The Institute has attempted to obtain the best original copy available for filming. Features of this copy wihich may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers ciamagid/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Caıtes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquėes

Pages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titte de la livraison

\square
Caption of issue/
Titre de cépart de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at ine reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. 1.-No. 11.
FEERUUARY, 1874.

Price in Canada $\$ 1.50$ per An. United States - $\$ 2.00$ "

MESSBS. PARAVICINI AND CLEXENTS SAEETY APPARATUS FOR POINTS.

RAILWAY SIGNALS AT THE VIENNA EXHIBITION.

We illustrate, from Engineering, on page 323, a system of switch exhibited at Vienna, in tho Hungarian dopartmert, by Melsrf. Pravicini and Clement. This arrangement consists chicfly of an iros bar a, b, between 6 ft . and 10 ft . long, of strong section, and fistened to the outside of the rail, which is next to the stock-rail of the switch. The one end of this bar is carried by a bolt passing th.ough a bearing c, and the web of the rail, whilst tho other end is provided with a nose placed under the head of the rail in order to prevent the untimely lifting of the bar. At a corresponding distance from the latter end of the bar a wedge d, is fasteucd, which rests upon a wedge f, of the same shape, and slides over it on pointing of the switch. This wedge f, is connected by the bell crank g, and the rod h, with the tongue of the switch; the bell crauk is tastened with its fulcrum k, upon the bearing plate i, which serves also as sliding surface for the bell crank at the point wherc the wedge f, is fastened; the two wedges d, and f, have inclined sides of 45 deg. In the rormal condition of the switch the bar a, f, is level with the rail, whilst during the chauglag of the points, the motion of tho tongue is transfered bi the screw bar and the bell crank to the lower wedge, which presses with its inclined surface upon tue top wedge, so tha; the bar a, b, is lifted over the lever of the rail, but sliding back on the other side of the wedge occupies again its normal position If the tongue, however, is not firmly pesced against the stock-rail, the bar a, b, will project above the lever of the rail, bit it will be pressed down by the wheels of the passing train when the tongue is forced into its $p \cdot o_{2}$ er position before the wheels have reached it. This safety arrangement is intended for preventing the danger of running off the rails if the tongue is not placed in the proper position. It is staf d that practical use of this arrangement has given catisfac.ory re $u l$ ts.

The tong tues are simply moved by hand, and the turning of the sigual disc is effected by the same lever; this latter is connected with the lever V, which is provided at the upper end with an oval hole, through which the pin x, is passed with one ead, whilst the other end is connected with the up-right bir which carries the signal disc. Movis the lever V, will therefore produce a turning of the upright bar and the disc.

PREPARATIONS FOR THE DEPARTURE OF THE 'IRANSI'I OF VENUS EXPEDITION.

The time is now rawing on for the departure of the English expedition for the observation of the tralsit of Venus. In a few weeks the parties proceeding to all the stations except Egypt ought to be on the sea, At the dinner of the Astronomical Society Club, on the 8th of this month, Sir George Airy stated that he had reviewed the English and Russian plans for carrying out the work, with the Society's illustrious guest, Otto Struve, the Astronomer Royal of Russia, and had arranged them in complete harmony with one another. We may therefore consider that the time is ripe for the consideration of the English plans in a more definite ehape than when we noticed them. Wo may add that the gencral scheme, as explained in our prepious article, is unaltered.

To take up tho question so as to make its features intelligible to readers who are no: astronomers, we may again point out that the "parallar of the sun" may bo said to be tho angle that any point of it subteads on such a base line as the carth affurds; and without again describing how this angle is measured by tho observations taken, wo may treat it as an angle taken in three ways.
'The first is Halley's method, on which the angle is taken between two chords across the disc of the sun, each one being the apparent path of Venus as seen from some position whero the entire transit is visible. Such positions are takun in pairs in suitable northe:n and southern localities-tho length of the bavo line depending mainly on their difference in latitude. This work is carried out, as far as England is concerned, by Kerguelcn's Island-covered by Rodriguez—and by New Zealand. These form tho southern ends of bases coupled with certain Russian stations dotted across Siberia, connected together by a telegraph wire for obtaining longitude by telegraph.

The second and thitd measures and lines of bases are on

Delisle's method. One base line dopending on observations takon at ingress, aud extending from the Sandwich Isles to Kerguelen's Island, Rodriguez falling near the latter. 'I'he other base line depends on tho observations taken at egress, ono end being at New 7 raland, with Kerguelen's Island sufficiently far along it to bl. suostitute should it fail; tho opposito end being Egypt and certain Russian stations not far fron the Caspian Sea. Rodriguez falls too near the centre of thas base line to be of muci use.

Having thus recapitulated our stations in their positions in the base lines which we dreve in on the figures in our former article, to which-in the aspect in whirh we endeavoun to mako the matter clear - we cannot do better than refer our readere, wo will pass on to the equip. ping audarming of each point, and the peculiar character of ita duties.

We may first notice that the work of every station must consist of two branches - first, the work of observing and recording the phenomena of the actual transit when it takes place; second, the systematic work-which may occupy many weeks or months-necessary to establish the latitude and lon. gitude, $s 0$ as to fix tho precise position of the station and give meaning and value to its observation and the records ot the phenomena seen at transit.

Under the head of observations and records of the actual transit must be classed the work performed by what we may cail tho gazing telescopes, from the larger equatorials dowa to the 4 in. ones with tripod stands and slow motion imparted by haud, as well es all the peculiar work of tho photobellegraphs.

Figs. 3 and 4 , page 326 , are fair specimens of the equatorials. The former we give on account of its historical interest, being the Lee telejcope, with which the late Admiml Smyth drew up the well-known "Bedford Cataloguc." Those who are familiar with this work may remember the charatiericiic exjoyment with which Admiral Sinyth divells on the $8 \frac{1}{6}$ ft focal leageh, the object-glass by Tulley (${ }^{5}{ }_{10}^{9}$ in.), witit all its beauties of correct form and "space penetrating power," and the sbarpness with which it came to focus, canrying the reader so along with him that he almost feels as if it was an extraordinary instrument, perhaps almost making an audible click as it camo to focus. It is unnecessary, therefore, to dwell on features which. if the irath must bo told, are not in these days extraordinarily good, even in the optical parts. It may be said briefly that the mounting, though old-fashoned, is simple and effectual, the clock powerful and good, and the iustrument altogether capital for the work required. Astronomers who know what a favourite tbis telescope has been in its day, and the excellent work ic has done, looh at it with a feeling akin to respect an'l affection, and may feel ghad it should have the prospect of agaia performing inportant work. In the figure it is shown, we need hardly say, pointed towards some polar star, near its upper culminat:on. Consequently, for the transit to be seen with the sun rising in the south-east, it is necessary that the side of the building in the corner directly beyond the centre portion of the telescope should be capable of removal, and it was wo made three years ago by Sir George diry, when desigoing the huts for the expedition. lig. 3, is an equatorial, designed c. d made by Sum us, with a 6 in. object-glass; the mountiog is, of course, good, and of a general character, readily admittiog of adjantment to almost any lalitudo. Beyond this there is little to remark in connection with it. With these and all the larger telescopes the sun is to be observed not directly, but by refection off the surface of a glass prism ; by which means not only is the glare enormously diminished, but also the heat rays which pass on through the glass being got rid of, there is no risk of the dark glass srddenly failing and the observers being binded - a fate which has too often befallen examiners of the sun Doublo image micrometers are used, as described in our previous article, and contact observed in as nearly as possible the samo phase by all the English and liussian observers.

Fig. 1, exhibits the phor theliograph employed at every main station. It is designed anci made by Dalmeyer, and descrics a few words. Its optical part cinsists of a tubc with an object glass resembling that of al. equatorial tciescope, but constructed so as to combing the optica. focus with. that of the chemical rays, so that to the eye it would not be truly corrected for colour, but is admirably adapted for facilitating adjustment to the work required. A little bejond the focus of the object
glass is a photographic camera lens or enlarger, consisting of ivo double lenses symmetrical in form and position, at some inches apart, each one consisting of a concavo convex crown and conveso concave fint glags. This throws an enlarged crect image of the sun on the plate exposed in the posterior or camera end shown in the figure, whero the cliemical and optical rays aro again brought to the samo focus. The pointing and adjustment of the instrument are facilltated by the use of ground glass, both in the camera, and in a small pointer fired to the side of the tube. In the focus of the object-glass are fixed cross wires, and immediately bryond them is an exposing shutter, consistiog of a close slidiog brass plate with a small borizontal slit admitting of adjust. ment to greater or less width. The slututer is pulled down by a stronir spring, but can be raised and held above the fiela if view by a piece of thread and pulley, on cutting which the slutter thies across the field, every part of the sun being photographed by tho momentary exposure given tbrough the slit in its rufh over the field. Ho. a rapid series of photoriaphs, such as i is wished to obtain of the advance of the planet on the solar disc, another device is employed, which is a modification of Jausen's revolving shutter, which exposes in succession a number of small circuiar spots, arrange 1 in a circle on the plate, which is itself made to revolve so as to bring each one in turn in the required position. The chic f difficulty is to avoid the bad effect of vibration, which appears to have been done by DIr. Christie's arrangement, to the satisfaction both o: the Astronomer Royal and Monsieur Strupe. The idea of employing photography, as we noticed in our previous article, we owe to Mr. Do La Rue, who first brought golar photography to such a high slandard of perfection and accuracy. The dry process which is atopted is that advocated by Captain Abuey, R.E, who has directed tho training of the photogra. phers of the expedition. The mounting of the photohe liograph is that of an rquatorial; the design we prefer to Simm's on the whole. We cannot say the eame for the fitting and motion of the wheels; but all is good. The eystematic observations necessary to establish the exact latitude and longitude of each station are carrud out at the main stations by transits, altazinuths, or vertical circles, and i. one case by telegraph comparisons. At the secondary stations it is done by portable instrusucnts and comparisons of various kinds.

The transits are matie by Sinms (40 in. focal length, 3 in. aperture). They have moveable systums of wires connected with micrometers. The altazimuths and vertical circles differ from each other chiefly in the formor having horizontal circles read by micooscopes in four places and in many details. The altazimuths are supplied to stations whose latitude is such that azimuth readings are iequired. Fig. 2, shows the instrument belonging to the Kerguelen Station, which is the best in design and in its performance.-Engineer.

LEAD MINING IN CANADA.

Lead-mining operations in the Dominıon of Canada have hitherto beer limited t, what may be called surface explorqthons, although the finest rock of lead ore sxhibited at the late l'ar', International Exhibition came from Canada. We learn from a prospectus of the Canadian l.cading Mining and Smeltiug Company (Limited) that extensive operatinns are about to take place to develop the champion mineral lodes in the town--hip of Lansdowne, in the counily of Leeds, Ontario. Sir Wm. Logan, Geological Survey, has frequently called attention in his oficials reports to the promising character of the land lodes in this district. He says, speaking of the nature of the lode, that "through the gangue, which is calc-spar, galena (lead) is found in massus, sometimes 5 or 6 inches in diameter. A trial shaft of 50 feet, which was sunk in one of the lodes, is said to have yic!ded eufficient are to pry the expenses of sinkisg, and that fou: other lead-bearing lodes run parallel with the main, the whole being included in a breadth of about $1,0 \cup 0$ feet."

Pacific Rallwax.- It has been determined to survey the Falley of the Fraser River, with a view to making the terminus of the Pacific Railway at Burrard's Inlet. Mr. Sandford Ficming bas received orders to proceed with the work at onco.

WEAVING.

Ancient Loons.

When it is considered how littlo is known of the early history of weaving, it may be casily understood how much less likely it would bo for a description of its various processe's to exist. The products of the loom, wisder certain ndvantageons circumstances, may be preserved for thousands of yours, and still give proof of their pechli,sities, either in cxcrellence or defect of manufacture. Thus, tho mummy voths of Egjpt supply nbundance of proci, not only concerning the existence of weaving 4000 years ago, but of the general excellence of the protucts then produced. Numerous specimrns of this cloth, still wrapped round the embalmed bodies, are to be seen in the various y blic museums, and nothing could give more conclusive evidence ryarding the state of the art in those, the carliest periods of hictory.

Although woollen and cotton cloth have always been most commonly used for clothing and other purposer, it is fortunate that the Egyptians did not enshroud their clead with esther of those materials, and particularly so with wool, which owing to its property of bre ding, or being liable to bucome infested with wirms and insects, would be more.likely to perish lian liuen cloth. Thus linen was purgosely chosen for shoud, on a count of its cleanliness and lasting qualtics. The dead were encased in its folds, so that the bodies should bo presersed uninjured, for a period of 3000 years, when it was believed that the former spirit would return, after its transition state and habitation of the bodies of various animals, to resume its yrevious existence.

It is to this circumstance that we owe what actual knowledge of ancient werving we now possess. Tho lifjptians also ured wool and cotton for weaving purposes, the pourer classes being clothed with woolen cloth, and the rich winh eotton and wool. The priests wore linen, in accordance with their iden of its purity, for they wero not allowed to enter the semples with any article of dress composed of wool, that material being considered unclean, from the circumstances before mentioned.
But although it is possible to preserve cloth for long periods of time, when it has been propared and deposited for that purpose, it is quite another matter as regards the loom in which it was woven. It is characteristic of many things in every-day life which have long been in use, that they rarely suggest to the miad that they may be supplanted by quite duferent methods, and for the old sistems to become totally forgotten. How many of the ancient arts have been lost through the historian making no record of their processes? We thereforo cease to wonder that no certain knowledge of the nncient loom exis's. Fortunately, there are a few very ancient paintings on the walls at Thebes representing several processes of weaving and spinning, but the looms are not clear enough to understand.

Au acconnt of these paintings is given by Sir Gardiner Wilkineon in his "Manners and Customs of the Ancient Egyptians," to which work we are indelted. Thus Fig. 1, on the page 327, represonts a weaver at work upon a piece of cloth, woven in a horizontal position on the ground, and Figs. 2 and 3, represent vertical loomb-for both vertical and horizontal I oms were used by the Egyptians. In Fig 2, the weaver is shown weaving choth with a coloured border, and in Fig. 3, two ferales are shown at work at the loom. It required the services of two to weave with the vertical loom-one, perhaps, to open the shed and attend to the warp, and t io other to woik the shuttle and attend to the weft.

It will be noticed in bolh Figs 2 and 3, that the weaver holds n stick, or lever, in the right hand; at the end of thase levers there is a hooh. Sir Gadiner tells us that he thinks these hooks were for the purpose of drawing the weft thread through the warp-in a similar manner, we may suppose, to willow or horse hair weaving, where short lengths only can be used. If such a system really was in uso by the Egyptisne, and the cloth which now exists fas woven by drawing the thread through the warp shed, the cloth would give evidenco of it, for it must necessitate the formation of an open selvare, or fringe, on at least one edge of the cloth, and, even if the thread was dmwn through by the hook, in such a manner as to uselong lergths of weft, it would then havo a double weft thread, with a perfect selvage on one edge o he cloth, and an open one on the other-similar to the weaving by rome of the modern shuitleless looms. But the Egyptian cloth that we have seen has no double threads, and both the selvages are

ANOIENT LOGMS.
perfect, showing that the shuttle was pasced entircly through the shed, from side to side alternately, as in ordinary weaving. Therefore, what can t.esse stichs, or levers with hooks, be for? Th-y must eitber represent the shuttle itself, or the means wherewith it was thrown. Before the reed was invented the weft thread is raid to bave been combed evenly into its place by means of a comb adapted for the purpose, and the blow
 shaped piece of Food, which was introduced into the shed for thpt porpose. This latter instrament was called the "spatha." The cloth was woven by forcing the weft downwards, and Sir Gardinor quotes Berodotus, who states that the Egyptians
wove their cloth in that manner, whilst other nations wove it by pushing the weft upwards. In the latter way of weaving it is easy to see how to slide the shuttle when the cloth was woven downwards. The shutlie was probably thrown from hand to hand, withortany shattle race or reed for it to slide apod, otherwise it would be difficult to understand how the loom conld be worked with the simple mechanical means they appani to hapo posacsed.
In Dr. Smith's dictionary of "Greek and Roman Antiquities," under the article Tela (Greek loom), Mir. Yates, in describing tho encient Greek 100 m , compares it with the common loom usedid Iceland, if notat the present. at all events in very
recont times. Fig. 4, is a representation of this loom. The warp is euspended from the top heam of the loom, and the lower ends are tied up in separate portions, which are weighted to keep the thrends in tension. The cloth Reas woven upwards. A comb was used, as already described, and tho spatha also, which is thown in the drawing

It may be here remarked that the use of the comb ought not in all cases, to imply that a reed was not used. It is far from being uncommon for weavers if the aresont day to uso a comb, especially when they have a sticky warp to weave, or a warp that, owing to the folting property of the material, such as wool, requires to be separated frequentiy. In cloth weaving there is a special contrivance for this purpose in order to prevent the shuttle being thrown out of its courso by coming into contact with threads that have adhered more or less to the adjoining ones.

The reed itself is but a species of comb, and takes its name from the material of which it was formerly made, viz., slips of reed It is not, thercfore, unreasonable to infer that the reed was used in ancient times, as well as the comb, in the weaving of the finer descriptions of cloth; and in weaving ru;s or matting, the spatha, and the hook before mentioned, would thus be satisfactorily explained.

Fig. 5, representsa loom which is asserted by Montfaucon to be copied from an ancient manuscript supposed to be of the fourth century, and entitled the " Virgil of the Vatican." It formerly belonged to the monastery of St. Denye, in France.

The loom used in India for the production of the most delicate muslin, clothe, shawls, and oiher fabrice is of an oxceedingly rude nature, and it 18 highly probable that it is, in mode of consiruction, the most ancient loom known. Consequently a full description of it can scarcely be omitted here. Fig 6, represents a common Indian loom as used in the celebrated manufactures of Dacch.

Dr. J. Foibes Watson, M.A., in his work on "The Textile Manufactures and the Customs of the Pcopln of India," enters very fully into their mode of spinning and weaving, and descriptions of their ornamental fabrics. In describing the looms which produce the famous muslins of Dacca he extracts from the work of Mr. Taylor, which was published for private circulation only. Mr. Thylor formerly resided at Dacca, aud was intimately acquainted with the mode of spinning and weaving there From these tources we learn that at Dacca the loom is always placed under a shed or under cover, or in the weaver's house, and not in the open air as usually represented The warp is fixed to the cloth beam by a small slip of bamboo passed through the loops and fised into the groove. The beam is wound up by a winch, and held by a stick passing through a mortice hole, and fixed to the ground.

The batten consists of two flat pieces of wood, into which grooves are cut for the reed or sley, which is fixed in by iron or wooden pins, and is suspended from the cape of the loom The range of motion of the batten is adjusted by passing slings through several pieces of sawn shell. By lengthening or shortening the slings the extent of motion is adjusted, for uron this the regularity of the blow depends.

The balances of the treadles, having the slangs fixed at their extremities, are suspended from the transverse rod above. The treadles are made from pieces of bamboo, and are contained in a pit dug in the ground about 3 ft . long, 2 ft . wide, and 18 in . deep.

The shuttle is made of light wood, of the betelnut tree (Areca catechu), and has spear-hhaped iron po nts It is from 10 in to 14 in . long, 1 nd 3 in . wide, a 1 d weishs about 2 oz . It has a long open space for the wire, upon which the reed, on which the weft is wound, revolves. The weft passes through an eye at the side of the shuttle.
The temple (the instrument for stretching the cloth from selvage to selrage during the operation of weaving) is formed of two pieces of wood, connected together witu cord, and having at their ends two brass hooks or pins, which are inserted in the edges of the cloth on the under surface.

The weaver sits with his r ght leg bent under him, upon a piece of board or mat, placed close to the edge of the pit, and depresses the treadles alternately with the great tou of the left foot. The stretch of the warp seldom exceeds one yard in length, and the depth of the shed is about $\frac{7}{8}$ of an inch.
To lessen friction, the shuttle, reed, and lay (shuttle race), are all oiled, and a brush smeared with mustard oil is oc-
creionally drawn along the warp. The brush is made of a tuit of fibres of the nul plant (Arundo karka). When ten or twelve inches of cloth aso woven it is sprinkled with lime water, to provent its boing iojured by insects. Tho most favourable condition of tho atmosphere for weaving is about 82 deg., combined with moisturo, and to effect this in very dry weather, shall iw yessels, containing water, are placed under the loom. A piece of Darca muslin measures twenty yards in length by one yarr in width. In the preparation of the warp it takes two men from ten to thirty days.

The weaving of such cloth takes t.wo fersong (one to weave and the other to propare the weft and attend) from ten to fifteen days for the ordinary nssortments Twonty days for fine, and thirty days for superfine. The fine auperfine takes from forty to forty five days, and the dooreas or charkana assortments, sixty days.

A specimen of cloth called mulmul thas (muslin made for the king) and measuring ten yards by one yard, contaiaed 1800 or 1900 threads in the warp. It weighed 3 oz .2 divt. 14 grainstroy. It is so fiue as to pass through the smallest riug. Price 100 rupees, or $10 l$. Another specimen, as worn by native dancers and singers, measuring tiventy yard \ddagger by oue yard, had 1000 thrends in the warp, and weighed $8 \frac{1}{2} \mathrm{oz}$.

The Indian method of weaving figured muslin inay be taken as the general mode adopted for weaving the various beautiful fabrics for whith they are so celcbrated. Mr. Taylor describes the process as follows :-
"Two weavera sit at the loom. They place the patter, drawn upon paper, below the warp, nad raoge along the track of the wonf a number of cut threads equal to the flowers, or parts of the design intended to be ma te, and then with two small, fine pointed bamboo sticks, they draw each of these threads between as many threass of the warp as may ba cqual to the width of the figure which is to be formed. When all the thriads have been brought between the warp, they are drawn close by a stroke of the lats. The shuttle is then pas ed by one of the weavers through the shed, and the weit having been driven home it is returned by tho other weaver. The weavers resume their work with the bamboo sticks, and repeat the operation with the lay and shuttle in the manner aboue described, observing each time to pass the flower threads between agreater or less number of the threads of the warp, in proportion to the size of the design to be formed."

It is thus secn that the ornamental falorics of India are purely a handicraft work, and performed in the rude descr ption of loom already described.

The Chiaese loom shown at Fig. 7, presents such a contrast to the other primitive looms represented, that it cannot fail to be appreciated for its originality of form and the suggestivencss of its various larts Compared with the modern hand loom it is singularly compact and adapted for househohi use. In ancient times weaving was practised in all the great houses, where a room was set apart for the purpose. Should small looms, for fancy or domestic use, ever be introduced in a similar manner to the sewiog machine, some modification of the Chinese loom woula, perhaps, alone commend itself to favour. The draving is copied from a larger one in the "Traité de la fabrication des Tissus," by M. Falcot.

THE VICTORIA REGIA IT CHATSWORTH, ENG.

Chatsworth, a seat of the Duke of Devonshite has, among its other attractions splendid arringements for horliculture. Our illustration on page 330, represents the hot-house devoted to the display of the enormous water-lily of the Amazon, the Victoria Regia which is grown there with greater success than any where else in England, the leaves measuring ofton $7 \frac{1}{4}$ feet in diameter The large tank seen in the centre contans another tank, 16 feet in diameter and considerably deeper than the onter portion; this contairs the soil in which the Victorta lily is plauted. The wallo of the tanks are built of brick, and the boitom is paved with stonu ; the tanks are lined with lead throughout, and the two inch hot water pipes which supply them are also made of lead.

White the plant is growing, a little wheel, in the form of an cvershot mill wheel, is fixed near the edge of the tank, anl continually kept in motion by a small jet of water from a tap immediately overit; thus the surface of the water is always rippled. The Victoria Regia, being an annual, dies in Novem-
ber, when the water in the tank is drained off, and the soil contained in the inner part rem ived. The lilies in the angular tanks, beingaleo out of seasou, are, about the same lime, mostly cleared away and stored in troughs fillod with water in the cucumber house. The a juarium, thus stripped of its summer occupants, is filled in winter with largo chrysanthemums for furnishiag cut blooms As the Victorin lily annually produces and ripens a good stock of seeds, theso are preserved in vessels of water until sowing timo comes round, which is generally about the middle of December, or between that and January. The plants are petted singly, ajd re-potted as they advance in gra wilh, until they have attained sufficent strength, when the best plant is planted out in a heap uf fresh eoll.

THE GRASS EATING FISH.

Nature makes no leaps; on the contrary, she appears to fill up, by design, the gaps which appear to exist between each parallel series of b-ings. Numerous examples exist, or have existed, of these odd connecting links; the Australian ornithorincus, a quadruped with a bird's beak; the apteryx, a bird with hair and no wings; the pterodactyl, or winged lizard of antiquity, the fossil turtles, with teeth, found in the Cape diamond diggings-are illustrations in point, and still another is found in the quecr fish represented in our engraving. It is callid the ceratodus Fosiern, and is allied to the fikhes throuch the lepidosiren, a singular animal found in the streams and ditches near Bahia, Brazil. The lepudosiren is popularly termed the caracurus, and is huown by its odd shaped, ePongated body, covered with ecales, appearing to terminate in a fish's tail, while its means of loconotion consist in four fius located underneath. French naturalists have placed this animal in a distiuct class of amphibious reptiles. Owen, on the other hand, pronounces it Ω fish, and the connecting link between fishes and reptilcs.
The discovery of the ceratodus, however, adduces an even closer connection between the two families. The genus was established by Agassiz, who found the fossil teeth and jaw bones of the animal in the jurassic and triassic formations of many parts of Europe. It was supposed that, save in these ancient remains, the creature did not exist, r.ntil a few years siace, when living specimens were found in the rivers of northern Australia, exactly correspouding to the fragmentary relics.
In the engraviog on page 330 is represented the appearance of the living fish and also of the skeleton. Its length is about 38 inches, and its diameter 7 inches. Its habiis are as peculiaras its form. Although living in the rivers, it rarely ascends above the brackish water, and finds its sustenance in the vegetation which, frowing in slallow places, is left uncovered by the ebb of the tide. At night the fish leaves the water, crawling in among the plants and fecding. The quantity of nourishment it needs is enormous, and it is said that the amount of halfdige ted myrtaceous and graminaccous foliage found in its iniestincs is out of all proportion to the apparcut requirement; of the animil. Iu order to pursue its habite, it is evident that air-breathing apparatus must be present in the organization, and suct is the casc. Its : 'Is are a sort of porous lung, of very complicated constr ction,: .ag ramifications which expand into cavities fillea with a cuagulum, the function of which has not been deinitely determined.-Scientific American.

Tue Hamilton Spectator says :-A rather unusual thing was noticed the other day ou the farm of Mr. Joseph Williamson near Stony Creek. A large rat was seen on several occasions to retreat from the garden, in which a number of bee-hives are kept. The advent of the rodent among the flowers being considered a somewhat erratic proceeding especially as rats have in them no love for "the concord of sweet smells," it was watched and was observed to go towards the bee-hives, when, pcising itself on its hind legs with its fore feet on the bottom board of a hive, it dentroyed bee after bee by snatching them and eating them as they came to und from the hive. After several attempts the rat was caught and killed, and was found to be one of immense size, and in a viry fat condition Th: babit of rats killing bees is very rarely if ever, noticed, though mice have been known frequently to do so.

THE DICEY STEAMSHIP.

In our number for May 1873, wo gave a short description of the new large steamers which are now boing built to nct as ferries between the coasts of Enaland and France. These, or at least two of them, the "Bessemer" and the "Dicey" steamers are rapidly approaching completion. On page 3 il we givo illustrations of tho Dicey Steamship which is so far nivanced in construction that she will be laum hed in A pril and ready for the service in Juno. The vessel is $2: 10 \mathrm{ft}$. lung, with an extreme breadith of 60 ft ., with the small driught of water of oft, so that she can enter tho ports on bollh sides of the Cliana"l atall times of the tide. She will abliordaccommodation for upwards of 600 passengers, with first and second class saloons, ladics' and private cabins, and a sunticiency of closets; and over the saloons a fine promenade is arranged. Excellent refreshmentrooms are provided, and the comfort of the passengers is in every way studied, so as to insure the success of the undertaking.

(OAL IN NEW BRUNSWICK.

The long disputed question of the occurrence of thick coalbeds at Grand Lake-r question of much interest te all Now Brunswickers-would appear at last to have been definitely settled. From a report upon this subject by Messrs. Bailey \& Matthers, contrined in the last leport of Progress of the Geological Survey, and just submitted to the Dominion Parliament, we learn that the entire thickness of the coal formation in this region, as determined by a study of its geological structure, does not exceed 600 feet, of which not more than 200 feet represent the middle or productive coal measures, the remainder being composed of barren bede, which und.r, or overlic the latter. An important fact in conne ation with this subject is, that at three separate points, ou difierent sides of the Newcastle coal openinge, rocks older than those of the carbonifarous formation come to the surface and occupy considerable areas, thus indicating either an exceedingly shallow basin, as that in which these coal deposits were originally formed, or that they have since lost much of their thiekness by denudation. In this latter case it is still possible that the precarboniferous arcas alluded to may really represeat simply the su 1 mits of ridges-islets as it were in the carbonife rous sea and therefore separated by troughs in which the coal formation deposits may be deeper. Still, this does not seem probable, the attitude and chiracter of the strata, as well as that of the fossils, alike indicating that the formation here is but of little thickness; to which may be added the fact that in two attempts to determine this questi $\cdot \mathrm{n}$ by boring, one at Newicastle and the other near the shore of Grand Lake, the slates which anderlie the coal formation were in both instances struck at a depth of a little over 200 feet.

While, however, theso explorations are certainly unfavorable to the opinion which would assign any considerable thickness to the coal formation in this region, or oven to a belief-in the occurrence of workable seams bencath that which has; been so loug know n and removed near the surface in the Grand Lake district, it may yet be observed that the area over whith the latter may be presumed to extend is itselfa large one, and even supposing the thickness of the seam to be nowhere grcater than is shown in the openings already made, it would still be capable of affording, with propgr :orking, a vary large yield of coal. From data given in the report it would appear that the entire area of the coal l-sin at Grand Lake, and over which the coal seam may be supposed to extend, is about 112 square miles, which, adopting 20 inches as the average thickness of the team, and 79.4 lbs. as the weight of a cubic foot of coal, would give (with certain necessary deductions) a total possible yield of not lees than 154,918,147.2 tons!
It may be added that the carboniferous soils which spread over so large an aren in New Brnnswick, aro cverywhere nearly horizontal, and as coal crops having nearly the same average thickness as those of Grand Lake have been obsersed at many widely difierent points, it may possibly be that these are all really portions of one single an I continuous scam, in which case, after making the necessary deductions as before, the whole possible yield of coal for the New Brunswich conl-field, even supposing that no other decper seams are found, will reach the enormous sum of $3,510,436,357$ tons 1 -Nation.

THE GRASS EATINO FISH.

THE VICTORIA REGIL HOUSE AT CHATSWORTH, ENGLAND.

PRINCIPI, ES OF SHOP MANIPULATION FOR ENGINEEMING APPRENTICES.

By Richards, Phitadelphia.

Introdection.

In adding another to the many treatises relating to mechenics, and especially to that branch called mechanical engineering, it will be proper to explain that the purpose is to supply a wat that none of the many text-books thus far seem to have supplied-that of assisting the engineering apprentice in forming a true estimate of that which he has chesen as a professiun, and pointing out the means of study that will lead to his anderstanding the principles, as well as the rontine, of a shop course.

Aside from the fact that no books have been prepared with an especial view of assisting apprentices, and adapted to the first stages of what we may call a mechnnical education, there is the further fact that such books as are available treat of mechanical principles as consisting in mathematical fommule and theorctical propositions only, overlooking the fact that such data are werely the symbols of mechamical principler, and not the priciciples themselver, and that a true understanding of mechunics is the result of a system of logical reasoning, which is only to be aided, and not supplanted, by rules, tables and formule.

A person may be a master of computations, or conversant with physics, and know inttle or nothing of piactical mechanics, or may be a competent mechanic with but little knowledge of wathematical propositions, such as can ie presented in books, and the great work of the apprentice is to connect and arsmithate theoretical with applted mechanies.

It maj ive claimed that text-books can go no further in treating of applied mechantes than general pranciples will reacha very true proposition if the writer of mechanical books has no power of dealng with the subject further than it is reached by theorefical deductions; but this furnishes no prof that the great share of a technical education, which cousists in what may be called spectial knowledge, cannot be generalized and systematist d the same as that part which is now explained on general pinciples.
between physics, geometry, and mathematics, and their practical application to industrial processes, or, to state it more plainly, hewcen theoretical principles, and the finished product of an engineerng establishment, there is a wide space, filled in with intricate procesecs, with which text-ioooks deal but sparingly, and sometimes not at all. This space has to be bridged over by the appreutice as best he can, and it is that part which calls for his greatest ellorts.

He may, for instance, study the geonetry of tooth geariag ; ti. construction of trains of wheels and the principles that govern their action; he may learn the principles of cycloidal and epicycloidal curves, but between all this and a finished whecl are the processes of pattern making, founding, and nt'ing, either of which require as much or more thought and study than the geometry of gearmg, which subject furnishes page after page in our text-booke, yet the latter are almost silent on the shop processes namerd.

The same rulc applies in most classes of machinery ; in machine tools, for intance, the apprentice has ocly to open a modern work on the subject, and he will find tables, formula, and drawings to show the construction of machine tools, but sel tom anyhing said upon the principles of their operation.

The apprentice, as soou as he enters the workshop, is nt once brought in contact with machine tools of all kinis, and but little is gained in spencing time in studying dramings and descriptions of them where the tools themselves are before his cycs, but conuected with the operation of these tools are may y intricate conditious thit canaot be understood nor even conjectured by merely evamining the machnes, and much less from drawings of them. 'The conditions of operation, or principles of operation, are the points that the appreatice most needs to learn; what is meant by these principles of operation will app ar in the course of these articles.
lleferring again to the books which are available to an apprentice, they are too often filled with tables, rules, formule, and ready made computations, which, like a list of gear wheel combinations stamped on a lathe, tend to relieve the learner's mind of that which is most amportant for him to study. The apprentice who ; a to a table to select wheels for screw cutting will perh. as uever learn to make the combinations
mentally, and by usin $\boldsymbol{r}_{\mathrm{s}}$ tables and rules to define mechanica questions, the principles may be entirely overlooked. Rules and tables hive their places, and are merely records of what has been determined and proved by crucial experiment or by mathematical demonstration, but the less the enginecring apprentize deals in them the more he is likely to know of the prinesples upon which such rules are founded. With books of an elementary character, until quite recently, the eneinecring apprentice has been no better supnlied
When it is considered how strong first impressions are and how they cling to the mind, it is casy to conceive how important it is to lay a proper fo adation on which to rear a mechanical education, and when we exnmine school books that treat of natural philosophy and mechanirs, and compare them with modern science and modern practice, it must be conceded that they furnish a bad foundation indeed for the learner to build upon.

As a tirst lesson in what is called mechanics, the student is taught to compute the power oflevers, screws, wheels, wedges, and other devices, which he is taught to call "mechanical powere," whatever that may mean ; he is to d that there are "three kinds of levers, and the terms used throughont are such as to coafound power with mechanism, and prevent a comprehensive idea of fo co and motion, or the means of transmiting them. The student finishes such a study of mechanics with false conceptions of piwerand mechausm, whith, as many will b ar witnese, cling to the mind fur years, and may never cease to be a hindrance to acquiring a true appreciation of forces and the relations between power and machanism.

A wat of trealises that are especially adapted to the tequirements of apprentices, is due in a gre at measure to the fat that pactical engineers who have passed through a suceessful experience, and have gained that special knowledge which the apprentice most needs, as a rul. have neither the inchation nor the incentive to write out the lessons that they could impatt to other:. The changes of mechanical man, ulation are so frequent, and the apparent conflict that might ari e between their opinions and established data would lea, to adve rse critt. cism, which tuch men do not care to invite; the result is, unfortunately, that the great mass of specinal knowledge gined by individual experience is lost, and mechanical text-honks, of necessity, consist mainly in generalitiesthat may be arnved at hy theoretical deductions and inferences.
The purpose of these artirles will be. in some degree at least, to supply this want of a medium between theory and practice, and to point out to the applentice engineer that part of his education which may be termed special, aud which must be acjuired mainly by his own eflorts; to urge upon ham the value of analytical reasoning, about even the most sumple masters, instead of depending upon rules, tables and formule.

It will a'so be attempted to show the relations between principles and practice, not between tigures and pactice ; for it must rontinually bo kept in mind that figures are but the symbols of principles; the plau of tracing every prowess the workshep to some general mode of operation as an antecedent, will be urged upon the learner, as the only means of cultivating the hahit of reasoning, which alone can lead to a complete knowledge of practical inechanics. The articles wall contain no drawings, no figures or computations; these are atready supplied in forms that leave nothing to be desired, and may be studied from other sources inconnection with what is presented here.

The author, in preparing these articles $f \mathrm{r}$ engineering ap. prentices, brings to his ad an experience of 25 years devoted to the construction of machinery and general engincerng practice; and, as a consi ferable part of thi , expervenee has been devoted to the instruction fappreatices an applied noechanics and what is termed mechenical enginecring, the plans of study which will be printed out here are such as this experience has proved to be the most successful.
The articles have been prepared with a full knowledge of the fact, that what an apprentice may leara, as well as th. time that is consumed in learaing, are both to be measured by the personai interest that is felt in the subject studied, and that a strong p reonal interes' on th part of an apprentice is essential to permanent success as an engiuecer. It is to be regretted that the diticulty of a statistical dryness and want of interest must alway, be a characternstic of any writing de\mid voted to mechraical subjects. Some of the subjects trented
here will be open to this charge, no doubt, especially in the first part, but it is trusted that the good sonse of the reader will prevent him passing hurriedly over the first part to see what is said of casting, forging and fitting, at the end, and will cause him to read it as it comen, which will in the end be best for the reader, and certainly but fair to tho writer.

(To be continued.)

PATCHOULY.

(From the Journal of Applied Science.)
Patchouly is at the present time one of the most widely known, if not one of the most popular, scents in England. Its odor is one, which once known, is not lifely to bo forgotten, and althongh opinions may and do differ as to its fragrance, it is very largely employed by perfumers, both by Itself and in combination with other scents, which modify in some measure its somewhat overpowering smell. Yatchouli, or Pucho-pat is the Hindostance name of the plant from vhich the perfume is obtained, which is known to botanists as Pogostemon Patchouls. It belongs to the order Labiatue, which furnishes us with so many of our aromatic plants, a chas asce, thinme, marjoram, rosemary, lavender, mint. pennyroyal, cte. The patchouly is tall and shrubby, not unlike the garden mint in habit, with broad, egg-shaped, opp sito leaves, about threo inches logg and thick spikes of small purplish-whita flowers. It is a native of Penang, Silhet, and the Malay Peninsula, and is 1 m ported into England fron Hindostan and Bengal. In India it is a very popular perfune, being generally sold in the bazaars, besides being used in tobacco for smoking, and for scenting the hair of the women. It was not imported into England until 1844, when forty-six cases, some containing fifty pounds, others one hundred and ten pounds, were put up for sale at Garrawey's Coffice House. The price asked was only six shillings a pound; but there were no biddinge, which proves that its popularity is of but recent date. This lot was brought from New York, to which place it was said to have been taken from Chinn. It flovered in Europe for the first time in tho winter of 1844, in the greenhouse of a gentleman at Orleans; siace then it has been in cultivation in many botanical gardens, and may usually be seen in the Economic House at Kew Some years ago, genuine Indian shawls could always be distinguished by the peculiar odor which they bore, the cause of which was long unknown. It was, however, at length discovered by the French manufacturers, that this odor was due to patchonly, and they imported the plant in order to give articles of home manufacture the samie perfume. The emell of patchouly may also bo detected in Indian ink, in the manufacture of which it is an ingredient. The dried leaves and tops are the parts imported, and these may be bought in the market in bundles of half a pound cach. Dr. Wallich states that a mativo friend of his told him that the leaf is largely imported by Mogul merchants, that it is used as an ingredient in tobarco for smoking nad for scenting the hair of wom n, and that the essential onl is in common useamong the poorer clas6es of the nativen, for imparting the pecnliar fragrance of tho leaf to their clothes. Tho sachets of patchouly which are sold in European shops con-si-t of the herb, coarsely powdered, mized with cotton wool, and folded in payers. These are simply placed in drawers and wardrobes to drive away moths and insects. The patchouly plant is in great favor with the Arabs, who use and export it more than any otber nation They take up great quantitics on their annual pilgrimage, and use it chiefly in stufing mattresses and nillows: They believe it to bo very efficacious in preventing contagion and prolonging lifo. It is also sald to protect clothing from moths. The preparation of the herb is very simple, the tops-about a foot in length-being merely gathered and dried in the sun. It must not, however, bo allowed to get too drv.

A maxosd gav is in opemation at the Exhibition of the Am. ncan Institute. The machine is the ordinary reciprocating saw machine; but diamonds form the cutting toole, in combination wi'h the sted blade as a guide. The diamords are set in "cutter blocks" at intervals upon tho blade, and work harizontally as a true save in tho stone set beneath. While an ordinary sam cuts on an arerage 15 in . of brown stone in a day, the diamond saw will do as much in half an hour.

SMELTING ORE IN COLORADO.

Our illustrations on pages 334, and 335, represent some of the processes carried on at the smolting works of the Boston and Colorado Smeiting Company, at Black Hawk, Colorado. We are indebted for these to llarper's Weekly.

Previous to the starting of this enterprise the ores of Colorado were treated only by the stamping and amalgamating process by which, especially from the richer ores, not more than half the noble metals were saved. By smelting, as conducted at these works, not only the gold and silver, but the baser metals, such as lead and copper, are estracted Since the commencement of operations over forty thousand tons of ore from the mines of Colorado have been reduced, yielding several millions of dollars in gold and silver.
the ore comes from the mine in large pieces, and first goes to the crusber, or Cornish rollers, where it is broken in pieces the size of pease. It is then sampled and assayed to determine its value. It then goes to the calcining floors. On these floors tho ores are exposed to a gradually increasing heat, which obtained by moving the whole mass from the lower part, : he floor toward the seat of the firc. The ores are charged , a the part of thy floor most remote from the tire every cight hours, a ton at each charge. In this operation the sulphur is converted into sulpharous acid, and escapes into the chimneys. The base metals are changed from sulphurets into oxides, when the ore is ready for the smelting furnace.
From the calcining floors the ore goes to the smelting furaaces. Of these the establishment has three, each having a capacity for smelting about twelve tons a day. The charges contain three tons, and remain in the furnace about eight hours at a full white heat. When brought to a perfectly liquid state the quartz and iron and other base metal form a slag and c me to the surface; the copper and lead combined with sulphar, coming with them, the gold and silver separate perfectly from the slog, constituting what is known as matte and eink to the bottom.
The matte is reduced to an impalpable powder, and then taken to the matte calconers, where it is kept for soveral hours at a low red heat, and constantly stirred. Several chemiral changes take place, and the silver is reduced to a soluble sulphate, while the old is unchanged. This is one of the most difficult and delicate of operations. It requires the utmost skill and care to insure good results.
The calcined matte is put in tubs, shown in the upper part of our drawing. A continual stream of hot water filters through the mass, until the sulphate of silver is completely disenlved. The stream of water flowing from the tanks carries the silver into a series of other tanke, containing copper plates, whereon the silver is precipitated.

After this the silver is ficed from allimpurities by washing with acid, with the aid of steam, in the large conical tub shown in the draving.
The mass remaining in the tanks after the silver has been washed out is then ireated in small reverberatory furnace; for the extraction of the gold. The details of thes process a e too numerous to admit of ceven a parial description.
The jure precipitated silver as it comes from the tubrooms is put into the drying-pans to evaporate the water. Then it is melted in black-lead cracibles by exposure to a white heat for tro hours. When the sllver is melted, the crucibles are handled by two men, as shown in the drawing, and the contents poured into moulds. Einch brick weighs over a thousand ounces, and represents a value of about $\$ 1400$ in gold

The New York Mint estimetes the silver coming from these works at an average finenees of 995 . The weckly simpments average nearly half a ton of fine silver, worth about $\$ 20,000$, and grld of about the stme value.

The hricks are turned over to Wells, Fargo \& Co., who inclose them in leather cases, and so send them to their final destination.

The: Brighton Ensagn eays the dredging of that harbour has revealed a sceasure that may at some future time be a mine of werlth to the people of that section-2 deposit of the best quality of peat. It has been tested and bas been found to burn well The deposit is extensive, and is believed to be very valuable.

ROASTING THE GOLD AND SILVER ORE.

REVERBERATORY FCRNACE.

Mechanics' Magazine.

MONTREAL, FEBRUARY, 1874.

Chats worth................. 328
The grods catine tish...... 320
The Dicey Steamshlp..... 329 Coal In New Bruuswick 329 Principles of shop manlpulation.

332
Parehonly............................ 333
Smelting ore In Colorado . $3 ; 3$
Peat in Crnada............... 336
Stickeen mines.............. 337 Assimllation of patent
Javs............................ 337
Pullman cars In England 337 Carrylng llve thst to Call-
formia................. 340 Twenty-flve-ton guns...... 340 Securling water pipes agalnst frost............... 341
Dowinion news.............. 311
Rallway matters............. 344
Saw for cutting bent tim-
bers............................ 345
Irn proved screw blocks... 345
New petroleum motor.... 345
Straub's weter wheels... . 347
Perpetual motton...........
How to make corrse wood
look like mahogany..... 349
Boller tuscrustations and
boiler e-plosions.........
Incombusilble woox,....... 352
Miscellaneous................. 353
Proposed rallway routes between Europe and Ania.

Victoria Bridge. The machinery used in the Excavation and preparation of the peat was also invented by Mr, Hodges. Three of these huge machines are at work at St. Hubert. Each con. sists of a scow about eighty feet long, containing a twenty horse power engine, and floating in a canal twenty feet wide and from three and a half to six and a half feet deep. Our illustration on page 338 , is a very faithful representation of one of these machines. The machine excavates the canal for itself by means of two immense augers which project from the front of the scow and cut their way into the turf. These augers are about eighteen inches long but of a diameter of ten feet each, and they work side by side. As they cut into the soft wet turf they throw it behind them on to a revolving band of buckets Theso buckets convey it to the hinder part of the scow and drop it into a cylinder. In this cylinder it is mashed into pul; by revoling hook-shap.ed knives and then propelled fr rward by revolving vanes into what is called the distributor. This is a hollow cylinder, eighty feet long, projecting at right angles from the side of the scow. In its centre, and throughout its leogth revolves a shaft on which areauglr-shaped va es. These latter propel the mashed up pulp along the distributor, from which it falls through holes at distances of twenty feet apart, and from the end, upoa the surface of the bog which has previously been prepared for its reception. Here it is spread out to a width of from 100 to 120 feet and a depth of eight or ten inches by men armed with scrapers, and by horses which drag through the pulp a board fastencd by a rope at each end to the whipple-trce, (see illustration). The peat is now suffered to dry until a cut made on its s.rface will remain open, when it is scored across by tifo men whudrag to and fro a revolving drum, whose circumference is furashed with c:rcular knives about four inches broad, and distant from each other about seven or cight inches. As soon us the sun and wind have dried it so that it may be bandled it is cut up with sharp spades into bricks eight incbes long and carried off by boys and stacked on ladders and laths, when the drying process is more rapidly completed.

This is the complete process, and the average time required to turn out saleable peat is five weeks. The Company, however intends soon to add to each machine a compressor which will deprive the pulp of a very large proportion of its moistur. From this compressor it will pass through rollers and u turned out in a continuous band about eight by ten inches. This strap of peat will pass under a cutter, be divided into bricks and carried off on an endless canvas band from which it will be, picked up and stacked by boys. By this improvement saleable peat will be turned out in fourteen days and the working season prolonged about three weeks or a month. The working staff of each scow consists of sixteen men, the fuel for the engine of such peat as is not good enough to send to market. The scow advances about 300 feet per day, which, at three fect to the ton gives a daily make of 100 tons of peat. The cost of manufacture is about $\$ 2$ per ton and the profit varies from about $\$ 3$ to $\$ 5$ per ton. The total amount turned out by the Company at St. Hobert and at St. Bridgit, where they have another machine at work is about 18,000 or 20,000 tons per annum. This peat ∇ aries in its quality like coal and wood, but all of it has been and is successfully ased in locomotive 8 and for domestic purposes Some of the peat first turned out was much grimbled at on acrount of the quantity of ashes which remained after consumption, some indignant consumers cstimsting the product of ashes at from a ton and a quarter to a ton and a half por ton of peat consumed, igaoring the fact that ex nihilo ninil fit. On the other hand much of that now produced leaves scarcely any
residue behind, most of the ash passing up the chimney in the form of an almost impalpable powder. Perhaps the most cogent argument in favour of the fact of ite popularaty is that although much enquired for in Montreal, there is not a pound of it to be procured. It bas all been bonght up at prices varying from $\$ 5$, to $\$ 7$ per ton according to the varyiag prices of coal ard wood. Its u-e has, as yet, been mainly confined here to culinary purposes and for fucl for locomotives but it is extremely propabie that befure long, peat will be made to serve a most important cad in manufacturing operations, enabling us to utilize our large and valuable iron deposits.

It a recent mecting of the Royal Dublin Suciety, a highly important report on the value of peat as a fuel in Siemens' (ias Furnace, was received from Dr. Rest nolds the Society's Pro. fessor of Analytical Chemistry, who says, " (have much pleasure in being able to report that the application of 'Siemens' liegenerative Furn 'co' to the economical combustion of rough, airdried peat in great manufacturing operation, has proved emtnently successful in this country. When I venture to draw attention to this important practical matter in a letter presented to the Council at the commencement ot the 'fucl famine' in 1872, theoretical considerations chiefly led me to the conclusion that Siemens' apparatus was best suited for the purpose. The Great Southenn and Western Railway Company, hovever, acting upon the suggestion and advice of its distingui-hed engineer, Mr. Alexander Macdonnell, have since crected a Siemens' furnace at their fine works at Inchicore. This furnace has now been more than two llonths in full operation, rough and poor peat being the only fuel employed. Notwithstandiog the low qua. lity of the turf used, the degree of heat obtainable is so great tbat the melting point of steel can be easily reached. This furnace has hitherto been regularly employed in forging large quantities of iron at Irchicore ; and Mr. Macdonnell informs me that the quality of the iron turned out from this peat-fed Sicmeus' furnace is superior to that forged in the common airfunace fed with the best coal. Still more important is the remarkable result which has been arrived at by Mr. Macdonnell, namely, that $5 \frac{1}{2}$ tons of rough turf suffice to forge one ton of iron in the Siemens' furnace, whereas six tons of good coal or about twe ve tons of good peat must be burned in the common air-furnace in order to produce the same effect. Therefore, a manufacturer using a Siemens' furnace can obtain rather more leating effect from one ton of peat, costing 148., than another using only the air-furnace can derive from one ton of coal at 28 s . It is calculated that at least $£ 310 \mathrm{~s}$. per ton of iron forged is saved at Inchicore by the use of Siemens' furnace fed with peat. Hesults such as these need no comment. I would only, therefore, venture to express the hope that manufacturers may now profit by the example and experience of the Great Southern and Western Railway Company, and may utilise some of the inmense power which the invaluable labours of Sir Richard Gritith long since proved to be stored up in the peat bogs of this country."

Peat is, indecd, attracting attention almost everywhere just now. The Western United States are looking to it to supply them rith fuel and on our recent visit to the works at St. Hubert we were intormed that the officers of the Company are constantly receiving inyuiriestrom both hemispheres as to the most economical methods of production. Much of the information con. tained above has already appeared in a New York daily-in fact it would. seem that part of the series of peat deposits men. tioned should be along the Northera portion of that State. Our Canadian peat works, important as they are, however, promise before very long to become of much greater importance acd if they also enable us to tarn out the iron we eo much necd in
the extension of our railroads and for other purposes, they cannot fail to give an immense impulse to the general industry of the country.

News from the Stickeen mines is somowhat contradictory. First a correspondont writes that things are prosperous and the chams mying well, but that all the good clams aro taken up. Then iu about a moulh it is stated that about a hundred dieappointed miners have arrived at Olympia, who say that the Stickeen mines are the worst sell ever got up on tho Pacific coast and that lundreds of men are in the mines without a dollar or a pound of provisions. The Califorma Mining and Scientific fress expresses itself on the subject as follows :-
" It scems as if repeated bitter experience would prevent most prospectors going to these periodical "excitements" without at least money enough to get back agnin; mor* especially when the mines are in as inhospitablo and distana a district as the stickeen river country. The long winters were enough to de. ter most men, but the stories of fabulous richness - always prevalent about new mines - led many others to try their fortunes in tine snowy regions of Dease's lake. It is probable, however, that some of the men who went to these miues must have made something, for a month or so ago a correspondent wrote that all the clams worth anything were taken up. We suppose that the late arrivals at the mincs, most of whom expected a good claim immediately, must have been disappointed in seeing all the available mining ground already located; and cully realizing by that time the rigour of the climate of the region, they made up their minds to return. Of course such men will give the country a bad name, as these who are lucky will give it a yood ono. Many enthusiastic prospectors will not take the words of other parties about new mines but must see for themselves, and in so doin: they often get "bit" badly. It is strange, but nevertheless trie, that all the mining "excitements" in British Cole ubia and thet region have turned out badly, and a large proportion of the men who went to the differvat localities, returaed poorer but wiser men."

In view of the great increase just now taking place in the number of A zerican inventions introduced into Europe the so far as possible universal assimilation of patent laws is becoming a question of moment to American patentees, especially when we take into account the looso and unsatisfactory nature of the patent systerse of some of the European nations. The subject is being energetically considered in England where a deputation from the Ascociated Chambers of Commerce lately waited on the Foreign Minister urging his attention to the subject of the assimilation of the patent laws of England and the United States, which rould be but a preliminary step to The assimilation of those of other countries. Lord Derby felt inclined to encourage the step but doubted whether the Americans were willing to co-operate. Since then it has been proposed to form a depulation of the Americans in London, representing patent interests, who should wait on the Fireign Minister and assure him of the interest felt in the United States in this movement. The London members of the Executive Committee of the Vienna Patent Congress also have the matts in hand and it is said that they propose to press it to an early conclusion.

A number of Pullman cars werc shipped last fall from Montreal to be introduced on the English railroads. The cars in due time made their appearancc on the Midland Railway and are said to have caused "quito a sensation." A trial trip was made, from Derby to London a distance of 129 miles, with two cars carrying a party of Engincers. The train was timed very fast so as to ascertain how much the cars would shake about, and all other trains were shanted for this one.

SAW FOR CUTTING BENT TIMBERS.

The train left Derby at 2.30 P. M., passed Tront at $2.40,9 \mid$ milcs; arrived at Wigaton at $3.7,33\}$ miles; left there at 313 , stopped at ledford at 4.0, 79$\}$ miles; left at 4.3 , arrived at Londonat 5 P.M., 129 miles; running time 142 minutes; but this does not show the speed, as the threostopsand three $\&$ a $\mathrm{It}_{\text {; }}$ took fix minutes. Speed was reduced to twenty five miles an hour over thirteen junctions, which each took a good minate, leaving the time as 123 minutes for 129 miles, which aver.igen over a mile a minute all the way. In ono case, on a level piece of line, sisteen miles was rin in $13 \frac{2}{2}$ minutes, about 75 miles an h jur, and tiventy miles was run in 10 minutes. The cars rau as steady as tables at 75 miles an hour.
The English journals speak in very favourable terms of the cars especially as to the arrangements for private rooms, lavatorien \&c. and also remaik ot the novelty of the iscility atiorded for passing from one end ot the train to the other. Some of the cars havo been sent over from Eugland to the continent where the y are to make a "grand tour," passing over the entire continent on the diffisent railways.

A second attempt is about to be made to carry a car-load of live fish across the continent. An aquaiam carefully fitt d up for the purpose will leave Charleston, N. I , on the 3rd of June next for San Francisco where it will arrive about the loth.
The salt water fishes oa the list to b: taken are az follows Lobsters from Massachusetts bay; oysters from same place; scup from Marthz's Vineyard ; stripad bass, Now York Harbor ; tautogs, Martha's Vineyard; salt watet esls, stm y place; king fish, weak fish and blue fish from New York harbor.
The fresh-water fish to be taken are black bass, glass-eyed pike and horn-pouts, from Lake Champlain; eels, from the Hudion river; catfish, from New Jersey; Shad from the Hudson river; red minnows and alewives, from Massahusetts.
Most of these fish will be unduabted acquisitiuns, but wo imagine the catish and horn-p uuts might be dispensed with. It is to be hoped that this attempt wi' 'is more surcessfin than the ore madelast year when the car was wrecked and all the fish lobst.

The derivation of the designation of an aftiction of the ey.s very com nonly known as Daltonism (colour blinduts) is, as many of our readers are doubtless aware, from the name of the grat philosopher, the propounder of the atomic theory, who was attacked by it. Properly speaking it is simply incapac ty on the part of certain people to judge of colour, or mue aecu-ately, of certain colours. Dr. Favre has communtated to the Congress at Lyons the result of the researches, which, as chief physician of the Paris and Lyons Railway Company, he has made on the subject, the object being to determane what influence this disease or affection may have on the general suf ty of travellers. According to this report, amongst 1,196 diff-rent individuals examined from 1864 to 1868,13 cases of red-colour blindness and one of green were found. Again, amongst 728 subjects examined between 1872 and 1873 he testifies to 42 of colour blindness more or less developed. He further estimates the number of people in France suffiering from this malady at nearly a million, and gives as the most common causes of at, wounds, typhoid fever, eyphilis, \&c. The danger of such a disease existing, and possibly in someinstances without the know. ledge of the subject or his employers, is one which deserves attention, for although we cannot point ourselves to any instances in which errors have been made through it, nevertheless Dr. Favre, as we understand him, is able to do so, and we quite agree with him when he eays that tho only effectual preventive of the dangers which may possibly accrue from such a malady is a perrodical optical inspection of all men who have to deal with coloured signals, a mistake in the ave of whin might lead to such disastrous results. We rec manend in jury on ${ }^{1}$ bis subject to locomotive superintendents and trafic mal

'IWENTY-FIVE TON GUNS.

(From The Enyincer.)

The engravings on pages 342 \& 343 are very carpfully executed cuts of the $12 . \mathrm{in}$. gin of 25 tons, as mounted on board the Hotspur, on a carriage of apecial construction designed by Capt. Scott for the Hotspur. The general mechanical principlos introduced by capt. Scott are embodied in all his maval carriages. In each case the height of the slide is increased, and that of the carri ge is reduced to a minimur, and the centre of gravity of the gin and carriage is thus Lrought near to the sliding surfaces of the pla Sorm. In each case the gan itself is let well down into the structure of the carriage. Then, agyin, tha brackets in all the Scott patterns consist of double plate iron with cast iron "frames" or distance pieces between them. Firther, the general arrangements of the rear trucks and bear. ing, surfaces and the bow compressors are the same, neverthe. less the movements required in a broading carriage are so different from those of a turiet carriage that the construction and gear are quite different.
For example, the turret revolviag renders training and training gear superfluous in its guns, whereas it may be seen that a platform with training gear constitutes an essential clement in the gun and carriage before us (vide F G LL). By the han. dies $F F$ the mitre wheel G is made to revolve, which is in this cuse not on the same shaft with the pinion running in the racer rack H, but on one passing abo.e it and acting with additional lever power, the carriage by this means being made to train on its trucks, whic h run on the smooth racers. The special lirahe worked by the handwheel I is employed to nip the rear racer-so as to provent tiay pitching of the vessel from accidentally trining the gun-in addition to the ordinary brake. The entiry training angle is about 35 deg. of each side of the centre position. The bow compres,or A is suspendel in the usual manner, and made to act on wedge-shaped iron plates, which when the screw is forced home by the handwheel N, and the pawl allowed to drop into the teeth as shown, are in a condition to bite whenever the cartinge is down on its surface bearings, in fact, in the firing position, butare released whenever it is lifted on to its front aud rear trucks. The peculiarity of this compressor consists in the fact that the compressor bars or plates, with one exception, are on the inside of the slides.

Uthe mohfications exist in this carriage, with a view to the end uf cleazing the outside of the platiorm of gear which it is considered might be in the way of the detachment, and tend to ca'se difficulty, even if it did not give rise to accidents. Hence in the runnins in and out gear, the spur wheels with their driving pinions are placed upon tho inner sides of the girter: the latter passing through and resting in metal beariag, in the webs. This spur wheels are not upon the shaft of the chain whee s, int each upon a spindle of its own to the front of the latter, and upon each spindle is a pinion geariog into a spur wher 1 upon the chain wheel shaft. The arrangement give, an in case of power as compared with the $\mathbf{1 0 - i n}$. slide. Thre is - ratchet and pawl on the ontside of the platforn. gir ler shown at 0 in fig. The Scott IFotspur carriage resembies oth r broadside carrages in the training gear, nipping gear, and olevating gear, and in the actual application of the eccentrics and rear rollers The last-mentioned, however, are worked by hydraulic jacks in the last parterns. The principal pecaliaritits of the Hotsp.ir pittern are as follows. The well-or portion fit. ting down between the sides of the slide-is not formed by the inner bracket plates, but is built up of pieces of plate and angle iron, so as to leave room between the sides and tha slite for the compressor plate and bars whict. are placed upor we inner side of the slide. The eccentric shatt is made in there parts, connected by couplings. The rollers are brought into gear by a capstan head arrang tment on cach side (at AA), with a pinion working on a toothed arc Tue capstan head is place outside the cheekz of the carriag, not, as in most patteras, on the inside. Thes spindles of the elevating gear are supported in metal brackets upon the top of the ch eeks of the carriage at B B, instead of passiog through the latter. The levers of the nipper geai C are fitted with tackle by which the t'so ran-ninz-up chains are drawn into the clutches ficed beneath the cirriage. The following special fittings also exist: Metal bra kets for the breechiag rope in front, one in each side, two outside holdiag down clips D D upon each bracket, and in rear, extending from bracket to bracket, a piece of angleiron E upon which to rest the wood tangent scale when used.

It can hardily escape notice that this carriage, having no arrangement for compound or muzele-pivoting, requires a greater vertical he ight in its port than the turrot pattern, although 9 drg. elevation and 7 deg. Iepression only are provided, as compared with is deg. elevation and 6 deg. depression in the turret 10in. carriage. In any compari-on of the two designc, how. over, we must take into account not only the different objects to be fulfilled, but also tho fact that in a measure the gear shown in our engravings corresponds only in part to that of the turret carriage, and in part to that of the turset itself. To expose the above carriage to the fire of shells would ecem an act of barbarity of the same character as that of exposing a steam enging or cloci train to the same trestment This, however, is not ordinatily donc on service. The carriage is much more likely to be injured by its own gun than by that of an adversary Henco the soundness of Cant. Scott's principles of design with the low cuntre of gravity and low application of the shock of discharge, which, as far as practicable, abolish the twists and blows caused by the mechanical coup'es which arise when this shock of dis. charge is given to a gun at a considerable height above the sliding surfaces of its carriage. In this respect this carriage compares favorably with the turrt pattern, although in originality and completeness the preference must be given to the latter, especially in its aspect of the medium through which the gun is laid.
'l'he quarter gun of a centre battery ha a second port and sct of racers, and a so-called water pivot-strutly speaking, a hydraulic lift-prcvided to enable it to be bodily transferrid from one set of rails to another, in a manner analogous to that of a railway engine. In the cut beneath the sponge and rammer, is shown the cover of the opening through the deck into the shell-room below, through which opening the projectiles are raistd ready to hand, being carricd on buard filled and fuzed. In the same cat is shown a Pallisor projectile suspended in front of the muzzle of the μ un. The chains seen crossing the sill of the port ase those by which $i t$ i.s clured and opened.

THE SECURING OF WATER PIPES AGAINST FHUSI'.

Air. J. A. Calantarients, surgeon, Scarburough, has patented a simple but ingenious method of preventing water pipes from being lurst by frost. Water, in freezing, expands about a twelfth of its bulk, and within that limit the expansive furce exerted is sn enormous as to overcome the resistance of any pine or vessel yet constructed. Mr. Calantarients solves the difficulty by passing through the water pipes an indiarubber tube of such diameter that the space inside is a little more than equal to the increase in volume of the witer by freezing. There is thus secured in the inside of the pipe a space equal to the difference of volume between water and ice - the proportion being 1,083 to $1,000 \sim$ so that when the water freezes and expands it occupie. the space thus reserved for it instead of exerting its force on the pipe. The indiarubber tube is always kept full of air, so that when tho water freezes it finds at every point the neccssary space to occupy, for by compressing the tube it displaces the air and takes its place. Again, when the ice m-lts the air-tube expands, ready to be acted upon by another frost. The air is supplied from a reservoir, which is a.ted upon by the water-pressure, so as automatically to put the air. tube uader an exactly corresponding degree of tension. By heating the air in the tube the water in the pipes can be thawed. This application is peculiarly oseful in the case of water-closets, and in preventing the supply of cold water to engine-hoilers becoming interrupted by frost. Not less important is that the invention can be applied to preventing the explusion of kitchen-bollers.

There is little doubt that we have bere a cheap but effective remedy against a fertile and long.standing source of disco.nfort and damage Incidentally, security against the bursting of water-pipes during frost will likewise facilitate their more convenient disposition throughout a house, and permit the ase of much lighterand consequently cheaper kinds; while it has been proved, by repeated experiment, that the invention retards the frer zing of water in pipes, and that a frost which will close unprotected pipes has no effect upon those containing air-tubes.

Tilsonaura je going to vote on a by-law for the introduction of the Waterous system of water-works, to cost $\$ 13,000$, on the 27th inst.

DOMINION NEWS.

Tuz Brockrille Enterprise says : -The Canada Cuntral Rail. road is at onco to bo exteaded to Pembroke. At llenfrew tho Kiogston and Pembroke will amalga.nate and use the one line through to Pembroko.

Wore has commencer on the Northern Colonization Railroad at Lachute, where the contractors complain exorbitant prices for the right of way are being demanded. The Company has been interviewing the Government with a view of getting permission to bu"d the Gatincau Bridge 40 fect instead of 60 over low water mark.

Mr. Bulkley, Γ. E., who has recently returned from England, has made all requisite arrangements for the development of the Harewood coal mine, Nanalkio. Men are engaged at work tunneling.

Tins plan of the proposed water-works for the town of Port Hope consists in the placing of two rotary pumps, two doublo turbine wheels, 80 ar:anged that either wheel will drive cither pump, with fourteen hydrants distributed over the principal strcets of the town, and necessary pipes and et ceteras

Tin Yarmouth, N. S, Merald says a brick of native gold weighing 274 ounces, the produce of the gold mines at Cranberry Head, was shown us yesterday by Capt. Coxetter, proprictor and manager of the mine. This lump is worth over $\$ 600$. Capt. C. expects a yield of 80 to 100 ounces per month from the mine, winh the aid of betpeen 20 and 30 men. We are glad to learn that the prospects are 80 encouraging.

Tas first car for a line between Poronto and the oil regions at Parkerburv, Virginia, has been built at. Port Hope, to tho order of Stock \& Webster, Toronto. It is meant to be fitted with a large iron tank 25 feet long by 5 feet in diameter. At each end movable head blocks are placed, so that the tank when placed upon it can be firmly fastened by bolts, thus avoiding the possibility of its shifting from its proper place upon the car, and ns the trucks are on the anti-friction principle the oil can be carried steadily, avolding the unsteady motion of the ordinary truck.

Acconding to the annual report of the Welland Railway the expenses, for 1873 were $\$ 1,970.08$ less than for 1872 , while the amount of traffic, and coraequently of the receipts, was largely increased during the lad year over the provious one, the net profits, after deducting running and other expenses, amounting to $\$ 39,025.46$. Orer $3,000,000$ bushels of grain were shipped over the road in 1873 , being over 223,000 bushels more than during the previous year. Over 37,000 barrels of flour were carried over the road last year, being 10,000 burrels more than for 1972. Very satisfactory arrangements have been made with the Great Western Railway Cumpany for running over a portion of the line. The cost of changing gange, replacing rails, and other necessary work, was only $\$ 10,000$. The local traffic of the road, both in passenger and freight shows a very cousiderable increase.

Depresbion in the Coal Taadr.-OUr latebt adi,ices from the Beserve and Lorway Mines are:-That twenty-two pair of cutters and a number of over ground workmen have been discharged, amounting in all to some 60 men , on account of the depression in the coal trade. A large contract the company had to fill in Montreal, of 76,000 tons, has been cancelled, buyem prefercing to pay the amount of boi i they were under to receive the coal than to take it and seil at such a dis. advantage as the low price of coal in the market would force them to do. The bank at the Reserve containa some 40,600 tons, while at the Emery, where work is atill going on, and we hope it may be continued, about 20,000 tons of the blaca diamonds are in bank. Wo sincerely hope this stoppage of the extensive works heretofore carried on at the Reserve Mines is only temporary, and that our coal prospects will brighten up at once. The determined push of the proprietors of these mines cinnnot be questioned, but wealthy corporations feel no more inclined to fight agajnst untowarl circumstances with daily loss of capital than do individuals. We look forward with hope that the "Reserve" will soon be in fusl blast again. -North Sydney Ilerald.

IWENTYFINE TUN OI.

RAILWAY MATTERS.

Ay Ambrioax Tenvet.-It is proposed to excavatoa tunnel, 4000 ft . long, through King's Mountain, Kentucky, ©or railroad purposes.
Tur Pennaylvania Railroad Company propose to reduce their force of brakemen, in consequence of having provided nearly all their trains with patent air brakes.

Tas distance plerced at the close of January on the St. Gothard Tunnel was 4403ft. Rather more progress has been mado on the northern than on the southern side.
A Wasmanatom paper says that the United Btates Patentoffice will soon be buried out of sight by models and apecificationa, as they are pouring in at the rate of over 600 a week.

Spaarino of the Southern Kontacky Railroad, the Lexington Merald says:-"The bridge over the Kentucky river on this road will be the highest on the continent. It is 275 ft . above low water, rad has a ppan of 1236 ft . The towers, erected by John A. Ruebling years aso, cost 100,000 dols., and rise 365 ft . above low watur. Nine bids have b, en made to construct the bridge, eight for the truss plan and one for a suspension bridge as originally contemplated."
The Unitid Statre newspapers have a characteristic story abouta Virginia railroad that was made to pay 25 dols. for killing a rooater. The engineer said that he spoke to the gentleman with the whistle as kindly as possible, but when the fellow dropped one wing on the ground, raised his good eye heavenward, and commenced whetting his spur on the rail, forbearance ceased to be a virtue, and he let into him with thirteen freight cars, and forwarded him to his happy scratch-ing-ground by lightning express.
d corrrspondent of the Chicago Tribune propnses to carry grain from the West to New York by means of a wire cable, to which would be attached bins 5 ft . long and capable of holding two bushels each. At distances of 10 miles would be stationed engines of 150 horse power, to be uscd in working the endless cable, the operations of which would be precisely like the ordinary elevator, except that it would carry its load horizontally instcad of lifting it. The inventor thinks that by this process wheat can be moved from Chicago to New York at a cost of 10 cents per bushel, after leaving a margin for repaira and interest on cost of construction.

Tur great iron bridge of the C'nicago, Alton, and St. Louis Railfoad Company; crossing the Mississipui river at Lo sisiana, Mo., was completed on th 323 rd Dec., 1873. This bridge consists of nine epans, ranging from 160 ft . to 260 ft . in width. The draw, which is 444 ft . is length, is the longest in the world. The total length of the bridge is $2,052 \mathrm{ft}$., and in and -f it are 5,000 cubic yards of masonry, 50,000 cubic yards of rip-rap, 250,000 cubic yards of earth embankment, and its superstructure is all iron.

A Russian engineer named Sakhovsky has invented an ap-paratus-a kind of differential gauge-of very simple construction, which is said to have been fount to work admirably at the Moscow terminus of the Nijni Railway, and on several other lines. The apparatus consists of a beam about 5 ft . long, provided at one end with an articulated lever, on the shorter arm of which is a stud that presses by means of a spring against the inner face of one of the rails, and at the other with a fixed stud; the beam is drawn along the rails by a man by means of shafts, or it may be attached to a truck. As the gavge proceeds al ng the line the deviations from the normal width betweea the rails is shown by the longer arm of the lever, which moles against a dial plate. The apparatus costs only eight roubles, and its superiority over the common gauge is striking, eapecially as regards the rapidity and continuity of the action. The directors of the Nijni and other lines have adopted the invention, which we believe is patented. Such a gauge run along a line every morning might prevent many an acci lent.

A Great Railway Projzct.-One of the most stupendous enterprises ever attempted by audasious man is the construction of the Pernvian Railway, which will connect the Pacific Ocean with the valley of the Amazon. This nineteenth century ia full of marvels iu the way of what is called engineering
science-faller, perhaps, of nonumental works of that descrip. tica than all the centuries whi th iave gone b fine it gince th fall of the Roman empire. But n ither the Suez Can II, whit a cuts the narrow mtrip of sand that his obstructed the comme ce of the world for ages, nor the Mont Cenis Tunael through the Alns has presented such appalling ob stacles as those which confronted tine bullders of a railway at an elevation of 17,000 feet above the levol of the sea. There is really no parallel to this triumph of scientific faith, and it is matter for a legitimste patriotic pride that the men wh, have conceived and are now carrying out the work should be our countrymen. To form some faint idea of the mechanical and nat iral difficulties which the constr"ntion of this transandine railway prosents, it may suffice to say that thirty bridges and viadr.cts, 3,000 feet in length, and thirty five tunaels 15.000 feet in lengith, were required in a single locality. To grade th road, as far as completed, one hundred and forty million ubic fect of rock and earth had to ke removed. The wo.k, wl ich was begun in 1870, has cost already about $\$ 33,000, \mathrm{co0}$, and vill probably cost that wuch more when fiaishes in 1876 . One of its wonders is the great via luct, the highest in the worl', which is 580 feet long and 300 feet high in the centre. The height of the three iron pillars which support it is respectively 168 fuet, 183 fset, and 253 feet. From, 8,000 to 12,000 labourers, mostly Cnilians and coolies, are working of the road night and day.

A comuitrin of gentlemen in St. Louis, U.S, appointed to examine the matter of fireless locomntives on street railways, suburit the following cotaparative figures:-(1) Summary of opcrating exponses per year for street railwave with 22-horse cars and 200 horses :

(2) For street railways of the same carrying capacity, operated with the fireless locomotive:

Fuel and attendance for 2 boilers	$\begin{aligned} & \text { dols. } \\ & 14,725 \end{aligned}$
Depreciation on 16 locomotives and 2 bollers.	3,800
Depreciation of cars.	2,400
Ordinary repairs of cars	800
Urdinary repairs on 16 locomotives	3.000
Wages for drivers and conductors.	23,360
Extra wear and tear of rails..	2,000
Total	50,085

Difference in favour of the fireless locomotive for twenty-car railway, 26,395 duls., a saving of 33 per cent.

Last year the Union Pacific Company began 1 - boring of six artesian wells in the arid districts, in order to 4 .tain sup. plies for locomotives, which had been in pirt supplied by mater trains. The first well is at Separation, 724 miles from Omahs, and the last one isat Rock Springs, 832 miles. Another is in progress at Reil Desert. The woll at Rock Springs is 1145 ft . deep ; the bore is 6 in. in diameter. In all the wells it was necessary to tube a great part of the way. At Rock Springs the water rises from the depth of 1145 ft . to 26 ft . above the surface, and discharges 571 gallons per hour, and at the surface 960 gallons. At Point of Hocks, twenty-five miles ragt, the well is 1000 ft . deep. The water rises only to within 17 ft . of the surface, whence it is pamped, but the supnly is abundant, and the quality of the water is the best of all the welts. The nert well is at Bitter Cr sk, twenty-one miles emst of Point of Rocks it is 698 ft . deep. Ic yields by pamping 2160 gallons an hoor, and at the surlace it flows 1000 gallons an hour. Next, to the east, is the well at Warhakie, thirty-three miles dis:ant. It i: 638 ft . deep, and at 15 ft . above the surfac; it flows 800 pritons an hour. At Creston, fourteen miles cast, the well is 326 ft . deep, and an ample supply of water is obtaiued at Separation the well is 1103 ft . doep and water comes wilhia 10 ft . of the sarface, which by pumping yields 2000 gallons an
hour. In some of the wells the wator has 280 frains of salt in solation, and the incrustation is considerable, but altogothrr the wells have been a success, and it is said the cost of runniug water trains since the wells have displaced thom would have paid for the wells.

SAW FOR CUTTING BENT TIMBERS.

The machine we illustrate on page 339, was specially designed for Messrs Sanmda Bros., shíp-builders, London, Eng. The mofe of working is as follows:-The log previously lined off on each side to the required shape, is placed on a travelling carriage, which is salf actinc, and moved past the sarrat a rate varying from 18 in. to 4 II .6 in. per minute, an.cording to the hardness of the woul a d d the amount of curve and twist A man is seated on each side, at the hand wheuls in front of each column. Fach kecps his eyes on the line marked on the wood, and, by turning tho hand whetel, ratses or lowers his saw pulley; so as to calise the saw to enter or leave the wood exactly in the right place. Un cauh side of the wood, and as close to it as possible, is placed a guede through which the saw passes This is held in a friction ring and the workman by gently lapping the handle cabs (wist the saw to make it easily follow the curved cut. The sketch, which is from the Erigineer, shows a curve 1 and twisted piece which was cut on all four sides in about 45 minutes.
If a \log has to be only cut toa curved furm wathout a twist in it, both lifting sarews are coupled fugether by means of a lever on the right hand side of the machine, so that by turning either hand wheel both saw pulloys rise and fall simultencously; in the case of a \log with one regular twist from end to end, by reversing the lover one saw-pulley rises simultaneously as the other falls.

IMPROVED SCREW BLOCKS.

This apparatuc, illustrated in the engravinss on page 346 takes as regards the three cardinal qualities of power, safety. and economy, a high place among hoisting machines, numerous and ingenious in many cases as these are. Simplicity in construction and mode of operation are invaluable quatities in all mechanical appliances, and these also are possess id in a high degree by the blocks in question. Their simplicity of structure will be seen at once hy a reference to the woodcuts
Varioc. modifications of the apparatus may be employed. Under the first, the block consists of a rope or chain pulley, on theaxis of which is fixed a pinion, gearing into an intermediate pinion carried on an arm within the block, which again gears into a circle of internal teeth in the huisting or load wheel. When the load has been raised, or it is desired to sustain it at any height, there is a loop on the framing of the block into which a link of the chair or the rope may be laid. By another modification a tangent screw is cartied upon the axis of the rope or chain pulley, and gears into a worm wheel on the axis of the hoistiog or load whenl, the two axes being at right angles or parallul to each other-but it is preferred in practice to construct the worm wheel and load Wheel in one piece, for greater simplicity Then, as thy pulley is brouglit round, the hoisting or load wheel is rotatri by the action of the tangent jcrew on the teeth of the worm wheel. Under a third modification, the chain or rope pulley is carried upon a trundle, praferably with four teeth, which are arranged in pairs at right angles to each other, and gear into the teeth of a wheel carryiog the hoisting or had wheel There is thus obtained a continuuus lock of the pulley, one of the tepeth of the wheel on the hoisting or load shaft b ing at all times situated between one pair of the trundle teeth or pins. By a fuarih modification of the apparatus, the pulley is fixed on the huisting or load shaft, tho holst.ng apparatus itself consisting of an arrangement of pins placed in a slight degree eccentric to the axis of the shaft, and over which the hoisting cbain passes. Lastly, under a fifth modification, an eccentric is placed on the shaft of this chain or rope pulley, over which two or more straps are placed, each being provided with an arm which passes through guides uear its outer end. These arms extend across the block, and by the rotaning action of the eccentric ary alternately brought to act on an
internal set of teeth formed in tho hoisting wheel. By the action of the eccentric these arms aro caused not only to cater between the teeth of the wheel, but their outer onds passing throigh the guidיs move simultancously as through an arc, anl st rotate the holsting or load.wheel; and as one or other of these arms is nlways in guar with the teeth of the heisting or load wheel, a continuous lock of the block is obtained.
Fig. 1 of the ongraviog represents a frunt elevation of the secon 1 modifi atlun of the improved blocks; and Fig. 2 a aide elevition Inder this arrangement the framing of the bock consists of tivo straps connected by ties at the top and sides. A chain pulley rou di which the hand chuin passes is situated at one en 1 of the shaft, which rutates on bearings formed in ther sidn ti, l langent screw, furm. d un the shaft, gears into n wr rm whill whichis furmed on un side of the hoisting or mil when, which in its turn is carricd ou a shaft supported in bearings formed in the lower part of the strape, the two infle being at ribit angles to cach uther. Then, as the chain pulliy s pulied round by means of the hand chaln, the hoistine or lo di wheel is turned by the stion of the tavgent screw in the treth of the worm wheel. The side tis next to the rhain puliry it provided with two arms which project outwardand are curved ruuad at their extremites to form lonns, whith a t as guides for the hand chain.

The "pparatus may also le ased fur steering ships, in which case the hoisting or load whocl is fised on the rudder post, and the ropo or chain wheol on the stecring shaft. Ampug the sipuial advantages chamel for the screw blocks are these -That thiy are perfectly self-sustaining, because, owing to the threads of the surow being constantly in gear with the tecth of the loa 1 wheel, but at sigha angles to the direction of the lift, it is iupossiole for the load to slip or run down; that they are ai,out thrice the power of any yet invented; that their construction is the exteeme of simplicity, hence there is no liability to derangement; and by reason of the maximum of leverage and minimum of friction, an unusually light chain-relatively with the weight to bu lified - can to used; and this chain being of a lung-link make avoids the hith rto common occurrence of stretchiug the links. The blacke have also a double lift, so that only a single leagth of loa 1 chain is required for any height of lift; and they can be suapended foom the jib of an ordinary crane, and the hand chain operated by n winch handle, thus forming a valuable ma.hine for heavg hoisting operations. With eztensive experiments already made, it has been found that with a twoton block one man can lift 35 cwt ., but with good management 2 tons.

NEW PETROLEUM MOTOR.

A cheap and handy small-power motor for small industries has long been a great desideratum. A motor has recently been constructed at Vienra which seem3 to promise well to supply this need. Its first application to sewing machines is said to have given such good results as to call forth a large number of orders.

Tho annexed cut (which ve copy from the Revie de RIndustrie) will give some dea of this motor.
'The principle of the machine is similar to that of a borizonth simple-action steam -engine, with this difference-that the force of explosion of petroleum is substituted for the expansive force of steam.

In the hotto:- of the cylinder A (which has a doublo envelope) are three valves The central one, furniehed with a very tion sieve, huags into the cylinder the petroleum from a special riceiver B The left one admits at the proper moment, the flame C, which is forced. in intermittent fashion, against the orifice by pressure ot air.

The petroleum, introc uced in a state of extreme aivision, can thus be intlamed; an explosion ensues, the effect of which is to close the two valves and drive the piston forward. The piston has a hinge joint, by which oscillates a rod connected directly with a crank. The shaft carries, on one side, a transmitting pulley; on the other, \mathfrak{a} flywheel. Δ tappet H acts on a bent lever F, which produces at each revolution of the flywheel, pressure on a caoutchouc bellows E. The air inclosed in the latter is carried by a tube D, to the flame of gas or petzoleum C, which is elongated for an ingtant, like that of a blowpipe, and causes the explosion.

NEW PETHOLEUM MOTOR.

IMPROVED SCREW BLOCKS.

The retroleum is introduced into tha cylinder simply by atmospheric pressure, and in convequences of the vacuum Which the piston makes in advancing. The impulsion of the flywheel brings the piston back again. Tho air is constantly renesed in the bellows E by a tube K.

To cool the cylinder, a current of cold water is made to circulate between the envelopes; being pumped from the receivor L bs the pamp J.

Above the cylinder is fitted a governor which regulates the
supply of petroleum, by a combination of levers. Tie smoke produced by combustion of the petroleum escapes by the orifice of the third valve, and gocs off by a chimncy. The movement of the valve is determined by an eccentric on the shaft.

The whole machine rests on a metal plate fased on a stand of wood or masonry. All that is necessary to set it going is to opon a cock and to light the lamp C.
The petroloum motor 18 constructed with forces of from 1

Water wheri wili internial admission.
to 3 borse-power ; for a machine of 5 horso-power the price is $3,500 \mathrm{fr}$, including the foundation-plate and tho wnterpump. The expense of mounting is small.
The following advantages are alleged :-

1. Absence of all danger through ignorance or malico
2. Inutility of legal authorisation for fittiag up.
3. Instantanenus starting and stoppage.
4. Little noise; very limited occupation of room.
5. Slight expense.

A Woodstocs man named codville has invented a seed. sowing machine, which, it is claimed, will deposit the fincet grass seed or the coarsest grain at the rate of 150 por bushels day with perfect regularity.

STRAEBS WATER-WHEELS AT TEE VIENNA ExHIBITION.

Before describing these exhibits we may state briefly the leading principles by which the design of pater wheels should bo governed. Whether the water acts chiefly by its weight or by its impulse, it is alrays necessary in order to reduce as much as possible the loss of effect, that the jet of water when first coming into contact with the buckets should not strike against but glide slong them. Reslising this condition, and considering that the recultant of the velocits of the jet of water and of tho negative surface velocity of the wheel should bo parallel to tho tangent of tho bucket-curse, it is obrious that this tangent must occupy a position within certain limits, as the surface velocity is given. After the rater has been thus delivered to the wheel with the smallest possiblo loss o_{f}
head, it should be allowed to escape along the tail race freely and without much waste of power. The most usual way of accomplishing this is by providing a sudden drop at the end of the breast into the tail race, the wheel being thetu not in contact with the tail water. It cannot be deniel that this arrangemeut is one of the simplest for effecting the tree discharge of the water, but at the same time it is a disadvantageuls one with respect to the performance of the wheel, as the whole henght due to this sudden drop is lost. In order to get over thi, difficulty, the tail rare is sometimes made to juin the breast tangentially, and iu order to prevent the tail water from acting oljectionably as back water topon the buckets of the wheel, its velocity is matre equal to the circumferential velocit! of the wheel In order to prevent the water from being ifted by the ascending buckets, the latter should be of such a shape that the tangent to the curve of the bucset asbumes a vertical direchon at the point in which this curve cuts the surface of the tail water This condition is fulfilled if the shatee of the bucket, as far as it is imbersed in the water, is the evolute of the circle, the centre of which is the centre of the wheel, and the periphery of which tou hes the surfuce of the tail water. In a wheel con-tructed in this manner, it is obvious that every part of the bucket is moving In a vertical direction when cutting the surface of the water in the tail race, whence disregarding the frition between the water and whet, no loss of bead occurs whilst the water is being discharged.

In his wheels crhibited at Vienna Mr Straub endeavoured to improve the construction as much as possible, and the bestowed special care on the design of the curve of the buckets, whence he got a larger circumferential velocity. However, the manner in which the deepening of the tanl race of the breast wheel is eflected as shown in the vertical section of that wheel iu our illustiation on page 351 , does not appear to be oue capable of being readily justifed, and does not even effice the oliject whin hleads t, the adoption of the sudden drop so frequently used, the water surface not being lowered. B-sides, the mode of decpening adopted by Mr. Straub has a detrimental influence, as it causes the tal water to move with a less velocity than the wheel, whence the buckets have to overcome a res: stance which increases with the squate of the difference between the surface velocity of the wheel and the speed of the water moving through the suddenly enlaried area of the tail race.
The breast wheel exbibited at Vienna, and illustrated in our coluraving, was of a type sutable for a heisht of fall of from 03 to 4 tueties (say 1 tt to 13 ft), and for a quatatity of water per secoud of irom 03 to 6 cubic metres (10.6 to 212 cubic feet). Mr. Straue states that the real effect of these wheels is between 65 aud 75 per cent. The wheel cxhibited at Vienna, was, with the exieption of the buckets and the two besses, made cotirely of wrought iron, the object being to make the when less heavy, and to reduce as much as possoble the loss of power through triction between gudgeous and bearings the principal dimensions of the whects are as follows: Diametre over all, 16 ft xa m ; width, $5 \mathrm{ft} .10_{j}^{-} \mathrm{in}$. dameter masade buckets, oft 78 in The curves of the bucket. are stanck with a radius ot 3 it 3 m , the centres being situated on a circle tonchng the outer dgees of the floats. The shaft is 8 in . in diameter through one of the bosses, and 65 in . through the other; whate the bearingsare it in. dianueter by $9 \frac{1}{2}$ long, and of in diameter by is in. long respectively The shaft carries at one end a opur wheel 11 ft .03 in. dameter, and having 160 teeth, thes wheel gea ing into another 3 ft . $0 \frac{3}{8}$ in. dameter, and haviag 4 t tech. The two other wheels, which transmit the motion to the shaftugg, are is ft. $100_{8}^{\circ} \mathrm{in}$. and 2 ft . 10 fin . dameter, and have $1+0$ and 58 tecth respectwely. All the detals of this wheel, as will be seen trom out illuntration, are worked out exceediagly well. The regulating sluice dedivers the water above its upper edge, which is rounded off : a order to avold contraction aud irregularites ia the mution of the jet In our illustrations the sluice is shown full open.

Thu second water-wheel exbibited by Mr. Straub at Vienaa, and illustrated on pages 350 and 351 , represents the system known by the name of Mhllut's, and is characterised by the interual udmission of the water. libis sybtem illustrates another endeavour to get over the dificulty of the relation existing between the delivery of the water to and its discbarge rrom a wheel of ordinary construction, a dificulty which is especially felt when the level in the tail race is very variable.

In this wheel of Mr Straub, however, this dependency of the inlet upon the discharge or mee versa is eutirely eliminated, and une part of the bucket may bo furmed maccordance with the conditions for a correct admission, whalst the other part may be shaped according to the rules for a proper discharge of the water. It cannot be demed that the first cost of nach an arrangement is greater than that of a wheel of the ordhary countruction, but it os arg d that the final results obtaned with such a wheel are alou much in excebs of what is generally expected. Mr. Straub clames for a wheel of this kind, and for a height of fall of 3 wetres (3 ft .10 in) and a quantity of water of from 0.1 to $0 . i$ cuble metre (3.5 to 2 ± 7 cubic teet) per secund, a useful effect of as much as 88 per cent We cannot, however, help regarding this performance as much ever-estimated. As regards the desigu of thas wheet, we may fitally state that both Mr. Straub and Mr. Millot clam to be the inventors, but it apprars to be ditheult to decide to whe a this right belongs. The wheel shown at Vienna had 54 buckets, and its internal and external dameters weac is t. $10 \frac{1}{\mathrm{~h}} \mathrm{n}$. and 18 tt . 5 in in. respectively. Its width was 6 tt . 11 in., an 1 it was worked at a speed of five revolutioni fer minute, the head being 9 ft . 7 I inches and the water supply 15\} wible feet per second. The shaft was is in dianeter through the wheel bosses, and the bearmys were $5 \frac{1}{5}$ in diameter by 93 m . long, and $5 \frac{1}{3} \mathrm{ma}$. dameter by $8 \frac{1}{1} \mathrm{in}$. lons respectively, the beariag next the spar wheel beng, ot course, the larger of the two. The spur wheel fixed on the mann shaft was 11 ft . $\frac{\mathrm{f}}{\mathrm{in}}$. dismeter with 160 tecth, and drove anuther wheel 3 ft . dameter.-E'ngineering.

IERPETUAL MOTION

It is strange, in thene more modern days of scientitic , ulightenment, to hear again revived the old search after the unattainable 10 mechances 0 one would as soon think of heariog it seriously announced that the old alchemists' ex. ploded notion of the ransmutation of metals had becoms sober fact. We have, however, been considerably amased by the selt-delusion of an mentor who has gone so far as to spend years of has hife and mach money upon a machnne which he chams will utilise gravity as a contmaous nome power, and thus, by a proper ariangement of parts, prodace perpetual motion. But this is not all In self-deluded m. venture in this direction, there has, at all times, been sufticient precedeat aud plenty of companonship. This inveator has, however, got so far as to read a paper explinatory of his machine before the society of cival and meinameal congineers, and has not been yet, as far as we koow, disabused of his erroueous notions In addition, when int inspection and opinton were boldly mvited, many names, both of sceentifie and mechanical men, were adduced by way of bias to ourselve, as not having at any rate spoken me favourably upon the model and the theory.

Thas but serves to show, in our opmon, how rarely practheal mechauca! knowledge is as yei combined with nonud theory, or mere theory wath really practical knowledge. We must say that we have never neen a machane more ingenomsiy devised to maskad both th. enventor and the puble if posible. It is for that reason that we give special notace to the disabusing, to the best of our power, both of the present iaventor and of others who may at sany tame be so foolshing
 zgiss fatuus. The spectal deceptions of the invention are these: - To the practical man the motion of the rinmat and talling beam are so compheated that he t s smaty contured thereby. And to the merely theoretical mam, the matrodaction of an catircly new complicated and ragenious anechanical motwon prevents han from conprehending clearly the stmple theoretical action of the machatae the mecntor, too, mont carctally acfrans from sayag much or auythong about - perpetual mution," which would doubtless dectde the pont against him off-hand with any scientitic mind. He rucrely prommently claims to increase the power of any small anxaliary force by the action of gravity on a weighted bean The machnest promarily tums - A beavy beam is supported through a smouth stot upon two-geared cranks, which arc:o geared that they rotats wat withit the oflaer, so to sprak. l'his tix a wery novel and eccentric mechantcal mo:ion, and a vory praisevorthy part oi the inventiou. The action of
the cranks causes the beam to bo mused out of the eentre alterbately, so that the beam is placedin owh a position that it tunds to fall alternately un uppusite shdes, and mat be moved from its luwest to its highent !usition by the methon of what is termed a blight auxiliary force. It is thas claitand that by virtuc of the geared anks or rollitig centres there is always a certain proportion of gain in the work duta by the overbalancing of the bam, as compared with the aunaliary force required to what is termed "rock" the beam. 'Iho effect is claimed to be produced by utilising the furce of grat vity. The claim is almust plausible at first sight, complicated as it is by the inventor's talk of rollint eentres and their wonderful power, and more enjeretally bate the downward motion of the beam is very direct aud olservable. The action of the auxiliary force, on the other hand, takes place whilst the upward motion of the beam is produced by an inclined plane, and is not so obvious. In this way a nice mare's-nest, in our opinion, has been devised by the uafortunate inventor, aud for anybody who may be foolish or ignorant enough to waste time or money on it.

And now to demonstrate our opinion on the matter. Analyse the force that is suaght to be utilised, the attrac tion of matter. It is nut a body in motion, such as the aur or that of rivers. It is not a pressure which can lee contines!, and direct"d such as steam. It is not a force which is beiug continually generated and given off, such as the suns heat. But it is simply an attraction, never more or less uuder similar circumstance. How, then, can it be utilised as matter in motion, overcoming resistances - i. e., generating heat? It must, in such case, lose a corresponding portion of its energy, and to be kept constant must be continually recciving accession of strength. This, we know, is not the case. The oniy case we know of in which attraction of matter usefully affects matter in rootion is the case of the planetary systems In these the motion is neither produced, accelerated, nor retarded by gravity, but simply guverncd, and any resistance encountered woud undoubtedly produce a corresponding retardation.

The potential energy of any mass on the earth's surface is exactly estimated in toot-puunds by the product of its weight into its distance from the earth's surface; aud no more can be obtained from it except an equivalent of any work which may be done uponit. Magnetism will rank with gravity as a constant attraction, wheh cannot bu utilised to set matter ma constant motion. Su-called magnetic engines are sinuply the utilised affect of chemical combration of acius and bas 8 , cansed to produce an intermittent furce in electro-maxuets. The force of electoo-magnetism is simply the meabanical equivalent of the work done tu produce the tutation of conls
 our mind to stamp the inventor's claim as an impossibilaty.
'To analyse the motion of the machine itself. Suppuse the be am to start in it, highest pursible posation, a slight motion of the dy-wheel causes the supporting tentres to shift, so that the beam overbalanees and falls beavily on one side, completing thereby half a revolutun. Now, at this point the mventor lays great stress upon the luerage of the falloug weight. But it is not a question of leverage at all. The work done by the descending beam is meduared exactly by the wight of the beam, multiphed intu the vetical distanes through which the centie of gravity of the bam has falles. Now, in the second half-revolution, if the berm hats to be returmed to tis riginal position, by whatever compleated motions it may be effected, the work to be done will lecexatIy measured his the weight of the lidat, multiplied intes the rertical height through whach it has to be rased. The fe duction is obvoms There can be monsoble fasu in such a madhine, but merely a loss equivalent to the frictiona! ressatance. The deception may arise in thas way.-The weight is very heaty, descending through a small verthal diatance ; the rise s by means of the wedge principle, in which a small effort, through a loug distauce, will effect th. replacement of the beam in its original position; bat the wotk is nut lessened. The production ot fremenal motion does not, at first sight, appar as the oliject of the abore.describe 1 machine, and, an we have lefore said, the itaventur purposely keeps such a claim in the background, so it would of itself be sufficient, with many mindo, to show the ampossibility.

Perpetual motion would, however, be a logicri consequence of the utilisation of an unlimited and ever-coustant furce, such
as gravity or man, netism. For instance, in the abuve machine with a single bean, there ts the dead puint, wo to sperak, in which the anxiliary furce is ruqured to tomplete the revoluthon. But if the woik duac by that farlang weight be in excess of the woik dutac bj the auxilary force, two ur more beamb might be casily su adjusted un the sanic shaft that one beana or uhater should alway be fallag. Hence perpetaal nuonon would eh-ue. This would be at unce the banplest mad chatipest mode of testang the working of the theusy, mate at of ballitig, as lise mach tu-be-pitied batcoter has duat, a shagh bam malitac bath auxiliary ebgite to work it. It is surptisias that any man cuald be: su fuolishas to
 with a model. In thas ase this practical tesule would, we fcel sure, suppurt uar upinions.-Iron.

HUW IU HAKE CUAHSE WUUD LUUK LIKE PULISHED maliuliaNi.

The foll wia, pruesos is recommended in Viederhotets Tr ade Cercalar. - The coarse woud is first coated wath a coluured ake, whith is prepartel by thoroughly maxiug up tu a warm soluti a of ent part of cumanctial gluc ia sis partsof "ater, a sutticient quantily of the commercial mahogany browa, which is ar reality an iron oxide, ama in culuar stands detwan bucalled Engli-h red and oxide of irua. Thas is best ellated by addang in excess a sumicient quantity of the dry colvur with the "ura solution of glate, and thoroughly mixiag the mass by means of a brush until a unifo.m paste is oblamed, in whath no more dry red paticl $=$ are seen.

A trial coat is then lat upon as piece of wood. If it is denired to give a light mohogay colour to the object, it is vuly nectsaary to a ld less, and fur a darher culour mure, of the unvina bedy-culour. Whan the cuat is dry, it may be tested, ty sulbing with the fingers, whether the colour casily separates or hot. In the firmer case, more glae mast be added untal the dry taial coat no longer percephat y rubs off wath the hasudo. Havime asertanued in this way the Hoght condithon of the sice culuar with respect to tint and trubech, it is theu waraced sheghtly, and woihed through a !air steve. . Ifter thes it is rubled apon tite wool surface with the brush, whach hads bueta cartfully washed. It is nut nects ary to bueptate colvui warin duriag the gaintags shasuld it L. come thick by relatamsinf, it mat be lash on tiac woud with the brush, and dates more rapidly than when the colour is too thin. If the woud is purous abal absenls much coiour, a scound vat may bo lad on the tiast when day, whah wall be suthenat ia all cases.
 tha followshg wat inalges lamediately the appearance of the sutace. Thincoat is spuit varmash. For its production
 pat ut bil ararond resin in une vessel, and a a buthice ten pats of shellac woth 19 parts of spirits of wane of 80^{5}. By tepuatud agitat wat for thrce or fuat daye, the spirit dissolves the cosincomplitaly. I'h: ehullat solution is theta poured
 fitte eluth, when it mas le olseerved tatat a slight milhy turbi-

 hasely backud wath waddag.

Whes tilterd, the shations of touth resias are maned by
 Iht ariod resia whurs the shellat, aud impats to st at tho satm fime the digice of supplacos usually wbtanced by the

 oflce trom tha icascl. Oate ur two cuats slaftice, as a tulc, to
 bors quahis, and care anust he tahta nut to apply the second coast untal the tirst is completely diy

Tine Jnaly Brutash Colomst says:-"The S.S. ('alifornia arrived un $\dot{-} \sim q u m a s h$ at 1230 viluck liast mght, from the Noith. the reporta thanges very lively at Cbsstar, and the
 between Tou and Bual mun at the mataco. Weather mild, river expected to be open about lst Jiay ; Sylvester, of Baruard'n Express arrived in three aud a half days from Buck'd Bar on the ict, with about Si,000 in dust for Martia \& Co.

STRADB'S WATER WHEELS.
boller increstations and bohler explosions.
Wo hear much discussion now-a-days upon fucl economy in almost cvery possible way, but it seeme to us that boiler in. crustation scarcely obtains the consideration due to its importance, in our opinion, as a source of fuel waste in boilers. It is woll known, es a practical fact, that boilers are much better generators of steam when newly put down, than after the lapse
of some little time. This is, without doubt, owing to the donble deposition of soot in the flines, and a calcareous depoedt on the heating surface of the boilers. The flues may usually ba swept out withoat much trouble, bat the perfect cleaning away of a hard cement-like skin upon the inside heating surface is one of the most difficult things to thoroughly effect. This scale is an almost perfect non-conductor of heat, and where the heating surfaces may ise covered with a scale a quartor of an inch

STBAUB'S WATER WHEELS.
thick, ss we have personally frequently seen, the non-evapor | are many cases where boilers are without these separatcrs, ative power of the boiler becomes no longer a matter of sur- either from the impossibility of their application, inconveprise. nience, or perhaps projndice. However this may be, thero is,
Most of the present numerous feed-water heaters seek to pre- 1 as a fact, as much as fifty per cent of the whole boiler power in vert this deposition by separating the insoluble precipitates in I nse, without any separator, depositing rapidly thick calcareous the preliminary heating before entering the boiler. This no | deposits, and the other fifty per cent, though with the bestdoubt serves most effectually to diminish incruatation, but that fitted applianccs, still deposit this scalo more or less.
it is thereby totally prevented we do not believe. Also, there| In addition to the economic loss by reason of calcareous de-
posit, " scale" is, without doubt, one of the most fruitful causes of boller explosions. The water cannot get free access to the heated plate, which thereby is considerably over heated and rapidly deteriorated. A weakening of the flue plites ensues, they gradually collapse, without giving any sign, till the final disastrons explosion. To meet this constant annoyader to all users of ste,m power, there are in the maket a large number of "boiler compositions " of various character', and the very variety is another proof of the large demand there is for a preventive to boiler incrustation.

To the gencral run of "boiler compositions" there are man! practical objertions The principal of th se are, that often the co nposition, beiog of an acid character, reriously injures the boiler plate itself. Others cause the hoiler to prime very badly. Again, many engine makers find that the steam generated in boile a using ati-incrustation compositions seriously injures the wearing faces of the engine; and thus, justly jealous of their reputation, specify that their engines shall not be supplied with steam from boilers using anti-incrustation compositions. We thus see that the present existing boiler compositions, though in puch demand, are getting themselves a bad reputation in practical use.

We may here j 'ist dotice an anti-incrustator, which seems to be very succes ful, and highly recommended in Europe, as being without the usual drawbacks to the ordinary boiler compositions. This substance is very well known and simple. It is glycerine. This is a body winch is soluble in water in all proportions. It has a very high boiling poi t - 285 deg, and remains, therefore always in the water, not tending to cause "priming," os to pass ofl without doing its work in the boiter
Glycerine, under certain couditions (precisely those which are to ive found in boilers) forms easily soluble salts with the calt of lime, and especially with the sulphate of lime. If the salt of lime be in excess, the precipifate takes a gelatinous form, which is eminentiy calculated not to adhere to the metal surfaces. Futher, this gelatinous form of precipitation, preventing adherence, i also so lar oseful, that it prevents the carrying over, with the steam, of any hard solid precibitated mat. ters. These pulverulent pre ipitates, which may be proluced by oth r compositions preventing adkerence, are in ordıary cases caritid over by the steam into the engine, and there canse the serious damage, before referred to, on the working faces. This composition claime the following advantages:-lst. Increase of solubility of the sulphate of lime 2ad. Formation of a compound, soluble with sulphate of lime. 3rd. If any precipitate at all, a gelatinous one, preventing adh rence. 4th. The arresting of all othe: solid particles from being carried over by the steam.

A series of experiments having been made, it has been found that a pound of glycerine is sufficent to prevent incrustation for every 3,000 to $7,000 \mathrm{Ib}$. of conl consumed, which is a won. derfully small amount The glycerine should be inserted about once in three wetks or a month, and the boiler be cleanel through the mud-hole aoors at the same intervals We think that the above advantages recommend the trial at least of such a simple body as glycerinc, as an anti-iucrustator, to all users of steam-power.

Tas method in use in the London Custom-house for the determination of alcohol in fusel oil, consists in shaking the liquid to be tested with an equal volume of water, ard allowing it to stand twelve hours, at the expiration of which time it is found separated in two layers, the fusel oil being at the top. The s; ecific gravity of the lower layer is taken, and from this the amount oi proof spirit is calculated. This, Dr. Ulez says, leads to very false results, since crude fusel oil contains also athylic, propylac, butyle, and amylic alcohol, which are variously soluble in water. He recomenents th- separation by fractional distillation and the use of saturated solutions of sodic chloride. Heplaces $100 \mathrm{c} . \mathrm{c}$. of the fusel oil to bo tested in a retort, and distils off $4 \mathrm{c} . \mathrm{c}$., and shakes this with an cqual quautity of a saturated salt solution. If, on standing, one-half or more of the liquor is fusel oil, we may be sure it contains less than 15 per cent. of proof spirits, which renders it free of duty in Eugland If less separates, shakr some of the liquor with an equal quantity of brine, allow it to stand; after separatiog dial the spirit foom the salt solution and determine

aRINDSTONES.

Premising that the grit is of the right kind for an axe or scythe, a good grindstone will be set to run smoothly and perfectly true, its face will be ueither hollow nor round, and the water supply fresh and not more than the occasion The water trough being often made a part of the frame or bed, should be provided with an outlet for water, that the stone may not lee left standing to soak thercin, by which one side becomes softer and huavier, from which cause it runs with irregular spe d, and wears unequally. Water is indispensable to protect the temper of the tools, and to keep the grann of the sandstone clean from the smail particles of sand and steel detached by friction.

In applying the tool to be ground, the pressure must be varied in proportion to the width of the tool ; and the effect will be very much varied by the direction and speed of the stone, being more when moving toward than from the tool. In the latter case, howevel, the edge is more liable to catch, and thereby to damage both itself and the face of the stone, while in the former, a wire-edge is thown up as soon as the bearing or convexity of the tool is ground onf, and only an experienced band may safely practice it. Stop short of this point, and finish by changing the angle of contact of the tool with the stone. l3ut in grinding chisels and plane-irons, when the edge is formed by one plane and one bevelled side; there isa kind of traverse motion to be kept up, with contact over the whole of both surfaces which preserves them nearly straight and plane. The fuishing edge, as of finer tools, seen on new razors, kuives, \&c., is brought out by a finer stonc. where the tool is held at a more obtuse angle.

The dificulty of applying a rest to a portable grindstone (as to a lathe) exists in the uncertain wear and unequal use of its zurface, by which the true cylindrical form is soon lost. To avoid this, a lateral motion must be given to the tool, utilaing the whole face of the stone, which is especially nece sary in applying the tace of a common or a broad ase, as well as a plane-iron; and, as may be apparent to any one, in grinding carpenter's gauges, a cape-chis \cdot l, or, indeed, any metal-worker's tools.

With one who has had but little practice in setting tools, the common error is in not holding them flat euough to the stone (whether grindstone or oilstone), and thereby producing a convex side, and at the same time being liable to "chech" the stone and turn the tool-perhaps worse, wound hiuself. For this, practice is the only remady. With a little ingenuity a rest is always possible to be applied, but the efficiency is in most ca-es doubtful. Better trust to the wrist and right hand as a movable chuck, while the fingers of the left hand placed on the upper face of the tool will control its pressure and be the guide-rest. Don't forget to leave the stone out of water, as well as to dry the tool, if not even to oil it when laid aside.

The grinding or setting of a cutting-tool may be simple enough; yet there is but one way of doing it perfectly, that the cutting edge formed by a definite angle of two surfacto shall be exactly reproduced. There is a knack in perceiving when this edge has come, and in not overdoing, or proluciug the turned or wire edge, which practice only can acquire. From a knife this can be removed by drawing across the thumb-nail ; from other tools by rubbing across a piece of soft wood. But a greater difficulty from repeatel sharponiug is to avoid in time the formation of two convex surfaces, which would be better if liat, or e ven concave blightly, as when the tool is new. Even a new axe is dever cunver all the way to the edge, but within a sixt enth of an inch of the edge takes from each face a special bevel, which is the edge.
Straight-edged tools, like chisels, when being set on the oil-stone, are best held in such a manner that the motion of the haods is ntarly at right angles to the line of the cutting edges. Concave faces are produced by stones shaped fir the purpose, but they do not come within common use. -Country Gentleman.

Pune glycerine should not produce when locally applied, a burning sehsution, which it alsays does when the fatty ands arc not all extracted. But even absolutely pure glycerine, when undiluted, is a water-extracting body. It should therefore, when used as a cosmecic, or for nedical application, be always diluted will water.

MISCELLANEOUS

Tus Portland ('ompany (locomotives and machinery), established in 1896. have been more favoured than some others in keeping their full force at work through the winter. They do a large variety of work, which enables them to keep busy when dul! with others. 'The locumotives and cars built during last season were almost wholly for exportation.

Tifs first patent issued in the United States of which thete is any record was granted to samuel Hopkins, on July 31st, 1790 , for making pot and pearl ashes. The second was to James Stacep Sampson, on August 6th, 1790, for making candles; and the thard and last fur the year 1790 was to Uliver Evans, for making flour and meal. The latter bears date December 18th, 1790.

Tıs new Atlantic calle wi!! be laid in June, the starting point from this side being near Valentia. The other end will be beached on Newf undland, carried aeross to Nova icotia, and thence to New H.unpshire. Messrs. Mitchell and Co., of Newcastle, have nearly comple ted the building of a steamer of 5000 tons burden, specially designed for the laying of the cable. The vessel will be launched on the 1 ith intant.

Tat folluwing is given as a reddish brown paint for wood: The wood is first washed with a solution of 1 lb . cupric solphate or blue vitriol in 1 gallon nf water, and then with $\underset{\sim}{t}$ 16. potassium ferrocyanide or prussiate of potash dissolved in 1 gallon of water. The resulting brown cupric ferrocyanide withstands the weather, and is not attacked by insects. It may be covered, if desired, with a cont of linseed oil varnish.

Loconotion in Constantinople is, under certain circumstances accompanied by a pleasing excitement besond that caused by the actual journcy. All pursons using the tramway company's cabs receive from the driver a printed slip bearing a number, and every two months a lottery is dravn, the winning numbers gaining various prizes. At the last drawing the prize of $\boldsymbol{£ 2 0}$ fell to the lot of the lucky owner of No. 51,547 . This lottely is, says the Levant Herald, not only an amusement to the public, but it enables the company to exercise a control over the pecuniary honesty of their drivers, as the books from which these numbers are drawn have countelfoils with corresponding numbers, and persons who use the cabs have an interest in preserving the tickets given to them.
A Precious Vase.-The famous onyx vase, which Geneva feared bad disappeared from the treasures of the late Duke of Brunswick, has at length been found. The executors were examining the contents of a case of jewellery when their attenlion was aftracted by two vases of gilded metal, which seemed to be of little value. But, on examining these, it was found thit one of them was much heavier than the other, and a joint in the stem had allowed some threads of flann i to pass A lungitudinal division was found to run down the whole length of this vase, which thus appeared to be merely a case for concealing sowething else. On the slit being widened, there appeared an onyx vase of marvellous beauty, in form like a tall urn, its slightly awelling body adorned with drinking scenes and women in long robes conducting animals in chains. Material and workmanship made this vase a wonderful master. piece. It is knowa to antiquaries as the "Vase of Mantua," and is ryarded by them as a Semitic production, nothing less than the holy vial employed in the consecration of the Hebrew kinge.

The Charlottetown New Eta says:-The Island Railway is being constr, cted rapidly and Main Trunk and branches to Tignish and Souris will be completed according to contract on the 9 th of September next. We understand that the contracturs are prepared, at a fortn ght's notice, to havd over the railway betwen Charlottetown and Summerside, which prases through a fertile and beautiful country, and gives great promise of being more than self.sustaining. Mlany persons thought that too much Jand had been taken for railway stations, especially in country places. But it was observed during the excursion on the "gth ult., that many of the stations were not large enoingl for the husiness of the localities surrounding them. There is freight along the line at present for the summer's work, and by the time the fall's shipments are ready, there will be a "regular jam" on the railway, unl-ss the Dominion fovernment at once tahe the road and open it for freight and passenger traffic.

Dr. Von Pertenkofer, in a careful rtudy of the subject of the wa.moth of clothiog, recantly published, has poinsed out that the permeability of etuffs to air is a condition of their warmth. The London Hedical Record gives the following abstract. Of equal surfaces of the tollowing materials he fonnd that they were permeuted by the following relative quantities of air, the most porous, flonnel, such as is used ordinarily for clothing, beiog taken at 100 :-Flannel, 100 ; linen of medium tineness, 58 ; filk, 40 ; buckskin, 68 ; tanned leather, 1 ; chamois lepther, 51. Ience, if the warmath of cloth depend upon the degree in which it keeps out the air from our bodies then glove kid must be 100 times warmer than flannel, which every one knows is not the fact. The whole question, then, is resolved iato that of ventilation. If several layers of the same material be placed tagether, and the air be allowed to permeate through them, the ventilation through the second layer is not much less than through the first, since the meshes of the two forn a system of contionous tubes of u iform diameter, and the rapidity of the movement of the nir thruugh there is effected merelv by the resultiog friction. Through our elothing, then, there passes a ftream of air, the ammunt of which, as in ventilation, depends upon the size of the neshes, upon the difference of temperature between the external and internal atmosphere, and upon the velocity of the surrounding air. Our clothing, then, is required, not to prevent the admission of the air, but to regulate the same so that our nervous aystem shall be seasiblo of no movement in the a:.. Uurther, our clothes, at the same time, regulate the temperature f tho contained air, as it passes through them, so that the tem eerature of the air between the clothing and the surface of our body averages 84 deg. to 86 deg. Fah. The bygroscopic property of different materiais used for clothing essentially r todithes therr functions. This property varies with the different matrrials ; wool, for instance, takes up more water than linen, while the latter takes up and gives off its watery contents mole rapidly than the former. The more the air is displaced by water from the clothes, the less will be their power of retainiag the heat ; in other words, they conduct the heat more readily, and hence we are quickly chiled by wet garments.

PROPOSED RAILWAY ROUTES BE'TWEEN EUROPE AND ASIA.

Our last page contains a map of the English, Russian, and German railway routes for connecting Europe and Afia, after the plan presented by M . de Lessrps, to Baron Schwartz. Zenbron, Director-Gitneral of the Vienna Eshibition. The Eastern terminus of the existing railway system of Russia is at Sy-ran, a town on the Volga, situnted at a distance of abont 280 miles from Oreaburg. From tlis point M. Lesseps takeb his projected line across the bare, unwatered stepues which lie between Orsk and Kasaliask, and so, on to Cabul and Peshawur. This route, however, the Russian engineers state to be impracticable. It has further been strongly objected to by the four Powers most interested in the opening of railway communication between the two continents, viz, England Kussia, Germany an 1 Austris, each of which is desirous of adopting the route which will best serve its own interests. The English route takes Scutari as its starting-point, cuts across Asia Minor, by way of Erzeroum and Tauris, to Tcheran thence almost due east to Herat, end south-east to Chickarpoor, where it would join the line from Hyderabad to Pechavur. The length of this route would be about twelve hundred leagues. The proposed line is, however, objected to by the olher Powers. The German route starts from ilostow, on the Sea of Azov, runs through the provinces of Laucaria and Circassia, and following the western cosst of the Cispian Sea joins the English line at Teheran. This project meets with as little farour from Russia and Austria as the purely English line from Scutari. That proposed by the Russian Goveroment takes a totally different ccurse. Its starting-point is Nijui Novgorod, whence it branches out eastwards and south-eastwards, by way of Kasan, Sarapour, Pern, and Ekatcrinenburg, to Kouldja, the capital of the district annexed by Russia three yeara ago. From Kouldjz, which lies in the fertale valley of the Ili, the road would follow an almost straight line through Chineec Tartary iu Shatighai. A second Russia: line would form a luoufrons Sysran to Tashkend, and thence to Konldja.

