CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / institut canadien de microreproductions historiques

The Institute has ettempted to obtain the best original copy available for filming. Features of this copy which moy be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture dé couleur

Covers damaged/
Couverture andommagée
Coverś restored and/or laminated/
Couverture rastaurete et/ou pelliculde

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cal tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relie avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intériaure

Blank leáves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

- This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.
د taux de réduction indiqué ci-dessous.

$$
x_{10}
$$

L'Instifut a microfilmé le meilleur exemplaire qu'il lui a déd possible de se procurer. Les détails de cet exemplaire qui sont peutstre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou quí peuvent exiger une modification.: dans lá méthode normale de filmage sont indiqués ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Metropolitan Toronto Reference Library Baldwin Room

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Les it plus
de la
confı filma

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated Impression, or the back cover when appropriate. All other original coples are flimad beginning an the first page with a printed or illustrated Impression, and ending on the last page with a printed. or illustrated impression.

The last recorded frame on aach microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, otc., may be filmed at different reduction ratios. Those too large to be entirely incladed in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as reguired. The foliowing diagrams illustrate the plat,

Les c filmbs Lorsq repro de l'a ot de d'ima Illustr

```
Lexemplaire filme fut reprodult grace a le genérosité de:
```


Metropolitan Toronto Reférence Library Baldwin Room

Les images suivantes ont dté reproduites avec le l. plus grand soin, compte tenu de la condition ot de la nettete de l'exemplaire filmb, et en conformité avéc les conditions du contrat de filmage.

Les exemplaires originaux dont lid couverture en papier ast imprimde sont filmós en commençant par le promjar plat et en terminant soit par la derniere page qui comporte une empreinte d'improssion ou d'illustration, soit par le socond plat, selon lo ces. Tous les autres oxemplaires originaux sont filmés on commençant par la premidre page qui comporte une emprointe dimpression ou d'illuatration ot en torminant par la dernidre page qui comporte une telle emprointe.

Un des symboles suivants apparaitra sur la dernidre image de chaque microfiche, selon ie cas: le symbole \rightarrow signifie "A SUIVRE"; le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent étre filmbes à des taux de reduction dilfférents.
Lorsque le document est trop grand pour dere roproduit en un soul clichb, il ost filmd dü partir de l'angle superieur gauche, de gauche à droite. ot de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthodo.

2	3	
	5	6

MICROCOPY RESOLUTION TEST CHART

- . (ANSI and ISO TEST CHART No. 2)
v
n

APPLIED IMAGE Inc
1653 East Main Street Rochester, New York 14609 USA
(716) 482-0300-Phone
(716) 288 - 5989 - Fox

RUDIMENTARY

ALGEBRA.

Designed for the Use of Canadian Schools.

BY B. HENSMAN,

OF THE MIDDLE THMPLE, BAREISTER AT LAW.
-

Mandrantal:
PUBLISHED BY R. \& A. MILLER, 00 St. Franoots Xavier Street.

Toronto:
R. \& A. MILLER, 62 KING STREET EAST. 1862.

$$
\rangle
$$

Entered, according to the Act of the Provincial Parliament, in the year one thousand, eight hundred, and sirty-two, by R. \& A. Miller, in the office of the Registrar of the Province of Canada.

PREFACE.

The object of this Elementary Work is not to, displace any of the valuable Treatises on Algebra generally used in schools, nor does it assume to rank with the Ct is intended simply as an introduction to the study of this most interesting science, and as a first book so to initiate the pupil that he may in a very short space of time enter upon the most complete and advanced text-books on the subject, undeterred by any apprehensions of great difficulties to be encountered.

The scholar who has duly attended to his instruction in Arithmetic will find that there is nothing difficult to comprehend in the principles of Algebra; he will see that there is nothing occult to master,
but that his arithmetical knowledge may be applied and exercised upon a study of progressive interest and satisfaotion.

The Author has endeavored to make his Treatise as far as it extended demonstrative, and thus to abbreviate the teacher's labor in explanation, as well as to fix the mind of the pupil on the principles upon which algebraic rules are founded.
With so humble an object in view as here indieated, it would be out of place to enlarge upon the benefits to be 'derived from the study of Algebra, but those to whom the education of youth is entrusted, conversant of these benefits, will hardly fail to welcome a book having for its object initiation and guidance, if it be found to answer its design.

Montreal, July 1, 1862.

CONTENTS.

CHAPTER I.

Definitions, '. 7
CIIAPTER II.
Addition and Subtraction, . 15
CHAPTER III.
Multiplication and Division, . 23
CHAPTER IV.
Greatest Oommon Measure and
Least Common Multiple,. 84
CHAPTER V.
Fractions, . 39
CHAPTER VI.
Involution and Evolution, . 46
CHAPTER VII.
Siske.
Simple Equationg, 64

CHAPTER VIII.

* Problems producing Stmple Equations, 66

CHAPTER IX.
Quadratic Equations, . 73
Answers to the Exercises, 77

RUDIMENTARY ALGEBRA.

CHAPTER I.

DEFINITIONS.

1. We learn by Arithmetic how to calculate with numbers. Algebra teaches us how to perform calculations by means of the letters of the alphabet.
2. Numbers possess a particular and a relative value, while letters have no value in particular or in relation to one another. Since then letters possess no particular value, if we can perform calculations with them the results obtained will admit of general application. For if, calculating with letters, we arrive at a certain result, our calculation will apply to any value we may assign to the letters. For example, we shall presently see that if we multiply the difference between a and b by the sum of a and b, the product is equal to the difference between the square of a and the square of b. Now, as we may use a and b to represent any quantities we choose, we have, by a simple algebraical operation, arrived at a
very important result, for we learn from it that if we take any two numbers whatever and multiply their difference by their sum the product will be the difference between their squares.
3. It is then very desirable to ascertain how to perform calculations which give us results admitting of universal application." Before proceeding, however, to make algebraic calculations, we must become familiar with the meaning of different signs or symbols which are used for the purpose of abbreviation.
4. = is the sign of equality, and is read "equal to." It indicates that the quantities between which it stands are equal to one another. Thus $4=$ twice 2 means that 4 is equal to twice 2. $a=7$ means that the value of a is 7 in some particular problem to which the statement relates.
5. \cdot + is the sign of addition, and is read "plus." It signifies that the quantity before which it stands is to be added. Thus $4+3=7$ means that 4 added to 3 is equal to 7. $a+b$ means that the quantity represented by a is to be added to that represented by b. If a is equal to 2 and b to 1 then $a+b=3$.
6. - is the sign of subtraction, and is read " minus.'" It signifies that the quantity before which it stands is to be subtracted. Thus 4-3=1 means that 3 deducted from 4 is equal to or gives a difference of 1. $a-b$ means a less b, or with b subtracted. If a is equal to 6 and b to 4 then $a-b=2$.
7. X is the sign of multiplication, and is read "into." It signiffes that the quantities between which it occurs are to be multiplied together, thus $7 \times 3=21$, means that 3 times 7 are 21. Multiplication is also indicated by a dot between the quanitities, or (the more usual
way) by writing the quantities together; thas $a \times b$ or $a . b$ or (the usual mode of expression) ab all mean a multiplied by b, and if $a=2$ and $b=3$, then $a \times b$ or $a b=2 \times 3=6$.
8. \div is the sign of division, and is read "by" or "divided by." It signifies that the quantity after which it occurs is to be divided by that which follows it. Thus $6 \div 3=2$ means that 6 divided by 3 is equal to 2. Division is also indicated by writing the quantities in the form of a fraction. Thus we may express the division of x by y, thus $x \div y$ or thas $\frac{x}{y}$. Each expression means x divided by y, and if $x=6$ and $y=3$, then $x \div y$ or $\frac{x}{y}=\frac{6}{3}=2$. So $\frac{a+b}{c}$ means a and b added together and their sum divided by c; while $\frac{a}{b-c}$ means a divided by the difference between b and c.
9. \therefore is an abbreviation for therefore and \because for because.
10. () \{ \} [1 brackets, indicate that the quantities enclosed by them are to be dealt with collectively and as forming but one quantity. The same is sometimes indicated by - writfen over the quantities. Thus $2 \times$ $(4-1)$ or $2 \times \overline{4-1}$ means that 1 is to be subtracted from 4 and the difference 3 multiplied by 2. The result is 6 , but it would have been different if there had been no bracket, for $2 \times 4-1=7$. So $x-y-z$ and $x-(y-z)$ are different in value, for the former means x with both y and z subtracted from it, while the latter means x with only the difference botween y and z subtracted from it.

The fractional line has also the same effect as a bracket, since $\frac{a-b}{c}$ for example, meapis the dividion of the entire quantity $a-b$ by c.
11. When a quantity is multiplied by itself any number of times the product is termed a power of the quantity and is expressed by writing the index or exponent of the power, or figure denotiag the number of times it is repeated, above the quantity. ${ }^{i} 3^{2}$ means 3×3 or the second power or square of 3 , and a^{3} means the third power or cabe of a, or $a \times a \times a$.
12. The root of a quantity is that quantity which moltiplied by jtself a certain number of times according to the index of the root will produce the quantity of which the root is sought. Roots are indicated by the symbol $\sqrt{ }$ called the radix, with a small figure written to, the left (the inder), expressing the root to be extracted. Thus $\sqrt[8]{8}$ means the cube root of 8 . $\sqrt{ } x$ means the square root of x, for where \mathcal{V} occurs with no small figure written to the left it always indicates the square root.

The root of a quantity is also indicated by writing a small fraction with the index of the root for denominator above the quantity; this $x^{\frac{1}{2}}$ and \sqrt{x} are equivalent expressions.
13. Having now become acquainted with algebraic signs we must investigate the nature of algebraic quantities and we shall then be able to pass on to algebraic calculations.
14. If no sign is prefixed to a quantity + is understòod. All quantities tó which + is prefized or which have no sign prefixed are called positive or additive quantities, and all quantities to which - is prefired are
called negative or subtractive quantities. In the expression $8-6,8$ is positive but -6 is negative, for -6 means 6 subtracted. In $a-b, a$ is positive, $-b$ is negative.
15. The coefficient is the number prefixed to an algebraic quantity. In the expression $8 x y, 8$ is the coefficient, and the expression denotes 8 times $x y$; when no colefficient is expressed 1 is understood; thus x means once x.
16. A quantity not connected with any other by the sign + or - is called a simple guantity. Thus $a b,-a$; $x^{2} y$ are all simple quantities. But if coupled with any other quantity by the sign + or - the whole expression is called a compound quantity; thus $a b+2 \dot{c}$ is a compound quantity, consisting ${ }^{\text {of }}$ the simple quantities $a b$ and $2 c$ added together. Thef several simple quantities which make up a compound quaritily are called its terms; thus the expression $x+2 y$ is a compound quantity; x is one of its terms and $2 y$ the other. A quantity which consists of one term only is called a monomial; if it consist-of two terms a binomial ; and if of more than two terms a mulinomial.
17. Simple quantities often consist of more than one letter; these letters are calied the factors which make up the quantity. We have seen that $a b$ means a multiplied by $b ; a$ and b then are the factors which form the quantity $a b$; and whenever a compound quantity is composed of two or more quantities multiplied together, . these quantitios are similarly called factors, the term factors being employed to represent any quantities, simple or compound, that are multiplied together.
18. The value of a simple quantity remains the same in' whatever order its factors be written; $a b$ is just the same as $b a$, for both mean the product of a and b. It

12

definitioke.

is, however, usual to place the factors of a quantity in order of alphabetical precedence.
19. The value of a componnd quantity remains the same in whatever order its terms are written, no long as the terms are prefaced by the signs which belong to them. $8 a b-2 x y+y$ is the same expression as $-2 x y+$ $8 a b+y$.
20. Like quantities are those that consist of the same letter or are composed of similar factors. Unlike quantities are those that consist of dissimilar letters or factore. Thum $3 a b$ and $2 a b$ are like quantities; and so $8 a x$ and 7xa are like quiantities, for each is composed of a certain number of times the product of a and x. Bat $x^{3} y$ and $x y^{2}$ are unlike quantities, for though the lettore that enter into their composition are similar; one is composed of the factors x, x and y, and the other of the factore x, y and y.
21. The Exercise which follows is intended to familiarise the atudent with algebraic signs and the nature of algebraic quantities. The value of the different letters being given, he need only substitute these values in the expression, and careful attention to the signs will enable him to find the value of the whole expressions in the everal examples.

Nrancle.-If $a=2, b=3$, and $x=5$, what is the value of $x^{2}-2 b+2 a b$?
Here by substituting the value of each letter in the different quantities we find their values. x^{2} we find is 6×5 or $25 ; 2 b=2 \times 3$ or 6 ; and $2 a b=2 \times 2 \times 3$ or 12; we then substitute these values for the several quantities in the whole expremaion and obtain $x^{2}-26+$

If these letters have the same value as before, what is the value of $\frac{a^{8} b^{2}+3 x}{8}-2 b+b x-x-(a+b)+\sqrt{2 a}$? $\frac{a^{2}\left(b^{2}+8 x\right.}{3}-2 b+b x-x-(a+b)+\sqrt{2 a}=\frac{36+16}{3}$ $-6+18-5-5+2=\frac{8}{2}-6+15-5-6+2=17-6+$ $5+2=18$.

If these letters have the same value as before what is the value of $a^{2}+\{2 b x-3(b-a)\}-\sqrt{2 a^{2} x}+4 b x$.
$a^{2}+\{2 b x-3(b-a)\}-\sqrt{2 a^{2} x+4 b x}=4+(30-3)-$ $\sqrt{40+60}=4+27-10=21$.

In this last erample we find a double bracket, the first indicating that $2 b x-3(b-a)$ is all to be regarded as one quantity, and the second that $b-a$ is also to be regarded as constituting one quantity. We find a^{8} $=4$; and we put down 4 as its value; $2 b x=30$ and $3(b-a)=3$; we therefore substitute $(30-3)$ for the value of $2 b x-3(b-a)$ and obviously we no longer require to use the double bracket, since we have ascertained the value of $b-a$, the quantity enclosed within the inner bracket. Then subetituting $-\sqrt{40+60}$ for $-\sqrt{2 a^{2} x+4 b x}$ we complete the expression, and by continuing the simplification ascertain its numerical valne.

Exiraige I.

1. In the expression $a+2 a b-8 y y^{2}+y^{2}$, which of the terms are positive and which negative? Which are like and which are unlike?
2. In the expressions $a^{8}, x^{2} a, x^{2}+y^{8} ; 3 b^{2}+2 c^{2}$, which are compound and which simple quantities? O e What terms are the compound quantitios composed? What are the factors of the simple quantities?
3. If $a=7$ and $b=5$ what is $a+b$ equal to?
4. If $x=2$ and $y=3$ what is $y-x$ equal to ?
b. Write down the equivalent of $a+b+a b$, where $a=2$ and $b=3$.
5. $a=2$ and $x=3$: what is $a^{2} x^{2}$ equal to ?
6. What is the value of $\sqrt{ } a x$ where $a=18$ and $x=2$?

In the following exercises $a=6, b=2, c=8, x=2$, and $y=4$.
8. Find the value of $2 a+b-c+x y$.
9. Find the value of $a^{2}+\sqrt{ } y$.
10. Find the value of $3 b x+a b-2 \sqrt{y}+a x$.
11. Find the value of $8 b-c x+4 a b-a c$.
12. Find the value of $-2 a b c x$.
13. Find the value of $a b c x y \times 2 \div 4$.
14. Find the value of $2(a b-c+2 x y)$.
15. What is the value of $8 a-3 b+c x$?
16. What is the value of $\sqrt{c x}+2 a b-\sqrt{ } y$?
17. Find the value of $2(x+y)-\sqrt{y}$.
18. Find the value of $2 b x-c+b^{8}-c$.
19. Find the value of $2 a b+2 a-2 x y+(x+y)$.
20. Find the value of $\frac{a^{2} b^{2}-2 a c}{y}$.
21. Find the value of $\frac{b^{2}}{x}+\frac{c-2 x}{b}$.
22. Find the value of $2 a^{2} b^{2}+\sqrt[b]{x y}-8 \frac{a c-c y}{x}$.
23. What is the value of $\frac{x y-b}{2}+\frac{a b c}{m y}+\frac{c^{2}}{y^{7}}+\frac{c}{y}$?
24. What is the value of $\frac{c^{2}-b^{2}}{x^{2}}-\sqrt{b c}+(c x)^{\frac{1}{2}}$?
where
$x=2$?
$x=2$

OHAPTER II.

ADDITION AND SUBTRACTION.

1. The quantities $x y$ and $2 x y$ as we have meen are like quantities, and wo can readily add them together. They mean once $x y$ and twice $x y$ and their sum in three times $x y$ or $3 x y$.
2. The quantities just added together are both positivo. If they were both negative $-x y$ and $-2 x y$;ithey would indicate once $x y$ to be subtracted from nome quantity and twice $x y$ also to be subtracted, and their sum would be $3 x y$ to be subtracted, or - $3 x y$.
3. Hence when the quantities are like and the signs are like also, algebraic quantities are added by the fol${ }^{17}$ lowing

Rolw.
Add together the coefficients and set down the man,prefr" gixitis the sith and annexing the quantity.

HEMPLIS.

> (1)
(2)

$$
\begin{array}{rr}
18 a x & 8 a-7 b y+(x+y) \\
\hdashline-4 a x & a-2 b y+2(x+y) \\
& 9 a-4 b y+3(x+y) \\
& 4 a-7 b y+(x+y) \\
& \\
& 22 a x-20 b y+7(x+y)
\end{array}
$$

In the first example we add together tho ceveral coefficients, 1 (lor at pans 1 ax) and β and 1 and 8 , and

16

 ADDITION AND BUBTRAOTION.set down their sum 10, annexing the quantity ax; we do not prefix any sign, because in the case of a quantity by itself with no sign prefired + is understood.

In the second example we begin by adding together the coeficients of a; the sum, 22, we write down, annexing the quantity a. Wo proceed to add the coefficients of by, which we find to be 20 ; we set down 20by, prefixing the sign - , and then dealing with the quantity $(x+y)$ which being within brackets is to be regarded as constituting one quantity, we complete the addition.

4 In setting down compound quantities for addition we so place their terms that like quantities come ninder op6 another, and we are thus able the more easily to find thoir sum.

Eximoter II.

1. Add together $8 b, 4 b, 6 b$, and b.
2. Add together $-6 x y,-8 x y,-7 x y,-6 x y$, and $-2 x y$.
3. Add together $4 a b-3 b y, 8 a b-2 b y, a b-b y$ and $2 a b$ -2by.
4. Add together $3 x^{2} y^{2}$; $x^{2} y ; 4 x^{2} y^{2}+2 x^{2} y$, and $x^{2} y^{2}+x^{2} y$.
5. What is the sum of $3 a^{2} b-2 c d, 2 a^{2} b-3 c d$, and $4 a^{2} b$ - 3cd?
6. What is the sum of $x y z+x y-y z, 3 x y z+2 x y-3 y z$, $2 x y z+3 x y-2 y z$ and $x y z+4 x y-4 y z$?
7. What is the sum of $3 a x+3 a c+f ; 9 a x+7 a c+$ $2 f, 2 a x+4 a c+2 f ?$
8. Add together $2 a x^{2}+3 y+8, a x^{2}+2 y+4,3 a x^{2}$ $+y+5$, and $a x+4 y+9$.
9. Add together $8 a-4 b+y-2,3 a-2 b+2 y-4 z ;$ $8 a-b+3 y-z$, and $2 a-b+y-\varepsilon$.
10. Let us now take two like quantities with unlike signs, and proceed to add them together. $2 x$ is a positive quantity, and $-x$ is a negative or subtractive quantity ; that is, it is to be deducted. Their sum is twice x to be added and once x to be subtracted, which is the same as x to be added. The addition then of $2 x$ to $-x$ results in x. Hence when the quantities are like and the signs unlike we add by the following

Role.

Add together the positive coefficients and also add together the negative coefficients; deduct one sum from the other, and set down the difference, annexing the quantity, and prefixing the sign which belongs to the greater coefficient.

MXAYPLES.

Emagoise III.

1. Add together $8 a b,-4 a b,-7 a b$, and $5 a b$.
2. Add together $7 x+4 y, 8 x-2 y$ and $-x-3 y$.
3. Add together $-4 a x+2 b x+3 c x,-2 a x-4 b x+4$ and $8 a x+2 b x-8 c x$.
4. Add togother $8 x y z,-8 x y z, 6 x y z,-7 x y z-9 x y z$, scyy, and - $6 x y z$.
5. What is the sum of $6 a b-x y_{\ell} 2 a b+8 x y_{1}-4 a b-8 x y$, $-a b-x y$, and $6 a b-x y$?
6. Add together $4 x^{2} y^{2}+2 x y-3,-x^{2} y^{2}-x y^{2}-1$, $3 x^{2} y^{3}+4 x y-3,7 x^{2} y^{2}-x y+8$.
7. Add together $3 a+a b+a c, 4 a-2 a b-a c$, and $-6 a$ $+a b-a c$.
8. Add together $a^{2}+3 b x+2 \sqrt{ } y, 2 a^{8}-b x+\sqrt{y}$, and $-a^{2}-2 b x-\sqrt{y}$.
9. Add together $2 a b+3 x y-x^{2} y^{2}+z, 8 a b-x y+x^{2} y^{2}-z$, $a b-x y+2 x^{2} y^{2}+4 z$, and $-7 a b-x^{2} y^{2}+2 x y-x$.
10. The quantities x and y are unlike; and evidently their aum will be neither $2 x$ nor $2 y$; it can only be expressed as $x+y$. So the sum of x and $-a b$ is $x-a b$. When therefore we have nnlike quathogeto add we, proceed by the following

Rum.

To the sum of such quantities as are like (obtained by the Preceding Rules) annex the unlike quantities with their pro-

Exaikin.

ADDITION AND SUBTMAOTION.

In this example having dieposed of the quantitien $x^{2} y^{2}$ and $x y$, by the preceding rules; we find the onm of the coefficients of b, which are positive, to of 3 , and that of the negative to be 3 also; this leaves no difference (since $3 b$ to add and $3 b$ to subtract cancel one another), and consequently nothing to set down under the quantity b; then $-8 c$ having no llke quantity in the sum is set down in the answer, and similarly $+y z$.

Exeroian IV.

1. Add together $a+b, 2 a-b$, and $8 a+9 b$.
2. Add together $x^{2} y-2 x y-z, 8 x^{2} y+9 x y+y$, ana $x^{2} y-7 x y-y$.
3. Add together $8 a^{2} b-9 x y+8 x^{2} y^{2}, 7 a^{2} b+x y-x y d$, and $10 x y+7 x^{2} y^{2}+a b c$.
4. Find the sum of $3 a^{8}+3 b^{2}+3 a b, 2 a^{2}+8 b^{2}+8 b c$, $-3 a^{2}-9 a b+x^{2} y^{2}$, and $5 b c-8 b^{2}+9 a^{2}$.
5. Find the sum of $4+x y+x^{2} y^{2}+x y^{2}, 8-3 x^{2} y^{3}+$ $x^{2} y,-7+5 x y+8 x y^{2}+x^{2} y, 9 x y+10 x^{2} y^{2}+x y^{2}+x y z$.
6. Find the sum of $9 a b+a b^{2}+a^{2} b^{2}+a c^{2}, 10 a b-$ $8 a b^{8}+b c,-8 a b-2 a b^{2}+8 a c^{2}, 7 a b+a^{2} b^{2}+8 b c$.
7. Find the sum of $2 a x+y z, 5 a x+4 y z, 2 y z-8 C$, $8-8 y z, 12 a x+4,5 y z-8,8 a x+8 y z+8 d$.
8. What is the sum of $x+3 x y=7 y, 8 x-x y+4 z$, and $-x+4 x y+y-z$?
9. What is the sum of $a^{2}+2 a b+2 b c+2 c d, 8 a^{2}+4 b c$ $-2 c d+d_{1}-7 a^{2}+2 a b+8 b c+4 c d, 4 a^{2}+8 a b+7 b c$, $a^{2}+a b+b c+c d+d$?
10. Add together $8 a x^{2}+7 b y+a b c d+24,7 a x^{2}+8 b y$ $+2 a b c d, 5 a x^{2}+9 b y-a b c d+16,4 a x^{2}-a b c d+8+8 a x^{2}$.
11. Find the sum of $x^{2}+2 x y+y^{2}, x^{2}-2 x y+y^{2}$, $x^{2}+2 x y-y^{2}, x^{2}-2 x y-y^{2}, 2 x y+y^{2}-x^{2},-2 x y+y^{2}-x^{2}$ $2 x y-y^{2}-x^{2}$.

20

ADDITION AND BUBTRAOTION.

12. Add together $-3 a b+2 b c-y z,-a b+2 b c+y z$, $2 a b-2 b c+x y$ and $5 a b-6 b c+y z$.
13. Add together $2 a b c-8 a x+2 a x d-b c, 2 a b c-4 a x$ $+3 b c$, and $8 a b c-8 a x d+y$.
14. Add together $\dot{a}^{2}+2 a b+2 a^{2} b^{2}+b^{2}, 3 a^{2}-a b+$ $3 b^{2}, 4 a^{2}-2 a b+a^{2} b^{2}$, and $3 a^{2}+a b^{2}-a^{2} b^{2}$.
15. Add together $x^{2} y+3 a b+4 a x-b, 2 x^{2} y-2 a b+$ $x, 3 x^{2} y-a x+b$, and $4 x^{2} y^{2}-2 a x+2 b$.
16. Add together $3 \sqrt{ } x y+5 b c-8,2 x y-3 b c-x y^{2}, 2 \sqrt{ } x y$ $-x y+b c+d$, and $-\sqrt{x y}+x^{2} y^{2}+2 b c-x y^{2}$.
17. Add together $2 a b-\sqrt{ }(a+x)+2(a+x)+x y$ $8 a b+4(a+x)-2 x^{2}, 2 \sqrt{ }(a+x)-(a+x)+x y$, and $a b$ $+3(a+x)+x^{2}$.
18. Add together $x^{2} y+8 a x+3 \sqrt{x^{2} y-4,2 x y-5 a x}$ $+\sqrt{ } x^{2} y, 7-2 x^{2} y+\sqrt{ } x^{2} y+x y, 3 x y^{2}+5 a x+1 x^{2} y+5$, and $x^{2} y-x y^{2}-a x-2$.
19. If we want to take b from a we express the result by writing the minus sign before b, thas $a-b$, becanse the pign minus indicates subtraction. In subtracting b from a then we perform the same operation as in adding, only we change the sign of the quantity to be subtracted, and so, if we take a from 2α the result is a, just as it would be if we changed the sign of the a to be subtracted and added it. Again if we want to take $-a$ from $a+b$ the result is $2 a+b$. For $a+b=2 a-a+b$, and if $-a$ be taken away or subtracted there remains $2 a+b$. The came result is attained by changing the sign of $-a$ and adding it.

Rule yor Subtraction.
Change the sign of the quantity to be subtracted, or magine it to be changed, and proceed as in addition.

ADDITION AND SUBTRAOTION.

2. EXAMPLI.

$$
\begin{aligned}
& 8 a x+6 b^{2} y^{2}-7 a b c-8 a^{2} b^{2} \\
& \frac{6 a x-2 b^{2} y^{2}+6 a b c-8 a^{2} b^{2}-b}{2 a x+8 b^{2} y^{2}-12 a b c+b}
\end{aligned}
$$

Here we take the $6 a x$ and changing the sign to $-6 a x$ we proceed as in addition by deducting the smalier coefficient 6 from the larger 8 and setting down the difference 2ax. Passing to the next term in the sum we change the sign of $2 b^{2} y^{2}$, and then adding the $2 b^{3} y^{2}$ to the $6 b^{3} y^{2}$ set down the result $8 b^{2} y^{2}$, with the plus sign prefixed; then babc with the sign changed is $-5 a b c$, and $-b a b c$ and $-7 a b c$ are $-12 a b c$, which we set down ; then $-8 a^{2} b^{2}$ with the sign changed becomes $8 a^{2} b^{2}$ which cancels $-8 a^{2} b^{2}$, for $8 a^{2} b^{2}$ added to $-8 a^{2} b^{2}$ is equivalent to $8 a^{2} b^{2}-8 a^{2} b^{2}$ i then $-b$ with the sign changed becomes $+b$, and there being no other similar quantity we set down the result with its sign prefixed, and thus complete the answer.

Eximaibs V.

1. From $8 a b+4 b c+7$ take $6 a b-b c-4$.
2. From $5 y^{2}-4 y+a$ take $6 y^{2}-4 y-a$.
3. From $x^{3}+2 x^{2}-6 x$ take $-x^{3}+3 x^{2}+4 x$.
4. From $9 x^{3} y^{2}+7 a b-2 a^{2} y-6$ take $-7 x^{2} y^{2}+6 a b+$ $2 a^{3} y-5$.
5. From $-8 x+a b c+2 d^{2}-4 a x$ take $6 x-a b c+2 d^{2}$ $+a x=8$.
6. From $x^{2} y-x y^{2}-8 x^{2} y^{2}+2 b c$ take $2 x^{2} y+x^{2} y^{2}-$ $x y^{2}+7 b c-x$.
7. Take $7 a b+8 b c-9 c d-10 d e x$ from $8 a b-7 b c-10 c d$ $+8 e x+90 x$.
8. Take $6 a b+2 x y+8 x^{2} y+y^{2}$ from $9 y^{2}-2 x y+2 x^{2} y$ -bc.
9. Tale $8 a x+7 x y+4 y z+y z$ from $9 \dot{a} x-6 x y+8 y z$ $+z y$.
10. From $108+6 a-9 b+10 x y+8 z$ deduct $7 z+6 a$ $+8 b+x y$.
11. Take 7rst $+8 b c y+8 y-9 y z$ from $8 r s t-7 c b y+6 y$ $-8 z$.
12. From $10 a x-10 b x+10 c x+8 a y z+b^{2}$ take rox $c x+T b x+a y z$.
13. From $2 a^{2} x-2 a x^{2}-2 x y+y^{2}$ take $a^{2} x+a x^{2}+y$ $+y^{2}$.
14. Take $8 b^{2}+2 a y+b x+d$ from $2 a y+9 b^{2}-b x-c$.
15. Take $2 \sqrt{x}-x y+7 a b-2 c d+x$ from $2 x y-3 a b+$ $c d-y$.
16. Sabtraction we have seen is performed by changing the sign of the quantity to be subtracted. If we want to subtract $(b-c)$ from a, since $(b,-c)$ being within brackets is to be regarded as one quantity, we write the result $a-(b-c)$. But if we desire to remove the brackets and so break up the quantity $(b-c)$ into the simple quantities composing it, then bearing in mind that $(b-c)$ is to be sabtracted, that is, both b and $-c$ are to be subtracted, we must change the signs of the several terms, and write the result $a-b+c$. Hence the removal of brackets where preceded by a minus sign necessitates the changing the signs of all the terms which were in the brackets.
17. To show that $a-(b-c)$ is equal to $a-b+c$, it is only necessary to observe that the expression signifies not that b is to be subtracted from a but 8 lessened by c. Now if we sabtract b we subtract too mach by c,
and we mast add c to make the resalt correot. Thua it becomes $a-b+c$.. $\Delta \mathrm{n}$ arithmetical Hinstration shows this more plainly still. To subtract (4-2) from 8 we must subtract not 4 , but 4 less 2 , or 2 . The diference is 6 , and will be found to be so if the signs are changed as directed. Thas $8-(4-2)=8-4+2$ r 6.

OHAPTER III.

MULTIPLICATION AND DIVISION.

1. We have seen that $a b$ denotes a multiplied by b_{j} and therefore if we wanted to multiply a by b we should express the result as $a b$.
2. If to want to multiply $2 a$ by b we require to add $2 a b$ times ; the result is $2 a b$. But if we whint to maltiply $2 a$ by $-b$ we in fact require to subtract $2 a b$ times and the result is $\mathbf{- 2 a b}$. If again we require to multiply $-2 a$ by -3 we in fact want to subtract $-2 a b$ times; but we know that the subtraction of $-2 a$ would be expressed by $2 a$ so the result of the multiplication is sab. Hente in moltiplyfing algebraie quantition tw have not only to regard the quantities themselves but the nigms Which preeede theri, and it munt be carefally notiol that tite digns produce plue and unditive ofgus minive.
3. andithlice by is a equare, or c to the gad powit, which we have weon is expremsod thon, aft f and \mathbf{d}^{4} mentis $\& \times a \times a \times a$ which may bo otherwiza arpresed an $a^{2} X \alpha^{2}$, or $a^{8} x a$. Where therefore we hare the tathe lotters in beth muitiphteand end metitipliter,

answor, affixing as the index of its power the sum of its indices in the multiplier and multiplicand.
4. To multiply simple quantities then we proceed by the following

Rul.
If the signs in multiplier and multiplicand are like, the product will be positive, but if they are unlike a minus sign must be prefixed to the product.

Multiply the arithmetical coefficients and affix the several letters compasing the quavitities.

When the multiplier and multiplicand contain powers of the same letter, add the exponents or indices of such letter for its exponent in the product.

mxikpling.

Multiply 7ab by $2 a x^{2}:-8 x y$ by $2 z$: and $3 a b$ by $2(x-y)$.

$$
\begin{array}{lcl}
\text { (1) } & \text { (2) } & \text { (3) } \\
7 a b & -8 x y & 3 a b \\
2 a x^{2} & 2 z & \frac{2(x}{14 a^{2} b x^{2}} \\
-\frac{16 x y z}{6 a b r}
\end{array}
$$

In the first example we multiply 7 by 2 and set down the product $14 ;$ we then find a both in multiplier and multiplicand, and therefore add together its indices, Which are 1 in each case, and give 2 for the index in the product; or a^{2}, to this we append the letters bas Which remain in the multiplier and multiplicand. No sign need be prefixed to this, fince the signs of the multiplier and multiplicand are similar, and consequently the product is positive. In multiplying, in the second

- oxample, $-8 x y$ by $2 x$ the signs are unlike, and it becomes neceseary to prefix - to the prodinot: In multiplyingin
the last example, we regard the $(x-y)$ as one quantity, and affir it in the product as we should any other quantity.

Exrraiga VI.

1. Maltiply $8 a b^{2} x$ by $6 a b y$.
2. Multiply $3 x y z$ by $-4 x^{2} z$.
3. Multiply $8 a b c d$ by $2 x y z$.
4. What is the product of $-3 a^{2} b^{3} x$ by $-2 b c$?
5. What is the product of $8(a-x)$ by $2 b$?
6. Multiply $-7(b x-y)$ by $-8 a c$.
7. Multiply $3 a^{2} x$ by $3 a x^{2}$.
8. Multiply $-2 x^{2} y^{2}$ by $-3 a y^{2}$.
9. Multiply $2 a^{2} b x$ by aby.
10. Maltiply $-3 a^{2} x^{2} y^{2}$ by $-2 a x y$.
11. As compound quantities consist of an aggregate of simple quantities, we must when we huve to multiply a compound quantity by a simple one, multiply each term of the maltiplicand by the multiplier; and to multiply a compound quantity by a compound quantity we must multiply each term of the multiplicand by each term of the multiplier. Hence the multiplication of compound quantities is regulated by the following.

RoLI.

Multiply each quantity in the multiplicand by each quantity on the multiplier, according to the rule already given, and add the several partial products together for the product of: the entire multiplication.

ExAYPLIES.

Multiply 7axt $-2 y^{2}$ by a^{2}; $4 a^{2}-3 y^{2}$ by $a^{8}-y^{2}$; and

(1) 7ax-2y a^{8}	$\begin{gathered} (2) \\ 4 a^{8}-3 y^{2} \\ a^{2}-y^{2} \end{gathered}$	$\begin{aligned} & \text { (3) } \\ & a+b \\ & a-b \end{aligned}$
$7{ }^{7} 3 x-2 a^{2} y^{2}$	$4 a^{4}-8 a^{2} y^{2}$	$a^{9}+a b$
	$-4 a^{2} y^{2}+3 y^{4}$	$-a b-b^{2}$
	$4 a^{4}-7 a^{2} y^{2}+3 y^{4}$	$a^{2} \quad-b^{2}$

In the first example we multiply $7 a x$ by a^{2}, and set down the result; we then multiply. $-2 y^{2}$ by a^{2} and append the result, and thas form the product of the multiplication of the whole quantity $7 a x-2 y^{2}$ by a^{2}.

In the second example we multiply the whole quantity by a^{s} and set down the product; the then multiply the whole quantity by $-y^{2}$ and set down the product; the addition of the two partial products gives tis the prodict of the multiplication of the two compound quantities.

In the last example we find on addiag the partial products that $+a b$ and $-a b$ cdncel one another; and consequently that $a^{2}-b^{2}$ is the product of the maltiplication of $a+b$ by $a-b$.

Fisaroign VII.

1. Maltiply $\sqrt{a b}+2 x+3$ by $8 a$.
2. Multiply $a^{2}-2 a b+b^{2}$ by $a-b$.
3. Multiply $2 x^{2}+x$ by $x+2$.
4. What is the product of $a^{8}-a x+x^{2}$ by $a+x$?
5. Multiply $-7 b+c x$ by $2 a-c x$.
6. Koltiply $x^{2}-8 x+2$ by $x-4$.
7. Multiply $x^{2}-2 x y+y^{2}$ by $x-y$.
8. Multiply $4 a-4 b-4 c$ by $x+y$.
 2y?
9. What is the product of $9 x^{2}-3 x y+y^{2}$ by $8 x+y$ +2 ?
10. Maltiply $\delta a^{2}+8 a x-2 x^{2}$ by $3 a-x$.
11. Multiply $a^{4}-4 a^{3} x+9 a^{2} x^{2}-4 a x^{2}-x^{4}$ by $a^{8}-2 a x$ $-x^{2}$.
12. Multiply $2 a x+b+c$ by $a x-b+c$.
13. Multiply $2 a^{2}-2 b^{2}+c^{2}$ by $a^{2}-b^{2}$.
14. Multiply $x^{4}+x^{2} y^{2}+y^{4}$ by $x^{2}-y^{2}$:
15. Multiply $a^{2}+a b+b^{2}$ by $a^{2}-a b+b^{2}$.
16. Multiply $x+y$ by $x+y$ and the product by $x+$ y.
17. Multiply $x^{2}+2 x y+y^{2}$ by $x^{3}-2 x y+y^{2}$.
18. Since in multiplication like signs produce plas and unlike minus, it follows that in division where the aigns of dividend and divisor are similar, the sign of the quom tient will be plus, but where they are unlike it will be minus.
19. If we have to divide $8 a b$ by $2 b$ we require to ascertain how often $2 b$ is contained in $8 a b$. Evidently $4 a$ times, since $4 a \times 2 b=8 a b$. We attain the answer then by dividing the coefficient of the dividend by that of the divisor, and then dividing the letters of the one by the other, by cancelling any letter that is centained in both dividend and divisor. If now we have divide 2 ace by b we are unable to proceed ad in the al.ve examplo, for the divisor consists of b only, and there is no b in the quantity to be cancelled and thus effect the division. In this case we can only indicate the division by writing the quantities in fractional form, thus $\frac{2 a x}{b}$
20. a^{8} divided by a gives a for $a \times a=a^{2}$. Hence b^{8} $\pm a=a, a n d$ therofore when the divisor and dividend
contain different powers of the same letter wo subtract the smaller inderfrom the greater, and place the difference as the index of the letter, either above orbelow the fractional line, according as the dividend or divisor contains the higher power.
21. Hence the division of simple quantities is performed by the following

Rul.

If the signs of the divisor and dividend are like, the quotient will be positive, but if the signs are unlike the quotient will be negative, and must be prefaced by a minus sign.

Write the divisor under the dividend, in fractional form. Divide the coefficient of the dividend by that of the divisor, or reduce the coefficients of both divisor and dividend by dividing both by the highest number that will go into each without a remainder.

Cancel any letters that are common to both divisor and dividend.

Where powers of the same letter are contained in divisor and dividend, subtract the lesser index from the greater and the difference vill be the index for the letter in the dividend or divisor, whichever has the higher power.

TXAYPL
Divide $8 a^{2} x$ by $2 a x$, and $-10 a b$ by $4 y$.

$$
\frac{8 a^{2} x}{2 a x}=4 a \quad-\frac{10 a b}{4 y}=-\frac{5 a b}{2 y}
$$

In the first example the signs of both divisor and dividend are similar, and the quotient is therefore positive. We write the dividend and divisor in fractional form, and then find that the coefficient of the dividend
tract diffejelow ivisor rmed
is exactly divisible by that of the divisor, and glves 4 for the quotient. We find x both in dividend and divisor, and therefore it becomes cancelled. a is contained. in both dividend and divisor, and aubtracting the index of a in the divisor from that in the dividend gives a as the quotient. We thus obtain $4 a$ as the result of the division of $8 a^{2} x$ by $2 a x$.

In the second example the sigus are dissimilar, and the quotient requires to have a minus nign prefixed. We reduce the coefficients by dividing by 2 , and as there are no letters in the divisor that are contained in the dividend, we can only express the quotient as $-\frac{5 a b}{2 y}$.

Exeraigm VIII.

1. Divide $4 a^{2} b^{2}$ by $2 a b$.
2. Divide $8 x y$ by 3 .
3. Divide $-16 a^{2} b c$ by $2 a b^{2}$.
4. Divide $9 x^{2} y$ by $-3 x$.
5. Divide $2 a^{2} b$ by $a b c$.
6. Divide $6 a b x$ by $-3 x y$.
7. Divide $16 a^{3} b^{2} x$ by $2 b^{2} y$.
8. Divide $3 a^{2} x^{2} y^{2}$ by $a x y$:
9. Since compound quantities consiat of an aggregate of simple quantities, we must, in order to divide a compoand quantity, divide each of i4s terms by the divisor. Hence where the dividend is a componnd quantity and the divisor a simple one, wo proceed by. the following

Role.

Divide each term of the dividend by the divisor according to the preceding rule, and prefix to each term in the quotient its proper sign.

梧AMPLD.

Divide $8 a^{2} x-7 y$ by $-2 a$.

$$
\frac{8 a^{2} x-7 y}{-2 a}=-4 a x+\frac{7 y}{2 a}
$$

Placing the quantities in fractional form, "find that $8 a^{2} x$ divided by $-2 a$ gives $-4 a x$; and thatifyty divided by $-2 a$ given $+\frac{7 y}{2 a}$. Hence the quotient is $\sim^{\prime} 4 a x+\frac{7 y}{2 a}$.

Exnioigy IX.

1. Divide $8 a^{2} x-8 x y^{2}$ by sax.
2. Divide $3 a b c+3 b c d+3 c d$ bjan abc.
3. Divide 7bxy ${ }^{2}-8 x^{2} y$ by $2 b y$.
4. Divide $-4 a^{2} x^{2}+8 a^{2} x$ by $a^{2} x$.
5. Divide $2 a^{2} b^{2}+2 a b+2 a^{2} b$ by $-a b$.
6. Divide $\delta x^{2}+\delta y^{2}+15 x y$ by $3 x y$.
7. Divide $10 a b+10 a^{2} b^{2}$ by $2 a b$.
8. Divide $12 a+6 a x+9 a^{2} x^{2}$ by $3 a$.
9. Whare the divisor is a compound quantity, since each quantity in the dividend must be divided by each quantity in the divisor, we divide by the following

Roli.

Place the divisor on the left hand of the dividend, and arrange the several quantities in both divisor and dividend, so that the different powers of one letter common to both may succeed each other in the order of their indices.

Having ascertained how often the first term of the divisor te contained in the first term of the dividend, eet the reault in the quotient; multiply the whole divisor by the quotient

MUTTIPRLOATION AND DIVIMTOM.

fisure; subtract, bring down ae many fresk terme ae are necsesary for the nast division, and continue the operation as long as practicable.

If there be any remainder place it in the form of a fraction in the quotient with the divisor for its demuminator.

mayplit 1:

Divide $6 x^{4}-96$ by $-6+3 x$.

$$
\begin{aligned}
& 3 x-6) 6 x^{4}-96\left(2 x^{3}+4 x^{2}+8 x+16\right. \\
& 6 x^{4}-12 x^{3} \\
& 12 x^{3}-48 \\
& 12 x^{3}-24 x^{2} \\
& \text { 24x } x^{2}-96 \\
& 24 x^{2}-48 x \\
& \text { 48x-96 } \\
& \text { 48x-96 }
\end{aligned}
$$

The terms of the divisor require to be transposed so as to bring x first, as we bave placed $6 x^{4}$ first in the dividend. The first term of the dividend divided by the first in the divisor resultiv in $2 x^{3}$; we put this in the quotient, multiply the whole divisor iby its aubtract the .. product, bringing down the next term of the dividend; then $3 x$ will go into $12 x^{2} 4 x^{2}$ times. Wo put+ $4 x^{8}$ in the quotient, multiply the divisor by it and proceed as before.

Exakpin 2.

Divide $-8 a x+4 x^{2}+4 a^{2}+2 b b y-2 x+2 a$.

$$
\begin{gathered}
\frac{2 a-2 x) 4 a^{2}-8 a x+4 x^{2}+2 b\left(2 a-2 x+\frac{2 b}{2 a-2 x}\right.}{4 a^{2}-4 a x} \\
\frac{-4 a x+4 x^{2}}{2 b}
\end{gathered}
$$

32

- We here arrange the terms of the divisor and dividend according to the indices of a; having then divided as in the last example we find a remainder 26 , which is not divislible; we therefore write this remainder in the quotient in the form of a fraction, with the divisor for denominator, thns $\frac{2 b}{2 a-2 x}$

mxAMPLI 3.

Divide $a^{3}-x^{2}$ by $a-x$.

$$
\begin{gathered}
a-x) a^{2}-x^{2}\left(a^{2}+a x+x^{2}\right. \\
\frac{a^{8}-a^{2} x}{a^{3} x-x^{3}} \\
\ldots \frac{a^{2} x-a x^{2}}{a x^{8}-x^{3}} \\
a x^{2}-x^{2}
\end{gathered}
$$

Eximage X.

1. Divide $a^{2}-2 a b+b^{2}$ by $a-b$.
2. Divide $a^{2}+2 a x+x^{2}$ by $a+x$.
3. Divide $27 a^{2}-12 a^{8} x+28 a x^{2}-3 x^{2}$ by $9 a-x$.
4. Divide $x^{2}+4 x+3$ by $x^{2}-2 x+3$.
5. Divide $x^{3}+a^{3}$ by $a+x$.
6. Divide $-8+y^{2}+2 y-4 y^{3}$ by $y-4$.
7. Divide $2 a x-2 b c x-3 a y+3 b c y+c d$ by $2 x-3 y$.
8. Divide $2 a b+8 a c-2 a b^{2}-16 a b c+3 y$ by $a-2 a b$.
9. Divide $2 a x+x^{3}-2 a y-x^{3} y-y^{2}$ by $x-y$.
10. Divide $-8 a^{2}+8 a^{2} b+16 a^{2} b^{2}$ by $2 a b+2 a$.
11. Divide $x^{4}-y^{4}$ by $x-y$.
12. Divide $a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$ by $a-b$.
13. Divide $48 x^{3}-76 a x^{2}-64 a^{2} x+48 a^{2}$ by $2 x-4 a$.
14. Divide $3 a^{4}-8 a^{2} b^{2}+3 a^{2} c^{4}+8 b^{4}-3 b^{2} c^{2}$ by $a^{2}-b^{2}$.

OHAPTER IV.

GREATEST COMMON MEASURE AND LEAST COMMON MOLTIPLE.

1. A measure of a quantity is any quantity which will divide it and leave no remainder ; in other words one of its factors. A common measure of two or more quantities is any quantity which will divide all of them without a remainder; in other words a factor common to all of them. The greatest common measure of two or more quantities is the greatest quantity which will divide all of them without a remainder; or, in other words, the product of the highest common factors.
2. Thus a is a measure of $a b$; for $a b$ is composed of the factors a; and b; so it is a measure of $a^{2} b$ which is composed of the factors a, a, and $b ; x$ is a common measure of $x^{2} y z$ and $x^{2} y$; for they are respectively composed of the factors x, x, y, z, and x, x, y and it is apparent that x is a factor which is common to or contained in both quantities. The greatest common measure of $x^{2} y z$ and $x^{2} y$ is $x^{2} y$ for the highest factors that art common to both are x^{2} and y, and their product $x^{2} y$ is the highest factor which is contained in both the quantities.
3. We ascertain-the G. O. M. of simple quantities by inspection, for upon a glance we are able to perceive what are the highest factors that are common, and the product of the highest factors is the G. O. M. If the quantities have numerical coefficients we must ascertain their G. O. M., and prefis it to the result:

If, for example, we require to ascertain the G. O. M. of $a^{2} b^{2}, a^{3} b c$, and $a^{2} b$, à moment's inspection shows us that a^{2}, and b are the highest factors that are common, and that consequently $a^{2} b$ is the G. O. M. of the three quantities.
4. But if the quantities of which the G. O. M. is to beascertained are compound, we must proceed as in arithmetic, by dividing one by the other, treating the remainder after the first division as a new divisor, and the former divisor as the new dividend, and thus continuing till there is no remainder. The last divisor used will be the G. C. M. If we have to ascertain the G. C. M. of more than two compound quantities, we first-ascertain the G. C. M. of any two of them, and then ascertain the G. C. M. of another quantity, and the G. C. M. already found, and so on.
5. Where any of the quantities contains a factor common to all its terms, we may simplify the quantity by eradicating or striking out the factor. While, however; we may eradicate factors common to the different terms in one quantity, and factors common to those in another, we must when we strike out the same factor from all the quantities be careful to note that it will form a part of the G. O. M., and that the last divisor used must be multiplied by it to obtain the correct G. O. M.
6. Whenever we have a remainder brought into use as a divisor in the course of ascertaining the G. C. M., we may strike out any common factor that its ferms contain.
7. Whenever in the courso of ascertaining the G. \mathbf{C}. M. the coefficient of the first term of the dividend is not exactly divisible by the first term of the divisor, we
may multiply the dividend by such a number as will make it so divisible.

EXAMPLE.

What is the G. C. M. of $9 a^{2} b-25 b$ and $9 a^{2}+3 a-20$ i

$$
\left.9 a^{2} b-25 b\right) 9 a^{2}+3 a-20(1
$$

$$
9 a^{2}-25-9 a^{2}-25
$$

$$
\begin{array}{r}
3 a+5) 9 a^{2}-25(3 a-5 \\
\frac{9 a^{2}+15 a}{-15 a-25} \\
-15 a-25
\end{array}
$$

We find that $9 a^{2} b-25 b$ contains a factor (b) common to all its terms; this we eradicate, and simplify the quantity to $9 a^{2}-25$. If, however, the other quantity were $9 a^{2} b+3 a b-20 b$, it would be necessary to note when eradicating the b from the divisor and dividend, that b would form a part of the G. C. M., and that the G. C. M. found by division would require to be multiplied by b to obtain the true G. C. M.

We now divide one quantity by the other, and obtain as a remainder $3 a+5$, which we make a divisor, placing the preceding divisor as the new dividend. We find that $3 a+5$ divides it exactly, and that it is consequently the G. C. M. of the two quantities.
If instead of seeking the G. C. M. of $9 a^{2} b-25 b$ and $9 a^{2}+3 a-20$ we had to ascertain the G. C.M. of $9 a^{2}-2$, $9 a^{2}+3 a-20$, and $6 a b+10 b$, we shonld, having ascertained the G. C. M. of the two first quantities to be $3 a+5$, take the two quantities $3 a+5^{i}$ and $6 a b^{\circ}+10 b$, and proceed to ascertain their G. C. M. This we should find to be $3 a+b$, which would consequently be the G. O. M. of the three quantities.

BEAMPLR.

Find the L. C. M. of $a^{2} b^{2} c, 8 a b c$, and $2 d$.
Here striking out the factors $a b c$, common to the first and second quantity, and 2; common to the second and third, the quantities are reduced to $a b ; 4$, and d; their product, $4 a b d$, multiplied by the factors struck out, $2 a b c$, gives $8 a^{2} b^{2} c d$ as the L. C.M.
11. For ascertaining the G. O. M. of two quantities we may use the following

Rula:

If the quantities be simple find by inspection the greateat common factors, and their product will be the G. C. M. The G.C.M. of the numerical coefficients must be prefixed,

If the quantities be compound, divide one by the other, treating the remainder as a new divisor, and the former' divisor as a new dividenct, and the divisor which leaves no remainder will be the G.C.M. of the quantities deait with.

A factor common to all the terms of one of the quantities may be struck out, but if it is common to all the terms of all the quantities, the last divisor must be multiplied by at to obtain the true G. C. M.
12. To find the L. O. M. we proceed according to the following

Rulv.

Strice out the factors that are common to any two of the quantities; multiply together the' quotignts and the factors struck out.

If the quantities be compound and the factors common to any two of them be not perceived by inspection, find them by ascertaining the G. C. M. of the two quantities.

Exericise XI.

1. Find the G. O. M. of $9 a^{2} b^{2}, 3 a b$ and $27 b^{3}$. , ,

CHAPTER V.

FRACTIONS.

1. By the arithmetical expression \$ we mean one half or one divided by 2 , and in like manner we have seen that the expression $\frac{a}{b}$ means the division of a by b, and is an algebraic fraction.
2. The quantity above the line is called the numerator, that below the denominator; and both together congtitute the terms of the fraction.
3. By multiplying the numerator or dividing the denominator of a fraction, we in effect maltiply the fraction; by dividing the numerator or multiplying the denominator we in effect divide the fraction.
4. Since if we mplitiply the numerator and denominator of of froction by the samp curntity we in eftyat multiply and at the amme time divide the fraction bI
tho same quantity, it follows that multiplying both numerator and denominator of a fraction by the same quantity leaves its value unaltered, and similafly that dividing both numerator and denominator by the same quantity leaves the value of the fraction unaltered.
5. To reduce a fraction to its lowest terms :-

Rum.
Divide the terms of the fraction by their G. C. M.

> кхамрриев.

Reduce $\frac{a^{2} b^{2} x}{a b y}$ and $\frac{2 a^{2}+4 a b+2 b^{2}}{3 x(a+b)^{2}}$ to their lowest terms.
The G. O. M. of $a^{2} b^{2} x$ and $a b y^{\prime}$ is $a b ;$ dividing the ${ }^{\circ}$ terms of the fraction by this we obtain $\frac{a b x}{y}$ as the lowest terms of the fraction. The value of the fraction is unaltered, for we have divided both numerator and denominator by the same quantity.
In the second example the fraction may be expressed as $\frac{2\left(a^{2}+2 a b+b^{2}\right)}{3 x(a+b)}$, bat since $(a+b)^{2}=a^{2}+2 a b+b^{2}$, we further simplify it to $\frac{2(a+b)(a+b)}{3 x(a+b)}$, then striking out $a+b$; which is a factor common to both turms of the fraction, and which is the G. O. M. of the terms, we reduce the fraction to its lowest terms $\frac{2(a+b)}{3 x}$.
c. It is therefore apparent that we need not ascertain the G. O. M. of the terms of a fraction if we are able to split up or resolve them into their several factors, for by cancelling or dividing the terms of the fraction by the common factors we reduce it to its lowest tertus. ${ }_{4}$
7. A.mixed quantity, that is a quantity consisting of a whole quantity and a fraction, may be reduced to fractional forywhy multiplying the whole quantity by the denomin product with the fraction, placing underneath the denominator.

DXAMPLI.

Reduce $2 b-\frac{a^{2}-b^{2}}{b}$ to fractional form.
$2 b$ multiplied by b gives $2 b^{2}$, and afinexing the fraction we obtain $\frac{2 b^{2}-\left(a^{2}-b^{2}\right)}{b}$ or $\frac{2 b^{2}-a^{2}+b^{2}}{b}$ or $\frac{3 b^{2}-a^{2}}{b}$ as the equivalent fraction.
8. Where the denominator of a fraction will divide the numerator, or divide it leaving a remainder, we can reduce the fraction to a whole quantity or a mired quantity (as the calse may be.) Thus $\frac{x^{2}+2 x y+y^{2}}{x+y}$ can at once be reduced to the whole quantity $x+y$, and $2 a^{2} b+8 b x$.
a can be reduced to the mixed quantity $2 a b+$ ing the rules of division in cases where the numerator of the fraction is divisible by the denominator, or divisible leaving a remainder.
9. Toreduce fractions to a common denominator :-

Rul.

Mulfiply each numerator by the denominator of the other fractions, and all the denominators together for a common
denominator. denominator.

PRAOMIONG.

nIAKPLI.

Roduce $\frac{a^{2}}{x}, \frac{2 b}{a y}$ and $\frac{3}{z}$ to a common denominator.
Multiplying the first numerator a^{9} by the denominatore of the other fractions we obtain $a^{8} y z$ for the numerator of the first fraction, and similarly $2 b x z$ for the numerator of the second, and 3axy for that of the third; then multiplying all the denominators together we obtain axyz for the common denominator, and the fractions become $\frac{a^{3} y z}{a x y z}, \frac{2 b x z}{a x y z}, \frac{3 a x y}{a x y z}$.
10. The common denominator of any fractions is not necessarily their least common denominator; this is obtained by finding the L. O. M. of the several denominators, and the fractions may be reduced to their least common denominator by multiplying the numerator of . each by the quotient obtained by the division of the least common denominator by its denominator.

Thus to reduce $\frac{x}{2 a b}$ and $\frac{2 y}{3 b}$ to their least common denominator, we find the L. C. M. of $2 a b$ and $3 b$, which is $6 a b$; $2 a b$ will go into $6 a b 3$ times, and we multiply the numerator x by 3 ; $3 b$ will go into $6 a b$ $2 a$ times, and wo multiply the numerator $2 y$ by $2 a$; and thas obtain $\frac{3 x}{6 a b}$ and $\frac{4 a y}{6 a b}$ for the fractions reduced to their least common denominator.
11. To add or subtract fractions wè observe the following

Ruli.
Raduce the fractiome to a common denominator. Add or subtract the numerators (as the case may be) for a mexe numerator, under which place the common denominator.

тв

日XAMPL!.

 of the10 da
rhich is
ply the and we obtain he fol-

FRAOTIONE.

EXAMPL.

Divide $\frac{a b}{c}$ by $\frac{x}{y}$.

$$
\frac{a b}{c} \div \frac{x}{y}=\frac{a b}{c} \times \frac{y}{x}=\frac{a b y}{c x}
$$

14. In multiplying fractions we may cancel any factor that is common to either of the numerators and either of the denominators.

For example if we required to multiply $\frac{2 a}{a-b}$ by $\frac{a^{2}-b^{2}}{6}$ by placing the fractions in order for multiplication, thas $2 a \times\left(a^{2}-b^{2}\right)$ $\frac{2 a \times\left(a^{2}-b\right)}{(a-b) \times 6}$ we find one of the factors in the numerator, $a^{8}-b^{2}$, may be resolved into the factors $(a+b)$ $(a-b)$; then placing these factors in place of $a^{8}-b^{2}$ we obtain $\frac{2 a \times(a+b)(a-b)}{(a-b) \times 6}$; we find the factor $a-b$ common to both numerator and denominator, and therefore cancel it, thus reducing the fraction to $\frac{2 a(a+b)}{6}$; cancelling the common factor, 2 , we obtain $\frac{a(a+b)}{3}$ or $\frac{a z+a b}{3}$ for the answer.

Fitmaism XII.

1. Reduce $\frac{6 a^{2} b^{2}+12 a^{2} b}{3 a^{2} b x}$ to its lowest terms.
2. Reduce $\frac{x-y}{x^{2}-y^{2}}$ to its lowest terms.
$27 a 36$
3. Roduce $\frac{-}{18 a^{2} c}+9 a c d$ to its lowest terms.
4. Reduce $a-\frac{b x+a^{2}}{b}$ to fractional form.
5. Reduce $\frac{a^{2}-b^{2}}{a+b}$ to a whole quantity.
6. Reduce $\frac{x-4}{2}$ and $\frac{x-a}{a}$ to a common denominator.
7. Reduce $\frac{3 a b-2}{2 a b}$ and $\frac{2 b}{8 a}$ to a common denominator.
8. Reduce $\frac{8 x-y}{x^{2} y}$ and $\frac{x-y}{x}$ to their least com. denom.
9. Add together $\frac{5 y}{2}, \frac{3 y}{6}$, and $\frac{y}{x}$.
10. Add together $\frac{a+b}{2 a}$ and $\frac{a-b}{2 b}$.
11. Add together $\frac{a x-x^{2}}{a}$ and $\frac{2 x}{a}$.
12. Add together $\frac{3 y+1}{6}, \frac{y-2}{y}$, and $\frac{y-3}{4}$.
13. Subtract $\frac{3 y}{2}$ from $\frac{6 y}{a}$.
14. Subtract $\frac{3 x+4}{5}$ from $\frac{5 x+8}{3}$.
15. Subtract $\frac{a x-x^{2}}{a}$ from $\frac{2 x}{b}$.
16. Subtract $\frac{2 x-5}{x}+\frac{x-1}{x}$ from $\frac{7 x-4}{5}$.
17. Multiply $\frac{a b}{a-2}$ by $\frac{b}{7}$.
18. Multiply $\frac{x-y}{x}$ by $\frac{3 a x}{x-y}$.
19. Muitiply $\frac{x^{2}-a^{8}}{4}$ by $\frac{3 b}{a+x}$.
20. Multiply together $\frac{8 a}{a-x}, \frac{7 b}{a x}$, and $\frac{8 c}{a^{2}}$.
21. Divide $\frac{8 x}{3}$ by $\frac{4 x}{6}$.
22. Divide $\frac{8 y^{2}-y}{2}$ by $\frac{y}{3}$.
23. Divide $\frac{8 a-3 b}{2 a}$ by $\frac{4 a-4 b}{3 b}$.

OHAPTER.VI.

INVOLUTION AND EVOLUTION.

1. Involution is the process of raising quantities to any required power, and is performed by multiplying the quantity into itself as many times (less one) as there are units in the index of the required power.
2. The involution of simple quantities is generally performed by multiplying the index of the quantity by that of the required power, and prefixing the result of the involution of the coefficient (if any) obtained by actual maltiplication. For since a^{2} raised to the 3 rd power $=a^{2} \times a^{2} \times a^{2}=a^{6}$; the result is evidently more simply obtained by multiplying the index of a (2) by the index of the power (3), thus a^{2} to the 3rd power $=a^{2 \times 3}=a^{6}$. Thus we see that in the case of simple quantities by the process above mentioned we obtain the same result as if we multiplied the quantity into itself as many times (less one) as there are units in the index of the required power.
3. But in the case of componad quantitios wo must proceed by actual multiplication.
4. Since $x^{2} \times x^{2}=x^{4}$ it is evident that we may in some measure abbreviate the process of involving compound quantlties to high powers. For since the square of a quantity multiplied by itself gives the 4th power, We may obtain the 4th power by first squaring the quantity and then multiplying the square by itself. Similarly since $x^{3} \times x^{3}=x^{6}$ we may obtain the 6th power by multiplying the cube by itself, \&ce.
5. In the case of a fraction we must involve the numerator and also the denominator to the required power, and the results will be the terms of the fraction raised to the required power.
6. In the case of simple quantities we must note that where they are negative, the powers whose index is odd will be negative, while those whose index is oven will be positive.

EXAYPLIB.

What is the square of $2 a^{2} x$ and the cube of $a x^{2}$?

$$
\left.\begin{array}{rl}
\left(2 a^{2} x\right)^{2} & =2^{2} a^{2 \times 2} x^{1 \times 8}
\end{array}=4 a^{4} x^{8}\right)
$$

or by actual multiplication,

$$
\begin{aligned}
& \left(2 a^{2} x\right)^{2}=2 a^{8} x \times 2 a^{8} x=4 a^{4} x^{8} \\
& \left(a x^{2}\right)^{3}=a x^{2} \times a x^{2} \times a x^{2}=a^{2} x^{6} .
\end{aligned}
$$

What is the $4^{\text {th }}$ power of $a-2 x$?
Here we multiply $a-2 x$ by itself, and thus obtain the aquare, $a^{2}-4 a x+4 x^{2}$, and multiplying this agdin by itaclf wo obtain the 4^{4} power required, $d^{4}-8 a^{3} x+24 a^{2} x^{4}$ $\left.-8 t^{2}\right)^{3}+16 x^{4}$, ad shown on the next page.
,
-

$$
y^{\prime \prime}
$$

$$
\begin{aligned}
& a-2 x \\
& \frac{a-2 x}{a^{2}-2 a x} \\
& \frac{-2 a x+4 x^{2}}{a^{2}-4 a x+4 x^{2}} \\
& \frac{a^{2}-4 a x+4 x^{2}}{a^{4}-4 a^{2} x+4 a^{2} x^{2}} \\
& -4 a^{2} x+16 a^{8} x^{2}-16 a x^{8} \\
& \frac{a^{4}-8 a^{2} x+24 a^{2} x^{8}-32 a x^{2}+16 x^{4}}{2}-16 a x^{8}+16 x^{4}
\end{aligned}
$$

7. We may therefore, for the involution of algebraic quantities, proceed by the following

Ruli.

-In the case of rimple quantities involve the coefficient to the required power and append the quantity with the indices of its several letters multiplied by the index of the required power. If the quantity be negative and the index of the power odd, the product or power must have a negative sign prefixed.

In the case of compound quantities multiply the quantity into itself as many times (less one) as there are units in the required power abbreviating, however, if possible, the number of actual multiplications, as shewen in section 4.

In the case of fractions involve the numerator and also the denominator for the terms of the fraction raised to the required power.
8. Brolntion is the oxtraction of the roots of quantitien. Since $\left(x^{2}\right)^{2}=x^{6}$, it follows that the equare root of x^{6} is x^{2}. And hence to obtain the required root of a simple quantity, we must firit extrect the root of the
numerical coefficient (if any) and then divide the index of the quantity hy the index of the root. But if it should happen that wie cannot do this, the index of the quantity not being exactly divisible by that of the root, or if the quantity have no inder greater than unity (as ax) then the root required cannot be extracted, and the quantity must be'written down with its radical sign prefized. This expression is called a surd.

Thns the $5^{\text {th }}$ root of a^{3} can only be expressed thus, $\sqrt[8]{a^{3}}$, and this is called a surd. So the cube of $2 x^{3}=$ $\sqrt[2]{2} \times \sqrt[2]{x^{3}}$. But the cube root of x^{3} is x, for the index of the quántity 3, divided by the index of the root to be extracted, 3 , is 1. Therefore the cube root of $2 x^{2}$ is $x \sqrt[k]{2}$, and this is similarly called a surd.
9. We know that + multiplied by + gives + , and that - multiplied by - gives + also. + is produced, therefore, both by the intermultiplication of positive and of negative quantities. It follows, therefore, that the square root, or any root whose index is even, of a positive quantity, may be either positive or negative; and this is expressed by writing the result thus $\sqrt{x^{3}}$ $= \pm x$.

Hence, the even roots of a positive quantity may be positive or negative, and are expressed by \pm

No negative quantity can have an even root.
The odd root of a quantity will have the same sign as the quantity itself.

This last position is evident, for if the quantity is positive, every power of it will be positive also; but if it be negative, while the second power would po ponltive, the third power (and similarly epery other odd power) would be immeriately produced by multiplying

ENVOLUNIOM AND EVOLUYIOT.

a poodive by a negotive quantity, neceswarly producing a negative quantity as the resalt.
10. Hence to extract the roots of simple quantitioes wo have the following

Rus.

t the root to be extracted be even, the reoult may be positive or negative, but if odd prefix the sign of the quantity itself.
Extract the required root of the coefficient, and append the letters composing the quantity, dividing their indices by that of the root for the indices to place in the root.

Extract the aquare root of $9 a^{4} x^{4}$; and the culbe root of $-8 a^{3} b^{6}$.

$$
\begin{aligned}
& \sqrt{9 a^{4} x^{4}}=3 a^{2} x^{2} \\
& \sqrt{-8 a^{2} b^{6}}=-2 a b^{2}
\end{aligned}
$$

In the frest example we find the square root of 9 to be 3 , and the square root of $a^{4} x^{4}$ is obtained by dividing the index of each letter by. 2 , the index of the root required, and we thus obtain $3 a^{2} x^{2}$, which should strictly be expressed $\pm 3 a^{2} x^{2}$, since $3 a^{2} x^{2}$ may be positive or negative.

In the second oxample we have to extract an odd root; and it will therefore have the same sign as the quantity itself or $-\therefore$ The root of the quantity is extracted in a aimilar manner to the preceding example.
11. If we multiply $a+b$ by $a+b$. we obtain $a^{2}+2 a b$ $+b^{2}$, and if $a-b$ be multiplied by $a-b$ the result is $a^{2}-2 a b+b^{2}$. That is the square of a quantity of two terms consists of the square of each and twice their product, sdded or subtracted (as the case may be). Trom thit formula wo find the rule for the extraction of the square roat of compound quantities,

nvolurion and mivolurion.

t may be the quan-
d append ndices by ube root 9 to be dividing reot. restrictly sitive or

Rusim.
Sertract the square root of the first term in the quantity, and place that root in the quotient; square the term placed in the root, deduct it and bring down the remainder; miltiply the term in the quatient by 2 , and find how often it ibill go into the first term of the remainder, and place the result in the quotient with its proper sign; also couple the quaintity last, placed in the root to the divisor, and multiply the whole divisor by the term last placed in the root.
If after this is done there is still a remainder, proceed as *), multiplying all the terms already-in the root for the ses. ort of the new divisor.

Exampla 1.

Extract the square root of $4 x^{8}-4 x y+y^{2}$.
$4 x^{2}-4 x y+y^{2}(2 x-y$
$4 x-y)$
$\frac{4 x^{2}}{-4 x y+y^{2}}$
$-4 x y+y^{2}$

We extract the square root of the first term and find it is $2 x$; place it in the quotient, square it, and subtract it from the quantity, bringing down the remainder $-4 x y+y^{2}$; we now multiply the terms of the quotient by 2 , and obtain $4 x$ for the first part of our divisor: 4x will go into - $4 x y-y$ timen; we place $-y$ in the quotient, and also complete our divisor with it ; now mnltiplying the divinor by the term last placed in the root, we obtain $-4 x y+y^{2}$, which deducted leaver no remain: dice. Therefore $2 x-y$ is the equare root of $4 x^{2}-4 x y+$ y^{3}.

If after wo had deducted $-4 x y+y^{2}$ there hed stin! Chen toíms remaining; we shonld hove multiplied $2 c e$ -

INV LUTION AND EVOLUTION.

by 2 for the first part of a new divisor, and then procoeded as before, and if we found that the exact square root of the quantity could not be extracted, we should express the result as a surd. Thus $a^{2} \div 3 b$ has no exact square root, and its square root would be expressed in the form of a surd, thus, $\sqrt{a^{2}-3 b}$.

EXAMPLE 2.

Extract the square root of $a^{2}-a b+\frac{b^{2}}{4}$.

$$
\begin{gathered}
\frac{a^{2}-a b+b^{2}}{4}\left(a-\frac{b}{2}\right. \\
\left.2 a-\frac{b}{2}\right)^{a^{2}}-a b+\frac{b^{2}}{4} \\
-a b+\frac{b^{2}}{4}
\end{gathered}
$$

12. If we had to extract the $4^{4 \mathrm{~h}}$ root we could extract the square root, and then again extract the square root of the root found for $x^{4}=x^{2} \times x^{2}$.
13. By cubing $a+b$ and $a-b$, and investigating the composition of the product we are enabled to find, for the extraction of the cube root of compound quantities, the following

,ROLI.

Take the cube root of the first term and piace it in the quotient ; cube the first term, and deduct it from the quaintity, bringing down the remainder. Multiply by 3 the square of the root already in the quotient; and place the resuit as the first torm'of the divisor. Ascertamn how oftion the "diviser voill goo into the first term of the dividend, and place the result with its ploper sign in the quotient; complete the dipision by anmening three times the term preosouely

HTOLUTION AND EVOLOTION.

in the quotient to the term therein, multiplying the sum by the term last placed in the root and, annexing the vhole to the divisor."

EXANPLT:

Eind the cube root of $a^{3}-3 a^{2} x+3 a x^{2}-x^{2}$

$$
\begin{aligned}
& a^{3}-3 a^{2} x+3 a x^{2}-x^{3}\left(a-x^{2}\right. \\
& \left.3 a^{2}-3 a x+x^{2}\right)^{\frac{2}{2}}-3 a^{2} x+3 a x^{2}-x^{3} \\
& -3 a^{2} x+3 a x^{2}-x^{3}
\end{aligned}
$$

We first extract the cube root of as, place the resulf in the quotient, cube it, subtract and bring down the remainder $-3 a^{2} x+3 a x^{2}-x^{2}$. Then we place 3 times the square of a or $3 a^{2}$ as the first term of the divisor, and find it will go into $-3 a^{2} x,-x$ times; we place-x in the quotient; we then complete the divisor, by annering 3 times a to the term last placed in the root; $-x$, snd maltiply the sum $3 a \dot{a}-\dot{x}$ by - x, obtaining to complete the diyisor $-3 a x+x^{2}$; multiplying the completed divigor by the tofm last placed in the root, wo obtain $-3 a^{2} x+3 a x^{2}-x^{2}$, which subtracted learé no fremuinder. The cube root therefore of $a^{8}-3 a^{2} x+$ $3 a x^{8}-x^{2}$ is $a-x$, or $\sqrt[8]{a^{2}-3 a^{2} x+3 a x^{2}-x^{2}}=a-x$
14. The evolution of fractions is performed by oxtracting the required root of both numerator and denominator, for the terms of tha fraction evolved to the root required.

Exabusir $X I T I$.

1. What is the square of $2 a-b$?
2. Raise $a^{8}-2 x$ to the $3^{\text {rd }}$ power.

3. What is the 10 pe power of $2 a^{2} x$?

4. What is the aquare of $a-x-2 y$?
a. Oabe $a-b$.
5. Raise $3 a^{2} x^{2}$ to the $4^{\text {th }}$ power.
6. What is the 3 rd power of $\frac{a^{2}-x}{2 y}$?
7. Raise $a+2 b$ to the $4^{\text {th }}$ power.
8. What is the square root of $a^{2}-2 a x+x^{2}$?
9. Extract the cube root of $64 a^{6} x^{3} y^{3}$.
10. Extract the square root of $a^{4}-4 a^{2} x+6 a^{2} x^{2}-$ $4 a x^{3}+x^{4}$.
11. What is the cube root of $\dot{a}^{6}-6 \dot{a}^{4} x+12 a^{2} m^{2}-$ $8 x^{3}$?
12. Find the square root of $4 a^{2}+4 b^{2}-8 a b$.
13. Raise $2 a b x$ to the $6^{\text {th }}$ power.
14. Nxtract the square root of $\frac{a^{2}+2 a b+b^{2}}{4 x^{2}+4 x^{2}+8 x y}$.

OHAPTERVII.

SIIPLE EQUATIONS.

1. Wo have seen thet tho sign = denotes equaifty: Where thin sign occurs between two quantition the whole expresaion is termed an equation. if x ' $=$ c thin it an equation. It does not of course menn thit zot aluoays equal to a, but that in the particular investignI on wo are maling, efther from ficts wo know or from dedactions we havo mado by alcebca, $m=\omega_{0}$. The two sidey of ai equation cogaretod hy theciger = majcomvint of timple or cennorind gmandtion.

emant mejamiona

2. Itile oustomaty te donote hanown quanditice by the carifor lettery of the alphabet; while the lait lettors of. the alphabetive used to reprecent miknown quantition, that is quantities the ralue of whioh we have to dincover oither numerically or in terme of the known quantitiow

Thug if $2 x=8$ wo have an equation wherein m is an enkinovin quantity; the value of x in the equation is readily fopnd, for if $2 x=8, x$ must equal 4. Wo havo acoertained the value of the unknown quantity, and by so doing haro (as it is termed) satieffied or solved the equation. So we might require to find the value of s where $2 x=a$, and wo shouldr eatisfy this oquetion or ascertain the value of x by $x=\frac{a_{i}}{2}$;

8 Eivery equatign may be reg urded at the exprention of a particular problem in algebraic language. Tho equation $2 x=8$ may be regarded as the algebreic erpression of the problem, to find such a number that Whon multiplied by 2 the produot stiell be 8, and the quation $2 x=a$ may be regarded as the algetralc oxpression of the problem, to find a number atich thet Wher multipliod by 2 it ghafl oquali a, arid wo solve tico oquation by finding that the number requirod, or x, grithat in, will oe half a, whatever that mey bo.
4. An equation or problem, then, may require us not simply to find the numerical value of the unknown quantity, but to find ite value in terms of some other quantities, these quantities seing for the parposes of the problem known quantities, and our object bating from
 lent of the raknown quaritite.
B. An equation in which the uriknown quantity is of the 1 powor only is callod a simple equation; if the unknown quantity be of the $2^{\text {ma }}$ power it is termed a quadrutic equation; ff of the $8^{\text {red }}$ power-a cubic equation; if of the $4^{\text {it }}$ power a bigntilratic equation.
6. We may add to or subtract from one side of an equation any quantity we please, provided that wo malitain the oquality by adding to or subtracting from the other side of the equation the same quantity. The reason of this is evident, ainoe the tivo sides of an equa-. tion boing equal to one another, an addition to each Hide of the tame quantity cannot affect the equality subaisting.
7. We may multiply or divide one side of an equation by any quantity; provided we maintain the equality by multiplying or dividing the other side by the same quantity.
8. Any term may be transposed from one side of an equation to the other if the sign be changed. . For if $x+7=8$, and in order to solvo the equation wo wish to transpose the 7 from the first side of the equation to the other, we in fact subtract 7 from the first side, and therefore must be careful to subtract it from the other side too, thas $x=8-7$. We have in reality transposed Tfrom one side of the equation to the other; changing its signs.
9. The signs of the several quantities in an equation may be changed, provided the signs of all the quantities on both sides are changed.
10. Simple equation involviag one unknown grantity are folved by the following

$$
\frac{2}{5}-\frac{x-2}{8}=\frac{6}{4}-\frac{x+3}{4} \text { ind the ralue of } x
$$

Yaltiplying by 12, the least common denominator of the thiotions : $9-4 x+8=16-3 x-2$

$$
\text { Trmoponing }-4 x+3 x=16-9-8-8
$$

$$
\therefore \quad-x=-11
$$

Ohanging the afgre $x=11$

(4)

$4 b x^{2}-9 b x^{2}=9 b x^{2}+2 b x^{2}$; find the value of x.
We have here an equation with x in all its farme, and It it necessary tg simplify it by dividing by the highent powor of x 00imon to all the torms; b boing alse a common factor we divide by $b x^{2}$ and obtain

Transposing

$$
\begin{aligned}
4 x-9 & =9+2 x \\
4 x-2 x & =9+9 \\
\therefore \therefore 2 x & =18 \\
\therefore x & =9
\end{aligned}
$$

(5)
$\sqrt{x-3}-3=4$ find the value of x.
Transposing $\quad \sqrt{x-3}=4+3$

$$
\sqrt{x-3}=7
$$

Squaring, to got rid
of the radical ofge $:-3=40$

$$
2=\mathrm{Br}
$$

In this oxample, afor tranposing wo find it nocesany to get rid of the redical aign; to do this wo multiply one side by $\sqrt{\text { ec }-3}$, and the other hy its equivalent ${ }_{7}$; in othor word wefence both ildes of the equation. For cince wo may mailiply both sides of an equation
by the came quantity, obviously we may equare each side of the equation if deairable, dince tin so doiny we multiply each elide by equivalent quartition.

Brezarse XIV.

1. $2 x+8=x+9$; find x.
2. $\sqrt{x}-2=8$; find x.
3. $\frac{x}{3}+\frac{x}{4}=14$; find x.
4. $\frac{x}{a-c}-1=\frac{x}{a+c}$; find x.
5. $2 a x-b=3 c x+4 a$; find x.
6. $a x-1 c=2 b-c$; find x.
7. $8(a-x)=\frac{x}{2}+3$; find x.
8. $b a x-2 b+4 b x=2 x+b c$; find x.
9. $x+\frac{a}{2}=\frac{a b}{3}$; find x.
10. $2 x+\frac{x}{3}+\frac{x}{2}=2-x$; find x :
11. $3 x=\frac{x+24}{3}$; find x.
12. $\sqrt{x+2}=3$; find x.
13. $b+2 x=b-\sqrt{b^{8}+x^{2}} ;$ f find x.
$14 \frac{a}{b x}=a^{2}-b^{2}+\frac{b}{a x}$; find x.
14. $x^{2}+\frac{3 x^{2}}{4}+\frac{x^{2}}{4}=x+2 x^{2}-9$; find x.
15. $\frac{x+6}{16-3 s}-\frac{25}{12}$; find x.

1\%. $4-\sqrt{1+x}=2 \sqrt{1+x} ;$ find x :
18. $3 a x+\frac{a}{2}-8=b x-a ;$ find x.
19. $x+\frac{3 x}{2}+\frac{9 x}{2}=a-b$; find x.
20. $3(x-a)=\frac{a}{2}+x$; find x.
21. $x+4 c x-8 b x=8 a b+c$; find x.
22. $a x+b x=\frac{a^{2}+2 a b+b^{2}}{4}$; find x.
23. $\frac{a b+3}{x}-\frac{c d+4}{x}=18$; find x.
11. The solution of equations involving more than one unknown quantity requires that as many independent equations be given as there are unknown quantities. We will now investigate the solution of equations involving two unknown quantities.
12. One method of solving these equations is to obtain the value of one of the unknowni quantities in one equation in terms of the other, and of the known quantities, and then to substitute the value found for that unknown quantity in the other equation. We have then an equation with only one unknown quantity, and having solved it are enabled by substituting its value in either equation to find the value of the other unknown quantity:
18. Another method of solution is to obtain the value of one of the unknowr quantities in terms of the other, and of the known gusntities, and also to obtain its value similiarly in the other equation. Then since things that are equal to the same sre equal to one another, we make the values found constitute an equation by solving which we find the value of the other unknown. quantity. The eubstitution of iti value in either equa
14. Another metlod of solution is to multiply one or both of the equations by some number that will make the coefficient of one of the unknown quantitios similar in both equaticara By then adding or aubtracting the two equation + e enabled to got rid of or eliminato one of thentorin quantities and find the value of the other.
16. For the solutior then of equations containing two anknown quantities, we have three modes of operation, and we arail ourselves of whichever mode is best adapted to the particular case, the object being to obtain an equation with only qne unknown quantity; to find the value of that quantity, and then by aubatitution to ascertain the value of the other unknown quantity.
16. We solve equations with two unknown quantities by the following

> Rule.

By one of the methods indicated in 12, 13, and 14, obtain an equation with only one unknown quant has Solve it, and having thus found the value of one of the =minown quantities, subatitute it in either of the équations, and thus obtain the value of the other unknown quantify.
 Substituting this value of x in the 2nd equation $4 y+8$

$$
\begin{aligned}
& \therefore 4 y+8-6 y=6 \\
& \therefore-y=-3 \text { and } y=3
\end{aligned}
$$

B1IMIA BOUATYONS.

$$
\begin{aligned}
& \text { But } 2 x-y=1 \\
& \therefore 2 x-3=1 \text { and } 2 x=4 \\
& \therefore x=2
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x+y=8 \\
& x-y=4 ; \text { find } x \operatorname{cond} y .
\end{aligned}
$$

From the first

$$
x=8-y
$$

and from the second

$$
x=4+y
$$

$$
\therefore 4+y=8-4
$$

$$
\therefore 2 y=4 \text { and } y=2
$$

and tince $y=2$

$$
\begin{aligned}
& x+2=8 \\
& x=8-2=6
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 4 x+3 y=81 \\
& 3 x+2 y=22
\end{aligned}
$$

Multiplying the first equation by 3, $\quad 12 x+9 y=93$ Multiplying the second " by 4; $12 x+8 y=88$

Subtracting $y=6$ And since $\quad y=6$ $4 x+16=31$ $\cdot 14 x=16$ $\therefore x=4$

Fbomores XV:

1. $x-y=1$
$x+y=0$; find x and y.
2. $2 x+8 y=31$
$8 x-6 y=18 ; \operatorname{sind} x$ and y
3. $\frac{5}{5}+\frac{v}{5}=14$
$\frac{x}{8}-\frac{y}{6}=8 ;$ find x and y
4. $\frac{x+y}{9}+\frac{x-y}{2}=8$
$\frac{x+y}{3}-(x-y)=4 ;$ find x and y
b. $a x+b y=10$

- $4 x+$ by 8 ; find and y.

6. $a x+b y=c$.
ix $-n y=d ;$ fid x and y.
7. $\frac{x+6}{2}-2 y=2$
$\frac{x-4 y}{-2}+y=3$; find x and y
8. $x+a=y+b$
$2 x+7=y-3$; find x and y.
9. $x+y=a$
$b x+c y=d e ;$ find x and y.
10. $x+y=20$
$x-2 y=6$; find x and y.
11. $3 x-5 y=18$
$2 x+7 y=81 ;$ find x and y
12. $\frac{8 x-5 y}{2}+3=\frac{2 x+y}{6}$
$-\frac{x-2 y}{4}=\frac{x}{7}+\frac{y}{8} ;$ ind $x \sin y$
13. If we have to find the values of three unknown quantities, we must, as w'e have seen, have three independent equations.
14. We solve these equations by taking two of the equations and thence obtaining an equation involving only two of the unknown quantities; we then take another two of the equations, and thence obtain an equation involving the same two quantities; thus we obtain two equations involving two unknown quantities. As we already know how to solve these we are able to ascertain the values of two of the unknown quantities. By substitution in one of the equations of the values already found; weobtain the value of the third unknown quantity.

It is not necessary to give a specific rule for the solution of these equations. : Wo wht proceed to thow by examples how readily we may reduce these equations to those involving two unknown quantities only.

EXAMPLI.

$$
\begin{aligned}
& x x-2 y+z=8 \\
& 3 x+2 y-2 z=4 \\
& x+y+z=9 ; \text { ind } x, y \text { and } z
\end{aligned}
$$

Multiplying the first equation by $2, \quad .10 x-4 y+2 z=16$ By the second equation, $\quad 3 x+2 y-2 \varepsilon=4$ By addition, $13 x-2 y=20$
By the second equation, ${ }^{*} 3 x+2 y-2 z=4$ Multiplying the thend equation by $2 ; 2 x+2 y+2 z=18$ By addition, $\quad 6 x+4 y=22$
We have thas oliminated z and obtalued two equation involing two unkoow quantitios only, namely

gIMPLE RQUATIONS.

 inde-of the olving a take ain an us we tities. blo to atities. values known
or the show iations

12
$z=16$
$=1$
$z=4$
$i=18$
32
equa-
mol_{1}

$$
\begin{array}{r}
13 x-2 y=20 \\
\dot{5 x}+4 y=22
\end{array}
$$

Solving thyse we find $x=2$ and $y=3$, and substituting these va, of x and y in the first equation we. obtain

$$
\begin{gathered}
10-6+z=8 \\
\therefore z=8-4=4 \\
\therefore x=2, y=3 \text { and } z=4 \\
\therefore \quad \\
\therefore \text { Exnong XVI. }
\end{gathered}
$$

1. $2 x+3 y+z=17$
$x+y+z=9$
$4 x-y-z=1$; find x, y, and ε.
2. $\frac{2 x+y}{3}+z=12$
$\frac{2 y+z}{4}+2 x=13$
$\frac{2 x-z}{2}+4 y=9 ;$ find x, y, and z.
3. $\begin{aligned} \frac{x+y-2 z}{2} & =2 \\ \frac{3 y+z}{3} & =x+3\end{aligned}$
r $8 z \dot{-}(x+y)=14$; find x, y, and z.
4. $x+y+z=29$
$x+2 y+3 z=62$
$\because \quad \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=10 ;$ find x, y and z

OHAPTRB VIII.

PROBLEMS PRODUCDIG ENMPLK FQUATIONS.

1. We can mow practically apply our knowledge of eqpations to the colution of arithmetical problemn. Oertain facta being given in the question wo have to find some quantity or quantitios unknown, from thoir selation to other quantitian as ahown in the problom.
2. There is no general rule for the solntion of these, problems. The stadent must sead carefully over the terma of the equation, and then putting x, or x and y_{j} of $x ; y$, and z, to repprement the unknown gametitios, he must exprems in algebraic language the relation aubuisting between the known and unknown quatities in the problem. He then hat an equation involving one or more unknown quantitien, which ho aleady knowi how to siolve.

ERAMPK思

(1) $\quad \bullet$

The sum of two numbert in 20 , and one f two-thirds of the other. What are the numbery ?

Let $x=$ one of the numbern.
Then by the quention $\frac{2 x}{8}=$ the ottior. $\operatorname{anc} x+\frac{2 x}{8}=20$

$$
\begin{aligned}
\therefore 3 x+7 x & =60 \\
6 x & =60 \\
x & =12 \\
\text { and } \frac{2 x}{3} & =8
\end{aligned}
$$

ledge of robleman. have to m their blom. of these. over the x and y_{r} Ales, he nubsistin the : one 05 wh how

Therefore 12 and 8 are the numbers.

I spend every jear nine-tenths of my income all but \$40; what I save is just $\$ 20$ less than one-fourth of my income. : How much do I recoive per annum ?

$$
\text { - Let } x=\mathrm{m} \text { income. }
$$

Then by the question $\frac{9 x}{10}-40=$ what I apend. .

$$
\text { and } x-\left(\frac{9 x}{10}-40\right)=\text { what } 1 \text { save. }
$$

But by the question $\frac{\boldsymbol{x}}{4}-\mathbf{2 0}=$ what I aave.

$$
\begin{aligned}
& \therefore \frac{x}{4}-20=x-\left(\frac{9 x}{10}-40\right) \\
& \quad \frac{x}{4}=x-\frac{9 x}{10}+40
\end{aligned}
$$

Multiplying by 20, $6 x-400=20 x-18 x+80.0$

$$
5 x-20 x+18 x=00+400
$$

$$
8 x=1200
$$

$x=\$ 400$, which is iny income. x
(3)

1 gave aynay to a poor perton half the money I had in my pooket, and meeting another gave him four-fifthy of the remaligder f I bid then but one dollar loft. What ain had I otiginally?

Let x - ${ }^{2}$ ane nund had

To the Meond I give

$$
\operatorname{RHen}^{2} \mathrm{t} \text { had left } \frac{x}{2}-\frac{2 x}{4}
$$

A certain sum is to be divided emonget a certain number of individuals; if there wore three more each would geff dollar less than ho receive, but if there were two tese ench would receive a dollar more. How many persons sre there, and what does each recoive?

Let $x=$ the number of permons, And $y=$ what each receires.
Then the sum to be divided $=x y$.

$$
\begin{aligned}
& (x+3)(y-1)=x y \\
& (x-2)(y+1) \leftrightharpoons 2 y
\end{aligned}
$$

From the firat $x y-x+3 y-3=x y$

$$
-x+3 y=x-x y+3=8
$$

From the second $x y+x-2 y-2=$

$$
x-2 y=
$$

$$
c y+2=2
$$

$$
\text { and }-x+
$$

by additio and $x=2+2 y=4$ a
 dollars, the sum divided boing 60 da

$$
\begin{aligned}
& \therefore \frac{x}{2}-\frac{2 x}{6}=1 \\
& 6 x-4 x=10 \\
& x=\$ 10 \text {, Wht I had at fint. }
\end{aligned}
$$

(5)

There in a number consisting of two digits; the sum of the digits is equal to one-fourth of the number, and If 18 he added to the number the digiti will be inverted. What is the number?

Lot xy be the number, whioh will consequently be equal to $10 x+y$

Now by the question $x+y=\frac{10 x+y}{4}$

$$
\text { and } 10 x+y+18=10 y+x
$$

From the first $4 x+4 y=10 x+y$

$$
\therefore 3 y=6 x
$$

$$
y=2 x
$$

Substituting this value of $y \quad 10 x+2 x+18=20 x+x$
in the second

$$
\begin{array}{r}
12 x-21 x=-18 \\
9 x=18 \\
\therefore x=2 \\
\text { and } y=2 x=4
\end{array}
$$

* ${ }^{4}$ - Hence the number is 24.

$$
;(6)
$$

There is a certain fraction; if 1 be added to the numgratof it becgm it, butif 8. be added to the deno-

Let $\frac{z}{y}=$ the fraction
vires 5

pmonhime prodvanka

From the first $2 x+2=y$

$$
2 x=y-2 \text { and } x=\frac{y-2}{2}
$$

From the eccond

$$
8 x=y+3 \text { and } x=\frac{y+3}{8}
$$

$$
\therefore \frac{y-2}{2}=\frac{y+8}{3}
$$

$$
3 y-6=2 y+6
$$

$$
y=12
$$

and $x=\frac{y-2}{2}=\frac{10}{2}=6$
and the fraction is therefore its.

Axiraism XVII.

1. Find a number auch that i of it whall exceed t of it by 3 .
2. What number is that which being divided by 3 , and 6 added to the quotient, and the sum then multiplied by 4 gives 60 ?
3. I bought wood at $\$ 4.50$ per cord ; if the amount I laid out had enabled me to prirchase 10 cords more, it fronld have cost me only $\$ 3.00$ per cord. How many ardele did I purohase?

I paid an account amonating to $\$ 114.00$ in Bnglish sovereigns (at $\$ 5.00$ each), Anerican half-dollars, and Canadian twenty cent pieces, uning an equal number of each coin; what was the number?
6. The sum of two numbers is 23 ; onde-third the greater added to the leas is equal to 13. What are the numbers?
6. What two numbert are those Whone 0 mm is 14 and difference 4 ?
T. A man was enplojod tor 20 duys; each las the
 corfoltad 20 cente; he received at the ond of the there 14 dothars. How man's daye and bo wort's
8. Find straction ruch that stevitrectod from the" numerntor makes it 1 , but if 20 is added to the derominator it becomes 4 .
9. A porson has two horres and a Holth worth $\frac{1}{20}$. If the firat horpe is harnenced to the ulotht thoy ant worth three times as much as the socond horte; but if the second horse be put to the aleigh they are worth exactily the vilue of the fint horte. What in oted horte worth'?
10. A number conalats of two afgits whone stim tif 0 ; add 6 to the number and the digit Kreomic fro verted.' What is the number?
11. A and B have egch s oortain sum; A firad 8 for 16, dollars, wo that what ho wrond thon hivie milgtht. equal 8 times what B hind. B in reply antred A ors B dollari, no that the mum oach had might De oqutit. What sum does each possens?
12. A men parchacod tro baitatis lot and a loots adjoining. He paid for one of tho lote twioe an muli as for the other, and for the house donble what be pald for the building loti, while the ontire property cont him \$7200. What vas the price of each Iot and of the House ?

1*2 e number of rotes polled at a pecent olection we ; the succenctul candideto had a majority of $234 ;$ how many votes wrere recorted tor each gencit dato $?$

16. There are two numbers. Twice the greator is 8 lomethan four timen the inmanhut if to three times the greater jou add twithing lens adrdivide the aum by 61, the quotiont will bo t. What are the numbern ?
16. There are threo numbers; the firnt added to twice the sum of the other two monounts to 47 ; the second and. twice the num of the othor two equale 15 ; the third and twice the sum of the ather two given 48. What are the numbern?
17. Two persions live on their privato fortunei. 4 ha $\$ 80,000$ invented in etock, bat has borrowed $\$ 20,000$ oft the cecurity of it ; while B has $\$ 60,000$ in gited in the rame stook, on the security of which ho has only borrowed \$10,000, at the same rato of interent as \mathbf{B}. A's mot inoome in $£ 750$, while ' B^{\prime} is $£ 1076$. What rate of interent doen the stock. in whioh they have invested giold, and whit rathof interent are they paying for the moner that thoy hav borrowedt
18. Acortati number condist of three digits. If 306 be cod to the number its digits become invertod. The middio digit is equal to the sumspo the other two divided by Whed if the nuraber boytrided by the num of it digit the quotiont whil be 24. Find the nomber. 19. The ram of tho numing is as their difiorenco b. That are they $?$
20. I find that I rot a book printed for me for so much a page, and I to 600 dollare Thich I can apare for the expense. I fuid, however, that the book is so extenoire that It will cont me 800 dollars more than I have, and I am compolled to reduce it. This I do by oancolling 290 pages. I then find that I have 60 dollary more thin in needed for the puxpone. How many piged ronid tho book have mado if it had not been dbbreriatod, and what is the cont of printing por pege?

QUAD ${ }^{\text {PITAC }}$ EQUATIONS.

1. We hava seen that a quadratio equation is one in which the second power or square of the unknown quantity is involved. We design to give the atadent some inaight into these equations here, leaving the more camplete atudy of them to future investigation.

Quadratic equations are divisible into two olamees, Pưre and Adfected.
8. A Pure Quadratic is one in wholrthe anknown pitantity is found of the second power anly, while an Adrectod Quadratic is one in which the thknown quantity is found both of the second and also of the first power. Thus $x^{2}=4$ is a pure quadratic; $x^{2}+2 x=8$ is an adfected quadratic.
4. Pare quadratic equations are solved fore like simple equations, axcepting that when th then shows the value of x^{2} we require to extract the equare; root of both sides of the equation, and thus find the value of x.

$$
\begin{array}{r}
2 x^{2}+8=16 \text { fnd } x . \\
\therefore 2 x^{2}=16-8=8
\end{array}
$$

$$
\text { and } x^{2}=4
$$

$$
\therefore x= \pm 2 .
$$

(2)

$$
\begin{aligned}
& 3 x^{2}+6 a=8 b \\
& \therefore 8 x^{8}=8 b-6 a \\
& \text { and } x^{2}=\frac{8 b-6 a}{3} \\
& \therefore x= \pm \sqrt{\frac{8 b-6 a}{3}}
\end{aligned}
$$

8. In the frut example having obtained the value of x^{2} juit in in a simple equation, we oxtract the muare root of each alde; and aince + may be prodeced eltiter by the inter-maitiplication of poritive or negative quantitfen, the equare root of a may be poultive or nogative, and is writton ± 2. The necond example diation fram the firat only in thiat one wonnot oxtraet the equare root of $\frac{86-6 /}{2}$, we place the radix before it.
9. An adfecter quadratic is solvad by the following

Rul.

 the trame in which x to moulued to the lofthend chen, and the kiowen quantilite to the ctier. Then diride the aquation by the conficiont of x^{2}, if it have any nemerical of animat conatictent.

Add the equare of half the cosplicient of x to each aide of the equation, by which meam the Left-hand side of the equation will become a complete aquare.

Lberract the roote of both ather of thie e puation, prefleine to the rigit-buad side the atill I.

mantplim.

(1)

$$
x^{2}+6 x+4=44 \text {; find } x .
$$

Here transforring the known

quantity

Adding the square of half
the coefficient of x
Extracting the root

$$
x^{2}+6 x=44-4=40
$$

$$
\begin{aligned}
& x^{2}+6 x+9=40 \\
& x+3= \pm 7 \\
& x= \pm 7-8=4 \text { or }-10
\end{aligned}
$$

$$
\begin{equation*}
x^{2}-p x=q ; \text { find } x \tag{2}
\end{equation*}
$$

Oompleting the aquare

$$
x^{2}-p x+\frac{p^{2}}{4}=q+\frac{p^{2}}{4}
$$

Hztraoting the root
(8)

$$
\begin{aligned}
& \therefore x-\frac{p}{q}= \pm \sqrt{q+\frac{p^{2}}{4}} \\
& \therefore x=\frac{p}{2} \pm \sqrt{q+\frac{p^{2}}{4}}
\end{aligned}
$$

$$
x+\sqrt{4 x+1}=11 ; \text { find } x
$$

Transposing x.in order to square and thas get sid of the radix

$$
\begin{aligned}
\sqrt{4 x+1} & =11-8 \\
4+1 & =121-22 x+x^{2} \\
-x^{2}+26 x & =120
\end{aligned}
$$

Squaring
Tranaporing

$$
x^{8}-26 x=-120
$$

$$
\text { Extrecting thatrout } x-13= \pm 7
$$

$$
\therefore x=18 \pm 7=20 \text { or } 6
$$

7. When two unknown quantitios are involved in a guadratic, the solution may be made according to the form of the equation by difierent moden, and the mont pecoticablo modo of colition to mectrtimed hy carishit Frpetion of the form. Wo my mil cimplo oquatiear,
 tity, and thas eolro tho equatón, or To ming ptooent by a readiar mothod, if practionblo.

guadratio mouationg.

EXAMPLI.

(1)

$$
\begin{aligned}
x^{2}+y^{2} & =13 \\
x y & =6 ; \text { find } x \text { and } y .
\end{aligned}
$$

Here alnca $x y=6$, by adding and subtracting $2 x y=$ 12 from the first equation, we obtain

$$
\begin{aligned}
& x^{2}+2 x y^{2}+y^{2}=25 \quad \therefore x+y= \pm 5 \\
& x^{4}-2 x y+y^{2}=1 \quad \therefore x-y= \pm 1
\end{aligned}
$$

$$
\text { Hence } 2 x= \pm 6 \text { and } x= \pm 3
$$

$$
\text { and } 2 y= \pm 3 \text { and } y= \pm 2
$$

- ∞

> Exaroid XVIII.

1. $x^{2}+4 x=21$; find x.
2. $x^{2}-8 x=9$; find x.
3. $2 x^{2}-4 x+18=34$; find x.
4. $\frac{x}{6}+\frac{8}{x-18}=8$; find x.
5. $x^{2}-2 x=a$; find x.
6. $a x^{2}-b x=c$; find x.
7. $x^{2}+y^{2}=25$

$$
x y=12 ; \text { find } x \text { and } y .
$$

8. $x^{2}-y^{2}=72$

$$
x+y=12 ; \text { find } x \text { and } y
$$

9. What is that number from the square of which if you deduct 6 times itself the remainder is 40 ?
10. Find two numbers such that their difference is 8 , and their product 240.
11. What two numbera are those the product of which is 24, and the sum of their squares 148 ?
12. Rioquired a number such that if yof take 12 from Its aquare, the remaindayionall be 11 times the ztomber ituelf.

ANSWERS TO THE EXERCISES.

Hx. 1 -8. 12 ; 4. 1 ; 6. 11 ; 6. 36 ; 7. 6 ; 8. 12 ;日. 27 ; 10. 28 ; 11.0 ; 12. -320 ; 13. 320 ; 14. 36 ; 15.) $60 ; 16.22$; 1 T 10 ; 18.0 ; 12. 20 ; 20. 6 ; 21. © ; 22. 170; 23. 13; 24. 16.

EX. II, -1, 106; 2. $-29 x y ;$ 8. $16 a b-8 b y ;-8 x^{5} y^{2}+$ 4x2y; 8. $9 a^{8} b-8 c d$; 6. 7xyz+10xy-10yz; 7. 14ax + $14 a c+5 f$; 8. $4 a x^{3}+10 y+26 ; 9,21 a-8 b+7 y-7 x$.

EX: III,-1, 2ab;2. 14x-y;8. 2ax-4cx; 4.-6xyz; 6. $9 d b-8 x y$; 6. $13 x^{2} y^{2}+4 x y+1 ;$ 7. $a-a c ; 8$ 8, $2 a^{3}+$ $2 \sqrt{y}$; 9. $4 a b+3 x y+x^{2} y^{3}+3 z$.

Nx. IV.-1. $11 a+9 b ; 2.10 x^{2} y-z ; 8.15 a^{2} b+2 x y+$ $16 x^{2} y^{2}-x y d+a b c ;$ 4. $11 a^{2}+4 b^{2}-6 a b+18 b c+x^{2} y^{2} ;$ B. $b^{1}+15 x y+8 x^{2} y^{2}+10 x y^{2}+2 x^{2} y+x y z ; 6$. $18 a b-8 a{ }^{2}{ }^{3}$ $+2 a^{2} b^{2}+9 a c^{2}+9 b c ; 7.27 a x+12 y z+6 d+4 ; 8.8 x+$ $6 x y-6 y+3 z ; 9 \cdot 7 a^{2}+13 a b+22 b c+6 c d+2 d ; 10$. $32 a x^{2}$ $+24 b y+a b c d+48 ; 11 . x^{2}+2 x y+y^{2} ; 12.3 a b-4 b c+$ $y z+x y$; 13. $12 a b c-12 a x-6 a x d+2 b c+y ; 14.11 a^{2}+$ $2 a^{2} b^{2}+4 b^{2} ; 16.6 x^{2} y+a b+a x+2 b+z+4 x^{2} y^{2} ; 16$. $4 \sqrt{x y}+8 b c-8+x y-2 x y^{2}+d+x^{2} y^{2} ; 17,6 a b+$ $\sqrt{ }(a+x)+8(a+x)+2 x y-x^{2}$; 18. Vax $+6 \sqrt{2} y^{2} y+$ $6+3 x y+2 x y^{2}$.

78

䏠. V.-1. $2 a b+6 c+11$; 2. $2 a-y^{4}$; 8. $2 x^{2}-x^{2}-$ $10 x$; 4. $16 x^{2} y^{2}+2 a b-4 a^{2} y-1$; B. $-14 x+2 a b c-5 a x$ $\pm 8 ; 6 \cdot-x^{2} y-9 x^{2} y^{2}-5 b c+x ; 7, a b-16 b c-c d+10 d e x$ $+8 c x+9 a x ; 8.8 y^{2}-4 x y-6 x^{2} y-b c-6 a b ; 9 . a x-18 x y$ + 4ye; 10. 108-17b+9xy+z; 11. rat-18bcy-2y8 + $9 y z$; 12. $3 a x-17 b x+9 c x+7 a y z+b^{2} ; 18 . a^{2} x-$ $8 a x^{3}-2 x y-y ; 14 . b^{2}-2 b x-c-d ; 16.3 x y-10 a b+3 c d$
$-y-2 \sqrt{ } x-x$.

Ex. VI. $-1.48 a^{3} b^{3} x y$; 2. $-12 x^{3} y z^{3}$; 3. $16 a b c d x y z ;$

Itx. VII. -1. $56 a^{2} b+16 a x+24 a^{\prime} ; 2 . a^{3}-3 a^{2} b+3 a b^{2}$ $-b^{2}$; 8. $2 x^{2}+5 x^{2}+2 x$; 4. $a^{3}+x^{3}$; 8. $2 a c x-14 a b-$ $c^{1}+7 b c x ; 6 . x^{2}-12 x^{2}+34 x-8 ; 7$. $x^{3}-3 x^{2} y+3 x y^{2}-$ y^{2}; 8. $4 a s-4 b x-4 c x+4 a y-4 b y-4 c y$; 9. $5 a^{2} b^{2}+61 x y+$ $80+a^{24} x y+9 x^{2} y^{2} ; 10.27 x^{3}+y^{3}+18 x^{2}-6 x y+2 y^{2}$; 11. $16 a^{2}+18 a^{2} x-14 a x^{3}+2 x^{3}$; 12. $a^{6}-6 a^{4} x+16 a^{4} x^{2}$ $-18 a^{3} x^{3}-2 a^{3} x^{4}+6 a x^{5}+x^{6} ; 18.2 a^{2} x^{2}-a b x+3 a c x-b^{2}$ $+c^{2} ; 14.2 s^{4}-4 a^{2} b^{2}+a^{2} c^{2}+2 b^{4}-b^{2} c^{3} ; 15 \cdot x^{6}-y^{4} ; 16$. $a^{4}+a^{3} b^{4}+b^{4} ; 17 . x^{3}+8 x^{3} y+8 y^{3}+y^{3} ; 10$. $x^{4}-$

²x. VIII. -1. $2 a b ; 2 \cdot \frac{8 x y}{8 z} ; 8 .-\frac{8 a c}{b} ; 4 .-3 x y ; 6$. $\frac{2 a}{c} ;$ 6. $-\frac{2 a b}{y}$; 7. $\frac{8 a^{3} x}{y}$; 8. $8 a x y$.
Ex. IX.-1. $2 a-\frac{2 y^{2}}{a} ; 2 .-a-d-\frac{d}{b} ;$ 8. $\frac{7 x y}{2}-\frac{4 x^{2}}{b} ;$ 4. $-4 x+8 ; 8$. $-2 a b-2-2 a ;$ 6. $\frac{8 x}{8 y}+\frac{6 y}{3 x}+5$; 7. $6+$

Ex. X-1. $a-b$; 2. $a+x ; 8$; $8 a^{2}-a x+3 x^{2} ; 4$ 4 1 中 $6 x$
 8. $b+8 c+\frac{a b+3 y}{a-2 a b} ;$ 0. $x^{2}+2 a-\frac{y^{2}}{x-y} ; 10.8 a b-4 a ;$ 11. $\left.z^{2}+2 x^{2} y+2 y^{2}+y^{2}\right] 12 . b^{2}-2 a b+b^{2} ; 13$. $24 x^{2}+$
$10 a c-12 a^{2} ; 14.3 a^{2}-6 b^{2}+8 c^{2}$.
T. II. 1. 86 ; 2. 2y; 8. $a+b ; 4$ 4-2; b. $x-2$;
 $8 x^{2}-8 ; 10$; $6 a^{3} 3^{2} ; 11.3(x+y)^{2}$; 12. $6\left(8^{2}-6 y\right)$; 18. $86 x^{2} y^{3}(x+y)$; 14. $144 a b x^{2} y^{3} ; 16$; any ($6-y$).

Bx. XII. - $\frac{2 \dot{b}+\operatorname{sa}}{x} ; 2 \cdot \frac{1}{2+y} ; 3 \cdot \frac{2 a b}{2 a+d}$; 4. $\frac{a^{b}-b x-a^{3}}{b}$;
B. $a+b ; 6$. $\frac{a x-4 x}{2 a}$ and $\frac{2 x-2 a}{2 a}$;
7. $\frac{24 a^{2} b-16 a}{16 x b}$ nid $\frac{4 b^{2}}{16 a^{2}}$ i 8. $\frac{8 x-y}{x^{2} y}$ and $\frac{x^{2} y-x^{2}}{x y}$; 9. $\frac{31 x y+10 y}{10 x}$; 10. $\frac{a^{2}+b^{2}}{2 a b}$; 11. $\frac{a-1 x^{2}+2 x}{a}$;
12. $\frac{17 y^{2}+9 y-40}{20 y} ; 13 . \frac{10 y-3 a y}{2 a}$; 14. $\frac{16 x+28}{16}$
16. $\frac{2 a x-a b x+b x^{2}}{a b} ; 16 . \frac{7 x^{2}-18 x+80}{6 x} ;$ 17. $\frac{a b^{2}}{\sqrt{4 a-14}}$
22. $\frac{24 y-3}{2} ; 23 . \frac{83}{8 a^{\circ}}$

3. $1024 a^{20} x^{10}$; 4. $a^{2}-2 a x-5 y^{y}+x^{2}+4 x y+4 y^{2}$;

7. $\frac{a^{6}-3 a^{4} x+3 a^{3} x^{2}-x^{2}}{8 y^{3}} a^{4}+8 a^{3} b+24 a^{2} b^{2}+$
 12. $\boldsymbol{a}^{3}-2 x ; 18.2 a-2 b ; 14.6 a^{6} x^{6} ; 18 \cdot \frac{6+6}{2 x+2 y}$ 1x. XIV.-1. 1; 2. $2 \dot{B} ; 3.24$; 4 $\frac{a^{2}-c^{2}}{2 c}$; 5. $\frac{4 a+3}{2 a-8 c i}$ 6. $\frac{2 b+3 c}{a}$; 7. $\frac{16 a-6}{17} ;$ 8. $\frac{2 b+b c}{6 a+4 b}$; ; $\frac{2 a b-3 a}{6}$ 10. $\frac{12}{28} ; 11.3 ; 12.7 ; 13 . \frac{b}{\sqrt{3}} ; 14 \frac{1}{a^{6}} ; 16.9 ; 16.6 ;$

80

 ANSWRES TO THE EXTROINES.17. $\frac{7}{9}$; 18. $\frac{6-8 a}{6 a-2 b} ; 19 . \frac{a-b}{7} ; 20 . \frac{7 a}{4} ; 21 \cdot \frac{3 a b+c}{1+4 c-8 b}$; 22. $\frac{a+b}{4}$; 23. $\frac{a b-c d-1}{18}$.

Ex. IV.-1. $x=6, y=4$; 2. $x=11, y=3$; 8 . $x=18, j y=16$; 4. $x=10, y=8$; \quad b. $x=\frac{10 c-8 b}{a c-b^{2}}$, $y=\frac{8 a-10 b}{a c-b^{3}} ;$
6. $x=\frac{b d+c n}{a n+b m}, y=\frac{c m-a d}{a n+b m} ;$
7. $x=10, y=2$; 8. $x=a-b-10, y=2 a-2 b-10$; $0, x=\frac{d e-a c}{b-c}, y=\frac{a b-d e}{b-c} ; 10 . x=16, y=6 ; 11 . x=$ $16, y=7 ; 12 . x=12, y=6$.

EX. XVI.-1. $x=2, y=3, z=4 ;$ 2, $x=6, y=2$, $z=8$; 3. $x=4, y=6, z=3$; 4. $x=8, y=9, x=12$.

EX. XVII.-1. 36 ; 2. 27 ; 3. 20 ; 4. 20 ; 6. 16 and 8 ; 6. 9 and $6 ; 7.15 ; 8$. 7 ; $9 ; \$ 100$ and $\$ 60 ; 10.18$; 11. $\$ 35$ and $\$ 25 ; 12$. $\$ 800, \$ 1600$ and $\$ 4800 ; 13.750$ and 525 ; 14. £240; 16. 60 and 32 ; 16. 7, 9 , and 11 ; 17. 8 and 5 per cent; 18. 216; 19. $\frac{a+b}{2}$ and $\frac{a-b}{2}$. 20. 600 pp . and $\$ 1.80$.

EIX. XVIII.-1. 8 or -7 ; 2. 9 or -1 ; 3. 4or. -2 ; 4. $88 ;$ ह. $1 \pm \sqrt{a+1} ;$ 6. $\frac{b}{2 a} \pm \sqrt{\frac{c}{a}+\frac{b^{2}}{4 a^{3}}} ;$ 7. 4 and $8 ; 8.9$ and $3 ; 9.10 ; 10.20$ and 12 ; 11. 12 and 2 ; 12. 12.

> THE END.

3

8
$\%$

4.
+2•

