Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Dommonicutions relating to ths Bistorial Department should be
 Monireal.
The Reditor does not hold himealf reqponetble for opinions axpresed by his correspoindents.
No notice volll be taiken of anonymove commumications.
Recont Wonders in Electricity, Alectric Lighting, Magnatiom, T'elognaphy, Pidopheny, we., by Houry Groor, (Nuw Youk: N. Y. Agent Oollege of Mectricul Maginearing.)
This in an intereeting work, though, " hemtily compiled and Writton," and contains amorg oflier valuable information, deseriptions of the Brush Storage Systom, of varlous kinds of electriond apparatus, e. g., recent telophiones, Aytton's electrie motor, the Parranti dymamo, the Ball unipolar Aymano, Hopkinson's curvent metor. de. Importent papers oir olectrital tranamisaion and storage by Siemons, on electsomeagnets by Count du Moncol, on electrie lighting by wathopporer by Criorson, are reproduced in fall, and the work conclutien with everal axticles on recent sdivnces in tolegraphy.

[^0]
ARGHITEOTURT AS A ETODT.

(Being a glamee at the erigin and developmint of some of the modern atilex.)

BX A. T. 3ATHOR, MRI.B.A.

(Continumed from pace 48.)

How shall we know Harly Englich when we seo it? may be the natural question of nome of you.

I have shown in the diagraws a low beating characteristics. Examine the mootilinges the captele of the oolumns, the arches and the goneral ornempent.

I have alrseady statod that the Forman styite to distingaishod by round arches, oweopt in tho tramittion pariod whion it whe merging itito Early Ringlich. At that time we find pointed archen aliongaide of round ones as in Kolmo Abbey and dewwhere, but those ato exceptional.

You will remembor that the mouldinge are bold and generally round and not mach undertut, that the earlier capitals are cuahion shaped although move of lees enriched, and that the whole fentures have a rough though healthy vitality.

In the Early English we find much more refteoment, the arches are now quite pointod-sometimen very acutely so-the columns instend of being masive round ones, are cluctered, the mouldinge are undercout, that is, deop hollows filled with ahadow. The capitals are sometimes gracefully phin and toll. shaped; at other times carved in what, in genernlly called the "stiff leal foliags," and wan antichiment in the mouldings the "dog-tooth" ormment is vary largely used-a vory simple, yet exthemoly dificotivo enrichment. You are fami.iar with the tormi "latrout" windowe whioh were in use at the beginiting of the Bhaly English period, but theifr buildant speofily grow bolder and wanted largor and richer openings, and thy development of tracery in the windows noon nacoseded.
To enrich their gables, they put on crockets and finials and they became botaer thatir their Normany prodecossors and covered large interioss with grioitted varting whick they bountffied by grioudded ribe and richiy wculptured boseses.
This etylo allone deserves a leoture to itmolf but 1 mast lot thie suffice for thes prosurt and introduce joix to the next pariod whicht is popralinty colled tion Deviet.
ated Style, for the dates of which you may take from about 1270 to about 1378, but there is no exact date at which you can say here E. E. ends and here the Decorated begins, it gradually developed and until the one style becomes entirely absorbed in the other.

The distinguishing features of this style are larger windows, more freedom in tracery and acuter cusping, while the mouldings again become flatter and are not so deeply hollowed out. Instead of the dog.tooth enrichment we have the ball flower and the ifour-leaved flower. The carving takes what might be called the "crumpled leaf" form, and is more natural in its treatment. The features generally become richer, and a few timber roofs begin to appear.

This brings us to the watershed of the Gothic. We have reached the top even if we have not began to descend, and our progress now will be downwards.

The Perpendicular Style dating from say 1378 to 1545, has many splendid features in it, notably its magnificent timber roofs, screens and general woodwork, but the architects became possessed with an insane desire to cover every space with panelling. The windows became enormous, of which a good example are those in the west front of York. The mullions and tracery became more rigid and were taken up into the arch. The arches became depressed in the centre and are what are known as 4 -centred arches. The mouldings are shallower and made up largely of half and quarter rounds, and ogee patterns take the place of the ball flower and four-leaved flower, and the Tudor flower forming a kind of corona along the top of screens, arcades, \&c., was largely introduced. The carving is rich and often very beautiful, not seldom grotesque, and inclined to square and angular forms.

I must not omit to mention the fairy-like, fantracery roofs, which are marvels of construction in stone, of which we have many examples as in Henry VII. Chapel at Westminster, St. George's Chapel at Windsor, King's College Chapel Cambridge, the Cloisters of Gloucester Cathedral and elsewhere.

There is much that is fascinating about the Perpendicular, but there were the elements of decay in it, which speedily showed itself. Throughout Europe there was a retrogade movement in favor of classic arohitecture again, which we may call by the ounvenient name of the Renaissance.

England clung lunger to the Gothic, but in the time of Henry VIII. classic details began to be introduced amongst the Gothic ones, through the employment of Italian architects, and fluctuated more or less under the name of Elizabethan which though very impure, had yet much picturesqueness about it. In this period church building came almost to a standstill, but a large number of mansions and houses were built.

Under James I. there was an effort made to regain the purity of the Gothic, which has received the name of Jacobean, but the tide of fashion had set dead against Gothic, and indeed there was no vitality in it-it had run its course. Like some great monarch of the forest which had grown and spread out its branches and displayed new beauties it had by successive stages reached maturity, and had at last begun to decay; successive storms had robbed it of many of its spreading branches, but even in its ruin-quaint, rugged, searred, lightning-riven, it was sublime.

Inigo Jones, in the time of Charles I., designed
many fine buildings, but entirely on classic lines, and with classic feeling. He had a worthy successor in Sir Christopher Wren, who had a splendid opportunity after the great fire of London, in 1666, of showing his capability, and right well did he take advantage of it. His work was no slavish copy of Greek or Roman antiquities, but inspired by these, he adapted them to the requirements of his day, and infused them with Gothic feeling; and although not free from many faults, he yet gave to London and England the rich legacy of St. Paul's Cathedral and some sixty churches, not to speak of various other buildings. He may be said to have originated the classic spire or steeple at least in England, which have been the forerunners of so many since.

A host of inferior men followed in his wake, working more or less on the same lines, displaying here and there some originality, but none calling for special metinon.

About the end of last century a cloud no larger than a man's hand began to rise in the architectural horizon. Gothic forms began to creep in again, and although at first bad in principle and in art, yet as it increased, men began to look with more respect on the Gothic Cathedrals and other buildings of the middle ages. A few enthusiastic men such as Britton, Rickman, and especially the elder Pugin, studied and wrote and published books on Gothic architecture. Largely strengthened by the Oxford movement, it speedily came into fashion again. Not only churches, but houses and public buildings were built of the most pronounced Gothic; some of them-if possible more Gothic than the original. The building of the new Houses of Parliament in London gave a great impetus to the new Gothic, and speedily there began a restoration of large numbers of the Cathedrals and churches; at first much that was injudicious was done, but latterly in the hands of such men as Sir Gilbert Scott, Geo. Edmund Street and others, who had imbibed the true spirit of the Gothic, the restorations have been well done.

The new Law Courts in London, the Manchester Town Hall, and other buildings testify to a genuine Gothic revival, out of which might have been evolved a nobler architecture, but Gothic vagaries in the hands of inferior men have brought about a revulsion again within the last few years. There has been a revival of a socalled Queen Anne Style, which has received any vitality it ever possessed by bying led by one or two men of undoubted ability and genius; now we have soared far beyond the ken of Queen Anne, and have gone far and wide freely gathering material from all couniries and all architectures, and not ashamed to borrow from the Arab, the Japanese, and the Indian; there is a regular carnival of the styles. There is confusion as at the building of the Tower of Babol-but of styles instead of tongues. Clients order their architecture, as they do their wines and cigars, of a particular brand, and architects are willing to supply them from a "large and assorted stock" always on hand" although I say this yet, I am not without hope of improvement. We are only sharing in the eclecticism of the age. There is much monstrosity, but there is also great vitality in modern architecture, and " better a live dog than a dead lion." Out of confusion will come I trust order. Many earnest men are conscien-
tionsly working out on true artistic lines architectural forms, and I do not despair of the result. Whether this result will be in the formation of a new style or Whether such is possible I will not take time to consider now, but hope to refer to it in another lecture.
I have been briefly aketching the progress of architecture in England as being nearer to us and in closer relation than any other country, but I must glance at the architecture of France, which is well worthy of ${ }^{\text {a }}$ France extended notice than I can give it to-night. as the Absessses many splendid cathedrals, some early, and others at Caen and other parts of Normandy, Rouen, and later, as Notre Dame at Paris, Chartres, an artistic people-havens, but the French-always with Gothic, people-have never had much sympathy vival as wo have accordingly have had no Gothic rebut instead of that just seen took place in England, almost be called thay have developed what might known as called a style of their own, which is had a charm of prenchaissance. The early Renaissance of feature and picturesqueness and marvellous variety one time, as in detail which inclined to the classic at several others, and in thateau Blois and Chambord, and andago iners, and in the old Hotel de Ville, at Paris; andaga in to the Gothic, as in the Palace de Justice at Latterly then Cluny at Paris, and others.
all coptering they have, and I think wisely, awept away olaseaic, which if the antique and have developed a free times fresh and refinand then voluptious is yet at all The nesh and refined.
on the new Hotel de Ville at Paris modelled somewhat one ofthe most the one burnt down, promises to be centary, and is thoughtful and clever baildings of the
In America, worthy of the most careful stady.
has not beenca, until within the last fow years, there could earn even a in the way of architecture which a recent visit I modest modicum of praise, but on strides had boen made. Wurprised to see what immense original in my opinion they have been live tried to be but many of the opinion they have been least succeseful, in Paris and the rising architects, having been trained freabneses, and Iondon, are introducing great vitality and principles of art the same time maintaining the true They er art.
with consere privileged in that they are less tramelled larger opportatism than in the old country, and have The new City ities in the way of lavish oxpenditure. many of City Hall and buildings at Philadelphia, and Boston are advanses and buildings in New York old. Boston are advances-by leaps and bounds on the Of Canada I cannot say so much. We are not so and our as our neighbours across the border in means, freedom of design. requirements are such as to hamper buildings and design. I think, however, we have a fow ment Bngildin notably the contre block of the Parliato bo baildings at Ottawa of which there is no need ed is almomast second position this building I have namgrouping and planning none that I know of, and for very creditable and planning and pictureeque outline, it is I think, citable to the Dominion.
hand ink, however, that Canada is not to be behindis by no mehitecture, and that in that department she van, but masms at a standstill. She may not be in the
In my next lecture I hope to examine som.
-
principles which underlie all true design whether in architecture or ongineering and to glance at some modern requirements in their bearings on our work.

THE ARMAMENTT OF TORPFBDO BOATS.
 (For illuctrations ree pace 68.)

The neoessity of arming torpedo boats with light and efflcient machine gans has been long fully recognised, for in consequence of the large and rapidly increasing inumbers of this class of vessels in posesession of the different navies, there is no doubt that in any future naval campaign they will bo called upon to perform other duties besides that of atteck on ironalads, and that there will be engagements of torpedo boats with each other, and with the armed guard boate, used to proteet the larger fighting veesele against torpedo boat assaulta.* Such guns will also proverery valuable for firing at olectric search lights, for driving the ganners from the machine guns placed in exposed positions, and for covering a retreat. . For all these reasons those governments which possess navies have under consider the development of torpedo boats into more perfect fighting mechines than was contemplated when this means of attack was adopted. The principal difficultien in arming torpedo boate, particularly those of the light second-class, is the extra weight which a gun and an adequate quantity of ammunition entails, and the consequent lose of speed thereby occaaioned, but it would appear that the value of a gun armament outweighs to 2 grest ertent this disadvantage. The requirements of such armament may be summed up as follows :

1. A minimum weight of armament and ammunition sapply.
2. The smallest pomible number of men to work the guns.
3. Sufficient power of projectile to perforate and put hors de combat any existing torpedo, or other aimilar boat.
4. Rapid fire and great facility of pointing during the swiftest motions of the boat.
5. The ase of the same ammunition carried by the machine gun armament of the larger vessels, so that the supply of the torpedo boats may be repleniohed from their magazines if necessary.
6. A fore-and-aft fire, and if possible a an all-round fire, so as to provide equally for an attack or a retreat.
7. The smallest poseible reactions and vibrations from firing so that no special strengthening of the existing torpedo boats may be required to stand the shook of the discharge.

One type of gant which is now being largely adopted in Continental and other foreign navies for arming the so-called first-class and larger-sized torpedo boats, is the 37 mm . (1.46 in.) Hotchkiss revolving cannon; the total weight of this gun with its pivot and socket is 550 lb . It can be worked by two men and fired at the rate of about sixty shots per minute, the explosive shell employed having an energy sufficient to penetrate any existing torpedo boats, while canister can also te usod against open boats at short rangen. As the reooil is very slight, no strengthening is necessary from this cause for the torpedo boats.
The gan ig, however, considered too heavy for the armament of the lighter socond-class torpedo boats. for which purposes Messrs. Hotohkiss and Co. are now manufacturing a rapidfiring singlo-barrel gan adupted for the same ammunition as the 37 mm . revolving cannon. This class of gun ham been adopted to a greater or less extent in fifteen different naviea.
Figs. 1 and 2 are general views of this gun, which resemble a large wall-piece mounted on a pivot; the breech-block slides vortically through a mortioe, and is actuated by a lever, form. ing at the same time the trigger-guard. As will be seen it is provided with a stock, which beary against the left shouldor of the operator, and on the right is a pistol-grip for pointing, so that without the aid of any nlevating or directing mechanism the work of sighting and firing (as is the case with the revolving cannon) is placed in a single hand, which, the makers claim, gives more accurate work, and better results are obtainod than with any combination of men to sight and fire. The body of the gun is made of Whitworth's fluid compressed steol, it is square at the breech, and the trunnion ring (of stoel) is sorewed on in such a place that the gun is exactly balanoed in the trannions. The breech action consists of the square

[^1]THE ARMAMENT OF TORPEDO BOATS.

Fizi 26.
INVENTIONS OF WATT.
Boptansion: Gumes
for isteam.

wedge A with rounded corners, as shown in the details. It runs in guides B B on each side, and its ran is limited by the set-screw p Fig. 6. It is moved up and down by means of the crank C, bearing in the right side of the breech, the pin c of which works in a curved groove D in the wedge. This crank C carries the lever handle E, which serves to open the breech by pushing it downwards and away, and to close the same by drawing it towards the pistol-grip. The firing mechanism consists of a hammer F with a point which penetrates the firing plate and strikes the cap in the cartridge on pulling the trigger. This hammer F is mounted on a rocking shaft G, which is provided with an arm g on the outside of the wedge.

The lever handle E carries a cocking cam e, which bears on the arm g of the rocking-shaft, and in this manner by swinging the lever handle downward the hammer E is drawn back. ward, or cocked. There is a small projection f on the hammer and a trigger sear H which catches on this projection and holds the hammer back nntil released by pulling the trigger, which in turn catches on the trigger sear H. The V shaped mainspring I is carried by the hinged piece K, arranged so as to be easily opened in case the spring should break and require replacing. The upper branch of the spring bears against a projection on the hammer F. The cartridge extracter I is a prismatic piece of steel, forming at its further end the hook l and running in a recess on the interior left cheek of the breech and parallel to the bore of the gan. It has on its under side a stud lI which works in a groove M on the left side of the wedge. This stud l_{1} for a time runs in the straight portion of the groove, but as soon as the wedge is so far withdrawn that the opening N coincides with the chamber, the stud rans in the inclined part of the groove which causes the extractor to be moved back quickly, and the fired cartridge case is in this manner extracted and thrown out of the gun.

The stock O is of wood, fitted into a gan-metal holder ; it is attached to the breech of the gan by the ecrew P. The stock can be dismounted by turning the screw a quarter of a turn. To prevent the slight shock of discharge being felt by the gunner there is an india-rubber tube 0 attached to the back of the stock this forms a very elastic baffer. The pistol-grip Q is of gan-metal, it is hollow and is attached to the breech by two screws. This carries the trigger q, and serves at the same time to direct the gun by means of the right hand, thas leaving the left hand free to feed in the cartridges.

The front sight is a plain steel point attached by a collar to the gun. The rear sight is a folding leaf, which has a certain number of fixed sights with the usual notch, corresponding to elevations from 200 to 200 metres, and giving at the same time the permanent deviations, so that the ganner may pass from one range to the ather without interrupting the fire.

The pivot and socket are of gun-metal, the case of the latter being made according to the shape of the conning tower, or other part of the boat to which it is to be fixed. The pirot carries the gun by its trunnions, and fits in the socket 80 that it can rotate, thus forming a nniversal joint, and allowing the gan to be trained in any direction. In order to roduce the action of the recoil on the boat as much as poesible, the following description of recoil buffers is applied to the pivot.

The trunnion bearings are bored considerably larger than the diameter of the trunnions, and the circular spece between the two is filled with soft india-rubber, entirely inclosed in flanged rings which fit over the trannions and in the trunnion bearings, so that on the action of the recoil, a certain flow of the rubber takes place, and allows in this manner a recoil of a few millimetres in the trannions bearings, sufficient to reduce the sharp shock on the fastenings withoat in any way causing inconvenience to the gunner.

One man can, with a little practice, fire this gan with a rapidity of about twenty shots per minute, but the time roquired, if the shots are carefully aimed, is far greater. The follew are the principal dimensions:

Calibre Length of bore (20 calibres)	$\begin{array}{r} 37 \mathrm{~mm} . \\ 740 \mathrm{~mm} . \end{array}$	2.46 in
Lengti Number of grooves		12
Helicoidal Depth of grooves. .		
Helicoidal (uniform)	0.4 mm .	. 016 in.
rifling $\{$ Width of lands		
left-hand twiat.	2 mm .	. 08 in.
(in calibres) ..	29.9	
Angle of rifling ..	6 deg.	6 deg.
Weight of sun $\because \because$	33 kilos.	72.6 lb .
Length of gun (without the stook	840 mm .	33.08
Total length of gun	,	30.08 In.
the stock .	1140 m	3 ft .
Weight of.pivot and socket	25 kilos.	65 lb .

Total weight of shmell		
oharged and fused	450 gr .	15.84 08.
Bursting charge	22 gr .	. 77 08.
Length of projeotile ..	33 mm .	1.30 in .
Charge of powder	80 gr .	2.8 os.
Weight of metallic cart-		
ridge case $-\cdot$	95 gr .	8.34 08.
Total length of complete		
Totartridge	167 mm .	5.57 in .
Total weight of complete	630	12 lb .
Initial velooity ${ }^{\circ}$ with ordi-	650 gr .	1.2 lb .
nary French Ripault		
cannon powdor ..	402 m.	1318 ft .

The manipulations for loading and firing are: 1. The level handle is thrown by pressing wlth the thumb of the right hand. 2. The cartridge is inserted with the left hand. 3. The lever is retarned to place with palm of the hand, which raises the block to its proper position, when the gan ss ready for fire. After firing the lever is thrown down sharply, and the empty cartridge shell is thrown clear of the gun.

The manner in which the gan is fitted on the torpedo boat will greatly depend on the construction of the vessel, but in most cases placing it on the conning tower appears the easiest and best, as nothing olse is necessary but to bolt the socket on the top of the tower. The gunner is fairly protected by the conning tower, and the mounting of the gun itself against the enemy's fire. On the second-class torpedo boats, the singlebarrel rapid-firing gun can usually be mounted sufficiently high so as to clear the funnel, thas giving an all-round fire. A light grating is then necessary for the ganner to stand upon so as to give him the necessary height to work the gun. This arrangoment has been tried in Denmark and Austria with entire success, and is shown in Fig. 31.
In the first-class and larger boats where the funnel is placed abaft the conning tower, and too high to be cleared by the gun, it will often be fonnd advisable, so as to obtain a fore-and-aft fire, to use a pair of aingle-barrel guns, one monnted on each side of the vessel, an arrangement adopted by the Russian and Victorian (Australia) navies, but this manner of placing the guns would only be practical on large torpedo boats, as it requires columns fitted like boats' davits, which can be dismounted if necessary, and small hinged gratings projecting over the sides or the boat for the men to kneel upon to work the gans. The total of fittings in this case would make about 150 lb , additional woight for each gan. (See Figs. 12 |and 13).

By mounting one of the guns one each side of the conning tower, instead of on apecial columns, a fore-and-aft fire can be obtained with less weight than in the preceding case, as the socket for the gan pirots can be fitted direct to the sides of the conning tower, and its strength can be utilized for absorbing the action of recoil (Fig. 14).

In large torpedo boats, the revolving cannon will be beat mounted on the conning tower as shown in Fig. 15.
The number of rounds of ammunition for each gun will naturally be greatly effected by the total weight considered pomsible for the bont to carry without too great a loss of apeed. The time any torpedo boat would be able to use its gun will be extremely short, and therefore no doubt; 120 rounds per gun would be sufficient, particularly for the beats attached to the larger veseels, in which case the replenighment of ammunition is oemparatively casy.
The total weight of gun, ammunition, etc., would be distributed an follows for a single-barrol Hotehkis gan :

Remedy for Bruises.-No carpenter or mechanic should ever be without a vial or bottle of Tincture of Arnica in his tool chest, or within easy reach. It is invaluable in cases of contusions from any oanse. Let it be the first thing applied, and use it frealy.

ON THE INVENTIONS OF JAMINS WATY, AND EIS MODELS PRFESHRVED AT HANDSWORTE AND SOUTH KRENSINGTON.

(For illustrations see pages 69, 72, 73, 76, 77, 92 and 93.)

(Continued from page 51.)

It should be noticed that what is now commonly known as cover, angle-acting pumping engine has the stuffing-box and In the the equilibrinm valve.
In the patent of 1782 Watt states that there are various that he hents that may be made of the several engines, but no doubt is given only those that appeared the best, and this The author is case, and is what a patentee is bound to do. takes to shas found a model at South Kensington, which he probably show a transition state, or form of engine that may probably represent an attempt to produce a donble-acting enchain two single-acting cylinders, connected together by a Fig. 27 a pulley as follows.
placed 27, shows two single-acting vertical air pumps placed at some little distance apart, and with passages below single-acting tom and there is an unique arrangement of two nected by pasertical cylinders, having their upper onds connected by passage without valves, but the pistons having selfseting valves in them, opening upwards, so that any steam 4 chain con piston conld pass to the upper sides of both pistons. and it pesses octs the top ends of the piston-rods together, and that the des over a pulley or drum to which it is attached, so in the cylinders will reciprocate, if the pistons work up and down The cylinders.
hold of a pump is attached a long crank-pin, which could take There are pup-rod, or a connecting-rod.
bottoms of conical valves to let steam into and out of the Wards from the cylinders, and in each passage leading down. ting in a jet of eduction valves there is a small pipe, torminawoater. ajet of pointing upwards, no doubt for the injection there was not, although when the models were first examined longed to not the slightest indication that these pumpe bethat they the cylinders, it appeared probable to the anthor amination, tome relation to each other; and on further oxholes were foo dowel-pins were found on one model, and two pins fitted, found on the other model, into which the dowelbelonged to each at once proving that the supposition that they

Thus to each other was correct.
pumping or other model of a double-acting arrangement for rod or crank, with reciprocating motion, such as a connectingof both pistons, with the pressure of the steam always on the top other of the pist and a vacuum formed alternately under one or pipes; and with sir, by injection of cold water into the eduction eharge and with air-pumps to keep up the vacuum, and disdonged the air, and the water of condensation, and the conbeen noticed. This is an arrangement that has not before extant ; and it is of which, it appears, there is no desoription tive genius of is a good example of the ingenuity and inven-

Another of James Watt.
steam expangive invention in this 1782 patent is the use of this action, thaty; and so thoroughly did Watt understand Would take place has drawn a good indicator figure of what Were cut off at one in the cylinder of an engine, if the ateam This figure, the quarter of the stroke. See Fig. 25.
Laws and not fare anthor finds, is identical with Marriotte's constructed fror from the true expansion curve that the author portion to the water that's table of the bulk of steam in profigure goes, i. e., to that produced it; that is, 80 far as the pressure to four times it expansion of steam at etmospheric 26, goes to 44 times the volume. (The author's diagran, Fig. At this point it 44 the volume with 120 lbe. steam.)
the specification it may be well to leave the censideration of 19, Page 48, of a model moment, to examine the drawing, Fig. the invention a model which it is believed is at the root of small cylinder about "Indicator." This consists of a simple, and closed at bottom, and with. and 8 in . stroke, open at top piston-rod is bottom, and with a cook and pipe to it ; the above, and a chanected by a light chain to a rocking-beam attached to the uppertened to the other ond of the beam is ita lower to the upper end of a good spiral spring, fastened at
beam moving inere is a long light finger on the centre of the beam moving in front of a large segment. Now, if the pipe
below was opened, the connected to an engine cylinder, and the cock
be inderes of the be indicated. It only remains now to attach a pencil to the top of the piston-rod remains now to attach a pencil to the
paper on a board indicator, and move a sheet af an a board in front of it, to and fro, as the main piston
of the engine moved, and we have "Watt's Indicator" as used by himself and all his people for very many years, in fact up to the author's time, when he saw the instrument in Mr. William Bennett's possession in Manchester. Mr. Bennott then showed the author's late father how to take indicator figures, of which some are shown in Figs. 28 and 24, Page 48, taken by Professer Cowper in 1840.

Mr. W. Bennett was originally at Soho, and on going to Manchester and joining Mr. Wren, he became Messrs. Bolton \& Watt's agent there, for indicating their ongines and taking orders for the same.
Our member, Mr. Henry Wren, has very kindly made the author a present of one of these indicators, shown in Page 49, Figs. 20 and 21, and it is now before you : you will see that it is just like engravings of Watt's indicator in the Encyolopsdias.

Watt goes on in his specification to say that when the steam is cut off at one quarter of the stroke, there must be an equalising arrangement, to enable the pistou to complete its stroke when pumping; and several plans are put forth. In one, Fig. 22, Page 49, there is a small fly-wheel with a pinion mounted up above the cylinder, the pinion taking into a toothed segment on the end of the beam (in place of the old'" Horse. head "). The piston-yod has a rack attached to it, also taking into the toothed segment, so that at every stroke of the engine, either up or down, the fly-wheel must start from a state of rest and revolve rapidly and then stop, and in so doing would of neceasity take a good deal of power to overcome its inertia, and would give it out again (less the double friction towards the end of the stroke. Another plan is, to mount a weight high up on the top of the beam of an engine, so that it should be somewhat lifted, in starting from either end of the stroke, and fall somewhat after passing the centro. Another plan is that of a loose weight, to roll along the top of the beam and do the same thing. Again, one plan is to have two large shortstroked, open-headed pumps, one attached to the beam on either side of its contre, so that one bucket rises while the other falls ; and there being a trough between the heads of the pumpe, the water is intended to flow from the one to the other, thus giving the engine more to do at the commencement of the stroke, and gaining a little towards the end of the stroke, by the weight of so much of the water as has flowed over in the time.
There are also several arrangements of levers, to give a variation in the leverage during the atroke, so that the piston should have more to do at the commencement of the stroke, and less to do at the end, when the steam was gradually losing its pressure from expengion.

Thus, in 1782 Watt had made a thoroughly good rotative, or mill engine, and an economical one also, though it does not appear that he actually use any considerable pressure of steam at any time. This engine is shown in Figs. 80 and 81, taken from a model in the South Kensington Museum.

One form of engine he describes, and which he calls a compound engine, conaists of using two oylinders of the same sise, and then, having used full stoam in one oylinder, he lets that piston stand still whilst part of the steam expands into the second cylinder, and finally the steam from both is condensed.

In the patent of 1782 is described the plan of allowing the piston-rod of an engine to pass out through a stuffing box in the bottom, the beam being placed below, like what is now known as a "Ball Engine," (Figs. 28 and 29.) It is believed the name arose from an ongineer of the name of Bull, who put some up in Cornwall, and whose son went into partnership with Trevithick, at the time that James Watt was complaining of their infringing his first patent for the condensation of steam.

It is, a remarkable fact that the model from which this diagram was taken is almost exactly the same as the ongraving at page 59 of the "Life of Trevithick," the injection jet being in the eduction pipe, as shown in some of Watt's drawings.

Watt, in a patent of 1784 describes an ingenius method of obtaining rotary motion in opposite directions, by two connecting rods from a crosshesd at one end of the beam of an ongine (Figs. 32 and 33.) Inasmuch as one shaft is placed somewhat lower than the other, that rod is jointed to a fower part of the beam, so that beth may tarn the centres at the same instant. The lower shaft drives the bottom roll of a rolling mill, and the higher one drives the top roll. This was probsbly intended for rolling metals for coining. The gearing by spar-wheole carries the power to another mill for slitting.

In the aame patent the idea of a ateam carriage for common

INVENTIONS OF WATT.

Fis 27 Twociplorider Engine, Ir druthe action.

roads in put forth, to be worked by steam sbere the presurure of the atmenphere, whioh is to be allowed to esompe inte the atmophere when it has done itw work; a forsacarriage and steoring apparatus in named, and a light and portable boiler with the fire inaide the boiler in an iron tube, whilat the body of the boiler might be made of wood for lightneas, and be strongly hooped to ratain the steam.

The anthar may montion the fact that some internally-fired boilors for praction vorl have had their shells made of wood; as his late nncle, about sixty years ago, assisted in the construction of ans for a dredger in Leadon, in which thick planks,
well tongued together, and jointed with white lead, formed the sides and the top and bottom, there being a mass of clay placed on the top to holp it to withatand the preserure of the eteam. The preseure was very low, and the engine of the dredger was a condensing engino.

Watt went so far into detail as to give the diameter and stroke of the cylinders for a small stean carriage, to thke two persens, vis. 7 in . oylinder, 12 in . stroke.

Watt says, "The elantic force of the stem in the boller mant occasionally be equal to the supporting a pillar of mercury 80 in. high."

INVENTIONS OF WATT.

Daible-acting Beam Engine.

In spite of this, however, it is said that the firm of Boulton and Watt endeavoured, about 1804, to obtain an Act of Parliament to prevent more high-pressure engines on Trevithick's plan being made, on the ground that, " the lives of the public were endangered.'

It may be only right here to mention that the present eminent firm of James Watt \& Co. have discarded such limitation of pressure, and have for a long time made highly economical engines of all kinds, high pressure, expansive, and condensing.

It is worthy of note that one Cugnot, a native of Lorraine iu France, made in 1769 a steam carriage for common roads; it had three wheels, and two steam cylinders single-acting, and a short beam between them, and they worked on to the axle with ratchet wheel. The carriage went at $2 \frac{1}{2}$ miles an hour for a short time. The author saw this old engine in an old church connected with the "Conservatoire des Arts et Métiers" in Paris.

One Francis Moore, a draper in London, invented a steam carriage in 1769, as mentioned in the letters of Dr. Small and Mr. Watt.
There is one Model, Fig. 38. which shows two hammers, worked by one engine, the one lifted by a cam from the "belly" like an ordinary forge hammer, except that the shaft is at right azgles, whilst the other hammer is lifted by depressing the tail like a tilt-hammer by another cam.
This model was only just saved from destruction, as the shafts of both hammers were so worm eaten that one had fallen to pieces and the other was nearly as bad; however, the authorities have kindly put a new wooden shaft, prepared by the author, precisely like the old, to the hammer-head that had fallen off, so now it can be understood what the model is really intended to show.

The patent for 1785 is for waggon boiler and the setting of same ; this is an early form of such a boiler, and the sides are shown vertical. In 1833 the author (through the kindness of Mr. W. Bennett) was allowed, as a lad, to copy the working drawings of one very like it, except that the sides were curved to give extra strength, while stays were introduced inside, to tie the sides together. Of course it is evident that flat sides of boiler plate were exceedingly weak, but Watt generally worked with very low pressure, only a very few pounds above the atmosphere : when 7 lbs. steam pressure was carried, it was considered about as far as it was proper to go, and even then the "open feed head" had to be carried up some 18 or 20 feet, to prevent frequent " boiling over."

In fact, in practice Watt trusted to the vacuum to give him his power, and the iron plate of the boiler was rather to prevent the admixture of atmospheric air with the steam than to give him any bigh pressure.

So great in fact was the objection at that time to high pressure, that when offered an order for locomotives for an early railway, the firm would not look at it.

There are two very striking inventions of steam engines altogether different from the steam engines previously spoken of, and acting in a different manner; one is a rotary engine, Fig. 37, and the other a semi-rotary engine, Figs. 34, 35, and 36. In the rotary engine there is a piston, fixed as an arm, in a radial line to the shaft to be turned, and the cylinder of the engine fits the piston in its revolution; there being at one point a flap-valve, hinged to the inside of the cylinder, whilst its other end rests on the shaft, so as to form a cylinder bottom, or point d'appui, for the steam to act against when acting also on the piston. This flap-valve is at a slight angle to a radial line, so that when the piston comes round, it can heave it up so as to get past. This is about the simplest form of rotary engine that can be ronceived, and has probably been re-invented fifty times since 1782.

The semi-rotary engine, Fig. 44, has likewise a piston fixed in a radial line to the shaft to be turned, and the cylinder fits the piston as it moves backwards and forwards through a considerable arc of the circle; fixed inside the cylinder at one part is a fixed stop or cylinder bottom, for the steam to act against either way, as it acts against the piston in either one direction or the other. It was intended to let the reciprocating shaft act with a spur wheel on two racks attached to the pump rods.

There is an unfinished model of this engine in the "Watt Room" at Heathfield Hall, which the author has examined; no doubt this was partly made by Watt's own hands. In a letter of Watt's, dated 27 th September, 1782, he speaks of this model having been made, so far, in 1765 or 1766.

It remains now to give some description of the more impor-
tant articles found in the "Watt Room " at Heathfield Hall, the residence of our Member, Mr. George Tangye, who, as before mentioned, has kindly photographed many articles for the Institution.

The room is about 20 ft . by $\mathbf{i} 6 \mathrm{ft}$. 6 in . in size (for diagrams see next number), and really is a good attic, and nothing more, with one low long window only 5 ft .4 in . from the top to the floor, so that it was a bad light for any machine a few feet from the window ; and it is a wonder that Watt did not devote a better room to his purposes.

There are numerous shelves with drugs and parcels on them, and nests of small drawers with tools in them, some of them very excellent tools ; and his small lathe and bench stand at the window, with his tools about, and his old leather apron on the vice, and his centre-punch tied with a piece of cat-gut to the vice, to save him the trouble of looking for it, or picking it up. There are now a number of busts on a bench in the room, and some marble and alabaster for working on. At the fire-place there is his old frying-pan and his Dutch oven or " hastener," and outside the door, on the landing, a little shelf, on which it is presumed his meals were placed.
$B \rightarrow$ sides these things there are two large machines for sculpturing marble, alabaster, or wood, and a few smaller halffinished models, such as the semi-rotary engine just named, and a "counter," Fig. 41, for counting and recording the number of strokes that an engine makes. This is constructed on the intermittent principle ; that is to say, the first wheel has 10 teeth, and when it has received 9 impulses from 9 strekes having been made, the 10th stroke not only tarns the first wheel one tenth, but this wheel, owing to its having a raised tooth at that particular place, turns the next wheel one tenth also, thus scoring one tooth on the 2nd wheel, and so representing 10 strokes; and so on throughout the series, so that when 999 strokes have taken place, the next stroke in fact moves all three wheel, which then show 000, and the fourth wheel goes one tooth suddenly, and thas shows 1000.

There is a modification of this counter, Figs. 43 to 46 , at the South Kensington Museum, in which there are seven wheels and pinions all geared together, the wheels having 100 teeth and the pinions 10 teeth, so that all the wheels are always moving when one moves. This is a very safe instrument, but is not quite so clear to read. It is believed that these are the first "counters" that were ever made, at all events to go to millions as these do.

An exceeding!y simple, but handy plan, of blocking up anything to a given height is shown in Fig. 50, (see next number) being in fact only a pair of "folding wedges," but with a number of notches in the lower W edge, into which a pin, fixed in the upper W edge, can drop, and so keep them from sliding when at almost any exact height.

In this room the author found a large number of little slips of copying paper, with various receipts for making copying ink, and in one corner of the room a small "Letter-copying Screw-Press," that would take in such slips conveniently; the screw was only of wood, but powerful enough for the light work it had to do. This is shown in Watt's 1780 patent, together with his " Letter-copying Roller - Press,' of which there is also an example at South Kensington, together with his old desk, in which he hadja pair of small rollers fitted for the same purpose. These two last belong to Mrs. Bennett Woodcroft. The drugs on the shelves were many of them for the purpose of making the "Copying. ink powders" that Watt used to sell at ninepznce a packet, and of which there are some dozens now at Heathfield Hall. It is believed that he sold these on his own account.

The next machine to be noticed is a very remarkable one, when we consider the date at which it was made, 1809. It is a machine for sculpturing or copying a bust or bas-relief of of thesame size as the original ; it is shown in Fig. 52, (see next number) which is copied from a good photograph kindly taken by Mr.Gnorge Tangye at some considerable trouble. Watt called this machine an "Eidograph," and there are some drawings of partsof the machine in the room.

The machine consists, firstly, of an ordinary lathe, with treadle and fly-wheel, to supply the motive power, and secondly of two tall uprights about seven feet high, carrying at the top a slide on a strong horizontal bar; the slide being capable of motion horizontally, either at a slow or quick speed. Then, hinged to this slide, is a light square frame of metal, and at the outer edge of this, another light square frame of metal is hinged, fo that the lower edged of such frame is capable of motion up and down, or in and out, like an elbow joint, and horizontally when the top slide is moved.

The weight of these frames is balanced by lever and balanceWraghts and chains above, and the lower edge of the second ovame is furnished with a "feeler" or "guide" to traverse a light original model, and a "drill" driven at a high speed by leeler card to cut the work or copy ; so that by handling the a piece carefully and tracing over the original in all directions, a piece of marble or alabaster or wood, placed in the machine chine with of the original, is cut to a perfect copy by the machine without fear of any mistake, and without any special skill on the part of the operator. The slow motion to the slide Worked carrying the frames and "feeler" and "drill," is Worked by a convenient handle and tangent-screw when cutlathe and the quick motion can be thrown into gear with the lathe wheel to run back. The quick motion has a coarse traVorsing screw, having a nut in halves, that can be closed or opened ; and the slow motion has a fine threaded screw with a A handimut, so that it also can be thrown into gear or released. A handkerchief is wrapped around a part of one frame, in such ap off the that one coculd put one's head against it, to push it There work at pleasure, besides moving it by hand.
and the is a noticeable feature in the frames above mentioned, "winding", in order to prevent their springing or going the erection," they are practically formed into "solids" by 42 , erection of the outlines of a pyramid on each. Fig. found hang a similar frame, apparently an experimental one, thand hanging on the wall : this is even better, theoretically stiff the one in the machine itself. The plan gives extreme considers it the expense of very little weight. The author framing it an extremely ingenious method of preventing a framing from an extremely ingenious method of preventing a
before. After
After searching the room over, two specimens of work were unfinished a finished original bas-relief, and the other the be mound copy of it. Both the original and the copy can preciselyted in their places in the machine, and be turned the mandrils of by a pinion gearing into the two wheels on placed, so that of the carriages on which the articles are "pished, so that " undercutting" could be properly accom. "drills." as well as straight cutting into the work by the
The drills, circular-cutters, and other cutting tools are excellent, some being formed for roughing out apparently,
and made 80 me in th cut in steps, i.e., to take several light cuts, and into in the form of globes with the whole surface formed so to speak, and cotting edges, so that it was a cutting globe, so to speak, and could go anywhere, as it would cut in any
direction. Fig. 53
making a cony number) shows the sculpturing machine for thoroughly, copy of a reduced size. After searching the room eight times tho "masks" or half faces, were found, the one doabtedly execated in of the other, and the smaller one unof parts of this exed in this machine. Some drawings found it a " Diminis machine gives 1811 as the date. Watt called The machinhing machine.'
and treadle for obtains, firstly of a lathe bed, with fly-wheel drill. Secondly obtaining the motive power for driving the falcrumed at one a stout hollow tube forming a long lever, end can be at one end on a "universal joint," so that the other lever carries a " ${ }^{\text {a }}$ a in any direction about the centre. This a "drill" a "feeler" or blunt point near its outer end, and "feeler" "near the fulcrum, so that whatever motion the Thas, if has, the "drill" has (say) one-eight part as much. on ihe a bust or mask (in this case a plaster cast) is placed
"feeler," is carovided for it under the "feeler,", and such piece of," is carefully traced all over it, the "drill", will cut a to the same form placed under it, on the slide provided for it, the original. The except that it will be one-eighth the size of

The slides above lever is balanced.
are moved by a " ${ }^{0}{ }^{0}{ }^{0}-$-eighth as a "pentagraph," or arrangement of levers, to give original, that much motion to the work to be cut as to the farther motion every dimension shall be in proportion. A and the motion is provided for tarning round the original "bas-relief,", and is sometimes necessary when undercutting
One exam," and of course when copying the round figure.
figure, viz. an anfinishe only, was found of the round original doubt it was donead and bust in wood, so small original. "oubt it was done in this machine from a larger

[^2]It would appear that the machines just described were used by James Watt, probably as a mere amusement for his leisure, during the latter days of his life; for they do not appear to have been patented by him, or in any way brought before the public. It is to be hoped that in the pursuit of this hobby he found agreeable relaration and relief after the laborious life which he had long led.

In concluston the author would draw attention to the general effects produced by the inventions of James Watt.

Firstly, in 1769 there were many Newcomen engines at work pumping (in fact Watt's attention was firit drawn to steam engines by having to repair a model of a Newcomen engine), and the effect of his invention was, to work pumping engines more economically and quickly.
Secondly, in 1681 he produced rotative power for driving factories, obtaining it, in a manner, by having a heavy balance-weight to act one way whilst the steam acted the other way; however the obtaining rotative motion by steam was an enormous advantage, far greater in its effect, in the author's opinion, than the improvement in the pumping engine.
Thirdiy, the crowning invention of 1782 made the steam engine the one useful motive power, by making it double-acting, and fit to drive cotton mills, flour mills, and all other machin. ery requiring regular rotative motion.
The general effect of this invention on the manufactures of the world, and first, of course, on those of this country, is so widespread that it cannot be estimated ; it has cheapened production to a marvellous extent, has in very many instances been the means of bringing new manufactures into existence, and has immensely increase the intercourse between nations, by developing from fire and water as many tame giants as we require to do our work.

Hutceltaxeons wotes.

Cosmical dust in snow.-Various analyses have recently been made of the dust found in snow in order to ascertain whether it is volcanic, and therefore in all likelihood connected with the volcanic outburst of Krakatoa. Quantities fell at Stockholm on the snow during the end of last December, and M. Nordenskiold made a communication to the French Socioty on the subj ct. Since then M. Yung has also examined the snow of the mountains about Geneva and on the summit of the Great St. Bernard (2490 metres high). At this altitude the snow was covered by a very fine blackish dust very sparse in some parts, and in the form of small isolated spherules. In no place did the snow seem regularly black. Analyses showed that it contained silica, irregular fragments attracted by the magnet and globnles of iron. Some of the dust also contained particles of organic natura and their ashes contained iron. M. Carizzo, prior of the St. Bernard monastery, has assisted M. Yung in collecting snow from parts of the mountain during the last week of January, and analyses shows it to contain globules of iron. While upon the subject we may mention that the Council of the Royal Society have appointed a committee to collect evidence on the Krakatoa eruption; Mr. Norman Lockyer, Mr. S. Russell being members.

Piers and Jetties are usually constructed of screw piles or columns, connected by plate or lattice girders. In ordinary cases a span of from 20 to 40 ft . is most convenient. When strong cranes have to be fixed on the pier, or whan railway waggons and locomotives are to be carried, large cylinders, columns, or groups of piles are used for the foundations. In the same way as for bridges. Estimates can only be given against receipt of accurate information of all the circumstances which have to be provided for. We illustrate two kinds of screw-pile used, viz., the hollow cast pile and the solid screw. The following are the chief points to be considered in designing and estimating for this class of work :-1st. The length and width of the jetty. 2nd. The height of the roadway from the bottom of the water, the slope of the shore, and depth of water at various times. Brd. The nature of the sea or riverbed. 4th. The intended purpose of the jetty. If for loading and unloading ships, state how many at a time, and the heaviest weights to be lifted, also whether the vessels will be likely to roll against the pier.

INVENTIONS OF WATT.

Fis.32. End Viex Folling and Slitting Mill.

Fis. 33.
Elevation.

Semi-rotariv Engine.
Fig. 35.

Side View

Fig. 37. Rotury Erryine

INVENTIONS OF WATT.

Fig.38. Tilt Hommeis.

ELECTRIC LIGHTING OF HOUSE, \&c.

A paper was read on the evening of the 18 th inst., at the ordinary meeting of the Royal Instituto of British Architects, on the "Electric Lighting of Houses and the precautions to be adopted on its introduction," by Mr. Killingworth Hedges, C.E. The steady increase of electric lighting for house purposes was shown by the number of installations which have recently been made by the occupants of houses both in town and country. In large cities a temporary check has been ex. experienced with the general supply of electricity as contemplated ry the Act of 1882 . The electrical currents which would be employed for lighting a dwelling are very powerful, and without some precautions were taken to insure their being properly regulated, they might cause great risk fiom fire. Mr. Hedges pointed out how this risk might be occasioned, and suggested that the rules of the Fire Risk Committee should be strictlr adhered to, especially those which advised that all work should be under the supervision of a competent electrician. Many fires hld been caused by the electric lights, which is used largely in America for mill lighting, the official report showing that all these were either due to neglect of precautions for safety or by not having the work properly supervised. As regards cost, the fixed charges with electric lighting, such as supervision, interest, etc., caused it to be much dearer than gas when used for a short period; but if these charges were spread over a number of hours, electricity was relatively much cheaper. Mr. Hedges recommended the introdaction of the electric light on account of the ultimate saving in the renewal of decorations and preservation of works of art. The property of not vitiating the air should, alone, make electricity rank, independent of its cost, as one of the greatest sanitarw improvements of the age. The paper was followed by a discussion.

Large Chains.-Two heavy chains, for use on the large floating bridge connecting Portsmouth and Gosport, have just been completed by Messrs. Jones \& Lloyd at their Cradley Works, Staffordshire. Each chain is 640 yards long, and consists of nearly 5,000 links, its weight being about 21 tons. The chains are of $1-11-16 \mathrm{in}$. round iron of the well-known "Lion" brand made by the New British Iron Company, Limiten, Corngreaves, near Birmingham. The proof test was 40 tons or 20 per cent. more than the Admiralty test, and the breaking strength was proved to be $70 \frac{1}{2}$ tons. For chains, Staffordshire iron of this class has often been proved superior to even Yorkshire iron, its tensile strength being considerably above the average, and its excellent working qualities admitting of sound workmanship in the smith's shop.

Chisels.-All carpenters know how soon the butt end of chisels split, when daily exposed to the blow of a mallet or hammer. A remedy suggested by a Brooklyn man consists simply in sawing or cutting off the round end of the bandle so as to make it flat, and attached by a few small nails on the top of it two round disk of sole leather, so that the end becomes similar to the heel of a boot. The two thicknesses of leather will prevent all further splitting, and if, in the course of time, they expand and overlap the wood of the handle, they are simply trimmed off all around.

SPEHED RECORDER FOR LOCOMOTIVE.-(Enoineering.)

The speed recorder, of which we give illustrations (for illustrations see gage 81), was designed by Mr. A. Klose, and manufactured by the Werkzeng and Maschinenfabrik, Oerlikon, Zürich. It belongs to that class of speed-indicators in which the vertical movement produced on a spindle by solid rotating masses, acting against a spring, is indicated on a dial, showing at all times the speed with which the apparatus is revolving, while simultaneously the speeds are registered on an endless paper band, moved by clock-work, thus giving a graphical picture of the fluctuations of speed during a given time.
The construction will be easily understood on reference to Figs. 1 and 2, Page 81 of our illustrations, which represent vertical sections in two different directions of the tachymeter. The vertical spindle $a b$ carries on its upper end the fork or frame.
shaped enlargement $c c$; pivotted in this at $d d$ is the disc e, provided with a long slot, into which fits the connecting link f^{\prime} fork-shaped and pivotted to the disc by a bolt g. The link f is at its upper end, hinged at i to the socket of a little vertical spindle h, while its lower end has a little connecting rod r, governing the motion of the fork piece f. Acting against the influence of the rotative force is a conically coiled spring k fixed with its upper and smaller end to the socket of the rising spindle h, with its lower and larger end to the projections provided on the frame e. All the parts so far described rotate with the vertical axle $a b$, which receives its motion by means of the bevel wheels $l l$. While rotating, the pivoted disk e, and the levers hinged thereto, change their relative positions, and the point i rises and falls according to the speed of the rotating masses. The lower end of the little spindle h rests with a foot bearing in the socket carrying the point i, and does not revolve, but only receives a slight vertical movement which, by means of a toothed fork, see Figs. 3 and 4, embracing a pinion q, to the centre of which is attached a pointer, giving a partly rotary motion to this pointer, which indicates the number of miles per hour at any moment on a divided dial plate. The motion is transmitted from the driving wheel of the locomotive to the speed indicator, eitner by meaus of a friction wheel rusning against the tyres, or by means of a little crank from son e convenient point on the connecting rod. All parts in this apparatus have to be carefully shaped, pivotted, and balanced, and the spring accurately set, so as to give correct results on the dial-plate, and the whole is inclosed in a dust-tight box to prevent any dirt interfering with the delicate worxing parts.

It now remains to describe the arrangement, by means of which a continuous record of the mileage is obtaihed. A clock A rotates once in an hour a drum B, over which, and a second similar but loose roller Br, runs an endless paper band. In thh vertical rod h, at a convenient place, is provided a little cross slot m, in which the frce end n of a bent lever $n t$, pivotted at t to a plate p, oan slide to and fro; the marking lever $r o$ is attached by means of a light parallel motion to the lever $n t$; it carries at its lower end o a marking point, and is at its upper end hinged by means of the shsrt link $r s$ to a fixed point s on the plate p. A roller guide u is provided for the vertical rod h. This marking arparatus also is enclosed in a strong box to protect it from dust and interference, and is in ordinary running locked up. The proportions of the paper are chosen in such a manner that ten miles are represented by about $\frac{8}{8}$ in., thus allowing mile lengths to be read with accuracy, while a length of paper band of nearly $2 \frac{1}{2}$ in. repre sents an hour, minutes being represented by lines about 1-25th in. apart. A piece of the paper band is reproduced in Fig. 10 to half the actual scale; in this the speeds are given in kilometres, and the distances for time in millimetres, while also a note is made on the slip, that 1750 revolutions per minute of the speed indicator, corresponding to 105 kilometres, or about 65 miles per hour, the maximum speed for which the apparatus from which the paper strip was taken, fitted to an engine on a Swiss line, can be run. It will, however, be nnderstood that the ind cator is capable of adjustment for any desired speed. Wherever it is convenient the indicator is driven by means of a friction roller pressed againstt he wheel tyre and fixed to the horizontal shaft of the gear wheels $l l$, which shaft is carried in a bracket D pivotted round the bearing of the vertical spindle $a b$; to enable the friction pulley to follow any unevenness of the tyre, this bracket can slide laterally in a guide E , and is pressed against the tyre by a strong spring F. Where this arrangement is not practicable a small crank w, attached to the connecting rod, is employed working a second set of bevel wheels $z z$. This mode of driving is not so convenient since every different size driving wheel requires a different division of the scale.

Speed indicators of this type have given very satisfactory results on the lines where they have been used, and have been highly approved by the Society of German Railways. All parts of these indicators can be readily tested; if the springs, which can be tested by direct loading, are found either too strong or too weak, they can be readily adjusted by turning them in their attachments, thus either lengthening or shortening them as required, and again fixing them. The clockwork requires occasional attention and should for this purpose be taken to the office and there tested for accurate timekeeping. The paper band records are easily readable, and if stations and other fixed positions are printed on them give an excellent and clear picture of the whole run.

HYDRAULIC CHAINS FOR STEEL WORKS.

(For illustrations see page 80.)

The following paper was read by Mr. R. M. Daelen before the Iron and Steel Institute. Mr. Ludwtg Huckenholz, of wetter-on-the Ruhr, has recently sent us sketches of four types of hydraulic cranes executed by him for steel works, and of which we publish diagrams above. The principal feastruct of these crones is, that the craue-post is an independent and it can quite apart from the hydraulic cylinder and ram, form ; its therefore be constructed of any desired section and form; its weight in no way influences the action of the crane; in addition, all side strain and bending movements are entireIm removed from the cylinder and ram, a point of considerable importance, and one through which much trouble with the stuffing-boxes is avoided, since they have neither side strain nor does the plunger turn in them. In addition, the hydraulic having the planger are of considerably less dimensions, and not the carrying bracket and the actual load only to lift, and not the crane-post and balance-weight.
The form for the crane-post generally chosen in the types rivitted up is a wrought iron stauchion of rect-angular section, section up of angle-iron and plate; it is not only a favourable the crane strength, but also one to which the roller guides for 2, Page 80 arm or bracket are conveniently attached. In Fig. port, in 80 the hydraulic cylinder is arranged inside the cranecylinder and other three types it is placed on one side, so that
This and plunger turn with the crane arm.
Water thrrangement, of course, neces sitates introducing the either through a stuffing-box in the cantre of the crane-post, although or bottom, from whert it passes to the cylinder, but practice this may appear a little complicated, yet in actual being easily difficulty is experiensed with it, the stuffing boxes There is easily $k \in p t$ in good order.
should not no reason why, when desirable, a second cylinder since these be attached for balancing the novving loads; but tions, the are not uearly as large as in the usual construcextra cost. Baving in water will only in rare cases be worth this can be art. Both turning and moving the cradle in and out draulic arranged with equal facility to that in ordinary hyThe cranes.
The diagrams require no furtlier description, but a few a foundry be said as to their intended use. Fig. 1 represents being arrancane with no side or top supprorts, the foundation ring rolling an on the plan of the Fairbairn cranes, where a and this ty on a series or small rollers takes the side thrust, up to the hi of crane is specially suitable for Bessemer cianes radius. Fig highst de irable loads and the greatest necessary is Wanted for 2 represents a self-contained ingot crane, such as ir held by for Gjer's soaking pits. In this case the crane-post Fig. 3 reprical plate-iron pedest its above the floor level.
which the cresents an ingot crane of smaller dimensions, in turns roand a solidt, constructed as a rectangular box girder, lastrated an a solid vertical steel spindle, while in Fig. 4 is iltyper have an also berane with top bearings. The two latter load, two steam een carried out as steam cranes, for ten tons hydraulic cyleam cylinders being placed one each side of the the latter only cyler, the former performing the lifting, while in Brown's places where these steam will of course only be used in such has to Where there is no hydraulic plant, or where lifting work instance, performed too far away from the accumulators. For steel works, for loading or unloading ingots, or in small Martini crane. It
more cositl be denied that hydraulic cranes of these types are Dot onstly in the first instance than ths ordinary cranes; but Water, but are they cheaper to work since they require less of the hydranlic are certainly much less liable to cause bursting lesa, speed and presses, since the moving weights are so much ably reduced, and pressure of the water in the pipes are considerlowering with heavy cran shocks which frequently arise when

NOTES ON ELECTRICITY AND MAGNETISM.

 by prof. w. garnett.If a namber of Leontinued.)
ate insulating of Leyden jars be supported on separ-
connaected with the and the outer coating of the first
outer coating of the second with the inner coating of the third, and so on, the outer coating of the last jar only being put to earth, whilo the inner coating of the first jar receives the charge from the machine, all the jars will simultaneously receive a charge which will be nearly the same for each. Such an arrangement is sometimes called "a cascade," and the operation of charging is called " charging by cascade." In accordance with the analogy of a battery it may be said that the jars are arranged in series, while the ordinary system of connecting all the inner coatings together and putting all the outer coatings to earth may be called an arrangement in multiple arc.

If the outer coatings of the jars completely surrounded the inner coatings, and there was no projectknobs, the charges of all the jars when arranged in series, or cascades, would be very nearly equal, and if Q units of electricity were supplied by the machine each jar would Q units of electricity. But the jars cannot be charged euch to the full potential which the electric machine can produce, for potential of the inner coating of the first jar is the sum of the difference of potential of the several jars in the series, and this cannot be greater than the potential produced by the machine. Suppose there are six jars, each having the same capacity, C, and suppose that the potential which the machine can produce is V . Then each jar can be charged to potential 1-6V. The charge of each jar will be 1.6 VC , and the energy $1-72 \mathrm{CV}^{2}$, while the energy of the whole series of jars will be 1-12 CV2. If one jar alone had been charged to the full potential of the machine its charge would have been C : and its energy 1-2CV2, so that the energy of a single jar charged to the full potential of the machine will be six times that of the whole battery when charged in "cascade." If the battery were charged "in multiple arc" to the full potential of the machine its charge would be 6 CV and its energy $3 \mathrm{CV}_{2}$, that is, thirtysix times that of the battory charged "in cascade."
The "cascade" arrangement is of little practical value except for measuring the charge given to a Layden jar or battery of jars. For this purpose a small Layden jar, called a unit jar, is arranged "in cascade" with the jar whose charge is to be measured. If more jars than one are to be charged they are all connected in multiple arc with their outsr coatings to earth, and the unit jar is supported on an insulating stand, its outer coating being connected with the inner coatings of the battery. The inner coating of the unit jar recaives the charge from the machine. Two knobs, one connected with the inner coating and the other with the outer coating of the unit jar, are arranged so that the distnnce between them can bs varied at pleasure. As soon as the unit jar is charged to a potential suff . cient to produce a spark it is discharged, and ready to be rech irged by the machine, but the charge which has enterdd the jar or battery connected with the outer coating of the unit-jar remains unaffected. By counting the number of spark discharges which take place between the knobs of the unit-jar the charge which entere the battery can be estimated. Thus, if C denote the capa ity of the unit jar and V the difference of potential necessary to produce a spark between the knobs, the charg \boldsymbol{c} communicated to the unit jar before each spark is CV, and this is sensibly equal to the charge which leaves the outer coating of the unit

HYDRAULIC CRANES FOR STEEL WORKS.

jar and enters the battery. If n sparks take place the whole charge entering the battery will be $n \mathrm{CV}$. The potential to which the Leyden battery can be charged is not equal to the full difference of potential which the machine can produce by the quantity V, which is the potential to which the unit-jar must be charged to produce the spark.

According to Sir Wm. Thomson, it requires an electromotive force equal to that of about 5510 Daniell's cells to produce a spark one-eighth of a centimetre (about one-twentieth of an inch) in length between two slightly convex metallic surfaces; and at greater distances the force required is greater, but not quite in the same proportion.

When a conductor is placed inside a closed hollow conductor and in metallic communication with it, it of course acquires the potential of the hollow conductor, but is always found to be completely discharged. Conversely, if a conductor is uncharged and placed within a closed hollow conductor, whether in contact with it or not, it will have the same potential as the conductor. The same will be true if the conductor be nearly but not quite closed, provided the openings do not subtend large angles as seen from the interior body. (A vessel of wire gauze is practically as good as a continuous piece of metal for the purpose.) Hence, if a conductor of capacity C be placed inside a hollow vessel which is maintained at potential V , and the conductor be put to earth, it must receive from the earth a charge sufficient to reduce the potential from V to 0 , that is, it must receive a negative charge represented by -CV. Similarly, if the conductor be placed in a vessel whose potential is negative, and equal to - \mathbf{V}, the conductor will receive a positive charge of CV units.

This principle was employed by Dellman for measuring the potential of the air at the top of a mast. A metal ball was raised to the top of the mast by an insulating silk string. It was then placed in contact with the earth, and after breaking the earth connection the ball was lowered by its insulating string, and its potential observed by an electrometer in a place where the potential of the air was sensibly zero. Suppose that V denotes the potential of the air at the top of the mast and C the capacity of the ball. The ball will then receive a charge represented by -CV, and on bringing it into a region where the potential of the air is zero the ball will have a potential-V. that is, a potential equal and opposite to that of the air at the top of the mast.

Sir Wm. Thomson's water dropping accumulator may be constructed by suspending four copper cylinders, open at each end, by means of silk strings. Two of the cylinders are placed vertically below the other two, and a small funnel rest in each of the lower cylinders to intercept the drops of water before allowing them to fall through. The cylinders are connected diagonally by wires, so that if $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ denote the four cylinders, of which C is vertically below A, and D below B, then A and D are connected by a wire, and B and C by a second wire, but the two pairs, A D and BC, are insulated from each other. A stream of water, continuous with the ordinary water supply, is allowed to flow from a jet suspended within each of the cylinders A and B, and the jets are so arranged that the streams break up into drops before leaving
the cylinders. The drops of water then fall into the funnels which are placed in the cylinders C and D, and after coming in contact with the funnels the water falls through the cylinders and is allowed to flow away. To start the action a small difference of potential is produced between the pair of conductors A.D and the pair B C. Suppose for the sake of symmetry and simplicity that A and D are raised to potential V, while C and B are at potential-V. The stream of water in A being in connection with the earth so long as it does not break up into drops must be at zero potential, and the water must therefore be electrified negatively, since A is at a positive potential. Similarly the stream of water flowing through B must be positively electrified. As the stream breaks into drops each drop will fall away with its positive or negative charge, as the case may be, and the drops now being insulated their charges will be imprisoned upon them until they strike the funnels below. If C denote the capacity of a single drop each drop falling from A will bring with it a negative charge -CV, and each drop falling from B will have a positive charge denoted by CV. But the negatively electrified drops falling from A come in contact with the funnel in the conductor C, and being inside a hollow conductor and in contact with it they lose practically the whole of their charge before they fall away on the lower side of the funnel. They therefore communicate a negative charge to the conductors B C, which are already negatively electrified, and thus increase their charge and the numerical value of their potential. In the same way each drop of water falling from B strikes the funnel in D, and communicates to it a positive charge, so that the conductors A D, which are already positively charged, receive constant additions of positive electricity, and thus the charge and potential of each pair of conductors become numerically increased. As the potentials of the conductors increase the charges on each drop also increase in proportion, so that the increase of charge and potential is in geometrical progression, the ratio depending on the relative capacities of the drops and the conductors.

The energy of the charge is derived from the work done by gravity against electric forces on the falling drops, for the negatively electrified drops falling through A will be attracted by A and repelled by the negatively electrified conductor C, so that their fall will be resisted by both these actions, and their velocity on reaching C will be less than if no electric forces had acted. The positively electrified drops falling from B will be similarly affected. At length the electric forces on the drops become so great that instead of falling into the funnels they split into fine spray, and the small drops so produced mutually repelling one another their paths diverge, and they fall all round the lower cylinders without entering them. The electrification of the system then ceases to increase. It is unnecessary for the streams of water to be connected to earth, provided that the jets are connected with one another.

The action of the replenisher is essentially the same as that of the water dropping accumulator. In place of the four copper cylinders two pieces of brass called inductors are employed. The inductors are so shaped and adjusted as to form parts of the same cylinder, being insulated from one another by a small space, and
supported on glass pillars. The falling drops of water are replaced by two brass carriers,: which are, of course, employed over and over again, and which reVolve within the cylinder formed by the inductors. When the carriers are about to leave the inductors they are connected together by a : wire? through two springs, which touch them when in a particular position. During the rest of their revolution the carriers are insulated from each other. When in the middle of the inductors the carriers are connected with the inductors themselves, by springs which rub against the
carriers. To
is produced betwe apatus a small difference of potential the water dropping accumulator, suppose that case of ductor, A dropping accumulator, suppose that one inpotential A say, is at potential V, and the other B, at potential -V, though B may be, and usually is, put begin with Let $a b$ denote the carriers, and suppose to and b with that a is in contact with the inductor A and b with B. Then a and b are practically distouch. Now let the carriers be turned till they with one springs which put them in communication same potential. But an will then be reduced to the positive potential. But a when uncharged was at the charged potential of A, that is, V, and b when unby B , because at the negative potential - V possessed are connected it was inside it. Hence when a and b charge and b by the springs, a will receive a negative insulated, and positive charge. The carriers are then b enters the and continuing their revolution the carrier inducts the inductor A and the carrier a enters the betwetor B, and presently a communication is made carrier b then inductor and the carrier within it. The positively up its nely charged inductor A, and the carrier a gives charged induative charge to the already negatively difference inctor B, thus increasing the charge and the progression. potential of the inductors in geometrical $l_{0 s e}$ from defective increase goes on until the rate of equal to the rate of insulation, brush discharge, \&c., is Varley's rate of production.
from the replenisher. Instead of one pair of carriers it possesses several pairs, Instead of one pair of carriers foil attaches several pairs, which consist of pieces of tin disc of ebonite the edge and each side of a revolving two in ebonite or glass near its circumference. The the edge of thare bent pieces of metal, which embrace riers when the plate and so nearly surround the carare essentially the same as in the them. The contacts It should the same as in the replenisher. machine was be noticed that the object of Varley's and hence the ind supply large quantities of electricity, the carriers, and the indurs were made to nearly surround tion. In the and thus afford the strongest possible acincrease the case of the replenisher the object was to steadily, so that of a Leyden jar very slowly and ${ }^{80} \mathrm{ught}^{8} \mathrm{after}^{80}$ that the most powerful action was not In all the interest principle" manes working on this "compound energy principle," as it is sometimes called, the Work of the charges supplied is derived from the repalsions in overcoming the electrical attractions and
corresponding the inductors and carriers or the corresponding parts. If the replenisher be turned
backwards work will be
and the and the charges of will be done by the electric forces, -

The action of Voss's machine for a short time after it is first started is precisely the same as that of the replenisher. In it two paper armatures with small pieces of tinfoil beneath them are attached to the back plate of the machine, and serve as inductors. The carriers consist of six circles of tinfoil attached to the revolving table. The contacts are made upon metallic buttons attached to the carriers by little brushes of gold tinsel. Two of these brushes are attached to a cross arm, or diagonal conductor, and serve to put the opposite carriers into connection with one another. The others are connected with the paper armatures by means of a metal arm. A very small difference of potential between the paper armatures, which they generally acquire by unknown or incidental causes, is sufficient to start the action of the machine, and to charge up the armatures to a high potential.

When the armatures are strongly electrified, a now action begins to take place. Not only does the electricity pass from the metallic brushes to the metal carriers, but it begins to stream from the rows of points, which are attached to the diagonal conductor on each side of the brushes, upon the glass plate, so that the portion of the plate which is opposite the negative inductor becomes positively electrified, while that which is opposite the positive inductor becomes negatively electrified. The revolving glass plate thus begins to act as a carrier itself, and presently its positively electrified surface comes in front of the negatively electrified armature. The carrier comes in contact with the brush when it is between it and the armature, and thus gives up its charge to the armature; but the glass cannot dispose of its charge in this way, but retains it until it comes opposite the points of the prime conductor, when negative electricity streams off the points upon the plate, neutralizing the positive charge of the plate, and even electrifying it negatively under the inductive action of the armature. This causes the prime conductor to become positively charged. The opposite prime conductor becomes negatively charged at the same time and in the same way. The circuit of the electricity is completed in the sparks which pass between the conductors. The portions of the glass plate which we are considering having passed in front of the prime conductors, now come opposite the diagonal conductor, when the same action takes place as before, unless the revolving plate has been charged by the prime conductor to the full extent which the armature can induce, in which case the diagonal conductor becomes inoperative. If the discharging knobs of the prime conductors are placed in contact so that there is no resistance to the passage of electricity from one to the other, the prime conductors take the place of the diagonal conductor in charging the glass plate and carriers by radiation, but if the conductors are separated, and happen to be charged nearly to the same potential as the armatures, then very little discharge will take place from the points of the prime conductors, and the diagonal conductor alone will maintain the action. If the machine bo worked in the dark, it will be observed that if the prime conductors are in contact, or separate but uncharged, the brushes and glows will appear on the points of the prime conductors, and not on the diagonal conductor. If the prime conductors are separated by a considerable distance, the brushes and glows on
their points will diminish as they become charged, and will appear on the points of the diagonal conductor, whore they will steadily increase in intensity ; and if the prime conductors be separated to the full striking distance of the machine, the diecharge from their points will disappear just before a spark passes, but it will reappear on the prime conductors and disappear from the diagonal conductor immediately after the spark

```
(To be continued.)
```


TTHE EVOLUTION OF FLOWERS.

By Grant Allern.

II.-FIRET STEPS.

BEFORE we go any further on our upward course in tracking the development of the lily group, I should like to point out the sort of goal towards which we muit bo gradually tending ; and I don't think this could be better done in any way than by taking three typical stages in the evolution of the lilies on the one hand, and of the butter. cup family on the other. The apecial interest of such a comparative view depends upon the fact that while the lilies are monocotyledons, belonging to the great class whose flowers are arranged in rows of threes, the buttercups are dicotyledons, belonging to the great class whose flowers are arranged in rows of fives. Yet in apite of this primordial distinction, we whall see that the tivo groups progresm along exactly similar lines, and that in each we can find almont exact analogues of the grade of development reeched at each stage by the other. A tabular statement net side by side will enable us to observe this close parallelism in the clearest and most interesting manner.

Butrercur Group.

1. The Buttercup has : five dintinct greenish repals; fire colonred petals; numerous Whoris of itamena; numerous whoria of carpale, all meparate, and each containing one meed.
2. The Columbine has : five coleured eepala; five coloured petaln; pamerous atamens ; fre carpele, forming a single gropp. and auch containing erveral eveda.
3. The Honkahood hat: irregalar flowern, with five very peonliar coloured mepals ; two to five very peouliar coloured potale; weveral etamone; and only three united carpols, each containing many seods.

Lily Grour.

1. The Water-Plantain has: three distinct greenish sepals; three coloured petals; two whorls of stamens; numerous whorls of carpels, all separate, and each containing one seed.
2. The Tulip has : three coloured sepals: three coloured petale; two whorls of stamens ; three carpels, united into a singlo capsale, and sech containing several seede.
3. The Orchids have : irregular flowers, with three very peculiar coloured sepals ; two very peouliar coloured petals; one or two atumens; and three united carpels, eech containing many seeds.

Thin little comparative table must serve as for the time being as arough and general guide to the direction that evolution in flowers hat generally taken. The why and wherefore of each upward istop must be a matter for future explanation piecomeal

And now let us hark beck to our friende the waterplantains, and consider further what are the peculiarities whioh each of the beat-known British kinds presents after its own fashion.

We have in England two other apecies of Alisma benides the one which formed the toat for our firut paper. One of these, the lemer Alisme (A ramuprouloides), a much rarer plant, if so remarkably like a buttorcup that Linnsens gave it its Latin name in commemoration of the clowe rememblance. And, indeed, the name conveyn more meaning
than any mere outor likeness of parts could convey : it testifies to the great botanist's underlying appreciation of the fact that the two flowers are in reality exactly analogous to one another. The leseer Alisma holds among the lily group of three-rowed or trinary flowers uat the same place that the buttercup holds among the larger group of five rowed or quinary flowers. In both, the carpels are very numerous, and they are arranged, not in a ring round the centre of the flower (as is the case with the waterplantain), but in a big globular head, which forms a central bose inside the petals and stamens. The meaning of this curious arraggement is probably this : the whorls of carpels have become 80 -namerous and so crowded that they have crushed one another out of ahape altogether. In the waterplantain, as a rule, if you count the carpels, you will find there is a rough approximation to an arrangement by whorls of three; either there are eighteen, that is to say, six whorls (the smallest number I have ever noticed), or there are twenty-one, twenty-four, twenty meven, or thirty,

Alismes ranunculoides.
that is to say, seven, eight, nine, or ten whorls (che largent number I have ever noticed). Oftan enough one or two carpels have become abortive, and no the number test fails; but, even so, it is always eary to see that the carpels fall into three rough groups, each group reprementing the oarpels of six or seven separate whorle

But nothing of this sort can be traced in the lesser Alisma. There the carpels are simply all jumbled together into a head, as in the buttarcup, and no trace at all is lett of the primitive arrangement in rows of threa.

Now, this singular rememblance of the lewer Alisma to the buttercup is not a mere carual accident, but is dae to the fact that both plantes stand at the very bottose of the evolutionary scale in their awn division of flowering plants We cannot alay how or why the primitive flowaring planty split up into the two great bodies (monocotyledons and dicotyledons) reapectively provided in their most regular forms with whorls of three or of five members each; and we have now no links remaining between the two bodien
though there are a few plants in each which approximate slightly in one or two points to the peculiarities of the other. But we may be pretty surs' that the Alismas and the buttercups represent a very early stage of the two bodies shortly after they had begun to diverge from one another in the direction of their own particular peculiarities. Other plants in each great body have undergone wider and ever-wider changes in adaptation to altered circumstances; but the Alismas and the buttercups have continued to preserve the same features unchanged during all the long series of intervening ages. They stand to other Howers in somewhat the same relation that the Australian black-fellows stand to the remainder of humanity, or that the duck-billed ornithorhyncus stands to the fully-developed mammals.

Alisma natans.

As I intend these notes on the lilies to be a sort of exhe well to companion to the ordinary botany books, it may Engell to say a few words as to some other points in the solitary flowera. The lesser Alisma has larger and more iize and less to num the water-plantain; it trusta nore to also, when to number than its commoner ally. Its leaves more of them deverged, often have no blade; there is no common them developed than the bare leaf-stalk. This is a alwan peculiarity of submerged plants, which almost foliage. Leave very long, narrow, or much-divided waring for catching and of such a sort, I believe, are better adapted than the large bronding the carbonic acid in the water open air and broad flat bladen which succeed beat in the Oun air and sunlight
uclal(x), found English species, the floating Aliama (A.
peculiarities of a born water-plant in a still more striking degrea. It has long lithe stems which trail at great length through the still waters of quiet ponds. It has adapted itself to an aquatic existence far more thoroughly than its two half-marshy neighbours; yet it is very closely allied to the leser Alisma, from which it only differs in habit and in one or two minute or unimportant particulars. Like a great many other thorough-going water-haunters, the floating Alisma has two kinds of leaves. The one sort, though small, is broad and oval in shape, and lolls lightly on the surface of the water, where it can catch the full sunshine unimpeded and drink in the free carbonic acid at all its pores. The other sort grows below the water, and is reduced to a mere footstalk, sometimes slightly dilated at the end, where the blade or expanded part of the leaf ought to be. Evidently, the development of the leavee here depends entirely upon the question whether they can reach up to the free air or not; the root leaves being always smbmerged and narrow, while the leaves that spring from the upper joints are floating and oval in outline. Exaotly the camo sort of thing happens again with the water-arowfoot (Ranunculus aquatilis) which is a watar-haunting buttercup, exactly analogous to the floating Alisma; only in that case, while the upper floating leaves are broad and fivelobed, the lower waving ones are reduced to numerous long, narrow, much subdivided segmenta. Obeorve in every case that the floating leaves are analogous to the broad round foliage of the water-lily, and the submerged ones to the hair-like waving foliage of water-milfoil, and other common freshwater weeds. Almost all aquatic planta have leaves belonging to one or other of these typei, or olee both to one and the other in difficent parts. Botanical readers will remember that the pondwreeds (Potamogeton) offer many excollent examplee of all three canditions. It in interesting to obworve, however, in the case of the Alismas, that the Jemsar Alisme preserves for us an intermediate atage in the establishment of this peculiar aquatic habit.
The carpels of the leaser Alisma have four or five little ribs each; those of the floating Alisma have from twelve to fifteen. Oan anybody say why thim should be no ? It is one of the numerous amall pointa of diffarence one always finds even between closoly-allied speciea, points which are generully far more difficult to account for than more conspicuous matterm of habit or struotore, in obvioum adaptation to the circumstances of the plant.

The flowers of both theee kinde are newply identicsl. As in most other of our English water-planta, they are whitiah in colour, a peculiarity well obeerved aleo in the watorcrowfoot, which (with its variety the ivy-lenved crowfoot) is our only white British buttercup. I suppose white is a favourite colour with watorside inseote; certainly it is a very conspionous one among the luch green leavee of mont aquatic planta. Both in wator-plantain and wator-crow. foot, the petals are yellow at the bottom, which abows that yellow was their original colour ; for petale al ways acquire new tints from outside inward. The water-plantains secrete honey at the root of the stamenim, in littile round drops, which can be easily seen with a small pocket lems. All the English spocies are fertilised by flies, eapecially fliea of the family of Syrphida, the very same inseotes that visit and fertilise the watar-crowfoot. This is a very important fact as holping to explain the close similarity in colour between these varione waterside weedk. It is aliso interesting to note that when floods are out, the flowers of water-crowfoot and of floating Alisma both alike remain closed under water, and fertilise themselves, the dowed petald compelling the stamens to.shed their pollen on the atigmas of their own blossems (Knowledge.)

CIRCULATION OF SAP IN PLANTS.

BY PROF. PENHALLOW.

(Continued from page 57.)
The second movement of water in plants is physiological, and has direct connection with the nutrition and growth of the structure.

In aquatic plants, when all parts are constantly immersed, and in which there is but little diffinutiation of structure, absorption of water is more or less common to all the structure, and there is but little tendency to the development of currents which are directed fromı any one part towards some other part ; on the other hand, the distribution of water, like its absorption, is more or less general or indefinite. With terrestrial plants the case is quite different, since we then have structures chiefly growing in the air, a medium which tends to promote a constant loss of moisture, and the special organs of absorption (the roots) are diametrically opposed to the special organs of transpiration (the leaves). In such plants, therefore, the general tendency is to the development of a current or series of currents more or less clearly defined, which move from the roots through the stem and branches to the leaves. In the vascular plants, this tendency to special direction of movement, is most clearly defined, since the water ascends or moves chiefly along the lines of woody tissue, which may be isolated as bundles, as in many herbaceous plants, or aggregated in extensive structure as in trees. In these latter, moreover, which, from their highly differentiated and developed structure are the best adapted to observations of this kind, we observe that the woody portion of the stem may be separated into two well defined parts, according to the presence or absence of sap proper. They are known as the " heart wood"-that which is practically dead and occupies the center of the trunk, and the sap wood-that which surrounds the heart, is lighter in colour, contains the moving sap and is nearest to the centre of vitality and growth. The heart wood may be entirely removed without materially affecting the vitality of the tree, as is often seen in very old trees where the center has decayed out, leaving a mere shell. If, however, the sap wood be removed or injured in such a way that it can no longer convey moisture from one part to another, the vitality of the tree is at once affected, and the structure dies, (1) because of insufficient supply of water and (2) because of dificiency of food. This may be easily demonstrated by cutting out the wood of a small, woody plant, leaving the bark as the only connection between reots and leaves, the effect will be immediate and decisive, as seen in the drooping foliage.

We thus find that the water containing plant food in solution, which is absorbed by the roots from the soil, passes thence through the sap wood of the stem upwards to the branches and finally to the leaves. As these organs are the final divisions of the plant, and as they are specialised for the performance of definite functions, we find that the sap here undergoes most important chemical and physical changes. A very large portion of the water is directly given off into the atmosphere in the form of aqueous vapor, while another very considerable portion is used up in the promotion of chemical changes, as in the formation of starch from carbon dioxide and water. The necessary
result of this is a concentration of the sap by which its density is very much increased. At the same time, the soluble constituents, previously in a form not capable of entering into the plant structure, undergo important chemical changes and are brought into new combinations which render them directly available in the process of nutrition and growth. We now speak of the sap as elaborated or digested. In this form it passes back from the leaves, and is distributed to all parts of the plant where it is required by the demands of growth, but it now chiefly follows the bark, and so may be considered as returning towards the roots through this part of the structure. This may be demonstrated in a variety of ways. If we tis a cord tightly around a young branch, it will be found that no enlargement occurs below the ligature, but that above, the increase in diameter is normal. This is commonly to be observed in forests, where vines twine tightly about young saplings. Again, if we girdle a tree and take proper procautions to retain the moisture of the parts, and at the same time, also, the greater part of the combium tissue, the injury will be repaired. Yet again, we may repeat a very old experiment by carefully lifting the bark during the early part of the growing season,-as early in June-inserting a thin strip of metal and carefully binding the parts. At the close of the season it will be found that all the new growth of wood and bark is external to the metal. These laws have a most tmportant practical bearing, as must be evident from the illustrations cited, and should be well considered and understood by all those who are at all concerned in the growth and presevation of trees.

We may now ask, are the currents, ascending and descending, to be easily observed? What causes this movement and how may it be determined?

The movement of sap through the various parts of the plant cannot be directly observed. It is developed through a process of diffusion which operates in the cells and cavities, and also in the substance of the cell walls, and there is no localization of fluid in appreciable quantity which would enable us to observe and study the phenomenon as in the veins and arteries of animals. True, in certain cases we may determine the rate and direction of movement by the introduction of certain strongly defined pigments, but the information to be obtained in this way is extremely meagre and unsatisfactory.

The upward movement of water from the roots is due to the combined operation of several causes. First of all, the constant loss of water from both leaves and branches, tends to produce a vacuum in all the tissues below, and this must be met by an influx of fluid from below. As this process is repeated in all parts of the structure downward, the influence of transpiration is felt from branches to roots, and the sap is drawn upward in much the same way as oil ascends the wick of a lamp to replace that exhausted by combustion. Capillarity necessarily enters here as a more or less important factor, especially with reference to the movement of water through long vessels. The influence of transpiration in this way, may be easily determined by cutting off a plant when in full leaf, and at a time when transpiration is active.

At once present water to the cut surface of the stump and it will be absorbed in considerable quantity
for a time, after which it will be expelled, or the stamp will bleed.
The extremities of roots are largely composed of large, thin-walled cells which directly act upon the water of the surrounding soil to absorb it. All of these cells are in an active state of growth, and the fluids which they contain are much more dense than the water of the soil around them. According to
natural natural laws, these two fluids tend to mingle with one another through the intervening membrane of cellulose -the cell wall-and there is thus established an osmotic action whereby the water of the soil is taken up by the cells in excess. The cells are now brought into a high state of tension and there follows a reaction upon the fluid contents, whereby these latter are foreed out in the direction of lost resistance, which is found to be into adjoining cells, rather than back into the soil. This process is repeated in all the living tissues of the root and for some little distance up the stem. The sap is thus forced up by what is known as root action.
The movement of sap up the stem cannot be determined and measured exactly, since if we attempt to apply a manometer, such as described in the preceding article, the only result will be a constant, though varying suction, as must be erident from what has alroady been said. The movement as determined by root action, however, may be easily measured, by simply cutting off the plant and securing the manometer to
the extre the extremity of the stump. We will now first of all ohserve a suction as alraady indicated, but this will be
followed, after a short time, by a constantly increasing pressure, after a short time, by a constantly increasing Thus the which often reaches a surprising height. a presse reot of the grape vine has been found to give
Winches of mercury-or 88.74 feet of Water, and the root of of mercury-or 88.74 feet of 68.0 inches of mercury-or 77.07 feet of a pressure of

the comparative liability to and danger FROM CONFLAGRATIONS IN NEW YORE AND LONDON.
 br e. b. dorger, M, AM. soc. c. в.

The following were among the reasons. given for the comparatively smaller number of fires in London as compared with
Americy paratively cities, and especially with New York: The comPeratively damp climate of London, which prevents sparks, or
Weak flames from igniting wood; the much higher tempera $t_{\text {thre }}$ of the wrom igniting wood; the much higher temperanumber of domestic months, and, consequently, the smaller lower temperature dic firss. Statistics were given showing that The population dense population of New York, south of Fortieth Street, is more 208 e than in an equal area of London, New York averaging area. ${ }^{\text {and }}$ New York per and London $191 \frac{1}{2}$ per acre for the same Per dwelling. York averages for the same area 16 1-3 persons mose deneling. Another comparison of about 750 acres of the ${ }^{\text {Eives }}$ for Londy populated portions of London and New York, persons. The size 249 persons per acre, and for New York 352 siderably The size of the houses in London is in general connot exceed less than in New York. Many London houses do Very large number wide, 25 feet deep and 22 feet high, and a and lo rge number do not exceed 16 feet wide, 30 feet doep and in all cases there the London houses have fire-proof roofs, more brick or stone the is proportionately much less wood and also fewick or stone than in New York buildings. There are are short, low smaller windows than in New York. The walls that theyt, low, and generally well tied together, and so built been burnt, thus fall after the little wood-work in them has house in whit, thus rendering it easier to confine a fire to the inge, and which it begins. There are no woodene roofs on build-
inge and but little wood in the ings. The but little wood in the yards, in fences, or outbuild-
in Ne The ash-barrel, or
 esork, is unknown in Londou, each house being re-
quired to have a vault built of masonry for ashes. Lumber yards, large stables, carpenter shops, furniture makers, wooden manufacturers, places for storage, the manufacture of combustible material, are not found in the thickly-built portions of London. The river Thames and the parks divide London in such a way as to greatly aid in preventing the spread of conflagrations. The numerous railroads running into London form effective barriers against the spread of fires. These railroads, with the exceptien of the Metropolitan and District Underground roads, are built upon heavy viaducts of brick or earthen embankments, not less than 60 feet wide, or are in open cuts not less than 80 feet wide.
Some explanation of the unsatisfactory state of the laws in regard to structures in New York were given by Mr. Wm. P. Esterbrook, Inspector of buildings, who was present.-Trans. Am. Soc. Civil Engineers.

WILD BEES.

By S. A. Butler, B.A., B.So.
To most people, in all probability, the expression "wild bees" is nothing more than a name. We are all familiar onough with the honey-collecting and comb-formind propensisities of the industrious communities which have for so many. ages been domesticated, so to speak, by man ; and as these particular habits of this particular species form its sole commercial recommendation, the word "bee " asually suggests, in this utilitarian age, only ideas of that "little busy bee," which, according to the poet, if not according to the naturalist, delights to-
"Gather honey all the day
From every opening flower."
At the outset, therefore, let me say that I shall make no reference to the species Apis mellifica, the Honey, or Hive Bee. which is the inhabitant of the hives of our thrifty villagers, These are not really wild bees; they can scarcely merit the epithet while their convenience and wellbeing are so carefully. studied as in the modern apiarium. But there are to be found in the woods and fields of our country upwards of 200 different kinds of insects which structurally bear a close resemblance to our friends of the hive, baf lead an existence entirely indepen. dent of the cherishing care of man, and are, therefore, truly "wild bees." Many of them are somewhat obscuro-looking insects, and, when on the wing, might readily be mistaken for hive bees, or even for flies. The minute details of structure, which are of the greatest significance with respect to the habits of the insects, and which, on an attentive and close examina. ation, sufficiently separate them from the hive bee, cannot, of course, be discerned by the hasty glance which ls all that is possible as the insect buzzes past on its industrious flight. To gain an intimate knowledge of these insects, as of all others, we must cacth them, minately examine them, even with the aid of a microscope, pull them to pieces, compare them with one another part by part ; and when we have done this, we shall be struck with the extraordinary diversity that exists under the external aspect of similarity. It will be well to notice some structural points that all bees have in common, that we may form a clear conception of what a bee is really like, and may be able to recognise such insects when we meet with them in our country rambles-not so easy a task, perhaps, as it may seem at first sight.
In the first place, a bee is an hymenopterous insect, i.e., it has four membranous wings, the fore pair being much larger than the others. Now, this alone wili serve to distinguish bees from certaim two-winged flies that are very generally mistaken for bees. It should be mentioned, however, that when the wings are expanded, the hind pair are se closely hooked on to the fore pair that the two may easily be mistaken for a single wing. But it will not do to rely wholly upon the number, relative size, and texture of the wings ; there are handreds of other insects that have wings of the same kind ; there is one point about these organs, however, that should be attended to as it will often help to show what insects are not bees, even if it does not determine what are; I refer to the neuration of the wings. The rays which form the strength and support of the wings are very constant in their arrangement in the same species, and generally in the same genus, while differing cansiderably in different genera. They are not, as many might suppose, set in the ving at random ; but there is always some definite arrangement of them-so definite, indeed, as to redder possible the giving of names both to the nervures and to the cells they form by their intercrossing. Towards the tip of the fore-wing

Fic. 1.-Forb-wing of Andrens pilipes. a, stigma: b, marginal cell. $c_{1} d, a$, submerginal oelle.

Fig. 3.-Tongue of Bombus terrestris, a yellow-tailed Humble-Bee.
Fis, 2.-Tongue of Colletes Daviesana,

- Plastaring Bee.
(Fig. 1), on the front margin, there are two such cells, the one nearer the body opaque, and called the stigma ; and the other transparent, and called the marginal cell. Below these there are always two or three other cells placed one after anothpr in a row ; these are called submarginal cells, and no bee has less than two or more than three of these ; if, therefore, you find an insect that, in other respects, looks something like a bee, and yet has only one aubmarginal cell, Jou will know that this is the key to other important differences which a careful inspec. tion will reveal, and which remove the creature-not, indeed, from the Hymenoptera, but from that section of the order which contrins the bees. All the most familiar bees, such as the hive bee, the humble-bee, the Andrense, Halicti, and Anthophore, have three submarginal colls; it does not follow, however, that if a hymenopterous insect has two or three sub. marginal cells, it is therefore a bee.

Bees have a pair of pewerful mandibles, accompanied by a lieking apparatus of somewhat complicated structure, and often of considerable length, and called popalarly the tongue, technically the labium (Figs. 2 and 3). This structure, especially in its longer forms, is very characteristic of the group. The sintomne are stont, and generally of moderate length, but longer in the males than in the females. Ths sting is a curionsly modified ovipositor, and therefore exists only in the females. The males, which may generally be recognised by the superior length of their antennem, mesy be handled with impanity, for they are quite unable to inflict any injury. All bees are vegetarians, their food consisting principally of pollon. The three co-called sexes-vir., males, females, and nenterm-are to be foutd orly among those few bees that are social-i.en form large commanities living in the same nest. You will look in vain in the nests of other bees for neuters; only males and females are to be found. The greator number of bees have wome part or other of the body clothed with hairs, longer or shorter, called collectively "pubesconce." One very import. ant use of this is to assitt in the collection or conveyance of pollen. Such are the principal characteristics of bees, and attention to them can scarcely fail to lead the observer to the correot separation of bees from the rest of the Hymenoptera.

But the crastures are not always thas. During the course of their life they pase through a series of marvellous changes. Thert is first the egg, then the grub or larva, then a motionless little doll or pupa, and then, finally, the fully-developed bee. Before the litile creature commences its existence as an egg, however, many preparations have to be made by its mother for its reception into the world, and its nourishment therein ; in fect, with the deposition of the egg the maternal duties cease. First, a cuitable situation hes to be selected for the home of the expeoted offipring. The nature of the spet fixed upon will vary with the species; some choose a sandy bank, others a dead bramble-stick, others again the chinks in a wall, and yet others an old mail shell ; in fact there are very fow things that offer carition of any kind which may not be selectad by some specfes or other. If there is no cavity ready-formed, in which to plece the egg, the mother must set to work to make one; this the does by means of her powerful mandibles, and a substance must be hard indeed to resist the incessant attacks of these powarful weapons. By dint of continuous snippings, she bites but fragment atter fragmert of the rock or wood, until a hole
large enough to admit her body is made. Using this as a start-ing-point, she tunnels out to the depth of several inches-sometimes a single burrrow, sometimes a number of ramifying channels-carefully smoothing off all asperities as she proceeds. The burrows are frequently lined, either with a kind of silk secreted by the insect, or with fragments of leaves, all cut most carefully to pattern, and laid so as to overlap.

The next business is to provide a store of food sufficient for the support of the young during the whole period of its growth that is, throughout its larval existence; for as the grub is completely destitute of limbs, it is utterly unable to go forth into the world to seek its own living, and, therefore, if no provision were made for it, starvation would immediately ensue. The carefal mother, however, relazes not her efforts till she has provided against such a calamity ; an excellent manager is she; for though she has hitherto had no experience in providing for the wants of bee-grubs (unless, indeed, she has some recollection of the days of her own larvardom, and remembers the store laid up for her by her own mother), she knows exactly the amount of food that will be needed by each one of her expected offspring, and provides for each the requsite amount, even before it is born. The food consists principally of the pollen of flowers, that golden dust with which the central organs of flowers are so abuntantly supplied; this she collects from the flowers, and passing it from hand to hand, packs it up amongst the pubescence of her hind legs, or underneath her abdomen, and so conveys it home. Here it is mixed with a little honey and made up into a ball, in many cases about the size of a garden pes. One of these pellets is placed at the end of each burrow, and then a single egg is deposited npon each, after which the burrows are closed up, and when all the stock of esgs has been deposited, the mother's work is ended. Though she has lived only through one season, she is now in the decrepitude of old age. She can look back with calm satisfaction at at the success. ful accomplishment of her important work, and can, therefore, philosophically compose her mind to her rapidly-approaching demise. The eggs are small, some very minute, and are usually slightly curved and tapering at one end. Left to themselves, they soon hatch; a wormlike, footless grub issues from the sholl, and begins a vigorous attack upon the store of rich and most nutritions food provided for its sustenance. Its sole object now is to eat, and its persistent efforts in this direction receive their due reward in a growth so rapid as very apeedily to bring it to the close of its larval existence, and at the same time to the end of its appointed store of nutriment. This sensuous life over, if the time of year be suitable, the creature becomes transformed into the chrysalis or pupa. This is at first semi-transparent, and through the skin can be seen the gradually-developing body of the bee, with its wings, legs and antonnæ devoutly pressed lengthwise along its breast. On reaching perfect maturity it bursts through its 'shroud, casts asids its grave-clothes, and crawls forth, a feeble, tottering thing, to the light of day.

Warm sunshine and fresh breezes soon raise its drrooping spirits, and it spreads its wings and, for the first time in its life, leaves the sordid earth and soars away, rejoicing in the beauty of its newly-acquired garb, and exulting in the possession of faculties far superior to those with which it has hitherto been ondowed. And now comnences the serious business of its life-that which all its previous stages have had in view, and for which they have been preparatory-the perpetuation of its kind. Soon mated, and almost equally soon widowed, the female bee devotes herself most assiduously to those labors I have already referred to as preceding the deposition of the eggs, and thus the whole cycle is again passed through.

Such is the general ontline of the life-history of the majority of our wild bees. But there are some kinds which are structurally incapacitated for the life of unremitting toil that forms so conspicuous a characteristic of the industrious bees. The so-called Cuckoo-bees are quite unprovided with the pubeacence necessary for the collection of pollen, and consequently, totally unable to obtain by their own personal exertions the sustenance needful for their young. But still the maternal instinct is strong within them, and they cannot quit liie until their helpless young have been, in some way or other, previded for. They adopt, therefore, the only resource left to to them'; they watch for the burrow of some industrious bee, and as soon as they see that it has been furnished with a supply of pollen, they dart in during a temporary absence of the rightful owner and deposit an egg on the mass. From this habit, which is parelleled by the cuckoo among birds, they have received the name of Cuckoo Bees. They are frequently very brilliantly coloured, their bodies being banded and
striped something like that of a wasp (Fig. 4), and they are not necessarily at all like the bees on which they are parasitic. Each species of Ouckoo Bee usually confines its visits to the nests of one particular species of industrious

Fis. 4.-Nomada alternata. A Cuckov Bee parasitic upon several species.
bee, though sometimes it rings the changes on two or three; each kind of industrious bee, however, may have everal kinds of Ouckoos parasitic upon it. The egg. of the conckoo Bee hatches before that of its host, and the larva consumes the pile of pollen before the other poor creature awake to prevent it, so that when the legitimate owner telf as to consciousness he finds his larder empty and himThis ruined being, with no alternative but starvation.
of this is not the only way in which the careful exertions liable industrious mother on behalf of her offapring are liable to be frustrated. There is a most brilliantly-coloured head and thoras insect, with bright red body and green head and thorax, which may often be soen lurking about diatant neighbourhood of the burtows of beos. It is no very distant relation of the bees themselves, but it is their

Fig. 6.-Ohrytio negleota. Firetail.
inveterate foo It is called the Ruby-tailed Fly, Firetail, or Golden Waup (Fig. 5). Unlike the Cuckoo Bees, its laid are carnivorous, and attack, not the store of food The po by the industrious bees, but the larve themselves. the boung grab of the Firetail seizes the much larger grub of thereb, and appears, at first, to suck out some of its juices, fooble. gradually rendering the poor creature flaccid and time, and ther these sucking operations have gone on some thiongh the dhere is rot much vitality left in the poor victim, abstrected, destroyer has flourished grandly on the juices of ita or, the latter proceeds to complete the filling out riguasls the bulk by adding the molid parte, as it has pretapley the fluid of its victim, to its own body, and so the loet behind. boogrub is devoured, and scarcely a fragment is Not ond
Pranites on are thie neste of bees liable to the invacion of Thero it but their very bodies are not exempt from attack. Within in most curious little insect which is nourished that muche bodies of many bees; so quaint a being is it tion in the debate has taken place as to its aystematic poni-
inseotm. By come naturalister it is considered to be an outlying member of the great order of beetlea, but by othera it is regarded an of so curious a type as not to fit woll into any of the ordinary groupes of insects, but to necesitate the formation of a division exolusively ite own. The creature is named Stylops ; the male is a little, black, impirh-looking thing, with milky-white wings (Fig. 6), but the femalo it a worm-like creature "without wings, and never leaves the
body of its host.

Fig. 6.-Male Stylops.

These curious little inseots were discovered by $\mathbf{M r}$. Kirby, well-known as one of the earlient of the historians of our British bees Seeing a small protuberance on the body of a bee, he endeavoured to remove it with a pin, supposing it to be a mite of some kind, such oreatures being often found on bees. Instead of a mite, howevar, he drew forth from the bee's body a whitiah grub, about $\underset{\substack{\text { in. } \\ \text { in }}}{ }$ long, the head of whioh had formed the protuberance observed. Surpriced and intereated he made further mearch with a result which is best told in his own words: "After I had examined one specimen, I attempted to extract a second, and the reader may imagine how greatly my actoniahment was increased, when, after I had drawn it out but a little way, I sew its skin barst, and a head an black an inl; with large staring eyes, and antemne conaisting of two branches, break forth and move iteolf briakly from side to side. It looked like a little imp of darknees just emerged from the infornal regionit I was impatient to become bottar aoquainted. with 00 ingular. a creature. When it was completely dinengeged and I had secured it from making ita escape, I set myealf to examine it as clowely as pomible ; and I found, after a careful inqdiry, that I had not only got ain nondeccript, but also an insect of a now genme, whove very order seemed dubious." It is possible to breed these little creatures from the bodien of the been they frequent. The following direotions were given by the late Mr. F. Smith, the realous Hymenopterist of the British Mucoum :-Plece a bee which containg in its body a female Styloper and in, therefore, said to be atylopised, in a box 5 in. or 6 in. equare, and covered at the top with gaves ; aupply the bee daily with fresh flowera, such as it in socustomed to vinit; in a fow days she will probably appear as though her abdomen were covered with dust ; thir dust, on miorocogpionl invientigition, turns out to be vast number of minute oreatures, the larve of the Stylope, which have been hatahed within their parent's body. If a bee, covared in this way with the larve of the Stylope, should happen to settio on is flower, many of the tiny creaturea may porhapa be deposited; if another bee then viait the flower, they may bo able to attach themsolves to its body by olinging to its pubescence, and so get carried to ite neet, where thoy will attack the bee-larve, boring into their bodica.
(To be continewed.)

A CHEAP INSULATING SUPPORT.-(Nature.)

Insulating supports are so indispensable in the work of an electric laboratory that several forms have come into extensive use. The plan devised by sir W. Thomson for securing high insulation by surrounding a glass stem with concentrated sulphuric acid to absorb the moisture which otherwise would condense from the air and form a conducting film over the surface of the glass is remarkably efficient, and has many advantages. Modifications of this form of insulator have been largely used by Prof. Clifton, F.R.S., in the Clarendon Laboratory, and by Profs. Ayrton and Perry in the lahoratories of the Technical College at Finsbury. Another modification due to M. Mascart, was described in Nature vol. xviii., p. 44 ; and this pattern has come into extensive use under the name of the support isolant Mascart Though excellent in every way it is very expensive, as its manufacture necessitates a special piece of glass-blowing. The central support of glass is solidly fused into the bottom of a glass vessel with a very narrow neck into which acid is poured through a tubulare at the side.

The insulating support which I have recently described before the Physical Society of London is a much simpler affair, and can be made very quickly and cheaply from the materials at hand in every laboratory. The figure page shows the form of the support. A wide-mouthed glass bottle, E , about 10 cm . high, and from 5 to 6 cm . diameter, is selected. A piece of stout glass tubing about 20 cm . long is then taken. One end is closed in the blowpipe flame, and blown into a thick bulb; and while yet hot the bulb is flattened, so as to form a foot for the stem. The flattened bulb should be as large as is compatible with its insertion into the mouth of the bottle. To hold it in its place some paraffin wax is melted in the bottle-from 50 to 70 grm . is quite sufficient-and when it has cooled so as nearly to have become solid the stem, previously warmed, is inserted. When cool, the paraffin holds the stem firmly in its place. To keep out the dust a disk cut out of sheet guttapercha is fitted on as a lid. If dipped into hot water for a minute it can be moulded to the required form. It fits loosetight upon the stem, as shown at c , and when the stand is not in use is slid down over the mouth of the bottle. A brass disk, a, having a short brass stem, b, below it, slips into the upper open end of the tube, and forms the top of the stand. It is also found convenient to make from rods of glass other supports, shaped at the top in the form of hooks, which can be slipped down into the central tube. These are very useful for holding up wires that pass over the experimenting table and require to be well insulabed. The bottle is let into a wooden foot, a . In cases where very perfect insulation is required I have poured a little strong sulphuric acid into the bottle above the paraffin. In practice, however, the insulation of the paraffin is amply sufficient for most purposes, provided dust is properly excluded.

Sir Joseph Bazalgette in his inaugural address before the Institution of Civil Engineers, stated that in the United King. dom alone there then existed 8,000 miles of railway, on which $£ 286,000,000$ had been expended. There were now upwards of 18,000 miles of railway, having an authorized capital exceeding $£ 800,000,000$, on which the gross annual receipts were $\mathcal{E} 67,000,000$, and the annual working expenditure $£ 35,000$,000 . These railways carried $623,000,000$ passengers annually, besides 500,000 season-ticket holders, and $246,000,000$ tons of minerals and general merchandize. Contrary to the anticipations of Telford and of Walker, the demand for engineers of a more highly educated and trained class, and the number of these, had continued rapidly to increase, notwithstanding the competition was keen as in all other competitions in this country. The discovery of some of the latent energies in nature, and their application for the use of man, was tending still farther to the devolopment of engineering.

A new kind of vertical steam boiler has been invented by Mr. Armer. The object of the design is to obtain the greetest possible efficiency in the steam-heating surfaces. In order to effect this the tubes have a helical twist given them, which does not interfere with the ease with which they may be cleansed, but which causes greater impingement of the gasses against the tube walls, and gives more freedom for expansion

BUDDHISM IN RELLATION TO CHRISTIANITY.

At the last meeting held in February, by the Victoria (Philosophical) Institute, 7, Adelphi Terrace, London, a paper was read by the Rev. R. C. Collins, M.A., on Buddhism in relation to Christianity. Referring to tho parallels between the persons and characters of Buddha and Jesus Christ, he said :Take as a prominent instance, the birth stories. I need not here give details, which are to be found in any modern work on Buddhism. The supposed miraculous conception; the bringing down from Budda from the Tusita heaven ; the Dèvas acknowledging his supremacy; the presentation in the Temple, when the images of Indra and other gods threw themselves at his feet; the temptation by Mara-which legends are embellished by the modern writer I havr already quoted, under such phrases as "Conceived by the Holy Ghost," " Born of the Virgin Maya," "Song of the heavenly host," "Presentation in the Temple and temptation in the wilderness"-noue of these is found in the early Palli textt. The simple story of ancient Buddhism is that an ascetic, whose family name was Gautama, preached a new doctrine of human suffering, and a new way of deliverance from it. Therd is no thought in the early Buddhism, of which we read in the Pâli texts, of deliverance at the hands of a god ; but the man Gautama Buddha stands alone in his striving after the true emancipation from sorrow and ignorance. The accounts of his descending from heaven, and being conceived in the world of men, when a preternatural light shown over the worlds, the blind received sight, the dumb sang, the lame danced, the sick were cured, together with all such embellishments, are certainly added by later hands; and if here we recognize some rather remarkable Jikenesses in thought or expression to things familiar to us in our Bibles we need not be astonished, when we reflect how great must have been the influence, as I have before hinted, of the Christian story in India in the early centuries of the Christian era, and, perhaps, long subsequently. This is a point which has been much overlooked; but it is abundantly evident from, among other proofs, the story of the god Krishna, which is a manifest parody of the history of Christ. The Bhagavat.Gita, a theosophical poem put into the mouth of Krishma, is something unique among the productions of the East, containing many gems of what we should call Christian truth wrested from their proper setting, to adorn this coeation of the Brahman poet andicating as plainly their origin as do the stories of his life in the Maha-Bharata; so that it has not unreasonably been concluded that the story of Krishna was inserted in the Maha-Bharata to furnish a devine sanction to the Bhagavat-Gita. If then, as there is the strongest reason to believe, the Christian story, somewhere between the first and tenth centuries of the Christian era, forced itself into the great Hindu epic, and was at the foundation of the most remarkable poem that ever saw the light in India, can we be surprised if we find similarly borrowed and imitated wonders in the later Buddhist stories also ? Several Home and Colonial applications to join the Institute as guinea subscribers were received, and its object being to investigate all philosophical and scientific questions, especially auy said to militate against the truth of the Bible,-a discussion ensued in which Mr. Hormuzd Rassam, Professor Leitner, from Lahore, Mr. Coles, an earnest student of the question, during 25 years' rosidence in Ceylon, Professor Rhys Davids, and others took part. All agreeing in and confirming the statements of Mr . Collins' paper. Dr. Leitner brought a large number of photographs of early Indian and Tartan sculptures, showing the first introduction of the Christian story into thuse monuments between about the second and tenth centuries, and he pointed out the value of such additional confirmation of Mr. Collins' statemenst.

Scientific \$ Motes.

IT is true beyond any doubt thas underdraining mitigates the effects of a dry season. A drained soil is always loose and porous, and no matter how little the rainfall, it seldom bakes hard. The reason is that the air circulates freely thiough it, readily terature and atmospheric pressure vary, and thus it readily absorbs the dews and moisture which are never entirely absent from the earth's surface in the night season.

AN interesting fact in relation to the benefits of tile draining has been developed at the sugar works near Champaigne, Illinois. It is found that the cane grown on tile drained lands even in low places was not injured by the recent frosts in the wast, while that on undrained land even in elevated locations Was more or less damaged. The effect of drainage is to prois a a higher temperature than would otherwise prevail. This is a most important advantage to many crops besides sorgham.

- The clay selected for terra-cotta is that composed of silicate of alumina and a small percentage of iron, oxides of iron, as in bricks, producing a red color when fired. The clay is stacked in sheds until it is dry; it is then ground to fine powder, and mixed with powdered old terra-cotta or with ground tare is granite sand, or other vitrifiable substances. The mixtare is then ground with a certain small proportion of water, from the a perfectly homogenous, ductile modelling clay free termines thallest air cavities. The proportion of water determines the shrinkuge that must occur in burning, and this shrinkage can be relied upon as one-twelfth.
Messrs. Crossley Brothers, of Manchester, have recently added an important improvement to their "Otto " gas-engine. ongine cansts of a self.starting apparatus br means of which the apparatus be put in motion by simply opening a valve. The exparatus consists of a small receiver into which the engine Which resul a very short portion of its strokes the burnt gases These result from the ignition of the charge in the cyllnder. raise a gases fill the receiver, and in the course of half a minute the cylinder during nearly corresponding to the pressure in burnt cylinder during the moment of ignition. These stored of starting are admitted again to the cylinder at the moment the enging in a very simple piece of mechanism, and thus put steamgine in motion in much the same way as steam moves a round to get in thus saving the trouble of pulling the wheel Ir got in the first charges.
Ir $_{\text {IT }}$ appears from a notice published in the last issue of the Siberia that stone-age implements were used by Russians in difficalty a time very near to our own. Thus, owing to the sacks why having iron imdlements, and eden iron, the Costhem who occupied the valley of the Irkut at Tunka availed ecattered on the numberless stone implements they found ecattered on the hills around Tunka, where lorge manufactures people who implements have been discovered. There are still polled to folemember also that their grandfathers were comnephrite follow the advice of the Mongols, and to make use of sacks who understo the tradition says also that there were Cosments. Anderstood themselves the art of making jade implein Siberia some thity knows the difficulties of obtaining iron the trustworthe thirty years ago, and even now, will not joubt the late Prof Siness of the tradition. We may add also that largely Prof. Schapoff has found the settlers at Turukkansk exhibited at the Irkutak Musoum, before it was destroyed by
fire.

Thlorem of the three moments.

> BY PROF. J. A. WADDRLL, M.E., TOKIO UNIVERSITY, JAPAN. The investigation of this problem is generally so long and tedious, owing to the fact that most writers upon the subject wish to make their investigations as
general as pose goneral as pusset wish to make that few investigations as
through such an
coctical men care to wade rocept the statement amount of calculation, so they usually ${ }^{40 c e p t}$ the statement of the equation upon faith. Our
object in treating such a hackneyel subject as the theorem of the three moments, is to give a simple demonstration applicable to all cases which occur in the every day practice of the engineer, and which can be easily understood by those who have neither the time nor the patience to enter into more elaborate investigations. Our method is essentially a simplification of that of Prof. Burr, as given in the appendix to his valuable work upon "Stresses in Bridge and Roof Trusses."

The object of the thoorem is to find the relation between the bending moments at any three consecutive points of support in a continuous beam.
The most general case which can be taken-that investigated by Prof. Burr-is where the section of the beam is supposed to be variable, the points of support not in the same level, and at any or all points of support, there may be constraint applied to the beam uxternal to the load which it is to carry, or in other words, the beam may not be straight at any point of support before flexure.

The most common application of the theorem of the three moments, in fact we might say the only one, which occurs in the ordinary practice of the engineer, is to find the stresses existing in the members of bridges of continuous spans, more especially in this country swing bridges; for American engineers are almost unanimous in condemning the use of continuous spans wherever it can be avoided. Now, in nearly every case of continuous spans, the points of support may be taken in the same level, the section of span although not exactly constant is nearly so; and, in fact. is nearly always so assumed in figuring the stresses, even when the top chord is curved: and the spans are straight at all points of support. Making these assumptions will greatly simplify matters.

Before proceeding to establish the theorem, some preliminary investigations will be necessary.
Let A C., Fig. 1, be the centre line of any bent beam whose section is uniform and material homogeneous. Let a be the origin of co-ordinates from which also the deflections are measured, let x be the horizontal and y the vertical ordinate, and let z be the horizontal distance from the vertical line A F to the point of application of any load P. Let M be the moment of the external forces about A, S the shear at A, c the compression or extension per unit of length of a fibre parallel to the neutral surface and at units distance therefrom, I the moment of inertia of any section of the beam about a horizontal line through the centre of the section, in this investigation coinciding with the centre line of the neatral surface, E the co-efficient of elasticity for the material of the beam (assumed the same for both compression and extension), and M the moment of the loads about any section of the beam. Taking any section, for instance the one at B, perpendicular to the neutral surface, let us assume a temporary origin of co-ordinates at that point, the axes being in and perpendicular to the neatral surface, u^{l} being the horizontal and y^{1} the other ordinate, as shown in Fig. 1, to the right. The ares of any differential portion of the section is $d u^{\prime} d y^{\prime}$, and if p^{\prime} be the intensity of stress at that point, the stress on that area will be $p^{1} d u^{\prime} d y^{\prime}$ and its moment about the neutral surface $p^{1} y^{1} d u^{1} d y^{1}$ integrating which will give for the total resisting moment :

INVENTIONS OF WATT.

AN INSULATING SUPPORT.

Fig 40. Section.

Fig.41. Intermittent Counter.

INVENTIONS OF WATT.

Fi8.42. Trussed Frame for Copying, Wachine.

Geared Counter, Patent Office Museum.

Fig. 44. Side View.

Fig.

Fig 46. Case.

$\mathrm{M}=\iint p^{\prime} y^{\prime} d u l d y^{\prime} . \quad$ (Eq. 1.)
Now, let us consider a unit section of fibres situated at unit distance from the neutral surface. The extension or compression of fibres per unit of length being c, the force producing it is $E c=p=$ intensity of stress at unit's distance. According to the common theory of flexure, the intensities are directly proportional to the distances from the neutral surface, therefore $p^{7}: p:: y^{\prime}: 1$ or $p^{\prime}=p y^{7}=E c y!$. Substituting this in Eq. 1., gives $\mathbf{M}=\iint E c y^{n 1} d u^{\prime} d y^{\prime}=$

$$
E c \iint y^{1^{2}} d u^{1} d y^{1}=E c I \text { and } c=\frac{\mathrm{M}}{E I}
$$

Now, remembering that in actual practice the curva ture of a beam is very slight, let us consider an indefinitely short portion of the neutral surface, the length of which is $d x$; the strain for such a length at unit's distance would be $c d x$.

In Fig. 2, which i_{d}, of course, greatly exaggerated, $\mathrm{A} \mathrm{B}=d x, \mathrm{C}$ is the centre of curvature of the beam, A D is equal to unity, therefore $\mathrm{F} \mathbf{E}=c d x, \mathrm{BK}$ and $A L$ are tangents to the neutral surface at the points B and A respectively, $G H$ is drawn parallel to $D C$, K M perpendicular to $A L$ and $L N$ is a vertical line through the origin O . B O being a finite distance, while A B is indefinitely small, and the curvature being so very slight we can say without any sensible error that $A B K$ is a straight line equal in length to $A M$, or the curve A B O which is also equal to A K or x. The two triangles E B F and $M A K$ are similar, the sides being mutually perpendicular, therefore,

> F E $: \mathrm{FB}:: \mathrm{K} \mathrm{M}: \mathrm{M} \mathrm{A}$ or $c d x: 1:: \mathrm{K} \mathrm{M}: x$ or $\mathrm{K} \mathrm{M}=x c d x$.

But K M does not differ sensibly from K L, therefore $\mathrm{K} \mathrm{L}=x$ c $d x$. But the summation of the consecutive values of $K L$ between O and A is equal to the distance $\mathrm{OL}=\mathrm{D}$, which we may term the vertical deflection of the tangent at the point A (not necessarily equal to the deflection of the beam in the ordinary acceptance of the term).

We may now write the following equations which are true under the assumed restrictions.

$$
\begin{aligned}
\mathrm{S} & =\sum_{\mathrm{M}} \mathrm{P}[\mathrm{Eq.2} .] \\
\mathrm{C} & =\frac{\sum_{\mathrm{M}} \mathrm{P} z[\mathrm{Eq.3.]}}{\mathrm{EI}}[\mathrm{Eq.} \text {. }] \\
\mathrm{D}=\Sigma x c d x= & \sum \frac{x \mathrm{M}}{\mathrm{E} \mathrm{I}} d x .[\text { Eq. 5.] }
\end{aligned}
$$

Let us next investigate some general considerations in regard to a portion of a continuous beam between two consecutive points of suppoot.

If the beam were simply supported at the ends, the reactions at those points could be ascertained by applying the principle of the lever ; but, if one or both ends are not simply supported, the reactions will differ from those found according to that law ; this difference. may be accounted for by supposing a portion of the reaction at one end to be transferred to the other, by means of the application of a couple whose lever arm is equal to the length of span between the points of support, and

Whose forces are each equal to the difference between the actual reaction at one end and the reaction as calculated by the law of the lever.

As this change of reaction is caused by a partial fixing of the end or ends of the beam, it is evident that the bending of the supposed couple will be of an opposite kind to that which exists in a beam simply supported at the ends.

In addition to this couple, we can suppose two equal and opposite couples, applied to the beam at each end, which balance each other by means of the beam, thus subjecting it to another moment, without at all affect ing the reactions. For example, in a bridge truss we might apply a certain tensile force at each end of the top chord, and an equal compressive force at each end of the bottom chord, producing a constant moment throughout the span equal to the product of one of the forces by the depth of the truss, withoutat all affecting the reactions due to the loads upon the span. A practioal instance of this would be the case of three continuous spans, the outer ones being equal in length and similarly loaded.

In Fig. 3, let A and B be the supports of the beam $A B$, which is loaded at K by the weight P, giving the reactions $A R$ and $B R^{\prime} . \quad R F=R^{\prime} F^{7}$ is the force of the couple, making $A F$ and BF^{7} the reactions after the couple is applied. For the reactions A R and B R' the ordinates parallel to C K in the triangle ACB give the bending moments due to the weight P.

Let the ordinates parallel to $\mathbf{A H}$ in the rectangle A H Q B represent, according to the same scale, the constant moment due to the balanced couples; and let the ordinates in the triangle $Q H$ G represent the moments of the force $R^{\prime} F^{\prime}$. The resultant moment at any point will be the algebraic sum of the ordinates in the rectangle and the two triangles.

Take the origin of coordinates at A, and let x be measured horizontally towards B .

Let $G A=M_{a}$ and $B Q=M_{b} . \quad J o i n A Q$.
Then the moment at any point S is equal to

$$
\begin{gathered}
+\mathrm{S} \mathrm{~T}-\mathrm{S} \mathrm{U}-\mathrm{U} \mathrm{~W}= \\
+\mathrm{M}_{\mathrm{l}}-\mathrm{M}_{\mathrm{b}} \frac{x}{l} \overline{\mathrm{M}}_{\mathrm{a}} \quad \frac{l-x}{l}=\mathrm{M} . \quad[\text { Eq. 6.] }
\end{gathered}
$$

It is to be noticed that ordinates above $A \quad B$ are positive and tend to bow the beam downward at the centre, while the ordinates below A B are negative and tend to bow the beam upward at the centre. In Fig. 3, the moment produced by the balanced couples was assumed to act in conjunction with the moment of the single couple. Had these moments acted in opposite directions, as in Fig, 4, where A Z, the difference between A G and A H, is M_{a}, we would have had

$$
\begin{gathered}
\mathrm{M}=+\mathrm{ST}-\mathrm{U} \mathrm{Y}+\mathrm{S} \mathrm{U} \\
\text { or } \mathrm{M}=+\mathrm{M}_{1}-\mathrm{M}_{2} \frac{l-x}{l}-\mathrm{M}_{\mathrm{b}} \frac{x}{l}[\mathrm{Eq.7.]}
\end{gathered}
$$

Thus we see that the second members of Eqs. 6 and 7 differ only in the signs of the terms, and if we consider the signs inherent we may write them both

$$
\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{\mathrm{a}} \frac{l-x}{l}+\mathrm{M}_{\mathrm{b}} \frac{x}{l} \quad[\mathrm{Eq.} \text { 8.] }
$$

These preliminary investigations being made, we are now prepared to establish the general equation of the three moments.

In Fig. 5 , let A, B and C be three consecutive points of support of a continuous beam, the spans considered being, as shown, l_{a} and $l_{c} . \mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}$ and R_{c} are the reactions at A, B and C; and $S_{a}^{\prime}, S_{a}, S_{b}^{\prime}, S_{b}, S_{c}^{\prime}$, S_{c} are those portions of R_{a}, R_{b} and R_{c} caused respectively by the loads on the span to the left and those on the span to the right; this can be understood by examining the diagram. Let us call the moments at A, B and C respectively M_{a}, M_{b} and M_{c}, and let us take the origin of coordinates for the span l_{2} at A and for the span l_{c} at C.

Referring to Eq. 5, the value of D will reduce to zero if the points considered be two points of support, for they are upon the same level; we can then write $0=\sum_{\mathrm{b}}^{\mathrm{a}} \frac{x \mathrm{M}}{\mathbf{E} \mathrm{I}} d x$, the $\sum_{\mathrm{b}}^{\mathrm{a}}$ denoting that the points considered are A and B.
$A_{8} \mathrm{E}$ and I are both finite quantities, we must have
 Eq. 8, gives :
$0=\sum_{\mathrm{b}}^{\mathrm{a}}\left[x \mathrm{M}_{1} d x+\mathrm{M}_{\mathrm{a}} \frac{\left(l_{\mathrm{a}}-x\right) x}{l_{\mathrm{a}}} d x+\mathrm{M}_{\mathrm{b}} \frac{x^{2}}{l_{\mathrm{a}}} d x\right]$ or writing the integral sige instead of Σ

$$
\begin{gathered}
0=\int_{0}^{l_{\mathrm{a}}}\left[x \mathrm{M}_{1} d x+\mathrm{M}_{\mathrm{a}} x d x-\mathrm{M}_{\mathrm{a}} \frac{x^{2}}{l_{\mathrm{a}}} d x+\mathrm{M}_{\mathrm{b}} \frac{x^{2}}{l_{\mathrm{a}}} d x\right] \\
0=\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x+\mathrm{M}_{\mathrm{a}} \frac{l_{\mathrm{a}}^{2}}{2}-\mathrm{M}_{\mathrm{a}} \frac{l_{\mathrm{a}}^{2}}{9}+\mathrm{M}_{\mathrm{b}} \frac{l_{\mathrm{a}}^{2}}{3}
\end{gathered}
$$

or multiplying by $\frac{6}{l_{\mathrm{a}}}$
$0=\mathrm{M}_{\mathrm{a}} l_{\mathrm{a}}+2 \mathrm{M}_{\mathrm{b}} l_{\mathrm{a}}+\frac{6}{l_{\mathrm{a}}} \int_{0}^{l_{\mathrm{c}}} \mathrm{M}_{1} x d x$.
Passing to the span l_{c}, we can establish in a similar manner the following equation :-
$0 \leqslant \mathrm{M}_{\mathrm{c}} l_{\mathrm{c}}+2 \mathrm{M}_{\mathrm{b}} l_{\mathrm{c}}+\frac{6}{l_{\mathrm{c}}} \int_{0}^{l_{\mathrm{a}}} \mathbf{M}_{2} x d x$.
Adding Eqs. 9 and 10, gives
$0 \equiv \mathrm{M}_{\mathrm{a}} l_{\mathrm{a}}+2 \mathrm{M}_{\mathrm{b}}\left(l_{\mathrm{a}}+l_{\mathrm{c}}\right)+\mathrm{M}_{\mathrm{c}} l_{\mathrm{c}}+\frac{6}{l_{\mathrm{a}}} \int_{\mathrm{o}}^{l_{\mathrm{a}}} \mathbf{M}_{1} x d x$

$$
+\frac{B^{\cdot}}{l_{\mathrm{c}}} \int_{0}^{l_{\mathrm{c}}} \mathbf{M}_{2} x d x . \quad[\text { Eq. 11.] }
$$

Let us suppose for an instant that there is only one
Weight P which produces the infinite number of moments represented by M_{1} in the expression $\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x$, The reaction at A will be $\mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}}$ and the value
of M_{1} for any point between A and the point of application of P will be $\mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}} x$: the reaction at B will $P \frac{z}{l_{2}}$ and the value of M_{1} for any point between B and the point of application of P will be $\mathrm{P} \frac{z}{l_{\mathrm{a}}}\left(l_{\mathrm{a}}-x\right)$; whence we can write the equation

$$
\begin{gathered}
\int_{0}^{l_{\mathrm{a}}} \mathrm{M}_{1} x d x=\int_{0}^{z} \mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}} x^{2} d x+\int_{z}^{l_{\mathrm{a}}} \mathrm{P} \frac{z}{l_{\mathrm{a}}}\left(l_{\mathrm{a}}-x\right) x d x \\
=\mathrm{P} \frac{l_{\mathrm{a}}-z}{2} \frac{z^{3}}{3}+\mathrm{P} z\left(\frac{\mathrm{a}_{\mathrm{a}}^{2}}{2}-\frac{z^{2}}{2}\right\rangle-\mathrm{P} \frac{z}{l_{\mathrm{a}}}\left\langle\frac{l_{\mathrm{a}}^{3}}{3}-\frac{z^{3}}{3}\right\rangle \\
=\frac{1}{6} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right)
\end{gathered}
$$

and for any number of loads

$$
\int_{0}^{l_{2}} \mathrm{M}_{1} x d x=\frac{1}{6} \sum^{2} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right)
$$

Similarly $\int_{0}^{l_{\mathrm{c}}} \mathrm{M}_{2} x d x=\frac{1}{6} \sum_{\sum}^{\mathrm{c}} \mathrm{P} z\left(l_{\mathrm{c}}{ }^{2}-z^{2}\right)$
Substituting these values in Eq. 11, gives

$$
\begin{aligned}
0=\mathrm{M}_{\mathrm{a}} l_{\mathrm{a}} & +2 \mathrm{M}_{\mathrm{b}}\left(l_{\mathrm{a}}+l_{\mathrm{b}}\right)+\mathrm{M}_{\mathrm{c}} l_{\mathrm{c}} \\
& +\frac{1}{l_{\mathrm{c}}} \Sigma^{\mathrm{a}} \mathrm{P} z\left(l_{\mathrm{a}}^{2}-z^{2}\right) \\
& +\frac{1}{l_{\mathrm{c}}} \Sigma^{\mathrm{c}} \mathrm{P} z\left(l_{\mathrm{c}}^{2}-z^{2}\right)
\end{aligned}
$$

which is the ordinary form of the equation of the three moments, Σ^{2} and Σ^{c} denoting that the summations are each to extend over one span from A and C respectively.

Taking moments about the right hand ond of l_{a}, gives $\mathrm{S}_{\mathrm{a}} l_{\mathrm{a}}-\sum_{\mathrm{E}} \mathrm{P} l_{\mathrm{a}}-z+\mathrm{M}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}}$ from which we have

$$
\mathrm{S}_{\mathrm{a}}=\Sigma^{\mathrm{a}} \mathrm{P} \frac{l_{\mathrm{a}}-z}{l_{\mathrm{a}}}-\frac{\mathrm{M}_{\mathrm{a}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{a}}}
$$

Taking moments about the left hand end of the same span, there results
$\mathrm{S}_{\mathrm{b}}{ }^{1} l_{\mathrm{a}}-\Sigma^{\mathrm{a}} \mathrm{P} z+\mathrm{M}_{\mathrm{b}}=\mathrm{M}_{\mathrm{a}}$ from which we have

$$
\begin{array}{r}
\mathrm{S}_{\mathrm{b}}{ }^{\prime}=\Sigma_{\mathrm{a}} \mathrm{P} \frac{z}{l_{\mathrm{c}}}-\frac{\mathrm{M}_{\mathrm{a}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{a}}} . \\
\text { Similarly } \mathrm{S}_{\mathrm{b}}=\Sigma^{\mathrm{c}} \mathrm{P} \frac{z}{l_{\mathrm{a}}}+\frac{\mathrm{M}_{\mathrm{c}}-\mathrm{M}_{\mathrm{b}}}{l_{\mathrm{c}}}
\end{array}
$$

and $S_{c}{ }^{\prime}=\Sigma^{c} P \frac{l_{c} \cdot z}{l_{\mathrm{c}}}-\frac{\mathrm{M}_{\mathrm{c}}-\mathrm{M}_{\mathrm{b}} .}{l_{\mathrm{c}}}$
By inspecting Fig. 5, as before stated, we can see that

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{a}}=\mathrm{S}_{\mathrm{a}}{ }^{\prime}+\mathrm{S}_{2} \\
& \mathrm{R}_{\mathrm{b}}=\mathrm{S}_{\mathrm{b}}{ }^{\prime}+\mathrm{S}_{\mathrm{b}} \\
& \mathrm{R}_{\mathrm{c}}=\mathrm{S}_{\mathrm{o}}{ }^{\prime}+\mathrm{S}_{\mathrm{c}}
\end{aligned}
$$

THEOREM OF THREE MOMENTS.

[^0]: Lomposi is now without a rival as regarde size and popalation, not only in the pement, bat an far as is known in the peat histoty of the world, Londen, of the Metropolin, we do fined by the Motropolis Management: Act of 1855, contains at present noarly $4,000.000$ people, covoring an area of 117 miles, to that of are built 500,000 hovees. Its popriation is equal of that of the whole State of Holland, is groator thim that of Scotland, and doable that of Denmark. At the anmo rato Iroland, ine, by the end of the century, it would equal that of Ireland, as indeed Onter London now does. Its population han quandrapled since 1801, when it numbered 959,000; and it to the trecreaced at the rate of 70,000 por annum, equivalont Othe addition to Lomdon erery yeer of : a city as large as Coem has or of Plymouth. The rateeble value of property in Loncont has grown from $£ 6,000,000$ in 1841 to $£ 28,000,000$ at prethint, or nearly five.fold in forty-three years. But the traffile threagh London hat rivon oven more sepidily. The mitorial altogether inghfare, wide aavough half a comtury ago, aze now aide hathar ipenpficient. Than, althongh the Strand and CheapCharing Croen and the the formation of a now route botweps and Quean Fiotoris tho Bank, aloty the Fictoria Embankmont and Quean Fiotoria streot, and Hollborm han boen relievod by a Widerand atroeta Opford atreat to Rhoroditoh, and now and other col utreotan confianes to bo made through the aity and male congestod by the tratic. Thete now paish over thit 1 loo

 $186,000,000$ in 1881 from $79,000,000$ pravengers in 1871 to 188,000,000 in 1881, or to $878, C 00$ daily.-Ina. C. E. Rema

[^1]: - Vide the "Story of the Battle of Port Baid," Emannimurc, vol. ㅈxㄷ. pp. 1, 27, 51, 80, 111, 133.
 \dagger For illustrated desoription of tho Nordenfelt mohing muni, tee EMGD

[^2]: The Secretary has since been informed by Mr. Samuel Timmins
 that several beartifully finished miniature busts by James Watt
 oxist elsewhere.

