, IV
Nolem, IV
Sangun IV
Somerville, $V$
Sonthhridge. V
Sonth IIadley, $v$
Spencer, V
Springfield, $v$
Rtompham. V Stoughton, V Swampacott, V
Twunton, $V$
Wakefleld, V
Waltham, $V$
Waithan
Watertomn, $V$
Webster, $V$
Wellemiey, $\nabla$
Westhoro, V
Went Bpringteldi, V
Weymouth,
Whitman, $V$
Wlillamstown. $V$
Wlachendow, $\mathbf{v}$

Wischenter, $\bar{\nabla}$
Winthrop
Wobnera,
Worcenter, $\nabla$

## Culfs and Bys

Buzzardin Bay, I
Mamachroettis Bey, III
History
Mamachusetta Bay Colony, III
Plymonth Colony, IV
Shay'a Rebellon,
Waintogton EIm, $v$

## Lalands

Governor's Island, II
Martha's Vineyard, III
Natucket, IV

## Mountains

Berkshire Fluls, I
Green Monntaing, II
Taconic Mountains,

## Rivers

Charies I
Connectlent, II
Honmatonle, III
Merrimuc, III

## MATHEMATICS

Alebra, I
dadition $\ln , 7 \mathrm{I}, 104$
Coemelent, VI, 103
Elementary, 1,103
Equations 1n, VI, 101
Maltipileation in, $V 1,105$
Buhtraction in, Vi, 103
Two Unknown Quantitles, VI, 108
Analytical Geometry. I
Angle, I
Arthmetle, 1, and $\mathrm{V}^{\text {: }}, \quad \mathbf{0 - 1 0 2}$
Addition $1 \mathrm{n}, \mathrm{V}, 5: 3^{\prime} 57,64,81$, 82,
Analyals of Protleins, V1, 68
Bnalness Forms, VI, 98
Common Measnrements, V1, 85
Cube Root, V1, 02
Cuble Measure, V1, 90
Fifth Year. V1, 60
First Year, V1. 63
Fonrth Year, $\mathrm{V}_{1} 6$.
Loagltude and Time, V1, 83
Menviratlon, VI, 98
Percentage, VI, 99
Proportlon, VI, 80
Becond Yoar, V1, 57
Beventh Year, V1 ${ }^{77}$
81xth Year, ${ }^{1} 1,75$
Square and Cube Hoot, V1. 12 Third Year, VI, 61
Axiom. 1.
Binomial,
Calcalne, 1
Cancellatlon, I
Circle, 11
Companses, II
Cone, 11
Conlc Sections. II
Coordinates, 11
Cube, 11
See. also, VI, 80
Curve II
Cyllader, II
Declmal'Fractlons, VI, 70, 78
1)egree, II
1)

E:lipse, 11
Factor, II
Figurate Nnmber, II
Fraction, II
Fractions, $\overline{V I}$
Eighth Year, VI, 80
Fith Year, V1, 70, 71, 74
Firat Year, VI. 53
Foarth Year, VI, 65

Second Year, VI, 57
geventh Year $\mathrm{VI}_{i 5}{ }^{77}$
3lxth Year, VI, 75, 70
Third Year, VI, 61
Fuaction, II
Geometry, II
Imaginary Onantlty, 1
infinity and Infoiteimal, II
Inne, II
1.0yarithm, 11
1.0ugitnde and Time, VI, 8s-00
alatic square, III
Mathematice, 111
sensuration, 11
General Rulam for, VI, 98
vegative Opantity, iv
Number, IV
Percentage, VI, 78, 98
Plane. $1 V$
Polymon. IV
power, IV
1'rogression, iv
1roportion. IV
'yramid, IV
'ythagorean Theorem, IV
luadrilateral, IV
Ratlo, $1 \mathbf{V}$
ltoot. IV
solld, $\mathbf{V}$
quare. $\mathbf{v}$
Nurveging, V
symbol.
Triangle, $V$
Trizonometry, $V$
I'nit, $V$
Varlalye Quantlty, $V$
zero, V

## MECHANICS

alechanles. 111
Sep, aleo, How to MaEE
Things

## Machimea and Dovices

Aerontatle Press, I
Air Brake, 1
Alr Compressor, I
Air Engine, 1
Alr gna.
Alr 1'ump.
Anchor, 1
ARemograph. 1
Archlmedean Screw, I
Asplrator. 1
Antomaton, I
Balance. 1
Ball-cock,
IBarker's Mill, I
Bell, 1
Bell-crank, I
Bellows, I
Belt or Belting, I
Block, 1
Hlowing Machine, I
Blowplpe, 1
Boller. 1
Bolt, I Wachines, I
Brake, 1
Calculating Machlnes, I
Calendar, 1
Cam. 1
card,
Carpet Sweeper, 1
Carteslan Diver, I
Cash Register, I
Catapnit, 1
Chaif Cntter, I
Chaln Pump. I
corn liarvester, II
Cotton Gln. II
Coupling, iI
Crane, 11
Derrick, II
Ierrick Crane, II
Magonal scale, 11
Dle, I1
Digester, II

Drying MachIne, II
Eccentric, II
Endleme Berow II
Esca pement, II
Filter, 11
Fire Alarm, II
Flire Englne, 11
Fire Extingisher, II
Fiylng Machlne; It
Forge, II
Furnace, 11
Gaa Engine, II
Gearing. 11
Governor, II
Graphotype, II
Grubber, II
11arpoon. 111
11arrow, 111
ilydranite Press, 111
IIydraulic Ram, 111
Ily drontatic Press, III
1nhaler, 111
Kaleldoscope, III
Kaltting Machine, 111
Lathe, II
Lawn Mower, III
Lead, III
Lever, 111
Lightalng Arrester, V1, 727
Linotype, III
Loct. 11
Locomotive, I1I
Machlnery, Agrlcultural, V1, 15
Magic Lantern, 111
Magneto-Electric Jsacblae, II
Monotype. 111
Mowing Machine, 1 V
Nnmbering Machine, IV
Overahot Wheel, 1 v
Perslan Wheel, iv
Planlag Mrachine, $1 V$
Plow, iv
Printlag Prems, IV
Pulley. IV
Pump. IV
Reaplag Machine, 1v
gafety Valve, IV
screw, $\mathbf{V}$
Separator, V
Sewing Machine, $\bar{V}$
silde Rule, $V$
snowplow. $V$
Solar Engine. $\nabla$
Sewing Bachine, $\nabla$
Spring. V
Steam Engline, $\mathbf{v}$
IIow to Make $\mathrm{a}, \mathrm{V}, 713$
Steam Fammer, $v$
Steam Shovel. $V$
Steam Turbline,
Stean, Whistle, $y$
Steelyard, V
Thereshine Machine
Threshing Machine,
Tracton Balance, $V$
Tract lon Engine
Tarbine Whel, v
Tyn rilter, $V$
Tadershot Wheel, $v$
Valve, V
Vernler. $\mathbf{v}$
Votlig 3lachine, $V$
Water Meter. V
Water Wheels. $v$
Whter W W
Wedge. V
Wheel and Axle, $v$
Windmill, V
Windlass, $v$

## Instruments

Anemometer, I
Barometer, 1
Ilow to Make a, V1. $\overline{12}$
Bolometer, I
Audiphone, 1
Almacantar, 1

Calorimeter, I
Camert, I
Camera Incida, I
Camera Obecnra, I
Cathetometer, I
Chroaograph, II
Chroaometer, II
Clock, II
Compans, I1
Crost-star, 11
Cryophorus, II
Cynometer, II
Cyclometer, II
Dramometer, II
Fleld Glass, II
Finoromene, II
Galvanometer, II
gasae, II
Goniometer, II Gramophone, il Gramophone, II
Gyroscope, II
Ifellograph, III
Hydrometer, III
IIfgrometer, II
Kaetoscope, III
Level, III
Micrometer, III
Mcrophone, III
Mcroscope, III
Opera Glane, IV
Ophthalmotiope, ! $V$
Pedometer, IV
Phomograph, IV
Photophone, IV
Polarlacope, IV
Pyrometer, IV
Quadrant, IV
Radiometer, IV
Haln Gange, IV
Sextant, 7
Stereoscope, $\mathbf{V}$
Eolar Mlcroncope, $\nabla$
Spectroscope,
Sphygmograph, $\mathbf{V}$ spirometer, $V$ Stethoscope, $V$ Stroboscope, $\mathbf{V}$
8ynchronograph, $V$
Telautograph, $V$
Telegraph, V
Armature, VI, 723
Clrcuit. VI, 724
Key, VI, 723
Recelver, VI, 723
Slmple System, VI, 722
Wireless, VI, 725-726
Telephone, $V$
llow to Make a, VI, 726
Telescope. $V$
Theodoflte, $\mathbf{V}$
Thermograph, $V$
Thermometer, $V$
How to Read n. VI, 60
Transit Inatrument, $V$
Tools
Adz, 1
AnviI, I
Auger, I
Ax, I
liurnisher, I
Chisel, I
Clsmpill
File, Il
Forcepa, It
Forte, II
Girindstoae, I
IIammer, If1
loe, III
Enife, III
Nallet, III
Innchers, IV
linchers, IV
ineumatic Tools, IV
Rake, IV
Razor. IV
S8w, IV
Mrythe, V
Shesrs, $V$
Sickie, $V$

Trip Hammer,
Vise, $V$
Wrench, V

## MEDICINE AND SURCERY

Aenpnnctare, 1
Allopathy, I
Amputation I
Anesthetic,
Antimeptic, I
Astringent, I
Autoplasty,
Bandage, I
Court-plaster, 11
IMctetice, II
Ulspensary, II
Urainage, II
Irowning, II
Electricity, Usen of, in Mellcine,
First Ald to the Injured. II
Fomentatloa, II
Germ Theory of Disense, II
Germs. II
Granuiation, II
Ilemia, III
IIomeopathy, III
Hospital, III
Hydrotherapy. III
Iaoculation, fil
Ingane Asylum, III
Lithotomy, III
Massage, III
Mnterfa Merica, III
Medline, III
Neurotic, IV
Orthopedicn, IV
I'harmacopoela, IV
Pharmary, IV
I'ercussion. I
Sedative, IV
Serum Therapy, $V$
Styptic, V
Singery, V
Therapeutics, $V$
Tonic. $V$
Tourniquet, $V$
Trephining, $V$
Tumor, $V$
Fumor,
Vnceinnt
Virus, $V$
Vivisection, V

## Medicines and Medicinal

Plants

## Aconite, <br> Aloe, 1

Alum Izoot, I
Angostura Bark, I
Antidote, I
Antipyrene.
Antitoxin, I
Arnicu, I
Arsenlc. I
Asafetida,
Bay Rum, I
Relladonna, I
Bloodroot, I
Boneset, I
Cafrelne. I
Calabar Bean, I
CalomeI, 1
Camphine, I
Camphine,
Camphor, I
Camphor,
Chamomile, I
ChloraI, I
Chloroform, 11
Cinchona, II
Coca. II
Cocalne, II
Cocculns. II
Cod-liver Oil, II
Coliodion, II
Coriander. II
Cowitch, II
Croton, II

Doghane, II
Hixir, 1
Emuislon, 11
Epanm BaIt a, II
Ether, II
Extract, 1
Fennel, II
Fozglove, II
Gargle, II
(ielsemlum, II
(Jentlan, 11
Glauher's Bait, II
Harteborn, III
Harteborn, III
Ileliebore, III
IIemlock, III
IIemlock, III
Ilorehound, III
IIy ssop, III
iceland Mone, III
Iodolorm, III
ipecacunnha, III
Juborandi, III
Jalap. III
Julep, III
Laudannm, III
Langhing Gaa, 111
innment, III
Marsh Mallow, III
Iorphine, IV
Narcotic, IV
Nughtshade, IV
Nux Vomica. IV
Pepsin, IV
Phenacetine, IV
Sniol, IV
Saits, 8 melilus. IV
Sarmaporilia. if
Sassafras, IV
Scammony, IV
Seldiltz I'owders, $V$
Snnke Root, $V$
Sorrel, V
spitenard, $V$
Squili, $V$
Stramoaiam, $V$
trophnnthin, $V$
Strychnine, $V$
Sulphonal, $v$
Tannin. $V$
Tartar Emetic, $V$
Trypsin, $V$
Valerian, $v$
Wormwond, V
See, also, Biographr, subhead Hyysicinns and Surgeons: Dis eases and Pathotogy

## METALS

See Minerals
M13X1CO
Mexico, III
With subhends trating Sirs. face and Dmainale, Chimate, Mineaal Resoubces, Cgaicute, TVaf, Manl:ractiaes, TasinforTATION. COMMDREE, INHABITANTS an's tanguage EDtcation, Gov: ERNMENT AND tteligion, IIIstonf

## Cities and Towna

Acapuico, I
Campeachy, I
Chibunhun, II
Cholula, II
Collma, II
Duraneco. It
Guadalajara. II
Guanajunto, 11
IIermosillo, 111
Jalapn, III
Nagoo, III
Leon. III
Leon. III
Mazation. III
Merlda, III
Mexico, 1 II
Monterey, III
Morella, III

Oarace, IV
Orisaba, IV
Purhuch, IV
Pelengue IV
ruebla. IV
gueretaro, IV
satitilo IV
Ean Luis rotoci, IV
Tampleo,
Trple,
Toluce, v
Veracrus, $y$
zacatectas: $\nabla$

## Culfs.

Callformia, Guif of, I
Campeche, Guif of, I
Mex eo, Gulf of, III

## Hiatery

Beeme Vista, Battie of, I
Cerro Gordo, Battle of, I
Chapnitepec, Battle of, I
Churnbyico, Bettia of, II
corten 11
Gnadilupe Hidulso, Treaty of, II Mexican War, The, III
Mollno del Rey, Battle of, III
Monterey, Batife of. III
Monterey, Battie of, III
I'alo Alto, Battle of, IV
Retace de la Palma, Battie of, IV
Momataine
Bine Monntaina, II
Rocky Mountalis, IV
Blerra Madre, V
Unelaselfiad
Callfornia, Lower, I
Cape Catoche,
Chapaia, 1
Rto Grande, IV
Tehnantepec, $\nabla$
Yucatan, $\sqrt{7}$

## MICHRGAN

Michlgan. 1 II
With mahbeade treating suefact axd drainage, chivate Minetah Resoubcte abaicul. traz Marieactores Tpinapos.
 tation and compracm, Govianhent, education, inetitutiona, Hiatory

## Cities and Towns

Adrian, I
Alblon, I
Alpena, I
Ann arbor, I
Battle Creek, 1
Hay Clty 1
Renton fiarbor, 1
Rlg Rapide, I
Cadilac, I
Cheboygan, 11
Coldwater, II
Detrolt. II
Escanaba, I
Fllat, II
Grand Haven, II
Irand Raplda, II
Holland, III
Ionla, 111
Iron Mountafn, III
Ironwood, III
ishpeming III
Jactron, ili
Kn'amasoo, III
Lanslex. III
Lanurlum, III
I.udligeton, III

Manlatee, III
Marquette, III
Mpnominee, III
Monroe. III
Monnt Clemens, IV

```
Musheron, IV
Negavalif
Fetonkey IV
Pontlac, IV
Fort EMinron, iv
saint Joveph, IV
Bautt galnte Marie, IV
Three Rivere, V
maree miver,
Wraverney Cly,V
Weat baycty
Ipeliantl, v.
```


## Lateo

```
Hinron, III
Mlebigan \(11 I\)
galnt Clalt, IV
Supertor,
```


## Unelasoifiad

```
Détrolt River, II
Isle Royale, III
Mackinac Ioland, III
Salnt Marg'e River, IV
```


## MHLTARY AND MAVAL

Ammnnition, I
Armiatice, 1
armor Plate. I
Arma and Armor, I
Armetrong Gm,I
Army, 1
Army Organisation, I
Arquebna, I
Arrow, I
Armenal, I
Artillery, I
Bayonet, I
Rlockade, I
Bianderhnma, I
Boatawain, 1
Boomerang, 1
Bombl I
Bow, 1
Rreech, I
Broadsword, I
Rullet, I
Cadet, I
Caltrop, I
Cannon, 1
Cartridge, 1
Came Bhot, I
Cavalry,
Chalin Shut, I
Comat Guard, II
Counteralen, II
Court Martial, II
Crombow, II
Dockyards, I
Drafting. 1
Eagle, II
Fleid Omcerm, II
Fifteen Decialve Battiea, II
Fillhnsters, II
Fireball, II
Fire 8hlpa, II
Flas Omicer. II
Flag of Trace, II
Flintlock. II
Forlorn Hope, II
Fortincation, II
Fons, 11
gendarmes, II
Geneva Convention, II
Grape Bhot, II
Greek Fire, 11
Grenade. If
Grenadler, II
Gnn Carriage, 11
Gun Cotton, II
Gunpowder, II
Halberd, III
Helmet, III
Howitser, III
infantry. III
Kremin. III

Lance, 111
Ledon, III
Fachragno, 111
Magation III
yamelules III
Marina Corps, III
Marmal. II
Miltary Academy, United Etales,
11
Militia, III
Mubket, IV
Naral Academy, IV
Naval Recerve, iv
Nay, IV
Parapet IV
Pistol, IV
Irtconern of Was, IV
Privateer, iv
Ouartertan, IV
Rant, IV
Rapler, IV
Reflment, IV
Retirement $1 \nabla$
Revolver, It
Rilie, IV
Rou h Biders, IV
Shell, $V$
Shot
Biege, $\rangle$
gitmal Corpa, $\nabla$
81 naling,
$8 \operatorname{smali} A$ rme $\nabla$
8mokelegas Powder, $\nabla$
spable, $\nabla$
Bpy, 7
gqnadron, $\nabla$
Star, $V$
Swian Gnarda, $\nabla$
Bword, $\nabla$
Tactles, $v$
Testudo, $\nabla$
Tomahawt, $v$
Torpedo,
Uniform, $\nabla$
Yolunteers, $\bar{V}$
War, $\nabla$
Warshlp, $V$

## MINERALS

Apate, I
Alabaater, I
Alnm Stone, 1
Alumina, I
Amalram, 1
Anhydrite, I
Apailte. I
Asbentos,
Asphalt, I
Asteria, I
Auste, I
Azurlite, I
Baryta, I
Banxite, I
Bitter spar, 1
Riende,
Bole, 1
Caiclte, I
Carneilinn, I
Casmilterte, I
Chalcedony, 1
Chalt, I
Cblorite Schist, II
Chromite, II
Chrynolite II
Chryoilte
Clagahar,
II
Ciay. II
Cong, II
Btudy of, VI, 442
Importance of, VI, 442
Visible 8npply, VI, 443
Yearly Outpnt, Vi, 448
Ontline, VI, 444
Qnentlons, VI, 445
Copper Glance, II
Copperan. II
Copper-nickel, II

Coral, 14
Cormanm, 11
Crochdollte, II
Cryollte, II
Dysodlle 1
Brery, II
Feldspar, II
Fire Clay,
plint, II
Fuller's Earth, II
tirapblte, II
Gypurm, It
lematite. III
lifornblende, III
lerablende, II
Imde, III
Jesper, III
Jet, III
Kiolln, 11
Kyanite, 121
labradorite, III
Laple Latul. III
l.ppldollte, III
L.leurite, III
I. Imonite, III

Vimpatite, III
Mispactite, III
Mancbite
Yeerchanm, 111
Nles. III
Nephellin, IV
Nepbrite, I
Oayx. IV
Ooyx Marble, IV
nolle IV
onite, IV
I'ewter, IV
Pister of Paris, IV
prite, IV
l'roxene, IV
llutlle, IV
Where Fonnd, VI, 425
How Obtalned, VI, 426
Outline, $\mathrm{VI}_{2} 28$
Questlons, $\mathbf{V I}_{1} 428$
Sand. IV
stiderite
inderite, $V$
Alnople, $V$
Rinople,
Rpbene, $\mathbf{V}$
SIbnite, $V$
Rtone $V$
Tale, $\mathbf{V}$
Touchstone, $\mathbf{V}$
Travertlne, $V$
Tremolle, $V$

## Motal

Aluminnm, I
Atimony, 1
Rabbltt Setnl, I
Barlum, I
Mismutb, I
Irsaa, 1
Pronze, I
Cadmlum, I
Caerlum, 1
Chrominm, II
Cobslt, II
Copper, II
Dutch Metal, II
Gisleus. II
filllum, 11
Galvanized Iron, II
German Sllver, II
Gold, II
ladium, III
Irom, III
Aduptahllity of, V1, 422
Importance, VI, 422
Outline, V1 423
Queatlons, VI, 424
lead, 111
Tiltbinm, III
Magnedna, 111

```
Manganeae, III
Mercury 11
Metals, 111
Nectel, IV
Ommium, IV
Inalladlum, IV
Platlnum, IV
fladinm, IV
Itnbldum, IV
Sllver, \(V\)
Solder,
Boldern,
Bodlum,
\(\boldsymbol{V}\)
Sodinm, \(V\) Mral, \(\nabla\)
Specolum Motal, \(\bar{V}\)
Strontrum,
Strontium, \(V\)
Thallum,
Thorlnm,
Tin, \(V\)
Titanlom,
Tungslen,
Uranlum,
Vranadum, \(V\)
Yttrinm,
Yinc, \(v\)
```


## Precious Stomes

Almandiue, I
Ametbyst, I
Aqnamarine, I
Beryl. I
Carbnucle, I
Cat'b-ey, I
Chryeoberyl, II
Cbrymoprase, II
Dlamoud, II
Smerald 11
Gurnet, II
Ifellotrope, III
Koh-I-noor, $11 I$
Opal, IV
Pearl, IV
Ireclong Stoues, IV
Rnhy, IV
Sapphlre, IV
Snrdonyz, IV
Topan,
Tourmalline
Turqnolse,
$V$
, MINNES TiA
MInneaota, III
Wlth subbenda treating Sua. FAFE AND DRAINAGE, Climata Mineral Ragidicen, AopictetURA, MANUFACTUEED, TRANAPORtation, CoMMERCB, Government fidication, inmtitutionn hie toar

Cities and Towns
Albert Len, I
Austln, 1
Brnlnerd, I
Cloquet, II
Croolston, II
Dnlutb, II
Eveleth, II
Farlbault, II
Fergus Falls, is
IItbolng, III
LIttle Falle, III
Mnnirnto, III
Minneapolls, III
New Ulm, IY
OFatonna, IV
Redwing, IV
Rocbester, IV
Salnt Clond, IV
Salnt PanI, IV
Stlllwater, $V$
Vlrgina, $\nabla$
WImona,

## Lndee

Leech Lake, III
Rnlny Lake, IV
Superlor, $V$
Rivers
Minnemota, III
Mleatstlppi, III

Red River of Ihe North, IV
salut Crols, IV

## Misetssipl

Mlaulanfppl, 111
With mubhead treatios Bua. Face anv Dinainaon, Chimate, Minatal Itabouaces, Aomicultuag, Manupactiana, TBanhmos. tation and Conmerci, Govean. Ment, kDucation, Inetitutiona, Histoni

## Citios and Towne

Bilozi, 1
Colvmhne, I
Corintb, If
Green ville II
Jackeon, III
Meridian, III
Natches, iv
Vickbure, $V$

## Unclasoified

Bls Black River, I
Mexico, Gulf of, III
Minlmalpplalver, III
Pearinifer, IV
Yanoo, V

## Missours

MismonHi, III
Wlth suhheads treatins BuaFace and Drainager Climaty Minetal Renouncas, Lomicul. TURE, MANUFACTURES, TMANBFOA. fation, Comherce, Goveanment biducation, Institutiona, Hin: romy

## Cition and Towna

Aurota, 1
Brookfeld, 1
Cape Glrardean, I
Cnrtbuge, I
Cblillicotbe, I
Clinton, II
Clinton, II
Columbla, I
Ne soto, II
IIannlbal, III
Independence, III
Jefferson Cliy, III
Joplln, III
Kansag Clity III
Klrtzvlle. III
Lexlngton, III
Loulafinnu, III
Minrsball, III
Mexlco, III
Noborly, III
Nevadn.IV
Poplar Blunf IV
snint Cburles, IV
Galnt Josepb, IV
Salnt Ionif, IV
Sedalln, $V$
Springield, V
Trenton, $V$
Webb Clty, $\nabla$
Webster Groves, $\mathbf{V}$

## Mountains

Iron Monntnin. III
Danrik Mountalns, IV

## Rivers

Mikalesalnpl. III
Messonri, III
Osage, IV

## MONEY

Alloy, I
Asslgnats, I
Cbeck, I
Bnak Checks, VI, 563
Cowrle, II

Curroney, 1
Cazadian, 71, 600
gold ar I taidard, V1, 660
Greepbecter II
Lec. 111
Money. 111
Metal Iomes, $\mathrm{VI}, 888$
Prper Monet VI, 660
Prmitive, VI, 88
Momoy and Bankiag, VI, ses-ses
Colns
$\mathrm{A}_{4}, \mathrm{I}$
Cent, 1
Crown, II
Denarius 11
Dollar, II
Irachma, II
Ducht, II
Earkle, II
Farthlig, II
Frorin. In
Franc, II
Gamette, II
Gulnea, II
Livre, II
Mark III
Mirele II
Mlat. III
Penny, IV
Peso, iv
Plater, IV
Pine Tree Bhilliag IV
Ruhie, IV
Rupee, IV
smido,
gequin, $v$
ghillny, $V$
Aoveremp, $V$
$\mathbf{Y e n}, \mathbf{V}$

## MONTANA

Montana, III
With subhemds treating sozFace amd Drainioe, Climate, Minilaz Resozuces, Agaictl tuae, Manefactuars, tranapon. TATION, GOVFRNMENT, EDUCATIOM, imatitotions, Hiskoiz

## Citios and Towna

Anaconda, I
Blling. I
Hozeman, I
Hutte. I
Great Falls, II
Lelena, 111
Kallapeli, III
1.1vingaton, 111

Mlea Clty 111
Mlstoula, III
Morantaine
Rocky, IV

## Rivere

Blghorn, I
Clartices'rork, II
Mlasourl. III
Platte, IV
Yellowstone, $\mathbf{V}$

## MOROCCO

Cape Rlanco, I
Fry. II
Morocco. III
Rabat, IV
Tangler, $\mathbf{v}$

## MOUNTAN PASSES

Ramlan. 1
Khyber Pass, III
galnt Bernard, Iv
Ilmpion. $\mathbf{V}$
splugen $\mathbf{P a E s}, \mathbf{V}$
Thermopylae, $V$

## moUntainss

## Afrien

Atlas Monntatus, 1
Drakensbers. II
Table Mountions, $V$
Anis
L/ghantetan
EIIndu-Kuab, III
Arebla
Ararat, I
Chine
Alatau I
Altal Mountalme, I
Ohata Mountaine, II
IIImalaya, III
Kallas, IIt
Karakorum Mountalne, 111
Ttan-Shan, $V$
India
Fiverent, Mount, II
IIlmalaja, III
Karakortua Monntalos, III
Purole
Cancasuas I
Elburs, II
Alatan 1
Altai Mountaine, 1
Himalaya, III
stanovol Mountalna, $V$
Tlan-8han, $V$
Urai Mountales, $\mathbf{V}$
Yablonol Mountalne, $\mathbf{V}$ Twrkey in 1 ote
Ararnt, Mount, 1
Carmel, I
Catucasua I
ilermon, III
Ida, III
Lebmon, Mountaina of, III
Nebo, IV
Ulives, Mount of, IV
Tabor, Mount, $V$
Taurua, $V$

## Australia

Darilng Range. It
Koselunko, Mount, III

## Exrope

Auatria-Hungory
Alps, 1
Carpathlan Mountalne, I Ortier, IV

Bulgaria
Baikan Mountalns, I
France
Alpe, 1
Cevennes, 1
Jura, 11 II
Nont Blanc, III
Pyrenees, iv
Vonges Mountaina, $\mathbf{V}$
Cermany
Alpm, 1
Black Forest, 1
Hara, III
Jura, III
Mlenengehrge, IV
Vouges Mountalins, $\bar{V}$
Greece
Helicon, III
Olympus. IV
Parnassus, IV
Alps, 1
Italy
Apennines. I
Mattert irn, III
Caucasus. 1
Tral Mountalns, $\mathbf{V}$
Faldal Hills, $\mathbf{Y}$

## Apain

Cantabran Mountalina, 1
Pr remees, iv
Gerra Nevada, $V$

## suotserland

Alpa, 1
ungtran, II
Jurs, 111
Matterhorn, 11
Mont Blanc, II
Rose, Monte, IV
Baint Gothard, Iv

## Twikey

Athom, Mount, I
Great Britaln England
Chaviot Ellia, I
scotiand
Ren Lomond I
Hen Macdbn!, I
Ben Nerle, 1
Chevlot Inhle I
Grampinns, It

## North Ameriaa

Cordiliera, il
4 laska
Cascade Range, I
Falrwenther, Mount, 11
McKinler, Mount, 111
Salnt Bilar Mountaine, IV
Canade
Cascade Range, I
tlooker, Mount. III
Laurentian Mountalns, 111
Rocky Mountains, IV
Baint Cline Mountaine, IV
Bolkirt Mountalns, $V$
Yeatico
Biue Mountains, I
Rocky Mountalns, IV
Slerre Madre, $V$

## United Btates

Adirondacks I
Alleghany Mountains, I
Appalachian Mountalin, I
Rerkshire hills,
Black Hille, I
Black Mountalns, I
Cascade Range, I
Catekill Mountalng, 1
Conot Range, II
Cumberland Mountalns, II
Green Mountalng, II
Hood, Mount, III
Iron MountsIn, III
Katahdin, III
Larampe Mountalna, III
Ozark Mountalns, IV
I'fle's Peak, IV
Rocky Mountalne, IV
Rel litry Mountalns, $V$
Relikrk Mountaing,
Ele rra Nevadas,
$V$
Taconle Mountalns, $V$
Olinta, $\bar{\nabla}$
White Mountalns, V

## South America

Cordiliera, II
Argentina
Aconquija, I
Anden, I
Bolleta
Andes. I
III mani, III
Sorata, $\boldsymbol{\nabla}$
Chut
Andes, I
Colomote
Ardes, I
Ecuador
Andes, I
Chimboraso, I

Mountains

Andme 1
Anden

## Pers Trnenvis <br> MUsic

Amath. I
Band, 1
cantate 1
Catyut, 1
Chlmes. I
Chota, 11
Chorun, il
Chromatlc, 11
Concertatoty, It
Counterpolnt,
lla votte, II
cod save the King, it
Ilarmonicu, III
Iarmong, 111
IIymns, NatlomaI, III
Iymbend IIzan Tunen, III
Interestivg Nacti Abont, VI, 588
In trumental Mnelc, III
Intermesso, III
Marwillyto Hymn, III
Marwilinte
Meloder, 111
Meter, 111 , III
Mutronom
Importance of, VI, 568
llow to Stady About. VI, 300
Interentin Facts Abont
IIJmne, VI, 688
Qnestlons, VI', Ee8
opere, IV
Opert Bonffe, IV
Oratorlo. IV
orchestra, IV
Recltative, IV
Raythm, iv
Acale, IV
Alaging $Y$
Tempo,
Tone, $V$
Treble, $\mathbf{V}$
Tuning Fort, $V$
Iantee Doodie, $V$

## Instrumonts

Accordilon, I
Aeollan, I
Bagplpe, I
hanjo, I
Transoon, I
How. I
Rugle, I
('nstamets, 1
CIarinet, II
Concertina, It
Cornet. II
Crapte II
Cymbens,
inlclmer, 11
Flie, II
rlageolet. II
Flute, II
Gong. II
Gultar. 11
Ilarmonlea, 111
IInrmonlum, II
llarp. III
IIarpsichord, II]
Horn, 111
IIIrdy-gurdy, III
dow eharp, II
Iute, III
I.yre, III

SInndoIIn, III
Oboe. IV
Ocarina. Iv
orarina. IV IV
Organ. IV
Plano. IV
Planoplayer, IV
Siren, $V$
Tambonrine, $\mathbf{V}$
Tom-tom, $V$
Trombone $V$
Trumpet, $\%$

Viol v
Vloiln. V
Vloloticello, $V$
XIophone, $V$
Afther, $V$

## MIII AND ISCND

Brownle, I
Demon,
Fairies If
Familiar sparite, 11
Glanta, II
Glanta, II
Griting II
L.orein $11 I$

Mermald, III
Mytholoty, IV
Chart, V1, 807
Outlime, VI 585
Yuentions, VI, 684
Storlee:
Arachne, VI, 871
Atlanta, VI, 675
EDropa, V1. 609
I'hathon, VI, 572
Iromerpipa, VI,
Trojan War, VI,
578
Nis, IV
Oberon, IV
Phoenta IV
I'uck, IV
Pygmien, IV
Quetmalcomtl, IV
Ruetaliconti, IV
Sieven Bleepers, $V$
Sea serpent, $V$
Sphing $V$
ThnIe, $V$
Inicora, $V$
Wanderln Jew, V
Werwolf, ${ }^{\text {W }}$,

Ammon, I
Annhis, I
Apls. 1
Athor 1
Isls, ItI
Oalris, iv
Phtha, IV
Re, IV
Berapls, v

## Creek and Roman

Achilles, I
Actaeon, I
Admetur, I
Adonls.
Aegis, I
Aeneld, 1
Aescnlapina, I
Agamempon, I
AJax.
Alceitin, I
Amazon. 1
Amhrosla, 1
Amphlon, I
Andromeda, 1
Antaens, 1
Antigope, 1
Aphrodite.
Apollo.
Apple of Discord, 1
Artchne, Story of, V1. 571
Argomants, 1
Argus, I
Arladne. 1
Ataianta. 1
See, also, VI, 577

## Atias.

## Angeas,

Angurn,
Ahrora.
Bancla and Phliemon, I
Rancis and Ph
Bellonapho

Cadmue, I
Caduceus
Calllope,
Calspeg 1
Casandre, I
Castalla,
Castor and Pollux, I
Centaur, I
Cerberus, I
Cerben, I
Cheron, 1
Charom, I I
Chiron, I
Clice, is
Ciytemanetri, II
Codrua 11
Cupld, 11
Cybele, II
Cyeloga, II
Daedalus, II
Dencalion, II
Dlame 11
Ddo, il
blomedem, II
Feho, II
Flensinian Myuterten, II
Rlyslum, II
phaymion, II
Erato, Il
Brehng, II
Fris, II
Europa, II
Btory of, VI, 609
Enrydice II
Fatem, It
Fauns, II
Florn, II
Fortuna, 11
Fortunatug, II
Furlen, 11
Galatea, II
Ganymede, II
Ganymede, II
Gorgong II
Graces, II
IIaden, III
IIalcyon, III
IIarples, III
IIebe, III
IIecate, III
IIector, III
IIecnha, III
IIelen, III
IIeIlo, III
Hercules, III
IIero, III
Hesperiden, III
Hydra, III
Hygela, III
Hymen, 11 I
10, 111
Iphigepla, III
Ir1s,III
Islande of the Blessed, III
Izion, III
Janns, III
Јаноп, III
Juno, III
Juplter, 111
Laocoon, III
Lares and Penatew, 111
Lethe, III
Lucretia. II
Mars, III
Nedea, III
Meduat. III
Meleager, III
Melpomene. III
Menelans, III
Mentor, III
Merenry, III
Midas, III
Minerva. III
Minos, $I I I$
Minotanr, 11 I
Momus, III
Morphens, IV
Musphens. IV
Myrmidons, IV

Nalatis, 1

paliadium, iv
Pas. IV
pardore IV
parim, iv
pelope Iv
renelope iv
pervenint
Panedra, iy
Phecthom, iv
tiometis ${ }^{\text {yl }} 872$
Pluto IV,
Plutyar 17
Polyremala, IV
Polyphemus, iv
pomone IV
Prometheus
procerpina, IV
story of, V1, 57
protenitana, 1
Protecta, IV
peycha iv
pygmalion, IV
Pyramug ind Thisbe, IV
Prthom, IV
Rhadameathus, IV
ghen, IV
Romulus IV
Barpedos $1 V$
saturn, IV
satys.
scria.
ceme,
spmele,
Bleque
Girem. $\%$
sloyphive $V$
comans.
Btyz, $\mathbf{V}$
Tantalus $V$
Terpsichore, $\nabla$
Thalita. $\bar{V}$
Themals, $V$
Themols, $V$
Thetim.
Titame, $\nabla$
Tithonus, $V$
Tritons, $V$
Trojan War, V1, 678
Troy, V
Uiymeen, $Y$
Uranla, $v$
Uranue $\downarrow$
Veunct $V$
Vertumunes $\nabla$
Yenta. $V$
Pulean, $V$
Hindu
Ganema, II
Indra, III
Kama. III
Krishna, III
Visheu, $V$
Angard, 1
Balder, I
Fres, II
${ }_{\text {Freya, }} 11$


## NAVCATION

Fos Brate, It
Lead, III
IIfa buoy, III
Life-baring Cun and Rociret, III
Lfe-savian terven III

1. Ifhthoute, II
varimation, iv
IMmmet, IV
movadic: $\nabla$
Wharf, $V$ V Navigatlon, $Y$
Mf:nsu
Nebremka, iv
Wirh aubheade treatlug suaTACD AND DHANAGE, CLIMATE Minmal Remoticra, Aomicuz tuan, Mamotactume, Thamapos TATION AND Coumyic Goraex. yant, EDUCATION, Injtitutiona Hytonar

## Cition and Towas

## Fremont $I I$

oraud Imiand, II
IIartingen III
Learmer, III
Nobratia city, iv
Noriolk, IV
Omaha, IV
Piattamouth, IV
Ropth Omaha, $V$
Yorti, V
Miesourt, III
Platte, IV

## NETHIXRANDS, THE

Wetheriands, The, IV
With mbbeads trenting BusFara and Drainage, Ceimate. INDU日青TIEA, Thanapolitation and COMAEACE, Infanitaxta, EDUCAtinn, Languaga and Litilatuan, Colonias Govmazuews and RE higion, Efratony

Citios and Towns
Amsterdam, I
Arnhem, I
Breda, I
Delft. II
Dordirecht, II
Croniugea. II
IIanrlem, III
Iapue, The, III
Ilefder, III
feydet, III
M, Mathy, III
Nimeruen, $1 v$
Rottpridm, IV
Utrecht, $V$
Hianuay
Alve, I
Quadruple Allianee, IT
Eluccemulou Wars, $V$
Tripie Alliance, $\gamma$
Utrecht. Peace of, $\mathbf{V}$

Culle and Eage
pellart, II
Euiderimen V
Idande
Amberna. 1
Arm filanda,
Pa, 1
Banch, Islom. I
Bermea 1
Cereben, 1
Ceram, 1
Curtega Idand II
Duten bist Indice, 11
allolog 11
Kratraton 111
Donbole, III
Manbok, III
Maley Arehipotage, 111
Molucens, 1 II
New Gulpen, IV
Malayer Inthade, IV
Sumatir $V$
Ausia Ialunde, $V$
Numberat
Thmor,
Timorlat, $\bar{F}$
Went Indide $V$

## Unelanolifed

Gulana, Dulch, It
Luzemburs, III
Mense 11 IV

## NEVADA

Nemada, IV
With aubheadm treating sum FACD AYD DHAIMAGE, CLIMATA
 tuaz, Manu hactuaivo, Thanhpon: TATION, Govianyext, EDVCATION, inatitutiona, Hietuay

## Cition and Towna

Carnos City, Il
Rewo, IV
Virgimia City, V

## Unclasaifed

Colorado River, Il
IIumboldt River, III
Rocky Mountaln, IV

## NEW BRUNSWICK

New Rrunamict, IV
Witb subbeads treating 8cz. FAcE AND DRAINAGE, CLIMATE, Minkill Resourcts, Agrictlo TURA $\triangle N D$ OTHER INDEATRIES, Trangroitation, Govianment AYD RELIGION, EDICATION, INETI. tutiona, Citice, Ihatohy.

## Clites and Towna

Bathurst, VI, 814
Campbeliton, V1, 816
Chatham, VI, 317
Daithonsie, VI, 818
Dorchester, VI, 318
Edmundston, $\mathrm{HI}, 310$
Fredericton, II
Grand Falli. VI 321
Hampton, V1, $\$ 21$
Hilleborongh VI 922
Marfurlie. VI, 824
Militown. FI, 325
Moncton, VI, 825
Newenatie, V1, 826
Richibucto Yi, 331
gactville, VI, 833
gaint Aidrews. V1, 838
Salnt George, $\mathbf{V I}, \mathbf{3 3 4}$
netat johs, iv
ciat liopter. VI, 884
onediec, 71.235
nex V1. 151
Tocdetect; V1, 840
Bes
Chalewr Bay, 1
fandy, Bey of, 11
framimaquedy Bay, iv

## leharie

Campotello, 1
Urate Meran, II

## Rivers

MiramichL, 111
Hemtirguehe, IV
Tatat Jome, iv

## 

New Bampalitre, iv
With aubhemin treatige Bum. yace amd dmazmage, Climate, Mineant Rmbouncm, coniculo rine, Mamujacturen, twamafor fation, gorenament, Education, imatizupioma, Bzazonz

## Citios and Towns

Berilm, 1
Ciarefont 11
Comeord
Fraukilin, II
Kepae, III
Iaconla, it
Manchenter, 111
Nambua, IV
Itortamonth
Bocheoter, iv
somareworth, $V$

## Miver

Cnamecticut, II
jlerrimec, III
Saco, IV

## Unclasifised

Infen of Shoale III
White Mountaing, $V$

## NEW JERSEY

New Jersey, IV
With subhesds treating Stapact ano draimaoz, Climate MiNERAL Renouicth, FIDHEMIEs, Agnicuttyan. Manofacturat, Tansportation and Commzace, Govenmaxt, Euvcation, IMati titiona, Hiatoay

## Cities and Tewne

Aabury Park, 1
Athantic City, I
Rayouve, 1
intoomalela,
Bridpeton, 1
Buribgrom, 1
Camdea, I
Cape May,
Cape may, I
hiver. II,

Fillznbeth. II
Finglewood, II
I; mrfield. II
M!nurester City II
Hackeusack, iff
Inarrison, 111
II Whoken, III
irvingtou, fiI
Jemey City III
Krarny, 111
Lambertville, III
Loag Brameb, iII

Miliville, III
Foartelalr, II
yorrmeothiv
Sewaft, iv
Now Iramaviet IV
ocenn drove, it
orater it
merceie it
Preth amboy, IT
philimepery iv
plataiblat it
Iriaction, iv
Retheny iv
Red resho iv
Rutherford, iv
Ealem, IV
Nouth Amboy, $V$ Anmmite 1
Treston
Unlom
Wertioll, 7
wet iow
Weat New Iork, $v$
Went Orage, $V$

## Unclasatisel

Bine Riage,
Delawate Ray, 11
Deloware River, II
Ratitar. iv

## NEW Mixaco

New Mexico, IV
With aubheade treating fow

 noumcea, Mavvractuanar Thave portation, Fhucation, inatitu. zјоха, Hiticomy

## Cities and Towns

Albuquerque 1
Lan veran, III
Ratou,IV
Santereiv

## Unclanaifiod

preon River, iv
Rio mrande, It
Rocky Monitalme, IV

## NEW YORX

New York, IV
With unhbeads treating gua. FACE AND DMAMAGE, CLJMATE, Minarar Resourcent Aosicvi tene, Mantifactuaza, trannfontation and Commzace, Govran. mext, Enccation, inhtitutiong, Hietole

## Cities and Towns

## Alhang.

Alblon, I
Ammterdam, I
Auburn, I
Bntarla. I
Bloghampton, I
Brootion I
Brookljn,
Buatalo,
Bavara, ingua, 1
Catakili, I
Coboes, 11
Coney Inlond, II
Cornlug. 11
cortiand. il
Crown Puiat, II
Dobbs Ferry, II
Dunkirt, II
Rimira, II
Fredonia, II
Fulton. 1
Genera. II
Gleus Falls. II
Gloveriville, II
laveratraw III
If erbinety il
Toomes fails, 111
tiomaell,
Ituran. II
lileo, II
Ithmes, III
Jamalien. II
Jamentown, III
Jobinatown, III
Kingraton II
litme Falla tII
Loch port. It I
Malone, III
Mama robeck, 111
Mattemman. III
Xectanicwille, 111
Mesing, III
Midalefown 11
Jompt Vernon, IV
Nomburah, iv,
Nowhurah, ilie, iv
Now Yorb IV
Nimara Valle. Iv
Nort Tompreada, IV
Normich. IV
ordemabures. IV
Olenp. IV
Opelda, iY
Omecata. IV
Ominian IV
Onwego, iv
Oweito iv
Preptakili, IV
Plart Chure. iv iv
jort Jervin, iv
Proukheepale, IV
Revmelaer, IV
ilocheuter, IV
Rome, IV
Eackett'a IIarbor, IV
Ralamanch, IV
Raudranchi, IV
Barufora
Rebenectadr, IV
Semeca Falin,
Stouy Polut,
Byracume, $\nabla$
Tarrytown, $V$
Tonawadda, $V$
Troy, $V$
Itlea, $v$
Watertowa, $\bar{\nabla}$
Watervilet, $v$
Weat I'olut, V
White Ilalun, $v$
Yonkers, V

## Illands

Riaptwell'm Island, I
Gont Ialaud. 11
Loong Inland, III
Msuhatrau ingud, III
staten Idlaud, V

## Lakoe

Cajuga Lake, I
Champlain, I
Erie, II
areorge, 11
ouelid Lake. IV
outario. IV
Semece Lake, $V$
Mountains
Adiroudack, I
Appalachisn. I
Blue Mountsins, 1
Catamili, I
Pallsaden, IV
Treonle Mountalne, $V$
Rivers
Allegheny, I
Bant Rlver, II
Genesee, II
Hndsen II

Molamit. 111
4here Lawrenes, iv fiver, iv

## Now 2ulano



## NORTH AMDRCA

North Amertes, iv
With erbbends treativg mos FACE AND DGAMAGB, MMELAL RE. gojicee, Chimath, Vmontation, animal Livi, inhaistanth, jo hitical Divichoni, llimtoay
Jor ropraphleni seaturet 800 undep dilerent countifen.
Ovtlue for Btuds of, VI, 290
Polition Divitione
Alanke, 1
Canedr 1
Centril Amerten, I
Menieo, 111
Ualted Whtaton, V

## NORTH CAROLINA

North Carolioe, iv
WIth mabhends trestius $\quad$ Iusace and Dilimage, CLimate,
 Aの日icugtums. Manvactumana, Thanafortation and Commence, Govignuant, iovication, Imert:


- Capes

Cape Fenr, 1
Cape IIabteras, I
Cape Lookout';

## Cites and Tomm

Ashaville, I
Cherlotte,
concord, il
jurhasm, il
Ellsabeth City, il
(ioldabore, 11
(irreenaboro, II
iligh lolat itr
Nembera, IV
Raleigh. IV
Nalinitary. IV
Wimingtoo, $\nabla$
Winston-Baiem, $v$

## Culfa and Bays

Ocracote Imlet. 17
I'amileo Sonnd, iv

## Mountains

Appalachlan, I
Blact Monntaine, 1
Blue aldge, 1

## Rivere

Cape Fear River,
Cnfawbe River, 1
Frobeh Broad River, 11
I'rdee River, IV
Hongote Biver, IV

## NORTH DAKOTA

North Dusotr, IV
With subheads tresting FozFacs and Dmivane, Cijuata, Minelal Resousces, Aobicul: tuas. Manupactive tation. Govengyent. EDUCation, InBTITtTIONA, HInTORT

## Clinios and Tewno

Ifictivenan, 11
fary 0,11
gration 11
Grand Fortes, 11
fribitorty
Wabpetuent
Rivers
Dakota miper, Il
Mesorit, II
Red liver of tha Aortb, iv

## MORway

## Sorwas, iv

Wita mbhe is ireatl : Buz.


 TEAMBPO

 OIOM, Liatos'

Cfing as: Tnw
Arendal,
Dergen, 1
Christianla 1 :
Stevanger, v
Uncla? sificd
Cattegat. 1
Glomenear 11
Loloten, III
Momen, 111
North Cipe iv
Northment iv
stajeerrat V

## NOVA SCOTLA

Nove feotis, $1 \nabla$
With subhrads trentus sus. Face AND DEAImagE, Chimatm, Mimmal thmources chicatis, ruar AND OTHEA ixDtereiem Teamegontation. Govinnmens AND RERIOION, EDUCATION, Citien fistor, m , Cape doble
Pape dable, I
Fundy liay. If
Minan Bay, III

## Cities and Towns

Amhernt V1, 313
Annapolin Hoysl, VI, 318
Antlfonlen. VI, 814
Kandect, VI, 313
Cridgewater, VI, 315
Canac, VI, 817
Dartmonth, V1, 818
DIsby. VI. 819
Dominion, V1, 818
Hince Bay. V1, 820
Grand Pre It
Ifallfax, Il
Iuvermena, VI, 822
Kentville, VI, 823
IIverpool, Vi, 824
Loulaburs. VI, 324
New Glatgow, V1, 826
North Epaney, VI, 827
Oxford, VI, 827
Parraboro V1. 328
Pleton, VI, 328
Port Hood, VI, 829
Rhelburat FI. 80.
Sprlng IIII, V1, 836
Strilarton. V1, $\mathbf{3 3 6}$
Gydmey.
Mydney Mines, V1, 387
Treaton, VI. 387
Traro, V1. 337
Wentville, VI, 839

Wivinot, Vi, 839
Woifvile, V, aso
IEPmonth, $V$

## Inan-18

Cupe Bretom,
Mate, Iv

## ониO

Ohlo, IV
With abhouds trestion Re: Fact amb Deainace Chivisf Mimazal Removacian, Ausict. TUME, Manupactr: Tation, foveenasent. \&ulcatiov In mitutione, Ilistosy

## Cites and Towns

Atron. 1
Alliance. 1
Amsabul., 1
Theltalp.
fiellefontales,
Buey pus, I
Cs ibrldse, 1
i'e usl Lhovar, 1

- "คn!,

ieveland, II
Columbere if
Conseant, II
Conhoctom, II
Thetom, II
ix inswee, II
interware, It
List Liverpool, il
Eilyta, II
Findist, II
Fubtorla, 1
Fremont, 1
Gallon, II
(isilipolis, IL
(Henville, II
Areptillie, II
ilamilton, ill
Ironton, I11
Jacknon, 11
Kenton, III
Lancanter, 111
Lima, III
Loratn, III
Manmeld, 111
Marietta, 111
Jis rion, II
Martins Ferry, 111
Manallon, 111
Middletown. 111
Mount Vernon IV
Velaomalle, iv
Newart. IV
New Irhiladelphls, iv
Niles, is
Norwalk, IV
Norwood. IV
Plonk, IV
Poptemouth, IV
Galnt Marys, IV
salem, IV
Rendunly, IV
Sldney.
Apringield, $V$
Sipubenville, $V$
Tinn. V
Toledo, $V$
Troy, ${ }^{\boldsymbol{V}}$
Troy, $V$
Van Wert, V
Wiarren, V
Wahhigton Court Honse, $\nabla$
Wellaton, V
Welisville, V
Woonter,
Xenle, $V$
Tonngatown, V
zanewville,


## Later

ETH, 11

Yismer III
Mlonill
Musing inve. Iv
ohte. TV
scloto, $V$
0115
Braseme,
Irnation.
(IIubler.

Iamplise,

lryma OMI $^{2} 11$
Funel MII. II
(Samatiae. il
Keprompro III
l.inemel OII, II

Vaphtha. IV
Sitrohemsol, iv
Mlw, 1
Tolm will, IY
irelraleam. IV
Eperm Oll, $V$

## OLLNTOMA

Oklahoma, IY
With auhhemdn Irpatlas Axm fare and IDaAtmah! Chimate Minzeal Itraovacki, Aosicultine, Manvoactumba, Tganhtua.
 tion, Eioccation, Inatitutiona literoar

## Cities and Towas

Arimore. 1
Chletresta, 1
E.ald, II
litithrie, It
McAtenter, III
Munkoree, IV
othaboma CIty, IV
I'erty, IV
Shawaep, V
Routh NcAleuter, $V$
Tulan, V

## Rivors

Canadian River. I
Red R1ver, IV

## ONTARIO

Ontarlo, IV
With aubhemers treating SuaA"F: ASD IDRAINAGR, CLIMATE Mineral tesohmona, Aomicel: TERE AND (ITHER INDUNTIER Transpontation and Commince. Gonernmint ANIM RELIOION: EnCCATION, Citien, HIstoer. Yapltoulin, III

Cities and Town
Araprlor. VI. 314
Harrie. VI, 314
Helleville. I
Beriln, I
Bramptoa, VI, 815
Brantford, I
Irockville. I
Campleilford. VI. 31 e
corb-ion Tlace, VI, 317
Chntham. I
Cobalt, II, 318
Conbourg. VI, 318
Collagwood. VI. 818
Cornwalt. V1. 318
Dindan. YI, 3 Io
Fnrt William, VI, 320
Galt, VI, 820

Ismomoque, VI, 830
(lonkrteth, VI, 22
IIallepturs, VI, 2
If anilton. It
IInwhenbery, VI, es
Ingermelt 8 ,
Krnort. VI,
Kingeton, Ill
fiadany. Ill
Mldiand. V1, 325
Nesart Falle. V1 830
North Bey. VI. ad?
North Torouto VI, 837
Orille. VJ, 827
Orinhews. VI. 827
Ohtswe, IV
Nee, also, VI 812
Owen pound iv
Thrle, VI, 827
I'sry Mound Vi, 828
I'pmoroke. VJ, d3
Iremetsngulehwme, VI, 328
Perth, VI, 828
I'rterborouph, IV

I'tetom, VI, 22 es
I'orcuplne, VI 898
I'ort Arthinf VI, 329
I'nrt IIope, VI 320
I'ranton, 1 , 810
Jfenfrew Vi, 881
Jocklad.
Vi, $8: 2$
Naint Catherine's, H1, 88
Naint Mery'e, VI, 384
Ralnf Thoman. IV
Sarmia, IV
Kault inalnte Marfe, IV
Nhepbriote, V
Nimeoe. VI, 808
Nmith'w Fnlin. VI, 335
Niratiord, $V$
Kudbury. YI, 336
Tornntes
W'alter lile. VI, 358
Whliacthure Vi. 838
Watarloo, YI. 8 Be
Welland. VI, 339
Windsar
Woonstor th, F

## Culfs and Bays

Grorglan Ray. II
Ifudxon liay. III
Jamen Ifay. III

Erpe, II
Laltes
Great I.aken, The, II
IIuron. III
lake of the Wooda, III
Singon. iv
Niplanlag. IV
Ontarlo. is
Jainy I.ake, IV
Saint Cialr, IV
Simeop, V
Superior, V
Mounteins
Laurentian, III
Rivern
Ottaws. IV
Gt. Iawrence, IV
Salat Mary'a, IV
ORECON
Oregon, IV
With aubhents Ireatige Sca-
 Nineral Regothcem, Fisheries, Aonicelture, Manifactirig, TRANAPORTATION aND fommerce, Govenemper. Fitceation, InstiTETIONA, HIETORY

## Capes

Cape Blarco. I

Organisations and Orders

## cilion and Towne

Albans, 1
Aabland
Amalares, 1
fithortce clity.
Inilien, 2he, II
ratroee, 11
Oregon City IV
Pomaleten, if
Batem. 10

## Motinteins

Hiae Movatalen, I
Camede Hater
Connt ltake. If
Ilood. Mount. It
Rocky Moustains, IV

## Rivera

Colnmble River, II
Fanta River V
WIllamettickrer, V

## ORGANLZATIONS AND ORDERS

Americen Pormiff Anmocistion, I
Ancieat llrior of finited
Woftraen, 1
Audubon Hoclety, I
Baptint Youns Yeople's Union. The 1
mor Eletinem,
Fhor Beonte,
Brotherhood of Anfirew and
IMilp, I
Arwherhood of Saint Andrew, I
Camerra, 1
Cspurhina, I
Crboantl. I
Cafmeliten, I
Carthuniana. I
Charly, Bisterm of, $t$
Childrea, Nopletleg for, :
Chrietian Findeavor, If
Cimeinnati, farlety of the, It
Cinterclana, II
Club, II
Conferlepate Veterana, I'niled, 11
Confederate V'rteranc, I'alted
Rons nf, II
Crueity to Animela, Socloty
for the Jrevention of. 11
Daughtera of the Americen
Repnlutloa, II
Dominicana, if
EIkn, II
Epworth I.eague, II
Fealana. 11
Fopenters. Anclent Ordef of it
Forentern, Independent Oritrr of, II
F゙oreslepm of Ameriea. II
Francimans. 11
Fratsprnal *nclellem, II
Fraterattlen, College. II
Garterr. Order of the, II
fimaraphical storletiew. It
ficorse, Orfler of Naint. I
Gond Templarm, Intepentiment
Order ©f, II
Grand Army of the Reprhilc. It
Arange, II
Instlfute of lirar:- II
Jonulta. JII
Joha, Kalghte of vaint 111
Kalehthond. Ord anif. III
Knlghte as I Abor III
Ku-Klux Kinn, 111
deglon o. "anor, Il
Narcabrys, Enights of the III
Nafla, II!
Masoary. III
Mprey. Minters of. 1 al
Molly Magultpa, III
Odd fellows. IV
Plaintra, IV

Thl Beta Kappe iv
Pbthian, Enighte of, IV
ared Crome socletlen, iv
Romeruclang iv
Eons of Llberty, $V$
gons of Veterna, $\bar{v}$
Temperance, , 0 , ${ }^{2}$ of $\nabla$

Tuetopic Knisite, $\nabla$
Thentines, $Y$
Thintie, Order of the, $\bar{\nabla}$
Uranitines, $\nabla$
Waldencer, $\nabla$
White Caps, $\nabla$
Ooman'y Chriotian Temperance
Women', Cinhe, $\nabla$
Woman'n Rellef Corps, $V$
Youns Italy, $V$
Youns Men's Chrintian Asmocia thon,
Young Women' Chriatian Asmociation, $V$

## OUTLINES

Amertican Indians, VI, 890
American Literature, VI, 547.
Amctent Hintory, VI, 351
Applee, VI, 48
Architecture ${ }_{2} \mathrm{VI}_{1} 48$
Amtrosomy \%n, 116
Been VI 112
Birdic, Fh, 694
Botany, ${ }^{\text {VI }}$, 195
Butterdtes, V1, 614
Cacao VI, 430
Canadian Hiatory. VI, 407
Cirentation of the Blood, VI, 641
Cty, VI, 288
Coni, Vi; 144
corte, 71.429
Corn, $\mathrm{VI}_{1} 414$
Cotton, VI, 419
County, VI, 284
Dalry Prodidet, V1, 427
Dopm, YI, 606
Domentic sclence, VI, 243
Dominion VI, 288
Drama, VI, 6 bo
Far The 7 I, 852
Khalish Litertitnre, VI, 546
afe The VI, 6.54
Faheried V1, 441
Flaze. VI 805
Geology, VI, 841
Hnmen Body, VI, 640
ron, Vi, 423
Irrigation. VI, 35
KIndergarten, $\mathrm{VI}_{3} 490$
Iongrilow. $\forall 1$, 6 ©
Inmbering Vi, 43 n
Medieral History, VI, 36 B
Mental Powers. Vi, $6 \mathbf{5 8}$
ethodg ef Teaching Geography.
Methods of Teaching History, VI, 350
Modern Hitutory, V1, 370
Mythology. VI. ${ }^{283}$
North Smerich. VI, 200
Praches, VI, 645
Phyles, VI, 645
Province, VI, 287
Rendics. VI, 664
Rnlers of the World, VI, 411
Bait. VI, 420
Behool District, VI, 283

Bugar VI 424
Tea, 71,429
Townehip. $\mathrm{VI}_{17} 284$
Wheat yI 417
Wool, VI, 22
Zoblocy, VI, 784

## PALESTINE

Palentine, IV

Cities and Towas
Ascalion, 1
Bethavy, 1
Bethlehem, I
Comarea, 1
Comarea Philpph I
Cana, 1
Caperaanm, I
Gibeon, II
Hehron, 111
Jona, III
Jericho, III
Jeruatem, 111
Nasareth, IV
gamaria, IV
8odom, V
Carmel, I
Momataina
Lebanop, Mountalns of, III
Nebo, $1 \mathbf{V}$
Ollres, Monnt of, IV
Tahor, V

## Unclasaified

Crusades, II
Decapolis, II
Eedraclon, 1
Gallee. II
Gennesaret, II
Getheerr:- He , II
Gilead, il
Jordan River, III
Jndea. III
Patentide, IV

## PANAMA

Chagrea River, I
Colon, II
Padama, IV
r'anama Canal, iv
Panama, Iuthmu: of, IV

## Paracuay

Amumelon, I
paraguay IV
I'arada, iv
I'licomayo, IV

## PEDACOGY

See Educatiox

## PENINSURAS

Chersonesus,
Crimea, II
Oihraltar, 11
Istria, III
Jutland, III
Kamtchatra, III
Lahrador, III
Malay Pealasuia, III
Melvilie Pealnaula, II
Peloponдемй, IV
Portiand, Isle of, IV
sinal, $V$

## PENNSYLVANLA

Penasyivania, Iv
With anhhenda treatlog Srr Facy And Drainaok. Climate Minezal Renouncer, Abmicue, TU'E, MaNUPacturns, TrangimaTATIOX AND COMMERCE, FINVFRNMRNT, EDUCATION, INETITUTIONA, Hintatomy

## Citles and Towne

Allegheny, 1
Allentown, I
Altoona, I
Archbatc. 1
A Ehland, 1
Bethleaem, I

Bicomembars. I
Braddock,
Bradiord I
Bristol, 1
Butler,
Cartopidale, I
Carliale, I
Carnetle, 1
Chamberthing, I
Charlerol, I
Chenter 1
Clearbeld, 11
Conterille, II
Columpila iI
Connmelavilit, I
Connelavilie, 11
Conshohocten, 11
Corry, II
IJapvilie, II
Dubole, II
Dunmore, II
Duqueabe II
Eastod, II
Erle, II
Etna II
Frankilia, II
Freeland, II
Greenmhrag, II
Hanover, III
Hartlehary II
lomentead, II
Huntingon, III
Jeannette, III
Johnatown, III
Kane, III
Lancauter, III
Iehazon, III
Loctharen, III
McKeeuport, III
McKeen Rockr, III
Mahadoy CIty, III
Manch Chnnk, III
Meadilite, III
Middletown III
Milivale, III
Milton, III
Mononghela. IIt
Mount Carmel, iv
Nantlcoke, IV'
New Brighton, IV
Newcastie, IV
Norrlatown, IV
Northampton, IV
North Braddock, IV
Oll City, IV
Old Forge, IV
Olyphant, IV
Phladeiphla, IV
Phoenizvllle, IV
Pittshurgh. IV
Pittston. IV
Plymouth, IV
l'ottatown, IV
l'ottaville. IV
Reading, $1 V$
Gayre, It
Geradion, $V$
Ghamorln, V
Sharon, $V$
Sharpabure, $V$
Shenandoab, $V$
South Bethiehem, V
steelton, $V$
Sunhery, V
Tamagua, $V$ Tnreatnm, $v$ Titnsville, $V$
Tyrone, $\mathbf{V}$
Whlontown, V
Warren, V
Washlngton, $V$
Waynesboro, $V$
Weut Chenter. $V$ Wert IMtteton, $V$
Wilkenbarre, 5 Wiltinehne. Williamsport, $V$
Yort, $\mathbf{V}$
Erte, II


PIRSIA
Pernia, IV
With mbheads treatlut SuEACE AND Drainage Climatiz Minman Reaouncem, Innustarea, Tmanarompation and Communication, Imhalitanta, (ioveanIENT, BIETOAY
Graphic litutration, VI, 355

## Cition and Towas

Abnshehr, I
Ecbatama II
spaban, III
Mesbbed, III
l'ertepolls, IV
Shiraz $V$
Dusmis
Tehertn, $V$

## Unclacifind

Afghaniatan,
C'aeplan Bea,
Cancasas I
Elburs, II
Irann, 111
Ormns, IV
Persian Gulf, IV

Feru, IV

## PRRU

With subheads tresting SutFach and Duainage, Chimate, Mineral Removaces, AORICELE tide, Tmanapoatation and ComMrRCE, Goveanment and RELIgion, inhasitanta, Enucation, Histoay

## Citien and Towns

Areqnipa, 1
Caltion 1
Cusco, II
Inmbayeque, III
Lima, III

## Unclaesified

Amason. I
Andes, I
Inca, III
Titicacn, Lake, $V$

## PHILIPPINE ISLANDS

Pbilipplne Isiands, IV
With muhheads treating SutFA'E AND DRAINAOD, CLIMATE, Misenal Rewouncea, Veostarion, ANIMAL LIFE, INDUGTRIKE, TaANE: pontation, Coxmezce, inhaait. ANTA AND LANOEAOE, GDVERNaENT, Education, Histoay

## Cildes and Towns

Rats *
Inila
Caba.
Cavit.
llo:1, if.
Manila, It

## PHLLOSOPHY

Amortician, I
A Prioti and A Ponteriori, I
Ascetlcism, 1
Crale Echool of Pbilowophy, II
Crenaic School of Philomophy, II Delem, II
Demonstration, II
Dialectic, II
Dilemma, II
Eciectics, II
Fplenreaniam, II
Wathetics, II
Pthles. II
Scope of Subject, VI, 273
IIt ht and Wrong, W1, 274
Impnise, VI, 974
Moral Acts, VI, 274
Ideals. V1., $275^{\circ}$
Gnvironment, V1, 277
Mental Attifude, VI, 277
Self-Rentralut, VI, 278
Relf-Rellance, VI, 278
Reason and Jndpment, VI, 278
Quention and Discustion, VI, 278
Fallacy, II
Putallim, II
Geperalization, II
Gnoatlee, II
Hypotheads, III
Ideallam, III
Indnction, III
Losle, III
Materfaliam. III
Mysticiom, IV
Optimiom, IV
Pantheinm, IV
Perpatetic 8chool of Pbilonophy,
Peasimiam, IV
Pblloaophy, IV
Retlonaifom, IV
Realism, IV
Reason, if
8ee, also, VI, 278
Scholaticiam, IV
Arepticism, $V$
Sophiats, $V$
Stolelam, V
Aylogism, V
Byntheair, $V$
Transcendentsilem, $V$
Tranamigention. $v$
Utilitaríániom, $\mathbf{v}$

## PHOBNICLA

Phoentcia, IV
With mbheads treating I'sophy, II 1atony.
Tyre, $V$

## PHYSICS

## Adhenion, I

## Air, I

Alloy, 1
Archimedenn Ecrew, I
Artesian Well, 1
Atmonphere, I
Atom,
Rolling Point, I
Boyle's Law, I
Capliarity, I
Center of Cravity, I
Cleavage, II
Cohenion, II
Combnation, $1 I$
Compresmed AIr, II
Denaity, II
Minnsion, II
Mistiliation. II
Ductility, II
I) ramilen, II

Elaticity, II
Energy, Ii
hvaporation. II
Expanalon, II
Explonton, II

Nztenalon, II
Palling Bodlet, II
Flame, II
Fiulds, Mechanice of, V1, 688
Foot Ponnd, II
Force, II
Friction, II
Fualng I'oint, II
Glen, II
Gravitation, II
Gravity, Epecifc, II
Hardnens, III
Heat. III
Nee, also, VI. 641
Ilorte Power, III
IIydraulic I'rpas, III
Hydrauifes, III
Hydrontatics, III
Ice, 111
incilned Piane, III
Lever, III
Leyden Jar, 111
LIauid. III
Lignid AIr, III
Ma neto-Eiectric Machine, 111
Malleability, III
Matter, III
Properties of, VI 636
Mechanleal Powery, Ill
Mechanica, III
Momentum, II
Motion, Lawn of, IV
Ommosis, IV
Parallelogram of Forces, IV
Pendnium, IV
Payales, IV
Chnrt. VI, 648
Plectricity, V1, 643
Fluidin, Méchanice of, VI, 638
IIeat, Vi, 641
LKht, VI. 640
Magnetism nad Blectricity. VI. 648
Matter, Propertien of, VI. 636
Ontilne, Vi, 645
Gnestions VI, 645
Gound. Vi, 630
Pneumatics, iv
Porosity IV
I'uliey, IV
Revelation, IV
Itotation. IV
Siphon, $\mathbf{V}$
Solids. Merthanles of, VI, 637
Specife Ileni, V
Spheroidai siate, $V$
staties, $V$
Statics, $V$
Steam, $V$
Subilmation, $V$
Temperature, $V$
Vacuum, $V$
Vacuum Pan, $V$
Vapor, V
Veloclty $\nabla$
Water, $v$
Wedre, $v$
Weight, V
Wheel and Axie, $V$

## Electricity and Maysotisn

Accumulntor, I
Arc l.Ight, I
Armature, I
At monpheric Filertricity, I
Aurora Burpalie,
Buttrry. IIow to Make a, VI, 720,
Rnasen's Battpry, 1
Crooke Tuber, if
Manieli liattery, II
Manieli isatt
Melpet ric, It
Dipplige Needie, II
12ynatuo, 11
Electric Bsttery, II
Electric Clock, II
Biectric Generator. II
Plectrie IIpatiog, II
Flectriclty, 11
Rep, almo, VI 648
Biectricity for Boys, V1, 710-727

Hectrfe Uisht, 11
neteric Mock in II
Ficetric yotor, $\frac{11}{1 I}$
Coutrie Rall way, $\mathbf{I}$
Meetrode, 11
Eicetrolyits, II
Hectro-manet 11
clectro-mat metion, I
lectrometier, II
Alectro-motire Force, II
glectrophorve 11
glectroicope,
Induction, wiectric, III
Induction COLI, III
nemitot, III
Hetroins Arrenter, How to Make I, VI, 127
Kampeti Nile Nile, III
Manotiom, III
Gee, aleo, VI, 648
Ohmiaramily
How for Mate a Telegraph Line, VI, 722
Tolegraph, Wireleas, $V$
How to Mrtea, VI, 725
Telephone, VI
How to Mate at VI, 726
Therme
Volt, $\overline{\text { Foltale Pile, }} \boldsymbol{V}$
Voltmeter, $\bar{\gamma}$

## Hyt and Sound

Aberration, I
Buruing Giarser, I
Buncena Burber:
Dirruetion, 11
Drummond Lisht, II
Echa, 11
Mruoremcence, II
Eeng III
EITht, III
See, miso, V1, 640
N Beaya IV
Object Olase, IT
Polariation of Light, IV
Refiection, IV
Refrection IV
Roentren kaym IV
sound, V
sce, aleo, VI, 689
Epectrum Analjofe, $\nabla$

## PHYgiOLOCY

Dee Axatoriz Amd Priarologe

## PLANTS

Planta, IV, and VI, 586-588 General Suggestlons, VI, 886
Incect-10ation, $\nabla L$, 189
Parts of, VI,' 887
Parts of a Hower, V1. 588
Plant Breedins, Vi, 27
Plant Dimensen; VI; 18
Plant Fimemilles, Vi; 280
Plants that Store Food, V1, 200
Selection of, V1, 687
Treen, Lembons on, VI, 698 Aniranaleatins
Bntterwort, I
Insect Enting, FI, 100
Pitcher Plant,'IV
Rumder, $\mathbf{T}$
Venue': Fiftrap, $V$
Aquatic
Bladderwort, I
Papyrus, IV
Croppers
Ground Iry, II
IVY, III

角man $\nabla$
Vlretale Creeper, $V$

## Decert Plants

Cactus,
Cerens, 1
Priekly Pear, IV
Diseneen of
Blisht 1
Buat 1
Buriot, 11
Mildew in
Ruste, IV
Smuta, $V$

## Dyo Plants

Crowberyy, II
Madder, II
Samower, IV
Eafron, IV
Forsas
Brake, I
Maidenhalr, III

## Fiber Plants

Agave, I
Canad Herap, I
Cotton, II
See nimo, VI, $418-420$
Flez, II
Hemp, III
Hintecur, III
Hop III
Nettle IV
Bleni,
Yucer, $V$
Flowers
Actalithas, 1
Adonita, I
Amarinth
Amaranin 1 Beaty, 1
Anemone, I
Arbutus, I
Arum, I
Asphodel, 1
Aster, I
Aralea, 1
Bachelor's Buttons, 1
Begonie, I
Helladonna Lly, 1
Bignonla, 1
Buck Bean, 1
Buttercup. I
Canbage Rose,
Calceolaria, I
Calla 1
Capelila, I
Can nuka, I
Caramal Flower, I
Carnation, 1
Christ mait Rose, II
Chrystmant Rose, II
Clematis, II
Colchleum, II
Columbine II
Compass Plaut, II
Cowsilp. II
Crocua, II
Cyclamen, II
Daficdil. II
Dahile, II
Dalsy, II
Day Lily, II
Dog's-tooth Vinlet, II
Everianting Flower, II
Flear-de-156, 1
Flowers, II
Study of, FI, 588
Forget-me-not, II
Fuelifla, II
Gentian. II
Geranium, 11
riadolum, II
: ioxina, 1 II
frolden-rod, Il
IIambell, III

Hellotrope, III
Hepatics 111
Holy splrit Piant. III
Bycelmth, III
Hydransen, III
Importelle, III
Irle 111
Jicel-fin-the Puipit, III
Jameine, III
Joaguli, III
Lady's illpper, III
Larkepur, 111
Llace, 11
Luly of the Falley, III
Linnmes III
Lotung int III
Lupine III
Mapineil 111
Marigold II
Marthali Nell, 111
May $\Delta$ pple, III
MI monette, III
Morning Glorg, IV
Narciange, IV
Nasturtiom, IV
Nelumbo, IV
Orchiditiv
Oralia, IV Fiower, IV
Peony IV
Petunia, IV
phlor IV
Pink, IV
Poppy, IV
Primroce, IV
Rhododendron, IV
Roter IV
sarilrage, IV
Spowdrop, $V$
star of Bethiehem, $\nabla$
Sunnower, V
Sweet Pen. $V$
Sweet Wliliam, $\nabla$
Tuberowe, $V$
Tullp. $V$
Verbena, $v$
Violet,
Whataria, $\nabla$

## Forage

Alfalfa, I
Blue Grass, I
Buffalo Grase, 1
Baruet, I
Clover, II
MIIIet, III $V$
Tare, $\nabla$
Vetch, $\nabla$
Fruits
Alligator Pear, I
Anchory Pear, I
Apple,
See. also, VI, 431-432
Apples, Seedletm, I
Apricot,
Bergamot
Breadrruit, 1
Chery, I
Cherry, I
Coconnut, 11
Dameon, II
Date, II
Date Plum, II
FIE. II
Grape, 11
Orape Frult, II
Greengage II
K甘wquat, III
Lemon, III
LIme. III
IItchi, III
Laquat, III
Mulberry. [v

Vectarfan, IV
Olve. 17
Orange, IV
Prater, iv
Pren, 17
Eee ingo, 71 , 18
Peryimmon IV
Fineapple, IV
Pineapiv
Bee, alvo VI 80
pomerranate, It
Gulice, 17

Asartc, 1
Fingl, II
Ynahroom, IV
parball, It
Sllmo Moids, $V$
Trume $\nabla$

## Cariles Verctables

Artichoke, I
Asparasus, I
Bean, I
Beec, I
Brussels Epronts, 1
Cabbere, I
Centaionpe, I
Carrot. I
Canlltiower, I
Celery, I
Cleely, II
Corn, II
See, also, VI, 413-416
Tress, II
Cocumber, II
Emplant, II
Gerle, II
Horte-radish, III
Leek. III
Leatil, III
leftnce, III
Melon, 111
Onlon, IV
Parsley. IV
Parenip, IV
Pen If
otsto, IV
See, also, VI, 29
Pumpkin, IV
Radish. IV
Rhubarh, IV
Sklrret. $V$
Splasch, $V$
Snuash, V
sweet Potato, $V$
Tometo. $V$
Turnlp. V
Tam, $V$

## Gruine

Barley, I
Buckwheat, I
Com, ladlan, II
SPe. slso, VI, 418-416
Kathr Corn, III
Cats, 1 V
Rlee, iv
Rice, IV
Rve, IV
Wheat, $\nabla$
See, also, VI, 416-418

## Crases and Sorgen

Ramboo, I
Bermuda Grame 1
Blue Grasa, 1
Briza, I
Rroom Corn, I
BuTelo Crase, 1
Bulrush. I
Celbmus, I
Cansty Seed, 1
Cane, 1
Damel, II
Baparto, II

Feather Grase, 11
coxtall Grace.
Gama Grane II
Hornetall Rnah, 111
Job'e Tearm 111
Knotrmes III
Rettin, IV
Runh. IV
8or ham, 17
gquirrel-1ulu Grase, $v$
gagar Came, $\bar{y}$
See, aloo, VI, 424-420
8weet Klag,
Timothy,

Balm, I
Hiorbe
Banll, 1
Calamint, 1
Catulp, I
Lleorice, III
Lobelia, III
Marjoram, I11
Mint, III
Rocemary, IV
Sare, IV
Spearmint 7
8peedwell, $V$
Thyme,
Modicinal Pluts
Aconite, 1
Alac, I
Alnm Root, I
Arnlca, 1
Belladonne, I
Bloodroot, I
Bloodroot,
Boueset, I
Calabar Bean, 1
Camela, I
Chamomile.
Cluchova, II
Coca, II
Coceulus. II
Corlander, II
Cowltch, II
Croton. II
Cnbehe, II
Dogbine, II
Fenvel, II
Tosglove, II
Gelseminm, II
Geutlan, II
Hellebore, III
Hemlock, III
Horehonid, III
Hybsor, III
Iceland Moss, III
Ipecacnavha, III
Jaborand, III
Jalap, III
Marah Maliow, III
May Apple, III
NIghthande, IV
Nnx Vomlea, IV
Oplum, IV
Garmaparilla. IV
Saaatran, IV
Scammony, IV
Suake Root, $V$
Sorrel, $\nabla$
Bplkenaru, $V$
Bquill, $V$
Etramonlnm, $V$
Tavis, $V$
Valerlan, V
Wormwood, $V$

## Mosses and Lichons

Clnh Mone, 11
Icelaud Mone, III
LAcheus, III
Liverwortis. III
Mowsen, IV

## Nuts

A Imond, I
Betel Nut, 1
Ritternnt,
Bladdernut, I


## Parabitic

Doder, 11
Matletoe, 111
Paraltes VI, 188
Paraltic Disences, IV

## Parts of Pinnte

Alkanet I
Aloes Wood, I
Angontura Barle, I
Arrowroot, I
Bark, I
Blrd'teye Maple, :
Bog Oak, 1
Brasilwood, I
Brd. I
Bulh, 1
Calamander Wood, I
Camwood. I
Canary Food. I
Cascerilla, 1
Coromandel Wood. II
Jnmpins Beat, III
Klacwond, III
Lancewood, III
Lenven. III
Mahogavy, III
Nnt, $Y$
Orris Root, IV
Peravian Bark, IV
Pollev, IV
Rosemood, IV
Eavdalwood, IV
Stems, V
Plant Produets
Amber, I
Attar, I
Balm of Gliead, I
Belsam, I
Bdelllum, I
Benzolv, I
Calabash, I
Camada Balsam, I
Cardamom, I
Copal, II
Copal. II
Cork, II
curarif
fiambege, II
filnmeng, II
Gum, Il
Gum Arahle, II
Gum Reslna, II
Gntta-percha, II
Indla Rnhber, III
It를 III
Mace, III
Malt, III
Reslne, IV
Rosln, IV
Storax
Straw,
Tragmeanth,
Tragacanth, $V$

Algae I
Irish Mome I
seaweed, $V$
Shrube
Rarberty, 1
Bearberry, I

Bramble，I
Broom， 1
Buckthorn，I
Caly cathor， 1
Camel＇s Thorn，
Candicberry，I
Camava 1
Cornt Linrels I
Cornel 11
chdor，II
Geloeminm，II
Gren Brer，in
Guelder Rowe I
Heath，III
Holly，III
Hone mankie，III
Kalmily III
Kolm III
Labrador Tea，II
Lavend III 11
Lavendar， 111 II
Leatherwood，II
Mate，III
Tempitte III
Yyrtie，it
Oreander，IV
Home Acacla IV
8 Bupberty，$V$
Eplodie Tree，$\nabla$
Bitrychnos
Sumac，$V$
Tweotbrier，$\nabla$
TEM， $\bar{\nabla}$
See，aleo，VI， 128

## Sanll Fruits

Blactberry，I
Buralo Berty 1
Clowaberry 1
Comberry，It
Crauberry
Gooneberfy， 11
Guava，II
Huackileberry，III
Jujnbe， 111
Jnneberry， 111
Hapberry，IV
Bloe， V
8trawberry，$\nabla$

Alispice， 1

## Spico－giolding

Anlee，I
Betel， 1
Caper，I
Capaleum，I
Caraway，
Camia， 1
Clinamon， 11
Clove－bart， 11
Cloven，II
Cumin，
cuminer， 1
Glager，II
Mastara，IV
Nutmer，IV
repper，iv

## Trees

Acacla，I
Alder，I
Arbor Vitae，I
Areca，I
Ash，I
Aspen，I
Anayan，I
naobab，I
Aamsla， 1
namatrood，I
nag， 1
Reech， 1
Reech， 1
Blact $\mathbf{G n m}$ ，
Black Gnm， 1
Blactrood，I
Bottle－tree
Bo－tree，I

Box－ilder，I
Boz Tree，I
Bnttertree， 1
Cabbese Palm，I
Cacto． 1
see，aleo．VI， 480
Calabish Tree， 1
Canella 1
Carob． 1
Canarina，I
Catalpe， 1
Cedar，I
Bee，alno，V1， 128
Cognito，II
Coral Tree，II
Cow rree，II
Cow mree，Tree，II
Capamber ${ }^{\text {C }}$
Donm Palm， 11
Dragon Tree，II
盟的年 ${ }^{11}$
Encaljptus，II
Bir，II
Fringe Tree，II
Ginkso，II
Greenheart，II
Hackberry 11
Hemilock，III
Honey Locurt， 111
Hornbeam． 11
Horee Chentnat，III
Ironwood，III
Ivory Palm，III
Juda Tree 11
Junlper，III
Lahurunm，III
Lace－bart Tree， 11
Lambert＇s Pine，III
Larch，III
Linden， 111
Ligntdambar，III
Loblolis Bay， 111
Lobolly Pine， 111
Locust． 111
Loswood．III
Mancrove，III
Maple．III
Monntaln Aeh．IV
Nettle Tree，IV
Norfolt Inland Pine，IV
Onk．IV
Oll Palm，IV
Oleazter，iv
Onage Orange，IV
Onter，IV
Palmetto，IV
Paime，IV
Palmyra Palm，IV
Plue，iv
Plane Tree，IV
Poplar，IV
Prekly Ash，IV
Onansla，IV
Red Cedar，IV
Redwood，
sago，IV
seqnola．$\nabla$
Gorrel Tree，$\nabla$
Bpruce， $\mathbf{V}$
sycamore， V
Tallpot Pelm，$V$
Tallow Tree，$V$
Tumarin
Traveler＇s Tree，$V$
Trees，VI， 598 －00
Fall Btudy of，VI， 598
Wlinter Study of．VI． 5 m
Epring and Summer Eitudien，V1， 600
Planting．VI，600， 602
Tuilp Tree， V
Upai，$V$
War Palm，$\nabla$
Willow，
Tropical

Lianan，III

Scraw Plae， $\bar{V}$

Wends
Abutilion，$I_{1}$
Arrmony 1
Biadreed，I，
Bardoes，I
Bntteray Weed，I
Camada Thintie， 1
Cocklehnr， 11
Coltofoot＇ 11
Couch Grase，II
Cow Parmip，II
Dandellou，it
Dock，II
Duckweed， 11
Dyer＇I Weed，II
feanel，II
Fererfew，II
Fleaberue，II
Goomeront， 11
Cromweli，II
Indien Máliow，III
Melliot， 111
Miltreed，III
Mnllet IV
Plaweed，IV
Polsou Ivy，IV
Pokeweed，IV
Rnivian Thistle，IV
gand Bur，IV
©hepherds Purse，$V$
Sow Thistle， $\mathbf{V}$
Gow rhistie，
Gtlickeed．
Toud Hlax，$\nabla$
Weeds， $\mathbf{V}$
See，aleo，VI， 198
Unclassified
Baneberry，I
Borage， 1
Chicory 1
Colocas 11
Convolvulns， 11
Elecampane，II
Elephatie Foot，II
Gonrd．II
Houseleek， 111
Ice Plant， 111
Jertcho Rome III
Mandrake，III
Partridge Berry，Iv
guamash，IV
Eenultive Plant，$V$
Tonka V
Trefoli，$\nabla$
Vanilla，v
Weiwitsecia， $\mathbf{V}$
Wintergreen，$V$

## POETRY

Acrostle，I
Laureate，Poet，III
Lytic Poetry，III
Meter，III
Pastorail Poetry，IV
Poptry，IV
See，男男
Rhyme，IV
Skalds，$V$
Sonnet，$V$
Suenserlan Etanina，V Tronhadour，$V$
Tronvere， v
verse，$v$

## Poems

Antumu Fires， FI ． 503
Boy＇s Bong，A，Vi， 512
Arown Thrush，The，VI， 504
Chlldren＇s Hour，VI 511
Corn gong，The，VI， 512
Day in Done，The，Vi， 503
In Time＇u \＆wlog，VI， 628

Loed Ulim'a parghter, VI, 820 October's Brisht Bine Weather Y1 405
Old Gemlle Lullahy, VI, 508
Onl and the Pang-Cat V1, 408
Pranting of the $\triangle$ pple tree, The, V1, 515
Relm, VI, 497
Bobert of Lincoln, YI, 504
Robla Hood and the Stranger, V1. 886
Seven Times One, VI, 407
8 wing, The, VI, 197
Tree, The, VI, 497
Vifit from st. Nicholas, A, VI, 511
Walrue and the Curpenter, The, V1, 505
What Does Little Birdie Bay? VI, 497
Where Go the Boats? VI, 503
While shepherds Watched, VI, ${ }^{503}$
WInd, The VI, 496
Windy N1hte, V1, 804
Winter, V1, 518
Wrect of the Heaperus, VI, 526
see, aluo, Bioamarix, subheed Poutit

## POLAND

Cracow, II
Groduo, II
Kovno, III
Lode, III
Polund, IV

## politics

See Govenmyers and Politice.

## POPULAR NANES

Father of Angling, II
Father of Engilish Prome, II
Father of Epic Poetry, II
Mather of alistory, 1
Fsther of Lles, II
Father of Medicine, II
Father of the Faithiful, II
Father of Waters, II
Fighting Joe, II
Flist Gentlemas of Europe, II
Garden of Englanc, II
Garden of Europe, il
Good Oras Poet, II
Goom Queen Betis, II
Gotham, II
Grasd Old Man, II
Great Commoner, The, II
Great Doke, The II
Great Elector. The, II
Iron Duke, III
Japhawker, III
Lare school, III
Yantee, V

## PORTUGAL

Fortneal
With muhbeads treating sua. FACE AND DIAINAOL, CLIMATE, Mincmal RERovacas, clonicue tuas, Manufacturan, Teanapoatation, Limeratues, GovtinMENT ANE Rabioton, Eindeation, Inkabitanta anb Lanodaor hia togy

Citios and Towne
IIsbon, III
Oporto, IV
Colonien
A
Bensuela,
Porturuene East Africt, IV
Portuguese Guinea, IV
Lblands
Asozes, I
Cape Verde Ialauds, I

Fagat II
cadelra, III

Unchanified
Cape Balnt Vlacent, I
Dueso, II
Penlnenlar War, IV
Tagna, V

## PRECIOUS STONES

See Minemals

## PRINCE EDWARD ISLAND

Prisee Edward Island. IV
Charlottetown. I
summerside, VI, 336

## PRISONS

Libby Prison, III
Mamertine Prison, The, III
Marthalsee Prison, III

## PROFESSIONAL

Apothecary, I
Dentistry, II
Diving. 11
Landicape Gardenlug, III
Lapiary. 111
Medicine, 111
gee maln head Mantcing ana Nurwe, IV
Oateopathy. IV
Surgery, $V$
see maln head Matcina ana sumgeay
Taxldermy, $V$
Veterinary, V

## PRUSSU

See Grimaxy

## PSYCHOLOCY

Abatraction, I
Apperception, 1
Amoclation of Idean, I
Attention, 1
See, alico, V1, 650
Chlld Stndy,
See, niso, VI, 650
Concept, II
Dreams, II
Emotions, II
Fancy, II
Feeling II
Free Whil, II
Hahlt, III
see, also, VI, 478, 600
Hallucination, III
Hypnotiam, III
imatination, II
Instinct, III
Interest, III
Judgment, III
See, allo VI, 278
Memory, III
Questions on. VI, 650

## Mith 111

Perception, IV
Phrenolosy, IV
Puychology, IV
Attention, VI, 650
Charts. VI, 657
Child Study, Quentiona on, VI, 659
Derelopment of, Vi, 656
Eablt, VI 600
Memory, VI. 650
Mental Powera, Outline op, VI,
6.8

Methode, VI. 659

Place in Educatlos, 71068
nemtions on raycholor and
I'edaso 1, VI, 0.5
Reanos, V1, 660
sencel, V1 650
WIII, VI, 660
Reason, IV
Sencation, V
Gomingmbullam, $\nabla$
Soul, V
Whousht, $V$
Questlons of the, VI, 060
Quxace
Qnebec, IV
With suheads trenting sua
race ant Daikaon, Climata, Minaral Resooncan, Aoimat, TVAE AN: OTERE INnUWTEEA, TRANBPOATATION ANE COMMESCE; INHABITANTAON ANE COMMESCE,
 ganyant and falioion, Eeuca. tion, Citias IIfintoar.
L.aurentiat Monetalus, III

Quebec $\triangle$ et, IV
Cities and Tewne
Aylmer, VI, 814
Hucklaghan, VI, 816
Chambly. I
Chlcoutimi, VI, 817
Coatlecolt, VI, 817
F'arnham, VI, 8 IO
Fragervile. See Riviere du
Loup
Granby VI, 321
(irand Mere, Vi, 321
IIull, III
Jollette, VI, 322
Iachine, III
Lauzon, VI, 223
Levis, III
Lonsuenll, V!, 324
Mapog. V1, 324
Malmonnenve, VI, 324
Nontreal III
Uuebec. IV
Rlmousk ${ }^{2}$ VI, 33I
Riviere du Loup. VI, insd
Ralnt Anne de Beaupró. VI, 333
Raint IIyacinthe, V1, 334
Salnt Jerome, VI, 334
Saint John'h. Vi, 384
Shawlnlgan Falli, V1, 333
Sorel, VI, 335
Thetford Mlne, VI, 337
Three Rivery,
Victoris ville, V1, 338
Westmount, VI, 334
Crilf and Baya
Indson Bay, III
Jamen Bay, III
Saint Livirence, Gulf of. IV
1slande
Avilconti, I
Re.de Iale, I
Mactalpn, ILI
Montreal, III

## Lakes

Champlaln, I
Memphremagog, III
Rivers
Chandlere, I
Gatlneau, il
Montmorency. III
Salnt Lawrence, IV
Baint Maurlee, IV

## RMICION

Address, Forms of, I
Adventintion

Agmonticiom, I
Attar, I
Amana,
Anapaptiote 1
Antionolantim, 1
Aperolic Muccenston, 1
Aremblages, 1
Athentur, 1
Atomonent 1
Auto de 2m,
Aal, 1
Bahime 1
Baption, 1
Baptiste
Beelsebah, I
Blinhop, 1
Brahma,
Brahtranism,
Brahmowomaj, 1
Budetha, I
Buddhim, I
Burnt Otering, 1
Callztines, I
Caminarde, 1
Catechtam, 1
Catholie Church, 1
Abbot, 1
Agnui Del,
Americen Federation of Catholic Bocletien, I
Absolutiom, 1
Albisensey, 1
Antipope, 1
A ve Itaria, I
Bamel, Councli of, I
Breplary, I
Buil 1
Cardinal.
Conclave, 1
Concordat, 11
Counter-Reformation, II
Cronler, 11
Cromer, 11
Chagelianth, II
Greek Church 11
Holy Water, III
Ieonocista, 111
Index Expurgatorius, III
induigence, III
Litany, II
Mace, III
Nice, Counclis of, IV
Nun, IV
Nunclo, IV
Pma, Conncli of, IV
Pope, IV
Pyz, IV
Roman Catholic Church, IV
Romary, IV
Btyiltes, $V$
Thara, $\bar{v}$
Tonsure, $\mathbf{V}$
Trent, Councll of, $V$
Trent, Counchil of, V
Unction, $\overline{7}$
Vatlean Counclh, $V$

## Chalice, I

Christ, II
Christiantty, II
Chrietians 11
Christian felentasts, 11
Church, II
Confacín II
Congregationalista, II
Creed, 11
Crumedes, II
Acre, I
Saracenw, IV
Deaconess, 11
Devil. 11
Devil Worship, II
Divination, il
Dogma, II
Druidas II
Duplers, 11
epitcopal Church, 11
Angifan Chnreh,
Articles, The Thirty-ntme, I

England, Church of, I
Evargelical Alitance, iI
srancelleal Ansociation, il
Bxorclem, II
Fallb Cure, II
rakra, II
Faste, II
Fetlinh, II
Fiamen. II
Free Church of Beotiand, II
Freethinkera, It
Gbebera, II
God, II
IIalleiujah. III
Hearen III
Hell, III
Heretic, 111
Hierarchy, 111
High Prleat, III
furuenots. III
Husaltes, III
Hymes and Eymn Tnnes, III
Interesting Facts About, VI, 608
Idol, III
idolatry, III
Immortality, III
Incarnation, III
ncente, III
inquisition, III
Inspiration, III
Institutlonal Chureh, III
Jacobltes, III
Jacobite III
Jehovih III
Jewn IIt
Maccabeer, III
Jugrernant, III
Lamalam, IIt
Lent, III
Litary, 111
Lollards, III
Lntheranal III
Magi, III
Magitacat, III
Martyre III
Mary, The Virgin, III
Mennonites, The, III
Methoditsts 111
African Methodist EplscopaI Charch, I
Free Methodiste, II
Miracle, III
Mismions and Misuionarlem, III
Mohammedaniam, III
Ahu-bekr, I
AII, 1
Aliah, I
Dervish, II
Fatallsm. II
Flag of the Prophct, II
Graphic illustration, VI, 368
Hadith III
Had, III
Hegira, III
Imam, III
siam, III
Jinn, 111
Kaaba, III
Koran, III
Mohammpd, III
Mosque, IV
Muezzin, IV
Omar I, IV
Shiltes, $V$
Sunnites, $V$
Monachimm, III
Moravian Brethren, iv
Mormone iv
Mgstertei IV
Natural Theology IV
Natare Worship, IV
Nasarenem. IV
Nasarlte, iv
Nantes, Edict of, IV
Neatorians, IV
Nonconformists, IV

Ormusd, iv
Pertectioniste, IV
Pilizime, IV
Mir rimetion, iv
Irontiaz, IV
Prembyerians, IV
Preebyter, Iy
Prembytery, IV
Prient, 1 V
Protentants, IV
Quakery $1 V$
Wabotity
Reformation, IV
Reformed Church, IV
Relicion, IV
Religions Luberty, iv
Reaurrection, IV
Hevival, IV

- tanitam, iv
sacrincen, IV
gaivation Army, IV
Scaperoat, IV
Geventh Day Adventiste, $\mathbf{V}$
Bhakere, $V$
Shamanismo $V$
ghintolgm
81 khy
Epirituallem,
gunday Behoole, $V$
supermatarallem, $\mathbf{V}$
gwedenbortians, $\mathbf{V}$
Synsgorue, V
Ayrian Christianm, $V$
Tabernacle, $v$
Talmud,
Tantras, $V$
Taolsm, $V$
Targum, $V$
Te Denm, $V$
Test Acts, $V$
Theocracy, $V$
Theology, $\forall$
Theosophy, $V$
Therapeutae, $V$
Tlithes, V
Tractarlauism, $V$
Trinity, $V$
linleartans, $V$
1'niverkailsts, $V$
Vicar, $V$
Vishnu, $V$
Volunterss of America, $V$
7rnd-A remta, $V$
Zionist Movement, y
Soe under Omoanizations axd
Obicers
See, also, Chulhmen, Clemge
RHODE ISLAND
nhode Istand, IV
With subbeads treating SOR pact and Drainaoe, (climatr, Fact and Drainaoe, clmatz minglal mesources,
tere, mancfactures,
Trantsportation, Goyeankent, Educa tion, History


## Cities and Towns

Bristol, I
Rurrilitilif, II
Central Falie, II
Coventry, II
Cranston, II
Cumberland, II
Fast Providence, II
Newport, IV
Pawtucket, IV
Prorldence, IV
Farren, $V$
Warren, y
Westerly, $\mathbf{V}$
Woonsociret, $v$

## Calfs and Baye

Narragansett Bay, IV



Armot
PO, IV
Rnblcon, IV
Netheriands, The
Mense, III
Scheldt, IV
Noricay
Glommen, II
Dnero, II

Dnleper, II
Dnleater, II
INOM, II
Jvina, II
Kama, III
Manytch, III
Neva, IV
Nemen IV
letchora, IV
Prath. IV
Viatula, $V$
Emern
filadaiquivir, II
Guadiana, II
Tag
Suitaerlend
Aar, I
Grent Britain
England
Avon. I
Me. 1
Ouse, It
Ouse, Great, IV
serern,
Trent ${ }^{2}$
Twesi, $V$
Tyne, 7
Boyne 1
Foyle, II
Shannon, $V$
Dee, II
Tary,
Tweed, $\nabla$

## North Americt

 AlatheAnainibolne, I
Athabasca, 1
Churchill. II
Coppermine, I
Cruser, it
Aroat Eloh RIver, II
Rootenar, III
Mackenate. II
Montmorrincy, III
Nelson, IV
Hed River of the North, IV
Remtigouche. IV
Gaguenar, iv
Salnt Lawrence, IV
Nalne Mary'n, IV
Saint Maurlee, IV
Naskatchewan, IV
Iukon, V
Alo Grande, IV
C'ntfed States
Alabama, I
Andromeorsin,
Appalachlcola, I
Afchafalaya, I
BIr horn 1
Hig Nandy,
Hrasos, I
Cape Fear,
Catawba, I
Chattahoochee,
Charlea, I
Chlekahominy, I
Colorado, II
Colorado, II
Columbla. II
Connecticut, II
Cumberiand, II
Dakota, I!
inelaware, II
Nen Molnes, II
I) trolt, II

FOx, II
Frereh Broad River, II
G11a. II
(irand, 11
crent kanawha, II
froat l'oder. II
Green, II
IIommatonle, III
IIUmholdt, III
Illinol. 11
Iowa. III
Jamea, II
Kankankia, III
Yentuc
Iackawnnna, III
, ehigh, III
Ma umee, II
Mprriataf
Minnenota, III
Masianlppi. II
Mohlie. III
Mohawk, III
Monongahelf, II
Mnstingum, iv

Nagtra Falle and Mrot, IV
Ochawaha IV
ocmalsue. iv
Ocones
Onlo, 1
neare IV
leart, IV
Irecon, iv
pereot, ivet, IT
Platts, IV
Potomac, IV
heppahempoek, It
Rarfan, 1
Ded IV
Red Biver of the North. IV
Itlo Grasce. IV
theanole, It
Rocis IV
Hochis IV
Gaco, IV
Beramento, IV
80int Crois, IV
Galnt Lawrence IV.
Belat Maris. IV
Can Joagals
ownacti
Celoto, $V$
Shemandoah, $V$
onale, $V$
Gucquehangs, 7
Tenaremee.
Tomblrbee,
Wabals.
Weshite,
White, $V$
White, $V$
WIIamette, 7
wiconaía,
Yasoo, $\gamma$
Yellowntome, $V$
Yort, $V$

## Serth Amorien <br> Argentine

Parana, IV
Hlcomayo, IV
Plate, Rio de In, IV
Malado, IV
Uruguay, $V$
Vermejo, $V$
Bolleds
Bent, I
Parasuay, IV
Plicomajo, IV
Brand
Amason, I
Arazuay I
Jarua, III
Madeira, III
Paranuay IV
Parama, IV
San ETancleco, IV
Tapajos $\mathbf{V}$
Tocantios, $\nabla$
TPruguay, $V$
xinguay
Colomble
Cauca, I
Guaviare, II
Magdaiens, III
Meta, III
Orlaceo, IV
Rlo Nesto, IV
Rowedor
Japara, III
Gutames, The
Corentyn, II
Parcomay
Paraguaf. IV
I'arama, IV
Plicomity, IV

## Ormevay

Pata. Bio de la, IV Uruguay, 7

## Tenerwela

Caplquiare, I
Orinoco, IV
ROME
Rome, IT
With mbheads treating $A x$ -
Clams Roys, Mooman Royn $\quad 800$
8. I, 362, 303, 304, 8eb

## Intater

Agrarian Lawa, 1
Atricola,
Antony,
Catime 1
Curule Ifagdetrate, II
Equentrian Order, II
plebetane, IV
Pratorian Guard, IV
Rowe, Hite ory of, IV
hebines, IV
Aamaltey, IV
Twelve Tablet, Law of the, 7

## Unelanallel

Amphitheater, I
Byanatime Pmpire, I
Campus Martlus, i
Capltol. 1
Cettus. 1
Clients, II
Conitia II
Forum, II
Ginalatorm, II
Gracehna, 11
Ouirnal, iv
guiriten, iv
Tarpelan tock, $V$
Trinmph. V
Trimpliate, $V$
Fell, $V$
RUMANIA
Bacharemt, I
Gainte 11
Moldarle 111
Philippopolis, IV
Rumanla, IV

## RUSSIA

Brasta, IV
With mubheads treatigg ButFACE AND Drainace, CLimate, Mimeral Removaces, Aomicul TURE, MAvupactuars, OTHEE INDuatias, Transjoemation INhabitanta and lanovige, ediccaTION, GovankMent and Reliolos, Litazatuan, fietore
Graphle IIfistration, V1, 882

## Citios and Torme

Archangel, I
Baku. $I$
Batum, I
Bender, I
Dunabary, 11
Glaterinberg, II
Heinlmgiorm, III
Keinagiorm
Kharlov, III
Klev, III
Kishiner, III
Eronstadt, III
I.ibang, III

Mlaty, III
Monco IV
Nishal-Novgorod, IV
Novgoront iv

Orel. 1

## Orentrat

Revality
Bant petercbars. IV
Mamarland, IV
Eermtov, IV
Eathetopal, 7
Thite
Vilint. $V$
Voronerla
Warmaty
Yeromiat, $V$
Ehitomir, $V$

## Dogunltradon

Baltic Proviseen, 1
Bothape 1
Cintatin II
Log 1
Georyín II
Lapland II
Turtentan, 7

## Galts and Bays

Bothmin, Galf of, I
RItanadif of IV

## Mintory

Baintava, I
Berif, Conyrean of, I
Boroding Brittle of, I
Comatha, II
Crimen War, II
Holy Alitance, III
KoiyAhilat
Parta, Till
Port Arthor, IV
Rusmo-Japapee Wiar IV
Raceo-Turtish War, iV

## Idland

Aiand Iolander, I
New siberia Inlands, IV
Nove Zemblia, IV
GneI, IV
gachailen, IV
Spitzbersen, $V$
Lalses
Goltnehs. II
Ladogh III
Oneza, IV
Peipus, IV
Mounteins
Cancaurs. I
Tral,
Vlatai Hill, $v$
Rivert
Dnteper, II
Dnienter, II
Don, II
Dina, II
Dvina, 11
Kama, 111
Manytch, III
Neva, IV
Niemen, $1 V$
Onegn, IV
Petchora. IV
Pruth, IV
Ural, $V$
Vintale, $V$
Foign, $V$
Unclascifiod
Nihilists, IV
SANTO DOMENCO
Santo Domingo, IV

## SCIFNCES

Alcebre 1
Eloe, Alom, VI, 102-IIO
Aathropolocy, I
Arthmetle,
Eee, almo, VI, 80-102
Antromomy, IV, V , 111-118
Bology, 1
Bookreepling, 1
ilotany, 1
Ree alion, V1, 108-207
Chemintry, 1
Sep, Alio, VI, 220-283
Cryatallography, II
Domentic Belence, VI, 284-246
E:haography, ${ }^{11}$
Eithnoloy. 1
Geograpiy: ${ }^{11}$ V1, 280-840
reple 1
gee, ina
gee, aing VI, 841 -847
Grometry,
ramar,
See alvo Y1, 585, $881-540$
Hintolory, 11
tee almo, VI, $848-411$
Outiae on Methods of Teach128. VI, 850

Ichnology, If1
Mathematica, III
Metallurgy, III
Metaphyics, III
Meteorology III
IIneralog, III
Natural ifietory ${ }^{1 V}$
Numijmatice, IV
Orthograptiy V1, 610-620
Classidication of sounda, $\nabla 1$. 016
Conmonante, VI, 618
Dhertitcal Marks. YI, 616
sound and Spmbole, YI. 610
8pelling VI, 619
Byllihicitions and $\Delta$ cceat, VI,
618
Vowel. VI. 617
Puleontologr $I$
Pelmatry, IV
Philology, IV
Phonetice, IV
Physicm, IV
See, almo, FI, 630-647
Phyplolopy IV
Tep, G150. Y1, 648-65
Polltical Economy, IV
Protechaj IV
Rhetoric. Iv
Sanitary Scleace, IV
Shorthand Y
soclology,
Eurreying, $V$
Toxicolo
Zoology,
See, alm, V1, 728-786

## SCOTLAND

Scotiand, V
With subheads treatins Scz-
face and Diaikaoz, Mimetal Re-
sovacen, Finhepirs, Aoyicel
ttan. Manufactuen intas.
itants and language fotmen-
mext and Religion, Hietonz

## Cities and Towns

Aberdeen, I
Andrewn, Salat, I
Ajr, $\mathbf{I}$
Bannoctbarn, I
Dumbarton, il
jamimen, 1
Dundee. II
Dunfermiliae, II
Edinbartin il

Oinepow. 11
Gretma irreat II
Taveracman
Lelth, III
Palaiey, IV
stiriags, $v$

## Culfs and Rays

Momy Firth, IV
Bolway Firth, $v$

## Hiteors

Bamnockburn, 1
Bruce, Robert.
Darien Echeme 11
Hiodden Field, it
Dtuare $v$
hencle
Arrag I
Irehridee, IIt
Ortriey, 1
shethand

## Laloes

Katrine Loch, III
Lomond, Loch, III
Mountains
Ren Lomond. 1
Ben Macohul, I
Ben Nerla 1
Cheviot Hilig, I
Gramplans, 11
Rove
Dee, 11
Forth, II
Thy ${ }^{2}$
Tweed, $\nabla$
Yarrow, V

## Unclasaified

Catefonia,
Cape Wrath, I
Cnlloden Moor, 11
Fingat's Cave, II
Oleacoe, II

## SCULPTURS

Bce Aet and the Ants

## sZas

Adriatic Sea, 1
Aegenn Sea. 1
Antarctle Ocean, I
Arahlan See, I
Arctic Ocean, 1
Atiautic Ocean, 1
Azor, gea of, I
Baltic sen,
Rering sea, 1
Hiack Sea, 1
Caribbean Stea, 1
Casylan Bee. I
china sea, I
Coral Sea, II
Dead Sea, II
Indina Ocean, III
Irlsh Sea, III
Marmura, Ben of, III
Mediterranenu Sen, 111
North Sea. IV
Orhotaks, Sea of, IV
Pactic Ocean, it
Red fea. Iv
White Rea. v
Yellow Eea, $\nabla$
SERVIA
Belgrade I
Danube II

## skild AND shmpeumbinc

Boat, I
Califlog
Canoe, 1
Capatan. 1
Caravel. 1
Catamaran,
Dead Bectoonlas, II
Deek. II
Dorifition of the Compase, il
Docking II
Fricy II
Galler il
Gondola. 11
Onubent, 11
IIomerbont, 111
Jank. 111
Lreboat, 111
LO. 111
Los Book, 111
Tan-or-Whr, III
Oakam IV
Plot IV
Rall, iv
gersw Propeller, $\nabla$
Ehlp, ${ }^{2}$
ghlp Rallway, $\bar{V}$
B11p, V
Btcertas, $\bar{V}$
Thetras. $v$
Torpedo Boat, $\nabla$
Trieme, $\mathbf{V}$
wardhe, $\nabla$
Tacht,

## Fanow Shime

Alabama, The. 1
Ron Homme Richard, I
Chemapeate, I
Constitntion, 11
Consex, The, II
Fivins Dutchman 11
Majtower. The, III
Merrmac, The, III
Monltor, The ill
Oregon, The, IV

## SIAT

Panatrok, I
Memam, III
Slam, V
STBERIA
Siberla, $V$

## Cities and Towns

Irthist, 111
Omak. IV
Tushkent, $v$
Tobolak, $\mathbf{V}$
Vhadivoitok, $v$
Mountains
Alatan. 1
Altal, I
IImalaya, III
Stanovol Mnuntalas, $\nabla$
Tlan-8han, V
TTrsi Monntalan, $V$
Yahionol Monntains, $\nabla$
Rivers
Amn. 1
Ampr, I
Obliv
8yr-Darpan 7
Tobol.
Tenlich, $\nabla$
Aral, 1
Kaltai,
Balcath. I
Casplas Sea, I


Anarchlates
floy leouts， 1
Curot， 1
Conta， 1
Cellbucy， 1
Chivalry，I
Clus． 1
Combnalas． 11
Conviet Labor 11
Copperation，it
Divorce， 11
Pishtohour Day， 11
Kimirmation，II
Eatronment，II
Fallan，II
Paniane 11
Pondal
Fratarmal societicu， 11
Gulid，II
Gyplem， 11
Intern， 11
IIfteracy，III
Marmbouts，II
Martice，III
Master and Morvant， 111
Niblilets，IV
Nobllity IV
Paperim， $1 V$
rolygamy，IV
population，IV
Red Croas Socletios，IV
峝alvation Army，IV
Gamural，IV
Merfs．V
Invert，$V$
Boclal Democrats，$\nabla$
soclalinm，$V$
Noclal Settlements，$V$
Rocloloys，$V$
Starletic．
Villeins，$v$
Volnnteer
Volnnteeri of A merica，$\nabla$
Women＇s Cbristian Temperance
Unlon，
Women＇s Cinbe，$V$
Workhonse，$\nabla$
Yonng Mev＇Christlan Associa． tion，$V$
Young Women＇s Cbriotian Asmo－ eliation，$V$
zionlet Movement，$v$
Zenana，$V$

## Settlenents

Brook Farm． 1
Greorge Junlor Republle，II Hull howee，II

## SOUTH AMISRICA

Sonth A merica，IV
With subheads treatins Sun paca and drainaor，Mivanul Re Bovacea，Chimaty，VEORTation ANIEAK LIFE MRA日rTAYTR PO litical Diviaiona，Histoay For geosraphical peatures，see under dierent countrles

## Political Divisions

Arcentina， 1
Bolivia， 1
Brasil，I
Chlle．I
Colombia，II

Feyalor， 11
Ifulac，Rritiah 11
Bulana，thatele，II
Gulasen，Irogeh，II
paracualitity
prepogis
Urarmay，
Vencumis，$v$
Unchanalised
Cordiltare 1
Gathehor，fi
Ianchor，III
Incopar，IV

## SOUTH CAROLINA

Houth Carolina，$Y$
Witb subheade treatios Nres Fact and Daimaom，Minatal Re－ hovacza，Cumatis，Aonicturcan， Mantractuase，Thanapoeration， Goveanmant，zoccation，III： rons

## Clise and Towns

Andermon， 1
Chariestow， 1
Columbia，il
Morence， 11
Greenvilia， 11
Rockngimit iv
Epartinburs，$V$
Snpater， 7
Colion．

## Mernatane

Appalachian， 1

## River

Catamba， 1
Great Pedee，II
Pedee，IV
Gavannah，IV

## SOUIH DAKOTA

Sonth Dakots， 7
With nubheads treating Fura－ race and drainaon，Ceidats． Minamal Rmaodacan，Agatctib Tuang MaxOPactuana，Traxs－ poatation，Goveawa ent，Fptca－ tlon，Inatitutiona，IIftoay

## Cition and Town

Abprdeen．I
Bmmarck，
IIsmarex， 1
Leald． 111
Mitchell．III
Slonz Eille，$V$
Watertown，$V$
Yaulton，

## Unclasalted

Bincts Hilite，I
Dakotin Biver，II
MIstourl BIver， 111

## SPAN

Spain．$F$
With subheads treating SrR． Pace AxD DHAINAOE，CLIMATN， Mivelat Regorecea，Aonctit tcae，Mancfactuans，Thang． fontation 4 ND CoMmerce．finv－ PRNMENY，AKDY AND NAVY，COL－
 ovigas，Litaratuar，Iliatomy

## Citien and Towna

## Alsuctras．I

Alfrante，I
Almerla，I

## 霜reviona， 1 <br> Curpes <br> Colstriva in Pioge，I <br> Clutarane 1 <br> Cordove． 11 <br> Frrol in II <br> Jeres dol Ir Trontert，III <br> fores 111 <br> Mantic 11 <br> Malep， <br> Muleia，IV <br> Ralnmanew，IV <br> fira coes，iv <br> Berlle，$y$ <br> Tolede $V$ <br> Valphed ${ }^{\top}$ <br> Iftery

Armanda 1
Irpinaular War，IV
Ematiaco Battie of，IV

Bucreston $\mathrm{Nare} \nabla$
Triple $\Delta$ illance，
Trtreeht，Fence of，$\nabla$
Vieana，Comrreat of，$v$
Wentphalle，Peces $08, v$

## Lelande

Balearic Ialands，I
Camarles．
Fermando Po，II
Majorea． 111
Mlnorea， 111
Temerlice，$V$

## Moneqtins

Cantabrian Monntaing，I
Yrencet，IY
Slerra Nevada，V

## Rivers

Duero， 11
Gundalqnivir， 11
Tuadiana，It
rasus，$V$
Unclaselised
Andalasia，I
Aparon，I
Blacay，Bay or， 1
Cale Fingeterre， 1
Castlle， 1
Cld，＇The，II
Granada，II
Iberta， 111
Navirre，IV

## 3PORTS AND CAMES

## Acrobat，

Angllus，
Archery， 1
Asmoclation Football，I
Athletles，I
Qpeatlons on，V1， 125
Bacteammi I
Ragatelje， 1
Ragle
Banteball，I
See，almo，VI， 123
Banket Ball，
Ree，also，VI， 123
Billard Bails． 1
Rllinards． 1
Bowllng $I$
Bozlug， 1
Rollifhtios，
Calisthenles， 1
Camper，Woodaman and，VI， 714 717
Campires，VI， 714
Choosing a site，V1， 714

Equtmmeat asa Clothing, YI.
T
Tepte blyine, VI, 110
Cumoelar 1
Cardat 1
Cinise, 1
Checkers, I
Checkers
Cirewa 11
Cometios, II
Cockacilus, II
c"riben in
Cricker il
(roguet, II
pridasil
peroy
Mer, if
nominoem, 11
Iraw Poket, II
Inumb-brla, II
Sep, sleo, VI, 712
Ficarte, II
fxeryer, v1 030
Fixercisei, Yh, Esi-as
Falconty, II
renclary
prociat
Footbill II
Football, II
fiame Lawn, 11
Gamen, II
Necemity lor, VI. 462
For Kindergirten, VI, 4 48
For Yonn Chlldren, V1, 701
for Older Children. VI, 708
Wulet Games, VI, 704
Solit, II
ISNe, miso, Y1, 110
Gymnastum, II
Tumb-belit, V1. 112
IIorisontaf Bar, VI, 100
llorme. VI, 110
I'arallel Bars, VI, 710
Oymnatice 11
fand Rall, III
Trandicappins, 111
Ilenles heration III
IIockey, III
Huntins III
Ice Xachting. 111
Indoor Basebail, 111
Inthmian Games, III
Jarketones, III
Jacketraw, III
KItf, VI, 705-707
Common KIte, VI, 705
Hox Kite, VI, 705
Chlnese Kite, VI, 703
Butterflr KIte, VI, 700
Boy ixite VI, 707
Ia Crome, Ill
Lawn Tequis, III
Jarblew, 111
Nemenn Gimen, IV
Net, IV
Olymplan Games, IV
Physical Culture, VI, 62n-63s
Action Neceacary, VI. 630
Alm of Phyicil Culture, VI.
Atr and Ventilation, VI, 634
Breathing Exerciecm. VI, 635
Caucen of Hoor IIealth, f1, 620
Esercise for Practice, VI, BiI
Fnod. VI, 634
Heelth Not a Matter of Lnck, VI, 630
Illuatrative Charta. VI, 632-f33
Ineston from the Greeks, $\mathbf{A}, ~ V I$, 030
Tire Alr a Necenalty, VI, 635
Plag Pons, IV
Plguet, If
Pnker, Draw, IV
Poln, iv
Ionl. IV
Pythian Games, IV
Quolte, IV

Rees, IV
Bring, IV
Romerefiolr. It
Nowlotte, IV
Tomblots IV
towter iv
Mecular ciems,
Wheaticer $V$
Why ebent y
Alat. $V$
Mrates and Rlemting, $v$
Mot Machter, $v$
golitalre, $V$
Mpring bionrd, VI, 707
ntiles
mwisming, $V$
Tarset,
Tepale
Tenter
Atylew of, VI. 716
Tober
Tourpameat, $V$
Trapplen. $V$
Tratior $y$
Troltise
War Crien, V
Patep Polo, $\nabla$
Whint $\%$
Wrentlacy
Yachting, $V$

## 810 गை

Arachne, The Mtory of VI $_{1}$. 871
Atiante The ntory of VI. W7

Pran Ifolle, V1,
Gifte the IDwart Mide, vi, ann
How Bahy Rey Got Up in the Mofting, VI, 471
Joweph and HIS Brothem, VI. GM1 IIttle PI that Wouidn't (o Oret the 8tile, VI, 687
Ittle Red Flen and the Graln of
Whedt. VI, 467
Mnalelan and tive Dancer, VI. fiJ)
Pancake, The, VI, 448
Phethon, VI, 372
Proeerplina, The Btor of, V1. 574
Three Rears, The, V1, 464
Three Gonts, The 684
Three Tiny Pism, VI, 405
Trojan War, The VI, 578
Utly Duckline. The, VI. 688
Winkelried, The Btory of Arnold. VI, 688

## STRATS

Barron Strait,
Belle Itele, girait of, I Bering strilt. I
TBosporver I
t'anco. 1
Cook Stralt. II
Cookstralt. II
Thardanellew, II
Mavis strait; II
Fnefleh Channel, It
Fuca, Jnan de, Btralt of, II
tieorgia, strait or, II
Gibraltar, Stratt of, II
Hercules, Pillars of. ItI.
rolden Gate. II
Macatast. Btralt of. 111
Macatian. Erralt of, III
Malnce, stralt of, ili
Menal stralt, III
Hepmina. Ftralt of, III
Charybdic. 1
Fata Morgana, II
Otrento, strmit of, IV
galnt Georse' Channel, IV
gound. The, $V$
Eplthead, $V$
Torren itrait, $v$
Ienlkale, Etratt of, V

## sunceny

Exe Meolcin: ano fivnomat

## CWIDTAN

Bweden, v
With mubleag tratites fueraca $a v D$ DMalwaga, Cliyaty, Nimbual Ramovmcin: Aualcut:
 Hintation amb Conmance, iku HADIFAMTE ABD lampoana, Fot. cation. litmactaa cortar. cant axd hehsorow, hiatont

## Citice and Towne

Aothenhary, II
IIsislacboris 111
SInluo, III
Atortholsh, $V$
Upmik, $V$
Gulfo and Bays
nothole, gutf of, 1
rattelat. 1
BLacterats 7

## Miter

Intem Rattic of, III
Thity Yeario Wir, V
Triple Alliance, $V$
Venna, Conzrese of, $V$
Wentphlla, Leace of, $V$

## Unelanified

fotheahure Bystem, 11
Gotiand. II

## SWITYANANO

Switueriand, V
With suhbeads treatine fư: pace and Drainaor, Cliyatk. MACE AND DRAMAOE, CLIYATK, Tl'ay, MASUPACTUAÉA, TaANAifoatation, INHABITANT! ANb I.aNGEADE, FRt'Cation, tioveonmeNT, Histoat

## Citios and Town

## Altory,

Masel, 1
Bern, I
(3eneva, 11
Interiaken, 111
Cansanne, III
I.ucerne, III
iveuchatel, iv
Rch
Zurleh, V

## History

Tell. Wtiliam, $V$
Thirty Yearm' War. $V$
Ylenna, Congreas of, $v$
Weatphalla, Peace of, V

## Latea

Constance, 11
Geneva. Lake, I
, ncrene, Lake of, III
Magriore Lake, III
venchatel. Lanke, IV
Znrich, Lake, V
Mountains
Alpm, 1
Jungfran, 111
Jura. III
Natterhorn, $11 I$
Hont Blanc. III
Kona. Monte, IV
Salnt Got thard, IV


## Thovact

Trenemer, $V$
With mablowda treatio lus RAC\% AWD DwalmaOs, CLIMATE, Minmaz Rapouticna, deatcut тvas, Manvpactumes Thame.
 tion, Im eratustowe, lievoat

## Crises and Towns

Rriotel, 1
Chatfanoper I
Cortaill 11
Cofinuth if
coozilin, It
romples. 11
vanatile, 12

## Monthine

Amplactas,
Cunberland Konatatae, II

## Ruers

Cumbrianal 1
Fronch Broud iver, It
Maseleappit III

## TeMs

Torat $P$
With mbheade treatios BotFACE AXD DHAINADE, CLIMATE, fimmak Rumovicana, Clizate, TUnm, Manopactuer, Tancur-
 pontarion ana CoMmiacn, Gov. amramat, EDUCATion, Ineritu. T10wa, Hiezoes

## Clises and Towns

Auther 1
Boaham, 1
Brenham, 1
Browapvila, I
Brownmood, I
Clebartee II
Corpna Chritet, 11
Cortleana, II
Dallas, II
Dention, 11
FI Pano. II
Fort Worth, 11
Gelnervilis. II
alventon. II
Greeavilte, II
PIIIsboro, III
qonetoro.
foredout
Maredo, 11
Oramgati, if
Prange, iv
Palentite, IV
Port Arthne, IV
Ran Anselo, IV
Ran Antonlo, iv
Sherman, $V$
Tomple, $y$


Culfs and Beys
oaiventen mery
Monico, Oels at, IIt
stimeors
Alame 1
Han Jecinto, Eatte $\alpha$, IV
Now
Brames 1
canadia.
Coloride. 1
recen iv
hadiver, IV
Cather IV

## TIM-DVISLON O

Apell, $I$
Autumen 2
Angunt,
Carnomelo I II
Day, II
Derember, 11
Dominleal Letter, II
fopect, II
frpoch, II
Pebrwart ${ }^{1}$
Fraday II
Gremorlan Calpedar, 11
ldes, 111
Imdian hnmerer, III
Internatfoow Ihata Lise, III
gex, almo VI, 87
Janamry
June, III
Leap Year, 111
Iarch, III
Mes. 111
Mlanta, 111
Monday 111
Month, III
Nienn. IV
Naturdis. IV
gaturday
Reptember, $V$
Adgoreal Time, $V$
Rpring, $V$
Rummer, $Y$
sundary
Tharmady, $V$
Thue,
Treedis, $V$
Wedneday, $\nabla$
Week, $V$
Winter, $V$
Year,

## Inatrumente for Moauncias

Chronotraph, II
Chronometer, II
Clepaydra, II
Clock, 11
IIonridans, 111
8 Sramenbarg Clock, $V$
Run Dial, $V$
Watch, $V$

## TRANSPORTATION

Applan Way, 1
Caproto-Cafro Rallwas, I
Carrier, Common. 1
Cumbertand Road, II
Electric Rallway, II
Elevated Rallway, II

In+mea Corepasy, 11
Tutsell
Itrmatis
romblall, inemen, iII
pefreafromedy
santon IV
sead. IV
Diplalitiv.
atriot Rally.y.
Trmeney, $v$
Trambinctia Rellvis Tho, $V$

## TNTHIS

Caneme Tune 1 I
Crols, Mont, Tratel of, 1
Iloonec Tvanat III
ghalm Ootherd remant, IV

## TUnTAY

Truesey, 7
Fith cehheran irvatlur Erm fing Tuaxis, Aatatic Trexey Apical lumbenatome. Climatn.
 Tarlon, Imbabiramy amb lax ovacm, dovenimmer amb ila LJoton, Equcation, IItasomr.

## Clisee and Towns

Adrianopla, I
Alappe,
Bannorn, 1
Constanfinopie, 11
Dapbetir, If
preprem, il
rallipolt 1
Inphoce iv
chaloalti, iv
heutart. $V$
Rmyma, V
Trebinond, $V$
Twrkey in Lok
nardad. 1
Ehormbed, 111

## Dopendeacioe

Albanda, 1
Anla Minor. I
Armenin, 1
Mnlgarla,
Espt, II
Kurdiatan, 111
Mesopotamis, III
Ilamelle, IV
Arria, $V$
Tripoli, $V$

## Hietory

Beritn, Conarreat of, 1
Crimesn Wint 11
Fantere Quewilon, II
Janlantem, 111
Pris, Treatios nf, IV
Rnaso-Tarikth War, IV
Itlande
Crefe, 11
Lemnos, Ill
Letboen, 111
Patmon, IV
Rhodes, IV
Rhodes, IV
Sclo, V
Thason, $V$

## Mountaine

Arerat, Mount, 1
Athos, Monnt. 1
Canembua
ficroat, 118
Tharith
Enaphrater, 11
Therta, $V$

## Unchroilied

Cruandery 11

## UNTID STATA

Cnlted Etaten V
With andeects treatina Boow-
 Mrkpace amp Dmatacoa, MiarzuL Remocincta, Vmanaztog, Artisal Lark, soarcultuab, finemitio Manvfactuman, Tmanamontation ast foymutcation, Commince,
 ical Drviatuma, EDucation, Ilifร0อ\%.

For reormphleal leatures ene usdor areremt taten

## Histery

Abolitionsite 1
Alabamar Theilion Iawt.

Abdermonvilie, Autiet m, ithe of
Aptletum, inathe of lionen,
Hacom'a Hebellion, I
ithli'a Bump, Ilatio of 1
Pepalartan, Baltle of, I
Ruriny Res Cont roveray, I
Riue Lawns 1
Inuton Namacre, $f$
Ronton Ten larty,
Rruadswlie. Italfle of the, I
Burna Vinta, Iatile or, I
Itull Tum Ratile of. I
Bonker Mill, Batte of. I
Camapta, Battle of, I
Carpeiberyera. 1
Cedar Creet, Rattle of, 1
Cratr Monntala, Battie of,
Cerro Gordo, Battle of. I
Chancelloravile, Rattle of, 1
CDapulteper, Batife of,
farter Oak,
Chatimooga, Buttlea of, I
Cherty Valley Misumere, I
Cblekamanea, Fmitle or, 1
Chlapereraninion, 1
(Thlppewn, inatle ot,
(Tharuhunco, Battle of, 11
rivil War In Amertce, If
Cinjton-Bulwer Treaty, II
Gold IIarhor, Ratile of, II
Compromise of 1850 . It
Confederite Rivies of Ampricm, II
Compay rabli. 11
Copperhead. II
Coppernead,
Crittenden Compromice, II
Teclaration of Independence, II lhbben Ferre, II
Pred Rcott Jeelaion, II
El Cabey, Hattle of, II
Filectoril Commlanion, It
Emanclpation Proclamation, II
Embrro, II
Era of Brod Feelles. II
Erip, I, ano, Biattle of, II
Frie, Iakp, int
Ever Jngrin, II Rattio of 11
Falr Ouks, Hattle of, 11
Federaliat, The, II
Fipe Fortic, Batile of, II
Flas. II
Ree, floo, V1, $881-388$.
Fort M1tan, Maseacre of. II
Frankland, II
Franklin, Battle of, II
Frederletaburs. Rattie of, II

Fulife Rlave Iawe II
gatcon burchere, II
Can melte, 11
Smatinlupe Hidalos, Trealy of, II
(Bemeve Arbtiratlen, it
(remmalown. Ifattio of. It
(totiybepre, thete of, fi
fimpat, Trentry af, il
timat, Trenty at il
IzuilRorts, liattio of, if
ILamptum Hoadn ('noforence, 111
Itariford Conreatlon, III
Ifay-IWuncefota Trenty, 111
ILemitey. 111
1mand sinmbet 10, 111
Jntuewtown, 111
Jay Treaty, 111
Kn (3me-Nebpenta HIII, III
Kpeemat Mounlala, Fialtio of, 111
Kentnely and Virginla Resalu. Tloan. 111
Klagis Mountaln, Battle of, III I. Iberty Hell, III
lempmpton Comalitutlon, III
Levis ind Clart sapedition. 111
Iexfuten, Bettie of, 111
Lone lanac, Rerile of ill
Lomialana Parehase, III
Malverw IIIII, Rattlo of. III
Manila Baty, Rattle of III
Mamon and IMron'a Line, III
Mrochantesville, Raltle of. III
Meetlemburs Declarimtion of
Indepentwer, III
Mexican War The III
Mul spring Batio ot, IIT
Mnatoneen, III
Mlawour Comprofice, III
Noblla Bay, Battle or. III
Molloo del they. Watim of, III
Monmouth, Buttle of, III
Monree Dortrime, III
Monteroy, Balile of 111
Murfreabero, Batile of. IV
Nambvile, Batile of, IV
Newbnret Addremen, IV
Naw larland Confederailon, iv
New Orleann, Batle of $1 \nabla$
Northwewt Terrilory, if
Nullibetation, iv
Ordinance of 1787.17
Oriamany, Battle of, IV
Ortena Kínirento, IV
Pulo Allo, Battle of. IV
Pan-A merican Con rems, IV
peria. Trentlen of, IV
Pes Ridfe, Batile of, IV
Penloanla Campatri, IV
Perryfille, Bathe of. IV
Peternbers, blese of, iv
Port Fivamon, 8lege of, IV
Princeton, Battle of, IV
Oueber, Risttle of, Iv
Quepmatown IIelshin, Battle of, IV
Reconntruetion, IV
Renara de la Palma, Battle of, IV
Rernintionary Wiar In America, IV
ganticso, Ratile of, IV
garatoge, Battle: of, IV
Recpmaton, $V$
Ghiloh. Rattle of, V
Bouth Mountaln. Battle of, $V$
Rpanlah-Amerlian War. V
specle 13ymenta, Resnmption of, $\mathbf{v}$
Apottinjlvaula Court House. Rattle of, $V$
Thamen River, Battle of, V
Ticonderogt. Battle of, $V$
Tippecensoe, Battle of, $V$
Trent Aflrit. The, V
Trpmon, Rattle of, $V$
Valles Foree. $V$
Victobnrs Cempalsu, The, $V$

Trotula Meametw, The, $V$
war of IeIz
Wamyartes, Trouty ofy
Wrelmerp La burtom Tryety, V
Whlony l mantretion, $\gamma$
Whinky bisery
While Mote, Batte of, 8
Widermana, fietle of the, v
Wilmot I'povisa, $\%$
Writ of Arslatameg $\nabla$
Wromiles Valhey Maemerte, $V$
XYZCormenganemery,

## IRIande

Refloc'm Imland, I
iliojol.
Calamiasen, I
Cobur I
Irymmond falana, 11
(10vernor' in itana, II
?man 11
IIawhinn Ialands, 111

- Indint 11

Manltoulin lalande. IIT
Mare Ialend. IIt
Merlile Inland, it
Molotal, III
Netrom, iv
Ne Trow, iv
I'ala,
l'anny, IV
l'hilppine Inlanda, IV
l'orfon hirs, iv
Натиит. 18
Suln Islandn, $V$
Virgle Islande, $V$

## Steton

Alabina,
Arlxuma.
Arkanorin. 1
Cellfornla. 1
Colorado, II
Comecticut, II
Delaware. 11
Patrict of Columbla, 11
Florida. 11
Georsia, II
Idahe, 111
IIInole. 111
Indlana, III
Lown. III
Kancas. II
Kentucay. III
Keblucky, III
lonnialana,
Malve. III
Maryland. III
Mamenchnsefta, 111
MIfchlrane, 11
Minnemota, III
Mlesanalpol, 111
Minsourf. 111
Montama. III
Nohremba, IV
New IIBmpahire, iv
New Ilampahire,
New Jerses, IV
New York, IV
North Cirollna. IV
Nortb Matrota, iv
Ohlo. IV
Oklahoma, IV
Orezon. IV
Pennerivania. IV
Rhode island. Iv
Ronth Carolling, $V$
Ronth Carollna ${ }^{\nabla}$
Ronib Da rota,
Tranesgee, V
Tezam, $y$
ITtah, $V$
Vermont. V
Virsinia. V
Whahleston, $\nabla$
Went Virinin, $\nabla$
Wlaconaln. $\nabla$
Wyoming. $v$

United States

Vmelmaised
ontry ender, II
Viniand, $\nabla$
Yollowntome Nattomal Fart, 7 Xoomite Valley, V

## UnUP1Yร

Monterideo, III
Platn, Llo de in, IV
Urugury, $V$
Urugur Aver, $v$

## UTAH

Utah, $V$
Fith mubhemd treatis Ber Face AND DEAIMAOM, CLIMATP Mismial Resovacen, Agaiccó? TURE, MAyUFActunna, TEANPpot Tation, Gotmana NT, EDUCation, Ineriturione, Hianuez

## Clitios and Towne

Lharela, II
Loran, III
ORden iv
Parkclity 17
Provoclty, IV
Salt Lake City, IV

## Lales

Great sait Lake, II
Utah Lake, $V$

## Mentatios

Rocky Monntalme, IV
Ulati, $V$

## Rivore

Coloredo. II
Grend, II

## VErincles

Ambalance, I
Antomobile, I
Bicycle, 1
Prougham, I
Puciaboerd, I
Bnge, I
Cap:
Carriase,
Carrias
Chrt 1
Chation I
Charlot
' 'oupe, iI
Dogeart, II
limek, III
IIsncom, III
Jlnriklnhe in
Tmnlbare, $1 \mathbf{V}$
Palanquin, IV
Phaeton, iv
Quadriza, IV
Rledre,
leleh,
Sallty,
Murres, $V$
Trap, $\frac{1}{\gamma}$
Tricycle, $\nabla$
Veloclpede, 7
Wason, $V$

## Vintajxa

Venesmela, $V$
Wlth subheade treating Bye. FACE AND DRATNABE, CLIMATE Minemal Regorfarm, Agaicul tuan Manufactures, InbabiTANTA AND LANOUAOE, KDUCATION 'futarnment And Rehiolow, His'

Cition and Towns
Barcellom, 1
Bargnisimeto, I
Careat I
Clnded bollvir, II
Cumana $I I$
Iahore, III
Marnealbo III
Yeride III
Unchacifiod
Andes, 1
Canslquilare, 1
Margerita, III
Marimalbo, Lake, III
Orinoco IV
Pues, It
Puría, IV

## VERMONT

Vermont, 7
With muhheads treatios sur. JACE AND Dmaikme Coimate
 ruas, Manuractuara Tramepos TATION, GOVmaryent, BDUCATION, Imeritutiona, Hantomy.

## Citice and Towas

Rarre, I
Bennlagton, 1
Arettleboro. 1
Burlington, 1
Montpeller, III
Rntland IV
Galnt Albang, IV
Salnt Johnsburs, If

## Uncheoifiod

Chimpialn, Luke, I
Connecticut River,
Green Mountalne, il
Memphremager
Taconc Mountaine, V

## VLRCINLA

## Virinia, $V$

With muheads treatlis gumFACE AND DRAIMAOM, CLIMATE, Minmal Resougaces, Climatz, MiNeral Rasouaces, AcaiculTUAE, MANUPACTUAES, TRAKAFOATATIOF, Govenkyrevt, EDUCATION,

## Citive and Towras

## Alerandría, I

AllegDeny Siprings, I
Appomattox Court Honse, I
Arilngton I
Ble Bethel, I
Charlottesville, I
Danville, 11
Frederlctrhnts, II
Lyncbburs, III
Manchester, III
Newport Newn, IV
Norfolk. IV
Old Polnt Comfort, IV
Petreshners. IV
Portmmonth, IV
Rlchmond. IV
Roanoke, IV
Stannton. $V$
WIllamebur, $V$
Mountains
Alleghany, I
Appalachlan. I
Bue RIdge, I
Cnmberland, II
Rivere

Water and Water Supply
James III
Promic, IV
Rappahannoct, IV
Roanolze. IV
Bhepandoah, $\nabla$
York, $\nabla$
Unelagntion
Cape Chstlea, I
Cape Henry,
Cbeeapeaki kay
Luraj Caverne, 1 II
Dintaral Bridge, iv

## volcavoss

## Aconcagut, 1

Agment, Yoant, I
Cotopax, :1
Grehts and Tertor, II
Btna, II
Pujlyame II
Hecla, III
Jorullo, 111
Kllanea, III
Kllmanjaro, III
Mauna Kea, 111
Manna Loa, III
Popcacatapetl, IV
Vesuvina $V$
Volcano, $V$

## Walss

Angleter I
Botan Bay, I
Cardif, I
Glendower, II
Merthyr-ity di, III
Whles, $V$

## WASHINGTON

Wahington, $V$
With anbheade treatlong Sris. FACH AND DEAIKAGE, C'IMATE, MINEAL REBOUNCES, FISHEREX, Aonicultunm, Mánufacterex, Teamapoatation, EDUCATIon, Ix: sxirutiona, Eintony.

## Citios and Towas

A berdern, 1
Hellingham, I
Centrilla, I
Chehalia, I
Fiverett, II
Falrett, II 11
IIngulam, III
Nortb Yakima, IV
olympia, IV
Port Towneend, IV
Seattle, $V$
Spotzane, $Y$
Tacoma, $V$
Tanconver, 7
Walin Walla, $v$

## Mountains

Rlue Mountains, I
Cascade Range. 1
Conet Range, II
Rocty Monntalne, IV
Selkiry Monntalne, IV

## Unclansified

Cape FIattery, I
Columbla Riter, II
Sanke Rlver, $V$

## WATER AND WATER SUPPLY

Clatern, II
(roton Aqueduct, II
Divinine Rod. II
Mineral Waters, III

Perulan Wheel, iv
Remerroty, iv
Fater,
Waterwork, $\nabla$
Well Bortar, $V$

## WAIATALS

Niagara Falia and River, iv
Shoibone Falis, $V$
staubhach, V
Victorts ralle, $V$
WHCHIS AND MBACURES
Acre, I
AB, 1
Aroirdapole, I
Bunhel 1
Carat,
Conid, 1
Drachma, II
Drae, II
Fathom.
Foot, II
Furlone 1
Gailon. 11
Gram, 11
Hogthead, 111
kilogram, 111
kilogrammeter, II
League, III
Liter, III
Meter, III
Metric Syatem, III
Mile, III
Ounce, IV
pound, IV
Poundal IV
guart, iv
Quarter, IV
scruple, $V$
Seer, V
ghekei,
Taient, $V$
Ton, $V$
Troj Weight, $v$
Welghta and Measures, $\mathbf{V}$

## WSST VIRCINTA

Weat Virginia, $\mathbf{V}$
With subbeads treating SORMace and Draimage, Climatm Mace and Draimage, Climate, Mineral Reaovacrs, ageicul tuae, Manufactuazs, Tranafostatió, Goveranent, education, inatitutiona, Hiatoay.

## Cities and Towns

Binefield, 1
Charieston,
Ciarksburg, II
Fairmont 1
Grafton, il
ilneper's Ferty, III
Ifuntiogton, Ili
Martindiburg, III
Morgantown, IV
Morgantown, IV
Moundspilie, IV
Parkershurg,

## Mountains

Alieghany, I
Appaiachian
Blue Ridge, 1

Rivers
Bis Aqnis, I
Great Kanawh II
Monongabela, III
Ohio, iv
Potomac, iv
Shenandoah, $V$

## WSCONSIN

## Wisconaita, $\nabla$

With subheada treating Svaact and Dainagy, Climate Mineral Reboumcra; Aoaicu: TUAE, KANUPACTU日ES, TRAMSPOAtation AmD Commirce, Govzanment, Education, Inatitutiona, Hiacom.

## Citiec and Towns

Antigo, I
Appleton, 1
Abtiand, 1
Baraboo, 1
Beiolt. 1
Cblppew Faits, I
Eau Cialre, II
Fond du Lac, 11
Grand Raplds, 11
Green Bay, II
Japesplite, III
Kankauna, III
Kenobha, III
La Cromee III
Madison. III
Manltowoc, III
Maridette, III
Marsbfield 1 II
Memaaba, III
Memomonte, III
Merriii, III
Milwankee III
Neenab, IV
Oconto. IV
Osbleosh, IV
Prairie du Cbien, IV
Prairie di
Rhineiander, IV
Sheboygan, ${ }^{\text {f }}$
South Mliwanke, $\nabla$
Stevema Polnt, $v$
superior, $V$
Watertown
Waukeaba,
Wausau,
Went Alita, $\nabla$.

## Unelascified

## Foz River, II

aissisnippl. II
Naint Crolz, IV
WIDnebago, Lake, $V$
Wiaconain iiver, $V$

## WYOMING

Wjoming, V
With aubheads treating ScrFACE ARD DRANAOE, CLIMATE, Minghal Resodacea, Aoricula ture, manufactuaen, tranipoatation, Goveanment, edocation, inatitutione, histoay.

## Cition and Towne

Cheyenve, I
Eramaton, II
Laramle, 111
Raviline, iv
Rock Springe, IV
sherldan,

## Monataine

Bisck Hilie, I
Laramie Mountalas, III
Rocky Mountalns, IV

## Rivers

Bishorn River, 1
platte, iv

## zOOLOGY

Animai, I
Antennae, I.
Arachaida, I
Anthropode,
Articniata, $\frac{1}{}$
Carmivora, 1
Cepharopoda, I
Cetacen, 1
Colroptera, 1 , in
Echidna, II
Echinodermata, II
Edentat II
Egs, 11
Feathers, 11
Finn, il
Filhet, II
Foraminifera, II
Oilic. II
Ilemptera, 111
Hibernation, III
IIorn, 111
Infuzoria, III
insect. III
Invertebrata, III
Larva, III
Mammalia, III
Marsupiaifa, III
Netamorphosis, III
Metamorphosis, III
Mimicry, III
Moilueca, III
Morphology 1 IV
Myrhapoda, iv
Natural selection, IV
Neuroptera, IV
Orthontera, iv
Parasites, IV
Phyilozera, iv
Primater, $1 \mathbf{V}$
Protomon, IV
Ouadrumana IV
Radiati, IV
Radioinrla, IV
Refter Action, IV
Reptiies, IV
Rbizopode IV
Rodentia, IV
Ruminapta, IV
Scaipa, IV
Sbelis. $V$
spawn. V
Specipa, V
${ }^{\text {Indertabiata. }} \mathbf{V}$
Wormbrata.
Zoniogical Garden,
dee, also, maid bead, animals



[^0]:    

[^1]:    "O'er rank and pomp, as he had seen, I saw the man uprising;

[^2]:    童
    in of
    tin
    mily
    but the
    dnun;
    ting ix
    Thindo
    in whid
    astristic
    when in
    butuerly
    Histor
    neres is
    wish th
    d the li

    ## eqphesis

    Anum dus denis, abers ha in it is Hing the in turies ant d this vo rory poe Ingrage do in thi wlection

[^3]:    brox

[^4]:    - 

    how
    to
    ma
    bor in
    Pren
    quest
    htter,
    tiso
    fres
    oder.
    He pe
    made
    athem The imple

[^5]:    

[^6]:    

[^7]:    

[^8]:    $+$

[^9]:    $$
    19
    $$

[^10]:    

