IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation

C!HM/ICMH Microfiche Series.

OIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illusizations/
Planches et/ou illustrations en couleur
Bound with other material/
Relid avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée paut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves addec during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dani la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachèes

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy fiimed here has been reproduced thanks to the generosity of:

> Library of the Public
> Archives of Canada

The images appearing here are the best quaiity possibie considering the condition and legibiilty of the originai copy and in keeping with the fiiming contract specifications.

Originai copies in printed paper covers are filmed beginning with the front cover and ending on the iast page with a printed or iiiustrated impression, or the back cover when appropriate. Aii other originai coples ars fimed beginning on the first page with a printed or iliustrated impression, and ending on the iast page with a printed or iilustrated impression.

The last recorded frame on each microfiche shail contain the symboi \rightarrow (meaning "CONTiNUED"), or the symboi ∇ (meaning "END"). whichever applies.

Maps, piates, charts, etc., may be filmed at different reduction ratios. Those too large to be entireiy inciuded in one exposure are filmed beginning in the upper ieft hand corner, ieft to right and top to bottom, as many frames as required. The foiiowing diagrams iiiustrate the method:

L'exempiaire fiimé fut reproduit grâce à la générosité de:

La bibiothèque des Archives pubiiques du Canada

Les images suivantes ont 6 té reproduites avec ie pius grand soin, compte tenu de la condition et de ia netteté de i'exempiaire filmé, et en conformité avec ies conditions du contrat de filmage.

Les exempiaires originaux dont ia couverture en papier est imprimée sont flimés en commençant par ie premior piat et en terminant soit par ia dernidre page qui comporte une empreinte d'impression ou d'iliustration, soit par ie second piat, seion ie cas. Tous les autres oxemplaires originaux sont fiimés en commençant par ia premiere page qui comporte une empreinte d'impression ou d'iiiustration et en terminánt par ia dernière page qui comporte une teile empreinte.

Un des symboies suivants apparaîtra sur ia dernière image de chaque microfiche, seion ie cas: ie symboie \rightarrow signifie "A SUIVRE", ie symboie ∇ signifie "FiN".

Les cartes, pianches, tabieaux, etc., peuvent être fiimés à des taux de réduction différents. Lorsque ie document est trop grand pour être reproduit en un seui ciiché, ii est fiimé à partir de l'angie supérieur gauche, de gauche à droite, er de haut en bas, en prenant ie nombre d'ir sages nécessaire. Les diagrammes suivants iiiu atrent ia méthode.

(All rights reserved

ADVANCE PRDOF-(Subject to revision).

This proof is sent to you for diseussion only, and on tho expriss understanding that it is not to be used for any other purpose wan. ever.-(Vee Sec. 47 of the Conatitution).

 INCORPORATED 1887.

TRANSACTIONS.

N.B.- -This Society, as a budy, does nut hold itself responsible for the faets and opinions stated in any of its publications.

THE RESISTANCE OF pillis.

By Henry f. Perley, M.Calasoo.U.E.

Pilcs are used under varying eireumstanes: :-(1) to form a foundation where the soil is o." such a naturo as to prectude the super-imposing of a strueture on it, but whieh, by the use of piles, is compacted to sueh an exteut as to afford sufficient resistanee to a sinking or settlement of the piles which carry the load ; (2) as a ready means of obtaining a foundation where a loove or soft stratum overlies a firm and compaet material, to or into which the piles are driven and derive their support ; (3) to serve as columns of support, as in the case when driven in clusters, or singly, as in pile-bridging and wharfing, where the piles are capped anll cariy only the superstructure, and a dead or a live load, but are subjected, it way be, to the lifting power or action of iee ; (4) where they are driven to form a coffer-dam, and are not subjected to any vertieal pressure, their object being to provide a water tight structure, strong enough to resist the unequal side pressures to which they may be subjected ; and (5) to form a retaining or revetment wall.
The resistanee to whiels a pile is subjected is of a two-fold nature,(1) that which it meets with whilst being driven, and (2) that which it offers in sustaiuing either a vertical load or a lateral pressure.
In the literature on "pile-driving," the subject appears to be treat. ed in a very profound mamuer, and we have no end of wonderful calculatious and still more wonderful formula to perplex the brain of the practical man, and neellessly worry hin, with their purely theoretical assumptions, comp'ex forins, and variable constauts; and :ll the more so, seeing that the formuln whieh might apply in one ease would not apply at all to others, and thus she atoption of the majority of the formula to be found in poeker-books and manuals is to be depreeated.
With regard to the resistance a pile offers in sustaining a load, a conuplication ensues, as it may be so plased th.t tho different resistances have to be borne by it. In a foundation pile, whase head is on a level with the surfaee of the gromd, and thus is supported throughout its whole length, the resistance experieneed in driving is, iu some degree, a measure of the resistanee to settlenent, and a greater lond per scuare ineh can be impoeed on it, becanse it is a column supperted at all points in its length agaiust flexure and rupture, both of whieh aetions are modified and, it uay be said, greatly motified by the mature of the ground or soil into whieh the pile is driven ; for it stands to reason that a pile which has passed threugh a comparatively soft stratum, and then p nerrated a hard stritum, eannot.support the same load that it would were it thiven into a stratum solid throughout. Then again-take the case of a pile in a bernt of a pile-bridge. Here we have a pile which is to be drivel x lect into the earth, and to stand y feet atove its surface, unsupported, exeept in so lar as it may be tied to other piles by watines, braces, or cars. The resistanee of the y portion of the pile is its ability to support as a prillar or column the dead and live load imposed on it, and to transmit such pressure to the x portion, to be met ky the resistauee aflorded by the ground or soil into whieh it is driven.
The resistance to tho downward movement of a pile is (1) that which is opposed by the displacemeut of a mass or ynantity of earth equivalent to the enbie contents of the driven portion of the pile; (2)
the frictional resistance which exists between the ground and the pile such resistance varying with the mature of tho soil or uroms, the depth driven, and the superficial area of the pile in contet with the earth; and (3) the ability of the pile to withstand crushing, rupture, or deformation of any kidd whilst being htiseu, on at any time during its use.

Supposing a pile 12 inches square to be driven 15 liet into the giound, then the re must lave beeu 15 cubio feet of earth displaced, for which room ean only be found by a partial rising of tho surface, and by a efrupactiug or a compression of the eath surrounding the pile. The superticial anta of the portion driven is 60 square feet, sud thenefore each superfieial loot of pite sulace displaees $\frac{15}{\text { biin }}=0.2$. eubic foot, equal to a film of earth 12 inehes sfuare and $: 3$ inches thick. 'I he deusity or eompactuess of this filan is depentent upon the character of the eath or ground iuto which the pile is driven, and no doubt the resistanee to the downard movecunt of the pile during driv. ing, and its stability afterwards, are due, to a greater or less cextent, to the frictional esisishance sct up by this compressed film, -a resistanc equal to the greatest load or weight which the pile wonid support up \mathbf{t}_{0}^{e} the mounent when a novement or setilement takes phace, always assuning that tho load is not greater than what would erush and destroy the pile.

There is a great difference between a dynamic force and astatic psessure, the former beiug represented by a blow from a ram falling from a heigh, ploducing an cffect in a minute portiou of time ; and the latter by a load, applied, it way be, gradually during a longer or shortened period, or in inerements defined or undefined as to amount.

As an illustration, the following data is assumed :-

Weight of ram,	2000 lbs.
Fall of ram at last blow,	5 feet.
Set under last blow,	0.5 inch.
Length of pile driven in ground,	20 feet.
Dimensions of pile,	12×12 inches.

From these data the dynamical force, or the "encrgy" of the ram de. veloped at the moment of impaet, and impuatei to the pilo, will-using the well-known formula for energy, $\begin{aligned} & \mathrm{WV}^{2} \\ & \mathrm{Vg}\end{aligned}$:mount to 10,000 tootpounds, or the amonnt which would sink the pile to a depth of one foot in a stratum offering a resistance of $10,00 \mathrm{~d}$ lbs. to the deseent of the pile in that distance. In the dita assumed the pile was driven to a depth of 0.5 inch only, or, the resistance to the downwarl movement was so great that the energy developed was only sufficient to cause a "set" of 0.5 ineh, under the last blow of the ram falling from a heieht of 5 feet; hence the actual amount of energy displiyed becomes $\underline{10,000 \times 12}$ \qquad 240,000 foot-pounds. This amount has a two.foll
significatiou, for it represents (1) the frietioual resistance of the earth to the descent of the pile ; and (2) the load which the pile will bear. without setthement.

It is assumed that the pile has been driven to a depth of 20 feet, and further assuming, for the sake of simplicity, that the point of the pile does uot support any portion of the load, then the area in contact with the earth will be $20 \times 1 \times 4=80$ superficial fiet. then $240,000 \div 80$ $=3000 \mathrm{lbs}$., or the average resistance of the earth per square font of the driven sulface.

The area of the pite is 14.1 square inches: then $240,000 \div 144=$ 1667 lbs. per square inch, which is in excess of the weight, as a perma. nent load, to which the pile shonld be smbjectel. Assmming io fietor of safety of 8 , the load beeomes 208 lb . per square ineh.

In 1849, Major Sanders, U. S. Enginecr, dedneed from his experiments at Fort Delaware, " that il pile will safely hear, wirhont danger of a further subsidence, as many times the weight of the ram :s the distance which the pile is sunk the last blow is contained in the distance through which the ram falls in making the last blow, divided by eight," or expressed as a formula,
$\mathrm{L}=\frac{\mathrm{WI}}{\delta_{0}}$, when W is the weight of the ram, H the lill in inehes,
(1) the distance sumk by the lust blow, and L the safe load.

Applying the is unaed dath to this forma, wo have:
$2000 \times(\overline{5} \times 12)=30,000 \mathrm{lbs}$, and il this amotut be multiplied by 8 , 8×0.5
we pet $\because 40,00 t) 1$ s.s., or the momit derived from the calculation for anergy.
Huring the driving of a pils, the carth surrounding it is iu a state of mution or vibration, wad if the hows of the ram follow in quick suocession, as in the ense of a stenu pile diver, the particles of carth are bept vibrating and the tendeney to settle is prevented, ard thus the pile may le driven d"per and more grickly than by the urnal machine worked ly hand power, by whet the blows ure rendered at eomparatively long intervals. It i, well known hat a bolt ean be driveu more quickly inte, a hole sualler in diancter than it-elf in timber, when two hambers instatl of one are used, beause the filres of the timber ate prevented firm "stting" on haging the bolt by the 1upid sucecssion of. blows to the :ume cathet ticy wonld othen wise do. A heavy ram falling from usmail hishet will du better and quieker 'work than a ligher ram talling frow a greates leight, and a greater number of blows pur unit of time cun be given; and besides this, the chanees of brooming or cruabing the head of the pile are rednced to a minimm, hetue the suceestinl wee of the stean pile-driven.
In the construction of works for the extension of the doekyard at * Porismouth, England, it was found that on the resumption of pile-
" l'ruceedthge Inat. (. Li., Vol, 64, p. 164.
drivius niter an intestal of some hours, the "eet" of the pile was inviriably much less than that obsorved on the cessation of driving, the lall of the ram heing the same; and this result was accounted for in a great moasure by the fact, that during the process of driving, the ground was to a yreat extent listurbed, and the vibration of the pile enued ${ }_{2}$ the hole fiour the surface downward to be slightly enlarged, thas reiicving the prefrom the full frictional resistance. On the eessation of driving, the ground settles or expruds, and thos grips the pilo to such all extent as 10 materially iuerease the frictional resistance. To determite the anount of inereased resistance aceruing Irom quiesence, special observations were made on a number of files, the drisug of which had ben completed before closing the work for the uight. On the following morning one test blow was given, und the resulting "set" remplat with that of the previous evening; and it was shown hat 39 bech piles, which had an average "set" of 0.054 fi . on conteletion of hrivity, when 1 -ted the following morning, gave an awrage ret of 0.023 th , showine un inercased resistance of 3.3 to 1.0 . Feventy four fir piles, which had un average "set" of
 0.013 f1., or in iucreased reristance of 2.81 to 1.0 . I'sing tbese "sets," the deta previously giren, and Major sanders rule, we have:

An exanination of these resuhts bhows the great amount of uncertainty connected with the determination of the site load wheh should ber imposed on a pild, for it may be einher under or over loaded, when the night or anming "set" is takea as the cornect laetor, and it is this action whind sende:s all the formabe (or determining the resisting to : great extent hypothetical.

Besides the resi-tinne to fintler downward movement oue to the thad and lise loads, a pile in some instames has to withond in cold comitrics mumard or dawing mosemom due to the action ol iee, by which, as in the eave of pilo-bringiug or whan fing, it is encoupassed.

In tidal rivers ur hathous where the iec is in constant motion, a film or coating timms on the surface of piles against which the moving ice rubs, and therefore does not produce any injuious eftects; but a different action takes place when piles have been driven in bodies of
still-water in whieh an inerense in volume is cansed by int influx of water, and conecquently a rise in elevation ensues. In rivers and small lakes, where their volume is angmentel by the melting of snow, ete., the iee burrounding mod ullocring to 1 pile nets as a platiorm which is raised by the influx of water ; and if tho lifting power displayed is greater than the rexisting power of the pile to withdrawal, then an upward mevement must tuke phee; but where the pilo las an xecss of resistance, the ice fructures and breaks awny withont enusing damage.

Ice, we know, is water in its aolid form, and we also know thut its specifie gravity is less thau that of water, or as 0.9175 to 1.0 ;-or, in other words, a cubie foot of iet weighs 57.16 lbs., as against 62.5 lbs . the (neeepted) weight of a cubie foot ol water; und the lifing power of ice under the influence of rising water is therefore $62.50-57.33$ or 5. 17 lbs. per superfieial fool, one foot thick.

Aceording to a paper lyy Mr. J. F. James, M. Inst. C. E., *k the adhesion of ice to timber is 29.43 lbs . per square inch. Trautwino states that the adlesion ranges from 30 to 40 lbs , per square itich,
There is not any doubt but that the power to draw a pile is mueli less than the powe to drive it, especially in the ease of a round pile, whieh is tapering, and when once started is free to be mgved easily upwards.

Mr. danes, made a number of experin, ents on the "Foree required to draw a jile," with what may be classed as rods, ranging frem 1 inch to 2 inches square, 1 to 2 inches in diameter, aud $3 \frac{1}{4}$ by 1 ineh in section; and fron the results of 40 experiments be determined a eoefficient C to be 0.3285 , or that the power required to draw is to the power required to drive as 0.3285 to 1 . Thus, in experiuent 17, a pile $1 \frac{1}{4}$ iuches square was driven ly a mul wrighing 22.5 lbs , talling 7.2 feet at the last blow, the "set" being 0.895 ineh, the driven lengit being 18.5 inches, and a foree ol 727 lbs . was exerted to draw it, Using Major Sinders' rule, omitting the factor 8 , and the foregoing datn, we have $\frac{22.5 \times(7.2: 12)}{0.805}=2171$ lbs. as the resistance to down-
ward movement. The fore to withdraw was 797 lbs, und $\frac{727}{2171}=$ 0.335, whieh represents the co effiefort in this ense.

In the removal in 1880 of the coffer-dam nsed in connection with the constraction of the Nibert loek, Hull, Fingland, in whieh piles were driven with a ram weighine $22 \div 0$ lbs, hilling on an averuge $5 \frac{1}{2}$ feet, the "set" at the hast blow andaging 0.6225 inch, and the driven length weruging 18 fect, -it was lound that the averige fore to withdraw a pile was 70.869 lbs .
 $: 18+$ liss and $\begin{array}{r}75,86: 1 \\ 236,381\end{array}=0.3121$ as the enetlicient in this ease, which may be assumed agrees wiht thase fonal by Hr. otatues.
Asmating a pile 12 inches : poure, and the admesion of ice to timber 2 at :30 lbs. per subare ineh, dien rie total firee which can be exerted by
 the ara of iee to be settd on by rising water to just move the pile

must atand iselated in the ecntre of a shen of iee ose liect 'guare, which weldom obtailus in practice.
'The only suthentury way of arrivine at the bal phes will earry with salley is to tent the ground into whidh they are to be driven, by louding one-or more, which have been driven to what is considereda anfficient depth, with dead weight matil mathenent takes phace, mad
 ther of the piles. Such a couse is really only neeresaly where piles are elissed ins "leorng" inles, and not when they are nsed an "re haining " piles, .. . a a rufferdam, ete., in wheh case it is only reguisite that they be driven to a sutionent depth to cor-ure a water-tight enelo.

[^0]sure, and are large enough and strong enough to reniler tho service expeeted from then.

Angineres, us a rale, when denting with pile-driving, wro too apt to follow a well trouden puth by speoifying hard and fast requirements, irrespective of the service a pilo has tn perform ; nnd, in the opinion of the writer, fill oomsiderntion of such service should be given beforo a specification is completed. In explanation ot this, the following is offered:- Λ masonry pier supporting the ends of two iron trusses of 150 foet span is to bo built on a pilo foumlation comprising 60 pitos, capped and eoverel with two tiers of timber 24 inches deep. Now, the dend load to be borne by 60 piles will bo equal to the timber eaps and flooring, the masomry pies, a proportionate part of the trusses and track; and the live load will be equat to that of the heaviest train which can be plaoed in one span, which though intermittont iu its netion must be provided for, Assuming 'tho weight of the dend and the live lond to amount to $1,800,000$ this., the woight to be borne by each pile will le $30,000 \mathrm{lhs}$. Using eight as a taetor of safety, tho "enerey" to bedevelnped by the ram eupluyed will be 240,000 footpounds. Using previsiss duta as to the weight of ram and fall, it can ensily be dotermined from Major Sanders' rule that a "get" of 0.5 in . will be required. Now, if it be specified that the piles shall be driven by 4 ran weighing 2000 lbs., falling from a height of 5 feet, until a "set" of 0.5 inch is obtained at the last blow, or is the avorage of a speoified number of last blows, then retionec can be placel out the piles so driven.

$$
b
$$

[^0]: - Procembing last. 1․ Fi., Vot. H1, 1. 191.

