The Institute has attempted to obtain thr best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of iilming, are checked below.

Coloured covers/
Couverture de couleur
\square
Covers damaged/
Couverture endommagée
\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

\square
Cover title missing/
Le titre de couverture manque

\square
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bieue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge interieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètait possible. ces pages nont pas èté filmèes.

Additional comments:/
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessoas.

This Number of the ELECTRICAL NEWS contains a complete report of the Eighth Convention of the Canadian Electrical Association.

For any Pressure up to 40,000 Volts. ARE DYHAMOS AND ENCLOSED ARC LAMPS W'. A. JOHNS()N ELEC"IRIC CO'V'. \quad, 3 kivis. w., fonowro

STANLEY TRANSFORMERS

The Standard of the World for
Incandescent Lighting Operating Motors Arc Lighting Power Transmission

We furnish a Guarantee of the EFFICIENCY and REGULATION of each Transformer and will Insure them for one per cent. per annum.

ROBERT A. ROSS, E.E. M E. Ginduate S.1.S. F, E. Degree,
Toronlu Universily. -ivem. A.I.R.E electrical and meghanical ENGINEER
Sprecifications, Ilans, Suprosision, Valuation and Adrice cer litectio and Stean Plants. Hamilton Chambera, 17 St. John St., RONTREAL
J. AlLEX. GULVERWELL ELECTRICAL and F[ATVMF DOgYET MECHANICAL...

Special Agent Rugal V"utoma Life. tate Lexal glanages Toronio and Central Ontario for Formerly with lidion General b.loctric Co., Canadian Instict.
5 KIno Street West - TORONTO

CEORCE WHITE-FRASER

Mem Am. Inu. Elec. Fing. Mem Can. Soc. C.E.
Adsice in Manaxement of Central Stations, Alicrailims, Evie:cions, Tesli-Sicamor Waiet

18 Imperial Loan Bullding. 32 Adelalde St. E.

TOROMTO
FIRSTBROOK BROS. King St. Eust, - TORONTO TOPPINS,
manteactumers of

SIDE-BLOCK8 AND GROSS•ARME.
WKITE FOK PARTICULARS.

Alanufacturers will find at to ther adwamage to use the columbs of the Elt:ctrical Nuws in making announcements.

THEPM WIE

Send for our Illusirated Catalogue and
rrice Liss of "Unique" Telephones
For Main Lino and Warehouse Use.
Outy I derphose male that trees not get
Saticfacioo Guaranteal
Soll Outught as low inces.
Nu Exorlitant Royalies.

Sole Masatacturers....
JOHN STARR, SON \& CO., LImited.
P.O. BOX 448 - HALIFAX, N.S. Incandescent and Flexible Cords RAILWAY FFEPER AND TRDLEEY WIRE

Amerlcanite. Magnet, Office and Annunclator Wires Cables for Aerlal and Underground Use.

L'. S. Factory : Americas Electrical Works, Providence, R. 1. New Vork Store: P. C. Achprman, Agent, 10 Cortland Street. Chicago Store: F. E. Donohor, Agent, 241 Madison Street.

ELECTRIC REPAIR \& CONTRACTING CO.

 ELectric AppaRatus of all kinos neanime on the shortest neticeT.\&H. Are Armatures a Speciahy - * Armatures kewound for all Sjstems GBO. E. MATTHEWS, Manager. Write for I'rices Tel. aint to years Forman of the Royal Electric Co. Armature Winding Department.

WESTON EIIGRRCH HWTHMWEIN GI.

114-120 William Street.
NEWARK, N.J., U.S.A.
VTESTON STANDARD PORTABLE Direct-Reading
VOLTMETERS, MILLIVOLTMETERS, VOLTAMMETERS, AMMETERS, MILLIAMMETERS, GROUND DETECTORS AND CIRCUIT TESTERS, OHMMETERS, PORTABLE GALVANOMETERS
Our Portable Instruments are reognised as THE STANDARD the wnild over Weston Portablo GalvasoOur STaTION animeTERS and VOLTMETERS are unsurpossed in pornt meter-lor Buldee woik. of cxtretne accuracy and lowest consumption of energy.

MUMFORD'S IMPROVED BOILER

A company in Montreal that formerly used an ordinary brick-set boiler, but now has a Mumford's Improved, writes:
"We are having very great satisfaction with the boller and saving daily in our consumption of fuel."

๑MCCORMICK TURBINES~

State your Requirements
and
send for
Catalogue

Estimates Furnashed for Complote Power Plants, and Results Guaranteed

Represents a pair of $\mathbf{3 0}$.tuch MoCormick Turhine with Governor and Fil Wheel for regulating yped. The

S. MORGAN SMITHICO. - YORE, PA. U.S.F.

THE

IMPROVED
STEAM ENCINES

Flolling mills, And the Eirer. he Most Comple:eSivle or Mudern lapros ement.
Wool Machinery, Wood-Working Machinery Saw Mill, Shingle and Stave Machinery, Fire and Burgler-Proof Safes and Vault Doors.

The " Ineal." Ihigh Spehd Engine, Direct-Connhethd.

SPECIAL ATTENTION called to the "WHEELOCK "IMPROVED STEAN ENGIMR also the " 1 IDBAL " HIGH SPEED ENGINE, cut of which appears above, as being U_{n} equalled tor Simplicity, Effiency and Bconomy in Working, and Especially Adapted for Electric Lighting. Strect Rallways, Etc.

BAIRD \& TRHH

mancfacterths of the:

Also J. R. Baird's Blectrical, Gas and Gasoline Engines, Water Molors, Etc.
 Works: 39 Finkle St.,

Woodstook, Ollb.

KAY ELECTRIC MOTOR CO.

" $K_{\text {sptan }}^{\text {AY }} D_{\substack{\text { MNO }}}^{Y N A M O S ~ M O T O R S}$

 lddrow :all (otrepxondence to

32 and 34 Bay Street North, HAMILTON, ONT.

The Laurie Engine Go., Montreal

* SOLE AGENTS FOR PROVINGE OF QUEBEG- W

and all Electrical Devices and Repairs
T. G H. ELECTRIC CO.

255-7 Jamas St. North, HAMILTON
58 Adelalde St. West, TORONTO

JOHN MCDOUGALL - Gateronian Iron Works, MONTREAL. QUE.
There is Nothing Too Good for your Boiler
CLEAN BOILERS
Our ZINKOLENE and Special Compounds are MONEY-MAKERS for you.

STEAM ENGINEERING JOURNAL．

MR. W. H. BROWNE

The Canadian Electrical Association is to be congratulated upon having chosen Mr. W. H. Browne as its chiel executive officer. Since his connection with the Association Mr. Browne has been recognized as one of its strongest pillars. Of his desire and ability to wisely direct the affairs and promote the interesfs of the Association there can be no question. His energy, earnestness and thorough business methods, as exemplified in the management of the Royal Electric Company, are sulficient guarantee on this point. In this he will be given valuable assistance by the two vice-presidents, Messrs. II. P. Dwight and A. A. Dion.

Mr. Browne was born in the year 1849, at Troy, N. Y. While engaged in the foundry and generat hardware manufacturing business in the city of New York, he perceived the possibilities in the electrical field. Resides investing in other electrical industries, he becatne interested in and was one of the organizers of the electric railway at Richmond, Virginia, which was the first electric railway in the linited States, the construction of which was commenced in 8888 . He continued as manager of this road until 1891, and in addition had the

Mr. W. H. Baowne,
Presulent Catadian Eilectrical Amointion.
management of the United Electric Light and Power Company, perhaps the largest concern of the kind existing at that time, which afterwards absorbed the United States :lluminating Company and the Brush Illuminating Company. In January, 1895, Mr. Browne accepted the managenient of the Royal Electric Company.

CONVENTION ECHOES.

Mr. Kinnmerers prelly lithle Anglo-American fags were very much in evadence.
What', the matter with the new prexident and vice-presidents? Oh: they'reall right.

Parlez vous Francais? If not, we may conclude that you are among the few who didn't altend the convention.

Mr. F. I. Jenking is not only a clever slenographer, but alwo an excellent singer and an altogether jolly good fellow.
Mr. F...I. Wunder, of New York, exntern manager for the Fort Wayne Eiectric Corporation, took in the convention. He was accompanied by Mrs. Wunder.

Three cheers and n tiger for the members of the Reception Comnittee-Jolly grod fellows every one-when shall we sece their like again? "Hlip! hip!" etc.

The excellent wowk done in behalf of the Association by Mr. Yule during hiv wo years term as president is recognized and held in highest appreciation by the officers and member..

Mr. Samuel Chase, of New York, representing the Western Elrctric Co., of Chicago, is well known to the electrical frateraity in Canada, and connequently was right at bome with the boys at
Montreal. Mentreal.
Mr. R. E. T. Praxle" handwome electrical display on St. James stnert was highly commended, as was abso ihat of the lachine Kapids Hydraulic ami. land Co., corner of Craig micet and Victorim avenue.
The absence from the hanquet of Mr. C. F. Sise, president of the thell Telephone Co., was much regretted. Mr. Sise is at present a victim of rhuematimm, and therefore subject to the commands of his physician.
Conspicuous amonig the dispenmers of hompitality throughout the
convention was Mr. L. B. McFiarlane, of the Bell Telephone Com pany, who comatanily exerted himsalf for the success of the meet. ing and the pleamure of the vinitorm.
The sight of the genial manayer of the Toronto Electrec lizht Co., wearing on his breast the combined flags of Hritainabl l'nited States, wan accepted by the members an indimputable cidence of the renuimenese of the entente cordiale which is suid to have recently been ewablished betwoen thete nationn.
II is to be hoped that Mr. Wim. Thompwon, the indefatigatie chnirman of the Committee on Arrangersents, has lound time

Mr. H. P. Duight,
Firm Vice.Prosident Canadian Filectrical Aoraciastion.
yince the convention 10 enjoy the sleep which was so conspicuously mbent a feature of his existence during convention neek. Mr. Thompmon has made a reputaicon for himself as a "hustler."
In addition to a number of interesting mamplea of electric cablen, Mr. Juhn Carroll, of the Eugene Phillips Electrical Works, premented lo his friends a handsome soutenir of the convention in the form of an attractively covered folder, containing excellent portraits of Admiral Dewey and other prominent American commanders.
The Canadian General Electric Co. Limited, of Toronto and Peterboro', presented the delegates to the convention with a handmone and servicuable mouvenir, in the shape of a paper weikht made in miniature to represent a small induction motor. This

Ma. A. A. Dion,

Little nouvenir was much admired and highly appreciated by all tho reccived one.

Sowe of the Montreal ladies were extremely thoughiful and kind to the wives and lady friends of non-resident members. It has beea megrewed that at future conventions, the pleasure of viaitiag tadies could be greatly enhanced by the appointment of a local committee of ladien, under whone direction points of interes: migth be visited during the progress of the business sessivns.

Mr. H. O. Fiak, of Petertoro,' took in the convention city, but not the convention. The why and wherefore of his absence from the convention hall and the good fellowship of his brethren in the Ameciation was the mityect of many conjectures. We now feel Whiberiy to state that Mr. Fink wan compelted to choose bet ween clectrical techaicalities and the society of hill young and prelty.
bude, and he very winely chone the latter. The members of the Canad.on flectrical Assaciation will join on in winhing the young auple e hong and prosperous matrimomial voyage.
The wefe of a well known member, who took in all the visite of mopecto.n and asked the why and wherefore of cwesphing the aw, his expresed her intention to prepare at veries of hechures
 auncoment in made in order that the popored depathere maty mol prowe too grent a slocick to the lady:s husband and friends.
Mr. II 11. Browne, manger of the Rayal Electric Company, and has excellem staff, phaced themselves unrevervedty at the dsymond of the oflicers and members thonghome the comention.

The Jibuhe Shakinc: (irate.
It in medless to saty the those who know them that they are ot bright and cheery lot of good fellows, who do not count any dfort toogreat that is calculated to increase the comfort and happines of their friends.
Mans of the members were ghad to find Mr. R. G. Black. snn of Mr. (ieo. Black, of Ifamilton, in charge of the Chambly Manufacturing Company plant. Mr. Black, in addition io excellemt matural ability, is a graduate of the School of Iractical Seneace, Toronto, and has had at valuable experience in the factors of the Wentinghouse Electric Manufacturing Co.. at Pithburg, Pa. Therefore in his present ponition he will so doubt prove to be the right man in the right place.

THE JUBILEE SHAKING GRATE.

Wes take pleasure in calling the attemion of our readers to the merts of the Jubile shaking grate. P'eople who are intereoted in that power and heathg phante have been giving much attention to the cost of fuel ued to generate steam, hot water or hot air, th the case may be. If has air, an the case may bey, whas once put to the serutiny of skillful engineers, to see that the oldfashoned way of burning coal on statoonary bars, using hoes, slasth bars, serapers, hooks, slicing bars and other such fire tools to rid the ash and clean the fire did not prove an economical way of burning coal. This conclusion. sethed by the oberervant engineer and fireman, opened the fied for some appliance to bake the place of the stationary bar.
It will be observed by the illus. trations presemted that ine Jubilee Cirate liar Co. appear to hate embodied the essential points regured in the combruction of : shating grate. The ban stand erect upon the rockers, presenting a merfectly smonth and level -urface to the fire. When shistins:, the bars have an up and down movement which horoughly sifts the ash from the coad, allowing the air free access to properly oxidize the carbon. It is clamed for these grater that they exaporate from to to so more water per pound of coal, waing slack or acreconing, and "oth natural draft, than can be capprated when uning select. lump or best steam coal on a diationary bar. Below is a smmmary of the prominemt features which distinguish the Jubilee shakug grate:

It gites the greatest percentage of air space of any grate in the world, thereby insuring the most perfect combuvtion: fix air yace gives 57 per cent. air: $1-2$ air ypace gives 70 per cent. air: © air space given 38 per cent air.
It has 50 per cent. more under-draft than any shaking or -tationary bar made.
The angle eections which pretrude above the body of the baf, and form the top or surface of the grate, are set at such ath augle
that the air ix carried in lis matural hate of thow withont a break in its current, wnder and behind the coal.
Owing to the angular wape of the sections they gather the air in and over the lop of the bat, thereby distributing the air crenly under the eoal, beviden keeping the bar eoob.

It preserita a perfectly lesel aurface while at reat.
Owing to the perpendicular movernem of hoe barn when whak. ing, the grate nimface is deaned equally withous opeoning fire doors and without lows of fucl.
The Jubilice grate hatien from wall to wall, amd han no atationary cemtre or side bars upon which the asher and clinkere rath collect. The bare etand crect ughon the rockers and are hedd in place by a projection ont the end of the barso which move in guidere an elld fratmes, which are well down below the firce and by hatsing nothing to mberfere with cexpationion maken it imponable (1) tllist or bend the bars.
The bars are beld down to rockers by grasits hooks. dowing aw.ag with the intonventience of splif pilns and such melhods.
It hats a mont onigue and effectuse lock to hold the bats lesel.
It in easily adapted to ally furnace.
It caln be changed from one sized air apoce to athother without removing anything but the bats.
Thene grates are manulactured and sold by the Jublilee (irate 1/ar Co., of Torombo, limited. West Market street, Timonto:

 Qucber:

PERSONAL.

Mr. A. Bugham, manager of the liell Telephone Co., hav re--sped, and has aceepted the ponition of manager of the St. Thomats electric railway.

Mr. E. Round, of the Peterborough Liplit \& Power Company, was a recent cinitor at the office of the Eithetru.n. Xisws. Mr. Round has heen conneded with the above company for fourten yers.

Mr. 1. H. Breck, electrician, of Kingston, Ont., is receiving The comgratulations of his friends upon the occasion of hiv recent marriage to Miss Melecod. Mr. Breck is a son of the president of the Kingston litectric Railnay Company.
Before leaving to ambume hin new position with Mewrs. Dirk, Kerr \& Company, of L.ondon, Lingland, Mr. I.C. Armsirong, late

The Jumbe: Shabing Grate, With Some of the Bars Removed.
of the Canadian (ieneral Electric Company, was tendered a farewell dimer at the Board of Trade reatimrant in Poronto.

MeCurdy \& Co., Antigoninh, N. S.. are enlargngy their electric hyht pant, and have a contract to light the strects of the town. A to hep. engine and hoiler has been ordered from the Robb Engineering Co.

As effort is being made loform a company in l.ondon, Ont., ith opposition to the Bell Telephone Co. It is stated that Mesora, Water \& Evams, of Detroit, and J. Minhinnick, F. B. I.eys, T. Smallman, and oblers, of London. are inferewied, and bas ble charge for instrments will be Sis for house service and $\$ 25$ for office service per annum.

pemalimph on thr tentil of hyery montil my

CHAS. H. MOR'IIMER,


```
TORON'JO, Telrmane gim \({ }^{-}\)OAIVADA.
``` New Pohk life lishrance: Be himisg, Montabiat. Hell Telephome asp

 reach the office of julticatioss not Luter than the spah day of die munth inumediately
 of the advertimet, repuests for a bange sbould ienth the uffice as carly as the \(\mathbf{z a t h}\) das of the month.
The "Canadian Electrical Newa"' has been appointed the ottcial papel of the Camadian Blectrical Associatiod

CANADIAN ELECTRICAL ASSOCIATION.

\section*{OFFICERS: \\ Fructant}

A. A. MON, Superintendent Othama Filectic Co , Otawa Skchktany-Thkasuksa:
C If MORTIMER, Jublisher Einctuical Nens, Toronto Eixacutiva Conalirtiky:
3 S. WRMillt, Manager Torono Electic Light Compang Toronto. IOHN CAKROI.1. Sec. Ticav Fugene F. Phillipm Electrical Works, Montreal.

W, M, I, A WALHANK, I.achune Kapnds His Jrnulice \& Land Co. Montreal
 U K L.FYDFN Manager Cataract Poner Co., Mamilon F F: CAKI, Managei lackard E:tectrsc Cu, st. Cathatmes, Ont

Ture space required in this issue for a
articles omitted report of the proceedings of the convention of the Canadian Electrical Association renders it imperative that several articles previously arranged for be held over until our August issue. Among these are the last of Mr. Thompson's series of articles on "Corrosive and Scale Forming Agents in Boiler Feed Waters," and the conclusion of Mr. K. A. Ross" paper on " Electrical Power Transmissions."

\section*{Canadian Electrical Assoctatiod Coarention.}

The recent convention in Montreal of the Canadian Electrical Association was, without doubt, the most successful yet held. The arrangements were complete in every respect, the attendance large and representative, and the proceedings unusually interesting. At a meeting of the Executive Committee held prior to the convention, over sixiy new members were elected. The Association is uow in a prosperous condition, and continued growth is assured. Lack of space prevents a more extended reference to the convention proceedings.

\section*{Asseasmedt of Poles Rails add Wires.}

Eıactracht companies will await with much interest the decision of the Privy Council in lingland with regard to the validity of the assessment imposed on the rails, poles and wires of the Toronto Railuay Company, inasmuch as the result will affect not only strect railway companies, but also gas, electric light, telephone and telefraph companies. In the city of Toronto alone, an assesement on the various companies of more than two million dollars is involved, which would give a yearly
revenue of at least \(\$ 34,000\). The question has been before the Ontario courts for four years, bot the decisions already given provide little ground on which to forecast the final result. The Supreme Court decided that the gas mains of the Consumer. Gas Company are liable to assessment; Judge Mellougall held that the rails, poles and wires of the Toronto Railway Company are also liable to assessment. Judges Mchibbon and Dartnell ruled that the shove equipment of the Toronto Railway Company is exempt from taxa. tion, but the Court of Appeal for Ontario has reversed this decision, and it is from this last decision, which is final until overruled by the Privy Council, that the appeal is now being taken. The question which the l'riyy Council must decide is whether or not the equip. ment, such as rails, poles, wires, mains, etc., of a company, is real or personal property. If real property such equipment is assessable; if personal property it is exernpt from taxation, the Assessment Act of Ontario providing that the personal property.of a company which invests the whole or the principal part of its means in gas works, waterworks, railways, and such like, shall be excmpt from assessment. There are many debatable points in connection with the case, and no prediction as to the outcome can safely be ventured.

\section*{Cost of Power for Generatide Electreity.}

Is a paper read before the National Electric Light Association, Mr. W. McLea Walbank, of Montreal, gives some calculations as to the cost of producing power from the Lachine Rapids for the generation of electricity. His estimate includes the cost of developing the power and delivering it on the bus-bars at the sub-station, in which the cost of step-down transformers and the drop or loss in power from the rapids to the station must be taken into consideration. Of a total installation of 72 wheels, 48 are already in place. About \(\$ 1,000,000\) has been spent in hydraulic development, which will furnish 20,000 horse power, but until a market is found for the total power, some 5,000 horse power will have to be charged with the expense of hydraulic development of the total 20,000 horse power. Therefore Mr. Walbank, in his paper, gives, first, the cost per kilowatt per year for the portion of the plant at present installed, and, second, the cost when the whole water power development will be in operation In the first instance the cost of water rights, hydraulic machinery, etc., is \(\$ 957,200\), and the power delivered at sub-station, allowing for loss, 3,600 kilowitts, which is equivalent to \(\$ 263.83\) per kilowatt, capital cost. This, at six per cent., would be equivalent 'o \(\$ 15.95\) per k.w. The depreciation on \(\$ 300,000\), representing the cost of that portion of the plant subject to depreciation, at 5 per cent., would be \(\$ 4.17\) perk.w., and the operating expenses, including repairs, insurance, etc., \(\$_{2} .3_{5}\) per k.w., giving a total cost on a twentyfour hour day basis of \(\$ 22.97\) per year per kilowatt. Taking the completed plant, with 72 wheels installed, the cost is given as S1,113,273. The power developed, after deducting losses, will be 13,500 kilowatt at the bus-bars, equivalent to \(\$ 82.46\) per h.p. capital cost, which, at six per cent., represents \(\$ 4.95\) per kilowatt annually. Allowing \(\$ 1.68\) per k.w. for depreciation and \$1.5: for operating expenses, the total cost per annum will be \(\$ 9.1+\) per kilowatt. Attention is directed to the fact that the operating and depreciation expenses per kilowatt will be very much reduced when the entire hydraulic equipment is put into operation. It is stated that Nova Scotia coal, costing \(\$ 3.50\) per ton, is used.

\title{
GANADIAN ELEGTRIGAL ASSOGIATION
}

\section*{PROCEEDINGS OF THE EIGHTH ANNUAL CONVENTION}

TIII: Bighth Annual Convention of the Canadian Hectrical Association was held, pursuant to anmuncement, at the Windsor Hotel, Montreal, on Tuesday, Wednesday and Thuraday, June sith, zuth and 3oth.
The lirst session opened at 10 a. m., with the President, Mr. John Yule, in the chair.
There were present the following members:
I. B. M, Farlance John J. York, H. D. Eidwards, IF. W. Pairman. John Shatw, IVin. 8. Shaw, John Carroll, I'. H. Hatr, N. W. Medaren, Fred Thompuon, E. Lras, C. II. Wright, Geo. II. Sadlen, R. S. Kelseh, W. E. Gower, George A. Child, James 1. Bays, Mones Rubenstein, N. C. loss, 1). S. Barton, Nim. T. \&unner, lim. II. Browne, J. E. Scoll, M. 1. Cuchrane, I.onii A. Herd, I. (;. Gosoler, I. D. W. Magic, H. J. Fuller, Homats Rondger, 1). W. Meharen, I'. II. Dividson, (icorge E. Mallews llex. Marre, E. Carter, W. 1. Powell. II. H. Hewhaw, R. E:. T. Pringle, A. W. Staveley, II. G. Melatren, W. Li. Mib.itren, W. Ni.l.ea Wiallbatak, J. A. Burm, R. Dobice, I. A. Bownand, F., I. Wiallerge, li. H. l.eonard, jr., W. J. Plews, J. W. Pidher.
 8. Bugs:er, A. M. Wickens, A. B. Suith, J. J. Wright, J. W. Catupbell. Whather (i. Auderson, E. D. MeCormack, Joneph Wright, J. K. Johmonne, J. J. Avhworth, C. M. Mortimer, J. A. Kiammerer, Toremo, Ont.: A. A. Diun, W. (i. Bradley, Win. Alearn, ir., C. Thompon, E. J. OReilly, James Jolmaton, R. Anderwon, Dunati. Ont. : F. W. Martin, George Black, John I'. Rifoby, Giodon J. Henderson, Hamilton, Oul. ; Charlex 13. Hunt, E. E. A. Carr, loondon, Oll. ; B. F. Recehor. Thomas Sadler, D). MeGnbben, I'. Mlurgan, Landsay, Out. : E: E. C try, D. 11. Henderwh, G. A. Powell, St. Cathatimes, Ont.; W. R. l.eet, E. A. Hrigh, Danville, (Vere : J. J. Mahoney, Samuel A. Chace, IV, K. Mchanghin, F. A. Wunder, New York, N. Y. : John Vinle, Gucph, Ont. ; William Thunpson, Montteal West, (Juce ; J. W. Purcell, W:alkerville, Ont. ; Geo. D. Eillie, Barrie, Unt. : A. \(\lambda\).
 Simmons, Kingston, Ont.; A. I.. Breithaypt, Berlin, Ont. ; V. B. Coleman, Port Hope, Ont. ; E. J. Kyle, Merriekville, Ont.; J. F. II. Ilyse, Branford, Unt. ; Andrew Sampater, Sherbrowke, (ane:
 A. Hanter, Vancouver, B. C. : Stephen Noxon, lingernoll, Ont.; P. Howler, New Westminser, B. C.: Georye W. Thompon, Relleville, Ont. : S. E. Fletcher, St. Johns, Que.; 1H. R. Carrulhers, Millbrook, Ont.
The Secretary-Treasurer read the minutes of the last annual meeting of the Association, held at Niagara Falls, June 2nd, 3 rd and 4 th, 1897, which were approved.
His Worship, Mayor Prefontaine, of Montreal, was then introduced to the President and the Association, and made the following address :
Mo. President and Gentlemen:-In the name of the citizens of Montacal, I heartily welcome you to our fair city. The dsocialoon to which you belong is one of the most important \(A\) soociation of the century. The science which you shaty is one which can be called the science of the 19'. century, althoukh immene: progress and diecoveries had been made previous to then.
It in not necessary for me to enlarge more upon the question, 2) Ihope that I will hase the pleasure of meeting you at the banques, but this morning, fet me only repeat again that we are fiad one you here amongst the citizens of Montreal.
I know the work you will do will bear fruit as regard, the prowpert! of the science which you study.
I. iterefore, as chief magistrate of the city of Montreal, declare the exghth amoual convention of the Canadiatl Electrical Associaten io be open, and I trut your stay will be pleasamt, and hope that sou will be falored with fairer weather thath you were this mormang, as otherwise you will obtain a poor epmion of our climate.
I hope the stay that you will make in the eity of Montreal will be both unefin and enjoy:able.
The President : We are all very much pleased to see Hic Worship here, and I call on Mr. Wright, of Renfrew, to thank him for his kindly address.

Mr. A. A. Wright: I am very sorry for two things one is that I was not horn a lirench-Canadian, in order that I might have all the eloquence which, you know, is supposed to flow in the veins of those good people ; and another thing for which I am sorry is that I was not born in Ireland, in order that I might have lived near the "blarne; stone." I may say that I have made full arrangenents that when 1 come to be born again, all
these lithe difliculties will be overcome. I ant sure that, as an Association, we are delighted with the dattering address which has been made to us by \(H\) lis Worship, the Mayor of Montreal, and the hearty welcome ; and in looking over the programme that our grood friends here have arranged for us, 1 am sure that there will be only one opinion with regrard to the excellence of it . Vou know that entertainments such as these are not sold by the pound, as the grocer sells his tea, nor by the yard, as the dry gouds man sells his cotton, but they are the spontancous outcome of noble and generous hearts, and those are the kind of hearts possessed by the citizens of Montreal. This is a progressive and illustrious city. Cities are made of men, consequently the people of Montreal are illustrious, because we have in the city of Montseal some of the most illustrious and liheral men on the face of the globe liberal to the art of electricity
. id we believe they have done and will do all they can to make this meeting one of the best we have ever had. I thank His Worship, the Mayor, for his kind address, and we thank the good people of Montreal for the entertainment we expect to receive while we are here during the next few dizys.

The l'resident then read his annmal address, ats follows:

\section*{JRESIIENT'S ADORESS}

I beg to give you all a hearey welcome to this the eighth convention of the Canadian lilectrical disoctation. The alm of the dssociation is to gather together the members of the electrical fraternity and alled interests for the purpose of mutual discission, and to learn from each others experience In this way we try to benefit the whule busuness interests with which we are all connected An or ganization of this kind confers upon its members benefits from the reading of papers. and the discussions which take place dissemmate information with refereace to the methods that are constantly being tried by different members in the practical conduct of their every day operations and business methoxis. This issociation allurds the means for members to oecome acquainted with one another. The friendships here formed should le used for the purpose of mutual protection and advice when difficulties arise A free and friendly correspondence tends very much to strengthen stimulate and encourage many of us in our daily struggle "ith diffcultes. It is a matter of satisfaction to me that during the las two years you have honored the with the office of l'resident, good progress has been made in the direction indicated. but there is stil room for great improvement

It is now almosi four years since the last meetin; of the Canadian Electrical Association was held in the city of Montreal During the interval conventions have been held. once in Ottawa. twice in To ronto, and last year at Niagara Falls on each occasion matters of current interest and importance have been presented for the con sideration of our members there are many reasons why our meeting again this year 1 . the east. and particularly in Montreal should te at once a source of both pleasure and profit to the mem bers of this Association The intervening four years have done much for the Dominion of Canada, for its national life and the development of its material resources. In no department of indus try has this progress been more marked than in the electrical tield in electric lighting, in electric railway work and in the electric transmisston of power; and the work must not be forgotten whech has been done in extending the use and improving the sersice in the older branches, the telegraph and the telephone. Firm this de velopment of the great modern industry in which we are all proud to havea share, no part of the country is likely to reap greater henefits than the city of Montreal and its vicinity The Dominion of Canada, at 'east so far as Ontario and Quebec are concerned while otherwise abundantly dowered with mineral riches has been deprived of coal deposits, until recentily an essential factor in manu facturing and industrial development Today, however, the possi bilisics of electrical ir nomission have rendered avalable as a sub stitute to turn the whecis of our factories, the heritate which tob provinces possess in their abundant water powers bi will be our privilege to inspect what has been done in thin direction by some of her far-aighed and eaterprimng citazens firs the cuy of Dontreal We shall first see that great enterprise, carried out in the face of difli culties and discouratements the suceessful utibation of the power of the St lawrence ruer by the plant of the lachune kapnds Hydraulic and land Company Of equal interest and min rtanc will be the opportunity given of inspecing the plant and eqummeat of the Chambly Manufacturing Company on the Kichelseu rwer at Chambly, which will vie with its great rival in the bernticent work of supplying cheap light and cheap power for the cuizens of Mont real. It is to be hoped that a farr dividend will be the reward of the shareholders of the two companies for incir enterpsise.
It is proper, before entering on the work of this convention, that
we should glance briedy over the progress of the past yeur. A marked hature of electric progrean in the Dominion throughout the years 1897 and \(189 \%\) has bren the inception, aod, ia some caves, the completion of a number of important plants for the long distance transmianion of power. In the province of Quetrec there are, besides the two plants already meationed, the Montmorency plant, which has been in operation for several years, and is no doubr familiar to mout of you, and the North Stoore Power Company. Three Rivers, a 16 mile transmisalon, \({ }^{12,000}\) volts, delivering \(500 \mathrm{k}, \mathrm{w}^{2}\). In Ona 16 mite transmimioa, 12,000 volts, delivering 500 k.w. In On-
tario there is the Cataract Iower Company, of Hamilton, the anio thare io the Cataract rower Company, of Hamilton, the
diatance to tid tranmitiod 33 miles, premare 25,000 volts, with a capecity of \(G, 000\) borse power. Thin plant, it is anticipeled. will be in uperatioa by Auguat ist next. In British Columbia a transmimion installation of 1,300 borse power capacity is being erected to supply edergy for the electric railway, lighting and power indusiries of the city of Victoria, distance 16 milos. The West Kooteray Puwer Company rocently started with an initial capecity of 2000 horve power. presure 20,000 volts, distance 30 miles. This power will bewer. ared lor the operation of machinery in the Thin power wilt be used lor itve operation of machinery in the velopment under way in the viciaily of Mootreal. The only point at which satisfactory promerem cancol be ruported is at Niagara Falls, where, anfortunataly, the tying up of the smeten water power in the Doceinion in the hand of an alien corporation has prevented its development for the beneft of the peopla of Ontario. This tate of alfairs, we truat, will be removed before another yelt.
Howdee the inarsortant plagis meationed which are either in operno tion or im course of construction, a large amber of similar enterprises are at proment in their initial stages and may be expected to reach their completion withia the next year or two. Alton mer, it is diffcult to foreme at the pren int momeat the boonats which our Canadian manulactories and industries generally may derive from the otilizimg of the water powers of the country. scatiered without aumber from the Aslantic to the Pacific. In eloctric railway work the development of the year has been maialy confined to the exteasico and the better equipment of exiatigg cify and suburban ronds. In the fiold of electric lightisg, in which a majority of the meabers of the Asociation are more particularly intereuted, a rumomably astiafactory coodition of affairs existe. That indusiry in on a fairly totid basis, at least in 30 far as a dianribntion of curreat 'for incan. doucent and power purposes in concurned. as reenhend evideat by the failure of the much tallted of illuminant of the fature, acetyleope pas, to make any iuroed iato the feld of the lighting companies. A linge majority of the plants now fo operation are equipped with roAsomably modern and eficient machisery, and the rates at which current is supplied sre, it is rafo to say, it taken on the average, the owent in the world.
We will have belore us the report of the Conamittee on Legiala. tion. From this you will see how far the efiorts ande siace our last montion have been moccessful in the dinection of securine ecritable protection of private inceatments. It is to be boped then the work of the Asmociation during the convention will be halpfol to the acmbers, and that they will reconnise the value they rucuive from ithir atteadance bore with respect to the papmers which have boen preppred for the cuaveation. You will the their practical and belphul alure, and I trum you ane rbedy to criticise and discua the views sex forth in the fingt of your owa experinace.

One thing more I feel should be mentioned, and that in, the ap. preciation of the eflorts of the diftereat comprapies asd individuals in Monireal who have so beartily co-operated for the succems of this meetiox. The proverbial hoepirality of our metropolitas city is known 10 you all. A pleasiak hatere of our lan convmation was the repular aad prompt attondance of oumbers at all vemiona and the theen iaterest taken it the proceedtege. This comanabdable practice will, I trust, be hept up at this car eighth comvention now open for basines.

The conclusion of the address was greeted with prolonged applause. The President then called on Mr. J. J. Wright to read the report of the Committee on Meters:

Mr. Wright stated that there was no special business to bring before the Committee on Meters during the past year, consequently it was not convened, and there was no report to make on behalf of it.

The President appointed Messrs. Reesor, Smith and Hunt as members of a committee to strike the standing committees for the year.

The President : The next item is general business that any of the members may wish to bring up, or any questions they desire to ask. We will be very giad to hear from anybody who has anything to say.

Mr. C. R. Hunt : I wurld move that the Repurt on Iecrislation te taken up the first thing to-morrow morning. This will give the members a chance to read it over: We cannot very well discuss it until shis has been done.

The President: This appears to be all the busimess set down for this session, but I think it advisable to now have one of the papers read, and will ask Mr. \(\mathbf{A}\). A. Wristht te read his paper entitled, "How to Overcome Sone of the Disticulties Encountered by Ceptral Station Men." (See pare r43.)

\section*{Disctession.}

Followint the reading of his paper, Mr. Wright mace the following rewartas: If 1 may be allowed the
time, there is one thing more that I wish to refer to. Perhaps it cannot be done in every instance, but there is one thing I would advise central station men to do that is, where they have contracts with a town unless they are situated under very favorable conditions, as in some certain towns that 1 know of, where the owners of the piant pretty nearly own the town itself, where you do not own the town, but the town, rather, owns you, so far as electric lighting is concerned-I would advise everyone to try and form a joint stock company, and not endeavor to run the concern alone, no matter how great their abilities are. Try and get the must influential men in the town as members of the company, and in that way you will have a leverage on the council that you cannot otherwise possibly obtain. It will also prevent other companies from coming in, and will assist you in many ways. I just throw out this as a suggestion, so that if anyone contemplates the formation of a joint stock company, they will try and get as influential men as possible, as it in hard to know sometimes where the lightning will strike. Another thing I would like to mention is that it is well to try and let your lighting contract with the town be the weak arm of your strength, and devote more time to the commercial aspect than to the other; then it you do not get the desirci legislation, you will be in a better position to stand the shock than otherwise.

The President: We have listened to Mr. Wright's interesting speech, and we would like to hear from others as to their experience on any of the points mentioned by Mr. Wright. Mr. Wyse, of Brantford, may be able to say something.

Mr. Wyse: 1 have listened with a great deal of interest to Mr. Wright's paper, expecially as it covers many points in rulation to experiences that I have lately been through in clealing with the municipal authorities at Brantford, and 1 think it is something that all central station men and probably very many others can appreciate. There was one point that I would like to ask Mr. Wright about, and that is the collection of bills. He speaks of collecting weekly. Would you not, Mr. Wright, find that this would require a larger office staff ihan otherwise.

Mr. Wright: That refers to the arc lighting accounts. The man who goes around trimming coliects these bills and the incandescents are collected every month.

Mr. Wyse : 1 thought that referred to your private incandescent customers.

Mr. Wright : No, we collect those monthly.
Mr. Wyse: We find that there are a great number of customers who, as you say, will pay a small bill rather than let a large one run on. There was another thing that I would like to bring to the attention of the members, that is, giving notice. We find that giving notice where the account is not paid promptly is very effective. We have a system of first, second and third notice, and if the bills are not paid after the third notice we disconnect the customer, and this gerserally results in his pay. ing the bill and asking for re-cunnection. I think Mr. Wright deserves the thanks of the Association for his very valuable paper.

Mr. Wright: With reference to the insertion of that saving clause, this year I just succeeded in getting it, to use a common phrase, by the skin of my teeth-"one day saved tre." It is very difficult sometimes to get that clause inserted. Iou all understand that there are certain men in the council that you can approach and others that you can not. Just how 10 ket this clause inserted is often difficult. Some of you, I suppose, have sometımes to make up a contract yourself. It don't do to come out straight and say "f Here, I want to have this resolution moved," especially as one has to deal with a number of men who are not any to0 well up. Be sure in makines up the resolution 10 give it to a man who will bring it into the council without any hesitation. This is cone of the dificulties I find in gettine the thing brought before the councillors.
Mr. Wyse : Could you not arrange to get a longer contract than one year in most instances?

Mr. Wright : I mould like to do so.
Mr. Recsor: What is the population of Renfrew?

Mr. Wright: Between three and four thousand.
Mr. Hunt: Do you supply incandescent lights enirely by meters of on flat rates?
Mr. Wright : Almost entirely by meters.
Mr. Hunt: Do you charge a meter rental?
Mr. Wright: Yes ; twenty-five cents a month on all sies.
Mr. Hunt : What is the smallest size meter that you Mave? Winght : \(71 / 2\) ampere, 3 wire, and we also use 2 wire.
Mr. Hunt: You can now get 5 ampere meters for rour 2 wire service that will start on a 5 c.p. lamp.
Mr. Wright: I did not know that there was one that would respond to a \(5 \mathrm{c} . \mathrm{p}\).
Mr. Hunt : There is, and we have about 50 in use of the General Electric type.
Mr. Wyse : The Shallenberger meter can also be obtained in 5 ampere size.
Mr. Reesor: As far as Lindsay is concerned, we make monthly collections on incandescent lighting, and the town lighting is also collected monthly. The incandescent lighting and commercial lighting we collect monthly, and we have a rate of discount of \(331 / 3 \%\) if the bills due on the 1 st are paid betore the 10 th. We find this works fairly well. They come to the office and pay, and we are trying to have all of our collections made at the office instead of sending out collectors. Of course these fellows out, or educate them to better system.
Mr. A. A. Wright : Have you everything in your own hands?
Mr. Reesor: Yes; we had two companies, but the other one has been absorbed.
Mr. A. A. Wright: Of course you can see the advisability of collecting your arc accounts every week instead of monthly. We could not work that lamp scteme with them.
Mr. A. L. Breithaupt : 1 find the system of sending notices very effective. We have in Berlin a number of customers who are intentionally delinquent, and who simply do not want to pay their bill, though they want the light. We found a very effective way to be to send them notice that unless within 48 hours the account was paid, the current would be cut off. We applied that both to our electric and gas customers, and find it works very well. We collect monthly, and try to render our accounts on the ist. Sometimes they don't go ouc until the and, and if paid by the roth we allow \(20^{\circ} \%\). discount, that is, bringing it down to a net basis. Most of our bills are paid in the office, except a few of the business men near our office, which we collect ; but most of our people pay at the office.
Mr. A. A. Wright : You have no opposition in your town.

> Mr. Breithaupt : No.

Mr. Wyse : I would like to ask Mr. Wright if he has any opposition in Renfrew.

Mr. Wright : Oh! we have two others.
Mr. Wyse: In a town of 3,500 ?
Mr. Wright : Yes. Why, in Eganville, which has 2 population of about 1,500 , they have two companies, and pay \$jo to the government-\$35 each.
The President : Mr. Wright speaks about gathering influential men about you. The great trouble about these men is that they don't stay influential, and don't stay with the council, but stay with the company, and sometimes incur the hostility of the aldermen for not being in harmony with them. In our campaign, I made up my mind that it had 10 go to the vote. I did not speak to a single memier of the council until the whole thing was over, but just prepared, and let it go through, and about two weeks before the by-law came out I got in my work, and instead of them hunting me, they were on the defensive themselves. I had been preparing cnrefully for six months. The situation was such that I did not think it was any use to deal with the council at all, but simply stand on common sense and put your case before the frecholders. Fortunately in Ontario it is only those who have property that can rotc on a by-law, and this is a large protection. There
is an inclination among the property holders not to trust the council with any more money or property than they can get at present. Referring to the system of collecting and sending accounts, we have weekly, monthly and quarterly accounts. The quarterly are the residences and best business places and the stores. The monthlies are billiard rooms, barber shops and taverns, and any customers whom we think it best to place on the monthly. For the weekly, as well as the monthly, we have a collector who calls for the account, but the quarterlies are paid at the office. We have arc, incandescent and power-in fact, a little of everything. In a small town such as we have, we know everybody and know how to handle everybody, whether as individuals or classes, and can tell the best way to treat them.

Mr. A. A. Wright : Although we present our accounts every month, circumstances will, as you say, alter cases.
Mr. Wyse : Could you not save the expenses of that collector by offering a discount off the bills if paid at the office?
The President : You know all these discounts are put on before they are taken off. They are looked uporr as a penalty, not as an advantage. The way I look upon discounts, with about 10,000 inhabitants, it is more a penalty than a reduction on the account.

Mr. Dion: I would like to say a word regarding 5 c. p. lamps. We supply lamps free to our meter customers. We have confined ourselves to 10 and 16 c. p. lamps, but a few years ago, customers finding out that lamps of 5 c . p. were made, asked for them to be used as night lamps. Most of our small customers could not afford to burn a lamp all night if it were 10 c. p., and we finally decided to let a customer have a 5 c. p. lamp, only supplying one, and when that burned out exchanging it for a new one. We tound it popularized electric lighting in that way, and prevented customers from using coal oil lamps. These night lamps, while not registering on the meter, are small cxpense to the company, as the lord is small at the sime when they are used, and we have found it an advantage to allow them to be used in that way.
-Mr. Reesor: Sometimes when we make contracts with flat rates for 16 c. p. lamps, we have had difficulty by reason of our customers placing \(3^{2} \mathrm{c} . \mathrm{p}\). lanups in their stead.

Mr. Dion : We have a small number of customers on flat rates where there is danger of changing \(16 \mathrm{c} . \mathrm{p}\). lamps for 32 c. p., but we make an inspection of all these premises three or four times a year and have reports made so that we can keep a pretty fair check on the lamps.

Mr. Reesor: Where are you living?
Mr. Dion: In Ottawa.
Mr. Hunt: I would like to ask Mr. Dion whether he supplies on both flat rate and meter systems.

Mr. Dion : About an eighth of our business is a flat rate one. We supply the lamps in the first installation and renewals are paid for. On the meter system we supply all lamps free-both first installation and renewals. I may say we do more than that. We hawe found that customers on the meter system allow their lamps to get very old and black until they hardly give any light and then complain to their friends without coming to the office, so that we have no means of remedying the difficulty. Now we have a house to house inspection for the purpose of putting things in order. The inspector gives altention to loose sockets, etc., and also replaces any lamps that had better be out of service. Although an expense, we think the satisfaction to customers more than reimburses us.

Mr. Ellis: Referring to collections, 1 think we have a unique system of collections in Barrie. We send the account out every six weeks. We have a form with a coupon on the end, which states that "this bill is payable at the bank 15 days after date af issuc." If not payer at the bank, customers don't receive the discount. If tendered after the 1 gth day, the bank won't accept it. We find this system very successful. We pay the bank \$50 a year.

Mr. Hunt: What do you do with the person who does not pay and lets the account run?

Mr. Ellis: When the bank make their returns, we use for delinquents a printed slip which says: "Your account payable at the Bank of Commerce is still unpaid. If not paid within to days, your light will be shut off and the account placed in the hands of our solicitors for collection." The discount granted is 30 per cent.

Mr. Hunt : If a customer pays on the second month, will you allow the discount?
Mr. lillis: No ; we keep charging the discount.
The l'resident: I never went to court with a single customer.

Mr. Ellis : We very seldom find it necessary, and of course have to make allowances with some people. Sometimes it is impossible for them to pay at the bank, owing to their being absent from town, etc., and if only a day or two late we don't mind, but the other class of people we don't accept.
Mr. Wyse: How do you arrange with your customer for cash discount?
Mr. Ellis: In sending the bill, we put down the gross amount and deduct the cash discount to be allowed. The contract is made at the gross price.
Mr. Hunt: Whi.. \(\because\) you charge per 1,00 watts?
Mr. Ellis: We charge \(171 / \mathrm{k}\) cents per 1,000 watts net, and if the bill is over \(\$_{12}\) in six weeks, we give a discount of 20 per cent.; our gross rate is 25 cents per 1,000 watts.
Mr. Browne: Do 1 understand that you give 20 per cent. discount from \(17^{1,9}\) cents net in cases where the bills are \(\$_{12}\) in 6 weeks?

Mr. Ellis : Yes.
Mr. Hunt : I have great pleasure in moving a hearty vote of thanks to Mr. Wright for his very valuable paper and for the discussion that it has brought out. I think it has been very beneficial to all of 4 s .

Mr. A. B. Smith: 1 have great pleasure in seconding that, and I hope Mr. Wright will have the same success with his city fathers in the future that he seems to have had in the past.

The session was then adjourned until 2:00 p.m.

\section*{afternoon session.}

The convention resumed at 2:00 p.m.
The lresident read a telegram from the Ottawa Electrical Association, wishing the convention success, profit and pleasure, sure to be derived from a meeting in the Canadian metropolis.

Mr. Magie's paper on the "Electrical Utilization of Water lowers " was then read by Mr. W. H. Browne.
(See page I39).

\section*{miscussios.}

Mr. A. A. Wright : If not out of order, 1 would like to ask if the position of permanent reader of papers is open; if it is, 1 would like to move that Mr. Browne be offered the situation. (Laughter.)
The President : This is a very important paper, and 1 would like you to cirefully discuss it and ask any
questions you may wish.
Mr. Wm. Thompson: 1 really have 10 regret that 1 did not have the opportunity of seeing Mr. Makie's most remarkable paper before, and I say "remarkable" advisedly, because he has covered the whole ground, which is something that writers of papers seldom
do. I regret that this paper has only reached our do. I regret that this paper has only reached our hands to-day: I can quite understand shat Mr. Magie, the writer of this paper, is not to blame for this, because, as we all know, he is a very busy man, but this paper covers \(t 00\) many important points in electrical engineering to enable one to attempt to thoroughly discuss it without thorough study. There are, however, one or two points brought out very forcibly, and those of us who have felt the progress of electrical engineeting during the last five or ten years, can appreciate the importance of the information that is kiven within the columns of this paper. I, myself, have barely turned 30 years of age, and still I can distinctly remember my glandfather who ran a mill in Yorkshire, having in operation one of those huge wheels about 30 feet diameter. I can distinctly remember a "chap," is they would say; coming up
from London and asking why he did not hate buckets attached so that the water could drop into them. These were put on, and it was a remarkable fact to me that that mill, instead of turning out a few barrels per day, increased its capacity by more than four times. To my mind, the most important point in Mr. Magici, paper is the fact that evidently water wheels and water motor installations have come to stay. We have this evidenced by plants all over Canada, some of which hate been very successful, others almost total failures. As it is the investor who produces the money for the clectrical engineer to carry out his idcas, it is wise to rementuber that there are times when such installations as these are not advisable. I feel almost sorry that our large installations in the vicinity of Montreal are not further advanced, so that we cuuld see or begin to appreciate the profits which the investor will receive lrom his capital in those large concerns. While passing lachine Rapids one day 1 noticed that they had only two generators running. Now, they have a capacity there ol something like \(20,000 \mathrm{~h}\).p., and they have been operating this plant for some little time. Possibly the total expenditure has been in the vicinity of a million and a half, but it struck me that there was going to be an immense lot of capital tied up in that plant for years to come without its earning any profit for the investor. If this had been a steam plant installation, it could have been made as the plant was required. This opens a large field for discussion, so much so that I do not feei like entering it, because I might, to use a vulgar expression, "put my foot in it." For this reason I would like to have had time to study Mr. Magie's paper very carefully and have prepared myself, and I feel almost like asking that this paper be carried over until next year, postponing the discussion until the next convention. The paper has far too much important matter in it to be laid on the table, simply read and allowed to drop.
Mr. Bonner : I think it is a very excellent suggestion of Mr. Thompson's that the paper be left over until next year, but I think there are one or two statements made somewhat disparagingly towards steam men. Representing one department of the steam power business, I have just a little to say on these points, but am unable to get actual ditit so as to place it before the members in an interesting and valuable way. We have not at the present time any data pertaining to Canadian plants which would be of special value to the Association, but it is my hope that during the next six months we will be able to make some tests on one or two complete plants, and if such is the case, 1 should like very much to present tha: data in the shape of a paper at the next meeting, and have that considered, perhaps, in connection with this suspended discussion of Mr. Magie's paper.
Mr. Browne : While I appreciate the importance of a very extended discussion of this paper, I fear that the postponement of it for a year may bring us, perhaps, into other phases of the subject, and that the present phase will be practically lost sight of. There are several gentlemen here, I think, abundantly competent to discuss the points thrown out by Mr. Magie's paper, and in order to perhaps provoke discussion and have a little contention on it and brighten the meeting, I may refer to Mr. Bonner's statement that there appear to be some aspersions cast on steam plants. I was conscious durink the time of reating that Mr. Magie had been careful to point out that an expenditure on original installation, beyond a celtain amount, prohibited competition with steam, and 1 believe, from what 1 know of the author and the preparation he gave the paper, that he recognizes the fact that there are many water power installations that should not be installed, because the conditions could be met equally by steam. But there is this one important character about water power trans:missions, that, assuming that you are able to serve power during 10 hours a day, from a water fall, at the same price or even a little less than steam, you still have the opportunity of obtaining a revenue from the water power during other times of the day without any additional cost. You cannot obtain that additional profit with steam plant without additional cost, and the
future of the water power transmissions seems to me to he in the direction of the utilization of the power in other hours of the day than the usual ten hours, namely, from 7 a.m. to \(6 \mathrm{p} . \mathrm{m}\). J may say that already in the city of Montreal probably the largest commercial enterprise has negotiated for electric power, and has made a change in its hours of operation in order to obtain the advantages and benefits of electric power. If that power had to be produced by steam, they simply could not enjoy the benefits, because they could produce the power for less money. This is an advantage that will develop to a larger extent than now with the power from water falls being used at other times of the day than has been the custom in using steam power.
Mir. A. A. Wright: 1 do not wish to be known for my much speaking, but 1 am afraid if I keep on that I will. It seems to me, however, that this paper is a very opportune one, and I may say that the fact of its being read was one of the inducements for my being present. It seems that if there is one subject more than another that is of interest to investors to-day, it is the development and utilization of the numerous water powers which are scattered broadcast throughout the length and breadth of this Dominion. Small towns particularly would be very much improved if the water powers within a reasonable distance could be utilized. There are many points which it is almost impossible to take up and discuss this afternoon. I would like to have it stand over for a year, so that we could have time to study it. I have no doubt that Mr. Magie has spent a great many hours in preparing this paper for us. It covers a great deal of ground and covers it well. I should also like to ask what the paragraph means on page 3 , wherein he says, "that when electricaliy transmilted power does not cost more than Stoo to \$140 per h.p. installed, the investment is apt to be a profitable one, providing, of course, it is properly managed." Docs that mean where it costs users \(\$ 100\) to \(\$ 140\) per h.p. per annum?

Mr. Magie : That is intended to mean the cost of the installation, including the hydraulic and electric as well as the transmission portion of the plant. Of course, there are many cases where it would be very much higher.

Mr. Wickens: I think that this is a valuable paper, and it is a pity that we did not have it in hand a little earlier. It is too big a question to take up in an offhand way. There is no doubt there are nany points in favor of the use of steam, and perhaps, by leaving the matter open and giving the gentlemen an opportunity to follow these up, we can show some very grood results. This Association represents all parts of the Dominion. and there are miles of country that cannot be covered by long distance transmission from water powers. In those places we have to stick to the steam plant, and sometimes we manage to crowd the hydraulic plant very close, simply because it takes a large amount of capital to develop the water power. We have had a few illustrations. Take the Cataract power at Niagara. We know they are selling power in Buffalo, but nobody knows what it is costing. We know they have a great deal of money sunk in the ground, and are selling some current to Buffalo. I know that if we had a good steam plant, properly managed, at IJuffalo, we would make money with it, and there are many others too far away from water powers io have this power reach at all, and there are more that have to be carefully managed by the enginecr or they would not pay. For these reasons it would be an advantage if the paper was carried over, and thus give the members a chance to go and look into the matter carrfully. It would be better to have it thoroughly thresked out, rather than have no discussion at all. I honestly hope that some arrangement will be made by which we can :ake this matter up at some other time. 1 hardly see that we can make much out of it at this convention. The balance of our time will be well occupied, but if carried over until the next convention, some of the members could give us some more good ideas on these lines.

Mr. J. J. Wright : 1 don't exactly understand the carrying over of this discussion till the next convention.

It would be in the province of the gentlemen who would do that to bring in some new facts, but it also appears to me that the men who have bcen speaking on behalf of the steam plant do not appear to be as sure of the figues in connection with it as the electrical men are. I am quite prepared to endorse one paragraph in Mr. Magie's paper, which is the one reterring to direct iriven and belt driven plants. I think Mr. Magie has hit the nail on the head in this connection.

Mr. Reesor: I think we should dispose of the paper at this session. Its postponement may lead to accumulation at our next convention. Some questions might be got out of this that might lead to others next year, and perhaps leave it to some other wise head to get up a paper as a growth out of this one.

The President: I think we had better go on discussing the paper.

Mr. Magie: In preparing my paper I did not attempt to fight the steam man, and in fact, tried to give him good lee-way, but merely took up the electrical part of it. If it was wanted to fight the steam man, it would be better to get up another paper.

Mr. J. J. Wright : Most electrical investors won't admit that the steam engine is in the same category as the electric power.

Mr. Thompson: In suggesting that this discussion be carried forward, 1 do so purely from a desire that it would allow of a proper discussion of the paper. I think we all agree with Mr. Magie when the makes the statement that the use of direct current apparatus for high potential and long distance transmission is out of the question, and we also agree with him when he says the original installation per h.p. of from Sion to Si-4o can be made to pay. In fact, if 1 were writing the paper. I should have said \(\$ 200\), and then have stated that it could have been made to pay very easily, but the point arises, why put in 20,000, 30,000 or 40,000 h.p. plants, or, as Mr. Wickens points out at Niagrara Fills. with an unlimited power, and then only be able to find customers for one-tenth or less of the output. Too many people imagine, as Mr. Magic has pointed out, that because the water fall, as we have styled it, turns the water wheel the power costs nothing. Mr. McFarlane very aptly illustrated this a short time ago in at little story, which I can hardly repeat in Mr. Miliarlane's manner and therefore won't attempt it. The substance of it was this, that in a small town they had lights at a few cents a week, and power did not cost anything, because it was water power. it few years later the dam at the water power had broken down; operation of the plant was discontinued, and the people in the town returned to coal oil, as it was stated that "it cost too much to run water powers." But to come to the point, where large experiments have been attempted, an immense amount of money has been sumk in getting power in advance of the demand. With a city like Alontreal I think it advantageous both to the company and to the city, because with the shipping facilities we have in Montreal and the large country to draw from, many manutacturing concerns will be induced to come to Montreal and establish their business so as to get cheap power, but that does not apply in every case. A few years ago l was working a few miles west of Toronto and there was as small town of 4,000 or 5,000 inhabitants wanting to get electric light. There was no way to get it according to advice from electric light companies unless they utilized a water power 10 miles distant. They put in a Thomson-Houston are machine and endeavored to run from it at the same tine both are and incandescent lights. This was very unsatisfactory, and they then installed an alternating current machine, and still the company is not able to keep its head above water, simply because the cost of installation and keeping transmission lines in repair prevented that company from earning any dividend on their capital, while if they had installed their plant in conjunction with some other manufacturing business in the town, I think it very probable that the sharcholders, with the assistance of the steam plant, would have made money. They have been for 15 years increasing their capital and receiving no dividends. This is a case where water
power docs not pay. Towards the last of Mr. Magie's paper he speaks of the gencral utilization of electric motive power in manufacturing establishments. I thoroughly believe in that. In 1895 it was my privilege to take a short holiday and go over the greater part of England. I spent six weeks there, and went into an establishment covering 60 acres, and where as a boy 1 served my apprenticeship. I remember that at that time there wats a great big engine in one cormer, with shafting, belting, etc., and 1 tound that every shop in that establishment had now an independent steam engine. The consequence was that the power was only costing them about half what it did fifteen years ago, and this saving was not due to improved engines, but siniply to the doing away with a lot of useless power. They can now run any part of the factory independent of the other parts, and \(I\) think every engineer will agree that this is the most economical way of running, and one that the shatreholders will derive benefit from.

Mr. Reesor: I move a very curdial vote of thanks to Mr. Magie for his interesting paper.

Mr. Kammerer: 1 would like to second that, and while doing so 1 want to say to the steam engine and boiler men, that next year, if we go to Hamilton, as 1 hope we will, we will have a still harder nut for them to crack. Mr. Magic's paper speaks of what we expect to realize there, and \(I\) hope in a year from now the Cataract Yower Co., of Hamilton, will have realized all that they expect \(t\).

Mr. W. T. IBonner then read his paper entitled, "The U'nconscious Ownership of an lmportant Key." (See page 145.)

\section*{miscussion.}

Mr. Browne : The title of this paper Mr. Honner insinuated is a conundrum-to know what this key is. 1 don't know whether 1 have got it correctly or not, but 1 take it to be a suggestion to electric and also to steam roads to employ their rails for the transinission of wagon packages in their original packages, to avoid, besides the long haul by horses and the consequent labor, the cost of loading and unloading, perhaps from the near-by farm to the station, and putting it into a freight car and carting it away. And the unconscious ownership of the key is, that having the road-bed and perhaps the power in the shape of a fully and properly developed water fall, that they would be able to provide additional revenue to the inventment, and also make unnccessary the aggregration of people in large cities, hecause with his proposed scheme the aggregation of population in large cities would not be necessary. People coula conveniently live away from towns and large cities and carry on their business; and in this direction I may refer again to the possible changes in our civilization due to a system of this kind with the clectric development of water falls. It seems to me the time is not far distant when, instead of gaihering tofether in large cities, by the ability to utilize power in small quantities. requiring the investment of capital to a limited extent, that we may probably change our conditions and become more widespread. Small towns will be able to compete in manufacturing, because so much capital will not be required, and in that way 1 can sec a great deal of advantage in the suggestions thrown out by Dir. Bonner that the production of these small places can be aransshipped to places of consumption at very low rates, and in this connection I think his paper deserves at great deal of consideration trom the owners of railroads and electrical enterprises.

Mr. Geo. Hill: While there is no doubt that this scheme of Mr. Bnnner's is a very interesting one, 1 think that there is sufficient in it for question. He has struck one of the keys to suecess of suhurban roads. I may say that there are other points of considerable interest that may be brought out by this paper that might be valuable to suburban road owners. His claim is largely to do away with the matter in hand, whatever the section of the country through which the road is to pass has to deal with. Certainly the scheme seems beautiful up to the point where the cart or truck is side-tracked and lett there while the wagon is being
taken away and returned. This means the lying idle of a certain amount of the rolling stock of the road, and xhile another portion of it (allowing that the wagen belongs to the railroad) is in use, nevertheless it is a question whether the former could not more bilisfac. torily bring his supplies down to a central distributing point opposite his or a number of farms, where it could be gathered up by a moving train at it certain hour. than could be done under the present system. It these wagons were allowed to remain uncovered as they are, the farmer's products would be exposed to the inclemencies of the weather as well as the fact that prowlers might get in at them. Then, again, he loses ownership of the material the moment it leaves the yard in trust of the syndicate. This would not satisfy the farmer, and he never would be satistied until he followed the goods to marker and got the very last cent that there is possible out of it, which as a business man he is entitled to. Now, the railroad company is not going to do this work of commission agent for nothing, and it is questionable whether the farmer wants to pay a commission. I have in my wanderings around the country come across quite a number of suburban roads, and some of them and their schemes are very interesting, noticeably that of the Hamilton, Grimsby \& Beamsville road, where they seem to have a very excellent system that appears to be giving firstclass results as tar as they go. But there appears to be a lack of that broad-mindedness of purpose which we find not only in electric street railroads, but also, I regret to say, in electric light companies. They run through a most fertile country (using the Grimsby road as an illustration), tenanted almost entirely by large fruit-growers and farmers, each of which has a certain amount of power in use almost every hour of the day. They have the grinding of the ensilage product, threshing, pumping, churning, and everything of this nature going on, which requires a certain amount of power all the time, and yet, strange to say, none of these suburban roads seem to be willing to do anything in the way of allowing the farmer to take any power from their circuits. The key to the suburban railroad may be in this, but it seems to me that the suburban railway manager is losing sight of a latge field of steady utilization of his power, through not canvassing the farmer and getting hold of that power that is being used all the time. In Manitoba and the Northwest Territories 1 know of a scheme that went so far that it had very careful attention-and some engineers figured the thing out that the farmer in Manitoba, on the large grain fields there, could, with the straw that they annually burn up in heaps every fall, do all the work of his farm that now requires from 100 to 150 teams, according to the size of the farm, by electric power, by centralising his power in one spot, drawing his straw atter the season was over and keeping it in spots where it could be used from time to time; he would have sufficient power to do the farm work and do away with this large number of teams, to say nothing of the men to look after them. I trust you will excuse me ; being a city hand I should hardly take the floor in convention, but I would like to say to suburban road managers that I wish to illustrate and throw open some new lines for supplying both power and light.

Mr. Hunt : I would like to ask Mr. Bonner jf there is a place in Ohio where the system explained by him is in operation.

Mr. Bonner: These photographs were taken at Toledo, Ohio, where they have already built and are now using this system in an experimental way.

MIr. Hunt : The reason lask is because 1 myself and some others have a charter for a road running out of I.ondon, and something like this would suit us very well.

Mr. J. J. Wright : I don't believe there is a farmer living who would pay one cent to have any work done that his hired man could do.

Mr. Magie : A large electric light company in Philadelphia is selling a good deal of power to be used for driving small pumps, etc., on farms.

Mr. J. J. Wright: 1 think in some special cases this might be done, but on the ordinary every day farm of
commerce 1 don't think an electric plant could be put in 10 ruin it.
Mr. Hill: That is the kind of remarks we have theen looking for during this convention; this is a direct challenge of my remarks. I would like to ask Mr. Wright if he knows of any class of people to-day who employ a greater amount of complex machinery than the farmer of to-day, and if at the same time he knows of any class of people who have to deal with more complex methods than the farmer. The farmerto-day, if he was as broad-minded as the individual who would get up and claim he would not pay ten cents if he could get someone else to do it, would certainly not have brought up his tarm to any position where it could stand in competition with the large farms that are scientifically run. I know for a fact of a large number of farms around this mountain where much current could be used, running from 15 to \(20 \mathrm{~h} . \mathrm{p}\)., if the managers of the suburban roads would offer their power to them, and if the power could be had it would make no difference to the farmer whether he had to pay for it or pay the hired man to do it.
Mr. A. A. Wright : In the town of Renfrew we have had under contemplation the utilization of a water power which has been lying idle for years, and when we bring that into use we contemplate putting in motors and selling power. Four tarmers living quite a distance from the town have made application for power, and have stated that if we would put in the wires they would furnish the poles and put them up and take the power. You must understand that the methods of farming are changing continually. The production of corn is one of the most important, and this has to be cut during the winter, when if they had a motor it nould prove very handy to them. If the power could be given to the farmer he would take it, and could use it often.
Mr. C. H. Wright : On the Montreal belt line we have been supplying power to the farmers and have had more demand than we could supply. Our only trouble has been with the insurance people, who object to the "grounding." As regards the supplying of light from our circuit we have been unable to do it, even at our own hotel, where we have had to put in acetylene gas. Another matter in this paper is the transportation of farmers' produce-this can very easily ve taken to the city, but when it gets there the farmer wants to look after it himself.
Mr. J. J. Wright: If anyone can give me an instance of any suburban road refusing to sell current, 1 will take back what I have said.
Representative of the Montreal Park \& Island Railway: We have refused to furnish current, although ofiered a fair price for it.
Mr. Hili: Last March I visited a relative of mine just west of Hamilton, who has rather a nice place, and he ind me he was patiently waiting for the Cataract Power Company's pole line to come through his section, because he had been repeatedly to the authorities of the Hamilton, Grimsby and Beamsville road, whose line was not further than a few hundred feet from his place, and although he was prepared to pay them from \(\$_{40}\) to S50 per horse power per annum, they refused to supply him.

Mr. A. A. Wright : Mr. Leach, a Scotchman and a bachelor, lives about two miles from Renfrew, and has had his house all wired up and offers to put up the poles at his own expense. He has not yet got the light, but perhaps he will.

Mr. Thompson : I heard a gentleman say that the park \& Island Company refused to give potver to himself and others, and very justly so. When he went to Mr. Holgate he said what he could give him was not at all what he wanted, for the reason that they are simply running street railway generators, and oftentimes the line opens. Now, what would be the effect of having a motor on a circuit like that?

Mr. J. J. Wright : As to the Grimsby instance, 1 think the difficulty is in the price- \(\$ 40\) to \(\$ 50\) is not enough for a "farmer's" horse power. 1 think you will find in the majority of cases the people are not willing to pay a decent price-they have the idea that
this electric power does not cost anything, and they ought to get it for nothing. Why, even in the city of Toronto they are always howling for "cheap power," and if they could, would like to get it for nothing. In cases of friction between purchasers and consumers it is nearly always a case of friction as to cost. P'cople keep telling them that this power will not cost anything, and that the millenium will be here right away, and he thinks he can churn the milk, rock the cradle and pull the cat's tail with electric power. When a man is told he cannot get the current for almost nothing there is a row and a kick.

Mr. Browne: 1 am reminded by what Mr. Wright says of something that I saw published a short time ago, which goes to emphasize his idea. There is a town in Canada considering the putting in of an electric plant to be driven by water power, and they have actually advertised that they will have power for sale in units of \(30 \mathrm{~h} . \mathrm{p}\). and up, as low as \(\$_{15}\) per horse power. If the project be carried through, and they be able to sell at \(\$ 15\) per h. p., it would seem to me to be very unwise for that town to undertake to transmit that current for 16 or 17 miles, when they could pick up the farmers before they got to the end of the 17 miles and make more money. I think the difficulty with railroads in seeking this market heretofore is that they have been built to meet the first demands, and have grown slowly, and have not therefore had the power to spare, because there are peak hours of the day for railroads, when the demand is more than they can supply, and they are not in a position to say to the farmer that at that time he can use the power. But electricity is only in its infancy, and, as Mr. Wright says, people are crying for electric curren: although some still cling to the tallow cardle. The progress is onward, and the day is not very far off when all the farmers will be operating their farms, rocking their cradles, churning the milk and pulling their cat's tail by means of electric current.

Mr. Hill: I move a vote of thanks to the gentleman who gave us this paper, which has afforded such a pleasant discussion.

Mr. Ellis: 1 second the motion.
The President: Mr. Bonner, I wish to thank you for the interesting way in which you have prepared this paper, and also Mr. Browne for his clear explanation as to the meaning of the unconscious ownership of the key referred to.

Mr. Bonner: I would like to make one or two suggestions with regard to the doubt expressed by Mr. Hill of the farmer trusting his produce into the hands of the railroad company. As is stated on page 6 of the paper, the wagons will be tarpaulin covered at all times, whether loaded or not. Now, it is just as feasible to protect the goods in that way as any other, as they are transported on the English roads in this manner right along ; in fact, I don't think I saw any box cars on the other side, and there is ample protection given to the goods by the tarpaulin cover referred to, which is attached by a chain running through eyelets on the edge of the tarpaulin and connected to the sides of the cart, so that it can be locked or sealed just as securely as if the shipment was in a hox car. As to the farmer being unwilling to let his goods go out of his possession until they are turned over to the purchaser and he gets his moncy, 1 think this is largely a question of education; and as to the question of cost, 1 understand it to be one of the claims made by the rail wagon company, that they can effect this transportation cheaper by doing away entirely with the re-loading. In that way they will reduce the net cost of transportation from the farm to the consumer, and I believe that eventually this will be recognized as a fact.

The meeting was thenadjourned until the following day.

\section*{SECOND DAY.}

The President called on the Secretary-Treasurer to icad his report for the year ending May 31st. 8898 , which was as follows:

\section*{secretary-treastreris remort.}

Mr. I'resident and Gestr.eme:s:
I have the honor to submit for your information and convidera.
tion the following particulars regarding the work of the Association for the year ending May zist last, together with a slatement showing the present standing of the membership and finances.

The Executive Cominittee have held five meetings since last convention. At the first of these held on June 2gth, 1897, accounts anounting to \(\$ 360.22\) were passed for payment. Messrs. Kammerer and Armatrong were appointed a conmittee to learn what transportation rates could be secured for this convention.

At a meeting on September 7 th these gentlemen reported that the railway authorities had promised to take the matter up after the first of the new year. A Commiltee on Transportation wus then uprointed, consinting of Messrs. J. A. Kammerer, C. B. Hunt, J. J. Wrisht, Wilfred Phillips and F. C. Armstrong. Messrs. C. H. Hunt, A. M. Bowman, A. A. Dion, J. J. Wright, A. M. Wickens, W. H. Browne and the Secretary were appointed a Committee on lapers. The following gentlemen were appointed a Committee on Arrangements, with power to add to their number and appoint sub-committecs: Messrs. Wim. Thompson, W. H. Browne, Johin Carroll, 1. IS. McFarlane, F. H. Badger, jr., J. A. Baylis and O. Hixman. The Secretary was insiructed to render accounts to menibers in arreare for fees and make drafts if amounts were not paid within a reasonable time.
On April 5 th, 18,3 , the Commiltee on Papers reported that offers of several papers had been received. It wan decided that the conpletion of arrangements for papers should be left in the hands of the Secretary. Mr. Hrowne was authorized to engage a local stenographer to report verbation the proceedings of this convention. Owing to Mr. Kammerer's illness Mr. Browne was appointed chairman of the Commitiec on Transportation. The dates recommended by the Committee on Arrangements were adopted for the presell convention, and the sum of \$150 was appropriated to the conmittee for entertainment purposes. The diaft programme for the convention submitted by the committee was adopted with slight amendments.
At the meeting on May \(2^{\text {th }}\) nine persons were elected to membership and the resignations of ten members accepted. Mr. Kammerer and the secretary were appointed a committe to obtain designs and estimates of cost for an Association button to take the place of the badges worn by members at previous conventions. The Secretary was directed to write members who had failed to pay the drafts made on them for arrears of fees that unless payment should be made prior to June soth their names would be dropped from the membership roll.

In the early part of this year a painphlet setling forth the character and purposes of the Association was prepared and printed under the direction of the Executive. About eight hundred copies of this pamphlet have been judiciously distributed.
Particulars of the important work which has engaged the attention of the Legislation Committee will be laid before the Association in the report which the committee will present at this meeting.
In view of the unusually full programme of events, it was deemed advisable to reduce the number of papers to be presented at this convention, but thev are believed to be of a standard which entities them to careful consideration and discussion, and places the Association under obligation to the kindness of the authors.
Incidental reference may be made to the recent formation of the Maritime Electrical Association (of which Mr. Bowman, a member of the Executive of this Association and author of one of the valuable papers on the programme of this neeting, is the president) to conserve and promote electrical interests in the provinces of Nova Scotia and New Brunswick.
During last year death again entered the ranks of our members, and we are called on to deplore the loss of Mr. Ross McKenzie, of Toronto, and Mr. Chas. Ernst, of Detruit.
During the year there was dropped from the roll the names of 21 nembery, 12 active and 3 associate members having resigned, 2 having died and 4 having changed their place of residence and having neglected to furnish their new addresses to the Secretary. Since the ist inst. Iwo additional resignations have been received, and the names of '3 members have been struck off the roll for nonpayment of fees. Thus there have been removed from the membership list between last convention and this \(3^{6}\) names. During the same period there were added 68 active and in associate members-a total of 79 -leaving the present sotal membership memb
Following is a detailed statement of the receipts and disbursements for the year:
 Receirrs.

Grant to Secretary................................... \(\quad \mathbf{7 5 . 0 0}\)
Stationary and carbon paper. 24.00
5.55
Printing 150 certificates for membe
Exclimnge on chequea and drafts.. 1.27
.20
Express charges. 24.75
28
Cash on hand. \(\begin{array}{r}28.19 \\ 19.46 \\ \hline\end{array}\)
Sico.82
Receirts Sinck May 31 Nt , 1898.\(\$ 19.46\)
Cash on hand, June ist, 18,8 ...
\(\$ 6\) active members' fees at \(\$ 3,00\).
138.00
months...
months...
associate members' fees at \(\$ \mathbf{2}, 00\). 5.00
EXPENDITURE.

Total standing to credit of Association, Jund 25th,
 1898..

\section*{Total at credit of Association, June 29 \\ 588.75}

On motion of Mr. Barrie, seconded by Mr. Breithaupt, the report was adopted.

The next item of business was the consideration of the reperts of committees. The President advised that the only one that had been written out was the report of the Committee on Legislation, of which he was the chairnsan, and which was as follows :

REPORT OF COMmitter: on legislation.
Your Committee beg leave to report that in pursuance of the motion passed at the last Convention held at Niagara Falls, instructing your Committee to take up the matter of securing legistation in connection with the movement among municipalities in Ontario to enter upon electric light undertakings, in unfair competition with companies already in existence, your Committee held their first meeting at the close of the Convention. At that meeting it was decided to procure an opinion from Donald Guthrie, Q.C., ex. M.P.P., of Guelph, and to retain him professionally on behalf of the Electrical Association in connection with the question.
Various questions were submitted to Mr. Guthrie, and his opinion in answer to these questions was considered at a meeting of your Committee held in Toronto on the 9 th of November. A copy of the opinion is attached to this report.

We also had a communication from him, giving his views as to the prospects of securing favorable legislation at the last session of the legislative Assembly. After full discussion your Committee decided to give instructions for the preparation of a short bill to be submitted to the House, which would at least afford some measure of relief to those companies that were immediately threatened with unjust municipal competition.

Another meeting of your Committee was held in Toronto on the woth of December, when the solicitor was present, and after considering the whole situation fully and carefully, instructions were given for further proceedings.
With that view a bill was prepared which came before the Municipal Committee of the Legislative Assembly on the 12th of January- Your Committee, in preparation for the meeting, assembled in Toronto on the isth and also on the 12 th , and attended the ineeting of the Municipal Committee for the purpose of supporting the bill. The Committee had also the assistance of Mr. Lash, Q.C., with Mr. Guthrie.
After discussion those representing us consented to a suggestion of the Honorable Mr. Hardy, Chairman of the Municipal Committee, and other members of that Committee, to allow the matter to stand over for another year. The discussion, however, brought out the fact that there was really no sound answer to the principle of the proposed measure. It also evoked an expression of opinion from the leading men of buth political parties to the effect that the underlying principle of the bill was just. The Municipal Committee thought that there was not proper time to consider how the bill would affect places where there were more than one existing plant, also places that derived or may derive power from points outside the municipality, also to consider the length of the life of an electric plant and other questions, and in the judgment of the Municipal Committee any bill dealing with the matier would require more ample public discussion and some modification. The action of your Committee and the discuscion the queation has received has tended to bring into prominence the injustice of the present lavi. The necessity and propriety of some measure of relief may be considered now to be more generally admitted. The work thus inaugurated and which has attained a hopeful position, should not be discontinued.

The pro cont law of Ontario is inequitable towards lighting and puer onpanien, becanse \(" t\) permis a municupalaty, affer it has fred 1 vanction 10 the formation of such a company and has encouraged enterprising citizens to embark their capitat in it for the purpuce of supplying the municipality with light and powet. to furn avound atnd desiroy, with public funds, and without publec necessis or advantage, the value of the property of thone citizens netho were encouraged to invest their private me:ath in the enter. nhe werr enhat evidently struck the majority of the members of the Suanicipal Commince was that the proposed legislation was junt and equatable becanse, while it did not prevent municipatities entermg upon municipal supply of lighting if they so desired, it male promion for extending the existing law regarding water made
nork to che case of lightinge companies. This law in to the effect that where a municipatity desires to supply water and there is an exstum water conpany incorporated for the municipality, the exsturi water company ind any water rate until the council has, by byLav, fixed a price to offer for the work or stock of the company, nor unth affer thirty days have elapesed after notice of such price has been communicated to the company, witheut the company having accepted the same or having, under the provisions of the Sunctepal Act as to arbitrations, nathed and given notice of an arbitrator to determine the price, nor until the price ancepted or awarded hats been paid or has been secured to the satisfaction of the conpmany; the price io be determined by arbitration under the pminimin of the Mnnicipal Act.
It will be obsersed that this provision in no waty itterferes with municppalities going into the supply of water. It simply provides that if they do enter upon such undertaking they are by this latw bound first to try to buy at af fair price, or att a price to be fixed by arbitration, existing waterworks. No good reason catl be addtanced why this law should not be extended to lighting and power compames as well as to waterworks. It is eminently jush, and it empore no hardships on the municipialities: nay, rather, it benefits them, becalase it tends to extinguish rivalry to themselves, which ravalry might render muniepmal operation of these works unprofitable, and att ath erents it puts them in possession, at a faur valuaton, of the very plam and material that they would have to purthase from other people if they are going into the busines. The proponed legislation is in the public interest, because it will further encourage private citizens to mbest themr captal in extendang and omprosing existing lighting and power works.
It was generatly acknowledged by the Municigal Committe that electric light companies as well ats water companmen have always come into existence with the consent, encouragement and approval of the municipality, which has granted the use of the streeth, ette., for hese works.
The last meeting of your Committee was held in Toronto on February 3 rd, for the purpose of passing accounts. At this meetung, accounts for legal services, printing, statonary, postage, exchange on drafts and office avsistance, amountang to \$0 \(2 \cdot-\) se, yere ordered to be paid. The fuads to meet thas amount were contributed by the following companies: Brockville, St . Thomas, London, Outawa, Waterloo. Braniford, Carlton Mlace, Guelph, Linday, Gatt, Barric, Owen Sound, Cornwall, Stralhroy ind Cobnurg Gas Company, in amounts rangiug from Siso to Sio. It will be obverved that while there are about swo hundred lyghting companies (who were all invited to awist) carrying on busithess in the province of Ontario, :all more or less interested in having legslation secured to protect therr capmal from confiscation, only fificu of that number contributed to the expenine fund of your Comnntee. We are pleased, howeser, to say that through the fiberalay of these companies all claims are paid. It in quite evident to your Committee that if the work in hand is to be carried to a vuccessful issue, a more general, liberal and hearty support with have to be accorded them. It ought to be mentioned here that all the members of your Commince paid their own travelling and nther expenses in connection with attending the meetings. The movement amongst municipal corporations to enter into ithe lighting and power business in competition with those who had the courage to be pioneers is growing, and unless regulated in some way by the legislature, will result in the confiscation of a targe amount of capital invested in the business, as witness the town of Barsic now preparing to put in a complete plant, incleding are. incindescent and power services, to be paid for out of public funds, for the purpose of competing with and destroyng the Barric Company, a private and lav ful enterprise.
Xour Committec desire to mention that Mr. Pepler, Q.C., of Rarrie, and Mr. Farley, \&.C., of St. Thomas, two of the members of your Committee, rendered valuable services in connection with the promoting of the bill referred to.
Daled st th June, \(189 S\).
Jons Yicte:,
Chaiman of Lexishation Commince.

Guelivis, qu November. 1897.
Jous Y'vis. Esq.
'resident Canadian Electrical Association. Guelph.
Dhar Sik, In answer to the çuestions submitted by you for my opmion. I have to say :
liy the statues now in force in Ontario touching the acquivition of pats and electric works by municipatities, municipal corporatwons hate the power: (1) To erect yas and electric works and oprerate the same in opposition to atn existing sas and clectric bight company, withour the cozeent of that company ind without athempting to negotiate with that company either for the uypply of light or for the purchane of their works, and this notwithstanding the fact that the company might have been organized and carried on with the express sanction of the municipal council. (2) Municipal councils have also power to acquire the rights of a
gav company incorporated on and after the temh of March, 1832, at a valuathon, that is to say, they have power to expropriate the property, athl they, of cembe, alon have power to acguire it by agreement wha the company. (3) On the other hand, it appean that a gas company or ath electric light company has no power to prevent a mancupatity entermg into competition with them in the ease of gas and electric works or to do anything which whall conse of thas municupatity to purchase their works at a fair valuation. In regard to the poivers of a municipality to consiruct water works, there serens to be a rentrition which does not exint in the case of gas and electric light works, for, by section 507 of the Consoldated Municipal det (tegoz), it is provided thit in caso there wang water company meorporated for the municipality, the conncil thall not leve any water rate until such conncil hats, by by-law, fixed a prace to ofer for the works or stock of the contpathy, nor until after thirty days hatve elaphed affer notice of such price has been commumcated to the company, withont the company having accepted the same or having, under the provisions of that ate as to arbitralions, natmed and given notice of ath arbitrator to determine the price, bor until the price accepted or awarded has been paid or has been secured to the satisfacion of the company. By to Vic. (807) Chap. 17. Schedule C 8x, it is further provided that the price shall be determined by arbitration under the provisions of the Municipal Aet.
it seems to me that an amendment to sectic. \(50 ;\) should be sought, making it to read hat in case there is any gats company or electric light company or water company incorporated or exist my in the mumepalaty, the council shall not levy any rate for the construction of gan or electric light or waterworks antil the coun cil has, by by-l:aw, fived a price to offer fur the works or stock of the company, etc. That woukd place giss and electic light companies on the wame footing with water companies.
There is no just or sound reason why l'arliament should refuse an amendment to the Municipal det to give gas companies and electroc light companies dice satme protection as water companies, agraimt municipal interference with an existing business, and subject to prowsions for an arbitration. I think such an anendment would be likely to catrs:. It couldn't be sitid that its effect would be to prevent municipalities from embarking in municipal lighting. They would sell retan full power to do so ; but to do :0 with the phant and works of an existing company, to be first acquired on fair terms.
In cave a point was made in this comection, that manicipalities should have the power of erectung ther own lighting phant- without beng comprelled to purchase the commercial part of a plant of a fas or electric light company, provision could be made for such a case by an enactuent compelling a gas or electric light company to sell the part of their works connected with public lighting in case the Lecutenant-Governor-in-Council, or arbitrators to be named by hm, convdered they ought to be compelled to sell the same to a mumcppatty without requiring the municipality to purchase the part of the works of the conpany connected with commercial lighting.
In order to cecure an impartial judicial investigation and decision on the important guestions involved, 1 suggest that the arbitrators, under all the amendments herein suggested, shoukd be three county judges to be named by the Lieutellant-Governor-in Council, they to determine as to right to purchase and the extent and price and terms and conditions of purchase.
I may also suggest for your consideration, whether it would not be expedient so consent to a provision for an arbitration to fix the rate for public street lighting wheh a municipality should pay to ant existing company in case the municipatity and the company differed. In that case a municipality would be deprived of an excuse for soing into gas or electric lighting on its own account.

In England local, in other words, municipal authorities, are only anthorized to supply gas for public and private purposes throughout the whole or any pirt of their district where there is not any conplany or person authorized by or in pursuance of any act of yarliament or any order confirmed by larhmment to supply gras for public and prisate purposes, and where such company or person do not whply gas within any part of the district covered by the local authorty, and if there is any vuch company or person to supplying xas, but the limils of supply of such company or person melude enly part of the district, then the local athliority may themselves undertake to supply sats throughout any part of the district not meluded within such limits of supply, but even then befure the local amthority may, under the act, themselves under take to supply gas for ithe whoic or any part of their divtrict, they munt obtain a provivional order atuhorizing a gas undertak ing under and subject to the "Gas and Wiaterworks Facilities Act, 1500 ": that is, they have to nbtain authority from what, in England, is knowa av the local Government Board, which has been, for the purpose of that act, substituted for the Board of Trade. There is also in England provision giving gas companies power to sell their works to local authotities, hath is, by mutual agrecmem.
The law in Scothand is regulated by the Burghs Gas Supply(Scotland) Act, 18;6, but the first provision of that act limits its applicatton so that Burghe have no power to supple gas within any part of the area of supply over which any gas company incorporated by Act of Parliament or any co-partnerninp or person aulimerzed by any prowsonal order confimed by Act of li:erliament, shall have statutory powers to supply gas at the date of the adoption of the Act in the Burgl).
The Commswoners, under this Scoteh Act, for the Borough howeser, are authorized to buy from frits companies (that in, by mulual agreement) their works; but there is also a special provision to which 1 desire to call your attention: Section 23 of the Act, that \(\cdots\) Where there is a company not incorporated by Act of
 Parhament supplying gav wilhn a Borough, diw Commensioner ra, before they whill exerone ant of the powere conferred by the lit, ahall give notace to stili company that they are willugg to Gus ol to treat for the purghane of the undentaking of the compans and of atl the righis, powers and provileges and all the lands. premoce, woks atud other property of the company, and if such
 compans siall undertakmg on terms motually agreed upon or to be fixed bs arbitrat oun in the manner provided by he landy ' Claunes Cunsolidated (seothand) let ists reppecting matien thereby directed to be actided by arbitration, and it such conpmany shatl refuse to aell the same, or shathmet withotwo allendat months after the service of vin hathe return am amser, the Comnushouers man present : protion to the heriff stationg the facts, and we sherift shatl, on
 mixly, and on aid decree beng announced, the Commissoners dhall house and may exercose all the powers conferred by this lut. A dause wheli seems to me to be subutantally in itsopera. tion the bime an out enactment, wecton \(\mathbf{j o g}\) of the Consoldated Duncipal det with regard to water companies.
As pmoted in your anmall addrew to the Camadian Electrical
 Act. tise: providev that where an electrie light compans is estathindied the lonal authotits or mame ipatity canoot interfere with it until the expration of twemy-one years or such shorter period at © quertied in the applation for the provisional order or in the
 athonthav mith, by mothe on wring gequire the electric light company to nell theor undertaking upon terms specified; if they do bet so requite, then the company goes on for seven yeirs futhers. at the end of thot seven jears the anmetipal authorites lassengatn at aght whathose, and so on at the end of elery enen gears. The"l it hav to de observed that the terms of purThace ind lude not only the value of the lands and works, but also "here pant only of the undertaking is purchased, provision must he made for low occonamed by severatace.
Will rexard to the lim in the limed States, it in sad in a wotk of rownell on the lin relating to electrichy: "If ant elec tra haglt compang exints in a cown, and has been gramed by the town certan पighis to cet it polenand string its wires over the "ty, Jet if than right in not exclanne ill terms the eaty violates no comitat or debt towards the electric lighting company by pur(havorg in wn (1.e., a ris.al) electric bighting phant and engaging on the eletric legh bumanes. to atoid, howeter, the practica musite of woh : cumre, the statutes which aththorize municipathtes to engage it the electric lightug business generally probhe an some wat or other for the purchase by the mumapality of ans exolug clectich lyht phant at prices fixed by the commisanners m care of dixigucement."
The same Nork state that in lowat, Massachusetts, Michigan, Nebrasks. Ohao and lemmohatma, satutes hate been passed egwhothe the volyent of the uperaton of electric light plants by mumcipalitic.
1 would wagent that your general committee appoint an execu wer commitec wattend to the whole subject of promoting and we unag the nec evary legishotton, and that a short agreement be fot form thone gas and clectric light companies who are willing lo comtobute towards the expense, in some such formats I now cond.

Yours truly,
(Sigued) Dins. Githate.
Vatract from Mr. Guthrie's opinion to Mr. Yule, President Eanadtan Electracal Anociatson, ith November, 1 is97:
- I therefore recommend that an amentment or anmendments, a here mbluated. be applied for, and that your Committee on
 the pioving of the measure. This would include interviewing the cadme member of tratiament, Ioth on the Government and oppontte ade of the Howse; the carcolation of printed matter erurme fatorable artioles in the leadmg newspapers, so far as ponblic. having the officers of the various lightagg companies throughout the prosince intertiew their local members and secure foer vappot: as far :a prowible to the meavure: also by counse and otherwise to oupport the proposil when it comes before the mannaphl or other committer of the llouse 20 whom such bills are reforred, and bis other legitimate means have the adoption of the necewary amendment secured.

Mr. .]. Wright moved that the report be reecived and the committee continued.

Mr. Hunt. In regard to this report, I think it has grone into the question so thoroughly that it has left nothing for the committee to add to it. I would like if come of the members, who are not on the committee, sould evpress their opinion as to whether they approve of it or can devise some better way of handling the matter. I think some of the members who are not so comsersant with it as the committee might give us their opinion.

Mr Sunon. Those who were at the convention a sear ago will probably renember the discussion which ionk place upon this subject of the adoption of municipal plants by municipalities before they were justified. I stated at that time that I was not directly interested in that guestion, having foreseen when entering into the
electric light business a probability that a plant motututed by private enterprise might become worthless \(i_{\text {it }}\) com. petition from a municipal plant, but 1 amm in thirough sympathy with those who have such opposition and may have their plant depreciate, and I think it only resht that every effort should be made by those in the buntess to remedy such a state of affairs. I notice in readimf over this paper that they have a law in Great Britain scot. land I believe-such as we are seeking to obtain. This is one of the strongest points the Association call make, as throughout Canada and all English speaking countries the finglish law has been taken as a precedent, and I therefore have greater hope of accomplishing what we desire in that direction, because in addition to the justice of the position, the fact of a latw having been passed in Brit. ain, where they have had more experience probathly than we have had in this country, should influence our legislators. I see it is said in this report that it is nothing more than just and right that a municipality should, before embarking in opposition to a private enterprise, be first compelled to take the position of coming to an amicable settlement covering tha purchase of the existing plant. I see, however, that a parallel is drawn with the Water Works Act. It is quite possible that those who art promoting this directly and having to do with the legislators, will have the objection made that whereas a water works plant is one of permanency, not only in the nature of its construction but also in its general principles, it may not be considered, as a lawyer would say," on all fours" with an electric light plant, which is liable to a great many changes necessitated by the constant inprovements and inventions in the art. It might be sad that the electric light plant might become obsolete by reason of later improvements and inventions, whereas a waterworks plant is not likely to be subject to that condition. I don't think, however, this would be a very important contention, because the law would fix the value of the plant as relating to the modern methods of construction and operation, and for that reason there would be no objection or injustice in insisting that what ever the nature of the plant might be, the municipality should be compelled to take it over at its value, considering the special features in the case; and 1 do not see that this Association can be accused of anything in the way of selfishness in endeavoring to legislate with that purpose and end. We will, of course, as an Asso ciation and as members, look at this matter from the other side as well as our own, as nothing can be gained by looking at anything from only a selfish standpoint. You cannot expect your ideas to prevail unless they will commend themselves to those whom you wish to convince, and for that reason we must look at the matter from other points of view. We have endeavored to do that, and I can see no reason whatever why the municipalities should not accept this, and why the government could not provide this legislation. I think the convention is pertectly justified in using its utmost endeavors and influence to bring this legislation about, and I believe that if this is done, by united efforts the iegislation can be procured.

Mr. Breithaupt: I am not conservant with this subject, this being the first convention I have attended. I cannot, theretore, say much on the subject. As already brought out, the point of precedent having been set in England and Scotland seems to me to be about the srongest argument aside from the proposed legislation being just for both parties. If it is just for waterworks to have suchlegislation, why is it not equally just for gas and electric light companies? Taking the three on a par, I don't see why the municipalities should raise great objections, because they can, at any time. have an arbitration before purchasing the plant, and they would not, I presume, expect to pay for the plant less than its par value. In the United States, as is also brought out in the report, there is a similar act which also assists and helps to encourage the individual, corporation, gas and electric light companies. All of these facts together should certainly help the Association in getting this desired legislation. There is another point which certainly needs to be emphasized, and that is that those of us who are central station
managers will certainly have to support the legrislation, not only by speaking for \(i t\), but also financially, i realize lhat very clearly. There is a great deal of expense connected with it, and I think we all should do ow part in helping to bear this expense. There are a few lowns in the west who have had this question brought before them in a very emphatic manner. In our unn town they still have some five weeks to decide whether they will bring the matter of lighting to vote, put in a plant, or give the present company a contract for a number of years. A lighting company in a neigh. boring town, whose manager is also present, have found a goul deal more dificulty than we have, and they have the yuestion brought even more emphatically detore them than we have. The point brought out by Nir. Wright as to keeping on friendly terms with the members of the town coumbll is a very grood one. We endeavor to be so as much as possible, and if we cannot secure this legislation, we can at least continue supplying the town with light and power. 1 would very much like to see this legislation secured during the present year, and the varous companies receive the protection that is really due them.
Mr. Ellis: I don't know that I can add anything to that which has already been said. I may tell you a little about our experience in Barric. We have been for two years without a contract from the town. We have approached them in every imaginable way, and they simply say, "We don't intend to talk to you at all." About three weeks ago 1 wrote, asking if they intended renewing the contract, that we were anxious and yilling to negoriate with them on a fair and reasomable basis, and put in another clause saying that if the town really desired to go into the electric lighting business, we would sell our plant at its value. In reply they wrote us to put in a tender, and, in fact, advertised broadcast for tenders, and asked to have ours put in with the rest. We thought it was unfair to bring us in competition with the manufacturer, as we had a plant that had cost a great deal of money, and no doubt more than it was worth to-day. We had established a business and built pole lines in all r-arts of the town. We wrote them to that effect, sugsesting that we would be willing to have the value of our plant fixed by appraisement, they selecting one representative, we the other, and these two to select a third. But they would not listen to this at all. I know our Mayor has corresponded with the heads of municipalities regarding this matter to get their experience. We are going to have some very strong opposition. I think it is becoming of this Assuciation that we start right in now, and not only talk about this legislation, but interest the members in our constituencies, and put every argument betore them, so that they can see we are only asking what is just and right.

Mr. Noxon : I would like to suggest the advisability of discussing the question of the separation, in case of the purchase of the plant by municipalities, of the municipal and private service. In the event of separation I see a great deal of difficulty in the municipality buying only a portion of the plant. The report says it could be separated. I don't see how. It would practically mean the doing away of the private business of the company unless they put in a separate plant, and this, I think, complicates the matter very much and is a very important factor in the disposal of these plants in the event of purchase by municipalities.

The President: I have followed this matter closely, and am glad that others have spoken in the way they did, not only on the report, but on the financial aspect of the case, because my experience has been that the majority of people are alsays anxious to reap where ohers have sown. They give all sorts of promises, but when it comes to the point they are not there. What was impressed upon your committee at the last mectiag \(u\) f the legislature, was that these things have tobe fairly and squarelymet, and havealso tobefrecly discussed. The committee of the legishature did not teel inclined w go on with the bill last session. The House was called two months earlier than usual, and being the last session of the House, members were not disposed to
commit themselves. In place of submitting the regular bill a short bill was introduced that would give reliet until the larger bill could be put through, and it was understood that if there was any opposition, the members should not be asked to commit themselves in any way. There are different ways of looking at the thing. One eminent counsel was so impressed with the fairness and justice of the proposed legislation that he said he would not be afraid to go into any constituency and defend the vote of any member. This genteman went over to the great majority a few days ago- the late Mr. Dilton McCarthy. The ground was broken, however, and we bave made, 1 think, very good progress. Hon. Mr. Hardy made the remark to us as we went out, that he had no doubt that in any question of this kind that might come up in the province during the year, the municipalities would be willing to submit the matter to arbitration, but we find in Barrie that they will not negotiate in any way. I have grood hopes of gretting a certain amount of protection from the legislature if grone about in the proper spirit and the arguments made in a fair and business like way, and I am sure the work done during the year will bear fruit and help us very considerably.

Mr. J. J. Wright : I think the strongest prominence should be given to the fact that when the plant is purchased by arbitration, it s purchased at its value. Every plant has its value, and the municipalities would only be asked to purchase the plant at its value, which would be the same to the municipality as to the lighting company. I think if that point were given greater prominence that a good deal of the objection would be disposed of. There is another serious objection, that is, the dividing of the two branches of private and commercial lighting. Now, if in some town a small plant was operating commercial and private lighting and the municipality desired to purchase only that part of the plant that they wanted, it would simply mean ruination for the company. The investment of the company would be practically destroyed, because it would leave them with a small dynamo or proportion of one that was used in the supply of commercial lights. This is a question that should be impressed upon the committee, so that they may give that point particular attention.

The President : I think in the English Electric Lighting Act they have a provision for severance.

Mr. J. J. Wright: I think if you go to the legislature and ask that the municipalities should be compelled to purchase the business of a going concern with the good will of the electric light business and the franchise of it, you will not hatve much success. The only way is to get the municipality to arbitrate and take over the whole business at its value. I know a great many people who, in considering this question, have the idea that it is poor policy for a municipality to go into commercial business, especially electric lighting and power. Why should the municipality go into the business of supplying power to a few users when the socialistic problems of municipal affairs are of much greaterimportance? For instance, they could go into the coal business, which is a necessity, and let the people have coal at cost prices; also the supplying of bread and other necessities.

Mr. Ellis: Is there a precedent in Canada of any municipality entering into opposition with any company for commercia! and street lighting? I ask this because I was reading an article not long ago, which gave the opinion of the Chief Justice of the United States. This matter had been brought up in the courts, and he gave the decision that the demands of the people made it necessary to establish such enterprise, and municipalities encouraged private citizens to invest their money therein, and he said that while it might not be riving them a perpetual franchise, it was in reality the same thing, and he said that that kind of confiscation of the people's money should not be tolerated, and the law must step in and protect the investors.

The President : You will all doubtless remember that some time ago in Toronto, Baron McDonald proposed that the charter of the Street Railway Co. there be cancelled, and the mayor very quickly stepped in with a
report and pointed out the unfairness of cancelling the charter of a company in which the innocent shareholders had placed their money, and that he was, therefore, not in sympathy with it. Why should they do this thing to electric light companies?
Mr. J. J. Wright: I cannot understand why the electric light industry should be singled out as an object of altack by the municipalities.

Mr. A. A. Wright : They think there is a lot of money in it.

Mr. E:llis: 1 had occasion, as Mr. Smith knows, to go into the court business myself, against one or two of the strongest corporations of Cimada, and Justice Rose ruled agrainst me on this account, that the corporation had invested a lot of money and had established a business, and it was not fair for me to go in there and demoralize their business, and he thus gave his decision against me. There was no precedent for it. I think perhaps if 1 had had the matter brought to the higher courts in Canada thes would not have decided in our favor.
The President : From Messrs. McCarthy's and Guthrie's opinions it is very clear that the municipalities have the right to go into competition with the local company.

Mr. W. A. Johnson : There are both commerciai and street lighting systems used in St. Marys, where the corporation have put in a street lighting plant and have not gone into the private lighting.

Mr. Breithaupt: The point was brought up why the lighting companies were attacked, I think it is just because of the popular vote, and that is why there is always such a howl made about lighting contracts before election in order to get the vote.
The President : Another idea that some municipalities have is that if a dynamo is set alongside their water works it will light their streets for nothing.

Mr. Eillis: In connection with the Barrie waterworks they have two steam pumps, and two-thirds of the people of Barrie think, and some of the Council lead them to believe, that all they have to do is to hitch a dynamo to the pumps and they can run their street lights.

Mr. J. J. Wright: Why, that is what they think in Toronto.

Mr. Noxon : The question might arise as to how far the electrical supply men are responsible for this idea of municipal lighting. It occurred to me that if the supply men would not encourage municipalities in this thing, it would go a long way towards getting rid of the difficulty. I think it would be only just to ask that the supply men do not do any more than is necessary to encourage municipalities to put in plants of their own-not refuse to give them fizures, but protect the legitimate trade by not giving inside information or prices.
Mr. Johnson: On behalf of the supply men, I wish to tay that quite recently it was proposed to put a plant in a small town. Elaborate specifications were prepared by the engineers, but they had not any by-law authorizing the purchase of the plant or any money to pay for it. Certain of the supply men got together to consult about the advisability of offering some agreement that no manufacturing company should tender unless the municipality had fully decided to purchase a plant and had made arrangements concerning the funds necessary to pay for it. I think the feeling among the manufacturing companies was that it was a very desirable arrangement if it could be fixed in a workable manner. 1 might say that within three or four days after the suggestion to make such arrangement, the town councillors and pretry nearly everybody else had heard about it, which, of course, made it impossible to carry the proposition through.
Mr. Ellis: When tenders were called for in Barrie, they were to close on the Gith day of June. About the sth or oth they had very few tenders, and an untrue and malicious report was circulated broadcast that we had bought up all the supply men and manufacturers in the country: so they sent their engineers to nearly every place in Canada where they were manutacturing, and I understand they now have a hag full of tenders. In our case I think the supply men
have not shown any tendency to encourage muncipal ownership.

Mr. Hill : I trust the proprietors of electric light in. stallations do not look upon the supply men as their enemies. 1 am sure if they look at them in the light they ought to, that the relations between them would be nuch improved. Take the question of the mentallation just spoken of. The gentleman said that is was imagined by those interested that this expert of theirs had bought up all the electrical people in the country, or possibly they had bought him up, but I think it would be necessary for him to do the former in order for him to carry out the specifications in the first place, as in order to carry out these specifications they would be doing an injustice to themselves and the town, and as such the result Mr. Johnson spoke about was brought about. The electrical supply men of Canada are working for the prosperity of the electrical people as a whole. We have brought out nine-tenths of the improvements in apparatus and supplies, from the incandescent lamp back to the dynamo; we are bound up in your interests, and any set-back that the electrical fraternity receive, either in a large or small degree, would be a set-back to ourselves, and I can assure you, from my experience of the supply dealers of Canada, that for you to imagine that we are going to cater to a trade that would hurt the electrical traternity, would be a mistake.
The President: In regard to the supply men, we know who are our friends and who are our foes. We know a great deal more than they give us credit for sometimes.

Mr. J. J. Wright : That is all right, but there is another class doing more harm than the supply men, and that is a certain class of half-baked people, such as dynamo tenders and supply men, who pose as electrical engineers, and when they are fired out of some reputable concerns in the country, they go around stirring up lies.

Mr. Bowler: There are some people that that remark migit hit pretty hard. I am running a municipal plant. 1 think Mr. Wright should name the parties to whom he refers.

The President: 1 don't deny for a moment that any municipality has a perfect right to go into the lighting business if they wish.

Mr. Browne: I believe, however, that it is not admitted that an electric light station already installed in a town or city can be attacked by the municipality investing in a plant to compete with it.

Mr. Reesor: I would like to draw your attention to this fact, that according to the Ontario Statutes municipalities, when they donate a bonus to any manufacturing concern coming to their town, must not intertere with existing interests of the same class of manufacturers. Now, the municipality, in putting in a new plant to do its lighting, is really using the taxes contributed by the private individuals who own the other plant, to purchase and sustain the opposition plant.

The President: There is another view, that is, the difference between the manufacturing and the electric light plant. If we were on the same basis as a manufacturing institution, and could move, we would not bother with the municipality, but we are tied down, and have capital invested which cannot be noved. We hear every day of offers being made to factories to more to other towns, but lighting companies do not have that adrantage.

Mr. A. A. Wright : This is a very difficult subject to handle; there are so many interests at work. There are the political enemies and the aspirants to office which you have to deal with, and a certain class of people and a certain class of supply men. I know of one supply company that sent their best man into our tewn to work up an opposition plant, and they succeeded in doing it. I remember it and will remember it for a long time, hut, fortunately for our town, I don't think there is much danger of their going into the electrical business, because they are in:olved in debt and cannot do it. However, 1 think they would be inclined to treat us fairly if they did. With reference to our keeping a sharp eye on the electrical supply men, 1
think we should do this, but still you must understand this is a very dangerous ground, for these men who are our opponents, by telling half the truth, will make the people believe that we have arranged with the supply men not to sell to municipalities either plants or supplies. So we have to be very careful what we say and do, but it is well to let the supply men know that although we don't do a great deal of talking, we do a lot of thinking, and although we don't ask that they tell the municipalities that they won't sell them a plant, still, at the same time, they should, in justice to themselves, because it is the electrical men who are going to buy their supplies, be very careful and throw all reasonable cold water on the scheme. I think we should make every exertion to secure that amount of legislation which will protect us from new plants. It seems to me that that is the place where our strongest defence should be, and that our energies should be earnestly devoted to this matter.

Mr. Hill : There is another phase of this question worthy of consideration. Mr. Wright has stated that we should watch the electric supply men. Now, the electric supply man is out for business pure and simple. I am speaking now of Canadian electrical supply men. If he can get the electrical business of Canada he is satisfied, but where the managers of certain companies come to the conclusion that all they have got to do is to go across the border to buy their plant and supplies, the electrical supply men think that the town in which his company operates is not one that is assisting home industries, and immediately attacks that town. We have got to patronize one another, and where we find we cannot approach the manager of electrical industries at present in Canada, we are bound to get into that town if we possibly can, and use our energies to secure that portion of the trade.

Mr. A. A. Wright : I don't think there are many owners of plants but that always give the preference to Canadian supply men, and I think that the majority of supply men treat us fairly. There are members of churches who are not very good Christians, and there are also members of the supply fraternity who are not good business men. Really, I think if the supply men would tell the whole truth it would be better.

\section*{Mr. Hill : We generally do that.}

Mir. Johnson : There have been manufacturers who have made it a policy never to interfere with a local illuminating company in the way of starting a plant in the same town or inducing the municipality to go into the business, but on the other hand 1 can say that there are manufacturers who have done both of these things, and there have been other cases where the illuminating company's employees have gone so far as to instigate and encourage the starting of a municipal plant in another town, and have done it in the shape of a fee for the consulting engineer.

Moved by Mr. J. J. Wright, and unanimously resolved, that the report of the Legislative Committee be adopted, and that the Committee be continued as a part of this Association and instructed to prosecute the work.

Mr. Reesor, on behalf of the committee appointed to name standing committees for the ensuing year, reported as follows:

Committee on Statistics-J. A. Kammerer, Toronto ; A. A. Wright, Rentrew; S. J. Parker, Owen Sound.

Committee on Meter Inspection - A. A. Dion, Ottawa; E. E. Carey, St. Catharines; J. J. Wright, Toronto.

Committee on Legislation-A. L. Breithaupt, Berlin; C. Berkley Powell, Ottawa; John Yule, Guelph; C. I3. Hunt, London ; B. F. Reesor, Lindsay ; J. J. Wright, Toronto ; W. H. Comstock, Brockville; F. Pepler, Barrie.
This selection of committees was unanimously approved ot.
The President : The next item is the deciding of the place of meeting for next year, and in that connection

I have an invitation from the Cataract Power Company, of Hamilton, which I will read:

C. II. Mortimer, Eiso.,

Secey Canadian Electrical Aswoctation, Momreal.
Dear Sir, - The Cataract bower Company takes pleasure in extendmg to the Camadian Electrical Association tts mout cordial invitation to hold its next antual convention in the city of llamiltoll.
We will by that time have some mattery of modern electrical engine ering, ty well as the industrial applications of electric power, which would probably prove of interest to the membery of the Association.

We trust that we shall have the oppertunity of entertaining the members of the Association at their next meeting.

Yours truly,
The Cataract Power Co. of Hamilton, lamitho. H. R. Lemben, Gemeral Manager.

After the reading of the invitation, Mr. Black, of Hamilton, said: I have been thinking for some time that we should go to Hamilton. I feel a little reluctant in moving that the convention go to Hamilton, following after Montreal. They have treated us so well here and promised us so much to come, that I fear that a visit to Hamilton will be tame after being in Montreal, still I think there is hardly another place in the Dominion where you will be so well treated as in Montreal, but you have to take the little with the great. I move, therefore, that the convention go to Hamilton.

Seconded by Mr. Wyse, of Brantford.
Mr. Gordon J. Henderson : Representing the Hamilton Electric Light \& Power Co., 1 beg to join with the Cataract Power Co. in asking you to come to Hamilton. The work which has been done at St. Catharines so far will, I am sure, prove a benefit to any who come to Hamilton next year. We will do our best to make your stay enjoyable, and trust you will accept the invitation.

On the motion being put to the meeting, it was adopted unanimously.

The President : The next item on the programme is " General Business."

Mr. J. J. Wright: Under that head I would like to have taken up the remuneration of the Secretary of the Association for services during the past year, and move that it be made \(\$ 125\).

Mr. Reesor: I second the motion.
Mr. Kammerer: I also second the motion. I know the amount of work done during the past year, and there is no doubt whatever that it is worth a great deal more than the amount which has been named.

The President : For the past two years I have also known the work that Mr. Mortimer does, and know that \(\$ 125\) is not half enough for the work there is connected with this organization.

The motion was adopted unanimously.
Mr. Hill : I would like to ask if it is the intention of the Association to take any steps in the matter of the action of the Underwriters' Association in regard to inspection, etc., and whether it is the intention to adopt any of the numerous sets of rules that are upon the market, and whether we are to take any action in conjunction with the Fire Underwriters' Association to try and adjust this matter. I don't know whether it is a matter of very great importance to the members from Ontario, but l can say that, speaking from a Montreal view, it is a matter of very great importance. The way in which we have been treated by the underwriters during the last year or two has been, 10 say the least, very unsatisfactory. We do not know where we stand today or where we will stand to-morrow. To-day it is iron-armored conduit; ro-morrow it is flexible cord; the next day it is wire on cleats, and the day after wire without cleats, etc. The rulings have been simply surprising, and we think it is about time that the Canadian Electrical Association should take a stand in this matter, and that members should feel that they are not going to be run by inspeciors not capable of filling the positions they hold. I therefore bring the matter before you.

Mr. Dion : I am very glad this matter has been brought up. I think we have reached a stage in some parts of the
country, in our relations with the insurance inspectors, that calls for some sort of united action on the part of this lssociation. In Ottawa we have a peculiar state of things. We have a lot of buildings wired years ago when underwriters' rules were not known, and also later when underwriters' rules did exist, but when they were i:ot enforced. It was then in the power of the underwriters to start things right, but they did not, and so things got into a certain groove and continued so until a tew years ako. Our company had decided to do no more wiring. Some men without any experience then undertook to do wiring, and it was necessary for the electric companies to protect themselves against bad wiring, and for that purpose they came to the conclusion that no connections would be made to acustomer's premises until an underwriter's certificate had been granted. From that day to this we have adhered strictly to that rule, very often to, the inconvenience and the annoyance of our customers who were in a hurry to get the light. The result is, that for all customers since that day, we have an oflicial certificate from the underwriters. This certificate has been granted by the official inspector, who, I understand, is under the Ontario branch of the Linderwriters' Association. Now, the Quebec board or branch, which seems, as far as I can judge, to have no connection with the Ontario branch, have sent special inspectors, who make reports at variance with the local inspector. A Quebec inspector made an examination of a number ot places and made a report which is very damaging in some respects, and unjustly so. Among the places he reported against were a number which had been certified by the local inspector not long ago. Now the proprietors resent this, and they don't want to get the wining done again, and state, "We have a certificate that the installation has been done in accordance with the underwriters' rules, and if we proceed to have more changes made what guarantee have we that in three or four years we may not be asked to have it done all over again." As far as we are concerned, we don't object to a good set of rules, but we think that there are circumstances where some allowance should be made. My object in speaking about this is to invite discussion so that I can find out what other electric light companies in other cities are doing in the matter. We propose sending a representative from our Board of Directors to confer with the underwriters here in Montreal so as to arrise at a better understanding, and I think it would be well for me to find out what others are doing before procceding, as it would not be wise for us to move on behalf of Ottawa and some other party on hehalf of another town take another stand, but we should all work together.

Mr. W. B. Shaw: Speaking as a supply man and electric light man, and representing construction interests, 1 have great sympathy with what Mr. Dion has said. I think Mr. Dion must reter to the same inspector who refused to pass on a shunt rheostat because the wires in it were not insulated. I know of one customer here Who has given us carte blanche to fill the underwriters' requirements. Hin wiring was condemned in 1895 by an inspector who was a painter a few weeks before that, and the following year by an inspector who, I believe was a mechanic, and the third year by another inspector whose previous business ! don't know. As this customer has given carte blanche to do what the inspectors wanted, he ndturally anks now it he has to do something every year. We don't know where we are standing.

Mr. Hill: In order to put this in a proper way for discussion, I would move that the Canadian Electrical Association request the Fire U'nderwriters' Association of Canada to appoint a competent inspector for the Dominion, whose decision on questions of electrical inspection shall be final, and that we adopt the rules of the National Board of Fire Underwriters.

\section*{Seconded by Mr. W. B. Shaw.}

The President: My opinion is that the appointment of a small committee to confer with the Association would he a better way to go about it.

Mr. Wyse: The underwriters have the powerful leverage of saying that they won't insure a building
that has not been wired in accordance with ther rules, and can, therefore, dictate terms to suit themsehes. ; agree that a committee should be named.

Mr. Dion: Who are the underwriters that are dealing with us? Are they not the Canadian Board of Fire Underwriters' Association ?

Mr. Smith : I think I can give Mr. Dion some information. The provinces of Ontario and Quelee are divided by the line of the Kingston and Pembroke Rail. road. Everything east is handled by the underwriters with headquarters at Montreal. Everything west is under the control of the Board of Fire Undeririters with headquarters at Toronto, and there is, of course, a central association, but the direct cause of the whole of your trouble comes from the management here in Montreal. If anyone has anything to say about trouble in the west, 1 am here to answer.

Mr. Dion : Although we are in the eastern dotrict, our local inspector draws his salary and receives his in. structions from Toronto.

Mr. Smith : No, he has been entirely under the con. trol of the board at Montreal.

Mr. Dion: Well, he certainly informed me otherwise. One thing I wish to mention is that the local inspector has got the Canadian Underwriters' Code of Rules, and the last inspector who came from Montreal judged the installation under the National Code, and there is, of course, quite a difference between them. The local inspector says he has never received instructions to change the code. Another thing that I wish to mention is that a gieat deal of the trouble has been due to the fact that the inspections have taken place after the work has been finished. What we want is better local inspection, so that troubles will be discovered immediately after they occur, and rot some time after the work is completed.

Mr. Browne: The question of fire underwriters' rules has necessarily been a matter of progress, and in the formulation of these rules undoubtedly a great many grievances have been created. It has been part of my experience to work under the most severe inspection ot underwriters' rules, and we found no difficulty in complying with them. 1 agree with Mr. Dion that in the Quebec section there has been a total absence, untila very short time ago, of any attempt of controlling the method of wiring, and the result is that there is a great deal of bad wiring now extant in Quebec province. Our own experience in this city is unsatisfactory, because there is no established head representing the Board of Fire Underwriters. The Board of Fire Underwriters seems to assume that because they have established rules we will all follow them explicitly and honestly, and that we are so honest, all of us, that we don't need an inspector, and the result is that when they are called upon to make an inspection they often find work done in contravention of the well-known rules. There is not a company in Quebec that does not know that the Quebec Board intend to have the Canadian Fire Underwriters' rules carried out, which are an adaptation of the National Electric Light Association rules. It would be well if a committee from the Canadian Electrical Association, representing those particularly operating in Quebec, could be organized to bring the Quebec Association into the condition that they would appoint an inspector and give him a set of rules, and not leave it to his atbitrary decision to change, so that when we do a piece of wiring we will know it is all right. We don't want an inspector to come around and say, "We want something else done." We must apply to the Canadian Board and get them to appoint an authorized inspector, instead of having one for \(\mathrm{On}^{2}\) tario, one for Quebec, etc.

Mr. Hill: There are two points that have been brought up at this discussion. The first is the question of the committee. I may say that it has been my pleasure, and at the same time my labor, to go before this Board of Canadian Fire Underwriters in my capacity as a humble citizen, in my capacity as an electrician, as one in the supply trade, and one of the committec of an as--
sociation we had here, called the Montreal Electric Association In all these meetings we have done our utmost to have the Fire Underwriters educated up to the proper point, but our meetings have been more than unsntwlactory, for this reason which 1 want to emphasize, that there is no head, as Mr. Browne has said, and \(m!\) intention of putting in one head for the Association is that we can get a set of rules for the provinces of Ontario and Quebec alike. Now, if they had a head of that sort, when it came to be a question as to whether interior conduit should be fixed to a brick wall or put through clay tubes, it would not be for an inspector to finall) decide on the large installations, but it would go to the head authority, who would be the Dominion Inspector, and it would be his duty to give that decision and stick to it. The great difficulty has been that the inspector has given his decision one day and gone back on it the next, simply because he could not stick to his original decision or had been bought up by somebody. Now, this is a very important question to the members of Quehec, and I think it would be wrong to put it in the hands of a committce, because I believe nothing would come of it. I think if we put before the Fire Underwriters a resolution of this nature, calling upon them to put in a head of that department, that we will gain a point.

Mr. A. A. Wright : If these other gentlemen are in a peculiar position, what kind of a position am 1 in? The Kingston and Pembroke Railway runs right through the town. Half the town will be on one side and half on the other. (Laughter.)

Mr. John Shaw : Mr. Dion Jias a kind of compulsory inspection in Ottawa, but we have none here. I know where one of our power companies refused to give light to a building on account of the objection to the wiring, and the consequence was that the party turned around to another company and had the thing done. The whole question is, that this inspection to be of any use must be compulsory, and we should have a municipal law making it so.
Mr. Browne: 1 indicated in my remarks the very idea that Mr. Shat has just spoken of-- the absence of official authority. I may say that our company has solicited the secretary of the Quebec board to appoint some one with authority to compel the certitying of every installation by the inspector, and that he be given a specific set of rules to be followed, out and that from date all work should be done in accordance with those rules. We have not been successful in having that inspector appointed, and our company is, in its own way, undertaking to impose obligations as to the wiring, but we are frequently met by this condition, that when we undertake to refuse to give light because the wiring has not been properly done, the prospective customer says we have an interest in it because we want to do the wiring and leaves us. If we can get a representative committee of this Association to meet the Quebec Board of Fire Underwriters and impress upon them, if possible, the necessity of appointing some man and giving him a set of rules, we will accomplish a great deal. I believe it to be to the best interests of this Association and of our business generally to secure that. I think in Toronto that Mr. Smith has a good system in force and a fixed set of rules. There is another factor in the case, that is, the American Factory Mutual Associations, who have still more rigid rules than the Canadian IInderwriters, and they insist on having the rules complied with. It is not a question of how severe the rules are, but the fact that they will be adhered to. As to the insurance, perhaps your municipal law will cover that. I would have no objection to a municipal officer. All I care about is some authority to regulate this matter.

It was moved by Mr. J. J. Wright as an amendment to Mr. Hill's motion, seconded by Mr. Wyse, of Brantford, "That a committee of the Canadian Electrical Association be appointed, consisting of Messrs. P. G. Gossler, A. A. Dion, F. H. Badger, jr., and Alderman Sadler, to interview the Quebec Board of Fire Under"riters and the municipal authorities in regard to the adoption of permanent rules governing electric installa-
tions and a means of enforcing compliance with the same."
(The above amendment is ats finally put to the meeting and not as originally proposed).

Mr. Hill : With reference to the amendment, I would say that I would be willing to withdraw my motion provided Mr. Wright will attach the name of some one who is interested in this guestion. The men who have been most hurt by the inspectors have not been the electrical companies, but the contractors; and if the contractors -who are an important section ot this Association-are not to be recognized as having any sizy on this subject, I think it wrong. I would therefore suggest that Mr. Wright add to the committee Mr. W. B. Shaw.

Alderman Sadler : Mr. Shaw and Mr. Browne have mentioned the matter with regard to at municipal law. 1 would like to say to the convention that the buidding by-laws of the city of Montreal have been somewhit changed; a committee, consisting of some of the aldermen and also of members of some of the different trades, such as plumbing, etc., have met on at great many occasions during the past eighteen months. Those laws have not been adopted yet by the council, and it seems to nte that in fixing a committee, it might be well if they intend to establish certain rules, to have them embodied in some form in the municipal by-laws, because you might come in connlict with our building inspector, and I think it necessary that any laws relating to buildings should also be accepted by the building inspector. If you deem it wise, I would suggest that that committee confer with some of the city representatives; in fact, as far as I am concerned, I will be only too grlad to assist when the building by-law comes up.

Mr. J. J. Wright : With the permission of my seconder, I would amend that motion so as to include conference with the municipal authorities and also add the name of Alderman Sadler.

Mr. Ihrowne : I would suggest that Alderman Sader remain on the committee. Although in his capacity as representing the city, he would be able to do for us whatever may be necessary there, yet being a memher of the committee, working for them, he would be able to present to the council the views of the Association. It has been suggested by Mr. Shaw and also another party that a wiring contractor be added to the committee, and for that part, if Mr. Wright will consent, I would suggest the addition of the name of Mr. W. IS. Shaw.

Mr. J. J. Wright : I decline to make any alteration in the amendment.

Mr. Hill : Speaking to the amendment, I would be willing to withdraw the main motion provided Ifelt the amendment was going to thoroughly cover the point. This is not with me a question of to-day, and 1 feel that to do tull justice to the subject you must widen the scope of that committee. There are very wide interests not represented there, and I tail to see why the mover of the motion, who has been asked by the seconder, refuses to put on that committee a representative from the province of Quebec who has an interest in that committec.

On the amendment being put to vote, 27 members voted yea, and 2 members nay, whereupon the President declared the amendment carricd.

Dr. J. K. Johnston then piesented his paper, entitled "Experiences of an Inspector." (See page 1.45.)

\section*{Discussion.}

Mr. J. J. Wright : Taxers as a rule are not very popular, but in this case 1 am glad to say that the relations between the taxer and the taxed, as far as I can see, have been of the most amicable nature. I have pleasure in moving a vote of thanks to Dr. Johnston for the good feeling expressed in his paper.

Mr. Dion: In seconding the motion I might, perhaps, -refer to the last part of Dr. Johnston's paper, suggesting that there may be some potent charm about electricity. I think this is a phase of an electrician's char-
acter that we sometimes overlook, that on account of his coming in contact with so many kickers he cultivates patience and becomes a very genial person.

As Mr. James Milne was unable to be present at the convention, Mr. Weeks kindly read his paper, entitled "The Steam IEnd." (See page 152.)
miscussion.
Mr. Hunt : I suppose it is on account of Mr. Milne's bashfulness that he does not enlarge on the mechanical firemen he speaks about. 1 may say we have some of these in use, and they are giving good results. I have much pleasure in moving is hearty vote of thanks to Mr. Milne for his paper.

Mr. J. J. Wright: Mr. Milne was right in giving credit to the firemen, as a great advantage can be obtained by the employment of a superior class of firemen. I see his modesty prevents his coming out more strongly in that regard, but the apparatus that Mr. Milne is interested in has every advantage over the ordinary run of such things. It undoubtedly has merits in a good many ways, in its saving of fuel and labor and prevention of smoke. I should like to have discussed these matters more fully, but our time is too limited to go into them.

A paper was then read by Mr. Bonner, entitled, "The Quimby Screw Pump." (See page 149.)
mscession.
Mr. Thompson asked it the Quimby pump could be ased for ine ordinary purposes of a suction pump, and Mr. Bonner, explaining that Mr. Quimby was present, asked permission to call upon that gentleman to reply to the enquiry.

Mr. Quinby said: 1 am much obliged for your permission to address the meeting, and answering the question hrought up, the pump described can be used for a suction pump for to or 12 days without priming, and if primed will hold anything up to 28 or 30 feet. The pump will answer all the conditions which will be met by any ordinary plunger pump. I recommend them primed at 20 fect, which is about as much as you should run any pump without watching it.

Mr. Reesor: 1 beg to move a vote of thanks to Mr. Bonner for his atile paper.

Seconded by Mir. J. A. Kammerer and carried.
The l'resident then declared the meeting adjourned until the following day at 9:00 a.m.

The afternoon was devoted to a visit to the works of the lachine Rapids Hydraulic and Land Co., by joint invitation of the owners of the works and the Canadian Cieneral Electric Company, by whom the electrical plant was manufactured. Mr. Wi. Mclea Walbank, managing dircctor of the company, was present to give information regarding this important enterprise. After an inspection had been made of the works, the visitors were invited to grartake of luncheon, wi.ch had been provided by the Canadian General Electric Company: Betore starting on the return trip, a very hearty vote of thanks was moved on behalf of the visitors by Senator Thiteaudeau to Mr. Walbank, the directors and officers of the company, and the Canadian General Electric Co., for the courtesies so kindly extended to members and friends of the Association.

\section*{THE: sANgI'Ft.}

The annual issociation banquet was served in the Windsor Hotel on the evening of June 29th, and was attended by nearly \({ }^{2} 50\) members and guests. The retiring Y'resident. Mr. John lule, presided, and fulfilled the duties of tonst-master.

The Secrelary read letters of regret from a number of persons who were unatile to be present. Among these was one from Mr. F. C. Armstrong, writien while en route to England, the reading of which was followed by the company rising to their feet, at the suggestion of Mr. W". H. Hrowne, and singing, "He's a Jolly (iood Eellow."

MENU.
Long-Distance Thansmisshos.
Fire island Cocktail-50,000 Volts.
Internal. Resistance.
Cucumbers.
Radishes. Tomatoes, Strain lomulators Olives, triple Braided.

Elactatic Juice.
Gireen Turtle, a la Water Rheostat.
Crean of Asparagus, a la Ozune.
Stimarine.
Saguenay Salmon, a la Hello.
Potatoes, Rawhel.
Shunts.
Spring Lamb Cotelettes, Carbon-Trimmed.
Sweet lireads.
Asparagus-"Arrester" Points.
Jonsts-" Soldered and Taped."
Fillets of Beef, larded.
Relats and Suunders.
String 8eans.
Boiled New Potatoes, Anchors. Caulthoner. dsparagus. Sweet l'ear.
Trolles Off.
Punch au Champagne.
Reconstriction.
Roast Phitadelphiat Capon.
plants.
l.clluce and Tomato Salad.

Beosters.
Cabinet I'udding, " sound-proof."
Gelec aux Oranges, "insulating compound. Savarin aux dananas, "lachum Liglit.'
Vanilla lce Cream, "self cooler."
Sponge Cakes, " I.eather Belting. Dessert.
Fruits, " potential currents." .iuts and "wrenches." Ele:ctric Heiter. Cafe Noir.
Transfer. Nisg Off. lncandescence.

Cigars.
Ores Circtit.
The appended copy of the menu will suffice to show its unique and excellent character. The toasts honored on the occasion were : "The Queen," " Electrical Montreal," "Our Association," "Our Guests," " Electrical Research," "Allied Interests," "The Press" and "The Ladies." His Worship, Mayor Pretontaine, responding to " Electrical Montreal," gave a number of interesting and instructive particulars regarding the electrical development of the city. The Royal Electric Co. began in 1884 with a dynamo of 13 are light capacity, a dozen employees, a small worksliop, and a capital of less than \$50,000. To-day it has a manufactory covering an area of about 40,000 square feet. The total employees of the company in its manufacturing business is upwards of 500 ; its capital invested upwards of \(\$ 2,500\);000. In 1886 the streets of Montreal were first illuminated by electric light, 113 lights being then placed. To-day there are nearly 1,500 street lights. The Chambly Manufacturing Company's enterprise, by which electric current will be transmitted to Montreal not later than September next, represents a development to the extent of 20,000 horse power. Another enterprise which was a credit to Montreal was the i.achine Rapids Hydraulic and Land Company's development, where a capital of nearly \(\$ 2,500,000\) is being expended to harness the St. Lewrence. In Augast, 1892, the sireet railway begran operations by electric power, with two dynamos, of a total capacity of about 500 horse power. To-day it has installed a sapacity of about 10,00 horse power. They have So miles of track. In 1894 the Montreal Park and Island Railway was begun. it is now running to Back River, Outremont, St. Laurent, Cartierville, Wesimount and I-achine. It has a track mileage of about 60 miles. The Bell Telephone Company has somewhere about 8,000 telephones in use in the city, besides those of the Merchants' Company, numbering about \(1,=00\).

Hon. Senator Thibeaudeau, speaking for "Our Guests," referred to the transformation which electricity in its varied applications had wrought throughout the Dominion.

In the absence of Prof. Herdt, due to illness in his
family. Mr. W. H. Browne ably responded to the toast, "Electrical Research."
The "Allied Interests" were responded to by Ald. Sadler and Mr. D. A. McDonald, Montreal ; Messrs. C. L. Weeks and J. A. Kammerer, Toronto: Mr. E. E. Cary, St. Catharines.

Mr. B. A. MacNab, formerly a knight of the telegraph key, responded for "The Press," and for "The Ladies," Dr. W. H. Drummond recited a poem descriptive of the heroism of a young Quebec girl, Madeline Verchere, in 1692 . Dr. Drummond in like manner favored the company at an earlier stage in the evening.
In addition to the pleasure derived from the presence of an excellent orchestra, the company greatly enjoyed the singing of Mr. Fred. Hickey, Mr. J. R. Wilkes and Mr. Eirnest R. Jenkling.

\section*{THIRD DAY.}

The convention re-assembled at 9:30 a.m., when the election of officers was proceeded with.
For the office of president Mr. Cary noninated Mr. W. H. Browne, of Montreal. This was seconded by Mr. John Shaw, and meeting with universal approval of the members, Mr. Yule declared Mr. Browne to be the unanimous choice of the Association for the office of president for the ensuing year.
Mr. J. J. Wright nominated Mr. H. P. Dwight, of Toronto, for the office of first vice-president. Mr. Dwight was declared to be unanimously elected.
Mr. J. A. Kammerer nominated Mr. A. A. Dion, of Ottawa, for second vice-president. Carried unanimously.
The following members were elected to constitute the Executive Committee: J. J. Wright, A. B. Smith, Toronto ; John Carroll, William Thompson, W. McLea Walbank, Montreal; G. J. Henderson, H. R. Leyden, (ieorge Black, Hamiton ; O. Higman, Ottawa; E. E. Cars, St. Catharines.
A hearty vote of thanks was tendered to Mr. Yule for his services as president of the Association during the past two years.
It was moved by Mr. J. J. Wright, seconded by Mr. A. A. Wright, and resolved, that the most hearty thanks of the Association be tendered to the following gentemen for the very handsome manner in which they have looked after the interests and comfort of the visiting members and for hospitalities extended: Memhers of the Reception Committec ; Montreal Street Railway Co. Canadian General Electric Co.; Lach'ne Rapids, Hydraulic \& Land Co.; Montreal Park and Island Raikway Co.; Royal Electric Cu.; Chambly Mig. Co.; McGill Ciniversity; Montreal Belt Line Railway Co.; Windsor Hotel Co.; Great North Western Telegraph Co.; Canadian Pacific Railway Telegraph Co.; Bell Telephone Co.; K. E. T. Pringle: Packard Electric Co.; Eugene Phillips E: lectric Co.; Dominion Wire Mfg. Co.; Ness, Mclaren \& Bate; D. W. Mclaren Co.; Sadler \& Haworth; W. T. Bonner (Babcock \& Wilcox Co.); W. E. Gower (Street Railway Chamiers) ; members of the local press.

\section*{visit to mcghil university.}

Upon adjournment, the members and their friends proceeded to McGill University. Experiments had been prepared in the electrical laboratories in view of the visit of the members of the Association, but, owing 20 the litte time at their disposal, all of the experiments prepared could not be carried out.
In the McDonald Engineering Building, the experimental rooms, testing rooms and laboratories were thrown open to the visitors, and the extensive collections of standard instruments, models, etc., called forth loud praise from the visitors.

In the dynamo room, the very fine equipment of dynamos and motors was seen running. Of special interest to the electrical fraternity was the \(12 \mathrm{k} . \mathrm{w}\). Siordey alternator, the coils of which can be moved round through any angle and two or three currents of any phase difference obtained. The mains leading from this
machine are led to the high tension current baboratory on the floor above. It is there that the special work of research on alternating current is carried out. A speed indicator and speed regulator of a novel form enathles the experimenters to regulate at will the speed of the

motor driving this alternator. A little model of a twophase motor, as shown in Fig. 1 , was set up. It consists of a ring of cast iron, with four inside polar projections. There are four bobbins wound on these. The windings \(A\) and \(A^{\prime}\) are in serjes, and independent of windings \(B\) and \(B^{\prime}\), also in series. In the centre is piaced a fexible cast iron rod, \(C\), firmly held at one extrenity; the other end carries a plane mirror, \(b\). A ray of light is thrown on this mirror, and is reflected on a pane of ground glass, \(d\).

If an alternating current is sent into the coils \(B\) and \(3^{\prime}\), a pulsating field is produced, and the rod \(C\) will be set vibrating. A stream of light will be cast on the glass, as shown in diagram A. If a second alternating current of \(90^{\circ}\) difference of phase is sent into windings \(A A^{\prime}\), a pulsating field is produced it right ingles to the first one, and will cast a ray
 of light as shown in diagram 13. If the two currents are acting at the same time and are of the same value, a rotating fie! 3 is set up; this rotating field is shown by is circle clearly drawn out on the plate \(C\). If the difference in phase between the two currents is more or less than \(90^{\circ}\), the curve drawn out is nolonger a circle,
 but will be of elliptical form. it number of interesting experiments can be carried out with this very simple apparatus. A little drum of copper placed inside the motor will start to rotate.

Another apparatus (Fig. 2) for similar work, but of much greater value and more remarkable results, was also set up. It was devised by Prof. Carus-Wilson, and consists of a small mirror pivoted at its centre and attached to a wire, \(v\), capable of a vertical displacement, and also to another wire, \(h\), with a horizontal displacement. These wires, in which were passed alternating currents, are placed in constant magnetic fields. The
mirror, following the relative displacements of the wires \(v\) and \(h\), and through a reflected ray of light, beautifully draw out the approximate line curves of the alternator.
In the lecture theatre of the Physics building the visitors were shown each in turn the power of the X rays to throw a shadow of one's anatomy on the fluorescent screen. They were then given a demonstration of the

breaking down of the insulation afforded by a large glass plate by a very high potential alternating electric discharge. For this purpose a large induction coil was used as a transformer, the primary being connected to the street mains. The demunstration was closed by a display of a few of the fine Geissler tubes belonging to the well-known collection of the McDonald Physics building. The lighting and power plant of the University was also inspected by the visitors.

At 1 p.m. a visit of inspection was made to the headquarters of the Bell Telephone Co. and the manufactory and lighting station of the Royal Electric Co. At 3 p.m. members and invited guests were conveyed by special train to the electric transmission works of the Chambly Manufacturing Co., where luncheon was served.

The convention then closed.

\section*{SHARKS.}

The town of Thorold purposes extending its electric ight plant, and will issue debentures for \(\$ 7,000\) for the purpose.
The ratepayers of Listowel, Ont., recently defeated a by-law to provide funds for increasing the electric light plant.
It is claimed that the necessary capital has been secured to buid the proposed Lanark and l'erth electric railway.
The takeport Preserving Company have given an order for the invtallation of a lighting plant for their factory to the Canadiant General Electric Co.
The Toronto Railway Co., who recently ordered a number of Canadian General Electric C.G.E. 1000 motors, has given an order tor additional equipments.
The town of Whitby, Ont., invites zenders up to July zoth for likhting the streets of the town. Thomas D. Jackson is chairman of the Committec on Street Lizhting.
The Central Electric Light Co., of Portage la Prairic, Man., are sid to have under consideration the equipment of a felephone exchange, in opposition to the present company.
The city of london is advertising for tenders for the supply of an electric lisht plant of 350 2,000 c.p. capacity, together with team plant for vererating same. Tenders clove August zrd.

The llull Electric Co. recently elected the following board of directors; Mevra. A. Fraser, president: W. J. Conmy, vicepresident: C. Mayee, J. B. Fraser, R. J. Conroy, W. N. Tayior and David Maclaren.

The Iaprairic Hay Ice Co., with a capital of \(\$ 100,000\), has been organized in Montral, for the purpone of supplying ice cut by \(n\) paient electric ice-cutting machine, the invention of G. D. Pearwon. Power for operating this machine, as well as for an electric hauling apparatus, will be obrained from the lachine Rapids Hydraulic \& land Co.

The Iachine Kapids Hydraulic and land Company, of Montreal, bave given an order to the Camadian General Electric Company for the installation of a seven panel power thouse switchburd, which is to be buitt in accordance with specifications and drawing prepared by R. S. Kelach, superintendent for the
The Canadian Pacific Kailway, which have recently acquired the smelter at Trail. R.C., formerly operaicd hy Aug. Heinke. liave concluded nexotiations with the Weat Kowtenay lower \(k\) Liph: Co. for the supply of electric current to operate their smelter, and liave ordered from the Canadian Gencral Electric Co. inv zisk.w. hirco phase revolting armalure type symehronous motors. whirh will be operated at a potential of 550 vols. Thry have also ordered three so h.p. induction moton and three zoh.p. induction motor, which wifl also be operaled at a potemitial of 550 volts.

British capitalists are sad to have secured a controlling interest in the New Westminster \& Burrard Inlet Telephone Co., of Vancuuver, B. C
Lidward Slade. electrical contractor, of Quelec, is installing an electric plant in the steel boat Oricans, plying between Quebec and St The
The Robl Engineering Co., of Amherst, N.S., has received an order for two engines of thirty horse power each, for running blowers in the works of the Verity Plough Company, Brantford, Ont.
The electric light plant of McCurdy \& Co., Antigonish, N.S., is leing extended, the company having secured the contract to light the sueet of the town. The Robb Engineering Co. are supplying the engine and
boiler. wiler.
The R. Forbes Co., Linited, of Hespeler, Ont., have placed an order with the Canadian General Electric Co. for two \(500-\mathrm{light}\) generators. These generators will be of the Canadian General Electric Co.'s latest four-pole type.
The City Council of St. Thomas, Ont., have appointed a commitice consisting of Aldermen Chant. Wallace, McCully, Sanders and Rober son, to report as to the advisability of establishing a municipal cicctic plant for street lighting and commercial purposes.

The West Kootenay Power \& Light Co., who have just closed a contract with the C. I.R. authorities for the supply of electric curtent to operate their Trial smelter, have placed an order with the Canadian General Electric Company for the supply of three 135 k .w. transformers of the well known air blast sub-station type.

The Dominion Telegraph Co., at its annual meeting held last week re-elected directors as follows: Thomas Swinyard, president: Hon. Sir Frank Smith, vice-president; General Thos. T. Eckert, Chas. A. Tinker, A. G. Ramsay, Henry Jellatt, Hector Mackenzic, Thos A. Clark, Thos. R. Wood, and F. Roper, secretary and treasurce.
The town of Barrie, Ont., secently invited tenders for an electrnc light plant, to be operated under municipal control. It is understood that a number of tenders were received, and that the Elestric Light Committee have reconmended that a by-law be submitted to the Council to raise the sum of \(\$ 35,000\) to purchase and install a plant for arc, incandernit
and power services.

The altention of the electrizal fraternity and others interested is directed to the advertisement of the Croftan Storage Battery Company on another page, and also to the description of the baltery which appears in this issuc. The Crofian battery undoubtediy has many points of merit, and the company have good prosperts of building up quite an extensive business in Canada.
The Napanee Electric I ight \& Water Co., which has been supplying lights for the streets of Napapee during the past ten years, has decided to go into the incandescent clectric lighting business, and for this purpose has placed an order with the Koyal Electric Co. for a \(35 \mathrm{k} . \mathrm{w}\). iwo phase generator and 500 light capacity in transformers. The company has already secured in the neightorthond of 400 lights, and exprect in have the generator fully loaded within the next two or three month: They are arranging the plant so that an enlargement can easily be made.
The Lang Tanning CR, of Berlin, Ont., have recently given an order to the Canadian General Elec:ric Co. for 2100 k . w. multipolat direct curtent dynamo, which will be opcrated at a potential of 250 volis. This generator will supply current for the operation of two of the Cana. dian General Electric Co.'s latest type of multipolar direct curicnt notors, each having a capacity of 50 h.p., and one 10 h.p. motor. The order given to the Canadian General Electric Company also includes the installation of a marlile panel switchboard containing the necessary instruments for the operation of the plant, and the wiring up of their factory:
The seeend annual meeting of the Canadian Teiephone Co. was held at Sawyerville, Que., on June 27th, when the following wercelected directors for the current year: J. Laroche, Sawyerville; A. Adam, Paquetteville; Jox Iemieux, St. Malo; P. A. Barheau, Cuokshite; Jas. Ilunt, M.L.A., Buy; F. F. Willard, Ancus ; E Roberge, Notre Dame des Bois; N. I' Ianguay, Weedon; and M. Matheson, lake Alcgantic. Mr. II. Laroche was re-elected president, Mr. Joscph Lemieux general-manager, and Mr. J. Fournisr secretary.Ireasure:. A dicidend of 5 per cent. for the pasi year was declared. The rejorn stated that the company had built during the past year 60 miles of polis. with 144 miles of wire, and actually owned 220 miles of poles and 347 miles of wise. The company have 12 exchanges, with 322 subscriluess
Last week the zown of Perth, Ont., was visited by the largest fire it has experienced since iss existence. The new waterworks system was put to a practical tesi and worked admirably. The water pressure temained perfectly steady and even. This is, we believe, the firss inssance from the satisfaction civen al Perth by the were electrically driven, and from the satisfaction given at Perth by the use of electrical apparatus. other cities with the watermorks operated from a steam plant, and where electrical power is available, will no doubt smoner or later adopt the use of electricity. The insialiation of the pumpmer penerators and motors was conducted by the Royal Electric Co., and the motor usen for zromping purpores is one of their \(75 \mathrm{k} . \mathrm{w}\). "S. K. C." iwo phase machines operating as a synchronous molor from a 110 k .w. "S. K. C.C." gencrator situated at a water power six miles distant.
The comporation of the city of Joliette, Que., is remodellire their enise syluem of electric lighting. This corponation has a waler powe in the coty which has been utilized for supplying are and incandercen lighting throughout the city. The coniract ko the work has licen a warded to the Koral Eliectric Co, who will supply a iso k.w. "SK.C." iwo phase generator and the necestary are apparatus to replace all the oid machinety: The matler of making the change has treen hanging fire for a long time, and aher consuhation with the best engineering skill obtainable the council cance to the coeclasion that is yold the better to change orer the whole plant than oo repart the old apparatus, or make additions of tess efficient or up-ro-date apparatus. The changing of this plant shouth le gratifying to ihe electrical irade, as it ahows the trent of invesyors, and the comporation of Jotiente is ako to be congratulated on the up-to-date stand which they have taken in the matter.

\section*{ELECTRIC UTILIZATION OF WATER POWERS.}

By L. D. W. Magis.
Thi: utilization of power going to waste in fast running vreams has commanded for many centuries the attention of mankind. Regarded, on the whole, as "wavted energy" and as power that could be obtained "for nothing," the question of how to make it useful perplexed our forefathers, and is still giving us some study to-day. Although it would appear that, during the reign of Augustus, about 40 A.D., the first wate: wheels were made and used by the Romans, the scientific development of the water wheel appears to have been left until the present era, for until within the last few years, comparatively, the only devices used to convert the kinetic energy of streams into effective mechanical energy were the various forms of undershot and overshot wheels.
Crude as were these instruments, they have played a most important part in the world's history, for they have done much to develop countries with natural resources.
Manufacturers who sought cheap power adopted the "wheels" available and located their plants along favorable streans, where these crude transformers of energy were made to grind corn, saw wood, make cloth, etc.
The inventors of the present century awakened to the necessity of improvement and have provided the present ypes of wheels. To their higher perfection and adaptability is due the fact that almost every power producing stream in settled districts of the civilized world is utilized.
The harnessing of water powers is not an easy task, but requires a great deal of thought, scheming, trying and fitting by the engineer. The records of the stream have to be looked up and studied into, with reference to high and low water, during a period covering many years, and due provision made for getting rid of the maximum flood of every season.
The possible storage capacity must be looked after, for oftentimes by a little forethought and a comparatively slight additional expenditure, a stream that naturally gets very dry at certain seasons can be made, by properly arranged storage, to give a practically constant output the year round.
Again, by carefully arranging the surrounding condituons, a stream may be made to give for a comparatively short period, when power may especially demand, double or triple its normal output capacity.

Probably one of the most iniportant things to study, especially in localities subject to severe winters, is the question of frazile or anchor ice. This is a condition which has caused hundreds of thousands of dollars to be spent, either from the lack of knowledge or want of forethought; in some cases the conditions have been such as to make it almost impossible to successfully cope with them, without expending such sums of money as to practically ruin the enterprise. To overcome it suceessfully, the only way secms to be to provide a large pond of still water, extending to as great a distance as possible, even several miles, if attainable.

Many other details must also be studied before determining the best location of the water motor power house, so as to obtain the greatest available head with the least expenditure. In the study of the question the natural conditions of the soil, water and climate, all have an important bearing, on not only the enginecring success, but also on the financial success of the enterprise.

As water falls cannot themselves be moved from one place to another, manufacturers have had to locate the sites of their plants at the falls. In many cases it is necessary, and in nearly every instance very desirable, that the power be transmitted to a certain distance. When the distance has been comparatively short it has been accomplished by beiting, gears and line shafts, but when the distance extends beyond a few hundred ieet, this system becomes so inefficient, expensite or impracticable that some other way has to be found.

Rope transmission has been used quite successfully, even to a distance of a mile, and in a few instances over that distance, but as the best practical efficiency is not
over \(60 \%\), and the first cost, as well as maintenance is usually very high, this system has not get been so successful as to command its adoption very extensively.
Compressed air has also been used for the transmission of energy with some success, more particularly in l'aris, Where there is a large plant still in existence: but here again the engineering cost hats been great, efficiencies low, and mantenance high, and consequently, like the rope transmission system, has not met with general use and practice.
The electric dynamo and motor have given an entirely different aspect to the transmission of energy. Al though invented in the early part of this century, it is, however, only within the hast few years that the electric dynamo and motor have been developed practically and commercially.

The success and high efficiency attained by electric transmission of energy is such that the "water fall" is saining prominence as a source of energy.

The pioneer work in electrical transmission was done with direct current system, and too much credit cannot be given for achievements attained. However, although in a few instances the distance transmitted by the direct current system has been up to twelve miles, yet, on the whole, for commercial reasons it has not been desirable to transmit power by direct current to a distance of over two miles, and even the advisability of this is looked upon to-day doubtfully. The reason for this is not because of the inability to transmit the power effectively, but because of the inadaptability of direct current apparatus for use at high voltages. The construction of direct current machines is such, having, as they do, so many auxiliary parts, that at high voltages they are very hable to break down, especially at the commutator and armature cores, except with very costly construction, and even then they are not at all sure; at high voltages the brushes are liable to spark and cause trouble at the commutator; and as the high tension parts require continual attention and adjustment while the machines are in motion, they are dangerous to the attendants.

Probably, however, one of the most important reasons for the indaptability of direct current machines for long distance transmission at high voltages, is the inability to reduce the voltage to that at which it would be safe to operate at the place of consumption without the use of expensive and cumbersome as well as inefficient banks of motors. Such motors of high voltages, having parts under high tension, which require attention and adjustnent while in motion, could not or rather should not be used except under the care of expensive special experts in evary separate mill or factory where such motors were installed. To place them in the care of uneducated men would be unwise, and, in fact, foolhardy.

The highest voltage that D.C. apparatus can be wound for, commercially and safely, seems to be, as universaily adopted, from 500 to 600 volts. The reason that power at this voltage cannot be transmitted great distances is purely a commercial one. There is no electrical season why power by the means of direct current might not be transmitted to an indefinite distance, entirely effectively and successfully.

The amount of copper required for the transmission of power is directly proportionate to the amount of power to be transmitted, and also directly proportionate to the square of the distance for a given efficiency. This may be stated commercially by the amount of copper required lor transmitting, say, 100 h.p. for both one and ten miles, the loss in transmission to be \(8 \%\) and the voltage to be 500 volts.

For each leg of a one mile circuit there would he required two No. 0000 wires, or four No. 0000 wires, each one mile long, weighing \(15 \cdot 312\) pounds, which at 15 cents per pound would cost \(\$ 2.300\). For each leg of the ten mile line there would be reguired twenty No. 0000 wires or forty No. 0000 wires, cach ten miles long, weighing \(1.531,200\) pounds, which at 15 cents per pound would cost \(\$ 230,000\); or the power would cost, at \(20 \%\) interest and depreciation on copper alone, \(\$ 2.30\) per \(h\). p. annum in the first instance, and \(\$ 23^{\circ}\) per h.p. annum in the second case.

If, however, the voltage be raised to 5,000 voles, and be used for transmitting too h.p. for ten miles, the condition would be entirely different, for instead of forty No. oxoo wires, each ten miles long, there would be required for each leg but one No. 4 or two No. \(q\) wires each ten miles long, weighing 15.300 pounds, which at 15 cents per pound would cost \(\$ 2,300\), or the same as tramsmitting the same amount of energy only one mile at 500 volts.

From the ahove it will be seen that the transmission of power at \(\mathbf{j}^{00}\) volts is not entirely prohibitive for short distances, but as the distance increases it becomes one of vital importance, for the cost of copper is not the only item of expense then to be considered; the pole line itself hecomes a very grave matter, especially when we have to consider the weight of torty No. 0000 wires, as in the example for only 100 h.p., and the cost becomes one that investors camnot afford, for the reason that power can be obtained cheaper from other sources, so that commercial transmission of power long distances by direct current at practical voltages is not practicable.

Although, as stated before, considerably highr-voltage than 300 volts has been used with some suc, oss, as at Brescia, the number of such plants are very tew.

It is a noteworthy fact that on this continent, where the transmission of energy is further advanced than anywhere else, there is not a single plant of any prominence that is transmitting energy by high tension direct current system.
It may be interesting to know that three or four years ago, when the Chambly plamt was first discussed, a European firm planned out and iendered tor the construction of that plant for transmitting the energy by means of this high tension direct current system, but, for reasons as above discussed, that system was not adopted.
How to meet the problem of long distance transmission, commercially and efficiently, has been left almost entirely to the alternating current system.
Alternating currents were knownabout the same time as direct currents, or about 1831 , and were explained to the world by the great Faraday, who at that time discovered the elementaryprinciples. From that timeon, experiments: were made by different inventors on induction coils, hut no material progress was attained until May 2 2nd, 1877 , when Jablochkoff obtained British patents for "a new process of producing and dividing the electric light and "pparatus therefor."

There were also other inventors at about this time who produced " improved induction coils on secondary Fencrators," as some of them were called, but all seemed to have the idea that they could be operated with their primary coils connected in serics, and that their secondaries could be independently controlled.
In 8975 a J . 13. Fuller, of New York, suggested a -Whem of using induction coils or transformers in parallel, but no practical results seemed to have been ohtained in this direction until 1882 , when Messrs. Goulard and Gibbs exhibited two induction coils at the Electrical Exhibition held in Westminster Aquarium in tondon, which ran in operation from the Siemens alternathor.
In the autumn of \(185_{4}\), Messrs. (ioulard and Gibbs gave another exhibition at Turin. In this case, the primary circuit was nearly 50 miles in length. A series of tranformers were placed on this line, one being in the Exhibition luilding, one at the Turin Railway Station al Verine Riesla; another at Lanzo, a smail village in the Alps of Savoy; incandescent and are lamps were supplied at the various places.
The first parallel system that was started on this continent was by Wim. Stanley, Jr., in \(1 \mathrm{SS}_{4}\), in the small town of Great fiarrington, Mass., where light was supplied throughout the town by means of a parallel alternating current transformer syitem. Fsom about this time commenced the cra of alternating currents, although as far hack as is 4 oalternating curreat generators were devised.
Commencing with isiss the alternating current system made great strienes.
To employ waterfalls as sources of cheap power, high potentials became necessary. For these conditions theA. C. was especially effective ; the ability to step up from low
potentials to high, and thus tramsmit power to a dwen distance, then to step down to safe and consentent whages, entirely effectively, conveniently and without the use of cumbrous and expensive apparatus, reatered the tramsportation of the energy of water powers teasible and commercial.

Probably one of the first high voltage tramsmission experiments on this continent ",15 in December 1891, and in January and February, 1Sy2, at Pittsfield, Mass., at which test the writer had the pleasure of participating. The potential used was approximately 15,000 volts. A transmission line abouta mile in length was buit in an open lot a little wats cut of town, where a small experimental station was bult. The current was received from the local Electric Light Co. at 1000 volts, raised to about 16,000 , sent out on the line, and thence returned, again lowered, first to 1000 volts, and then again to 100 volts, at which volage energy was consumed in water sheostats. On the line experiments were made with porcelain insulators, as well as the oil type of insulators.

At this time, of course, comparatively little was known about electric current at this potential, so that everything had to be handled with gloves, as it were. The experiment proved to be not only useful and satisfactory, but highly successful, and gave considerable encouragement.
Although experiments were commenced, and discoveries made pointing to the advancement of \(A\). \(C\). motors in 1879 , still practical results of any real value were not obtained until in the year 1890 to 1891 , when the poly-phase systems were introduced. From that time it can be truly said that water powers could be uthised for the general distribution of power at distant localities.

One of the first and most notable exhibitions of this kind was made at the celebrated Frankfort Exposition in 1891, which proved not only interesting to the town of Frankfort, but to the world at large, for it taugit lessons and set aside errors that would have taken years of toil and hard labor to have done otherwise.
Poly-phase generators having a total capacity of 300 h.p. were installed at Lauffen and operated by water power. From these, the current was transmitted a distance of 110 miles to Frankfort ; several voltages were tried on the transmission line during the experiment, the highest of which was \(3^{1,000}\) volts; in the exhibtion grounds were are and incandescent lamps and small alternating current motors, all provided "ith current from the hitherto "wasted energy" of the streams of lauffen, and with a loss of efficiency in the line of not more than \(25 \%\), which, at that time, was certainly a most noteworthy accomplishment.
During the next two or three years manufacturers spent a great deal of time and energy in perfecting their systems. The inducion motor has been perfected to that of an ideal, and the usefulness and necessity of synchronous motors have been extablished.

For a few years following \({ }^{1 S 91}\), an occasional polyphase plant was put up in different parts of the world. They were subjected to all sorts and kinds of triak, depending upon the character of the wo-k to be performed at each individual installation, thd although there was often much cold water thrown tipon them at the start, and obstacles placed in their way, still they always came out ahead and proved a success, not oaly from the enginecring point of view, but to the financial backers.
When we stop to consider that it has bern only Within the past six or seven years that a complete system has been devised for the utilization of distant water powers, and that all of the important transmission plants have been put in during that time, it is no wonder that there are yet some sceptics. But perhaps worse for healthful commercial developments tire those who make a wild rush for some transmission scheme, without first considering all of its surrounding conditions. thinking that because someone else has made a certain project successful, their project must be also. It falls upon the engineer to bring the sceptic to lines of true reasoning and to teach him facts in their true light, so that he will see and believe, that with such resources at
his command, great things are possible; the engin?er must also hold the enthusiast in check and prevent waste of money in impracticable undertakings.
The primary or fundamental question is to ascertain the point at which transmission of water powers will be a source of profit to the investor.
Bany people think that because water strictly follows certain given laws of nature, and in doing so continually and constantly exerts energy, therefore the energy obtained thereby costs nothing.
People with such ideas are fortunately gradually growing less as time progresses, although the engineer often encounters men who have a few hundred h.p., or often times when the true facts present themselves, only 25 or \(j 0 \mathrm{~h} . \mathrm{p}\). , that they wish to transmit 5 or even 10 miles, in hopes of making vast sums of money by the use of thistransmitted power in some small town for lighting and power.

The cost of electrically transmitted power is represented by the interest on the capital invested; the depreciation; the maintenace; the operating expenses and numerous other small contingencies, and besides, in some cases, the amount of money that has to be expended for water and land privileges. The sum of these accounts per year, divided by the amount of h.p. actually sold, will be the actual cost per h.p. for the case in question.
Probably the greatest competitor to electric power is steam power. In a few instances, power derived from gas or petroleum engines may also compete. The cost of producing steam power in any given locality is a fair criterion by which to determine how much electric power should cost. The cost of power produced from other sources can usually be disregarded.

The cost at which steam power can be produced in a given locality being ascertained, it can be determined what cost per h.p. may be expended on the construction of an electrical transmission plant to make it profitable to the investor, provided again a sufficient market can be obtained for power.

Whenelectrically transmitted powerdoes not cost more than \$100 to \$140 per h.p. installed, the investment is apt io be a profitable one, providing, of course, it is properly managed.
But what should it cost to harness and utilize water powers? This is a question that has to be figured out for each individual case, for there are hardly two plants where exactly the same conditions exist.

The first item of expense is amount required for water privileges. In some cases this is rather an unimportant consideration, while in others it is the chief expenditure, for it may involve the buying of thousands of acres of land surrounding the stream, because the necessary dams may cause to be submerged a great deal of valuable land, or large tracts have to be bought for building storage reservoirs, or the right of way for pipe lines, etc., have to be secured.

When land is cheap, these considerations are often not objectionable, but where good farming land, or land valuable for other reasons, has to be thrown to waste, the question is often a perplexing one.

The cost of the dam, power house and hydraulic machinery is, as a rule, dependent almost entirely on the characterist \({ }^{\prime} \mathrm{s}\) of the stream being utilized. Entering into the quisition is the amount of water in the stream, both under normal as well as abnormal conditions at various scasons of the year; also the head or fall and whether it is dependent on natural conditions or requires the building of large dams.

Generally speaking, other things remaining equal, generating plants, comprising the power house, hydraulic and electric machinery, as a whole cost less as the head increases, until certain limits have been reached.

When the head is low, as ranging from + to 10 fect, it requires a comparatively large wheel for a relatively smad amount of power, and then slow specds can only be attained. Where large units are desirable, a number of these wheels must be coupled together in order to get the required power. The speed attainable can be raised or lowered to a certain extent, depending on the size of the wheel. If higher speeds ist low heads be desired for large units, many wheels must be operated together, requiriu • not only a great deal of
room, and consequently larger power house, but considerable line shafting, gears, couplings, etc., which not only increase the initial cost, but increase expenciiture of operation and maintenance of the plant, as well as introducing another source of inefticiency.

With higher heads a larger amount of power call be obtained from fewer and smaller wheels with higher speeds, and, therefore, cheaper generating apparatus.

The cost of generating apparatus for a given capacity, other things remaining equal, is almost directly proportional to the speed at which it runs, and for this reason it is always desirable to refrain from too low speeds wherever possible.

There are many people who are imbued with the idea that it is impossible to build a modern station without direct connecting all of their apparatus, and that belting at no time should be used.

Although direct connection is desirable, still it must not be carried to extremes.

A good engineer will hardly warrant the expenditure of, say, \(\$ 15,000\) for a \(300 \mathrm{k} . \mathrm{w}\). generator to run at a speed of say 75 to \(100 \mathrm{r} . \mathrm{p} . \mathrm{m}\). ., when a machine just as goou in every respect, and sometimes better (becaluse it is a standard size), can be bought in belted units for \(\$ 5,000\). Yet this is sometimes done, burdening the plant with many thousands of dollars on which it has to pay money, for no other reason than that "so-and-so's plant is direct connected and I want a plant just as nice and good as his, and belts are always an awfulnuisance."

As stated before, direct connected units are always desirable where conditions will warrant them, still it must be borne in mind that belts have been in successful operation now for a good many years, and there are many instances where the maintenance of them has not \(\operatorname{cost} 1 \%\) per annum, and although their use involves a loss of efficiency of somewhere between 2 and 3 per cent. at times of full load, still this loss in a water power plant is not a critical amount, and in fact is almost always inappreciable.

The next item of considerable expense is the transmission line-always rather an uncertain item, on account of its variations in cost for different distances and the conditions of local distribution.

The poles, with their appurtenances, exclusive of wire, will cost between \(\$ 2 j 0\) to \(\$ 500\) per mile, varying according to circunastances.

Rights of way for the placing of poles may often be expensive.

The transmission wire must be considered separately.
Reference has been made earlier herein to the voltage or size of wire. The voltage at which it is practicable to run now-a-days is reaching vast proportions. There are two or three plants being installed in which 20,000 to 22,500 volts will be used, and a plant is likely to be installed soon that will use 60,000 volts.

The use of high voltages in the past has been limited greatly by the insulators. The glass insulator has proven itself insufficient for most climatic conditions. The oil type of insulators was introduced some years \(y\) go, and at great deal expected from them. They did give excellent results in the laboratory, but unfortunately the oil evaporates, and the impracticability of renewing the oil, especially when the line is in use, soon put them in disfavor.

Porcelain insulators appear to have solved the problem. The trouble at first was to get them properly vitrified, but this difficulty seems now to be overcome, and the insulators have proven all that can be desired when used with the usual voltages now employed. As to whether they will successfully cope with the higher voltages now contemplated is a question yet to be answered.

The cost of the transmission wire is often the most important part, but is always different with each case, dependent, as it is, upon the amount of power to be transmitted, the transmitting voltage, distance, and the allowable loss. As a whole, it is always best to keep the transmitting voltage as low as possible and still keep within commercial conditions. Afany people are carried away with the idea that if they could only use high voltages the cost of transmitting would be reduced to a minimum.

It must be horne in mind that with the use of the higher
voltages the cost of insulators increases, the electrical apparatus necessarily costs more, and moreover, the risks are greater throughout the system, and conseguently necessitates more skilled attendamts to look after the plant.

All of these items have to be carefully considered before looking into the possible saving of copper on the line.
for mechanical reasons, a wire smaller than No. 613. \& S. should not be used for line work. More cautious engineers will say it shoukd not be smaller than No. 413 . ※.S. It is foolish to attempt to use voltages which allow the use of smatler than No. 6 wire. Where a shut-down would mean heavy damages, it might be even advisable to use a wire not smatler than a No. 2 B. \& S.

If these facts are always borne in mind, the question of voltage will often times adjust itself, and the use of very high voltages will not be found necessary unless the tranmmission be for especially long distances, and the amount of power particularly large.

The permissahle drop is dependent upon the power obtainable at the generating station and the amount to be delivered at the end of the line. There are a few instances where power is scarce at both ends of the line, and where it is desirable for this reason to keep the loss of transmission as low as possible, but such cases as a rule are rare, and we are more often met with the reversed conditions.

To get good results electrically, the loss in the line should not be more than \(35 \%\). If it be more, it will, with the other losses that are necessary in the rest of the apparatus, especially where the lond is liable to be a Huctuating one, render grood service almost impossible.

Ihe figuring of drop on transmission lines should always be left to competent engineers, for with \(A\). \(C\). the question in many instances is not at simple one, becatuse it involves other conditions besides the ohmic drop. When alternating current is sent through a conductor, it has to deal not only with the electric resistance of the wire, but also with a resistance due to the fact that the electric magnetic stresses set up at any point of the conductor, create electromotive forces at other points of the same conductor, which oppose and retard the passage of the current, or in some cases, tend to shove it ahead.

Is to how tar power can be transmitted, the engineer can conscientiously say to an indefinite distance, and he would be fully prepared to figure out, and contract for, if necessary, the fulfiment of his statement, but it rests with the commercial men to cry halt. The distances attainable, however, on a profitable basis, have been growing greater from \(y\) ear to year, as the manufacturers have been prepared to extend the limit to which they are willing to build high tension apparatus. At present it woudd appear that where the distance to be transmitted is ower 75 to 100 miles, no matter how cheap the hydrablic development. commercial competition is not practicable with existing power where coal can be whtained for \(\$ 2 . \infty, \$ 3 . \infty\) or even \(\$ 4.00\) per ton.

The step-down station and the distribution of power are the next items of expense, including the cost of the necesary switchboards, transformers, \&c.

The location of the step-down station and the method of the distribution of power constitute a very important guestion. C'nfortunately, very often this subject is entire15 omitted or arerlooked by the promoter, but is one to which should be given considerable thought.

The step-down station itself should be centrally located, to ats to make the distributing lines as short as possible.

It is not fenerally advisable that transmission lines of very high voltages and large currents be extended through thickly settled communitics where they might be liable to disturbance from fire or accidents of similar character, in the immediate locality of the line. In some places, to enable the distribution station to be centrally located, transmission wires are placed in conduits under :round, when they pass through thickly settled districts Go as to avoid the danger that would otherwise exist, but this, of course, is expensive construction, and the cost of it must alwa: be balanced against the advantages of thaving the step-down station centrally located, as agrainst its being placed at the outskirts of the town.

All the various items require careful study to obtain least cost and avoid unwise cconomics.

When all these various factors have been properly
adjusted and the resulting condition of the water power electric plant is that the power available twenty-four hours every day is at or about the cost of steam power in any given locality, the future profitable operation will be, no doubt, assured, because the popularity of electric power is not due alone to the fact that it can he produced cheaper than power obtained from other swurces, but also to its superiority in other directions. Ihis is evidenced by the fact that in mills and tactories, where both suurces of power have been tried, electric power is displacing the steam plant. Owners having expertence with both invariably state that they would not be withag to return to their former power plants, even if power iould be produced as cheap or cheaper than they are now ohtaining it for electrically. The reasons for this are very numerous. The power is always on tap day and mght, year in and year out ; there is no wating for boilers to be fired, nor shut-downs on account of strikes at some distant coal field; less room is required, and conseyuently floor space formerly occupied by belts and shatting can now be utilized for manufacturing purposes; also electric power can beeasily sub-dividedintoany rumber or vizes of units, and thus independent departments and machinery can be worked separately instead of trom one big unt.

Overtime work in any department is much cheaper, for by having departments separately operated they can be run independently at will, without running all the other machinery in the mill. The fire risks are less, and rates of insurance less for mills operated electrically: than by other means.

Removal of so many belts, line shafts, pulle;s, etc., secures less danger to life of mill employees, and the mill is lighter and cleaner, and consequently the health of operatives better.

On account of the extreme simplicity of the A.C. chectricapparatus, anybody withordinary intelligencecanstart it in motion, and thus avoid depending on one or two men.

Moreover, with electric power it is possible to maintain a closer speed, which in many instances enables the turning out of a larger quantity of better product command. ing higher price ; and so on for most every department and branch of business, some advantage is gained without anything lost.

All of these advantages are not evident to the consumer before or when he first puts in electric power, and he often refuses to listen to them, thinking that they are entirely imaginary, but a short experience brings the conclusion that electric power is "cheap at any price."

It may be interesting to note here that there is a project now on foot in which it is contemplated to transmit \(30,000 \mathrm{~h} . \mathrm{p}\). a distance of between 30 to 40 miles; the transmitted power to be used in mills now operated through shafts, gears and belting by water wheels, because of the advantages to be grained by using electric power.

The use of electric power is not confined to driving machinery in mills or factories, for it is fast finding its usefulness in other directions. The use for "electro chemical" enterprises is fast reaching vast proportions, and there are plans now on foot for the utilization of at least 150,000 h.p. in this way during the next two or three years.

There are many thousands of h.p. being ased in the street railways, while the big trunk lines are seriously considering its use, and are continually asking the manufacturing companies for plans and estimates.

Then there is the electric welding, the electric plating, the supplying of energy to horseless carriages and electric launches, to say nothing of the bundreds of thousands of ircandescent and arc lamps that are used tor general lighting.

The utilzation of the water power by electric transmission has not stopped with the commercial world, but hav forced itself into the privacy of our own homes, not merels with incandescent lamps, but with electric cookinit utensils, smoothing irons, electric heaters, fan motors, etc.

What would our forefathers say if they were told that to-day we are depending on such and such a river, so many miles distant, to cook our meals for \(u\) s and \(t\) have our boiled shirts laundried; but we would better not laugh now, for the coming generations may have as much occasion to laugh at us.

HOW TO OVERCOME SOME OF THE DIFFICULTIES ENCOUNTERED BY CENTRAL STATION MEN.

\section*{Bv A. A. Wk,}

Js thentug this subject I shall do a from the stamipnoint of ane who bir to deal with customers lis ing in a town of moderate dize, and net from that of the owner of a phant in a latrge and poppobun ant, be allse the circumbtancer would be, m many reppests, quite differint, and lle requatemens, ats well whe mode of arrangme the sernece, would be altogether different. I shall take is for grambed that the central station is equipped with an are and incamderent plant, that the proprietor not only does commerciat laghtugs, but supplies light to the corporation as well.
int. liet us tiake up are hghturg on the slreets. This brings us at ons mto contact whith the corporate fathers, matyy of whom know toolhage of are lighting, except that it is not only necernary, but the or special duty, to appear wise in order that they maty look well ather the juterests of the town.
.lad now let me make my first suggestion, and that is, that won leate mumpar politics entitely alone. If gou have an inordinate crawne after politics, which you have not the power to rentrain, fet lout light shine before the throne of the Leginative Nambly or \(m\) the chamber of the \(H\) oune of Commons, but revtran yourself from meddlong with mumepal polatics, ley you make to yourself envonu-s who will be sure to avenge themselses, sooncr or later, in crippling your lighting contracts with the corporation. I do not whth sol to infer from this that you whold not exercise your franchoce when the day for voting comes around, but on the contary, let it be known that you and your employees always vote for the progreconve and enterprisug mens of the town and as esery appiring adderman will wamt your assintance, jou if you do not make tow much noise, will generally manage: when he is elected to get has. He careful not to make political encmies but to hase as many of the town authorities with you as you powibly can. In most tom the comtracts for street lighteng are made annually, wad not as ill ctices, for a term of years. See to it then, that your contact sonarranged that it shall terminate on the ist of Mareh. Dou can do thas by informing the proper authorities that your book are oo arranged that your Electric light year oegins on that date. Then see that the following harmless looking sating clause is manted near the closing part of the contract. "And it is further agreed that either party may terminate thin lease at the end of its term by giving the other thirty days notice in writing prior thereto and matfatt of such nothee this agreement shall continne in force after the termmation thercof, for one year, and upon the same terms and condtions as are herein expressed and in like mamer thereafter, unless such notice is given at least thirty days before the correnpondugh date an each succecding year, a like remewal and extemon of this lease from year to year shatl be convidered as nade and executed by and between, the parties hereto." Furthermore have your payments fall due quarterly and on the ist of March, June, September and December. Jou know that in Ontario at leant, our Municipal Elections are held at the beginning of the year, and as mont of the Aldermen will be aspiring to recection, and would like to have your asistance to re-elect them, they wall quite naturatly forget, as the term of the ir holding office odrathing to a close, to give notice of the desirability of termonatmy that contract, and you almost invariably evape that threatened danger from the ontgoing council. Then the new counel does not assemble till the last of Jamary and as very little bunness is done at the first mecting and many of the member, are ne"l o:acs, Electric lighting is not thought of till your guarterly arcount is presented in March when it will be ton late to give the required notice, and so your contract rum on, in this manner from vear to year, rencwing itself withont any trouble whatever. Another difficulty, which you are almost vure to encounter, is the hatisht of the poles on which your liphlts are placed on the strects. some will want soft. peles seme 35 ft . and sone even higher than euher of these. When your contract is made be sure and have the clause woried in this way, "That the hangers from which the lamps are suspended shatl be - feet from the natural level of the sirfite of the ground at the foot of the pole," and not, that the tamp, shall be so many feet high, as you will notice that thi makes an important difference in your favor. It is well to have it so arranged that you need not run your are plant on moonlight nublis, not merely on account of the direce saving that there is in thas, but at sometimes is very convenient, if there are accidents, in מ"ngy you an opportunity to make needed repairs.
lnd now as to your commercial lights. Have your contracts made wibl your customers on a yearly hasis, with same renewing chane that there is in your contract with the town, but with this difference, that the paymens in this case be made to you weekly, and then see to it, that roumake jour collections in this way, for aman will frequently pay you a small sum weekly, when he would not pay the same amount if paid quarterly. It may not be amiss to mention that iath these comracts, when stating the cande mower of the lamps yot: are to furnish. that you should be sure and employ the words "pominal candle" power, as it may save -u under certain circumstances no small amornt of trouble also.
Ind next. as to your incindescent service. This will, of course, be latgely, if not entirely, a commercial serice. liou will hate all manner of people to deal with. and you may expect, in anany ciones, to have your patience sorely tried.
Then to begin at the begiming. Never under any circumancen do free wiring. By that meath thas you should never undertake to wire a house for nothing, in order that you might thus get a customer for your curreat. Of course sou should do . 11 primary work as low as peosible, but not at a loss. If your polver is it all limited, or if you rumb beteam, yor will find, in my opinion, that you will make more by running your lights on the metersystem than you will by giving a flat rate, unless you get an exceptionally good price for them.

I understand that in many places it is customary to take the readhgen of your meters guartedy, as it thus satees a good deal of time un tak ank the readmge, making ont the at counts, collecting
 that "short wcounts make long fiemo," and by no meats hoold you allow your accounts tw pas more than one mond wathout being rendered, and, if ponsible, collected. It might not be so bad, in the short nights of midnmmer, if quarterly collece toms were adoped, but in the end it will amply repay you to take your readmgs on the first day of each month, and matke your collections on the and.
And now ats to the beation of your meters. We were ithstructed when installing our plant to locatte them in some out-ofthe way place, where they would wot be seen, and hight up, so that they would not be meddled with. Now this may all be very good adsice in ut was, but my advice to you is, not of course to put it in the patior, or in suld aplace as to catuse it to be an objectionable feature in the household, but, be sure and place it low enough, that your man catn get at it with an little tonble as gossoble, and ato in a place where there is an abundance of light, so that the readings maty not orly be taken quickly, but acturately. When sou have a large number of readings taken monthly, it becomes a matter of some moment that meters be so arranged that the work can be done quickly and accuratels as well. Fou will be frequently told by gour atostomers that the meter is wrong-that thes know they never burned that amount of current. In such pronounced cases as these, when the assertions are very strong, 1 find it is becter at once to saly, "Well, it is possble as you sity that there is something wrong; you know we are none of us infallible; we will see and have a scoond readug made at once, \({ }^{*}\) and look imo the matter and at once, do as you diave promised, no mather though you feel almost sure that it is atl right. lou may find that there is an error, and if on yo should of course immediately see that it is corrected. but if you find that the reading incorrect, and that Mrs. Julius Cachar still onsmos that that meter is no good, and dechares that the thing runs whether there are any lamps on or not, and tells you in a
most emphatue maner that she eat hear the thing sing like a most emphatte manner thit she catn hear the thing sing like a ratlesmake, lights or no lights, and she knows that it rums on wheels, what then? Above all things do not allow yourself to answer back harshly, for doubtless she really is sincere in her protestations, and it is not wise to contradict her too rashly. 1 have found a good remedy in replying that of course it is just possible that the meter is not abolutely correct, but that you feel yunte contident that it is, and that to coner just such catses as these the gover art has appointed an electrical expers, to whom both parties can appeal, and if she, after considering the matter olor, still thinks there is something wrong, that you will write and hate the inplector cone up and examine the meter, and if he finds \(t\) wrong, that you will bear all the expenses connected with the inspection, but if it is correct that she in to bear all expenses. Tell her junt to think the matter over and let you know, and so fat an my experience goes that ends the matter.

Another difficulty that you will doubtless meet when moming on the meter system is m having your cunomers send out of town for 5 e.p. lampsand when only one of these is used your meter wall not respond. Thin yoll will easily dicerrn when at the end of the month vou perceive that no current has been consumed, and I may just here mention that this is atmother reason for taking yeur readings monthly inntead of quarterly. Such cances are abl numeroas, yet they do tura up where the family is small and it members are contented io do with a minimuin of light. This difficulty can aloolargely be overcome by making it minimum rate of say 50 or 75 cent per month. Which amount catn be arranged according as the circumatances of the case many zequire.
There are of course many other difficulties that central station men have to deal with, but it is imposible to consider many in itn article of ordinary length and the remaining ones will be left for othen to treat with, as thes, in their wistom, may see fit.

\section*{THE IMPORTANCE OF PROPER METHODS OF ILLUMINATION. \\ \\ If F. A. Bowsas, A.I.F. F... New Glargou, N S.} \\ \\ If F. A. Bowsas, A.I.F. F... New Glargou, N S.}

Is the last few fears, since the electicity supply business has got lefond the stage of "systems" and controlling patents. these has been accumulated a great deal of most valuative information in tegard to imt provements in the eenerating and distributing plant, and to the best methods of realizing in practice the lenefits from these improvements. l-rem time to time there have arisen most animated discussions on the best systent sf rates, and methexis of chazging for the use of the current. The keynote of these diccussions is the fact, brought to hagh hey the accumulated experience of those companies that have leen supplying elec. uncity for some years, that the fixed ciarges gron steadily with the maxumum demand on the plant, and that therefore the customers should lie ceducated to use the current as many hours per day as prossible. Thas is a matter of the most vital importance, and every cential station man in this Association should procure a copy of Mr. Arthur Wirughts paper on "The Profitable Extension of Electricity Supply Stations," read before the National E.lectric light Asmeiation at Niagara last year, and alsn one on the "Cost of Electrocity Supply, read by him lefore the Municipal Electrical Asocoiation in Eingland and to vudy them until he knows them by heart.
It shoukd be distenctly tourne in mind, especially by the smaller companies, that to do a grouing and really, successtal husiness, something none is necessary than to merely indace your customer to put in so many lamps and then to get as much pay as yeu can from him for them It is now clearly demonstratied hey ond a peradeenture that the margin of profit is as nattow in the central statua business as in any ntier. if not a gieat deal narrower, and that even when there is no compeition from gas or a rival company the clusest coonomy and best management
nee necessary to steld a profit the the abareholiders and provide for futute conamgencers In ver" of thas the mamager should realize that the must cducate his clamede and give them the beet satisfaction in every way Tru many managern are suth, fied when hery have ucceeded
 addumon they are fiverg fuil pressure at the lamp and a rehable service they consiles that thers duat to twoth the company and the putbic is done. Nou. the in a urong proncuple: Altenton should lee paid to the purpere for wheh the hght is iepuired. Tahe for example a shop. The purpore for which it in to le used, ate were, the height of celing, fimblh of the wall, kimoh of peorls to be divplajed and sold, arsangement of counters omid how-cases -all must le noted and constdered. It so welese to attempt to hight a mosdem doug store and a reads made chothogg store in the sume way, and expect equally satisfactery results in teoth cases. The manager hould be looked upon as an authority on methods of lighting, and of he gives the matter a reammale amount of attenton he very seron will be. He must remember that he 1 s a dealer in light, and to be a successful one must know all aloout it-how it is trest used and what ate the latent tashoms in it. If you go to a tailor fur a sum of elothes you expect him not only to sell you the cloth and to mahe up the suit so that it will fit you farty well, but you eaprect hum to be alife to tell jou what are the lateot stgles and fashions and which of them ate best adapted tu the purpose for which you want them. Some manapers will an. " (Oh. i have a class of customers who do not care alx,ut fitting up nicels and will not ofend money on at. All they want is that I will run the when in and hang the lamps on cords as cheaply as ponsible" The man in misaken. There is mo communty that will take clectne hight at all where a derided amount of education cannot be carried out. Education of has customers is a very material part of the work of every succesfal manager in the electrical busieses, and is one of the puncyul, reasons why the busmess cannot be properly cartied on ly sume one whe has a number of other interents 20 lowik atiter as well. The manager must sudy this guestuon of proper illummation so as to master the man prancpien necesing to a cleat understanding of it. He munt study his custoners wa to know what their tastes and requirement are lle must carefully wath the adventisements in the technical journal, and the catalogues that are so plenufull; distributed, and many of whech comann accurate and valuable information, and then correspond with the advertiservto see of the aticles that stake ham as sumed to some of thescustomers can be brought withon there reach. Then he must cansass carcfull, amt paturntly, and of he fals one year mast try again the next, lecause hy that sime he will know better how to work, his customers' deas will have adranced somewhat, posstbly prices will have dripget a linte. The net result of all thes is that he at last secures a contract fir fitting up that is a pleasure to hmo te undertake and gives eminent satsfaction to the customer when done.

When first installing hights in the smaller towns and villages cheap, hut not jwhis, witk mast be done to get the light introduced. but at shoudd be lixihed upera as introductury unly, and later on an earnest and continued eflort be made to weed it ail out.
A very common case that atses is that of a customer occupying a shop whe waluas: mating troulk alsout the linls. Ite has a certannumber of haghe nticwed atmut without any defante ariangement, one swath to thut off the while thits whes be leave, no shaies, mo, reflectors, and the ohop whalf datk when all tie lighes are on. anilif he is on meter oud tums iff a fe" io sue money be has not hight enough to do hrs work The revult is he is constantls growling homself and making whers do the cantue

When a cave of this hatel comes up the manager should go to ham and Whest that he rearanging thangs the can hase letter satusfactoon for leas maney. talh the matter wes and wort out a scheme that will put the ligh fun where \({ }^{4}\) is wanted, and add a few suathes so that the groups of heghts can tre teadhy turned on and off. After the exercise of constierahle tact and unlimited patence the ewtomer will begim to be convinced and finally consent to effit. When this is done and the lights placed jul where wanted, vers possobly hampre of smaller candle jonuer than trefore can tre ued on some of them. The iesult is a well lighted shop, whech is a gioxd advertisement for both the custoner and company at a mimewhat teduced mot to the costomer and matisfaction all round.

The fewer lubhts the custumer can motall and yet get satufacuon from, the honger hous he will hasti them all, and so iend to sameoth of the prad of has indwdual lanal hane. Ind the cheaper he can do it while thll yrelding a profit, the leelter for the company, as he in an advertise ment and attacts others. Five customers cach of whom has ten lights and westherm all three or four bours each night, are lecter than one whth fifty lughts whe uses them all for one hour and then turns of as many av posuble.

It must te clearly lome in mind that the candle power of a lamp and the amount of illuminatan we get from it are two entirely distinct thong- The useful illumanation is the amount of hight reflected back to the ese by the objects on which the light falls, and the quautity and guality of the light we effected is the important and controlling factor, not the candle power of the sumece of light. The unit of thammation is the "candle font:" that is, a light of one candle pruce une foxt divant from the ofject to be illuminet. This is a comfortable light for teading. The illumination is given loy the formula

\section*{Candle pouer}
1) watance in fect \({ }^{-1}\)

Thusa 16 , candic ponct lamp \(\&\) leet anas fiven 1 candle foot of thummation.

The illuminatum velided by a certain lamp can be very materally incre erd lie the use of actiectors. The thuminatoon of an obliject which when lxiow a vmall hath is 1 can be increased to 23 by a paper
 200 hy a subered ghan hemphencal one. Whate retiectors throw a very mase wift light and tmomh off the ediges of the thatows su 2610 probluce a very pleaving effert. In wing them it should be temembered that the oredinary law of ertiection of light, wh. that the angle of eftrethen an equal to the angle of inculence doer non spopy to theen: but that the savs of light at whateves angie ther mat stahe the reflector yung off from it in hase peipendiculat to its surface. Consequently thete should te no attempt at the mathematical shapes of optical se-
 mainted a dead white. The enamelling of refectors to hate, that surface is a mistake ; they do not give as good an effect to lexpm will and even the best rapilly lose then gloss.

The following table, due to ')r. Sumpner, pives the rellecting frues of various surfaces and shows what a wide variation in the num!er of lights requefed for a given illumination may be caused by a chanere of interior decoration :

Black veluet
When studying out the hghting of a given place we must conoles Whether we merely wish for a general sense of the space beeng monely or lirillantly lighted, as in a ball moom or dameg room; or whether par tucular spots or objects need to be clearly allummated, as the gexalis in a shop or the tables in a himary.

The most mpotiant sep to good illummation is to secure to the utmost extent possible that no bright spots or lines of light shall tonke the eyc. The moment the eye sees the source of light at closes thext up for protection from. the direct rays and consequenty cannot recerse as much of the light reflected from neightoring objects, and thetefore does not see them distinctly. The fullowing enperment will illustrate tha very cleatly: Take a shop with two shou windows and hang the lighes in one window alout the level of the eyes, as is so commonly done, and in the other put the same number of lights in good reflectors close uf to the ceiling. Now go across the street and note the result. In the but window the goods on exhitition are faitly well lighted. but as a ith comfort to leok at them long and nothing is seen behand them. In the other uindow the goods are shown up beautifully and you can lowh al them as long as you wish and at the same time can see right hack mm the shop and see the gools on the shelves and counters.
In the smaller towns and in many cases in the larger ones the questimn of getting exactly the best illumination and effect from the ligho, mu-: lie sulmordinated to that of the cost both of the fitung up and of the current consumed. Also a certain amount of deference must le padt to the ideas of the owners
Thus in lighting show windows the very leest method is to lught them from overthead, or from the corners, weth hames in decp and graserfu reflectors that will throw the light directly on the goonds to be shown and uill shield it from everywhere else. If it is necessary for the propmetor to be as economical of light as possible this can hatdly be done as these lamps are useless for general illumination on the shop. In such a case as this clusters under grod that reflectors on the ceiling of the windion are best. These show the goods in the windon very mecely, they mahe the front look much brighter, and at the sane tume throu a very con siderable quantity of ligith into the front part of the shop where \(1 t\) is most sequited.
An exceedingly common case is a shop from 20 to 25 fect wide, to th 50 feet deep with wo show winduws, the celling beltis from 10 to 12 feet hugh, and used for diy peorls, talonge, groceres, etc. I iers goocl arrangement for this is to put a three light cluster and that ic Aector in each window, and three similar three-high clusters doun the centre of the shop. The main switch should be placed at a comentent spost near the door by which the emplogees enter and will of course turn on all the lights. Another switch should then be arranged to turn of the window lights, and another tos iurn off two lights in each of the cienter in the centre. This will be found to be a most convenient and ccunamcal arrangement for the customer, who can proportion his light to the weather and amount of business duing. While the cental ctaton man will find that, if the shop is open in the evenng's at all, the whole of the lights will be on long enough to cover the maximum demam, or standing charges.
These clusters should not be more than \(: 0^{\circ} 6^{\prime \prime}\) from the floor: were these lights raised to 15 feet the direct light from them would be reduced one half, calling for double the number to produce the same illumunatun, but since in this case the reflection from the ceiling and walls would tre somewhat increased, probably an increase of 50 per cent. in the numike: of lights would be sufficient.
Drug stores generally call for very special ireatment, and the lighung must ie made to harmonize with and to show of the fittings. Brachet on the top of the shelving and a handsome electrolier in the centre are generally very acceptable, but as the result desired is more in the way of brilliant effect than of mere illumination for the shouing of \({ }^{\text {texal }}\) each case must le studied out to suit the purse and the tastes of the hersons cuncerned.
In the matter of churches the great desideratum is the even distriburon of the light, hith albsence of shadous and the total avoidance of all spots er lines of light that uill strike the eye of the congregation, or of the minister, especially during the sermon. The minister, the choir and the organist of course require plenty of light, and it often calls for con siderable ingenuity to supply their needs without having a bank of light. most unpleasant to the congregation. If such a group of lights cannu: or atoided it should be provided with a swith withon comenome reach so that it can be turned out during the sermon. In Anglican abit Koman Catholic churches which have chancels coparated by an arch from the main liody of the huiding, the lights can often tee arranged w: this arch so as to be entirely hudden from the congregatoon and an throw a verg pleacant light on the choir and reading desks.
Loxige romen should tie well tighted, and as they are often finsthed in very datk colors this is a difficult matter. The ieglits should be dutded into groups controlled by switches, and those at the dirchs of secretar! and treasurer are often wanted to be independant of the others in the 100m. A dimmer is a valuable addition and should be arranged to con-
welall 1 ' hyighs except those just memioned. It should be a regular theate - יmoner of ample capactis. Iodges are not as a rule paating custume o tecause their nee of the light is urregular and the meone per hagh fo.... them very small. Nevertheless it pays 10 give a geod deal of atentaon to the filtang up of the th, trecause many get educated to gexed laghone throught them shom \(1 t\) would be dhlicult or imposablele to reach in any wher way. It will regure a gexal deal of notk to get the first one well done and especially to get the dimmer imtanduced, but after that it will be comparatively eass.

\section*{EXPERIENCES OF AN INSPECTOR.}

IIV J. h. Jumestons. Insjector of Electric lightu, Turuntu
Wins shonored by an invitation from the Executive to prepare a paper for the Society, 1 was somewhat in doube ans to the chaice of a vilject. I wished to furnish something that might be of in. terent to you and at the same time to atwid any of the important bram ben of electrical science which might leave me liable to criticism from gentlemen so highly gualiffed; bence, with your kind permmon, I will contine myself to giving you a few impressions as recened in my eapacity as inppector.
At the meroduction of the grovernment inppection of electric lughmg, there were a few, as you may remember, opponed to the act, and 1 acknowledge that it was with some mingivings that I went horth on my duties. However, it is with pleasure that I can now recall edery visit made to the electric light stations in my datrict, and mevery instance have I not only been kindly received. but ewery suggestion of improvement offered by me has been anted upon monediately and wihl evident pleasure. I need not tell you that wh not one instance have I found any attempt on the part of electrie light companies to defraud their customers, although occanondly appealed to by connumers on that ground. An investigatum wnally resulted in discovering ola lamps, too fiew lights for the ypace lit, wastefulaess where a meter was in use, or some other fanlt in the power of the consumer to correct.
The persistence of many purchasers of electric light in elinging to ohd and useless lamps is a common source of amoyance to the companies and a difficult matter to overcome. The old lamp is offen expected to give as brilliant a light as when first installed, and when unable to do so the charge is frequenty made that the company supply a too low voltage. To please these grumbiers, a metake is sometimes made in endeavoring to supply a current suftinent to brighten these worn-out lamps, and this, too, at the expene of new lamps, whose brilliancy is thus deteriorated. As it in mapossible to compel the purchase of new lamps, and as the companies are anxious to pleate their castomers, I bave suggested, when consulted. that new damps should be supplied at their actual cov, thus throwing the blame on the consumers when their lights were poor, ceonomizing electric currett and sparing new lamps.
The question as to the adsisability of using meters, where practwable, can only be answered in their favor. By the employment of a meter a just system is atcoorded to manufacturer and consumer alike: the wasteful matr is made to paty fairly for his neglect, while the careful and bonest man is charged only for the: hight needed and current consumed. Einder the flat rate syutem, It is not uncommon to see large shops brilliantly illuminated throughout the entire night. Managers tell me that it :s difficult to mtroduce the meter where fat rate have been charged, but, devple the objections, many are making the chatnge. The several lype of dial registering meters which lhave inspected are usually accurate, and I am told prove satisfactory as measuring instruments for either power or light.
A lack of uniformity in rates, both by meter and flat rate whems, has been a mbject of complaint with some manager. There is evidenty no remedy for this unlers an arrangement cin be arrived at by the manufacturers themselves and a standard d harge agreed to.
In ceveral towns in the district sisited by me at sytem of street lughting by incandescent lamps has beca adopted. When properly arranged the appearance is quite pretty and the light well distributed.
In concluding, permit me to tell you that the managers and electricians: I have net in my work :ire withous execption kindly and intelligent men, and in this favorable opinion 1 am borne ont by other inspectors with whon I hase spoken upon the subject. li has been sugyested to me that there may be some potent and subtle charm in the electric current which develops the best quatidies in at man's character. Can this be so?

\section*{THE UNCONSCIOUS OWNERSHIP OF AN IMPORTANT KEY.}

I blea for the intromiction of Guohs Traffic on Oitr Scburban Trambays. Bi W. T. Hovakk, Montral.
The first consideration in exploiting any new suburbatramway is the posxible or arailable passenger traffic. That being found inadequate to guarantee a fair return on the cont of installation aud maintenance, the project is usually abandoned for the reanon that only passenger trafic can be convidered. owings to the bigh cout of handing goods traffic att the terminals. While a motorman and conductor are muficient to hatade a two or three-car electric train tor passenger traffic, with very little expenditure of lame or assistance for loading and unloading, all railsays under present systems require a large additional force to conduct the hundreds of details attending the reception, checking, loading, transferring, unloading and proper delivery, in good order, of cither car lot or packige fruight.

It in not the railway incestors alone who sutter the elliects of thin hatadcap, but the property owners also, simee the latter hate no recourse, whine the capitalist has but to sieek other mare protit able fietds for investment.
It maty therefore be comeded that the whole subject presents two phases of commercial ecomony, vir.
(a) From the standpont of the agnenlturalint and land owner ; how bent to provide a meany for increasing, the value of remote but otherwise valuable agricultural lands, and at the same time resain prenem value of adjacem property by converting it from market gardens into residence and manufacturing sites.
(b) From the standpoint of the capitalist and manager of railway properties : how best to increave the earning capacity of exinting or proposed suburban lines.

\section*{onpreciation of Finm biand biders.}

With the ever increaving centralization of population and commerce, inatecessible property becomes less valuathe: all land. whether barren or fertule, suffering alike, according to it distance from the centre of demand for farm products, which we call markets. Such dibtance is not always measured in atctual miden, but rather in accensibilty, since in our day we tind freguen exampley of the paradoxical long and short haul rates. The Minnesotatand Mamoba farmers will deliver thear wheat at the seaboard it a lower cont per busnel than the farmer who nay live a hundred mile of the coast. The eastern farmer may have just as fertile land as his western competitor, but he is handicapped by having to hatul his wheat forty or lifty miles over poor wagon roads to reach the nearest railroad.
In cither case, the terminal charges, inchading the cont of loading the produce at the farm, is approximately the same, but the difference in cont of hatalage per tonmale by rallond and wagon road in so tremendonsly in fiator of the former that without such facilities the farmer may is well retire from busmess. It has been stated as a fact that to transiont a ton of coal from Buffalo io Chicago conts amore than to move the same quantity of cond ateross the sidewalk in either city.
In a late number of the Marine leview some interesting com-parison- were made between the present cost of shipping coal to the Northwest and prices which obtained previous to the introdaction of modern vessels and automatic coal handing machinery. Car-dump machines can now load four thousand tons in ten hours as compared with two or three days under old nethods; and coal is now carricd from L-ike Erie ports to the head of Lake Superior at twenty cents perton, as against fifty cents, which was considered a ruinoully low rate a few years ago.
It is freguently anserted that since the introdnction and develop ment of seam railsays, they have gradually superseded the earlier methods of transportation and traffic, and as a conseguence highways are no longer ant indication of progress. This is true only to a limited extem. Kalroads have changed the character of suburban trafic, and personal travel is no longer dependem upon the condition of the highway, but commercial intercourse, as represented in the exchange of products, is as much dependent upon the condition of the publue road co-day as it ever was, for the reason that it is impossible to conntruct a railroad to the dowr of each producer and consumer. Hence railroads can never entirely supersede the common road, and every ton of freight catried by them must be conveyed over a highway at either or bothterminals. and the cost of thes highway transportation hata a marked inflathe e, not alone upon the price paid by the consumer, but also in the profit realized by the producer.
Finw people have any knowledge of the real cost of tranyportition by horse and wayon, or comprehend the amount of money expended needlessly every year through fature to pronide proper rondways and modern tratmu:ays.

The following table shows the results of actual observations on the cost of moving a load of one ton a distance of one mile on lewel roadways, with different patements and under average conditions

TMBI.E: 1.
cost of trasimortathos wh thorses and wicons her tos-mhle on mbrekent st rfacte.
Iron Rails. .
Auphats.
 . 28 cents per ton-mile.

Stone, pating, dry and in zood order. 2.70
5.33

Broken Stone, dry and in good order \(\begin{array}{ll}8.00\end{array}\) moist and in good order. 10.30 ordinary condition...... covered with mud. ruts and mud.
Earth, dry and hard
rils and mud.
Gravel, rols and
compacted. .
Plank, good condition.
Sand, wet.
ry \(\therefore\). 6

The comparative cont of ranoportation oter rough ionde may be entimated from Table №. 2, wheh viows with sufficient exactuess for mont practical purpenes, the force required to draw loaded wagons over inclines. This table viows the force ceverted by the load in its downward tendency, as well is the force reguired to draw it up grades of varioun incliations : aloo maximum duty performed by an average horse, weighing, why twelve
hundred pounds, the friction of the surface being taken at onefiftieth of the load drawn:

TABLE II.
Power in lis.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rate of Grade. Fi per 100 ft . & Presiure on the plane in lue per ton. & Tendency down the plane in the per tom. & Power in Iby. required to haul one tont up the prate. & Hquiv. Leng!h of level raad milen. & Max. Load in lle which a horse canheul. \\
\hline 0.0 & 22.10 & . 00 & 45.00 & \$.000 & 6270 \\
\hline 0.25 & 22.40 & 5.60 & 50.60 & 1.121 & 5376 \\
\hline 0.50 & 22.40 & 12.20 & 56.20 & 1.242 & 4973 \\
\hline 0.75 & 22.40 & 16.80 & 61.80 & 1.373 & 4490 \\
\hline 1. & 22.40 & 23.40 & 67.40 & 1.500 & 4145 \\
\hline 1.25 & 22.40 & 28.00 & 73.00 & 1.622 & 3830 \\
\hline 1.50 & 22.40 & 33.60 & 78.60 & 1.746 & 358 \\
\hline 2.75 & 2240 & 39.20 & 84.20 & 1.871 & 3290 \\
\hline 2. & 2240 & +5.00 & 90.00 & 2.000 & 3114 \\
\hline 2.25 & 2240 & 50.40 & \(95 \cdot 40\) & 2.120 & 2935 \\
\hline 2.50 & 2240 & 56,00 & 101.00 & 2.244 & 2725 \\
\hline 2.75 & 22.40 & 61.33 & 106.33 & 2.363 & 2620 \\
\hline 3 & 2239 & 67.20 & 112.20 & 2.48 .4 & 2486 \\
\hline \(t\) & 2238 & 89.20 & 134.20 & 2.982 & 2083 \\
\hline 5 & 2237 & 112.00 & 157,00 & 3.444 & \$800 \\
\hline 6 & 2233 & 1.34 .40 & 179.40 & 3.986 & 1568 \\
\hline 7 & 2232 & 156.80 & 201.80 & \(4.8+4\) & 1367 \\
\hline 8 & 2232 & 179.20 & 224.20 & 4.982 & 1235 \\
\hline 9 & 2232 & 201.60 & 246.60 & 5.480 & 1125 \\
\hline 10 & 2229 & 224.00 & 269.00 & 5.977 & 1030 \\
\hline
\end{tabular}

From the foregoing tables, and from statistics gathered by both state and national bureaus, it has been calculated that the average cont of tranyportation by animal poweris twenty-fivecents per ton per mile. Furthermore, the rate of transportation by animal power is, and always has been, excessively high, and the evidence of all statisics, bothancient and inedern, shows but slight
wheat, beef, pork, molasses, wagons, horseshoes, butter and clothing. Within the writer's memory, these articlev were produced at home, or in small shops and factories distributed, like the population, quite equally throughout the country at cross. , ike and villages, utilizing crude methods and opernted by the old fashioned treadmill or horse power, and overshot water wheld. The output of flour per man per day in those mills did not exceed ten barrels. At the great Winnipeg and Keewatin mills and at Minneapolis the milling business has been so concentrated that to-day the output per man exceeds one hundred barrels and the cost of production is correspondingly reduced. But of what lene. fit to inaccessible property in the interior is this reducal cost of production, unless like facilities for transportation are afforded of
The measure of benefit whichany improvement in production in one community bears to another community, depends entirely upon the transportation facilities between the two places. Recently a customer came into our office from one of the interior mining districts. We estimated the plant he required would cost \(\$ 1,255\). To help him out all we could, we eliminated every possibl item not absolutely essential to the proper working of the plam and allowing also for erector not being required, we found we could reduce our price \(10 \%\), making the net total \(\$ 1,130\). But how insignificant our discount appeared when we learned the E:eight from Montreal to the mine would cost \(\$ 1,2 \neq 8\), notwith standing no part of the route required mule-back transportation Although further distant from Montreat, the same plant could be ransported to Vincouver for less than \(\$ 250\).
Concentration of population and production requires for the better equilization of supply, and price of materials and provisions that such centres must be provided with commercial veins and arteries which shall quickly and cheaply tromsport or exchang urban and suburban passengers and commodities. While long haul rates of transportation by railroads and steamships have been

Fic. :
mprovement as compared with the progress made in other demetments of industry, and by other means of transportation. It being true that the value of land and wages of labor are affected by the cost of transportation, we should expect to find that where so higha rate as tweoty-five cents per ton-mile prevails, the land would diminish in value, and the rewards of labor bestowed upon such lands woukd grow less and less. What we expect to find, we do find.

A forcible illustration of this fact was brought to the writer's attention a few days ago. A resident of loug Island, living ithout fifty miles out from Now lork cily, owns 500 acres of as fertile land as may be found anywhere. Although beautifully situated, and with every natural advantage to favor production, the cultiation of all staple products has been abandoned by him owing to lack of proper tranportation facilities. With potatoes jobbing at eichlty cents to one dollar per bushel in New lork, he Was compelled to sacrifice his entire crop, xiving a way hundreds of bustirls, rather than allow then to rot in his cellars.
It is not necessary for the careful observer to rely solely upon official repors for information, for the above is but an every-day example of the result of excessive cost of iransportation, the ever-decreasing price of inaccessible land, and the diminished rew:ards of labor bestowed upon it. The price of land and the value of lathor decreases in almost inverse proportion to the distance over which the agricultural products must be transported
by horse power.
One fact is patent to all, that whereas formerly the distribution of population was approximately equal over the face of the country, it is gradually becoming concentrated into large cities to such atl extent that already fully one-half of the inhabitants of the older sections of the commery live in cities. The evident reason for this is competition, the demand for increased output at reduced cont. Concentration itdicates increased power for production. Take, for instance, some of our commonest staples, like
wonderfully cheapened, there still remains a space of fifteell 10 twenty-five or even forty or fifty miles surrounding every commercial centre, which has never been covered by any chrodp method of transporiation. Such distances are beyond the possibility of cheap or efficient service by animal power, and the terminal charges and bulky plant required, precludes any possibility of much reduction in railroad tariffs. What we require therefore is a new system of transportation which shall be alike available for freight and passengers.
The problem of handling exclusively passenger traffic is comparatively simple ; indeed it has alrexdy been solved for those districis where the population is sufficieritly dense to support steam or efectric tramways requiring no other source of revenue. Experienced railroad men are unanimous, however, in agreeing that no road, whether steam or electric, will pay in a thinly settled district, unless assisted by \(\approx\) bonus or by the addition of freight traffic.
In this day of great competition capital is constantly seeking methods for reducing cosis. Manufacturers calculate even the individual bristles required to make a brush, and the ounces of Wary in a yard of cloth. An exira liair in a brush or an ounce of warp more than is necessary, does not amount to much in a single brush or a yard of cloth, but the saviags in a day's output might make a perceptible increase in the dividend account. Cost of operation and maintenance are to-day the great factors in every commercial or manufacturing calculation. Capital is ever ready to supply the installation provided it can be insured a fair return on the investment.

This age has not only developed the mechanical and the elec. trical engineer, but to-day they are striving harder than ever to distance as far as possible the civil engincer whose development of the bixhway, the canal and the ruilroad, made him famous years ago. That the civil engineer has achieved woaderful results in the operation of stemm roads no one will deay; but for the
whtion of the short hatul problem we must eliminate his cumbercome trung, his extensive terminals and expensive equipment and service semerally, before we can hope to appronch the mean line of tarth, which shatl re-establish the movement of commodities wathon \(\cdot\) ery part of the short-hatil circle. Ihen maty we expect a mose esen balance of land values, and from the increased traftie
mediate benefit of the highor city market rates for their produce, as well as competitive selection and prices for supplies. I.ocal and wubstations were to be eatabliblied at frequent point a alonge We line where the firmers could deposit their prodace la be forWarded by next train to a central clearing honse in the city from whence it could be delivered at once to the consumser. The

Fig. 2.

Fll: 3.

Will come substantial dividends to the inventor in ratway securities.
In 1804 the writer promoled at scheme for unting one of the large conmercial centres on Lake Erie with seseral surrounding coumies by a system of electric railurays which would combine both freigh: and passenger traffic. The arrangement was such that the farmers anywhere along the line would secure the im-
acheme was to be co-operative in at meanure, the subscribers to recence the first benctits. Telephone comecton was to be established between the city and farm residences through the companys local stations, ath. direct orders for goods from the city merchant could be received by wite and despatehed by next tratin out. Only sampley, or a very limited supply of staple goods,
were to be kept at the local stations, the principal stock to be maintained at the central clearing house, and by the various city merchanty who belonged to the syudicate. Electric current for light and power were also to be supplied to consumers along the line. In short it was proposed to so unite city and country by wite and rall that all would enjoy equal facilites for obtaining supplies.
- Unfortunately the financial depression of that year so handicapped our effort, that we were anable to carry out the project, but those who gave the subject moyt careful conmideration at the thne still expect to see some such system as the above in keneral use.

The latest development in the line of providing for goods traffic on electric tranways cane to the writer's notice some months aso in the shape of a combination vehicle, so constructed as to be readily convertible for use upon any ordinary roadway or upon a railroad track. It can be shifted from one to the other at will, without the necessily of reloading or rehanding the contents between points of shipment and destination. The idea is not altokether new, but the application will no doubt impress you all as novel in the extreme.
Notwithstanding the similarity of names the writer begs to disclaim any connection wilh the introduction of this scheme, bit

The rail truck is not materially different from the car truck in seneral use upon our electric railways, except that it is provided with special attachments for automatically gripping and pupport. ing the wagon proper. The truck is exceedingly simple in design and very lixht in proportion to its strengith, bemple in tructed entinely of wrought iron and cavt steel.
Fikure 2 shows more clearly the detail construction of the rail truck and the arrangement of the cast steel sexments or doil supported in place horizontally by heavy plate springs, and dogs. for the purpnse of enxaviug the axles of the road whing and used for the purpose of engaging the axles of the road wayon as the ruck approache. from either direction.
Fizure 3 shows the road wagon in position on the loading ready to pull ahead. underneath, the dogs engaging the axles, rail by the electric motor, the impact of the projectuge letel against the wagon axles also starts the wagon forward, dogs against the wagon axles also starts the wagon forward, and as
the latter travels down the inclined switch the latter travels down the inclined switch track, the axles gradually settle into the noteh provided in the cast iron journal
frames.
Figure \(\&\) represents the wagon mounted on rail truck standing on the open irack ready to be coupled to \(a\) motor car, or electric ocomotive.
Figure 5 illustrates a train of five wagons, drawn by a familiar

Fig. 4 .
nevertheless the principle involved certainly commands attention. The Bonner Rail Wayon Company, organized abnut a year ago to develop the patents of Col. Jos, C. Bonner, of Toledo. Ohio, states in its prospectus that it will build rail wagons and operate them through leases or franchises granted to interurban electric railroads. It is proposed that such roads shall be equipped with any stipulated number of rail wagons, thus enabling them to supply patrons at any point along their lines, or at the terminal stations.
The general supervision and control will be vested in the Rail Wiagon Company, thus relieving the local electric railways of the detail inspection that repxiring, as well as freight contracting. The Wagon Company will coutract to provide service as the traffic of the electric roads may require. The wagons will be neat and subvantial and tarpaulin-covered at all times, whether loaded or not, after the same mannes as the goods vans are covered on Euglish and continental railroads. This provision permits nealing and also provides protection against expovire to inclement weather.
As an essential fealure of this enterprise, the Rail Wagon Company will supply horses and divers for service at terminals, thereby retaining in responsible hands, the execution of traffic as recenents and establishing a direct-connecting link between the producer and the consumer. Agents will collect the freight charges, which charges wili inchude delivery o consumer. The tarifi rates. covering both freight and delivery, will naturally the much less than prevailing freight charges under old methods of tranyportation, since no allowance need be made for capital in evted in expensive terminals or for maintenance of same.
Fyure, 1 of the annexed cuts illustrates the integral garts of the combination vehick. The wagon proper is pallerned after the ordinary improved road wagon. modified, of course, for the pecial nature of the wervice contemplated. The running sears and spings are of standard construction having a carrying capacily of from three to seven tons, depending upon the clase of freight to be carried.
looking electric locomotive en route across the country, while figure 6 represents several rail wagons side tracked in convenient market stalls, the commission agent or owner serving out the contents fresh from the farm.
The actual time reguired for unshipping the wagon from the truck for road use, and vice versa, is not more than would be required for coupling together cars in making up a train.
The weight of the combined. wagon and truck is sufficient to insure perfect rail traction and the proportion between carrying capacity and dead weight averages about the same as the or dinary freight car.

Fig. 5.
By establishing a uniformity of dimensions and making the rail truck interchangeablé, the wagons can be loaded either end on from either direction, and any number of rail wagons can be connected and moved in either direction as a train, by steam, clectric or other motive power.
The farmer or merchant need bave no ownership in the rail wagons. On a signal or other notice to the electric railroad, a rail wagon may be placed on a convenient farm switch or siding. The farmer readily unships the wagon from its rail truck by simply hitching his horses to the wagon and driving off, leaving the rail truck to remain where it stands until he returns with wagon loaded for market. Convenient receiving and diatributing stations can be located in the cities. Bulk merchandise can be
handed; parcels, mail and express matter also, the rail wagon handed; pare to store collections or deliveries. The movenent of these sail wagons need not in any way interfere with passenger servece of the electric railways, the heavy traffic being carried at nugh, when the electric lines and streets are least in use.
The great value of this novel method of handling geods trantic or adily demonstrated. Not only does it insure economy of time. labor ind expense by avoiding reloading in transit, bul the reductoon ill breakage which ustually attends the shipment of eggs, glasware, pressed brick, or other fragile commodities, guarantees for 11 preference over other systems of tramportation.
II ih these changed conditions of suburban Irafic the greater urt of the haul would be by rail, consequently the wrixht of the Fund umbs can tee greatly incremed. A team of horses can exert, for a short period, twice the average tractive pull which they would be able to exert continuonsly throughout a day's work, and, so long as the resistance on the ineline is not more than donble
trical power, since any appliance which offers increased permanent demand for current must add a corresponding value to his franchise.

As will be noticed by an inspection of the accompanying illustrations, the Quimby pump consists of two parallel shafts, on which are mounted the four screws that act as pistons in propelling the water, so arranged that in each pair the thread of one screw projects to the bottom of the space between the threads of the opposite screws. The screw threads have flat faces and peculiarly undercut sides; the width of the face and the base of the thread being one-half the pitch. The pump cylinder fits the perimeters of the threads, as shown in figure 2.

Space enough is left between the screws and the cylinder and between the faces of the intermeshing threads to allow a close running fit without actual contact. There is no end thrust of the screws in their bearings, because the back pressure of the column of liquid is delivered to the middle of the cylinder, and the endwise pressure upon the screws in one direction is exactly counterbalanced by a like pressure in the opposite direction.

The suction connection is shown at \(S\) in Fig. 1, and opens into a chamber underneath the pump cylinder. The suction liquid passes through this chamber to the two ends of the cylinder, and is forced from the two ends toward the centre by the action of the two pairs of intermeshing threads, the discharge being in the midale of the top of the cylinder, as shown at D. The power to drive the pump is applied to one of the shafts, and the second shaft is driven by means of a pair of gears, shown at G in Fig. I.
The pump has no internal packing, no valves, and no small moving parts. The only packing is in the stuffing boxes where the two shafts pass through the cylinder head. As these stuffing boxes are on the suction end of the pump, there is no tendency to blow out the packing.
The Quimby electric pump is especially valuable in connection with the hydro-electric operation of elevators. These pumps have been in use for elevator service for several years with very satisfactory results, and have been succes: "ully applied to the pressure tank system, the gravity system, and for pumping directly into the elevator cylinder.
When used in connection with the pressure tank system, the suction is connected with the elevator discharge tank, the pump discharging into the pressure tank. The pump is controlled by means of a pressure regulator and starting box, as illustrated in Fig. 3 . When the pressure in the tank falls, the regulator operates the starting box and the pump runs until the pres-

Tue probable increased demand for electric current due to the introduction of this new type of pump, which has entered the field of competition for commercial success within a recent period, should offer sufficient reason for describing it briefly in a paper for the benefit of this Association. The novel feature of the pump is its sim-

Fig. 1.
plicity, utilizing as it does a very simple mechanical principle in a very unusual manner for performing useful work.

Without attempting to refer to the many more or less successful efforts of other inventors, contemporary with or prioi to Mr. Quimby, this paper will be confined to a brief description of the pump, with some further reference to its commercial success. The latter is, of course, a first consideration to the manager, or owner of elec-

Fig. 2.
sure has been restored in the tank to the required number of pounds.

By the peculiar construction of the Quimby pumps there is no pulsation, and the flow of water is smooth and continuous, thus enabling the pumps to pump air into the pressure tank easily and without danger of air binding.

When used in connection with the gravity system, the pump section is connected with the lower discharge
tank，and the dincharge from the pump is elevated into the roof tank．The pump is controlled by means of a float in the discharge tank，and a strating box．When the discharge tank is full the float rises and starts the pump：the pump then runs until the discharge tank is empty and the roof tank is full．When the discharge tank has been emptied the foast stops the pump．This syatem of control is simpic and works exceedingly well in practice．

For pumping diestly into the elevator cylinders，these pumps have a very high efficiency．The multiplication of cylinders in a reciprocating pump diminishes the in－
be automatically operated，thus doing away with the constant care and attention required by a steam primp．

Figure 5 represents a switch for automatically stating and stopping electric motors up to and including tive horse power．It is arranged to allow the current to gradually enter the motor through resistance，presenung undue sparking at the commutator at the time of tart－ ing the motor，thus taking the place of a starting box or rheostat，which is usually operated by hand．For pumps of larger size it is advisable to use the controllang apparatus shown in Fig． 3 ．

Whether operated by belt or direct connected to

Finc．． 3.
tensity of the effect of the pulsations by increasing their frequency，but does not entirely remove the pulsations． Where Quimby pumps have been applied to pumping directly into the elevator cylinders，the motion of the cars is as smooth as in the pressure tank system．The advantage of direct pumping is that the pressure against which the gump works is proportional to the load in the car，and as the average elevator load is about half the maximum load，the saving in comparison with the pres－

Ful．S．
sure tank syotem is ohvious．Where an clevator has been operated by water from the city mains，a consider－ able saving catn usually be effected in the cost of opera－ tion and the service much improved by the application of an electric pump．

It will he seen from the foregoing description that the Quimhy electric pump，when applied to an clevator，can
clectric motors or steam engines，the Quimby pump has many advantages．For waterworks，oil refineries，or other service where liquids are pumped through long pipe lines，any pulsation in the delivery adds to the diffi－ culty of maintaining tight joints．The Quimby pump， however，has an absolutely pulseless delivery，and at the same time a very high efficiency．Long series of tests show an average efficiency of more than 55 per cent． from wire to water．In many instances tests have shown as high as \(6_{5}\) or 65 per cent．efficiency．The log of two tests－is given below in order to show the varia－ tion in output of current per gallon of water pumped under different heads．

TFST NO． 1
No． \(2 / 12\)（luinby pump direct connected to a li．p．Lundell motor．
\begin{tabular}{|c|c|c|c|c|c|}
\hline I＇renture． ： & \[
\begin{aligned}
& \text { volt } \\
& =26
\end{aligned}
\] & Amperes 1.25 & Revoiutions． 18×0 & \[
\begin{aligned}
& 1.12 x \\
& 292
\end{aligned}
\] & Time 1 min． \\
\hline 10 & 230 & 1.75 & 1650 & 244 & － \\
\hline 50 & 2.30 & \(\therefore .00\) & \({ }^{1530}\) & 20S & \(\cdots\) \\
\hline 30 & \(\therefore\)－0 & －．50 & 2So & 17 S & \(\cdots\) \\
\hline 40 & 23 & 3.00 & 12．55 & 180 & － \\
\hline So & 2：3 & 3．\％5 & 13.30 & 1.3 .3 & \(\cdots\) \\
\hline 6 & 28S & 3．75 & 13.30 & \(1:=\) & － \\
\hline \％0 & ＝37 & 4.5 & 10：0 & 102 & － \\
\hline So & 2．4 & \(4 \cdot 5\) & 990 & 81 & \(\cdots\) \\
\hline 90 & こ： & 5.0 & 95.5 & 76 & \(\cdots\) \\
\hline 100 & 234 & －5 & 950 & 75 & － \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Precture． & V．sia & Anpere & Renolutions． & （0allone & Sataicx \\
\hline 3＇ & 210 & 35 & 12 is） & \(3: 6\) & 56 \\
\hline ＋0 & － & 4.3 & \(1=60\) & 300 & 58 \\
\hline 50 & \(\cdots\) & 49 & 1：20 & ：86 & （\％ \\
\hline （\％o & － & 57 & 11 So & \(=3.3\) & Su＇ \\
\hline \％ & \(\cdots\) & \(6 \pm\) & 116 & －30 & S゙ら \\
\hline To & － & 6s & ：100 & ＝ 31 & So \\
\hline ¢ & ＂ & 75 & 10io & ：22 & 5.5 \\
\hline
\end{tabular}

The peculiar construction of the Quimby pump is such that it will readil；handle thick products，such as paraffine，hot tar，pitch，white lead，melted sugar， glucose，soap，lard，ctc．For this service eeciprocating pumps are not desirable，for the reason that heavy liquids are likely 10 be churned by the action of the plungers，and the friction of the material passing： through the valves and ports，greatly reduces the capacity and efficiency．

The Quimby pump has now been in actual use suffi－
ciently long to have passed the experimental stage. It is buing used for all kinds of service, under most trying conations, and the results have proved its efficiencs, durablity and economy.

The writer recently inspected one of the number seven pumpe installed in the New York Sun building, where it in heing used in connection with elevators operating on the pressure tank system. The arrangement of the pump and motor is the same as shown in Figure 4 . whe the rheostat and controlling device are similar to that shown in Figure 3. The instant the pressure on the grauge tank indicated a discharge of the water, the controlling device would close the circuit and start the purip, which would continue to run until the pressure reached the normal limit, when the current would be shut off, and the pump would stop. In its operation, both pump and motor appeared to be perfectly automatic, and the dbsence of noise and vibration was very noticeable.
The writer was also shown other installations of
including five submarine cables of a combined length of about io miles.
From Quenmelle the main line eronsed the Fraser riser to the westward, and following a morth-weaterly comise, will Refring Stratt as sts next objective promt, teachati the Nitas siver-about qua miles distant from Guentelle \(\cdot\) when the second dilathe cable was succesalully laid, atad operated July 20th, iseb.

The comstractun party of about :50 men-athd which included explorers. surseyors, choppers, line buiders. operaters, aud tranmport ganges-on receviving the news of the completion of the cable, remained in camp two or thrie datys. awatiting develop. ments. At the end of this time, findmg the cable combinued to work well, they set out for civalization, leaviag thoir tools, stores and matcral to the tender mercies (in great part) of the liudsoni liay trappets and the nathe red man, ds their transport ont would have cost more than the new article.

Durmg the wimer of \(1860-7\), a \(\operatorname{sition}\) was maintaned at Fort Stager, on the Skeena river, where ath operator by name of McCarmey and a companion douniciled until the following spring, athd whercoftentimenduring those-tohin dreary winter months \(t\) held converse with him by wite from lale.

In addition to the construction party, the company owned and had in service a feet of vessels, veam and siti, plying uponowan and river, some in the tranportation of material, supplies and line

Quimby pumps for various purposes, such as tank service for high commercial buildings, elevating melted sugar from the basement to the top floors in refineries, and for other service.
Atogether the Quimby pump appears to offer a wider range for the utilization of electric power than any other apparatus presented for some time past and in a field also where cost of installation and operation are both very important factors.

\section*{THE TELEGRAPH IN BRITISH COLUMBLA.}

\section*{liv K. II. McMicatis..}

Sisce that excellent paper on the "Early Convtruction of Teicgraph Lines in the Dominion " was submitted at the fifth convention by Mfr. Charles P. Dwixht, lhave had in mind the need of a supplementary clause concerning the introduction of the telegraph into this province in the early sixties, and which was to constute a section of the somewhat formidabie urdertaking of cunnecting the New with the Old World by means of about eytheen thousand miles of land line.
It may be-it doubtess is-within the recellection of some of our members that, on the failure of the first Allantic cable in 1858 , there was set in motion as a means of attaining the same endi.e., telegraphic communication between the two hemispheres-2 gisantic enterprise, known an the \({ }^{-}\)Colline Overland Telegraph (Ruscian Extension) Company." having in view the stretchiug of a wre from the telegraphic sytem of the Pacific States. throust biriuh Columb:a and via Behring Strait to Kussia and Europe.
With marvellous eneryy and enterprise, the work of constraction was commenced in is6 3 . the line entering British Columbia from the south in L.ongitude 122 W. in 1864 , being carried thence to New Westminster, from which point it followed the valley of the Fraser river and the Cariboo wagon road northward in Quesnelle, a distance of a tout \(\$ 30\) miles, which point wias reached in 186 :. Offices were established alonk the wisy, and from guesnelle southward the line was soon opened for commercial business. The enterprise proved a great boon to the carly colonsiss, both by reason of the large expenditure necessary in its contruction and operation, as well as by the facilities offered thereby :o the widely separated settlements for speedy communication.
In 1865 , also. a branch line was run across the San Juan trethipelago to tiancouver Island, connecting lictoria, the capital of British Columbia, with the main line at Swinomish, Washington Territory. This branch was about it miles inlength,
equipment, others in preparing for the placing of atabe acrows behring Strait, a distance of about 60 mikes-quite an undertaking at ibit diate.

Of the fleet, 1 now recall the ocean steamer " George \(S\). Wright." the river steanter "Mumford," barques "Onward, Clara bell." "H. L. Rudgers," ship **ightingale," schooner " Mitton G. Badger." The "Onward" made a trip to Siberia with material and supplies, was caught in the ice-wlicre she re mained all winter-and became a wreck when the ice moved in the aprink.

The Behring Sirait cable was to siretch from Cipe Prince of Waies, on this vide, to llover liay, on the Siberian shore, from which tatter point inland about 350 miles of lian bad been crected, while southward from Cipe I'rince of Wates, in Russian smerica, aibout 3 ma miles of land line had also been conalrucied.

The course of this contemplated line through the Fritivh pronessions and down the xreat witerwats of Kussian America wombl doubtless have brought it into clove proximity to the present Klondyke gold fields.and near DawvonCity, in which event it is not improbable that the hole-digging necenarys would have developed the richer of that section at least jo years earlier, and have given to the former generation an additional important mining epoch.
The hisiory of t, ie buildine of this line, and the causes which lect to a work hating for its othect the encircling of the world by wirc at so early a datc. in likely always to be read with interent.
The company - which nubsequently merged into the liveviern Unian Telcgraph Company -maintaincd the line northuard av far as Quesnelle until purchased in 1 Nos by the Britivis Columbia goverament. Which in turn Baaded utaver io the Duminion kuvern ment on British Columbia entering the Confederation in 1871 I.zter still, the Canadian Pacific Railway awuned control wuth from Avheroft. While under government control. and urevious to the influx of population consequent upon the building of the Canaclian Pacific Railway; the revenue fell far short of the expeaditure yearly.

In iS67. Buic Brom, merchants, buitt a branch line from Quesne".e to Barkerville, in the Caribon kold region, \(a\) distance of 60 miles. This branch. tofether with the main line between Quesnelle and Asheron, is still operated by the Federal covernment.

The original expenditure the consiruction of the tiritiah Co. lumbia section of the Intercontinental line reached the large wum roundly, of three million dollars.

I have written from memory, yet, doubtlesc, with comparalive accuracy, throukh hating been in the companys service during consiruction and for some ycars afterward, and while in cliange of Quesnelle office in s 866 becoming the medium by which the news of the successful laying of the Ailantic cable, July \(291 \mathrm{~h}, \mathrm{i} 66\). reached the construction party \(\$ 00\) miles north-west of that point on July joth, :866.

\section*{THE STEAM END.}

\section*{Hr Iabiss Milnk}
in a paper read at a former convention of this Association, it Wanstated that purchasers of electrical apparatus made very eareful enquiries as to the efficiency of same, the price being of secondary importance. If this applies to the electrical, why should it not apply to the steam end as well? 1 am sure that there are very few plants where the proprictors, or those in charge, inquire as to the afficiency of the boilers and engines, the price with these items being the very first consideration, kencrally.
It is very seldom, in specifications for steam plants, that there is anything said about the efliciency of the boilers, or the water consumption per horse power hour at the engine. This 1 consider one of the mont important points in connection with the steam plant. There are engines running which are supposed to be first-class and up to date, where the water consumption yer horse power hour is nearly double what it ought to be, and if the management in some of these plants would wo to the trouble of calculating the coal consumption per electrical horse power at the bus, Iam of the opinion that the results obtained would simply astonish them. I, myself, have records of the coal consumption of aphant, together with the total meter readings, extending over a number of years, and allowing for the loss on the line, together yith that on the generators, and although the plant wat a non-condensing one, yet the records there are not out of the way. In another plant where 1 was making a two days test as to the relative values of coal, 1 found the coal consumption per E. 11.P. at the bus just double the former platht, which might be considered high by some. This second plant was condensing. The load wav of such a nature as to make the engine very unsuitable for the woik.

1 am inclined to think that builders of engines should be made to suarantee a certain steam consumption per indicated h.p. at way \(25^{\circ}\) over-load, full load and half lomd, and that tests should be made to delurmine if the kuarantee has been fulfilied. If the guarantec has been more than fulfilled, let \(a\) bonus be fiven to the builders, and if not fulfilled, so much to be deducted for every : below the guarantee; and if it falta below a certain amount, that is to say, the steam consumption exceeds a certain fixed value, the engine to be renloved, or the builders to accept a nominal fixure for same. I think if means of this kind were adopted we would get engines of a very high order. Engineers, as a rule, are content so long as they get fine looking card from their cngine, but they very seldom from these cards calculate the stean consumption, which is of vital interest.
We have quite a larke number of good engine builders in the country, but the number guaranteeing their efficiency is very limited indeed: in fact. I am not aware of any. If tenders are invited for a certain style of engite and the tenderers are called ufon to guarantec the steam consumption per B.H.1., the party to receive the contract is the one guaraniceing the leant steam consumption per h.p. hour, the cost being of secondary im. portance. After the engine hais been installed and run for some time so as to get down to its proper bearing, carefully conducted ests should be made to ascertain if the guarantee has been fulfilied.
The matter of efficiency of hoilers is also one of great im. portance, but it in not so casily arrived at, owing to the difference in coal. At the same time however, it would not be a very difficult matter to fix on a cerisin coal for a standard, and to guarantec so many pounds of water evaporated per lb. of that coal. All boilers, I believe, should be sold by the Centennial Standard, and should be capabile of developing their rating with easy fring, showing gond wiok with ordinary coal, and should be capable of being forced 50 per cent. above their rating. There Was a recommendation something to this effect made by the Committce of Judgex at the Centennial Exhibition, the honse power being \(34,{ }^{\prime}\) lis. from and at \(212^{\circ}\), which is equivalent to 33.30 Shear units. W'e simuld get an efficiency close on to \(80 \%\) With youd boilers, and this could be roughly determined with anthracite coal, and if we get 12 lbw of water evaporated from and at \(212^{*}\). We liave approximately this efficiency; the heating value of the combuatibie being about 14,500 heat units, which is equivalent \(10: 5 \mathrm{lth}\), evapmrated from and at \(312^{\circ}\), therefore \(80 \%\) of this gives us 12 lbs . With bituminous coals we have not such uniformity, and it is necevary to determine its heating value cither by the coal calorimeter or chemical analysix.
After our boilers and engines are installed, we have to face the problem of running them. It has often been stated that men could be got to do anything. men being more easily replaced than machivery, cooting practicxlly nothing as it were. I am of the opinion that this is wrougg. Cheap men are numerous we knon: but are in the long run very expensive. Gond men are scarce, and nowthere is this more noticeable than in the boiler romm. Gond firemen are very scarce, conal shovelierx numerous. In my humbic estimatim, envitit is not given to the fireminn that shomid be. If a plant is runl firirly economical as far as coal cossumption in concerned, the engivere is more apt to get this credit. but as a matter of fact all he Jises is to turn on the steam and see that the bearings are crind. Now and apain he may walk into the boiler romm to asceriain if the fireman is askeep or not.

To have good firing the greatest of skill has to be manifestel io get she hevt renults from the coal, and where we are dependent on skill in xet first-clawresulis we are deppending on a very unceriain quanity. Ton much latitude is given the fircman in the matuer of conl, and he has it in his mwer to make or lome nearty \(a\) dividend for the company that employs him. Atteation is being given to this subject hy thelargeol steam users in the counlry wherehy the duties of the fireman are being greatly relieved by mechanical devices : their action heing poailive and not depen. dent on skill. the mactines thus taking the place of the brains of
the fireman. This you will agree is a great step in advance, and makes central station management very independent res.irding firemen.

\section*{SPARKS.}

The Kingston Locomotive \& Engine Company have re•olected the old board of directors.

The Whitney Electric Company's works ut Sherbrooke. Que. were damaged by fire last month to the extent of \(\$ 1,000\).
After using acetylene gas in the Methodist church at Leaming. on, Ont., it has been decided to return to electric light.
At the annual meeting of the St. Martins, N.B., Telephone Co. whe former board of directors and officers were re-elected.
A. Schneider \(\&\) Co., Pearl street, Toronto, manufacturers of clectrical machinery, etc., have removed to 106 York street.
Mr. T. A. Crandall, of Picton, Ont., in remitting subscription tothe Elf:crmical N:W's, writes: "I don't think I could get :Ilong
without your paper."

It is stated that Gurdon \& Phillips, of Chathan, Ont., will establish a woollen factory at Tweed, Ont., and put in an electric light plant.

The steamer "Lakeside," plying between Toronto and St. Catharines, is shortly to be fitted with a complete new system of clectic bells.

The village of Acton, Ont., will probably install a municipal lixhting plant. An elecirical engineer maty be engaged to rejort Ont the matter.
The Deschenes Electric Coupany have submitted a propovition to the council of Ottawa East to supply lisht and power. The question will be considered at next meeting.

The electric street railway at St. Thomas, Ont., was put in operation lant month. The railway cost about \(\$ 80,000\) and is six miles in length, and the entire equipment is very complete.
The George White \& Sons Co., engine and machinery manufacturers, of London, Ont., have recently completed a new building, \(175 \times 35\) feet, in which to manufacture threshing machines.
The village council of Iroquois, Ont., tass under consideration 2 proposal from Mr. Kecfe for an electric lighting franchise. Should an ayreement be reached, Mr. Keefe will put in the necessary plant.
The employees of the Ottawa Electric Railway recently asked for shorter working days, but were informed by the company that this could only be granted upon a corresponding reduction in warges
At the session of the Provincial Legislature of British Columbia recently adjourned, incorporation was granted to the Mountain Tramway \& Eiectric Co. and the Nanaimo Electric Light, Power \& Heating Co.
An exchange recommends the use of oak bark as a preventive of corrosion in stenm boilers. Tests have been made which are said to have proven satisfactory, one or two oak slabs only being put into the boilers.
The Strathroy Electric Co., Limited, have met with so much success that they recenily placed an order with the Canadian General Electric Co. for the installation of another \(\mathbf{5 0 0}\) light single phase alternator.
The Ashcroft Writer, Light and Power Company will erect a power house on the Bonaparte river, about three miles from Awhcroft, B.C., and install an electric plant to furnish light and power to Ashcroft, and for irrigaling purposes.
J. R. Goodchild's electric light plant at Ambersuburg, Ont., was put in operation last month. The generator is a 600 lioh Westinghouse of the latest design, the engine 75 h.p., and the boiler \(\mathbf{1} 5 \mathrm{~h}\) h.p. Mr. MeLean is clectrican.

Mr. O. F. Young, of Mrigug, is building a small plensure loat for Mr. I. R. Wiard, of Hrooklyn, N. Y., to be unced on lake Memplıremagox, and an order has been placed with the Jenckes Machine Co., of Sherbrouke, Que., for one of their \(\%\) h.p. Dake marine engines, with boiler to run the same.
The project to produce wister power by the construction of a clannel from the Welland to the Jordan rivers has again been recived. Nr. Wm. Pearson, C.F., of Owwego, is swid to hive pronounced the scheme feasible from an engineering standpoint, and the questivn of disposing of the power will now be teated. Mr. P'ew is the promoter.
The Ollawia Electric Co. have supplied their employees whone duty it is to read meters with a porrable electric light worked on thestorage batiery system. The light is five candle power and will run continunusly for twelve hours without change of battery. The article compicte weighs only 8 ounces, and the baltery may the readily carried in the coat pucket.
"The corporation of the town of Granby, P.Q., recently gate The coniract for the invallation of their lighting gitant to the Canadian General Electric C. This plant. will consist of a 100 k.w., monneyclic gencrator, complete equipment of salion instruments, and a jo linht Wood are dynamo. The contract also includes the complete installation of the pole line, transformers and house wiring required.

Tire New Brunswick Telephone Company recenily elected the folkwing directors: Hor, A. G. Blair, president ; F. P. Thomp mon, managing director: J. I. Black, vice-president: W. E. Smith, eeretary-ireavurer ; Dr. A. A. Stockion, Chas. Fawce:t, C. F. Siec. W. T. Whitebead. The dinectorx have decided to repiace the prewont wire on the trunk xystem'between Fredericton and St. John and Amherst, N.S., with copper wire.

\section*{BABCOCK \& WILCOX water tube steam bollers}

First Invented in 1856. H.NVE A RECOR1) OF

\section*{UNPRECEDENTED SUCCESS}

Nearly
2,000,000 Horse Power now in use, with Sales Averaging 20,000 Horse Power per month.

\section*{Babcock \& Wilcox, Limited. LONDON and GLASGOW}
 Head Office for Cimada: 202 St. James Street. MONTREAL.

\section*{KINGSLEY Watep Tube Steam Boilibes}

For Power and Marine Purposes-Adaptable to the Highest Pressures.

\section*{HIGHEST ECONONY GUARANTEED}

Head Sales Office for Canada :
E. A.WALLBERG,G.E.

PRICES MODERATE
Manufactured in Montreal, Toronto and Ottawa.
catalogle free

\section*{PROF. C. A. CARUS-WILSON.}

Ir is with much pleasure that we publish herewith a portrait and some particulars of Prof. Carus-Wilson, who recently resigned the McDonald chair of Electrical Emgineering at Mc(iall University, Montreal.
Prof. Charles Ashley Carus-Wiloon is the youngest son of the late Rev. C. Carus Wilson, Vicar of St. Mark's, l.eamington, and grandson of the well known author and philimhthropist, the Rev. W. Carus-Wilson, of Casterton Hall, Westmoreland. He was educated at Hailesbury College and entered the Royal Indian Engineering College at Cooper's Hill, near Windsor, hy a competitive examination. Two years later he gave up his prostion at the head of his gear, and the certainty of a good ap-

l'rof. C. A. Carts-Wilion.
pointment in the service of the Indian government, in order to devote himself to electrical engineering at home, and subsequently in Paris, Brussels, Antwerp Vienna and Bucharest, where he lighted up the palace of the king of Roumania. He then went to Cambridge, took his 13.A. degree in honours (Natural Science Tripos) in 1887, and the M.A. degree in 1891.

After taking charge for three years of one of the laboratories at the Royal Indian Engineering College, Prof. Carus-Wilson was elected in 1890 to the McDonald Professorship of Electrical Enginecring at Mc(iill University, Montreal. The electrical department of the Eniversity was not then in existence, and Professor Carus-Wilson carried through the work of organizing it and equipping the laboratories with great energy and success. The number of students taking this course is now very large, and a practical test of its results is afforded by the work of the graduates in applied science, many of whom already hold with credit important and responsible pesitions.

During the eight years in which Prof. Carm-Wilson has occupied this chair he has given much attemion to original research, especially in comnection with the direct current motor. The results of this are embodied in the volume of Electro-Dynamics which Messra. Longmans Green \& Co., (London and New York) ate now bringing out.

Prof. Carus-Wilson left Montreal in April lavt, and has since been giving a course of Cantor lectures in London on Electric Traction at the request of the Sisciety of Arts.

In the words of the resolution passed by the Faculty of Applied Science at McGill University last Ipril: " Prot. Carus. Wilson has aimed at founding a school of engineering of the highest type, and has made it both his duty and pleasure to encour:age in the students tha love of investigation which is the only real foundation for any true scientific work. His success as a teacher is best attested by the continued growth of the school and by the prominent positions occupied by graduates. in the electrical course, while to the Chair of Electrical Engineering his special researcles have given a greal! increased reputation."

MOONLIGHT SCHEDULE FOR AUGUST.
\begin{tabular}{|c|c|c|c|}
\hline Day of Month. & 1 ijht. & Extinguint. & No. of Hours \\
\hline & H.s. & 11.s. & \%1.9. \\
\hline & No Light. & No lighth. & \\
\hline & No light. & No lightr. & \\
\hline & No light. & No lixyht. & \\
\hline & No light. & No lighlu. & \\
\hline & 1.M. \(7 \cdot 3^{\circ}\) & 1.M. 10.00 & \(2 \cdot 30\) \\
\hline & \(\cdots \quad 7.30\) & \(\cdots 10.20\) & 2.50 \\
\hline & \(\cdots 7.30\) & - 10.50 & 3.20 \\
\hline & " 7.30 & 11.20 & \(3 \cdot 50\) \\
\hline & - 7.30 & \({ }^{*} 11.50\) & +.20 \\
\hline 10. & " \(7 \cdot 30\) & A.M. 12.40 & \(5 \cdot 10\) \\
\hline & " \(7 \cdot 30\) & 2. 30 & 6.00 \\
\hline & - \(7 \cdot 30\) & 2.30 & 6.50 \\
\hline 13.... & - 7.30 & 3.20 & 7.50 \\
\hline 4..... & " 7.30 & \(\cdots\) +.20 & 8.50 \\
\hline & - 7.30 & " 4.20 & 8.50 \\
\hline & n 7.30 & \(\prime\) + +20 & 8.50 \\
\hline 17 & " 7.30 & \(n+1.20\) & 8.50 \\
\hline ss.... & 7.30 & +.20 & 8.50 \\
\hline 19. & 7.30 & \(\cdots\) 4.20 & 8.50 \\
\hline & \(\cdots \quad 7.30\) & " +20 & 8.50 \\
\hline & \(\cdots \quad 3.30\) & \(\cdots 4.20\) & 8.50 \\
\hline & \(\cdots 8.00\) & " +1.20 & 8. 0 \\
\hline 23.... & - 8.40 & " 4.20 & 7.40 \\
\hline 24. & - 9.20 & " 4.20 & 7.00 \\
\hline \(25 . .\). & \(\cdots 10.20\) & \(\cdots+120\) & 6.00 \\
\hline 26.... \({ }^{\text {' }}\) & . 1.1 .20 & " 4.20 & \(5 \cdot \infty\) \\
\hline \(=7\) & - 11.30 & \(\cdots\) f. 20 & 4.50 \\
\hline 28. & & " 4.20 & +.20 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& =9 \ldots \\
& 30 \ldots \\
& 31 \ldots . .
\end{aligned}
\]} & A.M. : \(2 . \infty 0\) & …… & +-20 \\
\hline & No Light. & No light. & \\
\hline & No Light. & NoLight. & \\
\hline & & Total..... & \({ }^{156.3 n}\) \\
\hline
\end{tabular}

\section*{Position Wanted}
A. Manager of an thench light \& tromer Con.or ughty (r.. or Cirnmat aic Agent A tons and showugh es errence in f.ter iokal Engineering, com--utive alilats. Begethir wath \(A_{1}\) references: Nhmuld demarni the sitention of those weling a groxd selialle asd effuiemionan sidieve

are biaxcreic al Nieux

THE croftan STOR GE BATTERY COMPANY

Manulac:arers of - menemer
STORAGE BATTERIES Of any required capacity.
We mahe a Specialty of Mrdiral and Dental Batierice lkatorist of all kinds Refted anil Recharred as reaconalide rate Akents doitrd in different tocalitics.

CaNadlas BRANCH 22

\section*{Sheppard} Street, TORONTO

\section*{JUBILEE SHAKING GRATES \\ The Most DURAELE, EFFICIENT and ECONOHICAL Bar in the World.}

More Heat from Soft Coal, Stack or Screenings than from the Bent Select lump or Steam Coal burned on Statiomary Bars. 10 to 25.0 Saving in Fuel Bills easily effected by using cheaper fucl on JCBIILEI: BARS.

Tilx Junilex Grate bat Co Tomicom:

 With the old crates we couth not cet steam without using Screeped lempsiore (iv now we use Soft Cral Screeninge and we are developirg about \(24 \mathrm{~h} . \mathrm{p}\). move that. could with the Nd grates lous have alieady taken a memorandum of the texs tha were macie of the old and the new grates: we thave checked over the figures ion.ty and find thens quite emfrect.

Ino M. Taylor, Sec y-Mer

THE

\section*{Royal Electric Company was the FIRST COMPANY in Canada}

To make good Transformers
To make and put in use large Transformers To put into practical operation a Polyphase System
To furnish a perfect Inductor Alternator To provide a remedy for Ageing in Iron To conduct its Electrical Manufacturing Business on lines approved of in other Manufacturing Enterprises
To insist upon doing only High Glass Work; and which had the courage to refuse to make Ghẹap Apparatus or sell its Product without Profit

\author{
300,000 16 c p. Lamps capacity in "S.K.C." Transformers, and \(30,000 \mathrm{k}\). w. capacity in "S.K.C." Polyphase Generators for Lighting and Power sold in Canada since July Ist, 1895.
}

\section*{The Royal Electric Company}

\section*{PATENT RIGHTS.}

Tus American Stoker Co. have forwarded to us the following letter, with a request that it be printed in this number:-

The General Engineering Co. of Ontario, Limited, Bo Canada Life Building, Toronte, Ont.
Dear Siks,-The American Stoker Co, having an office at Room 54, Sireet Railway Chambers, Montreal, have submitted to un your cit cular letter, dated 20th May, 8898 , and have also called our altention to an item which you caused to appear in the June number of the Canablan Elecctrical News, in both of which it is stated that the American stoker now being introduced into Canada by the American Stoker Company is an infringement on certain alleged Canadian patents owned by ycu, and that as soon as the American sloker is installed in Canada, your solicitors have been instructed to take proceedings in the Exchequer Court of Canda against the user as well as agrainst the manufacturer and importer, and warning the public against the use of the American stoker.
We are instructed by the American Stoker Company to inform you thit the stokers manufactured by our clients are protected by Canadian patents, and are not an infringement of any patents legally held by your company.

We are also instructed to inform you that the American Stoker Company have sold and delivered five stokers to the Dominion Cotton Mills Company, and tre about making delivery of stokers to other purchasers in Canada, and are prepared to defend any action for infringement or damages which may be brought hy your company in virtue of such sales or the use which may be made by the purchasers of these stokers, and we are authorized to accept service of any legal proceedings which you may bring against the American Stoker Company. We have further to inform you that in the event of your company. not making good your threats contained in your circular letter and in the article in the Canadian Elbectrical News, within fourteen days from this date, both of which are calculated to deter prospective users of the stokers from purchasing from our clients, we are instructed by the Ametican Stoker Company to institute legal proceedings agajnst you for damages and for an injunction to restrain you from threatening legal proceedings on the ground of alleged infringement of patents. All other rights are reserved.

Your obedient servants,
Macmaster \& Macleenian.
The ratepayers of Hamilton will vote on the question of acquiring the street railway and operating it under municipal control. The questions submitted will be: (i) Shall the city now purchase the Hamilton Street Railway? (z) If the city does not now purchave the Hamilton Sireet Rallway, should the council extend the franchise of the company for fifteen years-that is, until 1928 ?

SPARKS,
H. C. Baird \& Son will probably put in an incauderent light plant at Parkhill, Ont.
The village of Beeton, Ont., has passed a by-law to rane \(\$ 3,500\) for an electric light plant.
The Hull Electric Company were recently recommended by the coroner's jury to equip their cars with fenders.
Stuar: \& Harper, Winnipeg, Man., will supply and install a 150 light electric plant in J. Y. Griffin \& Co.'s packing house, Winnipeck, Man.
The Electric Co. of St. Johns, Nfld., are increasing their plant, and have ordered a 850 horse power tandem compound engine from the Robb Engineering Co.
The special committee appointed to consider the question of the establishment of a civic electric light plant for the city of Ilamil ton have recommended that an expert be engaged to report on the subject.
An electric railway fare box which not only receives the ticket, but registers the fare, has been invented by E. B. Nagle, of Ottawa. The device is claimed to be simple, cheap and com. plete in every particular.
The Goldie \& Mc Culloch Co., of Galt, offer prizes of from \(\$ \mathbf{\$ 0}\) to \$100 for suggestions by their employees regarding the improvement of tools, machines, and for advanced ideas conducive to greater efficiency of the works.

The electric light station at Norwich, Ont., is about completed It is a one-story structure, \(25 \times 52\) feet, with storage addition The power plant consists of an so h.p. beiler and \(40 \mathrm{~h} . \mathrm{p}\). engine. The latter may be increased later.
A proposal is to be made to the city council of St. John, N.B., to secure legislation to take over the property, priviliges and franchises of the St. John Street Railway Company, to be conducted by the city in the interest of taxpayers.
The agreement between the city of Brantford and the Brant ford Electric and Operating Company for street lighting has been sigued, the franchise being for ten years. It is said the company will expend immediately about \(\$ 10,000\) in additional plant.
Mr. John Fornian, of Montreal, has just completed the installa. tion of 65 enclosed arc Jamps in the store of John Murphy \& Co in that city. It is claimed that this is the first time that these lamps, lighted by all alternating current, have been. used in Canada.

The Grand Falls Power Company have decided to proceed al once with the development of the water power of the Grand Falls of the St. John river, in New Brunswick. Senator Proctor, of Vermont ; Mr. James Manchester, Mr. G. F. Baird and Col. H. H. Mclean, of St. John, are interested in the project, and it is proposed to develop about 80,000 horse power.

\title{
SUTTON'S BOILER COMPOUND
}

\section*{CANADIAN GENERAL ELECTRIC 00.}
(LIMITED)
Hend Offige : 65 FRONT STREET WEST, TORONTO, ONT.
Factories: PETERBOROUGH, ONT.

> BRANCH OFFICES AND WARE-ROOMS:

;jok.w. Three phane Generators Instalded in Power Holse of the Lachine Rapids Hyidratide \& Land Co., Ltd.

\section*{ELECTRICAL APPARATUS}

\section*{Railway Apparatus}

\section*{Direct Current Lighting Generators}

\section*{Alternating Current Lighting Generators}

\section*{Power Transmission Plants}

\section*{THE CROFTAN STORAGE BATTERY.}

The Ctoftan hotage liatery Company, lelleving that Camada offered a profitable field for operntons, have opened a liranch at 22 sheppard street, Toronto, Unt., where they are manufacturng storage batteries which they clam nte supenor to all others in lightness and efficiency, with an erpual amount of durability The batiery is the result of five years' study and expenment by IDr. Croftan, a promment physcian of Chicago, assisted by Mr. J. K Prumpelly, one of the best known storage batery experts in the tinted States, and the menentor of the l'umpelif Sorley cell.
In the construction of the Croftan plate chemically pure lead only is used, all foremga substances such is antimony being discasded, for the use of stich sulstances land they are quite commonly used) shortens the life of the battery, leading to rapud disintegration. The plate is formed of mante parucles of tead, deposited to the desired thickness upon a perforated sheet of puec rolled lead by means of a spray, the perforated sheet having 8,100 perforations to the squate foot. The sprayed lead forms perfect contact with the perforated lead, and is further secured by perfect unoon through the perforations. The plate is then run through a cortugatug roller, by means of wheh interces ate formed for the reception of lurther active matetial. Then, by means of an electro chemical process, the plates are converted into spongy lead, and peroxide plates are formed by further consersion of the spongy lead plates.
A phate is by this means formed whose entire surface is active material and whose "grid " or inactive protion is the perforated lead sheet in the centre, being less that \(15 \%\) of the entire weight of the plate. All the joints in the battery are burned, no solder whatever being used: thus disintegration or sulphating at the joints is avoided.
The Canadian branch is under the control and management of Messrs. Kein Wadsworth and W. M. 11. Nelles, with E. B. Arnold, a brother of 13. J. Arnold, consulting engineer of the Electric Storage Battery Co. of Ihiladelphia, and W. L. Arnold, of the Siemens 太 Ilalske Electric Company of Auserica, manager of the manufacturing department. The Croftan battery is claimed to be especially adapted for lighting plants and all work requiring the use of large storage batteries, while their smaller batteries, on account of their lightness and great eficiency, make a perfect cell for the use of doctors and dentists, and are most suitable for cartinge lamps.

The Goldie \& McCulloch Co., of Galt, Ont., have shipped a Wheet. ock engine, weighing 19,440 jounds, to the Montreal Belt Line Railway Co.

\section*{\(\cdots\) JAMES MILNE}

Mem. Can. Soc. Civ, Eng. Late Gen. Surit. Toronto lacandescent I.ight Co. Teacher Electrical Engineering, Steam and Steam Engine, Toronto Technical School.

\section*{GONSULTING ENCINEER}

I'ans. Specifications, Superintendence, Advice, EstimatesonSteam, Hydraulic and Electrical Plants. Special Machinery designed. Srecintites: Steam and the Steam Engine, including Evaporative Tests, Efficiency Tests of Steam, Hydraulic and Electrical Plants. Central Station Management reports catefully prepared.
0mbe: 80 Candd Life Briliding
TORONTO, ONT.

\section*{TRADE NOT'ES.}

The Eugene F. [hillups Electrical Works, Limited, of Monteal, are supplying all the wire for the transmission plant of the Cataract l'owet Company, of Ilamiton, which plant was deveribed in our June issue. This order represents some 150 miles of wire.
La Contpagne Manufacturiers et Electrique de Montmany have given an order to the Canadian General Electric Co. for a too k.m. monocyclic gencyator, which will be operated at a potential in 2,080 volts, together with the necessary station instruments for the operation of the plant.

The Hudson Bay Co. have given an order to the Canadian L,eneral Electric Co. for the installation of a complete lighting plan for their stores at Calgary. The plant will consist of one of the Canadian Gen. cral Electrre Co.'s latest four-pole type generators, having a capacity of 9 kilonatts. Messrs. Goldie \& McCulloch Co., Limited, of 1 , alt, are supplying the engine and looiler required for this installation.

The J. C. McLaren Belting Company, of Montreal, by means of a small folder, invited visitors to the Canadian Electrical Assoctauon con. vention to make an inspection of the belting in the generating station of the Montreal street railway system, transmitting \(7,000 \mathrm{~h} . \mathrm{p}\). This helt. ing, which was supplied by the above conpany, consists of tuclve 24 . inch three-ply lelts. The number of hides used for its manufacture was 1,630 , and the total weight of leather \(15,000 \mathrm{ll}\).s.

 Iresident. Treasurer. THE BRADSTREET MERCANTLLE AGENGY

THE BKADSTEEAT COMHANJ, Jrmitiofors

\section*{346 \& 348 Broadway, NEW YORK.}

Ofices in the pincijal cities of the United States, Catada, the European Continetrt. Australin, and in loadon, England

The Ilraduree: Conipany is the oldest, and, financaily, the strongest organimetion of its kimi-working in one interest and under one management - with wider ramificalioxs, with more captal invexted in the businexi, and it expends min we mones evers jear for the coletion and thsimanation of infurmation than any

TORONTO OFFICES
McKinnon Eldg.. Cor Jordan 4 Melinda Ste. Thof. C. IRVING, 8uperiatement.

Adscrtine in the Eifictricil. News.

8meibrooke Street Rallway Power Plant45 rech Crociser Wheel is Morizontal bettug.

\section*{INDIVIDUALS and CORPORATIONS....} oontemplating the development of Water Power for
Electrieal, mining or Manufacturing Purposes
are invited to send for our figures.
We make a Specialty of fumishing Conplete Plants, designed to meet the requirements of the particular locality, thus securing High Efficiency and Satisfactory Results.

39 Lansdoyne St. - SHERBROOXB, QUB.

ALEX. BARRIE \& CO. ahanuracturaks of RUBBER INSULAIED ELEOTRIRYMRES and CABLES fol \(1041+589\) 8t. Paul Street, MONTREAL

\section*{If you want to}

SELL

\section*{ANYTHING}
to the wholesale and retall hardware merchants and manufacturers

\section*{ANYWHERE}
in Canada, you can reach them through

THE CAMADIAN hrodware and Metal merchant

MONTREAL and TOROCTO Circulates in Every Province.

\section*{TENDERS WANTED}

A Weekly Journal of advance informa. tion and ptiolic works.
The recognized medium for advertiseCANADIAN CONTRACT RECORD TORONTO.

The Packard Electric Co., Limited MAKERS OF

\section*{Lamps " \({ }^{\text {m }}\) Transformers}

SOLE AGENTS FOR
Ssheeffer Recording Watt Meters N***** ST. CATHARINES, ONT.

W Rite for prices on

Sockets, Cut-Outs, Wiring Supplies, Induction Alternators, Etc., Ete, Etc.

MUNDERLOH \& CO.
6: St. Sulpice st., MONTREAL

\section*{The General Pnginering Co. fomment Limited.}
(Successors to the Weeks-Eldred Co., Limited) are now SOLE MANUFACTURERS FOR CANADA OF THE

\section*{IIMPROVED JONES' UNOERFEED meGhancoal stokers}
(The Original and Only Successful Underfeed Stoker in the Market.)

All those interested in the Reduction of their Fuel Bill should write to us for our book entitled, "Smokeless Heat," which contains valuable information. Address:

The General Engineering Co. of Ontario, Limited.

\section*{Miga Boiler Goverings}
MII Steam Users should see the NEW MICA BOILIER AND PIPE COIERING. It is FIENIBLE, DURABLE, asd a MAGNIFICENT NON CONDECHOR OF HEAT.
HEST OF ALL NON-CONDUCTORS.
Full Particulars, Reports of Trials, Prices, Testimonals, \&c., from

ALSO MANUFACTURERS OF
 CLOTHING
SET IN MPPORTED OAK LEATHER BACKJNG.
LOOM REEDS, ETC. GENERAL MILL SUPPLIES.

THE OTTAWA PORCRLAN \& CARBON CO., Limited. onrrawa.
manuracturers of
Carbon Points for all kinds of Arc Lamps, including cored and solid carbon for incandescent circuits.

Motor Brushes and Specialties in Carbon for Telegraph, Telephone
and Eleciric Light Supplies ... Carbon tor Peleciry Light Supplies . .
\(\qquad\)

- Porcelain Insulators, Cleats, Door Knobs, and all kinds of Pressed Porcelain for Electrical and Hardware Lines all goods guaranteed to give satisefaction

 LONDON, CANADA

\section*{Elecotifical Macoininery um Supplies}```

