IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institure has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pèlliculée
Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale cie filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/
Pagination as follows : 7.13 p .
Commẹtaires supplémentaires:

This item is filmed at the reduction ratio checkad below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Maps, differe entirely beginn right as require methoc

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END" $;$, whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce è la générosité de:

Bibliothèque nationale du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de le netteté de ı'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par le premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivents apparsitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grend pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

II.-Notes on the Manganese Ores of Nova Scotia.

By Edwin Gilpin, Jun., A.M., F.G.S.

(Read May 22, 1884.)

In the following sketch I have endeavoured to bring together the information relative to the manganese ores of Nova Scotia. The only previous note now accessible, beyond the references in Dr. Dawson's "Acadian Geology," is one by the late Dr. How, of King's College, Windsor, published in the Transactions of the Nova Scotia Institute of Natural Science. The exceptional purity of some of the ores makes them interesting to the mineralogist, and valuable in certain operations of the manufacturer. The attention paid in Nova Scotia to the working of these ores is by no means proportionate to their value, and to the great extent of the geological formation to which they appear to be chiefly confined. The object of these notes will be obtained, if they serve to indicate that the ores of manganese may prove in the future an important addition to the mining resources of this province.

The least valuable but certainly the most common of the Nova Scotia manganese ores is wad. This ore is found as a superficial deposit in connection with every geological formation known in the province. Among the localities yielding it may be mentioned Jeddore, Ship Harbour, St. Margaret's Bay, Shelburne, La Have, Chester, Parrsborough, Springhill, Pictou, and Antigonishe. These ores exhibit the varying composition which characterizes their class, and have in some cases been used to a limited extent as paints. On Bonlarderie Island, Cape Breton, a bed of wad, several feet thick, was examined some years ago. The following analyses show this want of uniformity of composition: two analyses by Mr. Hoffman, of the Canadian Geological Survey, gave :-

also, in the case of analysis II, traces of copper, cobalt, and nickel.
An analysis, by the writer, of a sample from a different part of the bed, gave:-

Manganose perox	$44 \cdot 33$
Iron sesquioxide.	$35 \cdot 50$
Insoluble matter.	10.0

At the Londonderry Iron Mines, Colchester Connty, in the great vein of brown hematite, associated with ochre, ankerite, sideroplesite, and calcite, in strata of Lower Silurian' age, secondary changes bave at some points enriched the iron ore with manganese
peroxide up to iourteen per cent. of its total constituents. Some encrnsting fibres are manganite, and part of the manganese is present under the form of wad, of which Mr. If Louis gives the following analysis:-

Manganese peroxide..	$07 \cdot 10$
Manganese protoxide.	$10 \cdot 67$
Water	$9 \cdot 37$
Copper protoxide.	$\cdot 88$
Iron protoxide...	$4 \cdot 09$
flumina.	-97
Nickel and cobalt oxid	$\cdot 65$
Lime....	$2 \cdot 49$
Magnesia	trace
Silica.	4.08
	$100 \cdot 00$

The occurrence of this ore in the precarboniferons rocks is interesting, as showing its original wide distribution, and as possibly indicating the sources of part of the more recent ores of eeonomic value. Pyrolusite is the only ore of manganese which has hitherto been mined to any extent in Nova Scotia, and it is known to occur in pre-earboniferons strata at several points. Between Halifax and Windsor, near Mount Uniacke, pyrolusite is found in small pockets and veins penetrating granite, and in quartzites of the auriferons Lower Cambrian of the Nova Scotia Atlantic cuast. It occurs in veinlets in the granite of Musquodoboit, and as small irregular seams in the granite of Ship Harbour. In the hills south of Wolfville, in King's Comenty, the same ore is found in quartzites and slates, presumably of Upper Silurian age. In the trias of the same county, the ore is met in a bedded form near Cornwallis and Wolfville, and in the triassic trap it is said to oceur lining cavities, in association with zeolites, ete.

We, however, find these ores most abundantly in the Lowor Carboniferons marine limestone formation. This horizon forms one of the widest spread, and most strongly marked of the divisions of the Carboniferous period. It is met in King's County, in Hants, C'umberland, Colehester, Picton, and Antigonishe, and in the four counties of the Island of Cape Breton. The measures of this division, comprising sandstones, shales, grits, and limestones, with beds of gypsum and marl, sometimes rest directly on the precarboniferous strata, and at many points are separated from them by the lower, or falso coal-measures, or by heds of conglomerate, according to the conditions of the period of accumalation. The limestones and gypsums oceur, apparently, at no fixed horizon in this division. Dr. Dawson, in his "Acadian Geology ", has divided the limestones into five groups, characterized respectively, so far as the subject has received attention, by a prodominance of certain fossil forms. In his supplement to the second edition, he proposes to subdivide the lowast group by distinguishing a certain manganiferous limestone, which appears at mary points to form the basis of the limestone formation, strictly so called. This limestone at Salmon River, Cape Breton County, Springville and New Laing, Pieton Comnty, Chester, Maitland, Tenny Cape, Windsor and Onslow, seems to underlie the gypsum beds, and generally to be associated with manganese. The following analyses by the writer show the haracter of some of these limestones:- iich Mr.

	Springville, (Pictou Co.)		Tenny Capo	Salmon River, C. B.
	I.	II.	I.	I.
Lime carbonate...........	$83 \cdot 42$	55.28	49.81	$49 \cdot 269$
Iron carbonate.	$1 \cdot 29$	24.11	$2 \cdot 56$	4.044
Magnosia carbonato........	$10 \cdot 32$	$10 \cdot 15$	$35 \cdot 44$	$28 \cdot 034$
Munganeso carbonate......	$1 \cdot 38$	$1 \cdot 83$	$4 \cdot 58{ }^{1}$	14.586
Insolulle matter...........	$4 \cdot 85$	$5 \cdot 00$	$8 \cdot 06$	1 -299
Moisture..................	-	$\cdot 40$	$\cdot 37$	-
	$101 \cdot 17$	96.77	$100 \cdot 82$	97-231

The limestone of Chester, on the Atlantic shore, presents a remnant of Lower Carboniferons measures, formerly without doubt co-extensive with those of our northern connties. The lower beds are deseribed by the late Dr. How as compact, of a dark blue colour, and consisting principally of carbenates of iron, lime, magnesia and manganese, yielding umbers by weathering. These are the most highly magnesian and manganiferons limestones that I have yet met in the province. It is quite possible that there may be others higher in the marine limestone formation carrying notable perrentages of the carbonates of these metals. In the ease of the Picton district, however, the overlying limestones, up to what may be termed the base of the millstone-grit, are decidedly nonmagnesian ; the inspection of a very complete set of analyses showing none cari ing over lour per cent. of the earbonate of magnesia, and usually little more than traces of mangancse.

The following analysis, made at the Durham College of Science, of a limestone lying above the Springville gypsum, shows the usnal composition of the purer grade of the limestomes of the higher seetions of the Pictou marine limestones :-

In the northerin part of Hants County, the carboniferous marine limestones and the underlying lower coal measures are found in a series of east and west folds, shifted and broken ly transverse subordinate flexures. The presence of manganese in the upper of these divisions is lirst observable at the mouth of the Shubenacadie River, where a darkcolonred limestone underlies the gypsum, and is associated, a short distance cast of the river, with red shales, earrying veins of red hematite, with mangamese oxides and calespar. The westward continuation of this horizon is noticeable again at Temy Cape, where a series of these moasures, extending to Walton and Cheverie, a distance of about fifteen

[^0]miles, contains several beds of limestone, which apparently underlie the gypsum, and may be called manganiferous. These measures carrying manganese re-appear again south of Windsor, and at Donglas, fifteen miles south of Tenny Cape, near the line of their junction with the pre-carboniferous rocks. In this range of measures the mangauese of Temy Cape appears to be principally comected with a compact red and gray limestone, which, from the analysis already given, may be called a dolomite. At the western end of the distriet it oceurs as veins in conglomerates and sandstones, and also in limestones in places decidedly magnesian.

The Temny Cape manganese ores were diseovered about the year 1862, and have been intermittently worked since that date. The limestone band to which they seem to be, principally confined is about 300 feet thick. The ore oceurs in irregular nests, and in seams eroded on the bedding-planes and cross-fractures. It thus occurs that large masses nhnost entirely isolated have been met, also seams with oceasional pockets, somptimes connceted, hut in no case, so fir as I am aware, following any regular order of position or extent. The largest mass yet found was estimated to contain 180 toms of ore. Apparently, the ore has been deposited at irregular intervals of time, with the associated minerals, in the openings worn by the action of water on the linestones. Specimens may be obtained showing pyrolnsite, cementing waterworn pieces of limestone, and surrounding nodules of the bed-rock which have resisted erosion. The ore is chiclly a tibrous pyrolusite, with splendent lustre, hased on a compact or gramular ore consisting of pyrolusite, of psilomelane, and of manganite, the latter mineral however not being presint in large quantity. The quality of these ores, even after the slight hamdressing they reenive at the mines, is rory high, and in some years they bring $\$ 125.00$ a ton at the mine. They are prized by glass-makers for their freedom from impurities, aspecially of iron. This high grade of the pyrolusite from the Tomy Cape district will appar when, from numerous assays, it has been found to yield from eighty-eight to ninety-five per cent. of arailable oxide. The following amalyses show the general character of these ores :- .

	nouglas. ${ }^{1}$	Cheverie. ${ }^{2}$
Moisture.... .	1-660	$2 \cdot 05$
Water of composition..............	$3 \cdot 630$	-
Iron peroxiuo. .	-603	2.55
Oxygen.	7.035	-
Baryta.	-724	1.12
Insoluble matter. .	1-728	$2 \cdot 80$
Phosphoric acid......	-	$1 \cdot 029$
Mangranese oxides......	84.620	-
Peroxide of manganese.......	-	90.15
Lime. .	-	traco
	$100 \cdot 000$	$99 \cdot 699$

At Walton and Cheverie manganite is more common than at Tenny Cape. Its mode of oceurrence is similar, and its general character :s shown by the following analyses:-

[^1] imestone, rin end of mestones ave been em to bo s , and in rat large 'ts, someorder of s of ore. ssociated delis may mriomicla fibrons f of pyrorescent in yrective a. They nl. This en, firom cent. of
${ }^{1}$ Ir. How.
${ }^{2}$ E. Gilpin.
shales. At several points in this vicinity the limonite ores, fomend along the line of junction of the Upper and Lower Silurian with the Lower Carboniferons marine limestono are heavily chargel with mangmese. The ore is dull brownish-black in colour, with a black streak, and softer than the normal limonite. The percentage of manganess, present in the iron ore varies. The gencral character of this ore, however, will nppear from the following analyses by the writer:-

	I.	11.
Wator of composition.	-	12.530
Moisture.... .	1.450 \}	1-
Insoluble residuo	$2 \cdot 731$	$25 \cdot 130$
Alumina	2.880	trace
Iron sesquioxido.	10.848	48-223
Manganese sesquioxide.	$82 \cdot 950$	-
Manganeso peroxide.......................	-	$14 \cdot 410$
Magnesit .	$1 \cdot 630$	-
Limo	7.280	-015
Baryta.	-670	-
Carbonic acid..	-	-
Sulphur.	-	-480
Phosphorus .	-	-020
	90.439	100.808

In Antigonishe County similar ferriferous manganese ores have been found in drift at several places.

In Cape Breton deposits of economic value occur only in the western part of the county of the same name. Here, at the head waters of tho Salmon River, the lower members of the Carboniferous are met in a valley between the felsites of the Mira and East Bay hills. The space is generally oceupied by the millstone grit, beneath the edges of which the marine limestones occasionally crop out, or the latter are excluded by the basal conglomerates. The following notes are from a visit to the Moseley (iron) mine, and from information kindly furnished by Mr. Fletcher, of the Canadian Geological Survey.

The felsites of the Mira Hills form a series of bays along which are exposed carboniffrons limestones, conglomerat ; shales, and grits as they were accmunataded subject to the varying conditions of the winds and currents of the period under consideration. At some points, the limestones rest on the felsites; at other localities, grits and shales intervene; elsewhere, the basal conglomerates are covered directly hy the millstone grit. The manganese ores were discovered two years ago in one of these recesses where the felsites were sueceded by shales and grits, and finally by limestones, the ianter apparently extending from point to point of the ancient bay. The ores at the westem mine are found in irregular bedded layers in a soft arenaceons reddish-coloured shale, which is in some places calcareons and coated with films of manganese oxide. The layers vary in thickness up to eighteen inches, and are frequently comected by cross stringers of ore. The shales when weathered present the ore in small nodules, and the disintegration of the former by water probably indicates the source of the beds of gravel manganese ore found lying on them. The ore at the eastern mine occurs as a bed immediately underlying a layer of black manganiferous limestone, with red and greenish shales and coarse grit. The thickness of the ore and limestone varies from two to eight inches, the average thick-
ne ol' junclimestone our, with a usc present ir from the

art of the

 the lower Mira and the edges led by the mine, and Survey. al carbonsubject to ation. At ales inter. grit. The he felsites pparently are found s in some in thickore. The ion of the ore found lerlying a parse grit. age thick-ness of the two being about eight inches. The ore also oceurs in this vicinty as lentieular pockets and irregular nests in conglomerate, ete., and sometimes forms the cementing material. This latter mode of oesurence is similar to that shown by the red hematites (sometimes highly mangmifionous) found at various points in the lower Carboniferous conglomerates of the island near their junction with older strata. The malysis of the overlying limestone has alroady been given. The ore from this locality is generally a pyrolusite, soft, fine-grained, and sometimes sub-crystallino. It is at soma openings mixed with mangrante, and the latter ore is abundant at several places in the grits. The minerals associated with the ore are calespar, barite, films of selenite, and limestone. Anulyses by Mr. Moffima, of the Camadian Geological Survey, show that the ores rum as high as 88.9 per cent. of binoxide, and contain an admixture of ferric oxide as low as two-tenths of one per cent. On the Magdalen Islands, the manganese ores are found, according to Mr. Richardson (Geological Survey Report, 1879-80) associated with sand, clay, gypsum, and doleritic rocks of Lower Carboniferous age. From Mr. Hoffman's report, (ibid.) the ore is a purely crystalline manganite, yielding on analysis 45.61 of binoxide. I have, however, seen sumples of pure pyrolusite from these islands. There do not seem to be any limestones directly connected with these ores, as surveyed by Mr. Richardson, and the locality appears to form an exception to the rule which, so fur as my inforn. tion goes, governs the presence of manganese ores in the Carboniferous of Nova Scotia, viz., the presence of limestone. Possibly in the case of these Magdalen Island ores they may have been derived directly from the dolerite.

From the preceding notes, which cover, I think, all the localities known to yield manganese in this province, it may be inferred that in Nova Scotia there appears to be ground for referring the principal deposits of the ores of manganese to an horizon low down in the Carbonifire marine limestones, and certainly, in most cases, underlying the lowest gypsum bed that limestones, magnesian and sometimes also manganiferous, appear to be associatod It them. I am not prepared to attempt any outline of the process which, in Nova Scotia, appears at some points to have deposited in these strata iron ores, sometimes manganiferous, and at other points ores of manganese frequently very free from iron. The source of the manganese may be looked for in the older strata bordering the Carboniferons sea, or, as Dr. Dawson suggests, its presence in these limestones may be due to the decomposition of rolcanic debris proceeding from the contemporancous igneons vents which produced the Carhoniferous traps. Both the older bordering strata, and the limestones and associated strata may have been drawn upon for the deposits of this interesting and useful mineral. The action of magnesian thermal spriugs may have led to the alteration of the limestones more particularly referred to in the preceding notes. Such an action might lead to the deposition of manganese and iron oxides, as well as of lead and copper ores, all of which are frequently found in them.

[^0]: ' As peroxide.

[^1]: ${ }^{1}$ Contains some psilomolane; analyst, II, Poole.
 ${ }^{2}$ F. Gilpin.

