The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le gitre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleve ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La retiure serrée peut causer de l'ombre ou de la distorsion le long de la marge incérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmėes.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-Etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tete provient:Title page of issue/
Page de titre de la tivraisonCaption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN AGRICULTURAL JOURNAL.

Vol. II.
MONTREAL, MARCH, 1845.
No. 3.

How differently Agriculture is estimated in the United States from what it is here in Canada. In the former country, the Sate Houses of the several Legislatures, particularly in the New England States, are given up for holding meetings for the discussion of Agricultural subjects, when their Legislatures are not in session. At Boston, Concord, and Mountpeller, these meetings are held, and the most interesting and useful discussions take place two or th:ee nights in the week. Legistators and the most respertable men of the country attend. We wonder what would be said to us were to propose such a plan in Montreal as the having meetings occasionally, when our Parliament was not in session, in some part of the buildngs of our Legislalature, for discussing Agricultural subjects? We suppose that it would be considered a great insult offered to our Legislatures, though the representatives of an Agricultural population. It may be very presumptuous of us to avow our own ideas on the subject, but we will say, that the meetings which might be held in our Legislative buildings for the discussion of subjects connected with the improvement and prospariry of Canadian Agriculture, provided they were conducted in the same way as in England, and in the neighbouring State:of the Union, might be proluctive of as mach general and real benefit to the country as are produced by the Sessions of the Legislature, and without any of the expense of the latter. We wish not to be misunderstood. We do not offer any objection to our Provincial Parliament; on the contrary, we are proud of the Constitution that has given us the privilege to have a Legislature to make few and good laws for our government. What we say is, that discussiuns on a subjeci of such vast importance to Canada as her Agriculture, might be as useful in some part of our Legislative buildings. as any other business transacted in them. It would have a further beneficial influence, that it would excite an interest amongst all claises that is not now felt for the improvement of Agriculture. It would make it fashionable, and that would have no smail effect in recommending it to the people of Montreal. Our Legislature have certainly a great influence upon our destinies, but it would be very well for the people not to leave all that is possible to be done to promote their prosperity and happiness, to
them. We do not require to make laws, for we have them in abundance, but we might make many other regulations for the encouragement of Agricultural improvement, were we to meet frequently togethar, and discuss them in a proper spivit, that would really promote the ganeral prospe.ity, and increase the means of comfort and happiness of the people. The very best practical Agriculturists might derive benefit frem these discussionsis and though their own self-confidence would sug鰏t the contrary, their patriotism, and desire to adrance the good of the couatry, would surely be sufficyent inducement to urge them to impart their superion skill to others not so well informed. Every individual of a community owes this Juty to that communily. It was for the general good of society that the Creator of all things endowed a few with superior intellect, the: they might employ it for the good of their fellow men as well as for their own; and they make but a poor return to the Giver of these blessings when they only employ them for their own purposes and benefit. It is a species of selfishness and ingratitude that is unworihy of men ot natural endowments and intellect, freely bestowed upon them when it has been withheld from other men. The chief cause of this, we believe to be, that most men give themselves credit for all the advantages, natural and acquired, which they possess, and are not sufficiently sensible of, or thankful for having received them from their Creator. We have often been answered, when recommending Agricultural publications to the attention of the farmers, "Oh, we do not want any further information on the subject of our business; we understand it perfectly, much better than we can practice it; we cannot learn anything further that would be of any use to us." Now, it is well undersood by all well informed and unprejudiced men, that even if they did know all things as perfectly as any other men in existence, there could be no reasonable objection to be conirmed in this knowledge by reading the practical experience of others, and find it to be exactly the same as their own. We have many times observed that, the more knowledge we can acquire, the more convinced we must be of our comparative ignorance, and of the vast amount we have to learn. An uneducated, or an ignorant man with a little education, thinks he knows all things,
because he has never been led into deep thought by extensive reading. As we read extensively, our ideas expand, and things are brought before our mind's eye we never before dreamed of. Our desire to know more becomes thus enlarged, and hence it is, that a reading man becomes more anxious to read every day of his life, not the reader of light works of fiction, (though there are some oi hese works which may be read occasionally) but readers of works of merit. written for the instruction and benefit of the human family. The ideas of the man who does not read are confined naturally to himself, and matters and things within the compass of his vision; they do not, and cannot extend any further. Extensive reading is actually required by Legislators and those who would be benefactors of mankind, or we shall have neither in any degree of perfection and usefulness. No doubt, in a Legistative body, some members of sound judgment, though not extensively read, might be very useful, but they never can take a useful leading part; they will not know how, however well disposed. These are simple truths that if not well understood by all who may read them, will be perfectly clear to some who may. The whole object of our Journal is to advance, if possible, the general prosperity and happiness of this fine country of our adoption. "We trust there never will be found in its columns one line that would be calculated to produce a contrary effect. We may deliver our opinions with too great a degree of freedom, but if we were to conceal these opinions we would not perform our duly to those from whom we expect support, and whom we at: anxious to benefit. Our opinions are not party ones. We give them only from a desire to exctre in the whole of the Ca sadian coummunity an interest in the improvement and prospervus rondition of Canadian Agriculture, as the surest, and indeed, the only means of estatlishing, upon a tirm basis, the general prosperity of this community. We propose no plan ;-we only say, that whatever is possible, and most likely to produce the improvement required, it is the duty ot all who possess the power and influence to adopt at once.

At a late meeting of the Farmer's Club-House, London, Mr. Smith of Cranston, Scotland, delivered a most interesting address on the subject of drainingwhich we copy. There is the same necesisity for sufficient daaining in Canada that there is in the British Isies, and it would be productive of the same good effects. We have never read an article on the subjwi, that is more correct and deserving the atcontion
of farmers, than Mr. Smith's address. He describes e xactly the effects produced by sufficient draining and he want of it. If we were to take the trouble to exphain these matters here, we should soon see the good effects ofit. We endeavour to collect the newest and best information on these subjects for our subscribers but we find that all we can do in this way is regarded with a jealous ey e, if not with indifference. In no other country on carth would these be grounds for making such a complaint.

Mr. Sminis said he should have great pleasure in respondiug to the call that had been made upon him by the chairman, and would endeavour to illustraie the leading points of the subject of drainage to the best of his power. He could not enter into a discussion, on an occasion like the present, of the question in all its branches, but must confine himself to the leading points and such portions of it as were most essential to the subject, and should afterwards be glad to hear any observation and to meet any objection that gentlemen might raise from what he should say. He regretted being absent from their last meeting, which was owing to his being in Scotland at the time, but had written to their friend Mr. Shaw, explaining to him the cause of his absence. Mr. Smith commenced his remarks on drainage by cbserving that the importance of thorough-draining was a point on which they were all agreed, and upon which conviction was so general that it was unnecessary to dwell upon it. Unless land was rendered thoroughly dry, there was no hope for good cultivation. Now, there were two kinds of draining, which many persons were apt to confuse one with another: one of the kinds was to get rid of springs of water sising from the land itself, and the other for carrying off the water which fell upon its surface. These who were experienced in the natter knew that it was of very much more importance to carry off the water from the surface than catching any accidental springs that might occur below the surface; this latter draining might be of importance in some cases, but there was no portion of land for cultivation that would not be benefitted by the sinking of frequent drains so that the water which fell upon the surface might find its way to the proper clannels and be carried off. The talentecu lecturer here directed attention to a colored diagram in the room, representing a section of soil under the operation of draining ; its chief'purpose was for explaining that, beneath the portion of soil that had been stirred by the subsoil plough, and which had received no mechanical aid, it was, nevertheless, full of cracks or fissures, open throughout, and admitting of the percolation of water and the admission of the atmospheric air. These fissures were explained to be of varying size, according to the nature of the subsoil, and were produced by the abstraction of the water from the soil through the action of the drains. He firther observed on this head that it was a wise provision of nature that inproportion to the greater quantity of clay contained in soils, and which renders, them more impervious to water in their original condition; they are by this very circumstance, when drained, more disposed to contract and form large fissures. Drift soil, he observed, which is full of sand and stones, and more npen in its original state, contracts less when laid diry; still he had found from experience that the faciility of soils for transmitting water when under the influence of thorough-draining was more miform than might at first view be imagined; so that a distance of from 18 to 20 feet, from drain to drain, would be found to be a good practical distance for all
soils. Thorough -draining well executed in clay soils may be reckoned upon as being fully as permanent as in any other subsoil; and, as there is less running sand from the clay, the drains are less likely to become flled up. Clay when drained and having becone tilled with fissures, will never cutirely fill up again, although in wet seasons the fissures may swell and close up a Jittle, therefore, if the consequence of sinking the drains was that the whole mass of soil became full of fissures, it must be manifest that if the land were not drained the rain would fill up all the openings of the aetive soil; and whatever rain fell would run over the surface into the water-furrows, carrying with it a great deal of the finest particles of the soil. It has been usual for some farmers to set of their lands in very narrow ridges, and to give the surface a curved form, that the water mirht run easily into the furrows; by this means much of the land was entirely lost for cropping, and much of the grain which grew for a considerable distance on each side of the margin of the furrows was stunted and worthless. Where drains are properly exccuted. the water falling upon the surface finds its way into the drain by slow percolation, thereby leaving all sediment behind it to enrich the soil. After smne scientific remarks upon the decay of sege. table matter, and the food of plants, and the displacement of the air in the fissures by water after showers, Mr. Sinith proceeded, by saying, that if the soil were within four or five inches of the surface, it would by a continued course of crops, become exhaustedi in fifty, sixty, or a hundred years, but if, by thorough draining it was opened up, those portions were rendered available for the purposes of cultivation which lay at a greaten depth, and plants would there find what they wanted, both of mineral and vegetable matter. Another great advantage of thorough draiung was, while it carried off all free water, it gave the soil when drained a greater power of setaining moisture than before, and which soils would not, therefore, become parched up in dry seasons, as frequently is the ease with undrained stiff clay soils. Now, in looking at the diagram, to which he pointed, they would see that the twelve inches of subsoil opened up by contraction would be quite enough to receive all the rain that would fall in twenty-four heurs, in fact the greatest height which it could attain to, he believed would be nine inches; all above that would be in a free state, and passing through by percolation, without doing any injury to the plants. Chalk soils, he observed, are very difficult to drain, and although apparently dry on the surface, they are very retentive of moisture. He was of an opinion that thorough draining might be beneficially applied in chalk subsoils, and probably the same distance from drain to drain might be suitable, as on the other soils; but, one thing was clear, that whatever soil required draining, the best cconomy was to drain it thoroughly. With regard to the depth to which drains ought to be cut, he would say that from two and a-half to three feet was a grod practical depth; four feet would perhaps ?-e better, but there must be a limit as regarded expense, and considering atility and economy, he thought the depth he had mentioned was just about sufficient to secure what was wanted, viz.. a thorough and complete draiuage at all times. It was of great importance, in the construction of drains, that they should be kept narrow at bottom, for two reasons: first, because fewer stones would be required; and secondly, because if any sediment should be deposited, the water would have greater power to act upon a confued channel, and thus.remove it. The most important things with respect to the stone drain is, so to cover the stones with thin turf as to prevent the iugress of any water
in a direct manner into the drain. He would therefore, recommend first, that a thin covering of turf be put over the stones, and well tramped down, and that this should be followed by a depth of six or eight inches of the stiffest of the clay which had beendeg out; this, also, being firmly and well trodden down, so that no water can find its way directly into the drain. In box drains the water rushed along with great force, and this force ultimately destroyed the dram itself; but in the drain made with broken stones, the water was prevented from gaining a rapid motion. In executing tile drains, and the best form of construction, he remarked that the horseshoe section, with a sole made a very good daain. In some places, he said, they constructed their drains withont usiug soles, buc by adopting the horseshoe scetion without the sole, the subsoil became forced up and destroyed. Much had been said of tube tile of hate, and he certainly approved of it himseli; it was much stronger and the form much better than the other description of drain tile, as regarded the discharging of water. Some farmers used tube tiles of one inch bore; but he preferred the size of inch and a-half or two inches, as it would admit of a freer circulation of of air. In cutting in clay soils, it is a very easy thing to cut the drain so nicely to the size of the tiles as to allow them to be put in without any fear of displacement; but it was not so in stony soils, to obviate which difficulty lie had lately introduced a mode of forming the ends of the tiios so as to interlock with and sustain each other: drains could be as cheaply executed with this kind of jointed tile, as with the common tiles or tubes. He was satisficd there was nothing so suitable for filling in upon the tiles as the stiff clay dug out of the ground in cutting the dtain itself, which ought to be well tramped in. When drains are well constructed, cither with stones or tiles, so that water is not allowed to get directly down, they may be calculated to last for 100 years; he had himself seen drains in a perfect state after thirty years' use. After again directing attention to the importance of making the drains of the most substantial nature, he concluded by requesting that the modesty of the gentlemen present should not deter them from putting any questions to him which might suggest themselves, and to which if he could answer then he would, and if not he would candidly tell them so.

AGRICULTURAL TRAINING SCIOOL AT HODDESDON.
 (Abridged from the Herts Couaty P_{1} ess.)

The introductory lecture on the opening of the Hoddesdon agricultural school was delivered before a large and highly respectable meeting on Tuesday, Jan. 15 , by the head master of the establishment, Mr. Hazlewood. On commencing this gentleman observed that. through the instrumentality of a few patriotic individuals, all he sciences connected with agricuitural prosperity and the improvement of the soil were at last made accessible to them ; still be did unt think the useful sciences, to be taught by him and his conadjutors, should be confined to the agriculturist alme, for he believed the times were fast approaching when it would be found desirable for all classes to avait themselves of that knowledge. He nest observed, that mathematical science, whether considered in its nature or its result, appeared equally amonst the noblest objects of human pursuit and ambition: that from a few self-evident propositions was originated ani intellectual creation ap? ling to and illustraing ah the
phenomena of nature and art; and the same calculus which measures and points out the npplication of habour, whether by machines or animals, determines the force of vapour, and confines the power of the most explosive agents in the steam-engine, regulates the form and structure best litted for moving through the waves, developes the strength of the chain for the bridge necessary for passing across the arms of the ocean, fixes the principles of perinanent foundations in the most rapid torrents, and, leaving the carth filled with momments of man's power, ascends to the stars, measures and weighs the sun and planets, and determines the laws of their motions, and brings under its dominion those cometary masses, wanderers in the immensity of space.
That which marks the present age, he observed, even more than the progress of physical seience, is the practical application of science to the purposes of daily life, for supplying our ordinary wauts, and for ministering to our comforts in the smallest matters. Our streets are lighted, our houses warmed-our clothes are woven-our cushions are made casy; we travel by sea and by land-we make our coffec-we light our candles-we perfune our rooms, by elaborate combinations of mechanical or chemical science. Our knowledge of the animal, vegetable, and mineral world at the sune time has been greatly extended, and every year new products are applied to medical and economical uses. The lecturer, on his discussion of education. laid down as a proposition "that the communication of knowledge is not the sole end of education." He remarked that it is not the chief end, and that he held the communication of knowledge to be a secondary object in education. In intellectual education, the first great object is to develop and train the several faculties by exercises adapted to their growing strength; so that they may attain the highest degree of readiness and power, not in onc particular branch to the detriment of the rest, but t^{2}. ogreatest , igour they are capable of in harmonious co-operation, and thereby form a perfect man-perfect in the liealthy and robust constitution of the whole intellectual being. A chiid or a man may seem to know many things, tud yet have no power of the mind but memory, strong and active. He may be dull in comprchension, slow or inactive in perception, have no readiness in combining his knowledge, or in arriving at conchasions from experience, or in proceeding from the particular to the general. He may be without a distinct consciousness of the limits of his own knowledge, or of the strength or weakness of his mental powers. Such is likely to be the result of his intellectual condition if, during what was termed his education, he was made the mere recipient of knowledge poured into him, as into an empty vessel, without having his mind stimulated by his own exertions, and, by training, to a proper comprehension of the subjects before it. On the other hand, a man may posscss but a limited knowledge of facts, and yet, by being traiued to certain mental habits, be liable to master any ordinary subjects to which he may apply his mind; and if it be of a practical nature, to judge correctly of it, and to act efficiently. It is possibic that certain studies may be preferable for the purposes of training, which are of little practical utility in after life; and that the man may have derived lasting advantage from the exercise of learning something, when the source is afterwards forgotten. There is no profession, no station in life in which a desire for intellectual exertion, a habit of attention, a retentive memory, a quick perception, a comprehensive capacity, clearness ofidras, soundness of judgment, a knowledge of the use of knowicdge-that habit of mind, in short, which,
by reflection and experience, gathers wisdon-is not far more valuable than any amount of mere knowlentle.
> "IKnowledge and wislom, far from being one, IIave ofttimes no comnection. Knowledge dwells In heads repleto with thonghts of other menWisdon in minds attentive to their own.
> Finowledge-a rude unprofitable mass,
> The mere materind with which Wisdom builds, Till smouthed and squared and fitted to its placeDoes but encumber whom it seens to eurich.

The question, therefore, to be determined is thisto render mental discipline in physical science effective for the instruction of youth, how shall it be conducted? In answering this question, we must first consider what mental faculties the study of physical science will exercise and develop. Objects and phenomena have to be examined and observed, whereby the bodily senses are exercised; then the cognizance of thimgs with respect to their shape, size, position and colour, and of eveuts, bring the facultics into play. By these means the power of obscruation may be noticed, and the mind taught to discriminate and compare. Then individual objects, according to their differences, may be divided into a species, and comprehended in genera. The process of classification will thus begin, and the mind becone accustomed to intellectual order, and a methodical arrangement of its knoledge. When a considerable number of phenomena have been observed those which are aecidental may be distinguished from those which are essential; by which the mind will lcarn to generalize. The relation between effect and cause will begin to be perceived; the faculty which perceives it, and which instinctively seeks it, will be exercised; and the mind will be gradually trained to recognize the relation where it subsists, and what is perhaps difficult to attain, will abstain from supposing it where it has no existence. In other words, it will learn the process of induction-the only method by which any truth can be discovered which is external to the mind itself, and not an immcdiate object of the senses.
Thus-while mathematical science is the practical discipline of the pure reason, and literature culivates the imagination an the taste, and also addresses itself to the moral faculties-physical scienc, by its very nature, is fitted to exerciss all those faculties which are convcrsant with the the material world and its phenomena.
Science, the lecturcr obscrved, learnt merely from lectures or from books, was little more than exercise o: verbal memnry, and was really hurtful to the mind by accustoming it to remain content with rague notions and faint ideas: half a dozen chemical experiments made by a pupil himself, would give him more instruction in chemistry than a hundred experiments witnessed in a room.
In like mainner with the study of botany, the student himself should find out the points of resemblance which constitute the generic character, and mark the points of difference which distinguish the species; and not rest satisfied with learning by rote the botanical classification of $\mathrm{D} \varepsilon$ Candolle.

In vegetable physiology he must verify microscopic observations, and see with his own eyes the facts upon which the science is founded, and himself go through the processes of induction, by which the functions of the several parts of the plant are ascertained.

After some further physical remarks, Mr. Hezlewood strongly recommended the studying of one branch of science thoroughly, as far as his students intellectual powers would permit them; the subject itself was of minor importence, and might be left to
the student'sown taste. Convince the mind by one example, and the similarity which exists between all branches of knowledge will teach the same truth in all. Mr. H. further observed, I estimate so highly the benefit of mathematical discipline; that I would advise every student, without exception, to master the pure and mixed mathematics required in an ordinary examination. It will remain to be considered whether the rest of the time and labour of the student should be devoted to physical science or classical literature, this being a question which will generally be determined by the ultimate destinatian of the student.

HIGILLAND AND AGRICULTURAL SOCIETY OF SCOTLAND.

A monthly meeting of the Highland and Agricultural Society of Scotland was held in the Museum, on Wednesday se'nnight, at the usual hour-the Earl of Rosebery in the chair.

CONVERTING SAW-DUST INTO MANURE.
The first paper, On Converting Saw-dust into Manure, by Mr. Bishop, land steward, Methen Castle, Perthshire, was read by David Milne, Esq-; and for several years back the author has been desirous of discovering some method by which saw-dust and the other waste of a saw-mill might be converted to some more useful purpose than it is generally applied to ; and conceiving that it might be applied as a manure, he was led to make several experiments with a view to ascertain in what manner this might be most effectually accomplished. Undecomposed saw-dust, especially that from resinous trees, having an injurious effect on vegetation, he had endeavoured to discover some cheap method by which it might he more quickly decomposed, and thereby become fitted to promote the growth of plants. The first attempt made with this view, was to reduce the saw-dust to ashes, by spreading it orer the surface of a piece of land, to the depth of five or or six inches, and to set fire to it, as is sometimes done with peat moss. Owing to wet weather, only the half was reduced to ashes, and no perceptible benefit was produced on the ensuing grass crops; but a crop of oats, after the land had lain four years in grass showed a marked superiority in those places where the sawdust had been burnt. Having heard of the fertilizing properties of powdered charcoal, he proceeded to convert the saw-dust into charcoal, by partiallye xcluding the air during combustion. For this purpose he procured a certain quantity of well-burnt lime-shells, which he mixed up in layers with stw-dust, the latter in as dry a state as it could be obtained; the whole was then covered over. In a few days the mass became ignited, especially towards the top and sides of the heap. Whenever the flame burst forth, an additional quantity of saw-dust was from time to time laid on, and thus the process was continued till interrupted by wet weather. When this carbonised dust was applied, along witit lime, to grass, potatoes, and corn crops, the result proved highly satisfactory ; and, in one instance, its beneficial effects were more obvious the second year than the first. In order to avoid the cxpense of purchasing lime-shells, and to show, at the same time, that the beneficial effects of the charred dust could not be ascribed to the lime used in the process of charring, another method was adopted, namely, by preparing two or three fire-heaps of brush-wood, which, affer they had burned for some time, were covered with a thin coating of saw-dust; wherever the fire broke out to any extent, additional saw-dust was applied, and this was continued from day to day, a thick coatang being laid on in the evening, which was partly
raked offin the morning, so as to retain a regular thin covering, through whicl: the air could pass, to carry on the burning within the heaps. 13y this methad Mr. Bishonp has converted into charcoal 600 bushels this season, and it aas been applied in different ways to turnips, and also used as a top-dressing partly by itself, and partly in mixture with guano, anmoniacal water, malt cummings, and other substances; and in all these cases its beneficial effects have been more or less apparent. The aptness of this substance to imbibe the fertilizing properties of liquid manure, the ammonia of byres and stables, and the effluvia of confined and unhealthy habitations, is a circumstance which entitles it to much consideration. It is recommended that the saw-dust, when taken from the mill, should be deposited in a dry airy shed, as it is exceedingly liable to imbibe and retain mristure-a circumstance which greatly impedes the process of charring. It is calculated that saw-dust m_{i}, he thus converted into this useful manure, at the rate of about one penny per bushel.

EFFECTS OF DRAINING.

The advantages to be derived from draining are not limited to the admission of air into the soil, by which vegetation is benefitted, but it also remoles those nosious substances from the subsoil which act injuriously on vegetation, and as the water siuks away to the drains it drans air after it into the soil, by which those chauges in the organic matter in the soil are promoted that are highly uecessary to keep up a steady supply of food to the roots of plants. The unproductiveness of much of the heary and tenacious clay lands of this kingdom arises from excess of of water, since most of them contain in their composition all those substances which constitute a fertile soil, but from the quantity of water which fills the soil, it runs over the surface, carrying vith it to the ditches and rivers many of those ingredicnts required by plants, and which, if the water filtered to the drains, would be retained in the soil. It is the washings of these lands which colour our rivers after rains, and which are deposited along their banks, forming these fine alluvial soils noted for their great fertility. The annual overflow of the rivers Nile and Ganges is the means of rendering thousands of acres of land highly fertile by the deposit left on the lands they flood, and which is obtained frum the high lands in their course, and I may say that hundreds of acres of pasture along the banks of the Severn receive annually a most ample manuring by the deposit left after the winter's flood, which matter has been obtaiued in its course from the undrained lands lying along its banks, and thousands of tons more are carried out to sca and there deposited. But the disadvantages of not draining do not end here. A soil undrained is always much colder in summer than ore drained, and this circumstance alone exerts consider: ble influence on vegetation. If you immerse thehata in water, and then, on removing it, move it about in the air, the evaporation of the water caaries of the heat of the hand, and a reducrion of the temperature, indicated by the cold experienced, is the consequence. Now precisely the same thing occurs in a moist soil. If a thermometer bulb be plunged, during the heat of summer, two inches beneath a soil that is drained, and another the same depth in in an undrained soil, the temperature of the drained soil will often be as high as 120 , while the wet soil seldom exceeds 80 degrees of heat; here t^{2} _n is a difference of 40 degrees of heat in farour of the ry soil, the effects of which on vegetation will be duly appreciated by those of you who are fond of
gardening. Late frosts and heavy derss are a necessary consequence of undrained lands, from the circumstance of the water which has evaporated from the sod lying over such lands, and, as soon as the temperature of the tir becomes a little lower than sufficient to keep the moisture suspended, it is deposited as dew, or floats as fog over the soil, thus constantly tending to retard the progress of vegetation-rendering the crops liable to injury in the spring, and delaying the time of harvest to a later period than necessary.-Gyde's Lectures.

Minutes of a public meeting,
Held at Brockville on the 4 th day of December, 1844.
A.t a Meeting of Merchants and others, held in the Court House, this evening, for the purpose of considering tha propriety of forming a Society, whose objects shall be the improventent of Agriculture in the District of Johnstown.

On motion of War. Buell, Esq. seconded by John Bland, Esq.,

Adiel Sberwond, Esq. was called to the Chair.
On motion of Wm. Buell, Esq. seconded by R. Wation, Esq.,

William Brough was appointed Secretary.
Thereafter it was moved by James Stevenson, Jr. Esq. seconded by Wm. B. Richards, Esq. and unaninously carried, that

It being considered a matter of essential importance to the general interests and prosperity of the district of Johnstown, that Agriculture in its various branches should be fostered and encouraged arore than it now is, by merchants and others, who although not pratically engaged in Agricultural pursuits themsel ves, are nevertheless drectly interested in the labors of the Agriculturist. Be it therefore resolved, that a Society be now established to be designated the "Mercantile and Genexal Igricultural Improvement Society of ths District of Johnstown."

William Mathie, Esq. then read the draft of a Constitution for the government of ihe Society, and moved its adoption; the motion was sec:onded by John Esdaite, Esq. after which the articles of the proposed Constitution were read by the Secretary, seriatim, and with a few alterations they were agreed to by the Meeting. (The Constitution as adopted will be found below.)

On the motion of John Bland, Esq. seconded by Ormond Jones, Esq. it was Resolved,

That the following gentlemen, viz: Messrs. Wm. Mathie, James Stevenson, junr., Robert Watson, Thomas Webster, Wim. Brough, John Rosa, junr., Wm. Buell, Ephrain Dnnham, and John Esdaile, be appointed a Committee to procure subscriptions to this Society, and that this Committee Report to a Meeting of the Members of the Society, which shall be held on Tuesday, the 4th day of February next, at 12 o'clock noon, for the purpose of electing Offire Bearers, and the transaction of other business.

On the motion of John Esdaile, Esy. seoonded by Rohert Watson, Esi., it was

Resolved, That the proceedings of this Meeting be insurted in the Brockvil!e Newspapers.

On motion of W. B. Richards, Esq. seconded by John Esdaile, Esq. it was

Resolved, That the Chairman do leave the Chair and that Ormond Jones, Esq. he called thereto.

A nother motion was then duly made, seconded and carried, nem. con. tendering the thanks of the Meeting to the Chairman and Secretary, for the manner in which they had discharged the duties of their respective Offices during the evenirg.

W. BROUGH, Secretary.

constitution of the mercantile, and general agricultural improvement society, for the district of johnstown.
Article I. The object of this Society shall be the assisting in such seeps as mav be necessary to procure the institution of regular Fairs and Markets for the sale of Agricultural Stock and Produre in the District ; the dissemination of the best published Treatises on Agrtculture; the collection and diffusion of information concerning improvements in that Science; the procuring of goonl seeds, improved breeds of Catle and Agricultural implements for the use of the Farmers of the District; the awarding of Premiums for the best samples of Pioduce, and specimens of Stock; and generally the promotinn of measures calculated to develop and improve the Agricultural resources of the District.
II. Each Subscriber of Ten Pounds to the Funds of this Society shall be a member thereof for life. Each subscriber of Five Pounds, shall be a member for five years; and each subscriber of One Pound and Five Shillings, shall be a nember for one year.
III. The affairs of this Soriety shall be managed by a Committee consisting of nine members; who shall be annually elected by the members of the Society, from their own hody by ballot, and the Comunittee thus elected, shall at their first meeting choose and appoint from their own body, a President, a Vice President, a Treasurer, and a Secretary.
IV. The Committes shall have full power to raise money, frame Bye-Laws and adopt any measures, by uniting wiih similar institutions or otherwise, which to them may seem advisable for carrying out the objects of the Society.
V. The Committee shall meet not less than once a month. All meetings of the Committee to be con iened by the President, or in his absence, by the Vice President and Secretary.-Three members of the Committee shall form a quorum for the transaction of business.
VI. The annual meeting of the Society shall be held on the first Tuesday in February, in each year, when a report shall be presented by the Committee of their transactions during the preceding year, and of the state of the affairs of the Society. At this meeting also, the Committee for the following year shall be elected.
VII. Extraordinary meetings of the Societs, may be called at any time the Cominittee or a ma-
jority of them shall see catise, or at any time twenty members of the Suciety shall, in writing, addressed to the President, request a meeting to be convened. Of all such meetings due notice shall be given by the Secretary.
VIII. The Secretary of this Society shall record in a book to be by him kept for that purpose, the proceedings of all meetings of the. Society and of the Committee, draft the annual report, and carry on the correspondence of the Society.
IX. The: Treasurer shall have the custody of the Society's funds, and he shall make payment, from them only on orders signed by the President and Secreiaay. He shall keep regular accounts of his receipts and expenditure in suitable books, and shall at each annual meeting, or at any other time he may lie requested by the Commitiee to do so, present an abstract of his accounts.
X. At any annual or other meeting of the Society (which has been duly called and advertised,) and which shall he attended by not less than twelve members, it shall be lawful for three-fourths of the members present to make such alterations in or amendments to this Constitution as they may consider expedient.

W. BROUGH, Secretary.

The Camaim Ggritutual Fournal.

MONTREAL, MARCH, 1845.
There are so many trea ises on Agriculture now published, that it is almost impossible to write any thing on the subject, without copying something that has already been written. There is, however, a possibility of making a part of what has been writen more practicably useful in Canada than it would be by reading an Eng'ish treatise on Agriculture, as written for the English farmer. We have in our possession, certainly the best treatises on Agriculture in the English language, and many of them. From them, we are not ashamed to avow, we often copy largely, or raher we should say, they remind us of what we should write, and we hope our subscribers will not value our Journal the less that this is the case. In reading Jackson's Treatise on Agriculture, we have found some very judicious remarks under the head-<Practice of Agriculture," and they so entirely coincide with our own ideas, that in copying a part of them, we give our own opinion on the same subject. The practice of Agriculture requires very considerable professional skill, and also an acquaintance with some of the principles of natural science, that is essential to the judicious cultivation of the soit. Farming cannot be properly conducted by random rules, or
by any but persons who make it a regular profession. To carry on Agriculture with a reasonable hope of succesis, great forethought and persevering industry is necessarily cequired; and to those qualifications, it would be well there were added the po-session of a mind that is ever open in conviction of what really constitutes somed and available improvemenrs. The whole scheme and practical details of the professional Agriculturist, to be of public or private advantage, must rest upon the plain and obvious principle of making the largest possible return on the capitol empluyed in the concern within a given period, but wibhout exhausting the soil. By the term capital, is meant the savings of labour, in the form of money, implements, or any otherarticles, or objects which eon-litute stock, and unless a farmer possess a liberal hare of this preliminary requisite, he is not able to thll the soil on the best principles, or to manage any part of his business in the lest manner, nor is he placed above the necessity of selling his produce at a disadvantage. What the precise amount of rapital should be, will depend upon the ex!ent, nature, and situation of the farm, and may vary from lwo pounds to five pounds the acre. In Scotland, a farmer who has $£ 2000$ capital, has generally a cash eredit at a Bank for $£ 1000$ more, and oflen over this. Whatever be the capital employed, the farmer has a right to expect a fair return from it, provided he expends it with prudence, and adopts the best modes of culture. The farmer may be considered, in the employment of his capital, to be the administrator of a fund for the public interest, and therefore the more produce he can raise at the smallest cost to himself, the more will he be rende ing a service to the whole community. There can notexist a doubt that the system of Agriculture that will give the greate-t quantily of produce, at the lowest co-t to the community, will invariab!y be the best. The whole population of a country are interested in the soil, and hence the general benefit to the people of a country, of producing the greatest quantity of good at the least possible cost. A very principle object with a farmer should be to understand perfertly the quality of the soit. By ascertaining the character of the soil, and if necessary remedying its defects, the profits of a farmer may be vastly increased. In many cases, a small amount of expenditure judiciously applied, will produce a great general improvement in a farm, but of course, a farmer must regulate his expenditure by the amount of capital he has at his disposal. A. peror fect arquainance with the quality of the soil, wi!l
enable a skilful farmer to adopt the most suitable modes of cultivation and management. From want of due attention to the nature and quality of soils, much labour and capital may be wasted in vain attempts to introduce plants not at all suited to them, and manure may be as improperly applied. This ignorance has and will prevent many from improving their farms and making them profitable, when they had the means in their power to do both. We shall in our next, discribe the different sorts of soil, and what sort of crops are best suited for them. We shall also endeavour to subrnit the best modes of cultivation, and management of the several sorts of soil we have in Canala.

The first requisite upon a farm where a dairy is proposed to be kept for the manufacture of cheese and butter, is, to have a well constructed dairy, where a regular temperature may be maintained at all seasons of the year; and this temperature should be from 50° to 55° both in summer and winter. The temperature might he mnintained here in summer by having the dary below the surface where the land would be favourable, or where not favourable to hâve a mound of soil raised outside the walls, and to have the building shaded with trees. In winter the temf:erature should be keptup by a stove or fire. The windows should be to the north and east; should have glass to close in winter, but in summer the sash and glass might be removed and the window frames be covered on the outside with gauze-cloth, which would exclude flies, but admit the air ; and the windows might be further protected from rats, mice, and other accidents, by a grating of wire. The dairy should always be well ventilated, kept dry and clean, and be as muchas possible removed from the effluvia of putrid substances. It is possible that the dairy may form a part of the lower story of a dwelling house where the land is favourable, but in that case, the effiuvia from the kitchen and other parts of the house should be excluded as much as possible from the milk-room. The floor should be of stone flags or brick, with a drain of tiles, uncovered, to run off water, \&r. When a large dairy is kept, it would be necessary there should be a work-room attached, in which different manual operations might be performed. It should le fitted up with a boiler to boil water and heat milk, and it should be of sufficient size to allow of performing the operation of churaing, cheese-malsing, washing the dairy utensils, and the like. When the dairy is of the largest size, there should be more
than one apartment : namely, one for chuning and for making the cheese, and one for cieaning the utensils. The store-room is merely for keeping the cheese when made, and may be placed wherever convenient; and should have a certain degree of warmth without having too much heat or light.

The utensils required for a dairy, must be in the number of each, proportioned to the size of the dairy, and quantity of milk to be manufactured. 1st. Milking. pails, which mry be formed of wood or tin. 2nd. Sieves of hair or wire-ganze for the purpose of passing the milk through and retaining the impurities. 3rd. Vessels for holding the milk antil the cream rises upon the surface, and a vessel for containing the cream. 4th. Flat skimmers of willow, ivory, or horn, for the purpose of skimming the creain from the surface of the milk- 5th. A churn. 6th. A wooden vat or-tub, in which the milk is placed when the curd coagulated. 7th. A cheese-knife, for the purpose of cutting or breaking the coagulated curd, that the whey may be separated. 8th. A vessel perforated with holes, in which the curd may be placed that it may be broken and the serous matter farther extracted. 9th. Wooden vessels with perforated sides and bottom, in which the curd is placed for being compressed. 10th. A cheese-press. The utensils more especialIy employed for making butter alone, are the dishes for holding the milk unil the cream separates; the skimming dishes for removing the cream; a vessel for holding the cream; and the churn. The dishes: for containing the milk are, in England, made of various substances, as marble, slate, tinned-iron, zinc-tin, glass, earthenware, and wood; lead is also employed, but, we think, improperly, as it may he acted upon by the acid of the milk; and so likewise may irn, if not defended by a coating of some substance. The mills is sometines contained in one large vessel or trough, with a stop-cock at the hottom, so that the milk may be withdrawn, leaving the cream in the trough; or it may be put in separate shallow vessels. These shallow vessels are latterly made of zinc. Tin, zinc, and glass vessels are easily kept clean, and sooner cooled than wood, which contributes to the more ready separation of the cream. The churns are of different constractions; the most common in the British Isles, is the plung-churn, moved by the band; the form of this domestic instrument is everywhere known. It consists of a cylindrical vessel of wood placed upright, and the agitation to the milk within by a perforared board which nearly fits the cylinder, and to which is attached a long handle; this being moved up and
down, hy various contrivances to make it more easy, the milk is agitated and the butter separated.

Sometimes in the larger class of dairies the churn is driven by machinery. The hest principle of construetion, it is conreived, is that of a plunge-churn, by which a greater agitation is given to the mill, and the operation more effectually performed than by arms revolving in a unifurm direction.Where machinery is made to work plunge-churns, two churns may be worked by the same power, the handle of each churn being attached to the opposite ends of the beam-which moves these handles up and down in the act of churning.

Butter may be oblained by either separating the sream from the milk and then churning it, or by churning the millk and cream tngether. By the first method, the best butter is said to be obtained! by the second, the largest quantity. When the first method is practised, that is, when the cream is churned by itself, the mills, immediateiy on being brought from the cones, is put into vessels to cool, after being strained; in these vessels it remains undisturbed for a period of not less than thirty-six hours, and not more than forty-eight hours. The cream which has risen to the surface is then separated from the milk by being skimmed off by a flat skimmer; and in case of the milk being kept in lasge troughs, hy having the milk withdrawn by a stop-cock. The cream is then put into a vessel until a sufficient quantity is collected: fresin portions of cream are added to this vessel as they are procured from the successive milkings, and the whole soon arcidifies. The fresh cream as put in should be stirred up with the old, with a stick kept in the vessel. After a sufficient quantity of oream has been collected, it is put into the churn, is then churned, and in the space of an hour the butter is separated. The bost temperatnre of the cream for the separation of the butter appears to be about 60°, and in cold weather it can be raised to this temperature, or something h'gher, by the addition of some hot wdter; or, if a small churn, by plunging the churn into hot water. The butter may now be removed, and should be carefully washed in cold water until all the milk is separated, which will appear by the water coming off clear and pure. After this the tutier is fit for usp, or may be salter for preservation. A small quantity of salt petre, pounded fine, and put into the cream previous to churning, is said to be a good plan.

In churning the cream should not fill more than two-thirds of the churn. When the cream and milk are churned together, the practice is
somewhat different. In Holland, they put the milk of each milking into a deep jar, in a cool place, and each milking is thus kept separate until there is a slight appeara.. ee of acidity, and then the whole is churned together. In Scolland, the method is a little different;-the milk is when strained, allowed to cool for six hours, and then put into a clean vat. As long as it remains sweet, more milk is added, but not afier any acidity is produced, it is then covered, and allowed to get sour, till it coagulates at the top. This coagulur. is called the lapper, which must not be broken until the binter is churned, when the cloted milk is put into the churn, warm water is added so as to bring the tem.perature to 70° or 80° the whole being gradually stived in. This method properly executed, will produce more butter from a given quantity of milk, than when the cream is churned. The quantity of hutter produced by milt, will depend upon the breed of cows and the quality of the pasture. We have made the experiment and on limstone pasture, and Canadian breed of cows; we got one pound of butter from ten quarts of mills. In another experiment, it took twelve quarts to produce a pound of butter. In England, when cows give a large quantity of milk, it requires sixteen quarts. of mils to produce a pound of butter, and they consider that a good cow properly kept, should produce 200 pounds of butier in the year. We have no doubt, that cows of middling quality, selected for a dairy, if properly kept in Canada throughout the year, would give very near this produce of butter.

We shall in our next number continue this subject, and give the best information in our power, for the preparation of butter after it has been taken out of the churn.

We are glad to be able to acquaint our subscribers that there is a large supply of seed wheat in the country this year, that has been raised here last season, without being injured by either rust or the fly. We have a considerable quantity of this wheat, sown last spring the 25 th of May, and we have reserved the whole to be disposed of for seed. We also know where a further supply can be had, and shall give the information to any person making enquiry. We are confident a large quantity of wheat may be raised here, if the land is properly prepared first; but without this we cannot expect to raise profitable crops of wheat or any thing else. We recommend to farmers sowing wheat, to steep the seed previous to sowing either in salt and water
or in urine. If in the former, it may be left to steep for a day, but if in the latter, not more than a few hours. In both cases, the wheat should be well stirred with a stick, and all the light grains blimuned off and removed. When then out of steep, lime should be mixed with it, or ashes, if no lime is to be had, to dry it, and it should be sown immediately. By these precautions there will be almost a certainty that the crop will be free from smut. We have also steeped seed barley in the drainings of the farm yard, skimming off light grain3, as in the case of wheat, with good effect. The barley might remain steep twenty-four hours.

At some of the Agricultural discussions lately held in the State Houses of the neighbouring Union, it was plainly recommended, that the English oystem of Agriculture should be introduced, as far as it was possible to do so. It was fully admitted that the English system was the best that could be prac-tised in the country; and as the soil and climate of New Hampshire and Vermont are no better than that of Canada in any respect, the English system of Agriculture would be fully as suitable for us as for the people of the United States. Mr. Colman's report of his Agricnltural Tour in the British Isles is now published, and from that it may be seen he recommends the modes of cultivation practised in England as the most suitable for the United States. This should encourage us to the same course, and the adoption of the same srstem. From the knorrledge we have hat of the soin and climate of the British Isles and of Canada, we are perfectly satisfied that the latter country is not unfavorable to a modified system of English Agriculture, and the sooner it is generally introduced the benter it will be for us .

We woild strongly recommerd a practice that has been generaily adopled in the British lsles by the Agricultural Societies there, of having at their mectings discussions on subjects interesting to farmers. The subjects to be disenssed are determined upon sometime previous, and by this means, persons come prepared to the meetings, to discuss advantageonsly for those whoattend. The writing of essays is also encouraged, and premiums are offered for the best essay on any given subjeet. The results come to upon any of these discussions are made public, and the prize essays are generally published. These measures are productive of the very best consequences, in promoting agricultural improvement. Affording an opportunity to persons to come
forward and give the results of their experience and experiments, would induce many who now keep their knowledge to themselves, to make it known, for the pullic advontage. The assembling of men together, snftens down strong prejudices, and makes them more communicative. The farmers are accused of being desirous to keep to themselves, and for their individual benefit, any discovery in their art which is advantageous. This we would regret to be the case in Canada. Discussions at the meetings of Agricultural Societies, and offering premiums for essays on useful subjects, would greatls prumote useful agricultural knowlelge. We have many Societies and Clubs in Montreal whose discussions are not the thousandth part of that consequence to the general welfare that discussions on Agricultural improvement would be. The time will arrive when it will be otherwise, though, perhaps, not in our day. The continued prosperity of Montreal must depend so entirely upon the prosperity and produc:tion of the country, that, those who iave properiy in the city, will find out, one time or other, it cais only be valuable to them in proportion to the prosperity of the country. It may not be acknowledged by our citizens, but it is nevertheless truc, that it is the produce of the country that must pay the rents of houses in town,-yes, the city of Montreal must depend upon the country for every thing, and she cannot prosper if the country do not.

We believe that Agricultural Societies could not expend a part of their funds more beneficially than in offering premiums for new and useful implements of agriculture. This would encourage Canadian industry, and be very advantageous to our farmers to be able to procure a certain supply of good implements upon the spot, whenever required. All descriptions of implements should be light, and of gond materials, so as io be sufficiently strong for the work they have to exccute, and not a greater weight than necessary for the man or horse to make. use of. This is of great consequence in agricultural implements; they cannot be too neatly made. A man or horse can execute twice as much work w:th suitable implements, well made, light, and of good material, as they would with heavy, il! constructed implements, made of bad materials.

We would recommend farmers, if they have not already attended to these matters, to see before the spring commences, that all the implements required for executing their work in the spring, should be put into complete working order. This will greatly facilitate their operations when the time arrives to
commence work. Wit have ofien suggested in our Agricultural Reports, and when arting as editor of the British American Cultivator, the necessity of farmers attending to these matters when there is most leisure, and not to lose time in puting implements in order when they should be actively employed. The want of implements, if not in goonl working oriler, in sawing or harvest time, is often a greater loss to the farmer than the whole amount of their cost would be.

There is an actual necessity that farmers should have a full supply of agricultural implements that are reguired for every part of his work, and if any of these implements are wanting he cannct go on with his work properly. We shall in our next Number give a list of the implements required on a farm that is to be managed in a judicious manner.

We require here a general falming repository for implemeuts and seeds of all sorts, which could be constantly at the command of the farmers when they required any of these articles. This would be the place where all implements which might be invented in Canada could he exhibited, or the molel of them. We trust to see Montreal not behind other places in this resrect, in a very shori time.

Particular breels of both cattle and sheep are hest adapted to particular situations, and therefore farmers should endeavour to find out and understand perfecily what breed is the most profitable and best suited to their situation, and to improve that breed to the uttermost, rather than try to unite the particular qualities of two or more distinct breeds by crossing. It is supposed by the most skilful breeders, that, by the practice of crossing we generally find the produce inherit the coarseness of both breeds, and rarely allain the good properties which the pure distinct breeds individually possess. The late Mr. Bakewell was most particular in regard to breeding always from the same breed. and scarcely ever crossed the different breeds; and certainly, few men were more successful in producing a fine and superior breed of cattle and sheep. In order to have a good stock of any breed, particular regard should be paid in selecting those that are most complete and perfect in their form, shape, and other necessary good qualities, and to breed from them. A great defect in the Canadian mode of breeding both catle and sheep is, the allowing all the females to breed, good, middling, and bad. The consequence must naturally be, that our stock is of inferior quality, and no distinct breed to be found anongst them. We have here, a most suitable
breed of neat catte, that, if due attention were given to their breeding and keeping, would be the most profitable stock for Canadian farmers, until agrioultural improvement is much more generally introduced. We refer to the pure Canadian breed of catle. They are most profitable for milk. We are not to judge of what this breed might be brought to, from its present greatly neglected state.
The Canadian breed of horses, where they are to be found pure and unnixed, are undoubtedly the besi and most suitable for this country that can be found. Indeed, we have never seen a better descriptiun of farm horse than a good Canadian horse. We regret, however, that thene is a very great difficulty in procuring horses of the pure Canadian bree.I. The Canadian farmers have, unfortunately, taken a fancy to imported horses of American breed, and from crossing with them their breed of horses are much deteriorated. There are some sections of the Province which still have the Caradian breed of horses unmixed, and it would be well that every farmer in the country would most carefilly preserve the breed pure where it is so, and check the crossing with other breeds.

Our respected friend, the editor of the Maine Farmer, has enquired if we had good horses in the neighbourhood of Montreal. We can assure him there are some very good Canadian horses in the district, but in the city, the horses, though fine for the saddle and carriage, are not many of them the pure Canadian breed that we have always so much. admired for agricultural purposes. There are constantly going from Canada to the United States agriat number of our best Canadian horses, and we import from the latter country a much worse description of horses.

We require a law to impose a penally on persons allowing uncut horses to go at large, and if this was the case, our horses would soon ${ }^{\text {be }}$ improved.

We have often recommended to Agriculturalists. here the expediency of offering rewards at our Agricultural Cattle Shows or Ploughing matches to labourers for long and faithful services with the one master or employer. We conceive this would produce more benefit to the farmers than most of the premiums offered for choice cattle. To those who emp?oy labourens on their farms, tha advantage of having good and faithful labourers who understand their work, is much greater than is generally imagined. More work could be executed on a farm with three or four steady men who were as:customed to the work, and the employer, than by
double the number of men who did not understand their work, and who are constantly changing from one master to another. We again recommend this subject to Agricultural Societies, and hope they will make the experiment of offering premiums for long and faithful service. We also suggest the expediency of introducing the system of having cottages and small gardens for labourers employed on extensive farms, or on any sized farms where hired labour is constantly required. The labourers who have families might board at their cottages with their families, and this would be sure to attach them to one place, and their children would be brought up to industty, and be taught the work on a farm, in every department, in the best manner. If this plan was generally introduced, we should soon find the most satisfactory results from it.

Now that the snow is nearly off the lands, it should be the farmer's care, to see particularly that all his drains, and the furrows of his ploughed land are in gooderder, and that they are in a fit state to draw ofi all the water. Nothing can be more injurious to arable land than to have the water remain uponit now, until the sun dries it up. The soil becomes so thoroughly soaked with water, it breakes into a soft mass, and when dried, all the effect of, the previous ploughing is done away, and when the sun dries it, it becomes as hard nea-ly as bricks. Much good can be done by opening with spade and shovel furrows and drains that may have become stopped by soil falling into them since opencd last fall. We have frequently run a light plough with one horse in the furrows at this season of the year, where they have been much broken down, and with excellent effect, as.a means of drying the land. We would recommend to any farmer who has ploughed land last fall, not to sow it this spring until it is ploughed again, if it has not been well drained in she fall, so that the water will go off it now without difficulty, and leave the soil dry. If it has run into a soft mass, in consequence of too much wet in the soil, it will not be in a good state to produce a crop until opened again by the plough when dry. We have no hesitation in attributing the worst crops we see in Canada, to the land being ploughed in the fall, insufficiently drained, and then sown in spring, without being again ploughed. The consequence is, that the soil is so close and hard when dried, that the roots of plants cannot extract or find nutriment in it; and neither air, dews, nor slight showers of rain can do the crop any good while growing upon it in the following summer. The admission of air to a certain depth in the soil, has a most beneficial influence upon the growing crop, and unless the soil is in a proper state to admit the air jt should be brought to that state by proper cultivation. We are far from condernning fall ploughing, bui we say that the soil that has been fall
ploughed, if not in a proper state to produce a good crop, or a promise of one, should be ploughed again in the spring, so that the effect intended by ploughing for a crop, should be produced;-namely, to open, and pulverise the soil, so as to admit air and moisture and allow the roots to extend freely to obtain the nutriment from the soil, that is necessary for their growth in perfection.

MR. HEWI'TT DAVIS'S SYSTEM.

To the Editor of the Maidstone and South Eastern Guzettc

Sir-Your paper, which is usually the means of dissminating the knowledge of many very uscful chemical facts, of great importance to the farmer, contained last week a letter from Mr. Hewitt Davis, which is calculated to convey so erroncous an impression, that I have taken the liberty th send to you a few remarks on the subject.

1 have no doubt that Mr. Davis is one of our first practical farmers; but the errors into which he has fallen only tend to show that practice without scientific principles is utterly unable to arrive at correct conclusions upon points of the highest interest and value to the farmer.

Mr. Davis says:-
"When Sir Robert Peel, in his address to the farmers at 'Tanworth, called their attention to guano, he did so under the impression that it might be a means for increasing the fertility of the land, and a panacea for their losses by the tariffand the corn laws. Since then the most extravagant encomiums have been published in its favour, many of which may be traced to personsinterested in its sale. Iam not going to deny that, as a means for assisting to raise an occasional crop of turnips for cattle food, it may answer; but I much wish to bring the attention of farmers to the fact, that at best, it can but force a crop of corn at the expense of other materials in the land; and in so doing, it will, having supplied only 300lbs. or 400 lbs . of the clements of vegetation, take from the soil some tons. Its use, therefore, must, unless other sources of nutriment are supplied, cause disappointment, or a rapid exhaustion of the land, to its permanent injury. An application of 4 cwt. of guano, of which about 12 per cent. is water, is considered a full dressing for an acre of land; whilst a crop of corn takes away $4,000 \mathrm{lbs}$. to $5,0001 b s$. of the same elements that constitute guano."

Mr. Davis imagines that the 4,000 or $5,000 \mathrm{lbs}$. of corn derive their nutrinsent from the land. The fact is, that they derive rather more than nine-tenths of their weight from the air, and only from 7 to 9 per cent. from the soil.

Mr. D. again says-
"The rotation of cropping hitherto conceived to be the most enlightened and profitable is the four-couise -of turnips, oats or barley, secds and wheat. By beginning with a dressing, and by the consumption on the ground of the turnips, sufficient is considered to have been bestored on the land to admit of two crops of corn and one of hay being taken without further manufacturing. That this should be successful practice, and without detriment when dung has been applied, is readily shown by the fact that that the dressing consists of from 15 to 25 tons per acre, whilst the crops when dried, take array only about five tons; and when the water from the dung has been removed, it is curious but true that the debtor and creditor account of the meight of matter applied and withdrawn may be said nearly to balance. Should the dressing
have been of guano, and allowing the same return to have been obtained (but which I do not for a moment believe possible), the acre will have lost $11,0001 \mathrm{l}$. of nutriment, 400 bss alone having been supplied. It is clear, therefore, either that guano cannot give the corn that dung will, or, if it does, it must be by stimulating the inert matter already in existence in the $\$$ soil, of course at the expense of latent nutriment, and to the impoverishment of the land."

Now, good stable dung, half-a-year old, contains about 5 or 6 per cent. of ashes. At 5 per cent., the rshes in 20 tons of manure would be 1 ton. Thescashes are found to contain about 60 per cent. of silica, and about 8 or 10 per cent. of calcarcous matter, not of much value to the crops. This will leave about 40 per cent. of the ashes of the dung as the really valuable matter, and will give us 672 lbs of inorganic manure as the proper equivalent of 20 tons of farm-yard dung.

The subjoined table which is given in the letter of Mr . Davis, is appealed to by him to prove the assertions which he has made ; whereas it, in fact. contains the most complete refutation of his opinions.

Mr. D. says :-
"An acre of land, cropped with turnips, oats, seeds, and wheat, allowing the turnips to have been fed on the ground, and only one crop of hay taken, affords, exclusive of water, the following weight of the elements of vegetation:-

Propuce of an acre in four years.
Composition.

> When
dried. Car. Hyd Mx. Nit. Ash.

	lbs.	lhs.	lbs.	lbs.	lbs.		
Oats.............	2,240	1,900	968	122	,	42	6
Ditto straw.....	3,883	2,750	1,378	148	,0:3	11	40
Hay	3,024	2,400	1,137	120	908	50	80
Wheat	1,890	1.600	735	94	695	37	
Ditto stra	3,340	2.400	1,161	12%	935		108

By referring to the above table, we find under the head of-"Ashes," that the whole amount of the consrituents of the soil removed by crops weighirig 11,050 lbs . is only 608 lbs .; an amount something less than the amount of manure furnished by 20 tons of farmyard mamure. With respect to guano, 1 should nyself esteem 4001 bs. weight rather too small a quantity to be used to obtain the greatest amount of benefit; but this much is quite certain that 600 to 800 llbs of guano, together with the inorganic substances furnished by the disintegration of any ordinary soil during four years of cropping, would be amply sufficient for the growth of even a larger amount of produce than $11,050 \mathrm{lbs}$., weight. I may likewise mention that good guano contains every inorganic substance required by the crops, except the silicate of potash; this latier is, however, generally furnished in sufficient quantities by the continual weathering of the soils.

In reference to this subject it may be worthy of remark, that the pover of plants to assimilate to themselics the oxygen, hydrogen, uitrogen, and carbon, of which they obtain the greater part from the air, is directly proportional to the available amount of inorganic substances present in the soil.

Trusting these fers remarks may be of use to many of our worthy practical farners.

I remain, sir, yours truly,

> J. C. Nesbit.

Branes.-Gond Example.-It has has often been to us a source of great regret that the intellectual imprevement of asricultural labourers has not been more regarded in this country, and that farmers do not at-
tach more importance to the subject than they do, or those philanthropic societies for improving the condition of the labouring classes do not take this subject under their uotice. It is one, we consider, of the most vital importance, that some sort of rational amusement should be provided for them after the toil of the day, and that in bettering their condition, some step should be taken towards extending their general information and clesating their social intercourse. Most of them receive no education after they are 8 jears of age. They can but just read and scrawl their names when they leave school to follow the routine of farmlabour; and consequently their ignorance is most lamentable, and we are most happy to find that some of the most respectable iuhabitants of the village of Brailes, which is a populous agricultural district, have there established a reading room and library, and supplied it with suitable reading adapted to their station and capacity, such as the "Mark Lane Express," Farmers" Magazine," "Farmers' Series," \&e., with other instructive works; and we think, if they do but appreciato its value, it cannot fail to work most bencicially. The exmple of its founder is one well worthy of imitation; and we hope and trust that his cfforts may be crowned with success, and that similar institutions may spring up in districts where at present wo resort for amusement exists but the public-house.

> Q.Q.

Sulphate of Ammonia, its Uses, \&c., for Farming Perposes.-Sulphate of ammonia is better known to the farmer than any other salts of ammonia, having been a good deal advertised of late by venders of artificial manures. This salt is a compound of sulphuric acid (oil of vitriol) and ammonia. It is not found in a free state of nature, but is obtained by adding oil of vitriol to urine in a state of fermentation; or another plan is to apply the same acid to the waste liquor (ammoniacal liquor) of the gas works, and then applying heat : the water is diven off, and the substance called sulphate of ammonia is left. The sulphate obtained from urine contains other salts, as the phosphates found in urine, and which are likely to add to its utility. The simple inode in which sulphate of ammonia is got, will show the farmer how nuch might be effected by a general acquaintance with chemistryThe urine of his stall fed aumals inight he collected, free of other matters, by baving a small reservoir at one extremity of his buildings, into which, by small chaunels, the fluid would run from each of the outhouses where the cattle are lodged. Let the urine so collected ferment, and pour into it a quantity of the oil of vitriol, which can be purchased at the druggists' for a mere trifle. The vitriol has the effect of fixing the ammonia-that is, preventing its flying off, which it is apt to do when in combination with carbonic acid. The sulphate so formed is not volatile. Instead of oil of vitriol, gypsum might le used. Along with the sulphate of aummonia, other ingredients of considerable value as manures are obtained. By economizing well the means within our ceach, we become in a measure, independent of the " manure venders". We have opportunities of noticing the uses to which the urine of animals may be applicd, but we cannot here overlook the extreme slovenliness and inattention which are almost universally displayed in the farmyards around us. Every one extols, and justly so, the manure or the farm-yard; yet how many of those who soloudly boast of its superiority to artificial manures, attempt to manage their dung-hills as they ought to do? "Far-fetched and dear bought" as some of our
manures are, the farmer continues to buy, whilst he daily witnesses under his own nose the loss of most valuable manure. Ammonia is constantly rising from the stalls and dung-heaps, which might be fixed by oil of vitriol or gypsum. The urine is allowed to run anywhere but into reservoirs or tanks--very often into a corner of his yard, which in wet westher serves as a duch-pond; or it is swept to the door of the stab!e or cow-house, where, by being exposed to the air, it is soon dried up; how melancholy a fact it is that these gross neglicences prevail so extensively-almost universally! There are worthy exceptions, it is true, and it is from these more enterprising farmers that we expect those inprovements which agriculture stands so much in need of. Let them not confine their knowledge to their own farmsteads, but give the results of their experience to the world.-J. H. Sheperd's second edition of Hints to Landlords culd Tenants.

Interesting Questions for the Farmer.-How many curious questions are suggested by such observations as the following! Some varicties of wheat are better suited for the pastrycook; others for the baker of bread. Some samples of barley refuse to melt in the hands of the brewer and distiller; and some yield more brandy: while others lay on more fat. The Scottish ploughman refuses bog oats for his brosemeal, or for his oaten cake, because they make it tough; and the cotter's family prefer Angus oats for their porridge meal, because they swell, and become bulky and consistent in the pot, and go firther in feeding the children at the same cost. The pea sometimes refinses to boil soft ; and the potato, on some soils and with some manures, persists in growing waxy. If Swedish turnips sell at thirty shillings a ton-as in large towns they often do-yellow turnips will bring only about zwenty five, and white globes eighteen; while all the varieties cease to feed well as soon as a second growth commences. What is the cause of such differences as these? How do they arise? Can they be controlled? Can we, by cultivation, remove them? Can we raise produce of this or that quality at our pleasure? Such questions, constantly arisiug, have led to extended unalyses of the food consumed both by cattle and by man; and from these analyses of the food consumed both by cattle aud by man; and from these analyses -still far from being complete-most curious, most interesting, and mosi practically important results have already been obtained.-Edinburgh Reviex.

Wilfur Waste of Manure:-The instructed look with anazement when, on the boarders of the Roman Campagna, they see whole hills of dung, tho long accumulating reiuse from the stables of the post-house; or when, on the breaking up of the winter's frost, they see the yearly collections from the farm-yards floated away on the ice of the Wolga, almost literally realizing the times of the Augean stables. We never dream that anything half so barbarous could by possibility happen amo:ag ourselves; and yet a visit to a hill-farm in Northumberland may show us the same winter accumulations emptied purposely by the side of a brook, that the waters may carry them off, or into sume neighbouring hollow, where they are least in the way; and have been permitted to collect for entire generations. Such palpable waste is seldom seen judeed, in the lower country, where intercourse is greater, and where knowledye and public opinion spread more widely, and exerceise a more immediate jutluence; and yet the no-less scrious waste of the liquid from our tarm-yards is still too widely prevalent even in our better cultivated districts, and among our
more improving and intelligent farmers. Within the last few weeks, we huve, walked over the farms of the first practical farmer of the Tyne-side, and of the most celebrated breeder in Yorkshire; and yet from the fold-yard of the one the liquid was conducted by a drain into the nearest ditch, and from the cow-houses of the other, into a shallow open pond, where it stood reeking and fermenting beneath a blazing sun. What merit, as a farmer can that man claim, who, though he annually lays five tons of guano, or bones, or rape-dust, upon his farm, yet allows what is equal to ten or twenty tons of the same, to run to waste from his farmyard in the form of liquid manure.-Edinburgh Revielc, January, 1845.

Agmeuitural Chemstry.-Under the above head, a Seotch paper contains the following:-"From ther minute of a meeting of the Strath-Kelvin Schooimasters' Association, held at Kirkintilloch, on the 23rd ultino-R. Adams, Preses-we have been favored with the following extract:-'The proposal to establish in parochial shools a class for agricuhtural chemistry was next introduced. As some of the members required to leave early, the subject was not fillly discussed ; but it was evidently the general opinion that acquainting youth, particularly in rural districts, with the rudiments of agricultural chemistry, must ultimately produce very benefieial effects. A knowledge of chemistry, properly applied, cannot fail to direct the agriculturist, not only to remedies most suitable for counteracting jujurious qualitics in the soil, and for farmers, wedded to former customs and practices demed successful; agricultural chemistry may not meet with that attention and encouragement whicla it merits; hence the importance of familiarising the young with the principles of the science. And as a great proportion of youth, especially in rural districts, obtain all their education at parochial schools, it is evident that, through the means of the schoolmasters, a knowledge of the science may be extensively disseminated. Under these circumstances, and beins convinced that the introduction, to a eertain estent, can be affected without injury to the numerous brancles already taught in parochial schools, the mecting were unanmously of opinion that schoolmasters ought to give every facility to the formation of classes for agricultural chemistry, in all cases when properly encouraged, and likely to be appreciated.

UNDER GROUND ONION.

To the Editur of the Mark Lane EExpress.

Sin,-The Devonshire Farmer seems to insinuate that we horticulturists are like toads in winter-rather stupid, or some one would have come out of his hole to the help of T. C. I think the farmer is entitled to the thanks of the public for so good instructions; as I said in a former letter, very much depends in learning the habit of a plant in order to prepare the soil to grow it in perfection. Onions, like other bulbs, ought to be taken up as soon as the top begins to wither,, and well dried, and kept so. The great uncertainty of its keeping is the reason why the underground onion is not more cultivated; and were the farmer dependant upon supplying the market with onions, he wonld be like his cow's tail (rather behind) with only growing under-ground onions. The market gardeners are obliged to sow large breadths to pull some green to sell with radishes. If the onions that are sown abont the 8 th of August run in the spring, we pull them first, or we pinch the top off, aud they will bulb; it must only be the top, if further down we
should make a large opening, and would admit the or desire in self. Live more for the good of your felwet and rot them. About this time we plant out those low men, and in seeking their happiness you will prothat are not likely to keep, and serve them in like mote your own.-Zion's Herald.
manner by topping them in the spring. We find the 1 Lisbin to pull green, and the Tripolian to bulb, best to sow in August. The 'Tripolian is wot so free to run in the spring; it is not easy to save the seed, and is fiequeutly very much mixed, unless from an honourable seedsman. Is our Devonshire farmer acquainted with the Italian Ryegrass; and the best way to cultivate it?-is it best to sow it alone, or with what crop does it succeed best, in drill or broad-cast?-how to save the seed the best way? I think its manner of cultivation is not yet followed out, or it would be more recommended. I have enclosed two leaves, Mr. Editor, about half an inch wide, and 18 inches long, to let you see it. I have never grown any quantity; having some near relations in the way of farming, I wish either to shame them or that they may learn its cultivation more perfectly. The grow green crops, and seem to think very little of its merits. As I wish my letter to be useful, I would just notice your Lancashire correspondent respecting pitting potatoes. In moist or wet soil the potatoes should be laid on the top of the ground in long or round ridges, and a trench formed at bottom to draw the wet from them. If air at top is left, as he recommends, they would in general heat themselves dry. You want to know if worins are hurtful to grass land. On some crops they are very hurtful, especially when young; and on pleasure gromed they cause the poor gardener to whet his scythe oftener than he could wish, because of their casts or dung. However, I have heard say that the earth without worms would not be so healthy, as they draw stagnant water from the surface.
Ian, yours, \&c.,

Moors, Chellenham, Nov. 13.1 . Bratr.
P. S.-I observed the success of growing and cutting three crops in the year; but did not say how cul-tivated-the rye-grass.

Trie Mrin.-Of all the noble works of God, that of the human mind has ever been considered the grandest. It is, however, like all else created, capable of cultivation; and just in that degree as the nind is improved and rendered pure, is man fitted for rational enjoyment and pure happiness. That person who spends a whole existence without a realization of the great ends for which he was designed; without fecling a soaring of the soul above mere merceneray motives and desires; not knowing that he is a portion, as it were, of one vast machine, in which each piece has a part to perform, having no heart beating in common with those of his fellow men, no feelings in which self is not the beginning and the end, may be well said not to live. His mind is shat in by a moral darkness, and he merely exists a blank in the worgld, and goes to the tomb with searcely a regret.

Such beings we have seen, and wondered at-wondered that a mortal, endowed with so many qualities, and capable of the highest attainment of intellectuality, should slumber on in a world like ours, in which is everything beautiful and sublime, to call forth his energies and excite his admiration-a world which affords subjects for exercising every lively attribute with which we are gifted, and opens a scene of the richest variety to the cye, the mind and theheart, and of such a diversified character that we may never grow weary.

If, then, you would wish to live in the true sense of the term, cultivate the mind, give vent to pure affectious and noble feelings; and pen not every thought

Dechivity or Rivens.-A very slight declivity will suffice to give the ruming motion to water. Three inches per mile, in a smooth straight channel gives a velocity of about three miles an hour.
The Ganges, which gathers the waters of the Himalaya mountains, the loftiest in the world, is at eighteen hundred miles from its mouth, only eight bundred feet above the level of the sea; that is, about twice as high as St. Paul's church in London, and to fall these eight hundred feet in its long course, the water requires more than a month. The great river, Magdalena, in South America, running for a thousand miles between two ridges of the Andes, falls only five hundred feet in all that distance. Above the commencement of the thousand miles, it is scen descending in rapids and cataracts from the mountains. The gigantic Rio de la Plata, has so gentle a descent to the ocean, that in Paragua, fifteen hundred miles from its mouth, ships are scen, which have sailed against the current all the way, by the force of the wind alone; that is to say, which on a beautiful ioclined plane of the stream have been gradually lifted by the soft wind, and even against the current, to an elevation greater than that of our loftiest spire.-Pottsville Gazette.

HULINGDON HALL; OR, THE COCKNEY SQUIRE.

Colburn, Great Marlborough Stteet.
No bubble-mongers ever did so much to put themselves into notice as the Anti-Corn-Law League; they have all the vanity, desire of notoriety, and furor for making public exhibitions of themselves, that so strongly characterize Young England, without, however, one atom of that unquestionable, though somewhat eccentric, talent which equally distinguishes the New Generation. The latter, not content with eloquent orations in the House, opinions of the press, or the sensations in the club-rooms, struck out a new course, and scattered their sentiments far and wide in Couingsly, or the novel of the season. It was a bold stroke, a good idea that told well, and we the leaders of the League saw and sorrowed at, as it drove them to the shade. Covent Garden, with its immense success, crowded houses, and for one night only, sunk to absolutely nothing by the side of it : a fact the performers were forced to admit, without turning on one " move" for regaining the attention of a discerning public. Mr. Cobden, with all his strong powers of fiction, felt himself unequal to the task, and friend Bright lacked that terrible stretch of the imagination necessary to working up his party into an agrecable and, at the same time, respectable history. A good Samaritan, with the will and the way, with a wonderful knowledge of all their different "draws" and designs, perceiving and pitying their distress, plunged at once with vigour and ability into his labour of love, and explained-laid open to every eye-their grand considerations, their real intentions, and truly philanthropic feeling, in the pages of "Hillingdon Mall, or, the Cockncy Squire.'
The plan of this work, as the reader will almost guess from its title, is to illustrate the life of a retired London tradesman, one Mr. Jorrocks, after having just settled at the Hall, a new purchase from the profits arising by the retail of tigs, sugar, bohea, and such like commodities. Letters follow him here from a half-friend half-hanger o:l in town, who, having no
very crack references to boast of, and nothing very particu'ar to employ cither his teeth or his time, has just accepted a situation as bagman or barker for the Anti-Corn-Law League; and it is in this correspondence, occupying a large space in the first volume; together with the election in the last, that the "dodge," as our hero calls it, is so admirably depicted, so thoroughly exposed, and cvery shallow artifice and claptrap ery treated with that derisive contempt it so generally deserves. The author in this part, as indeed he does all through, delights in a humorous style, and in which he proportionately excels; but we are convinced from what we have seen-the sound argument and well-based reasoning that almost invariably accompany his drollery-he might in a more serious strain, and may-be with a greater aim, attack the ills and follies of the day.

The Squire having disposed of this "great 'Umbug," presently gets deep into the mysteries of his present situation, being led on no little by his neighbour, the great. Duke of Dunkeyton, who "might be called more than a theorist," for he had some most extraordinary notions about farming and the management of proper-ty-a system so peculiar that it generally ended in beggaring the teuants and impoverishing his estates. Still to Jorrocks it is all very fine, for it is all new; and more than that, it comes from a Duke; and, accordingly, having mastered a few of the most important headings, he rattles away on Gipsey manure, Tweddle titles, Nitrate of sober, Guano, Smith of Deanstone, and the intelligence of the day, working his friends into a belief, and half persuading hinself into the idea, that he really knows something of what he is always talking about. We have not, however, space to follow this very original amusing old gentleman in his divers encounters with lords and commoners, peers and ploughnan, but must for "further particulars" refer the reader to the work itself-a direction that no man with an interest in agriculture, or a relish for rural life capitally described, will ever regret perusing. In conclusion, as bearing out our opinion thet wit and wisdom here travci hand in hand, we will indulge ourselves with one short extract, directed rather at the ever-croaking tenant (we fear no uncommon character) than his should-be-welcome landlord :-
" Instead o' ridin" into a man's fard (Scotch corman loquiter) and axin' if his barn's watter-tight and his missis i' the family way, ye should gan in ramin', and swearing', and blawin' every body up, that comes in your way, and the man will be o'er glad to slip out the front way, and niver say nothin' about repairs."

Still not invariably the best plan, Master Pigg, for we know a worthy baronet who has practised it, till like the Duke, he has " beggared the farmer and inpoverished the estate."

The Stars.-It has long been concluded amongst astronomers that the stars, though they only appear to our eyes as brilliant points, are all to be considered as suns, representingso many solar systems, each bearing a general resemblance to our own. The stars have a brilliancy and apparent magnitude which we may safely presume to be in proportion to their actual size, and the distance at which they are placed from us. Attempts have been made to ascertain the distance of some of the stars by calculations founded on parallax, it being previously understood that, if a parallax of so much as one second, or the 3,600 th of a degree, could be ascertained in any one instance, the distance might be assumed in that instance as not less than $19,200,000,000$ of miles ! In the case of the most
brillinnt star, Sirius, even this minute parallax could not be found; from which, of course, it was to be inferred that the distance of that star is something beyond the vast distance which has been stated. In some others, on which the experiment has been tried, no sensible parallax could be detected; from which the same inference was to be made in their case. But a sensible parallax of about one second has been ascertained in the case of a double star, \dot{u}, \dot{u}, of the constellation of the Centaur, and one of the third of that amount for the double star, 61 Cygni ; which gave reason to presume that the distance of the former might be about $20,000,000,000$ of miles, and the latter of much greater amount. If we presume that similar intervals exist between all the stars, we shall readily see that the space occupied by even the comparatively small number visible to the naked eye, must be vast beyond all powcrs of conception.-Vestiges of the Natural History of Creation.

The Nature of the Soil.-In the general examination of the land, the growth of the trees and copses, if there be any on the land, their species, their soundness, the elevation of their branches, and the cleanness of their bark, are among the surest marks of the quality of the soil. The plants which grow spontancously there, even those that are injurious, afford also a valuable indication; but it is not sufficient that they grow isolated and slowly, but on the contrary, their increase should be rapid and abundant. Thus the corn or field thistle (serratula arvensis) indicates a rich and productive soil; the butter bar, or great petasites (tussilago petasites), an argillaceous soil; the colt's foot, (tussilago farfara), and the bramble, a marly soil; the common chickweed and pimpernel (alsinc media), the common sow thistle (soncus oleraceus), the charlock (sinapsis arvensis), grow on soft and tenacious lands; while the wild radish (raphanus raphimistrum) grows in dry and poor lands. The black medick or nonsuch (medicago lupulina) is a sure sign of the marly quality of the soil in which it is found.(Von Theer's System of Agriculture, by Shaw and Johnson, vol. 1, p. 28.)

$\mathbb{C l}) \mathfrak{C}$ amaiau Ggríntural §ournal,

PUBLISHED MONTHLY,
ATONEDOLLARPERANHUM,
PATABLE IN ADVASCE.
Any Post Master or other individual who obtains six subscribers, to be entitled to one copy, gratis.

As the object of this Journal is to improve Canadian Husbandry, by the dissemination of the best and cheapest Agricultural information, the charge for it will be simply sufficient to cover the necessary expense. The subscription price will therefore be Five Shillings per annum. to single Subscribers. Societies or clubs will be furnished at the following rates :-

Payable always in advance.
WILLIAM EVANS, EDITOR AND PROPRLETOR.

LOVELL AND GIBSON, PRINTERS.

