IMAGE EVALUAIIION TEST TARGET (MT-3)

Photographic
Sciences

CIHM Microfiche Series (Monographs)

ICMH
 Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are chacked belew.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Caı tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustratio.. 5 en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Le reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texi?, mais, lorsque cela ètait possible, ces pages n'ont pas étė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uiliques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la inéthode norinale de filmaga sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
\square Pages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:
Title page of issue/
Page de titre de la livraison
Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Cornmentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce cocument est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanics to the generosity of:

National Library of Canada

The images appearing here are the ber : quality possible considering the condiction and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded trame on each micrcfiche shal' sontain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and rop to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothèque nationale au Canada

Les imayes suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition ot de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture an papier est imprimée sont filmés en commençant par le premier plat et en terminsinc soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second piác, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et an terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

EXTRACT FROM THE MANUAL

FOR THE

MILI'TIA AR'IILLERY OF C:ANADA.

PART III.

SCIENTMIFIC.

SECTION I.

PRINCIPLES OF GUNNERY.

QUEBEC:
Gunnery School Press. 1878.

PARTIII.

SECTION I.

PRINCIPLES OF GUNNERY.

DEFINITIONS.
Matter. - The substance of which bodies are composed, may be solid ilquid or gaseous and imponderable.

Body.-Any definite portion of matter perceptible by our senses, or which may act or be acted upon by other bodles.

Partiele.-An atom or a point so minnte as to be indivisible.
Mass.-The quantlty of matter in a body, it is estimated by welght.

Cohesion.-The force which holds together the particles of a body; without cohesion a stone would be dust.

Volume or Rulk.-The space $\&$ body occupies.
Figure. -The form or shape of a body, thus a round shot and a cylindro-conoldal riffe projeetile may have the same volume, but have entirely different figures.
Density.-The closeness of the partieles of any body, or the quantity of matter in any given bulk.
Elasticity.-An inherent property in bodies by which they recover wholly or partially their former igure or state, after the removal of external pressure tension or distortion.
Inertia.-A property of matter by whileh it cannot of itself put itself in motion, or if in motion, has no power within itself to alter the direction or extent of its motion.
Motion.--The passing of a body from one place to another.
Velocity.-The degree of swifthess with which a body moves over a certain space in a certain time, it is uniform when moving over equal spaces in equal periods of time, variable when moving over unequal spaces in equal time, it is accelerated when moving over greater spaces in each equal snceessive porthon of time, retarded When moving over a less space in each equal suecessive portion of time.
Ynitial Velocity.-The velocity at the instant of departure of the projectile from the bore.

Terminal Veloeity.-If a body be allowed to fall in the atmosphere there is a certain iimit to the velocity it will acquire, this is attained
theoretically when the resistance of the air has become equal to the ancelerating force of gravity; the motion of the body will then be unlform, und is called its terminal velocity.

Final Velocity.-The veloeity of the projectlle at the end of a given mage.

Velocity of Rotation.-The number of turns of a projectile on its cencre or axis of rotation during agiven time.
Centre or Axis of Rotation.-The point or axis about whieh a body revolves.

Momentum.-The quantity of power in a moving body, this is always equal to the mass of the body multiplled by its velocity.

A 7 por, shell moving at the rate of $1,360 \mathrm{ft}$. 1 er seeond has more momentum than a 9 por. projectile noving at the rate of $1,000 \mathrm{ft}$. per second.

Forcc.-Any power which moves or stops, or tends to move or stop a body. It is measured by weight, a foren which bends a spring into the same positlon as a 41t. weight would do is called a 41 b . force.

Friction.-The resistance which a body meets from the surface on, or the medium through which it moves.
Force of Gravity.-The tendency of everything to fall in a straight line towarts the centre of the earth, the measure of it is weight. Specific Gravity. -The welght of a body compared to that of another body of equal bulk. Air is the standard for gases, water for other bodies. A cubic foot or water welghs 1,000 ozs $=62 \frac{1}{2} \mathrm{lbs} .\left\{\begin{array}{l}1 \text { gallon weighs } 10 \mathrm{lbs}, \text { at average temperature. } \\ 64\end{array}\right.$ Centre of Gravity.-The point on which, if suprorted, the whole body would balance in any position.

A Concentric Body. $-\boldsymbol{A}$ body whose centre of gravity and centre of tigure colncide, if they do not coincide the body is eccentric

Resistance of the Air.-The resistance a body encounters in its flight through the air, which is due to lts disphelng from, its path it greater or smaller number of particles of air according to the veloeity with which it moves, these resistances will be us the cube of the velocity at ordinary gun velocities, $i . e$., from 1,100 to $1,+00 \mathrm{ft}$. per second, and is the chief cause of the irregnlarities in the tlight of rifled projectiles.*

$$
\begin{array}{ccccc}
\text { Approximately for low velocities resistances vary as } \mathrm{V}^{6} \\
" & " \mathrm{hlgh} & \text { " } & \text { " }
\end{array}
$$

- It is said by some that the partieles of air cannot move among themselves faster than the rate at which waves of sound are transmitted through the air, $1,150 \mathrm{ft}$. per second. When the projectile has attuincd about this velocity the rate of burning of time fuzes is aftected, it is thonght, by the increased pressure due to the creation of a vacuum behind the shot which the particles of air cannot urove fast enough to fill untii the speed of the shot slackens when thare is a relief of pressure on the head of the projectilie. Opinions are divided on the above theory.

Part Ifil
SEC. I
Principides of Gunnery.
II.

PROPELLING FORCE.

Propelling Force.-Motion as previonsiy defined is the passing of a body, viz., a sloot or shell from one place to another, i. e., from the gun to the object uimed at; but as the projectile, because of its inertia, can no more than any' other inanimate body move itself. It requires a force or power to provel it from the gun to the object.
Propelling Power.-Is produced in artillery by placing at the bottom of the bore of the gim and behine the projectite a certain quantlty of gunpowder and inflaming it, the powder burns und produces a great volume of gas (about 4,000 tlmes the bulk of powder) which expanding in the bore, and finding a resistance on every side except on that of the projectile, forces it out of the gun with more or less velocity.
The force thus produced by the inflammation of the charge will be as the density of the powder used in the charge, as the heat produced by the birning of the powder and as the rapidity of its ininflammation.

The estimated force produced by the explosion of gunpowder has been ascertained by experiment. It cun produce a pressure of neariy 30 tons to a square inch of surface, that is to say that each square inch of the bore and base of the projectile against which this pressure was exerted, was submitted to a force equal to neariy 30 tons.

III.

RESISTING FORCES.

The propelling force is not the only one which acts on a projec e, there are others which aiso atfect its motion, but it is by resis or modifving it, some whilst the projectile moves inside the gun, others after the proje „tile has left the bor?
A. Those forces which act on the projectil: whilst in the bore, are :-

1. The toree produced by the resistas c of the column of condensed alr in front of the projectlle in thie bore of the gun; whieh force increases rapidly as the projectile acquires its velocity.
2. The force produced by the resistance due to friction between the projectile and the bore.-In smooth bore guns it is not eonsiderable as the projectile simply rolls on its natural axis and rebounds along the bore. In riffed guns the artificiai rotation imparted by grooves and lead coated or studed projectlles canses conslderable resistance, which has been determined by experiment to be equal for a 12 pr . rified gun to a weight varying from 3 to 20 tons.-The foliowing conclusions may be accepted.
The resistance opposed to the motion of a projectile in the bore of a gun depends upon the form and weight of the projeetile, upon the circumstance of the piece being sinooti-bored or rifled, and upon the system of rifling adopted.

The projectlle will commence to move when the force of the gas has become equal to the resistance offered to motion．
The time necessary for the conversion luto gas of the quintity of the powder required to move the projectlle will depend upom the nature of the gunpowder used，the form of the cartridge，and the point of ignition of the latter．
The maximum strain upon the metal of the gin will mainly de－ pend upon the rapldity of the conversion of the powder into gas．
The initlal veloelty of the projeetile may not，however，be in pro－ portion to the maximum strali，but its square varies as the work done on the shot，or as the pressures in！o the spaees through which they act，or：

$$
\text { P. s. }=\frac{W v^{2}}{2 g}
$$

Where P pressure of gas in pounds．
\mathbf{S} 三 spuee in feet through whieh Pacts，
W 三 welght of projectile in pounds．

- \mathbf{g} 三 veloeity of projectile in fret per second．
- g 三accelerating force of gravity．
and if s．be a very small interval a fair approximation to the mean strain exerted through it in the bore of a S ．B ．gun may be caleulated by this formnia．

$$
\text { Recoil. } \frac{W \mathrm{~V} 2}{2 g}=\text { Energy of reeoil if } \underset{V}{W} \text { 三 weight of gun }
$$

Monientum $\frac{W V}{g}$ of gun $=$ momentum of projectile．
Distance of recoll depends on the frietion upposing the recoll，sc．
B．Forces affecting the projectile after leaving the bove of the gun． The projectile on leaving the muzzle of the gun is submitted to the influence of 2 forces which affict it：；motion．The forees are：－1，gra－ vity； 2 resistance of the air．－If these forces did not exist a projectile fired from a gun，would travel indefinitely in astraight line through equal spaces in equal times．Thus it would travel from A to B（fig．1） during sily the first second of time，from B to C equal space during the second second of time，from C to D in the third，and so on．
Force of Grevity．－But as the force of gravity acts on the projectile in motion it will，as it proceeds on ward，fall 16 feet， B, E ，in the first second of time，and at the second second it will have tallen 64 feet， C, E ，and at the third second of time 144 feet，D, C ，（or as 16 mul－
－If 1 foot and 1 second are the units，as usual． $\mathrm{g}=32.2$ approximative．
This value differs at different points of the earth＇s surface．For the purposes of this Manual，the number 32 is sufficiently accurate．

Part III
e force of the gas on.
of the quantlity of depend upon the artridge, and the
will mainly dewder Into gas. wever, be la proles as the work es through which

Pacts, is. per second.
imation to the - B. gun may be
of gun of g!in.
ile.
g the recoil, \&c. bore of the gun. ubmitted to the ces are :-1, graxist a projectile ghtilne through m A to B (fig. 1) al space during and so on. on the projectile B, E, in the first o tallen 61 feet, (or as 16 mul -
urface. For the y accurate.

tiplied by the square of the time $=16 \times 9$), being at the end of each of these reconds at the points E, F, G, respectively, deseribing a curved tine A, E, F, (i, which will contlnue curving untll the projectile strikes an obstacle or reaches the ground and its motlon is partlally or entirely stopped.*
This curve A, $\mathbf{E}, \mathbf{F}, \mathbf{G}$, is thic one which would be described by the projectlle if it was fired through vaeunm, that is to say if there was no air. But the air itself, us alrendy sald, offers resistance to the projectite's motion and tends to Iimit jif because the projectile to pass throngh the air must push apart all the particlos the projectile has resway and some of the propeling force which powder in the gun is expenderom the explosion of the charge of a gun with the usual service eharge mg so. A 24 pr. shot fired from tance from the air equal to 400 pounds met it is stated with 4 resistquence reach $1-5$ of the distance it would least and did not in conseof the air had not prevented it, thus again arifle bullet which would have ranged up io 3,674 yards if there had been no alr to oppose its motion, reached only 640 yards \dagger seareoly 1-6 the distance. Refering to Fig. 1, the profectlle instead of desorlbing a curve A E F G of gravity would therefor to do when acted upon only by the force of air describe a curve A E F G ancied upon by the resistance of the would reach the earth at a pontirely different rom the first, and the force of gravity was the only force affecting its motion A, than if

- This curve in vacuo would be a parabola, i. e., cone cilt by a plane parallel to the side, with lov. 300 feet per second the parabolic theory gives t. results; the following formila may therefore be of pracionl may therefore be lound accurate mortars and small practical gunnery, such as high angle fire with mortars and small charges.

Let $V=\ln$ itial velocity.
$\mathbf{R}=$ range.
$\mathbf{T}=$ time of fight.
a 三ungle of projection.
$\mathbf{g}=$ gravity.
x and $y=$ horlzontal and veliteal co-ordinates. The equation of the trajectory or path of shot.

$$
\begin{array}{r}
\text { Is } y=x \tan a-\frac{g x^{2}}{2 V^{2} \cos ^{2} a} \\
R=\frac{V^{2} \sin 2 a}{g} \quad \text { (2) } \\
T=\frac{1}{4} / R \tan a
\end{array}
$$ Whe air．－－If the gin be placed on a high hill or if elevation is given wit by raising its muzzle at an angle to the plane，the projectile will sabit fall to the ground：so soon as if the gun had beon laid without exievation，also by lnereasing the propelling power the curve des－ sxibed by the projectile will be flatter．Referring toflguros 1 nid 2 ， iifthe projectlle during the ist second moves a hori\％ontal distance佂raxn A to R instead of moving to B and If in the 2nd second it ramoxed a horizontal distance from R to S instead of upito C ，and in估he 7 did second from S to T instead of up to D ，then it wlil reach fur－ sther horizontal distances from A，than as previonsly mentioned．But TWhatever may be the charge of the gin or the veloclty with which duthe projectile is moving，the latter will invariably fall io the ground －ene second after having left the gun if fired horizontally at a helght cof 16 feet from the ground，or it will fall to the ground two seconds owfuer having left the gun if fired horizontally at a helght of 64 feet mrom the ground i ．e ．as the distance it falls in the ist second malti－

inlied by the square of the time．

IV．

AIR RESISTANCE．

Though gravity is an acelerating foree and the sparos through which a body under its influence will fall in suceessive seconds are zess the squares of the tlmes，yet it is constant and uniform in its asetion－not so with the resistance of the air．The effect of it varles and oonsequently the distance through which a projectlle travels araza be more or loss iliminished by it，its contents，its surface，its venseity and its form，eause the resistance of the air to affect the ＊We will first which a projectile moves in a greater or less degree． vical profoctlles and aiterwect of the resistance of the air on sphe－

Sefect of the air resistance on spherical on elongated projectlos． found by experiment that with spherical projectiles．－It has been meler，one of lead，the other of iron，spherical shot of the sime din－ gocities the retardation or effect of the resing the gun with egual ve－ dess fa the leaden shot than on the iron ristance of the alr wonld be vetween the two will be proportional to the，and that the diflerence sities which are about in the ratlo of the differences of their den－ Te pectlve dinsities；agaln with a spherical that is to say as to thelr zand another of＂3＇，both made of appherical solld shot of $6^{\prime \prime}$ dinmeter wifferent weights，starting with thon equally dense and nuturnily of viresistance of the alr would be as the same velocity，the effeet of the iss to say，as 9 is to 36 ，and inverscly squares of thelr diameturs，thint ＝af atielp diameters．Aupin ersmy as their welghts or as the cubes first，at the rate of 900 feet compare two 21 pr．shots moving，the seomd of time，the flrst woud the second at the rate of 9.5 foet per recond a resistance equal to 02 meet a resistance of 78 lbs ，nind the ens the cubes of the velocities，viz：These numbers are very nearly

Paint III 1 resistance of ation is given projectile will laid without he curve dengares 1 nidel 2, ntal distance end second it to C , and in Ill rench furintloned. But y with which Lo the ground y at a helght two seconds ght of 64 feet seond malt1-

CAS throngh seconds are lform in its tof it varies tlle travels surface, its 0 anfect the less degroe. alr onspherojectiles. t has been o same dahequal veIr would be a diflopence of thelr denas to thelr " dimmeter iaturally of frect of the letern, that s the cubes oving, the 150 feet per os. fund the ery nearly hat in this

Sec. I

instance t the velocit said to be

We have tending to fail to the o done if the the resistal to the rlght spherical si ceives befol caused eith ter of the b

First caus the projecti leaves the that from it aiso a rot strike an op out rece'vi struck the left, and Ine tation from

* Therefor

The experi known from with a differ If a round initlal veloci a velocity of

The velocit retardation

Or inverseiy With spiner velocity and, than for soild tardation of t

Sec. I

Instance the resistance of th alr to motion of projectlles virlen an the velocity with which they move, with spherical projectllen, it is said to be as the cube of the velocity, \&e., \&c.*
tending to limit of considered the resistance of the nir only nN fall to the ground at points piojectiles, that is to shy to moko ihrm done If the abr offered no researer to the gun than they would hinvo the resistance of the air may cauce. We have now to considor how to the right or left. The principal spherical projectiles to dovinto spherical shot or shell is the rotat canse of these devintlons with ceives before or finst at the moment it which the shot or whell ro. caused either, 1st by windage or the diteaves the gin mind whleh is ter of the bore and of the projectile, and by the between the dhmo-

First cause: Windage.--A shot rebounds in the shot's eccelitplelty. the projectile does not fit accurately in the bore of agumbeanso leaves the gun taking an accidental direction tore, and it gonernily that from which the last rebound took place to the opposite slde to it also a rotary motion (see F bg took place. Such rebounds givo strike an opposing surface at ${ }^{\text {g. }}$. , because no spherlcal body ciln out rece:ving rotation and ifat its angle than a right angle withstruek the loft slde of the bore, it will have a rotatlon frojectlla hins left, and incline to the left finaliy, if the right side, it will havernt to tation from left to right and finally curve away to the wlil have a ro-

* Therefore if-d $\begin{aligned} \text { v } & =\text { diameter of ball, } \\ \mathbf{R} & =\text { velocity. }\end{aligned}$ $R=$ resistance which varles as $d^{2} v^{3}$
The experimental resistance to a ball with a given veloelty holng known from tables. The resistance to any otherspherical projectito With a different velocity ean be determined thas :
If a round shot, 68 pr , mects a resistance of 1,000 lbs., with in initlal velocity of 1,580 feet, required resistance to 100 pr . shot with a velocity of $1,659 \mathrm{pr}$.

$$
\begin{aligned}
& 1,000: R:: 8^{2}: \mathbf{9}^{2} \\
& ::{\left.\overline{1,580}\right|^{3}}^{1, \overline{1,650 \mid}^{3}} \\
& \mathrm{R}=\frac{1,000 \times 9^{2} \times{\overline{1,\left.650\right|^{1}}}^{3}}{8^{2}} \\
& =1,441 \mathrm{fb}
\end{aligned}
$$

The velocity a ball looses in consequence of this resistance or its retardation will be as

$$
\frac{d^{2} v^{3}}{d^{3}}
$$

Or inversely as the weight.
With spherical projectiles the common shell has a higher Inllinl velocity and, therefore, at short ranges less elevation is requifod than for solid shot; at long ranges the reverse is the ease. The red tardation of the denser solld shot being less than that of the whell.

Second cuuse: Eccentricity.--Eccentrieity may also cause the projectile to acquire rotation, thus the force of the powder is equally distributed uver the hind part of the projectile, and if the centre of gravity and centre of tisure coincide exactly, there wili be no rotation, but if the centre of gravity and the centre of tigure do not coineide (are not in the same spot) as in Fig. 5 or 6 where the centre of gravity is not in the same spot as the centre of figure F, but to the left of it, the result wili be, that, that part of the projectíle on the right of F will be lighter than that part on the left of it, and would ofler less inertia than the ieft part, it would therefore start the first, making the projectile whirl from right to left. The rotation would be from left to right if the centre of gravity G was on the right of centre of figure F, because the left side of the shot would then be the lightest and would start the first. Having explained how rotation is produced, let us now consider its effect. Supposing the shot to rotate on its axis from right to left the result wili be this; the side of the shot which rotates forward (the right side) meets with more resistarice than the side which rotates backwards (the left side), for not oniy does the air oppose the onward motion of the projectile on the right side, but it also opposes its rotation, whilst on the left side it resists the onward motion of the shot and helps the rotary motion. The consequence of this is that the shot deviates to the side where it meets least resistance, that is to the left in this instance. One case would occur, when eccentrienty would not help to produce rotation, it is when the centre of gravity is in the same straight line as the propelling force, either in front or in rear of the centre of figure F. Fig. 7. The effect of the eccentricity of the projectile would we must remark also tend to limit or extend the flight through the air, according as the rotary motion given to the projectilie tended to make it deviate upward or downwards, that was the prineiple worked upon, by the utilizers of eccentric projectiles for obtaining long ranges.

Effect of the Resistance of the Air on Elongated Projectiles.-It having been discovered that the resistance of the air to spherical shot was proportional to their diameter and inversely as their weight. Endeavours were made to find a form of projectile which offering the least surface directly to the opposing force of the resistance of theair, would, at the same time, have the greatest mass to overeome the resistance, and the resuit was the adoption of the elongated projectile.

But as the clongated projectile naturaliy tends to rotate on the short axis passing through its centre of gravity, it was found necessary to give the projectile, by mechanical means, a rotation which would bring and keep the head of it towards the front, and thus present its smailer diameter to bear against the air, and expose to its resistance the least surface possible, whilist the mass of its clongated form gave the projectile greater power to ovel come the resistance.

As a consequence, by using elongated projeetiles the resistance of the air being much reduced, the motion of the projectile is more prolonged and greater distances are passed through in given times
se the projecequmlly discentre of gra: no rotation, not eoincide entre of graint to the left on the right d woutd offer art the first. tation would the right of il then be the how rotation he shot to ro; the side of vith more releft side), for projectile on the left side tary motion. e side where stance. One produce rostraight line he centre of jectile wouid through the lie tended to he principle or obtaining
-ojectiles.-It to spherical iy as their ectile which se of the receatest mass ption of the
tate on the found nocesation which t, and thus id expose to mass of its elcome the
cesistance of tile is more given times

Fig. 4

Fig. 7

before the force of gravity has exerted its complete effect, viz., bringing the projectile to the ground.
As to the difiterence of resistance the air offers to an elongated projectile the following will atfori a proof;-If one conciders that for a 12 por. shot, elongated, and a 12 por. shot, spherical, moving at the same rate, the resistance of the air varies as the squares of their respective diameters, viz., $3^{\prime \prime}$ and $4^{\prime \prime} .5$, then the resistance would be as 9 is to 20.25 , or as one is to 2.25 , that is to say neariy haif less for the elongated than for the splierleal shot.

It remains to be ascertained whether the resistance of the air will, as in the case of the spherical projectile, send the elongated one to the right or left of its course.

V.

Deviation of Rifled Projectiles.-It will be necessary to make some further explanatory remarks and to consider a few preliminary cases of simple combinations of rotations in order to make the mathematical theory inteligible. *
Every force exerts its full effeet, even though the effect may not be visible in the form of motion.
Thus, even the wind blowing against a wall hasits force expended in compressing the particles of stone and in straining the mortar, some particies of which are compressed, while others are stretched.
So, also, the resistance of the air to a moving projectile is expended partly in retarding its veiocity, partly in tending to turn it over, and partly in compression and in evolution of heat, which are practically of no consequence.

We have to conslder the tendency to turn the profectile over, that is, to make it rotate about its shorter axis, remembering that though this rotation may not be perceptible at first sight, yet its full effect must be exerted in some manner.

If a billiard ball, at rest and free to move, be struck by two forees acting in different directions, it will take an intermediate directlon ; the exact magnitude and direction of its motion or velocity wili be represented by the diagonal of a parailelogram, whose sides represent the velocities due to the two forces.

Ex. If O A and O B represent the separate velocities, Fig. 8, the ball will reach Pin the same time that it would have reached A or B if struck by one force only.
This is the principle of the parailelogran n_{i} of velocities, by means of which the resultant velocity of a body may be readily ascertained if two or more independent veiocities are impressed upon it.
It will be shewn that the same prineipic can be extended so as to apply to rotations; so that, if a body be glven independent rotations obolit different axes, a resuitant axis cau be found about which the body really rotates with a resultant velocity.

[^0]An angle is most convenientiy measured by the ratio of the arc subtending it to the radius of the arc, thus :

$$
\begin{equation*}
\text { Angie }=\frac{\text { arc }}{\text { radius. }} \tag{1}
\end{equation*}
$$

The unit of this system of measurement (calied circular measure) is the angle subtended by an arc equal to its radius, and it contains $\frac{180^{\circ}}{3 \cdot 1416}=57^{\circ} 18^{\prime}$ nearly.
Velocity $=\frac{\text { space }}{\text { time. }}=$ space described in one second, if a second be the unit of time.

Lincar velocity may be either in a strgight or in a
A partlcle rotating round a tixed antre is said to curved line. gular velocity," about and aned centre is said to move with "ansured along the circumference of the circle it describes
Since angle $=\frac{\text { are }}{\text { radius }}$, it is evident that angular velocity $=$ $\underline{\text { linear velocity }}$. radius
Hence it is clear that different points of a rotating body move with different linear velocities according to their distance from the fixed centre or axis, but that the angular velocity of every point is the same. Also, if the radius of any point is known, and aiso its linear velocity, then the anguiar velocity of the whole body can be at once determined.
If the linear veiocity of a point is nothing, then that point is in the axis of rotation.
If two such points can be found, then the straight line joining
As in equation (3) for linear velocity, so we have-angular velocity $=\frac{\text { angle described }}{\text { time of describing it }}=$ angle described in one second.
So the velocity of the minute hand of n watch is 4 right angles
$\frac{2 \times 3 \cdot 1416}{60 \times 10}=\frac{.010472}{6}=.001745$.
It must be remembered that this is the decimal of the unit angle of circutar measure; see equation (2), so that it means that the hand describes 001745 of $57^{\circ} 18^{\prime}$ per second.

If the minnte hand of clock be one foot long, its point will move With a ilnear velocity of 001745 feet per second, because arc $=$ angle \times radius; pee eq. (1.)
If a watch be itself turned round in the same direction as the minute hand and with the same velocity, the hand wili have a rota-

PAST III ratto of the are (1).
reular measùre) and it contains
ond, If a second
curved line. nove with "anloc.ity," is meajes
lar velocity $=$
ng body move itanee from the every point is n , and also its ole body can be hat point is in ht line joining -angular velone second. (5)
right angles one hour
the unit angle teans that the
oint whe movo ise are $=$ angle irection as the iil have a rota-

Sec. I Principles of Gunnery.
thon compounded of the two rotations that is to say, •0017 $5+\cdot 001745$ $=\cdot 00349$ but If the wateh be turned in the reverse direction Its veloeity is said to be negative; the hand wili in this case always point In the same direction because it has no angular velocity for 001745 $-.0017+5=0$.
If the velocity of the watch in the reverse direction bre greiter than that of the hind, the trine velocity of the hand will be negattve, that is in the reverse direction.
Problem ist.-Fig. 9,-If a boly M revolves about a polnt E with an angular velocity ${ }^{\circ}{ }_{a}$ "and if E and M together revolve also about S with an angular veloeity $\frac{\text { " } a \text { ", }}{12}$, both veloctities being of the same slgn, that is, in the same direction; find the true axls and velocity of rotation of M, for any given position of the bodies.
The directions of the motions of different partleles, due to the rotathons about E and S respectively, are shewn in the figure; it is then evident that at some point P between E and s the linear velocitles wlil be cqual and opposite; that is the polnt P is at rest, and is con-
sequently the axis of rotation.

These linear velocities are respectively $\mathrm{E} P \times a$ and $\mathrm{S} P \times \frac{a}{12}$

$$
\therefore \mathbf{E P}=\frac{\mathbf{S P}}{12}=\frac{\mathbf{E ~ S}}{1: 3}
$$

To find the angular veloclty, divide the llnear velocity of a convenlent point, " E " by its distance from P, for the angular velocity of any one point is the same as that of the whole body, as previonsty shown.
\therefore Angular velocity $=\frac{\mathrm{ES} \times \frac{a}{12}}{\mathrm{EP}}=13 \times \overline{12} ;$ for $\frac{\mathrm{ES}}{\mathrm{EP}}=13$

$$
=a+\frac{a}{12}
$$

$=$ sum of the eomponent angular velocities.
It is necessary to understand the last Problem thoroughly In order to work out the following one which is identically the same as the prohlem combining the rotations of a projectlle.
In the inst problem the axes of rotation were supposed parallel, beinir corpendleniar to the plane of the paper.
Problem 2nd. - Let a body have two independent but simultane-

Let the angalar velocitios be a and β respectlvely, both of the shime halire, that is, revolving in the same direction, as seen from 0 .

T 10 arrows shew the dircetion-left going over to the rlghtav in the case of it rifled projectile with rlght handed twist, seen from the muzzle.

Find the true axis and velocity of the resultant rotation.

Take OM : O N : : $a: \beta$ that is proportional to the angilar velocities. complete the parailelogram OMPN; O Pshall be the required axis.
For at the point P the velocity downwards due to the rotation about O B is P $\mathbf{E} \times \boldsymbol{\beta}$.
And at the same point the velocity upwards due to the rotation about OA is $\mathrm{P} \mathrm{D} \times a$. If P D and $\mathrm{I}^{\prime} \mathrm{E}$ be drawn perpendicutar to O A , O Brespectively.

$$
\text { But } \frac{P D}{P E}=\frac{O P \sin P O M}{O P^{P} \sin P^{\prime} O E}=\frac{\sin P O M}{\sin O P^{\prime} M}=\frac{M P}{O M}=\frac{\beta}{a}
$$

Therefore the Innear velocitles at P are equal in magnitude, but opposite in direction ; therefore the point P is at rest. Similarly any other point in $O P$ is at rest. Tnerefore, $O P$ is the axis of resuitant rotation. Next, consider the motion of the point " E " to obtain the angular velocity, as in the preceding Problem.

Draw E I،, E F perpendicular to O A, O P respectively.

$$
\text { Angular velocity of } E=\frac{\text { linear velocity }}{E F^{\prime}} E=\frac{E L \times a}{E F}
$$

For its linear velocity is only $\mathbf{E L} \times a$ since, being in $O B$, it has no volocity due to the rotation about $O B$.
\therefore Angular vel. of $\mathrm{E}=a \cdot \frac{O E \sin \Lambda O B}{O E \sin B O P}=a \frac{\sin O M P}{\sin O P M}=a \frac{O P}{O M}$ \therefore Angular velocity of $\mathrm{E}:$: $:$: $: \mathbf{O} \mathbf{P}: \mathrm{O} \mathrm{M}$
But O M was taken proportional to a. Therefore O P is proportional to the resultant angular velocity of E , that is of the whole body.
Thus, it appears that the princlple of the parallelogram of velo- . citles holds also for angular velocities or rotations.

That is:-If straight lines be draun representing the axes of rotation in direction, and the velocities of rotation, in magnitude; and if the parallelogram be completed : the diugonal will ropresent the direction of the axis and magnitude of velocity of the resultint rotation.

The problem of the projectile may now be eniered upon.
On leaving the gun, the axis of the propecille 1.s, or should be, coincldent with the line of flight; and by the law of inertia this axis will always remain paraliel to itvelf unless some other rotation shouid be comminnieated to the profectils, whieh, componnded with the former rotation, would result lia a rotation about some different axis.

The line of flight is a curve; throfore the ax:s of the projectile soon becomes inclined th tir Inecisis of the revistance of the air, which acts parallel to the llue of flight, as shown by the arrows. Fig. 11.
In the ease of the servis? omperiln of all mn farn riffed guns the
 of the projectile, and ton ls to wive it, a rotation about the shorter axis; or in plain lasiug: ti? pashtazace acts chiefly under the point and tends to lift it. fi thz given rotition were not snfficient, this tendeney would turn the projectile over.

Paht III angular velocibe the required to the rotation to the rotation ndicutar to O A ,
$=\frac{\beta}{a}$
magnitude, but rest. Simifarly the axis of re${ }^{3}$ point " E " to blem.
sectively.
$=\frac{\mathrm{EL} \times a}{\mathrm{EF}}$
f in $O B$, it has
$\frac{M P}{P M}=a \frac{O P}{O M}$ M
is proportional whole body. ogram of velo- .
? uxes of rotation ude; and if the ent the direction otation.
upon.
or should be, of inertia this e other rotation inpounded with t some different
f the projectile ance of the air, by the arrows.
rified guns the atre of gravity out the shorter iefly under the not sufficient,

Fig. il.

Fig. 12 Left.

Right.

Fig. il.

Fig. 12
Left.

In any case however, this pressure mist produce a certain ainount of rotation about the shorter axis. This rotation being eom pounded with the given rotution produces a resultant rotation about a new axis.
Let G M be proportional to the given angular velocity, Fig. 12, and G N or MP to that produced by the resistance of the atr
The diagonal $G P$ is the new axis of rotation. It will he hut very sightly inclined to $G \mathbf{B}$, but suffieiently so to affect the flight of the projectile as follows.
As the projectile rotates about $G \mathbf{P}$ the point will roll over to the rifht.
The point is at ali times the direction of least resistance, therefore the projectile foliows its point and its path becomes slightly incitned othe right.
The resistance of the air, acting on the left of the point, now produces another slight rotation, which, being compounded with the If now the pon as before, causes the point to drop.
the left, and then again below the line of flight It will rotateover to
This is the explanationaras.
Magnus, confirmed by Professor Bashfort propounded by Professor
Owen in his Modern Artitlery.
The theory is that the als.
allel to its first direction throor the projectile does not remain parsupposed, but that it has a conhout its entire flight, as was at first very nearly coinciding with it but always tending the line of flight, [in the case of a right-handed twist] in consequence more to the right ing curvature downwards of the line of fligh In the existing treatises on artillery thist. actual observation of projectip Artillery, this theory is supported by therefore visible ; and by experiments with low initial vetocities and reasons have been given, generally however hegyroscope. Various position than upon exact calculationswever based more upon supvestigation is thoronyhly exact if oni The above mathematical indency of the resistance of exact if only it is conceded that the tenThe method adopted for calculatin to lift tive point of the projectlle. has been taken from the unpublished effect of combined rotations cadets of the Royai Military Crofton, F. R.S., under whom theademy, Woolwich, by Professor ing.

One of the theories given for
that the air under the gren for the derivation of rifled projectlles is to be denser than the projectile is compressed by lts weight so as upon the denser medium bove; and that the projectile rolls over be said to be disproved by the right. This theory may, however, jectiles, recorded in Owen' he experiments with flat-headed prowhich it is shewn that thes devin Artlllery, page 257 (ed. 1873,) by right. The accepted theory accounting for this is that the tendeney of the resistance of the air is not to lift the head of the projectile, but to lower it, so as to bring the axis more nearly into coincidence with
the line of flight. the line of flight.

Thus, the primary effect must be to nake the flat-headed projeetile tead to the left for the same mathematical reasons as before.
Tosimn up the case of the service projectiles it inust be repeated that the effuct of the combined rotations ls to cause the point to rotate over to the right and that the projectile follows its poht, that is to say, the resistance of the atr combing on the left, tho projectile drifts to the right; wind the more the point tends to the right the mire the projectlle dilts.
It ls this drift that is ealled "derivation."

VI.

Penetration of Proifectiles.

The projectlle, after having recelved a greater or less impulse from the powder in the bore of the gun and overome all the resistance which opposed its onward motion ha the gum, leaves the bore whth a eertuinswiftness of motion, which is called initial velocity and which will viry according to the foree of the impulse it has reait ved from tho explosion of the charge and ulso the nimount of resiniance it has met with in the bore. From this it nppears that with two guns a smooth bore and a riffed ginh, the propeling effeet of the eharge and the weight of the projectile being oriant, the inithal velocity of the smooth bore projectile wili be superior to that of the rifled gun, because the resistince offered by tho iffec bore to the passage of the projectlle through it is greater than that offered by the smooth-bore to its own projectlle. But as atready explained in consequence of their form the resistance of the air is greater, to the motion of a projectle from a smooth-bore gum than to that of a rifted gun. The s. B. projectiles lose, therefore, more rapidly their power of motion than the projectiles of rifled guns.
Now lot lis consider how that same propelling power which canses projectiles to overconne, in a more or less degree, the effect of the forces of gravity and resistance of the air, is also implicated in thelr penetration.
In the first place penetration is the passing of ar bject eompletely or partially through another. A projectile moving through the air with a certain swiftness mects an obstacle, such ns is a wan, it will penctrate through the material, of which the wall is constructed, till the force of motion it possessed is expended or the wall penetrated.
Thls force or power, we will bear in mind, might not only be expended in penetrating the obstacie, but also in breaking up or alterlag the form of the projectile, then the stronger the projectile is, by the quality and disposition of its material, the more of its power will be expended in destroying the obstacle, because less of that power would then be expended in altering the form of the pro-

In considering the causes which make the penetration of projectlles vary, we whll speak of spherleal projectiles first, and afterwards
of elongated projectiles.

Part III

leaded projecns as before. st be repeated the point to its polist, thit , the projectlle the right the
less impulse e all the resiseaves the bore nitial velocity oulse it has reamomit of reears that with ong effect of the e filthal veloat of the rified to the passage ffered by the lained in conreater, to the that of a rifled ly their power
power which e, the effect of implicated in
ect complete; through the s as a wail, it is constructor the wall
t only be exeaking up or the projectile e more of its cause less of m of the pro-
lon of projecad afterwards

Fixperbence powes that hy dombing the veloclty with which an
 Thas an heremsen voloedty incrases penctrallon. Of iwo 21 por. shot striking the same ohfect, one moving nt the rate of 1,20 the t
 will petart tate the objeet a greater depth that the first.
The diametor mad welyht of the proferthes aflecthg, as we have alrady montioned, their velereity, therehy also athonfing thelr pentctation. A (es por. and at: per. shot leave thedr resperdive puns With a velocity of 1,20 feet per sceond, they ment as prevousto ex-
 of the hr diameters, and is greater in the case of the 68 por., than th is of the :32 por shot, but the power to overeome resistance of : in shot siruck the healver shot, heding as d^{3}, consequently ir the of pr . range a greater that volociect as the 32 bor., it having at ordinary tion. So that it would appear that also have a greater penetriprojeretie and the greator les density the large the diameter of the its penctrafion, especially is the tion werght the dareme will he raphetity ft moves with when shriking volority, that is tos sus, the baithal velocity.
Considering the penetration of elomered mojectiles, we fhat that it is greater than that of spherical ones of egual weight when both have the same initial velocity,-for the following reasons, -first,
 of the objecel, secondly it ran have a pointed hemb, and thatroy it Will hate a greater final velocity, hehig less retarded durling flight. wh general, however, the elongated projectile of a ritled gan is fired
 greator perotration that at shert distance the latler might have a creases so will the pemedrate emgated shot, - but as ther range in-

12 por'Ambstrong shot comgated wope thed withe sphrical.

* This ereatur pobetation is not only due to the greater velority for if hoth had the same tinal veloeity the bis por. Wonlal penctratio further for the resistance varies as 1^{2} while the moving fore varies
 trate nearly twice as far as a! ! por, if velocities were equal

VII.

CAICULATION OF FINAI. VEIACETY.

The inltal velocities of service gans are given in tables derived from the chronograph.
Col. Owen, If. A., kiven the following simple formula deriven from the cuble law of resistanee, which gives the rehation betwend the initial and finai velocities, v and v, ht my ramge or purt of triJectory x .

$$
\mathbf{v}=\frac{\mathbf{V}}{1+e \mathbf{v}}
$$

When $V=$ Inithat veloeity.
$v=$ fland velocity.
$\mathbf{c}=\boldsymbol{a}$ co-efficient deponding on tive weight, form and dhancler of the projectle.
The valnes of the co-eficient have been letermined experimentally for service ogival headed shot for velocities between !wo and 1,700 feet, und for spherleal between s.50 and 2,150 feet. The eor efflelent e varles as niove stated, but for simmar forms it will be as $\frac{R^{2}}{W}$ and $c=b \frac{R^{2}}{W}, b$, being a constant determincel by experiment.

For elongated projectiles with velocities from 1,500 to 1,000 feet, ger see. Mr. Bashforth, thalling the co-ehelent varied but little,

$$
\mathbf{b}=\left\{\begin{array}{l}
\cdot 0000 t 3 \\
\text { to } \\
\cdot 0,0060
\end{array}\right.
$$

Capt. W. II. Noblo, IR. A., gives about the same, and for spherical projectlles $\mathrm{b}=\boldsymbol{=}$ (NOOOS1.
The following exnmple will shew the practical use of the foregoing formula:-

Supposing a 12 lbs, projectlle was substituted for that of 9 lbs . with the 8 cwt. M. L. R. fieldgons in Canada, the charge of powder remaining the same, the inltinl feloelty of the 9 por. being taken at 1,400 feet per second, and that of the 12 por., 1,300 feet; fint the red maining velocity of ionth projecthes at 2000 yards, and ascertaln which would be the most powerful projectile af the avarage artillery range of 2.000 yards?
swe.

$v=$ romalning voloorty to be ascoriahotal

$$
\text { jecthle }=\cdot \sigma \omega \cdot h n j z \frac{1 R^{2}}{W}
$$

$W^{*}=0 \| \mathrm{D}$.

$$
\begin{aligned}
& \text { Then } v=\frac{V}{1 \cdot\left(\cdot V_{x}\right.} \cdot \text { substiluther abovir viluex. } \\
& r=\frac{1,110}{1+90+103 \cdot 123)^{2} \times 1,1010 \times 1,041}
\end{aligned}
$$

Usimg legrathims:-

$$
\begin{aligned}
& =1 \cdot(n) 1166^{\prime} \text { leng. } 1127171501 .
\end{aligned}
$$

$$
\begin{aligned}
& v=\cdot 2 \times 5661224-735 \cdot 23 \text { feet. }
\end{aligned}
$$

For 12 jor projactile satmo calibre 3 " "

$\mathrm{e}=00000 \mathrm{i}_{2}=\frac{\mathrm{R}^{2}}{\mathrm{~W}}$
$x=2,10$ yards $=0$ mon fect.
$\mathrm{R}=1 \cdot \dot{0}^{\prime \prime}-12 \bar{j}$ fect.
$\|=12 \mathrm{Hm}$.

$\because \quad \because=8 \cdot 907133(10)\rangle$

i
Log－（i

Lag $\left.v=\frac{V}{1+c V x}=3.1139331\right\}$ Subtracthing．
Lor $v=2 \cdot 9024385=799$ feet．
i ．e．the 12 por with the lowest initial veloedty luns the fighest re－ maining velocity at 2000 yards range，the reason belng that the 12 pon．has greater weight to overeome resistance of alr and presents ondy same area of reskiance．It is in crerysense the most pewor－
 a harger bursting charge if common shedl．

VIII．

ARMOUR PLATE JENFTRRATION，

There were two metherts of attempting the destrueflen ar iron－ chad vessols when first introduced，termed respectively reming nom punching，the former American，the later the Mrlan lisystem．
For racking，heavy projectlles of lavge dameter aro thed with low velocitles，to destay amd shake ofl the ammom by repmand shocks withont penetration，and thas to expose the rowel to the eflects of ordinary projectles．
For punching，elongated projectiles of monderate wolght infe flport with hlgh velomittes so is to perforate the armom，if acar tha water－line to sink the vossel，or at any other part to fiblure mon or machinery，or explode the magazine within the vessel．

Racking was used chielly by the Federals in the fite Amerienn war，being especially adapted to their hagers．B．cant gums，with

SEC．

Hhig as belore
dil.
inhlact.
ald.

8 tho litubest reclng that llo 2 118:ald promals he mosi powerif a shrinjuel and

Puellon of iromcrly rackingt und Whevetelli.
14ra thed whtr mir hy reprated 10 Crismel tollor

Welght atre fred ntr, if near the o lajure mon or ssel,
lile Americhn cust. ghas, witle

SEC: 1

PRINCHPLES OF GUNNERY.

Wow chaty es ath heavy spherthal shot, which lose their velocity rabidly. Romb experlments wera mate in England wilh heavy chonzated projectiles and low eharges, but the racking wethol was soon abandoned for punching, whieh cathes more destrurtion, ens-

Dembintans.

The vis viere of a boxly in motion is the whole mechanieal etlece which it wall produce in being bromeht to a state of rest withont segand to tho time ocelupied, and varies as the weight of the bexbe maltiplied by the stuare or'itas velocity.
When a projectile strikes an object it will penetrate matil hes sermmmated or stored mp work is spent, this work will he cexpembed du penrtrating, lracturing, or producing vibration hathe object, and when the latter ofters great resistance in breaking up of rhanging the form of the shot. The heat produced is sitiol to po ar masure of work done. Whena shot has penetrated an inon phate Without losing form the edges ot the hole will be hot to the tourlhthe profectile rompratively eool, showing the work hat been done the the pate not on the shot. It is eice verse when the shot j s tmlered profesisor Wyadt penctrating.
motion is arrested an emaivars heat at mode of motion. When The mechanical eflect on "، watk" heat is produecel. is reperented be the welght which acemmalated in a moving body high, mat ls equal to the weiontich it is eapable of raising onde fom. the squate of its velocity and divthe moving boxly maltiphed by on W5: 29
Energy, or Work Stored-up. -The tant of measmement is fixst Ins. on foot tons, i. e., the force that will raise 1 H . or 1 ton lhrough a space of 1 foot.

In order to extimate the probable ofleet o! a projectible njon an
 energy, as it has been vadously termed, lathe shot at the momment at lmpare

This may be done by the Rulde of Work:-

$$
\begin{aligned}
& \text { Whare W . weight or projectles. } \\
& \begin{array}{l}
\text { Work or P.s. }=\frac{W}{2 r}, \\
\text { Weight of mojectles }
\end{array} \\
& \mathbf{v}=\text { tinal velocity. } \\
& g=\text { aecelerating fore or }
\end{aligned}
$$

 incho of circuniferenceinfoot tons, which is termed the energy por work of energy by the nmmbers, whichis fombl by dividing the forde shot, and by 2,20 (the mumber of dos. in a tone clremaferane of the

$$
\pi=? 1416-\text { where } \mathrm{R}=\text { radins of shot. }
$$

Example:-If a 9 inch Palliser shell tired with at hattering charen at a vessel 200 , ards distant, have a finat velocity of 1,301 foed, what is the total energy or work on impact in foot tons, and the energy per inch of circumference?

Here, W=2 250 lbs, welght of projectito
$\mathrm{R}=\frac{8 \cdot 92}{2}=4 \cdot 46$ huches, radius of progectite.
$g=02 \cdot 2$ f.s.

$$
\therefore \text { Total enorgy }=\frac{250 \times 1 \overline{304}}{64.4 \times 2210}
$$

$=2916.9$ foot tons.
And energy per inch of circumference

$$
\begin{aligned}
& =\frac{2946 \cdot 9}{2 \times 3 \cdot 1416 \times 1 \cdot 16} \\
& =103 \cdot 16 \text { foot tons } .
\end{aligned}
$$

From experiments earled out by the Royal Arliflery Ordnamere Select Committee the following practical conclasions were drawn by Major W. H. Nohle, R. A. The projectiles are in the first instance considered as fired direct at armour phates,
lst. An unhacked wrought-iron plate will be perforated with equal facility hy solid steel shot, ot similar form of head, and having the sane diameter, provided they have the same vis viva on impact; and it is immaterin whether this vis viva be the result of a heavy shot and low velocity, of a light shot and a high velocity, within the usuan limits of length, ete., which oecur in practice.
2nd. An malacked iron plate will be penetrated by solid steel shot, of the same form of head hat different diameters, provided thoif striking vis viva varles as the diameter, nearly, that is, as the elrcumference of the shot
Brd. That the resistance of unbacked wrought-iron plates to absolute penctration by solid steel shot, of similar form, and egual diameter, varlos as the square of their thekness nearly.
th. These experimenis have provel that, althongh in the ase of east-Iron a limit pojectle moving with a high velocity will indent iron plates to a groater depth thm a heavier projectile with n low Velocity, but equal "work", it is not as necessary that there should be a high veloelty when the projecthes mre of a hard material, such as steel and ehilled iron, and this besult will be mach th titwour of rifled gans. be enabling them to prove eflectlve with eomparativelymoderate eharyes.
To put these resalts in an Agebrate form we shall have, taking the units as the found and foot:-

$$
\begin{equation*}
\frac{W v^{2}}{2 g}-2 \pi l k h^{2} \tag{1}
\end{equation*}
$$

Paiet III
lfering chargo 1,301 ferat, what the energy ןer
lery Otdhaturo is were drawly e first Instane
ted withequal and having the iva on impact; sult of a heavy locity, witliin ce.
solld steel shot, provited their t is, as the chr-
plates to absurm, and equal wly.
1 in the rase of ity will fadent tile with : low at there shoulif material, surh Ch in tuvour of comparativel
have, taking

Sec. I

Princtiples of Gunnery.

23
Where $W=$ welght of shot in lbs.
$\mathrm{v}=$ velocity on impaet in feet.
$\stackrel{(}{2}=$ the force of gravity $=32 " 2$.
Kin diameter of shot in feet.
b :=: thickness of unbacked plate in feet.
$k=a$ co-efficient depending on the nature of the wrought-iron in the plate, and the nature and form of head of the shot.
The shot is supposed to be of the best quality of slecl, and the plate of the best quality of wrought-Iron.*
Solving equation (1) for b we have :-

$$
\begin{equation*}
\mathrm{h}=\mathrm{v} \quad \sqrt{\frac{W}{4 \pi \mathrm{Rg} \mathrm{k}^{2}}} . \tag{2}
\end{equation*}
$$

and for k,

$$
\begin{equation*}
k=\frac{W v^{2}}{4 \pi R h^{2}} \tag{3}
\end{equation*}
$$

In order to determine k, we can form a serles of equathons of the
following conditions :- $-\pi R$ g $b^{2} k-W_{1} V_{1}{ }^{2}=0$
$4 \pi R_{2} \mathrm{~g} b^{2} k-W_{2}^{1} \mathbf{V}^{2}=0$
$4 \pi \mathrm{R}_{3}^{-} \mathrm{g} \mathrm{b}^{2} \mathrm{k}-\mathrm{W}_{3}^{2} \mathrm{~V}_{3}^{2}=0$
Substituting the experime., \&c., de.
and obtaining k , we find that for values of the different quantities $k=53572000$.
For oglval, 9 of $5,357,200$, or cut off cypher and multlply by 9 , $=4821480$.
Having thus determined the value of k, we can caleulate the "work" necessary to penelrate any" uabackod plate of given thickness.
Thus let us determine the "work" required to just penetrate a $5 \cdot 5$ inch plate with a hemispherical headed steel shot of $6 \cdot 22$ hinches vameter.
Here we have,

$$
\begin{aligned}
& \mathrm{R}=3 \cdot 11 \text { inehes }=0 \cdot 25917 \text { feet. } \\
& \mathrm{b} \equiv 5 \cdot 54 \quad \equiv 0 \cdot 458,3364 \\
& \mathrm{k} \equiv 5,357,200 .
\end{aligned}
$$

And substituting these values in equation (1) we find that:-

$$
\frac{W \mathrm{v}^{2}}{2 \mathrm{~g}}=1,832,522 \mathrm{lbs} .
$$

Practional experiments $=818$ foot tons.

[^1]Thereforo by means of the foregoing oumathan we can delomine most of the efferts aganst mbacked phates, amd be followharex:mples the given in proot:-

- FiNAMVHAK I.

What thatekness of mbateked wronght-iron phato will wiltusand the impact of a solid hemispherieal headed vered shot of 116 Ibs.

llere wh have fiom callation (2).

$$
b=v r \frac{W}{1 \pi \mathrm{liw}}
$$

Amilubstituling the values above, we filul:-
$b=15 \cdot \sin$ himes.
The thickiness of phate to resist thbs shot onght therefote to be mowe Ghan if: inches.

FNXAIIJ: II.

The fis pr.smooth-bore gun is tiral with a spherical sted shotor 72.0lbs. Weight and $7 \cdot 91$ inches diameter the striking veloctiy at bol yards bemer 1,3 ans fret.

What hilcknesis or mbacked phate will it penetrate?
Here we have as before :-

$$
b=v \cdot \frac{W}{4 \pi \mathrm{Kgk}}
$$

And substituting the above valnes:-

$$
b=5 \cdot 2 \text { inches ; also proved by experiment. }
$$

EXAMPLE III.

The $13 \cdot 3$ inch gun of 22 tons was fired at an 11 inch plate with at sphorical steel shot of $344 \cdot 4$ lbs. weight and 13.21 inches diameter: churge 90 lbs.; the striking velocity being 1,574 feet at, sin yards : ought it to have penervated the plate?

Now the thickness of unbacked plate wheh this shot will pronotrate can be fomad from equation (2).

$$
b=v \sqrt{\frac{W}{\pi k g k}}
$$

And substituting the above values we find.

$$
b=-10 \cdot 11 \text { inelies. }
$$

A shot of the above mature indented an 11 ineh monded plate to a deph of loghehes, amblyreke the plate hatwo.

1"Mev III
"un dolermino following ('x-
vill withstathit hol of 12.) Hos. of $2: 2$ Ibs, trom (0) yaris, the

Ser. 1

PRINOTDRE OF GUNNERY.

 EXAMPLE IN . bron phates of Shaches thickhess, wilh what velocily shomhla dionlow.
 tornsime penchation?
IFere we have fromil cifuation (1)

$$
v=\mathrm{b} \sqrt{\frac{1 \pi k g k}{W}}
$$

Alld substloling the above valles we tille

$$
\mathbf{v}=1197 \text { fied. }
$$

From this it follows that ii
tired with its survice charge of te theh rithed Woobwhelt gitn was

on obligQub HILE:

We have hitherto comsithered the tire as being dheat, that in 16

 or nemely so. Lot moved was perpendientar to the facroflow phate, an angle, or that the orppose, however, that the plate has bern mind has then a tendency to shaneobighely atan mpight phate. 'The Nhat.
 viz:

 Ef1nation

And (2)

$$
\frac{W v^{2}}{2 g}=\frac{2 \pi \mathrm{Rk} \rho^{2}}{\operatorname{Hin}^{2} \theta}
$$

$$
\mathrm{b}=\mathrm{v} \sin \theta \sqrt{\frac{W}{4 \pi R g}}
$$

It appears trom this that the resistance of the plate fincoranorn an the value of θ dimmishes.
We have already shown that a $4 \cdot 5$ tuch nonbacked punu w fired at direct, requires a foree represented aybacked phle, when of shot's circmmference to ensure penetrution 28 foot tons jur lurlis Let us suppose, however, that penetration. tion thatit makes an angle of as with the the plate in such if pma(1) we find that the force reguired to pene ground. From equallon fimomats to $1,4 \%$ foot tons for a shot of penetrate it in this pusillon foot tons per hach of shots circumference 62 inches dhmeter, of $7: 3$ fore, that a less force will not perence. We may, experi, ifrroplacedut an angle of as'.

SECTION II.

CONSTRUOTION OF ORINANCE.

CONSTRUCTION OF S. I. CAST ORDNANCL:

General form, and why.--The general form of S. H. cast gins is conlieal.* The strain from the discharge deereases from the breeeh to the muzale, and the thickness of metal being proportionately reduced, the advantage is thms gatined of lessening the weight of the sun withont impailing its efliciency.

Division of Parts.-A. S. B. cast gm is divided Into five parts, cascable, first reinforce, second reinforce, chase mind inuzale.
Swell of Muzzle.-The increased thickness of metal at the numzle is tormed the "swell."

It strengthen: a part liable to be impalred by an enemy's fire and uflords also a good position for a notch or sight.
Trunnions.-The "irunnions" are cylindrleal pleces of metal by which the gun is supportod on its carriage. They are usually of the sime diameter and length as the diancter of the bore.
Thelr position on a gun or howitzer is alittle fin front of the centre of rravity of the piece; this allows the breech to preponderate, and thereby rest steadily on its carriage.
They are placed also a little below the axis of the plece to enable the quarter-sights to be made use of, but it inereases recoil by the effect on the carriage.

In all new grmas the axis or the trumblons passes through the axis of the gin, thereby lessening the destructive effectson the curriage, caused by the tendency to rotate round the axis of the trmmnions whrell it is not in the same plane as that of the ginn.

Preponderance.-This exeess of weight in ruar of the trumnions is termed the preponderance, which is reduced to in miniminn to allow the breech to be easily elevated or depressed.

[^2]1) fimition of Calibre-The diameter of the bora Is termed the e:ablere of the wim.

Definition of Winclage.-Windage is the diferenee botween the dhambeter of the bore inn of the projectile

 of miform dlameter.
 healed.
3. To permit louding with greater fiteilly when the bone beremmes fonl from eondinued tirins.
These comblions fiblllere, windage manst be as sumall ats possible.
Arlventages of Winclage-1. It almits tho passage of the llame
 " lime fuzc."
2. Diminishes the strain on the erm when tiring.

Disatedentages of Winclage.-1. Loss of at portion of the foree of tho - hatrge fom the escape on the elatitic hlad rommal lhe shot, leanlling in a leduesal initial veloeity'.
2. Irregnarity in the tlight of the projectile from ils cenlore of gravity lymg bolow the axis of the grm, thas jermitting the gats to ese:phe over the top of the projectile, and canse it by at succession of
 (i) 101
3. Injury to the bore of the gun from the rebounds of the shot in Its exit.

Fent.-The vent of a gun is the channel passhing through the metal from the exterior of the breech into the bore, by means of which it is tiroul.

Bouched with Copper." -In serviee ordnance vents are construeted two-ninths of an melz in diancter, and they are bouched with eopper, foom the fact that this metal withstands the ehemical action of gunpoweler bet ter than any other.

Chambers.-The ehamber of a geme is the cell or couvity at the bottom af the bore to recerve the charge of pownder.
 the service.

1. The eylimerical.
2. The conleal or gonner.

* Hashell guns the vent is in the base ring. In shot guns it is in front of the base ting, in what is termed the vent-pateh. This is one means of distinguishing a shot grm from a shell gun,
They may also be distinguished by the shell guns hivingonly two muzzle mouldings, whilst she t guns have three. The third mondoing on shot guns, however, has sometimes been turned down, leaving the gon with only two moulelinzs. This was done for nable them beng run out of the portholes of woodenships. There are some shot gans at Digby, N. S., which have the third mondding lurned oh.
P.Ale' 111 cremed the tween the gills: -Pharical or sion when c becomes ; pessible. the thatile griters her
orec of the , rosinthing
rentre of the gits to -cession of thal direes-
shot in
ough the means of mstrueted hed with chemical
ty at the dopted in
is it is in - This is
[0:1] y two al homalawh, leatto chable lhere are moulding
sec il. Constraverion on onmesaces.

The serond has the atwantage that when the shot is homor, onind

 grma is hotizontal or weaty so, when the shot naturathe bore withe bothom of the bote. It usingr reducere.
fing a spate to exist befween the fom hats the disatvantage of allowMerssurement of S. B. Gust Gumarge and projocthe.*
from behhad the base rine Cast Guns.- A S. B. Cemst gim is measured Length of Bove-l. The length of bore is mathe face of the mazale. of the eomiplete combustlon of the ehare is mainly regulated forallow maspended or be wastrel. of the eharge, so that nome may remalin Diametro of Bore.-1. Ti
form and nature of projecdile empley of the bore depends upon the 2 . It must be suited alse to employed. neder decreases the cartridges will of the charge, for as the rlatsion of the powder into gas becoll he lengthened, that the eonverAmount of Mftal in e Gran, vide " 19.-The :thiount. of metal in atern Oren's Modern Artillery," purge the weightamel form of projectile themet. depond mon the fharge, of consiruction.

NMOOTH-HORED OLINNAN('E.

Definition of Ordaence. Tue term Ordmance ineludes artillury of all kinds, in its most romprohensive slgnification. Classiffertion of Orelnamee. - Ormance Is divided into three elasses, Gums, Mortars and Howitzers. Pueposes-Gins are used for projecting shot and shell at low city and consequently with lare charges, to ohtain high inithat veloSmonth bore guens a flat majectory.
Solid Shot Gums are of two kinds, sold shot, and shell gmas.
the mojectile used with them ghns are designated by the weight of The ditlerent natur
Shell Guns.-Shell guns are $12,18,24,32,42,50$ and 68 pommers. inches.
They possess the shells of as large diameter. There are twosizes, 10 and 8 inch.
Bronze Guns.-Bronze guns were.
count of the comparat guns were adoptedfor field parposesom arebebing less linble to hurst the hathess of this metal, and from their. gums are now only uscel by Austrin whe of the same calibre. Brom\%e mamuficture.

[^3]Howitzers.-Howitrors are a deseription of shell-gun, with a dispurt pateh ; shorter, but whth a bore ot hurger diameter than a gun of properthonate welght; and intended to fire shells at low angles and redured veloelty.
Mortars.-Montars are the shortest pleer of ordnance bh the Servlee; the trunnons are placed la rear of the vent at the bree.h; the bore is very large compared to the length of the piece, and is provided with a gomer chamber.

Use.-They are used athigh angles, generally at 4.) degrees, for reaching objects by thell vertical ilre, ivhen majury eannot be effected by dlrect tire.
Construction.-They are eonstrucled stronger thanguns, on atecount of tat high elevation at wheh the y are tired, and shorlere, beeause the difficulty of loading them would be linereased by their length.

Fired from Beds.-Mortarsare fired from beds instend of carriages, on aceont of th ir high elevation, the recoll foreing the piece downWards, as well as backwards; haparting it strain that no wheal carplages could long sustain.

There are 5 sizes of mortar's for land servee, vi. \cdot the $13^{\prime \prime}, 10^{\prime \prime}$ and $\S^{\prime \prime}$ of tron weighing 36 ewt., 18 cwt and 9 ewt . respectively, and the 5f" Royal and $+2-5)^{-1}$ Coehorn, made of hronze, the two later are of the same calibre as the 21 and 12 pore grans.

There are no special projectiles mate for them, the 21 por. and 12 por. common sholls being suitable, 4 men can chrry ohe of these pirees a modrate distance when it is tot d necessary to change their position.

Rendering Ordnance useless.-Smooth-on'e ordnance can be disablad by knoeking a trumnion off, or they ean be made useless for the lime being by spiking the vent with a nall or properly formed spike maderfor the purpose.

SIGIITS FOR S. 13. ORDN゙ANCE.

Sights.-The following are the sights used with S. B. Orflnance. Malar's simhts.-Tangent seale or hindsight at the brepeh ind dispart, or fonesight, in front of end reinforce.
The dispart or foresight is necessary in order to gain a line parallel to the fixis of the gun, in consequence of the gradual decrease of metal from breech to muzale.
Above the clearance angle of the gmo, a No. 1 woolen tangent, seale is used and graduated up to Jdegrees:-aNo. 2 wooden tangent seale is used for those guns not fitted with Miller's sights, but can be of service only above the tine of motal ele vation.
Short Radius -The brass tangent scale maj be sad to be a tamgent io an are, the radius of whict is the distance from the highest. print of the loresight to lhe back of the hind sight and the divisloms is calculated ateordingly; this distance is called the short radius.
Long Radius. -The wooden tangent swale may be stid to be a tangent to an are of wheh the radins is the distanoe from the notch on the swell of the mazzle to the buck of the hind sight; this distance is ralled the long radius.

Palef III
n, with a dls: thanngun of ow angles and
mace fit the the brecell ; plece, and is
; degrees, for y cabuot be guns, on acathd shorter, ased by their
lof earriages, pince downlat ho wheol
e $13^{\prime \prime}, 10^{\prime \prime}$ and rely, alld the hatter are of

2tjor. and 12 one of these y to change
e can be dise uscless for serly formed

Ordnance. breph and
line parallel I decrease of
den tangent, oden tangent s, but caln be
to be a tumthe highest. the divisions nt radius.
satd to be a on the noteh ht; this dis.

SEc. 11.
Construetion of Orbendee.
RULAE FOIL IANGTII OF DEGREE ON TANGFNT SCAIA:
A practical rule for finding the length of a diviston or degree on the tangent seate, is to divide the length in inches between the two sights by 57.

The brass tungent seate is set an angle of 76^{3}, so that it may shle up and down whont tonching the breech of the plece.

Adjustment of Fore and Find Sights.-Tondust the fore and hind sights, the gim is levelled across both trumaloms, and in the bore. These sights must then be ndjasted to fulfll the following condi-tlons:-
1st. They must be placed at the proper radial distanee apart.
2nd. When the scale is withont elevation the dantapart. the top of the foresight shond be elevation the top of the noteh and
3rd. When the sale is elevited to the to the axls of the gun. and the apex of the foreslght and the clearince angle, its noteh in a stralght the
4th. The line of sight and line of metal must colneide, i, the same vertleal plane.

Forl sigitting s. b. ordnances.

Tisual Lines.-Prior to the sights betng adjusted the following Visual lines are careftilly traced.
Line of Metal.-The line of metal is an imanary line joinhag the
highest point on the base ring and the swell of the line joinlng the Quarter-sight Line. - The tharter-sighwell of the muzale. sight, but is raised above the trumbions to elear the the truc quarteras to permit the divisions of the quarter clear the cap-squares, so of.
and scate to be made ase base ring and marked by a notch on both sides of the gun, at the

Line of ITorizonze. quarter-sight line, and mint-The llne of horizontal axis is the true the base ring, trimmion and mazzle on the right side of the gm, at Vertical Line of Axis of muzzle. trumbon is also only marked onion.-The vertical line of axis of simply a perpenticular to the line of right side of the gun. It is

Quarter-sight Scale. -The 32 ine of horizontal axts.
have a guarter-sight scale up to por. gima and fron grons downwards The divisions of this scale are en both sldes of the gum. beginning with a notch which are ent on the sides of the base ring swell of the muzzle, gives a line with another cut in the sides of the corresponds with the quatler-sight line previousite the axhs, and
Thas scate gives an elevation of s^{3}.
In the event of the eration of s.
the quarter-sight seale er sights being ont of order, or destroyed, This seale is used to lay alse made avallable. metal.

 it the sterhthig is trate.
 orthanee withont hsine the sights by mans of elther the spirit
 the clevalion nbeve the hortzon, bat hy lasinir the ginn joint blank :t the objeret, and determbaby its chevalon above or depressed below the horizon, the regtared rlevallon mas utterwatls be

COHPER VENTING:

Notures of Tent. - They are Invarinhly of the same dameter, hat viry in lomgth areordhig fo the thickness of mefal.
Thirrearo two matures of vent.
The rombe vent and through-vent.
 Whteh Is serowed hato the pheer, the thead not being earried beyomd ther eythdideal porthon.
The rome velli is used for all new gams, mat for reventing grans, if ther will arlmit of it.
The throngh-vent, is ralladical throwghal its whole length, the thread is carrled to the boftoms.
If:11 impression oftho hothon of the vent shows fissures wheh
 1s heril.
Necessity of Reventing. - A gan mast be rowented if the vout

 more that en, athrough-vent most be nsed.
Beyond these lhate the gman mat beondemmed. New vents areconstrueted with 7 florends to all ineh.

*Tho sights fon the rifted guns how in possession of the Camadian
 thedr roperetive latalioge
l’и! !
(ecturess of the senle to lla 16 (op of the trd; the diser thils thermel

- be ervell (a) lel the spirit 10Wever, give " joint blank or depressed Iterwarls be
'e issill with lamelers, but
am ofta collo. rriled beyond nting guns, if e length, the swimes whlah hrough-vernt
if the vent astres at the than - 3 h heh - $35,1 \mathrm{mal}$ nol New vents service : we Co (linsses. ? gims miter

SEC. II.
Screw B. L. rifled gun and wedge B. L. rifled gum. *
Screw. -The serew D. L. Is tocked after loadthe by a breech selow,
securing a vent-plece firmly ugninst tho rear of the chan ber of tho bore; the vent-plece being dropped Into position through a slot in the top of the breech
The B. L. guns are all riffed on the same system, the " Armstrong," named after the inventor.
Armstrong System.-The general prinelples of construction of this system conslist in having steel or wrought-fon shrunk on to the tube so as to glve the necessary miditional strength and secomiay. The barrel is riffed with a serles of harrow grooves separated by lands of rather less whith, and the twist given to the rifling is ranid
Description of Projectile.-The projectlle used wlth these guns is coated with lead, and made somewhat harger than the boro of the gun.

Action.-On tho discharge this projectile is fored through the barrel, and the lands cut into and grip its soit coat or eovering, it imparted totion proportlonate to the twist of the rifing being thius to it.
Windage.-Windage is thus entirely done away with, and the axis of the projectlle is made coincldent with that of the bore, hence axis accuracy of fire is very great. The whole force of the powder is fully developell on the projectlle, thas permitthng a reduction in the charge, whleh is moreover neet sury to lessen the strain on the gun.
Disadvantagcs in Heavier Aulures.-The Armstrong serew "13. I.."
system is not adapted to the heavior nature of gans from the great difficulty of effectually closing the breech. Disadvantage of Want of IV indage.-1. ' necessitates the use of a percussion arrange absence of windage entailing increased complicution and expement to ignlte the fuze, 2. Detonithg compositions must expense in mantufacture. sion action, thereby engendering ine used in this class of perensto deterioration in store and luring transit lability to aceldent and Natures of Screw B. L.-The serew transit.
service are, 6 for, and 7 inch guns. Muzzle-Loaders.-There argins. In the Canadian service, viz :-

1. 7 por. M. L. R. bronze mountaln guns.
2. 9 por. M. 1. R. wrought-iron field guns.
3. Palliser converted M. L. rifled 61-32 por, $7^{\prime \prime}$ and $8^{\prime \prime}$.

The Woolwich gims are rlfled on what is known as the Woolwhel: system, which is nearly indentleal with the French system, the gun is riffed with three or more single grooves, and the projec-
thle has two studs to each groove.

[^4] 3

Grooves.-The grooves cut in the bore of a rifled gun, are simply a portion of the thread of a female screw having a long pitch.
Lands.-The lands are the spaces between the grooves.
Loading and Driving Edge.-The 9 por. M. L. R. gun has a loading and a driving edge, the loading edge is more perpendleular to the surface of the lands than the driving edge which is sloped off so that the stud in coming out must get a bearing somewhere on lis surface so as to centre the projectlle in the bore, i. e., make its axis colncldent or nearly so with that of the gun.

Two Classes of T wist.--Two classes of twist are adopted, known as the uniform and increastng twist
In the flrst case the spiral commences at the moment the projectile moves, and is constant throughout the length of bore.
Increasing Twist.--In the second the projectile is allowed to move directly forward for a short distance (i.e., without rotatory motion,) the spiral then commences, slight at first, but increasing towards the muzzle.

Advantages of Increasing Twist, Vide "Majendie," p.5-6.-The increasing twist is preferred, as the strain on the gun and consequent wear is reduced, while it possesses a slight advantage in accuracy of fire.

The muzzle-loading rifled guns adopted into the British service at present, are :-
The converted 32 pr., and $8^{\prime \prime}$ S. B. $-64 \mathrm{pr}$.
" $\quad 68 \mathrm{pr}$, and $8^{\prime \prime}$ S. B. $\left.-80 \mathrm{pr} \ldots \ldots ..\right\}$ Uniform Twist. 7 -inch-115 pr. Uniform Twist. 8-inch-180 pr. 9 -inch- 250 pr . 10-1nch-400 pr. \} Increasing Twist. 12-1nch-600 pr.

$$
* 35 \text { ton gan }-700 \mathrm{pr} \text {. }
$$

Palliser System.-In the Palliser converted system tho 32 pr., $8^{\prime \prime}$, and 68 pr., S. B., are bored out, and a wrought-iron tubs inserted rifled with three grooves.

Building Up of Guns.-The orlginal bullding-up principls was introdnced by Sir William Armstrong.
There are three methods in use for the construction of M. L. rifled guns, viz : the Armstrong Fraser and Palliser methods.
Armstrong Method.- In the Armstrong method, the breceh-piece is forged solid, a number of small colls are then shrunk on it and hooked together to prevent longitudinal separation.
Fraser Method. In the Fraser method, instead of a solid breechplece being forged, a breech coll composed of treble nud donble colls is welded to the trunnions to form one mass, and the whole is shrunk on in one operation, and the muzzle strengthened by a tube of two coils nuited.

Advantages.-A cheaper iron is used with the Fraser coustruction with as good results, while the shrinking on is performed in one operation.

[^5], are simply a pitch. ves.
in has a loadpendicular to is sioped off so . ewhere on its make its axis

ted, known as

nt the projecsore.
owed to move atory motion,) ising towards
0. 5-6.-The inad consequent a in accuracy
ritish service
rm Twist. tubo inserted cetplo was intion of M. L. nethods.
breceh-plece nk on it and
solid brecehe and double I the whole is ned by a tube formed in one

Sec. 1
Construction of Ordnance.
Palliser Method of Conversion or Construstion cast-iron gum is bored ont to a depth of about $-\boldsymbol{\Lambda}$ smooth-bore wrought-iron eoiled barrel inserted. In the Unit two inches and a jackets hitve been east specially to fit Advantages, cheapness and extrem to fit over the colled barrels. lleved, no instance on recordo ${ }^{\circ}$ r real Palliser burst. tile bein rinade to rordnanc -1. Accuracy, becanse the projecirregularlty of the mass, and u fixed axis equalises the effects of 2. Simpler action of perend prevents aceidental revolution.
to the front.
penetration therebyed can be elongated and g rater range and ing charge of shell, and sped, also greater eapa - $\quad y$ for the burstpace oullets in Shrapnel.-See " Ma-
4. Less powder is necessary in proportion to the weight of the projectile. 5. There is a flatter trajectory.
6. All projectiles can be brunght up to the same weight.
8. The head of the projectile used can be of any deslied form
from.
expense of manufacturieochet, increased eomplication, and extra using soft coated or studded projectiles wh gun, the necessity of and their liability to jam in the bore

Advantages of B. L. Guns of the cartrldge can be seen - 1 ind B. L. guns unconsumed portions is no danger of the shot not being hoved before loading, and there

The detachment ifit not being home.
Disadvantages of \boldsymbol{B}. is more under cover.
mont with detonating composition B. L. guns a pereussion arrangeand the extreme cold of the climan is necessary to fgnite the fuze, cult to manipulate in winter climate of Canada makes them dlffiAdvantages of Mruzzle-Load gun is simpler in construotiong Guns.-A muzzle-loading rifled quires less attention, and permitess liable to get ont of order, reo. the discharge.

PRACTICE OF GUNNERY.

SECTION I.

DEFINITIONS.

A. Axia Piece.-Is an Imaginary line passing down the centre of the $b r$ B. $A x_{i}$ tive Trunnions.-Is an Imaginary llne passing through the centre of the trunnions at right angles to the axis of the plece.
C. Line of Fi, $冫$.-Is the prolongation of the axls of the piece.
D. Line of Sight.-Is the line passing through the notch of the tangent scale and tip of the foresight, to the ijject.
E. Trajectory.-Is the eurved line described by the centre of gravity of a projectile, in passing from the gun to the object. of the gu of Fire.-Is the vertical plane passing through the axis G. Angle of Elevation.-1s the angle whlch the line of fire makes with the line of sight.
H. Angle of Clearance.-The angle of elevation obtained when the tops of the tangent scale and dispart sight, and the noteh on the muzzle are in line.
I. Angle of Departure.-Is the angle a tangent to the trajectory, makes with the line of sight on the shot leaving the muzzle. J. Jump.-Is the difference betweent the angle of departure and the angle of elevation, it is scarcely a subject for practical conside1.
L. Parallelogram of Error ts the probable rectangle or, strletly speaking, ellipse due to the Inevitable inaccuracy of the gun, the tion of range.
K. Angle of Descent.-Is the cungle made by a tangent to the trajectory with a horizontai plane, at the first graze, or at the point of impact on the object.
A. Range.-Is the dirtance from the muzzle of the gun to the second intersection of the trajectory with the line of sight.
N. Dispart.-Is half the difference between the diameters of those parts of the gun, upon which the sights are placed.
O. Point Biank.-A gun is laid point blank, when th production of its axis will pass through the object aimed at.
P. Point Blank Range.-Is the range obtained at the first graze of the shot. when the preee placed on its carriage is fired with the selvice charge, on a horizotal plane with no elevation; that is to say, when the axis of the piece is parallel to the plane.
Q. Line of Metal.-Is a visual line joining the notches cut on the highest points of the base ring and swell of the muzzle, when the trumntons are perfeetly horizontal.

If Line of Metal Elevaticn.-Is the elevation obtained when the gin is latd upon an object by means of the line of metal (there being no dispart patch).
\&. Quarter Sight Line.-Is a line joining a notch on the base ring and a noteh on the muzzle made on both sides of the gum, it is parallel to the axis but a little above it so as to clear the cap squares of the trunnims.
T. Line of ITorizontal Axts.-The line of horizontal axis is the true quarter sight line, and marked only on the right side of the gum, at the bise ring, trunnion and muzzle.
U. VerticaliLine of Axis of Trunnion.-Is only marked on the right side of the gun. It is simply a perpendicular to the Hine of horizontal axis.
V. Deflection.-Is the horlzontal distance of the trajectory to the right or left of the line of fire.
W. Derivation.-Is the conskant bearing away to the right or left, in its Hight, ofan elongrated projcethe, caused by the rotatory motion imparted to it on its ionger axis.

II.

The Srmer division of the Iractice of Gumnery into "horizontal fire" and "vertical fire" has been lately changed on the recommendation of a committee of Royal Artullery officers, assembled for the purpose of constdering what terns wore to be used in distinguishing the various natures of artillery fire, having reference to the angle of elevation, and it was determined that they shonld be classed under three terme, viz:

> 1ST " DIRECT FIRE."

From guns with service charges at all angles of elevation not exceeding $15{ }^{\circ}$.

> 2ND "cURVED FIRE."

From guns with reduced charges and from howitzers and mortars at all angles of elevation not exceeding 15°.
3RD "IIIGH ANGLE FIRE."

From guns, howitzers and mortars at all angles of elevation exceeding 15°.

The above terms to have reference to the condition within the vertical plane.
first graze of red with the that is to say,
res cut on the le, when the
ad when the metal (there he base ring inn, it ts partp squares of
is is the true of the gun, at
lon the right e of horizon-
ctory to the
right or lefi, itory motion
" horizontal the recomssembled for distinguishto the angle d be classed
tion not ex-
and mortars

SEC I.
Practice of Gunnery.
The term "direct" being already used as above in reference to the vertical plane, "front" or "frontal," is therefore to be used inslead "vertical,", is reference to the horizontal plane, and the old term Oblique," is to be included in that of "htgh angle firo."
either "direct or curved" fires, or of both then become varleties of
of the guns relatively to the object, both according to the position "front," or "frontal," may be "curved" or "dine same minnuer as becomes a varicty of "curved fire" with 8 drect." infeochot flre placed in the prolongation, or nearly so, of a. B. guns, which are the charge being reduced and the ely so, of a line of troops or works, used to dismount guns covered by pation not excecding 15° It Is against troops sinilarly protected, the projectitavernes, de, or parapet, for instance, and rebounding along the adjaceat fuce of the work.
"Ricochet" is not suitable to rified guns, the bounds or ricocheta of their projectiles being too trregular to be reliable. it lins hoon superseded by curved fire with percusslon fuze, the projectile just thein. Curved fre or traverses, and exploding on 1 mpact behind already mentioned may be "front" or "frontal," nis hos been tained are placed perpendiculan the guns from which it lis obor other object, and the projectly to a line of troops, face of works, intervening parapet or other covering so that it will just clear an breaching fortresses is pertormed ing mass and strike the ohjecthereafter.
"curved" or "direct" filading, its appltcation " fire, with riffed gims, may be used for enits position relative to the fring batteries. nature of the object and Enfilade curved fire will be used if ties. mount ordnance along a face of if the guns are intended to (1s. create casualties among defenders The protected by travernos, or Illustration of the effectivenenders. The sicge of Duppel is a good The Prussians enfladed the faces of the of using curved fire. ordnance and creating casualties, stlencing therks, dismounting comparatively short time rendering their capture basles, and in n Enfilade direct fire will be used if it is intended casy. of troops in the open, or any object not screened by enfilade an line

[^6]cover. The paraliclogram of error in "curved" or "direct"enflade tire is always more advantageous than in "curved" or "direct" front or frontal tire, unless the object in the latter case has great depth.

III.

LAYING GUNS AND HOWITZERS.

In order that a projectile flred from a gun or howitzer may strike the required object it is necessary to lay the gun, that is to say:

1. Bring the axis of the piece in a vertical plane with the object.*
2. Glve the axis of the piece a certain elevation above the object (unless firing with a S. B, gun at a distance within point blank range.)
But, as the axis of the piece is not vislble it is necessary to make use of notches or sights outside the piece on Its exterlor surface, to determine practleally the position of the axis. In S. B. guns twe notehes are cut on the highest polnts on the base ring and the sweil of the muzzle, and the visual line joining them is called, as already mentioned indefintilons, the line of metal, and it is by sigits placed on the line of motaland in the same vertichi piane as the axis of the piece that their axis may be brought in ilne with the object.

It is necessary in order to counteract the effect of gravity on the projoctile, as already mentioned in the principles of gunnery, to glve the axis of the gun a certain elevation; this is done by
and increasing the range according to the visible effect produced. It was necessary to silence the works on the Danish right first, for strategie reasons, the attack by Prussian infantry was ordered on that flank to eut the Danes from their line of operation and retreat, and to hem them into the angie formed by the arm of the sea before mentioned, the Prussian fire was so accurate as to render the attack by the infantry comparatively easy. The officer commanding the Danish artillery was tried by court-martial for loosing so few gunners in the defence, but acquitted on the ground, that he proved that the Prusstan flre was so accurate it passed harmlessly over the nearer works, dismounting the guns and putting gun detachments hors de combat in succession from the right; and afier a short time, to save umnecessary loss of life, be found it advisable to withdraw the detachments from the guns in succession as soon as the unerring fire reached them. Possibly a very active commandant with highly trained gunners, spare carriares and material at hand, might lave remounted the guns and recommenced the defence.

[^7]Part III lirect"enflade " or "direct" zase has great
er may strike is to say: h the object.* we the object 1 point blank
sary to make or surface, to B. guns two and the sweil ed, as already sights placed the axis of the object.
of gravity on s of gunnery, s is done by
et produced. ight first, for is ordered on 1 and retreat, he sea before ler the attack manding the ; so few ganat he proved mlessiy over gun detaci1 afler a short able to withsoon as the ommandant rial at hand, e defence.

Inspector of uns a i morobject, it has

Sec. I

Practice of Gunnery.

means of sights, and in both S. B. and rifled guns the tangent scales of their respective sights are divided so that the divisions correspond with the various ranges required. In heavy rified guns piece, but sometimes in alinways along a line on the top of the and left of it.

SIGHTS OF S. B. GUNS.

S. B. guns are laid by means or a fore or dispart sight and a 1 ind sight. The length of the dispart or fore sight is according to the dispart of the gun at that part of it, on which those sights are The tangent scales of the hind sights are: one of brass and the other of wood for heavy S. B. gun'3, the brass tangent is graduated to the short rudius, that is to say, the distance which is graduated hind from the dispart sight, and the distance which separates the ated to the long radius, that is to wooden tangent scale is graduthe hind sight from the notch on say, the distance which divides can also be given by means of the quarter mide. Elevation up to 3^{3} of $S . B$. ordnance from the 33 por. downwards. to the lower nature Quarter sights e.unist of notehes cut wards. ring and the other on the side of the mire on the side of the base parailel to the axis of the piece, but muzzie, giving a line of sight the capsquare of the trunnion, but a littic above it so as to clear going upwards degrees and minutes arm the noteh on the base ring up to $3^{\text {. }}$.

SIGHTS OF RIFLED GUNS.

A. Breech-loading Armstrong guns are laid by means of a tangent signt and a trunnion sight on each side of the gun, piaced on lines paraliel to the axis of the piece.
The tangent sigits are inclined towards the left at an angle, $2^{3} 16^{n}$ in breech-loading guns, to counteract the derivation of the projectiles caused by the rifling, because when laying the gun thisjecclination of the tangent scale causes the axis of the the gun this inthe left of the object sumficiently projectile to the right during its flight This tangent seale orbar is proight. graduated to give $\frac{1}{2}^{\circ}$ deflection rigided with a sliding leaf, which is ance may be given in laying the gut or left, so that an exact allowinfluence on the course of the gun for wind or other disturbing moving object, for the motion projectile, also when alming at a other of the range, and finaliy in cases whect towirds one side or the level.
B. Muzzle-loading tangent scaie and a rified guns are laid, some by means of a breech others, as the $64-32$ por., by a hind fore sight on each side of the gun, sight placed on the highest surface of thith tangent bar and a fore perfectiy horizontal.

The 9 por. M. L. R. has the fore sight on a dispart patch at the muzzle. In all cases the tangent bars are inclined at angles to the left varying for different guns to counteract derivation, these bars are also provided with sliding leaves co give deflection. Apart from wind as a disturblng agent there is also the inclination of the plece When its trunnlons are not perfectly horizontal; this imperfect levelling of the trunntons would have no eflect if firing with no elevation, but if firing with elevation it would tend, by inclining the axis of the piece towards the side whieh is lowest, to throw the projectile low and to the right or left of the object almed at, and the greater the elevation the more considerable will be the error. (Fig.
.) The line of sight making an angle with the line of fire.
Angles of elevation or depression are also glven by means of the spirit level quadrant, and also by the gunner's quadrant. These instruments only give the elevation above the horizon, but if you first lay the gun point blank on the objert and ascertain the degree of elevation the quadrant marks when the long arm is properly placedin the bore of the gun, the required elevation may afterwards be given.
Angles of depression are taken by plaeing the quadrant against the faee of the plece of M. L. R. guns or in the powder chamber of B. L. R. guns.

At gun practice it is unadvisable to alter the elevation after each round unless the error is considerable, short or over, but the result of several rounds should govern these alterations, as there is a certain parallelogram of error due to each gun.
The ranges corresponding to the angles and minutes of the tangent scales are determined by experiment, a range curve being constructed representing the mean range of a gun fired with its service charge at certain elevations. It is with the ald of this range curve that range tables are made.
To make use of range tables when at practice the distance of the object almed at must be known, as it is according to its greater or less distance that elevation is given when firing.

RANGE FINDING.

The distance of an object may be ascertained by judging, which is very uncertaln for the long ranges of artillery, and also hy means of instruments, practice will'enable you to estimate distances pretty aecurately up to 600 or 700 yards, but when firing at objects over that range instruments should be used. A pocket sextant is the most portable and useful instrument for that purpose, and the ranges are found with it by means of tables, elther of natural tangents with right angled triangles or in oblique angled triangles, the principle of which is, by the proportion as one side is to the sine of its opposite angle, so is any other side to the sine of its opposite angle.
The following tables of natural tangente is glven as an example of the application of the above princlple to right angled triangles. The known side, as a bise, being 100 yards in length, or when long ranges are required, 200 yards, the result being of course doubled :-

Part III
patch at the angles to the on, these bars n. Apart from n of the piece his imperfect fing with no , by inclining , to throw the led at, and the he error. (Fig. of fire.
by means of er's quadrant. horizon, but ascertain the g arm is prolevation may
drant against er chamber of

Ion after each out the result here is a cer-
nutes of the e curve being ired with its of this range
stance of the its greater or

Ing, which is by means of tances pretty ects over that is the most he ranges are angents with the principle 3 of its oppoe angle. an example ed triangles. or when long se doubled:-

SEC. I
Practice of Gunnery.

If two Sextants are used it will facilitate the operation. Suppose A. X. to be the distance required, and A. B. the base, which must be carefully measured. Two men place themselves one at each end of tant at 90° moves A. having set the index of his sexor so only is generally requirk or forward (a pace or made to move until he is reflected man at B. is above the object X., the is reffected immediately
B. angles to A. X. The man at B. having set the at rlght
his sextint at zero, looks at A. through the clear glass, and moves the index screw until the olject A. Is reflected immedlately above the man at A., the index arm wili then indteate the number of degrees and minutes in the angle A. \mathbf{B}. \mathbf{X}. On reference to the tables opposite the angle thus obtained, will be found the distance A. X.

Example. - Suppose the base used to have been 100 yards, and the angle A. B. X. to have been 44 deg. 17 min ., the distance \mathbf{A}. \mathbf{X}. would be 1000 yds .

ONE EEXTANT WITHOUT TABLES.

If one Sertant only is used, it is set at 90° at A. A fishing reel measured in yards is stuck in the ground at A. by a spike screwed into the butt of a fishing rod or other pole to which the reel is fastened, the pole serving to mark the end of the base. The line is run 100 yds. Or any convenlent length by an assistant at right angles to A. X. The man at A. With Sextant corrects the man at B. getting him reflected over X. Sticks his sword or a lance in the gronnd at A. if no staft has been provided for the fishing reel, walks to B. and takes the angle when X. is reflected over B. Then without tables, distance A. B. in feet $\times 1150$ divlded by angle at \mathbf{X}. in minutes $=$ range in yds.
N. B. - Angle $\mathbf{X}=90$ - angle \mathbf{B}.
rougir rule for safe ranges.
Projectlles from rifled and S. B. guns with full service charge, ns a general rule, pass over the undermentioned distarses, on the sands at Shooburyness, before coming to rest.

	$1{ }^{\circ}$.	$5{ }^{\circ}$	10°.
Rifled Guns:			
¢ $\left(\begin{array}{l}7 \\ 8 \\ \text { inch...... }\end{array}\right.$			
4 $\left\{\begin{array}{l}8 \text { inch } \\ 9 \text { inch.................... } \\ 4\end{array}\right\}$	5,000 to 6,000 with batter-		
边 $\left.\begin{array}{c}8 \text { inch................. } \\ 13 \text { inch.............. }\end{array}\right\}$	Wing charges.	6,000	5,560
\&if 40 por......................	3,500	4,000	4,500
ค่ $\left\{\begin{array}{c}40 \\ 7 \\ \text { pornch................... }\end{array}\right\}$			
ゅ ¢ 4 por................... $\}$	4,000	4,500	5,000
Smooth-Bore :			
18 por...................... ${ }^{\text {] }}$			
${ }_{32}$ por........................ $^{\text {pre. }}$,	3,000	4;000	
8 Inch ${ }^{\text {a }}$	3,00	$4 ; 00$	3,500
68 por................	3,000	3,300	4,000
10 inch..........	3,000	3,500	3,500

Part $1 / I$

 , and moves the ately above the mber of degrees tables opposite A. \mathbf{X}.yards, and the ace A. X. would
shing reel meae screwed into eel is fastened, e llne is run 100 angles to \mathbf{A}. \mathbf{X}. getting him repund at A. If no 3. and takes the ables, ilistance $=$ range in yds.
rice charge, as tares, on the
10°.

5,500

4,500
5,000

3,500
4,000
3,500

SEc. I

> Practice of Gunnery.

Elongated projectlies fired from rifled guns with a right handed 500 tist ricochet to the right, the final grazo being often from 400 to 500 yards to the right of the line of fire.

IV.

shell firing.

In shell firing, as the fuzes burn a certaln length in a certain time, and as the shells to which the fuzes are alanted move a certain distance during a certaln time, the time of fight must be known in order that the fuzes be prepared so as to exploile the shells at the required distance.
A ready rule to determine the length of fuze for shell of S . B. and rified guns respectively will be given hereafter.
The fuze when used to explodecommon shell fired amongst tronps in masses, shonld be bored so that the shell will expicue a few feet before reaching the ground. If fired against houses or earthworks and the fuze should be to explode after having lodged in the object, When firing shrapnel shed long. would cause the shell to burst 20 to 80 vords be so prepared, that it column, a greater distance if in line yards short of the object. If a shell burst too soon (the fuze being se ox extended order, for if the part at least, of the bullets contained in the whole or the greater ground before reaching the obiect, in the shell will strike the of penetration, and if the shell passes the thus accuracy and power its effect as shrapnel will be lost. Common shell with exploding fuze makes effective practice, the fuze acting shell with percussion quire any adjustment.
But with shrapnel an
inferior to that made with preussion fuze the pratice is generally Wood time fuzes are apt shrapnel and time fuze. particularly if kept long in to burn more slowly than is intended length of fuze should be correct. After firing one or two rounds the It is generally possibe corrected from observation. the line and often the height the position of the gun to estimate tance at which it occurs. When firlngt of the shell, but not the dismonly arises from a too sanguine ing shrapnel, bad practice comthe appearance of the burst alone, partimate of effects, judging from fore be paid to any visible marks, particular attention should theresplashes will be seen; on ground of the bullets grazing. On water, ly scored marks and a sort of a haze prof dust; on ice very distinctoí ice fiying up; on wet or boggy ground uothing is particles visible. to more open formation for judging the effect of shere are then three points of observation foam or riffs of dust, and the object. point of rupture, the line of If fring with percussion the object.
impact quite near and in front of the shell must be made to burst on impact quite near and in front of the object, the effect of the hurst-

Ing enn readlly be judged in this case by the smoke earth, stones, ec., knocked up hy the splinters. In firing at an object, on a rocky site, the shells will be canted up or off; and the results on the object very uncertuin, somethines very destructive, at others just the reverse.If the oblect is on the slde of a hill, the shell will probably penetrate, should the ground be soft, or be dettected should it be rough or stony. In any brokon ground whatever or ancleared land, attampts to produce good effects by bursting snells ou impact will probnbly end in disappointment.

* The main purpose of shrapnel must be steadity kept in viewviz., with a shell of a certnin welght to cover any given aren with us powerful and effective a billet fire as possible, and thus to disable a large number of the enemy. To take an oxtreme case, for instance, we might suppose a battery, supplled with a solld shot of the Hame weight as its shrapnel, firlng at a slngle rank. Each projectile could disablp one man only; whereas it wlil be seen further on that a shrapnel, effectively burst with a time fuze, would account for from 19 to 23 . It is to this erucial test of numbers disabled that 0.11 practlce shonld be referred.
If the shrapnel shell of a fleld gun is burst lying at rest upon falrly level ground, the head and bullets will be found from 35 to 40 yds. to the front; the splinters, somie to the right, some to the left front, nearly as far forward; and the base blown 50 or 00 yds. to the rear. If the $16-\mathrm{pr}$. M. L. shrapnel is burst enclosed between four $9-\mathrm{ft}$. X 9 -ft.targets, the whole of the bullets and splinters wlll be found inside, and only two or three small dents will be visible on the targets. The same wlll be the case with the $9-\mathrm{pr}$. M. L., except that the dents will be hardly perceptible.
Any effect produced by the shell is therefore evidently not due to the bursting charge, which may be sald to have practically no accelerating and but very little disturbing tendency.
The destructive effect of the splinters and bullets-that of the latter being by far the most im portant of the two-is slmply due to the veloclty which the shell may have at the time it bursts, and which they, as component parts of It, retain. When the shell opens, they continue to travel forward with this veloelty, and would move in lines parallel to what would have been the trajectory of the shell if it had not burst, were it not for three causes:-

1. The dlsturblng effect. of the bursting charge.
2. The centrifugal force imparted by the rotation of the shell.
3. A loss of veloclty, greater than that which the shell in its original condition would have experienced, due to the difference of their form and welght.

* The following remarks are from the R. A. I. proce salings, by
njor S. J. Nicholson, R. H. A.

Part III
rth, stones, dec., 31 a rocky site, the object very the reverse.ably penetrate, rough or stony. tempts to prorobably end in
kept in viewven aren with thus to disable , case, for insolld shot of the Such projectile arther on that id account for sabled that o.ll
est upon fairly $m 35$ to 40 yds. the left front, Is. to the rear. n four $9-\mathrm{ft}$. \times will be found visible on the ., except that
tly not due to ractically no
-that of the simply due to t bursts, and ien the shell ty, and would trajectory of es:-
the shell. shell in its difference of
jee 3dings, by

Spe. 1

Practice of Gunnery.

These causes produce a cone of dispersion.

Cones of Dispersion.

It is evidont that since the veloct y nerotation remains very inuch the same, whereas the velocity y : tianimition sufters considerable dually inerease with the Increas, the cole of dispersion will graThe foilo
dispersion at rangey be suggeste to the porbable angles of cones of

$$
\begin{aligned}
& \begin{array}{l}
\text { Under } 500 \text { yards. } 7^{\circ} \\
500 \text { to } 1300
\end{array}{ }^{\circ} \quad \ldots . . .8^{\circ} \\
& 500 \text { to } 1300 \text { " } 1300 \text {........ } 8^{\circ} \\
& 1300 \text { to } 2000 \text { " } \quad \cdots \cdot . . .8^{8} 0^{\circ} \\
& \text { 4 } 12^{\text {ग }}
\end{aligned}
$$

be, speaking rotighly, as follows :-

$$
\begin{aligned}
& \text { For } 8^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdot 14 \text { of the length. } \\
& 9^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdot 15 \\
& 10^{\circ} \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

The following table may be of use; it represents the fronts eovered laterally by varlous cones at varlous lengths from the point of

TABLE A.
Length from Burst in Yards.

	YDS.	$\begin{gathered} 40 \\ \mathrm{YDS} . \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Y} \text { DS. } \end{gathered}$	80 YDS.	${ }_{\text {Y }}^{100}$	Y 120	Y 140	${ }_{\text {Y }}^{160}$	180 YDS.
	ft.	ft.	ft.	ft.	ft.	ft .	ft .	ft .	
	$8 \cdot 4$	16.8	25.2	$33 \cdot 6$	$42 \cdot 0$	50.4	58.	ft.	ft.
9°.	$9 \cdot 3$	$18 \cdot 6$	$27 \cdot 9$		46. 5	$50 \cdot 4$	58.8	$67 \cdot 2$	$75 \cdot 6$
10°.		18.0			46.5	$55 \cdot 8$	$65 \cdot 1$	$74 \cdot 4$	$83 \cdot 7$
	$10 \cdot 5$	$21 \cdot 0$	31.5	420	$52 \cdot 5$	63.0	$73 \cdot 5$	84.0	94.5

As a general rule, it would be quite near enouzh to say that for diamary ranges the cone of dispergion is from 8° to 9° and the diameter from $\cdot 14$ to $\cdot 15$ the length from burst of shell. 8° and the

Taking one of the angles just mentioned as those due to oralnary ranges-viz., 8°-the following will be the square yards of area in the cone at different lengths of burst:-

TABLE B.
Length of Burst in Yards.

	$\mathrm{Y}_{\text {Y }}^{20}$	$\begin{gathered} 40 \\ \text { YDS. } \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Y} \mathrm{DS} . \end{gathered}$	$\begin{gathered} 80 \\ \text { YDS. } \end{gathered}$	${\underset{Y}{D S} .}_{100}$	120	$\begin{aligned} & 140 \\ & \text { Y DS. } \end{aligned}$	$\begin{aligned} & 180 \\ & \text { Yids. } \end{aligned}$	YOS.	$\mathrm{Y}_{\mathrm{DS}}^{200}$
		$\underset{\text { y'rds }}{\text { sq. }}$	sq.	$\operatorname{sqq}_{\text {y'ds }}$	sq.	squs	$\left\|\begin{array}{c} \text { sq. } \\ \text { 'rds } \end{array}\right\|$	$\begin{gathered} 89 \\ y^{\prime} \mathbf{r d s}_{8} \end{gathered}$	$\mathrm{y}^{\mathrm{sq}} \mathrm{rd}$	$\sin ^{\prime} q_{\mathrm{rds}}$
	6	24	55	98	154	222	302	394	408	615

When a 9 por. M. L. shrapnel shell is burst at rest, the following is the average result:-

$$
\begin{aligned}
& \text { Spllnters, effeetive } \\
& \text { Bullets } \\
& \text { non-effectlve } \\
& \text { Bullets }
\end{aligned}
$$

The following will therefore be the number per square foot at the different areas, as above stated:-

TABLE C.
Length of Burst in Yards.

Guns.	$\begin{gathered} 20 \\ \mathrm{YDS} . \end{gathered}$	$\begin{gathered} 40 \\ \text { YDS. } \end{gathered}$	$\begin{gathered} 60 \\ \text { YDS. } \end{gathered}$	$\begin{gathered} 80 \\ \text { Yiss. } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { YDS. } \end{aligned}$	$\underset{\mathrm{YDS}}{120}$	$\begin{gathered} 140 \\ \text { YDS. } \end{gathered}$	$\begin{aligned} & 160 \\ & \mathbf{Y} \text { DS. } \end{aligned}$	$\stackrel{180}{\mathrm{Y} \mathrm{DS} .}$	$\xrightarrow{200}$
	$\begin{gathered} \text { per } \\ \text { sq. ft. } \end{gathered}$	per sq. ft.	$\operatorname{per}_{\text {sq. }}^{\text {st. }}$	$\begin{aligned} & \text { per } \\ & \text { sq. ft. } \end{aligned}$	$\left\lvert\, \begin{array}{c\|} \text { per } \\ \text { sq. ft. } \end{array}\right.$	per	per ${ }_{\text {sq. }}^{\text {per }}$	fer	per	per
9 por..	1.6	\cdots	$\cdot 15$	-1	-00	- 013	'08	${ }^{\circ} 04$	-02	-015
16 por..	$2 \cdot 5$. 62	$\cdot 26$	$\cdot 15$	$\cdot 1$	-07	-05	-01	. 03	$\cdot 021$

Part 111 te to ordilnary ds of area in

SEC. I Practice of Gunneiry.
My manuscript notes, papers, as well as books of reference on this subject having been destroyed by fire, the completiou of this this ject must be postponed for a second edition.

T. Blanjo Stiange, It.-Col., it. A.
I. of A., Canida.

V.

CURVED fire.

Although what has already been mentioned, is applicable in a great measure to curved as well as to direct flre, and curved fire has to a certain extent been lescribed and its advantages pointed has stlll it may be useful to allude to it specially and ages polnted out, to licochet fire as a variety of curved fire with and at the same time,
In ricochet fire the gun is lald at the erest shot from S. B. guns. work with an angle of elevation varying from the epaulment of a with a reduced charge, in order tharying from 5° to 10°, and fired the parapet and rebound on the other slde projectile may just clear than neeessary should be glven to the gun of it. No more elevatlon would rebound too high or penetrate gun, qtherwise the projectile cases more or less ineffective. A good plan when the exaet
firln; short of the parapet, and inge is unknown is to commence strikes a point as near the and increase the elevation till the shot
least. Increase of elevatlon will then of the parapet as possible; the
This ricochet fire carried on with attain the object.
by what is properly called curved fround shot, has been replaced By curved firc large shells with percussion rifed guns.
into works, exploding on graze and causing mores may be thrown ricochet.
damage than the
cover by means of common ago employed to dislodge troops behind and also in some cases to breach from S. B. guns and howitzers, Peninsula.)
. (Jones, Sieges of the
by the late Ordnanled on in November 1861 in Plumstead marshes Armstrong rifled guns could thmittee proved conclusively that charges, so as to have a cilsh, though fred with greatly reduced cision of direetion und uniformity of descent; still retaln a prea greater degree than S. B. guns, for silenge which adapted them, in pets or earthworks, and breeching sunkeng guns covered by paraPrevions experiments carried on at with one rifled 80 por., one 7 ineh and one 40 porne, in August, 1860 , loader, against a Mirtello tow and one 40 por. Armstrong breechcarried on at Bexhill, in November and a subsequent experiment pors. and two 32 pors, S. I3. runs, also the same year, with two 68 established the fact that the rilled agans and Martello tower; had 4
much work again as the S. R. g!ns with a greatly dimintshed expenditure of jowder and iron. The results stood as follows:-

	Iron.	Powder.
For rifled gims	2,02) lbs.	$511 \mathrm{hs}$.
Fors. B. gans.	0,651 "	3,72, "

The same proctice of breaching revetments, se., has been carrled onsineo with mazale-loudng rifled guns, with very satisfictory
In these days of long range, small arm breach loaders, breaching batteries, have to be opened at comadderable distances, and often in sueh positlons that they may be built and armed withont observathon: the gunners, therefire, babor mudre the disadvantage of not belng able to see the object of fire. The masonry of a fortress belng covered by the gheis the shell mast be made to lob over the cresi of the glacis or protecthor eomiter-muard. and strike the escarp wall sufficlently Low for the debris to form a practicable breach, Fig. fi and 8 . This means a curved trajectory, or a considerable angle of descent, necessitating high elevation and low final velnelty, combined of necessity, with Clminished penctration and aecuracy, demanding considerably more skill from the gumners than the old method of direct fire at short range.
For curved fire, the distance nithe batteries from the work being known forn the map or calculated by range finder, the required angle of descent must be ascertained hy construethom from the profiles of the fortress, and the amonnt of the eharge that will give such angle fonad from practice tables or calenlated. Some visible part of the work directly above or near the spot of the required breach is solected, and ared it with a glven nambur of rounds, to find the point of mean imparf, which is then transferred to the spot intended to breach, calculnting the decrease of elevation and the amount of deflection to the rlght or left. A horlaontal cut is first made in the masonry, about one third the height of the wa! from the bottom, Flge. 6 and 7.

When this cut is supposed to be effeeted by a sertes of shots, vertical cats upwards are then nuade from the extremities of the horizontal one, and Intermediate cuts nade untll the wall comes down, (Hig. 8), but this extreme theoretiral aceuraey is not obtalned in practice, especially whell the enmpletion of the first horizontal cut ean only be conjertured from ecrtain phonomena, viz.
lat. The eonenssion and explosion of a shell has thard, sharp sound, If it hits will: lanisoinry; on the nther hund, it has a hollow and faint simn I if it hit: masoiry elther wholly or part broken throurh; in thes latter rase the shell explanlag th the earth behind the wall.
chad. Fragments of stone are haried into the air as long as the masonry resists.

[^8] y satisfactory ers, breaching ; and often in hont observaantage of not fortrees behy over the cresi ae escarp wall ireach, Flg:. derable angle inal veloetty, and aceuracy, s than the old
e work being the required from the prowill give such e vlsible part ired breach is find the point it intended to anount of demade in the the bottom,
rles of shots, mities of the e wall comes not obtamed st horizontal viz.
hard, sharp ias a hollow part broken earth behind
flong as the
with cmerd \cdots mblishel

Fig. 7

BREACHING BY CURVED FIR

Fig, 8

6

VG BY CURVED FIRE

Sec. 1 .
3rd. Th above th masowry tise smok rises slon
R.IN
\qquad
10
12
15

10
12
15

10
12
15

10
12
15

The charges cork discs, an though they b fubricating th

Sec. 11 .
Pracice of Gunnery.
3 rd . The smoke from the explosion of the projectlle soon 51 above the wall, is of a bluish thage, and forms a "ball" fises the smoke appeins intact. If'the masonry has beon "ball" if the rises slowly, as if after some delay, is of a darkish broken through R.INGES OF $\mathbf{7}^{\prime \prime}$ B. L. GUN WITH 90 LBS. SHELL AND REDUCED CHARGES.

The charges were made up to the length cork dises, and had lubricators; the length of powder chamber with though they broke up, the grease these latter were of Ilttle use, for lubricating the bore, which got very foul. Went of the gun without
uscd. Sawdust or wood shavings wili answer when cork cannot be got, in this case the gun must be cleaned wlth a wet sponge or the grooves will clog and ignited sawdust may remain.

- VI,

Higif angle fire.
Under this new term as before stated, is comprised fire obtained from guns, mortars and howitzers, at all angles of elevation exceeding 15°, and the old term vertlcal fire is done away with.

Projectiles are generally fired from mortars elevated at an angle of 45°, thongh in some instances they have been fired from mortars at a smaller angle as will be seen by range tables given hereafter, at close ranges where penetration is desired, they are fired at higher angles than 45°.
The layling of a mortar so as to ensure a correct direction to the projectlle fired from it, is accomplished by means of a plummet which is held in the hand, immediately behind the mortar, and the string of which plummet is made to coincide with two pointing rods placed upon the pirapet, and elrected upon the object.

The mortar is then traversed till the centre line drawn with chalk on its highest surface coincides with the plummet string.

Sometimes when there is no parapet between the mortar and the object, or the object can be seen above the parapet, the mortar is laid on the object itself, by bringing the object, the line on the mortar and the string of the plummet in the same vertlcal plane.

Should the bed on which the mortar rests, be level, this line drawn on the surface of the mortar, will be in the same vertlcal plane as the axis of the mortar, but if the bed lnclines to the right or left, this line will no more colncide with the axls. To remeriy this another chalk line must be drawn on the highest surface of the mortar, readily found by means of a small level issued for the purpose.
If the platform is in good order and level the mortar may be laid by means of a line chalked on the platform, on each side of the bed, or by a batten of wood nalled to the platform and touching one side of the bed, when the mortar is accurately laid-a very useful expedient in night firing.

The elevation of the mortar being fixed, or generally so, no means are thus afforded of limiting or extending the range, except by reducing or increasing the charge of powder used. A ready ruie will hereafter be given to find the quantlty of powder necessary for given ranges.

The large mortars, viz., the 13,10 and 8 inch, are generally used to bombard towns, works, magazines, \&c., for this purpose the fuzes of their shell should be bored long, so that they may canse the shells to burst atter having penetrated the object to be destroyed, the shells act in those cases as mines at long ranges, mortar shells fall with the velocity due to their own welght, and practlcally the higher they fall from the more power of penetration they have.

ART Ill

innot be e or the
btained exceed-

1 at an ed from s glven hey are
the prot which e string splaced h chalk and the ortar is on the olane. drawn lane as or left, iy this of the for the be lald he bed, ne side 11 expe-
means y reduile will ary for
used to fizes of e ghells ed, the lls fall lly the tve.

Sec. I

I'ractice: of Gunnery.

The small natures of mortars, vis. 53 used to fire shell against troops be the $51 / 2$ fuch and $42-5$ ineh are therefore explode the instant they reach cover, the shells should before, for if they burst after hivey reach the ground, or a little splinters will fly upwards instead of sprenetrated the ground, their the destruetlve effect will, therefore, be aring low and on every slde; The following is a table of ranges, be greatly decreased. tars, viz: $51 / 2$ and $42-5$ inch at 155° elevationed from the small morusually found in treatise, \&c. 15° elevatlon, it is given as it is not

Small coehorn and royal mortars, viz., $51 /$ and $42-5$ inch mortors Were often attached to field batteries in india, carried four in it cart, with a belt of jungle wood attacking fortified villages surrounded fire. The 7 por. M. L. R. moupenetrable to direet or even eurved there is a battery in Canada, cand gun, used in Abyssinia, of which the wheels and reversing the bun used as mortars by taking off double shell with bursting charge equal to carriage. They fire a common shell. Thereare als have been used in China for finch mortars on travelling beds that Canada, and they will probiably be service, but there are none in and howitzers.

Riffed montars (28 inch riffed mortars, were used by the (iermans with eflect at the siege of sirishorg in lis70. were used by the Germans M. L. rifled $8^{\prime \prime}$ howitzers ure now in 1870 .
good results.
S. B. guns have alsu beon employed for high angle firing. At the slege of Gibraltar ore $1 s$ por: and five 32 pors angle firing. At the With timber at an ele vation of 42°, in order. Were sunk ind secured Gpanish camp and Artillery park. in order to fire shells into the

The following lables shew the results of practice carrica wilh different kinds of ordnance both at curval fol high angle fire:RANGES OBTAINED FROM RIFLED ORINANCE WITH REDUCED CHARGEN.

SEC.
diU:

ANET III fal wilh Hit:

WITH

$1: 40$
16iso
1010
2190
20100
$12: 0$
18iso
2320
2600
20.50
$\therefore 1(60$

10(6)
1060

SEC. I
RANGES ODVMINE
IREDUCFD CHARGEs.

THE NOLAOWING TABLE OF RICOCHETP PRACTICE，SHEW＇S FECT，AT DHFFERENT RANGES，WITH GUNS AND PRACTICE CARIIED ON AT WOOLWICH IBETWEEN THE

Nature．	$\begin{aligned} & \text { 岗 } \\ & \text { K } \\ & \text { 4 } \\ & \text { 4 } \end{aligned}$	$\begin{aligned} & \text { A. } \\ & \text { 心 } \\ & \text { 4 } \\ & \text { y } \end{aligned}$		花		$\begin{gathered} \text { E } \\ \text { y } \\ \text { en } \\ 0 \\ E \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			孚	IREMARKs
Iron Por．${ }_{\text {ft．}}$	$\begin{array}{\|} \overline{y d s} \\ 400 \end{array}$	$\left\|\begin{array}{cc} \operatorname{lbs} c z \\ 0 & 8 \end{array}\right\|$	48	11	15					
		$\begin{array}{ll}0 \\ 0 & 10 \\ 0 & 12\end{array}$	$381 / 2$	7：3／4	15	9	10	\％nearly		
	600	${ }^{0} 112$	32	$61 / 4$ 91	30）	${ }_{15}^{15}$	24		\ldots	
		10	24	61.	30	17	19	1／2 nearly		Work without
		14	18	43	10	6	7	$1 / 2{ }^{1 / 2}$		without
	800	10	21	81.	30	10	11	年		ses．
		$\begin{array}{ll}1 & 4 \\ 1 & 8\end{array}$	19	${ }_{61}^{61}{ }^{2}$	315	10	10			
					15	${ }_{6}^{9}$	11	${ }_{\text {2－5 }}^{2-5}$ nearly		
	600	012	32	912	20	7	5			，Work
		10	24	61／2	30	11	7		6	\} trave'ed.
${ }_{\text {Iron }} 88 \mathrm{Pror}$ ft		0	52	$61 / 2$	3）	23	27	\％nearly		
	600	012	21	7131	31）	8	11			Work
		10	18	5	30	10	13	，		without
	800	10	18	7	30	10	10			traver－
			$\stackrel{12}{21}$	41／4	30 30	10	13	1／is nearly		ses．
		10	18		30	18			$\begin{aligned} & 5 \\ & 9 \end{aligned}$	\} Work
		06	32	$61 /$	30	16				
		0 \％	21	$41 / 2$	30	20		\％${ }^{1}$ neary		Wo
	600	08	21	7．31	30	11		$11 / 2$ nearly		withou
		010	19	6	30	12		\％		
		012	16	$43 /$	5	2		2－5		ses．
	800	012	16	$6{ }^{1 / 2}$	30	7		1／4 nearly		
		10	12	41%	$3)$	15		$1 / 2$	\cdots	
		（88）				7	3		$\ddot{6}$	Work

9Por．
Field
Service
Bronze
68 Por
dar＇nad
21 Por．
lowtz＇r
12 Por，d

Recent

Alir Ill

SHLWS

\& AND
GN THE
:MARKs.

Work ithout raverses.

Work ave'ed.

Work rithout raverses. Work ave'ed.

Work ithout raverses.

SEC. I
Practice of Gunnery.
THE CHARGE, ELEVATION, TIME OF FLIGIIT ANI) 57 HOWITZERฯ, COLLECTED FIROM A SEIRINGIT, AND EFlitu JUNE AND THE 2wנ OCT, 182l, W SERIES OF RICOCHET

ROUGII RULES FOR GUNNER'.

Ordinary S. B. Guns.

Charge. -Up to $42 \mathrm{pr} .1 / 3$ weight of ghot. 56 and 68 por. $1 / 4$

Range.-P. B. $\left\{\begin{array}{l}\text { field guns, } 310 \text { yards. }\end{array}\right.$
garrison ghns, 100 yards.
Fvery thoup to iogice 100 yartis rango.

Fuze.-Substract 5 from range in hundreds for eommonthel', and 6for shrapnel shell.

Bursting Charge for Shrapnel Shell.-Multlply hlghest callhre ($\left(^{\prime \prime}\right.$) by 10 for chatre in drs. Redice by 10 for each calibre dator.
 18 por. 30 .

Iron Mortars

Charge. -4% times the hundreds of yarus in range plus $10=$ charge in ounces for the 13 Inch.

For 10 " 8 "
Fuze.-Adil 17 to the number of hance eds of yirls in range for tellthe of fize.

Tackles.

Power. - The number of returns from the movable block flyes the power gained.

Combinations - When one tack!e is put on to the running rnil of another, maltiply the powers together for the result; but frietion very much diminisines the.galn.

Rope for Blocks.-Levgtil of block, divided by 3, given kize of rope to tit.

Rified Guns.

B. L.-Charge, $1 / 8$ weight of projectile.

Range 7 -inch. -500 yards $=28$
Froin 509 in $16^{\circ} 0$ yarids lij for every lof yards

＇sist III
SEC． 1
tice of GuNvery．
in feet，multiniession．－For high eoast batterics．Height of bat tery gives ralge in yards． 150 ，divided by angle of depression in minnter：， Drflexion．－Error in inches，divided by hundreds of yards in rarge， One Wheel Hill minntes． level in inehes，mintipllenels tewards lowest wheel．Dlfference of deflexion towards highest by degrees of elevalion，gives required Garrison B．L．\＆M．L．Wheel，in minutes．
gives length of fize in tenilise，（9 and 20 Sec．）－ $2 / 3$ range in hundreds require l－10 fize．Furshrinmel cemmon shell ；or every 150 yz rets， Length of $1 .-$ To make inel， $1 / 2$ range in htindreds． weensights in inehes，divilled by in seale for any gon，length bet－ So of one dogrec in inches．of（year of Ibdtan Mutiny），gives rope Strength－Sulare of
，gives breaking strinin in of circumfercuce in inches，divded by Weight．－Square of cirmunt（nemply）．

$=$ charge
ange for
fres the x cmi of friction of repo
－Displacenent．－One crable of water

RANGE TABLES FOR ORDNANCE IN CHARGE OF CANADIAN MILITIA.
9 Por. M. I.. R. Rifled Ficld Guns.--Charge 1 lb .12 oz.

Range.	Elevation	Tentils of Fuze.	Range.	Elevation	Tentis of Fuze.
yards.	deg. min.		yards.	deg. min.	
100	0,0	0	1900	$4 \quad 18$	11.5
200	$0 \quad 6$	1	2000	440	12
300	$0 \quad 14$	$1 \cdot 5$	2100	$5 \quad 2$	13
400	$0 \quad 26$	2	2200	$5 \quad 24$	14
500	$0 \quad 39$	$2 \cdot 5$	2300	$5 \quad 47$	15
000	$0 \quad 52$	3	2400	6 it	16
700	15	$3 \cdot 5$	2500	6 34	$16 \cdot 5$
S00	18	4	2600	$6 \quad 59$	17
900	131	$4 \cdot 5$	2700	725	18
1000	144	5	2 SinO	$7 \quad 52$	19
1100	157	6	2900	$8 \quad 20$	20
1200	212	$6 \cdot 5$	3000	$8 \quad 48$	
1300	288	7	3100	$9 \quad 18$	
1400	245	8	3200	$9 \quad 49$	
1500	32	$8 \cdot 5$	33800	$10 \quad 21$	
1600	320	$9 \cdot 5$	3100	$10 \quad 53$	
1700	. 3 38	10	320	1127	
1800	3 58	11			

?AK'T III
CANA-
z.

Tenthes
F Fuze.
$11 \cdot 5$

SICC I.
Practice of Gunneri. RANGE TABLES.-(Continued.)
7 Por. M. L. R. Field and Mountain Guns, (Bronze.) Charge, 10 oz. Weight $22 i$ lbs.

R.1 NGE TABLE FOR RIFLED FIEL,D GUNS.

6 por. Armstrong, B. L. R.

Distance of opject.		$\text { LHDITA } 50 \text { GKIL }$		
Y'Is.	deg. m.	sec.	inches.	
200	9	-58	$\cdot 27$	Length of bore, $y^{\prime \prime} 5^{\prime \prime}$.
300	2)	$\cdot 86$	- 10	Catibre, ${ }^{\text {a }} 5^{\prime \prime}$, ${ }^{\text {a }}$
400	31	$1 \cdot 2$. 56	Weight, 3 ewt.
510	53	$1 \cdot 51$	76	Charge, 22 ozs.
600	11.5	$1 \cdot 92$. 92	No. ot grooves, 32.
700	$\begin{array}{ll}1 & 35 \\ 1 & 50\end{array}$	2.30	106	Twist of rifling, 1 turn in 30 callbres.
800 900		$2 \cdot 65$ $3 \cdot 00$	1.21 1.38	Eice, time fuze (only issued for sea ser-
1900	[210	$\stackrel{3}{3 \cdot 36}$	1.38 1.51	vice,) burns at the rate of $1^{\prime \prime}$ in 218 seconds.
1100	3	$3 \cdot 73$	1.71	The time of flight can be olftained
1240	3 22	$4 \cdot 10$	1.90	
1330	341	$4 \cdot 47$	$2 \cdot 05$	approximately by dividing the nom-
1100	$4{ }^{4} 6$	4.83)	2.21	and the length of fuze (E time) by
1.510	429	$5 \cdot 20$	$2 \cdot 39$	dividing the number of hundreds of
1600 1700	453	$5 \cdot 60$	$2 \cdot 57$	yards range by 6 .
1700 1800	5 19 5 19	6.00 6.40	2.75 2.91	
1900	610	6.73	3.11	Rough Rule for Elevation.
2000	$6{ }_{6}^{6} 3$	$7 \cdot 29$	$3 \cdot 30$	500 yards, 55^{\prime}.
2100	7	$7 \cdot 60$	$3 \cdot 49$	500 to 1000 yards add 20 for each hun.
2230	78	8.02	$3 \cdot 67$	dred yards.
2300 2100	$\begin{array}{ll}7 & 52 \\ 8 & 115 \\ 8\end{array}$	$8 \cdot 16$ 8.90	$3 \cdot 84$ 4.05	1000 to $1500 \mathrm{ycds}$. , $2 \mathrm{dd} 222^{\prime}$ for each 100 y ds.
2.50	841	$9 \cdot 32$		
2100	96	$9 \cdot 80$		Example by above rule:-
2701	933	19:3)		500 yards, Ej'.
289010	${ }^{9} \quad 59$	10.78		1000 yards, $5{ }^{\prime}+100 \cdot=235 \%$
3400	$\begin{array}{ll}10 & 20 \\ 10 & 53\end{array}$	11.80		1504 yards, $2^{\prime} 35^{\prime}+1^{\circ} 50^{\prime}=1^{\circ} 25^{\prime}$. 200 , yards, $1^{3} 25^{\prime}+2^{3} 5^{\prime}=6^{\prime} 30^{\prime \prime}$

SEc. I.
Practice of Gunners.
RANGE TABLES.-(Continued.)
6 Por. S. B. Bronze Field Giun. - Charge, 1 1b. 8 ozs. - Weight, if ewt.

RANGE TABLES.-(Continued.)

9 Por. S. B. Fieid Guns (Bronze.)-Charge 3 Ibs.-Weight, $131 / 2$ ewt.

12 Pc

SOLI

Deg.
P. I3. 1

11/4
11/2
1114
2
21/4
21/2
23/4
3

Part III
$131 / 2 \mathrm{cwt}$.
ocheter.

$\begin{aligned} & \text { 世 } \\ & \text { 5 } \\ & 4 \\ & \text { 4 } \end{aligned}$	
	yds.
	500
	500
	500
	600
	600
	600

SEC: I
Practice of Gunners. RANGE TABLAES.-(Continued.)
I2 Por. S. B. Fleld Guns (Bronze.)-Charge, 4 ibs -Weight, 18 cwt.

Practice of Gunneiry.
Part III

RANGE TABLES.-(Continued.)

24 Por. S. B. Bronze Howitzer.-Charge, $21 / 2 \mathrm{lbs},-$ Weight, $121 / 2$ cwt.

10 Inch Howltzer.

SEC. I
Practice of Gunnery. RANGE TABLES.-(Continued.) 18 Por. Garrison S. B. Gun. -38 or 42 Cwts. Charge, 6 lbs.

Practice of Gunnery.
Part IIl
RANGE TABLES.-(Continued.)
21 Por. Garrison S. B. Gun. -50 and 48 Cwt.
Charge, 8 Ibs.

Range.	Silot and shrapnel Siiell.		Common Shell.	
	Elevation.	Fuze.	Elevation.	Fuze.
yards.	Deg.	Inches.	Deg.	Inches.
300				
400 500	P. B.		P. B.	
500 600	$1 / 1 /$		1/8	
760	3		1/1	
800	$1{ }^{1}$	'2	3/4	
900	11/4	$\cdot 3$	$1^{1 / 4}$	$\cdot 2$
1000	13/4	.4	1112	$\cdot 3$
1100 1200	${ }_{2}^{2}$	$\cdot 5$	2	$\cdot 4$
1200 1300	$21 / 4$.6	$21 / 3$	$\cdot 5$
1300	21/3	$\cdot 78$	${ }_{3}^{23} 4$	$\cdot 6$
1500	8	- 9	$3{ }^{31 / 2}$. 9
1600	$31 / 2$	$1 \cdot 0$	4	1.0
1700	41		41/2	1.1
1800 1900	$41 / 2$		5	$1 \cdot 2$
1900 2000	5 6		6	$1 \cdot 3$
2000 2100	6		7	1.4
22200	8		$\stackrel{+}{9}$	1.6 1.8
2300	9 10			1.8
2400	10			2.0

Pait III
Ste 1.
Practice of Gunnery.
RANGE TABLES.-(Continued.)
32 Por. Garrison S. B. Gun. -56 Cwt.
Charge. 10 lbs.

IELL.

Fuze.
nches.

Pracfice of Gunnery.
Part 111
RANGE TABLFS. - (Continued.)
42 Por. Garrison S. B. Gun. - 67 Cwt.
Charge, $101 / 2$ lbs.

Range.	Shot and Shrapnel Shell.		Common Shell.	
	Elevation.	Fuze.	Elevation.	Fuze.
Yards.	Deg.	Inches.	Deg.	Inches.
400	P. 13.			
EiN)				
600	$1 / 4$	$\cdot 2$$\cdot 2$	1/4	$\cdot 2$
700 800	1/3			
800 900	$1{ }^{3 / 4}$	$\stackrel{3}{\cdot 3}$	$1 / 4$	$\cdot 3$
1000	$13 / 8$	$\cdot 4$	$1{ }^{4}$	4
1100	$13 / 4$		$13 /$.4 .5
1200	${ }_{2}^{1 / 4}$	$\cdot .5$	13/8/4	$\cdot 6$
13300 1400	$23 / 3$	${ }^{\cdot 6}$	221/2	
1500	3^{23}			.6 .7
1600	$331 /$.8 .9	3	-8
1700	$33 / 4$	1.0	$31 / 2$	-9
1800	4		$4{ }^{41 / 2}$	$1 \cdot 0$
1800	41/2		$5_{5}^{1 / 2}$	$1 \cdot 1$
2100	$51 / 2$		$51 / 2$	1.3
2200	$6^{1 / 2}$		${ }_{611}^{61}$	$1 \cdot 4$
2300	61/2			1.5
240	$7^{1 / 2}$			$1 \cdot 6$
2500	$71 / 2$		71/2	$1 \cdot 7$
2600 2700	8_{8}		910	$1 \cdot 9$$2 \cdot 0$
	8			

Sec: I.
Practice of Gunnery.
RANGE TABLES.-(Continued.)
56 Por. Garrison S. B. Gun.--98 and 87 cwt.

Fuze.

Inches.

Practice of Gunnery.
Part III
RANGE TABLES.-(Continucd.)
8 Inch Garrison S. B. Gan.-65 Cwt. Charge, 10 lbs.

Range.	Hollow Shot and Sifrapnel Sifell		Common Sifell.	
	Elevation.	Fuze.	Elevation.	Fuze.
Yards.	Deg.	Inches.	Deg.	Inches.
400	1/34		1/4	
5010	$1^{1 / 4}$		$1 / 3$	$\cdot 2$
$16(10)$	$11 / 4$	$\stackrel{\cdot}{2}$	1/4	-2
$7(0)$	$11 / 9$	$\stackrel{3}{3}$	1	$\cdot 3$
S (1) $!(N)$	$13 / 8$	$\cdot 4$	$11 /$	'3
(NM)	2	$\cdot 5$	$11 / 3$	$\cdot 4$
11^{10}	$21 / 4$	$\stackrel{6}{6}$	$2^{1 / 4}$	$\stackrel{.5}{.6}$
120	23/4	$\cdot 7$	23/6	$\cdot 7$
13300	$3{ }^{3 / 4}$. 78	$23 / 4$	- 8
14(N)	83/3/	-88	3	$\cdot 9$
$1510)$	$33 / 1$	8	$31 / 2$	10
1610	$4{ }^{1 / 2}$	1.6	4	$1 \cdot 1$
1700	43/8	1.0 1.0	412	$1 \cdot 2$
1800	93\%	$1 \cdot 1$	5	$1 \cdot 3$
1990	5		$51 / 2$	1.4
2030 2100	$51 / 2$		6 61	1.5
$22(1)$	$61 / 2$		7^{2}	1.6
23100	$7{ }^{1 / 2}$		8	1.8
2400	8		9	1.9
$25 \mathrm{k})$	9		10	$2 \cdot 0$
$2(1)$	10			

IELI.

Fuze.

Inches.

SEC. II.
Practice of Gunnery.
RANGE TABLES.-(Continuctl.) 68 Por. Garrison S. B. Guns, -95 Cwt . Charge, 16 lbs.

Practice of Gunnery.
Pakt III
RANGE TABLES.-(Continued.)
64 Por. Garrison IR. M. L. Converted Guns of 58 Cwt.-Charge, 8 Lbs., R. L. G. Powder.-Projectlle, Common Shell.

Mean Elevation due to each 100 yards of Range by Interpolation.

		'LHOITH HO GKIL		Distance of Object.		-LIIDITA AO GICIL	
Yds.	deg. m.	sec.	inches.	Yds.	deg. m.	sec.	
100 200	10	$\cdot 25$	-05			$6 \cdot 16$	
300	21	- 50	$\cdot 10$	2200	5 5	$6 \cdot 10$ 6.51	$1 \cdot 40$ 1.50
400	43	1.02	-15	2300	$\begin{array}{ll}5 & 25\end{array}$	$6 \cdot 87$	$1 \cdot 6$
500	- 55	1.29	. 30	2400 2500	$\begin{array}{ll}5 & 44 \\ 6 & 4\end{array}$	$7 \cdot 23$	$1 \cdot 65$
600	17	$1 \cdot 57$	$\cdot 30$	2500 2600	${ }_{6}^{6} 4$	$7 \cdot 59$	$1 \cdot 75$
700	119	$1 \cdot 86$. 35	2600 2700	$\begin{array}{ll}6 & 24 \\ 6 & 45\end{array}$	$7 \cdot 96$	1.
800	132	$2 \cdot 15$	$\cdot 50$	2700 2800	$\begin{array}{ll}6 & 45 \\ 7 & 6\end{array}$	$8 \cdot 32$	1.0
900	145	$2 \cdot 42$	-55	2800 2900	$\begin{array}{rr}7 & 6 \\ 7 & 8\end{array}$	8.70	$2 \cdot 00$
1000	158	$2 \cdot 72$	-60	3000	$\begin{array}{ll}7 & 28 \\ 7 & 511\end{array}$	$9 \cdot 09$ $9 \cdot 47$	
1100	$\begin{array}{ll}2 & 12 \\ 2\end{array}$	${ }^{2} \cdot 99$	-70	3100	7 511 8 13	9.47 9.97	
13200	$\begin{array}{ll}2 & 26 \\ 2\end{array}$	$3 \cdot 29$	-75	3200	8 8 8 136	$9 \cdot 37$ $10 \cdot 27$	
1400	2 2	$3 \cdot 58$ $3 \cdot 89$. 80	3300	9	$10 \cdot 68$	
1500	$\begin{array}{ll}3 & 50 \\ 3 & 10\end{array}$	$3 \cdot 89$ $4 \cdot 20$. 90	3100 3500	924	11.09	
1600	3 3	$4 \cdot 51$	1.05	3500 3600	$\begin{array}{rr}9 & 49 \\ 10 & 14\end{array}$	11.51	
1700	3.41	4.81 4.81	1.05 1.10	3600 3700	$10 \quad 14$	11.93	
1800	357	$5 \cdot 15$	$1 \cdot 20$	${ }_{3800}$			
1900	414	$5 \cdot 48$	$1 \cdot 25$	3900 3900			
2000	431	$5 \cdot 82$	1.35	3900 4000			

Pakt III
-Charge, 8 ell.
rpolation.

SEC. 1
Practice of Gunnery. RANGE TABLEA.-(Continued.)
7 Inch Wrought-iron Garrison Rified B. I. Guns of 8' Cwt. - Churge,
11 Libs.-Common Shill, 90 Idbs.
Mean Ele vation due to each 100 yards of lange by interpolation.

> RANGE TABLES.-(Continued.)

40 Por. IB. L. Gun.-Charge, 5 Libs.-Projectile, Common Shell.

Mean Elevation due to each 100 yards of Range.

Part III

a Shell.
SEC. I
Practice of Gunnery.
IUANGE TABLES.-(Continued.)
Mortars, 45 Degrees.

inches.
$1 \cdot 35$
$1 \cdot 40$ $1 \cdot 45$
$1 \cdot 55$
$1 \cdot 60$
$1 \cdot 70$
$1 \cdot 75$
1.85
1.90
2.00
$2 \cdot 10$
$2 \cdot 20$
$2 \cdot 25$
$2 \cdot 30$
$2 \cdot 40$
$2 \cdot 50$
$2 \cdot 60$
$2 \cdot 70$
$2 \cdot 75$
$2 \cdot 85$

Range.	13 Inch.			10 INCH .		8 Incii.	
	Charge.		Fuze.	Charge.	Fuze.	Charge.	FUZE.
Yards.	Libs. ozs.		Inch.	Lbs. ozs.	Inch.	Lhbs. oz. dr.	Inch.
400		112	1.8				
450 50		1 ll	1.9	$\begin{array}{ll}0 & 15 \\ 1 & 0\end{array}$	1.8 1.9	$\begin{array}{lll}0 & 9 & 8 \\ 0 & 0 & \end{array}$	18
550			$2 \cdot 0$ 2.1	$1{ }^{1}$	$2 \cdot 0$	$\begin{array}{ccc}0 & 9 & 12 \\ 0 & 10 & 12\end{array}$	1.9
600		2 2	$\stackrel{2}{2 \cdot 1}$	13	$2 \cdot 1$	$\begin{array}{ccc}0 & 10 & 12 \\ 0 & 12 & 12\end{array}$	$2 \cdot 0$
650		$2{ }_{2}^{2} 7$	$2 \cdot 2$ 2.3	1 41/2	$2 \cdot 2$	$\begin{array}{ccc}0 & 12 & 8 \\ 0 & 13 & 12\end{array}$	$2 \cdot 1$
700		29	$2 \cdot 3$ 2.4	$1{ }_{1} 6$	$2 \cdot 3$	$\begin{array}{lll}0 & 13 & 12 \\ 0 & 14 & 10\end{array}$	$\stackrel{2}{2} \cdot 1$
750		2 111/	$2 \cdot 45$	$1{ }^{71}$	$2 \cdot 4$	$\begin{array}{llll}0 & 15 & 10\end{array}$	$2 \cdot 3$
800		$2{ }_{2} 1131 / 2$	$2 \cdot 5$	18	$2 \cdot 45$	$\begin{array}{llll}0 & 15 & 4 \\ 1 & 15\end{array}$	$2 \cdot 4$
850		$3 \quad 1{ }^{3}$	$2 \cdot 5$	10^{-2}	2.5	$\begin{array}{llll}1 & 0 & 10\end{array}$	$2 \cdot 6$
900		32	$2 \cdot 6$	11	$2 \cdot 55$	$\begin{array}{llll}1 & 1 & 10\end{array}$	${ }_{3}^{20} 5$
950		3	265		${ }^{2} \cdot 6$	$\begin{array}{lll}1 & 2 & 4 \\ 1 & 2 & \end{array}$	- 6
1000		37	$2 \cdot 7$	$\begin{array}{ll}1 & 13 \\ 1 & 14\end{array}$	265	$\begin{array}{lll}1 & 2 & 12\end{array}$	${ }_{2} 8$
1050		3	2.75	$\begin{array}{ll}1 & 14 \\ 2 & 0\end{array}$	2.7	$\begin{array}{lll}1 & 2 & 12 \\ 1 & 3 & 8\end{array}$	27
1100	3	11	$2 \cdot 8$	${ }_{2}{ }^{1}$	$2 \cdot 75$	$1 \begin{array}{lll}1 & 4 & 0\end{array}$	$2 \cdot 76$
1150	3	14	$2 \cdot 85$	${ }_{2}^{2} \quad 11$	$2 \cdot 8$	$1 \begin{array}{lll}1 & 4 & 12\end{array}$	28
1200	4	0	$2 \cdot 9$	2	$2 \cdot 85$	$1{ }^{1} 515$	$\stackrel{4}{2} 5$
1300	4	5	30		$2 \cdot 9$ $3 \cdot 0$	160	2.9
1500 1700	4	11	$3 \cdot 2$	$3{ }^{2} 10{ }^{1 / 2}$	$3 \cdot 0$ $3 \cdot 2$		
1700 2000	5	10	$3 \cdot 4$	$\begin{array}{ll}3 & \\ 3 & 4\end{array}$	$3 \cdot 2$ $3 \cdot 4$		
2400 2900	9	0		40		200	

RANGE TABLES.-(Continued.)

Mortars at 43 degrees.

$\begin{gathered} 4.4 \\ \text { 2 } \\ \text { H } \\ \text { Z } \end{gathered}$			Elevation.					
68 por.	Cwt.	LIJs.		$1{ }^{\circ}$	2	$3{ }^{3}$	4°	5°
		5	$1 / 2$ 270	500		910		
42 por.	122	5%		650	880	1000	1100	1280
	17	213	280	510	780	940	1040	1180
32 por.	17)	243	220	380	600	800	975	1170
24 por.	13	$2 \cdot$	200	480	830	900	970	1080
$1{ }^{16}$	10	$11 / 2$	180	430 400	680	820	030	1090
12 "	18	$1^{1 / 2}$	180	400 360	640 510	770	900	1030
				360	510	730	850	020

Pant III

LAss.
FUZE.
Inch.
1.5
1.65
1.6 .6
1.7
1.75
1.8
1.85
1.9
1.9 .9
2.0
2.1
2.2
2.3

INDEX.

TEOHNICAL Page.
TACTICAL 11
DISCIPLINARY 41
SCIENTIFIC 169
SECTION I.-TECHNLCAS.
Gon, USPor. M. L. Rided., Description of. Amuditition 11
Chells. \{ Common, 64 64 13
Shot, Case, 13
Cartridges. \{Service, 14 16
Perc. Royal
Perc. Royal
Fuzes, $\{$ Perc. Royal Labt'y, 16
Fazed, Time. $\left\{\begin{array}{l}9 \text { seconds, } \\ 5 \\ \text { seconds, }\end{array}\right.$ 17 17
Tubes. $\left\{\begin{array}{l}\text { Copper iriction, } \\ \text { Oommon Quill, } \\ \text { Paper or Dut }\end{array}\right.$ 18
Paper or Dutch, 20
Primers. $\left\{\begin{array}{l}\text { Shrapnel Shell, } \\ \text { Gun Cotton }\end{array}\right.$ 21 22 22
Portfires.. \{ Common,
Portfires.. \{ Common, 22
Match ... Quick, or Slow Match ... Quick, 23
Fuze-hole plow, 23
23
23
Wad, Papier mache, 24 24
Carriage, 9 Por. R. M. L. Gun, Deseription of 25
Limber and Wagon, 9 Por. Gun Desiption of Sleigh Carriages barkiages. of packing ${ }_{27}^{27}$
RUisfs for Comiretitive Practice. Page
stelection of marksmen. 31
Prizes 32
Drlvers 33
Practice 33
Order of Firing 3.1
Ramge Ollacer 35 35
Pofints 35
Marker at Battery 36
Porcussion ruma :6
Time luze 38
Mortars 36
Time 37
Ties. 37
Superintending orincer 37
Drill 38
The target 88
Rango 38
SECTION II.-TACTICAL
DEFINITIONS
DrIIs, kinds of 41
Preliminary remarks $4 B$
Explanation of terms 47
Elevation, to adjust scale for 48
To Liay a Gúun
Fixed objects, firing at 49
Moving objects, 49
Deflection, to adjust scaile for 50
Judging distauces. 50Standing Gun Drill
Telling off 51
51
Unlmbering or comiug hinto action
52
52
Limbering up
Limbering up [3
Pqsition and general duties
54
54
Loading 55
Unloading 55
Cease firlng 58
Positions of Detachments 58In order of mareh
In front 5.9
In rear 89
Right or left 59
Mounted 51
To mount 59
To Dismolint 60

Page
31
32
33
33
3.1

35
35
36
36
38
36
37

Lndex.

Order of march from left from Detachm

Drag Ropes, Exereises with

Drag Ropes, Exereises with

Drag Ropes, Exereises with
Cifange of Positions of
Cifange of Positions of
Cifange of Positions of page. page. page.
Order of martions of Detachments:
Order of martions of Detachments:
Order of martions of Detachments:
Detachment rear from detachment rear.
Detachment rear from detachment rear.
Detachment rear from detachment rear. "Went rear from Order of inareh "Went rear from Order of inareh "Went rear from Order of inareh iii iii iii 61 61 61 61
Detachment rear from Detachmenteft 61 62
Order of m front from Order of maright or left
Order of m front from Order of maright or left 62 62
Detar of march from Detachm march 63 63
Chaehment rear from Detarment front
63
63
Changing rounds 63
Morvmiva and 64
To dismouut ginmond carriagield Ordnance : 61
To mount gun and carriage
65
65
Disabled Ordnance: 66Replacing a damce:
Exchanging gun aged wheel
Silifting shafts............ 67
Putting on drag shoo 69 69
Moving prsabled Ordnanca: Gun without a Ordnances: 70
Gun with wagon carriage disabled
70
Gun axletree arm broken
Drag ropes, exercise with partialiy disabiod 72 72
Advancing withont with 73
Prolonge, use of....... 74
Sleigit Drile 74
Hooking in. 74
1'osts of detachincout
76
76
Prepare to mount
77
77
Coming into action
Coming into action 77 77
Marching order
78
78
Movements 78
Foot Drile: 78
Foot parade 79
Saluting
General Ins 80
Groomins..... 80
 81
81
81
nisposal or haruess in c...................... h7
Generar Instrygtions for Drivbis.-(Continued.) Harnessing 85
Hankets 90
Carrying a leed 90
Hooking in 90
Equitation :
Introductory Remarks. 02
Open Manege
02
02
Preparatory Instructions 13
Saddling when not in Dranght 93
Briding a Horse not in Draught
93
93
Leading the Horse 03
Monnting with Stirrups 9.4
To Mount on the Offiside 95
To Dismount Ofr Side 96
Mounting and Dismounting without Stirruns 96
Position Mounted-with Rein in each Hand 94
Position of Bridle-Hand with the Blt
98
98
Dressing 98
Leaping 106
Filing In and Out of Stables 107
Mounting with Harness Brldles 107
Sit-at-Ease
107
107
Dismounting with Harness Bridles
107
107
Stand-at-Ease 107
Saluting when Mounted 108
TIIE SWORD:
Preparatory Sword Drill on Foot 101
Dismissing a Battery off Parade
102
102
Sword when Mounted 102
Rules for Markers 103
Officer's salute
$10 \pm$
$10 \pm$
Sword arm Signals
104
104
Sights and Sounds 105
Driving Generatify:
Moving Oft from a Halt 109
Halting or Pulling Up. 109
Alteration of Pace
110
110
Taking Ground
110
110
Reversing 111
Inclining 111
Aetion 111
Limbering Up 112
Wheeling and Shoulders Forvard
112
112
Intervats and Distances 113
Frontage 113
Distances
113
113
Depthes 11.1
IARADE
Index.
Turning out 「
Telling offand proving a battery
115
Posts of befteers brigade Commoncers and mounted N. C. ofliliery 115
Commands and signals 116
RULES FOR MAREERS : 116
GeneralRattery.
Brigade of Batteries
Dressing. 119 120
Mangeuvres: 120
Prellminary observations 121
Carrying gun detacliments Column from line 123
Change front
124
124
Echelion
125
125
Change of front and position 125
Column 126
Action 126
Field Mantedvres : 127
Formation of a I27 I27
Explanation of the firnattery
Explanation of the firnattery 129
Line changes of front for action 180
Line changes of front in action 181
2.- Change front right for action 131 132 132
3.-Change front right for action
3.-Change front right for action
3.-Change front right for action
4. m-Change front three quarters on centre gun 132
action. 5.-Change front threo................... or quarter right fortion on centre gun........... half or quarter right for ac. 131
6.-Change frontre gun.........................131
back for action 134
7.-From line to advance.
135
9.-From line to retire
135
135
10.-From line to incline ground to a flank 136
11.-From line to diminis 136
12.-In linc to diminish intervais (orease) intervals on the move. 136
13.-From line to advance in column of aivancing 138 flank......... advance in column of subdivisions from..... 13714,-From line to advain.....................................15.-From line to advance in column of divisions from a fion. 1flank...... advance in echellon of subdivisions fromk. 13717.-From ine to advance in double of divions from a a flank. ${ }^{137}$from the centre.. From line to retire in colions.138138139
Field Movemente,-(Continucd.)
10.- From line to retire by alternate divisions in action from a flunk
139
139
20 . In line to change front to the rear 139
21.-In line to change front to the rear when at diminished intervals
$1: 40$
$1: 40$
22.-To reverse n battery in ilne when at ciminished intervals 140
23.-1n line limbered up to change front on a tiank sub-division 141
21.-In line limbered up to change front right back 141
25.-In line limbered up to change front left back 142
20.-In line limbered up to change front on a centrail sub. division
142
142
27.- [n line limbered up to chango front for action 143
28.-From line-A battery in echolion of divisions to change its front wien in action 143
20,-From liue to chango position to a flank 143
30.-From line to change position by throwing buck a fiank 144
31.-In line to form column of divisions in rear of a flank 144
32.- Column of divisions in rear of the left 145
38.-Ad vancing in line close intervais, line to the right for action right or left
145
145
34.-In line to break iuto column of divisions to a fank 145
Movemients from Column :
35.- From column of route to form column of divisions 148
86.-From column of divlsions to advance in column of route. 146
37.-From column of divisions to wheel intoline
147
147
38.- Vrom column of divisions to form line on the leading divi- 147
39.-From column of divisions to torm line on the rear divi- sion 148
40.-From column of divisions to form lino to the rearon the rear division 148
41.-Rotiring in column of divisions to form ine on the leading division for action rear. 149
42.- Changing the order of a column
149
149
43.-To countermarch a column of divisions. 149
44.-Advancing by double column of subdivisions from the centre--Right and left of the front form line 149
45.-Advancing in double column of subdivisions from the centre, ilne rlgiti or left for action
150
150
40.-From column of divisions or subdivisions line right or left on the leading division or subdivision for action.
150
150
17.-A battery in lime in action as a rear guard defending a bridge or defle, retiring from both flanks alternately 150
Inhpection of a Battery 161
March past, close interval.
151
151
Trot past 152
Gallop past. 152
d LEATLNG AND PRESERVATION OF IMARNESS 153

Index.
vII
Accidents in the Fielib
Upsetting angle of wheels 154
Obstacles $1: 5$
Passage of rivers
156
156
Mode of swimming a horse. 1.23
 157
livisional Arthllery........................
Instances of close action 1.58
Fire discipline 158
163
The Commander of the Artillery
Artillery organization 164
SECTION III.-DISCIPLINE.Offlcersin general
Officers commanding bätteries. 1
5
5
Officers on duty
6
6
The Adjutant 8
10
 Veterlnary Surgeon or Farrler Sergeant 15
Shoeing smith or Farrler of Field Artillery
Master Gunier 16 16
17
Battery Sergeant-Majör
17
17
Orderly Room and Commandañ's cier.i. 18
Nos. 1 or Non-Commissioned officer or Provost Sërgeant 19 19
Mr,unted orderlles
Mr,unted orderlles 19 19
 22
Stable duties
Stable duties 22
24
Parades.
25
25
Orders for stable guärd
26
26
Guards and prisoners
27
27
Orders for the march
27
27
Instructions for billeting.
27
27
 $2 y$SECTION IV.-SCIENTIFIC.
Principles of Gunnery:
Definitions
Propelling forceπ
Resisting forces
sir resistance. 5

SECTION IV.-SCIENTIFIC.-(Continued.)

Principles of GUNNeRY 11
Deviation of Rified Projectiles 16
Penetration of Projectiles
18
18
Calculation of tinal velocity
20
20
Armor plate penetration 21
Definitions
CONSTRUCTION OF ORDNANCE : 27
Smooth bored ordnance. 30
Sights for S. B. ordnance 31
Rule for length of degree on tangent scale
31
31
Sighting B. B. Ordnance 30
Copper venting 31
Ritied ordnance
Practice of Gunniry: 37
Definitions 38
Direct fire 88
Curved fire 38
High angle fire
40
40
Lsying guns and Howitzers 41
Sights of S. B. guns 41
Sights of rified guns 42
Range finding. 45
Shell firing 49
Curved fire
Curved fire 52 52
High angle fire 58
Rough rules for gunners
60
Range Tabicis for Guns of Canadian Militia: Range table for 9 Por. R. M, \mathcal{L}_{0} gun
61
61 7 (7 B. L. R gun, (Ärmstrong) 62
6
6
$16 . \quad 66$ 6. is S. B. gun, (Bronze) 68 68
" 11 64 64
12 " S. B. Howitzers, (Bronze). 65 65
18 "S. B. gun, (iron) 67
16 ${ }_{24}$ is S. B. gun, (1ro 68
${ }_{32}$ " " " "
${ }_{32}$ " " " " 69 69
46 70
$\begin{array}{llll}42 & \text { " } & \text { " } & \text { " } \\ 56 & \text { " } & \text { " }\end{array}$
16^{5} 14
ginch 72 72
68 por. ". M. L., (converted) 73
64 inch B. L. R., (Armsitrong) 74
76
40 por.
Moriars
Moriars 77 77
Carronades 78

PAGE.

$$
\begin{array}{ll}
\ldots & 11 \\
\ldots & 16 \\
\ldots & 18 \\
\cdots & 20 \\
\ldots & 21
\end{array}
$$

\qquad
\qquad
\qquad
\qquad

. 37
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& 73 \\
& 74 \\
& 7 E
\end{aligned}
$$

$$
\begin{aligned}
& 75 \\
& 76 \\
& 77 \\
& 78
\end{aligned}
$$

$$
\sigma
$$

[^0]: * Chapter V has kindly been suppifed by Major Kensington, R. A.,
 Professor Military College, Kingston.

[^1]: * The quallty of plate may be assumet to be a constant and the steel and chilled shot practically equal, the form of head of servico projectlles does not vary, being hemispherieal for S . B., ogival for
 rified.

[^2]: * This form is not nltered by the I'alliser process feonversion.

[^3]: * It is being questioned whether this space is a disiden vided the gun be strong enougher this space is a disadvantage prodiamoter of the bore hategh; powder chambers larger than the rifled gums.

[^4]: ore aro no wedge B L. R. gums in Canada.

[^5]: * The stud system is apparently being gradually superseded by the polygroove with is gas eheek which immirts rotation.

[^6]: * At Duppel the left of the Dantsh entrenched position remted on an arm of the sea, the south shore of which was high and steep, on this the Prussians erected an enfilade battery of 4 or 6 rifled gunh the Rolfe Krake penetrated, but wos this arm a Danish Iron claud disturb the comparatively feeble was unable to eievate sumpiently to fre frst on the extreme fisht or Prusstan battery, whteh opened works, sllencing the guns there with distant part of the Jaulwh fuzes, gradually reducing the range as the shells and percussion silenced In succession. This was cone as the Dantsh guns wore firing short at the nearest part of the line of the casier practice of

[^7]: * Capt. G. T. French, R. A., C. M. G., late Lt.-Col. Inspector of Artillery in Canada, has invented a system of laying guns a d mortars behind parapets which intereept the sight of the object, it has been approved by the War Office.

[^8]: * The late intresting expriments at linstbarne with rirvol fire from riflel ghms alll howitaces have hos yet hem fublixhe: orichally.

