The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduc lon, or which may significantly change the usual method of filming, are checked below.Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titra de couverture manque

Coloured maps/
Cartes géograinhiques en couleurColoured ink (i.e. other than b!ue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Buund with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omited from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible, ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il Jui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuyent exiger une modification dans la métnode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégaie de l'impression
Continuous pagination/Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-qête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires: Various pagings.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

 High-spiad Engine, Dunamo, Rolling-Mill, Steamship, Railroau, Saw-Mill, Gotton-Mill, Paper-Mill, Woolen-Mill, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill, Flour-Mill and all Machineru Bearings.
MAGNOLIA ANTI-FRIOTION METAL OO.,
London Office: 75 Queen Victoria St.
Chicago Office: 41 Traders Building.
Montraul Office: H. McLaren \& Co., Agents.

JOHN LANGTON \& CO.

Canada Life Building, Toronto
ELEGTRIGAL - ENGINEERS - AND - GONTRAGTORS
Complete Plants instalied.
Plants requiring special combinations of Electrical Machinery a Specialty. CORRESPONDENCE SQLICITED.
"DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERATORS AND MOTORS.
Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.

Automatic Are Dynamos and Lamps.
Direct Current Incandescent Dynamos. Alternating Current Incandescent Dynamos. Transformers of High Efficiency. Electric Motors. All Electric Supplies.

Our record for the past 10 years as Electrical Manufacturers guarantees purchasers satisfaction. Ask our customers about cost of repairs on Ball apparatus.

THE BALL ELECTRIC LICHT COMPANY, LIMITED,

Montreal Insulated Wiae Woaks.
J. ROSS, SON \& CO.,
manufacturers of

INSULATED ELECTRICWIRES

And Wires for Annuriators, Offices, Mragnets anil Dyntamos.

Factory: $41 / 2 /$ William St, . MONTREAL.

Orders solicited and carefully executed. 1. O. Box, 1sar.

E. Oarl Breithaupt consulting

Electrical Engineer Graduate in Electrical Engineering at Johns Hopkins University, Baltiniore.
. Addrcas : beilitin, ont.

STMPYEA ANIS COMPUENS.
Containing all the best points of standard Amerian Migh-Speed Englines and several

THE MOMARCH ECONOMIC BOILER, Strongest and Nost Portable Boiler in Use. CONTRACTONS FOR
Migh Gruin Poirer Planfs, Meating and Fentliating Apparatics, me.
ROBB ENGINEERIMG COO, Limiited, Amherst, - Nova Scotia.

TENDERS WANTED
A Weekly Journal of advance information and public works.
The recognired melium for advertise-
mense for "Tenders."
CANADIAN CONTRACT RECORDE ${ }^{\text {E }}$ TORONTO

Ganada Lumberman

TGRLISKED HONTHIX DY

A. G. MEORTIMDR

Canada Life Ashurance Blde. - TORONTO, ONT.
Sunemiphion sf.co Aer grar in adraxce.

- WANTS

F you want a paricular he of lumber, or have one I 30 dispow of: if jou want to boy or sell timber limils; If you have a mall for sale or wang to luy one;
if you have a piece of second hand machioery to dis. peme of, or want one; if yous trant a sitasition: if you want an employee for any purpoec, an inexpeasive advertisernent under the beadina of "Whanted" or "For Snlo" is tho easiest and quickett way to asc m. plikh what you wish.
An adrerifecneat in the Cavada Louskamans is the chespest aod best saiesman you can tmploy it is noe

Eugane F. Phillits, Presideal Edgene F. Phillups Ellectrical Works

 Edgene F. Phillups Ellectrical Works}
(エIMMエMD)
دIANUYACTURERS OF ELEOTRIC LICHT WIRE,
Magnet Wire, Office and Annunciator Wire, Rubber Covered Wire, Lead Encased Wire, TELEPHONE ANB INCANDESGENT CORD8. FARADAY GABLES. RAILWAY FEEDER AND TROLLEY WIRE. OFFICE AND FACTORY:
New York uffice: 10 Cortlandt Street.
Prouldence, R. I.: Amcrican Electrical Works. Montieal, Ganada.
J. M. HARRISON.
H. A. SEYLER.

Montreal Electrical Supply Co.
781 CRAIG STREET, MONTREAL
MANUFACTURERSAND CONTRACTORS

ESTISARTES GIVEN ON
COIPLSTE IISTLLLMTION OP BLECTRIC LICHT PLAMTS, ETC.

- - - -

General Electrical Supplies

Pleasemention the Elf.crrical News when corresponding with advertisers

A. Allan, Presidenl. J. O. Gंr.ivel, Sec.-Treas. F. Scholes, Man.-Director.

 MANUFACTURERS OF ALL KINDS OF

nand RUBBER GOODS

FOR ELECTRICAL PURPOSES, -- mcluding -
bLack and white tapes, tubings. ROD, SHEET, TELEPHONE RECEIVERS, ETC.
Rubber Beltings, all kinds of' Hose, Packings, etc. Mould Goods of every description.

western branch:

COR. FRONT AND YONGE STS.,
J. H. Walker, Manager.

- TORONTO

FIRSTBROOK BROS． King St．East，－TORONTO．
manipactlekre of TOPPINS，
sIDE－BLOCKS
and CROSS－Arms．
WRITE FOR JARTIC ULAK．

Special

Pulleys

数 made in all sizes， from $3^{\prime \prime}$ motor pulleys to 15 ft ．driving pulleys， ．．．\｜irn ．．．

IRON CENTRES AND W00D RIMS，AND ALL W00D．

Our pulleys are used in all large stations in Canada．
sand foll c．tratoouts

DODCE WOOD SPLIT PULLEY CO．

33 KINO STREET WBST，
図 T TORONTO．

THE RELIANCE ELECTRIC MFG．C0．，Lto．

WATERFORD，ONT．

manufactureks of at．t．hinids of

HIWCTRICAI MACHINHRY

FOI LIGMTIVG AND TRANSMISSNION OF POHER．

Constant Current and Constant lotential Dynamos for Arc and Incandescent Lighting．
Electric Railway Generators and Motors．
Stationary Motors of any horse－power，to run on Arc and Incandescent Circuits．

Arc Lamps for Constant Current and Constant potential Circuits．
Our Dynamos，（iencrators and Motors are automatic and self－regulating．
All kinds of Station Fixtures，Sixitches，Lughtning Ariesters， Rheostats，Ammeters，Volt－meters，\＆c．，\＆c．

We glve special attention to Long Distance Transmission of Power．Our apparatus is simpler
and contalns more merlt than any other on the market． and contalns more merlt than any other on the market．

> WRITE US FOR PARTICULARS AND PRICES.

Heai Office and Works：WATERFORD，ONT．
Toronto Office ： $141 \mathrm{King} \mathrm{St}. \mathrm{West}, \mathrm{TORONTO}, \mathrm{ONT}$.

IMTPORTANTT то ATI STHAMM－USHRS SAMIEL FUCE－$\quad \begin{aligned} & 664 \text { DUNDAS STREET，} \\ & \text { LONDON，ONT．．．}\end{aligned}$

Sole Agant for Canada and the United States for John C．Taylor \＆Co．＇s（Bristol，Buglana）Liquid Anti－Scalo
Vegetable Boiler Composition
For the total prevention and removal of Incrustation，Corrosion and Pitting；also for preserving the plates，and for preventing Leakage of Bed Taps，Water Gauges，etc．，in STATIONARY，LOCOMOTIVE or MARINE BOILERS． UNRIVALLED FOR ITS EFFICIENCY AND PRESERVATION OF PLATES，ETC．ENQUIRIES SOLICITED．SATISFAGTION GUARANTEED． NOロエモ エEFE
S．Fuge，Ese．， 464 Dundas Strect，London，Ont．
I－ondon，Ont．，Fel．3rd， 1893.
Dear Sir，－Making reference to J．C．Taylor \＆．Co．＇s Boiler Composituon which you supplied us a few months ano，beg to say that we have given it a thorough test，and find it to fully venfy all your representatoons as to its excellence in being able to cemove all scale from the tubes and inside of boile，and we find in usins it，that it takes even a less yuantity than is represented to do the work of kecpins the boiler clean．We have，in consequence of the use of n ，set asde all uther applances which we had for re－ moving and preventing scale accumulating in our boiler，and are so much pleased with that we can checrfulls recommend it to all and every one who have steam boilers and wish to save money in fucl by keepme therr boiler perfectly clean，and cannme recom－ mend it too highly．

Very truly yours，
STEVENS \＆BURNS．

Kay Electric Works

No. 263 James Street N., Hamilton, Ont.

. . . ananufacturers op.. .

DYNAMOS

Foi Arc and Incandescent Lighting.

MOTORS

From \& \% H. P. $1050 \mathrm{H} . \mathrm{P}$. Electro Plating Machines and General Electrical Appliances. Special attention to Mill and Factory Lighting.

WRITE FOR CIRCULARS.

NORTHEY MFG. 00.

- TORONTO....
...ONTARIO.

MANUFACTUNERS OF

For Gencral Water Supply and Prive Protection.
BOILER FEED PUMPS AND PUM̄PS FOR ALL DUTIES CONDENSERS, ETC.

FOR HIGH DUTY, SUITABLE FOR TOWN AND CITY WATERWORKS.

.... our specialty....

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN, ST. CATMARINES, ONT.
 Staridard Bell Telephones Warehouse Telephones. Garbon Transmitter Telephones. local exchanges fitted up. All line inaterial supplied. Ste Julie, Sept. تht, 1892. T. W. NESS, EsQ., Montreal.

Dear Sir,-iVeare happy to state that your telephones and switches are giving us good satisfaction. We have three sorts of switches and we find yours tar preferable. There is now about forty of your telephones in operation on our line. Every one works well, and we intend to use no Ether.
Yours very truly. Tife Megantic Telephone Co.
Write us when you want anything electrical. Key Bockets, Magneto Bells, Sieltehes, Annuseiators, cust-outs, Rells,
Fire, Iamps. Jamipe Mattories, Pruth Buttons, tc. Dyacmos and 3yoicrs

T. W. NESS

749 Craig Siroal, vohThEAL.

CANADIAN

STEAM ENGINEERING JOURNAL.

VOI. III. TORONTO AND MONTREAL, CANA1)A, JUNE, $1893 . \quad$ NO. 6.

THE BURSTING PRESSURE OF CYLINDRICAL BOILERS.

Siveral. correspondents have recently asked for an explanation of the rule for finding the bursting pressure of boiter shells. The following article is offered as a general answer to all these mquiries.

Figure 1 shows an end view of such a shell, with the thickness purposely exaggerated. Let us assume that when the shell butsts it will separate along the line $A B$, se as to come apart in the mannerindicated in Fig. 2. Now, alhough the steam pressure acts perpendicularly to the curved shell at every point, as indicated by the arrows, yet, so far as blowing the two halves of the boilerapart is concemed, the effet is the same as though the steam pressure acted vertically against a flat plate equal to the boiler in length, and equal in width to the diameter of the boiler. To make this phin let us consider Fig. 3, which shows ench half of the boiler with a fitt plate welded to it along its open side. Now it is a $1:$: ter of common experience that a structure like one of these halves will not move upwarls or downwards, when

Fio. 1.

Fic. 2.
it apart must be exictly ecpual to the fore tending to hold it together; so that
Pressure per sq. in. \times dhumetes $=2 \times s t r u i n$ per sq, in. \times thicincess \times lenkith.
This is equwalent to saying that
Pressure per se, in. \times diameler $=2 \times s / m i n$ per sq in. \times thichness.
And this, again, is equivalent to saying that
firessure per sy. in, \times radius $\times 2=2 \times$ sfrain per sq. in. \times phirkiless. That is,

Piesstuc per sq. int. \times radius $=$ strain per sq. in. \times thiciniss.
Now, when a boiler bursts it does so because the e. ain on the shell has become equal to the tensile strength of the material; so that in this case our last formula becomes

Burstion pressure \times ratious $=$ tensile strenurlh \times thichiness.
This is the ordinary rule for finding the bursting pressure of at cylindrical boiter, except that it is usually expressed in the following slightly different manner:
fensile strenkth \times litickitexs.
The bursting pressure of a boiler shell, therefore, is found by

steam is admitted to its interior. That is, ifit were put on a pair of acales the pressure of the steam against its inner surfices would not make $: ~$ weigh less or more than before. It follows, therefore, that the total upevard pressure of the steam against the shell is precisely equal to the rotal dowunzard pressure against the flat plate; the greater area of the curved shell being exactly compensated by the obliquity of the pressure ayainst it.

Let us now consider Fig.4. The total uffevard pressure of the steam against the upper half of the shell is equal, as we have seen, to the pressure against a flat plate such as that shown in the cut, extending across the middle of the boiler. That is, it is equal to

Pressure Der sq. in. \times area of fat plate."
But the area of the flat plate is equal to the length of the boiler multiplied by its diameter; so that the total upivard pressure, tending to blow off the upper half of the boiler is equal to

p'ressure pier sq. \times diumeler \times length.

This upivard force is resisted bv the strain on the boiler shell, as indicated by the arrows at A and B. The total strain on one square inch of sectional area multiplied by the number of square inches of sectionalarei that would be broken across if the boiler should burst. The area of the fracture along each side ef the boiler would be

$$
\text { Thickness of boiler } \times \text { length of boiler. }
$$

and since there is one such strip on each side of the boiler, the total àrea broken across would be
$2 \times$ ihickness \times length,
and therefore the iotal stmin at A and B, tending to hold the boiler together, is
$2 \times$ sthain per sq. im. of sectinu \times thickiness \times length. $-{ }^{\text {an }}$
So long as the boiler does not burat, the force tending to blow
multiplying the tensile strength of the material in pounds per square inch, by the thachness of the shell in inches, and divaling: by the radius in inches.
In this demonstration we have assumed the shell to be a solid sheet of meta, without joints. In practice the strength of a boiler is reduced exactly in proportion to the strengit of its longitulinal joints, so that we must multiply the result obtained by the foregoing rule by the decimal representing the efficiency of the joint. TThe question of the efficiency of joints has been so frequently and fully considered in the The Locomotive that it is not necessary to discuss it in this place.) The foresoing formnla therefore becomes

Bursing pressurces $\frac{\text { tensile strensth } \times \text { thickness } \times \text { eficiengy of joins }}{\text { radius }}$
which means that in actual boilers we find the bursting pressure by multiplying the tersile strength of the material by the thickness of the plate and by the efficiency of the joint, and then dividing by the radius.
In conclusion we shall give a few numeical examples of the use of the foregoing formula and rule.
Examplet. What is the bursting pressure of a steel boiler (tensile stiength 55,000 ths.), 48 inclies in diameter and fivesixteenths inch thick, with single riveted longitudinal jounts whose efficiency is 56 per cent.? Ans. The radius of this boiler is 24 inches, so that the rule gives
Bursting pressure $=55,000 \times 5 / 16 \times .56 \div 24=40 \mathrm{llbs}$. per sq. in.
Example 2. What is the bursting pressure of a stecl boiler (tensile strength $55,000 \mathrm{lbs}$.) 60 inches in diancter and 35 inch thick, with triple riveted longitudinal joints whose efficiency is 75 per cent.? Axis. The radius of this boiler is 33 mehes, and the rule gives.
Bursting pressure $=55,000 \times 38 \times .70 \div 30=48 \mathrm{l}$ lbs. per. sc . in.

Exampleb. 3. What is the bursting pressure of a sted boiler (55,000 lbs. tensile strengeh), 60 inches in diameter and 38 inch thick, with triple riveted longundenal jounts whose efficiency is 75 per cent.? ANs. The radus of this boiler is 33 inches, and the rule gives
Bursfiug pressure $=55,000 \times 15 \times .75 \div 33=469$ lbs. per. sq. in.
EXamblet 4 . What is the bursting pressure of a steel boiler (tensile strengll: 55,000 lbs.), 72 inches in dinmeter and 38 inch thick, with double welt butt longitudinal joints whose efficiency is 87.5 per cent.? ANs. The radius is 36 inches, and the rule gives
Buisfitg pressure $=55,000 \times \$ 5 \times .875 \div 36=501$ lbs. per sq. in.
After we have found the bursting pressure, the safe working pressure may be found by dividing the bursting pressure by a suitable factor of safety. We consider 5 to be the best factor of safely when all things are considered, though we sometimes allow $4 \frac{1}{2}$ when the workmanship is known to be first-class, and the materials of which the boiler is made have been carefully selected and tested. With a factor of safety of 5 , the safe working pressures in the foregoing examples are as follows: Example $1,401 \div 5=80 \mathrm{lbs}$., in Example 2, $481 \div 5=96 \mathrm{lbs}$; in Example $3,469 \div 5 \mathrm{mog} \mathrm{lbs}$; and in exanyle $4,501 \div 5=100 \mathrm{lbs}$. -The Lucomotive.

ELECTRICAL MEASURING INSTRUMENTS. isy L. As. Pinolet.

Notwithstanding its hroad title, the nim of this paper is simply to describe some of the volt and ammeters most genemilly used in practical work and the principles of their operation. In such instruments the current to le measured, usually passes through a coll of one or many turns of wire and produces a magnetic fied which is proportional to its strength. This extent of the movement gives an intication of the strength of the magnetic field and thus of the exciting current. The deflection must be opposed by a controlline force which is generally that of an opposing magnetic field, gravity or some slastic force sucis as that of a spring.
Anmeters have a low resistance for several reasons, the principal of which is, that, if their resistance were not low, the strength of the current to be measured would in many cases be reduced by thes resistance, and an ancorrect reading nould be given. For a similar reasun, vultemeters have a high resistance If their resistance were low, the E.M.F. to be measuted would be aflected, if not considerably reduced, by the current shunted through the instrument. Volmeters are, in fact, very seneitive ammeters. or more properly milli-ammeters; the sensitiveness being secured by ha ing many tutns of fine wue in the coil. The resistance of a volimeter being constant, if the E.M.F. at its terminals be doubled the current flowing through the arstranient will be doubled aiso, and will in every case te directly proportional to the E.M.I. Thus the reodings, though produced by the current indicate the voltage of the circuit which is being measured. On the same principie, alditional resistance put in series with a voltmeter increases the range of its readings. For example, if an instrument reading up to 100 vedts, have its tesistance increased ten times, it will then read upto 1.000 volts, for the current howing through the instrument due to 1,000 volts will be the same as that formenly produced by the 100 volts.

In at large chass of commercial insinuments, the defiection of the pointer is producal by the action of the currect upon a pece of iron. These instruments are of simple constriction, bat are open to the objection that the residuall magnetism of the iron affects the correctness of the readings. However, by using very pure and soft iron, the residual magnetism can be eliminated to a large degree so as to render such instruments arailable for commercial use where extreme accuracy is not necessary.
Among thus class naxy be mentioned the magnetic vane instruments, in which there are tho vanes of thin soft Iron. one of which is moveable and cerries a pointer. The vanes are placed in a coil through which the eurrent passes, and the repulsion between their similar poles which are adjacent to each other, causes the deflection. In the T-H ameters and voltmeters, a thun strip of iron carrying a pointer is pivoted eccentricaliy in the coil. The action depends upon the principle that, a piece of iron in a coil through whith 2 curtent is passing. if not exactly in the center will beattracted to one side of the coil.
' n anotber class, the current is measured by the attraction or repulsion between two parts of the circuit. One of the admantages of this type of instrument is, that it can be used for measuring continuous or alternating currents, tor the attraction or repulsion between the two parts of the circuit is wot affected if the curreat be reversed in both. A disadrantage is. that the action is propertional to the square of the e reent and, shercfore, at one end of the seale the divisions are usually very lose together, and at the other end the; are far apart.
A recently devised instimment of this kind, is the Weston alternating and direct current volmeter, which bas been se perfected that its readings are direct and the divisions of the scale nearly equal. Other instruments of this elass, are the dynamometers and Lord Kelvin's ingenious electric balanees. In the fatter, the atimaction between a fixed and movable portion of the circut is weighed, and the streagth of the current is calculdied from the weight required to balance its attraction.
-Abatrect of a paper read before the Aloctreal Electric Club.

The permanent magnet instruments have desimble quallites which render them very suitable for practical use. In them, the current passes through a coil in the field of the permanent magnet. One of the nedvantages of this armangemem is that the force with which the movable coll is teflectent is directly proportionate to the strengith of the current. Not only does this permit the readings to be direct, but the indications art accurnte through the whole mage of the instrument, from zero to the end of the scale. Nearly all the other forms of instrumeits have what is called n " best of range," for which their reallings are most accurate, and beyond which they are ouly approximate. In many of them no divisions are mutked on the scale for 10 or 20 degrecs from the zero point.
If the magnetic construction of a permanent magnet instrument le cerod, and proper care has been taken in selecting and artificially ageinis its

Fig. 1.

Fig. 2.
magnet, it will remain sceurate for many years, proviled it be used with due care. The change of reading has been found to be generally less than one per cent. after three years continuous use.
These principles of construction nre illustrated in figures 1 and 2 , which represent a Westor direct current volt or ammeter. This consists cessentially of a permanent magnet provided with soft iron pole pieces, between which is a core of soft iron so as to reduce the magnetic lines of force and produce a strong, uniform field for the movable coil, which is pivoted on jewelled bearings and carries a pointer. The coal is set at an angle to the lines of force betwicen the pole preces, and when a current passes through it cends to turn so as to be parallel to these lines, and thus a deflection is produced.
Galvanometers are correctly speaking instruments in which a magnetieed needle is placed in the center of a coil and the controlling torce is the earth's magnetism or the field of a magnet at a distance. They are not suitable for general commerctil use, for the controlling field is distorted by the proximity of masses of tron or of strong currents, and the accuracy of the instrument is destroyed. Very senstive gahanometers are made, having a great number of turns of wire in the coils, using strungly magnetized needles, and weakening the controlling magnetic fields. Furthermore, the needles are usually provided with a mirror which reflects a bean of light on a seate, so that very small deflections may be visible and be accumately measured.
Hot wire instruments opernte on an entirely different principle from those aiready described; the deflection being produced by the expansion of a wire by the heating eflect of the current flowing through it. They are suitahle for either alternatirg or continuous currents and are not affected appreciably by strong magnetic fields such as those of dynamos. They are spectally

Fig. 3
adapted for use in plants that are subject to jars or constant motion, such as occur on board a ship or milway train. One of the best known of these instruments, is the Cardew voltmeter, in which a very fine platinum-sitver wire is enclosed and supported by a tube of compound metal, whese coefficient of expansion is equal to that of the wire. The ordinary pattern reads to 820 volts, and contains 12 feet of wire, which passes several times up and down the fube and finally passes around a pulley, geared with a
mas! I magnifying pinioni carrying a pointer. In this way, a slight clange in the length of the wire, produces in maguified deflection.
Though the magneto bell can scarecly be elassed na a messuring mistriment, it is so extensively used that some mention should be made of it. The makneto is a small electric generator, whose armature is turned by hand, and wholh generates an alternating curtent. The current actuates n polarized bell wheh is atranget to ong through any resistance up to the stated capacity of the instrument, usually from 10,000 to 50,000 ohms. Notwithstinding the fact that these instruments are unreliable and are subject to give false results, they are largely used owing to their clionpness and convenience. The principal source of error is duc to the alteruating current, which is affected by the selfinduction and static capicity of the circuit which is being tesied. Conses are liable to nrise were the bell will ring on a perfectly insulated line, owing to its static capacity, or the self. induction of a continuous or grounded circuit would be sufficient to prevent the bell from ninging. To overcone these objections, the use of continuous current magnetos whit high resistance buzzers or detector galvanometers, has been advises.

In England, portable magneto generators nre used in connection with direct renaling ohm meters. All that has to be tone to niensure the insula. tioa reastance of any circuit, is to connect the instrunient with the circult ind the ground. Upon turning the handle, the needle points at once to the resistance. The ohm-meters usually have n range of from five thousind to five million ohms and are graduaterl in ihousands of ohms. The gen emtor generates a continuous current having a voltage of 100 to 120 volts, when the handle is turned at aisout 120 revolutions per ninute.
The operation of ohm-meters is lased upon the law that the resistance of a circuit is equal to its voltage tivuded by the cturent. In these mstrunients, two coils at sight angley to each other act upon a needle, ns shown in figure 3. The coil 13 has a comparatively low resistance and is connecied in series with the line or resistance R. The other coil A has a high resistance and is connecterl as in shunt anross the terminals of the genemtor. lihe field of the coil A is proportional to the E.M.F. and that of B to the current through the circuit. The field of Bopposes that of A, and the needle is moved more or less to one side or the other according to which field is the stronger. In thas way the resistance of the circuit is indicated npproximately.

mica for armature insulation.*

The introduction of mica into practice appears to have been brought about in the fullowing manuer.-An accident would happen to an amature, anl before the next night it must needs be repaired. In order to make the temporary remedy, mica sheets or bars would be interposed. In the case of subsequent accidents, the portion prepared by mica was the last to yield. Therefore it was proposed to build the armature primarily with mica. But this change took place very, very graddally, but surely. Manufacturers of stoves, the leading houses being also importers of mica, soon experienced a growth in the mica department of their business, until at present some import more for the electrical industry, especially for armature use, than for stoves. Why it was not employed from the first, no one could positively assert, otherwise than to guess that no one probably thought of $i t$, or insulation was.not considered of much comparative importance, or cheapness of material in construction was allowed to counterbalance efficiency of action and duability.

Of all substances, mica probably is the best material for use in armatures, if i: is desired to obtain not only efficient electric insulation, but also durability under the influence of heat. The highest temperature to which in armature is subjected, even by short-circuit or bad constauction, wili have no injurious effect upon mica. Mica, thick or thin, may be held in a gas flame without cracking, burning or melting. It remains unaffected. The reason of this is better understood when it is remembered that it consists of aluminic silicate, containing also potassic, sodic and lithic silicates, and some ferrous and ferric and manganic oxides. Its chemical constitution varies.

One quality of micais that which is commercially termed amber mica, and is usually mined in Canada. It is so named from its appearance and not because it is amber or in any other way stmilar to it than in its colo: India mica is a commercial form noted for its uniform cleavage, extreme thinness of its lamine, flexibility without fracture and its resistance, which is much higher than that of amber. Carolina mica is another variety. it is obtained in sheets in the western part of North Carolina. It is the best mica for stoves, but it is too hard for some electrical purposes. Mica occurs in so many specific forms that parlicular names have been given to it.
Muscovite is one of the most common varieties. It occurs in different colors, namely, a dark green, yellow, brown, white and
Frosp a paper on "Armature Insulat on" by Chos. W. Jefferson and H. W.
Dyer, read before the American Institute of E!ectrical Engineers.
gray. This is the form usunlly found in small scales in grante, gneiss, and mica schist, and at the same time it occurs in larger, tougher sheets than any other form. A complete scale is irregularly hexagonal in shape. Lepidulite, or lithia mica, lins a pearIv lustre, as distinguished from the vitreous luster of muscovite. lts scales are usually very small, and it is found in limited vatictics of granite and gneiss. Cryopholite is a subvariety of lepidolite. A characteristic feature of the form meionite consists in its occurring much cracked within. It has been found in geodes. Wiotite is a form found in volcanic rocks in small scales. It contains much iron and magnesia compounds. phlogopite occurs usually in limestonr. Its subvarieties are aspidolite and manganophyllite. A very little varicty is lepidomelane. It is also practically opaque. Its subvariety is astrophyllite.

The insulating power of mica is superior to that of any other substance applicable to armatures. An advantage, peculiar to itself, is its even, laminated structure. How wonderful is the thinness of its individual lajers ! A piece of ordinary writing paper is abnut .005 inch. Mica layers hive been obtained of a thinness of .00003 inch. Mechanical difficulties prevent its being split thinner. lly pasting it upon a hard surface and splitting it off as much as possible, the remaining fragments are so thin as to become beautifully iridescent. The buider of armatures can therefore split the sheets into anf; desised and uniform thickness with great ease and accutacy. An interesting property of mica and one not generally recognized, is its homogencity of structure and clear transparency, although so black when thick. The writer used it piece one-quarter of an inch thick for observing the late solar eclipse. The effect was better than with smoked glass and as efficient as black glass much thicker.
A valuable property of mica in connection with commutator insulation is its proper degree of hardness, whereby it does not wear away too rapidly under the action of the brushes. If rubber were used, for example, even if it did not burn, yet it would wear off and sparking result, because the commutator surface would not be truly cylindrica. The brushes would be set in vibration. Again, mica is capable of the finest pulverization, so that any wearing which does take place does not resalt in the libera. tion of gritty particles, which would also cause sparking. Such mishaps occur with hardened artificial plastic insulators. The insulation should be just so thick that the current catnot jump arross from one section to the other.

CANADIAN ELECTRICAL ASSOCIATION.

A meeting of the Executive Committee of the above Association was held in Toronto on May 17th. Several gentlemen upon application were elected to membership in the Association. It was decided that if satisfactory arrangements can be made, the second annual meeting of the Association shall be held on the Industrial Exhibition Association grounds, Toronto, on Tuesday and Wednesday of the second week of the Exhibition. The arrangement of the details was left in the hands of the Toronto members of the exccutive. The Secretary was authorized to communicate to electrical manufacturers the time and place of the annual convention and suggest that they make application for space for exhibits. A resolution of thanks was passed to the President and Mr. A. B. Smuth for having in the interest of electric lighting companies successfully opposed at Ottawa the passing of legislation which would have operated most iniuriously to the electric lighting business.

The Secretary read letters from six or seven members of the Association who have kindly consented to prepare papers for the annual convention. In order to facilitate the proper discussion of these papers, it is intended to have copies of them printed and distributed to members prior to the date of meeting.

The outlook for the coning convention is a most promising one. It devolves upon every member to do what he can to making the September meeting one of the greatest possible interest.

QUESTIONS AND ANSWERS.

"SubsCriner," Chatham : Can you give me the name of a firm in Canada who manufacture steam traps.

Ans. - As we do not know of any firm in this line, we would feel obliged if any of our readers would furnish the required inination.

THE COST OF STEAM POWER PRODUCED WITH ENOINES OF DIFFERENT TYPES yNDER PRACTICAL CONDItions, wITH SUPPLEmENT RELATING TO WATER POWER.'
 (Cimoluided.)

By (hari,k li, Emert, Ph. D.
(34) The writer fimally presents in columns G to N inclusive the total cost per net horse-power per year for coal at the several prices stated, first for ordinary working bours, and second for 20 hours per day for the full year. An examination of the several columns shows clearly that for cheap fuel and short hours the engines of fair economy and least cost give the most economical results when both the cost of fuel and the collateral and interest charges are considered. Such a result would be anticipated in relation to non-condensing engines, but if is someauhat surfrising to find that the compound entines of comparatively maderate price show better ccononay, everything cinsidered, than the higher priced triplecompound engines, if we reject the results shown in the last line, which, as alreaty stated, it is believed cannot be obtained in average prictice. For the so hours' day with coald at $\$ 2$ per ton, the lowest result is, for the assumed conditons, shown in line $/$, refering to special tripie compound high speed condensing engines. Unfortunately more conditions have hat to be assumed in relation to this type of engine than for any of the others. They are being made spectally for electical purposes of extra weight and with extra length of bearings, and the prices availible would, with proper allowance for erection, give prices higher than stated. However, the result is very litite differeme from that shown in lines G and H for compound engines high and low speed, or even for the sumple low speed condensing engine, line F; on the one hand, or the triple compound, lines J and K, on the other. This simularty in final cost is certainly very interesting, and examining, columms H, I nad / reicring to cos! at $\$ 3, \$ 4$, and $\$ 5$ per ton, we find thit although the total cost per year increases, the relative cost for engines of different kinds waries but litte. At the $\$ 5$ rate the hing speed compound engine, line G, has fallen $\$ 1.43$ per horsepower per year behind the low speed compound engine, line H, and $\$ 2.67$ behind the high speed triple compound, lane $/$, on basis assumed, but the latter with its lower assumed onginal price and higher coal consumption is holding its own substantially with the higher priced compound engine, line J. The same relations practically hold for 20 hours per day with cheap conl, and it is not until we reach column N for 20 hours per day and coal at $\$ 5$ per ton that the higher priced engines (rejectung as before line $l_{\text {. }}$) show any decided superiority, and even under these circumstances the difference is comparatively not great.
(35) The writer next presents in columns O to V inclusive the total cost per hotse-power per yeat for electric railroad and othrer variable work requiring 50 per cent. extra plant to obtain the average power. In making these comparisons the insurance has been increased to ti per cent, the engine renewals to 4 per cent. and the beiler renewals to 5 per cent.
(36) Attention is called to the fact that although all the costs have been mised in the latter case, the general relations have been very little modified. For short hours and low priced coal, the medium priced engines show, if anything, stull better results than on the previous basis. The engines requiring the least fuel only show to advantage for long hours and high priced coal, and even then as will be seen in column V, the results for the last four lines, excluding $L_{\text {, }}$, are remarkably near uniformity.
$(37-38)$ The writer then discusses the effect of using boilers of less first cost than first assumed and presents a comparison on this basis m'rable 1! (not here epproduced). The result is to favor the engines requiring mose fuel, for the reason that they require more boiler power for a given net power. Attention is called to the fact that the same effect would result for reducing eilher the cost of the coal as previously stated, or the cost of handling and firing the same.
(39.) The writer states that a reduction in the cost of the numerous altachments and appurtenances necessary, or chaimed to be necessary, in connection with at steam plant will decrease the interest charges generally, in a higher proportion for the motecconomical engmes.

[^0](40) The rules adopted for calculating the various columns of Table I are shown by algebraic furmula ; the notation being in terms of the Ietters distinguishing in several columns.
(41) The writer discusses the losses in economy due to the use of non-condensing engines, with varying londs, for the reason that the back pressure forms a very large proportion of the total resistance to overcome when the loads are light and the expansion is limuted when the loads are very heivy. The former consideration partly militates against the use of triple compound ehgines without a vacuum, unless the steam pressure is 200 pounds or upward.
(42-45) The writer then shows that considerable changes in cither one of the various items will not greatly vary the final result. The following table is presented to show for four of the various engines referred to in Table I the distribution of the virrous items of cosit. An examination of this table shows that the collateral charges, line 2, or the operating expenses except coal and interest are very nearly constant, or about equal to the cost of coal, line t , for the conomical engines, and decrease the percentage of saving due to economy of fuel simply by increasing the anount upon whith the saving is to be applied. The interest, line 4 , on the contrary, tends to neutralize the economy due to increased coal consumption and therefore makes the cost of power under ordinary citcumstances, when everything is consitered, substantially the same for a number of different kinds of engines showing considerable differences in coal consumption.

1.ines of frible s .	\wedge	G	1	K
(1) The costs of coal nt $\$ 3.00$ per ton. Col, $r_{\text {r }}$ for a ten hours in the headinys at the right.	\$9.09	\$77.57	\$ 9.84	\$8.91
(2) The collateral operating expenses, excluding interest, are (Line E-line D)	\$10.69	\$ 9.18	\$9.06	59.11
(3) The interest sharges, Col. D. are	\$ 6.39	\$5.61	\$ 5.95	\$7.30
(4) The total costs, Cot. 13, are	${ }_{536.17}$	\$26.36	544.85	${ }^{\mathbf{5 2 5} 53}$

(47) The writer states that the paper should not be considered a critucism of the practice or views of others or serve to discournge the higher developinent of the steam engine. The investigation simply shows under what conditions the higherpriced machinery is more cconomical and under what conditions the saving in fuel is balanced br other considerations. In some cases other conditions must be incluiled for a complete solution of the pro'blem. For instance, in large steamers makine long voyages coonomical machinery secures in addition to the saving in the cost of fucl a saving in the space required to corry the machinery and fuel and thus increases almost in geometrical ratio the efficiency of the ships. This may not be true for vessels making very short trips or stopping a large propor:ion of the time in port. Reference is made to the high expenditures warranted in some mining regions where coal is very highpriced and illustrated by the remarkable work of Mr. E. D. Leavitt in this direction. The paper, however, states that the development of the great West is now so modifying tise conditions that a clange of policy will be initiated even at the Calumet \& Hecla mines in the near future. The writer during a recent business investigation with an electrical outlook asceranined that the prices of coal in Duluth and Superior, beyond the Calumet \& Hecla peninsula, are even now icduced even to those ruling on scabord, due to the coustruction and operation of large whaleback steamers which take wheat eastward and coal on their return trips.
(48) The writer states that the considerations expressed in the paper may prevent the use of specially designed pumping engines in the future where coal is reasonably cheap and concludes that the further perfection of the steam engine will not be hindered by the general facts stated, since with the deve-
lopment of mining industries at great distances fiom coal fields the elosest economy in the use of fuel will secure the best commercial results. In order, however, to secure such results for growing enterprists, electrical and otherwise, in the citics and towns along lines of communication already established, the writer believes that the fied will bo occupied by chenper engines of simple construction, which, though not securing the maxium economy in fuel, will so reluce the enpital upon which interest and dividends ace to be paid as on the whole to represent not only better commercial policy but better enginecring, because based on more complete conditions.
supphement relating to water power.
(49) The writer states that it will be impossible in connection with his puper to make a satisfactory comparison of the relative advantages of steam and water power under different conditions, but as the cost of steam power has in the paper been consideral on a somewhat different basis thian customary previously, fie considers it important to examine the cost of water power briefly in the same way, more particularly to show what amount can be paid for the development of a water power in competition with ste.un power. He does not think that examples should be selected where Nature has specially favored the development of water powers at a nominal cost or where the operations of the general government have assisted the miill owners at the Fatls of St. Anthony, but that the question should be discussed under more general conditions such as have been developed on the Merrimace.
(50-52) From the paper of Prol. Swain in the census reports and testimonv in various water suits, he concludes that the development of water-power on the Merrimac has cost about $\$ 142$ pee horse-power, to which the Merrimac owners, are, however, obliged to add the greater part of the cost of a steam plant for use when there is no surplus water, and continues that it has long been known that the water power on the Merrimac has cost so much for development that could the expenditures be recilled it would be more economical to locate where coal can be obtained at cheaper rates and steam power used exclusively. Notwithstanding these considerations, however, a new water power is being developed at Sewall's Falls near Concord, which, it is supposed, however, will not be subject to the mitial costs of the other large plants.
(53) The writer considers the highest allowable cost for the complete development of a water power, frem the dam to the jack shaft, to be about $\$ 140$ per horse power utilized on a 10 hour basis. The sum of the various items of cost such as depreciation, taxes, interest and operating expenses, he consuders to be about 17 per cent. of the original esipenditure. If the expenditure be $\$ 140$ per horse-pover, such percentage represents $\$ 24$ per horse-power per year or about the same as shown in the talics for economical engines and coal between $\$ 2$ and $\$ 3$ per ton. If there were one company to furaish the power and another to utilize it, the balance in favor of steam power woull be somewhat greater. When, however, the power is used for 24 hours per day a much greater original cost is permissible.
(54) When the power of waterfall is to be delivered at a distance, the allowable cost of actually developing the power must be decreased by that necessary to transmit the power and actually deliver it to a jack shatt at a given distance. An electric transmission is undoubtedly the most cconomical for such a purpose. If we add to the cost of the dynmos, that of buildings, of the hydraulic connections to the canals, of the turbines, of the line and of the installation, and finally add the cost of the motors, so that the power is according to the assumption delivered to a jack shaft, and total cost of what may be called the "electrical transmission plant" cannot probably at present prices be put in for $\$ 140$ for each net horse-power delivered, so on a to-hour basis no expendrure could be allowed for the general development of the water power, but only fur the simplest hydraulic connections to existing cannis, etc. If, however, power can be sold throughout the whole twenty-four hours, more than double the price can be obtained for the same and this will warrant doubling the total cost of development unless a greater percentage of income is jesired. At the cost of the electrical plant remains the same, the whole allowance increase may be applied to the development of the hydraulic plant, thereby entirely changing the conditions.
(55) The writer has not hesitated to recommend an, original expénditure of $\$ 200$ per horse-power for a combined hydraulic
and electric plant near latge citics, where not only the customary income due to incandescent and are lighting and the tise of small motors at high rates would be avallable for comparatively short hours, but where the industries are such that targe units of power could be solid at remuncrative prices on a $\mathbf{2 4}$-hour basis. Even higher costs for development would appear to be warranted in some locitions, but there is no generill rule on the subject. The allowance expenditure in a particular case cam only be determined from calculations based on the actual conditoms.

STUDY OF ELECTRICITY BY ENGINEERS.

Tur following are extracts from an addiress delivered before the Nashville (Tem.) Association, No. 1, N. A. S. E., Jan. 13 1893, by F. G. Heeger:
I will once more call your attention to the neecssity of studying, iad as regards electricity. In the year 1889 Mr. Hobart, said that about the sear 1895 enginecring papers will contain advertisements like the following:

Wantris. - My a suall manufaching firm, a capable engincer. must le able to use indicator, krep his plant up and get the best possilite resulls from furl burned. A knowledge of electricity indespensable. Alust know how tor a dynamo electrie machines, and keep them in. good shape. Gool pay to right man.

How far did Mr. Hobart miss it? This is sufficient to demonstrate the great necessity of providing yourself with an indicator and learning how to use it with precision. How many of us would pass muster, if put to a rigid test, to-lays Can we look at a working dynano and tell in a minute whether or not the machine is doing its full duty? 1 fear many a good steam ensineer would get sally left were he to be juige according to the standard of 1895 . "Why should 1 know anythmg about electricity?" asks the gentleman on my right. "Why, I have run engines for thirty years and I see no reason why I should become an electrician now. It is my business to run the engine and not the machinery it drives. If that manufacturer wants to make electricity out of steam let him hire an electrician to do it, and I will stay by my engine, ns I have ilways done."

Such argument sounds all right; but it won't work, all the same. Electicity is a very peculiar thing to deal with, and it cannot be handled by any other than electrical methods. "There is no one so capable of undertaking it as an intelligent engineer. Give him an extra clollar per day and it ought to be sufficient inducement for any man to apply extra knowledge to a few minutes work through the day.

Engincers-is there a man among us worthy of being called by that name, who does not hope some time to get above his present level and be "chiet engineer" of some large establishment? Certainly every oac of us have such ambition and should put in alt his leisure time in firting himself for such a fosition.

Imagine the chief engineer of a large building, which uses hundreds of electric lamps, who had no knowledge of electricity. "Well," sou say, "what of that?" You can see at once that he would be at the mercy of every young dude of an, electrician who chanced to visit the plant, and even if such a man acquired such a position he would not be qualified to discharse his duty.

THE TELEPHONE GIRL.

Does it ever occur to any one of many men, that he is daily taking part in a strange proceeding that was never indulged in up to a few years ago? Nearly every day he is con eersing with a person whom he does not see, perhaps never did nor never will see. And yet the conversation is as purely a natter of course as his conservation with his wife at the breakfast table.
The particular reference is to the Telephone Girl, that SweetVoiced Mystery at the Other End of the Wire, that Desirable Unknown, and Tantalizing Incarnation of Thouartsonearness and Yetsofarness.
There are catic.s unknown with whom one converses in the course of a busy day, but they are nothing compared with the Electric Goddess of whose material charms we wot not, but whose voice is like the thrumming of an elfin harp on a star-lu'ned night in June, or the tinkling of the lily bells that call the fairses to their revels, or the murmur of a crystal browk gliding over pebbly bottoms in a sun-filled meadow.

But we know not her Identity; we wonder who she is, when the 'piobne vibrates click-chickety with whirring and with whis. Implore of ber to call her name, she merries at our bellow; with Iz:agh like pour of moltẹn pearls she answers only "Hello"Toronto News.

fanadian association of stationary engineers.

Note ietretames of the vanous Aswoiationa aie requested to formand as matte for publitation In this llepatiment not later that the soth of each month.

I'he annual anceting of this Asseniation was held on the 2 ath of Mas at Shaflestuis Mall, I uronte, the presulent, Mi. S. M. W"ikhens, presuling. Ihere were about furty delegates present, froni Lamlua, Msantfurd, lisidt, llamilun, l^{+}eterloutu', Kangstun and Tumato. Flic atecting was called tugether in the amoming about if oilouk, when the president opencd the proceedings with a shut adadess. He referted to the satisfactury progress the lssmantion lad mate since its legal organization tion jears Aforp pinting wht the alifficulties which had to be contended
 He, howiot, anticipatcal that its prosperity mould greatly tacrease during the coming year as funds were largely on the in(rease wing to the entrance of mang new members. He cotimated that bs the end of the gear uset 300 new certifinates would be issued, because the eximnners had now better opportunities to isit the different manufacturing centres in the province This work, he thought, should be encuuraged and helped
 set he hoped that the large expectations of the coming year would be realized.

The Registrat : Mt. John . 1. Wills, presented has repurt fut the jear. Mhinh was considered wery satisfactury. It shuned that there were 1 So certificates in force in the province, and that the financial condition of affiars was good. After the report had been reccived and adopted, the election of fuur officers twoh place to fill the four vacant places left by members retiring at effluxion of their time of office according to the by-laws. The result of the election was as follows. Mr. James Delvin, areelected) : Mr. Fred. Mithell, of L.ondon; Peter Stott, of Hamileon and Fred. Donaldson, of Toronto.
The officers for the coming y car were neat appointed as fullows: President, John A. Wills, Toronto; Vice-president, Kobert Dickinson, Mamilton: Treasurer, Robert Mackic, Hamilton; Registrar, A. M. Wickens, Toronto.
A discussion took place with regard to improving the cxaminations, and a comunittec was appointed to consider the advisability of improving the questions and making them more searching, especially as regards the first-chass certificates. Up to this date the llanrd of Examiners have received no pecuniary remuneration for their services, but as their work is greatly on the increase a by-law was passed ater some discussion, allowing them a small sum.
The meeting adjourned at 3 p. m. until the 2fth of May, next year, when it will incet at l.ondon, Ont. At the close of these proceedings the visiting delegates were conducted over the Toronto Electric Light Company's station, with which shey were highly pleased. Dany of them aftenwards left for their homes, but a few remained over until the following day and visited other places of interest.

> TORONTO NO B, C.A.S. F

At the inecting of the above held on the 26 th inst., about $j 0$ were present. Among the business transacted one new application was received and the following resolution passed :
Jihercas-lt has pleased our allwise Creator and Heavenly Father to remove from this earth the latle daughter of our worthy friend and estecmed Brother T. Graham, therefore be 14 resolved, that white we bow in humble submission to the Divine will of our Heavenly Father, we at the same time extend our sincere and heart-felt sympathy to l3rother Graham, his wife and family in this their hour of sorrow, and be tt further resolved, that a copy of this resolution be sent 10 Brother ciraham, be spread on the records of this associntion; and also that a copy be sent to the El.f:CTRical. News for publication.
At the close of the business meeting the association celchrated its seventh anniversaly with a social and musical enterainment. Mr. A. M. Wickens was asked to preside. In the course of his opening remarks lie said he believed these social evenungs were the means of bringing the members closer together, and of making the new-comers feel more at home. Iie would like in see more of them. The Association was a means of mutual improvement to all, but members should also encourage sociability: There was no doubt that a large future was before theth, for their certificates were becoming of great value, and already they were of many times more value to the holder than the cost of obtaining them

Mr Edkins corroborated the last speaker in reference to the desimbility of encouraging suciability aniung themselves. There were many benefits to be derived from an association like this, and during his visit to other places he fuand a better feelang wis heing shown th stationary enginects. He alou referred to the roming romention at Vontreal, and invited the members to prepare some papers on interesting subjects to sead there to any rate ne hoped all woukd maki an offort to be present, as a great time was expected.

Br Iewis said he had mulh to thanh the C. A. S. L. for. With hard study and its help he had been able we senue a tirstclase rertifirate which he had found of ereat value to han. He imped all stationary engineers would endeatur to go in for the reaninations, and as far as be was able he would le pleased to help any brother in this matter.

Mr Ciilhrist hoped that the swatal evenings referred to and desired would not be the means offetting them forget ther mann object, education A noble work was being clone by the Assocaston. It had elevated their work to a point which nothing else could have done.

After at few remaks from the vice-piesident and all present had pariaken of some light refteshments, Mr. J. Muriand was called upon for a piano solo, whirh was followed by Mr. Blackgrove singing "Wonders of the Deep." A duet followed by Messrs. Blackgrove and (s. Grant, which received a well earned encorc. An instrumental tro by Messrs. Walmsicy (gutar), Vills and McHenry banja, was acll rendered, as was Mr. (a. (irant's song, " "nder the Poplar Trese" Mr. Mic Henry gave a banjo solo, which was followed by a solo fiom Mr. Walmsley; entuled "Many Changes I Have Scen," ut reception compelling him to wrean encore. Mr. Henrys song "On the Bowery;" and Mr. Grant's "Brawley, How's Yersel," were well received. After another banjo solo from Mr. McHenry, Mr. Walonsley concluded the enjoyable entertainment by singing "Always Do to Others as You Wish to be Done By:"
After a vote of thanks, proposed by Mr. G. C. Mooring, and seconded by Mr. J. - Wadge, was passed to the several musicians for their talented services, the meeting was brought to a close by singing God save the Queen.

TELEPHONIC COMMUNICATIUN WITHOUT A SPECIAL LINE.
 By G. Mareschal.

1 have noticed that if I altach one wire to a gas pipe and arsther to a water pipe and connect the two to a ielephone, the existence of a current will be proved by the sound in the instrument upon opening and closing the circuit. To measure it I have substituted a galvanometer for the telephone and as nearly as I have been able to decermine with the primitive apparatus at my disposal, the deviation corresponds in a quarter of a volt. What is especially remarkable about the current is its continuity. The needie of the galsanometer has remained almost stationary for a year, varying one or two degrees to the right or the left during the course of each day:
It was my first impression that 1 hadi proved the existence of an earth current, but in view of its continuity I came to the conclusion that the action was rather that of a battery of which the water and has pipes formed the elements, which were altacked by the media in which they were located. The positive pole is the water pipe and the negative the gas pipe. I have repeated the eiperiment with success in many houses in paris and elsewhere; but no current was found in places where the pipes were in close contact.
At my own home the current disappeared for about two months in consequence of the jntroduction of gas pipes in a certain $\mathbf{r o m m}$. It is likely that the workmen unwittingly established a contact between the two pipes. The experiment is an interesting one to make; all those who have a common galvanometer, or betier yet, a telephone, can investigate the existence of the current.
But can the current be utilized? The current strength is so small that perhaps it is not likely. However, it would be easy to design some litule motor that would revolve indefinitely and this movement might be utilized perhaps by a skillful mechanic for operating a tiny clock.
It is a sequence of this experiment that the pipes are relatively insulated nost of the sime, and I wondered if they could not be used as the two wies for telephonic communication. As a matter of fact I have been able to talk ith a friend living six doors awny, using the pipes as conductors. The experiment was conducted in a very simple fashion. In my own room were placed three bichromate cells and in the circuit was connected a microphone without the induction coil ; in the neighboring house was armaged the telephone connected to the two pipes. An article from a daily paper read in my room was feard peifectly in the house of my friend. We then claborated the experiment. The microphone was placed behind the piano and music was heard in several houses on the same street and on a neighboring strect.

- Aberract of an arricic in Foa Natner.

THE EFFICIENCY OF THE STEAM ENGINE JACKET.

The Institution of Mechamcal Engineers of England sometime since created "The Research Committe on the Value of the Stean Jateket." The second report of this committee was recently presented. In addition to collecting what information they could from outside sources, they presented in detail the records of five original sets of experiments, most of whah were made specially for this report. In each case the investigation covered the performance of the same engine, both with and without steam in the jackets. The first set of experiments was made on a compound jet-condensing beam pumping engine, the second on a trifle-expansion pumping engine, the third on a compound mill engine, the fourth on the experimental engine at the City and Guids of London Central Institution, and the fifth on an experimental vertical engine.

From the records thus outained it appears that the expenditure of a quantity of steam in an immense jacket produces a saving of a greater quantity in the cylinder. The ratio between these two quantities is an important factor in this investigation. Unfortunately, the jacket water has not been recorded in many of the experiments of which the results have been collected, but in all trials made by members of the committee it has been carefully measured. In the summary column q gives the percentage saving in feed water resulting from the use of the jackets; column p gives the actual saving in pounds per indicated horse power per hour ; and column r gives the water condensed in the jackets in pounds per indicated horse power per hous. The following examples are taken from the tables.

	Saving in feed water with jacket.	Actual	Water condensed in jacket.	Ratio.
a	q	p	r	ptor
No.	Per cent.	Pound	Pounds per h. p. per hour	
41.	17.4	5.15	3.29	1.9101
42..	8.6	2.76	1.20	3.3 t0 1
43..	10.3	3.50	1.72	2.0 to 1
44..	19.0	5.82	1.13	5.2 to 1

No. 44 shows that for every 1.13 pounds of steam expended in the jackets there is 5.8 a pounds less feed water passed through the cylinder, the net saving being thus 4.69 pounds.

The experiments showed that, generally, the smaller the cylinder the greater is the percentage of gain from the use of the jacket, arising doubtless, from the fact that a small cylinder gives a larger jacket surface for a given weight of steam passing through it than a larger cylinder does.

In some of the experiments it was possible to measure both the consumption of coal and that of feed water and as these figures have considerable practical value and interest, they are in every case added to the results. Some, therefore, form complete engine and boiler trials, but it must be remembered that the effect of the jacket is measured only by the consumption of feed water and not of coal.

The single-cylinder condensing engine experimented with had a cylinder 15 inches in diameter by 30 inches stroke. The body and both ends of the cylinder were jacketed. The pressure in the jackets ranged from 48 to 187 pounds per square inch above the atmosphere, the result being that the pounds of feed water per indicated horse power with the low pressure were 28.85 and with high pressure 19.85 . Other experiments made with engines of the same type showed an economy due to the use of the jacket varying from 7 to 121% per cent.

In experiments with a compound non-condensing engine the pounds of feed water per indicated horse power per hour were 26.29 without the jacket and 25.25 with the jacket. Two other jacket experiments are also recorded which show an economy of 15 per cent. In the test of a tuiple expansion condensing vertical inverted engine, having cylinders 5,8 and 12 inches in diameter, and 10, to and 15 inch stroke, the engine being on three uncoupled cranks, the results showed that without the jacket 16.42 pounds of feed water were recorded for each indicated horse power per hour, while only 13.56 pounds were recorded with the jacket. In this engine 64.7 per cent. of the internal surface of a high pressure cylinder was jacketed, 67.1
per cent. of the internal surface of the intermediate cylunder, and 75.2 per cent. in the low pressure cyluder.

The discussion following the presentation of this paper brought out as the most prominent feature the fact that the opinions of Eng lish engineers wary about as much regarding the actual efficiencs of the steam jacket as do those of Amerian experts, and further, that the Instutution of Mechameal Engincers resembles our own Society of Mechancall lingineers, in one tespect, viz, that of being fearful of advancing a positue opinion on any disputed topic etther through one of its .uthorize.t committees or as a body. Professor Unwon satd he was sorry the committe had decided not to express any opinion, as that curtailed the possibiity of cmictsa. He thought it an extraordinary fact that the enperunents had not produced a case in which the jacket had done any harm.
English engineers, as was brought out during the discussion, are practically unanimous in the belief that the steant jatket is economical, but they are not united as to how far the jacketing should be carried. One speaker noted that there was no case mentioned in the report of the pistuns being faketed, and said he had known instances in which the required power had not been developed until the pistons had been arranged to take steam inside. He also advocated the jacketing of the piston rods, as they must carry off a good deal of heat by passing from the interior of the cylinder to the aur. He would also jacket the steam pipe. He illustrated the value of the jacket by stating that the power of an engine had been increased from $41 \frac{4}{4}$ horse power to $491 / 2$ horse power in five minutes by putting the steam jacket into usc.
It is not necessary to further teview this report or the discussion it eltcited. Our knowledge of the real work done by the jacket and of the efficiency its use produces is being increased little by little; yet there remains much to be done and many experiments to be made before we shall possess facts estabhishing the true value of the jacket under all conditions. In this connection the paper by Professor Carpenter on steam jackets, read at the last meeting of the American Society of Mechanical Engineers, and the discussion by Prof. Thurston will be read with interest.-Iron Age.

PRACTICAL RULES.

Several. correspondents of the London Electrician contribute a number of approximate practical rules, among which are the following:
To reduce centimetres to inches multiply by 4 and deduct one inch in every five feet. To reduce metres to yards, add one-tenth, deduct one-tenth of this correction and add onethird of the last correction. To reduce kilometies to miles, multiply by 6 and atd one mile in every thirty.
To ascertain velocties in miles per hour, take any convenient distance in yards, measure the time, divide yards by the seconds and multiply by two ; this will give the miles per hour approximately.
A horizontal belt, one inch wide, running at ten feet per second, will transmit one horse power if the pulleysare not too small; an increase of width or speed will transmit a proportional increase of power.
A pipe one inch in diameter holds one pound (or 1 gallon) of water in one yard running the capacity of a yard of any pipe in pounds may therefore be represented by its diameter in inches squared; for greater accuracy, add one-ffitith. To find the capacity of a cistem, remember that eight cubic fett contain 500 pounds, or 50 gallons of water.
The resistance of any copper wire ${ }^{-}$is the length in feet divided by the cross-section in square inches and multiplied by .000008 . For greater accuracy add to per cent.
For finding approximately the current in a wire, place it paraliel to the magnetic meridian, place as small watch charm compass under or over it and move it until the deflection is 45 degrees, then the difference from the needle to the wire in centimetres multiplied by 9 is the current in anperes. If the deflection is 48 degrecs it is not necessany to multiply by .9 If the distance is measured in inches, multiply by -35 . It will be close enough to divide the distance in inches by 3 -

The Yarmouth eloctric street railway have declared a dividend of 6 per cenh. on the cight months their system has been operated.

puhlishen on the fikst of hevery moxth in

CHAS．H．MORTIMER，

Office：Confeideration Late lluilding， Corner Youge and Richmond Strctels． TOEROINTO，relephone zзба．OAINADA． 64 Temidie hullineg．

Montribal．
Well Telephone 2209.

ADVTEMTINGBHENTE．

Advetising rates sent puomptit on aptlication．Orders for adrertising should reach tie ofuse of publication not later than the asth day of the month immediately precediug date of issure．Changes in advertisements will he made wheneyer desired， withuus cors to the advertuer，lut to ineure proper compliance with the instructions of the asivetiser，reyueas for change should reach the office as early as the aznd day of the nunth．

dOAsCHETPTION：S．

The Eluctaical Naws will be taniled to sulacribers in the Dominion，or the United States，yose free．for \＄\＄．00 per annum，socents for wix months The price of sulacription masy be remitted by currency，in recustered letter，or by postal order payable to C．11．Mortimer．Please do no send cheques on local banks unless 25 cents is suded for cost of discouns：Money sent in unrecititered leticrs raust be at Unions Si．so ，Ser annum．Sutberiptions are payable in advance．The paper will be diventinucd as expiration of term paid for if so stipulated ty the sulscriker，bus where so such undersanding exists，will be continued until instructions to dis． continue are inceived and all a me enasea maid．
Sulncribers may have the mailimg address changed as often as desired．When ondering shange，alruays prive the old as trell as the nozn address．
musifial of the failure of subscrivers to roceive their papers promutis and iesulaty．

HEDTOH＇S ANOUNOEMENTS
Correapondence is iswited upon all topics comang legitimately withia the scope of this journal．

THE：＂CANAIHAN ELHCTRICAL NEWS＂HAS HKEN ADJOINTHG THE OPFICIAI．JAIRK OF TIIF CANADIAN KLKCTKICAI，ASSOCIATION．

CANADIAN ELECTRICAL ASSOCIATION．

OFFICERS：
 PRESIDRNT：

J．J．WRIGilt，Manager Toronto Electric Laght Conipany： 1st Vick－Prisunent：
K．J．DUNSIJAN．I ocal Manager Bell lelephonc Company，Tonono． 3．SD Vicis．I＇gfsident：
JOIJN CARKOi．I．See．Ireas，Eugene lhillips Eiectrical Works，Montreal． Skcktiaky－Theasurer：
C．11．MOKTIMER，I＇ublishor El．ECTKICAL NE．WS，Toionio． Exicutive Consitsek：
1）．A．SilakR，Royal Electric Company，Montreal．
11．O．シ＇1SK．Electrician Electric l．ight Compxing．l＇etetboro＇．Ont． W．A．JOHNSON．Manager Inill Electric Light Compuny．Toronto． S．J．PARK゙ER，Mannging Director Owen Sound Electric Light Com－ ixiny．Owen Sound，Ont．
A．13．SM1TII，Inspector Canadian Batrd Eire Underwriters，Toronto．
I．THOMSON，Genetal Manager Hamilton Electric Light and I＇ower Company．Haniton．Ont．
IIOS．17．WADIAND，Suprintenient Consiruction，Bell Telephone Company．Ilamilton．Ont．
1．B．McFaklane．Iell Telephone Company，Montreal． JOBN：र＇ld．E．Manager Guciph Gas and Electric light Company． Guelph．Ont．

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS

Toronto 1knancit No．1．－Merts and and qth Friday each month in Koom D．Shatieshury Hall．W．G．Hackgrove，lresudent：G．Fowier， Secretary， 137 l＇niversity slecet．
Maxilton Ifrascil No．2．－Mcets ast and 3rd Finday anch month，in Macrabre＇s Hall．W＇．Sweet，l＇resudent：E N．ash．Secretary，89 Litule Willam Sireet．

Stkatzond Urancil No．3－John 1loy，Itresudent，Samuel 11．Weir． Secretar．
13kANTHORD 13RASCII No 4．－Mects and and fth Friday cach month． Thus．I＇lgnm．I＇resudent，john Ogic．Secretary．Ifrantord Cordage Ca
Losbos 引3xaNci Nu，5－Mieets and Tucsday each month．F．Mitchell． l＇resident ：J．Melntosh，Wecretary：
BRaNimiN，Mas，Brancil No．- Merts yst and zrd Friday each month．
in Cily liall A．R．Crawford．Jresxieni：Arther Flemidg．Seeretary．
Montmenil．Ikancis Na z，－Mects ast and jed Thursday cach month． in Mechanics Institutc． 204 St．James street．Thos．Naden．President： jos，G．Roberison，i\＆＝0 Miguonne street．Secretary．
St．Laverint BenNen No．z－Mieets ist and 3rd Tuesday cach monih in Mechanics Instisu：c， 204 Si ．｜ames street．Mathias Gumond，President： Alfred Latour．Secretary． 306 Delis！e s！rect．SL Cuneroade．

GUELDU BraNCI No．6．－Mets ist and 3rd Saturday each month at 7：30 p．in．J．A．Angell．I＇resulent；C．Jorlen，Secretary．
Otrawa Imancil．No．7．－Meets and ind $4^{\text {th }}$ Tuesday．each month，in Labour Jall．J．H．Hompson，President：J．B．Latour． secerctary．

Inkinin brancit No．g．－Aterts and und gith Saturday each month at 8 p．it．W．J．Khodes，I＇resident；G．Steinmetz．Secretary，Berlin Ont．

Kingston．Association Stationary lenginheks．Meets iwice each month over No．I Fire Sution．J．Devlin．Prestaent．W．Gituour，P．O． Box Ggy．Serelury．

Fok several months past the incandescent electric lamp has held a prominent place in public attention．Soon，however，its glory will in a measure be eclipsed by that of the half－forgotten， fly and heat dispelling，comfort－giving electric fan．

Tur：Canadian Pacific Railway has locomotives running be－ tween Torontoand Montreal which have steam cylnders iginches diameter， 24 inches stroke，and using steam of 180 lbs ．pressure． It is probable that when running at full speed，these engines are capable of giving out 700 horse power．This power has all to be produced in one boiler and the engi，a has to carry its coal supply，its water supply and its chimney．What a saving in some respects there would be if the trolley system were used．

In Toronto the other day an old gentleman undertook to disembark froman electric car while in motion．Result his leg got under the wheels and was completely cut off．The account of the accident which appeared in the daily papers was headed ＂The Cruel Trolley．＂It should have been headed＂A Foolhardy Act．＂It is full time that the press and a section of the public should cease to charge to the trolley system calamities which are due to lack of discretion on the part of those making use of electrir cars．

Tue value of mica as an insulating material is creating for it a large demand on the part oi manufacturers and users of elec－ trical apparatus．Canada fortunately happens to be one of the few localities where deposits of thes material are found．In the provinces of Ontario and Quebec exists in abundance． Now that its value has become apparent，there is an eagerness displayed by local aud forcign capitalists to secure control of these Canadian deposits，which will doubtiess yield handsome profits in the near future to the owners．

THre conspicuousness to be secured by advertising matter at－ tached to telegraph poles leads wide－awake patent medicine and other business concems to constantly seek to obtain for their announcements this coveted position．These announcements， like Jonah＇s gourd，spring into existence in a night，and poles that the previous evening bore no inscription，blazon forth next morning the meits of somebody＇s liver cure．The aleriness of the telegraph companies＇officials suffices to reduce the evil to a considerable extent，but seems powerless to entirely prevent it．

Canadians have been accustomed to congratulate themselves on their freedom from destructive cyclones such as are of fre－ quent occurrence in some darts of the United States．The grounds of their gratulation have been severely disturbed，how－ ever，by wind storms of hitherto unknown severity which have lately swept over this country，the last of which occurred about ten days ago and caused great destruction of property．These storms entail heavy damage on telegraph and telephone poics and wires，and should they prove of frequent occurrence will no doubt hasten the adoption of the anderground system．

Methods of sating coal are numerous，ton numerous to men－ tion．One，however，deserves a brief notice．For some time past packages of a mysterious compound have been for sale which was guaranteed to effect a saving of from 15% to 40% by merely dissolving it in water and sprinkling on the coal before puting it in the furnace．It was sold in paper packages at 25 cenis per package．It has recently been discovered that the wonderful compound is crushed rock salt，worth about as much as the paper in which it is put up，mither less than more．lis value as a fuel saver，resides very largely in the water used． Let us have botied sea water next．Perhaps it is to get fuel saving mixture for their locomotives that the C．P．R．Co．have sunk the salt wells up near Windsor．

Accidents from the bursting of fly whecls still continue, and probably will so long as wheels designed for use with slow speeds are put upon ligh speed engines. It has been estimated that for a cast iron, rim of solid metal, the bursting strain produced by the centrifugal sorce will equal the tenacity of the metal when the velocity of the rim is about 430 feet per second. If there be joints in the rim, the strength of the joint must be found, as it may be much less than that of the soliti rim. A factor of sufety of to should be used, which will reduce the highest safe speed for a solid cast iron tim to about one mile per minute.

Mention was made in the Electrical News for May of the fact that according to the provisions of the Railway Act, a street railway becomes in the eye of the law a railroad when horses are discarded and electricity is adopted as the propelling power. The Customs authotities were brought to a recognition of this fact recently when the Niagara Falls and River Railway Co. brought suit to recover $\$ 4.3=0$ paid in duty on rails imported from England on the ground that the tariff provides for the free entry of steel talls weighing not less than 25 pounds per lineal yard, for use in railway tracks. The Crown at first contended that electric "railways" should be classed as "tramways," but subsequent to the erial ibandoned this contention, and consented to judgment being given for the amount sought to be recovered.

Pook cconomy in the operating of an electric light or power plant is that which saves a few dollars in wages but allows dirt to accumulate and general disorder to become part of the plant, so much so that a break down or some similar occurrence eventually h:ppers, which then costs infinitely more to repair or renew than it would otherwise have done. Let it be understood that we are not opposed to the strictest economy possible on the part of those who are the responsible heads of electrical companies, for in this economy the dividends are sute to appear. What we have reference to is that parsimonous cconomy that is sometimes used to produce lauge profits at the expense of the good running and perfect maintenance of the plant. Nor is it good policy in constructing a plant to pursue economy to such a point that with the expenditure of a few more dollars the work might be done in a more substantial mannet such as would save a lot of expense in the future care and rumning of the plant. We have in mind a large station that for fine work and expensive construction up to the floor line could not be improved upon, but from that floor line to the toof consists of a flimsy frame and iron structure that is bound to cost mote to keep in order than if built with brick or stone walls and an iron roof, not to say anything of the danger of fire wiping it entirely out of existence. Had the construction been of the reverse order, fire could not find anything to start with or feed upon, hence a lower mite of insurance, less repairs, and last but not least, considerable less anxiety and worry for fear of fire. It would not then be necessary to dot the place all over with fire extinguishers, the cost of which could have been much bet,- employed in buying bricks ind mortar.

Higes tension transmission of power from the Niagara Falis will soon be an established fact, if the assurance of those having the matter in hand is to be relied upon. We partizularly refer to the scheme to furnish power to the manefacturers of Hamilton as put forth by Mr. John Patterson, of that city. The promotors of the undertaking now promise that within a month they will commence putting up a pole line and stringing wires for this purpose. That they have every ronfidence in the success of their scheme there can be no douot, they having already offered the power at a price per H. P. 10 several of the larger concerns who are now operating steam plants. They rlo not specify as yet whether they will operate two phase, three phase, or single phase motors. The power to start with will betaken from the American side of the falls until the zunnel on the Canadian side is finished and in working order, when it will be transferred. It is proposed to use step up and step down transformers and a pressure of 17,000 or 18,000 volts on the mains. We are not at present in a position to grve pariculars relating to the class of construction that they will employ, or as to the sature of the precautions that will be taken to keep their high tension currents
on the wires, but our icaders shall know all that it is possible for us to learn as the work prokiesses. We are well aware that some of our best and most prominent electrical men are skeptical as to the successful carrying out of an undertaking of this kind, but if thas line is constructed-which now seems certainand works properly, their skepticism must vanish, whereas if it is af failure their doubts will be more firmly rooted than ever. Of this fact we are frmby convinced, that ifit is possible to carry power from the Falls to Bulfalo-and we are told that they are already constructing the line to that city-it is cqually possible to carry it to Hamilton, which is only a few miles more distant from the source of power. It is now rumored that a company has been formed in New York State with a capital of $\$ 10,000,000$ with the arowed purpose of carrying power by means of buried wires to all important citics in New York and even as far as New York City itself. This of course, from the present standpoint, seems preposterous, but in this age of electricity who shall say that it will not be a possibility in the near future.

There are many villages and small towns within close range of one another that might form a combine of some sort and have themsehes supplied with electric lighting, the current being gencrated in one of them and carried by means of wires, etc., to the others. This would be especially feasible if one of them should happen to have a small water power, or if not sufficient water to run a turbine, at least enough to use for condensing purposes. In either case power would be produced at a cheap rate, and sold by the partics operating the plant at a nice profit. The wonder to us is that there are no plants in operation under such conditions, it being such a simple matter to both equip and operate them. Not only does this apply to arc lighting for street service but to incandescent lighting for house service as well. With the high tension alternating system such lighting can casily be carried a distance of a few miles at a very littie loss, particularly as such lighting would only be required from shortly before dusk in the evening until midnight, when the dynamo would be stopped, differing in this iespect from large cities where the run is constant for the 24 hours of each day. The pole line could be constructed at a comparatively small cost, as small poles on country roads answer as good a purpose as large ones. The fact that such poles can be obtained frequently at a very low price is decidedly in its favor. There would not be required the preciseness and care in line building that is necessary where a multiplicity of other wiresare met with, as in cities. This would end materially to lower the cost of construction. Expensive hangers would not be needed for the lamps, the main object being to have them put up in a good and strong way, so as to be able to resist windstorms and such like. The wires would be required to be well pur up for similar reasons. The size of are adopted should be 1000 or 1200 c.p. both in stores and in the strects, a single lamp using $7 / 16$ in. carbons being sufficient tor the purpose on account of the service not being required later than midnight. One man with ordinary inelligence could be taught in a very short time to operate the plant, from the trimming of the lamps to the running of both engine and dynamo. A plamt of this kind operated in connection with some manufacturing business already established could undoubtedly be made a paying business.
The recent decision given at St. Louis in the now famous Edison Lamp Casc, will no doubt have a marked effect on the Incandescent lamp industry in the U. S., and while being a decided set back for the would be monopoly, its effect as regard lamp users both in Canada and the United States will be decidedly bencficial. On this side of the line lamp users were beginning to feel the effect of the closing up of several factories in and about Boston and Chicago, to overcome which some of them have cven gone so far as to import lamps from Germany, with what result we are yet unable to say, except that we know there was a saving in price of about 25 per cent. This saving is of great importance to a plant renewing say from 5000 to 10,000 lamps a year, if the life of a lamp is, as represented, 600 to 500 hours. But now that a decision adverse to the monopoly has been given, users will be enabled to purchase again at the old figures. What the effect of a confirming decision on this side of the line would be it would be havd to say. It seems to be the popular opinion that the patents in Canada are not worth the paper
they are written upon, notwithstanding the fact that a decision given some time ago by the Assistant Commissionicr against them was reversed on a re-heating before the Commissioner in Chief. This fact however would have little or no bearing on the case should it ever be taken into the Courts here and decided entirely on its merits, for while the Canadian patent laws are proverbially not the most strict in existence, yet to live up to them there can be no importation of other then raw materials. The question then would hinge on whether the importing of the glass butb ready for the fusing in of the filament and the importing of filaments ready for mounting, not to say anything of the occasional bringing in of a batch of complete lamps, would constitute in the eyes of the law, the importation of raw material only. We certainly think it would not, but the vagaries of the law are such as to make one wary of passing a positive opinion under these conditions. That the owners of the patents did on various occasions import finished lamps and that they still continue to mport both bulbs and filaments is we understand an open secret with quite a number of individuals connected in one way or another with electrical matters in Canada, but aside from all this, our opmion is that they will never press their claims here. In fact only as far back as a couple of months ago they had not succeeded in producing a 50 volt lamp that could be classed as a commercial article, for white giving full candle power to start, they in many cases dropped off fully $75 \% 110$ the course of 300 or 400 hours burning. There can be ne question but that the incandescent lamp is anyood)'s property both in Canada and the United States, and that lamp users generally owe a debt of gratitude, if nothing else, to Mr. Rhotehmel, President of the Columbia Incandescent Lamp Eo. of St. Louis, for the active manner in which he pursued and carried to a successtul issue adefense remarkable for its clearness and conciseness, which we feel sure he was confident would win even before the trial came off.

Deputations representing twenty town and city municipalities waited upon the Ontario Government a fortnight ago to ask for legislation which would enable them to grant exclusive selephone privilegesfor a period of five years in return for a percentage of profits of companies to whom privileges might be given. This step was taken in view of the judicial decision recently given affirming the illegality of such action on the part of municipalities. The petition of the deputation was opposed by the legal representative of an-automatic telephone company, which was not a matter of wonder. It was altogether surprising and amusing, however, to see a delegation from the Toronto 'Trades and Lator Council present in opposition to the granting of the required legislation. The elephone has been properly termed a natural monopoly. One efficient telephone company in a town or city is more satisfactory to the public than two or more companies would be. The existence of more than one company makes necessary the renting by every telephone user of as many instruments as there are companies in order that he may be in a position to communicate with every other telephone user. This means additional expense and trouble. It means, so far as the companies are conecrned, that they will be unable to make a fair profit, and consequently will not be in a position to pay any tribute to the municipality. Thus it is that with exclusive privileges granted to one company, ielephone users get a better and more efficient serice, the telephone company is able to make a fair profit, and the municipality is enabled to exact in return for the exclusive privilege, a considerable percentage of the net eamings of the company with which so lighten the rate of municipal taxation. Strangely enough, there are found people like the Trades and Labor Council, who, while always complaining of their condition, will refuse to allow anybody to assist them in paying their taxes The Legislature, like a wise parent. saw whern these short sighted people's interest lay, and granted the municipalities the power they sought.

PERSONAL.

Mr. I. It. Ihckand. of Montreal. has been elected first nee-president of the Intemational Y, M. C. \AA.
Mr. Willam MeKenace, president of the Toronto Railway Co. has retursed from a trp to Egypt and the Ho!y Land.
Beter Fairgneve. formerly nu employee of the Bell Telephone Ca. London, tied of consumption, as his parents' residence, Detrois, on May 3 ghth

MOONLIGHT SCHEDULE FOR JUNE.

Day of Month.	Light.	Extinguish.	No. of Hours.
	11.31.	IL.M.	II.M.
	1. M1. 7.50	P. M. 10.40	2.50
	117.50	11 1130	3.40
3.	117.50	A.M. 12.10	4.20
4.....	117.50	1112.40	4.50
5.....	" 8.00	" 1.10	5.10
6......	1 8.00	" 1.30	5.30
7.....	" 8.00	" 1.50	5.50
	118.00	112.20	6.20
	118.00	112.40	6.40
10.	118.10	1) 3.10	7.00
11.	118.10	11 3.30	7.30
	118.10	" 3.30	7.20
13......	118.10	113.30	7.20
14......	118.10	113.30	7.20
15.....	" 8.10	" 3.30	7.20
	" 9.20	113.30	6.10
17......	" 10.00	113.30	5.30
18.	"1 10.30	113.30	5.00
19......	${ }^{11} 10.50$	II 3.30°	4.30
20	" 11.10	(1) 3.30	4.20
21......	1111.30	11 3.30	4.00
22......	111.40	113.30	3.50
23......	" 11.50	
24......	\% 11.5	$113.3{ }^{\circ}$	\{3.40
$25 \cdots$	A.M. 12.20	11 3.30.	3.10
26.	11.10	113.30	2.20
27.	$\because 1.50$	11.3 .30	1.40
	No light.	No light.
	No light.	No light.	..
30......	No light.	No light.	...
		Tonal,	133.00

Messrs. A. A. Wright \& Co. of Renfrew, have purchased an incandescent lighting plane.
Messrs. Anderson \& Goddard, dealers in clectrical supplies at Ottawa, have dissolved partnership.
It is announced that work will commence immediately on the construction of the Kingston electric street miluay. The rals for the road are said to be on the way out from England.
The unusual rise of the Oltawa River recently gave oceasion for much anxiety at O:tawa, as the water threatened to submerge the power plants of the electric ralway and lighting companies. Fortunately, these apprehensions were not realized.
A company exists at Calais, N. B., with the object of constructing an electric railway five and a half miles in extent through the streets of that town and of St. Stephen which lies directly across the river. Negotations are alrendy in progress for the necessary poles and sleepers.
The Order of Railway Telegraphers of America spent a week in Toronto early in May in the consideration of matters affecting their organization. They $\begin{aligned} \\ \text { ere welcomed to the city by the mayor, and although sticking close }\end{aligned}$ to business, managed to see a good deal of the city and to all appearances enjoyed their stay among us.
The Otawn Street Railway Company announce that they will immediately set about converting to the electric system the preseat horec car line betreen New Edinburgh and the Suspension Bridge. An order has been given for 750 tons of rails for the purpose. The work is expected to be com. plete by the middle of August. Ornamental iron poles will be used. The cost of building and equipping the new road is estimated at si18,000.
Mr. John Patterson, projector of the Hamilton madial electric railway, says that Siemens \& Halske have been granted the contract for supplying the wire and electric machiners and plant necessary to convey power from the Falls to Hamition. Work will be commeneed at once, and by October the company will be prepared to supply power. The company expects to supply power to the fiamilton Electric Light Company and the street railway. The construction of the fadial road will not te commenced untit next year, as under the company's chartet it has not the right to expropriate. Mr. Patterson has advertised for 2,600 poles to be used in stringing the wires between Hamilton and the Falls.
The Canadian General Electric Company have bought out Hunt Bros;: electric lighting and porer business at London Ont., and will make it the nucleus of their new plant and busuess in that caty. Mir. Chas. B. Hunt will be in charge of the business. A location has been chosen on the river bank for the new central station which is to be crected. It will be a substantal brick building 151 feet by 52 , with six engines of about 1,100 horse power in the aggregate. The are lightung plant will be placed in the south end of the building, with two engines of 200 horse-power each to drive the dymamos. This part of the building will tee two staries, with the repair shops up-stairs. In the centre of the ground floor will be the incandescent lighting and power plant, driven by 700 borse power engines. The boiters and furmaess are to the in the other end.

RULES FOR FINDING PROPER DIMENSIONS OF STEAM PIPES.

A question that an engineer is very often called upon to consider is whether the size of the steam pipes leading to his engine is sufficient to let through the amount of steam necessary to supply the engine without a considerable fall from pressure. The engincer taking an indicator card, measures the height of his steam line above the atmospheric line and gets at once the pressure that was in the cylinder at the commencement of the stroke and while the engine was taking steam. If this comes within a very little of his boiler pressure he feels more satisfied says the Journal of Commerce, but if, on the other hand, it shows a considerabte fall from the pressure in the boiler, he at once asks himself what he is carrying a certain pressure in his boiler for, if it is not to get it into his engine, and looks about to see the cause of the loss in pressure. Natually the steam pipe is the first object to look at. If it is not sufficiently covered there will be a loss in pressure from this cause, and besides this a loss of heat that represents a considerable loss of fuel as well. An engineer can very readily figure just what this loss from naked steam pipes will be. A stam pipe will lose very nearly three heat units per hour from each square foot of radiating surface of the pipe, for every degree difference in temperature between the stean inside the pipe and the air outside. Suppose he had 50 fect of 6 -inch pipe uncovered, carrying steam at 80 pounds pressure, and the eemperature of the room was 90°. It takes .57 of a foot in length of 6 -inch pipe to give one square foot of heating surface, and in 50 there would be 87.5 square feet of heating surface. At 8o pounds pressure steam has a iemperature of 324°, and the difference between it and the engine room would be $324-90=$ 354. As $87.5 \times 3 \times 234=61,425$ heat units, and as one pound of coal is not good for more than $1, \infty 0$ heat units, this lost heat will require $61,425 \div 1,000=61.4$ pounds of coall per hour, to say nothing of the loss in pressure. It would be quite an easy thing for an engineer to put an indicator on his steam pipe, connect it with the reducing motion of his engine and take a diagram from the steam pipe just as he would take a diagram from the cylinder. This card would show the fluctuations of pressure in his steam pipe and where the piston was when those fluctuations took place. This would prove whether any loss in pressure might be between the pipe and chest or between the chest and the cylinder. If the diagram showed that immediately after the engine piston moved, there was a noticeable fall in pressure in the steam pipe and that this continued until the engine had cut off, then it would be conclusive evidence that the steam pipe was not large enough to supply the demand for steam and keep up the pressure. If, on the other hand, the card showed that the pressure in the steam pipe varied little from that in the boiler, then the diagram would show that any loss in initial pressure in the cylinder was don to the inability of the steam to get into the cylinder, and would show that the ports were restricted in arca. A pipe diagram is the surest way of proving this, but it can be approached by means of figures. The best engineers have found that in supplying steam to an engine throuph a pipe, the steam should not be obliged to move faster than 100 feet in a second. This is to say, that if the pipe was more than 100 teet in length, that particle of steam in the pipe 100 feet from the cylinder should have reached the cylinder in one second. It will make no difference whether the steam is cut off early or late in the stroke, for the steam must move at that rate of speed to fill the cylinder while the valve is open. If the cylinder was required to be filled once in a secondentirely filled, without cut off-it should take all the steam in 100 -feet length of the steam pipe in that second. If it is cut off at half-stroke only 50 feet of the length of the pipe will be taken, but that 50 fect has been moved through in one-half of a second and that is at the rate of 100 feet in a second. So with onequarter cut off, only 25 feet of the length of the steam pipe is relieved of its steam, but it was relicved in one-quarter of a serond. The rate, therefore, is the sanie for all cut-offs, for, if there is less space to fill because of the cut-off, the time in which it is to be filled is lessened in proportion.
It is a fact that the area of the opening of a pipe, multiplied by its length, will give the volume that pipe will contain. Thus a steam pipe having an area of opening of 20 square inches, and 500 inches in length, would contain a volume of $20 \times 500=10,000$
cubic inches. Dividing this volume then by its length will give the area of opening of pipe. If we know, then, how much volume of stean must be supplied to an engine in a second, and wish to put it into a pipe 100 feet long we have only to divide this volume by 100 and get at once what the area of the pipe must be to contain this volume of steam. We will have then a volume of steam in 100 feet length of the pipe just equal to whatt the cylinder demands, and the steam will theretore move at the rate of 100 fect in a second.

If the engine makes 60 revolutions a minute, then the piston makes two strokes in a revolution, or one second, and the cylinder must be filled twice in this second. Multiplying the area of the piston by its length will give the volume to be filled in one stroke, and by 2 will give the volume to be filled in one second. If the engine moves 90 revolutions per minute, then this is $11 / 2$ revolutions a second, or three strokes, and this must be the volume to be filled, the space swept through by the piston in three sttokes. The proper way to figure this. is to multiply the area of the piston by the number of fect the piston moves through in a second. Suppose an engine of 42 -inch stroke, and running 66 revolutions is minute, or $2 \times 66=132$ strokes. Then 42 inches equaling $31 / 2$ (fect) $\times 132$ (strokes) $=462$ fect in a minute, divided by $60=7.7$ fect a second. Multiplying this by the area of the piston in square feet gives the volume swept through by the piston in a second, and this volume must just equal the area of the steam pipe times 100 feet long. All there is, is to get a steam pipe large enough so that 100 leet of it will just equal the volume swept through by the piston in a second.

The rule is as follows: To find the proper area of steam pipe, multiply the area of piston in square inches by the piston speed in feet per second and divide by 100 . Quotient is area of steam pipe in square inches. From this area the diameter is obtained by wel' known rules.

There is a loss in pressure at the elbows and through globe valves, but this may be disregarded unless there are mote than five of them, in which case they will produce a loss in pressure in the friction of the steam passing through them.

It will be seen that if this is the proper area of a steam pipe, the area of the port should be just as much. It is here that the difficulty comes. The port should be open to an amount that will equal this area by such time as the piston, starting from a state of rest, gets to a movement equal to this rate of speed per second. The object of all recent improvements in Corliss engines has been to open the port nearly the full amount at the commencement of the stroke and to cause the valve to move slowly until; cut off. No good valve gear will have such a motion that the port is slowly and gradually opened. What it needs is a quick opening of the port at the start, and valve gears that will not give this quick opening are defectuve. When there is a fall in pressure between the steam pipe at the chest and the cylnder, this insufficient opening is the cause, and it will be found that the valve is slow in opening, or sometimes it is the case that the ports are too small. A valve can be set so that the opening will be slower than at other times of setting. This should not be. We will touch on that matter after. In figuring for the exhaust pipe and port, the steam should not be required to move more than 75 feet in a second. In the mile, therefore, divide by 75 for the exhnust pipe instcad of 100 as for the steam pipe--Scientific Machinist.

So far as invention is concerned, says the Lanadtan patent Reverel. altention seems to be more and more concentrated on electricty. In the December 189 g issue we published a few lines anent the paucuty of electric heating. and it is a striking coincident that one of our worthy fellow entizens should since have procured patents for about a dozen different inventions of that ilk. A drug store, only a few doors from this office, is being exelusively heated this winter by electricaty, a battery of five heaters circulating the water through the colls and kecping the plare warm even if the mercury hovers about the lower forties, as $1 t$ is recently reported to have done. The electric strect cars are made comforable in the same manner, lumber ki!ns and green houses are worked similarly, bread lias been baked in electric ovens and a numerous pany sat down to a dinner with elaborate menu, everv morsel of which had been cooked by clectricity. But practical every day house warming by electricty, is still a luxury which only the proverbial millionaire may enjoy, unless current can be obtaned at a mere nominal price. Current is or ought to te cheaper in this city than clsewhere, but still it cannot be bought commercially at $\$ 10$ per horsepower. So there is still room for improvement. The primary biltery is still an unsolved problem and so is the secondary, or stomge lattery, as far actual commercial demonstration is concerned.

ELECTRIC MOTORS.

Br Gho. D. Sinibabuson.
There are many interesting points about the opemtion of electric motors. A number of books und many neticies in the papers give a good discussion or the dynamo. but when to comes to the motors we cannot sily guite so much. Writers generally presume upon so much previous knowledge that one who knows litte of the stubject finds it dificath to follow them. 'There nre a mumber of intereating points about the operation of motors that puzale even "experts," Some are compantively cisy to solve tf one is adept in higher mathemalics. There are others that one can understand without much need for mathematics if they are only expbitined th singhle fanguage.

The wrter lats leed working with moters of various sorts for a number of years and to a series of antieles in the American Merhanic he expeets to dis. cuss some of these points in a way that he hopes will prove of interest to many. Questions and crittisms will be welcomed at all times and from any source.
In order to satve lime let us suppose that we have a motor ready to be wored up nud put to work. Then while this is rumning and paying for itself. we will consuder what it, is doing and what it might do. Motors for direct currents maty the classified as scries motors. The field magnet coil is wound with coarse wie and is connected in series with the nrmature so that the whule of the current passes through them both. In the shunt motor the field coil is wound with many turns of fine wire so that it has a resistance three or lour times that of the armature. In the shant notor the current divides, a small part of it gong through the field coil while mearly all of it goes through the armature. Motors for are lisht or serics circuits are always setics machures and senernlly must bave some mechanical regulator. Motors for constant potential circuits may le eilher series or shant according in the work which they are doing.
Motors for are light or "series" cireuits are connected into the sircuit in the same way as are lamps. Some of them are provided with a simple switel that short circuits the motor as shown in Fig. 1. It is preferable to

use a dooubie pole switcis in order to cut the motor enturely out of the circuit when not running. This is for the purpose of safety, in order that one may not be liable to get a shock from the motor ja case the line was grounded. The method of connecting by at double pole switch is shown in Fig. 2 To start the motor thes switch is opened. thereby throwing the motor into circuit. No rheostat or resistance is needed since in no case can the current through the inotor become greater than that in the nain line and this is kept approximately constant by the dynamo.
On starting up a motor of a constant potentul circuit, it is necessary 10 hate a certain amount of resistance in series with the armature in order to prevent an excessive current from flowing. As the armature comes up to syeed it develops a higher and higher counter-electromotuve force which opnoses the ciectromotive foree of the line and so regulates the amount of current passing through the armature. When senes moors are used on constant ponential circuits, as is the case with the electric ratway motors.

a vuintle teststance is connected belween the motors and one of the mains. The other terminaliof the moor is connected to the oppositemain, as shown in Fig. 3. In ilus cise ulso it as better to use a double poie switch.
Series motors are not self regulating on constant potential carcuite and are not sumable whete constant speed is desired. In such enses shunt wound motors are prefemble and are generally used. These are connected up, as shown in fig, \&, so that the field circutt is complete when the switch is first closed. The armature circait is then closed through a variable resistance which is gradually cut out of the crecuit as the arnature comes up to sped. This leaves two separate circuits through the motor. the ficid and armature, each being connected directly across the two mains, each taking its uwn current.
It is sometnomes desimble to reverse the metor 50 as to make it rolate in an
opposite direction. This is accomplished by elamging the direction of the current through either the feld or the nrmature. If we reverse the current through both the field and the armature, the aramare will run the same direction.
There are some other interesting points nhout the regulation of motors. It is well known that moters will of the melves regulate the amount of cur-

rent, tikng more or less according to the work to be done, tine speed tring kent neatly constant atl the while These poitts will tee lelt for a later .rticle.

CONDENSING BY AIR.

The author, having teen ted by the rise in the price of coil to miapt a condenser to n non.condetsing steame engin: of \quad o-horse power, and lwing unable to obtain.a fresh supply of cold well-water for more then tur minutes at a tille, was obleged to resort to the principh: of artificial cooling in order to use the sime water conanuously. After discussing several neethots, such as cooling tanks, open gradition works, and others, he de-criby stue phan adopted, whinh is to divite the hot water into narrow strenums, which fall through a system of vertical channels against a mapid eartent of air. moving in the opposite direction. In the first form the appanalns masists of a rectangular wooden tower 7.5 metre lugh, 2.9 metre long and 1.3 metre braad, the upper half of which is divided into narrow passages by twenty-stx boarded patmons spaced to centimetres apart, white the lower half is in air chambers supplicet by a fan with spimal blades 1.2 tuetre in diamber fixed in one of the sides. The water to be cooled is delivered from a pipe at the top and passes through the intervals beiween the boards agninst the upward current of air, which moves at about 61 metres per second. The effect is two fold; the air acting partly by directly alsorb. ing heat and partiy by evapomsing and absorbing water vapor, the relative value of these two factors being different at different times of the year. In winter the nir works principally by direct cooling, but in summer, when its absorptive capacity for vapor is increased two and a half fold, the cooling is mainly due to evapomtion: the final result being tolembly constant throughout the year, the vacuum in the condenser varying between 70 and 73 cenumetres of mercury. The cooled water is reserved entirely for condensing. being 200 greasy for feeding boilers, so that it is constantly re ceiving new water in the discharge from the condenser. Theoretically, therefore, this should give some increase of volume in the circulating water after allowing for evapcation to the arr, but in practice it is found that the quantity is constant, except oemsionally on the coldest days of winter. when a small amount is sometimes run to waste from the collecting cistern. which is phaced underneath the air chamber.

A curious consequence of the use of the same water over and over again for condensing is that a higher vacuum is obtained from it than might be expected from its temperature. Thus, in five compantive experiments, the sane reading of the vacuum gauge (70 centinetres) was obsained with .he sume water, returning at intervals of ten minutes to the condenser ns with fresh well water: the temperature in the former case being 27° to $28^{\circ} \mathrm{C}$. and in the later 12° to 13°. This is due to the circumstance that the rupid circulation causes the injection water to be practically free from air, while in the case of spring or other naturnl waters the air pump has to remove the dissolved gases, and thus a worse vacuum is obtained than with distilled water. It might be supposed that the intimate mixture of water and nir would lead to reabsorption of the lanter, but this does not take place, partly from the shors time of contact, but more particularly from the circumstance that the energy promoting separation of air in the air pump is measured by the pressure of the atmosphere, or 10.300 millimetres, or one-twothousinths part of the former.
The space required for the apparatus is only about one-one-hundredths of that of a couling pond; in surface of 3.5 square metres being sufficicos for 100 -horse power, that of the boards being calculited at 3 square metres pet hotse power. The atr pressure is 5 millimetres of water, the velocity is 6.5 metres per second, and the volume required about 2000 times that of the smiter, with a per cent. of the latter being absorbed as mapor. In order $t 0$ promote intimate contact between air and water, it is fourd $t 0$ be better not 20 use trourds in single lengiths of the full height of 6 metres, but to divide them, placing the lower half at right angles to the upper one, whereby any dry kernels of air from below are brought into contact with the wet surfaces in the upper part. Care must be taken to lay the water onto the boards so as to flow smoothly over them and to prevent all spiriting. The cooling effect of the appamtus when the boards are placed horizontally is only one half of that of the vertical form.

The wear of the apparatus is very small, the fatty matters brought over by the condensed steam are partly deposited in fine films on the surface of, the boards, and protect them from rotting, while the remainder collects on
the surface of the water of the tank and is collected int intervals of two months for conversion into wigon grease. The load on the engine is increased by nbout 3 per cent. by the work of the fan and from $1 / 2$ to 3 per cent. by the circulating armongenent, which may be effected by the air pump directly or by a centrifugal pump. As the ndvantage gained by condensing is about 35 per cent. in an engine of moderntely gocd quality, the net saving is about 25 per cent. Numerous examples of the applicution of the method to engines of different kinds are given in the paper. Hhas loeen adopted or is in course of construction in thirty.five diferent establish. hishmants, the largest eximple being on a centml condensing plant for engines of 2500 -horse power, at the iron and steel works of Dudelingen, in luveaburg - [lnst. C.E.

ELECTRICAL RECORDING METERS.*
 \section*{Dy Cari. D. Haskins.}

1 propose to brienly describe and discuss the leading elements which. singly or combined, have gone to make un the typieal nucters presented to the pablic up to the prese t time. 1 find myself limited to generalities, and the mathematical theory and strictly technical considerations have necessarily been neglected that the field might be approximately covered.
The earliest meter patent was granted in 1872 to Mr. S. Garefner of New York City, rad the pronciple of a magnetie of electro magnetic release for a simple cloc': movement is preserved in two or three so.called time.counters to-d.dy and is doubtless very useful for many purposis, as for example in the Spaulding clock for registering the hours of use of a motor. or other sinnilar devices of registering the hours of use of are circuits. These deviers I shall neglect ; they are not meters within the true sense of the word, and their simplicity is obvious.
The earliest successful meters, if we consider classes rather than individal instruments, were the chemical meters, closely followed by ther-mo-meters.
The chemical meter is obviously capable of giving most accurate results: in fact with proper manipulation, it is very donbtfal whether any mealsuring device which has up to diay been designed conld more correctly sum up passing power. It is in the manipulation and eare which such meters require that their fall lies-if fault there be.
An electro-plating lath in its meter form as generally used floes not. however, give a dial indication, and the consumers ask for a dial indtention almost invariably, unless they lave already become thoroughly familianzed with Edison meters as used by many large Edison stations.
Many very ingenious and some quite successful attempts have been made to actuate a train of gears by the electro-deposition of ith electrolytic bath. Thus we have two electrodes suspended at the opposite ends of a walking. beam, as shown in Fig 1 . This walking bean is in various ways connected with a poite changer, and as hut a small portion of the current being measu-d passes thrcugh the true meter (for of course almost all chenneal meters are shunted) the pole changer is not perhaps a very setious objection.
The antion of such a meter as this is obvious; we have a deposit from one electrode onto the other, until the second electrode becomes the heavier. when the beam tips and the ricording device is set one notch ahead, the pole changer is thrown over, and the deposit takes phace in an opposite direction, the former plus electrode becoming the minus, and so on. This device deposits and redeposits the same zinc, or mother electrode material. Again we have a modification of the same device in the form of a wheel bearing a number of clectrodes, and on the same principle setting up con. tinuous rotatic.
It should be noed that in this first digression from the ciremical meter We at once meat with the prime factor of diticulty in all motor meter con. struction-that of friction, which, if uncompensated, must invariably introduce mote or less serious error.
Another form of selfregistering electrolytic meter has a cathode plate suspended from a spring balanee, an ordinary sens.tive spring weaghung machine, and the heavier the enthode grows so much gicater is the reg. istration of the spring indicator. This device is perhaps preferable to the reciprocaling moventent just described, but is limited in the capacity of the spring, and probably lacks sensitiveness 10 small amounts, being dependent of cotrse solely upon the nicety of construction in the spring balance.

Mercurs has at times been employed in the construction of electrolytic meters, and ith at least moderate success, for with a mercury anode and a cathode of the same or other material, a record easily measared may be obtained, and such a meter may sven be made self-registering in a graduated tube or by balf a dozen other more or less simple means. Such are the more typical electrolytic meters.
Another form of chemical meter formerly quite popular among inventors depended for its registration upon the decomposition of vater, generally acidulated water, and sometimes upon the decomposition of more volatile substances. This class of meter may very properly be divided under swo heads:
First, those meters simply dependent upon the measurentent of the gas developed by the decomposition of water through any gas registering deviec. In fact we may say that such meters are mere decomposing baths connected to a gas meter. There are some devices of merit which may le classed under this head, but the principle is probably not commercial, for we bave nothing very suceessfut of this kind in use to-ildy.
One of the more ingenious meters of this \dot{x} nd provides a diagonally

[^1]placel rotating wheel with perkets; the decomposition takes place directly under each pocket progressively, and as the nir pocket fills with gas the wheel solater sufficiently to free this gas nt the surface of the fludd, bringing another nocket into place. Others have a is ng und falling dayphnigms like the popular gats meter, and still others a delieately poised nir fan over a minute aperture. This last device is obviously most ineflicient.
The second group of meters under this classification tring us to the theme-meters, a typical group comtaning a few meters of more or less pro. nounced merit.
Those thermo-meters depenting upon volatization of a tluid generally have two or more seated bulbs partly filled with some volatile fuid, as for eximple, naphtha or eher. When two such bulbs are used, wey have generally teen mounted on a walking-Leam mechanism combined with a pole-changer, each butb containing some kind of at theostator heat deviloping deviee deprendent for tis heat on the current jnssing through the meter. the two batles communicating with one another. The theostat in but one bulb is in cercuit. The hent developed in the theostat in circuit volatilizes more or less mpidly the thaid contaned in this bulb, according to the current passing through it. The gas developed either pisses in gaseous form into the secund bulls and condenses, or else, is is more common, forces the fluid remaining by the simple increase of pressure into bult No. 2, which it once becomes heavier and caluses its end of the bean to hatt. This throws the pole ch:anger, and the rheostat in the second bulb is thrown intonction, trpeating the operation as just described. To be successful, such a device must be very sensitive, and to be sens tive, the construction must be of a more or less expensive character and so delicate as to be to a greater or less degree prohibitive. Like the walking-beam meters just described, instrumetis of this class have been designed with a number of butbs mounted on a rotating wheel, the same actuating pronctple holding trate for alt such devices. Another ingenious form of therno-meter, no longer in any sense a chemical meter is an instrument dependent for its action upon the lieat in a confined but citculating atmosphere. Thus a rheostat dependeat for its hent upon the amount of current passing is so arrangeal as to heat a body of air, whech by the peculiar construction of its reeppacle, at once commences to circulate more or less nipidly, dependent upon the heat. It is obvious that if a delicate air fan, a serew propelior in fact, be suspended over such a circulation of air, us speed would increase with the speed and volume of circulation, and one of the nost ingenious and most interesting meters that it has been my goorl fortune to see is the Forbes meter constructed on this plan. But here frletion is the most serious consideration, the torgue obtained in this manner bearg necessarily small.
While the Forhes meter cannot perhaps be properly considered as a motor meter in the uue sense of the word, it still must be classed as such in a cerrain sense, and 1 think it miay safely be accepted as an axiom that to be successful in practical oper,tion a motor meter of any kind mast be of high torque, for it is only by the combuntion of high torque and compensated friction that accurate tesutes can be obtaned on hight lauds. I might saly that almost any one can build at meter which will record f.inly accurately on heavy loads: the difficulty is to build a senstive and accumte meter for very light londs down to one lamp.

SPARKS

The bromw to gunrante $\$ \$ 00,000$ thonds to the Vancouver Tramway Co. was defeated at the polls.
Electricity will shortly lee applied to the working of the New Curran lridge, over the Lathine Canal, Montreal.
The Berlin and WaterlooStreet Railway Co. has been authorized to construct works for the production of electricity.
At the recent examinations in connection with the Tirronto Techneal Schocl, the following were the successful candidates in Electricity, -R. C.. Pewman. J. W. Iawson, A. W. McCullough, A. Goorle, and James Pitlerson. President Myles, of the Hamilton. Grimbsy and Beamsville Electric Railway Co., recently stated that if the City of Hamulton did not gramt a bonus of $\$ 30,000$. the read would not be built. The projectors asked the c.ty to take $\$ 50,000$ stock and waive dividends for 15 years, but the application was not granted.
Her von Siemiens, of the firm of Siemens \& Halske, has arrived in New York and it is suid will be in Hamition shortly in connection with the project of the Hamilton Radial Electric Kailway Co. for the transunisston of power from Niagarat to Hamilton. Should he concur with the high opinion held by the managers of the firm's branch factory in Chicago, it is prebable that a large plant will soon be erected in Hamiton.
The Ezell Telephone Co. has been authorized to issue \$i40.000 anditiunal stock, making the capital $\$ 2,640,000$. In a circular issued recently by C. F. Sise. Presidem of the company, it is statel that each shareholder of record of date of circular, will be entitiod to take at par. shares in the new stock in the proportion of one share to five shates of old stock beld, until $2 \mathrm{p} . \mathrm{m}$. June 1st. The b-lance of new stock shall then be disposed of as the directors may determine.
The City Railway Compiny of Windsor (Lid.), have been incorporated for the purchase, construction, equipment and operation of is street milway in the ceity of Windnor, the towns of Walkerville and Sandwich, and the townehips of Sandwich East and Sandwich West. The Company consists of John Coventry, John Davis. Wm. J. McKee. Wm. J. Pulling and James Anderson, of Windsor. Gco. M. Hendric of Detroit, and Robert Thompson, rff Hamilton. The capit.ll stock of the Company is $\$ 250,000$.

ELEGTRIG RAILWAY DEPARTMENT.

SELLING POWER FROM TROLLEY CIRCUITS.

The numbet of railuays selling power fiom their trolicy circuils is surprising to those that have not invesigated the matter says the Sheret Rolicuay Reaiew. The business has grown in a quiet way, generilly requiring little effort on the part of the road, and so it has attracted but little attention. We could name a half dozen mads within 100 mites of Chicago that have a good income from thus source.

They are many reasons why the average electric road can sell power from its trolley circuit more cheaply than the electric light stations in the same town. In the first place the power business in the majority of moderate sized towns, such as the grenter part of the electric roads ot the country operate in, is either so scattereif or so small that it is only at great expense that the lighting companies can handle it. In order to supply these scattered customers, the electric light company has cither to install a special high pressure circuit and dynamo for its power work, or to invest in a large amount of copper to bring its low pressure incandescent system to such custonsers. In either event the result is rather unsatisfactory to the company, and an investment is required over and above that necessary to the regular business of the plant. The running of a small engine and dynamo simply to supply a few consumers with power is liable to be unprofitable cither to the company or the consumer. If the power is supplied from lighting circuits, the vanations in load on the large motors dues not conduce to steady light. Then, too, chey are generally plants of some size that want power, but it is impossible to generate electricity and supply it at some distance and make it more economiral than direct steatm, unless the gencrating station is very large.

With the milway the case is different. It has an immense power capacity installed and running at the time when it is wanteh. Its outay per horse power of steady power generated is very low. Its lines are strung all over the city, and the ground helps furnish a return, so that the cost of installation is small. In sidort, what may be a very unsatisfactory business for the lighting companies may be a very satisfactory one to the street railways.
It is not advisable, of course, for the railways to enter into cut-hroat competition with the electric light companies, but if the field is undeveloped there are good reasons why the railways can give the cheaper service. Such business generally does its own canvassing when once started.

ECONOMY IN ELECTRIC RAILWAY MANAGEMENT.

Tuf. economy of electric over horse railways became evident very soon after the former were commetcially in operation, but there remained a large marsin of unnecessary expense in every electric road up to a recent date. Indeed, it is doubtful if any such road, however small or old, has yet reached a condition of just economy. There may be electric roarts whose management is penurious, but pentoriousness will never prove to be cconomical for a road in the long run. Among the various means of reducing cost and, at the same time, increasing the efficiency of sevice is the furnishment of complete information to the employecs in regard to their duties, also technical information in regard to their special work. One large road has re. duced the number of men employed in re-winding armatures one-hatf, and whout hardship to the men. Similar economies bave been accomplished in other deparments. Thes result has come chiefly from the employment of trained electrical and mechanical engineers, whogive careful attention to details; while men in charge of the motors and cars are furnished with a book giving clear explanations of the virious parts of the car and its electrical equipment, will instructions in regard to their care, and the proper method of repair or prosedure in case of accident on the road. Spectally trained inspectors are traversing the line at all times, looking atter motors that are not working perfectly. In all departments in the shops everylhing is made to gauge, so as to be interchangeable. Ot course, the details of the boilers, engines and generators have, also, been properly adjusted and
closely looked after, -greatly to the increase of cuirent to the pound of coal. Tlese improvements in operation tell to a demonstration that its skilful engineers and trained foreman are well worth their salaries to the company Flecticity and Ralroading.

COST OF OPERATING ELECTRIC CAR HEATERS.

TuE: Consolidated Car Heating Company, of Albany, New York, has just issucd stys the Stocet Railivay Review, a table giving numerons figures on the cost of generating electrical energy under different conditions. The ultimate object, of course, is to get at the cost of running electric heaters, but the table has some interest aside from this. The course of I -horsepower hour at the car is given at $\$ 0.1335$ under the most unfavorable conditions, viz. : with coal at $\$ 3$ per ton and high speed simple engines. This includes all the operating expenses-taxes, repairs, elc. The cost with triple expansion slow specd condensing engines is given as $\$.00748$ with $\$ 2$ a ton coal. With the heaters using 8.90 amperes, which is the amount usually required in average winter weather, with the outside temperature between 20° and 0°, the highest cost per hour would be $\$.03649$ and the least $\$.00943$. This table has been compiled by the company's consulting engineer, James F. McElroy, from data given by Charles E. Emery, in the March 1893 , Transactions of the Auserican Institute of Electrical Engineers. It is computed on the basis of running 20 hours a day 365 days in the year. The table gives figures on over 500 items and will be Sound of great intercst to those who are getting figures from their own planis as to cost per year of different items.

PRIZES FOR YOTORIEN AND CONDUCTORS.

The directors of the Eist Cleveland Railroad Company of Cleveland, O., have decided to give the motormen and conductors an opportunity of working for something in addition to their salaries. They have offered $\$ 3,00$ in prizes for carrying out the rules of the company and avoiding accidents. There will be two awards : one on July 1,1893 , another January 1,1894 . At each award $\$ 1,500$ will be distributed as follows: Fifty dollars as a first prize to each of ten motormen, and $\$ 25$ to each of ten motormen as second prizes; $\$ 50$ to each of ten conductors as first prizes, and $\$ 25$ to each of ten conductors as second prizes. In order to determine who are entitled to the prizes a careful record of each man's services will be kept, and all accidents and complaints will be noted. The records will be submitted to a committee consisting of one man selected by the company, one sclected by the employees, and a third chosen by the two. This committee will make the award of prizes.

MAXIMUY SPEED OF ELECTRIC CARS.

The published abstract of calculation by J. Kramer in the Elcktootechnische Zaitscerift on the maximum speed for an elec. tric railway is as follows: "The theoretical maximum speed of a perfect motor on rails is taken at 500 kilometres (310 miles) per hour. This is on the level, with curves not less than 20 kilometres (12 miles) radius, and 12 -feet driving wheels. The problem of an electric locomotive and two cars is then investigated at length, and the author appears to have considerable doubts whether the proposed 250 kilometres per hour on the projected Vienna and Budapest line of Messrs. Canz is feasible. The author vould put the maximum at not more that 200 kilometres (120 miles), if as high.:

McFaut's Factory and Dealers Supply World informs us that if a bottle with a glass funnel, in which is placed lumps of calcium chloride, is placed in a case where cutlery, etc. is on exhibition, said cudely will never rust, as the calcium chloride will a:tract every particle of moissure to itself, and that part which is dissolved will trickle into the bottle, leaving the solid part intact so that it is useful until entirely dissolved. We suggest that some of our engineer friends, whose engines are located in damp places procure a carboy and fit it up, so that if the statement be true, all of the rust producing ingredients in the atmosphere may be bouled up, instead of setling on the bright work of the engine--American Afachinist.

FLUE TERPERATURES AS AFFECTED BY FIRING.

 By Dayio M. Grerne, M. Am. Soc. C. E.In March, 1892, while experimenting with one of a battery of 10 large steom boilers, in a New England manufacturing establishment, a variety of data were ouscrved. Among these were flue temperatures of the products of combustion, as affected by opening furnace doors for firing and for cleaning fires. Believing that the observed facts will be of interest to olliers, the writer has constructed a series of temperature curves, three of which are furnished herewith.
The boiler was of the ordinary retuin tubular type, 17 feet long and 6 feet in diameter, with 1403 -inch tubes, 16 feet long. The fire grate was $6^{\prime} 4^{\prime \prime} \times 6^{\prime}-38$ square feet. Bituminous coal

was burned in each case at the rate of 14.26 pounds per square foot of grate per hour, and steam was carried at about 65 pounds by gauge. The products of combustion after reaching the front of the boiler, through the tubes, rose to and passed backward over the top of the boiler to a flue connection at the rear. A high-grade mercurial thermometer was placed in the current of gases at the top, about midway between the front and rear ends of the boiler, which was read at intervals of 30 seconds.

Figure t is the temperature curve due to normal firing, or
firing at will. At the end of the second interval of 30 seconds, both doos liad been opened, the fire replenished and the doors closed. Observations were continued 18 minutes, about the ordinary interval between firing.

Figure 3 is constructed from observations taken on the same day (March 7, 1892), and shows the effect of opening the furnace doors for the purpose of cleaning fires, as well as for replenishing them. At the end oi the second 30 -second interval, both doors had been opened, the fire cleaned and the doors clused. After an interval of about three minutes, both doors were again opened and fired, one after the other, and closed again. Observations continued during a period of 22 minutes. On this day, the equivalent evaporation from and at 212 degrees was 10.51 pounds per pound of coal.

Figute 3 is constructed from observations taken on the succeeding day (March 8) when the rate of coal consumption was the sance as $i t$ was on the 7 th ; but when an interval of $71 / 2$ minutes was required between the firing of the twa doors of the furnace. Thus each door was opened and each half of the fire was replenished at intervals of 15 minutes. In other words, half of the furnace was fired every $71 / 2$ minutes, and the whole of it every 15 minutes. The temperature curve, Fig. 3, shows the effect of this clange. On this day the equivalent evaporation from and at 212 degrees was 10.79 pounds per pound of coal.
The boilers in question constituted a then recent addition to the plant ; owing to limited space, however, suitable proportions were impracticable, and the proportions of the boilers were left to the balders, while the settings were in accordance with the directions of the writer.
Discussion of, and further comment upon, the facts presented are purposely omitted. Each interested reader is thercfore free to draw his own conclusions.

TRADE NOTES.

Tiwenty cars are being turned out by the Ahearn \& Soper Car Works, Ottawn, Canada, for the Montreal Street Railway Company. They will be equipped with Westinghouse motors and delivered ready for operation on the tracks.
The following letter addressed to the Magnolia Metal Co. New York, by Mr. B. J. Jensen chief engineer of the steamship "Plymouth, of the Fall River Line, speaks for itself: In answer to your ingury as to our experience with the Magnolia Metal, we cesire to say that we huve it in the intermediase crank pin brasses of the Plymouth, and it has given us every satisfaction, and from our experience with it we checrfully recommend it for such work.
The Penberthy Injector Co., of Detioit, Mich., repart that they again have their machinery in motion after a delay of ten days occasioned by a fire at their factory on: May 9 th, at which time their entire third floor and roof were burned, and the stock and machmery on two first floors badly damaged by water. Over 50 carpenters, masons, plumbers, roofers and steam fitters, have put in shape in seven days (three used in insumnce adjustment) what looked to be a months work after the fire. They are prepared to fill orders as usual.

The St. Catharines Electric Light Co. have replaced two of their old dynamos by a new one with double their capacity and having all the latest improvements. They will also extend their circuits as soon as they have the power house completed.

Telephones, desk, min line, warehouse, Annunciators, Alarms, burglar, fire, Electric Bells,
 Electric Motors, Isolated Plants, \&c, \&c.

Electrical Work,

new or repairs, in alit its brinches.
a complete stock of
General Electrical Supplies Incandescent and Arc Wiring

Electric Heating Apparatus. hGENTS For the ceilebrated amerfcan watommean's tuare devector. Note Address-302 ST. JAMES STREET, MONTREAL. TRIITPETONTE INO. 284O.

CYLINDER LUBRICANTS.

Some interesting practical experiments were tecently made to ascertain the expinsion of oils unter the action of steam, says an exchange. This point, together with its resistance of intense heat and frecilom from actid-producing properties, fives the value of a cylmder lubricant. Since the universal acepetance of bydrostatic lubricants as the only correct methoi of feeding, the minimum quantity of oil for a given amount of work can be readily determined. The atomatic application of drop by drop, just as needed, preventing the waste of injection pumps and securing uniformity instead of the uncertainty of hand feeding has insured the ste:m user the saving of many dollars. The mistaken eronomy of selecting an oil on accoumt of its attractive color or to meet the defects of the oil cup, that from some fatul in construction or lack of sufficient pressure will not feed heavier oils, was very clearly demonstrated in the experiments referred o.

In filtered and lipht-bodied cylinder oils the color is obtained at the expense of the wearing properties. Facilitation the feed at the same time arcelerates escape from the stem chest before the ail has performed the work intended. Failing to atomize and thus be distributed by the steam, such oils are blown ont with the exhanst, leaving the cylinder without lubrication. Consequently, they must be fed upliberally in order to make up for this failure to dissmminate.
There is also a waste owing to their lower fire test and more or less dianer from their tendency to burn or bake. The tests also show that an apparent body can be produced by the compounding of forcign substances. To give seeming consistency gelatinous matier is used. "This, as well as "fixed oils" and fluid results of amimal fat, ire not volatile. That is, they cannot
be distilled without decomposition. When heated under the action of steam in the cylinder with the alkaties of the feed water, the fatty acids combine with the alkali, producing saponi fication, while glycerine is simultancously formed. The effect of such a combination on metals is well known. Their heat only tends to make such substinces more adhesive, and utterly friling to atomize, they drop into the cylinder to be worked and chuned by the follower of the piston.

SPARKS.

The Corporation of liretericton, N.B.. has obtained power to issue delsentures to the amount of $\$ 6,000$ for the purchase of an electric phane for street lighting.
it is proposed to build an electric railway from Fredericton to Marysville, New Bmaswitk, a distance of four to five miles. It is proposed to cross the river by a light sted bridge.
All the cars on the Montreal street milway will now te buile by the company at their own shops at Hocletaga. 'They will also equib, att a cost of $\$ 30.000$, a shop for the manulacture of their electric motors.
Almut 70 miles of new electric miluay tracking will be latid in and aroand Toronto, this summer. which will reguite the addition of 300 ears, Torono will then have 228 mites of electric tracking and nbout 530 cars. Toronto has the iest operated electric car service in Canada, if not in America.

VULCANIZED FIBRE CO.
 ESTABLISKIED 1873.
 SOLE MANUFACTURERS OF

THE STANDARD ELEETRICAL INSULATIHG MATERIAL OF THE WOKLD.

Facioru: Wilmington, Del.

THE "CLARK" WIRE.

Inawlation Ginmanterd ishererer uami, Aerlat, Uuilergrousid or anbuarine

TRADE MARK.

In a letter from the Inspector of the Bloston Fire Underwriters" Union, be states: "A thoroughly reliable and desimble Wire in every respect." T he rubler used in insulating our wires and cables in especially, rhemically prepared, and is guaranteed to be water groof, and will not deteriorate, oxidize or crack, and will remann flexible in extreme cold weather and is not affectet by heat. The insulation is protected from mechanical injury by oate or more braids, and the whole slicked with Clati s latent Compound, and xiscial extra finish, which we have now adopped for allour solid wires as an extra weatherproof protection, and also preventing chafing and alsasion, which is water, acid, and to a very great extens fireproor. Our insulation will prove durable when all others fail. We are prepared to furnish Single Wires of all gauges and diameter of insulation for Telegraph and Eleceric lishas from suck. Cables made to order. We are now prepared to fumish our Clark Wire witha white finish for ceiling cleat mork as well as our aiancanti color.

Clark Joint Ouns should be used for making waterproof joints. This is put up in half.pound boxes, in strips about one foot long and five-eighths inch wide, and when wiapped about a jont and pressed firmly it makes a solid mask For rallway and Motor une, we make all sires of stranded and flexible with Clarkinsulatios,
Wo gunrantee our Insulation wherevor usod. Aerial, Underground, or Submarlne, and our net prices are as low, if not lower thats any oster first-chas lnsulated Wire We shall be gileased to mail Catalogues with serms and discounts for quantitier.

SPARKS.

The National Electric Tranivay and Light Company, of Victotin, B.C., have made arrankements to drive their genemtors and lighting by mains of a water power station seventeen mules from the cily. The steam plant will be ready at all times to be put in operation should this power fail.
A Montreal alderman has lately made the threat that unless the Bell Telephone Compans nagrees to the proposals of the city respecting reduced rates to cilizens nod a telephone tax payable by the company to the city on each telephone, the clty council will proceed to grant permission to the Merchants' Telephone Company to put up poles and string wires.
It is an easy matter says the Electrical Worlat to find whether there is a cross connection between a coil and its core, but when the cross is between the wires themselves constituting the coils the usunl method cannot be used. For such cases, as also for a number of others a very ingenious and simple methodis in use in the Thom-son-Houston factory at Lynn, which is well wortis the attention of those engaged in constructing apparatus containing coils in which cross connections may occur. It consists simply in piacing the coils to be tested in the field of an alternating current coil and noticing whether or not parts of the coil become heated. It is evident that if there is a cross connection between the windings, the turns included between these points will form a short circuited coil in which currents will be induced when placed in this alternating current field, which will cause that portion to become hented. This method, therefore, not only shows when there is a cross, but, if there is one, it to a certann extent locates it. In some cases the cont to be tested is placed in the feld with its core and in other cases without. For simplicity nothing more could be desired.

PUBLICATIONS.

The latest arrival in the arena of trade journalism is The Canadian Engineer, published in Toronto and Montreal, and devoted to the mechanical, mining, marine, locomotive, sanitary and other bmaches of the engineering tades. The subscription price is $\$ 1$ a year. The address is: The Canadian Engineer Co., 62 Church street, Toronto. or, the Fraser Building, St. Sacrament street, Montreal.
The June Arena is a mammoth number. It is probably the largest magazine ever published as a monthly iscue of a review, contanning onehundred and sixty-tour pages, of which one hundred and forty-four are in the body of the magazine, and twenty pages of carefully writen book reviews of such well-known critics as Rev. W. H. Thomas D. D., of Helen Chicago, Campbell, Hattie C. Flower, Hamlin Garland, and the editor of the Arena.

LEGAL DECISIONS.

The City and Suburban Electric Railway Company is being sued by a bricklayer named ifould, who met with an accident from an jncoming car while be swas repairing the brickwork of the company's power bouse on St. Clair avenue.
The Toronto Incandescent Light Company's appeal from the judgment givenagainst them when the owner of a horse vas awarded $\$ 100$ for injuries to the animal through falling into a bole on Church strect. Toronto, made by ther workmen, has been refused. They asked the Court to determine the city to be liable.
The case against the city of Guelph and the he Guclph Gas Company brought by a man named Healy has ended in favur of the defendants. The plaintiff alleged that when returning home one evening he ran against a loop of an electric light wire on a street in Guelph, and recewed a severe cut. The defendants maintained that the light was lit and that it was impossible to run against the wire as stated.

${ }^{\text {the }}$ TORONTO ELECTRICAL WORKS

Manufacturing Electricians and Engineers.
Dealers in Electrical Supplies.
Makers of Dynamos and Motors. Dealers in Electrical Books.
35 Adelaide Street West, - TORONTC.

F. E. Dixon \& Co.
 manufacturers of

LEATHER BELTING

70 KING STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

We have the following Leather lelts in use in the works of the Toronto Electric Light Co. :-

$$
\text { One } 36 \text { inch belt } 98 \text { fect long. }
$$

[This belt has been in constant use since August, 1885 , and looks food for another ten years yet.] Also
One 36 inch belt. 100 fect long. One 38 inch belt 100 fect long.
One 36 inch beit 123 feet long. One 24 inch belt 100 feet long, And over 1500 feet of 8 inch belting.
All the above belts are DOUBLE THICKNESS and are all giving satisfaction.
The 38 inch beit is the largest belt ever made in this Province.
The following Electric Companies are also using our lielting :
The Toronto Construction and Electrical Supply Co.
The Ball Electric Light Co.
The Hamilton Electric Light \& Power Co.
The Niagara Falls Electric Light Co.
West Toronto Junction Electric Light Works.
The St. Thomas Electric Light Co.
The Barrie Electric Light Co.
The Berlin Electric and Gas Co.
The Woodstock Electric Light Co.
The Manitoba Electric and Gas Light Co., Winnipeg.
The Goderich Electric Light Co.
The Markham Electric Light Co.
The Oshawa Electric Light Co.
The Orangeville Electric Light Co.
The Port Arthur Electric Railway Co. AND OTHBRS.
We are the only Belt Manufacturers in this Province who can show Belts of OUR OWN MAKE which have been in use AS LONG AS FIVE YEARS. We can point to belts of our own make in THIS CITY ALONE which havo been in constant use for TEN, THIRTEEN and even NINETEEN years, and are still good.

We are prepared to furnish Belts of any size, two or three ply, of any width. Every belt fuily guamnteed.
Send for Discounts.
Dixon's Belting Hand-Book mailed free on application.

ARMINGTON \& SIMS

Nie \& Lynch,

GENERAL MACHINERY.
Hamilton, Ont.

SPARKS.

A scheme is being agitated for the ronstiuction of an electnc tramuay from Nammono to Wellington, B. C.
The directors of the Ifamilton. Waterdownand Guelph Electinc Ralway (o have decided os, oppose the granting of a chater to the Ilamiton Street Railwny (a. to establish radial electric rands.
The maca basiness is reported as being goad and large quantues are being shupped to Enk. land. The Cleveland admimistration is expected to remove the duty of this material whin will futher increase the trade.
His Excellency, the Governor Genetal, recenily presented Messrs. John C cooney and C. S. Hublard, of the C. P. R. Telegraph Company. Otawa, with a benutiful volume ench in recognition of setsices sendered in the trunsmusion of cable messages at the time of the crilicaliliness of lis son.
At a recent meetine of the Counctlof the town of Mnisonnetive the electric milway question was brought up. Mr. J. L. Forget represented the Monireal Street Railway Co. and Mr. A. J. Cornveau, the Cormealu-Wilhams syndicate Both companics submilted propostions which were referred to a spectal committec. The matter will be brought up again at the next meeting of the Council.
The St. Jean Baphiste Elecinc Laght (o. helu a meeting tor the election of officers under the new charter, when the following gentlemen were appointed directors Messrs Aithur (aron, 0 . Alarm. 11 I . Hon I. Jourville. (hatles haput. O Vanter. Joseph Gimard. A Latonde. E. David and 1 . I errautt. M.P At a subserfuent meeting of the directors Mr O Mann. MP was elerted president. Ihe compxany have tween supplying lught for some tume, and it is sud have a monthly revenue of $\$ 1.000$. with atbout $\$ 500$ experises.
A juint stock company, composed of Ottana capmatists, has been formed to buy up and deal if mata "nd rhusithate pruperites is the Ottawa valley. At the organization meetung about forty business men were present. The eaputal stock was plated at a quarter of a mullion dollars, of whel $\$=0,000$ was at once taken up. It is the purpose of the company to purchase the mining interests of the district, open and work sufticiently to show the quality of the mines, and dispose of then. English syndicates are most likely to be the purchasers.

$\underline{\text { Padarar }}$
 High Grade
 Incandescent Lamps

MANUFACTURED BY THE

PACKARD LAMP CO., LTD.

 96 to 100 King Street,

$E \mathcal{E}$ Write for Price List and Discounts.

LAKE GIRARD SYSTEM OF MINES.

Lake Girard Mine
 - Nellie and Blanche Mines. - The Horseshoe Mine.

 CONTROLLING 2,500 ACRES CHOICEST MICA LAND.The LARGEST L'SERS in the United States are among our EARLIEST CUSTOMERS, and can testufy to the excellence of our material as well as to our PROMPTNESS OF DELIVERY.

All MICA SHIPPED $13 \mathrm{I}^{\circ}$ EXPRESS, and sales made at PRICES INCLUDING ALI CHARGES TO POINT OF DESTINATION.

Why buy through Mlllle MEN and pay COMMISSION, when you can DEAL DIRECT WITH THE MINES, and receive your MICA AT FIRST HANDS?

We are prepared to SEPPIL' the requirments of SMALL CSERS, on advantageous terms, looking to the FUTURE GROWTH of their BUSINESS.

Our PRESENT STOCK OF MICA octually mined ENCEEDS 300 TONS, and this, too, AFTER A YEAR'S STEADY OPERATIONS.

ALL SIZES AlAIL.ABLE, and we will either cut to size or in rough split shects, with edges irmmed or untrimmed, as may be desired. We wall cut discs or segments of circles when required.

Send us 1 SAMIILE ORIDER - we only ask a far tral ; once we receve that, we are not afraid of holding your business. Address all communications to

The Candidian Omed \& School Paraiture Co.

STRAM OSERS

Dealritg the sarvicea of COMERTENT ENGLVFERS of any olsse, can oblain oober, futelligent and rellabie mon, by appolying to
CANADIAK ASSOCI , AOM
STATIONARY ENGINEERS.
A. E. Edikins, President, care Boller Inspection \& Insumnce Co., Toronto.
JAs. Rouerison, Secretary Montreal Branch, 1420 Mignonne Sireet, Monireal.

FORR
BYERRX
BUEINEEE

MAIN

Interested in any branch of the Hardware Wrought, Cast Sitel or Spun Metal Trudes. be will find
"The Hardivare Merchant." acts like a right bower, and keeps you posted on all business changes and items of note. Its market quotations ere reliable. $\$ 2$ per year

THE J. B. MOLEAN CO., Lta., 10 Front Street East, Published weekly. TORONTO,ONT.

Hill Patefl Prition Pullegs

AND CUT OFF COUPLINGS
For Electric Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,

(Buccesoors to alltor Bros. A Mitchell)
Toronto Office: 74 York Streat.
MONTREAL, QUE.
FSSTABLISEED 1869.

THE CANADIAN LOCOMOTIVE \& ENGINE CO., Ltd. KINGSTON, MANUPACTURERS-OR o.vTARIO.

Locomotive, Marine and Stationary Engines

- Absington \& Sims high Speed encine for flezctric ligit piant, etc.

NOMICE.
The Canadian Locomotive \& Engine Co., Limited, of Kingston. Ontario, have the exsusive lisense for building our Iniproved Patent High Speed Engine'for the Dominion of Canada, and are furnished by us with drawings of our latest improvencents.
PROVIDENCE.' R.I., Nov, J8ith, y88g'
(Signed) ARMINGTON \& SIMS.
 BOILER:

The
Handest, Safest, and Most Bconomical Boiller.

[^2]

Wiring and Installing Complete Electric Plants

Expermental Apparater, Models, Patterns.
Ligit Machinery and Commutntors.
Elegtricil. Apparatus of ali. kinds Repalkid.
Storage Batternes, Doctors' and Dentists' Enectrical. apparatus and Machinery.
Flecthic and Gas Fintures. buckeye incanimegent lamps.
Somorfs Fancy and Minhature Incandescent Lamps.

44 Bleury Street (CORNER JURORS)

LONDON MACHINE TOOL CO., LONDON,

Machinist \& Brass Finishers' Tools

 A. R. WILLLAMS, Gencral Agent, TORONTO, oivt.It is no longer necessary to import Carbon. Points.

THE PETERBOROUCH CABBON AND PORGELAIN CO.

.... can furnish them equal to any in the world, as they are....
manufactukers of
CARBON POINTS for all Systems of Arc Light, BATTERY PLATES, CARBON BRUSHES, and alt kibsels of Porcelast for Electrical amai Mardicare limex

White and Amber.

MCRAE \& CO.
 OTTAWA, ONT.

Please mention the Electrical. News when corresponding with advertisers.

The Penberthy

 Automatic Injector is the Standard. BEWARE OF IMITATIONS! TAKE NO OTHER. In use in hundreds of electrlcal power plants In the United States and CanadaScuel for Circuiar and Price Inist.

[^0]: - An abstract of a paper read vefore the Ampican linsitute of Electrical Engl. neers, Narch pi, ${ }^{1993}$, asd pinted in the N. Y. Eivfrical Einfiaerer For conveni. ence of refcreace to the origial paper, the paragniphs in the absilact have been

[^1]: - Abstract of a paper read at ihe Secenty.third Meetung of the Anerican Insti. inte of Electrical Engioects, New York, January 37 , 1893.

[^2]: "CYCLE" CAS ENGINE MIPULSE EVERY REVOLUTION without a separate pump. NO SLIDE.

