Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

UPPER CANADA MEDICAL JOURNAL,

Or

Medical, Surgical and Physical Science.

ORIGINAL COMMUNICATIONS.

Art. XXXIX.-Pathological Histology, by Dr. Gottlieb Gluge. Translated from the German by Joseph Leidy, Esq., M. D., Philadelphia.

> THIRD SECTION.
> Formation of the Blastema.

We have now to determine the sources whence the plastic substance is derived which furnishes the material for the development of the new tissues.
11. Nutrition, Sccretion, and Inflammation.

In the process of nutrition, the vascular system of each organ separates under its influence the necessary elements; urine in the kidney, bile in the liver, elc.

In this manner, a large quantity of plastic matter is deposited in the structure of the pregnant uterus, which is transformed into fibres observable in various stages of development. If nutrition becomes abnormal, from causes which must remain unknown until we are acquainted with the laws of the normal process, there exudes from the blood vessels a liquid resembling serum, as in simple dropsy, or only single elements may exude, as fat in stearosis. In other cases albumen and fibrine are effused which experience little or no metamorphosis, or they become converted into perfect tissue, in the development of which the organ, the seat of the secretion, exerts a powerful influence. The tissue produced determines hypertrophy, or forms isolated masses constituting tumors. In a final case the blood stagnates and its corpuscles accumulate and experience
definite transformations; and the plastic constituents undergo one of the described metramorphoses within and external to the vessels. This process alone I designate by the name of inflammation.

Stasis of the blood-corpuseles and consequent metamorphoses of the blood, with or without exadation of proteine, ate the only anatumical chatacteristies of inflammation. After stasis has occurred, the later may disappear, and the plastic material continue to exade, as is the case in chronic suppuration. The name inflammation, however, should not be given up; becanse the oher exudations above-mentioned oceur in the vaseular system, and are entirely difierent from thase of the inflammatory process, in the fact that they occur withont stasis and alteration of the blood-corpuseles; and the word hyperomia, or stasis, and even exudation alone, defime inflammation as little as the earlier words tumefaction, heat, redness, and pain, used for all its forms.

From the preceding it is clear that, in clisease the phastic substance is deposited in two modes; without previous slasis of the blood, as in normal mutrition, and with stasis of the blood corpuseles, probably through their agency, as in inflammation. The first process we understand very imperfectly, because we are unacquainted with the laws of ordinary mutrition. We know isolated conditions, in which, for example, fat or scrmm is deposited in certain tissues, but the momerons explanations which have been given of diabetes are sufficien to exhibit the paucity of our knowledge in this respect. With the mode of deposition of plastic matter in inflammation, we have a rather mor exact acquaintance, and shall treat of it particularly.

Inflammation consists of several consecutive groups of phenomena or stages, each of which may terminate without necessarily passing into the next, and cach, according to it nature, requires a varied method of treatment alreads discovered unconsciously and empirically. These groups of phenomena or stages are as lollow: congestion, hyper amia, slasis, exudation, and gangrene.

12. Conyestion.

This stage sometimes precedes the others, but not nectis sarily.

By the term we designate an unusual llow of blod, Alhough a certain portion of the capillary system in a given time, and the condition may be directly observed by mease of the microscope. An acceleration of the entire capiltarf circulation may occur as well as partially in an organ of st
tissue. In the former case it is consequent upon the eentral organ of the circulation (contraction of the heart and respimation), aud in the latter it is possoble only upon angmemed secretion and murition.*
The more rapid change of material operates through the ronstant effusion from a continued renewal of the stream of bood in the capillares. Such partial congestions are trequent in certata orrans daring pregnancy, as in the aterus and the mammary glands. An organ moreover, may receive an increased quantuty of blow in consequence of the growth and augmentation of its vessels, as is also exthibted in the organs last mentioned. In the same mamer pathologically ait organ may receive more blood than usual, a remarkable example of which is presented ty tumours.

13. Ilipcratmis.

Hyperamia consists in an accumulation of blood in a portion of the capillary syitem, in arteries or in veins, prodaced by retardation of the circule ion. The latter condition in the entire capillary syesm of the body is neompatible with life; the mot remarkable cample of bis being presented by cholera.
Ilyperemia, or accumulation of the blood within the vessels, ecurs in twoforms. In the one case all the constituents, the fquor sanguinis and the blood corpuseles, accumulated; in be other, the corpucrles accumalate with a diminution of whiquor sanguinis. The former may occur in the arteries od in the veins, and more particulaily the later, because Ley poseess a high degree of dilatability. The other form Lone occurs in the capillaries, for these camot receive a large pantity of blood withont effusion of the liquor sanguinis (exdation), or rmpture of their parictes (capillary hemorrhage). bhyperemia of the capillare, the blocd-corpnseles acGmulate so as to fill up the lymy h-- pace, and come into Fmediate contact with the walls of the vessels, to which sef adhere, and thus increase the retardaton of the circusing current.
In this manner, vessels ordinarily conveying only a Ggle row of blood corpuscles, and imperceptible, become sible to the naked eye; and a tissue, which in the normal todition is pale, becomes bright red. 'the walls themtres of the eapillaries have no participation in the produc-

 Finl relation to the latter.
tion of the hyperemia. As siready stated in a publication in 1642, I have never seen in any organ or tissue of an animal, from any irritation whatsoever, a measurable dilation of fibreless capillary vessels; and, although such a change is asserted to oceur, to the present time, by Vogel, Rokitansky, and others, yet 1 can only explain the diserepancy from these latter having failed to make comparative measurements. Those made by Leber give Omm, 005; a difference too slight to be taken into consideration, and attributable alone to the measurement, for it is well known that it is quite impossible to measure the same body twice without obtaining a slight difference in the resull. On the other hand, if dilatation of the capillaries does not occur in hyperamia it is quite as difficult to prove they undergo narrowing or connextion. They only mode in which the latter could possibly take place, is by condensation ami contraction of the tissue with which the capillary walls are firmly comected.

Dilatation of the arteries and veins, howe ver, frequenty occurs, and this condition determines a retardation of the current of blood through them. Further, simultaneously with hyperemia of a lissue, fusiform dilatations are observed in those capillaries and arteries surrounded by the annular fibrous zunic, and likewise the experiments of Weber have proved their contractility under galvanic stimulns. Experience confirms the view that diministed contractility of the arteries participates in the production of hyperemia. When an artery becomes calcified, hyperamia is easily induced in the organ which it supplies with blood.

14. Stasis.

Stasis, or staguation of the blood, as the term indicates, is the cessation of the circulation. In oceurs in the arterial and venous, as well as in the capilary system. The alterations which the blood undergoes under these circum. stances are the same in the three systems, and are ouly modified through the coustitution of the latter. In this plate, I shall treat only of stasis in the capillanes, and propose to devote' a separate chapter to that of the laget vessels.

If the capillary vessels are stopped up with blood or puscles, all movement of the sanguineous column ceases, the so-called lymph corpuscles increase in number ad the lymph space has disappeared. The blood corpuede themselves und rgo the following changes:-They becond grouped frequently in regular columns, resembling pile: \boldsymbol{T}
coin; their coloring matter dissolves in the small quantity of remaining liquor sanguinis; and they become irregular, and fuse into a firm fibrinous mass; or they decrease in size, give up their coloring matter and a portion of their fibrine, and become united by means of a soft, gray, coagulated albuminous matter, intomulberry-formed groups, the inflammation globules. Lecompanying this change, cerm, stained red, exudes from the capillary walls, a nd these are themselves sometimes ruptured, corresponding to the condition of the so-called inflammatory engorgement. Or the blood-corpaselen give up their contents to the liquor anguinis, which eflising from the capillarics into the arrounding parenchyma, constitutes fibrnous exudation. At first the fibrine is always dissolved in a greater or lesser quantity of serum, but rarely remains a long time in the hquid condition, as in the so-termed hydrops fibrinosa, most usually coagulating immediately. Under the later circumstances the walls of the capillaries become invisible, apparently from their having been pressed together by the exudation; and an organ in this degree of stasis, as for instance, a hepatized long, contains a much smaller numher of blood-corpuseles than in the nommal condition.
The extravasation of the liquor sanguinis determines, in all the grades of stasis, swellimg of the organ; and the impediment to the capillary circulation angments contraction of the arteries, and hence the beating of the part, which is therefore a result, and not a course of stasis. So soon as vasis has advanced to a considerable exten, the blood jet etained within the wesel presents a decided inerease in the quantity of fibrine, which is also a result and not a cause of the condition. Thas Zimmerman, in a first rene section, in a case of phemmonia found 0,002 fibrine, and in a second 0,008 . The source of this aceess appeare to me to be the stagnated blood eorpmecles from which it scapes, for, with very rare exceptions, the more the later decrease the more the fibrine increases. Ohers have sught for the cource in the decrease of the albumen of the blood, but this is mone naturally e eplained by the exmdation of sermo from the sessls; and, besides this, we do not find steh a dimmution with inerease of the fibrine, if stagnation cf in blood corpuseles does not oceur; as, for instance, it lbuminuria from stearosis.*

[^0]
15. Inflammation and its Termanation.

From what has been stated, it is clear that the inflammatory process consists of several phenomena or stages, which may exist independently without passing into another, and each has already found a therapeutic treatment empericaliy, hyperemia, stasis, and fibrinous exudation.

To these succeeds a fourth stage, which may prove very variable in its character; exddatoon being followed by resorption, or organization into ussues, or the formation of pus, or decomposition-that is to say, gangrene.

1. Resorption-When this oceurs, the stasis in the vessels disappears, the albumen is absorbed, and the fibrine is re-dissolved and also absorbed. Even coagula of blood in the pleara or peritioneal eavity have been frequenty observed in the lower animals o besome reabsorbed.
2. Organization.-In this process, the eflused fibrine breaks up into minute globules, from the sho to the sho mil in diameter, consisting of proteine and a portion of fat (exudation globules), or it becomes organized into tissues according to the laws previously given, or it is conyerted into pus, in which case the exudation-granules serve in the formation of nuclei.

16. Cause of Ifyprremia and Stasis.

Uyperemia may ocen in the dead body, if, in someportion of the capillary system the blood does not coagulate; and the blood-corpuseles following the law of gravity, sin:i and accumulate together. In the living body, however, it is produced whenthe return of the blood from some portion of the capillary system is prevented by pressure upon, or obstruction within veins, through destruction or retardation of the circnlation in another organ, by reduction in the activity of the heart, or through loss of elasticity in the arteries. Both it and stasis may be determined by dis. organization of the latter organs, or through disturbance of nervous influence. Futher, they may be induced by clevated activity in an organ. Ilyperemia, also, may arise through the local application of chemical or physics irritants. All substances copable of combining with the blood or the capillary walls may produce such an effect; as ether, acetic acid, salts, hydrocyanic act, etc. A high temperature or great cold, likewise, may operate in the production of hyperemia. The most remarkable example of local sticis is observed from the chemical influence of a blister. Agam, they may be induced by one of the accessory aids to the capillary circulation, secreton, exhalation,
or respiration becoming diminished. The above causes, however, do not answer in all cases, to explain hypermmia and stasis.

Onthis account some have supposed a greater power of attraction than usual in the capillary walls or surrounding parenchyma for the blood; and others have mentioned paralysis of the vascular walls as a canse. Probable as the latter may be in the smaller arteries, yet, until the present time neither mode of explanation has been proved. Even section of those branches of the sympathetic nerve which preside over the blood-vessels (Bidder); and, as I have myself obscrved in froge, destruction of the spinal marrow and nerves of the lower extremities, do not induce the slightest disturbance it the circulation.*
It may also be said of the asserted adhesiveness of the blood-corpuscles as a cause of hyperemia and stasis, that It is possible, but has not been proved. An altered plysical and chemical constitation of the blood must certainly have a great infuence in the production of stasis. The remarkable cases of stasis of the blood which Thierness and myself were able to produce at will, by nomishing animals upon oil, indicate how much the accumulation of an element in the blood can impede its circulation in the capillary vessels. The doetrine of attraction exercised by an iritated part upon a flow of blood, is certainly erroneous. \dagger
The hyperemia which occurs after death is not distiuguishable from that which takes place during life, and stasis only can be detected anatomically in the dead body in so far as it may have operated in producing alterations of form in the biood or exudation.

17. of Pus in yeneral.

Pus, which, in the normal condition of the body is a homogenous, yellowish-colored, thichish liguid, of the specific gravity of 1030 to 1033, when collected in a mastow glass tube separates into a colorless senm, and a sediment consisting of solid bodies, the pus-corpuscles.

 A) oge than another organ, int the aburamentuned rauses riprathe as stimuh, may

 sphanon is disturbed thus, diseace of the hiver produce bermerriages of the stomach and rentines.
thepposition, compare the hair-breadth proxtion woult, mitamed by A amara oti a section of
 *rot sureed in tho same expermants, aud, thaks the repettion desirable.

The latter, which ordinarily give to pus its color. are spherieal, but when not quite fresh, frequemty have a fringed contour, are soft yellowish white, and usually measure, on the average, the $1-200 \mathrm{mil}$, in diameter. 'They consist of a soft grayish, delicately gramuar basis, and camout be distingnished certainly as vesicular, although they swell up considerably in water.

The constituent mass of the corpuseles, frequemly covered whit fat-molecules, contains usually from one to four nachedil (by others termed nuclei)* commonly adhering logether, and generally only visible after the gramata matter of the corpuscles is reudered translucem, or dissolved by acetic acid.
The macleoli are round, and present a depression, but sometimes are rather elliptical ; are soluble in an monia and caustic potassa, but not in ciber or acetic acid. According to some observers, these so-called nuclei are at lirst always simple, and divide into several, or become indented, cordiform, under the operation of acetic acid; but this change I have not observed, nor have I been able to convince myself that in all cares they are originally associated logether.

The granular matter of the pus-corpuscles dissolves rapidly or slowly in acetic acid.

Normally-formed pus contains no other constituems than those mentioned, except occasionally minute globules consisting of fat, or protein.

Pus-corpuscles possess the construction above described only when perfectly formed. Besides these, corpuscles occur in pus which are somewhat smaller, or quice as large, exhibit no nueteoli, even after the application of acetic acid, and bave a smooth or finely gramlated surface. Frequently they constitate the sole elemem of pualent effusions of serous membranes. Dr. Lebert has proposed for them the name of pyoid-globules. They occur in vigorous as well as in cachetic individuals. The nucleoli of the pus-corpuscles apparently in the pyoid-globule has already become fused into the nucleus.

Both forms of the pus-corpuscle I view as muclei ; and the hitherto so-called muclei, as nueleoli, which in the second from, as in other pathological nuclear structues, may be absem. Pus-corpuscles become the nuclei of future cells,

[^1]where such are formed, in which cases many more melen than cells are produced, and the surplus are voided, or again'dissolved and reabsoibed.
18. On the firmathatis l'me

Pus may form in the blood within the veront in hqued exudation from the latter, and from eflised fibrine coagolated. I propose, in thin place, to speak of the latter only.

- The formation of pu in the carliest stage is most clearly observed in the suppuration of serons membrates and upon blistered surfaces.
In the process at the commencement, in the exuded albuminous serum, minute molecule- originate, averaging the $1-500$ mil. in diameter. These appear to theten into nuclear structures, for a new hayer forms around them, and frequently the nucleolus becomes fused into it. This mode of the formation of andeles around the nacleolus may be directly observed in the liquid of a blister, in which the latter are distinctly seen with a clear burder.*
In other cases the exuded coagulated fibrine undergoes liquefaction, and in this the pas-corpusclesform in the mancer just described, and are frequenty observed still lying in a layer of granular or striated fibrine, as in many abeesses, and in gray hepatization of the lungs, in wheh the fibrine, at first liquid, and then coagulated, becomes soltened, and sthen converted into pus. Such a change alon eonstitute, the ripening of abcesses, and occurs in intlammation of the lungs in the transition from red to gray hepaization.
When pas is too early discharged, Hoccali of tibrine are tequently found mingled with it.
Good or healthy pus has no chemically destructive action ipon surrounding tissues, and these only become softened; alt if their mutrition is destroyed by hindrance to the cirwation, they are dissolved; and in this way, in furnole, tesides fibrinous Roceuli, we find a portion of detached drelar or fibrou-tissues constituting the core.

[^2]
19. Diagnosis of Ins-coypuscks.

Formerly, I believed in the possibility of distinguishing pus-corpuseles by means of the microscope from physio. logical and other pathological structures whirh resemble them, but, at present, entertain a different opinion. The so-called lymph corpuscles of the blood are undistinguish. able from pyoid-globules-i. c., pus-copuseles withou nuclei-and the yellowish color is inconstam. On the contrary, lymph-corpaseles diter trom the true pus-corpus. cles in possessing a smoother surface and more indistinet nucleoli, which, ewen after treatment with acetic acid, appear smaller and lews defined, and are more punctiform. The young nuclen of epithehal cells, as they occur in normal mucus in every irritation of a mucons membrane, either possesses twoor three nucleoli like in pus-corpuseles, or more frequently are withou, as in the pyoid-globules, and they resemble both these 10 size and chemical relation, or are smaller and more frequently dissolve much less rapidly, or not at all, in acetic aced. Sometimes the nuclens of perfectly formed epithelial cells exhibits the strongest resemblance to pus-corpuseles. From this, however, we are not to conclude pus and mucus are the same, but that a mucous membrane may form the same kind of nuclei as well under the influence of stasis as without it. Pus consists not ouly of its corpuscles, but of these with serum, as the blood does of compuscles, with liquor sanguinis. Neverthetes, from what has been siated, we are not 10 consider the micro scopic investigation of pus as useless, for it may be dis tinguished from many other liquids; and,'on the other hand the presence of epithelia frequently indicates the natured the secretion, as do also inflammation-corpuseles, and mitr gled fragments of tissues often throw light upon the seald the suppuration.

The physiological chazacter of pus-lymph and mucons corpuscles explains the above difliculty. The former ant the later are certainly the early condition of cells, but the mucone corpuscles undergo metamorphosis as nuclei a future epitholia much more rapidiy, and thus become cell, more quickly. The lymph-corpuscles, most probably, as: converted 10 to blood-corpuscles, as is indicated by this considerable increase after loss of blood, and their disp pearance when the blood-corpuseles again augment."

[^3]20. Whemicel relatione of 1 as.

Pus, which is of a weakly alkaline or ack reaction, or is nentral, has a specific gravity of 1,0409 to 1,027 , whereas serum of the blood, aecording to Becquerel, in the male, has 1,025 and in the female 1,027 . The water in pus varies in its proportionate quantity in 1000 parts from 769 to 907 , according to the anthority of Bibra. In the male, the water of the blood is 779 prots in the 1000 ; in the female, 791,4 (Becquerel).
The quantity of albumen and corpuseles in pus, is 60 to 180 parts in the 1000 (Bibra); whereas, in the serum of the blood, the average quantity of albumen is, in the male, 69,4 parts, in the female, 70,4 parts (Becquerel). The fat in the pus varies from five parts (Bird), to twenty-four parts (Bibra).
The salts of pus, Ginterbogk found to consist, in greatest part, of chloride of sodium, a less proportion of phosphate, carbonate, and sulphate of soda, chlorides of potassium, and calcium, a small quantity of phosphates of lime and magnesia, and carbonate of lime, and a trace of oside of iron.
From a comparison of the above-stated facts, a resemblance is percenved between pus and the, alsma of the blood, except that we miss the fibrine in the former, which, howerer, in a modified condition, constitutes the pus-corpascles.*
A very considerable difference is observed in the quantity of fat, which is very much greater in pus. The relative quantity of liquid and solid constituents is very variable in pas, though the latter generally are more abundant than in Hood, and rarely less; circmmstances, probably, greally inzenced by the character of the exudation. The greater ancentration of the liquor purns in comparison with the terum of the blood, can only be explained by the participaion of the blood-corpueles in the production of the plastie Ealter.

21. Varistios oi i"us.

Pus varies in appearance and composition, according to teelements mixed with it. The most frequent admixiure B bood, besides which there occur also mucus, bile-pig. Ent, and urine. Most of these can be detected with the Whed eye, or sy the microscope. The organ or tissue in dich pus is produced has a great influcuce upon its constiHion. Hence, the mill: or cream-hhe pus of serous mem-

[^4]branes; the quantity of globules determining the physical difference. Much more important are the variations exhibited by pus in different diseases, depending upon abnormal nurrition, from general or local causes. In such cases, the puseorpuseles do not attain their perfect development.

Sometimes they eabibit no distinct nucleolus, but contain only minute globule, which appear to be fat, and they are -maller than normal, and in this condition are to be considered as imperfectly deveioped. Trese (pyoid-corpuscles) may form the principa! mass of pus, as in suppuration of serous membranes. Ichorous pus is distinguished by its great fluidity, its greenish or reddish color, its odor, and the construction of its corpuseles, which are in small quantities, very soft, irregolar, indistincily defined, and frequently covered with isolated molecules, and may even be neany absent. Cachectic pus is cilher quite lluid or thickish coagulated milh-like, and grayish-yellow colored. This variety, frequenty, is dificult to recognize as pus with the maked eyc, as in peritomitis, where it may readily be mistaken for the escape of mater from a perforation of the small intestine. In it the pus-corpuscles are soft, liquefying on the slightest pressure, gray, irregular, and not sharoly defined; but ne vertheless their nucleoh are distunguishable. The pus of dyserasies, as in tubercle, scrofula, and cancer, always contains, besides the peculiar elements, a considerably quanisy of fibrinous loceuh, which indicate at once to the naked eye its abnormal character. A distinctire characteristic, however, for the pu- of partinular dyscrasies does nor evist, and the pus of syphilis is nc. distinguishate from that of variola, or glanders, Sc., a fact which I proved years ago. A large quantity of fat in a fine molecule is intermingled with the pus of dyscrasies. In sanies, sometimes vibriones are found.

Pus dried upon a glass piate puis on an arborescent appearance, consisting of the pas-cormacles brought into contact, calling into mind a sunitar arrangement of the blood-corpuscles in rolls when a thin layer of blood coagr lates.

When dried, pas-corpuseles become a thixd smallerand irregular, their nueleoli become indistinct, and they inte some remote resemblance to the muclear structures in typhoid exudation and lubercle, but the inference is by to means to be made that dried pus and these substances and the same.
2.2. Granulation and Cicatrization.

The liquid portion of pus may disappear by absorpiond
as may also the pus-corpuseles, after undergoing solution. This is provel by experiments on the lower animals, and observations on man, in which abcesses disappear without having been opened. Where there has been a loss of subslance, the purulent fluid furnishes a plastic material to the formation of a more or less distinct fibrous structure, the cicatrix; which latter frequently covers itsell whith epidermal cells. But very frequenty suppuration determines the production of a new organ, which in turn separates pus, unil the loss of substance is restuted. In this case puscorpascles form layers and gradually become true cells, and among them blood-vessels penetrate, often supported by a mesh work of colindrical or nuclear fibres. This stracture frequently invests the casity containing pus, and is a true pus, producing membrane. Sometimes it consists of rounded warthine eminence, called granulations, which may form in all tissues capable of producing pus, as upon serous membranes, in glands, in areolar tissues, in bone, upon the periostemm, Sc. Granulations are frequently canverted into epidermal cells upon their surface, and under such circumstances have been sometimes impoperly denominated epithelial cancer. When granulations arise in dyscrasies, they become the constant -ource of suppuration, and even produce an inoculable matter, as in the contagious mflammation of the compuctiva. It is an anatomical fact, that the cicatrix produced in the process of suppuration is generally constituted of a different tissue from that of the pasproducing organ, in which only at a later period the lost tissues sometimes agatn appear. The contraction and dimimution which are always observed to necur in the substance of the cicatri, do not depend upon an inherent contractiliy of its fibres, as is frequenly asserted, but upon resorpion in a lighty vascutar tissue. The reproduction dilisucs is the property particularly of the exuded blood. When wuunds heal without suppuration, per primam inentionem, it occurs by orgamzation of the blood discharged fom the cat or torn capillaries; an opinion advanced by Hanter, and perfecily correct according to my own obserrations.

[^5]Авт. XL.-A Clemeal Lecture upon a cast of abserss in the peri. neum of a patzent, treated we the Toronto General Mospual: by Dr. Aimess, one of the Surgeons of that Instutution. Reported by Mr. G.amble, a student of the Toronto School of Medicine.
Daniel McKay, aged 43, a painter by trade, ummarried, was admitted into the Toronto Gencral ITospital, Augusi 31st, 1853.

Abont the Sth or 10th of June last, while standing at work, four fet from the ground, upon a board, it split in half; one portion descended to the ground and the ouber turned on eilge, and he fell astride upon it; previous to the aceident he had been very heahhy, had no disease of the urethra, and had alvays paseed his urine in a good full stream. Soon after the aceident a dark colonred swelling took place in the perineum, also in the scrotum, and even in the groin. Now a discharge of urine occurred without obstruction, or difficulty, but for several days after, it was passed in a small stream, with some pain. Abont ien days after the injury he travelled from Gravelly Bay to S. Catherines, and by this time the tumefaction had nearly subsided; but still his urine was voided frequenty, in a small stream, accompanied with pain and straming; nevertheless he went to work and contimed in about the same state for a week, until at last the ability to pass his wine had ceased. He was now put into a warm-bath, and frequent efforts were made to introduce a catheter into the bladder; at last it entered, drew off the mine, and was allowed to remain for three days. At this lime be returned to work for a forinigh-still, however, evacuating the bladder in a small stream, and with considerable pain. Abont a week since he observed a swolling in the perineum; as this swelling increased, the stream of uribe diminiched, unill it enitrely ceased, which was about two days and-a-hall since. An attempt was made 10 introdnce the catheter, when a quantity of pus and urine, he should think about half a pint, escaped from tise urethra. Since that time the urine has dribbled from the prins, and the bladder has been considerably distended.

Upon admission juto the Ilospital a fluctuating swelling was discovered in the perineum, abont the membranous part of the urethra, the urine dropped from the extremity of the penis, and the bladder was found to be distended with urine. A pretly free incision was made into the perineum, when a large quamtity of pus escaped, a communication was found between the abseass and the urethra, and upen straining, the urine flowed freely brough the wound.
but not so as completely to emply the bladder; as pressure above the pubes, however, caused the urine to llow, this was clearly dependent more upon the want of tone in the muscular structure of the organ, than from any hindrance to its escape.
Sep. 1.-IIe passed his mine freely through the wound and more completely emptied the bladder.
4th.-This still contimes, while the irritation appears to be subsiding under the use of ponhices and fomentations.
7th.-A catheter condd not be passed into the bladder, so the perincum was now incised and the ure thra freely onened, when a small catheter was passed imo the bladder, and left there.
Sth.-Has complained of an occasional pain at the ead of the penis, but urine has passed through the catheter.
gith.-A No. 10 gum catheter was now introduced and allowed to remain in the urethra.
12th.-The catheter was removed and another gum elastic catheter was introdnced without any difliculty, the one withdrawn being much roughened from end to end.
loth.-The same was repeated, and the wound in the perineum and urethra appears nearly closed.
21st.-Fhe same course has been pursued every few days, so that the man has contimed to improve in healh: the largest size catheier passes freely, with a slight halt at the point of the injury in the urethra, but readily mounts oier it and enters the bladder withou any other difficulty. There is still a very smali fistulous opening in the urethra, so small, however, that it is with difliculty you can find the catheter in the urethra, with a probe; but still if the man stops the mouth of the eatheier with his finger, he can force a drop of urine through the womed in the perineum.*
From the history of the case you may observe that we tave an abscess formed in the perincum, which upon being opened is found to commumicate with the urethra. Let it te then our business to consider the several causes which wold give rise to an abseess in the perineum, but in doing o, let us first take a transitory view of the anatomical trecture and relation of the partsinfluenced by the disease, The urethra, which in the male performs the double fifice of an excretory passage for the urine, and serves for te conveyance of the semen from the vas different, has teen divided mo three portions:- The prostatic, the memtinous, and the spongy.
The prostatic position of the urethra is surrounded by the

[^6]prostale gland, a whitish glandular body, situated in from of the net : ol the bladder, perforated by the ejaculatory ducts of the testicle, and having many openings for its own excretory duets. It appears to be a mucous gland.

The membrancus portion extends from the prostatie portion to the bulb of the urethra; it lies immediately under the arch of the pubis and passes through the triangular ligament; it is in connection with very many veins, a sort of crected hisane above, while below it is embraced by two sets of muscular fibres, the muscles of Wilson and the muscular faciculi de..ribed by Guthrie ; it is this porton of the urethra which we have especially to deal with in case of abseess in the perineum. It is the most complicated and exposed of any portion of this canal, and the most liable to accident and disease.

The spongy portion of the uretira constitutes by far the largest part of the urethra, commencing commonly opposite the sympahis pubis, by an expansion called the bulb, and terminating in a still larger expanson, called the glands penis. The bulb is embraced below and upon its sides by the bulbo-cavernous muscles, which are inserted into it. In front the balb is continuous with the spongy portion of the urethra, and the angle of union with the corpus cavernosum is its anterior boundary. Immediately posterior to the bulb are situated Cowper's glands. These glands secrete mu us and open into the canal of the urethra on its under surface, passing obliquely through the spongy porion, having exceetory ducts of an inch and-a-half to two mehes in length. The corpus spongiosum is composed of a strong fibrous cylindrical membrane enclosing a spongy or erecile structare, a variety of the areola tiscue, in which veins communicating with each other, and at last expanding into a mass of cell, which cells apparently result from the trequent anastamosis of these veins. This structure nof completely surrounds the urethra, and fits with it ino the lower groove, formed by the union of the corpora cavernosa penis, a structure of a similar character to the one just described, but of much greater size, in fact constituting the chief part of the body of the penis.

The urethra is lined with a mucous nembrane, which extends from the meatus, lines its whole rourse, and is continuous with the muctus coat of the bladder, it dips down into the ejaculatory ducts of the testicle, the vesicula seminales, and Cowper's glands; in it are several folds which open outwardly, and are called lacunx; at the commencement of the prostatic portion, the caput gallena: ginis ends with its several radiaturg folds; and here the
seminal ducts open by two distinct orifices. The manons coat consists of a fibrous basement membrane, which is covered upon its free surface by an abundant development of mucous corpuscles and epithelial cells. The areolar tissue connecting the basement membrane with the corpus spongiosum is largely supplied with capillary vessels intended to sustain and develop the mucous corpuseles and form the epithelial cells.
Such is a slight shetch of the seat of the disease which was presented in the case of the patient Daniel McKay. All the probable causes which could produce the formation of matter in his region should now enter into our consideration. In the first place, however, it will be obvions from conformation of the parts, that the membranous portion of the urethra is the most complicated and exposed of all these parts; and here we find abscess more frequently to occur. The prostatic portion is surrounded and defended by the prostate gland, and the anterior portion is securely enclosed in the corpus spongiosum, while the membranous is covered and supported merely by fascia and museles.
In the first place, as in Daniel McKay, we may have an ingry caused by a blow upon the perineum. The urethra may be caught between a foreign body and the arch of the pubis; the injury may canse extravasation of blood by rupturing some of the vessels surrounding this membranous pat of the urethra: some of the large veins perhaps, or even the bulb itself may be ruptured, causing considerable extravasation of blood, and perhaps some injury to the trethra itself. The effect of this hemorrhage may be an erfavasation of blood, that compresses the urethra, and grevents the escape of the urine; but, as the urethra has 3t been broken, the power of the detrusor urine will still, ball probability, be sufficient to extrude the wrine from ie bladder; probably there is no great hindrance to the lisy, and assuredly the catheter will easily pass into the Gdder and relieve the distention ; by degrees the perineum poks black and discoloured, but after a time the eccyrosed blood gets absorbed, and being entirely removed, the atient gets, well. Should it happen, bowever, that the rantity of effused blood is very considerable, the thinner Wha are, perhaps, only absorbed, the pressure that consted the canal is diminished, and now the patient passes swater freely; perhaps the clot of blook, too large to be mom by the absorbents, has, atter some slight irritation, gan to soften and form pus. The bruise and injury the urethra have, perhaps, contracted its calibre and there aslight impediment to the passage of the urine; the
strain and pressure of the bladder comes upon the injured spot, and a degree of inflammatory action is the result; this sill further contracts the canal, the inflammatory action spreads to the clot of blood, which now, instead of being dissolved and absorbed, talies on a new action, and having softened, the pas corpascle is largely developed, and abseess is formed in the perincum. The flow of urine is now arrested. At this moment if you try to introduce a catheter into the bladder, pas flows with the arinc. If at this period, or just before the discharge of pas has taken place, you examine the perineam, you will find a distinet fluctuating tumour, and, when you come to open it, you find that at the next time the man makes his water the urine passes by the wound. This was clearly the case of Daniel McKay. The urethra was now laid open, to give free exit to the pas and the urine, so that the urine did not infiltrate itself into the perineum; and as soon as the catheter was introduced the case became quite simple, and in a short time, in all probability, the wound in the urethra will heal, as well as the external opening, and the man will be cured.

In this case of Danicl McKay you bave one variety of abscess in the perineum from an injury of the urethra; this, however, was clearly consequitive, the consequence of the formation of matter in close proximity with the membrarous part of the urethra. In this case the matter passed into the urethra, and the wrine might have entered into the abscess, but you had an effusion of fibrine around ibe abscess, which formed a wall that prevented the extravais: tion of the urine into the loose areolar tissue of the perineum. The man was, however, in great danger from the opening ever since the matter passed into the urethra, for the pres of urine might have forced the fluid int the areolar tissung when you would have had terrible irritation and inflarmation as the result; for you linow well how deadly? poison this urine is to the living parts.

We will now contrast this cause with a somerthy similar accident :-A man was walling along the sleejer of a house that was in course of building, he slipt his fod and came down astride of the sleeper, resting on it perincum, immediately posterior to the scrotum. IIe ded considerably hurt, but upon examining the part could fix no wound; he walled home, and the nent time that th attempted to empty his bladder, he was greatly surprised find that no urme flowed from the end of the penis. t was conscious that the urine passed out of the bladed and, placing his hand on the perincum, he now discorear :
a considerable swelling. He sent for me, and I at once rold him that he had cut through the urethra by the fall on the sleeper, and that the urime had flowed into the areolar tissue of the perineum. I tried to introduce a catheter but could not, for the urethra was completely severed. I now advised to lay open the parts with free incisions, to ensure the speedy evacuation of the urine infiltrated into the parts, and to secure a certain exit from the lower part of the wounded urethra. The man, not feeling satisfied with my description, and having a great dread of the knife, preferred sending for another medical gentleman. After blis person had examined the patient he declared the man had a stricture, although the patient positively assured him that he never had the least difficulty of making his water prior to the accident ; still, however, he persisted in his endeavours to introduce the bougie, but was foiled in his attempts to relicve him by these means. When we met he next day he consented to the course I had proposed; bat now the scrotum and perineum were distended to the utmost with urine. The only course I could now pursue mas to make very free incisions so as to evacuate the urine, and to be sure that my opening had reached the wound in the urethra, so as to insure a free exit of any more urine that might be passed. Fomentations and poultices were now applied, considerable sloughing of the parts took place, but by degrees the irritation subsided; having malched my opportunity, when the man was passing his arine, I introduced a probe into the lower opening of the urethra, I then passed a solver catheter down the anterior potion of the urethra, and pustied into the bladder; by degrees the wound healed kindly, and the free passage of the prethra was established without fistula or stacture remaining. Here you see a more formidable consequence, the result of his injury of the perineum; here you may observe that sothing but the knife conld possibly have saved the patient; bo had the urme been allowed to remain, by temporising Ed delay, the infiltrated parts would have been killed, nay, be urine would soon have found its way among the muscles Whe hip, leaving terrible fistulas; or it may have passed tho the peivis, eveiting abdominal inflammation and kasing the death of the patient.
Again: I may point ont to you another canse of inflamgation and abscess in the perineum. A man has had a tap, which, perhaps, has been neglected; the inllammatory whon travels down towards the neck of the bladder: the Nammation causes pain in the perinoum, but this is Singarded until, perhaps, months after the acute stage of
the gonorrhce has subsided, and nothing remains 10 him but a persistent gleet. Perhaps, by accident, he feels a small swelling, not larger than a nut, situated in the perineum just behind the scrotum ; in you examine it, it will appear deep seated under the fascia of the perineum. This is a blind fistula comected with the urethra, and every tume the man micturates a-little urine flows into it. The urine cannot however spread, for there is a wall of fibrine around the fistula; in this condition it may remain for years. I believe that you will find the mode of the formation of this discase to depend upon the original inflammatory action in the urethra. IIere the blastema was effused into the areolar tissue alongside of the membranows part of the urethra; pus was developed in it, and aftera time the matter was discharged from the litle abscess into the urinary canal ; but an opening having been established between this passage and the abscess, at every flow of urine the water passed into and kept up the cavity; had any injury occurred to the part so as to permit the urine to pass the walls of the abscess, you know what wrould be the consequence. In this case the best mode is to open the little abscess with a lancet, and to keep the urinary passage free by means of the catheter. If a fistula remains, stimulants such as the nitrate of silver will be required to heal the wound.

Should your patient have a stricture of the urethra, it may again be another cause for abseess in the perineum. Thie stricture may not completely ocelude the passage of the ; urethra; you may, periaps, be able to pass a consideria. ble sized bougie; but, nevertheless, some irritation bribgs on an increased amount of inflammatory action in the neighborhood of the part; blastema is effused into the areolar tissue alongside of the urethra, pus forms, and an abscess is the result. You now find a tumour in the perineum, perhaps the abscess has opened into the urethra, and the matter has passed with the urine, still at every passage of the urine the abscess is filled; perhaps, if the stricture of the urethra increases, a violent strain cause the walls of the abseess to:bnest and you have extravasation of arine into the areolar tissue, that may spread widely oset these strictures, killing and desiroying them to a greal extent. Here again your patient's safety depends uponithe free use of the knife; by sufficient incisions you free the parts of the urine, and now you may cut through and curt the stricture, at the same time healing the wound over the catheter secured in the bladder.

If you remember, in describing the second variety of these
accidents causing abscess in the perineum, I told you that the medical gentleman declared the cause of the evtravasation of urine was produced by a stricture it the urethra. Although he was incorrect in his diagnosis, still such an accident as extravasation of urine is occasionally caused by this disease. A man has perhaps had a confirmed stricture of the urethra for many years; at last the opening has got so small that he cannot pass his urine but in drops; by this time the muscular walls of the bladder have become hypertrophied, and the power exereised to overcome the pbstruction of wine is very great; below the stricture the urethra is perhaps greatly dilated, and during the violent straining to pass water the urethra bursts just behind the stricture, or a process of ulceration has taken place which causes the opening in the urethra. You can now justly appreciate the consequences of this accident; great extravasation is the quick result; the serotum and perincum is filled to bursting, while the extravasated nuid finds its way possibly into the pelvis and down the thighs. Here again speedy incisions alone will save your patient. You must be sure that you open freely into the urethra, and now your best mode of, curing the stricture will be to lay it freely open, cut completely throught the thickenced and hardened canal, in the line of the urethra, and, as soon as the irritation has somewhat subsided, introduce your catheter into the bladder, and perhaps the wound will heal kindly over it; thus curing the stricture, at the same time that you save the life of the patient by your free incisions.
While considering the anatomical structure of the eparts L.told you that Cowper's glands were situaled jrist tin ind the bulb in the membranous part of the urethre, and that the ducts of these mucous follicles open into the luwer part of the uxethra. Sometimes during inflammation of the mucous membrane of the urethra the irritation has spread down the ducts into the glands, and, as in all other glands, the structure becomes cularged, perhaps the cells are distended with an increased secretion; at ali events, the inflammatory action not unfiequently spreads from the gland into the nepghbourng areolar tissues, and abscessin The perincum is the result. The patient feels sume pain in 'he part, and the surgeon finds a small hard tumoar about the membranous part of the urethra. This body is pertuaps bard and prominent-but feels obsenre, fromits depth. The formation of matter may remain quiescent for some time, but by degrees its pressure causes irritation, and, as a loreigy body, it has to be removed; as the disease increases
we now find a fluctuation in the part, perhaps an opening is made into the abscess, or probably it finds its exit through the fascia and the skin; at this time it may have happened that the glands themselves have sloughed, and occasionally we find urime has insinuated itself into the orifice of the glands which open into the urethra, and passed through them into the abscess, and now makes its exit by the fistula. In such a case, if we observe the matter located in the perineum, we make an opening into the abscess, and having evacuated the mater, we know that it is not improbable that a fistula will remain, notwithstanding all our own endeavours to heal the wound; for, let it be remembered, that in this case we have not an ulcerated opening in the urethra, but that the naturally formed mouths of the gland itself constitute the opening through which the urine passes into the abscess-hence it cannot be expected that nature shall endeavour to close natural opemings; so that you see, if we should succeed in healing the external outlet of the abscess, the urine would still pass inio the parl, and will be sure to renew the complaint: This also is the cause why fistula in the perineum is the constant result of abscess in Cowper's glands. In the cure of this fistula in perineo there is no other method left to us than to obliterate these excretory ducts, and the best method to do this is to introduce along the fistula a bougie armed with nitrate of silver, or to use the actual cautery by means of a silver wire, so as to destroy the mucous membrane lining the ducts, and by exciting adhesive intiammation in the part, we may cause an occlusion of the ducts. even as they make their exit from the urethra.

There is yet one other cause that may produce absces in the perineum; it is the lodgment of a smali angulat calculus, just behind the urethra. As you know, the bulbous portion of the urethra is the most contracted part, hence the foreign body will lodge in this membranous portion of the urethra; here it arrests the flow of urine, no! completely however, for the bladder is still emptied,by slow degrees. The membranous part of the urethra suffers distention in consequence of the obstruction of the canal; the consequence is that inflammation and the effusion of blastema take pl: a in the neighborhood, and an abscess is formed; or, .t the obstruction is sufficiently great; a sloughing or rupture of the canal may be the consequence. By this time you know the natural consequences of such accidents, and when they occur, you know that the scalpel alone can afford relief or place the life of your patient onf of this most perilous position. Should you however be
called before matters have got to this lengh, your own common sense will teach you to remove the stune from its position in the urehra; and if you do this, you will in all probability prevent the evil consequenees I have pointed out to you, as liable to occur from its presence in this position.
Ithink that I have now detailed to you ail the varions causes that may lead to abscess and the escape of urine into the arcolar tissue of the perincum. You may observe that the canses of these accidents are many and various, and you can now appreciate the advantage of thus bringing them together before you. You can now compare these causes and effects, and if you have gained a true knowledge of the anatomical structure and relations of the parts, Ithink you will readily distinguish the different varieties I have pointed out, and donbtless you will be able to treat them with judgment and skill.
[We understand that the Professors of Truaty College have delvered Climeal Lectures at the Toronto General Hospital, we wish we could get some of the Students to report them; for it would give us greal pleasure to insert them in the pages of the Journal.-ED. U. C. M. J.]

Art. XLI.- Case of poisming by the endemic use of tartar cmetic. By John Wanless, coroner, ame formerly housesurgeon of the Dunde Royal Infirmary, London, C.IV. To the Editor of the Crper Canada Meelcal Journal.

London, November 8ih, 1853.
Sur,-With your concurrence, I herewith send you, for publication in your new and well conducted journal, the following case of death, as the result of the application of tattar emetic ointment to the head of a boy suffering from old standing tinea capitus, by a licensed medical man Cormerly of this province, which transpired on the 7h May 1852, whilst acting in my official capacity of coroner, and which, at the time, created against me some sensations of rancor, which is unfortmately so prevalent amongst medical men in "this Canada" and so unbecoming the nembers of an enlightened profession, who should be mither anxious for the chectation of truth and the advanceteent of the profession, than allow themselves to be led away by passions which men of eminence in older countries gould feel ashamed of. The case may be anuther guide ncaution young practitioners in their exhibition of fatal doses, and may not be uninstructive to thr student of Ledical jurisprudence. There were three of the children
affected with the disease ; two of them died from virulent inflammatory action of the scalp penetrating the skull and cerebrum, and one recovered after very extensive sloughing of the scalp; the subject of the following case will be selected from one of the two deaths, it being considered the most marked :
"Examination of winnesses al inquest of Charles Conk. wright, 7th May 1553.
"Dr. Maekenzic sworn-Examined the body of Charles Conkwright very carefully; found inflammation continuous through fine scalp and shall into the brain, as if produced by some irritating substance which nad been applied 10 the scalp. If the substance had been ointment of tartrate of antimony, would consider that more than fifteen grains to the ounce of lard had been used, on account of the severe inflammation produced.
"Dr. Farrow sworn-Examined the body of Charles Conkwright ; found the effects of virulent inflammation on the scalp, which extended through the skull :o the dura mater continuously; there was a thickening of the external membrane of the skull; there was unusual engorgement of the vessels of the brain; would consider that death resulted from effects produced on these parts; have never known tinea capitis to produce such effects; would consider that some irritating application had been made to the scalp; have never seen tartrate of antimony applied to a raw surface, could not state that fifteen grains to the ounce would have produced the appearances found; would not have used tartrate of antimony as a remedy for tinea capitis; would expect that one hundred grains to the ounce would produce a severe irritation, would consider it necessary 10 watch the effects of any irritating poison being applied to a raw surface very carefully; would consider tartrate of antimony an unsafe remedy to apply to raw surfaces in larie quantities.
"Elizabeth Conkwright sworn-Is step-mother of the boys Conkwright; deceased has been ailing for the last nine years, with diseased scalp, the disease has been cleaned off several times with ointments which were obtained at the apothecary's, bot the eruption always broke out again. About December last called in Dr.- io see the head, he told me it was an eruption between the scalp and the skull; Dr. - said, "that if she did not take it thoroughly out of the blood it would be of no use, for it was of no use healing the surface while the blood was bad;" used a mixture which we obtained from Dit. -
and applied something out of a small phial over the eruption; the eruption got some better under this treatment. On Thursday last got an ointment from Dr. - to rub his head with; the Doctor said it would bring out pimples over the other eruption; got some written directions, which were the following, written and signed by Dr.-_: "Use the medicine in the bottle and jug the same as before." "After shaving their heads as I directed, rub a small quantity of the oincment over, two or three times a day." His father shaved the head on Saturday last, and the ointment was applied as directed over the raw surface of the scalp: the boy was then in his usnal state of health when this vintment was applied; the ointment smarted him atter it was applied; the ointment was rubbed three times over the scalp, twice on Saturday and once on Sunday. On Monday morning about breakfast time, his father went to the bedside to see him, as he thought he was sleeping too long, and he found him dead; on Sunday he seemed as if he could not keep awake; he was like to fall off the chair ; never saw him before in that way.
"William Conkwright, the father of the children, sworn -The children were to all appearance in their general bealth before the application of the ointment ordered by Dr. ——, their medical attendant; after the ointment bad been rubbed on their heads, for itwenty-four hours the beads were greatly swollen, the ointment had been applied four or five times before the head came out in one mass of sores; before Dr. _ came in to see the patients, when they were so ill; heard him say that they had surely got some poisoned nuts dug up some way ; did not exactly reollect the precise words used, something to that effect cbout poison; the boys were noi out to get poisoned nuts that he could know of."
"Dr. ased the ointment of tartrate of antimony for the tinea apitis on the children's heads; the strength would be difeen grains to the ounce of lard; not sure whether it was fifeen grains or twenty to the ounce of lard, thinks it was titeen."
The other evidence was of similar import in as far as teapplication of the ointment producing severe inflambiatory action was concerned.
Werdict of the jury, "Death from the improper treatment
A warrant of apprehension was issued for Dr. __, who ras held to bail to appear at the next criminal assizes.

Upon conversing with the Rueen's counsel, Colonel Prince, about the condition of the remainder of the ointment that had been applied to the scalp, and which 1 had removed from the house of the parents for further examination, Colonel Prince ordered me to ascertain its component pats. To which order I reported as follows:-I scraped the ointment from the chip box and weighed it; it weighed one half ounce, put this into a galipot upon the stove in order to melt the lard-a very small portion only melted. I poured upon the substance a solution of potash, and having stirred the whole, threw it inte water; removed the scum, evaporated the water, and found eighty-seven grains remaining of a white powder; weighed two grains of this white powder, and dissolved it in water, tested it with sulphmie and muriatic acids, which threw down a white precipitate; continued to pour the acids upon $i t$, and the excess of acids redissolved the precipitate. Fook two grains more of the white powder and tested it with the infusion of galls, which produced a diry-yellowish precipitate. Tested another solution of the powder with the sub. carbonate of potash, which threw down a white precipitate; and, lastly, took four grains of the white powder and dissolved it in water, and passed a stream of sulphureted hydrogen gas through the solntion, which produced an orange red deposit; and stated that it was my opinion, as a medical man, that the white powder was tartrate of antimony, and which was mixed with the lard very much over the quantity generally used for external application on sound surfaces, and would produce fatal results if applied to a large raw surface.

1 then sent thirty-six grains of the white powder to Professor Groft of Toronto, for analysis; 10 which be returned an answer as follows:
"Tononso, 12 th May 1852.
"Srr,-I beg to acknowledge the receipt of your letter of the 7th instant, enclosing for analysis 36 grains of a white powder, supposed to be tartar emetic. Ihave applid all the principal tests for antimony and tartaric acid, and have arrived at the same result:

1st. The orange sulphuret with sulphureted hydrogen. 2ud. Its solubnlity in hydro-sulphuret of ammonia.
3rd. White precipitate with hydrochloric acid solublent excess.

4th. Precipitate after a time with ammonia.
5 th. Smell of pyro-tartaric acid on heating.
6th. Alkaline reaction of residuc.

Thl. Effervescence of residue with acids.
Sth. Reduction to metallic grains by heating.
I have not been able to detect any other substance in the powder; and in order inore fully to prove its purity, I performed a quantative analysis:
1-6025 grammes of powder gave
0.5096 grs . of sulphuret of antimony, equivalent to
$48-96$ per cent. of oxide of antimony; theoretically it is
$H-84$, and according to other analysis as follows:
43-85 Philips,
43.05 Dulk,

48-16 Brandes.
It is therefore pure tartar emetic, and from the quantity employed fully capable of producing the fatal results you mention.
"I have the honor to be, sir,
"Your very obedient servant,
"Henry Choft.
"J. Whnaess, Esq., Coroner."
This was the evidence submitted to the Queen's counsel Colonel Prince at the following assizes. There was no indictment preferred against the accused, Dr. - , who, when relieved from further responsibility, threatened to prosecutc me as Coroner, for performing what I conceived to be the strait line of duty. And at the conclusion of the conrt, Colonel Prince wrote me as follows, in explanation ofis action in the matter :

$$
\text { "London, Oct. } 9 \text { h, } 1853 .
$$

"Dear Sur,-1 beg leave to return to you herewith the inquisition in Charles Conkwright's case. The course you tot with regard to Dr. --, upon whom the coroner's jury io severely animadverted, was the correct and, indeed, the oaly course you could take without compromising yourself. Batas far as I am concemed, I tiall tahe upon myself the reponsibility of declining to prosecute Dr.- because I annot glean from the evidence that he is chargeable with toss ignorance, or with that degree of gross neglect, which sonld justify me as an officer of the crown in preferring an edictment against him. It seems to me that his want of sceess in the ease arose rather from an error in judyment tan anything else; and therefore, considering his youth (d comparative ine perience, 1 am willing to make some chowance for his failure, and am unvilling to involve him a prosecution which may, and probably would, have the
effect of blighting his future prospects in life.* Nevertheless, the verdict of the jury left you no altemative, and you acted quite right in the course you took.
"I remain, dear sir, "Yours very truly, "Joun Prince, Q.C.
"To Dr. Wanless, coroner, "town of London and county of Middlesex."
$1 \mathrm{am}, \mathrm{sir}$,
Your most obedient,
Johi Wanless,
Formerly house-surgeon, Dundee Roy. Infirm.

BOOKS RECEIVED FOR REVIEW.

An Epitome of a Lecture on the Ottawa Productions, delivered before the Bytown Mechanics' Institute and Athenmum. - By Edward Van Complandt, Surgeon, Honorary Librarian to the Institute, Bytown, C.W., 1858 .

ERRATA N UR. KIGRRS PAPER.

Page 112, line 28-for "vuder tecth" read " molar teeth."
" 11-1, " 30-for "cords of false membrane" read "shreds of falet membrane."
" 115, "t 23—for "question secms" read "question arises."

- The malicul man has left the country, wat I Jnte thought it unnecessary to pution his name.

EDITORIAL DEPARTAIENT.

THE CHOLERA.

We present to our readers two articles, one from the Union Medicale, the other from the New York Courier and Enquirer, which clearly prove that the progress of this fell malady, the cholera, is still advancing towards us, and is . indicating to the inhabitants of the western world that before leng they may expect its devastating influence to spread widely over society in this region. This would appear to be the fifth time the epidemic cause which produces the Cholexa has taken its regular course from the East Indies westward, invariable entering Europe by a northern route, appearing in Russia and extending through northern Europe before it has approached the shores of England. At the present moment it has appeared on the western portions of the British lsles, and would seem by the mortality on board of ships on the Atlantic occan, that this invisible agent was traversing that sea on its progress to the western continem, and from all appearances may be expected 10 arrive in this country early in the spring of 155.4.
Thus forewarned, it appears to us that the govermment and people of this country should be forearmed; so that, by proper preparation and due arrangement, every means which science and experience could approve, should be employed for the public safety and the good of the community; that necessary means should be at band to be used in proper time, and duc attention to ibstinence from all immediately exciting causes, should be forcibly impressed upon the people. Experience has shown that the early employment of the remedial means «egenerally of the greatest importance; it therefore appears is us that the medical profession should be preperly armed, by having all necessary means at an early period placed atheir disposal, for attendance upon the sick poor. In
the larger cities of Canada the sick poor may, in some degree, be said to be already provided for, by the facilities rendered by the hospitalestablishments, and from poor-houses within their limits; but not so in the culuntry, where the cholera patient, if poor, will have to rest upon the tender mercies of private charity--great as we confess that such generally is, it is by no means a sure refuge in the hour of sickness, and especially in such a sickness. The cost of the medicine and attendance must devolve upon the charity of any medical practitioner who may be called in such a case; and we would loudly contend that it is not fair to throw the burden of such a malady so entirely upon the medical profession. In Upper Canada, the medical man, from the great amount of competition, is hardly worked and badiy paid, and, if by chance he should commit an error of judgment, his faults are visited with an unsparing hand, in the shape of damages; it is therefore perfectly clear that this pestilential sisitation about to occur, should not be thrown upon the medical practitioner as an additional burden, which, from the nature of the circumstances, it is likely to be, requiring from him medicines and attendance upon the sick poor, without any possible remuneration; most certainly the necessary expenses should be borne by the municipalities, and not cast upon individuals, who from the nature of their profession cannot refuse the calls of humanity. And again, although the medical man is all charity and benevolence-giving both his time and attention to sick poor without hopes of remunerationwe would simply ask if it is to be expected that his most assiduous endeavours are likely to be attended with success in the cure of this discase, unless they are sustained by proper conveniences and judicious diet ; it surely camot be expected that he cen supply these also. We maintain that with proper care, and due professional means at hand, his direful malady may be greatly stayed in its ravages in the first instance, and then would not be so likely to extend through the country; for, although we do not believe this disease to be contagious, in the common acceptation of the term, yet we really think that when the cause of the
complaint is most potent, that circumstances often very decidedly indicate the possibility of such a circumstance ; if so, the public safety and the cails of humanity alike demand that every means which an increased knowledge of the law ; which directs this epidemic and regulates its treatment, should have due veight and consideration. Besides these circumstances, we think that the municipal councils should be called upon to establish some proper conveniences for the poor who may become sick with the disease, and not leave them to die by wholesale ; for unless due attention be given to this point, and proper precaution taken in their bohalf, this will, in all probability, be the case. Proper dispensaries to supply medicines, and proper medical officers to attend the sick poor, should be appointed in all the larger villages, especially along all the lines of the public works now going on in this country; for unless some such method is adopted, we foresee a vast amount of disease and death in such localities.
It also behoves our city fathers and the public gencrally, to require the removal of all decomposing and offensive matters is their neighbourhood, that might aid the advent of this pestilence. The decomposition of dead animal and vegetable matter helps to deteriorate the atmosphere and make the air we breath impure; as a necessary consequence, it presents the purification of the blood, degrades and debilitates the whole animal frame, and makes the advent of the cholera far more probable. It is clear that marsh miasma and impurity of the air from such a cause, does not produce cholera, for these are more or less always present withus, but it is nevertheless sufficienty clear that they often pave the way for an attack of the invisible agent which causes cholera, by rendering the constitution less able to wilhstand its influence, showing that, when possible, all such causes should be obviated as far as it is in the power of man to do it.

THE CHOLERA IN EUROPE.

[^7]cholera in 1835 and 1848 presented variations not less remarkable than those which distinguish its present visit. The fact is, that in the past week the number of deceases, which had fallen in the week preceding that, to 45 for the cily of London, has almost doubled-amounting to 83 , of which 40 were males, and 43 females. As in the preceding epidemics, and durmg precedng weeks, the suburbs south of London were most severely attacked, since they alone count 49 of the 83 deaths. ICowever, the epidemic does not seem to have extended beyond Londen. Only a few isolated places are specified-such as Dundee, Cockermouth, Hampstead, Luton, and South Shichds. At Liverpool, from Octoher 16 to 24, there were 19 new cases and 9 deaths; S of which were German emigrants. At Stockholm, the epidemic hat reached its term. On October 11, the sisty-second day of tho epidemic, there had only been seven new cases; but there yet remained 152 cases under treatment, and the deaths were to the number of 8 . Since the cholera broke out in that city, the number of cases has been 4,123 , of which 2,654 terminated fatally.Diarrhea appears to be prevalent at Stockholm, throughout the whole duration of the epidemic. There had been 1,819 cases, and only 458 of them degenerated into cholera. Without secking to change the general conviction ehtertained by English physicians, that the disease always commences in a premonitory diarrhoa, the English Board of Healh admits in its lasi report that a certain number of cases oí cholera are not preceded by diarrhora, and makes a pressing appeal to physicians that they will record their observations upon the comparative frequency and absence of that symptom.

MORTADITY AT SEA.

The disease which is now creating such terrible havoc among the emigrant passengers is unduestionably cholera-A siatic Cholera in its most decided and malignant form. The statements of the officers of the ships, of the emigrants themselves, and of the Health Officersat Quarantine Ground, all agree. A day or two of diardiceay followed by vomiting and purging, spasms, collapse and death within six or twelve hours-such is the history of the disease, which cannot be mistaken for anything but Asiatic Cholera. It will be asked if cholera, why is it not confmed to emigrants who suffer from imperfect ventlation, filthy and crowded decks and bad food? The reply is simply that such is not the fact. The ship Constclla. tion is, as we have already mentioned, one of the best arranged and best managed ships that sails out of this port. She was not over-crowded. Her second cabm is entirely isolated from the steerage, roomy, airy, and with good state rooms ; yet in that cabin there were four deaths. Other cases mught be mentinned wheré the officers, their wues, and the crew had suffered from attachs of cholera, and it is impossible to doubt it-it does not result from the imperfect samtary condition of the ships. Filth, foul air, are patent agents of destruction, but they never breed cholera, they only exar-
perate it; and had these existed to such an extent as frequently happens, the motality on the above ill-fated ship might have been double or treble what it was.
From all that we can learn, the disease and mortahty bear no rato to the samtary condtion of the ships. Cholera exists but it is not epdenuc, in Liverpool, ifavre, mud Bremen, and doubtless many of the emgrants crowded below decks wih systems predsposed to the disease, but the fate of vessels saing out of the same ports onder smilar circumstanees is very dissimilar. Large ships, such as the Constellation, well venulated, and comparatwely clean, lose me-tenth of thear passengers. Ships filthy, and comparatuely ill rentilated, lose no more, whle others ordmary in all respeets, make the passage with the loss of one or two men. The absence of any cemmon cause for the mortahty ether in the samtary condition of the shps, or in the prevalence of an epidemic in ther port of departure, would seem to prove that the mysterious agency of the dease, vomited fourth from the foul fens of India, after having enten its way through Asia and Europe, is now forcug itself in slow intertain career over the bosom of the Atlantic. Its foul and paxilential breath now rests upon the eastern margin, but with the coming spring its withering breath will, it is to be apprehended, be Thupon the western shore of the ocean. Will our city authorties pepare to wrestle with the dread pestilence, or will they wait spinely to :se emfolded in its embace of death? This is a question wich interests every member of the community, and chiefly the zerantile commumy. Let them look to it.-New Yorl: Courier \$ Enquirer.

RRLMCIPLES ADVOCAMED RX THE PHIYADELPHIA MEDICAL AND SURGICAL JOURNAL.

1. Cash payments at the time of rendering service in the raciee of medicine.
2. Elevation of the standard of Medical Education.
3. Legal protection in the study and practice of medicine. 4. Thorough and complete organization of the members the profession throughout the country-for the dissemiaion of medical and hygeinic facts and the general welte of physicians.
j. The establishment of a National Association for the kitef of the Widows and Orphans of Deceased Indigent aduates in Medicine.
4. The establishm n nt of a "Medical Publication Society," the publication of medical works by the members of the plession.
5. The establishment of Veterinary Colleges in the mited States.

SELECTRD MATPRR.

A CUURSE OF LECTURES UY ORGANIC CHENISTRY

Deheered in tir Laluoratory of the Royat Instututon of Great Britain, by Dr A. W. Ilofmann, i' R.S., Professar at the Roynt College of Chemistry.

lomerviny IV.

Gentemen:

Before proceeding to tite detatis of the several groups of organic substances which I intend to bring under your notice, I must beg your permission to retum once more to the formule by which we are in the habit of representing the composition of chemical compounds. I hare explained to you, in the last Lecture, how, by a series of exceedingly simp!e calculations, we pass from the percentage composition of a substance to its simplest atomatic expression; but I mentioned, at the same tume, that thie expression is not always adopted as representing a compound in the most appropriate manner. We have now to inquire by what reasoris chemist have been induced, in some caves, to select moro complicated formule in the place of the simpler ones. A variety of considerations, many of a somtwhat arbitrayy nature, have been brought to bear upon this subject. Some of the more important of these have nor to be discussed.
f very interesting result to which chemists were led at an early periot by the study of mineral substances, was the recognition of the fret, thet certain elements, or groups of clements in chenical compounds, wert replaceable by other clements, or gaoupy of elements, the introduction α which, though it modified to a certsin extent the properties of the primitire oubstance. did not altogether interfer vith its normal chemicth charseter. You probnbly know that the recognitnon of this fact, together with miny or liateral observation, hes leit to the estahinhment of the theory of che mucal equivalenta lule the following illustmatrons:-In ordiuary carboste of potassa you have a rompound of carhone acul and potassa, in which jor may replate pither the acid or the base by a whole series of analowe substances; on adding matric acid to thes salt, the cerbonic acid is erofed with efrer escence, the well-known nitrate of pocassa being produced; ths salt, when submitted to the action of sulphuric acid, yields its nitric ast (you may recollect this is the ordinary method of preparing nitric acth, while the sulphate of potassa remains behind

The quantities of nutac and subatheric acid requred to replace a give amoant of carbonie actd, have been tiete rained with great accurace, at thus a series of numbers bas been ohtanci repesenting the relatire pro portions in which these several acids nate with a certain amount of potass These numbers express equivalent werghty,-t. e., quantitics possessing th same value in relation to potassa, quantatics capable of prociaciag mid potassa the same effeet-in other words, compounds in which the propetis of the potassa are counterbalaneed by those of the acid with whicin it entes into combination. Ion clearly perceive that these numbers are allogite relative, their absolute value depending a; wh the actual amount of potase which is taken as a starting pout. Chemists have, however, endearomit to impress upon these numhers a more absolute character, by fixiigs quantity of potassa whech, for the sake of conrenience, should be telests a standard of comparison. Without attempting to give here a full peones of the theory of equivalents (of which the question hefore us is butef isolated case), I may remind you that the proportions in whel substexm combine with each other are now almost umpar<ally referred to one ozily weight of hydrogen Thas, you uberve, is entircly a matter of converies and, indeed, some tune intervened kefure the great majority of cbemis
attually agreed on this point. But, so soon as this matter was settled, it is obrious that all the relative proportions became, for all the purposes of calculation, a series of absolute magnitades. One part of hydrogen being taken as the unit, we have only to determine the nmount of potassium capable of replacing it in my hydrogen-compound-in water. for instance-and farther, 10 ascortain the quantities of carbone, utric, and sulphane acals which qute with tho amount of potassa thus proluced. We arrive in this manner at absolute numbers for the equavalents of those several acin. Experment bas shown, that to replace 1 part of hydrogen in water 29 parts of potassium are required-i. c., 39 of potassium are equal to 1 of hyuregen ; 39 of phassium, when uniting with oxygen, combine rith 8 parts of it. To find the equivalents of carbonic, nitrie, and sulphumio acids, wo have to determine experimentally the respective quantities of these acide combuning with $39+8=47$ parts of axide of potassum or potas:a Experment has soma that these equalalents are as fullow:-

> Carbonic ncid .2
> Nitric .: 54
> Sulphuric "

These numbers represent the so-called anhydrous acot, the carbome seid th the perfectly dry state: the nitric acid, as 1 aceardanz to recent resarches of M. Derille) it ts procured with great hilicuity ly the action ot celorine unon nitrato of silher; lastl, tuphure acid, is it is obtained by the distilition of many -uiplates at the furm of silhy cry-tals. Most acids, borever, almost invariabiy occur in cembinaton with water, tor instance. zitric acid as aqua forts, amd supharic acid as eommon oil of vitricl; it is, themere, irequently more convenisat to state the equivalents of the hydrased acids. It is obvoons that thene equivalents are ehtained by adding to the wbove numbers an equiralent of water, or $k+1=5$. Therefore-

$$
\begin{aligned}
\text { IIdrated carbunic acil }=20+9 & =31 \\
\because \quad \text { nitric } & =9 \\
\because \quad \text { sulphuri. } \cdot \cdots & =10+9
\end{aligned}
$$

The same facts may be stated in a smowhat difterent manner mansomen for the moment the consideration of the nuhydrous actice which. in fact, ouly acur very rarely, we may say that the equivalent of an hyirnted achl is that mount in which one equiralent of witer is replaceable by une equivaleat of xtasss, or, better still, that amount in which one ergumalent of bydrogen is uplaceable by one equivalent of potissitum. 1 repeat to you, this mode of tisblishing the equivalent of an actd $1 s$ entirely arbitrury, any other submance than hydrogen might have been chosen as a standard, when all the smabers would have been altered. although their relation would have rasined exactly the same. I should moreover mention, that there are ertain classer of acids. the equiralent of which is fised in a somerwat Gerent maner. These, however, I will not consiter for the present, m order not to complicate the subject.
Chemists have further agreed, that the formula by whed they express becomposition of substances shotid represent exactly ther equiralents This is the case with the acids which I have quoted, the formule of whech an familiar to yon:-

$$
\begin{aligned}
& \mathrm{CO}_{2}, 110 \text { or } \mathrm{CO}, \mathrm{M}=6+(8 \times 3+1=11 \\
& \mathrm{NO}_{5}, 110 \text { or } \mathrm{NO}_{5} \mathrm{II}=14+(8 \times 6)+1=63 \\
& \mathrm{SO}_{3}, \mathrm{HO} \text { or } \mathrm{SO}_{4} \mathrm{H}=16+18 \times 41+1=49
\end{aligned}
$$

Kog that ! have exphained to you the meaming of the term "equratent sem applied to an ach, I may brefly shor you bur this equavalent is detercied, if the acid under examination be an organic achi. Benzoic act may eriogagan as an illustration-itq percentage composation, and ats sumplest bomic formula have been ascertained in the oreceding Lecture. Let us acollect, we have to deternine the quantity of benzme acud in which 1 of brogen is replaceable by 89 of potassium: to athon thas re-ult, we might man potassium-compound, cstimate the ammunt of potassium in it, and Whate accordmgly Thu is not, howerer, the process generilly adopted: \$estimation of potassium is attended with practical difficulties, and it is
preferable, therefore, to replace the potassium by some other metal which is casily scparated. The metal most frequently employed is silver. For this purpose, the solution of the potassmm-compound is decomposed by a solation of nitrate of silver, when a white crystalline salt (benkoate of silver) is precipitated, which is collected upon a filter, washed, and carefully uried. a weighed quantity of this silper-salt is then gradually ignited in contact with the atmosphere, when all the carbon, hydrogen, and oxygen are expelled in the form of wolatile products, such as carbonin acid and water, there remaining only the silver, which can be accurately werrheu. In an experiment of thes kind, 9 grams of beazoate of slver left 4.2 grains of metallic silver, which shows an experimental percentage of 4711 silver in this salt If we now recollect that 108 parts of silver are equivalent to 39 of potassian or 1 of hydrogen, we have all the data necessary to calculate the equiraleat of benzoic acid; this equivalent evidently eyuals a weight of benzoate of silver, containing 105 parts of silver, from which we subtract this quantify of silver, replacing it by 1 of hydrogen.

We have the following propurtion:-

$$
\begin{aligned}
& 4 \cdot 11: 108=100 \\
& x^{2}=\frac{100 x}{17 \cdot 11}=: 208
\end{aligned}
$$

220.5 is the equivalent of benzoate of silver ; if in this salt we exchange 10 of silver for one of hydrogen we arrive at the cquivalent of benzoic acid.
$229.25-108+1=129.25$ equiralent of benzoic acid.
Let us now compare this number with the number represented by the formula which was established in the last Lecture, by translating the per: centages of carbon, hydrogen, and oxygen found in the simplest atomi: expression. This formula was

$$
\mathrm{C}_{7} \mathrm{I}_{5} \quad \mathrm{O}_{2}
$$

and the weight represented by this formula is

$$
\begin{aligned}
& \text { 7 atoms of carbon... } 42 \\
& 3 \text { " hydrogen : } \\
& \geq \text { " oxygen .. } 10
\end{aligned}
$$

It is seen at the first ginnee, that the number furnished by the determinstix of the equivalent is double that represented by the simplest atomic formats The equivalent of benzoic acid weighs twice as much, contains twice as mad metter, as is indieated by this fermula; or, in other words, the formula in order to correspond with the equivalent of benzoic acid, has to be doubled ie $\mathrm{Cl}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$

A series of perfectly analogous considerations maty be applied to the semse: formula, which te have calculated together in the last leeture, viz., thstd aniline. This compound belongs to a very numerous class of substanem which are called organic bases, the character of which I hope to bring befare you in a special Lecture. Chemists have agreed that ly the term equivalend an organic base, that quautity of the base should be represented which $0=$ bines with one equivalent of an actd. To determine the equivalent of andize it would be sufficient to ascertan the quantity which unites with $190 d$ benzoic acid, with 63 of nitric, with 4! of sulphuric acid-in other works: analyse the benzoate, nitrate, or sulphate of analine but in this case, top wo find that practice has pointed out the compounds with certain scidss peculiarly adapted for determinations of this description. The componze of such bases wath hydro-chloric acio are frequently employed, but oterace still the salts which they form with a rather complicated acid, lydrochare platuic acid, coussang of 1 equralent of hydruchlunte actd, and 1 eyc valent of bichlorice of platioum. These salt + are reahly prepared, andjez
as easily nualysed; for it suffices to ignite them exactly as we did in the case of benzoate of silver. The residuary platmum enables us to calculato the equmalent of the bace.
In an experiment of this kind,
13 graine of amaline-platmom salt lett
4.94 grains of metallic platmum.

This correspouds to n theoretical percentage of $32 \cdot 93$.
From thas perecntige of yatimm, we find without difficulty the equalent of the platmum-salt This is evolently the amonnt of salt which contains 1 equiraient of platinum
We have the proportion

$$
3293: 09=11 m: x: r=100 \times 99=300 \cdot 6
$$

In order to find the equivalent of anaine, we have to subtract from tho equivalent of the salt the weight of one equivalent of hydrochoroplatinic scid, which, as was mentioned prerrously, consists of 1 equivalent of hydrochloric acd, and 1 equivalent of bichloride of phatinum.
${ }_{1}^{1}$ equivatent of bydrochloric acid \quad bichlo..... $36 \cdot 3$
Hence the equivatent of aniline

$$
300 \cdot 6-200 \cdot 50=94 \cdot 1
$$

The simplest atomic expressinu for analine from the estmation of the carlon, hydrogen, and ntrogen, you will remember, wis

$$
\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}
$$

The weight of matter represented by this formula very nearly coincides with the equiralent deduced from the platinum-salt, as may be seen by tho followiag comparison:-

12 atoms of cabon	$=7$
7	$=\frac{73}{7}$
1	hydrogen

Heace the sumplest atomic formula fior anilue represents hiewise the equnalent of tus substance.
The third sabstance the analysis of which was considered in the last Lecture, was, as you recollect, benzol, for wheh we calculated the atomic formula
C. 11

Now, dons this formula represent the equiralent of benzol? This laydrotarbon is what is called an indifierent substance, z. C., it neither combines with acids or rith bases, at least not to frrm compounds from which it can se separated again undecomposed.
The methods of controlling the atome formula wheh were employed in the case of benzoic acid and amme are not opplierabe to benzol. With such sobstances, the choice of the trmula is fenerally determined by a series of tonsiderations which vary accordmy to the nature of the compounds, and far wheh a rule of umyersal appheation can cogreely be e tablished. The wmmencat mode of procecdmg in to mquire intin the orgin and famaly relations of the compound. the seek aumg its aneestrors ir among its descendants, for a onpound whase equavalent may he reatily determined, ad wheh ruables us to mer torisaric on hackward what the formula of de indiferent compound may he. let us apply this rnle to benzul. The warce from which Mr. Faraday argually obtamed this culntance the disHituon of a nriety of tatt: budes for the purpose of malang gas) is not neulateri to throw unch light upon the nature of the compruand, bat the
 tred, and its properties deseriked, it was mint $\operatorname{lng} g$ hofore its formation mas pongused under circumstances scarcely admitting of any doubt regarding * true formula of benzol. Prof. Mitscherlich, in Beriin, and M. Peligot, iParis, observed simultancously that benzoic acid, (the very acid the equi-
palent of wheh we lave just now determinel,) when submitcel to distillation rith an excess of limo or baryta, furnighes this substance in a stute of perfect purity and with grent facility.
In this decumposition, the whole of the nxygen an the beazor acd segarates arom it combined with carbon in the form of carbonio acill, when remains in combination with the baryta. The decomposituon of benzoic acid by means of barytu is represented by the following dingram:-

It is evident hat atter deducting tho equivalents of earbonic acid from benzoic acid. the carbon and hydrogen remain in the proportions of $\mathrm{C}_{\mathrm{t}} \mathrm{H}_{s}$, i. e., iut tio relation of two of carbon to one of hydrogen (C2 II,) or in the atomic retio which we have originally established for benzol. We hare now the choice of assuming that 1 equiralent of benzoic acid, when decomposed by baryta, yields either 1 equivaleat or t equivalents of benzol. The former of these assumptions is simpler. We prefer it, although it compels us to raise the original atomic expression by multiplying it by b. The considerstions which I have just now expluined would alone perhaps lave bese searcely deemed sunicient for adopting the formula $\mathrm{C}_{\mathrm{I}} \mathrm{H}_{0}$ for benzol in preference to that of Ca II originilly deduced. But the study of the derisstives of benzol, of it s products of decompustion, under the influence of porerfal chemical agents, is likewise in farour ot tho higher formula. Common nitric acil has ne effect upon benzol: the concentrated acil, horcrer, reactrupon this substance with great violence-ithe benzol dissolres On mixing the clear liquid with water, a dense on is precpitated, possessius in a remarkable manner the odour of on of bitter alnonds, to which, in order to remmd us of its origin, the name of "nitrobenzol" has been given. The analysis of nitrolenzol has shown that this compound contains nitrogen and oxygen in addjiton to the clements of benzol. The simplest atomic expression, by wheh the reates obtainel in the amaysis of the compound can bo represeuted is the formula.

$\begin{array}{llll} & 12 & H_{5} & \mathrm{Ni} \\ \mathrm{O}_{4}\end{array}$

We have arain here the choce of assumng, that, in the formation of nitrobenzo, the nitric acd has acted upon either 6 equivalents of the substance $\mathrm{C}_{2} \mathrm{H}$, or upon 1 equivalent of the body $\mathrm{C}_{\mathrm{t}} \mathrm{H}_{\mathrm{t}}$. We prefer the latter: and accondingly represent the change which benzol undergoes under be inflyence of nitric acid by the equation

$$
\underset{\text { Cenzol. }}{\mathrm{C}_{12} \mathrm{HI}_{6}}+\mathrm{NO}_{3}=\mathrm{C}_{12} \mathrm{II}_{5} \text { N } \mathrm{N}_{4}+\mathrm{HO}
$$

Moreover, mtrohenzol, when dissolvel in an alcoholic solution of as monia, and treated wath sulphurettel hydrogen, undergoes a further changh, with the details of whel you will become acquainted bye and bye, but the result of which is the iormanon of "anilue," -the very alkaloid the equivalent of whech we have just now determinet by the analysis of its platinus salt. The cquvalent of amiline contains udubutably 12 atoms of carben; cand we thus obtain adhtional eviences in farour of the formula $\mathrm{C}_{12} \mathrm{H}_{6}$ for benzol, which, in fact, completely harmonises both with the origin of ter substance, and with its products of decomposition. ludecd, on looking at the foilowing series of formuke, representang the substances which bart been submitted to your consideration,

Benzoic acid....................bit	Ho	U	
Benzol..........................C.C12	H_{0}		
Aitrobenzol.................... C_{12}	H_{5}		0

we cannot doubt that the formula $C_{12} I_{6}$, altinugh less simple than $C_{2}{ }^{H}$ nevertheless expresses the relation of this body trith other substances riat corapletely than any other. You will sec, moreover, that this formunt supported also by other considerations.

A similar modo of proceeding is generally adopted in the case of indifferent tubstances. But it is evident that the detail of the considerations must rary greatly with the nature of the several substances. Frequently, however, it bappens, that the exact circumstances under which indifierent substances are gencrated are unknown, aml that they are likewise deficient in yielding products of decomposition possessed of salient properties. In such eases, re have still a means of controlling the formula as established by aualysis, provided the substance be vattile. This control consists in the determination of the specific gravity or the density of the vapour which substances form at high temperatures. Now, as this control is rery frequently adopted, eren in cases in which we are by no means reduced to this last resource, and as both the considerations which it involves and the mode of experimenting, are particularly interesting, I will, before concluding these remarks upon formule, direct your attention brictly to this subject in the next Lecture.

SBTEFIOLS, TYMPASIC MEMBLASEN.

By Joscph Tognbec, Eisq., F.R.S.
[.It a meeting of the Pathological Socicty]. *
M. Toynbee said, that certain experiments and das-ections, which he performed during the past year, had conrinced ham that the guttural orifice of the Eustachian tabe was closed, exeept during deglatition, aud he wab subtequently led to inter, that, for the function of hearing to be perfectly performed, it was requisite that the tympanum should be a elosed cavity, being agrinced that, if it were not so, the somorous undulations moukl not strike the tympanum with sufficient force. He determined, therefore, to close entirely, by arificial means, the nest case of perforated tympanum that presented itself, and did so with great success; and, since that he had employed im artificial membrane with great benefit in between thinty and forty cases. Me, Mr. Toynbee, had used thin layers of vulcamsed India rubber or gutta percha, to construct the artificial membrane; to the centre or one of the surfaces of this membrane he attacher a fine wire or stem of some other material, by means of which the septum woukl be passed down and adjusted. Mr. Toynbee cmpioyed this treatment, lirst in the case of a man 4ged 43. wio had been discharged irom the army for deafines. In each membrana tympans was an aperture between one and two tues in dianeter, and the mucous meabrene of the tympanum was theker and redder than atural, and discharged frecly. Misters behind the pars and astringent wijections were prescribed, and a sligbt mproveuent followed. The man's batring, hovever, still remained very aefective, so that he was unable to Gollow iny usciul pursuit. It the commencement of last Juue, therefore, If. Toynbee placed in the left ear a very telicate layer or vulcanised Indiarabber. When it was properly adiusted, the patent observed, that he Eard more clearly than he had done for years Exer smee that tumf, this paient had wura the articial membranes, and with then ad he coutid hear bost as well as any other persun; but when they were removed, he could me bear words spoken in a loul vole. The man was then introduced, and to artufial membranes hatwing heen remuvel, the members of the Society Wh the opportumty of obsorring the perinate condition of the membrana tmpani. After the remosal of the nembrates, he could not hear unless andy spoken to, hut when be had replaced them, whach he did with sparent readmess, lis hearing was exceilent.
it conversation cusucd afterwands as to the necessity of an aperture listing in typanmu for the production of sonorous undulations It was stated lohligy Mr. Brooko and Mr. Toynbee, that it had been established by the tyeriments of Muiler and other enquarers, that such on aperture mas kessary mily fur the formation of loud sonnds, such is were produced by
the kettle-drum, but that a small instrument like the ear required no such aperture to emable the undulations of air in the tympanum is to take effect.] -Med. Times and Gazelle, IEb. 12, 1853, p. 175.

UN THE MUSCLES WHCH OMCN THE RESTACHAN TULE.

> By Jetepp Toyn, Sec, Lisq., K:R.S.
[The general opinion of amatomista upon this subject may be thus recorded -
That the guttural orifice of the Eustachian thbe is always open, and that the air in the tympanum :s coustantly continuons with that an che caty of the fauces. In examination of the gattural orane of the tube m man and other animals has led the atho: i. conclade, that, excent during muscular action, this orifice is alvay, closed, and that the tympanum forms a cavity distinct and isolated from the outer ar: The macles which open the Eustachian tube in man, ane toc tensor and tevator palan, and it is by their action, during the progress of deglutition, that the tubes are orduarily opench. That the act on swallowng is the means wherely the Eustachan tubes are opened, is shown by come experiments. of wheh the following mas be cited:-If the mouth and nose be closed during the act of swallowing the saliva, a sensation of funess or distention arises from the air, which is slighty compressed in the fauces, passing into and disteadng the tympanic cavities. Gyon removing the hand trom the nose, it will be obserred that this feeling of pressure in the ears does not tisappear, but at remains until the act of deglutition is again pertormed, whate the nose as not closed. In this experment the Eustachan tubes :rere upened duriar each act of deglutition; during the first act, while they were open, arr was forced into the canty of the tympanm by contraction of the museles of the fauce: snd pharynx, and the guttural orifices of the anbes remained closed until the second act of swallowng, which opened the tubes and allowed the air to escape. That the act of deglutition opens the Eustachian tubes was inferred aleg from the custom usually sulopted of swallowing white the descent of a diving-bell is performed: by the act the combensed am in allowed to enter tho t tumam, and the sensation of pan and pressure in the ears is removed or entirely avouded. The author gives an account of the Eustaclian tube and ats muscles in mammalia. brods, and reptles. In some manmatis the snuscles opening the tuber appertain, as m man, to the palate; in others, this function is periormed by the superior constrictor muscles of the phargax. In birds it is shewn that there is a single memiorancus zube into wish the tro osseous tubes open: this membranous tuior ss situated between, and is intumately auberent to, the imner surfape of each pterygrod muscle, and by these muscles the tube is opened the conclusion wo whin the author arrires respecting the miluence of the closed lintachant tules is. that the function of hearng is best casted on white the tympanum is a closed caritry nad that the analogy usually ched as existaig between the ondinny musial instrument the drum and the tyrapanum, to tae effect that in each it is requisite for the ar withm to communcate freely with the outer air, is zot correct. On the contary, the author showe that no fhsplacument of the sif is requiste fat the propagation of sonorins unutiations, and that, were ste Eustachian tubes constantly nipen, these undulations weuth extend into the carity of the fauces, there to be absorbed by the thack and soft moses membrane, instead of being comined to the tyupanc cavity, the walled which are so peculiarly well atapted to the production of resonance in onder that thoy should be concentratevi upon the laybranth.
in corrohoration of the abure reers, the nuthor states, that in case of deafuess, dependent smply upos an sperture in the menabrana tyapai whereby the soanrous undulations are permatted to escapo anto the esterail meatus, the power of hearing has been greatly inproved by the use of se
artificial membramatympan, made of very than vulcamed indararubber or guta-percha, wheh is su aphed as again tw rember the tympanum at closed

> Hy Joxeph Tegnke, Exq. F.H.S
[The common mode of eaphoring the liustuchita tube ing the catineter produces pain and dircomfort, amd requires great expericuce sa itsure. The phan alo of attempting to distend the tympanum lis a forchbe expiration. rhil the mouth aml momb are hepe clesed, is ly mo means always suceessful].
In a paper recenty aed before the Rus.al Society, the sutaremdenoured

 carity of the fanceq, excelt durng the mmmentary act of deghatition. In prof of this, the following erjerment was cited:-If the moud be siut. and the uostrils be held clued ley the finper and thmm, fand then the act at mallowing be performed, a seanation of fularas or pre-are is experienced at ach ear; and this sencation doe not disaypearupen the removal of the pressure from the nowe, but it waivhe at once when the act of swaltowing is agam proformel, while the mouth and nometrits are open. Doriag the firt act of *allowing, a small quatity of nir was furced into the cympanic cavaties trough the Fustachiau tubes, and it therem remained until the scoond act Soralowine amin opene: the tuhes and permotted the air to eseapm. The zucles wherehy the Butachian tubes me ofuned are the tensor amblevar phati, which, it is well known, tahes orimu from the cartilagiants walls of the :bes. Io, during the act of swallowing with chach mouth and anstrils, anr Sfoced throngh the Vasfachma tubes into the tympaic cavties, it is eident that the permeability of thou tubes can be avertained by making bepatient swallow some saliva wh'" the moath and nowe are shat Nor ged the surgeon depend upon the staterunt of the pateent respecting the sascion of dintention felt in the cars: for by listening with the ctuserfor, Shald the Eustachian zubes be perwous, the ar will be distimetly heard to mar the tympanic carities, ami produce a gentle crackling sonad. The anthr next proceeds to concider the treatment of eases of ohntruction of the Eectachian thbes, especinly m reference to the nee of the cathetcr. It arice been ascertainel that these tuhes are obstructed, is it desirabie to ateapt to open them hy moas of the catheter? Jeliovime that obstruction ate Eu-tacinan tubes generaly depends upon a theciened state of the anenus membrane corering the guttural onfice, aml that thix state is always axiated wath a thickered condition of the fancal mucous zembrane of to trmpanm, the anthnt sugee-ts. especially to the e inesperzenced an the sec of the cathetre, nut to atemb! to pass tins in-crument-first, because. aspeh casec, the mucous memtranc of the Eustachian tube ws ofen -o tume-组 that as orimary degre of pressure will frece the ar moto the Tranmm; and, seconily, herause, chuld the surgeon sheced in mansmit--5 few ar-bubhlew. the relief nhtamed is only partal, amil endures for a Tis brief perimi, sure the muenus membrane remanas as tinck is before. from the fur in the zympanum atamig of a different denoty fr, that withont The merberana tympan manes more or le-s fisml The treatmont trommended is such as shall ad to reduce the thickenct macoms meminene of the gutural orifien of the treachinn tulen to a henithy ctate, sol that these muscle- may be ahle to Re them For has purpose, bendes the the ril genmer remelies, the riofoitate of whers, of a trone sulathon of hydrurtublurir acud, may he anplied i.bomacous mombrame of the faures amd to the aperture of the tabes, agmate counter-irritation is to be kept up orer the region of the fauces.

By these measures, as a gencral rule, the macous membrane can be reduced to its natural state, and the tubes become again openel hy their muscies. Should this not take place, the Eustachian catheter may now and then be introduced and air be gently hlown through it. 1 modfication in the ahape of the Eustachian caiheter, is suggested-viz., that it should be ovel instead of round, the adraatages derived being, that it not only can be passed through the nose with less discomfort to the patient, but its presence in tho Eustachian tube is much less disagreeable from the absence of the conver surfaces which in the rounded catheter peess against the nearly flat surface of tias tube. In conclusiou, the author eapresses his concurence in the opinion of Marvey and Kramer, that enlarged tonsils are never the cause of obstruction in the Eustachian tubes, and that any benefit that may have followed their extirpation has arisea from the loss of blood consequent upon the operation-Lsuncet, April $9,1853, p .348$.
or the bolumon of chimber chleni in diluts saline solutions, at the temperatene of the boby, ir the ain of ehectricity.

By Dr. M. Bence Jones, F.R.S. (IRead before the Medical Socinty.)

This paper contained the record of a number of experiments made to determine whother, out of the bods, urinary calculi could be dissoired ty placing them in dilute solutions of nitrate of potash and other salts, ard then decomposing the solution in contact with the calculas by means of the gaivanic battery. The urinary calculus was carefully dried nad weighei, then fixed between the poles of a galvanic battery, after which it was indmersed in a solution of nitre, and at the end of the experiment it kis re-dried and re-meighed. The loss of weight gavo the effect which ;ras produced. The different calculi which had been used were also exhibited, showing the different degrees in which the various kinds of arinary caledil are dissolved when submitted to this treatment. Tho conclusions at waich the author arrived may be thus stated:-In a solution of nitre contaibing twenty grains to the ounce, kept at the temperature of the body, uric acid calculi can be dissolved by the aid of clectricity, at the rate of from tro to zine grains an hour. The solution takes place at the alkaline or nezatis pole. In the same time, and under the same circumstances, phosphajis calculi can be dissolved at the rate of from tro to trenty-five grains. The solution takes piace at the acid or positive pole. Calculi, consisting of onslate of lime, proved to be far less soluble, usually not more than hasif a grain an hour, and at most tro grains being dissolved. At the condusion of the reasing of the paper, the author stated, that he had been engaged in masifis further experiments with a solution of nitrate of potash containing onlsto grains to the ounce; and he exhibited somo large uric acud and phosphatic calculi, which had been partially dissolved by the decomposition of this soirtion at the surace of the calculi. He also showed a catheter, or lytholst, made by Weiss, which fulfilled the condtions recpisite in an instrument for elfecting the solution of urinary ralculi in the hody. It resembled azorainswy litiotrite, but the blades rere-1st, isolated so as to conduct is ciectricity to the surneo of the stone mhen it hal been caught: 2ndls, we external surfaces of the blades recer guarded, so that in cnse they came x contact rith the mucous nembrane no chemical action would bo there sttup; 3rdly, a double chamnel for the injection of the solution of nitre was formed inside the instrument. Lastly, the author statel, that, although many dix. culties would have doubtless to be overecte before he could lay the reselt of his experiments within the body before the Society, still they would aijs be mechanical difficulties The prinepple, whel conssted in setting ap mechanical action at the spot where it was wanted, whist elsewheroa ditit neutral solution ras present, left nothing further to be desired, at lessts far as the solution of uric and phosphatue calculi tras coneerned. At presest by the aid of lithotrite, mechanical force as apphed to the surface of tit
galculus, and the stono is passed in framments. At some futuro time, by tho sid of the litholyte, chemical force will be set up at the surface of the calculus, and it will be passed in solution, or as an impalpabie precipitate.Hel Temes and Ga_elte, January 1, 1859, p. 21.
bement for the strigs of bres.

By M. Gunprecht.

The stung place is to be rubbed with the freshly-pressed juico of the boney-suckle. (Lonicera caprifolium.)
The expressed juice may be lept in closely-stoppered bottles for this pur-pose.-Dingler's Polyt. Journal, Gdirvi. p. 80.
A common Canadian remedy for the stings of bees is the blue bagused by the wasker-women. The blue bas is a piece of flamel containiug noistened iodig, and if applied to the wound has a surprising effect in relieving the pain. I once saw a child that had been fearfully stung, and was in a ureadful state of irritation; upon the application of the blue bag by a neighbour, the pain immediately substed and the chitd went to sleen.-Ev. U. C.J.
an the induction of prematore habour, by tife method of prosesson hrwisch, of wurzburg.
By Dr. W. Tyler Smith.
[Hitherto the mainagents in exciting the gravid uterus to expel its contenta bare been-the aiministration of ergot, dilitatation of the os uteri by spongetente, the separation of the membranes from around the os and cervic uteri, or puaturing the membranes by some convencent instrument. The ergot is uncertain in its operation, and the use of sponge-tents is not only uncertain in its affects, but in some cases tho application is difficult if not impossible. The same remarks apoly also to the separation of the membranes].
The opcration of puncturing the membranes is far more effective than cither of the preceding methouls. It almost invariably brings on labour Fithin a fer days of its performmene. But cases of deformity are met with, and these are cases requiring mosi imparatively the induction of premature labour, in which the most experienced practitioners are unable to enter the uterus. In cases requring the induction of premature labour, in the early months, before the developement of the cervix uteri, the attempt to puncture the membranes neust always bo a serious undertaking. Nuncrous instances are on record, ia which serions results have occurred from the attempt to eracuate the liquor ammii. Two or three years ago a patient died after the performance of this operation, 11 whom, upon a post-morten examination, the intermal iliae was fotad to have been punctured. Dr. Radford lias rehted a case, in which the Cassarian operation ras performed successfully, tat tho womm becoming pregnaut apain, au operation for idducing premature labour wis periormed with a fatal result. The difficulty of reaching the os uteri, in cases of great pelric defomity, was referred to the discassion at the Mredico-Clururgical Society last year, as a justification of the Casarian operation; and the possible and known dangers of the proceeding Tere among tho grounds of oppostion to this great obstetric advance, got iorward in the most recent discussions of the French Academy.
But the operation of puncturing the menbranes, even when it can be performed readily, has its disadrautages. This is particulavy the case when be operation is performed in the cighth or ninth month. with a view to save thechild. The evacuation of liquor is alwass an unfarourable commencezent of labour, particularly in cases of distortion. when turning way hare to be performed, aud when tho child is subject to loag-continued pressure
before and during delivery It is to the withdrawal of the linuor amnit as one important consideration, that we may refer the considerahle mortality to the foetus, which takes place in the molueton of premature labour by this operition.

Ender these circumstances, a uev methol of inducing premature labour, devod of many of the disadrantares and of all the dingers of previous operations, cannot fail of being recogmed hy obstetricums as a great boon.

It is to Dr. Kiwisch Ritter vun Rutteread, oldstetric [rofessorin H urbury, one of the highest whstetre names in Germany, that we owe the promple of the operation practised in the fullowing case and thes is not the only improvement which his great practical gemias harennfermer upon obetetric medicine.

Without further preface I proceel to detair the following examplethe furst, I believe, in which the plan at Dr. Kirisch has been carried into operation in thes cuantry, and which was atended hy completo success.
[E. U——m, aged 37, was as near as conld he calculated in ber 37th wek of gestation. She was the subject of a severe spinal distortion which had latterly much increased. She hal borne three hwing children, jat only after the most protractel labour-. (In examination, the utorus was greatly anteverted, and the urme for a lung tme havl escayed nlmost itvoluntarily. The antero-posterior dinmeter of the ham of the pelvis mas certainly under three inches. After carefully weighime these conditions, the induction of prematare labour was determined unon, and Dr. Smith proceeds:]
[resolved on trying the plan proposed and adolacel by Professor hivisch, of Wurgburg, which consusts oi din ecting a stream of wate: from a height by means of a syphon, continuously upon the os uteri. Kiwisch recommends the use of wam water; but knowing from experzence, in case of henorrhage, the increased efficacy of the aiteration of hot and cold temperatures in causing uterine contraction, I determmed to try the effect of alternating the hot and cold donche. Kiwisch's mode of eperatmer is alluded to in vol. vili. of the "British mul Foreign Medico-Chururgical Review," but it had been previously dexcribed to me by lir. Schmemann of Hanover. I followed his method as nearly as I conld imder the circumstances, without any time for previous preparation: the only difference being in the vamation of the temperature of the donche.

September 1 -ILalf-past nine, a.m.: A pieceot India-rublertubing, abore eleven feet fongr, and inalf an inch in diameter, was comected with a stright tube from aninjecting apparatus five or six inches in length, the latter forming the uterine extrematy of the syphon. A vessel contrinnge tro gallons of water of aloout 110° kahr., was placed nine or ten fect from the ground, the patient boang placed in ancmpty hip-both. The proper end of the tube was now pasued into the vagina and directed towawh the os uteri, where it mas hedd seadily. After exhasting the tube, lise other exiremity was placed in the warm water. The styean immedintaly began oo flom with considerabl force argingt the es uteri, and continned until tie whole of the contents of the vessel han been dicharged. Two gallons of cohl water reve thet poured into the vessel, and discharged in the same manner. The time by the whole douche was from twenty minutes to half, an bour, the getient only complaining of diecomfort when the hot amp colll currents first beron to rin. During the after part of the day she ennplaned of dysuria and ocemsonal pains in her back.

Sept. 2nd.-Onc p.m.: The douche was again applied in the sane manotr and quantity. In these applications 1 hal the kind nscistance of Jf: Walker, and the subsequent aplicatims were entrely ennducted by him, but I give the progress of the case from the notes he was gond mough to take at the time.- Nine p.m: She had labour paine from hill-past hedre till four, so much so that she was neanly aending fur Mr livalker The
doache was repeated at this time The warm curreut was discharged as tefore, but upon the cumauncation of the coll htream, fhe became liystencal, and had to be removed fiom the bath.
Brd-Half-past nine, am. Has had a restless night in consequence of of puins "all over her" but without any particular uterine pain. The drauia and pain under the pubes are very troublesome. No appetite. The borels have not aeted for two days. Pulse 95 . To take six drachms of cestor-oil. Tro p.m.: Has had irregular uterine pans since the douche in the morning. I made an examiation, and the os nteri conld now be felt dilated to the extent of half-2-crown, the fundus uteri being hard and contracted. The boaels have not yet acted. Douche repeated at thas time.line p.m.: Had consu wable uterme pain for about half an hour after the last nisit. Bovels have acted freely, with sichness. Puse 100. The dunche way again repeated, lest the uterme action should remit.
th.-One ams: Mr. Walker was hastily summoned. The pathent had ecfered powerful expulsre pains, ahnost without intermisson, siace the hast doucle. The head presented in the second position, and about an hour before Mr. Walker's arrival the membranes hal ruptured, but ouly a small guatity of hyour amnii fad been docharged These pans continued with increased vigour, end withm half an hour from Mr. Walker' arcival, the thild, a grl, was born ahre without any assstance. The phacenta quickly flomed. Ater the bieth of the chid, a larse quantity of the lignor ammi, fhech had heen peat ap behind the head, was diveharged. I daught of tiber and camphor was given, and she passel a very comfortable mght. She had the usual amount of after-paim, and was hysterical on two or thre acasions, but recovered perfectly, and both her and the child are now in god health. A little blood was discharged, as usual, after the expulsion of the phacenta, but the lochial discharge was mure seanty than after natural tabiur. The secretion of the milk appeared naturally.
Thus, in this case, delivery was accompiished in saxty-four hours from the ant apphation of the donche. But it must be bence m mind that twentysren hour elapsed between the first and second apphication of the douche. wherwise dehvery would probably have talien place earher. Five apphicaoons of the donche were male; but from the state of the as uteri, after the fourth application there can be no doubt that labour would have proceeded, tren if the nfth douche had not heen emplnyed. Before the first application of the douche, there hal not been the slightest appearance of uterine distarbance.
The time betreen the first application of the duche in this case and the completion of delivery, was less than frequently occurs in cases of puncfre of the membranes. But it has been olijected to the lonche, by those Fho have used st on the continent, that sume women arr less sasecptible of is iufluence than others, and that the succeptibility of the same woman rines in duffercnt pregmancies. I suspect this variation may be obviated by promaing the operation, when the tume can be selected, at the eggith or wotheatmeninl date, and by increasing the energy of the dotche by the steration of the temperature.
In a certain class of cases, it becomes necessary to induce habour before be em of the screath month; when this is the care, the operation simply as reference to the sufety of the mother, the ovan beng necesarily sarificed.
Inanother class, the meration is not called fur until atter the completion the seventh munth, and withe great majunty of the ecases the operation is peformed with a vers to the safety of both the mather ani the child, in consequance of the combition of the mother
Ias thind class the opration becomes neceron, wh the later montis of brennacy, to sate the life of the chll alome, the vafety of the mother not ming at ail muned in the cause of diuger th the fetur, as in diseases of the dacenta.
As regards cases requiring the operation hefore the fifth month, such as tressive and irrepressuble vomuting, occurriug to such an extent as io
threaten death by starvation or debility, the induction of abortion by the douche would evidently be for preferable to cither the dilatation of the os uter, the attempt to pincture the membranes, on the admimistration of ergot. The latter has little power in such cases, while neither dilatationnor puncture could be eftected without danger, becatse of the undeveloped state of the cerpas uteri

After the fifth month, when in the normal condition of the pelvis the os uteri can be reached, and the membranes punctured with tolerable fuclity, there is a certain number of cases in which the evacuation of the uteras is called for to relieve the effect of the pressure or irritation, and in which the evacuation of the liquor amnii is alone sufficient to relieve the urgent symptoms. In these casea, the operation of puncturing the membranes has the advantage of affording immedate rehef. I alluded to dropsy of the amion; excessive vomiting in the intter months of pregnancy; draining hemorrage from partial separation of the piacenta; the occurrence of insanity, conrulsions, and chorea; or dangerous oppression of the circulation or respration Here the mere diminution of the size of the uterus, which may be obtaned by the eracuation of the hupror amm, without the immediate expulsion of the foetus, sometimes affordsinstantaneous ruliet la all such ceses, puncturing the membranes is a more direct method of obtaining rehef than any othet procedure, and on this account may be preferred.

In cases where the operation is performed to save the child, without reference to the condition of the mother, as when the childhas drea, and again at the latter part of pregnancy, frum mperfect circulation in the placenta, there can be no question of the superiority of the douche to any other method. It operation is, in fact, scarcely, if at all different from natural labour, and there is no risk whatever of injury to the mother through its emplofment.

In fine, from the accounts of the numerical results of the induction of pre mature labour by the ordinary method, it appears that nearly one-half of the children are horn dead. This is partly owing to the necessity for its performance in some cases betore the foatua has become viable; and in parito tho occurrence of difficult labours from deformity, and from the evacuative of the liquor amnii at the commencement of labour. This latter cause of increased mortality among chaldren born through the induction of prematare labour, promises to be entirely obriated by the substitution of the douche far the operation of puncturng the membranes. There are, indeed, somd reasons for preferrmy the douche in all cases in which the foetus is livise and viable, in which the immediate relier to be obtaned by discharging the liquor ammii is not imperatively demander. As regards the mother, the douche relieres her from all risk of mechanical injury to the uterus. If is well known that the proportion of mal-presentations is increased in casesis which labour comes on at the full term. In cases requiring turniby, after the inchecion of prematuce kabour, the danger to mother and fotusis increased; by the absence of the li uor amnii. But these aud obs: difficulties which follow upon the evacuntion of the liquar amaii before the commencement of labour, when the foctus has arrived at the latter moxths, we greatly diminished by the employment of the douche. This happy inprovemti promises to be of equal value to the mother and child. Above nll, itis applicable in cases where the os uteri cannot be reached, where des snduction of premature labour by any other known means is imposilts, and where the only alternative is the danger of the Cesarian section-1 Lancet, Oct. 2, 1852, p. 297.
obsenvations on the induction of phematura lanoun berone tiessiatif MONTE OF MREGNANCK.

By Dr, Robert Taylor Tee, F.R.S.
[In a paper, read wefore the Medical and Chirurgical Societs, Dr. Lef said that]

In the year 1812, in the third volume of the "Transnctions"ded

Sciety, In. Merriman had published a paper entitled "Cases of Premature Labour Artificially Induced in Women with Distorted Pelves, to which are sabjoinel some ubservations on thas Methul of Practice." The author thought it significant that in thirty-twe volumes of the "Transactions, embacing a peciind of furty years, there did not occur the history of a single ase to illustrate this important rule of practice; while in these volumes there were reports of ten cases of Cesarian operation. Of the satety, efheacy, and morality of inducing premature labuur, in conformaty with the rules nouleated by Mr. Merriman, the authur thought most British and some foreng practitioners were convinced; but in respect to the induction of premature labour before the serenth month and in tirst preguancies, to obviate the dagger of eraniotomy, and the fatal effects of the Casaman section, an cases of great disturtion of the pelvis, little had been said by writers on midvifery. To justify the practice, which the author regarded as equally safe, eflicacrous and moral, wefore, as after the seventh month of atero-gestation, and in a first as in any subsequent pregnancy, he submitted the histury of a successfiume, which was attende! with peculiar complications, and formedable dificulties.
In Cetober, 1S19, sith Mrr. Buoth, wi Dacen-street, Wesminister, he saw Ifs. S——, who had been in labour forty-eght houry, and whose pelvis ras distorted in the highest degree from mollties ussium. After perforating the heal, which had not enterel the brim of the pelve, and by tearing in fieces the bones with the crotehet, delivery was accomplished after two bour's violent excrtion. The partially dilated state of the os uteri greatly sereased the difficulty and danger of the operation. The patient recovered rithout any unfavorable symptom. In December, 1sj2, the author learnt from Mr. Booth that the patient was again pregnant; and in thefifthmonth, seme diagnostic symptoms of pregnancy being absent, any interference was posponed for another month. In January 1553, the movements of the fefos could be distinctly felt, and the necessity for immehately attemptang winduce premature labour was obvious and urgent. The great distortion of bepelris (the tuberosities of the ischia were almost in contact, with the strum projected forward nearly to touch the front of the pelvis) presented zusual difficulties even in reaching the os uteri for the purpose of introducthe stiletted catheter to puicture the membrailes. After a time, tho fre and middle fingers of the left hand were paseed into the vagina and tho matrior lip of the os uteri was touched with the tip of the fore-finger; the mamment was then guided into the cavity of the uterus, and the membranes panctured. The liquor amnir continued to flow till the morning of Friday, te ith of January, when the labour pains come on. At tro p.m. the os steri was so much dilated that the points of the two fingers could be introtecel, and the nature of the presentation asecrtained. It was not the head, to whether shoulders or nates could not be determinel. It seven p.m. the gigthand was hanging out of the external parts, and the shoublers and erax had sunk deeper into the pelvis. On a careful examimation, it was fend that the tuberosities of the ischa had been pressed considerably apart, ee short dinmeter of the outlet had thas increased; and there was little indt that the bones at the brom had also yelded sumewhat to the pressure. Tee sizuther being brought down as much as possible, the viscera of the boras were removed by the crutchet; and after fiaing its point in the spime urear as possible to the pelvis, after strong traction, the nates and lower eitemities were drawn through, amd the other superwo eatremity soon foltred. But little difficulty was experienced in crushing or extractugg the 4. The placenta soon fullored. Three vechs after the delivery, the fisbor received a satisfactory communication from Mr. Buoth, stating that Epatient had progressed very favourably.
Hf Hodgson, the president, enyuired what was the smallest diameter Ithe pelvis which would admit of the removal of the foetus piece-明!
Dr Lee said that his object in narrating tuv case was to lring under the
consideration of the Society the propriety of inducing premature labour, in certain cases, before the seventh month of pregnancy, to prevent the necessity of resorting to other and dangerous operations. With respect to the production of premature labour after that period, full discussion had taken place. With regard to the question put by the President, he might remark that it was most difficult to determine the exact measurement during life, but that he had never seen a pelvis with a less diameter than in the present case ; and after this, he felt confident that if premature labour was induced before the seventh month, no case could occur in which delivery could be effected. In this case, also, it might be remarked that the diameter of the pelvis had been increased by the pressure of the head of the child, in consequence of the bones being affected by mollities this might reasonably be expected to occur in cases of a similar kind. He wished to know if any one objected to the course of the proceeding which he had recommended previous to the seventh month, to prevent the necessity of craniotomy, or of the Cesarian scction. He might here remark that he had the best reason to believe that one fatal case of Cæsarian section had occurred since the discussions on that subject before the Society: and this, too, in an instance in which it would not have been so difficult to effect delivery as in the case before the Society. That operation, however-he neant the Cæsarian section-had not been recorded.-Lancet, Feb. 19, 1853, p. 186.

on the phrenic nerve. By Professor Lushka.

In a monograph by Luschka, on the phrenic nerve, the author arrives at the following conclusions:

1. The phrenic is not merely a motor nerve, but a mixed nerve, containing sensory filaments distributed to the pleura, pericardium, and the peritoneum. covering the diaphragm, and on the anterior wall of the belly. It is also distributed to the coronary and suspensory ligaments of the liver.
2. It brings about a double interchange of fibres between the sympathetic and spinal nerves, since organic nerve-fibres go to it from the inferior and occasionally the middle cervical ganglion, and it gives, by its abdominal portion, fibres to the solar plexus.
3. In the majority of cases the phrenic arises but from one cervical nerve -the fourth.
4. The diaphragmatic branches he traces to the tendinous centre, the inferior vena cava, the right auricle, and the liver.
5. In its course over the pericardium it appears to be endangered in diseases of the pleura and lungs, especially tubercular. Hence, probably, some of the disturbances of respiration in these complaints.-Schmidt's Jahrbuch. (Med. Chir. Rev.)

[^0]:

[^1]:
 upon puscorpupcles, for the nurles of young cacatrix relts, in appearance and chemmal relation, are perferly fientical with the latter.

[^2]:

 Ft, zany of the puseorpuselus (nucles) mas bo oberriod with a cicar border to one-half
 En frexs appeas to continue for a shert time erin atier the remotal of the liquad from

 Frable or yhastic liquid remored from the ining hody.

[^3]: *Yucus contains little or no albumen, and me fat, whera- the liqume puris is stref albuminous and contans fat, and thervfore the lifud prombry in irmintiva of mucous brane is purulent, but tho inusition staces from futictes to pus are numerous former peculiar viscid, morphous, trunsparent matecr, Mucin, forms the prinelpal congtitox mucus, and incloses tha nuclei and cells, but thc fattex are not essentin), aud may be ester absent, as in tho murus from the clandula batovitio sucus is a phisiologiod sereo which may be increased, as deterpnined by the funct on of the mucnus memorape po a pathological groduct determiaed by stasis, and formed from she entiro bloodplasizs

[^4]: ueta constantly found liy whers.

[^5]: 17, berminued

[^6]: Bhe wound in the perineum has entirdy rlosed. the urine pases nthout any diffeculty. tithe gatient was diecharged curce on the 15th December.

[^7]: The Wnion Medicalc pubhshes the followng bulletin:-"We bsee been right in not feeling too ready to conclude, from the zomentary dimmution of the cholera in Lnoden, that the scourge ras about to disappear. The course followed already by the

