CIHM
 Microfiche
 Series (Monographs)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be blbliographically unlque, which may alter any of the Images In the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured Ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le mellieur exemplaire qu'il lul a été possible de se procurer. Les détails de cet exemplaire qul sont peut-être uniques du point de vue blbllographique, qui peuvent modifier une Image reprodulte, ou qui peuvent exiger une modification dans la méthode normale de filmage sont Indiqués cl-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthiough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked beiow /
Ce document est filmé au taux de réduction indiquéci-dessous.

The copy filmed here has been reproduced thenks to the generoelty of:

Mamilton Public Library

The images appeering here are the best quallty posslble considering the condition and leglbility of the original copy and In keeping with the filming contract specifications.

Original coples In printed papar covers are fllmed beginning with the front cover and ending on the last page with a printed or Illustrated impresslon, or the back cover when appropriate. All other original coples are filmed beginning on the first pege with e printed or Illustrated Impres. slon, and ending on the last pege with a printed or Illustrated Impresslon.

The last recorded frame on each microfiche shall contaln the symbol \rightarrow Imeening "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever appiles.

Maps, plates, charts, etc., may be fllmed at different reduction ratios. Those too large to be entirely Included In one exposure are filmed beginning in the upper left hend corner, left to right and top to bottom, es many frames as required. The following diagrams lllustrate the method:

L'oxempleire filmb fut reproduit grice ile génórosit' de:

Hamiiton Public Library

Les images sulvantes ont útó reprodultes avec io plus grand soln, compte tenu de ia condition ot de la natteté de l'oxemplalre fllmb, ot en conformitt avec les conditions du contrat de filmage.

Les exemplalres orlginaux dont la couverture en papler est Imprimbe sont filmds on commencent par le premler plat ot en terminant solt par la derniére page qul comporte une empreinte d'Impression ou d'lllustration, sole par le second piat, selon le ces. Tous los outres exempiaires originaux sont filmds en commençant per ia premldre page qul comporte une empreinte d'Impression ou d'illustration ot an terminant par la dernidere page qul comporte une tolle emprolnte.

Un des symboles sulvants epperaitra sur le dernlóre image de chaque microfiche, seion ie cas: lo symbole \rightarrow slgnifie "A SUIVRE". lo symbole ∇ slgnifie "FIN".

Les cartes, planches, tableaux, etc., peuvent êtro filmés à des taux de réductlon differents. Lorsque lo document est trop grand pour dtre reproduit on un soul cllchb, il eat flime a pertir de l'engle suptrleur gauche, de gauche à droite. ot de haut ea bas, on prenant ie nombre d'imeges néceasaire. Les dlegrammes suivents lllustrent ia móthode.

MICROCOPY RESOLUTION TEST CMART

(ANSI ond ISO TEST CMART No, 2)

 $?$
 errunom ar mete ctrode brought abouta

MATHIGMATICAL THI:ORY OF THI: CHANGLS OF CONCL:NTRATION AT THI: LiLIICTRODl:, BROUCIIT ABOUT BY DIFIUSION AND HY CHI:MICAI, RLiACTION

HY T. R. ROSEETKT(ill AND W. I.ASH MHLLEK

Owing to the chemieal changes which accompany electrolysis, the composition of the electrolyte at the electroles is different from that in the borly of the solution. Diffusion currents are conserpently set up which tend to remove these differenees; and if convection be avoided, the concentration of ally constituent at any point in the solution will depend only on the initial composition of the sotution, and on the anomuts which have been carried to or from the electrokes by diffusion and by electrolytic migration.

In the simpler easers, at all ewents, these changes of concentration are susceptible of mathenatical treathent; Weber' and Sand ${ }^{2}$ have considered the case of electrolysis with constant currents, and 1 arburg has deduced and equation for the stationary state on electolysis with a sintisoidal current through a dillusion layer of "infinite" length. The present paper deals with the whole problem in as systematic matiner, and includes the disenssion of electrolysis with interenittent, sucerssive end sinusoidal currents, without restriction ats to the duration of the electrolssis or the length of the colman of liguid through which the diffusion tatess place. The increasing application of the oseilfograph to the stady of instantameons conditions at the eire roble led us to pay particular attention to the chan-:- .. A oceur within the first fration of at scond after throwing on the current, while Richards" work on electrolysis with alternating currents,

[^0]followed by the interesting experiments of l.eBlance mat of
 induced us to inchade the case of nem-instantaneotus chemesal reactions between the primary products of electrolysis and the ether constituents of the solution.

The results of the investigation, lowewer, are aret perfectly gencral; for in leading up to ligk, (iii) atud (xiv) it hais beel assumed that both the difitaion constant and the flow due to electrolytic migration are indepselodent of the comcentration, and that the rate of the: comolary reaction if ally eceur is proportional to the concelitration of the comstituent whose anmont at the chetrone is directly affected by the chectrolysi -at unptions, which, iu mally conses, are uot even approximately trice. Totreat the diffusion eomstant as a fultetion of the concentration, or to consider reactions whase rates are proportional to any other thatn the first power of tae concontration mader consideration, would alter the whole batare of the difieremtial equation involved; the restrictions thes imposed have been disrexarded only in the come paratively simple, though important, case of probonged clectrolysis with a constant currellt.
'Fof fix the idents, dectrolysis may be supposed to take
 at the endel be the electrodes. The surface of each chectobeb is then identical ins are: and form wilh the cross section wis the electrolyte, the current density will be uniforn: dhoughont, and the concelltrations will be comstant wer a...it section of the sohtion takell parallel to the chectrodes. The results of the argument are, however, equally applicable to the case of electrolysis with a rotating eylindrical clectrode in a miform field; in such cases, as shown by the experiments of Noyes and Whitney on rates of solution, ${ }^{3}$ the dectrode may be rexarded as surrounded by an adherent layer of solution of uniform thickless through which diffusion takes place, ${ }^{\circ}$

[^1]with electrodes of ordinary dimensions this thlol has been found to be so thin ${ }^{1}$ that the difference between the areas of its outer and inner surfaces may be negleeted.

The direction normal to the surface of the eleetrodes is taken as the axis of x; it is assumed that at some fixed point on this axis the composition of the electrolyte (or at least the concentration z of the constituent under diseussion) remains unaltered throughout the experiment, and this point is taken as the origin, $x=0$, from whieh the values of x are reckoned. The "solution condition," then, adopte Ithroughout this paper is that at $x=0, z=z_{0}$ for all values of t, or

$$
\begin{equation*}
[\operatorname{For} x=0] \quad \partial z / \partial t \quad 0 \tag{i}
\end{equation*}
$$

In Weber's experiments, where solutions of zine sulphate were electrolyzed for long periods of time between stationary zine electrodes, such a point of constant eoncentration evidently lies midway between the two electrodes; in experiments with a rotating electrode it will lie on the outer surface of the adherent liquid filn, no mat ter how long the electrolysis proceeds if constituents removed at the cathode are replaeed a: the anode and vice versa, for some time at all events if the amomit of electrolyte in the cell is large eompared with thit destroyed per minute by the clectrolysis.

The position of one of the clectrodes is defined by $x=l$; the other electrode is left out of consideration altogether, for as lorg as there is a section of the electrolyte where the eoncentration of one of the constitnents remains unaltered, changes in the eoncentration of that constituent at one of the electrodes canmot affect conditions at the other. It is true that some new substance, for instance acid formed at the anode, might on reaching the cathode affect the diffusion constants or the cleetrolytic migration of the others there; such cases, however, are excluded from consideration for other reasons (see pg. 820).

The distance in centimeters between the electrode under consideration and the seetion of fixed concentration is thus

[^2]denoted by l. Weber took the surface of one of his elcetrodes as origin and denoted the distance to the other by L; his L is thus twice l; with rotating electrodes, however, or stirred electrolytes, l is evidently quite independent of the distance between the electrodes.

At the moment of throwing on the current the solution is supposed to be uniform throughout the vessel; thus the "initial condition" adopted in all the deductions of this paper is, that at $t=0, z=z_{0}$ for all values of x or

$$
\begin{equation*}
[\text { For } t=0] \quad \partial z / \partial r=0 \tag{ii}
\end{equation*}
$$

When the current is thrown on, diffusion and migration begin.
Diffusion and Migration.-The rate of diffusion of any constituent away from one of the electrodes (i.e., the number of equivalents of that substance per second which is carried by diffusion across each square centimeter of the cross seetion of the vessel) may be different at different points of the diffusion layer. At any point x, however, it is proportional to the concentration gradient at that point in the line connecting the electrodes; that is, to the difference of concentration per centimeter in the direction of the x axis, or

$$
\text { Rute of lifiusion from clectrode }=k \partial z / \partial r \quad-\quad \text { - } \quad \text { (Fick), }
$$

where z is the concentration of the constituent in question, expressed in equivalents per cubic centimeter; if $\partial z \partial x$ be negative, diffusion will occur tozards the electrode.

The rate of electrolytic migration of the same constituent, or the number of equivalents per sccond carricd across cach square centimeter of the cross section of the vessel by the current Jamperes, is given by the expression

where u is the mobility of the constituent in question and z its concentration; $\Sigma z u$ indicates the sum of the products of the mobilities of the various ions each into its own concentration. The sign of this expression (the direction in
which the migration takes place) evidently depends on the direction of the electric current, and on whether the constituent to which z refors acts as anion or cation; it is negative if the motion is toward the electrode.

Excluding for the present the possibility of secondary reactions in which the products of electrolysis take part, these two factors determinc the total rate of flow, which accordingly is given by

$$
\text { Rate of flow from etectrode }=k^{\partial z} \frac{\partial x}{\partial x}+\underset{96540}{\prime \prime \prime} \propto \frac{z u}{\Sigma z u}
$$

and the ratc of accumulation, $\partial z / \partial t$, at any point x is dctermined by tile difference between the rates of flow to and from that point :

$$
\begin{aligned}
& \partial z \\
& \partial t
\end{aligned}=k \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial}{\partial x}\left(\sum_{905+0<A} \cdot \frac{z u}{\Sigma z u}\right) .
$$

In some cases the sccond term on the right vanishes or may be neglected, leaving

$$
\begin{equation*}
\partial z / \partial t=k \partial^{2} z / \partial x^{2} \tag{iii}
\end{equation*}
$$

This occurs, for instance, (a) if $u=0, i$. e., if the constitucnt in question is a non-elcetrolytc; (b) if $z u / \Sigma z u$ is small, as when z refers to the concentration of copper in a solution of copper sulphate containing excess of sulphuric acid; (c) if the solution contains only one salt (in which case $z u / \Sigma z u$ beconies Hittorf's "transport number") whose transport number is not affected by change in concentration; (d) if the solution contains several salts with a common ion (the "constituent" under consideration) and if the ions of the opposite sign all have the same mobility; when the case is analogous to (c). Throughout Parts I and II of the present paper, (iii) is assumed to hold.

Electrode condition.-Let G represent the number of cquivalents per second of the constituent under consideration caused to appear in the solution at cach squarc centimeter of the suriace of the electrocle by the action of the current \geqslant.

Mathematical Theory of the Changes of Concentration

G will usually be related to \mathcal{J} by an expression of the form

$$
G=\underset{96540}{ }\left(1+\begin{array}{c}
z u \\
\Sigma_{z u}
\end{array}\right)
$$

in which the first term on the right measures the amount formed by chemical changes (oxidation, reduction, solution of the electrode, ete.), and the sccond term the anount brought up to (but, naturally, not past) the electrode surfaec by migration. At the anode in a solution of copper sulphate with excess of sulphuric acid, for instance, the first tern1 would be positive and the second terin zero if the "constituent under consideration"-to which z refers--were eopper; if it were sulpliuric acid, the first terni would be zero and the second positive; in either case, if the electrode were a cathode, G would be negative.

The effect of the electrolysis on the concentration of this constituent in the solution is the same as though it were being carried into the solution through the surface of the electrode by the coneentration gradient

$$
\begin{equation*}
[\text { For } x=l] \quad \partial z / \partial x=G / k \tag{ivi}
\end{equation*}
$$

which would produce the sane gain that is actually brought about by the electrolysis. Eq. (iv) is thercfore introciuced as the "electrode condition" corresponding to the eurrent \checkmark amperes. In the first Section of this paper, "Constant Current," G will be treated as independent of t; under "Successive Currents" it will be supposed to change abruptly at definite moments; while under "Sinusoidal Currents" it will be treated as a continuous function of the time. In the first Part of the paper it will be assumed that for a given value 2 , of the current, G is not affected by the composition of the solution at the electrode; in the seeond Part, account will be taken of the fact that the nature of the elemical action at the electrode may change abruptly when the concentration reaches a certain value; Part III admits the possibility of seeondary reactions at the electrode.

The mathematical problem then is, to find a solution for the differential equation (iii) whieh will satisfy the "boundary conditions" (i), (ii) and (iv). In the case of linear and homogeneous equations, like (iii), where the only coefficient k is a constant, there is no difficulty in finding particular solutions; from these, general solutions can be built up by multiplying each particular solution by an arbitrary constant and taking the sum. With sueh general solutions, however, in which the constants have arbitrary values, "ist so gut wie nichts gewonnen. ${ }^{11}$ The main point is to find values for these nultipliers such that the boundary conditions may be satisfied; and no general rules have as yet been laid down for finding thell. Eq. (iii), however, has been made the subject of detailed study by Fourier and others in eonneetion with the theory of the flow of heat, ${ }^{2}$ and Weber ${ }^{2}$ has shown how the boundary conditions of the present problem may be introduced; an equation corresponding to (15) of the present paper has already been obtained by him.

PART I
 REACTIONS AT THE ELECTRODE INDEPENDENT OF THE CONCENTRATION 2. SECONDARY REACTIONS EXCLUDED

Sec. 1.-Constant Current

One partieular solution of (iii) is

$$
z=C x+D
$$

and another is

$$
z=(A \sin E x+B \cos E x) C^{-E^{2} k t}
$$

[^3]Mathematical Theory of the Changes of Concentration $8 \mathbf{8 2}$
The expression built up from these, viz., $z=\left(A_{1} \sin E_{1} x+B_{1} \cos E_{1} x\right) c^{-E_{1}{ }^{1} k t}+$

$$
\left(A_{2} \sin E_{2} x+B_{2} \cos E_{2} x\right) e^{-E_{2} k t t}+e t c .+C x+D
$$

or briefly

$$
\begin{equation*}
z=\sum_{n=1}^{\infty}\left\{\left(A_{n} \sin E_{n} x+B_{n} \cos E_{n} x\right) e^{-E_{n}{ }^{3} k t}\right\}+C x+D \tag{1}
\end{equation*}
$$

proves sufficiently general to allow the introduction of (i), (ii) and (iv).

To introduce (i).-From (1)

$$
\begin{equation*}
[\text { For } x=0] \quad z=D+\Sigma B_{n} e^{-F_{n} k t} . \tag{2}
\end{equation*}
$$

The expression on the right may be made constant and equal to z_{0} for all values of t, as required by condition (i), by setting

$$
\begin{equation*}
B_{1}=0, \quad B_{2}=0, \quad B_{3}=0, \text { etc. } \tag{3}
\end{equation*}
$$

so that, from (2), (3) and (i)

$$
\begin{equation*}
D=\boldsymbol{z}_{0} . \tag{4}
\end{equation*}
$$

To introduce (iv).-From (1), (3) and (4),

$$
\begin{equation*}
[\text { For } x=l] \quad \frac{\partial z}{\partial x}=C+\sum_{n=1}^{\infty} A_{n} E^{-E_{n} h t} \cdot \cos E_{n} l \tag{5}
\end{equation*}
$$

whence by ($i v$),

$$
\begin{equation*}
C+\sum_{n=1}^{\infty} A_{n} C^{-E_{n}^{2 k t}} \cdot \cos I_{-} l=\frac{G}{k} \tag{6}
\end{equation*}
$$

This is possible, for all values of t, only if eaeh term involving t is separately made zero; this may be aceomplished by setting

$$
\begin{equation*}
\cos E_{n} l=0, \quad \text { i. e., } E_{n}=\frac{(2 n-1) \pi}{2 l} \tag{7}
\end{equation*}
$$

n being any integer.
From (6) and (7) there follows

$$
\begin{equation*}
C=G / k . \tag{8}
\end{equation*}
$$

To introduce (ii).-Setting $t=0$ in (1), and substituting

T. R. Rosebrugh and W. Lash Miller

the values of B, D and E_{n} given by (3), (4) and (7), there follows

$$
\begin{equation*}
[\text { For } t=0] \quad z=z_{0}+C x+\sum_{n=1}^{\infty} A_{n} \sin (2 n-1) \pi x \tag{9}
\end{equation*}
$$

whence by (i)

$$
\begin{equation*}
0=C x+\sum_{n=1}^{\infty} \Lambda_{n} \sin (2 n-1) \pi x . \tag{10}
\end{equation*}
$$

Fourier has shown that for values of f between o and $\pi / 2$ (see Appendix)

$$
\begin{equation*}
f={ }_{\pi}^{4}\left(\sin f-1_{9}^{1} \sin 3 j+{ }_{25}^{1} \sin 5 j-c(c .)\right. \tag{II}
\end{equation*}
$$

whence (writing $\frac{\pi x}{2 l}$ for f)

$$
\begin{equation*}
C x-\pi_{\pi^{2}}^{8 / C} \sum_{n=1}^{\infty}(2 n-1)^{n}(1)^{2} \sin (2 n-1 \pi x . \tag{12}
\end{equation*}
$$

Substituting this expression for $C x$ in (10)
$\sum_{n=1}^{\infty} A_{n} \sin _{2 l}^{(2 n-1) \pi x} \quad-8 / l^{\infty} \sum_{n=1}^{(-1) n}(2 n-1)^{2} \quad \sin ^{(2 n-1) \pi x}(13)$
whence

$$
\begin{equation*}
A_{u}=\underset{(2 n-1)^{n}}{(-1)^{n}} \cdot \frac{8 / c}{\pi^{2}} . \tag{14}
\end{equation*}
$$

Thus, by substituting in (1) the values for B, D, E_{n} and A, from (3), (4), (7) and (11), an expression is obtained,

Which satisfies the differential equation (iii) and the conditions (i), (ii) and (iv), if the current ${ }^{1}$ remains constant from $t=0$, the moment of throwing on the current, up to the moment t.

Inspection of (i5a) shows that the right-hand member
1 The equations deal only with ${ }^{6}$. which however is propmrtinnal to the current, see page sis.
is divisible by G. From this it appears that in experinemts with the same electrolyte, carried out at the same temperature (hence with fixed value of k) and with the same rate of stirring (fixed value of l), the anount of change in concentration $\left(z-z_{0}\right)$ in a given time will be proportional to G and therefore to the current. It may also be concluded that if in a series of experiments (with fixed values of k and l) the currents (and therefore the values of G) be proportional to the intitial concentrations $\left(z_{0}\right)$, the values of z after any given daration of electrolysis (t) will likewise be proportional to the initial concentrations.

For the sake of brevity, (15a) maty be written

$$
z-z_{0}-C x+\frac{8 / C}{\pi^{2}} \downarrow \begin{gathered}
(-1)^{n} \\
m^{*}
\end{gathered} \text {,-msin m(n, (1,5i) }
$$

where $m=2 n-1, C=G k$, $a=\pi^{2} k, l^{2}, g=\pi, 2 l$, and \leq is written for ${ }^{\infty} \mathbb{N}_{1}$. Since $(-1)^{n} \sin m g x=-\cos m g(l-x)$, ($1.5 b$) maty be pht in the more convenient form,
where all the terns after the sign of sumbation ate positive,
 of the point x from the ehectroke. In this canation, the tern on the h.fi expresses the ehange in concentation an a fration of the maxin tme change that contd be brought abont at the eleetrock by the same entrent the first tor:? on the risht gives the distance from the origin $(x-0)$ an a fraction of the total length of the diffusion layer; attd at $=-\pi^{2 k} k t^{2}$ in the exponent giver the time in mits wheh depernd on k and l only:-

The eoncentrations at the clectrode, which are the most important from ant experimental point of view, may be ob-

[^4]tained by substituting l for x in (1.5); cos $m g$; then becomes unity, and ($15 c$) reduces to
\[

$$
\begin{equation*}
\left[\text { For } x=\| \quad z-z_{0}=1-\frac{8}{\pi^{2}} \sum_{m^{2}}^{1} e^{-m^{2} \alpha 1} .\right. \tag{16}
\end{equation*}
$$

\]

Methods of Computation

First term approximation.-The first five terms of the scries in (16) are:

$$
e^{-a t}, \frac{1}{9} e^{-9 n t},{ }_{25} e^{-2!a t}, \frac{1}{49} e^{-490 t},{ }_{81}^{1} \epsilon^{-8!a t}
$$

The second term will be one percent or less of the first term if ${ }_{9}^{1} e^{-9 a t}={ }_{100}^{1} t^{\text {-at }}$ or less, i.e., if at be 0.301 or more; and it will be one per thousand of the first termif at be 0.5^{80}) or more; in both cases the remaincler of the series is negligible. Thus in computing values of $\left(z-z_{0}\right) / C l$ for valne's of at above 0.6 , the first term of the series, negleeting all the others, will give results accurate to one tently percent; under these conditions (17) may therefore be used in place of (16). [For at large, and $x=l] \quad z \bar{z}_{0}==1-\frac{\pi_{2}^{2}}{z^{-a t}}$ approx. (17)

But as at becomes smaller, the number of terms that have to be taken into account rises rapidly. In computing $\left(z-z_{0}\right) / C l$ for $x=l$ and at $=0.03$, for instance, the values of the first five terms (each multiplied by $8 / \pi^{2}$) are $0.7866+$, $0.06875,0.01532,0.00378,0.00088$, respectively, and all five have to be evaluated in order to find $\left(z-z_{0}\right), \mathrm{Cl}$ to three places of decimals.

Parabolic approximation.-'Thomson and Cayley have shewn that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} e^{(2 n-1) n^{-2}} \cos (2 n-1) \pi y \\
& \left.\frac{f}{2 \sqrt{-}}\left(e^{-2}-c^{-(y-f)^{2}}-c^{-(y} \quad f\right)^{2}+c^{-(y-2 f)^{2}}+e^{-(y \cdot 2 f)}-e t c .\right) \cdot(18) \\
& { }^{3} \text { Quarterly Journal of Mathematics, } 1,316 \text { (} 1857 \text {). }
\end{aligned}
$$

Substituting of for y ，and at for $\pi^{2} / 4 f^{2}$ ，this gives

$$
\sum_{n=1}^{\infty} e^{-(2 n-1)^{4} a t}=\frac{1}{4} \int_{n t}^{\pi}\{1+2 \underbrace{\infty}_{n}(-1)^{n} e^{-\frac{n^{2} n^{2}}{4 \Delta t}}\} \text {. (19) }
$$

For small values of at the sum on the right may be neglected， giving
［Fill ut small］$\sum_{n=1}^{\infty} \underbrace{-(2 n-1) w t=1}_{4} \sqrt{\frac{\sqrt{\pi}}{n}}$ approximately．（20）
Multiplying both sides by dt and integrating between the limits o and t there follows
 whence
［For $x=1$ ，at small］

$$
z \frac{z_{0}}{c!}=
$$

$$
1-\frac{8}{\pi^{2}} \bigcup_{m^{2}}^{1} e^{-m^{3} u t}==\frac{4}{\pi^{1 / 2}} \text { vat upprox., (22(i) }
$$

or，substitnting for at its value $\pi^{2} k t / l^{2}$ ， ［For $x=1$ at small$] \quad\left(z-\varepsilon_{0}\right) / C=1.129$ vitapproximately．（22b）

Tamis 1
Values of $\left(z \quad z_{0}\right)^{\prime}$（ at the dectrode

Paramolic apmox
first termi ilりprox．
True value （H．\＆．16）Lirror $\begin{gathered}\text { Culle．} \\ \{1: 11.17\}\end{gathered}$

0.4	（1）． 4.54 .32	a MoOI－	（1） 4.5420	O（x）246	0． 45^{666}
0.5	0．50フワ9	－ $0^{(005}$	1． 50773	G．（k）t（x）	0． 50 K .36
0．6	0． 5.504 .4	0.00169	O． 5.5474	0 （x）04I	0．5．5．5 5

The figures of Table I show that for all practical purposes the accurate expression（16）may be replaced by the＂first term approximation＂（17）for values of at above o．5，and＇sy the＂parabolic approximation＂（22）for values of at belsw 0．5．It may not be out of place to emphasize the fact that the applicability of either of these approximations depends
not on the value of cither l, k, or t alone, but on that oi at $=\pi^{2} k t / t^{2}$; the paribolic ifproxianation, for instance, Holds mot onty for the crise " $l-x^{\prime \prime}$, ans shown lyy Sind lant it

'T.1111.1: 11

Values of (z- *o) / \% at the chetro:

al	$\left(2-z_{0}\right) 11$	ut	$1=$ En)	* 1	$\left.12-z_{0}\right)(1$
$1)$	$1)$	1) 5	0.507	14	(1). $\mathrm{S}(\mathrm{x})$
(1) 15	(1).161	111	(). 5.5 .	1.5	() NIG
(1) 1	い 22\%	1) 7	(1).597	211	(1) Xins
112	(1) 321	11. 6	(1).6.30	2.730	1) 95!
(1) 3	(1).31). 3	(1).1	11.6\%	+ 39.7	(1.910)
10	11.4.54	1 (11.702	\&	1.10)

 of the total changre of concontration at the clectrole that a given cumpent com aconmplish is completed when at rembles f.fo. The actath number of secomblicorre:poneling to it given valuc of al depends, obrionsly, on the "time constant"

 stibrisg wore somer, howe ver, and l rowe io $3.14 \therefore 10^{*}$ ens, at womld give the ilto in serondis.

The Statimary Shate

 state" is reacherl. the equation! for which blity be ohtainerl

 redteres to

$$
\begin{equation*}
[f, r \mid \quad s=]=0 \quad i x \tag{2:3}
\end{equation*}
$$

i. e., there is a linear gradient of concentration throughout the diffusion laver.

The summation on the right of (1.5) this shows the difference between the concentrations at any ...ane int of the electrolysis and those at the stationary state: as with intcreasing t this torm deareases, and uhtimately vanishes, it will be spokell of as the "evalnescent term" of (15) to distilnguish it from the "stationary term" C"x.

The Slationary Term when k is a Function of z

Thronghout this paper, the diffusion constatut is mpposed to be independent of the concelltration; in the present paragraph, ho:sever, the impertant -but mathematicalle simple case of the stationary state with constant current is dealt with on the assimption that k is a fuletion of z. The equations dechecol int this paragraph are not made use of in what follows.

Sotting $k=f(z)$, the dificerential conation hats the form:

$$
\left.\begin{array}{lll}
\partial: & \partial \tag{.1}\\
\partial l & \partial t & (f l= \\
\partial i
\end{array}\right) .
$$

As however at the atationary state, z depends on x alone, (A) may be replaced be the "ordinary" differential relation

$$
\begin{equation*}
A_{1}(f(=) \tag{13}
\end{equation*}
$$

Hence $f(z)^{\prime \prime}$ dita a cometant valate for all values of x : at the aketroife this is kuown to be equal to (i; therefore,

$$
\begin{equation*}
j\left(=1 / \frac{d r}{i r}\right. \tag{}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{j}^{\square} f(=) d z \int_{0}^{i} i, h r \text { (ir: } \tag{1}
\end{equation*}
$$

therefore.

$$
x \quad \int_{i}^{1} \int_{z_{0}}^{z} f(z) d x
$$

which whenever $f(z)$ is known gives x explicitly in terms of z.

830

T. K. Kosebrugh and II. Lash Miller

For example, if $f(z)-k_{0}+k_{1}^{2}$

$$
\begin{equation*}
C i x=\left(k_{0} z+{ }_{2}^{1} k_{1} z^{9}\right)-\left(k_{0} z_{0}+{ }_{2}^{1} k_{1} z_{0} \%\right. \tag{F}
\end{equation*}
$$

Firon this, if desired, z may tre expressed in terms of x, thess

$$
\begin{equation*}
z=\frac{-k_{0}+\sqrt{k_{0}}+2 k_{1}\left(\left(i x+k_{0} z_{0}+{ }_{2}^{1} k_{1} 0_{0}^{2}\right)\right.}{k_{1}} . \tag{II}
\end{equation*}
$$

Similarly in many other cases it is possible to pass from liq. (1:) to one "ypressing 2 in terms of x; when this is not possible, a graph may be drawn.

The "Limiting Current"

The "limiting current" for the change z ' - z_{0} is defined to be that current which at $t=\infty$ is just sufficient to bring the concentration at the electrode from z_{0} to z^{\prime}; it inay be denoted by y^{\prime} and the corresponding value of C by C^{\prime}. Substituting z^{\prime} for z, and 1 for x ill (23),

Thus any experiment in which z^{\prime}, z_{0}, and J^{\prime} are measured may serve to determine the ratio k / l. In the special case Where $z^{\prime}=0, \prime^{\prime} z_{0}=\frac{965+0 k}{(1+2 \pi / \Sigma=11) l} i^{\prime}$ This relation hats been used her Nernst and Merrian' and others for the determination of k / l.

As indicated by the heading of the table, the numbers entered in Trable II give the values of $\left(z-z_{0}\right) / C l$ at the electrole for different valu, of at. Since, however, from (24), $\left(z^{\prime}-z_{0}\right) / C l=C^{\prime} / C=\prime^{\prime}$, , these sumbe numbers give the limiting current \boldsymbol{f}^{\prime} correnponding toany arbit rary change of concentration at the electrode if the time (at) is knewn at which sone known current γ jnst brings about the same change. For example, the limiting enrrent corresponding to

[^5]uny change af eancentration at the electrock is 0.16 .4 times the enrrent that will hring abmet the same change in the time $a t=0.0$ s. Conversely, the reciprexals of the atumbers under $\left(z-z_{0}\right) / C l$ give the current necessary to bring about any givern change of concentration in a given tilne at, if the limiting eurrent carresponding to the sallice change be known; to accomplish a given chathge in the time at $=0$. 10 reguires $4+1$ times the limiting current corresponding to that change. The "ehange of conterntation" ensiest recognized in the laboratory is oftent that fromin z_{0} (o) 0 .

Diterminution of k und of l
As both k athl 1 are involved in (16), two experimethes are in gencral reguired to determine both or cither of them; one of the ex exprements maty $\mathrm{l}_{\mathrm{s} \text { a }}$ determination of the ration $k_{/ 6}$ by meatis of the limiting current as indieated above, and the other atmeasurement in which the time needed to bring ahont some known change of eoncentration at the electrote is determined. If this secomd b:easurement ise so phatand that at $=0.5$, the "singhe term" ${ }^{\text {approximationt }}$ (17) may be cmployod: writing $y_{\text {for }}$ for ratio k, l supposed known, this gives

$$
\begin{aligned}
& 1+\log _{1 n}\left[\begin{array}{l}
0 .+34.3 \pi^{2} r_{j} l \\
8
\end{array}\left(1 \ldots \% z_{0}\right)\right]
\end{aligned}
$$

If at he less that 0.5 , however, so that the "parabolic approximation" (22b) is applicable, k may be determined by means of it direxty from one experiment, the change of concentration at the electrole under those ciremmstances heing independent of l. This method of finding k has been employed by Sand; in his experiments, however, ! was taken to be "infinite," and was not determined.

Graphical Representation
The curves of lig. 1 give the values of $\left(z-z_{0}\right) / C l$ through
the diffusion layer (for any fixed values of C, k, and l), for $t=0$, for $t=\infty$ and for ten values of at ranging from o.i to 1.0; the curves have been drawn with fair accuracy, values of $\left(z-z_{0}\right) / C l$ may be estimated from the:111 to within one

pereent of the value of Cl . As is elear from (15), values of z itself are not fixed by C, k, and l; the point $z=0$ is therefore not marked on the diagram.
lin liig. 2, the same datal are plotted on a time base;

lig. 2
the curves give the progress of the concentration change with the time (froni at - 0 , to $a t-1.0$) at ten equidistant cross-

Mathcmatical Theory of the Changes of Concentration 833

sections of the diffusion layer. The line ab in Fig. I corresponds to the curve $a b$ in lig. 2, and the line od in Fig. 2 to the curve $o d$ in Fig. 1.

In Fig. 3, the relative change of concentration at the electrode, $\left(z-z_{0}\right) / C l$ is plotted for the interval at $=0$ to $a t=5.0$; in Fig. + the same data are plotted with logarithmic coordinates

1ःig. 4
(from $\log _{10} a t=2.30$ to 1.7. i.e., fromat $=0.005$ to at $\quad 50$). The curve dhe represents the "first term approximation," the straight line en the parabolic approximation, and the fall line abd the true vahes of $\log _{10}\left(z-z_{0}\right) \mathrm{Cl}$.

Curve I of Fig. 5 gives the concentrations throughout he diffusion layer at $a t=0.5$ for fixed values of C and k
and for $l=l_{1}$; eurve II gives the concentrations at $a t=0.1$ for the same values of C and k but for $l_{2}=l_{1} \sqrt{5}$. Since a varies inversely as l^{2}, t as well as C and k is the same for both eurves, and the figure serves to illustrate the conelusion of (22b) that for small values of $a t,\left(z-z_{0}\right) / C$ at the electrode is independent of l. As shown by the figure, the ehange of

rig. 5
coneentration initiated at the electrode has hardly yet had time at $a t=0.1$ to spread more than half way to the "point of constant concentration," $x=0$; shifting this point still further to the left could therefore have no effeet on the concentration at the eleetrode.

Sec. 2.-Successive Currents in General

I:q. (1.5) and those dedueed from it in the preeeding paragraphs are applieable only when the current (and consequently C) remains constant during the electrolysis. It is now proposed to deal with the more gencral case where the currents $\partial_{,} \mathcal{Z}_{3}, \lambda_{3}$, corresponding to C_{1}, C_{2}, C_{3}, ete., aet successivily, C_{1} from $t=0$ to $t=t_{1}, C_{2}$ from t_{1} to t_{2}, C_{3} from t_{2} to t_{3}, cte; as before, at $t=0, z=z_{0}$ for all values of x.
L_{1} to the moment t_{1}, the values of z are given by (1.5) ; in particular,

$$
\begin{aligned}
& =C_{2} x+\left(C_{1}-C_{2}\right) x-s / C_{1} \pi_{m^{2}}{ }^{1}{ }^{t^{-m m^{2} a_{1}} \cos m g_{j}^{j} \quad(26 b)}
\end{aligned}
$$

Mathematical Theory of the Changes of Concentration

the last transformation being effected by means of (12), whieh, sinee $(-1)^{n+1} \sin m g x=\cos m g \xi$, nay be brought into the form

$$
\begin{equation*}
C x=\frac{8 l C}{\pi^{2}} \sum \frac{1}{m^{2}} \cos m g \xi \tag{27}
\end{equation*}
$$

Between $t=t_{1}$ and $t=t_{2}$ values of z are given by the expression

$$
\begin{align*}
& {\left[\text { For } t_{1}<t<t_{2}\right] z-z_{0}=} \\
& \quad C_{2} x-\frac{8 l}{\pi^{2}} \sum_{m^{2}}^{1}\left\{e^{e^{-m^{2} a t_{1}}}+C_{2}-C_{1}\right\} e^{-m^{2} a\left(t-t_{1}\right)} \cos m g \xi \tag{28}
\end{align*}
$$

which satisfies $i i, i i i, i v,{ }^{2}$ and the condition that at $t=t_{1}$ the values of z along the x axis are those eonsequent on the aetion, from $t=o$ to $t=t_{1}$, of the current

In general
$\left[\right.$ For $\left.t_{p-1}<t<t_{b}\right] \quad z-z_{0}=$

The expression inside the brackets |f ean be rearranged thus:

$$
\begin{aligned}
& \left\{C_{1}\left(c^{-m^{2} a t}-t^{-m m^{2} a\left(t-t_{1}\right)}\right)+C_{2}\left(e^{-m^{2} a\left(t-t_{1}\right)}-t^{-m^{2} a\left(t-t_{2}\right)}\right)+\ldots\right. \\
& \left.\left.+C_{p}\left(e^{-m \cdot a t}-t,-t^{\prime}-e^{-m^{2} a(t-t n}\right)+\ldots .+C_{p e^{-m}} e^{2} a t-t_{p-1}\right)\right\}
\end{aligned}
$$

so that (29) may also be written

$$
\begin{aligned}
& {\left[\text { For } t_{p-1}<t<t_{p}\right] z-z_{0}=C_{p} x-\frac{8 l}{\pi^{2}} \sum_{n=1}^{\infty} m^{2}\left\{C_{p} e^{-m^{2}\left(\alpha t-t_{p-1}\right)}+\right.} \\
& \left.{ }_{n=1}^{n} \bar{\Sigma}^{1} C_{l}\left(e^{-m-a t t-t,-1}-e^{-m^{2} a(t-t,}\right)\right\} \cos m g \xi . \quad \text { (29c) }
\end{aligned}
$$

[^6]Finally, if T, be written for $t-t$, the time elapsed since the current corresponding to C, ceased to act, and ϕT, for $e^{-m^{2} a(t-t)}$,

$$
\begin{aligned}
& \left.\left[\text { For } l_{p-1}<t<i_{p}\right] \quad z-z_{0}=C_{p} x-\frac{8 l}{\pi^{2}} \sum_{n}^{x}{ }_{1}^{\infty} m^{2}\right\}_{1} c_{p} \phi T_{p-1}- \\
& \left.{ }^{r} \bar{\Sigma}_{1}^{1} C_{1}(\phi T,-\phi T,--1)\right\} \cos m g^{\prime} \quad(29 d)
\end{aligned}
$$

which lends itself to graphical representation.
Figs. 6 and 7 illustrate the case of electrolysis by a succession of currents begiming at $t=0$ with one ampere, followed by $2,3,4$, . 10 amperes, eath passing throught the solution for the equal interval $a t=0.25$. The abscissate of the two

$1 \cdot$ us. 6 and 7
figures give the values of ϕT, for $n=1$ and $n=2$ respeetively, and the ordinates the values of C and of $C / 9$ respectively for the ten currents; thus lig. 6 corresponds to the first term of the n-sum in ($29 d$) and Fig. 7 to the second term. The arca abdc equals $C_{n \prime} \phi T_{v}$ (corresponding to $C_{p} \phi T_{p-1}$); efhg
 and ackeftb equals the whole expression within the if
brackets of $(20, d)$, for $n=1$. The broken line in the upper lefthand comer of lig. 6 represents the first term of the n-simm for the same ten currents each persisting for $a t=0.75$ instead of $a t=0.25$; the great reduetion of the || term of $(29, d)$ is obvious It is quite char from the figure, that the effect of previous history is much less on the second than on the first term, so that in deciding how far back it is necessary to go in taking account of the previous currents, the first term only need be considered.

If(puation (29) in its various forms is the most genteral expression for $z \quad z_{0}$, all others given in lart I of this paper re deducible from it: Eq. (15) for instance results when $C_{1}=C_{2}=\ldots=\mathrm{C}_{\phi} ;$ equations for the periodie recurrence of a finite number of currents are deduced fronn (29) in Secs. 3 and 4 , and Sece. 5 slows how the periodic recurrersee of an infinite number of currents each but slightly different from the precerling may be dealt with. As usual, by substituting l for x, whereupon $\cos m g$; becomes unity, expressions for the experimentally important concentrations at the electrode may be oltained.

Sec. 3.-Periodic Currents. I. Cycles with Two Beats

In the first "beat" the current β_{1} ats for 6 , seconcls, it the second beat the curremt f_{2} for $0_{\text {a }}$ seonds; these two "leats" make up a "eyele" of duration $0=0_{1}+\theta_{2}$ sceonds, which may be repeated again and again. It is consenient to introdince the symbol τ to represent the time claped since the beginning of the beat which is int progreos at the monent t, t being counted as always from the moment $t=0$ when the first current is thrown on; at $t=0, z=z_{0}$ for all values of x.

In applying (29) to this case,

$$
\begin{array}{lllll}
C_{1}=C_{3}-c_{31}, ~ d t c & \theta_{1} & t_{1}-\left(t_{3}-t_{2}\right) & \left(t_{3}-t_{4}\right)=\left(t_{7}-t_{6}\right), \text { ctc. } \\
C_{2}=c_{1}-C_{8}, ~ c t c . & \theta_{2} & \left(t_{2}-t_{1}\right)-\left(t_{1}-t_{3}\right) & \left(t_{6}-t_{3}\right), \text { ctc. } \\
& 0 & t_{2}-\left(t_{1}-t_{3}\right) & \left(t_{1}-t_{4}\right), \text { ctc. }=\theta_{1}+\theta_{2} .
\end{array}
$$

Thus, during the p th frat, if p le odid $(p-2 q+i), C_{p}-C_{n}$,
and $t=q^{0}+\mp ;$ if p be even $(p=2 q), C_{p}=C_{2}$, and $t=$ $(q-1) \theta+0,+\tau$.

In the first ease (p odd) on making these substitutions (29) becomes
[p odd] $z-z_{0}=$
$C_{1} x-\pi_{\pi^{2}}^{8 l} \sum_{m^{2}}^{c^{-m m^{2}}}\left\{C_{1}+\left(C_{2}-C_{1}\right)\left[c^{m^{2} a \theta_{1}(1}+c^{m^{2} a \theta}+c^{2 m^{8} a \theta}+\ldots\right.\right.$. $\left.\left.\left.+e^{(q-1) m^{2} a \theta}\right)-\iota^{m^{2} a \theta^{\prime}}\left(1+e^{m m^{2} a \theta}+\imath^{2 m m^{2} a t}+\ldots+e^{(19-1) m^{2} a \theta}\right)\right]\right\} \cos m g \xi$,
whenee, summing the geometrical series, eliminating q, and
rearranging,

Similarly, it may be shown that where p is even

$$
\begin{aligned}
& -\frac{s l}{\pi^{2}} \sum_{m^{2}}^{e^{-m a^{2}}}\left\{C_{1}+\left(C_{2}-C_{1}\right)_{e^{m^{m}=a \theta}-e^{m^{2} a a_{1}}}^{e^{2}}\right\} \cos m g g_{j}^{2} . \quad \text { (31) }
\end{aligned}
$$

In (30b) and (31), the term involving $e^{-m^{2} a t}$, which decreases with inereasing t and ultimately vanishes, may be spoken of as the "evaneseent term": it is the same in both equations, so that on plotting with z and t as axes the evaneseent term would be represented by a continuous eurve with no abrupt ehanges of direction at the beginning of a new beat. A plot of the "stationary terms" from the two equations (what is left of the riglit-liand members of (30b) and (31) when the evanescent term las been withdrawn) would give a zigzag line.

If x be replaced by l in these equations (and consequently cos $m g ;$ by unity) expressions for the coneentrations at the electrodes are obtained. If t be set $=\infty$ thus redueing the evaneseent term to zero, expressions for the concentrations at the stationary state are obtained. If $=$ be set $=0$ (and eonsequently $e^{-m^{2}-a}=$ unity) expressions for the con-
centrations at the beginuings of odd or even beats (i.e., at the ends of even or odd beats) respectively are obtained. If $C_{2}=C_{1}$ the expression for constant current, (15), is obtained; if $C_{2}-C_{1}$ the equations apply to the simplest form of alternating current, and if $C_{2}=0$ to "intermittent" currents. Special cases of the latter will be examined in detail (see pages 840 and $8+3$).

If the first, thircl, etc., beats last long enough to bring about a linear distribution of concentration throughout the diffusion layer, i. e., if in (31), $a \theta_{1}=\infty$ (see foot-note, page 828) the concentrations throughout the even beats will be represented by

Centre and Amplitude of Swing

When the stationary state is reached, i. e., when the evanescent term has become zero or approximately so, the concentration at any point in the diffusion layer oscillates between two extreme values, one at the end of each beat. Half the sum of the extreme values of the concentration change gives the "centre of swing" os mean value of the concentration change at that point; half their difference gives the "amplitude" or greatest deviation of the concentration above and below its mean value. An expression for the amplitude, and one for $z-z_{0}$ at the centre of swing, may accordingly be obtained by taking half the difference and half the sum respectively of the $v^{\prime} \cdot$?s of $z-z_{0}$ given $b y(30 b)$ and (31) after setting $t=\infty$ and $\div=0$.
[Amplitude] $\frac{1}{2}\left(C_{1}-C_{2}\right) x+$

$$
\begin{align*}
& {[\text { At contrr }]=-z_{0}={ }_{2}^{1}\left(C_{1}+C_{2}\right) x+} \tag{3,3}
\end{align*}
$$

840
 T. R. Roscbrugh and IV. Lash Miller

Very Large and Very Small Values of 0

If both θ_{1} and θ_{2} are large, the concentration it any point oscillates between $z_{0}+C_{1} x$ and $z_{0}+C_{z} x$; on evaluating the 0 fractions in (33) and $(34),{ }_{2}^{1}\left(C_{1}+C_{2}\right) x$ is accordingly found as the expression for $2-z_{0}$ at the centre, and ${ }_{2}^{1}\left(C_{1}-C_{2}\right) x$ for the amplitude.

When $a 0$ is very small, the centre is $\left(C_{10}{ }^{0_{1}}+C_{20}{ }_{0}^{0_{2}}\right) x$ and the amplitude is very small; i. c., the "rigzag" becomes ahmost a straight line. Thus the stationary state reached by electrolysis with a ripidly interrupted, altermated, or varied two-beat current is practically the same as would be reached by clectrolysis with a constant current of the same number of contombs per sceomel (reckened algebraically). Progress towards the stationary state is likewise the same in the two cases, as may be seon by evaluating the evancee ent term of (30b) or (31) for very small values of θ_{1} and θ_{2}. Stationary and evancsent terms together give:
[For If Toy small] $=$ - $=$

It may be noticed that this equation beenmen equivalent to (150) on writing $\left(C_{10}^{()_{1}}+C_{2}^{0}\right)_{0}=C$.

-1 Special Case of Intermittent Currents:

To obtain an expression for the concentration changes at the clectrole during elect rolysis with ann intermittent current, where the periods of electroly-is with the current C, and the intermissions, eath last 0.5 sconds, equations ($30 b$) and (31) maty be used setting $x=l, C_{2}=0, C_{1}=C$, w $0_{1}=$ $a 0_{2}=0.5$; so that at $=0.5(p-1)+a-$, where $a 5$ changes from o to o. 5 during each beat.

The evancesent term (which of course is the same for both cquations) and the two stationary terms are as follows:

Mathematical Theory of the Changes of Concentration

Fig. 8 gives a graph of the cvanescent term, and the stationary terms of (36) and their sum, i. e., the values ${ }^{1}$ of $\left(z-z_{0}\right) / C l$ at the stectrone.

l-ig. s
Table III gives, for a number of values of $a \theta_{1}$ the values of $\left(z-z_{0}\right),(l$ at the electrode at the end of the $1 \mathrm{st}, 2 \mathrm{~d}$, 3d, + th, and s th beats of current (i. e., for $p=1,3,5,7$, and x). The numbers minder $p=1$ are the same as those of Table II, those under $p=\sigma_{s}$ are calculated from the stationary term of (3) after setting $x=l, \quad==0, C_{z}=0$,

${ }^{1}$ The values actually photted, however, are those here described multiplied by | 3 | $\therefore 1.2337$ |
| ---: | :--- |

$C_{1}=C$; for purposes of computation this term is best put in the form:

The figures in a horizontal line of Table Ill thus give the ordinates of the peaks of $\left(z-z_{0}\right)-t$-curves, such as "Sum" in lig. 8 whieh corresponds to the line opposite $a 0_{1}=0.5$. As the sum of the extreme values of $z-z_{0}$ at the electrode when $\theta_{1}=\theta_{2}$ is $C_{1} l$ (twice the centre," L:O. 34), the difference between unity and the figure under $p=\infty$ gives the ordinates of the lowest points reached by the curve when the stationary state is attained.

Just as with Tiblle 11, however, the figures of Table III are susecptible of a second interpretation. Writing $/ "$ for the intermittent current (when $\theta_{1}=0_{2}$) which just brings the concentration at the electrode from z_{0} to the arbitrary value z^{\prime} at the end of a beat of current, the figures of Table III obviously give $\left(z^{\prime}-z_{0}\right) / \mathrm{C}^{\prime \prime} l$ for various values of $a 0$, and p. But by $(2 t),\left(z-z_{0}\right) / l=C^{\prime}$, where C^{\prime} corresponds the limiting current ρ^{\prime}, i, c, , to the constant current which at $t=$ can just reduce the initial concentration liy the same amount. Therefore,

$$
\begin{equation*}
\left.\left(\approx_{0}-z^{\prime}\right) C l \quad C^{\prime} / C^{\prime \prime} \quad J^{\prime} /\right)^{\prime \prime} \tag{38}
\end{equation*}
$$

and the reciprocals of the figures in lable 111 give the intermittent currents needed with different values of $\theta_{1}=\theta_{2}$ to bring the concentration at the electrode to any arbitrary value at the end of the first, second, cte., beats of current, as meltiples of the limiting currot eorresponding to the same change of concentration.
'rlms, for example, if one ampere acting contimously is just st:ficient to bring the concentration at the electrode from z_{0} to any selected value z^{\prime}, the table shows that $1 / 0.507$ amp. will be needed to bring about the same elange in the time $a 0_{1}=0.5$; white 10.62 .5 amp. will do, if the current is allowed to pass for $a 0_{1}=0.5$ and then again for the same period, after a pause of equal duration.

Mathematical Theory of the Changes of Concentration $\quad 8+3$
T.am, I: III

Viahes of $\left(:-\sum_{0}\right)(\%$ at the electronte

Vinliten of (4) all $_{1}$	p	13	15	P 7	$1>$
2.00	0. Six)	(1) 120.3	(1).4xis	() 1931	(1).1933
1. 511	(1) Si9	() X5!	(1).8.92	() B 5 s	(1). $\mathrm{C}, 2$
((x)	(3) 70.3	(1)771	(1) 781	() 7×2	11.782
1).50	(). 517	13.62 .5	c. B (1) N	(1) $6 . \mathrm{N}_{4}$	() (10),
0.10	() 227	(1).29)	(1). $\mathbf{1 5 . 3}$	(1) 34)	1) 5 5
0. 115	() 100	11.21:	0.2.517	(1) 2N1	1). 501
0.101	(1.1.72	(1). 1105	(1) 112	(1) 120	(). 5 -7
(1)	().191)	1) 10%	() いす!	(1).1N()	(1).511)
()	11	()	${ }^{11}$	()	(1) 51\%)

The Simplest Altcrmating Currents
If C_{1} and C_{2} as defined by (iv) and (8) are of opposite signs, (30b) and (31) give the concentrations during electrolysis with the simplest form of alternating currents.

In the very simplest cense, the two currents will be equal in strength, $i, c ., C_{2}=-C_{1}$, and the beats will be of e'gual cluration, i, c., $0_{1}=\theta_{2}$; on n king these substitutions it will be found that (for both odd and even beats)

$$
\left[\begin{array}{lll}
{[\text { Ont }} & \infty \text { und }-1] & z \cdots z_{0} \\
C_{1} l
\end{array}\left[\begin{array}{c}
z-z_{0} \\
(1)
\end{array}\right]-1 \quad(39)\right.
$$

Where the expression in spuare brackets demotes the eorresponding values of $\left(z-z_{0}\right) C_{1} l$ (at $t=\infty$ and $x-l$) calenlated for clectrolysis with the simplest intermittent current, $C_{2}=0,0_{1}=0_{2}$.

Thus by doubling the ordinates of the "stationary" eurve in lig. 8 and subtracting unity, points may be obtained for a graph of the coneontrations at the stationary state when electrolyzing with the simplest alternating current, where $\left.a 0_{1}=a\right)_{2}=0.5$. Similarly, ordinates for the peaks of the stationary entren for different values of at may be obtained by doubling the mumbers under $p=\infty$ in Table III and subtracting unit!.

In some cascs it may be interesting to know the relation

pr - imosty determined valae at the chat of a given beat of eurreat. At the surface of a silver elfetrole in a solution of copper sath, it may be assumed, for the parpose of illustration, that when C° is positive silver will go into solution, and that when C is wegative silver (and not copper) will be redepesite so loug as there is any left in the solution at the electence. If there were wo silver int the solntion originally, part of that dissolved by the curreut (oluring the "anokle beat." $C^{\prime}=C_{1}$) would diffase away from the chertrole; so in order to prevent the deposition of copper dinting the ste-
 (s) athe (ia) is megative) (ither \mathcal{C}_{z} mast be arithmetically fese thann C_{1} or 0_{2} timet he lens tham 0_{1}.

Asomming that the two beats are of equal ditation (0. $=$ 0_{2}), and that the stationary state has been reathed, the concentration at the chectrode at the end of a cathende lxat will be represented by

Supposing $z_{0}-0, i, r$, thatt there is (practicatly) mo siluer in the Itain bode of the solntion, the mitallent value of C_{1} that will prevent the depmition of copper during the eathote

The remblt is:

Values of the expresion on the rixht have been tabmated (fir another parpoes) unker $p-\infty$ in 'lable 111; indic:ating thenis for the moment by N,

$$
i, i r(1-i) \quad(+1 i)
$$

The values in the following table (IV) have been catenbated by fob). .he an instance of their appliation, if $a 0,-a)_{2}=0.5$, at current of 2.26 antiperes white the silver Wats amode would be needed to prevent the deposition of copper by a curront of one ampere in the opposite dircetion;

Mathematical Thery of the Changes of Conacoltration Xis

unid n quantity of silver equal ion that dinsolved byy the action
 t.o.'a secomes wombla pias themght the diffusion layer into the ontside molution duriug each evele of 1.0 a secombls duration.

Comersels, the conceltration of the electrale solntion at which black eopper legions to be kemital during the clectrols-io of (onler sulphite solltions, :13t! the effice of atid, ote., ont that eomeentration, might be determitad by

Sec. 4. ?erlodic Curiellis. II. Cycies whth Four Beats.

 rated by some imblatiter matcrial, (zob) athl (31) are not trietly appleable: for in reatity the erele will con: aint

 agatit. The daration of the evele misy be reprexited be (1) $11=02+21$.
 presimb ma! We obtained:

$$
[\operatorname{fin} p=+1 / 3]=\approx 1
$$

846
T. R. Rosebrugh and II: Lash Miller
where
$B_{m}\left(e^{m^{2} a t}-1\right)=C_{1}\left(1-e^{m^{2} a \theta_{1}}\right)+C_{2}\left\{e^{m^{2} a\left(\theta_{1}+d\right)}-e^{m^{2} d\left(\theta_{1}: \theta_{2}+d\right)}\right\}$.
If $d=0$, the two equations (42) reduce to (30b) and (31) respectively. It may be noticed that their evaneseent terms are identical.

Sec. 5.-Periodic Currents. Iii. Sinusoidai Currents, Fourier Form.

If the difference between any two stnceessive currents be infinitely sinall, and the number of currents be infinite, the difference $C_{,}, C_{,-1}$ in (29b) becomes a differential, and the summation with respect to r becomes an integration. Values for the concentration-changes during eleetrolysis with a sinusoidal current, where

$$
[\text { At and after } t=0] C=M \sin (\omega t+\alpha)
$$

may thus be obtained.
Writing u in place of t_{r} to save printing, (29b) becomes:

$$
+\quad \begin{aligned}
& m^{4} \alpha^{2}+\omega^{2}
\end{aligned} c^{-m^{2} a t}\left(\omega \sin \omega t+\alpha+m^{2} t \cos \overline{\omega t}+\alpha\right)
$$

$$
\left.-\left(\omega \sin \alpha+m^{2} a \cos \alpha\right)\right]\left\{\cos m g_{5}^{\xi} \quad(+3 b)\right.
$$

$=M x \sin (\omega t+\alpha)$

$-\frac{81,1 / a \geq m^{2} a \sin \alpha-\omega \cos a}{\pi^{2}-m^{2} a t \cos m!a^{2}+\omega^{2}} \quad(43 c$
$2 . M k \perp m^{2} a \sin \omega t+\alpha-\omega \cos \omega t+\alpha c o s m 5^{2} ;$

$$
-\frac{2.1 I k}{l} \circlearrowright m^{2} \| \sin \alpha-\omega \cos \alpha \quad m^{-m a t} \cos m g \xi . \quad(43 d)
$$

$$
\begin{aligned}
& \left.+\int^{!} M \omega u^{-m^{2} \alpha(t-\mu)} \cos (\omega) u+\alpha\right) d u \int_{0} \cos m g_{5}^{\circ}, \quad\left(43^{a}\right)
\end{aligned}
$$

(43d) being derived fronı (43c) bu usiut $_{r^{\prime}}$, 27) and writing $\pi^{2} k / 4 l^{2}$ for a in the coefficient of the sunmation.

The last term on the right of (. $3 c$) and ($4,0 d$) constitutes the "evaneseent term", while the 'int tom and the first sum together in (43c) or the first sum in (43d) form the "stationary term" whieh alone remains when the stationary state is reached. If $\omega=0$, (43) reduces to (15) with $M \sin \alpha$ in place of C.

The same method may obviously be employed for expressing the concentration changes produced by eurrents whieh vary with the time according to any other law. Writing $C=f(t)$, (29) becomes

$$
\begin{equation*}
\text { The Stationary State When } I \sqrt{k}_{\omega}^{\omega} \text { is Large } \tag{h}
\end{equation*}
$$

The exponential multiplier, $e^{-m=a t}$, eauses the series in the evanescent term to converge more rapidly than that in the stationary term; with large values of l particularly, the convergenee of the latter is very slow. In the next section another form of the stationary term will be obtained which is more suitable for eomputation; here it is proposed to find the special value assumed by the stationary termof $\left(+3^{d}\right)$ when $l \sqrt{k}_{(1)}^{k}=\infty$.

The stationary term may be written
$\sum_{n=1}^{\infty} 2 m^{2} a k M \sin \omega t+\alpha \cos m^{4} a^{2}+\omega^{2}$

$$
\sum_{n}^{\infty} \underset{i}{2 k . M \omega \cos \omega t+\alpha \operatorname{mos} m s \dot{s} \cdot \quad(+5 \alpha)} \omega^{2}+\omega^{2}
$$

Defining ${ }^{1} H=\xi \sqrt{\omega}{ }_{k}^{\omega}, \mu=\sqrt{\omega}{ }_{2 k}^{\omega}$, and $\psi=m \sqrt{\omega}_{\omega}^{\omega}=(2 n-1) \pi \sqrt{2 l}_{k}^{\omega}$; while n inereases by unity, ψ inereases by $\Delta \psi^{\prime}=\pi \sqrt{j}_{k}^{k}$.

Introdueing these symbols (45a) becolles
$\sqrt{2} . M \sin \omega t+\mu \sum_{\pi \mu}^{\infty} \frac{\psi^{2} \cos I I \psi}{\psi^{4}+1} j \psi$

$$
-\sqrt{2 . M / \cos \omega t}+\alpha \sum_{n=1}^{\infty} \cos I I \psi+1, \quad(+5 b)
$$

As $l \sqrt{\frac{\omega}{k}}$ inereases, ψ decreases; until when $l \sqrt{k}_{k}^{\omega}=\infty, \Delta \psi=d \psi$ and the summation from $n=1\left(\right.$ or $\left.\psi={ }_{2 l}^{\pi} \sqrt{k}\right)$ to $n=\infty$ becomes an integration between the limits o and ∞.

$$
\begin{aligned}
& {\left[\text { For } l \sqrt{V}_{k}^{\omega}=\infty\right] . S t a t . t \mathrm{crm}=\frac{12.2 / \sin \omega t+\alpha}{\pi / \mu} \int_{\psi^{4}+1}^{\psi^{2} \cos I / \psi^{\prime}} d \psi} \\
& \text { — } \sqrt{2} M \cos \omega t+\alpha \int_{0}^{\infty} \int_{\psi^{4}+1}^{\infty} \cos / / \psi^{\prime} . \quad\left(\psi^{\prime}(01)\right.
\end{aligned}
$$

By using the partial fractions $\begin{gathered}2 \psi^{2} \\ 1+\psi^{4,}\end{gathered}-\stackrel{i}{i+\psi^{2 i}}-\stackrel{i}{i-\psi^{2} i^{\prime}}$ and $\stackrel{2}{\underset{1}{2}+\psi^{4}}=\begin{gathered}1 \\ 1+\psi^{3} i\end{gathered}+\underset{1-\psi^{2} i}{1}$, where $i=\sqrt{-1}$, and setting ϕ^{2} alternately equal to $\psi^{2} i$ and to - $\psi^{2} ; i$ these integrals may be nade to depend upon the known form

$$
\int_{0}^{\infty} \cos n \phi \quad \phi^{2}+1 d \phi=\frac{\pi}{2}
$$

Their values are:

$$
\left.\left.\begin{array}{l}
\int_{0}^{\infty} \frac{4^{2} \cos H \psi^{4}}{\psi^{4}+1} d \psi=-e_{2}^{\pi} c^{\prime \prime} 12 \sin \left(\begin{array}{c}
H \\
12
\end{array}\right. \\
4
\end{array}\right)\right\}
$$

'This use of the leters \mathbf{H}, ϕ and ψ, is restricted to equatuons (+5) and (+6).

Mathematical Theory of the Changes of Concentration 849
Introducing these values in (46a) and rearranging

$$
\begin{aligned}
& {\left[\text { For } l \sqrt{k}_{k}^{\omega}=\infty\right] \text { Stat. term }=\frac{-M I}{\mu v_{2}} e^{-n \xi} \cos \left(\omega t+\alpha-\mu \xi+\frac{\pi}{4}\right) \quad(46 b)} \\
& =M_{M \sqrt{2}}^{M} r^{-n \leqslant} \sin \left(\omega t+\alpha-\mu \xi-\frac{\pi}{4}\right) \cdot\left(t^{2}(c)\right.
\end{aligned}
$$

This expression has already been obtained by Warburg, ${ }^{1}$ for " $l=\infty$, ," direct from the differential equation, by means of a Fouricr's integral.

Sec. 6. -Sinusoidal Currents Contlnued (Hyperbolic Form)

The expression (43) for the concentrations throughout the diffusion layer cluring electrolysis with a sinusoidal current, which has been deduced in the preceding section, is in many cases very inconvenient for purposes of computation. In the present section another form will be obtained; for this purpose, however, it is neeessary to go back to the original differential equation.

In (1), viz.:

$$
\begin{equation*}
z-D=\left(x+\Sigma\left(A_{n} \sin \theta^{\prime} x+B_{n} \cos E_{n} x\right) n^{-E_{n} k t}\right. \tag{1}
\end{equation*}
$$

the "stationary term" (S) it ulfils the conditions
 [Electrode comition" At $x=1, \partial ら / \partial x=$ C'for all zoblu's of t (vi) while the "evanescent term" (V°), viz. the summation, is made to fulfil the conditions
[Solution condition] At $x=0, \partial V \partial t$ ofor oll vilutes of t (zii)
[Electrole comdition] $1 t x=l, \partial V / \partial r=0$ jor all values of t (aiii)
[Initiol condition] At $t=0,1^{\circ}+5=0$ for all iulues of x (ix)
by assignings suitable values $A_{n} B_{n}$ and E_{n}. Each term ecparately is a particular solution of the differential equation (iii).

By the use of Fourier's serics, as illustrated on pg. 82t, it is obviously possible to make the craneseent term comply

[^7]with the three conditions vii, viii, and $i x$, no matter what S may be; so that if it were possible to construet a stationary term whieh was a solution of (iii) and for which in addition
[Solution comition] At $x=0, \partial S / \partial t=0$ for all values of t
[Electrole comlition] At $x=l, \partial S / \partial x-$
M $\sin (\omega t+\alpha)$ for all values of t, (x)
an expression could be obtained direetly for the values assumed by z during electrolysis with the current $d=$ $96540 \mathcal{O} M k \sin (\omega t+\alpha)$ amperes (see pg. 821).
$1+z u / \Sigma z u$

This eourse is followed in the succeeding paragraphs. and the resulting equation (59), while identical in meaning with (+3), is much more convenient in form for certain computations.
(a) The Stationary Term, S

A hint as to the general form with whieh to begin is furnished by the exponential form of the evaneseent term in (1).

Let $\quad S=\left(A_{1} e^{i x}+A_{2} e^{-x x}\right) e^{r^{2} k t}+\left(B_{1} e^{i x}+B_{2} e^{-i x}\right) e^{k} k t$.
By differentiating it will be seen at once that to satisfy (v) it is necessary to set

$$
\begin{equation*}
A_{2}=-A_{1}, \quad \text { and } \quad B_{2}=-B_{1} \tag{49}
\end{equation*}
$$

Beeause of (x) - writing A for A_{1}, and B for B_{1}, and putting $M \sin (\omega t+\alpha)$ in the exponential form ${ }^{1}$ $r . A\left(e^{r t}+e^{-\pi l}\right) e^{r^{-k} k t}+\lambda B\left(e^{i l}+e^{-h}\right) e^{e^{i} k t}-{ }_{2 i}^{M}\left(e^{\prime(\omega t-a)}-e^{-i(\omega t+\alpha)}\right)(50)$
${ }^{1}$ The relations used in making the transformations of these paragraphs are:

$$
i-t=(1-1) i, 2
$$

$$
\begin{aligned}
& i=\sqrt{1} \\
& 2 \cos y=e^{\prime y}+e^{-i y} \quad \quad 2 i \sin y=\epsilon^{\prime y} \quad c^{-i y} \\
& 2 \operatorname{cosin} y=c^{y}+c^{-y} \quad 2 \sinh y=e^{y} \quad 4^{-y} \\
& \text { sinh } 2 y=2 \sinh y \text { cosin } y \\
& \cosh 2 y=\cosh ^{2} y+\sinh ^{2} y \\
& \operatorname{cosin}^{2} y-\sinh ^{2} y=1 \\
& v_{t}=(1+i) \quad \quad \log \operatorname{nat} i=(-1)^{n}+1(2 n-1) i-/ 2
\end{aligned}
$$

which can be satisfied by setting

$$
\begin{align*}
& \gamma^{2} k=i \omega, \quad \text { whence } \gamma=(1+i) \sqrt{2 k}_{\omega}^{\omega} \tag{51}\\
& \lambda^{2} k=-i \omega, \text { whence } \lambda=(1-i) ل_{2 k}^{\omega} \tag{52}\\
& A=\begin{array}{c}
\text { M/ } e^{i \alpha} \\
2 i \gamma\left(e^{r l}+\varepsilon^{-l}\right)^{\prime}
\end{array} \quad B=\frac{-M e^{-i \alpha}}{2 i \lambda\left(e^{i l}+e^{-i l}\right)^{\prime}} . \tag{53}
\end{align*}
$$

Introducing these values of A, B, r, l into (48), (iii) (v) and (x) are satisfied, and the result may be written

$$
\begin{aligned}
S & ={ }_{2 \mu}^{M}\{(J-H)(F \cos -G \sin)+(J+H)(F \sin +G \cos)\} \\
& =\frac{-M}{2 \mu}\{(J G-H F)(\sin -\cos)-(H G+J F)(\sin +\cos)\},(5+b) \\
& =\frac{-M}{\mu v_{2}^{-}}\{(J G-H F) \cos \omega t+\alpha-3 \pi+(H G+J F) \sin \omega t+\alpha-3 \pi\} \\
& =\frac{M}{\mu v_{2}}\left\{\left(F^{2}+\left(i^{2}\right)\left(I^{2}+J^{2}\right) \cdot \sin (\omega t+\alpha+\gamma-1 \pi),\right.\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu=\sqrt{2 k}_{\omega}^{\omega}, \\
& F=\cosh l \mu \cos \ln \mu^{\prime}\left(\cos ^{2} / p+\sinh ^{2} / \mu\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { II - sinh } \mu x \text {. cos } \mu x \text {, } \\
& l=\cosh \mu x \cdot \sin \mu x \text {, } \\
& r=\tan ^{-1}\left(H F+H(i)\left(H F-H_{i}\right),\right.
\end{aligned}
$$

" \sin " and "cos" are written, in ($5+a$) and ($5 \not+b$) only, for $\sin (\omega t+\alpha)$ and $\cos (\omega t+\pi)$ respectively.
Conversion of the Hypcrbolic Form of S into the Fourier Form
To clreck this result, (5t) may be converted into the stationary term of (43); the form ($5+9$) is the most convenient for the transformation. It is first neces-
sary to develop J and H as series of sines of odd multiples of $\pi x / 2 l$

Writing $m=2 n-1, P=2 l \mu / r, \quad H=\pi x / 2 l$, the scries are:

$H=\sinh \mu x . \cos \mu x=\sinh P(\theta \cdot \cos P(\theta)=$
$4 \Gamma(-1)^{m-1} \underbrace{2}\left(m^{2}+2 P^{2}\right) \cosh / \mu \cdot \cos / n-\left(m^{2}-2 P^{2}\right) \sinh / \mu \cdot \sin / \mu \sin m \Theta$.
On carrying out the multiplications and additions indicated in $(54 a)$, writing g for $\pi / 2 l$, and replacing $(-1)^{m-1}$ $\sin m \theta$ by $\cos m g \begin{gathered}\text {. the expression for } S \text { becones }\end{gathered}$

$$
\stackrel{\leftrightarrow}{2 . M k} \sum^{\frac{m^{2} \alpha^{2} k \sin (\omega t+\alpha)-\omega \cos (\omega t+\alpha)}{m^{4} s^{4} k^{2}+\omega \omega^{2}} \cos m \xi=\quad(54 c)}
$$

which is iclentical with the stationary tern of (43)
(b). The Evanescent Term, V.

$$
\begin{equation*}
L i^{i^{2}} V=\left(A c^{9 x}+B_{c}-3 x\right) c^{\beta^{2}} \tag{55}
\end{equation*}
$$

As in the case of the stationary ternn, condition (vii) requires that

$$
B=-A
$$

Condition (viii) requires that

$$
A, 3\left(c^{3,3 t}+c^{-3 t}\right) e^{, 32 t} \quad \text { o for all values of } t
$$

which may be satisfied by setting

$$
e^{3 t}+r^{-\beta t}=0, i . c r^{2,3 l} \quad-1, \text { or } \beta l=\log n a t i
$$

whence

$$
\begin{array}{cc}
3 \quad(-1)^{n} \quad(2 n-1) i \pi \\
2 l
\end{array}
$$

where n is any positive integer. On sthbstituting these values
This ase of the letter 3 is restricted 10 (.5.5).

Mathematical Theory of the Changes of Concentration 853

of B and β, (writing one term for each value of β) and converting into the trigononetrical form, (55) becones

$$
\begin{align*}
& V=\sum_{2} A_{n} i(-1)^{n} i_{i}^{-\left(2 n-1 r^{n+k} k t\right.} \sin _{2 l}^{(2 n-1) \pi r}, \quad(5(n t) \\
& =\sum_{2 i(-1)}{ }^{m-1} A_{n},-m x^{2}=k t \sin m g r,
\end{align*}
$$

m being written for $2 n-1, g$ for $\pi / 2 l$, and $;$ for $l-x$.
But, by (ix)

Therefore,
which is identical with the evaneseent term of $(43 d)$ since $\mathrm{g}^{2} k=a$.
(c) The Complete Expression, $S+V$

Thus fronn (54) and (58)

$$
\begin{aligned}
& \text { [For simusuidal curcout] } \quad z-z_{0}=S+V
\end{aligned}
$$

Equation (59) is the "hyperbolic form" of (43).
Values of $z-z_{0}$ at the slectrode may be obtained by replacing x by l (and consequently cos $m g \xi$ by unity). Thus, when the stationary state is reached
[.Stut, at elec.] $z-z_{0}=$

$$
\stackrel{M}{2} \sqrt{2}_{k}^{\sinh h^{2} 2 \mu l+\sin ^{2} 2 \mu l} \underset{\omega}{\sin h^{2} \mu l+\cos ^{2} \mu l} \sin (\omega t+\alpha+\gamma-1 \pi), \quad(60)
$$

where

$$
\mu=\sqrt{2 k}_{\omega}^{\omega}
$$

854 T. R. Rosebrugh and IV. Lash Matler
and

$$
\begin{equation*}
\text { [at clectrole] } r=\operatorname{lan}^{-1} \sinh 2 \mu l \tag{61}
\end{equation*}
$$

With increasing values of $l f, \cos l n$ and \sin / p vanish in comparison with sinh $/ \mu$, while sinh $2 l_{\mu}$ approaches equality with $2 \sinh ^{2} \quad l /$. The value of the fraction $\sin h^{2} 2 / \mu+\cdots n^{2} 2 / \mu$
$\sin h^{2} / \mu+\cdots n^{2} / \mu$ thins approaches 2 , and the value of " γ at the electrode" (61) approaches zero. Thus from (60)
[For t. ∞, at clectrode] $z-z_{0}=M \sqrt{\omega}_{k}^{\omega} \sin (\omega t+\alpha-\mid \pi)$. (62)
The same results may be obtained by setting $\xi=0$ in (46c); by means of (60), however, the limits within which the convenient equation (62) may be used can be ascertained. By looking up tables' of the hyperbolic functions it will be fourd that the substitution of (62) for (60) cannot introduce an error of more than one-half percent if $l_{n} n=l \sqrt{{ }_{2 k}}>3$. Assuming $\omega=377$ (i. e., 60 cyeles per second), and $k=+\times 10^{-6}$ (an average value) it follows that f is practically "infinite" for the purposes of this equation when it reaches 5×10^{-4} centimeters.

Amplitude

When the stationary state is reached, the values of z swing equally above and below z_{0}; the maximum values of $z-z_{0}$ being reached when $\sin \left(\omega t+\alpha+\gamma-\frac{1}{2}\right)=1$. All expressef) for the "amplitude" may aceordingly be found by sulstitureng this value in the stationary term of (59), or in (60) if the amplitude at the electrode be sought. From ($46 c$) it follow that when $l=\infty$ the amplitude at any preint in the diffusiof layer is ${ }_{2}^{M /} \sqrt{\omega}_{k}^{k}$,
fay.
The electric current is at its maximum when $\omega t+\alpha=\frac{1}{2} \pi$;
${ }^{1}$ Smithsonian Mathematical Tables: Hyperintic Functions, Washington, puinlisted by the Smithomiati indituten werg.

When the stationary state is reached, the concentration reaches its maximum whenever $\omega t+\alpha+\gamma-1 \pi=!\pi$ (see E.q. 59). The difference, $1 \pi-\gamma$, gives the plase differente or "lag" of the concentration wate lehind the wave of current at the stationary state. The lag at the electrode may be found by computing r from (61) and subtracting from $\pi / 4$.
The angle γ is a function of l / f whose value rapidly falls off with increase in $l n$, while alternating in sign.

Illustration

As an illustration, a number of values of $\left(z-z_{0}\right) / \mathrm{M}$ at the electrode have been computed for the case that $k=4 \times 10^{-8}$, $l=3.14 \times 10^{-4}, \omega=377$ (60 eycles per second) , and $\alpha=\frac{1}{2}$ (i. e., at the monent of throwing on the current, the latter is at its maximum). Fig. 9 gives a graph of the

Fis. 9
evanescent term, of the stationary term, and of their sum, i. e., the values of $\left(z-z_{0}\right) / M$ at the electrode. The "enrrent" wave is drawn on an arbitrary seale to illustrate the
differentee in phases, (lag), Figs, 10 and 11 apply to the sallice case; the arcas abe, ale, ete., above the curve correspond to the expression within the || brackets of (20d).

Ser. 7. Superposed Currents
Since all the erpationso of thia lart matisfy the sambe "intitial" comblition and the sala:e "oblution" eondition, and sinee the -tum of at mith ber of whtions of the linear differential ergate tion (iii) is likwise at solntion, the concentration chanses profluced by any bunther of currents acting simultamombly may be ohtatad by adding tesether the right band membets of the equations which give the concentration changes that would be produced be cach currest tahen separately.
 could be computed if the eurrent were antalyed in the ordinary way, and expresed ats the sum of a pure simusodial eurrent athd its higher larmonice.

Other problems may be handled in the same way. Suppose, for instance, that the sintusoidal current for which $C=M \sin (\omega t+\pi)$, and the direct current for which $C=C^{\prime}$

Mathematical Theory of the Changes of Concentration $85 ;$

both enter the solution by the same electronde; when the statomary state is reacherl, the anplitude of the concentrition variation at the elfetrode callsed by the simusoidal eurrent alone would x x

While that cansed ley the direet eurrent alone wostld be aror; (6,3) thas gives the maximmo deviation of z alowe and below the centre of swing. If the simbordal corrent acted abone, the eentre of swing would h_{x} at $z z_{0}$; if the direet eurrent

gives the lowest value of $z-z_{0}$ reinded at the cheremede during electrolysis.
 copper sulplatio pratianlly frer from silsur (i. \because, z_{0} (1), the ratio betwetl the two cerrents that womble just prevemt the eonecoltation of the silser silt at the (lextrode from

 to C_{i}). Thin ration is allation of l^{\prime} 't k, i. ... of th: time constant and of the duration of the evele. If $k+\times 10^{-n}$,
 current ammeter would be offie tinne that on the alternating.
 to 2.00 , and $C_{1} .1 / \quad \checkmark / \mathrm{J}$. .

Measurements of this hature might prove all eaty mathes

[^8]of finding the ratio k / l^{7}; if a "limiting current" were likewise determined (sece pg. 830) the two measurements would give both k and l.

PART II

the reaction at the electrode changes when : at THE ELECTRODE ATTAINS THE VALUE ?

At the cathode in an acid solntion of copper shlphate, the concentration of the copper, z, decreases when the enrremt is thrown on; nll vahes of z - $z_{\text {。 will therefore be nega- }}$ tive, they may be comptited by (150) remembering that G as defined in the lintrodnction, and therefore C as defined by (8), are negative. The curves oad for at $=0.25$, obe for $a t=0.35$, ofg for at $=0.50$, and oh for $t=\infty$, in fig. 12 were so ohtained; they differ from the corresponding

curves in Fig. 1 omly in scake, and in that $z-z_{0}$ is mensured downward to indieate decrease in z as the electrode is approveled.

As moted on per 832. (15c) merely fixes a relation betwern $\left(z-z_{0}\right) / C l, x / h$, and at irrespective of the absolute values of z, x, and f; the vahtes of $\left(z-z_{0}\right.$), $C l$ correspond to $z=0$, and therefore the leeight in the figure of the horizontal line corresponding to $z=0$, will vary from case to case. Asstming it to have the position given by k in figy.

12, 2 at the electroxle will rench acro at at $=0.25$; from that moment on, l:(1. (15) which prediets still further full in z (as indiented by the dotted limes obe, of of, ohe enses to be applicable, and minst le replaced by amother.

Sec. 8. -Constant Current

 equation (iii, Dick's law, pg. 820), it must also fultil the "solution condition" (i, pr. 8i8), but the "electronle comalition (iv, $\mathrm{pg}, 82 \mathrm{~s}$) must le replaced buy
which says that from at certain value of f (viz: "1) onwaris, the coneentration at the electrocke remanins maltered at the value ζ : at the cathorle in the eopper solution $\zeta=0$.

Ilse "initial condition" (ii, pg, Sio) aloomunt be replaced, be [Comdition all $=v$] $=-0_{0}=$
signifying that at $t=\boldsymbol{v}$, the values of z are those cantsed by the operation of the constant current C_{i} for a secomels.

Fronn (1), introducing the secial values of B_{n} and I) from (3) :mal (4) , and writing c inctearl of $C_{1,}, q$ instead of n and ρ instead of E_{n} to aboid confusion with the formulas of lart I, the equation

$$
\begin{equation*}
=-=_{0}=c, \sum_{4}^{x} \cdot 1, \text {, in ,in } m \tag{6,5}
\end{equation*}
$$

masy be obtained, which satisties (iii) ami (i). To satinfy. (xi) it is mecessary that

$$
\rho \quad q \div
$$

$(6,0)$
as maty be fonad by differentiating, etce, in the mamer illustrated on pg. \$2.3.

At the electroxe, $z=5$, and $x=l$, (hence $\sin \rho x=0$) so thiat

$$
\begin{equation*}
c=-\frac{-0}{1} . \tag{6,7}
\end{equation*}
$$

860
T. R. Rosebrugh and W. Lash Miller

Introducing these values of ρ and c, (65) becomes

$$
\begin{equation*}
z-z_{0}=\frac{\zeta-z_{0}}{l} x+\sum_{q}^{\infty} A_{q} e^{-q^{7 \pi} \pi k t} k^{2} \cdot \frac{g \pi x}{q} \tag{68}
\end{equation*}
$$

and satisfies $i, i i i$, and $x i$.
To introduce ($x i i$), the two expressions for $z-z_{0}$ at the monent $l=\vartheta$ oltainable from (xii) and (68) may be equated; replacing $\left(\zeta-z_{0}\right) / l$ by its value from ($x i i$), viz.:
and rearranging
(zob) being obtained be substituting an equivalent F'ourier's series for the expression in brackets at the right of (ron) (see Appendix).
The value of A_{q} may now be found, for any fixed value of q, be removing the sign from both sides of ($70 b$) and simplifying. Inserting the value so fomme in (68), there results:

$$
\begin{aligned}
& z-z_{0}=1 z_{0} x+
\end{aligned}
$$

which satisfies all four relations $i, i i i, x i$ and $x i i$.

Mathematical Theory of ", -."anges of Concentration 861
The symbol $\sum_{n}^{\infty} \sum_{q}^{\infty}$ signifies that the value of the expression on the right of $(7 i)$ is to be computed for cach value of q (for instance $q=1$) combined with every value of $n \quad n=$ $1,2,3$, . .) in turn; then for the next value of q, $(q=2)$ combined with every value of n, and so on; the sum of all these results is to be used in finding $z-z_{0}$.
liduation (71) is applicable whenewer, for ay reason, the concentration z at the electrode remanins constant after reaching a certain value $\boldsymbol{\xi}$. The case $:=0$ is no doubt the commonest, but eases where $-z_{0}>0$ may perhaps be met with where the product of clecteolysis erystallizes at the electrock thas forming a saturated solution there; other cases where - differs from \%ero may be sought in the elcetrolysis of solutions contaning excess of a secomel salt whose decomposition voltage is only slightly greater than that of the salt to whose concentration z refers.

Illustration

In the ease takem as illustration, $\left(50, a^{2}=0.2 .5\right)$ the constant current C_{1} bring the coneentration at the electrode fromi z_{\circ} to zero in 0.25 a sceonds; therefore, from (22a),

Hence

alld
[$\ln 1>0.2 .5] \quad\left(E_{0} \cdots\right)=0$

whence,

At		0	25	10.50	11.7 .5	1.(\%)
' whell 1 1-6.35.	So) ${ }^{1} 1$	0	0.0 .39	1.0 (1)7	(1s	10.35
${ }^{1}$ whell at 0.5\%,	$\left.8_{0}\right)(1$	11	.115	0.13 .3	11.23 .3	0.3,54

[^9] 2.-54.

These points determine the curves obd and ocd in Fig. 12; ofd, the straight line joining 0 and d, gives the concentrations at $t=\infty$.

Sec. 9.-Successive Currents

At some moment $t(t>v)$, suppose that the current corresponding to C_{1} is changed to a current corresponding to C_{2}. In the casc chosen for illustration ($\zeta=0$), if C_{2} be numerically greater (algebraically less) than C_{1}, z at the elcetrode will remain equal to ζ; if C_{2} lie between C_{1} and the limiting current corresponding to ζ (viz.: $C^{\prime}=\left(\zeta-z_{0}\right) / l$, Eq. 24) the concentration at the clectrode will ultimately remain at ζ, although if $t-\vartheta$ be not too great it may momentarily risc above ζ and then fall again.

If, however, C_{2} be (numerically) less than C^{\prime}, the concentration at the elcetrode will rise permanently above ζ. From the moment t_{1} at which this change of current occurs, the following conditions will hold, viz.:
[Fick's lute] $\partial z / \partial t=k \partial^{2} z / \partial r^{2}$.
[Solution condition] For $x=n, \partial z / \partial t=0$.
[Electrode condition] For $x=1, \partial z / \partial x=C_{2}$.
["Initial" comdition] For $t=t_{1}, z-z_{0}=$ an expression obtain-
able by writing t for t in (71).
(viii)

The first threc may be complied with by setting $t=t_{1}$ in (1), and substituting the valucs of B_{n}, D and E_{n} given by (3), (4), and (7) respectively; v is written instead of n to avoid confusion with the first summation. To introduce the "condition at $t=t_{1}{ }^{\prime \prime}$ the expression on the right of (xiii) must be converted into a series proceeding by sines of odd multiples of $\pi x / 2 l$ (see Appendix); the A_{2} 's may then be found in the usual way. On carrying out these operations there results:

$$
\begin{align*}
& {\left[F \cdot\left[t>t_{1}\right]=-z_{0}=C_{2} r+\frac{8 l}{\pi^{2}}\left(\frac{\zeta-z_{0}}{l}-C_{2}\right) \sum_{n=1}^{\infty} \frac{-m \cdot a\left(t-t_{1}\right)}{m^{2}} \cos m g \xi\right.} \\
& 128 c_{1}^{c} l \sum_{i=1}^{\infty} \sum_{i}^{\infty} \frac{e^{* x p} \cdot \cos (2 v-1) \pi \xi}{\left(2 n-1^{2}-+q^{2}\right)\left(2 v-1^{2}-4 q^{2}\right)^{\prime}} \tag{72}
\end{align*}
$$

where, as usual, $m=2 n-1, g=\pi / 2 l, a=\pi^{2} k / 4 l^{2}, \xi=l-x$ and the exponent of e (indicated by "cxp" in (72)) is

$$
\begin{equation*}
-\pi^{2} k\left[(2 n-1)^{2} \vartheta+4 q^{2}\left(t_{1}-\theta\right)+(2 v-1)^{2}\left(t-t_{1}\right)\right] . \tag{73}
\end{equation*}
$$

If $t_{1}-v$ be very large, the exponential factor of the triple sum becomes zero, and only the first two terms of (72) remain. Large values of $t_{1}-\vartheta$, however, correspond to a linear fall of concentration throughout the diffusion layer at the monent $t=t_{1}$; the single sum term of (72) can accordingly be dedueed from (1), (3), (4), and (7) by introducing the condition.

$$
\begin{equation*}
\left[f o r t=t_{1}\right] z_{0}-z=\left(z_{0}-\ddot{\eta}\right) x / l . \tag{xiv}
\end{equation*}
$$

in place of (xiii), or it may be derived from (31), the general equation for a cycle of two beats, by making $0_{1}=\infty$ sec; (32).

Illustration

If for instance the constant current corresponding to C_{1} whieh brings the concentration at the electrode to zero at $a t=0.25$ (sec preceding section) persist till at $=0.50$, the values of $\left(z-z_{0}\right) / C_{1} l$ at the electrode from at $=0$ to $a t=0.25$ will be given by points on the curve of of Fig. 13, which except in scale and the direction in which $\left(z-z_{0}\right) / C_{1} l$ is measured, is identical with the first part of the curve of Fig. 3. From at $=0.25$ to $a t=0.5$ the eoncentration will remain stationary at $z=0$ (Fig. 13, line ad).

Now let the eurrent be shut off and be sueceeded by a pause ($C_{2}=0$) lasting from at $=0.50$ till $a t=1.0$, as in the "special case of interrupted icur-

1Fig. 13 rents" illustrated 11 Sec. 3. The concentrations at the electrode will rise, following the curve de of Fig. 13, points for which have been ealculated by means of (72).

To show the effeet of the new electrode condition (xi), the curve for $a t=0$ to $a t=1.0$ of Fig. 8 has been drawn again in Fig. 13; it is represented by the broken line oabc. The eurve $d f$ (points for whieh were computed from the first two terms only of Eiq. 7^{2}) gives the coneentrations that would be found during the seeond beat, if the first eurrent had persisted long enough to bring about a linear coneentration gradient throughout the diffusion layer. The differenee between $d e$ and $d f$ in Fig. 13 corresponds to that between ocd and ofd in Fig. 12.

An equation involving triple summation would suffiee to trace the coneentrations cluring the first part of the third beat, i. e., mutil the coneentration at the cleetrode again beeane zero; but eaeh time the "electrode eondition" ehanges from (iv) to (.ii) or baek again the order of the summation is inereased by unity. Simplifications are introdueed if ore of the beats is of long duration; but in general it would probably be easier to plan experinents in whieh the eonditions discussed in this Part are avoided, than to earry out the consputations that would otherwise be neeessary. Ilhustrations of how this may be accomplished are given in Part III.

PART III

SECONDARY REACTIONS

In I'arts I and II of this paper all ehanges of eoneentration oceurring in the solution during electrolysis have been ascribed to electrolytic migration and to the diffusion of the produets of electrolysis from the eleetrode, or, as the case may be, to the diffusion toward the eleetrode of sueh of the eonstituents of the solution as were consumed at that point. It will now be assumed that, apart from the effeet of diffusion, the concentrations of the products of eleetrolysis may be lowered by the oceurence of "seeondary" reactions, i. e., reaetions between the produets of eleetrolysis and the other eonstituents of the solution; and the special assumption will be made that the rate at which sueh reae-
tions proceed is proportional to the concentration of the substance whose concentration is represented by z.

The rate of change of concentration of such a constituent at any point in the diffusion layer will therefore be represellted by

$$
\begin{equation*}
\text { [Difierchtial cquation] } \partial z / \partial t=k \partial^{2} z / \partial r^{2}-K z \text {, } \tag{xiv}
\end{equation*}
$$

where K is the "velocity constant" of the secondary reaction. As is well known, K in general depends on the temperature, and on the concentrations of the other constituents of the solution, and even if these factors be kept constant many reactions have been discovered for which the rate is not proportional to the concentration of the disappearing substance; there are enough cases in which the rule holds, however, to make it worth discussion, white to assume that the rate might be proportional to any other than the first power of z would wholly change the nature of the differential equation.

The suggestion that the rates of such ahmost "instantancous" reactions as that between copper salts and cyanides might be determined by electrolytic experiments is due to I.eBlane, who has already carried out a number of experiments from which the order of magnitude of such rates may be inferred. The following paragraphs suggest methods for determining K directly; if carried out at different temperatures and with different concentrations of the other reagents, the effeet of these factors on the rate of the reaction might also be determined.

To simplify the disenssion, it will further be assumed that the secondary reaction is practically "complete," 2. e., leads in time to the total destruction of the primary product of the electrolysis; thus the z_{2} of Parts 1 and II becomes zero, and conditions (i) and (ii) are replaced by
[Solution combition] At $x=0, z=0$ for all values of $t \quad$ (xi)
[Initial condition] At $t=0, z=0$ jor all zalues of $x \quad$ (xai)
while the electrode condition remains the same as before
[Flistrede comdition] $A t x=l, \partial z / \partial x=(i / k=C$.

Sec. 10.-Constant Current

The "stationary term" of the new equation may be found by setting $\partial z / \partial t=0$ in (xiv), whence

$$
\begin{equation*}
[A t \ell=\infty] \quad 0=k . l^{2} z / d x^{2}-K z \tag{74}
\end{equation*}
$$

the solution of which is

$$
\begin{equation*}
z=A_{1} \cosh b x+A_{2} \sinh b x, \text { where } b=\sqrt{ } K / k . \tag{75}
\end{equation*}
$$

Condition $(x v)$ leads to $A_{1}=0$, and (iv) to

$$
A_{3}=C /(广 \cosh b l),
$$

so that the stationary term becomes

$$
\begin{equation*}
[\text { For } t=\infty \quad z=C \sinh b x /(b \cosh b l .) \tag{76}
\end{equation*}
$$

The evanescent term, which must satisfy (x iv) and ($x v$), and for which at the electrode $\partial z / \partial x$ must equal zero (so as not to interfere with $i v$), may be derived from the form

$$
\sum_{n}^{\infty} A_{n} e^{-\left(\kappa+m^{2}\right) 4} \cos \begin{gather*}
(2 n-1) \pi(l-x) \tag{77}\\
2 l
\end{gather*}
$$

by determining the coefficients A_{n} so that at $t=0$ the sum of stationary and evanescent terms will vanish, i. e., so that

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} \cos (2 n-1) \pi(l-x)=-\frac{C \cdot \sinh b r}{b \cdot \cos h b l} . \tag{78}
\end{equation*}
$$

This is accomplished (as illustrated in Secs. I and 8) by expancting the hyperbolic expression as a series of sines of $m \pi x / 2 l$, and introducing in (78).

Combining stationary and evanescent terms, the solution of $(x i v)$ which satisfies $(x v),(x v i)$, and (iv) is found to be
where C, k, l, t, x, have the meanings implied in ($x i v$), $(x v)$ $(x v i)$ and ($i v$) and explained at length in the Introduction and I'art I; $m=(2 n-1), g=\pi / 2 l, \xi=l-x, b=\sqrt{ } K / k$, and ψ is written for $K+m^{2} a=K+(2 n-1)^{2} \pi \pi^{2} k / 4 l^{2}$. I is used for $\sum_{n=1}^{\infty}$. An expression for the concentrations at the electrode may be obtained by setting $x=l$ in (79).

$$
\begin{equation*}
[F i r x=l] \quad z={ }_{b}^{C} \operatorname{lanh} b l-{ }_{l}^{2 k C} \sum_{\psi}^{c^{-i t}} . \tag{80}
\end{equation*}
$$

Ou consulting tables of the hyperbolie functions, it will be found that when $b l<0.15$, tanh bl may be replaced by $b l$ with an error not exceeding eight-tenths of one pereent; the stationary term then becomes Cl as in (15). Assiming $k=+\times 10^{-6}$ as in the former illustrations, $b l=l \sqrt{\circ} / k<0.15$ inplies $K<0.09$ when $l=10^{-3} \mathrm{em1}$, and $K<9.0$ when $l=10^{-4} \mathrm{em}$. 1'erhaps the highest values of K that eall be measured satisfactorily by the direct methods of chemieal kineties ${ }^{1}$ do not execed $K=0.09$, corresponding to a fall of the concentration to one half its original value every eight seconds, thus if the secondary reaction takes place at any ordinarily measur :ile rate, the stationary term of (80) becomes Cl .

On the other hand, when $l l>3.0$, tanh bl may be replaeed by unity with an error not execeding one-half percent; and the stationary term of (80) becomes $C \vee k / K,=G / v K k$. Assuming $k=4 \times 10^{-6}$ as before, this gives $K>36$ if $l=10^{-3}$ elli, and $K>3600$ if $l=10^{-4} \mathrm{~cm}$ as the values that must be reached by K if this approximation is to be emiployed.

Erf approximation. Evaluation of the evaneseent part of (80) by simple addition of the terms is quite im_{p} ossible when K is large, on aceount of the slow convergence; if at be small, however, an approximately equivalent expression, based on the equation of Thomson and Cayley (E.q. 18) may be employed.

Writing

$$
\begin{align*}
& 2 k\left(\sum_{n=1}^{2}\left(\begin{array}{c}
c-\left(K+m^{2} a\right) t \\
K+m^{2}, a \\
l \\
k+m^{2}, d
\end{array}\right)=\right. \\
& -2 k C \sum_{n}^{\infty} \int_{0}^{1} c^{-(K-m=a) t} d t=-{ }^{2 k C} \int_{0}^{!}\left(e^{-K t} \sum_{n}^{\infty} e^{-m-a t}\right) d t \tag{81}
\end{align*}
$$

[^10]the summation in the last expression may be replaced by its approximate value (viz.: $\mid \sqrt{\text { at }}$) from (20), and the term ${ }_{l}^{2 k C} \varliminf_{K+m^{2}, l}^{1}$ by its equivalent viz.: ${ }_{i}^{6}$ tanh b, so that ${ }_{\hat{b}}^{C}$ tunh $b l-\stackrel{2 k C}{l} \underbrace{-4}_{\psi}=$ (approximately)
\[

$$
\begin{equation*}
k c^{c} \sqrt{\pi} \int_{i}^{0} r^{k^{t} t-1} d t-\frac{2 C}{b, ~} \int_{0}^{k^{\prime} t} r^{2} d y^{2} \tag{82}
\end{equation*}
$$

\]

and equation (80) reduces to

 are tabulated in most books on Least Squares;' when the argument is zoro, the probability integral is likewise zero, and the integral reaches $0.99{ }^{\text {f }}$ when the argument reaches 1.8; the maximman value of the integral is unity.

Sec. 11.-Successive Currents in General

To obtain an expression for the concentrations when a current corresponding to $C_{;}$, after passing for the interval $t=0$ to $t=t_{1}$, is succeeded by a current corresponding to
 in Sec. 2, (79) may be written
${ }^{1}$ For instance, Merriman and Johnson each give a four-place table, while Bertrand (Calcul dis l'rolulitites) and De Morgan (On l'robahilities) each give a sevelf-place table, the argument in each case advaneing by oor. A far more elaborate table in which the argument advances generally by o.cx) is giver by Burgess Trans. I:dh. Sol. Sor., 39, 257 (1899).

Iroceeding as indieated in Sec. 2, the general expression for the concentrations during the pth leat may be obtained:
where
whence the expressions for the concentrations during the progress of odd and even beats in two-beat cyeles:

From (86) and (87) expressions for the amplitude and for the concentration at the centre of swing in the case of two-beat cyeles may be obtained (see pr. 839); they are:
[Amplitulu]

$$
\begin{align*}
& \begin{array}{l}
\frac{1}{2}\left(C_{1}-c_{2}\right) \text { sinh } b \cosh ^{2} h
\end{array} \tag{88}
\end{align*}
$$

$[$ At contre $] \quad z=\frac{1}{2}\left(C_{1}+C_{a}\right) \begin{aligned} & \text { sinhbr } \\ & \text { booshbl }\end{aligned}$

870 T. R. Rosebrugh and W. Lash Miller

When θ_{1} and $\theta_{\text {a }}$ are very large, the concentrations at any point in the diffusion layer oscillate between ($C, \sinh b x$)/ $(b \cosh b l)$ and $\left(C_{2} \sinh b x\right) /(b \cosh b l)$; when θ is very small. the amplitude is practically zero, and the eoneentration at the centre of swing is $\left(C_{1}{ }_{0}^{\theta_{1}}+C_{3}{ }_{0}^{\theta_{2}}\right) \sinh b x /(b \cosh b l$.)

Sec. 12.-Simple Alternating Current

If the current corresponding to C_{1} pass for θ_{1} seconds through a copper eleetrocle into a solution of potassium cyanide, making the eopper anode, and if then the current corresponding to C_{3} make the copper eathode for the same interval θ_{1} seconds, and be sneceeded by C_{1} for θ_{1} seconds and so on; the ratio between the two eurrents that will just bring the concentration at the elcetrode to zero at the end of the cathode beats when the stationary state has been reached, may be found by setting $x=1, t=\infty, z=0$, $==0$, and $\theta=20_{1}$ in (86).

Making these substitutions, and dividing the numerator of the θ fraction by its denominator, the result may be put in the form

and if $a 0$, be small enough to justify the use of the IErf approximation,

$$
\begin{aligned}
& C_{1}-C_{1}=1-\left[1-(\text { colh } b l)^{2} \text { lirf } \sqrt{ } K 0_{2}\right] \\
& +\left[1-(c o t h b l){ }_{\sqrt{2}}^{2} \text { Erif } \sqrt{2} K_{1}\right]-\text { ctc. (91) }
\end{aligned}
$$

For high values of $l \sqrt{k}_{k}^{\bar{K}}$, coth $b l \mathrm{t}$ omes unity, and the ratio, between the two surrents is independent of k and of l, becoming in fact a function of $K 0_{1}$.

In making an actual computation, ${ }_{l}^{2 k} \sum_{\psi}^{1}$ would be re-
placed lby its value (tanh $b l$)/h and the Eirf approximation would be used for the first few summations of (90) where direct summation would be too laborious; for higher values of the negative exponent, however, where the lirf approximation becomes less reliable, direct summation is easy. ${ }^{1}$

As an example, if $k=+\times 10^{-6}, l=3.1416 \times 10^{-4}, K=$ 400, and the duration of each beat $\theta_{1}=0.0005$ seconds, the two currents would stand in the ratio of 68.97 to 31.03 or $\mathrm{G}_{1}=-0.4+99 \mathrm{G}_{1}$.

If C_{1} / C_{2} were determined in the laboratory, K could be found by (90) and (91); the easiest way, no doubt, would be to compute C_{1} / C_{3} for a number of assumed values of K. plot the results, and find K^{\prime} from the observed C_{1} / C_{2} by interpolation. If, lowever, in the experimental work, the currents in the two beats had been equal, and if it were attempted to calculate \boldsymbol{K} from an experimental determination of the relative amounts of copper dissolved during the mode beat and redeposited during the cathode beat (i. e., fre the net loss of weight of the electrode $)^{2}$ or from an owillographic determination of the moment during the cathode beat at which the concentration at the electrode fell to zero, the problem would become analogous to those of Jart II; multiple summations would have to be employed, and the computations would become complicated and laborious.
${ }^{2}$ When $"_{1}=0.0005$ and $a=t(x)$, the following are the true valtes and
the Erf approximations respectively of the sums in (x) , beginning with the
first containing an cxponelltial factor:
Number
True value
Erf approx.
Truc value
Firf approx.

[^11]
872

T. R. Rosebrugh amd 11 l.tsle Miller

The quantity of cuprion' per squar 'inteter of electrode area left in the diffusion layer at $1 / 1.1 \cdot 1 / 1$. the cathorle leat, viz.:

$$
\begin{aligned}
& \left.\rightarrow \frac{(-1)^{n+1} c^{-\psi t_{1}}}{m \psi^{\prime}}+\frac{2 \omega_{1} 7}{\prime}, 2\right)
\end{aligned}
$$

is by no means megligible; in $1^{1 / 4}$
illu-tration it athontuts to $+5.5099 \times 10^{-4} G_{1},: 4 g a .1 \therefore \quad(x) \times 10^{-4} G_{1}$ equivalents bronght into the solutmath du 1 intorle beat
 wid $C_{3}=-0 .+499 C_{1}$).
'lhis is why ant estimation of K from the experimentally determined ratio C_{1} / C_{2}, based on the roush and ready liypothesis that diffinion may be alogether meglecterl, and that at the end of the cathode beat (when $z=0$ at both cotds of the diffusion layer) the atronnt of euprion in the difiusiont laver may be neglected, leads to results very wide of the mark. ${ }^{3}$

The number of equivalents of euprion that pass ont from the difiusion liver into the borly of the solution, per sef. con of chetroke surface, during ati atooke beat, maty be found by maltiplying the concentration gradicut at the whtiont (at . x o) by k.d: and integrating:

I simblar expression for the cathorle beat anay easily be obtaincel. In the case laken for illustrationt these guantitics are bont large. An approxinate vahae for the lose during the eyde may be found, without stmonning the series of (o, 3), by assumbing that the boss woula be the same as that catioced by a conntant current of atiorige strength, $C=1_{2}\left(C_{1}+C_{2}\right)=$ 0.275 C_{1}, acting throughout the eycle.

[^12]Using the formula for the statimary state (E:(1. 76) this gives

The loss from the dibusion laver during a complete exele (1) - 20, $=0.8$ (x)t secomels) is thats abont five pereent of that disuskerl from the clectronk duriug tut anode beat.

Approximate Calculation of \mathfrak{K} from the Curnent Ratio

The quantity of cuptint in the dilin iom layer apposite

 trolsis at the rath 1 be quisalent, per secomd, it is lxing dindinithed br the che whe ation of the eymide at the rate

 tions.
'1111.

 of courion remainine in the diftusion lister all the end of a

Inscrting the vilhen found in the provions pataseral 1 ,

 K $\downarrow(x)$.

Suppose, fowever, that the current ratio had bee de termmed experimentally, and that it was propesid to . Wen
late K without taking account of diffusion at all, i. e., from

$$
\begin{equation*}
-\dot{G}_{2} / G_{1}=r^{-K^{\prime} \theta_{1}} \tag{97}
\end{equation*}
$$

which may be obtaincd from (96) by setting $w=0$ and $L=0$, the wholly crroneous result $K=1597$ would be obtained. The crror is mainly due to neglecting w; if in (96) w be given its true value and L be set equal to zero, K comes out equal to 435 .

Conditions Connoted by Large Values of $l \sqrt{k} \underset{k}{K}$

During the discussion of (91) it was pointed out that when $l \sqrt{K}{ }_{k}^{K}$ is large, $C_{.} / C_{2}$ is independent of k and l; according to (96), however, the current ratio can be independent of k and l only when the amount of cuprion left in the diffusion layer at the end of a cathode beat is likewise independent of the same two variables. The following consicherations may help to make the reason for these relations clear.

If in any series of experiments z remains constantly zero at any fixed point in the solution, that point might be taken as $x=0, i$. e., its distance from the electrode might be taken as l; to keep $z=0$ at any point further from the electrode could have no effect on the diffusion, and consequently to give l any greater value in any system of equations applicable to the case conk have no effect on the results of the computations. By kessening k or increasing k the point at which z remains practically equal to \%ero is brought nearer to the clectrode; and it follows from what has just been said, that when once it is nearer than the point selected as " $x=0$ " for the given system, the "solution condition" is withont effect. Large values of t bring the evanescent terms to zero, and thus destroy the influence of the "initial condition;" if both circumstances occur together, the only equations influencing the resnlt are the "differential cquation" and the "electrode condition," which for any given value of k, viz.: k_{1} mily be written

$$
\begin{align*}
& \partial i \tag{iva}\\
& \partial t
\end{align*}=k_{1} \frac{\partial^{2} z}{\partial \xi^{2}}-K z(\text { rivi }) ; \quad k_{1} \frac{\partial z}{\partial \xi}=-1 ;
$$

Suppose that in two cases the diffusion constants are k_{1} and $k_{2}=k_{1} / r^{2}$, respectively, where r is any constant multiplier. Replacing k_{1} in (xiva) and (iva) by k_{1} / r^{2} the equations for the second case will be
and it is obvious that (if conditions are sueh that the "initial" and "eleetrode" eonditions may be neglected) the same values of z will be met with in both eases if r and $r G$ in the second ease have the same values as $;$ and G in the first case, respectively; that is, when the current, and the distanee from the electrode, of the points compared, are both r times less in the second ease than in the first. Consequently (sinee, other things being equal, z is proportional to G) if the eurrents be cqual in the two cases, the values of z at comparable points will be r times grater in the second case than in the first.

Hence, if the diffusion layer be imagined to be divided into eorresponding laminae in the two cases, these being r times as thin in the second case as in the first and having concentrations r times greater, each will contain the same quantity of the component to whielh z refers. Further as explained above since the values of z in both cases fall to zero with inereasing $\bar{\xi}$ and remain at zero, the impared laminat laving zero values of z will not affect the total, and therefore the total quantity of the componcint in the two cases being the sum of the same items must be the same. That is to say, the number of equivalents contaned in the diffusion layer will be under these conditions independent of K.

Conditions that keep $z=0$ at $\xi<l$ obvionsly prevent all loss from the diffusion layer into the main body of the solution, by destroying the concentration gradient at $\xi=l$; for large values of $l \sqrt{K} K_{k}$ thercfore, the integral expanded in (93) must reduce to zero.

Sec. 13.--1Sinusoldal Currents, Fourier Form

The general expression where $C=f(t)$, from which the expression for the sinusoidal current may be derived as a special case is:

$$
\begin{aligned}
& \text { (99b) } \\
& \text { Setting } f(t)=. M \sin (\omega t+\pi) \text {, this beconnes }
\end{aligned}
$$

Iflo re the harmonic andrsis of a curent is known it can be sen th:t for each component of the current there will b in the value of z a term expressible ather in this form or in that if the next section.

Sec. 14. Sinusoldal Currencs, Hyperbolic Form
Is in: lant I, the stationary tern may be expressed in a forme more suitable for computation by the use of lyperbolic furctions.

Starting ont fromi (48), and introducing the new conditions, it will be found that the values ontained for A and B are those given by (fy), but that the exponents r and A. nus bre detmed as follown:

[^13]Mathematical Theory of the Changes of Concentration 877
whence

$$
\left.\gamma^{2} k=K+i \omega \text { and } \lambda^{2} k=K-i \omega, \quad \text { (1011 }\right)
$$

$$
\begin{equation*}
\gamma=\beta+\partial i a m d \lambda=\beta-\partial i, \tag{101b}
\end{equation*}
$$

where

$$
\beta^{2}+\delta^{2}=\frac{\delta^{2} K^{2}+\omega^{2}}{k}, \beta^{2}-\hat{\delta}^{2}=K / k, \text { Ind } 2 \beta \hat{o}=\omega / k . \quad(\text { (10ic) }
$$

Introducing these values in (48), the following expression for the stationary term is obtained
where

$$
\begin{align*}
& \chi=\omega t+\alpha+\operatorname{tun}^{-1}(\operatorname{coth} x \beta . \tan x \delta)-\frac{1}{2} \tan ^{-1}(\omega / K), \\
&-\tan ^{-1}(\tanh / \beta \cdot \operatorname{tun} h(\delta) . \tag{103}
\end{align*}
$$

On setting $K=0$ in (102) it is reduced to (5t), on setting $\omega=0$ it is reduced to (-6); and by means of suitable expansions of the hyperbolic functions it may be converted into the "Fourier" form, (stationary term of cquation 100).

The evanescent term may be obtained from the general form

$$
\sum_{1}^{\infty} A_{n} \varphi^{r-t} \cos m_{5}=
$$

(which satisfies (xiv), (xi), and the condition that when $x=l, \partial z, \partial t=0$), by expanding (102) in a series of sines of $m g{ }^{5}$ and determining the values of A_{n} as in sec. (6b). The resulting evanescent term is identical with that of (too).

Combining both terms, the "hyperbolic form" of the expression for sinusoidal currents becomes:

$$
\begin{aligned}
& \stackrel{2.1 / k}{l} \sum_{n=1}^{\infty}
\end{aligned}
$$

in which χ has the meaning given in (103), and ${ }^{3}$ and on those implied in (101c).

878 T. R. Roscbuagh and W. Lash Miller

An expression for the amplilude at the stationary state may be found by setting $\sin \chi=1$; the concentration at the centre of swing is zero. The "lag" is given by

Concenlrations at the eleclrode may be found by substituting l for x in (105); in the cvancseent term, this has the effect of making $\cos m g ;$ unity, while the stationary term becon:es
$[$ For $t=\infty, x=l] z=\underset{2\left(K^{2}+\omega^{2}\right)^{\frac{1}{2}}}{\frac{\sqrt{\sinh }^{2}}{2} 2 \beta l+\sin ^{2} 2 \partial l} \sinh ^{2} \beta l+\cos ^{2} \delta l \sin \chi \quad(107)$ where

$$
\chi=\omega t+\alpha+\operatorname{tan-1} \sin ^{-1} \begin{gather*}
\sin 2 t o े \tag{108}\\
\sinh 2 / \beta
\end{gather*}-\frac{1}{2} t a n-\binom{\omega}{K} .
$$

If $\beta l>3, \sinh 3 l$ becomes >10, and the circular functions inay be negleeted in comparison with the hyperbolic. The fraction then becomes sinh $2 \beta l / \sinh ^{2} \beta l$ which for values of $\beta l>3$ is very nearly equal to 2.00 ; thus (with a maximum possible error of one-half percent), when the stationary state is reached

$$
\begin{equation*}
[\text { For } x=l, \beta l>3] \quad z=\frac{M k^{\frac{1}{2}}}{\left(K^{2}+\omega^{2}\right)!} \sin \chi . \tag{109}
\end{equation*}
$$

Sec. 15.-Superposed Currents

As in Part I, the effeet of a number of currents acting simultancously may be found by adding the right hand members of the equations which express the effects of each of them alonc. In fact, the assumption inade throughout this Part, that $z_{0}=0$, deprives many of the equations of their validity unless when thought of as parts of such a sum; according to (10^{-7}), for instanee, the concentrations at the eleetrode would be negalive during a large part of the eyele on electrolysis with a pure sinusoidal current.

When the stationary state has been reached during electrolysis with a simusoidal current, the amplitude of the concentration variation at the electrode may be found by setting $\sin \chi_{1}=1$ in (107). The eentre of swing is zero with the simusoidal current alone, but it may be raised to any desired

Mathematical Theory of the Changes of Concentration 879

height, $C_{1}{ }^{\text {tanh }}{ }_{h}$, by superposing the direet current corresponding to C_{1}. If $C_{1}{ }^{\text {tanht } b l}$ be greater than the amplitude, z at the electrode will never fall to zero; and the condition that z just touches zero once in the eycle is expressed by

$$
\begin{equation*}
\alpha=\frac{C_{1}}{b} \tan h b l-\underset{2\left(k^{2}+\omega^{2}\right) l}{.1 / k^{4}}, \stackrel{\sinh ^{2} 2 \beta l+\sin ^{2} 2 \partial l}{\sinh ^{2} \beta l+\cos ^{2} \partial l} \tag{110}
\end{equation*}
$$

whence the ratio of the two ammeter readings $\frac{C_{i} i 2}{M}$ may be found:
the limit of (111) for $K=0$ is the expression obtainable by equating (64) to zero.

With the ordinary alternating current of 60 cycles per second, $s=377$; assuming $k=4 \times 10^{-6}, l=3.14 \times 10^{-4}$, and $K=500$, the ratio C_{1} / M will be 0.912 , and the ratio of the ammeter readings, 1.290 provided the arrangement is as described in the footnote to Sec. 7.

The ratio is a function of $l \sqrt{\frac{1}{k}}$ and $\frac{\omega}{K}$ so that if it be de-termined experimentally, and if in addlition ω and a be known, K may be calculated. As the value of C_{1} for which z at the electrode just touches zero should be recognizable by voltmeter or oscillograph or by weighing the electrode (111) should lead to a convenient experimental method of detemining the velocity constants of rapid "secondary" reactions. The ratio C_{1} / M will vary from the value discussed in Sec. 7 when K is zero, to 1 when K increases without limit (the value 1 would imply, in the case of a copper eleetrode in cyanide solution, that the copper never became cathode). Other things being equal, increasing ω brings the ratio nearer zero.

For large values of K, tanh bl beeomes unity, and the sinh fraction of (111) reduces to 2.0 ; in this case the relation be-
tween the eurrent ratio and the value of K takes the simple form

$$
\binom{C_{1}}{I I}^{4}=\begin{gather*}
K^{2} \tag{112}\\
K^{2}+\omega^{2}
\end{gather*}
$$

and K may be determined without knowledge of k or l.

APPENDIX

Note on the Construction of Speclal Trigonometrical Series to Represent Arbltrary Functions

If it be required to express a given function of $x, f(x)$, between given values of x as the sum of a series of sines and cosines of multiples of a variable 0 chosen so as to have its increment in a constant ratio to that of x and to vary from 0 to 2π between these given limits of x, the problem admits of but one solution; and Fourier has shown that the coefficicuts of the general terms of the series, viz., $\sin m \theta$ and $\cos m 0$ will be $\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin m 0 . d 0$ and $\pi_{0}^{1} \int_{0}^{2 \pi} f(x) \cos m 0 . d 0$ respectively, for all integral values of m not zero, while the constamt term or eofficient of $\cos 00$ is $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) . d 0$.

If, however, it be agreed that the series shall represent the given function for a limited range only (less than 2π) of vathes of θ, an infnite number of solutions are possible; and the problem becomes determinate only when the value of the series for the remainder of the interval 2π of 0 is speeified. Advantage may be taken of this to impose additional conditions on the nature of the series by which the given function is to be represented.

If. for example, it be suffieient to find a series that will represertt the function over the assigned range in values of x for values of 0 between $0=0$ and $0=\pi$, no conditions being imposed as to the value of the series when 0 lies between π and 2π, the value of the series in the later range may be so chosen as to make the cocfficients of either the sine terms or the cosine terms of the series equal to zero.

The first may be aecomplished by making the scries represent the ordinates of a eurve with values of 0 as abscissae, whose ordinates between $\theta=0$ and $0=\pi$ are the eorrespondling values of $f(x)$ over the given range in the values of x, and whieh is continued between $0=\pi$ and $0=2 \pi$ by its mirror image in the ordinate at $0=\pi$. Representing by $\psi(x)$ the values of the ordinates throughout the whole range from $\theta=0$ to $\theta=2 \pi$, the integral $\int_{\pi}^{1} \int_{0}^{\pi} \psi(x) \sin m \theta \cdot d \theta$ will then be equal in magnitude and opposite in sign to $\int_{\pi}^{2} \int_{\pi}^{2 \pi} \psi(x) \sin m 0 . d \theta$ and therefore $\int_{0}^{1} \int^{2 \pi}(x) \sin m 0 . d 0$ will be zero, while $\int_{\pi}^{1} \int_{0}^{2 \pi} \varphi(x) \cos m \theta \cdot d \theta$ will be equal to $\int_{0}^{2} \int_{0}^{\pi} \varphi(x) \cos m \theta \cdot d \theta$, and the constant term $\frac{1}{2 \pi} \int_{0}^{2 \pi} \psi(x) \cdot d 0$ to $\pi_{0}^{1} \int_{0}^{\pi} \psi^{\prime}(x) \cdot d 0 ;$ so that the series whieh represents $\psi(x)$ for all values of 0 between $0=0$ and $0=2 \pi$, and therefore inter alia represents $f(x)$ over the given range in x for values of 0 between $0=0$ and $\theta=\pi$, will eonsist of eosines only (besides the constant term). Thus the eoefficient of the gencral term $\cos m^{0}$ will be $\pi_{\pi}^{2} \int_{0}^{\pi} f(x) \cos m \theta d \theta$ and the eonstant term is as just stated, or equivalently $\int_{0}^{1} \int_{0}^{\pi} f(x) \cdot d 0$.

If on the other hand the ordinates of the curve represented by the series be equal to $f(x)$ for values of 0 betweell $0=0$ and $\theta=\pi$, whike the part of the eurve between $0=\pi$ and $\theta=2 \pi$ is formed from the first part by revolution through 180° round the point $0=\pi$ on the axis of abscissale, the cosine terms disappear and the eoefficient of the gencral term $\sin m 0$ is $\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin m 0 . d 0$, there being here no constant term.

These "cosine series" and "sine scries" are discussed in all works dealing with Fourier series; the textbooks with which we are faniliar, however, do not point out that still further conditions may be imposed on the nature of the series if the range of values of through which it is to represent $f(x)$ be still further restricted. Such conditions are inet with in practice; for instance, in order to obtain IEq. (54e) 1:q. (72) and l:q. (79) of the present paper (see also Eq. 11) it was necessary to find a series of sines of odd multiples of $0=\pi x / 2 l$ which would represent a given function of x between the limits $\theta=0$ and $\theta=\pi / 2$. This condition is complied with if the series be constructed to represent the ordinates of a curve, whose ordinates between $0=0$ and $0=\pi / 2$ are equal to $f(x)$, and which is continued in the second quadrant by its inirror inage in the vertical through the point $0=\pi / 2$, while the second half is formed from the first by rotation through 180° around the centre $0=\pi$ on the axis of abscissac. For such a casc $\int_{0}^{2 \pi} \psi(x) \cdot \cos m 0 . d \theta=0$ as stated above, while $\int_{\pi}^{1} \int_{0}^{2 \pi} \psi(x) \sin m \theta \cdot d \theta$ is zero when $m=$ 2n. and equals $\int_{\pi}^{\pi} \int_{n}^{\pi} \varphi(x) \cdot \sin m \theta \cdot d \theta$ or $\int_{\pi}^{4} \int_{0}^{\pi} f(x) \cdot \sin m \theta \cdot d \theta$ when $m=2 n-t$. So that thie series which represents $f(x)$ for all value's of 0 between $0=0$ and $0=\frac{\pi}{2}$, will consist of sines of odd multiples oniy of 0 and the coefficient of the gen aal term, viz., $\sin (2 n-1) 0$ will be $\pi_{\pi}^{4} \int_{0}^{\pi} f(x) . \sin (2 n-r) 0 . d 0$.

Similarly, the general term of the scries which represents $f(x)$ for values of θ between $\theta=0$ and $\theta=\frac{\pi}{2}$ and which

Mathematical Theory of the Changes of Concentration 883
consists of cosines of odd multiples only of 0 , is ${ }_{2}^{2}$
${ }_{\pi}^{4} \cos (2 n-1) 0 . \int_{0}^{0} f(x) \cdot \cos (2 n-1) 0 . d 0$.
The extension to the other three quadrants which this series is made to deflne is obtained as follows: revolve the curve in the first quadrant about the point $0=\frac{\pi}{2}$ on the axis of abseissate through 180° to define the second guadrant, and then for the second half take the mirror inage of the first two quadrants in the ordinate at $0=\pi$.

It is to be noted, however, that these extensions are introdued merely for the purpose of explanation, and, as the results above sliow, do not necd to be represented graphically or introdued into the formulat.

Although values different from zero may be obtained from the above formulac for the cocflieients of terms which are not to appear in the series, no use is to be made of such values, as the formula is not valid for any such purpose. Similarly in the last ease for which the formula is givell (cosines of odd multiples) there is no constant term, whatever be the mean value of $f(x)$ over the givell range in x.

Unitersity of Tarontu. Julv, 1010

T. R. Rosebragh and W. Lash Miller

CONTENTS.

Intronuction: General statement of the theory, definition of $\mathcal{P} /\{, k, l, l, z, z o$. Part I.-Reactions at the electrome indejeudent of the concentration z. Siecondary ractions excluded.

Page ${ }_{212}$
Sec 8 ,-Constant current. Methods of compritation, parabolic approximation, first term approximation; the stationary state; stationary tern when k is a function of 2 ; the "limiting cirrent." Iretermination of k and l. Graphical representation. C, C^{\prime}.
Sec. 2.-Successive currents in general. $C_{p} 1$, .
8.3

Sec. 3.- Jerialic currents, I. C'ycles with two beats: $\cap, \mathrm{r}^{\mathrm{Cm}}$. Centre and amplitude of swing: large and small values of 0 . Special case of intermittent currents, simpie alternating currents. $\quad 8 ;$
Sec. 4.-l'erioulic enrrents, II. Cycles with four beats. $\$_{4} 5$
Sec. 5.- Periolic currents, III. Simishilal currents, Fourier form: M, w, n. Stationary state when $l \sqrt{k}_{k}^{\omega}$ is large. $84^{\prime \prime}$
Sec. 6.-Sinmsoidal currents cont'd, Hyperbolic form. Conversion of forms. Ampliturle. Lag. ${ }^{2}+9$
Siec. 7.-Superposed currents; constant and sinumidal. $\$ 56$
Part II.-The reaction at the electronle changes when a at the electrode attains the value?.

8 88
Sec. 8.-Constant current.
8.51

Sec. 9.- Successive currents.
85:
Part III.-Secondary Reactions. Definition of K. 864
Sec. 10. Constant current. Erf approximation. \$66
Sec. 11.- Successive currents in gencral.
86 s
Sec. 12,-Simple alternating current. Determination of K. Approximate calculation of K from the current ratio. Conditions connoted hy large values of $l \sqrt{k} \underset{k}{K}$. $\quad 8 ; 0$
Sec. 13.-Sinusoidal current, Fourier form.
$5: 6$
Sec. 14.-Simusoidal current, Hyperbolic form.
$5: 6$
Sec. 15.-Siuperposed currents; constant and sinusoidal. Letermination of K.
Appendix. - Note on the monstruction of special trigonometrical series to represent arbitrary functions.
88%
The following contractions are employed throughout:

$$
\begin{aligned}
a & =\pi:^{1} k / 4 l^{2} \\
b & =\sqrt{\frac{K}{k}} \\
c & =\sigma / k \\
g & =-:-l \\
m & =2 n-1
\end{aligned}
$$

Equations presenting different algebraical forns of the same relations are giver: the same number, but distinguislied by the use of the letters a, b, c, etc.

竍 \square

[^0]: - Wied Am., 7, 5.6 (1879).

 ${ }^{3}$ Wicul. A1111., 67, +173 ($18(4)$).

[^1]:

 : Zeit. plyss (lle $111 ., 23,689$ (8897).

 - Ibill., 47, 52 (1904).

[^2]: ${ }^{2}$ Zeit, phys. Chem. 47, 5^{6} (140t).

[^3]: ${ }^{1}$ Riemann, Die Partiellen Differential-Gleichungen der math. Physik, 4th Ed., Vol. i, pg. 153 (Igoo).
 ${ }^{2}$ In his "Introluction to the Theory of Fourier's Series and Integrals, and the Mathematical Theory of the Conduction of Heat" (Macmillan, 1906). H. S. Carslaw has collected a large number of cases in which problems analogous to the present have been solved, but as condition (iv) does not correspond to any easily realizablc experimental condition except in the case of electrolysis, no p.oblems satisfying that condition have been included; in the case of a heat problem, condition (iv) would correspond to a fixed rate of loss of heat from one end of a cylinder, independent of its temperature.
 ${ }^{3}$ Wied. Ann., 7, 536 (1879).

[^4]: interpretation of $C l$ is allowable witrin certain li:nits only (see I'art lli); the geometrical interpretation (figg, 1) Iowds in all cases.

[^5]: - Zeit. phys. Chem., 53, 235 (14n号).

[^6]: 'This is obvious if it be noted that the expression within the brackets [\} is a function of m only, not of x or ℓ.

[^7]:
 2 Lee lage - 54.

[^8]:

 amb not it serien with the cell.

[^9]: ' Correponting whacui (z, z)/zo may be ohtained by multiplying by

[^10]: ${ }^{1}$ Such a case was studied by Miss Benson, Jour. Phys. Chent., 7, 356 (1903).

[^11]: In the case of the lise tern mentioned in this table, which involves emp the first two terms onlv of the sumation statice for the determination of five significant figures and the Frf apmoximation can thus in this case be dispensed with before it becomes inaccurate.

 2 . Is. for instance. in Lellanc's experiments.

[^12]: 'foplere mot combined witl cyatme is meatht.
 *Sce under the rext beching.

[^13]: ${ }^{1}$ With regard to the ap plicabitity of there results see nuter Sec. 15.

