CIHM
 Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The institute has attempted to obtain the best originai copy available for filming. Features of this copy which may be bibiiographicaily unique, which may alter any of the images in the reproduction, or which may significantiy change the usuai method of tiiming are checked below.

Coioured covers /

Couverture de couieur

Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée etou peiliculée

Cover titie missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coioured ink (i.e. Other than blue or biack) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches evou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées iors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilieur exemplaire qu'ii lui a été possibie de se procurer. Les détails de cet exempiaire qul sont peut-étre uniques du point de vue bibilographique, qui peuvent modifier une image reproduite, ou qul peuvent exiger une modification dans ia méthode normaie de fiimage sont indiqués ci-dessous.
\square Coioured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or iaminated /
Pages restaurées eVou pelliculées
Pages discoioured, stained or foxed /
Pages décoiorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégaie de l'impression
inciudes suppiementary material /
Comprend du maté:iei supplémentâ:
Pages wholly or partially obscured ry e rata slips, tissues, etc., have been refilmed to ensl:o I:e best possibie image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une peiure, etc., ont été filmées à nouveau de façon à obtenir la meilieure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possibie.

Additional comments / Pagination is as follows: P. [1], N76-N99, N120-N122.
Commentaires supplémentaires:

This ftem is filmed at the reduction ratio checked below I
Ce document est filmé au iaux de réduction Indiqué cl-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Legislative Library
 Victoria

The images appearing here are the best quality possible considering the condition and legibility of the origlnal copy and in keeping with the filming contract specificatlons.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression. or the back cover when approprlate. All other original copies are filmed beginning on the first page with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grace di la gênérosité de:

Legislative Library
 Victoria

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la nettete de l'exemplalre filme, et en conformite avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernidre page qul comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires origlnaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qul comporte une telle emprelnte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \longrightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour érre reproduit en un seul cliché, il est filmé a partir de l'angle supérieur gauche, de gauche à droite. et de hast en bas, en prenant le nombre d'images nécessalre. Les diagrammes suivants illustrent la méihode.

A. PRELIMINARY REPORT ON THE LIFE-HISTORY OF THE HALIBUT.

A NEW FISH OF THE GENUS SEBASTODES FROM BRITISH COLUMBIA, WITH NOTES ON OTHERS.

 COLICHBLA COMMINSIONEI OF FISILEMEA, 19H.]

A PRELIMANARE LBPORT ON THE LIFEGHETOHY OF THE HALLBUT.

13y Willay F. Thompaon, or Stanyoun I'viveneity.

Introncetion.
The imporiance of the hallint as a food-fish. and the Imminent danger that the supply may become depleted on Joth our consts, if not completely exhaunted, has aroused special interent in Its present abmbiance and distrinution, and in all the facts of its life-history. Fishermen and dealers are aware that the hent hanks are becoming exhausted by overfishing. Thelr catehes are each year being bronght from wore distant hanks, and it has become alarmingly evident that the supply is ilmited amils raplaly decreaning. It is beyond question that if this fimportant sonree of food is not to be largely lost to the puhlie some protection must be extended to the specles in the near inture. To effect this rationally and without undue disturbanee to the Induntry complete knowledge of the life-history must be ohtained.

In conslderation of these facts the Fisherles Department of the Province of British Columbla decided to prosecute an inquiry into the growth-history, food, seasonal distrinution, perlod of fertility, the development, and all other phases necessary to an understanding of the life of the hallhut. To thls field the writer has been assigned.

The work concerning whlelt thls preliminary report is issued was begun In May, 1014, when the first trip to the fishing.gronuds was made. Since then numerons trips have been made to various bankis, esjuecially to those fished by vessels from Onnadian ports. In each case the trip was made on a hoat lelonging to one of the fishing firms of the lrovince, and the writer wishes to exp. Ihls appreciation of the permission given him to do thls, and for other ald extended to him hy these flrms. For the summer of 1014 the Canadian Fish and Cold Storage Company of I'rince Itupert allowed very cordially the use of its vessels, and the greater number of trips were made on them, for which sincere thanks are tendered, as well as for the conrteous treatment recelved from the various Individuals connected with the frm. The Canadian Fishing Company of Vaucouver has likewise extended every ald in the use of its vessels and in the obtalning of fishing records for years past. Thanks are also due the Skeena River Flshing Company for information and the proffered ieermiselon to accoupany its vessels. To Mr. Thoman Peterson, unate of the steam-trawler "Jaues Carruthers," is due much credit for observations on the spawning season and his intelligent assistance at every opportunlty. IIls coutributions are mentloned in the text whenerer they are made use of. For courteous treatment whlle ou their vessels I thank Captalns Freeman, IIII, Sellg, Candow; and Knlghthall, with whom the greater mminer of the trips were made.

The report has been complled Iu the laboratorles of Stanford Unirersity, with the kind pernisslon of Dr. C. II. Gllbert, to whom I owe much in the way of advice and encouragernent.

Metiods.

The work of collecting data was done on the fishing-vessels, it being necessary to accompany them to the hanks on each trip. and the conditions met with on the boats modilied the procedure greatly. Much time was thus lost, as the vessels usually fished only when the weather was sultahle, and were compelled to prospect a great deal until banks were found which slelded well. The fish were examined on the deck as they were brought in. The decks were always so slippery and slluy that it was necessary to lash the fish down "fore and aft" to guard agalust the rolling movements of the vessels as they lay in the trough of the seas. Also, of course, the place chosen to work on could not be in the way of the fishermen at thelr work, and it was, therefore, necessarily alstant from the "checkers" or pens of fish, despite the diffieulty of handing heary fish on a slippery deck. Care was Ilkewlse necessary that no cuts were made which conld injure the market value of the fish. As a result of these condilions it was possihle to examine less than a hundred fish in a $1: y$, save in exceptional cases where the fish were small. It need only he sald that accurate work under sueh conditions was timeconsuming.

It is iwrinaju natural ifucry to ank wiyy it was inot pomalife to examiue the fish when they Were brought ambure, and than avolat the dimamreable working nud llving conditions. However.
 The figh in a reami may cono from any lank, where conditlons vary. The sexes cuanot be tolal apart whin any asmiranew whetever, lerause all the viscera are removed. ami lhe elle inade in cheanlug the fimh, which la done on the bankn, nllow the head to asaume an uniatural forllon and make the measurenuent of iougili Inaccurate. Ilie inablity lo dintingutah the two soxew would alone be mulliclent to Invall :ate any work after the remsels are docked.

Sfonsurpuents of tho lengil of the finh were malk by laying a meel tape along the body from the 11 , 1 of the mout to the lase of the candal fin. This has the advantage of lielng the
 fint IN jerhajs leas sutiafuctory than a perfectly atralght measurement made hetween vertleal fines ut the extremities woulil le. An allomit was inade to ntilize such a method, but a rigid arensuring-ntlek wis fulckly froken by the fish or the pasing fishermen, and proved decldedly awkwari to handle where çulcknesm was Inilspensable.

Tu allow of tho translalion of terms of length Into terms of welght, Fuch af are umed ly fighormen, a plottel curve siving the weight at varlous lengths is given. In extimatlag the nccurncy of this ibere are several clrcumstances to take Into account. The data for tho curve
 crror amagnable to the ume of this type of scule. No other kind was feasbie aboard the hallinfbuats, lowever. The fossibility whould also be consldered that the results from other banks Ihau fie oun on which the measurements wore uade will rove to be muswhat different.*

Table I.-Welght of Halibut at any Length.

	Length in Inches.	Weleht (uneleaned).	Length in laches.	Welsht "llound" (uncleaned)
1		Lh. oz.		ILb. os.
18.		40	32.	1011
311.		48	itil.	2111
21.		53	34.	238
-1.		60	15.	238
9\%t.		613	3it.	2710
\cdots		810	37.	2910 31
9.		$\begin{array}{ll}8 & 8 \\ 0 & 8\end{array}$	38.	$\begin{array}{ll}31 \\ 33 & 14\end{array}$
\%13.		$\begin{array}{rrr}0 & 8 \\ 10 & 10\end{array}$	34.	33 3611
${ }^{1} 4$.		1010	+11.	3911
218.		1310	$4{ }^{12}$	4113
(1).		1510	4:t.	4811
81.		1710		

Previots I.iterattre

There is very little in the titerature of the subject which requirem any reniark iu a prelininary rojuri. Tino fullucy of reasoning from the habils of other specles of flatfish whoulit be an evtdent one, and nothing has been accepted as true unless shown so by actual itutic obluined. The writer, lowever, freely acknowledges that the direction of hls eflorts fas been very largeiy lufuenced by the stolendld work of the English, Scotch, and German wiltors on the plaice (Ilenronectcs platesa) of the North Sea.

[^0]

 that they intist twe trentell lit detall.

 the to locallty, which nre whwn to ine sen grent in thla reqort, readers his resulte on the rate
 not meant ns buch.

Fig. 1. "inrwes showing approximate average wrighte of "round" and cleaned finh of any tength. (To une, Ere foot-note on page 77.) llound from $1+1$ speclmens faken of lakulal.
 theorelical welghte.)
The romurkable lypothesis is mate, however, that the nar at maturity and the spawning "period" may be roal from the scalen, somethling which has assuredly never been serlousiy. consldered by any other investigator for a marlie fish. It is not a case of a true spawningmark, such as the Athantic salimon showm, which is caused hy a resorntion of the margin of the scales, but rather a diminished breadth of the annunl zones of growth. Dr. McNurrleh statis his deductlonm as follows (the italles are ours) :-
"The fish does not become sexinally mature until about its eighth year," and "such fish are in their eighth year" (loc. cit., page 4). Taking his speciniens in turn, le state that " throumhout the entire scale no Indicatlon of ary marked interruption of grouth auch as might be produced bl spauning was to be seen . . . the fish required seven years to reach a length of 66.5 cn." (loc. cit., page 2). Agaln, of the secoud fish, "In the elghth year, 1008, a spawning perlod began, which lasted, apparently without any decided interruption, throughout the succeedIng four or five years. During thls period the growth of the fish proceeded at a much slower rate than formerly, but with the beglnaing of 1919 the spaicning ceased and a period of very

[^1]

 thunghi diminixifich, prorth thronghout the meven jeary repprewented hy the zone: Indeed, It woula
 The furiluer dmactuon in made that "It would revin that the ripealug of the hallbut ova is a gradmul prowemen nut that the mpawing in mot a nalter of a few daya or even weekn, but is mulmered, It numy be, nerernl prara," Agala, "the nucleus was murronuded hy a band of very narrow linen, whlch probinily liudeate a winter'n growth, the conclusloa belng that the noh Prom whiteh the acales wre takell were apawnel elther In the late fall or carly wluler." Without unuting further, his ' syothenlin may be brlefly mumuarizel ly saylug that his only two mature timh had lwill firut 'real in thelr elghth gear, that pertods of reyroductive activity were arom.
 interiatell pertomet of reyroluctivo activily with shmple raphitgrowth, the regroduetive : ledug conthined through a perton of yeara.

The datu given lin this report will be fouma to coutrovert not of thene deductions - .ou the nemlen. Although both of the mature fish which he had were nuppos, do havo lired at their elkith ywar, 1 flum that the an as only une female in twenty-flive which may be sald to be nature at that age, ams the dimcovery of two at the same thue, and no others save an immature example, in ruther remarkalile. There remalus, of course, the posmilitily that both the exauplen were unfor, regardluas walch the age at maturlty has not yet been worked out. But of a decreased rate of growth at the ansumption of maturily there is ao evilear - of any mort, empectally in the cane of thio males (ace Fign. 2 and 3), and we know of no came ta which the beginning of the lireeding meason has ever been correlated with a sudden decreame in rate of srowth. This is coutrailieted hy one of hils owu statements glven above, that "the rfpening of the hallbut ova is a gradual process." Also, the spawniag reason is shown In thin report to be of yearly occurreute, coutrary to lils opinlon, and to lie between December and June. Ileace the spectmens ctted conlid not have been spawnet at the time amalgned, and there is evidently something fundameutally wrong with the inlerpretation he has made of the nuclear rlags. The spawniag neamon of the hallbut in the North sea has been puhlished, and refereace to that should have kivell pmine to nuch a statement. Furthermore, all the fish atw re a certala sle examined la lhis work on tho spawning season taay be showa to have bee. eeding, mone of them belag III a restling state, and the examination of the ova of all th stze showed uormal growth aud development ta prepar.illon for following eenson. It seems coneluslve, then, that wo sueh remarkable he-histors need !e looked for, and Dr. Messurrich's hypothesen way be mately disreganded. Iroperiy corwrvative deluctlons malle from the scalea are, howerer, of undoubted value, and thrae remarks ; m. mply made In order to clear the feld for further work.

The hoe anl size of the haliber.

In determining the age of the halltut the writer has made nee of the otollths,* or ear-bones. as has leew done with such slgual suceess with the Furopean platce. The collection of these otoliths has lieen the nain purpose of most of the fildi-work which has been done so far, and In order to tho thls most purposefully they liave been worked over ta a preliminary way, aud several of the inaln conelusloas nay be here glveu. The interpretation of the ctolltas has proven difficult in some cases. and certaln of then require tnore study than has been given, hut these difficuitles are of milnor lmportance, and do not affeet in any way the truth of the conparisons made.

The accompanying tables are arranged in such a way as to compare the size of the sexes as well as those of different localties. It will be noted that: (1) The females are always larger than the males; (2) that the fish from Hecate Stralt are very much larger than those

[^2]from the other two hanks given, inm that these, also, alffer between themselves; (3) that the ane of the ahlesit of the hallint ls abont twonty-two or twenty-three years, and that the gomgest ls in its thiri year. The ficts as to the age attalned are probahly not entirely unexpected, as an estlmate of twenty years Is given ly Captalu Joyce. (Sce Alexander. Ireilminary Fxamlna. thon of Ilallut Fishing Grounds of the I'aclfic Coast. Burean of Flsherles Doenment No. TiB.)

The numbe of specimens ntilized in making the table presented totailed 630, of whleh 290 were from llecute stralt, 16 from Kodlak laland, and St from Frederick Island.

Table II.-Average Jength in Inches of IIalibut ai Any Age.

. ge .	IIecate Stralt.		Frederlck Island.		Kudilak Island.	
	Male.	Femalc.	Male.	Female.	MaIe.	Female.
11.	(17.0)	\cdots	\cdots		. .	\ldots
IV.	19.3	20.10	(21.0)	(20.5)
1.	(23.8)	94.2	(18.5)	(20.5)	\ldots	. .
VI.	24.3	28.1	(24.6)	(28.5)	(208)	($\because \underline{n}$
VII.	27.6	30.7	(93.0)	(26.6)	$(20,3)$	(20.7)
VIII.	31.6	35.4	(27.8)	(20.5)	20.4	25.5
1X.	31.7	37.0	05.4	(25.1)	24.0	$\underline{-7.8}$
X.	33.6	(35.6)	97.4	30.7	-26.3	$\xrightarrow{26.8}$
XI.	$34 *$	30.3	(29.4	32.8 (30.0)	$\underline{96.3}$	$\xrightarrow{29.6}$
LII.	36.1	41.8	(20.5)	(30.0)	27.7 $\mathbf{2 8 . 8}$	29.0 31.8
XIII.	30.4	51.5	(30.2)	(36.8)	28.8	\%1.8
SIV.	(39.0)	48.1	(31.5)	. .	$\underline{99.0}$	(313)
SV.	(37.7)	49.9	(3\%)	...	39.7	(38.9)
UVI.	42.8	61.	(37.5)	...	(32.1)	(42.4)
XVIIII.	(41.5)	61.2	(37.5)	.	(36.4)	38.4
XVIII.	(4:3.0)	69.0 (65.0)	(36.7)	\ldots	(30.7)	-
NS.	. .		(37.5)
NXI.	. .	(55.2) \cdot.	. .
NXII. .	. \cdot	(5i. ${ }^{\text {a }}$)	. .			

Norf.-Those figures in parentheses ate based on too few spuelmens, Iess than five, to be consldered at all conclusive.

Fig. 2. Ayprage length of temale hallint at any age. Withln IImits canght by Iook.
 spechmens: IIccate strait, 170 specimens.

Fif : Averape length of male hailbut at any are. Withln the limits caught hy hook.
Codiak Island. 140 specimens: Frederick Island, 5 specimens; llecate stralt, 111 apeclmens.
By it llizing those figurps lased on enough speeimens to be correct without averaging then witin others, or hy using the smoothed eurres, it may be found that the males are but $S 8$ per eent. (abont $7 / 8$) of the length of the females, practically the same proportion if any one of the three banks are consldered. A male of 26 lb . (35 incies long) would be of the same age as a female of $3 \mathbf{i b}$. (40 inches in length), in terms of weight, the nale belng but 75 per cent. of the weight of the female. This discrepaney in size seems to be most marked in old specimens. but further data may throw a different light on it. The difference in uitimate size of the two sexes has been noted by G. Brown Goote.*

There is also a striking difference in the size attained by the fish from the different hanks. A fish 26 lb. (35 Inehes long) from Frederick Island would be approximately the same age as one $4: 1 \mathrm{lb}$. ($431 / 2$ inehes long) from Ilecate Strait. In other words, the fish from Frederiek Island are but $\mathbf{5 5}$ to 60 per cent. of the welght of those from Heeate Strait. The fish from Kodak Isiand are. in tarn, smaller than those from Frederiek Island. They are approximately 73 per cent. of the length and 40 to $5=$ per cent. of the welght of those from Hecate Strait.

By making use of the curves given in Figs. 1 and 3, the difference in weight of male fish from various banks may be provisionally tabled in order to contrast the rates of growth on different banks. It must be remembered that these are average weights.

Table III.-Weight of Male Halibut from Different Banks.

	Age.	Kodlak Island.	Frederlek island.	Hecate strait.
		Lb.	Lb.	$\begin{gathered} \text { Lb. } \\ 4.9 \end{gathered}$
15.		...	5.2	6.6
V.			7.1	8.5
V1.		5.6	8.7	11.3
VII.		6.8	0.7	14.9
111.		7.8	10.4	18.7
IN.		8.9	11.3	22.1
$\cdots \mathrm{N}$		10.1	12.3	25.3
NII.		11.5	13.6	ㄹ9.2
XIII.		12.7	16.1	3.1
XIV.		18.3	\ldots	36.6
X'V.		18.7	30.5	40.5
XVI.		20.9		
XVII.		20.4
XVIII.		2.4	...	

[^3]These facts fudicate that these smail fish are not young, but have slmpiy not grown at the rate that those on other inanks have donc. It also indleates tint the superior quaity of the fish from Ifecate stralt has n very real scientific hasis, as those taken from the hanks in that region are umost always immature, yomg tish. As will in shown inter, the winte side frequenty fecomes grey with age lin the iarger fisli, and this will explaln the greater prevalence of "grey" fish In the catches from the Maskan banks.

What peculiar characteristics of the banks cause this enormons vnriation in rate of growth Is, of course, as yet totally umknown, there being no knowledge ns to the rates of growth on other hanks than those here trented. It wiil perhaps happen that the first discovery of a bunk which nitmately gives sunili-sized fish wili seem to show fish averaging weil in size, although no very inge ones are included. In sucin a case it is evident that the older fish are being caught first. Captuln Freeman, of the New Eugiand Fishing Company, one of the oidest and hest known of the fishermen on this coast, states that the fish on nny bank are much larger when it is first fished. To confirm thls there are no data at hand jet, although it may be possible to show that the percentage of mature fish will he smailer on the hanks which have beeu fished the iongest tius. The stntements of fishermen, therefore, which do not take iuto account this change in the slze of the fish on a bank are of little vaine, the oniy conciusive test as to rute of growth heling the determination of the age of a sufficient number.
similar remarkahie coutrasts in the rate of growth of fish from different locaities has beeu recorded for the pinice (ilcuroncctes platessa) of the North Sea.* It is certainly a pheuomenon of the greatest importance, as it may have n vitai hearing on the questions of conservation aud artificial propagation, ns weil as the naturai history of the fish, and should be the object of a more thorough investigntion than has been the case with the work on pialce.

These differences have heen corrohorated in severai ways:-
(1.) The largest size reached on the various bauks corresponded to the difference iu the rate of growth of the fish. Thus the largest maie taken of Kodiak was 37 inches in length, whereas in Hecate Strait the graphic curve constructed ended normaily at a point between 40 nud 44 inches. The iongest femaie from off Kodiak was 45 inches long, comparing wi ${ }^{+1} 100$ lnches from Hecate Strait. The saue comparison holds in so far as Frederick isiand is concerned, although the smailier number deait with leares the iimit of size inaccurate. The iongest maies were 39 inches, the iongest females 42 inches.
(2.) The slize at which the fisi on each bank mature can be shown to he very ciosely reinted to the rute of growth ; that is, the age at maturity is the same on ail banks. In other words, the rate of growth conld he foretold by comparisou of the size nt maturlty with that of fish from another bank where the rate of growth is known. This is shown under the heading " Age nt Maturity:"
(3.) In connection with tive striking difference in rate of growth might be cited differences In the proportionate length of the head. Fishemen have repeatediy made the statement to the writer that there were "big-headed' und "smali-headed" fish, the former gleiding iess net weight after the removal of the head. As far as may be ascertalned, their ideas in this regard do not conflet with the probahility that the hig-headed fish come from the bnnks on which the slow-growing fish nre foudd, althongh such an hypothesis would uot ie maintained without further irroof. It is interesting in thls regard to rejent the statements puhished in in preceding article by the writcr. \dagger which were made before the rate of growth was investigated :-

[^4]. Thus, as shown ln the following tahle, the length of the head in Alaskan material is proportlonately greater than in that from Brltish Columbia. The head-lengths are given in terms of limiredths of the body-length:-

"Kodlak Island is \ln longltude $153^{\circ} \mathrm{W}$., on the west side of the Gulf of Alaska, aud Middeton farther east \ln iongitude $146^{\circ} \mathbf{1 5}^{\prime}$.
"Such differences may indicate the presence of local races, or they may be due to the modifylig effect of cllmatal or other envlronmental factors In this connection, averages from two intermedlate localitles are given below, aithough the number of specimens involved is much too smail. They are Dry Ray, in longitude $135^{\circ} 25^{\circ}$ W., and Cape Ommaney, in longitude $134^{\circ} 45^{\prime} \mathrm{W}$.

The measurements from Kodiak Island and Middleton were of fish of this characteristic slow growth. while those from the Queen Charlottes consisted in great part of Hecate Strait fish. Those from Dry Bay and Cape Ommaney are yet to be classifled, and it may prove that they are intermedlate in rate of growth.

It is suggestive in this connection to recali the characteristics of a pooriy fed fish, which has a large head and lank body. Whether it would have a relatively longer head is, of course, open to speculation. It is, at all events, far from impossilie that the difference in rate of growth results from differeuces in the food-supply.

The Spafning Season.

For the Furojean hallbut the dpawning seas. is said by H. C. Williamson to be from January to May, a perlod of flve months, for the northern part of the North Sea, as derived from the scattered records. As, of course, this could not well be appled to Pacific halihut without observatlons, it was attempted to ascertain the season on this coast as neariy as possible, but it was unfortunately not feasible to do this during the last season as definitely as was desirable. However, it may he stated with confldence that the halibut breeds on this const between the middle of December and the last of April or the middle of May.

The fishing firms in Prince Rupert and Vancouver were asked to preserve a series of gonads throughout the season, but unfortunately were delayed until after the season was under way. IIowever. Mr. Thes. I'eterson. mate on the S.S. "James Carruthers" of the Canadian Fiah and Cold Storage Company, kept sampies and preserved them for me throughout the eariy part of

[^5]the seasom. llence it ls passible to shate npproximately fta beginning. In Mareli, from the 8th to the 2.lth, the writer was on the "spawning-hels," if that term is correct, off the Queen Oharlotte fslands. and durlug the previons year had examined fish during the months of May, June, July, Augnst. September, and Oetoher.

The followfing are quotatlons from the notes of Mr. Thos. Pelerson:-
(1.) "These samples were taken on the 14 th of December of Nlideton Island. Alaska. We got a few flsl, that were nll throngln spawnigg. 1 spoke with fishermen on the S.s. ' G. F. Foster, In with $1: 5,000 \mathrm{lb}$., and they told me that the fish were filled with spawn rendy for spawnlug. These were canglit off Ley Bay. Alnska."
(2.) "We just arrived to-dns, and 1 ant sending yon more samples of spawn, ten only. They are very hard to get, as when the fish strike the deek the spawn runs out of them. Two markel sumples were taken west-hy-sonth, 110 miles off Ocean Cape, in 130 fathoms of water. on the stl of Feliruary. all ohtnlued in two dnys' fishlng. The rest were taken from the 9th to 13 th of February, west-sonth-west, off Cape spencer. Some dnys 1 could not get a single sample, as the fislı were spawned ont. Some of the samples are not, perhaps, clean, as it was a hurry to get the spawn when the fish struck the deck fin the night-time."

The samples sent in by Mr. Peterson corroborate hls stateunents, and the results of their exanination is glven helow.

On the roynge made by the author during March, 1915, the fanks twenty-five miles south-west-hy-sonti from Frederick Islnnd ($160-150$ fathoms), those nt Rose Spit (co-10c :athoms), and those off Goose lsland (00.50 fathoms) were visited. In each of these places all the fish of large slze, apparently all that were mature, were In elther a spawning or spent condition. In abont a lundred flsh plainly ninture but one fisli was found whlch was mature but not gulte rlpe, evldently abmomally delayed. Alont 3 per cent. of those whleh were mature had left, In the lumen of the ovary or in the gomadnct. rlpe ova in sparse or abundant quantlity. No fish were found which hnd the gonad distended with ripe ova, although some of them were fuifiy well filled with them. The roe was in no case observed to run after the fish had been hronght on deck, nlthongh or caslonaliy the rlpe ova left in the ovary could be milked ont. If the fish lost lis roe after h. .ig hooked, the loss took place whlle the fish was still in the water, lint thls was rendered doubtfil by the retentlon of the ova by some of the fish. In the European hallbut ovarles filled with ripe spawn liave been obtalned, and Mr. Peterson speaks of spawn running ou the deck after the ish hnve been brought aboard. Ilence it is prohable that the fish ohservel in Marcli were nearly spent, and had not lost thelr ova through belng caught. It is evident that observations as to thls must he minde earller th the season.

An occnsloual hallbut was ohserved between June 7th ana 12th, 1914, near Scudders Point, in Ilecate Strult, which had apparently but recently spawnel, the ovary being in all respects slmilar to the spent ovarles observed In March. It is evident, then, that the last of the spawulng comes lefore the early part of June.

From Jine untll October, however, no slgns of spawning fish were notlced, hut a gradual growth fil the slze of the ova could readly be followed, and In July, August, and September was fonnd the best time for the distlnction of mature and lmmature fish. The specimens collected hy Mr. feterson during the fall carried on this growth of the new ova untll the spawning season commencel, as glven above. It is possible thnt spawning fish conld exceptlonally be oltalned before the first part of Decemher.
it is evident, then, that the spawning period falls between the middle of December and the mlddle of May, or early jurt of June at the latest. The confleting reports as to the the of spawning gtven by the fishermen are easlly explained when it hecomes evident that a grent many of them do not know whint a nature orum looks llke, and regard the tlme duriug which the ovary is eularged and swollen as the spawning perlod.

There is no questlon but thnt the normal females obtained during Marel, were ln a spawning or spent condition, and that there were uone whith could be sald to be mature yet not spawning. Furthermore, the uniforn develomment of the ova during summer and autunin was observed in a great number of fish nad no exceptions were seen. It is hence fimposslble to belfeve that the spawing of the hallout extends over several years and that there are alternating periods of plnlı growth and reproductlve activity, a theory reently advanced by McMurrlels. ${ }^{*}$

[^6]
IIIstory of tie Ova.

The main points wifh it is deaired to bring out in the listory of the ova are: First, that It is possilhe to tell from an examination of the ovary whether a fish is mature or not, with all the information which that leads up to; and, second, that there is no indication, after fish are once mature, of a jerlod of years durlig which no spawniag takes place. It is also deslred to place on record the size of the ova at various seasons, the range of variation in the size, as passilly throwtig lligit on the variation in the time of heginning the season, and the hlstory of the flual stagres in the rinening of the ova.
(A.) The history may be taken up at the timo of spawning, as shown by samples collected in March, 101\%, ahout twentr-five mlion sontli-west-hy-south from Frederiek Isiand. It will be motlew that thls falls lin the latter half of the spawning senson (sce page 84). The eondition of the ripe ova may be temporarily ignored in order to study the new generation of eggs.

The gonad of the female at this time is flaccid, its walls collapsed, and is " more than sufficlent in lmik to fill the pockets extending hack from the posterior portion of tue hody-cavity of the fish. This contrasts sharply with the turgid condition Just before the spawning season commences. The ovariai tissue also shows typleal characteristies, being often atill very vascular. The ovarial walls are contractlle, und when first reinoved very often contro uni: the gonad is tense, emphasizing the slight hulk. it is also apparent that there is considerahle difference In the length of the gonad in fish of different ages oi vizes, refieeted by the depth of the hlind focket in which it lies, hut the range of variation in thls regard has prevented the presentation of any definlte data as yet. It is ohvious, however, that maturity and spawning hring about prominent and striking changes, admitting of few mistakes at the hands of an experienced worker.

The fact of most limportance conceming the ovary at this time is that the next generation of small ova is vislble to the naked eye. All the samples collected In March, from the Dth to the loth, have been carefully examined and the size of these " new" ova determined, and in the following table thise data are given. One to two bundred eggs fron each sample were measured with an ocuiar micrometer, the average obtained, and a curve plotted to show the unity of the generation measured. It is impraeticai to present all these here, and a slngle typleal case is presented in Fig. 4. However, the averages and the modes of the curves are her. given.

If the slze hlone liad been depended upon at this :ime there might h.'ve arisen mistakes, is In many imnature fish there are a few, sometlmes many, ova between the sizes of 0.4 and 0.5 mm . dlameter. However, these Individuals bay be distinguished by other characteristles glven on page 91 .

Table IV.-Average Size of Small Ova du:ing March in Mature Fish.

	No. of Sample.	Average Size.	Mode of c'u•ve.		No. of Eample.	Average size.	Mode of Curve.
		$\mathbf{M m}$.	Mm.			Mm.	Mm.
1		0.68	0.69	22		0.62	0.05
\because		0.67	0.68	23		0.67	-••
3		0.517	0.54	24		0.502	2.51
4		0.604	0.607	25		0.71	.!
5		0.55	0.572	20		0.68	,
6		0.61	0.64	27		0.64	5
7		0.585	0.58	$\underline{8}$		0.57	4.58
8		0.61	0.61	29		0.63	0.65
0		0.78	0.763	30		0.75	0.78
10		0.57	0.58	31		0.455	0.494
11		0.63	0.65	32		0.68	0.71
12		0.64	0.6035	23		0.50	0.547
13		0.497	0.51	34		0.52	0.547
14		0.6:	0.625	35		0.46	0.168
15		0.55	0.53	36		0.69	0.73
16		0.565	0.60	37		0.445	0.44
17		0.64	0.03	38		0.85	0.647
18		?.71	0.75	30		0.52	0.53
18		: 51	0.52	40		0.585	0.61
20		0.705	0.73				
21		0.01	0.83		Average	0.595	0.617

It will be noted that the mode of the curve and the average are very closc. In no single rase is the mofe more than 0.0 x mm. from the average, and in the greater number of cases not more lhin 0.03 mm ., filustrating the unity of the generation in its developuent and its independence from the succeeding and preceding generations. The minhaum size ellountered for any sample was a dlameter of 0445 mm ., the mnximmm one of 0.83 mm , the majority falliug between 0.52 and 0.70 um ., as compared with the avcrage size of 0.505 mm . for the whole series of samples. The minlmum-sizet sample had ova visible without a lens in the fresh condition, and was classlfied as mature femaie in the fled-notes.

In Fig. f is given a typical plotted curve for all the ova in a sauple which was taker from a gonad stili contaluing lnrge ripe ova fully ready for extrusion. The josition of the next generation is indicated liy (B).*
(li.) From the end of the spawning season, about June 1st, the ova grew steadily and in a uniform manner. The seasonal progression in size was easliy noticeable, and, as far as the writer could ascertain from the cxamination of a great many mature exampies, It was aiso unlversal. The fact that every example collected by Mr. Peterson, who made no attempt at selection on this score, had ova within the range of rariation to be expected is ecnclusive ou this peint even withont the experience of the writer. The first of these, a series of fourteen exampies colifected of Middleton Isiand, Alaska, on September 20th, 1014, were examined in the manner previousiy detalled. and are here given. The mode of the plotted curve is given for but fire of the samples, as tirere was no question as to the distiuctness of the generations of ova.

Tahle V.-Average Sise of Ova in Samples collected on September 20th, 1914.

It will be noted that. Incidental to the marked Isolation of this, the largest, generation from the genital ceils destin i to form iater generations, the average modes of the filotted curves and the general average colnclied in the first five samples. The range of variation in size was not greater than in the samples taken during March, ard is inciuded between diameters of 1.21 mm . and 1.59 mm . There was no evidence of any of the fish iagging behind in such a way as to Indicate a deferred breeding season, nor was there any indication that the time of the next spawning wonid differ greatis among the Individuais.

In Fig. 4 the positions of the generations just before the fargest ova began their final rapid Increase Is indicated by the broken-line plotted curves, as compared with the unhroken-IIne curves (indicating the relative position of the generations at the end of the breeding season, when all the ora were ripe). It will bc noticed that the second generation (b) is not to be distinguished from the mass of ovocytes (c), whereas the generation to be ripened the coming season is indicated by (a), as yet a long distance from the diameter It wili have when it occuples the place of (A).

[^7]

Fig. 4. Itclation of the generatlons of ova in two gtarag. -- From a guiwning tish: I-lipe ova, fuli slze. B-Second generation. C-Later generations. a fish before spawning: a-Ora just before rapld growth begins. b cSecond and iater generations not yet distinct.

Table VI.-Iverage Diameier of Ova in Samples coll sted on November 6th, 1914.

(C.) With the approaching midwinter, however, there seemed to be a marked acceleration In the growth of certain of the ova, accompanied by an Increasing transiucency* easliy detected by the naked eye even in preserved ova. There was no sharp distinction as yet between these and the other ova, but in order to obtain data on their size and growth the ova in each sample were sorted into two lots, termed loosely "translucent" and "opaque." The table rives the average sizes of these lots in the samples taken on November 6th, 1914, of Middieton Isiand. Alaska. together with the percentnge of the total which were termed "transincent." No exact significance should be attributed to the percentages, as they are simply to show that there were not great numbers of transiucent ova.

Regarding this stage the Important facts are seve.al. The Increase in diameter since September 20th, a month and a half, was 0.36 mm ; an: we have here what appears to be

[^8] foal stages of rlpenlus. This was njpureully bot began synchronously li all the ova, but at list a small previtase chanted. Indicating that certain of the ova would fe ripe for discharge first. in Fig. of is given a plotted curve for one of these examples, typleal of the others, in which the luerensed size is shown to he correlated with the increased traushuceney.

Fin. \%. Plotted dorsum of ova from a sample taken December 14 th, 1914 , showing differing mae of opaque and translucent.
(ID.) In the samples taken on December 14th, 19) 4 , by Mr. Peterson there was admitted y an uneonsclons selector on his part, due to the rejection of ripe ova, perhaps because of his lack of famillurlty with their appearance. Although he fond fish "spawned ont," he included none of the ripe spawn. However, it is interesilis to note conditions in the samples given.

The ova were again sorted ${ }^{\text {an }}$ a two lots in each sample, " translucent " and "opaque," and a series of measurements made of each. The "opaque" ova were of nearly the same average diameter as those of the preceding set of samples taken five weeks previous, bit the proportion of translucent was much greater in every case. Little a more perfect series of samples can be obtained, however, no further data will be given on these.
(お.) One more set of samples was taken by Mr. Peterson on February 9 th to $\mathbf{1 3 t h}$, 1915, of cape spencer. These represented perhaps the height of the spawning season and should be very slgulfieant, as they were again chosen without selection. They should represent those stages where, If the ripening is a gradual process. there are still small opaque ova present in addition to the rigi ova. if the spawning of each fish were to cover lint a short period of thane, the probubllty of obtaining such samples would be very small at any one the. The occurrence of
 as the chances of obtaining it in that condition would be proportionately greater.

The samples. ten in member, were in each ease composed in large part of ripe ova, but in four of the cases small "opaque " ova were present. In making the following table the same methods wore used of dividing each sample into groups of "transincent" and "opaque" avar. In some eases the two types of ova were seen to be attached by ovarian tissue, but it is evident that there may have been in some of the cases more of the ripe, loose ova taken than were representative of the whole wary. In two of the cases In which opaque ora were present the averages of the two "gromis" were widely separated, and the two were not connected hr ova of intermediate size (ace Nos. 70 and 72). It is therefore possible that successive gronjs of ova are ripened in each ovary and discharged in "batches." To prove this wonid require more
evidence than in at hond at prement. It is evident, however, that the taking of ovarien in a tranmitional ntate is frepuent enough to lead to the ansumpion that the spawning extends over a considernilie period of the in each female.

It ming be noted that the larip ova were nearly the size of the ripe one collected In Mnrch. and in every case were equal to the dlameter of those found loose in the lumen of the gonads. The "opurine" ova were, however, of very silghtly larger diameter, if any, than those deelguated as "oppapue" in the early part of November, and with were characteristic of the set of amples taken in Decrmber. Ilence it may be inferred that a large part of the tiue interveuing was occupled by the grodual fincrease in the percentage of ova ripened aud discharged, a part of the " opaqne" ova of the first examples belug the ripe tranmluceut ova of the lant.

Table VII.-Average Dameter of Ova in Samplea collected on February 9th to 13th.

	No. of Sample.	Averase Diameter of Tranalucent Ova.	Average Miameter of Opaque Ora.
		Mm.	Mm.
09		3.01	
70		2.69	1.97
71		2.81	
T2		2.75	1.86
73		2.74	
74		3.18	(Too few to average)
75		2.78	
78		3.36	
77		2.24	1.05

Brook (Fourth Annual Iteport, Fishery Board tor Scotiand, 1885, page 224) gives the following notes on a fish which was apmarently in this transitional stage:-

- - The eggs were in three stages of development: (1.) The bulk conslsted of unripe ova about 2.55 mm . In diameter, which were yellowish in colonr and very olly outside. (2.) Nearer the centre were patches of ova similar in slze to the above, hat white and opaque. In these a large number of yoik spherules conid te made out. (3.) Among the patches of opaque eggs were liftle clusters of larger ova, which were quite transparent and showed no division of the yolk into small spherules. It is prohable thnt these eggs were quite ripe. They floated at first on heing pinced in sea-water, hut belng dead they soon sank to the hottom. The largest measured abont 4.25 mm . In diameter. I did not notice auy oll-glohule."

As the samples sent by Mr. Petcrson were preserred in formaidehyde. It may be that tbls stage in which the yolk is collected in small spherules is the beginning of what I have termed the "translucent" stnge, and that when ohserved allve this fact will become evident.
(F.) it remains to descrilie the ripe ova as fonnd hy the writer during Mnrch. The relative slze of the different generatlons in the latter part of the spawning season is shown hy Fig. 4, In which (A) represents the ripe ova of full gize, (B) the next year's generation, and (C) the muss contaluing inter generations. No importance should be given to the relative numbers of ench generation connted. The exgs which were destined to be shed had in every case reached their full slze among the specimens examined, sare a singie one whlch was full of eggs not yet 'ripe. No small opaque eggs were left of that season's generation. The uniformity with which thls prevalled among the mnny mature fish examined Indicates the uniformity of the spawning procecs.

When taken from the ovary, placed in sea-water for a thme, and then preserved in formaldehyde. the ripe ova averaged $3.6 \overline{1} \mathrm{mul}$. (0.145 inches) in diameter, with a range from 3.3 mm . (0.134 Inches) to 4.2 mm . (0.106 inches), roughly $1 / 8$ to $1 / 6$ inch. As vewed fresh in sea-water with the naked ese they appeared clear aud transparent, with a white opaque fleck on one slde. There was no oll-globule to be seen. The surface appeared falntly cross-hatched when viewed under the miscroscope, and was in all essentials as described by MeIntosh.*

[^9]The apos when firw ohtalnem from the fish were weveral times blaced in sen-wnter. They at tirsi flimed. lint lu n few minntem sevimpl in lurome more thrgid, alighty nure oinque, nul mank to the lwtton. They remulned there an lous an kept, several days in one funtance, and the

 the planklinl lis finronenn workers. extensive as bis liepll the work of lint mort.

Whelhor the baibut dinchurges some of its ova after bolug canpht on the hook and hefore

 during the inter part of the seqmon, when, if the grninal rlpening of the ova is to le taken
 wrlters of ovnries dintemifi with ova biny apply to the enriy part of the meamon, and Mr. l'eterninl refers in bin moten 10 ova leing willeal on the deck during lie earifer gart of the Nexamill.

It is prolable that it is inmossible for the fish to reinin all the ova it sheds dinting the

 Eurypan wrilers liave given pelimates of the number present in the Atlantle specimenn, lint for varions reamina it was dechled that theme were not accurale enongh for the purpone, and a conlit wne unde of the noent mature ova in a palr of ovarles.

These goinds were olotained from a halibut $421 / 2$ Inches long, at a tinie apparenily just iwfore the ova were to begln lheir lant rajld Increase in size. The orarles were hardened in formaldebyele, after which it was combaratively ensy to work the ovn loome from the egg. follicies. The sujerfluons tisme was removed by many gncersalve decantations and finally was carefiliy workef over for any ova which had escaped. When the ova were complelely cleaned the hulk was inpasured and n crrtaln known proportion of it counted. The total number of ova was then easily reckoned. Tlie ovary of the eyed side coniained 890 cubic centimeters, 25 of which conlalnel K, K ge ora, and the whole ovary was found, therefore, to contain 207,243 ova. The ovary om the Hhul alile contalned 710 culfe cenlimeters, and there were 5.778 ova counted In $2 \boldsymbol{2}$ of them, the whole therefore contalning 164,005 ova. The total number in the fish was hence $37,3 \mathrm{jin}$ orn. IBy areraging the initial counts this reanit was obtained a lifte ditierent, belng 340,7122 ora, on which the reckoning helow is based.

Filton* istimaled the numiver of ova in three specinens an respectively $4,451,212,2.803,07 \pi$, and $1,489,610$, on the basis of the weight of t. Indiridual ovum as compared to the bulk of the ovarles. Thls, of conrse, did not discount tist, eight of the gonad tissues and other generations of ova, as he was slmply conslcesing the relative fecundity of fishes. Brookt eatimated the number in a $91-11$. liallut as $\mathbf{1 , 3 2 7 , 0 0 0}$. It is probable in both these cases that the weight of the gonat and minute ova was underentlatated, but all the specimens were very much larger than that utilized in the preseni case, and this may well account in large part for the discropancles. Franz \ddagger found that the egg prodictlon of the plaice increases with age and length,
did ltcllisch.|f it would he experted that the game would hold trne for the hallhut, and with Its attaimment of a greater age this should be nore susceptinle of demonstration.

The average diameter of the ora taken in March was 3.97 mm ., and figuring with this as a basis the volume occupled by the whole of the ripe eggs of the specimen whose eggs wert counted may be determined. To do thls there are three melhods avallable. if the egrs were supposed perfect. thrgid spheres. the formulat used to ohlain the total volume wonld be:-

$$
\text { Volume }=\frac{\text { number of ova } \times(\text { diameter })^{2}}{\sqrt{2}^{2}}
$$

Solving this gives 12.917 lltres. This would equal 3.41 gallons, and at the density of seawater would welgis $\mathbf{2 0 . 1} \mathrm{ll}$. The flah in which the eggs were carried weighed about 42 lh . belng $421 / 2$ inches In length without the caudal fin, and hence the eggs would be approximately 70 per cent. of the bulk of the fish. If the eggs were turgid hut elastic and under compression suficient to ellminate the spaces between them, the volume of each would not change and the simple formnla conld be used of: Volume $=399,792 \times 4 / 3 \pi r^{\prime}$, giving a result of 9.45 litres, equalling

[^10] however, the egge were not firgil. the forminla inlifized would bo:-
$$
\text { Number of ora } x(\text { (llameter })^{\circ}=\text { volunse. }
$$

Solving film given 4.57 iltren, or 1.2 gallona, welghing 10.8 lb ., or 24.5 ger cent. of the total
 alf the of: when they were of fuil mine, and. In fact, the greatewt volume of the ovary If renched junt liefore the extrialon of the first rljw ovn.

It Is uecesary, then, to postulato a aradunl mheriding of the ripe ova. Tho onif conception of the relative length of tlime taken hy this procens in reached jy the condilion of the finh taken at nuy one tlme on the hnink. If thln were exnctly the mame ln ail fish obinined. then it would follow that each foh bred throughout the whole of the sjawning season. The nuruber of sumples collected no far in not sutticlent to glve accurate results, but the unlformity has been shown to the sufficient to justlfy the wtatement that the apawuing of each Indililual occuplea a conslderabie jerlod.

The bearing of thls on any attempt at artificial iropngatiou is olvioum. To ohtaln the full juofil or even any considerable part of the yleld of any fish it would be necessary to kfyp It In enjotivity. In the canc of sueh a large, valuable finh an tho halilut reacbluy lis mature state at such an ndvanced age and slee, It would appear impractieable to do this. It st'll remalns to be keen whetber enough rije ova may ise obtalned at any one thme to make it profitable to mather the sjawif from the fish on the banks when they are frst caught. Furthernore, It is will unkurn what jroyortion of the egga are fertile of thome which are retalned ing the fish.

As the number of eggs jrnduced by a miecles If mupjosed to je monewhat proportlonal to the difficuitles encountered isi survival after heing lald, the value of the eggs ohtained from a prolifie species would be correwpondingly decreased. unless It could be shown that artlficlal jropnzation would carry the young over a perlod more than usually dis. gerous. The uumber of egigs of thil prollfic species which conld be handied would be very alunll Indeed compared to the muaber jroduced in the natural state to overcome the naturai mortallty, a ud the protection of the young would have to compensate for thls great disadvantage In order that the commouiy accepted vaiue of artlicial propagation he maintained. There are, of course, no data as yet on the relative mortallty lis dlferent stages of the ballbut ilfe. It would seem that the fish whtch could be saved hy a certain amount of reguiation of the fisherles would produce enough eggs in a state of nature, even under the handleap of great destructiou by uatural enemiea, to surjans anything which couid be done artificially. There seems nothing which is more alarming to the carefui observer of the hailbut banks than the fack of mature fish in certalu overfished jocalitles, and It wouid appear that the protection of a single mature hallbut, whlch would breed for a numier of years, would far outweigh the vaine of the few eggs whlch mlght je obtalned from lt at any one tlme.

Aof at Matumity.

Is is shown by the examination of the ovnry at varlous gensons, it is possible to atate with some degree of assurance whether or not a fish is to spawn the following seamon; In other words, to ascertain the maturlty of the female at any tlme. The slze of the fargent generatiou of ova is mainiy relled upou for this, especiaily after the early part of July, hut there are many eharacterlstics marking the fish which has just spawned whleh are of use to the ohserver.

These are, of course, best learned hy experlence. It is possible to recognlze the Immature ovary hy the translucent, homogeueous appearance, the narrow jumen, the degree of eliansion of the posterior polut liackward along the hremal splnes, and the absence of the fiaceld coudition which persists for some time, and of the vascuiarity, two characterlstics of spent ovaries. There is rarely any question as to the category in whlch a fish should be piaced. The valldity of sueh methods has been sufficiently recognized by scientifc workers, and in this preliminary report further detaifs need not be given.

In a great many cases workers have contented themseives with deciding the minimum size at which a fish epawns. Thls is essentiaily misieading, as may be seen in the present case of a long-lived species, because it falis to take into account the amount of individual variatiou.

[^11]An far an in knowir at prowent, in wo far as leuroneetids are concerned, eaeh fudivilual fomate enrrim, in Jenrm preedilig the one in whel mpmwhing begtum, ora wheh are it to theome ripe, bint full and degolierale becume the ovary an n whole in not get rendy, decording to
 There in this ureat varlathon foth in the the the fudividual ovme in ready to rigen and in the the the ovary is rendy for mpawilug.
 femate, wan exnminell nad lis mate recordend. The precutage of immature and mature fiah umong those of each leugth wan then reckoued, conmbidertug whole tnehen only. Thene from three diferent replona were thin treater-manely, llecate Siralt, Frederick laland (the offwhore bankn), and Kollak latand. Those from Kodlak laland were recently apent or with ripe otn atill in the nearn or oviduct. Thla serlem thum maken nu interentlug comparison with the othern, whteh were oblalned durlug June. Jnly, Angust, and Seplember on alternate tripm to the Ainakan and the Queell Charlotte lstand bankm. Of course, data in avaliable for numeron. other bankw, but mifortunately none in yet ready to requrt om. The numbers of nim examined for the banks takell up bere aro an follows: llecate Stralt, 31t: Freterlek laland, 157; and

Itecate Rtralt --. Kodtak lishand
l'ig. 6. I'ercentage of fish msture at any age. (To uwe, are explanation of Fis. 1, page

 codink and frederick Islanis. (Smoolhed as cxplained In test.) Hethod of use: dee explanation of Fis 1, page 7T.

- Wissenschatittche Mefisuntersuchungen, N.F. D, Abth. Ilelgotand. 1010.

Kisllak Island. 125. In a why thewo numiern are hardly In rge enoumh to give abmolutely necurnle rownith, and the Irrogularity of the curves In placen in grohally dine to that fact. The relative ponitlon of each is. luwerer, nutliclently clear, which in the object conght.

The percenlaze of nuh mature at any nse was obtalued in tho sane way. Thome from Froderlek Island were oulttel, becaume the age of the nah examined had not beell decphered. The rale of growth of than frem thin wame genernl locallity may be consulted, bowever (Fig. 2 and 3 num puge ro). It whll lee olmervel (Fig. 6) that the maturity is eitlroly dependent on age, not on map, an the percentages minture at any one age are very close, anfticleutly to to Indicate merely the normal varlation evident in manil numberm. If this is true, then the length of the firh at niaturity should be strletly dependent on tho rate of growth. By comparing Figs. 2, 3, ald 7 It will liwe meen that thin in irue, the ninh from Frederick Island oceupying a place leetween thome from Ileente Hiralt and Kodlak I Iland in loth cases. It will he meen that 50 ler centr. of the fisht from Kodick Imland are uature at 30 Inchen, 50 per cent, of those from Frederlek Island at 35 Inclies, and $\mathbf{5 0} \mathrm{p} e \mathrm{r}$ cent. of thome from liecate Stralt at 43 Inchem. Theme lengethe in cach cane are thome chnracteristle of nish in thelr twelfth year, reading frotn Fig. 2 . page \mathbf{N}) which given the rate of growth of female finh.

The difference In size at minturity has heen previounly noted hy the writer (Pacific Fisierman, November. 1014, page 8f), and the fact that thln difference should he nhown to depend so strictly on the rate of growth is a atriking corroboration of the accuracy of the age deferminations. In fact, one is tempted to make the statenent that the length at maturity conld be taken as an Index of the rate of growth on different banks. It in belleved by the writer that this is a more accuraty and lens latorions means of corrohorating reaulty an to age than the comparison of the maximum sleen attalned would he, at lenst in the case of the hallbnt.

The mont lmportnint goint lirought out by this method of determining the age at maturity is that this is much later than has been thonght. There are bot relatively few hallont which mature during the elghth year of thelr lives, the chancen being one in twenty-five agalnit oldainlig such a one. and there are finh atill innmature in the fifteenth year of thelr ake. The elghth 1s, however, the age of a large proportion of the fish In Hecate Siralt at the time of capture. In IIecale Stralt lut 14 per cent. of the female anh caught had completed thelr twelfth year and lut 5 per cent. thelr sixteenth year. Of Kodiak Island 31 per cent. were beyond the twelfth year and 12 per cent. beyond the sixteenth. This increased percentage of mature fish may, of course, he characteristlc of the banks which have been lean Intenslvely fished. However thls may be. It ls evident that a large majority of fish caught do nut rasch maturity.

The fact that maturity is not reached untli such a late age is ! . i way surprising, but in other fish of shorter life it is not posslble to say that as a rule they have longer breeding life In propurtlon. The Pacific salmon breed but once, at the end of thelr second, third, fourth. afth. slatl, or meveuth sears. The European plalce (Pleuronecten platessa) become matnre during their third, fourth, or fifth years,* although the maximum age reached is twelve years, usually less. as compared with a maximun of alout twenty-five years for the hallbut. However, It is to be expected that the age at whlch minturlty supervenen would vary, as does every other character. with the condition to the met hy the apecles. A late maturity would be counterbalanced ln some degree liy an ased number of eggn, and vice versa.
It la helle: ad that thesw
is s.s to the inte nisturity of the hallbut are of the utmost limporlance In Judging of the athods to be used in the conservation of the specles, and In explalning the decrease on particular lanks. Further Investigation of the percentage of matnre fish on the different lanks in urgently needed, and is nnder way as fast as the opportnnity offers. The relation of maturity to whatever migrations may occur may prove of Importance.

The Food of the Ifalibut.

It has long been known that the hallbut has an appetite of extended range, and lis food has been Investlgated by sereral writers In Enrope and Amerlen, but thls has not been done for the fish on the Pacific Const. Sontt gives the food as observed in specimens examined in Aberdeen Flish Market. Thlrty-four per cent, were found to lack food of any klad, or what was present could not lie identlfied. The fish fonnd were chlefly Gadolds, haddocks, and whitings, whlle codtsh and brassles were rarely, and founders sometlmes, obtalned. Crustacea were found

[^12]frepuently, expeclally in the smaller hallint, as were Cephaiopods. whlle Fehinoderms nud Amellds were found sparingly or very rarely. Thls represcuts very falrly the range of food found lin the l'aclfic hallout, as may be seen.

On the statement by scott that there is a seasonal variation in food no comment ean he made, as the olservathons on the whiter fond of the laclic forms are yet to lie inade, lut a crltlelsm at once suggess itself when it is considered that his olsorvatlons were made ln the unrket, and that, if fishlig ls carrien on ln the Atlantle as it is in the lacifle, the boats resort to different gronnds during the two seasons.

It ls helleved that general purpuses will he served ly what is here presented, but more sharply defined programmes of the Investlgatlon of foods, especially as limited to certeln banks, will have a very lmportant hearing on mumerous questlons. These must lle in aheyanee, however. untll the more lmportant features of the llfe-hlstory are known, as age and rate of growth, to whlch the present work has heen primarly directed. Such questlons as the seasonal chunge of food on a hank, the effect of food-supply ou distrlhutlon, and migrat lon are nmong these.

Is mentloned hy seott (luc. cit.), there were a large proportlon of the stomachs empty, Actual data as to the exnct percentage was obtalued in several puces. The fish taken Neptember Brd. 1914; on the bank off Mddleton lsland, Alaska, showed 7 out of 130 speclmens, or 59 per eent., with empty stomnchs; the remalnder, or 41 per cent., had undigested food in the stomach; ? ${ }^{3}$ per cent. only were recorded as having food among 241 speehmens taken off Frcderlck lsland, and 44 per cent. had food among 995 from Kodiak lsland hetween August 12 th and 15th, 1914. In all, over 700 speclmeus were examined to gather what data ls here presented, and although the exact proportlon was lost In one or two cases, It nay be sald that about 34 per cent. contalned food.

The wlde varlety of the food whlch was found may he lllustrated by tahulating the groups represented:-

Colenterates: Sea-anemones, usually fastened to rocks.
Echlnoderms: Brlttle-stars, starfish, sea-urchlns, and sea-cucumbers.
Annellda: Sea-hares and Echluroldea.
Brachlopoda: U'nknown spectes of "lanup-shell."
Crustacen: Crahs only.
Molluse: Clams and Cephalopods.
Vertelrata: Flsh (with many fishermen's storles of brds to Indicate the canture of dlvers).
On some of the hanks, partlcularly those In 100 fathoms or over, the predominating food was found to he the grey cod (Gadus macrocephalus), and it ls not to he douhted that thls is one of the specles nost used by the hallhut. The following data were taken off Middleton Island, Alaska, in 80 to 100 fathoms, on the "long-llner" "James Carruthers." Of fifty-three fish wlth food still ln the stomach. fifty-one of them had grey cod, one had the "ghost" (Atheresthes stomias), one hau a red cod (Scbastolobus alascanus), and another had crabs.

The followlug talle will glve some Indication of the relative frequency of the different foods In different cntches. Esually but a sligle kind of food was fonnd ldentifiale ln a single stomach, although thls was fur from helng a rule. A large rnantlty of the partlcular kind of food is usually found, Indlcating that the hallbut has not moved so rapldiy as to leare the type of hot tom on whlch it was found before the food caught was digested. Hard parts, of course, surrlve mueh longer in the stomach than do soft, and frequently numbers of fish otollths, eye-lenses, and cephalopod jaws are found, resulting in a larger representation than is correct of these forms. The same may be true of the crabs, although the chitin seemed to soften rapldy. Shells, gravel, stones, etc., are frequently plcked up hy the fish with other food, but at the same tlme it is prohalile that shell-fish are eaten whenever the opportunlty offers, as may he witnessed by the presence of the tips of the slphons of burrowing clams that have beeu blten off. Sernnemones on stones are not seldom taken, and to them must probably be attributed the presence oi the "hallast." whleh the fishcrmen regard as having been taken in preparation for storms. The premence of small worms serves to lndente the capaclty the hallhut has for pleking up milnute foods.

Life-hintori of tie Halibut.

Thble $11 / 1$.-Showing Numbers of Halihut Stomache containing Various Foods.

Locallty.	$\stackrel{\text { ¢ }}{\text { ¢ }}$	威			宽	\%	\%	
Frederick 1sland	31	c	\ldots		1	\ldots	\ldots	\ldots
l'illar lay.	10	16	i	4	\ldots	...
Kodiak Island	10	19	1 ${ }^{\text {c }}$
.,	8	11	.		1		...	\cdots
"	17	16	5	1	1	2
.	7	9	5	1	\cdots	.
- kuta	3	5	\ldots	\ldots		
Yakutat	8			\ldots	\ldots	...	1	
IBanks Island	3	10	2	1
Buruaby 1sland	\pm	3	1	
Niddleton Island	55	1
Totals	157	\%	14	5	3	3	1	1

The following is a list of the fish to be observed among the food of the hailhut, placed somewbat In order of importance:-
(1.) Gadus macrocephalus (grey cod).
(2.) Act modytes pcrsonatus (sand-iance).
(3.) Atheresthes stomias (ghost, or iong-jaw).
(4.) Squalus sucklii (dogfish).
(5.) Hydrolagus collici (ratfish).
(0.) Scbastodes alutus (red cod).
(7.) Anoplopoma fimbria (black cod).
(8.) Clupea pallasi (herring).
(9.) Raja $\left\{\begin{array}{l}\text { thina } \\ \text { binoculata }\end{array}\right\}$ (skate).
(10.) Ophiodon clongatus (ling-cod).
(11.) Hippoglossus hippoglossus (halibut, principaily viscera).
(12.) Cycloptcrus ventricosus (lump-fish).
(13.) Prionistius macellus.
(14.) Sebastolobus alascanus (red cod).
(15.) Psychrolutes paradoxus.
(16.) Malacocottus zonurns.
(17.) Oncorhynchus kisutch (cohoe salmon).

Professor Frank Waiter Weymouth, of Stanford Cniversity, has kindiy worked over the Crustacea coliected from hailbut stomachs, and his re, rt is here inciuded in its entirety.

List of the Caustacea yound in Halibut Stomachs.

By Frank Walter Weymouth.

The following is a list of the Crustacea found in the examination of the contents of twentssix hallbut stomachs collected by W. F. Thompson in the summer of 1914. Oniy the Crustacea, which are stated to form a considerable portion of the food on certain banks, are here considered; the IIst mar be taken as representative of the species eaten. The number of species is few, though the nuniber of specimens is considerable. Pagurus confragosus and Pagurus splendescens, hermit-crabs very abnndani In this region as noted by Miss Rathbun in her report on the Crustacen of the Harriman Alaska Expedition, occur in large nnmbers. Hyas lyratus, also recorded as abndant in dredging operations off the Alaskan noast, is very common. Cancer gibborulus, though not reported as pientifui, seems to eqnal in . umbers the others mentioned.

Aside from the question of the hailbnt food-snppiy in which the Crustacea apparently piay an huportant part, there are here recorded considerable extensions of the range of two species.

Acuntholithudes hispidus, whose northern limit is given as Vancouver Isiand, was taken off 13anks Isiand, off Frederick Isiand, and off Kodiak Inland. Lopholithodes furaminatus has its range extended from Victoria to Kodiak Isiand.

Macrira.
 Istand.

Anomura.

I'ngurus aluxkensix (Penedict). One sinechnen, of Masset IIarbonr.
: Pagurus chotenxis, lirandt. Some fragments, uly arently of this species, off Kodiak Isinnd.
 off Kodiak Islanai.
lugurus sptli: voros, Owen. Thirty-one siecimens from einht different stomachs, oft Kodink Isiand; one specimen from Nibatross Bank.

Paguris sp. Itemains of at ieast twelve specimens, probabiy representing more than one species, from Kodiak Isiaud and liliar lby.

Acantholithodes hispidus, Stimjson. One specimen well preserved from Ilailinut Rocks, off Raaks Isiand, in 40 fathoms; one specimen from off Frederick Isiand ia 45 to 50 fathoms; one specimen from of Kodiak Isiand in $\mathbf{5 0}$ to $\mathbf{6 0}$ fathoms. According to Miss Rathbun, the distribution of this species is as folons: "Vanconver Isimind, British Columion, to Monterey. Culifornia. To a dejth of at least 16 tathons." Tinese records extend its range northward to Kodial: Island and show that it mas come from il lepth of 40 finthoms.

Lopholithodes mandtii, Irinult. One iarge weif-preserved specinen, quite a formidable meal even for a hailhut, from La leronse Rocks, north of Frederick Isiand.

Lophotithodes foruminatux, simmsun. Seven siecimens from tinree stomachs, off Kodlak Isiand in 70 to 100 fathoms. A considerabie addition to the range of this species, which, according to Miss Rathbun, is "From Victoria. British Coiumbia, to near San Francisco."

Brachyura.

 Isiand, July 19th, 1014; one cheia, aibarontly from this species, from Piliar Bay.

Chorilia longlpes. Inana. Two specimens from off Kodiak Isiand; two specimens from Hailiut Rocks, off Ranks Isiand.

Chlonarcete e tanneri, IRathbun. Three shecimens from of Kodiak Isiand.
Ih/as ly/at . Dnna. Fourteen sivelmeliv irom eight stounchs from off Kodiak Island; one from Alhatross limik; two from libiar Ing. These inciude ovigerous femaies learing the dates of Juiy and August. 1914.

C'ancer prontuctus, Randnii. T'vo young sucimens from Ilaibut Rocks, off Banks Isiand.
Conecr gihmonlus (de liann). Tinree specinmas lrom lat lerunse Rocks, north of Frederick Isiand; seventeen suecinens from lhilar Hny; fortwothree slecimens from four stomachs from Ilalinut Rosks, off Ianis Isiand, in $4 . \overline{5}$ to 70 fathoms.

Pinnixa sp. Two unidentitiahie specimens from off Kodiak Islnnd.
Dr. S. S. Berry informs me that he is unaine, in the wosent sinte of knowiedge. to ldentify elther the remains of Cohiniopods taken from stomacis. or fon viry large suecimens brought up on the trawifines, as the siccies types from this region ore ail very sinail immature examples. Ile says: "The hailint have been feeding on lolypus nud some good-sized (ligopsid squid, most likely one of the Ommast rethida."

Ifastrecion of other Fisil uy the Fishfanen.

It fias been repeatedly stated that ns muny fish are dextroyed as are saved fin fishing for halihnt. lint no necurate recoris inse heen offored as to this. Incidentai to other work, a few connts wore made of finf as tity cume abourd one of the " ions-ifine" ressels during March $12 t i$ to $1 \overline{0}$ tin, 191\%, on the hanks of Frederick Isiand in 160 fatioms. As these were made during a period of poor filhing, the numiner of siecimeas counted were smail.

Table IX.-Xinmicrs of Fish of each Species brought up on the Hallbut Tratel.

Spucles.	Marcb.				Total.
	12.	12.	13.	13.	
Hippoglossus hipmoglussus	37	44	31	23	138
Anuplopoma fimbrin	-29	4	22	11	50
Atherestirs stomias	8	16.	7	12	43
Syıulus sucklii	3	.	24	3	30
Huja $\left\{\begin{array}{l}\text { rhina } \\ \text { linoralata }\end{array}\right\}$	2	2	2	3	9 104
Schastodes $\left\{\begin{array}{l}\text { ruberrimus } \\ \text { babcocki }\end{array}\right\}$	3	1	4	3	11
Ciadns marrurephhalus	2	.	5	4	11
Hydrolugus collici.	1	. . \cdot	...		$1)$
Totals	78	67	05	62	302

As Indicated in these counts, the number of hailbut taken usunliy, but not always, exceeded the number of any one other kind of fish, forming, however, less than half the total. As the halibut was unlformily larger than the others. it composed more by welght In such a case than did the others. The fish differed greatly on diferent hanks, however. Occaslonaliy almost "othing but dogfish was oltained, while agaln the hlack cod (Anoplopoma fimbria) formed the Julk of the catch. On some of the Alaskan banks the grey cod (Gadur macrocephalus) was very abmulant, whlle on others, along the whole const, the red cods (Scbastodes) were most important.

The lianks occupled liy the dogish (Squalus sucklii) are nsualiy avolded hy the fishermen as much as posslble. They are very often in such great numbers that they literally clog the gear, and the fishermen are put to much fabour In "slattlng" them off. In such cases it does not matter much whether there are halibut present or not, as lut few of them seem to get a chance to take the balt, and rery often are taken through having swallowed the dogfish on the hooks. There is no demand for them, although they might be utillzed for food or for fertllizer, and thelr livers produce oll.

The hiack cod (Auoplopoma fimbria) is undouhtedly one of if, most valnable of the fish thrown away. As is the case rilth the do;fish, they at tlmes form the buik of the catch, aithough when that occurs the fishermen usualiy change thelr fishing-grounds. It is sald to be harder to handle or cure than is the bailint, but lis use is stcadly growing as a fresh market fisb. The nause "black cod" is sadd by many of the dealers to handeap the sale of the fish, as the grey cod is usmilly a cheap fish. It is, of course, not a "cod" at all, being rather related to the "Ilng-cod" (Ophiodon clongatus), "greenilngs." and to the "Atka mackerel" (IIexagruamide). Just as at first the sturgeon In the Columbla Rlver, or as the hailbut 1 tself was in the Atiantlc, so the black cod is regarded at present as a nulsance, on the whole.

Of the grey-col (Gailus macrocrphalux) little need be safd. as its value and use is very well known. Owing to the difficulty in handing tiem on the halihut-hoats they are rarely carrled. It ls said ly the fishermen that slnce the great depletion of the hallhut \ln tr 3 waters of Illan Eutrance and Hecate Stralt the grey cod are lelng caught more abundantiy. If so, It is the logleal conclusion from the fact that the halibut are among the greatest enemies of the cod. This extension of thelr range is. howerer, of doubtful ralue, because they are not as yet taken in numbers to Justify any systematic fishery.

The rock or red cods (Sclastodes and Sebastolabus) are found in great numbers on certain lanks, the sboal waters along the shore-llne containing great numbers of the smalier darkcoloured species. While the deep-sca inanks are fuhabited hy the larger red forms. The latter are nsualiy red with ornnge or scarlet markings. The fishermen say that they do not catch the trawl when it is on the hotton, but when it is haif-way down, or up. It is probable, then, that a change in uethods of fishing would bring lietter results. There is no questlon as to thelr valne
as market fish, as they are easlly handled. whll keep very well, and have an extenslve market farther to the south In Callfornla. The narket ln Britlsh Columbla is steadly growlng for them, und many are brougbt in to Vancouver ly tbe halbut-boats and by the local fishermen of the: " mosquito " fieet.

Of other specics, the " llug-cod" (Ophiodon clongutus) is frepuently obtalned. Thls is one of the fislı most msed in the markets of Vancouver and Vlctorla, being brought in in great numbers by the local fishermen. The flommers are represented by the "long-jaw " (Atheresthes stomias) and by Eopsctta jordani. for whlch there is no local collonulal nane. The former, although reaching a falr slze, is of little value as food, owing to the flesh belng watery and thin, and Its destructlon is probubly a benefit In that it is a predaceous fish. The latter, Eopsetta jordani, is whthout doubt valuable as food (although caught in very small quantity), as it is one of the staple market fish In San Franclsec.

The skates (Raja rhina and Raja bhoculata) are obtalned sometlmes in small quantlies, but are not saved $a_{.}$food, although there 18 a constant small dem. nd for them in some localltles on thls const. This is a result of the fact that many lmmigrants from Europe are accustomed to thelr use as food.

Wlth regard to all these forms, whlch for the most part are thrown back lnto the water, the questlon naturally arlses as to whether such fish survive. Tbere can be no manner of doubt that the red or rock cods (Sebastodes) Invarlably dle, by reason of the fact that they are unable to sluk. They have alr-bladders, filled with gas, whlch is greatly compressed by the pressure of the water at the depths at whlch they llve, aud whlch expands greatly when the fish ls brought suddenly to the surface. The eyes and allmentary canal are forced out by the pressure, and the rupture of the tissues by thls would seem alone to be sufficlent to cause the death of the fiah. It is a very common scene to see the water ln the vlelnity of the dorles strewn wlth these splendld fish. Of the others, the grey cod seems to be unable to slnk, and undoubtedly dles. The dogfish, black cod, skates, and founders do not seem to have tils trouble, and the mortallty among them may be caused for the most part by the mutlatlon of the mouth-parts, the cuts by the gaff-hooks, and the fallure to promptly relurn them to the water. So often are the jawa of all these fish badly mutlated that it would be not in the least surprising $1 f 50$ per cent. should subsequently dle. Thls ls especially true of the "long-jaw," whlch has very easily mangled mouth-parts. It would be dlificult to make any statement regarding minor lnjurles. As a whole, It is safe to say that the destruction of fish ls very great.

To ellminate thls waste seems lmposslble with the present system of fishing, unless such fish could be utllized in the markets. With the present method of regulating fisherles by separate countrles, there does not seem any prospect of adequate regulatlon.

Parasites of the IIalibut.

The hallbur is extenslvely parasltized, by nothlng, however, whlch is \ln the sllghtest degree detrlmental to lts wholesomeness as food, and not to a greater degree than are most of the other food-fishes. Examples of the lmportant parasltes were collected and forwarded to known experts, ellelting the general response that but little was known of them.

A round (or thread) worm is very abundant in the hallbut from Alaskan waters, and aeems to be one of the worst of the parasltes. It becomes encysted in the tlssues of the vlscera, and oceaslonally in the body-walls, but it is for the most part to be found In the reglon of the llver, the gonads, and the wall of the stomach. Frequently cancer-llke masses are formed ln the walla of the stomach, forming in a few cases ulcer-llte sores. They are not found to a very great extent in the younger hallbut. Kegarding them Dr. Edwin Iinton writes me as follows:-
"The Nematodes are Immature, but can be referred to the genus Ascaris. I thlnk I should for the present record them as slmply Asearis sp. Immature.
"Superficlally they resemble Ascaris (Agamoncma) capsularia, but the absence of caeca from the base of the osophagus makes it Imposslble to refer them to that specles. At any rate, tbere is an objectlon to the use of that term, whleh has been used only for larval, encapsulated forms. I thought before I examined them that they migit: turn out to be the young of Ascaris clavata, but they certalnly do not belong to that specles."

Dr. C. B. Wlison, to whom the specles of parasltle Copepods taken from the gills were referred, says: "The speclmeus from the hallbut prove to be a new specles of the genus Chondracanthus." Lepeophtheirus parviventris, Wllson, was also taken from the hallbut.

Dr. Harold Ileath has klindiy looked over the Trematodes, of the external parasites, finding them close to Eipibdclla fratula. IIenth MSS., taken from the coll, which is a specles very close to a form (Epibdelln squamuia, Ileath) taken from the so-called "Callfornian hailbut" (Paralichinys californicus). IIe has also examined a Cestode from the walls of the allmentary canal, aud finds that it is a larval form of an unknown species of Tetrarhynchus.

Notes on Enemies of the ifalibut.

Among the enemles of the hallbut other than parasites may be mentloned the sea-llon (Eumetopias stelleri). At varlous times it has been observed by the writer on the ballbut banks fifteen to twenty mlies off-shore (Frederick Island), and in each case it was apparently feedling on the halibut. Coming to the surface with a fish, one would throw it repeatedy into the alr, meanwhlle being surrounded by a clamorous flock of sea-gulls, unt!1 it had apparently eaten it or had choseu to disregard it, when it would dive for more. Thls was observed in water over 100 fathoms In depth, but at some distance from the trawl-lines, and the flshermen seemed of the opinion that the sea-llon did not always take the fish from the trawl, but captured it. It is, of course, hard to beileve that the sea-lion penetrates to a depth of 100 fathoms. They were repeatedly observed clrcling the ressel whlle the trawl-lines were being brought in , and in mauy of these cases there was no doubt that the halibut was taken from the trawlinnes. The fishermen frequently attrlbute mangled fish brought up on the lines to sea-lion attacks.

Another enemy of the halibut is the large "ground-shark" (probably Somniosus microcephaius). Although repeatedly brought nearly to the surface on the trawl-lines during the writer's work on the fishing-banks, he has as yet falled to secure a speclmen for examination. The traces of its preseuce were very frequently met with, however, in mutilated figh on the trawl-lines, these showing great crescentric bltes taken f Jm the bodles, with the marks of the teeth plainly to be discerned. It is, of course, questlor.oble whether the shark is able to catch the hallbut unless it is caught on the hooks. It is very large, but so sluggish that it makes no attempt to escape when brought up on the trawl-lines until it is almost at the surface, when a very slight effort frees lt. The fishermen say that during certain seasons there are great numbers of these fist on the banks, in shallow water especially.

Very often, particularly on certaln banks, there are to be found numbers of round sores on the flanka of the halibut. Thls is said by some of the fishermen to be caused by "large, round worms," perhaps a lamprey (Entosphenus tridentatus). Other fishermen stoutly malntain that the "devilifish" (10lypun) does it. There are great numbers of halibut to be observed with scars from these sores, but it is unknown whether they lead to death in any cases.

The list of the enemles of the halibut would certairly not be complete without adding the hallbut itself. Not only do the halibut fishermen frequently utilize hallbut fiesh as balt, but frequently a large hallbut is taken through swailowing a smaller onc which had aiready taken the hook. There are, of course, great numbers of stories to be told by the fishermen regarding this, and it is a common expression in teliing of good fishing to say that they caught "two fish on every hook." It is said that in the days when fish were so abundant that a great deai of hand-ilne fishing was done from the deck, that a halibut would be caught when the balt otruck the bottom, but before that one could be bronght to the surface it had been swallowed by a bigger halibut. To one who knows the voraclons character of the hallbut this does not seem so iuprolable, although it rarely occurs at the present time.

I NEW FISH OF THE (BENLS SEBASTODES FROM MRITISH COLUMBIA, WITII NOTES ON OTHERS.

By Williay F. Thonpson, of Stanford Uninembity.

I urlag the employment of the writer on an lurestgation of the ilfe-history of the balluut (Hippoglossus hippoglossus) it was notleed that great quantitles of edlble fish were caught and destroyed ly the fishermen Incldental to the extensive fishery for the hallbut. Some notes on these are inchided in the report for the present year (1014), and it may be seen that varions species of roek-eods (Sebastodes) were found to lie second only to the blaek cod (Anoplopoma Amluia) In potential value. Among these specles of Scbastndes was one whlch appears to be new to sclenee, although one of the most frequently caught. As the destruction nomong these fish is undonitedly great, and unavoldable with the present methods of fishing in vogue, notes regardhy the speeles fomm in the catehes are here presented.
(1.) Scbastodes babcocki, new species. Type a mature female $181 / 4$ inehes in hody-length and $219 i^{\prime \prime}$ in total. from iatitnde $69^{\circ} 1^{\prime}$ N., off Middieton Isiand, Alaska, in 80 to 100 fathoms, taken on a trawl-hue Septeminer 2nd. 1914. Iy the halbut-steamer "James Carruthers."

Dorsal rays Nill.، 13; anal rays $111 ., 7$; pores in lateral line 49 on one slde, 44 on other. Body not elongate but deep, Its depth $21 / 2$ in body-length to base of caudal and 3 In total; it. width $21 / 2$ In depth ; eaudal leduncle depth 3% in head, or equal to snout ; upper profle of head not flattened, arehed slightly and erenly from oeelput; head 2\%/8 in length without caudai; snout. 34:' in head to tip of opereular splue; interorbital space nearly flat, its width threeguarters diametor of eye, or one-fifth of length of head; orbit 4 !is in head, neariy cireular; maxillary $21 / 10$ in head, terminathig mader space between j mill and posterior maryin of orhit; whith of preorbital from between splnes to eye two-fifths of orblal dameter; mandille $1 \mathrm{t} / \mathrm{ln}$ head, with low and hlunt symphyseni knol; lower jaw projecting but very silghtly, if at all; width of mandibniar ramus eontained $3 \% / 4$ times in maxiliary ; space bet ween raml two-thirds to threequarters of width of one of thelu; posterlor nostril distant its own diameter from ege.
spines and ridges on skull weak, with entire edges; nasai, preoculur, postocular, tympaule, and parietal spines ppresent, a supernmmerary spine present betweell the elosely apposed postoeuiar and tympanle on the sinlstral slde, but not on the dextral; pariotal ridges pialnly diverging. anterior ends limt two-thirds as far apart as posterior ends: suprocmiar, eoronai, and nuehal sphes laeking; no sinues helow eye; preorbital whth two strong spines, anterior usuaily shogle, ocrashmally hifhl, pusterior multifl, with 3 or 4 polnts; five preoperenar spines, upper lomgest, its length one-third diameter of eve, the two uphermost pointing backward aud unward In matied contrast to remaluing three, which polnt downward and baekward, the lower - idue hroadest and shortest, the three lowest all notheaby flater than mper two; two shari ereniar silnes, uot divergent, but parailei, length of first contained 4 thues in eye, longer than second, latter exteuding linyond edge of harrow opereular flap.

Teoth in hatuls on jaws, vomer, and palatines; abont of equal lndefnite series present laterully in mandble (3 in s. intromiger), doubing in whith at syuphysls, where there are 11 .: 12 series; no dentirerons knols, a eentral naked space present; \cap or 10 serles iaterally
 orhital dameter; bands on patatnes as wide as laterai inands in uper jaw; those on vomer in a V-shane.

Gill-rakers on first arehes (anterior series) $10+21$ and $0+22 ; 5+5$ on secoud areh; $3+14$ on third: longest on first areh equal to two-fifths of oriftal diameter: most anterlor on lower inmb a prominent spinate kuob, others broad, thin. spatuiate, with a short free fork on posterior (inner) edge, this in eaeh ease extending under that rakur next above (posterior) ; the splmules on rakers, not groupel in separate kiohs as in many long-rakiered forms; none of rakers in secoul serips on any arcbes forked, nor any in first series on arehes other than first.

Horsal spines high. fourth and fifth longest, coatalued $21 / 8$ In henf, or 3 in body-depth; twelfth spinte four-tifths length of thirteenth, which equals orblal dameter; membrane of splnous dorsal excised to two-fifths or one-half leagth of splnes; longest dormai ray $21 / 2$ in head. Aual suines strong. !ongth of first contalued $21 / 4$ times in second, which is oaethird length of head, longer and nmeh stronger than thind; longent aaal ray $21 / 6$ in head.

Pectorals equal to head without snout, their base very broad, $31 / 2 \mathrm{ln}$ head length. Ventral, aot neariy reachiug rent, length $1 / 6 / 3$ in head, width acrong both bases $41 / 2 \ln$ head.

Scales not coarsely ctenold to touch, smooth on head; fine ncales on all fins, spinous or soft. on aiaxllary, mandlble, suborhltal, nnout, subopercle, and branchlostegais; accessory scales numerous; pores in laterai line 47, plus 1 on caudal; 00 rows of scales below lateral llae countlig rows ruming downward and backward.

Colour in silitits unlform, withont dark markings anywhere; glll-carity and buccal llnlags silvery. The followlig colour notes were taken from the fresh spechen: " \boldsymbol{A} unlform falint red or pink. with fonr lirond cross-bars exteading as low as level of mid-pectoral hase; first between thirit dorsai spine and occlput down to upper pectorat base; second a wedge-shaped subile from sisth to elerentli apines dowit ; third below third to ninth soft dorsal rays; fourth on piostertor half of candal pedmeic; first three extended on fins. Anal, caudal, soft dormai. mul onter veatrul rays deeper red than body; pectorals and other fins pink. A faint reddish streak ruming townward nnd backward from cye. Iris with a slight brown tinge. Glit-cavity lining in oue sirecimen whith black shades in places, in others a nniforin pink. Peritoneum silvery, with thsky shades or mearly black. In one apecimen a vividiy black oblong spot ahove mid-length of pectoral rays. This latter, with another (the type), were females witli unripe formulis."

Named for MIr. J. P. Babcock.

This spectes promises to become one of the most importaat of the red rock-cod in case of their utillzatien for commercial purposes, and the fallure to obtain it for scientific descriptioa is very remarkabie when its abundance is consldered. It is fouad on some ianks more often than is sebastodes ruberrimus, whlch is without doubt the most important and which is the oniy specles to be found conslstently in the markets.

It is closely related to S . crameri, Jordaa, with which it has not been compared. Dark markings, however, are crerywhere absent save in cavity linings, whlle S. erameri has "a black spot on upler part of opercle; membrane of splnous dorsal black-edged; dorsals aad pectorais a little dusky." The cross-bands meationed in the description of this form are arranged in an essentially different manner in S. babcoeki, and do not persist in spirits in the latter. S. crameri was but $61 / 4$ tnches long, and the following differences distinguishing the two forms shonld be necelted with caution, as the age changes are unknown: The gill-rakers are not "slender" in the new species; there is no supraocular spine present; the nuchal spines are aot indleated in any way, whlie in S. erameri they are "marked off from parietal rldges only by depresslons"; the preorbital has rery distinct splnes, uot "triangular lobes, but no distlnct splnes"; the lowermost preopercular spine is not "obsolescent"; the secoad anal splne is loager, as well as much stronger than the third, not "equal to the third" as in S. cramert.
(2.) Sebastodes ruberrimus, Cramer. The most alundant of ait the specles of thls geaus on the halibut banks. It is brought in regularly to the markets of Vancouver, Victorla, and Seattle from the lianks of Cape Scott and off Goose Island. It is also found in abundance off the Queell Charlotte Islands and as far north as Kodiak Istand, Alaska. Specimens are at hand from off Frederlek Island and from off Goose Istand.
(3.) Schistotles ulutus, Gllbert. Thls is perhaps more frequently eaten by the hailbut than Is any other rock-cod, and it has been taken from their stomacbs on practically every bank visited. save some of those in the shoaier water. It is therefore to be considered the most abundant of the smaller species, and is absent from the hallbut-hooks more because of its smail size than anything else.
(4.) Scbastotics brccispinis, Bean. Thls has been consldered a very rare species, but on certain banks it is fonnd In relative nbundance, and twe spleudid examples are at hand from Rose Splt, at the junctlon of IIfeate Stralt and Dixon Entrance, from a depth of between 00 and 100 fathoms. It may here be unentioned that the depth glven is that at which the hallbut ure caught, and the fishermen belleve that the rock-cod are really canght at a conslderable distance above the buttom. The longest specimen here recorded is 25 inches in total fength.
(i.) Seliantodes ncbuloaus. Ayrem. Thls ls the most commonly caught of the maller rockcods In Hecate Stralt, and numerous sjecmens are at hand from off Bonllia Inland. It hat been recorded from Alaskn but once, all prevlous records being for Puget Sound.
(6.) Sebastudes pinniger. A single large speclmen of thls specles, 91 luches In length, was taken at the junction of Ifecate stralt and Dixon Entrance, at a depth of from 00 to 100 fathoms, on March gist. 1015. It differed from two speclmens taken In Monterey Bay in a lesser de:th ($21 / 2 \ln$ length \ln the latter, 3 in the northern specimen), In colonr, and in the forked condition of the second serles of gill-rakers on the first arch. A skeleton of intermediate size from Monterey, however, nhowed the forked condition of the glll-rakers. This apecles le not very abundant on the hallbut banks, and seeme to be an luhabltant of the shallower waters.

[^0]: - In glving the rewilts they are sometimen presented with the ald of plotted curven. Thls graphle mothon ln oecanlonally hard to grasp at once hy one not accustomed to Eelentife methode, nnd in order tu asxlst sueli 5 one, the use of the plotted curve whowing the welght of the hallhut at virlous lengthe is explained. These are in each instanee average welghts and average lengthn. on thst in taking any one indlvidual the correspondence would not be cxact. hut when many are eonsldered thlis should be true. The results Inltinlly ohtnined Fere arranged in proper nequence, and " noonthed." by averaging each average welght Fith that ior the length preceding and that succeeding it. Thls lis, of courie. an arlthniecieal process. not sitering the truth of the curve, but ellminating small chance varlationg. To ohtaln tbe welpht at any given length from the ehsrt. tie length dewired should be mought alo g the hase. then the vertleal line alove it should he followed up until it croases the plotted curve at a certaln polnt. followlag the level of this polnt over to the right will wad to a certaln given welght, whlch reprementis the average ono for the iengti taken. Thun a fish 39 Inehes long would be 28 in. In vietight on the avprage, if the fish were eleaned snd headed. hut if atill ${ }^{\circ}$ ronnd" it would wrigh 32 in.. as shown hy the plotted curve. The word "round" is mpplled by fishermen to the fish as it is taken from the water.

[^1]: *Notes on the Scale Markingn of the Hatthut and their Bearing on Questons Connected with the Conservation of the Flabery. Tranametlons of the Royat 8.clety of Canada, 111. Series, 1913, Vol. vil.. sec. IV.

[^2]: The otollths, it may be explatned, wre the "ear-holies," fonnd Inside the aknill hehlnd the eye sralta, atr the otoliths, it may be explatoce, a patr in each nsh. and altuated inathart or of liny materini with a allght quantity or orgsnic mat the nis ls cut ofi by the nibermen on 1 gding, thene which represpat yeara of "Erowth. When the head of the hasi dropped out and may be plicked up of the small. oval, fat " stones "or "bones" may be fonda the have droppes, one for each year of the deh's life, floor in numbers. The scales, as in the saimon, but are harder to decipher than are the otollths.

[^3]: - Fisheries and Fishing Industrles of the Cinted States. Sec. 1, 1884, page 180.

[^4]: * Garstang. Various papers in the Marine LHological Noclety Jou: aal.
 \dagger Pacifo Finherman, Iecember, 1914.

[^5]: * Part III., Twenty-elghth Annual Report, Fishery Board for Scotland, page 46.

[^6]: *Transactions of the Royal Society of Canada, III. Scries, Voi. ViI., Sec. IV., 1013.

[^7]: the paper by Victor Franz on " He Fiproduktion der Ncholle" in "Tinssenachare (Pleuronertes plateasa), gen. N.F. 9 (1y10), abthellung ILelgoland," may he seen. The cytological changes in the wesuntersuchundealt with.

[^8]: - According to Frans (Wiesenschaftithe Meereanntersuchnngen, N.F. D. 1910. Ahth. Heigoland). this transiucent appearance bas its origin at much earlier miage, but here it is intended to imply simpiy a transiucency easily vidble withont close examination and accompanjing the rapid ecceleration in Erowth.

[^9]: *Contributions to the Life Ilistorics and Development of the Food and other Fishea. Report, Fisherles Board for Scotland. 10, 1891, page 273.

[^10]: - Ninth Keport. Fysheries Roard for Scotiand, 1890, page 261.
 - Nourth Report, Fisherles Board for Scotland, 1883, page 224 ,

 Wissenschaftlche Mceresunteranchungen, N.F. Abth. Klel., 1890, S. 238.24R. Tar. I.
 Ninetecnth Anuual Ifoport. United Stnton Geologicsl Survey. Part II., 1809, page 208.

[^11]: *Holt. Journal, Marine Rlological Aswoelation, Volume 11.. 1891.92, page 383 ; haso Maler. Reltraze gur Altertmatimmung der Flache, l., Wismenschaftilche Meeresunteruchungen, N.F. 8, Abtb. Hel goiand, No. δ, 1006, 8. 95.

[^12]: - Maler. loc. cit., page 88.
 \dagger Twenty-eighth Report, Fisherien Board for Scotland, Part III.

