> IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged,'
Couverture endommagéeCovers restored and/or iaminated/
Couverture restaurée et/ou pe"iculéeCnver titte missing/
Le titre de couverture manaus
Coloured maps/
Cartes géographiquas en couleur
Coloured ink (i.e. other than blus or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lareliure serrèe peut causer de l'ombre ou de la distorsion le long de la marg \boldsymbol{y} intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les cétails de cet exemplaire qui sont peut-ètre uniques dul point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger urie modification dans la méthode normale de filmaga sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées er/ou pelliculées

Pages discoloured. stairied or foxed/
Pages décolorées, tachetées ou picueèsPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by ertata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partifllement obscurcies par un feuillet d'errata, une pelure. etc., ent été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/

Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, piates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right ard top to bottom, as many frames as required. The following diagrams illustrate the method:
The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public Archives of Canada

The imayes appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming coritract specificatlons.

OrigInal copies in printed paper covers are filmed beginning with the front cover and ending on the iast page with a printed or iliustrated impression, or the back cover when approprlate. Ali other original coples are filmed beginning on the first page with a printed or iilus crated impression, and ending on the last page with a printed or iilustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibiothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exempiaires originaux dont la couverture en papier est Imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, seion le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telie empreinte.

Un des symboies suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symboie ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angie supérieur gauche, de gauche à droite. et de haut en bas, en prenant ie nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

Please read and send in as full a discussion as possible at earliest date.

> Canadian society of evil Engineers.

INCORPORATED 1887.

ADVANCE PROOF-(Subject to revision)

N.B.-This Society, as a body, does not hold itself responsible for the statements and opinions advanced in any of its publications.

ON THE MEASUREMENT OF WATER BY A SMALL VENTURE METER.

By E. G. Corer, M.A., Cantal., DiSc., Edin., and
T. P. Strickland, M. Sc., MgGill.

INTRODUCTION.

The problem of accurately measuring the continuous flow of water is one that has received a large amount of attention, and many forms of meters have been devised for attaining this object. A form of meter, which has come into general use within the last few years, is that known as the Venturi meter.

This form of meter is especially applicable to water-mains, as the head necessary to operate the meter is small and the quadcities may be extremely large.

Herschel (1) has shown that, in meters applicable to mains of 1 foot and 9 feet diameter respectively, the flow is proportional to the square root of the difference of head between the two sections of the cone forming the essential part of the meter, and this holds through the whole range.

In the present paper the meter used was a very small one, and the principal object of the experiments was to determine the range of the law

$$
\text { quantity }=a \sqrt{H}
$$

and, as a consequence, the variation of the "constant" in the equaltimon connecting the flow with the dimensions of the meter and the head.

The meter used was especially designed and constructed for the experiments, and had several advantages over the ordinary form.
(1.) The Venturi water meter. Trans. Am. Soc. C.E., 1887.

In its simplest and more usuai form, the Venturi meter consists of two frustra connected at their smalier ends by a short cylindrical tube or "throat," their outer ends being fitted to the pipe tbrough which the water it is desired to measure is passing, and provided with means for attaching pressure gauges at the throat and at the outer ends of the cones.

At the points where it is desired to measure the pressure in the meter a pressure-chamber encircles the pipe and communicates with the interior by a number of small holes drilled as nearly radially as possible. It is essential for accuracy that the holes should be truly radial and the edges without burr, the attainment of which is a matter of considerable difficulty, especially in a small meter.

The meter used in these experiments overcomes the objections mentioned above.

Fig. 1 is a longitudinal section of the meter consisting of a short "up stream" cone, A, and a "down stream" cone, B, connected by a combined coupling and pressure chamber, \mathbf{C}, which forms the throat.

The Venturi is connected to the pipe by two other couplings of the same form. The combined pressure chamber and conpling is the peculiar feature of the meter, and is shewn clearly to an enlarged scale by Fig. 2.

2

It consists of three separate pieces, the outer one, A, of which couples the parts B, C, together, leaving a continuous opening, D, around the bore, which may be of any required width. The part b is recessed to form a pressure chamber connected to the guage by an opening, E. The parts B and C are faced, so that when drawn together by the coupling A they form a watertight joint at F, and the ends of cones are serewed into corresponding recesses in \mathbf{B} and C.

This form of throat possesses several advantages. The contiunous opening gives a more accurate value of the pressure than a series of holes; it can be faced without any burr, and its width can be adjusted with acenracy. Also, the diameter of the throat at the ioint where the pressure is measured can be determined with the greatest possible accuracy, and, moreover, is open to inspection.

The parts can be rotated relatively to the others withont destroying the joint, an advantage in setting $n p$ the apparatus.

It should be pointed ont that the measurement of the pressure at the down stream end of the cone is not essential for practical measurements; it was merely used for determining the total loss of head in the instrument. The down-stream pressure chamber can, therefore, be dispensed with in ordinary use.

gatges.

The gauges used for measuring the pressure of the water in the pipes are of unusual pattern.

Fig. 3 is a section, in which A is an iron base plate about $3 / 8$ inch thick, provided with three brass levelling screws, B. On a ring of india-rubber on the plate stands a cylindrical glass vessel. C, or reservoir, about $21 / 2$ inches in diameter, with an aluminiuin cover, D. Four rods, not shown, screwed into the base plate and lassing through the cover, have screwed ends and nuts at the top, by which the reservoir is pressed down on the rubber ring. Near the centre of the aluminium top is a tap, E , and a nipple, into which is screwed a T picce, the upper part of which is provided with an air cock, while the horizontal branch is connected with the pressure chamber by means of a piece of rubber tubing.

Beneath the iron base is a pipe, F, connecting the reservoir with a vertical glass tube. G. of 5 inch bore and 35 inches in length. Behind this tube is a scale reading up to 32 inches, and movable relatively to the tube and reservoir.

At the lower end of the scale a spindle, H, is attached to the back, and passes throngh a gland into the reservoir. The bottom of

this spindie is of aluminiun, with a point on the same level as the zero of the scale. On the top of the spindle is a milled head, I, by means of which the spindie and scaie can be moved up or down. until the point.reaches the surface of the mercury in the reservoir. The reading of tire seale is then evidentiy the height of the mercury column above the level of the mereury in the reservoir. There is a small steel anxiiary scale, with .01 inch dlvisions, which measures the dispiacement, from a datum, of the zero of the maln seaie, when the latter is moyed mintil the point touches the surface of the mercury. The zeros of the smali auxiliary scales of the two gauges are set on the same levei.

It ls easily seen that the displacement of the main scale, or, rather, the difference of the displacements of the main scales from the same level, is a correction in pressure of water to be applled to the difference of the readings of the mercury columns. The readings of the mercury columns were made upon steel scales, graduated to. 01 lnches, and fixed whth thelr zeros on the same level as the surface of tise mercury in the glass tube, when the pointer tonehes tine surface of the mercury in the reservoir before the water Is admitted. In this way there is no error dne to difference, in capiilarity due to small differences of diameter in the glass tubes of the two gauges. Each gange is read by means of a Marten's telescope, which is fixed up at about 6 feet from the gauge and adjusted to the level of the meniseus. With a good light and steady pressure the readings can be taken to .001 inch.

For measuring the vacuum at the throat, the pressure chamber was connected to a long giass tube running up parailei to the tube of the pressure gauge, to which it was connected at the top, where It wis provided with an air tap. One of the difficulties to be contended with is leakage of alr into the vacuum, and several trial runs were made to detect and remedy this leakage before commenc-. ing accurate work. All plpe joints were covered with tallow and wrapped with telegrapher's tape, and, it is believed, there is no errol from this source.

GENERAL DEACRIPTION OF TIIE APPARATUS.

The water was drawn from the experimental tank in the hydraniic laboratory, and passed ly a $15 / 8$ inch plpe, 12 feet long, to the Venturi; the ontflow pipe was 6 feet iong and of the same diameter.

The tank was provider with means for setting and regulating the head, and no difficulty was experienced in keeping the head practleaily constant.

Instead of the pipe discharging under water, an artificial head was created by screwing a nozzle of $3 / 4$ inch dlameter on the end of
the outflow pipe. The function of thls was to eusure that the plpe ran full belo v the Venturl.

Through has nozzle the water discharged into a bifurcater shoot supported ou a wooden frame and plvoted ln such a mamer that either leg could be bronght in front of the nozzle, the lnstant of change belng recorded on a chronograph. One leg discharged to waste and the other to the measuring tank. ,

The tank, one of a scrles of five, was beneath the floor level, and was 9 feet by 6 feet by 3 feet 6 inches, cast ironeeneased in concrete, and experlment showed that there was no leakage whatever.

To the tank was comected a 4 luch vertleal brass pipe forming a float chamber. The float was attached to a vertleal in $_{10}^{3}$ heh brass rod with a polnter at the npper end indicating on a brass scale the quantly of water ln the tank. A fine errd fastencd to the top of the rod rose vertlcally, passed over a frlctlonless pulley and carrifd a balance welght, which kept the cord taut and prevented the polnter from rubbing agalnst the scale.

SETTING OF GAUGEE.
The gauges stood on a firm slab of slate, and were accurately levelled. The zeros of the auxllary scales were set on the same level, and referred to the scale on the supply tank, and also to the axis of the Venturl, by means of a Dumpy level.

TIIE CHARACTER OF THE MOTION.
In order to study the motion by aid of colour bands, a glass plpe, Fig. 4, was drawn out to form a Venturl meter of approxlmately one-half the linear slze of the meter under experiment.

Fig. 4

Whth a head of about three feet of water upon thls meter a colour band was introduced, and the motion studied by its ald.

The water was always found to be stable in the up-stream cone as long as the water coming to lt was stable; whereas, after passing the neck lt immediately broke down into eddies as shown. On Increaslng the head the coloured band in the up-stream cone still remained clearly defined until swept out by the water breaking down in the supply pipe above.

It, therefore, appears that the motion in the up-stream cone may be taken as stable untll the llmit for the up-stream pipe is reached,
and this limit, for a pipe of uniform base, has been shown by Osborne Reynolds to be given by the formula:-
where

$$
\begin{aligned}
V_{c} & =0.039 \frac{f(T)}{D} \\
V_{c} & =\text { critical velocity. } \\
f(T) & =\left(1+.0336 T+.000221 T^{2}\right)^{-1} \\
T & =\text { temperature centigrade. } \\
D & =\text { diameter of the pipe in inches. }
\end{aligned}
$$

In assuming Bernoulli t's Theorem we are makhy the assumedion that the thad is frictionless, or else that the motion is such that the loss due to iud friction may be disregarded. In the preseat ease the loss in friction is large, beige given by the values $P_{1} P_{2}$ Table I, and shown for different discharges in the centre big. 10.

This loss will be divider equally between the two cones.
The loss in the upstream cone will be much smaller than in the downstream, partly because of lis short length, but principally be cause the how is in general stable, while in the downstream cone the divergence of the walls causes eddy motion.

NOTATION.

Let $Q=$ total quantity in gallons.
$q=$ discharge in cubic feet per second.
$h_{1}, h_{0}, h_{2}=$ the readings of the ganges.
$\delta_{1}, \delta_{0}, \delta_{2}=$ the readings on auxiliary scales.
$z_{1}, z_{0}, z_{2}=$ heights of the zeros of the auxiliary scales above the axis of the Venture
$T=$ total time of run in seconds
$\tau=$ temperature of water.
Π_{0} pressure of atmosphere.
$p_{1}, p_{0}, p_{2}=$ pressures at the pressure chambers in feet of water.
$a_{1}, a_{0}, a_{2}=$ areas of the throats.
$v_{1}, v_{0}, v_{2}=$ velocities at the throats.
$C=$ cotficient of Venturi.
$g=32.176$ for Montreal.
$c^{*}=$ density of mercury.
If we can assume that Bernonhlin's Theorem holds trine for the motion the thenturl the theory is extremely slmple, and a shmple expression can be obtalned for the discharge.

Taking the axis of the plle as level, and in the datum plane, we have:--

$$
\begin{gathered}
\frac{p_{1}}{\omega} \frac{v_{1}^{2}}{2 g}=\frac{p_{0}}{\omega}+\frac{v_{0}^{2}}{2 g} \\
\text { Now } \frac{p_{1}}{\omega}=\frac{\Pi_{0}}{\omega}+\frac{\sigma h_{1}+j_{1}+z_{1}}{12} \\
\frac{p_{0}}{\omega}=\frac{\Pi_{0}}{\omega_{1}}-\frac{\sigma h_{1}}{12} \\
\therefore \frac{p_{1}-p_{0}}{\omega}=\frac{a\left(h_{1}+h^{0}\right)}{12}+\frac{\delta_{1}+z_{1}}{12}=H \text { say } \\
\therefore v_{0}^{2}-v_{1}^{2}=2 g H \\
\text { Now } v_{1}=\frac{a_{0}}{a_{1}} v_{0} \\
\therefore v_{0} 2-\frac{a_{0}^{2}}{a_{1}^{2}} v_{0}^{2}=2 g H \\
v_{0}^{2}=\frac{a_{1}^{2}}{a_{1}^{2}-a^{02}} 2 g H \\
q=a_{0} v_{0}=\frac{a_{0} a_{1}}{\sqrt{\omega_{1}^{2}-a_{0}}} \sqrt{2 g H}
\end{gathered}
$$

To allow for friction, etc., we may put

$$
q=c \frac{a a_{1}}{\sqrt{a_{1}^{2}-a^{2}}} \sqrt{2 g H}
$$

Limits of error.

Total discharge, Q.-In the gauging tank one gallon corresponded to .087 lnch , and the posltion of the pointer could be read to . 005 inch, or about . 06 of a gallon. Q varled from 64 to 336 gallons, so that the error of reading varied from $\frac{1}{12}$ to $\frac{1}{3}$.

As \mathbf{Q} was measured by differences, the greatest probable error would be twice the above. All the readings were taken Independently by two observers.

Time.-The chronograph was opernted from a standard clock In the inboratory, the clock bohig eompired with the Medill Observatory clock ench ding The distunce on the record corresponding to 1 second was 0.4 inclics, and readhags cotld be made to 005 inches, so that the greatest possible error in a reading was ho seconds, or the combined erron of the readings at start and finlsin was to seconds.

The totai time was alwnys about 1,200 seconds, so that the error woyld not excerd 1 lia 100,000.

Tha only polnt to be noted in connectlon with the chronograph wis the use of two pens, or, :ather. one pen and a glass styius following in its truck, the tormor leavhig esongli luk for the styius. Theso two pens recomed in opposite dibectlons, so that there could be no confuslon between the secomis' mark and the mark recording the instant of throwing orer the shoot.

MEASUREMENT OF DHARETERS OF VENTURI,

This was dome on a diviting macaine reading to . 0001 inches; the diameter of the throat was 0.379 S inches: urea $=.000787 \mathrm{sq} . \mathrm{ft}^{2}$; the dlameter of the mp-strean throat was 1.627 inches and the diameter of the down-stream throat was 1,626 inches.

Meall area $=.014411$ squaro feet.

MEASU1\}LMENT OF PHESSURES.

In all except runs 75 to 85 inelusive, mercury wres used in the pressure and vacuum gauges, amd roadlags were taken to .001 in .

The atcuracy whth which pressires are obtalned depends not only on the reading of the gatuge, but on the settlugs of the zeros and of the ponters. The levelling of the gauges could be done to within . 01 inches of water, or say, 001 inches of mercury. The error of setting the polnter would not probably b^{2} more than .002 inclies, so that the comblned error of any single reading is not llkely to be more than . 005 inches. As the pressmre readings were generally very constant throughout a run, the probable error of the mean would not be as large as this, and the error oi $P_{1}-P_{2}$ is probably not more than .003 inches, since ten readings were taken for each run. The vacumm, however, generally varied a good deal, ano an error of .01 inches ln the realling of $I_{0}+P_{1}$ is very probable. The greatest valne of $P_{1}-P_{2}$ is about 28 inches of mercury, glving an error of, say. 1 in 8,000. The least readhg for mercury was about 72 inch, glving an error of 1 In 240.

The greatest value of $P_{1}+P_{0}$ was about 50 inches. giving an error of, say. 1 in 5,000, and the least about 1.2 inches, giving 1 in 120.

In the iow experiments in which water was used in the gauges fustead of mercury，the readings were only caken to the uearest nito of an mah，and the order of the error is about the same as given above．

METHOD OW EXPERISよがT．

As a general rule three runs were made at each head，in a few cases four．＇The water was always turned on and allowed to fow to waste for half－an－hour or longer before commencing a series of rins， as it was fonnd that the vacumm did not reach al steady condition mo－ til some tilus after the water was turned on．Stop watehes were em－ ployed as a rougn eheck on the chronograph and for determining thme of readings．

DSCLSSIOX OF THE OHSERVATIONS．
The cbservations are given 0.1 Table I ，and the value of \mathbf{C} has been deduced from the mean values of each set of experiments， on the assumption that Bernouilli＇s law holds for the cone．

It will be noticed that c is in general less than unity，and is least for the highest values of H gradually increasing with the diminution of head until a head of about 8 feet is reached，when it passes through the value mity．With stlll lower heads the increase In e is much more morked．risitug to a valne of 1.358 for a head of 0.972 foet．

Fig． 6

The relation of c to H is plotted in Fig. 6, aud the wlde variation in the value of c is clearly apparent.

It is noticeable that Herschel* found much iower values of e, but none of his experiments give such a high value as 1.358 .

For moderate heads the experiments bear out the usuai assump. tion, for this form of meter, that the constant does not differ much from unity.

For low heads, however, this does not hold, anti a comparatlvely large error is introduced by assuming a coefflelent of untty.

The variation in the value of c appears to fiave an intlante connection with the question of the stability of flow in the up-stream cone, and on plotting the discharges as ordinates with the heads an abscissae, Fig. 7,

Fig. 7

It was seen that the upper part of the curve was of a somewhat different character to the lower part. This becomes more evident when logarithmic co-ordinates are used, for if the iaw concerning Q and H be taken to be represented by the equation

$$
\begin{gathered}
q=k H^{n} \\
\log q=\log k+n \log H
\end{gathered}
$$

and the slope of the line gives the vaiue of n.

* loc eit.

This has been done in Fig. 7 , in which the Hne A has a slope whose tangent is approximately 0.341 , while B C.has an inclinacion whose tangent is 0.478 . It, therefore, appears that in this meter for low velocities the discharge is proportional to a root of \mathbf{H} higher than the square and less than the cube, while for higher velocities it varies nearly as the square root of the head.

This result affords a clue to the rise in the value of c for low heads, for since its value has been deduced from the formula

$$
q=k H^{\frac{1}{2}}
$$

k being some constant, while the law for the lower part of the scale is represented by
where

$$
q=k^{1} H^{n}
$$

$$
n>2<3
$$

it is clear that the value of c, being a factor of k, will necessarily increase.

It is instructive to compare these results with those obtained by Herschel on a meter for a pipe of one foot diameter and on one for a nlue foot pipe.

These results are tabulated in his paper, and from his Table I the values of q and H have been plotted logarithmically.

For various reasons, which are fully stated in the paper, a number of the results were of doubtful accuracy, and, in consequence, are not considered here.

The most reliable results appear to be those numbered 37 to 60 , and these were plotted logarithmically, and are shown on Fig. 8.

In this case, the value of n for the higher velocities came out as .49 , while the low velocities of experiments 58,59 and 60 gave a value of $\mathrm{n}=0.6$.

The reason for this discrepancy is not clear, but it may be poonted out that this first series of experiments was conducted under great disadvantages, in spite of the care taken to ensure accurate results.

The second set of experiments was made upon a meter for a pipe 9 feet in diameter, all the linear dimensions being approximately 9 times greater than those of the first meter.

The observations were massed into groups, which an inspection of Table II. shows to be justifiable, and the mean results plotted in Fig. 9.

All the points were found to lie on a straight line, having an inclination $\tan ^{-1} \frac{1}{2}$ almost exactly, and, therefore, verifying the the. retical law in the case of large meters.

These results point to the conclusion that in large Venturi meters the discharge is very approximately proportional to the square root of the head throughout the whole range, while in small meters the discharge does not apparently follow this law for low heads, but does so approximately for high heads.

It appears, therefore, that a small meter would require special calebration for use when discharging small quantities of water, since it does not follow the square root law, and this renders the meter unsuitable for use in the measurement of, say, a domestic supply, where it is important that small quantities should be accurately measured, as well as losses due to leakage in pipes, defective taps and the like. Moreover, there is a considerable loss of head in such small meters, as can be seen from the Table, Fig. 10, and this is a further disadvantage.

On the other hand, its great advantage for the measurement of large quantities of water is manifest, in fact, it is the only practicable method of measuring the water passing through a main, and it has been shown repeatedly that the loss of head in this case is small.

Fig. 10

No. of Expt.	headis in feet of water.			Total time seconds.	Total quantity gallons.	Cubic feet per sec.	Coeffct. C
	$\begin{gathered} P_{1} \\ \mathrm{U}_{\mathrm{p}} \\ \text { stream } \\ \text { gauge. } \end{gathered}$	P_{0} Centre vacuum gauge.	P_{2} Down stream gauge.				
18	16.120	32.898	4.918	1,205.3	313.95	. 0418	
19	16.122	32.886	4.918	1,205.0	314.02	. 0418	. 9494
20	16.128	32.910	4.924	1,205.3	314.76	. 0419	
21	14.142	33.098	4.838	1,205.6	310.46	. 0413	
22	14.138	33.047	4.841	1,204.7	311.09	. 0414	. 9578
23	14.141	33.046	4.839	1205.3	311.36	. 0415	
23 b	13.174	33.062	4.706	1,205.0	306.44	. 0408	
24	13.161	32.992	4.708	1,205.0	307.36	. 0409	. 9567
25	13.160	32.987	4.714	1,205.5	307.60	. 0409	
25 a	12.175	32.546	4.568	1,205.2	301.84	. 0402	
26	12.176	32.487	4.563	1,205.4	302.47	. 0101	. 9564
27	12.174	32.490	4.565	1, ${ }^{2} 0 \times 3$	303.85	. 0.103	
28	11.224	30.776	4.272	1,205.2	292.44	. 0389	
29	11.224	30.781	4.375	1,205.4	293.36	. 0391	. 9566
30	11.224	50.785	4.281	1,205.7	292.90	. 0390	
31	10.314	28.266	3.896	1,205.7	280.12	. 0373	
32	10.306	28.239	3.921	1,205.2	281.49	. 0375	. 9569
33	10.302	28.228	3.920	1,206.0	281.28	. 0374	

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Expt. } \end{gathered}$	Head in feet of water.			Total time seconds	Total quantity gallons.	Cubic feet per sec.	Coeff C.
	P_{1} Up stream guage.	P_{0} Centre vachum grage.	P_{2} Down stream guage.				
34	9.362	25.813	3586	1,205.0	262.00	. 0358	
35	9.360	25.791	3.587	1,204.9	269.75	. 0359	0.9619
36	9.360	25.767	3.587	1,205.2	269.79	. 0359	0.9619
37	8.449	23.519	3.220	1,206.0	255.27	. 0340	
38	8.424	23.696	3.267	1,206.3	257.83	. 0343	
39	8.420	23.527	3.263	1,206.3	257.93	.034 3	0.9644
40	8.417	23.433	3.258	1,206.3	257.93	. 0343	0.564
41	7.516	20.525	2.821	1,205.2	239.83	. 0319	
42	7.509	20.527	2.820	1,035.6	215.98	. 0319	0.9587
43	7.514	20.544	2.825	1,206.5	240.40	. 0319	
44	6.549	17.726	2.462	1,205.9	227.46	. 0303	
45 46	6.566	17.626	2.459	1,206.1	225.46	. 0300	0.9719
46	6.571	17.629	2.456	1,206.12	225.72	. 0300	
47	5.637	15.154	2.093	1,206.5	209.89	. 0278	
48	5.637	15165	2.093	1,206.6	208.85	. 0278	
49	5.636	15.146	2.091	1,206.3	209.66	. 0279	0.9704
50	5.636	15138	2091	1,205.7	209.54	0279	
51	4.709	12.325	1.709	1,207.4	191.72	. 0255	
52 53	+.709	12233	1.707	1,207.1	191.09	. 0254	0.9572
5	4.709	12.138	1.701	1.205 4	189.44	. 0252	
54	3.792	8.955	1.257	1,206.0	165.63	. 0220	
55	3.792	8.916	1257	1,205.8	165.52	. 02220	0.9800
56	3.791	8.879	1.254	b,205.9	165.29	. 0222	
57	2.873	5.879	0.845	1,206.4	138.85	. 0185	
58	2.870	5.853	0.843	1,205.9	133.59	. 0184	0.9929
59	2.868	5.843	0.844	1,205.5	138.62	. 0185	
60	1.943	3.382	. 506	1,204 9	111.70	. 0149	
61	1.948	3.324	. 501	1,205.3	111.32	. 0148	1.0296
62	1.944	3.288	. 498	1.205.2	110.97	. 0149	
63	1.003	1.012	. 116	1,105.2	74.46	. 0099	
64	1.001	. 727	. 127	1,205.4	74.23	. 0099	1.1757
65	0.998	. 759	. 131	1205.9	74.00	. 0098	
66	20.956	33.18:3	5.676	1,205.8	335.00		
67 68	20.959	33.197	5.681	1,206 1	\$35.90	. 0447	0.9537
68	20.9606	33.079	5.684	1,206.0	336.15	. 0447	
71	11.471	2524	0.375	1,206.2	99.89	. 0133	
72	1.474	2.494	0.380	1,206.1	99.89	.0133	1.0596
73	1.479	2.438	0.370	1,206.9	99.32	. 0132	

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Expt. } \end{gathered}$	head in feet of water.			Total time seconds.	Totalquantitygallons.	$\begin{aligned} & \text { Cubic } \\ & \text { feet } \\ & \text { per sec. } \end{aligned}$	Coefft.C.
75	. 941	. 880	. 552	1,206.9	7512	. 0010	
76	. 945	. 782	. 579	1,205.2	74.93	. 0010	
77	. 944	. 677	. 570	1,208.2	72.63	. 0096	1.2021
78	. 944	. 642	569	1,206.2	72.08	. 0096	
79	. 944	,634	. 567	1,207.1	72.30	. 0096	
80	. 775	. 207	. 459	1,207.2	63.39	. 0084	
81	. 774	. 195	. 457	1,207.2	63.33	. 0084	1.3583
82	. 773	. 195	. 455	1,206.0	63.28	. 0084	
83	1.485	2.314	. 538	1,205.85	96.26	. 0128	
84	1.571	2.228	. 626	1,205.80	96.72	. 0129	1.0491
85	1.570	2.204	. 664	1,206.55	96.72	. 0129	

In conclusion, the authors desire to express their thanks to Professor Bovey for the facilities afforded by him for carrying out the work in the Macdonald Engineering Building. McGill University.

