The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

\square
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires;
l.'Institut a microfilmé le meilleur exemplaire au'il luí a été possible de se procurer. Les détails de cat exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

MAGNETICAL AND METEOROLOGICAL
0 BSERVATIONS

AT
LAKE ATHABASCA AND FORT SIMPSON,

AND AT
FORTCONFIDENCE.

MAGNETICAL AND METEOROLOGICAL

OBSERVATIONS

AT

LAKE ATHABASCA AND FORT SIMPSON,

By CAPTAIN J. H. LEFROY, nopal artillery;

AND AT
FORTCONFIDENCE, IN GREAT BEAR LAKE,

By SIR JOHN RICHARDSON, C.B., M.D.

PRINTED BY ORDER OF HER MAJESTY'S GOVERNMENT.

LONDON:
pUblisimed for her majesty's stationery office, BY
LONGMAN, BROWN, GREEN, AND LONGMANS. 1855.
$L P \quad Q \subset 8251 . L 6$

$$
522,1
$$

$$
457
$$

CONTENTS OF THIS VOLUME.

Captain Lefroy's Magnetical and Meteorological Observations at Lake Athabasca and Fort Simpi on 1 to 288
Sir John Richardson's Magnetical Observations at Fort Confidence, in Great
Bear Lake 289 to 323
Sir John Richardson's Meteorological Observations at Fort Confidence - 324 to 891
Plats I.-Showing the Diurnal Variation of the Declination, Horizontal Force, and Inclination at Lake Athabasca and Fort Simpson, and of the Declination and Horizontal Force at Sitka, Toronto, and Philadelphia. (To accompany Captain Lefroy's Observations, page 1.)
Plate II.-Showing the Diurnal Variation of the Declination at Fort Confidence, Riekiavik, Lake Athabasca, Christiania, Bossekop, St. Petersburg, Catherinenbourg, Barnaoul, Nertchinsk, Sitka, Toronto, Greenwich. (To accompany Captain Younghusband's Discussion of Sir John Richardson's Observations, page 297.)

PREFACE

By Colonel Sabine, R.A.

The observations of Admiral Löwenorn, in 1786, at Reikiavik in Iceland, confirmed by Lottin in 1836, and those made by myself in 1823 at Fairhaven in Spitzbergen, also confirmed by the observations of the "Commission du Nord" at Magdalena Bay in Spitzbergen, in 1839, showed that, in the high magnetic latitudes of the northern hemisphere, the horary variation of the magnetic declination is subject to wide differences in respect of the turning hours, and the direction of the movement at the same hours of local time, from the phænomena which in the middle latitudes of the same hemisphere are found to prevail generally, and, with very slight modifications, in all meridians. The progress which, since the results of the magnetic observatories established in the last few years have been known and discussed, has been made towards the physical explanation of many of the magnetic phænomena, renders it desirable that facts which at first sight, and to minds accustomed to the comparative regularity of the diurnal variation elsewhere, have somewhat the aspect of anomalies, should be more extensively investigated and better understood. The differences which they present from the ordinary march of the phænomena are far too considerable and too consistent to be ascribed to accident: they are obviously specialities; and the particular laws which govern them will no doubt ultimately be found to be consistent with, and to form, in fact, a part of, the general laws by which the diurnal variation in all parts of the globe shall be comprehended.
But the parts of the globe where such observations can be made are little frequented, and are difficult of access; and the observations cannot be effectively made without considerable sacrifices of personal convenience. The Magnetic Survey of the British Possessions in North America-undertaken by Her Majesty's Government at the recommendation of the Royal Eociety, and
executed by Captain Lefroy, of the Royal Artillery-and the expedition in search of Sir John Franklin and his companions, under the direction of Sir John Richardson, afforded opportunities which the zeal and public spirit of those gentlemen did not suffer to pass unimproved.

The instruments with which the observations were made were supplied from the establishment under my direction at Woolwich; and on the completion of the services, the observations were transmitted to me. On application to the Treasury, a sanction was obtained for their publication in the present form. The observations of Captain Lefroy, both magnetical and meteorological, have been arranged and discussed by himself, as have the meteorological observations of Sir John Richardson by himself; but on learning from Sir John Richardson, soon after his return, that his professional duties at Haslar would prevent him from undertaking the examination and reduction of his magnetical observations, they were placed in the hands of Captain Younghusband, of the Royal Artillery, then my assistant at Woolwich, by whom that portion of the volume has been prepared. The proof-sheets of the whole have been read and compared with the original manuscripts by the non-commissioned officers of the Royal Artillery permitted by the Master General of the Ordnance to be employed in my office for purposes of a similar nature.

Edward Sabine.

Woolwich, December 14th, 1854.

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

AT
 LAKE ATHABASCA AND FORT SIMPSON,

Territory of the Hudson's Bay Company.

INTRODUCTION

By Captain J. H. Lefrox, Royal Artillery。

The stations of magnetical observations established in North America in the year 1840, namely, Philadelphia, Washington, and Cambridge near Boston, in the United States; Toronto in Canada; and Sitka in Russian America; might all, with the exception of the last, be comprised in a circle of little over 200 miles radius; nor were any means at that time provided for attaining a knowledge of the absolute or relative values of the magnetical elements, or of their regular and irregular changes, in the northern parts of the British possessions: a region of peculiar interest, as comprising both the focus of maximum magnetic intensity in the northern hemisphere, and the point or pole of vertical dip. It was the principal purpose of the magnetic survey of British North America, authorized by the Government in 1841, and in part executed in the years 1843 and 1844, to supply the former deficiency; but with a view also to the latter, I was provided, in addition to other instruments, with a complete set of transportable magnetometers, of the construction of Dr. Weber, as improved by Captain Riddell; and it was arranged with the authorities of the Hudson's Bay Company, that the excursion of the first summer should terminate at Moose Factory on Hudson's Bay, where it was left optional with me to pass the whole of the ensuing winter, or to return in the course of it to Canada. The employment of these instruments in the magnetical term days, and in the observation of disturbances, was in either case the special duty of the time to be so employed. On arriving at the Red River settlement, in June 1843, I found various difficulties in the way of
an execution of this part of my instructions, and was led to believe that their object would be better attained by wintering at some more northern station. As Colonel Sabine, foreseeing the difficulty of precisely defining the details of a task which involved many contingencies, had kindly left me considerable discretionary latitude to be guided by circumstances, I decided on giving up the journey to Moose Factory, for that time, and selected in its place Fort Chipewyan on Lake Athabasca; not only the most northerly station which could be conveniently reached in the season, but one also whose resources would make an unexpected addition of eight persons, to the number of its occupants, a matter of no inconvenience. I reached this post with my assistant, Corporal William Henry, Royal Artillery, since Adjutant of Pensioners, on the 23d September 1843. Observations were here made every hour of the 24^{11} from the 16 th October 1843 to the 29th February following; together with very numerous extra observations on magnetic disturbances. On the 3d March 1844 I started, in company with the same assistant, and a party of four or five servants of the Company, for Fort Simpson on Mackenzie's River; we were provided with three trainaux, each drawn by three dogs, for the conveyance of the instruments and provisions; and a cariole, to which a team of four dogs was allotted, was very kindly provided by Mr. Colin Campbell for my own use, if required. The distance, which is about 350 geographical miles in a straight line, but considerably more by the course of the Slave and Mackenzie rivers, which is the route travelled, was accomplished in twenty-one days, including one day of detention at Great Slave Lake; and without other hardship or inconvenience than that occasioned by the severity of the cold, which ranged on several occasions between 30° and 40° below zero of Fahrenheit.

Fort Chipewyan is situated in latitude $58^{\circ} 43^{\prime} \mathrm{N}$. , longitude $7^{\mathrm{h}} 35^{\prime} 15^{\prime \prime} \mathrm{W}$. from Greenwich, and is distant about 1,700 geographical miles from Toronto. By the exertions of Mr. Campbell,-to whose kindness, as well as to that of Mr. Lewis, the chief factor resident at Fort Simpson, and to Sir Gcorge Simpson, the Governor of the Hudson's Bay Company, I have to acknowledge the greatest cobligations,-a small detached \log building was erected, 18×13 feet in dimensions, especially for my use as an observatory; it was begun on the 27 th September, and finished on the 13th October. No iron was used in the construction, it was furnished with an open fire place, and received light from threc parchment windows, each having a small panel of glass, and so disposed as to throw light on the scales of the instruments, the arrangement of which is shown in the annexed diagram.

a Portable Declination Magnetometer.
b Portable Bifilar.
c Portable Induction Inclinometer.
d Second or spare 1 Declinometer.
T Portable transit instrument.
t Thermometers.
s Screen.
The Bifilar was screened from the direct action of the fire by a leather curtain, the Inclinometer was screened by the projection of the chimney; the whole were mounted on firm wooden pillars disconnected from the floor. The internal temperature ranged from $+61^{\circ} 0$ on 19th October, to $-1^{\circ} 2$ on the $2 \varepsilon d$ January; we have even the mean for 24^{h} as high as $52^{\circ} 8$ on 18th October, and as low as $15^{\circ}: 2$ on the 8 th January. The extremes of cold usually occurred on Monday morning, the room not being occupied on the Sunday.

The system of relief adopted to carry out a series of hourly observations with only one assistant, was this: A obscrved from 8 P.m. to midnight, and on retiring aroused B , who observed froni 1 to 5 A.M.; he in turn retiring, again aroused A, who resumed the observations at 6 A.m., and so on for four hours alternately. It will not be found that the omissions are numerous, the fatigue of this system, maintained for so many months, being considered. I have much pleasure here in acknowledging the assistance rendered by Mr. T. Dyke Boucher, the junior resident of the fort, upon several occasions. I have before acknowledged the zeal and spirit with which Corporal Henry devoted himself to his laborious dutics throughout the magnetic survey.

The building given up to my use at Fort Simpson as an obscrvatory and dwelling-room, was also a detached wooden building on the north side of the principal house; which has since been removed to a point a little further back from the river. It was close to the then north-west angle of the inclosure. Care was taken to leep out of it, while occupied as a sitting-room and bed-room, all
guns, axes, and utensils of iron. The annexed diagram represents the arrangement of the instruments:-

The Declination Magnet produced an effect of -0.3 div. on the scale reading of the Bifilar, and of -1.8 div. on that of the Inclinometer. The Bifilar Magnet produced an effect of $+1{ }^{\prime} 7$ div. on the scale reading of the Inclinometer, but no sensible effect on that of the Declinometer ; the effect of the Inclinometer Magnet was +0.6 div. on the Bifilar, and of -0.5 div. on the Declinometer.

Fort Simpson is situated in latitude $61^{\circ} 51^{\prime \cdot} 7$ N., longitude $8^{\text {h }} 5^{\prime} 40^{\prime \prime} \mathrm{W}$. from Greenwich, and is about 1,800 geographical miles distant from Toronto; its distance from the Russian Observatory at Sitka is about 460 miles, that of Fort Chipewyan from the same point being 780 miles.

I have endeavoured in the following pages to pursue the comparison of the phenomena observed, as far as the data admitted, through the registers of all the Magnetical Observatories in North America; reducing the results to a common unit, by means of the scale co-efficients given in the respective publications of the Observatories. As the observations at Toronto have been published since the completion of these reductions, it is necessary to observe that the scale co-efficient of the Bifilar at Toronto, here employed, -namely, $k={ }^{\circ} 0001057 \mathrm{X}$,-was determined by an extensive series of experiments of Deflection made in 1848, in conformity with a circular of Instructions addressed at that time to Directors of Magnetical Observatories.

It has been found necessary to omit the detail of a part of the observations on Magnetical Disturbances and Term Days, for want of space.

Woolwich, July 1854.

J. H. Lefroy.

I N D E X

OBSERVATIONS AT LAKE ATHABASCA AND FORT SIMPSON.

MAGNETICAL DECLINATION.

Absolute Declination. Fort Simpson, p. 69 ; Lake Athabasca	Table.	Page.
Observed daily range at Lake Athabasca and Fort Simpson	I.	5
Ditto classified according to magnitude -	II.	10
Ditto at the other American stations	III.	11
Mean daily range at all the stations compared	IV.	11
Mean diurnal curve, October-February, at four stations	V.	12
$\begin{aligned} & \text { Ditto - by observations of a 2-inch magnet for } \\ & \text { days } \end{aligned}$	- VI.	13
Mean diurnal curve by 46 undisturbed days	VII.	14
Ditto for April and May at four stations	VIII.	15
Ditto excluding incomplete days -	XLIII.	80
Fortnightly mean values - - " -	IX.	17
Comparison of curves by a 3 -inch magnet with those of a 15 -in magnet at Toronto	X:	19
Horizontal Force	-	20
Fortnightly mean scale readings	XI.	22
Absolute Horizontal Force, Lake Athabasca	XII.	24
Observed daily range Bifilar and Inclinometer	XIII.	27
Ditto classified according to magnitude	XIV.	33
Ditto at the other American stations	XV.	34
Monthly means of Bifilar scale readings	XVI.	35
Temperatisre of ditto - - -	XVII.	36
Monthly means reduced to the temperature of 40°	XVIII.	37
Mean diurnal curves, October--February, at four stationa	XIX.	38
Ditto by 46 undisturbed days	-	
Mean diarnal curves, April and May - -	XX.	39
Table for converting differences of scale reading into $\frac{\Delta X}{X}$	XXVII.	56
Induction Inclinometer		41
Experiments to determine scale co-efficient	XXI	46
Examples of sudden changes, or magnetic shocks	to XXV.	to 50
Values of the Bifilar correction - -	XXVII.	56
Particulars of temperature experiments	XXVIII.	57
Values of temperatura correction -	XXIX.	58
Monthly means of corrected scale readings, October-February	XXX.	59
Mean scale reading, uncorrected for 98 days - -	XXXI.	59
Corrected mean diurnal curve of inclination	XXXII.	60
Ditto by 45 undisturbed days -	XXXIII.	61
Ditto at Toronto for the same period	XXXIV.	62
Mean scale readings at Fort Simpson -	XXXV.	64
Approximate diurnal curve of Total Force	XXXVI.	66
Ditto at Fort Simpsoia	XXXVII.	67
Ditto at Toronto -	XXXVIII.	68
Adjustments, \&c., Fort Simpson -		69
Absolute Horizontal Force, Fort Simpson	XXXIX.	72

Mean disturbance of Declination, October to February	XI	
Mean easterly disturbance ; three stations	XLI.	
Mean westerly disturbance; three stations	XLII.	78
Mean disturbance of Declination, April-M	XLIII.	80
Mean disturbance, Horizontal Force, and Inclination, October to		
February at Take Athabasca _ -	XLIV.	
to April-May, at Fort Simpson		
Mean disturbance of Declination at three stations	V	
Total number of readings during disturbances deviating to east and west of the mean	XLVII.	
Total number of shocks of Declination	XL	87
Values of daily mean irregular fluctuation of Declination and		
Comparison of selected days at three stations with reference to the degree of disturbance	IT	106
List of shocks of Declination at three stations	LI.	10
List of shocks of Horizontal Force	LII.	116
Table of values of the term $\operatorname{tau} \theta \Delta \theta$ in computing $\frac{\Delta \phi}{\phi}$.	LIV.	124
Meteorological Observations :-		
	V.-LV	127
Ditto April-May -	LVII.	129
Comparison of mean temperatures deduced in various ways	LVIII.	130
Mean temperature at Toronto, for comparison	LIX.	131
Daily highest, lowest, and mean temperature	LX.	132
Comparison of the variations of temperature	LXI.	13
Number of winds from each direction	LXII.	13
Sums of the pressures -	LXIII.	13
Mean pressure and direction	LXIV.	13
Aurora Borealis :-		
Number of observations at each hour of the night	LV.	142
Prevailing winds during Aurora -	LXVI.	147
Classification of displays	LXVIII.	149
The	LXI	149
Connection of Aurora with magnetical disturbances:-		
Dates of brilliant Aurora compared with dates of unusual mag-- netical fluctuation	LXX	152
Magnetical disturbances classified in reference to the presence of		
	X	153
Abstract from Meteorological Journal Temperature of the air	LXXI	15
		190
Abstracts of Magnetical Observations :-		
Declination	-	208
Bifilar scale readings, corrected		218
Scale readings of Induction Inclinometer, corrected		226
Term days and magnetical disturbances		

ERRATA.

The reader is requested to make the following corrections:-
Page 18. Near the foot, for fourteen-inch, read fifteen-inch.
" 19. Heading of Table X., for 14 -inch, read 15 -inch.
" 65. Near the foot for $\frac{\Delta R}{R} \operatorname{read} \frac{\Delta \phi}{\phi}$.
" 75. Near the top, after evident, insert that.
75. Near the foot, for substracted, read subtracted,
79. Line three from foot, for does, read it does.
" 80. Heading, insert VIII., after the word Table.
" 106. Table L., heading, for extremes of each instrument, \&c., read comparison of selected days at three stations, with reference to the degree of disturbance which prevailed.
" 140. Above the centre, after or Fort Simpson, add with two exceptions, and bracket [October 24] and [December 8].
, 140. Below the centre, for all coinciding, read two of them coinciding, and bracket [October 19].

- 142. Table LXV., midnight, January No. of A., for 7, read 6; at the foot, for 51, read 50 ; in column of total, for 23 , read 22 . See below, p. 169. Again, 17^{h} February No. of A., for 2, read 3; in column of total, for 12, read 13.

148. First line, for Table LXVI., read Table LXVI.
149. Before the Table, dele together with the values of those quantities.
" 153. Near the top, for but five instances, read but four instances; and dele November 27.
150. Foot-note, for -3°, read $-37^{\circ} .8$.
151. At $18^{\mathrm{d}} 20 \mathrm{~h}$, the entry of Aurora at $20^{\mathrm{h}} 45^{\mathrm{m}}$ belongs to January 17 .
152. February $29^{\text {d }} 0^{\text {h }}$, after the entry, add, idem $\mathrm{l}^{\text {h }}$.
, 298. Second line, for second, read first.

MAGNETICAL OBSERVATIONS

 AT
LAKE ATHABASCA AND FORT SIMPSON.

ADJUSTMENTS, ABSTRACTS, AND COMMENTS.

SECTION I. DECLINATION.

MAGNETICAL OBSERVATIONS.

SECTION I.

MAGNETIC DECLINATION.

Declinometer, 12th October 1843. - The adjustment of this instrument consists in levelling the base, and turning the arm which carries the Telescope in azimuth, until the central division of the scale coincides with its line of collimation. This being done, the value of the ratio $\frac{H}{F}$, for the coefficient of torsion, was found to be $\frac{1}{1452}$, whence one division of the scale $=a\left(1+\frac{\mathrm{H}}{\mathrm{F}}\right)=1^{\prime} 00069$. The Magnet was 3 inches in length, and suspended by a single thread of silk. The effect of the massive copper box in which it was suspended was such, that the Magnet was generally at rest, and underwent considerable changes without vibration. Increasing numbers on the scale denote an eastcrly movement of the north end of the bar.

Absolute Declination.-The following observation was made with the Collimator Magnet, c. 9. October 16th 1843, to determine a zero value of the Declinometer scale. The portable Theodolite was levelled, and made to coincide approximatcly with the magnetic axis of the Collimator, then directed to the sun, and the transit of both limbs observed; after reading off the verniers, it was again directed to the magnetic axis of the Collimator, and a series of simultaneous readings of the scale and of the Declinometer were taken. The sun was too low at the conclusion to allow the Theodolite to be referred to it again.

Simultanequs Mean Diumnal Variation of the Declination, Horizontal For and Inclination, at LaKe Athabasca, North Amervica. October 1843 to February 1844 inclusive, also of the Declination and Horizontal Force for the same period at three other Stations.

Mean Scale reading of the Collimator, $76^{\prime} 72$, corresponding to 409.20 on the scale of the Declinometer. Point of scale on magnetic axis, $82^{\prime} 06$, each division is equal to $2^{\prime} \cdot 51$, showing a deviation of the Telescope of $13^{\prime} 13$ to the West.

Magnetic azimuth of Sun's centre at $3^{\text {h }} 52^{m} 49^{\text {b }}$
App. T. - - - $\quad 1503313$
The Sun's true azimuth at $3^{\text {h }} 52^{\mathrm{m}} 49^{s}$, App. T. $1222^{\prime} \cdot 31$

The absolute values corresponding to the mean scale reading for each fortnight, will be found at p. 13, Table IX. The mean of the whole is $420^{\circ} 93$, and the corresponding absolute Declination $28^{\circ} 42^{\prime} 6$.

Diurnal Variation of the Declination.

Before proceeding to examine the mean diurnal curves for the four and a half months of observation at Lake Aichabasca, it will be useful to obtain a general idea of the magnitude of the changes to which the Declination is liable at this station and at Fort Simpson. The following Table has been drawn out with this riew, showing the difference between the highest and lowest hourly readings, and between the highest and lowest readings, observed in each Göttingen day; the latter shows the actual range of the element, the former is requisite for comparison with other stations. The Table may be referred to, also, for the dates of disturbances.

Table I.
Daily Range of the Declination.

Date.		In the hourly Series.		Observed.		Range.	
		Highest.	Lowest.	Highest.	Lowest.	Hourly.	Total:
1843 :						1	'
October	1	-	-	-	-	-	-
"	2	-	-	-	-	-	-
'"	3	-	-	-	-	-	-
"	4	-	-	-	-	-	-
"	5	-	-	-	-	-	-
"	6	\cdots	-	-	-	-	-
"	7	-	-	-	-	-	-
"	8	-	-	-	-	-	-
"	9	-	-	-	-	-	-
"	10	-	-	-	-	-	-
"	11	-	-	-	-	-	-
"	12	-	-	-	-	-	-
"	13	-	-	-	-	-	$\underline{-}$
"	14	-	-	-	-	-	-
"	15	-	-	\square	-	-	5
"	16	$491 \cdot 6$	$405^{\circ} 1$	$507 \cdot 9$	352.4	$86^{\circ} 5$	$155 \cdot 5$
"	17	$448{ }^{\circ} 3$	$392 \cdot 3$	466.0	$356 \cdot 2$	$56^{\circ} 0$	$109 \cdot 8$
"	18	424.4	$403 \cdot 0$	$432{ }^{\circ} 0$	369.6	$21^{\circ} 4$	$62^{\circ} 4$
"	19	436.0	$382 \cdot 0$	436.0	$382^{\circ} 0$	$54^{\circ} 0$	$54^{\circ} 0$
"	20	$430{ }^{\circ}$	406.0	-	-	$24^{\circ} 0$	\cdots
"	21	426.6	403.0	-	\cdots	23.6	-
"	22	S.	-	m	-	-	-
"	23	$422^{\circ} 0$	411.0	$5 \cdot$	-	$11^{\circ} 0$	-
"	24	$436^{\circ} 0$	$408^{\circ} 2$	$456 \cdot 2$	$408^{\circ} 2$	$27^{\circ} 8$	$48^{\circ} 0$
"	25	$479{ }^{\circ} 8$	406.0	$523 \cdot 4$	396.0	$73^{\circ} 8$	$127 \cdot 4$
"	26	$434 \cdot 6$	$388{ }^{\circ} 0$	$437^{\circ} 0$	$388{ }^{\circ} 0$	$46^{\circ} 6$	$49^{\circ} 0$
"	27	$450 \cdot 5$	408.0	$450 \cdot 5$	$404{ }^{\circ} 0$	42.5	46.5
"	28	$425^{\circ} 0$	391.0	$458{ }^{\circ} 0$	$391{ }^{\circ} 0$	$34^{\circ} 0$	$67^{\circ} 0$
"	29	S.	-	-	-	-	-
"	30	$490 \cdot 0$	$387 \cdot 5$	$490^{\circ} 0$	386.0	102.5	104.0
"	31	$457 \cdot 8$	$406{ }^{\circ} 0$	$470^{\circ} 0$	$406^{\circ} 0$	$51 \cdot 8$	$64^{\circ} 0$
November	1	$423 \cdot 6$	412.0	-	-	11.6	-
"	2	$423 \cdot 5$	$375 \cdot 0$	428.4	326.0	$48^{\circ} 5$	102.4
	3	$425^{\circ} 0$	$408 \cdot 6$	$460^{\circ} 2$	359.4	$16^{\circ} 4$	$100^{\circ} 8$
"	4	$\stackrel{432.0}{5}$	$404^{\circ} 2$	-	-	$27^{\circ} 8$	-
"	5	${ }_{\text {S }}^{\text {S. }}$	-	- -	-	54.0	$60 \cdot 0$
"	6	$464{ }^{\circ} 0$	$410^{\circ} 0$	464.0	404.0	54.0	$60^{\circ} 0$
"	7	422.0 $475 \cdot 4$	$400 \cdot 2$ $407 \cdot 8$	475.4	-	21.8	-
"	8	$475 \cdot 4$ $422 \cdot 8$	$407 \cdot 8$	$475 \cdot 4$	$404{ }^{\circ} 0$	$67^{\circ} 6$	71.4
	9 10	$422 \cdot 8$ $423 \cdot 8$	$415{ }^{\circ} 2$ $408 \cdot 2$	$430 \cdot 0$ 400°	$415 \cdot 2$	$7{ }^{7} 6$	$14^{\circ} 8$
"	10	423.8	$408^{\circ} 2$	429.8	$408^{\circ} 2$	$15^{\circ} 6$	$21^{\circ} 6$
"	112	$420 \cdot 8$ S.	404.0	-	-	16.8	-

Tabie I.-continued.

Date.		In the hourly Series.		Observed.		Range.	
		Highest.	Lowest.	Highest.	Lowest.	Hourly.	Total.
1843 :						- 1	1
November	13	438:0	$402{ }^{\circ} 6$	$438{ }^{\circ} 0$	$402 \cdot 6$	35.4	$35^{\circ} 4$
" $\quad 14$		$426{ }^{\circ} 0$	$407^{\circ} 0$	$432{ }^{\circ} 6$	$349{ }^{\circ} 0$	$19^{\circ} 0$	$83 \cdot 6$
"	15	$433 \cdot 2$	$470 \cdot 2$	-	-	$23^{\circ} 0$	
"	16	$440{ }^{\circ} 0$	408.0	$440 \cdot 0$	403.0	$32^{\circ} 0$	$37^{\circ} 0$
"	17	422.0	412.0	-	-	$10^{\circ} 0$	-
"	18	421.1	$405^{\circ} 0$	-	-	16.1	-
"	19	S.	-	-	-	-	-
"	20	$433 \cdot 0$	413.4	-	-	$19^{\circ} 6$	-
"	21	$422^{\circ} 0$	411.8	-	-	$10^{\circ} 2$	-
"	22	436.5	411.8	-	-	$24^{*} 7$	-
"	23	$422^{\circ} 0$	$412 \cdot 5$	-	-	9.5	-
"	24	$436 \cdot 2$	$408^{\circ} 2$	444.0	408.2	$28^{\circ} 0$	36.8
"	25	$420{ }^{\circ} 2$	$412 \cdot 8$	$422 \cdot 0$	$412 \cdot 8$	$7 \cdot 4$	$9^{\circ} 2$
"	26	S.	-	-	-	-	-
$"$ -	27	$423 \cdot 0$	$414{ }^{\circ} 0$	-	-	$9 \cdot 0$	-
"	28	$430 \cdot 0$	$408^{\circ} 0$	-	-	22.4	-
"	29	$425^{\circ} 5$	$401^{\circ} 6$	\cdots	-	23.9	-
"	30	$434{ }^{\circ} 0$	$409^{\circ} 0$	$434{ }^{\circ} 0$	404*0	$25^{\circ} 0$	$30^{\circ} 0$
December	1	$430 \cdot 8$	390.0	453.2	$324^{\circ} 0$	$40^{\prime} 8$	129.2
"	2	$450 \cdot 1$	414'2	$484^{\circ} 0$	$414^{\circ} 2$	$35^{\prime} 9$	$69^{\circ} 8$
\%	3	S.	$12 \cdot$	-	-	-	-
"	4	$422^{\circ} 0$	412.8	-	-	9.2	-
"	5	$427{ }^{\circ} 0$	$405^{\circ} 0$	$439{ }^{\circ} 0$	$394 * 4$	$22^{\circ} 0$	$45^{\circ} 0$
	6	436.5	$411{ }^{\circ} 8$	$450^{\circ} 0$	$411{ }^{\circ} 8$	$24^{\circ} 7$	$38^{\circ} 2$
"	7	$421^{\circ} 5$	413.9	-	-	$7 \cdot 6$	-
"	8	$464{ }^{\circ} 2$	396.0	$464{ }^{\circ} 2$	$396{ }^{\circ} 0$	$68^{\circ} 2$	68.2
"	9	$424^{\circ} 0$	406.4	-	-	$17^{\circ} 6$	-
"	10	S.	-	-	-	-	-
"	11	$427^{\circ} 0$	$405^{\circ} 0$	-	-	$22^{\circ} 0$	-
"	12	428.4	$410 \cdot 4$	-	-	$28^{\circ} 0$	-
"	13	428.2	416.2	-	-	$12{ }^{\circ} 0$	-
"	14	$434{ }^{\circ} 0$	$422 \cdot 6$	-	-	11.4	-
"	15	431.0	416.4	-	-	$14^{*} 6$	-
"	16	$428^{\circ} 2$	$415^{\circ} 0$	-	-	$13 \cdot 2$	-
	17	S.	-	-	-	-	-
"	18	429.5	413.4	-	-	$16 \cdot 1$	-
" $\quad 1$	19	$451 \cdot 5$	416.8	452.0	416.8	$34^{\cdot 7}$	$35^{\circ} 2$
"	20	438.2	$408^{\circ} 0$	$458{ }^{\circ} 2$	$408^{\circ} 0$	$30^{\circ} 2$	$30^{\circ} 2$
"	21	$426^{\circ} \mathrm{O}$	$410^{\circ} 0$	$426 \cdot 3$	$407 \cdot 8$	16.0	18.5
", 2	22	$425 \cdot 6$	$410 \cdot 6$	-	-	$15^{\circ} 0$	-
"	23	$422 \cdot 8$	$414^{\circ} 0$	-	-	8.8	-
", 2	24	S.	-	-	-	-	-
" 29	25	Christm	s Day.	-	-	-	-
	26	$429^{\circ} 5$	$416^{\circ} 0$,	-	13.5	-
"	27	$447^{\circ} 0$	$406 \cdot 8$	454.0	$406 \cdot 8$	$40^{\circ} 2$	$47 \cdot 2$

Table I.-continued.

Date.		In the hourly Series.		Observed.		Range.	
		Highest.	Lowest.	Highest.	Lowest.	Hourly.	Total
1843 :						1	-
December		$477 \cdot 8$	$400^{\circ} 4$	$477 \cdot 8$	$400^{\circ} 4$	77.4	$77^{\circ} 4$
,	29	$438{ }^{\circ} 5$	$412{ }^{\circ} 0$	$438{ }^{\circ} 5$	$368^{\circ} 0$	26.5	$70^{\circ} 5$
"	30	$433 \cdot 4$	$411{ }^{\circ} 8$	-	-	21.6	-
	31	S.	-	-	-	-	-
-1844:							
January	1	-	-	\sim	-	- 28	-
"	2	443.0	414.4	-	-	28.6	-
\%	3	$429^{\circ} 5$	$419^{\circ} 0$	-	-	$10 \cdot 5$	-
"	4	$460^{\circ} 0$	$384^{\circ} 0$	$470^{\circ} 0$	384.0	$76^{\circ} 0$	$86^{\circ} 0$
'	5	$497 \cdot 2$	408.4	$500^{\circ} 0$	$408^{\circ} 4$	88.8	$91^{\circ} 6$
"	6	$452 \cdot 0$	$392 \cdot 0$	458.0	$392{ }^{\circ} 0$	$60^{\circ} 0$	$66^{\circ} 0$
"	7	S.	-	-	-	-	-
"	8	436.4	$408^{\circ} 0$	$447 \cdot 8$	$408^{\circ} 0$	28.4	$39^{\circ} 8$
"	9	$436 \cdot 5$	416.0	-	-	$20^{\circ} 5$	-
"	10	$443{ }^{\circ} 8$	$405^{\circ} 0$	-	-	38.8	-
"	11	436.0	$416^{\circ} 0$	-	-	$20^{\circ} 0$	--
"	12	$450 \cdot 8$	$417{ }^{\circ} 2$	-	-	$33^{\circ} 6$	-
"	13	$434{ }^{\circ} 0$	$420 \cdot 2$	-	-	$13 \cdot 8$	-
"	14	S.	\rightarrow	-	-	-	-
"	15	434.0	$419^{\circ} 0$	-	$=$	$15^{\circ} 0$	-
"	16	$433 \cdot 0$	418.9	$438 \cdot$	$112 \cdot 2$	$14^{\circ} 1$	25.8
"	17	$438{ }^{\circ} 0$	412.2	$438 \cdot 0$	$412^{\circ} 2$	$25^{\circ} 8$	$25^{\circ} 8$
"	18	$440^{\circ} 0$	$420^{\circ} 0$	-	-	$20^{\circ} 0$	-
,"	19	$448{ }^{\circ} 0$	423.0	454.0	$423{ }^{\circ} 0$	$25^{\circ} 0$	$31^{\circ} 0$
"	20	$434 \cdot 0$	$414 \cdot 8$	-	-	$19^{\cdot 2}$	-
"	21	S.	-	-	-	-38.2	-
"	22	$444^{\circ} 2$	$406 \cdot 0$	-	-	$38^{\circ} 2$	-
"	23	436.5	$420^{\circ} 0$	$\bar{\square}$		$16^{\circ} 5$	-
"	24	$480 \cdot 4$	$413 \cdot 8$	$515^{\circ} 0$	$379 \cdot 2$	66.6	$135^{\circ} 8$
"	25	551.0	419.0	$551{ }^{\circ} 0$	416.0	$132{ }^{\circ} 0$	$136{ }^{\circ} 0$
"	26	$443 \cdot 0$	$414^{\circ} 0$	-	-	$29^{\circ} 0$	-
"	27	436.0	418.2	$445^{\circ} 0$	418.2	$17 \cdot 8$	$26^{\circ} 8$
"	28	S.	-	-	-	-	-
"	29	$434 \cdot 4$	$410 \cdot 4$	-	-	$24^{\circ} 0$	-
"	30	$432{ }^{\circ} 0$	$413^{\circ} 0$	-	-	$19^{\circ} 0$	-
"	31	$432 \cdot 2$	394.4	-	-	$37 \cdot 8$	\cdots
February	1	476.0	411.4	$486 \cdot 7$	$341{ }^{\circ} 0$	$64^{\circ} 6$	145:7
"	2	$439^{\circ} 0$	373.0	$439{ }^{\circ} 0$	373.0	$66^{\circ} 0$	66%
"	3	$428^{\circ} 0$	396.0	-	-	$32^{\circ} 0$	-
"	4	S.	-	-	-	-	-
"	5	$449{ }^{\circ} 6$	399.1	504*4	$348{ }^{\circ} 0$	505	156.4
"	6	$437 \cdot 8$	$409^{\circ} 0$	$442 \cdot 6$	398.6	28.8	$44^{\circ} 0$
"	7	$439{ }^{\circ} 0$	$410 \cdot 2$	-	-	$28^{\circ} 8$	\square
"	8	$450 \cdot 6$	408.6	$459{ }^{\circ} 0$	$408^{\circ} 6$	$42^{\circ} 0$	$50^{\circ} 4$
"	9	428.6	$417 \cdot 9$	-	-	$10^{\circ} 7$	-
"	10	$451 \cdot 5$	$417^{\circ} 0$	-	-	34.5	-

$\mathrm{TABLE}^{\mathrm{I}}$-continuedi

Date.	In the hourly Series.		Observed.		Range.	
	Highest.	Lowest.	Highest.	Lowest.'	Hourly.	Total
1844 :		1			'	*
February 11	S.	-	-	-	-	-
$\because \quad 12$	436.0	416.0	-	-	$26^{\circ} 0$	-
" 13	434.4	$417{ }^{\circ} 2$	-	-	$17{ }^{\circ} 2$	-
" 14	431.0	$410 \cdot 5$	-	-	20.5	-
" 15	436.0	414.0	-	-	$22^{\circ} 0$	-
" 16	436.0	$413 \cdot 8$	-	-	22.2	-
" 17	$438 \cdot 2$	414'6	-	-	23.6	-
\% 18	S.	-	-	-	-	-
" 19	$436 \cdot 4$	$417 \cdot 8$	-	-	$18^{\circ} 6$	-
" 20	429.8	416.6	-	-	$13^{\circ} 2$	-
" 21	$439{ }^{\circ} 6$	$410^{\circ} 0$	-	-	$29^{\circ} 6$	-
" 22	$435^{\circ} \mathrm{L}$	$415{ }^{\circ} 5$	-	-	$19^{\circ} 7$	-
\% 23	$430 \cdot 4$	$412 \cdot 8$	$434^{\circ} 0$	$412 \cdot 8$	$17^{\circ} 6$	$21^{\prime} 2$
》 24	$435{ }^{\circ} 0$	$422^{\circ} 0$	$440 \cdot 6$	$417{ }^{\circ} 0$	$13^{\circ} 0$	$23 \cdot 6$
? 25	S.	-	-	-	-	-
" 26	$444^{\circ} 0$	$419^{\circ} 0$	$444^{\circ} 0$	$419^{\circ} 0$	$25^{\circ} 0$	$25^{\circ} 0$
\% 27	$440 \cdot 0$	$418{ }^{\circ} 4$	\square	-	$21^{\circ} 6$	-
" 28	$437{ }^{\circ} 7$	$401{ }^{\circ} 0$	\sim	-	$36^{\circ} 7$	-
" 29	$447{ }^{\circ} 8$	$413^{\circ} 0$	-	-	$34 \cdot 8$	

Fort Simpson, Machenzie's River.

April	1	$498{ }^{\circ} 0$	$420 \cdot 2$	-	-	$77 \cdot 8$	
"	2	$542 \cdot 1$	$431 * 8$	608.0	401.4	$110^{\circ} 3$	$206 \cdot 6$
"	3	550.0	$438 \cdot 8$	572.0	$424 \cdot 2$	111.2	$147 \cdot 8$
"	4	$499{ }^{\circ} 6$	$429{ }^{\circ} 2$	-	-	$70 \cdot 4$	-
"	5	Good	riday.	-	-	-	-
"	6	$475{ }^{\circ} 0$	$430^{\circ} 0$	-	-	$45^{\circ} 0$	-
"	7	S.	-	-	-	-	-
"	8	$462 \cdot 8$	426.0	-	-	36.8	-
"	9	505.4	$452 \cdot 0$	-	-	53.4	-
"	10	506.0	$450 \cdot 0$	548.0	450.0	56.0	$98^{\circ} 0$
"	11	$480^{\circ} 0$	$456{ }^{\circ} 0$	-	-	$24^{\circ} 0$	-
"	12	$477^{\circ} 0$	$460 \cdot 5$	\cdots	-	$16^{\circ} 5$	-
"	13	$490 \cdot 8$	$448{ }^{\circ} 0$	-	-	$42 \cdot 8$	-
\%	14	S.	-	-	.	-	
\%	15	558.0	$442 \cdot 0$	$584 * 0$	442.0	116.0	142.0
"	16	$509^{\circ} 7$	$430 \cdot 2$	$600 \cdot 3$	$390 \cdot 2$	76.5	$210 \cdot 1$
"	17	583.5	$433{ }^{\circ} 0$	$880 \cdot 0$	$433 \cdot 0$	$150 \cdot 5$	$447{ }^{\circ} 0$
"	18	$493{ }^{\circ}$	$468^{\circ} 0$	-	-	$25^{\circ} \mathrm{O}$	-
"	19	$499{ }^{\circ} 5$	$473{ }^{\circ} 0$	-	-	$26^{\circ} 5$	-
"	20	$516^{\circ} 0$	$474{ }^{\circ} 6$	$530 \cdot 0$	$474 \cdot 6$	41.4	$55^{\circ} 4$
"	21	S.	-	-	-	\square	-
"	22	401.8	$364 \cdot 4$	-	-	$37^{\circ} 4$	-
	23	$422^{\circ} \mathrm{O}$	$369^{\circ} 2$	-	-	$52 \cdot 8$	$\bar{\square}$
	24	$409 \cdot 3$	$374{ }^{\circ} 0$	416.6	$374^{\circ} 0$	$28^{\circ} 3$	$42 \cdot 6$

Table I.-continued

Since the date of these observations, a considerable extension has been given to our knowledge of the occasional amount of irregular or disturbed movements, by the remarkable disturbances of 1847 and 1848. In those years a range exceeding 4° was three times recorded at Toronto; but from 1840 to 1847, the greatest range of Declination attained at this station in any one disturbance, was $2^{\circ} 15^{\prime}$, and if we compare the above ranges at Lake Athabasca and Fort Simpson with those of the same season at Toronto, it will be obvious that their magnitude increases in a much higher ratio than that of the inverse proportion of the Horizontal Forice at these stations, which
is as 7: 4 nearly. There were 116 days of observation at Lake Athabasca between 16 th Octsber 1843 and 29th February 1844; having 23d December for their middle period. There were 46 days of hourly observation at Fort Simpson, between 1st April and 25th May, having 27th April for their mean period. By classifying the ranges according to magnitude, we have the following results :-

Table II.

Daily Change of Declination.		Lake Athabasca,		Fort Simpson.	
		Hourly Observations.	Hourly and extra.	Hourly Observations.	Hourly and extra.
Less than 10^{\prime}		7	6	0	0
$10^{\prime}-15^{\prime}$	-	16	17	- 0	0
15'-20'	-	19	13	1	1
20'- 25' -	-	21	20	2	2
25'-30'	-	16	12	5	4
$30^{\prime}-35^{\prime}$	-	8	6	0	0
$35^{\prime}-40^{\prime}$	-	6	10	6	5
$40^{\prime}-45^{\prime}-$	-	4 3	2	7	4
45'-50 -	-	2	4	2	2
50'-55' -	-	4	2	4	3
565'-60'.-	-	1	0	3	3
\% $6 \mathrm{c}^{6} 0^{\prime}-65^{\prime}$ -	-	2	3	1	3
65'-70'	-	4	5	1	3
$70^{\prime}-75^{\prime}$ -	-	1	2	2	2
$75^{\prime}-80^{\prime}$ -	-	2	1	2	1
$80^{\prime}-90^{\prime}$ -	-	2	2	1	0
90'-100' -		0	1	0	2
100'-110' -	-	1	4	0	0
$110^{\prime}-120^{\prime}$ -		0	0	壬	0
$2^{\circ}-3^{\circ}$ -	-	1	7	5	6
$3^{\circ}-4^{\circ} 10^{\prime}$	-	0	0	0	4
Above 7° -	-	0	0	0	1

The greatest range in any one day during the winter at Lake Athabasca was $2^{\circ} 35^{\prime}$, on the 16th October 1843; and the greatest during the spring at Fort Simpson was $7^{\circ} 27^{\prime}$, on the 16 th April 1844. Upon the last occasion, however, the actual difference of scale reading observed was $8^{\circ} 10^{\prime}$, the westerly extreme falling on April $16^{\mathrm{d}} 19^{\mathrm{h}} 50^{\mathrm{m}}$, and the easterly on April $17^{\mathrm{d}} 1^{\mathrm{h}} 24^{\mathrm{m}}$; this is believed to be the greatest range hitherto recorded. During the same season the distribution at the three permanent Observatories in America was as follows:-

Table III.

	16th Oct. 1848-29th Feb. 1844.			April-May 1844.		
	Philadelphia.	Toronto:	Sitka.	Philadelphia.	Toronto.	Sitka.
Less than 10^{\prime} -	103	94	81	23	8	6
10'-15' -	13	19	29	22	! 32	31
15'-20'	0	1	12	6	5	18
20'-25' -	0	2	4.	1	3	3
25'-30' -	1	1	3	0	1	0
More than $30^{\prime \prime}$	0	1	3	1	2	3
	117	118	132	53	51	61

The means of all the daily ranges during the above periods by the regular hourly observations, that is to say, the square roots of the mean of their squares are:-(1.) For the winter, $7^{\prime \prime} 77$ at Philadelphia, $9^{\prime \cdot} 56$ at Toronto, $11^{\prime \cdot} 64$ at Sitka, and $33^{\prime \cdot} 8$ at Lake Athabasca: (2.) For the spring, $12^{\prime \cdot} 32$ at Philadelphia, $15^{\prime \cdot} 17$ at Toronto, $18^{\prime \cdot} 40$ at Sitka, and $75^{\prime \prime} 6$ at Fort Simpson. For the several months again, we have the means as follows:-

Table IV.

	.	Philadelphia.	Toronto.	Sitka.	L. Athabasca Fort Simpson.
		'	'	1	1
1843.	October (the whole) -	8.74	$10 \cdot 44$	12.63	-
	" (16th to 31st)	$8 \cdot 08$	9.70	$12 \cdot 50$	$53 \cdot 31$
	November - -	$7 \cdot 15$	8.44	$9 \cdot 80$	$27 \cdot 32$
	December	$7 \cdot 34$	$8^{\circ} 07$	10*39	30•30
1844.	January	6.72	8.38	10*44	$30 \cdot 85$
	Fébruary	8.64	$12 \cdot 25$	$14^{*} 33$	$32 \cdot 03$
	March	$13 \cdot 47$	$16 \cdot 94$	21.02	-
	April	$12 \cdot 90$	$15 \cdot 62$	$21 \cdot 19$	$85 \cdot 95$
	May	11.72	14.73	15'19	$57 \cdot 10$
	June	$12 \cdot 14$	$13 \cdot 75$	$15 \cdot 35$	-
	July	$12 \cdot 85$	$14^{\circ} 27$	$15^{\circ} 65$	-
	August	$15^{\circ} 01$	$15^{\circ} 95$	$22^{\circ} 93$	-
	September - -	$14 \cdot 50$	$19 \cdot 69$	$18 \cdot 25$	-

The observations were made at the same moment of time, at all the stations; the difference in the number of days arises from the Sunday being a day of observation at the Russian stations. There is no marked preponderance of number under any one daily range at Lake Athabasca between 13^{\prime} and 29^{\prime}, and these two values include half the days of observation.

It appears, then, that during the winter under comparison, the movement of the Declination Magnet, observed hourly, exceeded 15', in the proportion of fifteen days to each hundred at Philadelphia, seventeen days to each hundred at Toronto, and exactly the same at Sitka, but on eighty days of each hundred at Lake Athabasca. During April and May they exceeded 30^{\prime} in the proportion of about two to a hundred at Philadelphia, four to a hundred at Toronto, five to a hundred at Sitka, but of eighty-five to a hundred at Fort Simpson, showing an increase in the liability to disturbance at these stations, which it appears difficult to attribute to the merely negative influence of a diminished directive power in the magnet.

The next Table contains the hourly means of all the observations during the winter period, with the exception of six days which are omitted at Lake Athabasca as incomplete, namely, October 20th, November 3d and 4th, January 2d, 9th, and 27th. Each Value at this station is, therefore, the mean of 110 observations at the same hour. Since the principal novelty of these means consists in their maxima being found at a period of the 24^{h} which is not marked by a similar inflexion at any other station, they are, in the same Table, compared with the means for the corresponding periods at the other three American stations.

Table V.

Mean Diurnal Curves of Declination at all the American Stations, for the Period included between the 1st or 16th October 1843 and the 29th February 1844; together with the Difference of each hourly Value from the Mean of the whole ; expressed in arc.

Local Mean Time.	Athabasca,		Sitka.*		Toronto.		Philadelphia.	
	Scale.	Diff.	Scale.	Diff.	Scale.	Diff.	Scale.	Diff.
		${ }^{1} \cdot$				- 0		$\stackrel{1}{6}$
Didn.	419.07	-1.86	429.48	$+0.92$	$126^{\circ} 51$	+0.36	547×52	$+0.38$
13	419.39	-1.54	429.42	+0.89	126.25	$+0.17$	54:'12	$+0.19$
14	421.83	+0.90	$430^{\circ} 08$	+ $1 \cdot 26$	126.02	$+0.01$	546.98	$+0.15$
15	422. 54	+1.61	$430 \cdot 06$	+1.25	126.50	+0.35	$547 \cdot 46$	+0.35
$16 \dagger$	426.76	+5.83	$480 \cdot 20$	+1.32	126.91	$+0.65$	547'66	+0.54
17	429.20	+8.23	$430 \cdot 54$	+1.51	127.09	+0.78	548.00	+0.59
18	426.81	+5.84	$430^{\circ} 74$	+1.63	$127 \cdot 30$	+0.93	548.82	+0.98
19	426.49	+5.56	481.08	+2.81	128.14	+1.54	$550 \cdot 98$	$+1 \cdot 95$
20	424.83	+3.90	$480 \cdot 90$	+1.71	$128^{\prime} 74$	+1.97	$551 \cdot 38$	+2.13
21	424.69	+3.76	$429^{\circ} 50$	+0.93	128.71	$+\mathrm{l} \cdot 95$	$550 \cdot 82$	+ $1 \cdot 88$
22	$422^{*} 26$	+1.38	$426 \cdot 82$	-0.55	126.98	+0.70	547. 30	+0.28
23	417×95	-2.98	424.92	-1*60	124.32	-1.22	$543 \cdot 82$	-1-30

[^0]Table V.-continued.

Liocal Mean Time,	Athabasca.		Sitka.*		Toronto.		Philadelphian	
	Scale.	Diff.	Scale.	Diff.	Scale.	Diff.	Scale.	Diff. ${ }^{\text {- }}$
		1		1		t		1
Noon	$417^{\circ} 00$	$-3^{*} 98$	423. 14	$-2^{*} 59$	122. 27	-2"70	540.92	-2.62
1	416.04	$-4 \cdot 89$	$422 \cdot 82$	-2:77	121'39	-3.33	$540 \cdot 14$	-2.97
2	415.72	$-5^{\circ} 21$	422. 52	-2.93	121.83	-3.02	$541^{\circ} 02$	-2.57
3	$416^{\circ} 74$.	-4.19	424. 10	-1.95	123:00	-2.17	542. 50	$-1 \cdot 90$
4	$417 \cdot 70$	-3. 28	$425^{\circ} 22$	-1.44	124. 17	-1.32	543.90	$-1 \cdot 27$
5	$41.8^{\circ} 05$	-2.88	$426 \cdot 58$	-0.68	$125^{\circ} 23$	-0. 56	545.42	-0. 57
6	419:13	-1.80	$427 \cdot 44$	-0. 20	126. 32	+0.22	546. 62	-0.03
7	419.61	-1.32	426.64	-0.65	$126 \cdot 73$	+0. 52	547* 58	+0.40
8	.419:75	-1.18	428. 44	+0. 29	127:34	+0.96	548. 56	$+0.84$
9	$420^{\circ} \mathrm{O}$	-0. 92	428.52	+0.39	127 '87	$+1.34$	549*10	$+1.10$
10	420* 70	-0.23	$428 \cdot 86$	+0. 58	$127 \cdot 88$	+1.35	$548^{\circ} 94$	+1.02
11	$420 \cdot 90$	-0.08	429.44	+0.90	126.87	+0.62	548.14	$+0.65$
	$420 \cdot 97$		$427 \cdot 81$		$126^{\circ} 01$		546'69	

The observations were taken 5^{m} before the hours named at Lake Athabasca, 28^{m} after the hours named at Sitka, 3^{m} after at Toronto, and 19^{m} after at Philadelphia.
It appears that the mean diurnal changes of Declination at Lake Athabasca follow the same law as at all the other stations, so far as relates to the principal minimum or westerly extreme of the 24^{n}, which occurs at 2 P.M.; from this hour the Declination continues to increase until 11 PM .; it shows a westerly tendency at midnight and 1 A.M., after which it increases again, at first slowly, but between $3^{\text {h }}$ and $4^{\text {h }}$. A.M. with rapidity, until it attains its maximum or easterly extreme between $4^{\text {b }}$ and $7^{\text {h }}$ A.M., after which it begins a westerly course, conducting to the minimum at 2 p.m. This occurrence of a strongly marked maximum at the earlier hours of the morning has not been observed at any other station.*

It has been shown by Colonel Sabine, from the observations at Toronto, that no continuance of observation will give a strictly

[^1]Table VI.

T.	Midnt.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	M.T.
0	228.89	$228 \cdot 53$	232.09	283.28	236.46	239.29	235.93	235•77	$234 \cdot 67$	$234 \cdot 98$	281.05	226.77	
	1	1	$1 \cdot$	'	+	,	1	'	1	,	,	1	
erence	-1'46	-1.82	+1.74	$+2 \cdot 93$	$+6.11$	+8.94	+5•58	+5.42	+4.32	+4.63	+0.70	$-3 \cdot 58$	
	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Mean.
	226.07	224.57	$223 \cdot 63$	225.69	226.81	227.28	223.32	229.40	229.68	229'39	$229 \cdot 24$	230.80	230.35
	1	1	-6.72	$1 \cdot 7$		'	2.	-0.05	0	0	$1 \cdot 11$	-	
rence	-3.28	+5.78	-6.72	$-4 \cdot 76$	$-3 \cdot 54$	-3.07	+2.03	-0.95	$=0.67$	-0.06	$-1 \cdot 11$	+0.45	

normal curve, or one wholly free from the effects of disturbance, since the disturbing causes are not entirely irregular in their action, but have a preponderating influence in one dirention. It will be shown below that this remark applies equally at the stations under consideration, consequently the foregoing mean cannot be regarded as a true representation of the normal curve at Lake Athabasca. This can only be obtained by some selection of undisturbed days, and the next Table has been formed as an approximation to it. It contains the mean by all those days on which no extra observations ; were made, assuming that circumstance to be a proof of the absence of any decided disturbance. They amount to 46, and the mean of the same 46 days at Toronto, which have been formed into a similar abstract, furnishes a direct comparison of the mean diurnal movement, uninfluenced by disturbance, or nearly so, at these two stations.

Table VII.

Local Mean Time.	L. Athabasca,		'Toronto.		Local Mean Time.	L. Athabasca.		Toronto.	
	Scale.	Diff.	Scale.	Diff.		Scale.	Diff.	Scale.	Diff.
		1		!			1		1
Midn.	420'85	-0.91	416.36	$+0.06$	Noon	418*68	-3.08	412.87	$-2 \cdot 46$
18	$421 \cdot 68$	-0.08	416'34	+0.04	1	$417 \cdot 21$	-4.55	$411 \cdot 97$	$-3^{\circ} 11$
14	$421 \cdot 37$	-0.89	416.27	-0.01	2	417×81	-3.95	412.24	-2'92
15	422.92	+1.16	416.77	+0.35	3	418.44	-3.32	413.65	-1.90
16	424.91	$+3 \cdot 15$	417.55	$+0.92$	4	419.99	-2.37	414.85	-1'03
17	425. 57	$+3.81$	417'81	$+1 \cdot 10$	5	419.90	-1.86	415.89	-0.28
18	425. 31	$+3.55$	$417 \cdot 48$	$+0.87$	6	$420 \cdot 30$	-1.46	416. 58	+0.22
19	425.57	$+8.81$	418.05	+1.28	7	$428 \cdot 88$	-0.88	416.82	$+0.39$
20	425. 36	$+3 \cdot 60$	418.72	+1.76	8	420.93	-0.88	$417 \cdot 38$	+0.79
21	$425^{\circ} 40$	$+3.64$	418'60	$+1.67$	9	$420 \cdot 98$	-0.78	$417 \cdot 60$	$+0.95$
22	424.04	+2.35	417'11	+0.60	10	422.25	+0.49	418.06	$+1.28$
23	$420{ }^{\prime} 65$	$-1 \cdot 11$	$414{ }^{\circ} 8$	$-1^{\circ} 03$	11	421.91	+0.15	417×11	$+0.60$
						$421 \cdot 76$		416.29	

It appears that a partial rejection of the more disturbed days at Lake Athabasca has the effect of throwing back the hour of greatest westerly deviation to 1 p.m., but occasions very little change, and none of a systematic character, in the mid-day or afternoon branches of the curve. The principal effect is shown in the reduction of the daily variation between midnight and 10 A.m. The maximum at 5 a.m. disappears, and in its place we have a nearly uniform value prevailing from 5^{h} to 9^{h} A.M. constituting the easterly extreme of the $24^{\text {b }}$, but materially less in amount than the corresponding value before the rejection, thus proving the unusual maximum in question to be the effect of disturbance. The inferior maximum at 11 P.m. is thrown back to 10 p.m., but the succeeding minimum is scarcely affected. The mean curve given by the corresponding 46 days at

Toronto differs so little from that of the whole period, that when drawn on a scale of 10^{\prime} to one inch they can scarcely be distinguished.

Proceeding now to the observations at Fort Simpson, we find the same peculiarity in a more marked degree, as may be expected from the greater magnitude of the daily ranges observed at this station. The incomplete days here are not omitted, as they form rather too large a proportion of the whole to be passed over. There were 46 days of observation, of which number twelve are imperfect. The omissions occur as follows, at

$0^{\text {b }}$	Gött. or	$15^{\text {b }}$	of Table VIII.	5
1	$\#$	16	$\#$	6
2	$\#$	17	$\#$	2
3	$\#$	1	$\#$	1

consequently, the two first alone can be materially affected, and at twenty of the twenty-four hours the means are strictly comparable. In one of the cases at each of the above-named hours an observation taken late has boen employed.

Table VIII.

Mean Diurnal Curves of Declination at all the American Stations for April and May 1844, together with the Difference of each hourly Value from the Mean of the whole; expressed in arc.

Local Mean Time.	Fort Simpson.		Sitka.		Toronto.		Philadelphia.	
	Scale.	Diff.	Scale.	Diff.	Scale.	Diff.	Scale.	Diff.
		1		1		1		1
Midn.	385. 31	- 5.24	432*80	+1.91	126.17	$+1.18$	552.95	$+0.91$
13	387. 98	- $2 \cdot 60$	$433 \cdot 15$	+2.10	126.34	$+1.26$	$553 \cdot 10$	+0.98
14	394.54	+ 3.96	433.05	+2.04	126.40	$+1 \cdot 30$	$552 \cdot 70$	+0.79
15*	399.05	+ 8.47	$433 \cdot 35$	$+2 \cdot 22$	126.67	$+1.49$	552.93	+0.88
16	$402 \cdot 64$	+12.06	432.80	$+1 \cdot 91$	126.89	+1.65	553.35	$+1.09$
17	$410 \cdot 47$	$+19.89$	$435{ }^{\circ} 25$	$+3.27$	$127 \cdot 67$	$+2 \cdot 21$	$555 \cdot 10$	+1.88
18	$410^{\circ} 90$	$+20.32$	436.40	$+3.91$	129.19	$+3 \cdot 31$	$557 \cdot 50$	+2.97
19	412.49	$+21 \cdot 91$	$438 \cdot 15$	+4.88	$129^{\circ} 70$	$+3.68$	558×45	$+3 \cdot 40$
20	408.98	+18. 40	439.35	+ $5^{\prime} 55$	$130 \cdot 40$	$+4 \cdot 18$	558. 50	$+3.42$
21	401'86	+11.28	$437 \cdot 95$	+4.77	$129{ }^{\circ} 21$	+3.33	556.00	+2. 29
22	395. 22	+ 4.64	$433 \cdot 45$	+2. 27	$12.5{ }^{\circ} 45$	$+0.61$	$551 \cdot 30$	$+0.16$
23	388.72	-1.86	$429{ }^{\circ} 05$	-0.17	121.60	-2.16	546.65	$-1 \cdot 95$
Noon	385.02	- 5. 56	424.15	-2.89	118.45	-4.44	542.55	-3.81
1	382. 31	-8.27	421.45	-4.38	117.05	-5.45	540.35	-4.57
2	$380^{\circ} 03$	$-10^{\circ} 55$	418.85	-5.83	116.88	$-5 \cdot 57$	541.25	-4.40
3	380. 01	-10.57	418.50	-6.02	$118^{\circ} 14$	-4.66	$542 \cdot 70$	$-3 \cdot 29$
4	380.70	- 9.88	$419^{\circ} 30$	$-5 \cdot 57$	$120^{\circ} 07$	-3.27	546.05	-2.22
5	379.35	-11.23	$420 \cdot 80$	-4.74	122.16	-1.76	548.85	-0.95
6	379.61	-10.97	424. 55	-2.66	-123.19	-1.02	549.40	-0.70
7	382. 63	-7.95	426.65	$-1 \cdot 50$	124.33	-0.19	551.70	+0.84
8	380. 23	$-10^{\circ} 35$	427.30	$-1 \cdot 14$	124.42	-0.13	$551 \cdot 10$	+0.07
9	381. 58	- 9.00	428.05	-0.72	$125 \cdot 76$	+0.84	$552^{\circ} 45$	$+0.68$
10	981.13	$-9^{\circ} 45$	429.60	+0.14	$127 \cdot 33$	+1.97	554.15	+1.45
11	383.07	-7.51	430.40	+0.58	126.77	$+1 \cdot 56$	$553 \cdot 65$	$+1 \cdot 23$
Means -	390. 58		429.35		124.60		550.95	

* $0^{\text {b }}$ of Göttingen mean time at Fort Simpson.

The observations at Fort Simpson were made 15^{m} after the hour named, the rest as before stated.

It will be seen that a remarkable difference exists in the amount of the daily movement at Fort Simpson and Lake Athabasca, although the diurnal law is nearly the same. It is difficult to attribute this altogether to change of locality, which in this case involves but a slight change of magnetical position*; we are therefore led to connect it with the advance of the season. On referring to the Table, it will be seen that the westerly extreme at 2 p.m., which is so well marked at Toronto and the lower stations, is here prolonged for nearly four hours, during which space the magnet does not sensibly deviate from it. After 7 p.m. it returns to the eastward, but so gradually as not to attain its mean, or zero value, before 2 A.m. instead of 8 p.m., as at Toronto. Then commences a sudden and rapid increase, leading to a maximum at 7 A.m.,' after which a. steady and rapid westerly movement takes place, which attains its limit, as already stated, at or about 2 p.m., and amounts to the very large mean quantity of 32^{\prime}. The sun was above the horizon $15^{\mathrm{h}} 44^{\mathrm{m}}$ on the middle date at this station, and $5^{\text {h }} 56^{\mathrm{m}}$ on the middle date at Lake Athabasca, which correspond to $13^{\mathrm{h}} 48^{\mathrm{m}}$ and $8^{\mathrm{h}} 44^{\mathrm{m}}$ on the same dates at Toronto respectively. Notwithstanding this great difference in the length of the day' in December and April, it will be observed that the magnet in its regular westerly movement from 7 A.m. to 2 p.m. cuts the line of mean at or near the same hour in both periods, as it does also on its return at night towards its easterly extreme. When referred to the westerly limit, or lowest mean value, as zero, instead of to the mean of the whole twenty-four hours, the diurnal changes at Lake Athabasca for the afternoon branch do not exceed, but, upon the whole, rather fall short of those at Toronto, and at Fort Simpson they are less than those at Toronto for ten hours following that epoch, namely from 3^{h} to 12^{h} inclusive. It is the nocturnal branch at both stations which occasions the great apparent excess of their diurnal changes above the changes at Toronto.

The persistency of the magnet at its westerly extreme, in April and May, is strongly contrasted with a similar persistency at its easterly extreme, which appears to be one of the principal characteristics of the curve at Lake Athabasca in the winter. We see by Table IV. that when free from the effect of disturbances, the easterly maximum is maintained from $5^{\text {h }}$ to 9^{h} A.m., which suggests the inference that the effect of the advance of the season on the

[^2]daily curve is analagous to that of the sun's diurnal pragress, the increased power of the sun being attended by a determination of the north end of the magnet to the west, its diminished power by a determination of the same end to the east.

Comparing together the means of the four American statione for the two periods under discussion, we find that besides the different amount of the daily changes shown, they have peculiarities of a systematic character, which is apparent more particularly in those of the spring months, but not so decidedly in either group as in those of the biflar. Referring first to the curves for April and May, it appears that the magnet attains its daily limit to the westward at nearly the same hour at Toronto and Philadelphia, namely, 2 p.m. or thereabouts, and then commences an immediate return towards its mean position; it reaches the same limit about half-past three at Sitka, and its return is more gradual. It would appear from the general character of the curve at Fort Simpson that its turning hour is there as late as 5 or 6 p.m., and the return is effected still more slowly. The hour of attaining the easterly limit does not appear to vary much. The number of hours at which the magnet is to the eastward of its mean position is, however, considerably less at the more northern than at the southern stations, which results from the easterly tendencies during the night having the effect of raising the mean scale reading, and throwing the readings in the latter hours of the afternoon and evening relatively to the westward. The numbers for the winter group are sixteen at Philadelphia, seventeen at Toronto, fourteen at Sitka, and nine at Lake Athabasca; for the spring group, sixteen, fourteen, thirteen, and nine respectively.

The mean scale readings at both stations show an increase of Easterly Declination, which was slight in the winter months, and very rapid in the spring. Taking the means for each fortnight, and referring them to absolute values, we have the following series. The approximate means for the same periods at Sitka, are inserted for comparison.

Table IX.

Table IX.-continued.

		Sitka.	Lake Athabasca.
		420	$423 \cdot 32=2844^{\circ} 9 \mathrm{E}$.
Feb. 13 to Feb. 28		$423 \cdot 47$	$424 \cdot 63=2846 \cdot 2$
Feb. 26 to Mar. 10		426.95	Fort Simpson.
Mar. 11 to Mar. 24		$427 \cdot 84$	
Mar. 25 to April 7 -		$431 \cdot 93$	$358.14=3653.1$ E.*
April 8 to April 21		$429 \cdot 44$	$385^{\circ} 92=3726^{\prime} 9$
April 22 to May 5		431.58	$400 \cdot 33=3741 \cdot 3$
May 6 to May 19		$433 \cdot 17$	$418^{\circ} 21=3759^{\circ} 2$
May 20 to June 2 -	-	431:69	

The regular character of the progression makes it difficult to attribute the easterly movement, from October 16th to the end of January, to any accidental or instrumental cause, still more so the much more rapid movement in April and May ; the latter is the more difficult to account for, as the effect of Disturbances at Fort Simpson in those months appears to have been less exclusively easterly than during the previous period at I_{i} ake Athabasca. The means at Sitka, which are derived for the present comparison from the three equidistant observations of $0^{\mathrm{h}}, 8^{\mathrm{h}}$, and 16^{h}, Gött., show no similar tendency from November to January, and but a slight one from February to May. We have, however, a similar result from the observations of Sir John Franklin at Great Bear Lake in 1826, which give the mean Declination in February $38^{\circ} 41^{\circ} 6$, and in March $38^{\circ} 50^{\prime \prime} 2$ E. As no observations were made by Sir J. Franklin at those hours of the night which are now shown to include, in these latitudes, the extreme easterly movements, the difference in this case is probably within the truth. The effect of Disturbances being greater in March than in February, would have increased the relative easterly value of the former month.

In all the foregoing tables, the movements of a three inch-magnet at one station have been regarded as comparable with those of a fourteen-inch magnet at the other, without consideration of the difference of their size and weight. It appears, however, from a comparison of the mean diurnal curves, deduced from observations of two magnets of these dimensions respectively at Toronto, that there is a slight and apparently specific difference between them. The diurnal variation by the small bar is greatest from 8 p.m. to 5 A.m., and least from 6 AM. to 8 p.m., with an exception at 1 p.m. only; that is to say, the Declination by the larger magnet is slightly more

[^3]easterly during the day, and less easterly during the night, than the Declination by the smaller bar, and this peculiarity presents itself in every month, but the amount is not sufficient to affect any of the foregoing conclusions. A difference of a similar nature is observable between the mean diurnal curves by two bifilar magnets of corresponding dimensions.

Table X.
Comparison of the Diurnal Variation of Declination from the Register of a large and small Declinometer at Toronto in 1847.

Mean Time.	14-Inch Magnet.				3-Inch Magnet.			
	June.	July.	Aug.	Mean.	June.	July.	Aug.	Mean.
h							,	1
16	+1.53	+0.40	+2.27	$+1 \cdot 40$	+1.53	+0.51	+2.40	+1.48
17	$+2 \cdot 73$	+1.60	$+3 \cdot 68$	+2.64	+2.80	+1.83	+4.04	+2.89
18	$+5^{\circ} 25$	+6.04	+6.05	+5.78	+5.05	$+5^{\circ} 77$	+6.08	+5 63
19	$+5.98$	+7.17	$+8.47$	+7.21	+5.73	$+6 \cdot 67$	+7.95	+6.78
20	$+6 \cdot 16$	+6.93	+8.15	$+7 \cdot 08$	+5*88	+6.74	+7.75	+6:79
21	$+{ }^{-49}$	+4.99	$+5 \cdot 92$	$+5 \cdot 13$	+4.34	+4.61	$+5.55$	$+4 \cdot 83$
22	+1.77	+1.01	+0.89	+1.49	+1.62	+1.00	+0.68	$+4 \cdot 10$
23	-1.89	-2.01	$-3 \cdot 12$	-2.34	-1.89	-2.80	-3.15	-2.61
Noon	-4.87	-5.61	$-7 \cdot 43$	$-5 \cdot 97$	-5.05	-5.64	$-7 \cdot 36$	-6.02
1	-6.31	-6.78	$-9 \cdot 20$	$-7 \cdot 43$	-6.39	-6.34	-8.95	-7.23
2	-5.95	$-5 \cdot 93$	$-8 \cdot 23$	$-6 \cdot 70$	-6.08	-6.15	-8.28	-6.84
3	-5.02	$-4 \cdot 76$	-6.05	$-5 \cdot 28$	-5.19	-4.97	-6.50	-5.55
4	-3.43	-3.03	-3.84	-3.43	$-3 \cdot 65$	$-3 \cdot 20$	-4.06	-3.64
5	-1.88	-0.97	-2.03	$-1 \cdot 63$	-2.05	$-1 \cdot 02$	-2.21	$-1 \cdot 76$
6	-1.02	-0.29	-0.20	-0.50	$-1 \cdot 10$	-0.36	$=0.33$	-0.60
7	-0.11	-0.74	-0.48	-0.43	-0.15	-0.73	-0.42	-0.43
8	+0.14	-0.27	-0.32	-0.15	$+0.43$	-0.08	-0.18	+0.06
9	-0.17	-0.59	$+1 \cdot 35$	$+0 \cdot 20$	+0.12	-0.30	+1.71	+0.51
10	+0.74	+1.36	+0.52	+0.87	$+1.08$	+1.75	+0.75	+1.19
11	+1.00	$+1 \cdot 10$	+0.29	+0.80	$+1 \cdot 20$	+1.39	+0.68	+1.09
Midn.	+1.25	+0.82	$+0.53$	+0.87	+1.49	+1.07	+0.73	$+1 \cdot 10$
13	-0.07	-0.05	$+1 \cdot 24$	+0.37	+0.29	$+0.10$	+1.45	$+0.61$
14	-0.26	-0.13	+0.76	+0.12	-0.05	+0.03	+0.86	
15	-0.07	+0.54	+0*68	+0.38	$+0.05$	$+0.59$	+0.81	+0.48

SECTION II.

BIFILAR MAGNETOMETER.

The instrument employed was a small transportable bifilar, provided with a hollow 3%-inch magnet, weighing 207 grains. The reading telescope was carried by an arm connected with the base of the instrument, so that the copper box and suspension apparatus turned with the telescope. The azimuth circle read by verniers to single minutes, the torsion circle to $5^{\prime} 0$. The suspension silk was about 9 inches long. The are value of each division of the scale attached to the telescope was $2^{\prime} 0$.

Adjustment, 13th October 1843.-(1.) The reading telescope was brought to the magnetic meridian by attaching the magnet to an unifilar suspension and bringing the central division of the scale (210) to the wire. The azimuth circle read $302^{\circ} 55^{\prime}$, declination 428, whence $302^{\circ} 45^{\prime}$ corresponds to the scale reading $418^{\circ} 0$ found at the next step.
(2.) The magnet was next attached to a bifilar suspension of waxed silk, the north end pointing to the north, and the torsion circle turned until the same division was on the wire, showing the plane of detorsion to coincide with the meridian. At the first trial the force of torsion was too great, the interval of the threads was in consequence reduced ; this, however, altered the position of the plane of detorsion, and it appears that in adjusting it afresh to the meridian, the telescope was inadvertently moved 34^{\prime} to the west, the next reading of the horizontal circles being $302^{\circ} 11^{\prime}$ instead of $302^{\circ} 45^{\prime}$. The plane of detorsion, therefore, instead of being in the meridian, was in such a position as to deflect the magnet 34^{\prime} to the westward, or rather, correcting for a small change of declination, $33^{\prime} \cdot 2$ to the westward. If (u) and (v) be the angles at which the magnetic force and the force of torsion act on the magnet, we have in every position of equilibrium $\frac{\mathrm{F}}{\overline{\mathrm{G}}}=\frac{\sin v}{\sin u}$, and in the present case $\frac{\mathrm{F}}{\mathrm{G}}=0.86$, and $u=33^{\prime} 2$, hence $v=28^{\prime} 4$, and the angle $u+v=61^{\prime} 6$, being the angle by which the plane of detorsion
differed from the meridian to the westward. The reading of the torsion circle was $58^{\circ} 50^{\prime}$, whence the true position of the plane of detorsion was $58^{\circ} 50^{\prime}+1^{\circ} 1^{\prime \prime} 6=59^{\circ} 51^{\prime \prime} 6$, which is the datum employed. Declination $418^{\circ} 0$ scale reading of bifilar $209^{\circ} 6$ (for 210).
(3.) The telescope was now turned 90° in azimuth, from the assumed meridian, or $90^{\circ} 33^{\prime} 2$ from the true one ; the division of the scale at right angles to it was therefore $226^{\circ} 6$ instead of 210 , and the torsion circle being turned until the scale read 208, the magnet was carried $37^{\prime} 2$ beyond the position intended, namely, that at right angles with the magnetic meridian. The torsion circle read $0^{\circ} 15^{\prime}$ Declination $416^{\circ} 5$.
In the equation $\frac{\mathrm{F}}{\overline{\mathrm{G}}}=\frac{\sin v}{\sin u}$, we have therefore $u=90^{\circ} 37^{\prime} \cdot 2$ instead of 90°, which somewhat diminishes the sensibility of the adjustment, but is otherwise unimportant. $v=59^{\circ} 51^{\prime} 6-0^{\circ} 15^{\prime}=$ $59^{\circ} 36^{\prime} 6$, also $a=2^{\prime} 0$, whence the value of one division of the scale in parts of the Horizontal Force was

$$
k=a \operatorname{cotan} v=\cdot 0003432 .
$$

Increasing numbers denote increasing Horizontal Force.
It appears that the scale readings decreased regularly until January, showing the north end of the magnet to be carried from the meridian to the south of west; the readings increase again in February, and this circumstance, coupled with that of a contrary change in the inclinometer scale readings, makes it appear that in part, at least, the effect was due to a real increase of Inclination and decrease of Horizontal Force in the winter months, having respectively their maximum and minimum in the latter portion of the month of January. Mixed up with this periodical change there is probably also a loss of magnetic moment in the bifilar bar, and an increase of permanent magnetism in the soft iron bar of the inclinometer. The fortnightly mean scale readings of both instruments are collected in the following table. Dr. Lloyd having shown that any three equi-distant observations give, very nearly, the true mean of the twenty-four hours, that principle has been applied in the present and all the similar tables, to obtain true mean scale readings for days on which one or more observations were omitted, by the simple proceeding of omitting, also, the corresponding readings of the imperfect triplet or triplets, and taking a mean of the remainder or perfect triplets.

Table XI.
Fortnightly Mean Scale Readings of the Bifilar and Inclinometer at Lake Athabasca.

Date.	Period.		Bifilar.				Inclino-metercorrected.
			Observed.	Temp.	Corrected.	Angle u.	
1843				\bigcirc		- ,	
	Oct. 15 to Oct. 22	-	$247 \cdot 32$	51.07	$254 \cdot 39$	8904	
"	Oct. 23 to Nov. 5	-	232.01	43.68	234.60	8944	
"	Nov. 6 to Nov. 19	-	210×78	43.63	$213 \cdot 31$	9027	120•12
"	Nov. 20 to Dec. 3.	-	183.93	$41 \cdot 64$	$185^{\circ} 08$	9123	$139 \cdot 55$
"	Dec. 4 to Dec. 17	-	$174 \cdot 17$	$41 \cdot 33$	$175 \cdot 10$	9143	$161 \cdot 80$
	Dec. 18 to Dec. 31	-	171.41	$37 \cdot 19$	$169 \cdot 46$	9154	$169 \cdot 80$
1844	Jan. 1 to Jan. 15	-	$152 \cdot 72$	$30 \cdot 90$	$146 \cdot 32$	9241	194.65
"	Jan. 16 to Jan. 29	-	$140 \cdot 67$	$25^{\circ} 51$	$130^{\circ} 29$	9313	209** 7
"	Jan. 30 to Feb. 12	-	$144 \cdot 94$	$41 \cdot 76$	$146 \cdot 17$	9241	$195 \cdot 83$
"	Feb. 13 to Feb. 27	-	$174{ }^{\circ} 20$	$44 \cdot 87$	$177 \cdot 63$	9138	$197 \cdot 14$
						9134	

The first fortnight has only half weight.
The coefficient of Temperature of the bifilar magnet was ascertained after its return to Toronto, in January 1845. A series of deflections on different days gave the following results:-

The mean of the whole is $0^{\circ} 0002336$. The mode of proceeding was the same in each case. The temperature of the magnet was raised at once from the lowest to the highest point, being about 40° Fahr. and 90° respectively, and three sets of readings taken at each, with an interval of 5^{m} between them, the bar being previously allowed 15^{m} to acquire the temperature of the surrounding water; the Declination and Horizontal Force were also observed at the same time. As the two first of the above values differ materially from the rest, the experiment was repeated in 1848 under similar arrangements, except that the change of temperature at each alternation was from 40° to 60° and no higher temperature was employed, the intervals were also reduced to 4 minutes between each set, and 10 minutes between each alternation :

$$
\begin{array}{cc}
\text { March 4, } q=0 \cdot 0002472 \\
6 & \cdot 0002138 \\
7 & \cdot 0002874
\end{array}
$$

The mean of these is 0.0002495 , not materially different from the former value. Lastly, the mean of both sets is,

$$
q=0.0002396
$$

And adopting this value, we have the ratio $\frac{q}{\hbar}$, or the change in scale divisions for a change of temperature of 1° Fahr. $=0^{\circ} 70 . \quad$ The whole of the readings in the abstracts have been reduced to the uniform temperature of 40° with an approximate coefficient $\frac{q}{k}=$ $0^{\circ} 66$, which occasions, however, an error of only $2^{\circ} 1$ divisions at the extreme temperature recorded, a quantity so small, as compared with the extent of other changes, that it has not been thought necessary to correct the work. The more accurate coefficient has been employed below in deducing the mean diurnal curve, and in correcting the observations on term day, and disturbances.

Horizontal Force.

In Absolute Measure. -The observations of the Absolute Horizontal Force made at Lake Athabasca and Fort Simpson have been published in detail by Colonel Sabine (Contributions to Terrestial Magnetism, No. VII.), but it may be convenient to repeat the particulars here. Six deflecting magnets, varying in length from 3.6 inches to $2^{\circ} 0$ inches, were employed at both stations; two of these, Nos. 30 and 31, of three inches in length, were considered the standard bars, and the others employed for verification. The whole of the magnets were suspended for vibration by a silk fibre attached directly to the bar, without the addition of any stirrup; bars 30 and 31 were also vibrated in a stirrup, the weight of which was: 322 grains, thus giving a second and independent value of the term $m \mathbf{X}$. The amount of inertia of each suspension was found by vibrating the magnet with and without the addition of carefully turned brass rings, according to the method recommended by Dr. Lamont. The following are the mean values:-

Bar 30. Bar 31.
Log. $\pi{ }^{2} k$ for vibration without the stirrup 1 '33408 1.33952
Log. $\pi^{2} k$ for vibration in the stirrup $\quad 1.50167 \quad 1.50521$
The observation at Lake Athabasca was commenced on the 13th Octcber, shortly after completing the adjustment of the bifilar already described; the experiments of deflection with four bars were completed on that day, and with the other two on the following day. The bars were vibrated without the stirrup on the 14th, and with it on the $20 t h$, each experiment being connected with scale readings of the bifilar. The observation was repeated in March 1844.
Determination of Absolute Horizontal Intensity with Bars 30 and 31 at Lake Athabasca．Length of Suspended Magnet

需 总		$\begin{aligned} & \hline 0.0 \\ & \text { O } \\ & \text { a } \\ & \hline \end{aligned}$	
		H	
	4	जं के कं के बं के कं के	जक जब बे बे बं क
	\％	00000000	00000000
$\begin{aligned} & \text { 岂 } \\ & \text { 心 } \\ & \text { 岕 } \\ & \text { 总 } \end{aligned}$	或蕆		
	产		¢，¢1，○＇
	或容		
	ロ゙		
	或淢		
	－		
		NO ON WO ON 	
	$\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\text { A }}{ }}$		
	呙		
	®		

The mean value by the other four bars in October was

$$
X=2.030
$$

which agrees nearly with the mean deduced from the observations of Bars 30 and 31 ; but it has not been employed, as three of them were corrected with an assumed coefficient of temperature, and the value of the moment of inertia employed has not been so well determined as that for the standard magnets.

The value of the Absolute Horizontal Force was found to be

$$
X=2.040
$$

by the standard bars in July 1844, being an increase of 0.0088 X , or $\frac{1}{13}$ of its whole amount, over the value found in October and March, which may probably be attributed to a real increase of that element in the summer months.

Since the publication of the preceding observations by Colonel Sabine, Captain Younghusband has succeeded in obtaining a satisfactory determination of the value of the ratio $\frac{\Delta m}{m}$ for Bar 30, the previous results having been obtained without any correction for the change in the induced magnetism of the bars under the different circumstances of vibration and deflection. Five experiments made at Woolwich in May 1847 gave the following results:-

$$
\begin{aligned}
\frac{\Delta m_{\circ}}{m_{\circ}}= & 0.00042 \\
& 0.00048 \\
& 0.00037 \\
& 0.00042 \\
& 0.00056
\end{aligned}
$$

mean of the whole, $0 \cdot 00045$. Assuming the magnetic moment of the bar itself at the period of these experiments to have been nearly the same as in June 1846, when the absolute intensity was determined last with it at Woolwich, we have the means of reducing this value of the correction to the value applicable at the northern station.

$$
\frac{\Delta m}{m}=\frac{\Delta m_{\mathrm{o}}}{m_{\mathrm{o}}} \quad \frac{A_{\mathrm{o}}}{A}
$$

where $A_{0}=$ the ratio $\frac{m}{\mathrm{X}}$ at Woolwich, and A the same at the northern station. $\quad A_{0}=\frac{0.372}{3.728}$ and $A=\frac{0.419}{2.022}$ (at Lake Athabasca), whence $\frac{\Delta m}{m}={ }^{\circ} 000218$ On applying this correction to the times of vibration and the angles of deflection, by the formula given in the Supplement to Magnetical Instructions, \&c., 1846, the difference in the
resulting value of X proves to be insignificant; it is less than $0^{\circ} 0003$, and does not affect the above values, which are not carried. beyond the third decimal, the effect is negative.

The foregoing value of the Horizontal Force is not referable to any one division on the bifilar scale. The readings of the instrument on the 14 th and 20 th October, taken in connexion with the experiments of vibration, differed considerably from the readings on the 13 th, which were taken with the experiments of deflection. The mean on the 13 th was $176: 0$ at $64^{\circ} 6$, on the 14 th $255^{\circ} 5$ at $57^{\circ} 4$, and on the 20 th $254^{\circ} 4$ at $50^{\circ} 4$; there is therefore a change of about 74 divisions between the 13 th and 14 th of October. The greatest difference between two successive daily means in the subsequent series is $27^{\circ} 4$ div., which makes it probable that the change between the 13th and 14th October was partly instrumental, the magnet not at once taking up its position of adjustment. As the change of reading on the first day of regular observation amounted to 223.8 div., the amount of this difference did not appear at the time to be so great as to call for re-adjustment, but in calculating the observation of absolute intensity the observations on the 13th and 14th were reduced separately to the mean reading on those days respectively, and those on the 20th to the mean of the first week of regular observations, which commences on 16th October. The instrument had been dismounted before the observation of March, but the regular change evinced by the fortnightly means would have rendered the zero division of the scale in October, had it been determined, inapplicable in succeeding months.

Changes of the Horizontal Force and Inclination.-These elements, especially the last named, like the declination (p.1.) were found to be liable to daily change far exceeding in magnitude anything commonly observed at stations in lower magnetic latitudes. The daily extremes of both are brought together in the next table. The section relating to the inclinometer may be referred to for the grounds on which the value of the scale has been assigned. The ranges of inclination here given are considered subject to an uncertainty not exceeding one tenth of their amount.

Table XIII．

Date Gött， Day．	BIFILAR．$k=\cdot 0003412$.						INOLINOMETER．						
	In the Hourly Series．		Observed．		Range of Hor．Force．		In the Hourly Series．		Observed．		Approx． Range of Inclination．		Scale．
	䔍 荡 苗	$\begin{aligned} & \text { 苞 } \\ & \stackrel{y}{t} \\ & \text { Hi } \end{aligned}$	安	$\begin{aligned} & \text { 淢 } \\ & \text { 合 } \\ & \text { } \end{aligned}$	空	$\begin{aligned} & \text { 㤩 } \\ & \text { E } \\ & \text {. } \\ & 0.0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{+} \\ & \hline \end{aligned}$	䔍		象	熍	88080
1843.											1	i	，
Oct． 16	$300 \cdot 6$	$77 \cdot 6$	$300 \cdot 6$	$77 \cdot 0$	－0761	－0763	325.9	86.9	341.6	$86 \cdot 9$	$43 \cdot 1$	45.9	0＇1805
17	292.6	$115 \cdot 3$	292.6	68.0	－0605	－0766	$287 \cdot 7$	$115 \cdot 8$	362.8	$97 \cdot 1$	30.0	47.9	－
m 18	311.0	231.7	314， 1	$231 \cdot 7$	－ 0271	－ 0278	$152 \cdot 6$	83.6	$153 \cdot 6$	74.8	12．4	14.2	－
（18	$280 \cdot 2$	143.8	$322 \cdot 7$	132．4	－ 0465	$\cdot 0649$	$269 \cdot 3$	91＊4	281.2	50.6	31.9	41.5	－
20	$274 \cdot 1$	$225 \cdot 6$	－	－	－0165	－	265＇7	$232 \cdot 0$	－	－	$5 \cdot 9$	－	0.1747
21	$277 \cdot 5$	$260 \cdot 3$	－	－	－0059	－	$245 \cdot 1$	185.0	－	－	10.5	－	－
22	S．	－	－	－	－	－	S．	\cdots	－	－	－	－	－
23	276＇9	$226 \cdot 1$	－	－	－ 0173	－	$269 \cdot 5$	241.9	－	－	4.8	－	－
24	$246 \cdot 8$	153.6	246.8	144.9	－ 0318	－0348	323．2	$236 \cdot 1$	$349 \cdot 7$	$236 \cdot 1$	$15 \cdot 2$	18.8	－
25	$240 \cdot 2$	164．4	240.2	0.9	－ 0259	－0816	332．2	248.3	556.2	$248 \cdot 3$	14＇6	53.8	－
26	$240 \cdot 8$	111.8	240.8	$111 \cdot 8$	－0440	－0440	391.5	240.6	391.5	$240 \cdot 6$	26.0	26.0	－
27	231.5	63.4	231.5	52.5	－ 0573	－0811	414.7	249.3	449＇8	2493	28.9	34.9	－
28	$272 \cdot 2$	$160 \cdot 2$	－	－	－0382	－	307•7	$252 \cdot 0$	－	－	$9 \cdot 7$	－	－
29	S．	－	－	－	－	－	S．	－	－	－	－	－	－
30	288．5	156.4	288.5	83.6	． 0451	－0699	390．2	258.9	$492 \cdot 7$	258.9	20.9	40.8	－
31	$279 \cdot 7$	178．3	$293 \cdot 9$	$155 \cdot 1$	－0346	． 0480	341.0	$255 ` 6$	378.0	$255 \cdot 6$	14．9	21.3	－
Nov． 1	288.7	219.4	－	－	－0168	－	133＊4	$81 \cdot 6$	－	－	8.8	－	$0 \cdot 1708$
2	266：3	$117 \cdot 9$	$278 \cdot 3$	$81^{\prime} 2$	－0506	－0673	$255 \cdot 3$	$81 \cdot 1$	$286 \cdot 5$	$51 \cdot 7$	29.7	$40 \cdot 1$	－
3	238.9	128.9	－	－	－0031	－	$222 \cdot 0$	99.9	－	－	$20 \cdot 8$	－	－
＊4	248.6	193.0	－	－	－0190	－	117．1	99.8	－	－	2.9	－	－
5	S．	－	－	－	－	－	S．	－	－	－	－	－	－
6	$267 \cdot 1$	156.8	$267 \cdot 1$	$156 \cdot 8$	－0187	－0137	223．4	$102 \cdot 6$	223.4	$100 \cdot 5$	$20 \cdot 6$	$20 \cdot 9$	－
7	$248 \cdot 9$	$227 \cdot 1$	－	－	－0067	－	$125 \cdot 9$	101．2	－	－	$4 \cdot 2$	－	－
8	249.0	$138 \cdot 1$	249.0	$122 \cdot 1$	－0394	－0433	217＊2	$70 \cdot 1$	$232 \cdot 7$	$70 \cdot 1$	$25 \cdot 1$	$27 \cdot 8$	－
9	$240 \cdot 9$	156．7	240.9	127．8	－0287	－0386	$1.91 \cdot 5$	91．8	224．3	91.8	17.0	$22 \cdot 6$	－
10	$223 \cdot 6$	$169 \cdot 8$	$223 \cdot 6$	$122 \cdot 7$	－ 0183	－0344	$168 \cdot 2$	109.2	221.5	109.2	$10 \cdot 1$	$19 \cdot 1$	－
11	$283 \cdot 8$	185.5	－	－	－0165	－	144， 1	93．3	－	－	8.7	－	－
12	S．	－	－	－	－	－	S．	－	－	－	－	－	－
13	239.6	109.6	$230 \cdot 6$	105.6	$\cdot 0444$	－0457	$243 \cdot 9$	$100 \cdot 5$	$243 \cdot 9$	100.5	24.5	$24 \cdot 5$	－
14	216.1	196.2	231．4	196.2	－ 0068	－0120	134， 5	102.9	134.5	$86^{\circ} 0$	$5 \cdot 4$	$8 \cdot 4$	－
15	$215 \cdot 7$	176.6	－	－	． 0133	－	151.1	109.5	\cdots	－	$7 \cdot 1$	－	－
16	$237 \cdot 5$	195.9	$237 \cdot 5$	195.9	－0142	－ 0142	134．1	84.2	$184 \cdot 1$	$82 \cdot 2$	8.5	8.8	－
17	221.3	$195 \cdot 5$	\cdots	－	－0088	－	126.9	$115 \cdot 8$	－	－	1.9	\cdots	－

[^4]Table XIII．－continued．

Date Gött． Day．	BIFILAR．$k=0003412$.						INCLINOMETER．						
	In the Hourly Series．		Observed．		Range of Hor．Force．		In the Hourly Series．		Observed．		Approx． Range of Inclination．		Scale．
			葱		$\begin{aligned} & \text { 炭 } \\ & \text { 品 } \end{aligned}$			㵄	菏	淢	$\begin{aligned} & \text { 空 } \\ & \text { 荷 } \end{aligned}$		888
1843.											1	，	1
Nov． 18	203.6	$187 \cdot 2$	－	－	$\cdot 0054$	－	131.5	115＊8	－	－	$2 \cdot 7$	－	0•1708
10	S．	－	－	－	－	－	S．	－	－	－	－	－	－
20	2163	176.0	－	－	－ 0137	－	$145 \cdot 6$	$117 \cdot 0$	－	－	$4 \cdot 9$	－	－
21	$200 \cdot 6$	190.3	－	－	－0068	－	142．7	$121 \cdot 9$	－	－	$3 \cdot 5$	－	－
22	203.8	$178 \cdot 1$	－	－	－0088	－	$147 \cdot 9$	$126 \cdot 1$	－	－	3.9	－	－
23	200.2	$183 \cdot 1$	－	－	－0058	－	$137 \cdot 6$	124．1	－	－	$2 \cdot 3$	－	－
24	$192 \cdot 1$	$105 \cdot 6$	$192 \cdot 1$	$105 \cdot 6$	－0295	－0295	$235 \cdot 5$	118.8	$235^{\circ} 5$	118．8	19.9	$19 \cdot 9$	－
25	197．4	182．7	－	－	－0050	－	$142 \cdot 0$	$120 \cdot 4$	－	－	2.2	－	－
26	S．	－	－	－	－	－	S．	－	－	－	－	－	－
27	193.0	181.0	－	－	－0041	－	151.0	$133 \cdot 6$	－	－	$3 \cdot 6$	－	－
28	$190 \cdot 6$	175.9	－	－	－0043	－	$153 \cdot 6$	131 ${ }^{4}$	－	－	4.0	－	－
29	196.6	$141 \cdot 6$	196.6	136.0	－0188	－ 0207	182．2	$131 \cdot 7$	$195 \cdot 8$	$131 \cdot 7$	9.5	10.9	－
30	184．0	$165 \cdot 8$	－	－	－0062	－	152.4	134．7	－	－	3.0	－	－
Dec． 1	182.6	90．4	192.6	$57 \cdot 7$	－0349	－0460	279.6	128.8	313＇2	128.8	25.8	$31 \cdot 5$	－
2	$185 \cdot 0$	63.8	185.0	41.7	－0414	－0490	271.7	134＇1	328.9	134＊ 1	23.5	33^{3}	－
3	S．	－	－	－	－	－	S．	－	－	－	－	－	－
4	185．9	167＊4	－	－	－0063	－	159.0	$146 \cdot 4$	－	－	$2 \cdot 2$	－	－
5	182.7	96．6	$182 \cdot 7$	73.9	－0294	－0871	$237 \cdot 9$	$143 \cdot 5$	287 11	143.5	16.1	24.5	－
6	220.0	$126 \cdot 5$	220.0	116．5	－0319	． 0353	2051	$117 \cdot 9$	218.9	117．9	14.9	$15 \cdot 5$	－
7	186.6	174．6	－	－	－0041	－	$161 \cdot 2$	146．6	－	－	2.5	－	\cdots
8	$220 \cdot 4$	$161 \cdot 5$	220.4	161.5	－0201	－ 0201	194．0	$117 \cdot 1$	194．0	$117 \cdot 1$	$13 \cdot 1$	$13 \cdot 1$	－
9	205．5	$151 \cdot 8$	－	－	． 0183	－	185．5	$129 \cdot 2$	－	－	$9 \cdot 6$	－	－
10	S．	－	－	－	－	－	S．	－	－	－	－	－	\cdots
11	195＊4	163.0	－	－	－0110	－	185.2	$132 \cdot 4$	－	－	$9 \cdot 0$	－	－
12	199.4	165．2	－	－	－0117	－	$177 \cdot 6$	142.9	－	－	5.9	－	－
13	183＊4	$149 \cdot 2$	\cdots	－	－0117	－	191.0	156．7	－	－	5.8	－	－
14	171．3	$143 \cdot 0$	\cdots	－	－0006	－	188.5	$165 \cdot 8$	－	－	3.9	－	\cdots
15	178.0	152．4	\cdots	－	－0087	－	183.6	$160 \cdot 9$	－	－	3.9	－	\cdots
16	171.6	$161 \cdot 1$	－	－	－0036	－	181．2	166.3	－	－	$2 \cdot 5$	－	－
17	S．	－	－	－	－	－	S．	－	－	－	－	－	－
18	179.0	161.2	－	－	－0061	－	$179 \cdot 3$	$153 \cdot 1$	－	－	4.5	－	－
19	175.8	101．2	175．8	41.8	－0254	－0457	255．8	$159 \cdot 6$	357.8	159．6	16：4	$33 \cdot 9$	－
T ${ }^{20}$	183＇1	$154 \cdot 8$	181.8	139.9	－0096	－ 0144	$189 \cdot 1$	157．7	204．2	157×7	5.4	$7 \cdot 9$	－
221	$183 \cdot 3$	$163^{\circ} 0$	$183 \cdot 3$	163.0	－ 0060	－0060	$181 \cdot 0$	1544^{2}	181.0	154．2	$4 \cdot 6$	$4 \cdot 6$	－
22	$182 \cdot 3$	$161 \cdot 7$	－	－	－0070	－	176.7	$160 \cdot 4$	－	－	2.8	－	\cdots

Table XIII－－continued．

Date Gött． Day．	BIFILAR．$k=\cdot 000341$						INOLINOMETER．						
	In the Hourly Series．		Observed．		Range of Hor．Force．		In the Hourly Series．		Observed．		Approx． Range of Inclination．		Scale．
					言	䔍	产	＋	宽	＋	套	安	\％
1843.											1	1	1
Dec． 23	175＇7	$162 \cdot 6$	－	－	－0045	－	$175 \cdot 6$	162.5	－	－	$2 \cdot 2$	\cdots	0•1708
24	S．	－	－	－	－	－	S．	－	－	－	－	－	－
25	Christ	mas Day		－	－	－	Christ	mas Day		－	－	－	－
28	187.3	77.3	187.3	52.8	－ 0375	． 0456	298.2	156．5	328.9	158.5	24.4	$29^{4} 4$	－
27	203.5	123.0	212．5	123.0	－ 0275	－0305	223.2	143＊6	229.2	$129 \cdot 7$	$13 \cdot 6$	$17 \cdot 0$	－
28	$200 \cdot 4$	112.6	$200 \cdot 4$	112.6	－0299	－0299	229.5	$143 \cdot 7$	$235 \cdot 7$	141．2	14.7	16.1	－
29	188.4	73.8	183．4	$40^{\circ} 7$	－0375	－0488	276.8	163.2	340．5	$163 \cdot 2$	19．4	$30 \cdot 1$	－
30	$170 \cdot 4$	148.5	－	－	－0075	－	182．1	158．4	－	－	4.0	－	－
31	S．	－	－	－	－	－	S．	－	－	－	－	－	－
1844.													
Jan． 1	－	－	－	－	－	－	－	－	－	\cdots	－	－	－
2	181.9	$80 \cdot 8$	－	－	－0345	－	281.6	$149 \cdot 1$	－	－	22.8	－	－
3	160.9	144．7	－	－	－0055	－	198.4	175.0	－	－	4.0	－	－
4	224.0	$-37 \cdot 5$	239.0	$-51 \cdot 9$	－ 0895	－0991	472.9	$110 \cdot 3$	477.0	85.5	61.9	66．9	－
5	$182 \cdot 7$	$-49^{\circ} 0$	$182 \cdot 7$	$-49 \cdot 0$	－0790	－0790	$380 \cdot 3$	152.0	$380 \cdot 3$	152．0	39.0	$39^{\circ} 0$	－
6	161.0	29.8	161.0	29.8	$\cdot 0487$	－0447	328.4	164．7	328．4	164．7	$27 \cdot 9$	27.9	－
7	S．	－	－	－	－	－	S．	－	－	－	－	－	－
8	154．6	121．4	170.4	$87 \cdot 9$	－ 01.13	－0281	221.2	175：8	261.0	158.9	$7 \cdot 7$	$17 \cdot 4$	－
9	$157 \cdot 1$	$125 \cdot 7$	－	－	－0107	－	$222 \cdot 5$	159.5	－	－	10.8	－	－
10	157＇1	126.9	－	－	－0103	－	$238 \cdot 1$	$179 \cdot 6$	－	－	10.0	－	－
11	$153 \cdot 3$	112．4	－	－	－0139	－	236.9	184＊6	－	－	8.9	－	－
12	163.6	141.6	－	－	－0075	－	213.5	$138 \cdot 3$	－	－	12.9	－	－
13	$154 \cdot 2$	$188 \cdot 3$	－	－	－0054	－	$208 \cdot 3$	$187 \cdot 1$	－	－	3．6	－	－
14	S．	－	－	－	－	－	S．	－	－	－	－	－	－
15	159.2	$138 \cdot 2$	－	－	－0072	－	$215 \cdot 1$	$193 \cdot 8$	－	－	$3 \cdot 6$	－	－
16	$157 \cdot 0$	144.8	－	－	－0012	－	208.5	$190 \cdot 4$	－	－	$3 \cdot 1$	－	－
17	162.0	123.5	$162 \cdot 0$	98.9	－ 0131	－0215	$233 \cdot 5$	180.5	252．6	180.5	$9 \cdot 1$	$12 \cdot 3$	－
18	145＊5	$123 \cdot 5$	－	－	－0075	－	$220 \cdot 2$	195.8	－	－	$4 \cdot 2$	－	－
19	$160 \cdot 3$	$104 \cdot 5$	160＇3	104＇5	$\cdot 0190$	$\cdot 0197$	$262 \cdot 8$	199\％6	$262 \cdot 8$	$199 \cdot 6$	$10 \cdot 8$	$10 \cdot 8$	－
20	$150 \cdot 5$	110.0	－	－	． 0138	－	216.8	196.8	－	－	3.4	－	－
21	S．	－	－	－	－	－	S．	－	－	－	－	－	－
22	$157 \cdot 1$	$102 \cdot 3$	－	－	－0187	－	261.3	173.6	－	－	15.0	－	－
23	$138 \cdot 4$	$120 \cdot 8$	－	－	－0060	－	212.5	194＇6	－	－	$3 \cdot 1$	－	－
（24，	$147 \cdot 3$	$35 \cdot 6$	$153 \cdot 0$	$-37 \cdot 6$	－0381	－0650	381＇2	195＇9	$401 \cdot 9$	$130 \cdot 2$	31.7	$46 \cdot 4$	－
225	145•1	24．5	$150 \cdot 3$	14＇7	$\cdot 0411$	． 0463	$398 \cdot 9$	$192 \cdot 0$	404＊4	177．9	34．3	38．7	－

Table XIII．－continued．

Date Gött． Day．	BIFILAR．$\quad k={ }^{(00034}$						INOLINOMETER．						
	In the Hourly Series．		Observed．		Range of Hox．Force		In the Hourly Series．		Observed．		Approx． Range of Inclination．		Scale．
				＋	$\begin{aligned} & \text { 窓 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 家 } \\ & \text { en } \\ & 0.0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { H. } \\ & \text { 荷 } \end{aligned}$	＋		菏	$\begin{gathered} \text { 穹 } \\ \text { 品 } \end{gathered}$	ت B B 0 0 0	\％
1844.											，	1	1
Jan． 26	134.4	$82 \cdot 3$	134．4	74.0	－0178	－0206	254．3	196． 5	259.0	196．5	$9 \cdot 9$	10.7	0．1708
27	135.6	111.3	－	－	－0082	－	219.2	193．2	－	－	$4 \cdot 4$	－	－
28	S．	－	－	－	－	－	S．	－	－	－	－	－	－
29	$145 \cdot 5$	119.1	－	－	－0090	－	238．5	$189 \cdot 1$	－	－	8.4	－	－
30	$159 \cdot 4$	$117 \cdot 7$	－	－	－0142	－	$222 \cdot 7$	178.4	－	－	$9 \cdot 2$	－	－
31	159.5	112．2	－	－	－0161	－	$210 \cdot 4$	$167 \cdot 7$	－	－	8.8	－	－
Feb． 1	185．5	－3．4	185.5	－ 9.7	－0645	－0666	353.8	$115 \cdot 1$	$390 \cdot 4$	$115 \cdot 1$	40.7	47.0	－
2	204．8	67.0	226.9	66.2	－0470	－0548	276.7	$143 \cdot 3$	$289 \cdot 7$	$109 \cdot 1$	$22 \cdot 8$	30．7	－
3	173.7	118．2	－	－	－0189	－	224.8	$160 \cdot 5$	－	－	11.0	－	－
4	S．	－	－	－	－	－	S．	－	－	－	－	－	－
5	214.8	－18．0	219．3	－71．0	－0794	－ 0952	494．8	121.8	564.0	$83 \cdot 1$	63.7	$82 \cdot 1$	－
6	$164 \cdot 2$	67.4	164．2	67.4	－0330	－Q330	$285 \cdot 5$	171．2	$285 \cdot 5$	154.1	19.5	22．	－
7	183.7	122.6	－	－	－0208	－	$231 \cdot 9$	158.9	－	－	$12 \cdot 5$	－	－
8	$175 \cdot 7$	71.5	175．7	71.5	－0355	－0355	$294 \cdot 6$	$169 \cdot 3$	294.6	169.3	$21 \cdot 4$	$21 \cdot 4$	－
9	$172 \cdot 9$	$131 \cdot 3$	－	－	－0142	－	$193 \cdot 1$	124.8	－	－	$11 \cdot 7$	－	－
10	$179 \cdot 4$	108.1	－	－	－0243	－	246.3	$172 \cdot 3$	－	－	12.6	－	－
11	S．	－	－	－	－	－	S．	－	－	－	－	－	－
12	158.4	96.0	－	－	－ 0213	－	259.5	$179 \cdot 5$	－	－	$13 \cdot 7$	－	－
13	159．3	134．5	－	－	－0085	－	204.7	184．9	－	－	3.4	－	－
14	$172 \cdot 6$	$144 \cdot 7$	－	－	$\cdot 0095$	－	210.5	$167 \cdot 5$	－	－	$7 \cdot 3$	－	－
15	183.6	126.3	－	－	－0195	－	$224 \cdot 1$	188.6	－	－	$6 \cdot 1$	－	－
16	$200 \cdot 2$	$157 \cdot 9$	$200 \cdot 2$	$150 \cdot 3$	－0144	$\cdot 0170$	218.0	174．7	$225 \cdot 6$	174：7	$7 \cdot 4$	8.7	－
17	204.6	164.6	－	－	－0136	－	$215 \cdot 7$	$182 \cdot 3$	－	－	$5 \cdot 7$	－	－
18	S．	－	－	－	－	－	S．	－	－	－	－	－	－
19	$190 \cdot 7$	$175 \cdot 8$	－	－	－0051	－	205.5	$191 \cdot 4$	－	－	2.4	－	－
20	$197 \cdot 0$	$172 \cdot 6$	－	－	－0083	－	$215 \cdot 3$	$189 \cdot 2$	－	－	4.5	－	－
21	196.1	158＇2	－	－	－0129	－	$232 \cdot 6$	185.1	－	－	$8 \cdot 1$	－	－
22	202．2	184＊4	－	－	－00	－	209.5	186＇2	－	－	4.0	－	－
23	$205 \cdot 0$	189＇1	－	－	－0054	－	199°	$178 \cdot 1$	－	－	1.9	－	－
24	188.6	175．1	－	－	－0046	－	$203 \cdot 1$	191.2	－	－	2.0	－	－
25	S．	－	－	－	－	－	S．	－	－	－	－	－	－
26	202.9	$106 \cdot 3$	$202 \cdot 9$	94.8	－0330	－0368	$277 \cdot 9$	$175 \cdot 8$	296.3	$175 \cdot 8$	$17 \cdot 4$	20.6	－
27	$217 \cdot 7$	$163 \cdot 6$	－	－	－0184	－	$232 \cdot 2$	186.7	－	－	$7 \cdot 8$	－	－
28	－	－	－	－	－	－	304．0	$144 \cdot 8$	－	－	$27 \cdot 2$	－	－
29	－	－	－	－	－	－	$346 \cdot 1$	$170 \cdot 9$	－	－	$29 \cdot 9$	－	－

Table XIII．－continued．

Date Gbtt． Day．	BIFILAR．						INCLINOMETER．						
	In the Hourly Series．		Observed．		Range of Hor．Force．		In the Hourly Series．		Observed．		Range of Inclination．		Scale．
					0 0 0 0	$\begin{aligned} & 7 \\ & \hline 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	＋ 总 寝				$\begin{aligned} & \text { 号 } \\ & \text { 䔍 } \end{aligned}$		\％i
1844. April 1	$266 \cdot 5$	112＇4	－	－	－0490	－	384＇1	61.2	－	－	$:$, $43 \cdot 0$	$\stackrel{1}{-}$	${ }^{\prime} 0 \cdot 1293$
2	$284 \cdot 7$	79.3	284.7	<79.0	． 0335	－ 065	467．7	58.0	$>743 \cdot 2$	58.0	53.0	88.6	－
3	$278 \cdot 6$	115.9	278＇6	$66^{7} 7$	－0518	－0674	368＇2	$83 \cdot 4$	$484 \cdot 5$	83.4	36.8	51.9	－
4	$300 \cdot 8$	124．7	－	－	$\cdot 0560$	－	$368 \cdot 1$	$68 \cdot 7$	－	－	38．6	－	－
5	Good	Friday．	－	－	－	－	Good	Friday．	－	－	－	－	－
6	298.0	228．8	304＇2	228.8	－0220	－ 0240	167 ＇1	63.0	$167 \cdot 1$	51.5	13.5	15.0	－
7	S．	－	－	－	－	－	S．	－	－	－	－	－	－
8	$262 \cdot 8$	241.0	－	－	＇0069	－	194．7	129.3	－	－	8．5	－	－
9	296.4	187.8	296．4	168.8	－0345	－0406	264．0	124.0	291.8	124.0	18＇1	21.7	－
10	251.7	$18^{\circ} 0$	$251 \cdot 7$	>0.0	＇0744	$>\cdot 080$	$272 \cdot 2$	96.8	467 ＇1	96.8	$22 \cdot 7$	47.8	－
11	244.8	188.9	－	－	＇0177	－	$189 \cdot 8$	$112 \cdot 2$	－	－	10.0	－	－
12	$238 \cdot 2$	$210 \cdot 4$	－	－	＇0088	－	$143 \cdot 4$	118.8	－	－	$3 \cdot 2$	－	－
13	287.6	214.3	－	－	＇0233	－	$135 \cdot 1$	$102 \cdot 6$	－	－	$4 \cdot 2$	－	－
14	S．	－	－	－	－	－	S．	－	－	－	－	－	－
15	291.9	$127 \cdot 4$	$291 \cdot 9$	91.5	－0522	－0637	$383 \cdot 3$	$100 \cdot 7$	453.8	$100 \% 7$	$36 \cdot 5$	44＇5	－
16	$377 \cdot 6$	$137 \cdot 8$	$378 \cdot 1$	$9 \cdot 9$	－0763	－1170	$355 \cdot 2$	-11.0	$631 \cdot 0$	-29.5	$47 \cdot 3$	$85 \cdot 3$	－
17	$343 \cdot 9$	-60.8	$343 \cdot 9$	$-20 \cdot 0$	＇1284	$>\cdot 173$	$837 \cdot 9$	20.9	$837 \cdot 9$	20.9	105.6	105 6	－
18	283.4	$255 \cdot 1$	－	－	－0077	－	$153 \cdot 1$	104：0	－	－	6．3	－	－
19	272.5	161.5	$272 \cdot 5$	127．5	－0031	－0410	$319 \cdot 6$	$124 \cdot 6$	$368 \cdot 7$	124．6	25.2	31.9	－
20	$271 \cdot 5$	191＇1	－	－	－0227	－	255．8	121＇2	－	－	17.4	－	－
21	S．	－	－	－	7	－	S．	－	－	－	－	－	－
22	277．4	$221 \cdot 1$	－	－	＇0159	－	194.6	114：3	－	－	$10 \cdot 4$	－	－
23	$282 \cdot 4$	$178 \cdot 3$	－	－	－0294	－	$304 \cdot 8$	$127 \cdot 3$	－	－	22.9	－	\cdots
T $\left\{^{24}\right.$	304＇2	264.9	$316 \cdot 2$	$171 \cdot 3$	－0111	－0408	173.6	109．4	$332 \cdot 4$	$87 \cdot 3$	$8 \cdot 3$	31.7	－
${ }^{2}$ 25	316．9	$86^{\circ} 6$	316.9	$60 \cdot 8$	＇0851	－0725	526.6	$88 \cdot 2$	586.0	$87^{\prime} 1$	$56 \cdot 7$	64＇7	\cdots
26	29711	$26^{\circ} 8$	2971	$-46^{\prime 7}$	＇0764	－0973	645．9	108．2	781.5	108.2	69.5	100.0	－
27	309．2	$137 \cdot 8$	309＇2	133.2	＇0486	＇0499	377×4	85.2	$415 \cdot 2$	$85 \cdot 2$	$37 \cdot 8$	42.8	－
28	S．	－	－	－	－	－	S．	－	－	－	－	－	－
29	$285 \cdot 1$	137.0	$285 \cdot 1$	114．3	＇0419	＇0484	$423 \cdot 3$	126.1	$455 \cdot 5$	126．1	38＇4	42.5	－－
30	$326 \cdot 4$	80.0	$335 \cdot 0$	$40^{\circ} 0$	－0697	＇0835	489 ＇ 1	$80 \cdot 7$	$562 \cdot 7$	80.7	52.8	$59 \cdot 7$	－
May 1	$289 \cdot 0$	$219 \cdot 5$	－	－	－0197	－	258＇9	129.4	－	－	16.8	－	－
2	338.4	207•8	336.4	$207 \cdot 8$	－0362	－0362	Impe	ct．	－	－	－	－	－
3	271.2	43.0	271＇2	39.0	－0645	＇0656	614＇1	204＊0	$627 \cdot 1$	204．0	63．6	96.5	$0 \cdot 1549$
4	$286 \cdot 7$	2151	－	－	．0208	－	263.0	$184 \cdot 0$	－	－	11.2	－	－

Table XIII－continued．

Date Gött． Day．	BIFILAR．$\quad k=0003412$.						INCLINOMETER．						
	$\begin{gathered} \text { In the } \\ \text { Hourly Series. } \end{gathered}$		Observed．		Range of Hor．Force．		$\begin{gathered} \text { In the } \\ \text { Hourly Series. } \end{gathered}$		Observed．		Range ofInclination．		Scale．
	范	$\begin{gathered} \text { 畗 } \\ \stackrel{y}{9} \end{gathered}$		$\begin{aligned} & \text { 蓶 } \\ & \text { ! } \end{aligned}$		뮬 品			$\begin{aligned} & \text { 黄 } \\ & \text { 密 } \\ & \text { 部 } \end{aligned}$	$\begin{aligned} & \text { 憲 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 息 } \\ & \text { 品 } \end{aligned}$		808080
$\begin{gathered} 1844 . \\ \text { May *5 } \end{gathered}$	s．	－	$258 \cdot 5$	$149 \cdot 7$	－	0308	s．	－	$385 \cdot 5$	$202 \cdot 1$	－	$23 \cdot 6$	＇－
6	280.7	229.6	－	－	－0144	－	$282 \cdot 4$	$117 \cdot 0$	－	－	25.6	－	－
7	300.3	$167 \cdot 9$	300：3	$167 \cdot 9$	－0373	－0373	$407 \cdot 2$	165^{4}	$407 \cdot 2$	$165 \cdot 4$	37．5	$37 \cdot 5$	－
8	7 308	1761	3067	176.1	－0368	0368	$400 \cdot 8$	160^{2}	$400 \cdot 8$	$160 \cdot 2$	$37 \cdot 3$	$37 \cdot 3$	－
9	$276 \cdot 1$	$162 \cdot 1$	－	－	22	－	422.6	2214	－	－	31.2	－	－
10	57	9	－	－	0262	－	$281 \cdot 6$	228.2	－	－	$8 \cdot 3$	－	－
11	$274 \cdot 1$	$238 \cdot 4$	－	－	0101	－	2018	$222 \cdot 1$	－	－	10.8	－	－
12	s．	－	－	－	－	－	s．	－	－	－	－	－	－
13	$325 \cdot 6$	$242 \cdot 1$	325.6	$242 \cdot 1$	0236	－0236	$282 \cdot 6$	134.0	$286 \cdot 2$	134．0	23.0	$23 \cdot 6$	－
14	3257	$223 \cdot 4$	2257	214．3	0289	－0316	311.0	138． 4	338.0	138＊4	26.8	$30 \cdot 9$	－
15	291.8	$236 \cdot 9$	－		0150	－	270	198.0	－	－	11.0	－	－
16	2675	$212 \cdot 1$	287.5	$212 \cdot 1$	－0157	－0157	324.8	$221 \cdot 1$	324.8	221.1	16.1	$16^{\prime} 1$	－
17	$263 \cdot 9$	$241 \cdot 9$	－	－	062	－	258＇7	$222 \cdot 4$	－	－	$4 \cdot 9$	－	－
18	283.3	$242 \cdot 4$	－		－0115	－	$259 \cdot 6$	218.0	－	－	6.4	－	－
19	s．	－	－		－	－	s．	－	－		－	－	－
20	$273 \cdot 3$	7	－		998	－	2367	2360	－	－	$7 \cdot 9$	－	－
21	288.0	2240	－		－01	－	300^{2}	$210 \cdot 7$	－	－	$13 \cdot 9$	－	－
22	308.9	112．8	$344 \cdot 3$	$8 \cdot 3$	－0555	0004	$519 \cdot 2$	181.6	$692 \cdot 3$	$121 \cdot 9$	55.4	$88 \cdot 3$	－
${ }^{23}$	$272 \cdot 7$	$98 \cdot 9$	$272 \cdot 7$	$88 \cdot 9$	－0492	． 0520	519	243.8	$545 \cdot 9$	243.8	42.7	$46^{\prime} 8$	－
T ${ }^{24}$	$285 \cdot 3$	$180 \cdot 3$	$285 \cdot 3$	140.5	－0354	－0410	$440 \cdot 0$	211.0	$468 \cdot 8$	184 4	$35 \cdot 5$	44.1	－
${ }^{1}{ }_{25}$	－		－	$214 \cdot 9$	Impe	r	－	－	－	－	1 －	－	－

＊Extra observations were taken from $5^{d} 21^{\text {h }}$ to $5^{\text {d }} 28^{\text {h }}$ ．
It appears from the foregoing table，that the greatest change of Horizontal Force observed in any Göttingen day in the winter，was －0991X，on the 4th January 1844，the change of Inclination obscrved being $1^{\circ} 6^{\prime} 9$ ，according to the approximate scale value employed．The greatest change of Horizontal Force observed in any Göttingen day of the two spring months was not less than 0.173 X ， on the 17th April，or one sixth of the whole amount of that element， and was accompanied by a change of inclination of $1^{\circ} 45^{\prime} 7$ ；the movements of both instruments upon this occasion went beyond the limits of their scales，and could only be valued approximately，by holding up some object and afterwards measuring its distance from the zero of the scale．The mean inclination at Lake Athabasca was
$81^{\circ} 37^{\prime} 7$, and at Forts Simpson $81^{\circ} 52^{\prime} 0$; a change of $\pm 1^{\prime}$ of these elements would therefore produce a change of $\mp 001996 \mathrm{X}$ at the former, and of $\mp \cdot 002037 \mathrm{X}$ at the latter station; in round numbers $\pm 1^{\prime} 0$ of inclination corresponds to $\mp \cdot 002$ of horizontal force at both stations; classifying the daily ranges upon this scale, we have the following results:

Table XIV.

Range of Horizontal Force.	Lake Athabasca.		Fort Simpson.		Range of Inclination Approximate.	Lake Athabasca.		Fort Simpson2	
Less than $\cdot 010 \mathrm{X}$	Days. 40	Days. 38	Days. 6	Days.	Less than 5^{\prime}	Days.	Days. 37	Days.	Days. 3
$\cdot 010$ to 020 X	33	30	10	9	5^{\prime} to 10^{\prime}	27	23	7	6
-020 - 030 X	12	11	6	5	10^{\prime} - 15^{\prime}	18	15	6	6
.030 - 000 X	13	11	6*	4^{*}	15^{\prime} - 20^{\prime}	8	7	4	3
$\cdot 040$ - 0050 X	8	11	4	7	20^{\prime} - 25^{\prime}	9	10	3	3
$\cdot 050$ - 060 X	2	1	6	4	25^{\prime} - 30^{\prime}	$9 \dagger$	6	3	1
$\cdot 060$ - 070 X	2	0	4	5	30^{\prime} - 35^{\prime}	3	6	1	4
$\cdot 070$ - 080 X	3	4	3	1	35^{\prime} - 40'	1	2	8	3
$\cdot 080$ - 000 X	1	0	0	2	40^{\prime} - $45^{\prime \prime}$	2	3	2	5
-000 - ${ }^{100 \mathrm{X}}$	0	2	0	2	45^{\prime} - 50^{\prime}	0	4	1	2
More than '100	0	0	1	2	Above 50'	2	3	7	0
	114	114	46	46		116	116	45	45

* A day is here included which is wanting in the Inclinometer sorics, namely, May 2.
† Two days are included which are wanting in the Bifilar series, namely, Feb. 28 and 29, 1844,
It may be remarked in reference to this table, that were the total force to undergo no changes, we should expect to find an exact coincidence between the number of days giving certain ranges of the horizontal force, and their equivalents in terms of the inclination, unless there existed an error in one of the co-efficients; the great changes of the former element being always positive, and those of the horizontal force negative, we have an indication, in the excess under the higher ranges of inclination, which is apparent above, that the tendency in disturbances is to an increase of total force.

The mean range of horizontal force during the winter months at Lake Athabasca, that is to say, the square root of the mean of the squares of the differences between the highest and lowest scale reading, included in the hourly observations of each day, is ' 0286 X , and that of the inclination $17^{\prime \cdot} 0$ (minutes). The corresponding means for the two spring months at Fort Simpson are ' 0421 X, and
$47^{\prime} 5$ of inclination. The other American stations give the following values for the mean range of horizontal force found in the same way, and for the same periods. For the winter months, 16 th October 1843 to 29th February 1844, Philadelphia $00149 \mathbf{X}$, Toronto 00240 X , and $3^{\prime} 25$ of inclination*', Sitka 00377 X. For the two spring months, April and May 1844, Philadelphia 00157 X, Toronto 00357 X , Sitka 00429 X . For the several months again, we have the mean ranges in the following table, which, like that of the declination, I have extended to include twelve months at the permanent stations.

Table XV.

Month.	Philadelphia.		Toronto.				Sitka.		Lake Athabasca. Fort Simpson.			
	Scale Divs.	$\frac{\Delta \mathbf{X}}{\mathbf{X}}$	Bifilar.		Inclinom.		Scale. Divs.	$\frac{\Delta X}{X}$	Biflar.		Inclinom.	
			Scale.	$\frac{\Delta \mathbf{X}}{\mathbf{X}}$	Scale.	$\Delta \theta$			Scale.	$\frac{\Delta X}{X}$	Scale.	$\Delta \theta$
$1843 .$ October	$45^{\prime} 7$	-00183	-	-	-	-	$35 \cdot 4$	-00428	-	-	-	-
$\text { sist } 16 \text { th to }\}$	36.9	-00148	22.9	-00242	$5 \cdot 02$	$4^{\prime} \cdot 28$	$31 \cdot 3$	$\cdot 00388$	118.3	'0402	$127 \cdot 0$	$22^{\prime} 5$
November	30.2	-00121	21.7	-00229	$3 \cdot 46$	$2 \cdot 02$	28.0	-00347	62.5	-0213	$75 \cdot 2$	12.8
December	32.6	-00130	$20 \cdot 5$	-00217	3.25	2.75	26.4	-00327	63.1	-0215	73.1	$12 \cdot 5$
1844.			㫛察									
January	32.7	-00131	$22 \cdot 7$	-00240	3.57	3.01	29.9	-00383	84.8	-0289	$112 \cdot 3$	$19 \cdot 2$
February	$34 \cdot 1$	-00136	$26 \cdot 3$	-00278	-	-	$3 \cdot 9$	-00472	89.8	'0306	105.0	17.9
March	$43 \cdot 8$	-00175	31.5	-00333	-	-	46.3	-00592	-	-	-	-
April	38.9	:00156	$35 \cdot 4$	-00268	-	-	38.9	-00498	$166 \cdot 8$	'0507	305.2	$39 \cdot 4$
May	$39 \cdot 9$	-00159:	32.6	-00344	-	-	$30 \cdot 2$	-00386	$113 \cdot 1$	-0324	$189 \cdot 2$	29.3
June	31.7	900127	28.5	-00301	-	-	24.8	-00317	-	-	-	-
July -	28.1	-00112	34.4	-00363	-	-	29.0	$\cdot 00359$	-	-	-	-
August -	43.8	-00175	$39 \cdot 6$	-00418	-	-	31.5	-00386	-	-	-	-
September	$49 \cdot 7$	-00159	$36^{\prime} 4$	'00385	-	-	42.0	-00520	-	-	-	-

The scale co-efficients used above were 1 division $=-\quad 00040 \mathrm{X}$ at Philadelphia, (magnetic and met. observations at Girard College, p. 1819),$={ }^{-} 0001236$ at Sitka for the observations of 1843, and $\cdot 000128$ for those of $1844,={ }^{\cdot} 000105$ for those at Toronto; the observations at the two former stations were not reduced to a uniform temperature, but from the irregularity in the hours of occurrence of the greatest and least values, the efects of inequalities of

[^5]temperature must be in a great measure neutralized in the final result for each month.

Diurnal Variation of the Horizontal Force,-The following Tables contain the mean of the scale readings of the Bifilar as observed, and the same reduced to the uniform temperature of 40°. As the observatory was artificially warmed, the mean daily range of internal temperature is small, although the occasional fluctuations were very considerable; the uncorrected curve differs in consequence comparatively little from the corrected one.

Table XVI.
Monthly means of the Biflar readings, uncorrected for temperature, and with omission of incomplete days, namely, October 20th, November 4th, January 2d and 9th, February 28th and 29th.

Table XVII.
Mean temperature of the Bifilar magnet.

The general mean for each hour in the above Tables has been obtained by dividing the sum of all the observations by the total number, which is 110 .

In the next Table, the difference from 40° of each mean temperature in Table XVII has been multiplied by the co efficient $\frac{q}{\mathrm{k}}=0^{\circ} 702$, anp applied to the values in Table XVI.

Table XVIII.

Mean Bifilar readings reduced to a uniform temperature of 40°.

It is remarkable, that the above means have a decided feature in common, which is not found in the corresponding ones at Toronto, or at any other American station,- they all exhibit a minimum of Horizontal Force at or near 3 A.m. By omitting all days on which extra observations for Disturbance were taken, as in Table VII., the lowest value of the 24^{h} is still at 3 A.m., but the amount of the daily change is most materially reduced, proving this feature to be, in great measure, due to the effect of disturbances, which has already been shown to be the case with the extreme of Declination at the same hour. The following Table exhibits, side by side, the mean diurnal curve of Horizontal Force at all the American stations, for the period included in the observations under discussion, to which is added the mean by the 46 days selected as free from disturbance.

Table XIX.

Comparison of the mean diurnal curve of Horizontal Force at all the American stations for the period included between October 1843 and February 1844.

Local mean time.	Philadelphia.		Torontc.		Sitka.		Lake Athabasca,			
	Scale.	$\frac{\Delta \mathbf{X}}{\mathbf{X}}$	Scale.	$\frac{\Delta \mathbf{X}}{\mathbf{X}}$	Scale.	$\frac{\Delta \mathbf{X}}{\mathbf{X}}$	The whole period.		Forty-six selected days.	
							Scale.	$\frac{\Delta X}{X}$	Soale.	$\frac{\Delta X}{X}$.
Mid.	161'74	- $\cdot 000071$	493'15	- '000096	509.08	+ $\cdot 000194$	178.68	--00022	173.90	+ $\cdot 00124$
1 A.M.	163'72	+ $\cdot 000008$	$493 \cdot 22$	- '000178	506.24	- - 000159	173.30,	- $\cdot 00206$	$169 \cdot 21$	-.00038
2	168.98	+ $\cdot 000010$	493.61	- $\cdot 000066$	506.06	-'000183	169.07	-. 00350	167.03	-.00116
3	165.32	+ $\cdot 000072$	484.02	- ${ }^{\circ} 000023$	$505 * 44$	-. 000259	164.87	- $\cdot 00513$	166.33	$-\cdot 00137$
4	$167 \cdot 42$	+ ${ }^{\circ} 000156$	$495 \cdot 10$	+ ${ }^{\circ} 000091$	504.74	- - 0000347	$163 \cdot 97$	-. 00522	166.90	- '00117
5	167.79	+ $\cdot 000171$	$496 \cdot 11$	+ $\cdot 000191$	505.02	-. 000312	166.84	-.00424	167.07	- $\cdot 00112$
6	168.12	+ ${ }^{\circ} 000184$	496.66	+ ${ }^{\circ} 000258$	503.98	- -000443	173.90	-.00188	$167 \cdot 43$	- $\cdot 00099$
7	$167 \cdot 08$	+ ${ }^{\circ} 000134$	$496 \cdot 23$	+ $\cdot 000212$	+503.52	--000500	176.85	- $\cdot 00083$	$167 \cdot 67$	-'00091
8	$163 \cdot 22$	- $\cdot 000011$	494.02	- '000023	504*66	- -000357	179.03	- $\cdot 00010$	168.41	- $\cdot 00066$
9	161 ${ }^{24}$	- ${ }^{-000100}$	$492 \cdot 22$	- '000213	504.62	--000362	178.76	- $\cdot 00019$	167.94	-.00082
10	158.56	- '000207	$490 \cdot 39$	- '000407	$505 \cdot 26$	- -000282	178.08	- $\cdot 00042$	166.51	- '00131
11	156.94	- -000272	488 78	- 0000577	504:90	-.000327	$178 \cdot 77$	- $\cdot 00019$	166.69	-.00124
Noon.	$158 \cdot 00$	--000229	489.11	- $\cdot 000542$	$505 \cdot 52$	--000249	$180 \cdot 46$	+.00039	167.85	- '00095
1 P.M.	161.32	- -000096	491.04	- '000338	507.06	- 0000058	180.77	+ $\cdot 00049$	168.59	- ${ }^{\circ} 00060$
2	$164 \cdot 60$	+ $\cdot 000035$	494,30	+ 000006	$507 \cdot 80$	$+\cdot 000037$	184, 16	+ $\cdot 00165$	171.37	+ $\cdot 00085$
3	166.70	$+\cdot 000119$	496.53	+ $\cdot 000242$	508.92	-000177	$185 \cdot 25$	+ $\cdot 00202$	172.31	+ $\cdot 00067$
4	$167 \cdot 40$	+•000147	498.03	+ $\cdot 000401$	$510 \cdot 60$	$+\cdot 000387$	$185 \cdot 73$	+'00218	173.88	+.00122
5	$167 \cdot 42$	+ $\cdot 000148$	$498 \cdot 12$	$+\cdot 000410$	$511 \cdot 14$	+ ${ }^{\circ} 000455$	186.77	+ $\cdot 00254$	173.73	+.00116
6	165.22	+ ${ }^{+000060}$	$497 \cdot 12$	+ 000804	$512 \cdot 28$	$+\cdot 000587$	186.73	+ $\cdot 00252$	173.96	+ 00012
7	163.92	+ $\cdot 000008$	$496 \cdot 16$	$+\cdot 000203$	511'84	+ ${ }^{\circ} 000543$	186.43	+ $\cdot 00242$	173.00	$+\cdot 00091$
8	163.80	$+\cdot 000003$	495.84	+'000179	$511 \cdot 10$	+'000450	186'46	+•00243	$173 \cdot 34$	+'00102
9	$163 \cdot 32$	- 000016	495.00	$+\cdot 000080$	$510 \cdot 18$	$+\cdot 000335$	$185 \cdot 74$	+ 00219	173.45	+ $\cdot 00106$
10	162.06	- 000067	493•80	- ${ }^{\circ} 000046$	510'14	+'000330	$187 \cdot 41$	+ $\cdot 00276$	175'49	+.00176
11	161.72	- - ${ }^{(00080}$	493•28	- 000101	$510 \cdot 12$	$+\cdot 000327$	185.95	+ $\cdot 00226$	176.13	$+\cdot 00197$
	163.73	-	494:24	-	$507 \cdot 51$	-	179.38	-	$170 \cdot 34$	-

The observations were taken 19^{m} after the hour named at Philadelphia, 3^{m} after at Toronto, $28^{\text {m }}$ after at Sitka, and $5^{\text {mi }}$ uiter at Lake Athabasca.

Fort Simpson.- The Bifilar magnetometer at Fort Simpson received an accidental shock on the 10th April, which rendered it necessary to
readjust $\mathrm{it}{ }^{*}$ ，this was done on the 13th，a correction being applied to the intermediate readings．We have therefore two series，the first of only eleven days，of which one is incomplete，the second of thirty－ five days，nine of which，however，want one observation or more． A separate mean for each will be found in the abstract．The whole forty－six days have also been combined in a general mean，without omission of any one，for the reasons already stated in reference to the Declination Observations，page 15.

Table XX．

Mean scale reading and temperature of the Biflar Magnet at Fort Simpson in April and May 1844，to which are added the mean for the same two months at all the American stations，and the difference of each reading from the mean of the whole，in terms of the Horizontal Force．The scale readings at Philadelphia are the complement to 1100 of the actual readings．

Fort Simpson．							Philadelphia．		Toronto．		Sitka．	
¢		Observed．			$\frac{\Delta X}{X}$		Scale，	$\frac{\Delta \mathbb{X}}{\mathbf{X}}$	Scale．	$\frac{\Delta \mathbb{X}}{\mathbf{X}}$	Scale．	$\frac{\Delta \dot{X}}{\mathbf{X}}$
势		沓	魚									
	${ }_{12}^{\text {h．}} 15$.	$232 \cdot 11$	$\stackrel{\circ}{6}$	235.85		12	6＇70	＋	504．04			
22	1315	$227 \cdot 25$	$64 \cdot 5$	$230 \cdot 83$	－00336	13	$107 \cdot 65$	＋ 00008	$503 \cdot 87$	－－00022	514．20	－0002
23	1415	228－26	64.0	$231 \cdot 48$	－－00317	14	108．90	＋ 00013	$503 \cdot 92$	－00021	$513 \cdot 70$	－．00035
Noon	1515	$205 \cdot 47$	$64 \cdot 3$	208．91	－－00973	15	$110 \cdot 55$	＋${ }^{\circ} 0019$	503．40	－ 00027	$515 \cdot 30$	－00014
1	1615	202．20	63.8	$205 \cdot 27$	－－01030	16	$112 \cdot 60$	＋ 00023	508.02	＋${ }^{0} 0001$	$515 \cdot 15$	－00016
2	1715	$211 \cdot 70$	63.3	214．36	－－00865	17	12．80	＋${ }^{\text {co028 }}$	508.44	＋ 00005	514.45	－．00025
3	1815	$217 \cdot 23$	63.2	219.77	－－00658	18	$110 \cdot 45$	＋ 00019	503．67	－ 00024	514．40	－ 0
4	1915	$224 \cdot 66$	63.0	$226 \cdot 98$	－－00448	19	$109 \cdot 70$	＋•00016	504．08	－．00019	514.65	－－00023
5	2015	$230 \cdot 04$	$62 \cdot 8$	$232 \cdot 30$	－－00293	20	104．85	－ 00003	502．87	－ 00032	514.45	－00025
6	2115	238	60.5	$238 \cdot 95$	－00099	21	97：35	－ 00033	499006	－－00073	$514 \cdot 25$	－00028
7	2215	244	$61 \cdot 7$	246	＋${ }^{0} 0107$	22	94.80	－ 00044	$497 \cdot 05$	－＇00094	$512 \cdot 50$	－．00050
8	2315	$247 \cdot 70$	$62 \cdot 5$	249	＋ 00213	23	9440	－${ }^{0} 0045$	$488 \cdot 30$	－．00081	$512 \cdot 10$	－ 00054
9	015	244．99	$62 \cdot 8$	$247 \cdot 27$	＋ 00143	Noon	94．50	－＇00045	501．27	－$\cdot 00049$	510.55	－00075
10	115	$244 \cdot 82$	63.2	$247 \cdot 36$	＋－00145	1	99	26	$506 \cdot 52$	＋ 00000	$511 \cdot 40$	－ 00008
11	215	$250 \cdot 13$	$\cdot 6$	253.04	＋${ }^{0} 0310$	2	1063	＋ 00003	$511 \cdot 22$	＋ 00056	$512 \cdot 90$	－00045
Mid．	315	$256 \cdot 33$	$63 \cdot 2$	$258 \cdot 92$	＋．00482	3	$100 \cdot$	＋•	514	＋${ }^{0} 0091$	516.85	＋．00005
13	415	$256 \cdot 54$	63 ＇s	$259 \cdot 56$	＋+00500	4	$109 \cdot 9$	＋	514－55	＋ 00091	$520 \cdot 45$	＋．00051
14	515	258.89	$64 \cdot 3$	$262 \cdot 30$	$+\cdot 00580$	5	$110 \cdot 20$	＋ 00018	$516 \cdot 19$	＋ 000108	$521 \cdot 70$	＋+00057
15	615	259.30	$64 \cdot 4$	$262 \cdot 84$	＋${ }^{0} 0596$	6	$107 \cdot 35$	＋${ }^{\text {20007 }}$	$512 \cdot 04$	＋$\cdot 00065$	522：00	＋ 00073
16	715	258.02	$64 \cdot 5$	$261 \cdot 64$	＋$\cdot 00561$		106．30	＋＇00002	508．94	＋•0032	$521 \cdot 75$	＋
17	815	$257 \cdot 65$	64.6	$261 \cdot 33$	＋．00552	8	106＇50	＋ 00003	$508 \cdot 82$	＋ 00009	$522 \cdot 20$	＋00074
18	915	$253 \cdot 68$	$65^{\circ} 0$	$257 \cdot 66$	＋$\cdot 00445$	9	$105 \cdot 65$	－ 00000	$505 \cdot 71$	－－0002	$522 \cdot 3$	＋．0007
19	1015	$252 \cdot 12$	$65 \cdot 1$	$256 \cdot 21$	＋－00401	10	106＇85	＋ 00005	$506 \cdot 70$	＋ 00008	522	＋．00076
20	1115	$243 \cdot 94$	$65 \cdot 3$	$248 \cdot 21$	＋•0170	11	108.0	＋ 00001	505	－00009	519	＋
		－	－	$242 \cdot 37$	－		$105^{6} 69$	－	305.		$516 \cdot 4$	

See remark at Table XIX．as to the difference of the actual observation from the hours given．

[^6]Mean diurnal curve of Horizontal Forse.--The mean diurnal curve of the Horizontal Force, as given by observation, and influenced by disturbances, appeams to consist at Lake Athabasca of a single, progression, having its minimum at 4 A.M. and its maximum at 10 P.M., and agreeing in neither respect with the diurnal changes of this element at Toronto. The latter have at the same season two maxima, namely, at 3 r.m. and 6 A.M., and two minima, at 11 A.M. and 1 A.M. respectively!

Upon closer examination, it is evident that a second progression is superadded to the first at Lake Athabasca, which produces a subordinate maximum at 8 A.m., and a minimum at 10 A.m: Lastly, by omitting days most influenced by disturbance, and confining our attention to the mean given by 46 days, which were in a great measure free from it, we obtain evidence of the two diurnal maxima and two minima, as at Toronto, but accompanied by a third and more considerable maximum at 11 P.M., of which there is no trace at the latter station. The first of these maxima occurs at 8 A.m., and appears to correspond to that which occurs two hours earlier at Toronto; the second occurs at 4 or 5 p.m., and corresponds to the principal daily maximum at Toronto; the third is caused by the Horizontal Force retaining its high value after the hour just named at Athabasca, and even exhibiting an increase of it at 10 and 11 p.m. immediately before its great diurnal decline, whereas at Toronto it uniformly and steadily declines from 5 p.m. to 1 A.m.

Comparing together the values at the American stations as a group, from Table XIX., as laid down, plate 2, we find that the mean diurnal curve of the horizontal component at the two most southern stations, Philadelphia and Toronto, which are about 300 miles distant from each other, are similar in their hours of maxima and minima, but differ considerably in the value of their ordinates for the same hours, those at Toronto being much the larger, especially about the time of the morning minimum at 11 A.m., and of the principal maximum at 5 P.M.; they both present an increasing force at the hours at which it is decreasing to its lowest value at Lake Athabasca. At Sitka, which geographically is not far distant from the last-named station, while magnetically it belongs to the same group as the former, we have a curve of intermediate character; the great decrease of the Horizontal Force from 11 p.m. to 4 A.m., which occurs at Lake Athabasca, and is there followed by an equally rapid return towards mean values until 8 A.m., is, it is true, wanting, but we have a continuous slightly decreasing value, from 11 p.m. to 7 A.M., being the same period in which it is increasing at Toronto and Philadelphia. The curves in fact exhibit a striking progression of character, both in respect to the minimum and maximum of force;
we see the latter increasing rapidly in amount, and tending more and more towards an advanced period of the afternoon, as we proceed to the noth, each culminating point falling above and in advance of that of the curve belonging to the stations, to the southward from the lowest, which is that of Philadelphia, to the greatest, which belongs to Lake Athabasca. Again, we find the maximum at 6 A.m., which at Philadelphia exceeds that at 5 P.m. in amount, at Toronto is considerably less than the latter; at Sitka it cannot be distinguished with certainty upon the observations of one winter; and at Lake Athabasca we find in its place the very low values already pointed out, or if the small relative maximum of 8 A.m. be identified with it, it exists only as an inconsiderable undulation upon a much larger movement, determined probably by other causes.

At Fort Simpson the mean curve does not differ in general character from that at Athabasca, but is enormously increased in amplitude; the extreme deviations, both positive and negative, are doubled in amount, and there are other proofs of the influence of the advance of the season, the subordinate maximum just referred to being reduced to a still smaller relative amount, and shown three hours later; we find also no trace of the increase of the element preceding its great nocturnal decline, which was remarked in every one of the winter months; it declines slightly from 6 p.m. to 10 p.m., and then the great movement commences. At this station, as at Lake Athabasca, the mean curve by the induction inclinometcr follows all the inflexions of that of the Horizontal Force, and gives a satisfactory confirmation of the accuracy with which they are represented.

A comparison of all the American stations for the two spring months, confirms the previous remark as to the systematic character of their differences, but shows also the curious fact that the relative change from winter to spring was less at Sitka than at either of the other stations, which is also apparent in the declination.

Induction Inclinometer.-The instrument employed for measurement of the changes of Inclination was the Unifiar, with which the absolute determinations of the Horizontal Force were made. The arm opposite to the one which carried the reading telescope and scale was provided with a socket, at the distance of 5 inches from the suspended magnet, for the reception of a single soft iron bar of 12 inches in length. The length of the suspended magnet was 2.5 inches; the are value of the scale was $1^{\prime} 0$.

This instrument was one of the first of the kind that were made, and the first employed in any of the colonial observatorics. I believe, also, that the present observations with it are the first that have been published at large, and as the Induction Inclinometer is less known
than any other of the magnetical instruments referred to in this account, and has been less generally employed than its merits appear to deserve*, it will' be proper to state at some length the grounds for that degree of confidence in the results which has led to their being included in the present volume.

The principle of the instrument may be stated from the explanations of Dr Lloyd, as follows t:- If a soft iron bar, perfectly devoid of magnetic polarity, be held in a vertical position, it immediately becomes a temporary magnet under the inducing action of the earth's magnetic force, the lower extremity becoming a north pole, and the upper a south pole ; accordingly, if a freely suspended magnet, whose dimensions are small in comparison with those of the bar, be situated near, and in a plane passing through one of these poles, it will be deflected from the magnetic meridian.' The deflecting force is the induced force of the bar, which is a function of the vertical component (Y) of the earth's magnetic force and of the temperature, but depends also upon the quantity and distribution of the magnetism in the bar, and its distance from the suspended magnet. In practice it may also contain a term depended upon the permanent magnetism of the bar, which is seldom wholly evanescent. The tendency of this force is to turn the maguet; it is resisted by the horizontal component (X) of the same force; under the opposing influence of these two forces the bar assumes a position of equilibrium at a certain angle (u) from the magnetic meridian. This position serves to determine the ratio which subsists between them, and from the changes which it undergoes, may be, in like manner, inferred the changes of this ratio, and therefore those of the magnetic inclination.
The moment of free magnetism of the suspended magnet being denoted by m, let $m \mathrm{U}$ be the moment of the force exerted on it by the iron bar, U being, as already stated, a function of the vertical component and of the temperature; then, since $m \mathbf{X} \sin u$ is the

[^7]moment of the opposing force of the horizontal component \mathbf{X} exerted at the angle u, the equation of equilibrium is.
$$
\mathrm{U}=\dot{\mathrm{X}} \sin u
$$
now let the two components of the earth's force undergo any small changes ΔX and ΔY, and let $V \Delta Y$ be the change of U, then Δu, denoting the corresponding change of the angle u, in parts of radius
$$
\mathrm{V} \Delta \mathrm{Y}=\mathrm{X} \cos u \Delta u+\Delta \mathrm{X} \sin u
$$
whence, dividing by the equation $\mathrm{Y}=\mathrm{X} \tan \theta$, in which θ denotes the magnetic inclination,
$$
\mathrm{V} \tan \theta \frac{\Delta \mathbf{X}}{\mathbf{X}}=\cos u \Delta u+\sin u \frac{\Delta \mathbf{X}}{\mathbf{X}}
$$
or if $p=\mathrm{V}^{-1}$ cot θ we have
$$
\frac{\Delta \mathrm{Y}}{\mathrm{Y}}=p\left(\cos u \Delta u+\sin u \frac{\Delta \mathbf{X}}{\mathrm{X}}\right.
$$
assuming that the induced magnetism of the iron bar is proportional to the inducing force, the co-efficient p may be found by inverting the bar and observing the angle of deflection in the direct and inverted positions; denoting these angles by u and u^{\prime}, it is shown that
$$
p=\frac{2}{\sin u+\sin u^{\prime}}
$$
whence
$$
\frac{\Delta \mathbf{Y}}{\mathbf{Y}}=\frac{\cos u}{\sin \mathrm{~S} \cos \mathrm{D}} \Delta u+\frac{\sin u}{\sin \mathrm{~S} \cos \mathrm{D}} \cdot \frac{\Delta \mathbf{X}}{\mathbf{X}}
$$
where $\mathrm{S}=\frac{1}{2}\left(u+u^{\prime}\right)$ and $\mathrm{D}=\frac{1}{2}\left(u-u^{\prime}.\right)$
also since
$$
\Delta \theta=\sin \theta \cos \theta\left\{\frac{\Delta \mathbf{Y}}{\mathbf{Y}}-\frac{\Delta \mathbf{X}}{\mathbf{X}}\right\}
$$
by substitution
$$
\Delta \theta=\frac{\sin 2 \theta \cos u}{2 \sin \mathrm{~S} \cos \mathrm{D}}\left\{\Delta u+\frac{\cos \mathrm{S} \sin \mathrm{D}}{\cos u \sin 1^{\prime}} \cdot \frac{\Delta \mathrm{X}}{\mathrm{X}} .\right\}
$$

The angle u in this formula being the deviation of the suspended magnet from the position which it would assume under the action of the earth alone, its changes Δu are the differences between the: observed changes of position, measured from a fixed line, and the corresponding changes of declination. The effect of temperatire upon the iron bar may be corrected by substituting $(\Delta u+a \Delta t)$ for $\Delta u, \Delta t$ being the actual change of temperature, and a the change of angle in parts of radius, corresponding to a change of 1°. Dr. Lloyd states, that the effect of an increase of temperature upon a soft iron bar, in all his experiments, has been an increase of its induced magnetism, being the reverse of its effect upon the permanent magnetism of an artificial magnet. The same effect was observed in the case of the present instrument, and in that of the observatory instrument
with two bars at Toronto, but the amount was very small in both, as was also found by him.

Since the date of the observations under discussion, Dr. Lamont has shown that the assumption, that the induced magnetism of the bar is proportional to the inducing force, is not strictly in accordance with the fact, and has proposed a method of determining the scale co-efficient of the instrument, "which is independent of all hypothesis, and necessarily includes all the circumstances upon which the quantity sought depends." The principle of his method consists in altering the induced force artificially, by a small but known amount, and observing the change of angle produced thereby, and this is effected by placing a magnet at a considerable distance* above or below the suspended magnet, their centres being in the same vertical line, and observing the scale readings with this magnet, first vertical, in which position it exerts no direct action upon the suspended magnet, but only on the iron bar, and next horizontal, and at right angles to the suspended magnet, in which position it should exercise no action on the iron bar, but only on the suspended magnet. It will be shown below that at the distances of deflection which it is necessary to employ in practice, the assumption that in its horizontal position the magnet exercises no effect on the induced magnetism of the iron bar is not quite in accordance with the fact, but the effect produced can be eliminated very nearly, by reversals. Now if n be the angle of deflection with the magnet vertical, n^{\prime} with the magnet horizontal, a the distance of the magnets from centre to centre, e the length of a line connecting the centre of the fixed magnet with the centre of the iron bar, and ϕ the angle which that line forms with the vertical, it is shown by Dr. Lloyd, that

$$
\frac{n}{n^{\prime}}=\frac{a^{3}}{e^{3}}\left(1+\cos ^{2} \theta\right) \mathrm{V}
$$

By substituting the value of V thus found, in the formula above,

$$
\frac{\Delta \stackrel{Y}{\mathrm{Y}}}{\mathrm{Y}}=\mathrm{V}^{-1} \operatorname{cotan} \theta\left(\cos u \Delta u+\sin u \frac{\Delta \mathrm{X}}{\mathrm{X}}\right)
$$

a new and more accurate expression is obtained for the changes of the Vertical Force ; also since

$$
\Delta \theta=\sin \theta \cos \theta\left(\frac{\Delta Y}{Y}-\frac{\Delta \mathbf{X}}{\mathbf{X}}\right)
$$

By substituting the last expression for $\frac{\Delta Y}{\mathbf{Y}}$, we have

$$
\Delta \theta=\mathrm{V}^{-1} \cos ^{2} \theta \cos u \Delta u+f \cdot \frac{\Delta \mathrm{X}}{\mathrm{X}}
$$

[^8]where $f=V^{-1} \cos ^{2} \theta \sin \ddot{u}-\sin \theta \cos \theta^{*}$; or if we put
$$
\sin \phi=\mathrm{V}^{-1} \cos \theta \cos u
$$
then $f=2 \cos \theta \cdot \cos \frac{1}{2}(\phi+\theta) \sin \frac{1}{2}(\phi-\theta)$
The instrument made use of at Lake Athabasca has beea subsequently sent to the East Indies, and I have had no opportunity of putting in practice both these methods of determining the scale co-efficient with it, for the purpose of ascertaining in what manner the value obtained by the original method must be modified, to agree with that resulting from the experiments of deflection. Both methods have been tried, however, with this view, with two different instruments at Toronto, and with other instruments elsewhere; the results appear to warrant the conclusion, that the ratio between the values thus obtained is not only constant for the same instrument, but so nearly the same for all instruments of similar construction, and furnished with iron bars of similar quality, that we may obtain a pretty good approximation to the true scale value, when, as in the present case, it cannot be directly determined, by multiplying the value given by the formula of the instructions by the mean ratio deduced from all the experiments.
The following Table contains the particulars of a series of experi. ments of deflection made with an Induction Inclinometer with one iron bar, at Toronto; this instrument is precisely similar to the one used in the northern observations, except that the magnet suspended is 3.0 instead of 2.6 inches in length; it was made and sent to America at the same time.

[^9]Table XXI.
Experiments to determine the scale co-efficient of a one.bar Inclinometer by the method of deflections, under various adjustments.* In this instrument $b=4^{\prime} 96$ inches.

In the foregoing experiments, the deflecting magnet employed was the one used in the determinations of Absolute Horizontal Force, its length 3 ' 66 inches. It will be observed that all the co-efficients obtained when the acting end of the bar was a south pole, or the bar was upwards, are greater than those given by the formula of the instructions, and all those obtained when the acting end was a north pole, or the bar downwards, with one exception, are less. It was proved, by reversing the deflecting magnet in the vertical position when the iron bar was away, that it has no effect on the suspended magnet in

* The particulars of the previous adjustments are as follows: $n=$ number of reversals of the iron bar to obtain mean values of S and $\mathrm{D} ; \theta=75^{\circ} 19^{\prime}$.

this position; but it would appear that the difference in question may result, in part at least, from an effect on the induced magnetism of the iron bar when the magnet is horizontal, which renders the angle n^{\prime} greater in each case when the acting end is a south pole, for the same value of a, than when it is a north pole. According to the theory, the angle of deflection when the magnet is horizontal should be the same for the same distance, whatever the position of the iron bar, which is supposed not to be affected by it.

As it appeared desirable to establish this point, and it might be suggested that the effect was in consequence of not taking a sufficient distance of deflection, although in some of the foregoing experiments it was between nine and ten times the length of the magnet, a second series was made, with a deflector of $7 \cdot 5$ inches, which allowed a considerably greater distance to be used. The particulars are contained in the next Table.

Table XXII.

Experiments of deffection continued, deflector of $7^{\bullet} 5$ inches.*

	Date.	$\begin{aligned} & \text { Acting End } \\ & \text { of Iron Bar } \end{aligned}$	Distances. Inches.			$\operatorname{Cos}^{2} \varphi$	Deflection.		Deduced ScaleValue.		Ratio.
			a	e	h		$2 n$	$2 n^{\prime}$			
X.	$\begin{array}{r} 1851 . \\ \text { June } 23 . \end{array}$	North Pole -	55.09	$60 \cdot 67$	5.38	0.093	$5 \cdot 68$	$55 \cdot 17$	\% $0 \cdot 898$	0.829	1.084
	"	, -	58.83	64.43	$5 \cdot 38$	0.984	$5 \cdot 50$	$43 \cdot 43$	0.935	",	1•129
XI.	June 24.	South Pole -	55.09	49.95	$5 \cdot 39$	0.990	$9 \cdot 43$	59.43	1.029	0.818	1'258
	" -		58.83	53.66	5×39	0.991	7.04	47.84	1.089	\%	1.332
XII.	June 25	North Pole-	55.09	60.67	$5 \cdot 33$	0.992	$5 \cdot 96$	56.07	0.856	0.805	$1 \cdot 064$
	" -	" -	58.83	$64 \cdot 43$	$5 \cdot 33$	0.994	$5 \cdot 08$	44.76	0.818	"	1.016
XIII.	" -	South Pole -	55.09	49.95	$5 \cdot 38$	$0 \cdot 990$	$10 \cdot 21$	58.04	0.942	0•821	$1 \cdot 147$
	" -		58.83	$53 \cdot 66$	$5 \cdot 38$	0.991	8.03	$46 \cdot 45$	0.996	"	1'213

It appears that, notwithstanding the increased distance of deflection, we have the same result as before. The ratio which the experimental scale value bears to the theoretical one evidently depends upon the nature of the acting pole, or rather upon the position of the iron bar above or below the suspended magnet at the time of the experiment; it is about one tenth greater for adjustments in the former position than for those in the latter. In both positions the value given by deflection is the greatest of the two.

\footnotetext{

* The following are the particulars of the adjustments in Table XXII.: $n=$ number of times the iron bar was reversed, to obtain the values of S and D .

				n	u		S		I)		
					-	t	0	,			
X.	June 23	*	-	7	15	$9 \cdot 2$	16	36.0		19	
XII.	June 24	-	-	3	17	${ }_{58}^{55} 0$	16	$34 \cdot 4$	1	21	
XIII.	June ${ }^{\text {June } 25}$	-	-	3 5		38 47	16 16	$47 \cdot 6$ 476	1		Collet shifted to other end of bar.

The upper end of the iron bar being always a north pole, the effect of presenting towards it the north and south poles of the deflecting magnet alternately, during its horizontal reversal is always the same as regards its induced magnetism; when, however, the bar is above, or the acting end a south pole, this effect concurs with the tendency of the magnet in the same position to deflect the suspended magnet, and the angle of deflection is increased proportionably; when the iron bar is reversed, or the upper and is the acting pole, the contrary is the case, the angle of deflection is diminished; the effect being less, however in the ratio of $\frac{e^{3}}{e^{\prime 3}}$ to unity, (e^{\prime} the value of e, when greater than a or the iron bar below.)

Taking the difference between observed value of the angle n^{\prime}, in two adjustments, at which the position of the iron bar was different but the distance of deflection the same, to be the sum of the effects produced in each case by the action of the deflector in its horizontal positions upon the induced magnetism of the iron bar, it appears, in the case of the experinents numbered VIII. and IX., to have amounted to ($\left.46 \cdot 15-42^{\circ} 66\right)=3 \cdot 49$ scalc divisions, when the distance was $33^{\circ} 0$ inches; and to $\left(66^{\circ} 26-60^{\circ} 84\right)=5^{\circ} 42$ div. when it was only $29^{\circ} 3$ inches. Let the effect in the two positions of the iron bar be η and η^{\prime}, where $\eta^{\prime}=\left(\frac{e}{e^{\prime}}\right)^{3} \eta$, then in this case the two values of η are 2.55 and 4.05 div., therefore those of η^{\prime} are 0.94 and 1.37 div.; that is to say, the double angles of deflection, when the magnet was horizontal and the iron bar above, were increased by the two former amounts, at the greater and less distances of deflection respectively, and by the two latter when the iron bar was below; in each case in consequence of the effect upon its induced magnetism. The corrected values of n^{\prime} are thereforc $43^{\prime} 6$ and $62^{\prime} 2$ divisions respectively, which slightly reduces the difference between the resulting co-efficients, but to so small an extent as to prove that it is not caused by the effect in question alone, and that we must look elsewhere for a solution of the difficulty, probably to the introduction of other terms into the expressions involving the distances e and a; but without pursuing this subject any further here, I have concluded that the only way of approximating to the true value of the ratio required is to take the mean between the values found for the same distances under two adjustments, one in which the iron bar is below, the other in which it is above.

The experiments with the $3 \cdot 6$ deflector supply the following couples:-

Table XXIII.

Date.	a	\boldsymbol{e}	Ratio of Co-efficients.	Mean.
June 6	30. 50	$25^{\prime} 16$	$1 \cdot 290$	1-126
9	$30 \cdot 87$	36. 30	0.962	$\}^{1} 126$
12	$30^{\prime} 55$	25.40	1.411	1-160
13	30. 35	36.09	0.910	\} 160
13	$33 \cdot 29$	28.34	$1 \cdot 311$	1-103
13	$33^{\circ} 29$	$38 \cdot 91$	0. 896	\} 103
16	$33^{\circ} 03$	$27 \cdot 64$	1.359	1.110
16	$33^{\circ} 09$	38.42	$0 \cdot 862$	$\}^{1} 110$
16	$29 \cdot 36$ 29	23.97 34	1.312	1/137
16	$29^{\prime} 36$	$34^{\prime} 75$	0.963	$\}^{1} 137$
Mean -	-	-	-	$1 \cdot 127$

next the experiments with the $7^{\circ} 5$ inch deflector supply the following couples:-

Table XXIV.

Date.	a	e	Ratio of Co-efficients.	Mean.
June 24	55.09	$49 \cdot 95$	1.258	
23	$55 \cdot 09$	60.67	1.084	$\} 1 \cdot 171$
24	$58 \cdot 83$	53.66	1.332	\} 1.230
23	58.83	64.43	$1 \cdot 129$	\} 1×230
25	55.09	49.95	$1 \cdot 147$	
25	55.09	60.67	1.064	\} 1'105
25	58.83 58.83	53.66	$1 \cdot 213$	1'159
25	58.83	64'43	1-106	$\}^{1} 159$
Mean -	-	-	-	1•166

It would follow, from the whole series, that the scale co-efficient determined for this instrument in the ordinary way will be brought to accordance nearly with the true value, by augmenting it in the ratio 1'146. I have employed, however, the last series alone, the distances of deflection having been more favourable, and the general result less likely to be influenced by any terms involving that quantity beyond what are employed. We have, again, a series of experiments with another instrument, one of those provided with two iron bars. In this case one bar being always above and the other below the suspended magnet, the effect of the deflecting magnet in its horizontal position is neutralized in great measure, being of a contrary sign in the two bars respectively. The following are the particulars: -

Table XXV.

Experiments to determine the Scale co-efficient of a Two-bar Inclinometer, by the method of Deffections, inder various adjustments. Length of deflecting magnet $7{ }^{\circ} 5$ inches; value of b, or distance of iron bars from suspended magnet, $5^{\circ} 0$ inches.

$\begin{gathered} \text { Date } \\ \text { 1848-9. } \end{gathered}$		Distances, ${ }^{\prime}$ Inches.		Deflection.		Deduced Scale Value	Co-efficientbyAdjustment	Ratio.
		a	h	n	n^{\prime}			
October	3	71.80	4. 12	6.48	38'74	Ó 500	${ }_{0}^{1} 357$	1. 344
"	13	$71 \cdot 80$	4. 12	$5 \cdot 90$	$35 \cdot 15$	$0 \cdot 495$	-	1'329
"	13	71.80	$4 \cdot 12$	$5 \cdot 72$	35.59	$0 \cdot 521$		$1 \cdot 398$
"	31	$71 \cdot 80$	$4 \cdot 12$	6.03	$35 \cdot 48$	$0 \cdot 493$	-	1. 322
"	9	65.74	$4 \cdot 12$	$7 \cdot 52$	$46^{\prime} 75$	$0 \cdot 521$	-	$1 \cdot 400$
"	12	$65 \cdot 74$	$4 \cdot 12$	8.63	50.08	$0 \cdot 487$	-	1'306
	13	65.74	4. 12	8.28	$46 \cdot 31$	$0 \cdot 469$	-	$1 \cdot 260$
November	1	65.74	$4 \cdot 12$	8.18	46.44	0.468		1.258
April	3	$71^{1} \cdot 91$	4.14	6.08	$34 \cdot 21$	${ }_{0}{ }^{\circ} 468$	$0 \cdot 373$	$1 \cdot 251$
	3	$65 \cdot 87$	4.14	$7 \cdot 89$	$44 \cdot 77$	$0 \cdot 499$		1.338
"	9	71.91	$4 \cdot 14$	6.05	$33^{\prime} 78$	0.494	$0 \cdot 372$	1•327
"	9	71.91	$4 \cdot 14$	5.75	$33 \cdot 72$	$0 \cdot 466$	-	$1 \cdot 253$
"	9	65.86	4. 14	$7 \cdot 34$	$43 \cdot 97$	0. 500		1.346
"	9	$65 \cdot 86$	4.14	$7 \cdot 49$	$44^{\prime} 27$	0.489	-	$1 \cdot 317$

From the deflections at the nearer distance, we find a mean value of $1 \cdot 332$, and from those at the greater distance, a mean value of 1.318 , for the ratio in which we must augment the value of the scale co-efficient found in the ordinary way for this instrument, to make it agree with the value deduced from experiment.

Lastly, Dr. Lloyd has found for his instrument a value of about $1 \cdot 3$ for the same ratio.
I conceive that whole evidence warrants the conclusion that the scale co-efficient found by the formula of the magnetical instructions is invariably less than the true value as determined by experiment; that the ratio in which it must be augmented is constant for the same instrument; and that it is nearly the same for all instruments furnished with bars of similar quality. I propose to adopt $1 \cdot 22$ provisionally, for the instrument used at Lake Athabasca, which I consider leaves the changes of inclination under an uncertainty of about one tenth their apparent value; a quantity which, however considerable, does not perhaps greatly exceed the uncertainty of all the observations of the changes of this element thus far ; it does not affect their value for many relative purposes, and will not alter the character of any periodical law deducible from the observations.

The great amount of the daily changes of inclination indicated by the scale readings has been shown in Table XIII., in connexion with the corresponding changes of Horizontal Force. Satisfactory proof of the reality of these changes, and of the practical value of
the instrument, may be given by a comparison of the effect of sudden magnetical shocks, which sometimes occurred, of a very marked character upon the Inclinometer and Bifilar. The following instances have been selected with this view from the observations of Disturbances. The instruments were generally read in succession, with an interval of one minute between them. I have therefore interpolated a value of the Bifilar for the minute of observation of the Inclinometer ; the last columns contain the change in scale readings and in terms of the Inclination and Horizontal Force, between each successive observation, usually a space of three minutes. It will be observed, that however great and sudden the changes of Horizontal Force shown by the Bifilar, the Induction Inclinometer never fails to exhibit a corresponding change of scale reading; indeed these changes so much exceed in general what would be inferred from the change of Horizontal Force alone, as to leave an excess suffciently large to prove that in these cases, making full allowance for probable uncertainty of the scale value of the Inclinometer, the shocks must have been accompanied by large changes of Total Force.

Table XXVI.

		Bifilar.			Inclinometer.		
		Readings.	Differences.	$\frac{\Delta X}{X}$	Readings.	Differences.	$\Delta \theta$
1		$\begin{aligned} & 2299^{\circ} 3 \\ & 221^{\circ} 8^{\mathrm{a}} \\ & 191^{\circ} 6^{6} \\ & 197^{\circ} 7^{\mathrm{a}} \\ & 221^{\circ} 4^{4} \\ & 175^{\circ} 4^{\mathrm{b}} \\ & 213^{\circ} 4^{\mathrm{b}} \\ & 206^{\circ} 0^{\mathrm{b}} \\ & 10^{\mathrm{o}} \end{aligned}$	$\begin{gathered} \bar{\square} \\ -24.1 \\ +23.7 \\ -46.0 \\ +38^{\circ} 0 \\ -70^{\circ} 4 \\ -10 \end{gathered}$	$\left\{\begin{array}{c} \bar{Z} \\ -\cdot 0083 \\ +.0081 \\ -\cdot 0157 \\ +\cdot 0130 \\ -\cdot 0025 \\ -.0034 \end{array}\right.$	$\begin{array}{r} 113 \cdot 8 \\ -\overline{2} \\ 126 \cdot 3 \\ 51.7 \\ 182 \cdot 5 \\ 132 \cdot 7 \\ 144 \cdot 4 \\ 174 \cdot 8 \end{array}$	$\begin{array}{r} - \\ - \\ +12.5 \\ -74.6 \\ +130^{\circ} 8 \\ -49.8 \\ +11.7 \\ +30^{\circ} 4 \end{array}$	$\begin{array}{r} 1 \\ - \\ +\overline{2.1} \\ -12.6 \\ +22.4 \\ -8.5 \\ +2.0 \\ +5.2 \end{array}$
2	April $1618 \quad 57$ $\begin{array}{r} 58 \\ 19 \begin{array}{r} 1 \\ 2 \\ 6 \\ \\ 7 \\ 11 \end{array}, ~ \end{array}$	$\begin{aligned} & 208 \cdot 9 \\ & 239 \cdot 8^{\mathrm{a}} \\ & 271 \cdot 7 \\ & 267 \cdot 0^{\mathrm{a}} \\ & 248 \cdot 1^{a} \\ & 248^{\cdot} \cdot 0^{\mathrm{a}} \\ & 247 \cdot 6 \end{aligned}$	二 $+\overline{27} \cdot 2$ $-\overline{19} \cdot 0$	- - $+\cdot \underline{0077}$ $-\cdot 0052$ -	201.3 $\frac{-}{62.5}$ 172.6	- -138.8 +110.1	- $-\overline{17} 9$ $+\overline{14} 2$
3	$\begin{array}{\|rr} \text { April } 16 \quad 20 & 41 \\ & 42 \\ & 46 \\ & 47 \\ & 51 \\ & 52 \\ & 56 \end{array}$	$\begin{gathered} 203.7 \\ 181^{\cdot} 7^{\mathrm{a}} \\ 93^{\circ} 9 \\ 97.6^{a} \\ 112 \cdot 7^{a} \\ 113^{.} 6^{\mathrm{a}} \\ 117^{\prime} 2 \end{gathered}$	- $-\overline{84} .1$ $+\overline{16} .0$	$\bar{\square}$ $-\cdot$ $+\overline{0238}$ -	- 258.8 -879^{-3} -804.5	- +220.5 $-\overline{74 .} 8$	$\overline{-}$ +28.5 -9.7

[^10]E 2

Table XXVI．－continued．

		Bifilar．			Inclinometer．		
		Readings．	Differences．	$\frac{\Delta \mathrm{X}}{\mathrm{X}}$	Readings．	Differences．	$\Delta \theta$
4	$\begin{array}{rr} \text { D. } & \text { H. } \\ \text { April } 16 & 23 \\ 16 \\ & 17 \\ & 19 \\ & 20 \\ & 22 \\ & 23 \\ 25 \\ 23 \\ 23 & 28 \end{array}$	$\begin{array}{r} 146 \cdot 8 \\ 161 \cdot 2 \\ 9 \cdot 9 \\ 21 \cdot 2 \\ 43 \cdot 8 \\ 56 \cdot 4 \\ 71 \cdot 5 \\ 80 \cdot 4 \\ 108.4 \end{array}$	$\begin{gathered} \bar{Z} \\ -\overline{80} \cdot 0 \\ +\overline{35} \cdot 2 \\ +\overline{24} \cdot 0 \end{gathered}$	$\begin{gathered} \bar{Z} \\ -\cdot \overline{0226} \\ +\cdot \overline{0099} \\ +\cdot \frac{-068}{} \end{gathered}$		$\begin{gathered} \bar{\square} \\ +286 \cdot 0 \\ -101 \cdot 7 \\ -29 \cdot 6 \end{gathered}$	$\begin{gathered} \begin{array}{c} \bar{Z} \\ +37 \cdot 0 \\ -\overline{3} \cdot 1 \\ -3 \cdot 8 \end{array} \end{gathered}$
5	$\begin{array}{rr} \text { April } 17 & 045 \\ & 46 \\ & 48 \\ & 49 \\ & 51 \\ & 52 \\ & 55 \\ & 56 \\ & 58 \\ & 59 \\ 17 & 1 \\ & 2 \\ & 3 \\ & 5 \end{array}$	$\begin{aligned} & 176 \cdot 3 \\ & 185 \cdot 3^{a} \\ & 203 \cdot 3^{a} \\ & 2156^{a} \\ & 240 \cdot 6^{a} \\ & 163 \cdot 0^{a} \\ & -0 \cdot 8 \\ & 0 \cdot 0^{\mathrm{a}} \\ & 3 \cdot 2^{a} \\ & -1801^{\mathrm{a}} \\ & -60 \cdot 7 \\ & -50.0^{\mathrm{a}} \\ & -30 \cdot 7 \end{aligned}$	$\begin{array}{r} \overline{-} \\ +\overline{30} \cdot 3 \\ -\overline{52} \cdot 6 \\ -163 \cdot 0 \\ -\overline{18} \cdot 1 \\ -\overline{31} \cdot 9 \end{array}$	$\left\|\begin{array}{c} \overline{\overline{1}} \\ +\cdot \cdot \overline{0086} \\ -\cdot \overline{0149} \\ -\cdot \overline{0461} \\ -\cdot \cdot \overline{0051} \\ -\cdot \cdot \\ -0090 \end{array}\right\|$		$\begin{gathered} \bar{二} \\ -\overline{46} \cdot 4 \\ +156 \cdot 1 \\ -193 \cdot 3 \\ +186 \cdot 9 \\ +\overline{30} \cdot 1 \end{gathered}$	$\begin{gathered} \bar{Z} \\ -\overline{6} \cdot 00 \\ +20^{\prime} \cdot 18 \\ +24 \cdot 99 \\ +24 \cdot 17 \\ +\overrightarrow{2 \cdot} \cdot 89 \end{gathered}$
6	April 17 219 20 21 22 25 26 28 29 31 32 34 35 37 38 40 	$179 \cdot 7$ $172 \cdot 2^{\text {a }}$ $157 \cdot 2$ ${ }_{149} 5^{\mathrm{a}}$ ${ }^{131 \cdot 1}{ }^{105}{ }^{4}$ ${ }^{54} \cdot{ }^{1}{ }^{1}$ 46.0 ${ }^{67} 7^{a}$ $130^{\circ} 8^{a}$ $170 \cdot{ }^{3}$ $150 \cdot 9$	$\begin{gathered} \bar{二} \\ -\overline{22} \cdot 7 \\ -\overline{44} \cdot 1 \\ -\overline{54} \cdot 0 \\ +\overline{16} \cdot 3 \\ +\overline{63} \cdot 1 \\ +\stackrel{-}{32} \cdot 7 \end{gathered}$	$\begin{gathered} \overline{\bar{Z}} \\ -\cdot \overline{0064} \\ -\cdot \overline{0125} \\ -\cdot \overline{0152} \\ +\cdot \overline{0045} \\ +\cdot \overline{0178} \\ +\cdot \overline{0092} \end{gathered}$			$\begin{gathered} \bar{\square} \\ +\overline{8 \cdot} 01 \\ -0^{\circ} 43 \\ -\overline{21} 98 \\ -\overline{0} \cdot 05 \\ -\overline{10} \cdot 55 \\ -\overline{19} \cdot 36 \end{gathered}$
7	April 25 201 2 4 5 7 8 10 11 13 14 16		$\begin{array}{r} \overline{\bar{\prime}} \\ -107 \cdot 4 \\ -\overline{14} \cdot 2 \\ +\overline{39} \cdot 2 \\ +\overline{22} \cdot 6 \end{array}$	$\begin{array}{\|c} \bar{二} \\ -\cdot \overline{0303} \\ -\cdot \overline{0040} \\ +\cdot \overline{0111} \\ +\cdot \overline{0064} \end{array}$	$\begin{gathered} \overline{346 \cdot 3} \\ 545 \cdot 6 \\ 51 \overline{5 \cdot 3} \\ \overline{386}-2 \\ \overline{356 \cdot 7} \end{gathered}$	$\begin{gathered} \overline{\text { च }} \\ +199.3 \\ -\overline{30} \cdot 3 \\ -129.1 \\ -29.5 \end{gathered}$	$\begin{gathered} \bar{\square} \\ +25^{\cdot} 77 \\ -3^{\cdot} 90 \\ -16 \cdot 59 \\ -\overline{3} \cdot 81 \end{gathered}$

[^11]Table XXVI.-continued.

		Bifilar.			Inclinometer.		
		Readings.	Differences.	$\frac{\Delta X}{X}$	Readings.	Differences.	$\Delta \theta$
8	$\begin{array}{\|rrr} & \left.\begin{array}{rrr} \text { D. } & \text { H. } & \text { M. } \\ \text { April } & 30 & 21 \\ \hline 2 \end{array} \right\rvert\, \end{array}$	105*9	-	-	-	-	-
	Aprin 23	$115.9{ }^{\text {a }}$	-	-	$475 \cdot 8$	-	-
	25	136.0		-	-	- -	-
	26	$104 \cdot{ }^{\text {a }}$	-14.9	--0042	346.6	$+70.8$	$+9 \cdot 15$
	28	$40^{\circ} 0$	-	-	-	-	-
	29	$69^{\cdot} 9^{\text {a }}$	$-34^{\prime} 1$	-- 0096	525.1	$+178.5$	+23.03
	31	129.7	-	-	-	-	-
	32	$129 \cdot{ }^{\text {n }}$	$+60.5$	+ $\cdot 0171$	$455 \cdot 5$	-69.6	-8.98
	34	128.9	-	- -000	-	-	-
	35	$129.9^{\text {a }}$	$+0.5$	+ ${ }^{\prime} 0001$	$343 \cdot 3$	-112.2	-14.47
	37	$131 \cdot 8$	-	-	-	-	-
	38	$123 \cdot{ }^{\text {a }}$	-6.2	-.0017	382.3	+39.0	$+5.04$
	40	$107^{\circ} 6$	-	-	-	-	-
	41	$95 \cdot 0^{a}$	-28.7	--0081	$457 \cdot 1$	$+748$	$+9.65$
	302143	69.8	-	-	-	-	-

${ }^{\text {a }}$ Readings interpolated.
b Readings taken simultaneously with those of the Inclinometer.
I conclude, from the foregoing examples of the action of the instrumert in extreme cases, as well as from the close correspondence in the mean diurnal curves of inclination, as derived from the observations, with that of Horizontal Force, which will be pointed out below, that the testimony of the observations themselyes is in favour of the opinion that the series, with some uncertainty as to the absolute values assigned, furnishes, as far as it goes, a true representation, and the only one we can at present refer to, of the regular and irregular changes of the Inclination in high magnetic latitudes.

Adjustments.

First Adjustment, 14th October 1843.-On conclusion of the experiments of deflection for determination of the absolute Horizontal Force, the instrument was placed on its pedestal, the base levelled, and the telescope adjusted to the meridian. The scale read $420^{\circ} 0$, the corresponding reading of the Declinometer being $404^{\circ} 4$, Bifilar $282^{\circ} 0$, mean reading of Vernier's $199^{\circ} 56^{\prime} 30^{\prime \prime}$. The soft iron bar was now inserted in the socket, the upper or north pole deflecting, and was moved in the collct until the angle of deflection appeared to be a maximum ; mean of Vernier's $252^{\circ} 20^{\prime} 10^{\prime \prime}$; when the same division of the scale was on the wire, Declination 406.6 . The bar was next reversed, the lower end or south pole deflecting, and the tclescope turned in azimuth until the central division was again on the wire; the Vernier's now read $158^{\circ} 20^{\prime} 30^{\prime \prime}$, Declination $406^{\circ} 8$. We have then

$$
\begin{array}{ccl}
u=41^{\circ} 36^{\prime} & \mathrm{S}=46^{\circ} 59^{\prime} \cdot 8 & \theta=81^{\circ} 37^{\prime} \cdot 6 \\
u^{\prime}=52^{\circ} 23^{\prime} \cdot 6 & \mathrm{D}=5^{\circ} 23^{\prime} \cdot 8 & a=1^{\circ} 0007
\end{array}
$$

whence the co-efficient for differences of scale reading, when corrected for changes of Declination, Temperature, and Horizontal Force, is

$$
a \mathrm{P}=a \frac{\sin 2 \theta \cos u}{2 \sin \mathrm{~S} \cos \mathrm{D}}=0^{\prime} 148
$$

according to the formula then in use. This value I have augmented in the ratio 1 ' 22 , for the reasons already stated in the actual reductions.

Increasing numbers indicated a return of the north end of the magnet towards the north, or a decrease of Inclination; the actual readings have therefore been inverted in the abstracts, by taking the complement of each to 500 ; and increasing numbers represent increase of Inclination throughout.

It would appear, from the difference between the angles u and u^{\prime} above, that the iron bar must have possessed a considerable degree of permax ent magnetism, or else that the suspended magnet was not on a level with the centre of the collet; it is possible, as there is no record to the contrary, and attention was not directed to this circumstance in the instructions then in use, that there may have been a difference on this account in the position of the acting pole, and, consequently, the amount of its action in the two positions of the iron bar, which would partly account for the difference in question; but the existence of permanent magnetism was afterwards shown by experiments at Fort Simpson. The bar was there employed as a deflector in the horizontal position, its centre at $15^{\prime} 7$ inches from that of the suspended magnet, and it was found that there was a regular difference of $29^{\prime} 8$ in the reading, according as one end or the other was presented ; this difference gives an angle of deflection of $14^{\prime \prime} 9$, one end acting as a north, the other as a south pole. The angle of deflection produced by a three-inch magnet, the centre at very nearly the same distance, was $612^{\prime} 0$; the relative forces, being expressed nearly by the tangents of these angles, were as 1 to $41^{\prime} 5$. I was not aware at that time of the facility with which an iron bar can be deprived of its permanont magnetism, by dipping it, according to Dr. Lamont's suggestion, several times alternately into hot and cold water; but to ascertain whether this circumstance is likely to have had any scnsible influence on the results, the experiments of deflection Nos. X. to XIII., at Toronto, above, were purposely made when the bar had contracted a still greater amount of permanent magnetism by being inadvertently placed too near a magnet, but they do not show any difference from those in which the bar was almost entirely free from it, except a slight increase in the value of given changes, which may be due to finer causes.

It became necessary to raise the suspended magnet on the 19th October, owing to the difficulty of reading the scale; the effect of
thus altering its position with reference to the acting pole of the iron bar was shown by a decrease in the scale readings, indicating an increase in the angle u of about $1^{\circ} 53^{\prime}$. Λ_{s} the instrument was not otherwise disturbed, and the position of the bar was not altered, this quantity has been added to the angle u in the above formula until the end of the month, making the scale co-efficient

$$
a \mathrm{P}=0^{\prime} \cdot 1747
$$

Second adjustment, 31st October 1843.-The soft iron bar being removed, the telescope was adjusted to the meridian, Vernier's reading $198^{\circ} 28^{\prime} 20^{\prime \prime}$, Declination reading $414^{\circ} 0$. The bar was then inserted in its socket, reversed, the telescope being turned in azimuth until the same division of the scale was on the wire, Vernier reading $248^{\circ} 50^{\prime} 30^{\prime \prime}$, Declination $413^{\circ} 0$. The bar was lastly inserted, and the telescope again turned in azimuth until the same scale reading was obtained, Vernier reading $150^{\circ} 0^{\prime} 5^{\prime \prime}$, Declination $410^{\circ} 0$. We have now

$$
\begin{array}{rll}
u=44^{\circ} 28^{\prime} \cdot 2 & \mathrm{~S}=47^{\circ} 25^{\prime \cdot} \cdot 2 & \theta=81^{\circ} 37^{\prime \cdot} 6 \\
u^{\prime}=50^{\circ} 22^{\prime} \cdot 2 & \mathrm{D}=2^{\circ} 57^{\prime \cdot} 0 & a=1.0007
\end{array}
$$

whence

$$
a \mathrm{P}=a \frac{\sin 2 \theta \cos u}{\sin \mathrm{~S} \cos \mathrm{D}}=0^{\prime \prime} 140
$$

And this quantity multiplied by the ratio $l^{\prime} 22$ as before, gives for the approximate value of the scale, the co-efficient

$$
1^{\prime} 1705
$$

The situation of the instrument made it convenient to have the iron bar in both adjustments in the position in which the permanent magnetism and the induced magnetism were opposed.

Corrections.

Declination Changes.-Each reading has been reduced to the zero of 400 on the Declination scale, by subtracting from it the difference of the corresponding Declination reading from that number. In term days and magnetic disturbances, and whenever observations were made at short intervals, the correction applied was the mean between the Declination reading inmediately preceding and following the Inclinometer observation; this was rendered absolutely necessary in many cases, by the rapidity of the changes of the Declination, which not infrequently caused the correction to vary more than a degree from one reading to the next, where the interval between them was only three minutes.

Bifilar Correction.-The correction due to the observed changes in the Inclinometer scale reading, for variations of the horizontal component of the earth force, involves the same quantity (V), of which the determination is the object of the experiments of deflection, and cannot be accurately assigned in the present case; being, however,
always very small, compared with the changes of the Inclination itself, the error involved by the application of the original formula can seldom be sensible. That formula is

$$
\mathrm{B}=\frac{\cos \mathrm{S} \sin \mathrm{D}}{\cos u \sin 1^{\prime}} \cdot \frac{k}{a}
$$

where k is the co-efficient "of the Bifilar, a the value of one division of the scale of the Inclinometer in terms of radius, and the correction to each observed reading is B. n, n being the difference in scale divisions between the corresponding Bifilar reading and the standard reading, for the first adjustment $B=0^{\circ} 100$, and for the second $\mathrm{B}=0^{\circ} 057$. These corrections have been applied to all the readings; the standard division adopted was the mean of the Bifilar readings for the same day in the month of October, and in the other months the mean of all the observations of each month respectively, to the nearest convenient unit, namely, the division 200 in November, 170 in December, 140 in January, and 160 in February.

The following Table contains the correction in scale divisions of the inclinometer for each value of n from 1 to 100 divisions of the Bifilar, under the adjustment of October 31 ; also the value of $\frac{\Delta \mathbf{X}}{\mathbf{X}}$ for the same values of n, for convenience in comparisons of the Bifilar readings.

Table XXVII.

Values of changes of the Bifilar scale reading in parts of the Horizontal Force, also of the Bifilar correction to the Inclinometer. Adjustment of October 31.

$\begin{aligned} & n \\ & \text { Bif. } \\ & \text { Div. } \end{aligned}$	$\frac{\Delta X}{X}$	$\begin{array}{\|c\|c} \mathbf{B} \\ \text { Incl. } \\ \text { Div. } \end{array}$	$\begin{aligned} & n \\ & \begin{array}{l} \text { Bif. } \\ \text { Div. } \end{array} \end{aligned}$	$\frac{\Delta X}{X}$	$\begin{gathered} \text { B } \\ \text { Incl. } \\ \text { Div. } \end{gathered}$	$\begin{gathered} n \\ \text { Bif. } \\ \text { Div. } \end{gathered}$	$\frac{\Delta X}{X}$	$\begin{gathered} \mathbf{B} \\ \text { Incl. } \\ \text { Div. } \end{gathered}$	$\begin{aligned} & \text { Bif. } \\ & \text { Biv. } \end{aligned}$	$\frac{\Delta \mathrm{X}}{\mathrm{X}}$	$\begin{gathered} \text { B } \\ \text { lncl. } \\ \text { Div. } \end{gathered}$
1	-000341	0.06	20	-008871	1.49	51	-017401	$2 \cdot 92$	76	-025931	4.35
2	-000682	$0 \cdot 11$	27	-009212	1.54	52	-017742	$2 \cdot 97$	77	-026272	$4 \cdot 40$
3	-001024	$0 \cdot 17$	28	$\cdot 009554$	$1 \cdot 60$	53	-018084	3.03	78	-026614	${ }_{4}{ }^{4} 46$
4	'001365	$0 \cdot 23$	29	-009895	$1 \cdot 66$	54	-018425	3.09	79	-026955	4.52
5	-001706	0.29	30	-010236	${ }_{1}^{1.72}$	55	-018768	$3 \cdot 15$	80	-027296	4.58
6	-002047	0.34	31	$\cdot 010577$	1.77	56	-019107	$3 \cdot 20$	81	-027637	${ }_{4} \cdot 63$
8	-002388	0.40 0.46	32 33	-010918	1.83	57 58	-.019448	3.26 3.32	82 83	-027978	$\stackrel{4}{4} \cdot 69$
8	-002730	0.46 0.51	$\stackrel{33}{34}$	-011200	1.89	58 59	-019790	3.32 $3 \cdot 38$	83 84	${ }^{-0283820}$	4.75 4.80
10	-003412	0.57	35	-011942	$2 \cdot 00$	60	-020472	$3 \cdot 43$	84 85	-029002	4.80 4.86
11	-003753	0.63	36	-012283	$2 \cdot 06$	61	-020813	3•49	86	-020343	${ }_{4}^{4.92}$
12	-004094	$0 \cdot 69$	37	-012624	$2 \cdot 12$	62	-021154	$3 \cdot 55$	87	-029884	$4 \cdot 98$
13	-004436	0.74	38	-012966	$2 \cdot 17$	63	-021496	$3 \cdot 60$	88	-030026	$5 \cdot 03$
14	-004777	0.80	39	-013307	$2 \cdot 23$	64	-021837	3•66	89	-030367	$5 \cdot 09$
15	-005118	0.86	40	-013648	$2 \cdot 29$	65	-022178	3.72	90	-030708	$5 \cdot 15$
16	-005459	${ }^{0} 0.92$	41	-013989	$2 \cdot 35$	66	-022519	${ }^{3} 778$	91	- 031049	$5 \cdot 20$
17	-005800	0.97	42	- 014330	$2 \cdot 40$	67	-022860	$3 \cdot 83$	92	-031390	$5 \cdot 26$
18	-006142	1.03	43	-014672	$2 \cdot 46$	68	-023202	3.89 3	93	-031732	$5 \cdot 32$
19	-006483	1.09	44	-015013	$2 \cdot 52$	69	-023543	$3 \cdot 95$	94	-032073	$5 \cdot 38$
20	-006824	1.14	45	-015354	2.57	70	-023884	$4 \cdot 00$	95	-032414	$5 \cdot 43$
21	-007165	$1 \cdot 20$	46	-015695	$2 \cdot 63$	71	-024225	$4 \cdot 06$	96	-032755	5.49
22	-007506	$1 \cdot 26$	47	-016036	$2 \cdot 69$	72	-024566	$4 \cdot 12$	97	-033096	5.55
23	-007848	1.32	48	-016378	2.75	73	-024908	$4 \cdot 18$	${ }^{98}$	-033438	5.61
24 25	-008189	1.37	49	-016719	$2 \cdot 80$	74	-025249	$4 \cdot 23$	99	-033779	$5 \cdot 66$
25	'008530	1 '43	50	-017060	$2 \cdot 86$	75	-025590	4.20			

Temperature Correction.-Experiments were made at Toronto in December 1844, after the return of the instrument from the northwest; to determine the effect of clanges of temperature upon the induced magnetism of the soft iron bar. A copper vessel was fixed upon the arm of the instrument itself, surrounding the bar, and provided with a stop-cock for changing the water, a regular adjustment was completed, and the experiments were then made by filling the vessel with water at different temperatures, while the bar was in place. The temperature was carried at once from the lowest to the highest point, the average extremes being 50° and 95° respectively, and the bar allowed 15 minutes to take up the change. Facn value of the corresponding scale readings employed in the calculation was the mean by three independent observations, with five minutes interval between them. The value of q is found by the formula

$$
q=\frac{\Delta u}{\Delta t^{\circ}} \frac{\cos u}{\sin \mathrm{~S} \cos \mathrm{D}}
$$

These values and the other particulars of the experiment are given in the following Table.

Table XXVIII.

Experiments to determine the Effect of Changes of Temperature upon the induced Magnetism of the soft iron Bar.

Date.	Adjustment of Inclinometer.			Number of Changes.	$\begin{aligned} & \text { Mcan } \\ & \circ \\ & t_{i}-t \end{aligned}$	$\begin{gathered} \text { Mean } \\ \Delta u \end{gathered}$	q
	u	s	D,				
1844:	- 11	- ' 1	- 111		\bigcirc	1	
December 23 -	254350	$23 \quad 5952$	14350	8	$46^{\circ} 1$	11'22	0.5392
, 24 -	242220	233535	04545	5	$43^{\prime} 9$	6.12	$0 \cdot 3178$
" 24 -	"	"	"	5	$46^{\circ} 5$	6.44	0.3154
\% $26=$	"	"	"	5	$41^{\prime} 2$	6.61	0. 3650
" 26 -	"	"	"	6	41'1	6.45	0. 3574
" 27 -	"	"	"	6	$47^{\circ} 0$	$14 \cdot 55$	0.7042
" 28 -	"	"	"	6	$46^{\circ} 9$	8.63	0.4183
" 28	"	"	"	6	$46^{\circ} 5$	6.87	0.3363
Mean	-	-	-	-	-	-	$0 \cdot 3737$

The observation on the 27 th has been rejected.
The correction to the scale readings of the Inclinometer for given changes of temperature is found by the formula-

$$
\mathrm{R}=\frac{\sin \mathrm{S} \cos \mathrm{D}}{\cos u} \cdot \frac{q}{a}
$$

The values found are $R=0^{\circ} 368$ for the first adjustment, and $R=0^{\circ} 390$ for the second. This correction has not been applied to the individual readings. The following table contains the value of $\mathrm{R} \Delta t^{\circ}$ for each value of $\Delta^{\circ} t$ from 1° to 39°, to be subtracted from
the scale readings (as inverted) when the observed temperature is ligher than the standard temperature, and the contrary when it is lower.

Table XXIX.
Corrections to reduce the Inclinometer scale readings under the Second Adjustment to a standard temperature.

Δt	$R \Delta t$	Δt	$\mathrm{R} \Delta t$	Δt	$\mathrm{R} \Delta t$	Δt	$\mathrm{R} \Delta t$
0	Div.	\circ	Div.	\circ	Div.	\circ	Div.
0	0.00	10	3.90	20	7.80	30	11.71
1	0.39	11	4.29	21	8.19	31	12.09
2	0.78	12	4.68	22	8.58	32	12.48
3	1.17	13	5.07	23	8.97	33	12.87
4	1.56	14	5.46	24	9.36	34	13.26
5	1.95	15	5.85	25	9.75	35	13.65
6	2.34	16	6.24	26	10.14	36	14.04
7	2.73	17	6.63	27	10.50	37	14.43
8	3.12	18	7.02	28	10.92	38	14.82
9	3.51	19	7.41	29	11.31	39	15.21

The adjustment last described remained undisturbed until December $21^{d} 2^{\mathrm{n}}$ Göttingen, when the arm of the instrument was accidentally struck and moved, occasioning a change of 123 scale divisions in the reading; such a movement does not sensibly affect the adjustment, and that quantity has been subtracted from all subsequent readings to correct the series.

Changes of the Inclination.-The approximate amount of the daily range of this element, indicated by the difference between the highest and lowest scale readings, has been alerady given in Table XIIII. in connexion with that of the Horizontal Force.

Diurnal variation of the Inclination.-The following Table contains the mean scale readings of the Inclinometer for each month, corrected for changes of the Declination and Horizontal Force, in the manner described above.

Table XXX.

Monthly Means of corrected Inclinometer readings, omitting October 20, November 4, January 2-9, which are incomplete.

The general mean is taken, as in the other Tables, by dividing the sum of all the observations under each hour by the total number, which is 112 ; and the co-efficient for this curve, which includes observations under the separate adjustment of October, with those of the subsequent months, is

$$
a \mathrm{P}=0^{\prime} 1405 \times 1^{\prime} 22=0^{\prime} 1714
$$

A mean having been taken however for the complete days from November to February inclusive, prior to the application of the Bifilar correction, I subjoin it at the foot of the page *; but as the

* Table XXXI.

Iifean by 98 complete days under the Second Adjustment uncorrected for changes of Horizontal Force.

0	1	2	3	4	5	6	7	8	9	10	11	Gott. time.
188.78	181*75	174*79	$172 \cdot 23$	169.94	170.60	172*68	173*41	$172 \cdot 82$	171*48	170'14	$168 \cdot 18$	
12	13	14	15	16	17	18	19	20	21	22	23	Mean.
166.63	165.15	164'12	163×6	163.40	161'86	162.34	163.28	170.25	181'25	181.02	$190 \cdot 26$	171.67

month of October was marked by considerable disturbances, which have probably affected the mean curve of Horizontal Force, it is here included with the other months. In the next Table the small correction necessary to reduce the means to a uniform temperature of 40° has been applied to the general mean; and under each corrected value is given its difference from the mean of the whole in scale divisions of the instrument, together with the approximate value of this difference in terms of the inclination.

Table XXXII.

Corrected Mean Diurnal Curve of the Inclination by 112 days of observation at Lake Athabasca.

We sce by the foregoing Table that the hour of 3 A.M. is that at which the Inclination deviates most from its mean value, a result precisely similar to what we have found for the other elements; and there is the same reason for attributing the magnitude of the deviation to the effect of disturbance at that hour. If we select the same undisturbed days as before, and take their mean, the result is a signal diminution in the amount of the diurnal change at that period of the 24^{h}.

Table XXXIII.

Mean Diurnal Curve of Inclination by 45 Days* selected as free from Disturbance, corrected for Variation of Horizontal Force, and reduced to a uniform Temperature; together with the Differencc of each mean from the mean of the whole in Scale Divisions and in terms of the Inclination.

Civil Time	${ }_{15} 1 . \mathrm{mm}$	$\mathrm{h}_{16} \mathrm{~m}_{55}$	$\begin{aligned} & \mathrm{h} . \mathrm{m} . \\ & 1755 \end{aligned}$	$\frac{\mathrm{h} . \mathrm{m}}{18} 5$	$\lim _{19} . \mathrm{m}_{55}$	$\underset{20}{ } \frac{m_{55}}{}$	$\mathrm{n}_{21} \mathrm{~m}_{55}$	$\frac{\text { h. m. }}{22} 5$	
Gött. Time -	Noon	1	2	3	4	5	6	7	
Scale	180.52	179 15	$177 \cdot 47$	176.29	175:79	$175 \cdot 64$	180.02	179.94	
Difference	+4.50	$+3 \cdot 13$	+1.45	+0.27	-0.23	-0.38	$+4.00$	+3.92	
$\Delta 0$	+ ${ }^{1} \cdot 77$	+0.54	+0.25	+6.05	-0.04	-0'06	+0.68	$+0^{\prime} \cdot 67$	
Civil Time -	Noon	$\mathrm{h}_{0} \mathrm{~m}_{55}$	$\mathrm{h}_{15} \mathrm{~m}_{\mathrm{L}}$	$h_{2} \mathrm{~m}_{5 \mathrm{5}}$	$\mathrm{h}_{3} \mathrm{~m}_{55}$	$\mathrm{h}_{4} \mathrm{~m}_{55} .$	$\mathrm{h}_{5} \mathrm{~m} .$	$\mathrm{h}_{6} \mathrm{~m}_{55}$	
Gott. Time -	8	9	10	11.	Midn.	13	14	15	
Scale	179.49	177.76	$176 \cdot 61$	174.07	$174 \cdot 71$	$172 \cdot 36$	171.08	172'45	
Difference	+3.47	+1.74	+0.59	-1.05	-1.31	-3.66	-4.94	$-3 \cdot 57$	
$\Delta \theta$	+0'60	$+0^{\prime} \cdot 30$	+0'10	-0́33	$-0^{\prime} \cdot 22$	- ${ }^{\prime} .63$	-0'84	$-0^{6} \cdot 61$	
Civil Time -	$\mathrm{h}_{7} \mathrm{~m}_{55}$	$\mathrm{h} . \mathrm{m} .$	$\mathrm{h}_{9} \mathrm{~m} .$	$\begin{aligned} & \mathrm{h}_{10} \mathrm{~m} . \\ & 105 \end{aligned}$	Midn.	$\mathrm{h}_{12} \mathrm{~m} .$	li. m. 1355	h. m.	
Gött. Time -	16	17	18	19	20	21	22	23	
Scale	$172 \cdot 19$	$170 \cdot 46$	$170 \cdot 83$	$173 \cdot 33$	174.99	178.05	179'38	181.62	176.02
Difference	-3.83	-5.50	-5.19	-2.69	-1.03	+2.03	$+3 \cdot 36$	$+5 \cdot 60$	
$\Delta \theta$	-0'65	-0. 0.95	-0'89	$-0^{\prime} \cdot 46$	$-0^{\prime} \cdot 18$	+ ${ }^{\prime} \cdot 36$	+0.57	+6. 96	

For comparison of the mean diurnal curve of Inclination at Lake Athabasca with that of the same element at Toronto, the only other American station at which it was observed directly, in 1843-4, I subjoin a Table, containing, first, the mean scale readings of a one-bar Inclinometer, observed from the 15 th October 1843 to the 10th February 1844 ; and, secondly, the mean for the same five months, October to February inclusive, of the scale readings of a two-bar Inclinometer for the years $1845,1846,1847$.

The scale co-efficient given by adjustment for the one-bar instrument was $(a \mathrm{P})=0^{\prime \cdot} 723$, which it appears by the experiments contained in Tables XXII.-XXIV., must be augmented in the ratio 1 ' 166 t to agree with the value given by experiments of deflection, the instrument there used being the same, giving for the approximate co-efficient $0^{\prime} 820$. The other mean is related to various adjustments,

[^12]and proportioning the co-efficient according to the number of days under each, the value applicable to it is ($a \mathrm{P}$) $=0^{\prime} 3686$. This must be augmented in the ratio $1 \cdot 32$, according to the experiments contained in Table XXV., to give the true scale value for this instrument, which is also the one to which those results refer, giving $a \mathrm{P}=0^{\prime} 486$.

TABLE XXXIV.
Mean Diurnal Curve of Inclination at Toronto for 101 days, October to February 1843, by a one-bar Inclinometer; also, Mean Curve for the same period for three years, by a two-bar Inclinometer.

Civil Time.	Gött. Time.	One-bar Inclinometer, October to Tebruary 1843.			Two-bar Inclinometer, October to February, 3 years.		
		Scale.	Daily fluctuation.		Scale.	Daily fluctuation.	
			Scale.	$\Delta \theta$		Scale.	$\Delta \theta$
h 16	h 2	$157 \cdot 02$	-0.21	-0. 17	$54 \cdot 37$	-1.25	- ${ }^{\prime} .61$
17	23	156.92	-0.31	-0.25	53.81	-1.81	-0.88
18	Noon	$156 \cdot 81$	-0.42	-0.34	$53 \cdot 76$	-1.86	-0.90
19	1	156.88	-0.35	-0.29	$53 \cdot 99$	-1.63	-0.79
20	2	$157 \cdot 23$	+0.00	$+0 \cdot 00$	$54 \cdot 65$	-0.97	-0.47
21	3	$157 \cdot 40$	$+0.17$	+0.14	$55 \cdot 91$	+0.29	-0.14
22	4	157-63	$+0 \cdot 40$	$+0 \cdot 33$	57-43	+1.81	$+0.88$
23	5	$158 \cdot 12$	+0.89	+0.73	$58 \cdot 63$	$+3 \cdot 01$	$+1.46$
Noon	6	$158 \cdot 13$	$+0.90$	+0.74	$59 \cdot 04$	+3.42	+1.66
1	7	$157 \cdot 61$	$+0.38$	+0.31	$58 \cdot 53$	+2.91	+1.42
2	8	157.22	-0.01	$-0 \cdot 01$	57-54	+1.92	$+0.93$
3	9	$157 \cdot 00$	-0.23	-0.19	$56 \cdot 58$	+0.96	+0.47
4	10	156.86	-0.37	$-0 \cdot 30$	55:38	-0.24	-0.12
5	11	156.85	-0.38	-0.31	$54 \cdot 98$	-0.64	-0.31
6	Midn.	$157 \cdot 00$	-0.23	-0.19	$55 \cdot 07$	-0.35	-0.17
7	1	157.12	-0.12	-0.10	$55 \cdot 11$	-0.51	-0.25
8	2	157.11	-0.12	-0.10	$55 \cdot 00$	-0.62	-0.30
9	3	$157 \cdot 30$	$+0.07$	+0.06	$54 \cdot 93$	-0.69	-0.33
10	4	$157 \cdot 23$	$+0.00$	$+0 \cdot 00$	$55 \cdot 03$	-0.59	-0.29
11	5	$157 \cdot 28$	$+0.05$	+0.04	$55 \cdot 23$	-0.39	-0.19
Midn.	6	$157 \cdot 27$	$+0.04$	+0.03	$55 \cdot 19$	-0.43	-0.21
1	7	$157 \cdot 21$	-0.02	-0.02	$55 \cdot 00$	-0.62	-0.30
2	8	$157 \cdot 16$	-0.07	-0.06	$54 \cdot 91$	-0.71	-0.34
3	9	$157 \cdot 05$	-0.18	$-0 \cdot 15$	54.73	-0.89	-0.41

It will be remarked, that while the above means give similar diurnal curves, there is a difference of a large proportional amount between the values of the ordinates for the corresponding hours under them; a similar difference being observable between the corresponding mean curves of Horizontal Force, it would appear that the range of both elements was really less for the winter under discussion than its average amount. Taking the difference between the highest and lowest mean scale reading of the Bifilar, and the mean of the whole for each month in the above periods respectively,
it appears that the mean of the former, from October 1843 to February 1844, at Toronto, was $+5^{\circ} 77$ scale divisions, and of the latter -6.12 scale divisions; the corresponding quantities for the period included in the second part of the table are $+7^{\prime} 78$ and $-10^{\circ} 52$ scale divisions respectively. The adjustment of this instrument was the same for both periods, but the difference shown is not nearly enough to account for the whole effect. The adjustment of the one-bar Inclinometer was made with every care. I am nevertheless disposed to believe that the co-efficient deduced is too small. I present the result, however, because the instrument was similar to the one used in the north, and the diurnal law deduced is independent of the absolute amount of the change.

The mean diurnal curve of Inclination at Lake Athabasca presents two principal maxima and two minima; the first of these occurs at 3 A.M., and corresponds to the minimum of Horizontal Force; the second maximum occurs at 11 s.m., and corresponds to the small relative minimum of the latter element, which has been pointed out as having the effect of creating an undulation in the ascending branch of its daily curve. The principal minimum occurs at 10 p.m., and agrees nearly with the daily maximum of Horizontal Force; the smaller minimum, which is at 8 A.m., agrees in like manner with a subordinate maximum of this element at the same hour. Proceeding in the same way as before, to eliminate, partially, the effect of disturbances, by assembling all those days on which no extra observations were taken, we find that the mid-day maximum becomes more prominent, and the maximum at 3 A.m. considerably less so. The hours of maximum and minimum are but little altered, but a slight increase of inclination is shown at 8 р.м., immediately preceding the lowest value of the day, and answering to a contrary inflexion in the mean curve of Horizontal Force at the same hour. It appears, therefore, that in the minor as well as in the more prominent features of the curves, each maximum of the Horizontal Force corresponds to a minimum of Inclination, and each minimum of the former to a maximum of the latter; and we have, from the independent changes of these two elements, observed, by methods which have nothing in common, a strong mutual support and confirmation.

The mean diurnal curve of Inclination at Toronto, for the period under discussion, consists principally of a single progression, having its maximum at 11 A.M., about one hour after the daily minimum of Horizontal Force. This characteristic is the same, whether we take the mean by 101 days, corresponding to the period of observation at the northern station, or the general mean for the same months. There are indications of a second maximum at 10 p.м. The principal minimum occurs at 5 A.m. There is not the slightest trace of an in-
flexion corresponding to the daily maximum at 3 A．M．，which consti－ tutes the principal feature of the northern curve．
Fort Simpson．－The details of the adjustment of the Inclinometer at Fort Simpson will be given in a future section．The observations at this station are divided into two series；the first of 26 days，five of which are rendered imperfect by the omission of one or more observations；the second of 19 days，three of which are in the same condition．The omissions only affect the means at 0 h ．and 1 h ．，and the whole 45 days have been combined for a general mean，without excluding the imperfect days，for the reasous assigned in reference to the Declinometer at the same station（p．11．）

Table XXXV．

Mean scale reading of Inclinometer at Fort Simpson，corrected for changes of Declination and Horizontal Force，for the months of April and May 1844．To which is added the Mean for the same two months at Toronto，by observations of four years，1845－ 1848.

Scale co－efficients：－
1 April to 1 May $a \mathrm{P}_{1}=0^{\prime} 106 \times 1^{\prime} 22=0^{\prime} 1293$ ．
2 May to 24 May $a \mathrm{P}_{\mu \prime}=0^{\prime} 127 \times 1^{\prime} 22=0^{\prime} 1549$
The general mean $\quad a \mathrm{P}=0 \cdot 115 \times 1^{\prime} 22=0^{\prime} 1402$
Also for Toronto $\quad a \mathrm{P}=0 \cdot 354 \times 1^{\prime} 32=0^{\prime} \cdot 4673$

Fort Simpson．										Toronto．				
Gōttingen hour．		Partial Means．				General Mcans．					$\begin{aligned} & \text { 品 } \\ & \text { 淢 } \\ & \text { He } \end{aligned}$	Four years．		
		April．		May．		Readings．		Diurnal Variation．				皆	Diurnal Variation．	
		$\begin{aligned} & \therefore \\ & \dot{8} \\ & i \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { 品 } \end{aligned}$		寅		守		$\Delta \theta$				感	$\Delta \theta$
noon	1515	240.01	58.6	$280 \cdot 41$	68.3	25711	82.6	$+56.1$	$+7^{\prime} \cdot 98$	21	15	45．49	-1.05	－0．${ }^{1} \cdot 49$
1	1615	$252 \cdot 18$	58.0	$294 \cdot 10$	${ }^{66} 8$	$272 \cdot 11$	$62 \cdot 3$	＋71．9	$+10.07$	22	16	$45 \cdot 23$	-1.21	$-0 \cdot 56$
2	1715	$217 \cdot 34$	57.5	306.84	${ }_{66}{ }^{\circ}$	255.09	61.6	$+55.8$	＋7．81	23	17	45.01	-1.53	-0.71
3	1815	199.87	$57 \cdot 1$	$292 \cdot 13$	$60^{\circ} 4$	238.92	$61 \cdot 2$	＋38．7	$+5.42$	noon	18	44．54	-2.00	－0．93
4	1915	$191 \cdot 47$	50.5	$291 \cdot 47$	66：3	$233 \cdot 64$	$60 \cdot 8$	$+33 \cdot 4$	＋4．68	1	19	45.03	-1.31	－0．61
5	2015	$175 \cdot 69$	57.0	$259 \cdot 23$	65．9	$210 \cdot 96$	$\mathrm{CO}_{6} 9$	$+10 \cdot 8$	＋1．51	2	20	$46^{\prime 25}$	－0．29	－0．14
6	2115	163＇74	$55 \cdot 3$	$250 \cdot 63$	$63 \cdot 5$	200．43	$58 \cdot 9$	＋0．2	＋0．03	3	21	48.41	＋1．87	$+0.88$
7.	2215	158.05	$56 \cdot 9$	$248 \cdot 23$	64．5	$193 \cdot 24$	$60^{\circ} 2$	-7.0	－0．98	4	22	50.73	＋4．29	$+2.00$
8	2315	$142 \cdot 27$	$57 \cdot 1$	249.76	$65 \cdot 4$	187．65	$60 \cdot 7$	$-12 \cdot 6$	$-1 \cdot 76$	，	23	51.19	＋4．65	$+2 \cdot 17$
9	015	$138 \cdot 13$	68．0	$253 \cdot 21$	$60^{\circ} 6$	186 72	$61 \cdot 3$	-13.5	-1.89	6	noon	50.46	$+3 \cdot 92$	＋1．83
10	115	142.45	58.3	$251 \cdot 92$	＇66＇1	$188 \cdot 67$	61.7	$-11 \cdot 5$	$-1 \cdot 55$	7		49.06	$+2 \cdot 52$	$+1 \cdot 18$
11	215	133 ${ }^{2} 25$	$58 \cdot 7$	241.54	67－1	178．97	$62 \cdot 4$	-21.2	-2.97	8	2	$47 \cdot 20$	$+0.66$	＋0．31
midnt	315	12S．6s	$53 \cdot 7$	236.41	$66 \cdot 6$	174.13	$62 \cdot 0$	$-26 \cdot 1$	－3．68		3	$45^{\prime} 77$	-0.77	－0．36
13	415	$125 \cdot 53$	59.0	$230 \cdot 48$	67.0	$169 \cdot 84$	62.4	$-30 \cdot 4$	－3．89	10	4	44.92	-1.62	-0.75
14	515	121.51	59.2	$225 \cdot 52$	$67 \cdot 3$	$165 \cdot 43$	（1）．7	-34.8	－4．87	11	5	$44 \cdot 65$	-1.89	－0．88
15	615	121.97	$59 \cdot 2$	$2.6 \cdot 15$	67.4	165.95	$62 \cdot 8$	$-34 \cdot 3$	－ 1.80	m！dut	6	4485	$-1 \cdot 69$	-0.79
10	715	$116 \cdot 37$	59.4	$220 \cdot 58$	67.7	$164 \cdot 17$	63.0	-36.0	$-5 \cdot 00$	1.3	7	45.41	-1.13	－0．52
17	815	$120 \cdot 60$	$58 \cdot 8$	$227 \cdot 40$	68•1	165.73	$62 \cdot 8$	-34.5	－4．83	14	8	$46^{\prime} 13$	-0.41	－0．20
18	915	$132 \cdot 04$	50.2	$230 \cdot 43$	$68 \cdot 7$	173.58	63.3	－26．6	－3．72	15	9	$46 \cdot 21$	-0.33	-0.16
19	1015	$128^{\circ} 64$	$59 \cdot 5$	$231 \cdot 25$	68.4	171.96	63.4	$-28^{\circ} 2$	$-3 \cdot 95$	16	10	46.00	-0.48	－0．22
20	1115	151.43	59.7	$245 \cdot 11$	68.6	$190 \cdot 98$	63.5	$-9 \cdot 2$	－1．29	17	11	48.11	－0．43	－0．20
21	1215	181．84	$59 \cdot 3$	$255 \cdot 47$	$68 \cdot 1$	$212 \cdot 93$	63.1	$+12 \cdot 7$	$+1.78$	18	midnt	15.90	-0.64	－0．30
22	1315	$183 \cdot 80$	$59 \cdot 3$	272.91	$67^{\circ} 6$	$221 \cdot 42$	62.9	$+21.2$	$+2 \cdot 97$	19	13	45.91	－0．63	-0.30
23	1415	190＇72	$50 \cdot 1$	$270 \cdot 06$	$67^{\circ} 0$	$\underline{224}$	02.5	＋21．0	$+3 \cdot 36$	20	14	$45 \cdot 88$	-0.66	-0.31
		$160 \cdot 55$		$254 \cdot 18$		$200 \cdot 20$								

The mean diurnal curve of inclination at Fort Simpson deducible from the observations of April and May presents only one wellmarked maximum and one minimum, the former at 4 A.m., the latter at 7, p.m. ; there is an indication of a very slight maximum at l P.M., which coincides with a contrary inflexion in the mean curve of Horizontal Force, but both curves approach more nearly to a single progression than in the winter months. Viewed generally, the mean diurnal curve of inclination at this station, as at Lake Athabasca, is the exact converse of that of the Horizontal Force; the morning maximum of the latter element shown in the winter months is here reduced in amount, proportionably, as much as the mid-day maximum of the former, both features have nearly disappeared. There is no corresponding difference shown at Toronto in the mean curves of the same elements for the same periods respectively; and without grounding too much on observations embracing so short a period, I regard the corroboration afforded by the two elements to one another as giving good grounds for the conclusion that in high latitudes the advance of the season, and the rapid increase in the length of the day, produces changes in the character of the daily course of the magnetic elements which is not experienced in lower ones.'

As the Inclinometer was not observed at Toronto in April and May 1844, I have taken the mean for these two months for four years, as a normal curve for that station. It does not differ in any characteristic from that of the five months previously described. It consists of a double progression, having two minima of nearly equal amount, at 6 A.M. and 5 P.M. respectively, and two maxima, of which the first, at 11 A.M., is so strongly marked as to be the great feature of the whole curve, and the second, at 9 p.m., is so small in amount, as to fall on the negative side of the mean line. The curves of this element, therefore, at the two stations have scarcely anything in common.

Total Force.-Owing to the uncertainty in the precise values of the scale co-efficient of the Inclinometer, the inferences we can derive from the observations as to the changes of the Total Force, which depend very much upon those of the inclination, are necessarily somewhat vague; having found, however, by trial, that the law of the diurnal changes deducible is not altered by any moderate change in the scale value of the Inclinometer or of the Bifilar readings, but only the amount, I think it worth while to present the result.

The changes of Total Force are found by the formula

$$
\frac{\Delta \mathrm{R}}{\mathrm{~h}}=\frac{\Delta \mathrm{X}}{\mathrm{X}}+\tan \theta \Delta \theta
$$

in which the quantities $\frac{\Delta \mathbf{X}}{\mathbf{X}}$ and $\Delta \theta$, are taken from Tables $\mathbf{X X}$., XXXIII, and XXXIV.

Table XXXVI.

Approximaté Mean Diturnal Curve of total Magnetic Force at Lake Athabasca from 110 days of observation, to which are added the corresponding Values from the 46 days selected as free from disturbance.

Mean time	16	17	18	19	20	21	22	23
Gbtt. time	0	1	2	3	4	5	6	7.
Whole period Selected days	$\begin{aligned} & +00128 \\ & +\cdot 00035 \end{aligned}$	-00018	$\begin{array}{r} +\cdot 00009 \\ -\cdot 00050 \end{array}$	$-\cdot 00095$	$\left\lvert\, \begin{aligned} & -00001 \\ & -\cdot 00074 \end{aligned}\right.$	$\begin{array}{\|l\|} -00076 \\ -00094 \end{array}$	$\begin{aligned} & -\quad 00036 \\ & +' 00003 \end{aligned}$	$\begin{aligned} & -00009 \\ & +\cdot 00008 \end{aligned}$
		-.00005						
Mean time	Noon	1	2	3	4	5	6	7
Gbtt. time	8	9	10	11	Midn.	13	14	15
Whole period	+ $\cdot 00029$	-.00010	+ 00074	+ 00044	+ $\cdot 00025$	+ ${ }^{\circ} 00003$	-.00026	--00042
Solected days	+ $\cdot 00021$	-00001	+ 00054	+•00002	+ ${ }^{\circ} 00078$	-.00008	--00043	-. 00029
Mean time -	8	9	10	11	Midn.	13	14	15
Gött. time	16	17	18	19	20	21	22	23
Whole period Selected days	$\begin{aligned} & -00048 \\ & -\cdot 00026 \end{aligned}$	$\begin{array}{r} -00079 \\ -\cdot 00082 \end{array}$	$\begin{aligned} & -\cdot 00058 \\ & +\cdot 00000 \end{aligned}$	$\begin{aligned} & -\cdot 00041 \\ & +\cdot 00106 \end{aligned}$	$\begin{aligned} & -\cdot 00010 \\ & +\cdot 00086 \end{aligned}$	+00110$+\cdot 00033$	$\begin{aligned} & +\cdot 00090 \\ & +\cdot 00004 \end{aligned}$	$+\cdot 00151$$+\cdot 00053$

The prevalence of positive and negative signs alternately, in both the mean curves contained in this Table, indicates clearly that the total Magnetic Force at Lake Athabasca in the winter months has two maxima and two minima daily; and on laying down the above quantities upon a sufficiently large scale, the hours of the latter are seen to be 8 A.m. and 8 p.m. nearly, while of the former, one maximum falls by both curves at or near 2 p.m., and the other at or near 3 a.m. if we include the disturbed days, and at or near midnight if we exclude them. There is very little difference in character or amount between the curves given by the whole period and by the selected days respectively in any other than the particular just alluded to. By both curves the Total Force is greater at the maximum in the night than at the one in the day, and less at the minimum, which occurs four hours before noon, than at the one eight or nine hours after noon. The difference between the highest and lowest mean value, or the mean diurnal range of total force, appears to be about ' $002 . \mathrm{R}$ by both curves. To examine the influence of an error in the co-efficients upon this curve it was assumed that the value of
the scale divisions of either instrument might be one tenth greater or the same quantity less than the value actually employed; this supposition allows of eight combinations, and, having computed and laid down the values upon every one of them, it appears that in each case we have the two daily maxima and minima at nearly the same hours; the differences are chiefly in the amount of the changes and the relative prominence of the two maxima.

Table XXXVII.

Approximate Mean Diurnal Curve of total Magnetic Force at Fort Simpson from 46 days of observation in April and May 1844.

Mean time	1515	1615	1715	1815	1915	2015	2115	2215
Gbtt. time	0	1	2	3	4	5	6	
	+ ${ }^{\prime} 0065$	+ ${ }^{\circ} 0097$	+ ${ }^{\circ} 0077$	+ 0045	$+{ }^{\prime} 0050$	+ ${ }^{0} 001$	- $\cdot 0000$	- ${ }^{0} 0009$
Mean time	2315	015	115	215	315	415	515	615
Gött time	8	9	10	11	12	13	14	15
	--0014	- - 0024	- -0017	-*0029	- 00027	- - 0029	- - 0042	--0038
Mean time	715	815	915	1015	1115	1215	1315	1415
Gött. time	16	17	18	19	20	21	22	23
	-'0046	- -0043	-*0031	- -0040	- 0009	+ 0017	+'0027	$+\cdot 0037$

The above curve presents but one maximum and one minimum, the former at $4^{\text {h }}$ A.m., the latter at $7^{\text {h }}$ or $8^{\text {h }}$ p.m.; the mid-day maximum has disappeared, but the amount of the daily fluctuation is increased fourfold. This change of character in the mean diurnal fluctuation of the total force does not appear to attend the progress of the seasons at Toronto, but would necessarily be inferred from the altered character of the mean curves of all the elements at Fort Simpson; it is evident that the causes preceding the minor fluctuations at Lake Athabasca are here overruled by the more powerful influences to which the principal fluctuation is due, and we see in the case of each of the three elements observed an approach to one great diurnal movement, owing its character almost entirely to the
extraordinary constancy and regularity which appears, in these regions, to belong to a class of influences elsewhere denominated irregular.

Table XXXVIII.

Approximate Mean Diurnal Curve of Total Force at Toronto, from combination of the changes of Horizontal and Inclination Force given by Tables $X X X I V$. and $X X X V$.

Mean time		16	17	18	19	20	21	22	23
Göttingen time	-	22	23	Noon	1	2	3	4	Б
October-February April-May	-	$\begin{aligned} & -00028 \\ & -\cdot 00063 \end{aligned}$	$-\cdot 00025$	$\begin{aligned} & -\cdot 00042 \\ & -\cdot 00126 \end{aligned}$	$\begin{aligned} & -\cdot 00076 \\ & -\cdot 00087 \end{aligned}$	$\begin{aligned} & -\cdot 00102 \\ & -\cdot 00048 \end{aligned}$	$\begin{array}{r} -.00109 \\ \cdot 00025 \end{array}$	$\begin{array}{r} -\cdot 00093 \\ \cdot 00127 \end{array}$	$\begin{array}{r} -00073 \\ \cdot 00159 \end{array}$
Mean time	-	Noon	1	2	3	4	5	6	7
Göttingen time	-	6	7	8	9	10	11	Midn.	13
October-February	-	-00043	-00127	-00184	-00181	-00143	-00093	-00017	- 00014
April-May	-	-00153	-00137	-00090	-00051	-00008	-00011	-'00023	--00026
Mean time	-	8	9	10	11	Midn.	13	14	15
Göttingen time	-	14	15	16	17	18	19	20	21
October-February	-	-00001	-00020	- $\cdot 00038$	- •00046	- ${ }^{0} 0042$	-•00039	- ${ }^{-00030}$	- ${ }^{0} 0035$
April-May	-	- $\cdot 00013$	- 00020	-'00016	- 00031	-.00053	-'00055	-•00055	- ${ }^{0} 00081$

In this Table the observed mean diurnal values of the Horizontal Force for the seasons compared have been combined with the normal curves of inclination given by the observations of three years. They agree in showing that the mean diurnal curve of Total Force at Toronto has one principal maximum, which in the winter seems to occur about 2 p.m. and in the spring about mid-day; the lowest value occurs in the forenoon in the winter at 9 A.m., and in the spring two or three hours earlier. The indications of a secondary maximum and minimum are undecided; in neither case is there any appearance of a maximum of Total Force answering to the nocturnal one in the north. The curve computed from the changes of inclination shown by the one-bar instrument gives also a single maximum at noon, but of a small amount.

ABSOLUTE DETERMINATIONS AND

ADJUSTMENTS OF THE MAGNETICAL INSTRUMENTS

AT FORT SIMPSON.

Declination.-The Declinometer was adjusted on the 30th March 1844. The Magnet was suspended by a single fibre of silk, of which the force of torsion was quite insignificant; the mean change of scale, reading produced by turning the torsion circle 90° was $4^{\circ} 1$ div., whence $\frac{H}{F}=\frac{1}{1769}$. The base was levelled, and the fixed wire of the telescope made to cut the central division of the scale, when the instrument was ready for observation. It became evident, however, after a time, that the length of the scale, which was between 12° and 13° of a circle, was insufficient to allow the full range required in some of the great disturbances at this station, if it was to be bisected in the mean position of the Magnet; advantage was therefore taken of a state of entire quiescence of the Magnet, on the 21st April, to move the arm and telescope $1^{\circ} 40^{\prime}$ to the westward, adding 100 divisions to the range of the scale on the east side of Zero, and diminishing the readings to the same amount; 100 has been subtracted from all readings prior to that date, in order to connect them with the sulsequent series.

Absolute Declination.-An observation was made on the 30th March with the azimuth compass. Two sets of azimuths of the sun. were observed A.M. and two sets P.m., giving the following valuer, which are reduced to the mean for 24^{h} by a correction from Table VIII.

The following observation with a Collimator Magnet was made on the 8th May 1844.

The Theodolite was levelled and directed to the Collimator, mean scale reading $77^{\circ} 84$, Declination $416^{\circ} 0$, mean of verniers $359^{\circ} 59^{\prime} 30^{\prime \prime}$, deviation from the magnetic axis $3^{\circ} 43 \mathrm{div} .=8^{\prime} 30^{\prime \prime}$ to the west. It was then directed to the sun, and the transit of both
limbs observed, mean reading of Vernier's $86^{\circ} 17^{\prime} 30^{\prime \prime}$ for the sun's centre, at $9^{\mathrm{h}} 0^{\mathrm{m}} 17^{\mathrm{s}}$ apparent time. We have, then, the sun's apparent

Magnetic azimuth	$86^{\circ} 18^{\prime} 0^{\prime \prime}$	
Deviation of telescope		$8^{\prime} 30^{\prime \prime}$
Sun's magnetic azimuth	86°	$9^{\prime} 30^{\prime \prime}$
Sun's true azimuth at $9^{\text {h }} 0^{\mathrm{m}} 17^{\text {s }}$	$124{ }^{\circ}$	$6^{\prime} 28^{\prime \prime}$
Absolute Declination		

Differences.

The mean for April will be $374^{\circ} 59=37^{\circ} 16^{\prime} 6$ east, and the mean for May $410^{\circ} 01=37^{\circ} 53^{\prime} 0$ east. The mean of the whole, which corresponds to April $27^{\mathrm{d}} 5$, will be $390^{\circ} 76=37^{\circ} 31^{\prime} 7$.

The results of the Declination observations have been discussed in connexion with the corresponding series at Lake Athabasca, ante p. 15, et seq.

Bifilar.

First Adjustment, 30th March 1844.

1. The telescope was placed in the meridian, by suspending the magnet with unifilar suspension; reading of the azimuth circle $118^{\circ} 12^{\prime}$.
2. The telescope was next suspended by the same double suspension as was used at Athabasca, and the interval of the threads adjusted by trial to give an angle of about 60°. Sivaie reading 210.
3. To bring the plane of detorsion of the double suspension into the meridian, the magnet was suspended, and the torsion circle turned until a position was found by trials, in which the scale readings were nearly the same, whether the magnet hung with its marked end to the north, or, by turning the arm 180°, it was reversed and hung with the marked end to the south. The final readings were

Telescope :	Torsion Circle :	Scale :	Bar :
$118^{\circ} 12^{\prime}$	$265^{\circ} 30^{\prime}$	$278^{\circ} 0$	N. end to N.
$298^{\circ} 12^{\prime}$	$265^{\circ} 30^{\prime}$	$300^{\circ} 0$	N. end to S.

$265^{\circ} 30^{\prime}$ was therefore taken as the position of the index of the torsion circle which made the plane of detorsion in the meridian.
4. The arm was then turned 90° to $208^{\circ} 12^{\prime}$, and the torsion circle turned until the scale read $277^{\circ} 0$, torsion circle $326^{\circ} 50^{\prime}$.

We have then $v=\left(326^{\circ} 50^{\prime}-265^{\circ} 30^{\prime} \Rightarrow 61^{\circ} 20^{\prime}\right.$ when $\mathrm{K}=a$ cotan $v=-\cdot 000318$. Increasing numbers denote increase of Horizontal Force.*

The Bifilar received an accidental 'shock after the observation of April $10^{\mathrm{d}} 3^{\mathrm{h}}$, which produced a change of reading of +80 div.; this quantity has been added to the readings from that hour down to the re-adjustment of the instrument on the 13th.

Second Adjustment, 13th April.

1. The telescope was placed in the meridian by suspending the magnet with unifilar suspension, reading on the torsion circle $119^{\circ} 45^{\prime}$, scale 210, Declination $264^{\circ} 0$.
2. The double suspension being applied as before, a number of trials were made to bring the plane of detorsion into the meridian. The final readings were as follows:

$$
\begin{aligned}
& \text { Telescope :- } 119^{\circ} 50^{\prime} \text { Torsion Circle :- } 349^{\circ} 50^{\prime} \quad \text { Scale:- } 207^{\circ} 5 \\
& 299^{\circ} 50^{\prime} \quad 349^{\circ} 50^{\prime} \quad 202{ }^{\circ} 0 \\
& \text { Bar :-N. end to N. Declination :-465 } 0 \\
& \text { N. end to S. } 460^{\circ} 0
\end{aligned}
$$

$349^{\circ} 50^{\prime}$ was therefore taken as the position of the index, which made the plane of detorsion in the meridian. The arm was turned 90° to $209^{\circ} 50^{\prime}$, and the torsion circle turned until the scale read $204^{\circ} 0$, when the reading of the torsion circle was $53^{\circ} 50^{\prime}$, Declination $464^{\circ} 0$, whence a cotan $v=-\cdot 000283$. Increasing numbers denote increase of force, as before.

The length of the scale of the Bifilar was found insufficient at this station, and a continuation on card was attached to it, on the side of decreasing force; but even this was insufficient on some occasions, when the observed range exceeded both the natural scale and its continuation.

Horizontal Force.

In absolute measure.-The determination at Fort Simpson was similar in all respects to that at Lake Athabasca, except that three distances of deflection were employed instead of two. The details were as follows:-

[^13]Table XXXIX.
Simpson, Mackenzie's River.

DEFLECTION.						VIBRATION.				m	X		Mean.	General Mean.
Date.	Bar.	Dist.	Observed Angle.	Temp.	Corrected Angle.	Date.	Observed Time.	Temp.	Corrected Time.					
1844:			- 1 "	-	- 1 "			-						
May 2	30	1.0257	$23 \quad 946$	37.5	23865	May 3	5•1307	39.0	$5^{\text { }} 1393$	0.417	$1 \cdot 960$			
", 2 -	30 30	1.1757 1.3257	$\begin{array}{rrr}15 & 7 & 46 \\ 10 & 28 & 48\end{array}$	$38 \cdot 0$ $37^{\circ} 5$	$\begin{array}{llll}15 & 6 & 7 \\ 10 & 27 & 0\end{array}$	"	-			0.417 0.416	$\left.\begin{array}{l}1 \cdot 960 \\ 1 \cdot 964\end{array}\right\}$	$1 \cdot 961$		
May 2	31	1.0257	201412	48.5	20276								$1 \cdot 963$	
" 2	31	1.1757	131424	44.0	1322 1	May 3	54616	${ }_{42}^{4.0}$	54691	0.372 0.372	$\left.\begin{array}{l}1 \cdot 961 \\ 1 \cdot 970\end{array}\right\}$	1-966		
" 2	31	$1 \cdot 3257$	91227	48.5	$\begin{array}{r}919 \\ \hline 1\end{array}$	"	- -			0. 372	$1 \cdot 968$ [
May 2	30	1.0257	23946	$37 \cdot 5$	2365	May 3	6. 3020	47.0	6•3133	0.412	1.935			
"2 ${ }^{2}$ -	30 30	$\stackrel{1}{1 \cdot 1757}$	15 746 10 28	38.0 37 0	15 6 10 7	,	-		- -	${ }_{0} 0.412$	$1 \cdot 936$	1*936		
			102848	$37 \cdot 5$	10270	"	- -			0.411	$1 \cdot 939$		1•941	1•951
May 2	31	$1 \cdot 0257$	201412	48.5	20276	May 3	6. 6707	46.0	6.6867	$0 \cdot 368$	1.944			
" ${ }^{2}$	31	1.1757	131424	44.0	13229	"	- -		- -	$0 \cdot 367$	$1 \cdot 948$	1*946		
" 2	31	$1 \cdot 3257$	91227	$48^{\circ} 5$	9191	"	- -			$0 \cdot 368$	$1 \cdot 945$			
June 12	30	1.0257	223038	57.5	222654	June 12	5.2357	$57 \cdot 8$	5•2323	0.401	$1 \cdot 952$			
" 12	30	1.3257	10122	57.5	101020	"	-			$0 \cdot 403$	$1 \cdot 957\}$			
June 12	31	$1 \cdot 0257$	20.56	56.0	$20 \quad 318$	June 12	5. 5845	58.8	$5 \cdot 5993$	0.360				
12	31	1-0257	9148	57.0	9212	"	- - -			0.358	$1 \cdot 949\}$	$1 \cdot 943$		

In addition to the foregoing values by the standard bars, we have those given by the magnets employed for verification; namely,
By bar 17, May 2, 1844, l'959 ${ }^{\text {(}}$ Bar 20, June 2d, 1844, 1'972.
bar 17, June $12, \quad 1 \cdot 956 . \quad$ bar 23, June $2, \quad 1 \cdot 947$. Including in the present instance the e_{2} results by bar 17, the general mean is

$$
X=1 \cdot 952
$$

which is the value employed.
Variations of the Horizontal Force.-See Tsbles XXIII, \&c.

Induction Inclinometer.

First Adjustment, March 30, 1844.

1. The base was levelled, and the meridian reading of the verniers found to be $297^{\circ} 30^{\prime} 0^{\prime \prime}$.
2. Thr iron bar was inserted in its collar reversed, the lower or north end deflecting, and the telescope was turned in azimuth until the central division of the scale appeared on the wire, verniers $249^{\circ} 34^{\prime} 10^{\prime \prime}$, hence $u=47^{\circ} 55^{\prime} 50^{\prime \prime}$.
3. The bar was inverted, the upper or south end deflecting, and the telescope turned as before.

Verniers, $351^{\circ} 29^{\prime} 0^{\prime \prime}$, whence $u=53^{\circ} 59^{\prime} 0^{\prime \prime}$, also $\mathrm{S}=50^{\circ} 57^{\prime} 25^{\prime \prime}$, $. \mathrm{D}=3^{\circ} 1^{\prime} 35^{\prime \prime}$, and $\theta=81^{\circ} 52^{\prime}$.

$$
\text { Then } a \mathrm{P},=a \frac{\sin 2 \theta \cos u}{2 \sin \mathrm{~S} \cos \mathrm{D}}=0^{\prime} \cdot 106
$$

which value being multiplied as before by the co-efficient $1 \cdot 22$, gives for the approximate scale value under the first adjustment $0^{\circ} 1293$.

$$
\begin{gathered}
\mathrm{B}=\frac{\sin \mathrm{D} \cos \mathrm{~S}}{\sin 1^{\prime} \cos u} \cdot \frac{\mathrm{~K}}{a}=0^{\circ} 0618 \text { when } \mathrm{K}=\cdot 000318 \\
=0 \cdot 0551 \text { when } \mathrm{K}={ }^{\circ} 000285 . \\
\mathrm{R}=\frac{\sin \mathrm{S} \cos \mathrm{D}}{\cos u} \cdot \frac{q}{a}=0^{\circ} 488
\end{gathered}
$$

The series was broken by an accidental shock to the instrument 2d May, by which the arm carrying the telescope was moved about 5°; advantage was taken of this opportunity to make the series of observations of the Absolute Horizontal Force given at page 72, after which the instrument was re-adjusted.

Second Adjustment, May 2, 1844.

1. The meridian reading of the verniers was $181^{\circ} 57^{\prime} 10^{\prime \prime}, \mathrm{De}$ clination 400.
2. The iron bar was inserted in its collar reversed, the lower
end deflecting, verniers $135^{\circ} 59^{\prime} 45^{\prime \prime}$, Declination $387 \cdot 0$, whence $u_{i}=45^{\circ} 57^{\prime} \cdot 25-13^{\prime} \cdot 0=45^{\circ} \cdot 44^{\prime} 25^{\prime \prime}$.

$$
\text { Then } a \mathrm{P}_{4}=0^{\prime} 127 \times 1 \div 22=0^{\prime} 1549
$$

$$
B=0^{\circ} 023
$$

$$
R=0.388
$$

which continue applicable to the end of the series. There are 26 days in the first adjustment and 19 days in the second, giving

$$
a \mathrm{P}=0^{\prime} 115 \times 1^{\prime} 22=0^{\prime} \cdot 1402
$$

for the value applicable to the diurnal curve obtained by uniting the whole.

Increasing numbers in every case denote increase of Vertical Force or Dip.

The means of the Inclinometer scale readings at this station will be found in Table XXXV.

IRREGULAR FLUCTUATIONS OF TEE MAGNETIC ELEMENTS.

It has been shown in the preceding sections, by an arbitrary selection of days regarded as free from magnetic disturbance, that the portion of the mean diurnal curve of each of the elements, which owes its peculiar character most to the influence of what are usually called the irregular movements, is comprised between midnight and 7^{h} or 8^{h} A.m., and their effect, as far as can be inferred from the proportionate reduction in the deviation of the magnet from its mean position, made by rejecting them, is much the greatest during that part of the night. As regards the Declination, at least, this result is unexpected, being different from the conclusion to which Colonel Sabine and Dr. Lloyd have been led by their examination of the observations of Toronto and Dublin respectively, and is of so much importance that, it will be necessary to investigate it more fully.
If we take the difference between the scale reading $\left(\psi_{h}\right)$ at each hour of observation, and the monthly mean at the same hour $\overline{\left(\psi_{h}\right)}$, the square root of the mean of the squares of these differences $\sqrt{\frac{\Sigma}{n}\left(\psi_{h}-\overline{\psi_{h}}\right)^{2}}$ is a quantity regarded by Colonel Sabine* as the mean effect of the irregular disturbing force at the hour, and is called by Dr. Lloyd the mean disturbance \dagger, being analogous to the mean error of an observation at that hour ; similarly $\sqrt{\overline{\bar{\Sigma}^{\prime}}\left(\psi_{h}-\overline{\psi_{h}}\right)^{\prime}}$ gives the value for a whole month, or longer period, N being the total number of observations, and Σ^{\prime} the sum of all the squares. These quantities have been calculated for each of the elements at

[^14]both the northern stations, and for some of them at Toronto, Philadelphia, and Sitka, with the view of giving stronger prominence to the peculiarity of the others. The work was first done, employing the observations as they stand in the abstracts, but it was evident, while the law is thus deducible, and the quantities for the several hours are relatively correct, their absolute values, when the scale readings of the instrument have undergone any considerable regular change, whether of a periodic or instrumental character, are very much exaggerated, and altogether deceptive. In these cases the scale readings at the beginning and end of the month differ from its mean $(\bar{\psi})$ by a quantity which includes, with the irregular fluctuation, the amount of the regular change in half the month. The differences between the successive fortnightly mean values in Table XI., show how considerable this change was in the Horizontal Force and Inclination at Lake Athabasca; it was equally large in the Declination at Fort Simpson ; all these differences $\left(\psi_{k}-\overline{\psi_{k}}\right)$ therefore were exaggerated to an amount proportioned to their interval in time from the middle period. It was thought worth while, in the case of the elements just named, to endeavour to eliminate this change, which was done by assuming that all the daily means of each month would, but for this cause, have been equal, and that the difference of each from the mean of the whole was a measure of the amount of the progressive change to be eliminated in the interval elapsed between that day and the middle day. Each daily mean therefore furnishes the equation $n e-\left(\psi_{n}-\bar{\psi}\right)=0$, where e the value of the daily change required, and n the interval in days; by summing these equations in the usual manner, a mean value of the quantity e was obtained for each month, and this again, being multiplied by n, was added to, or substracted, as the case might be, from all the scale readings of each day, and the differences taken anew from the readings thus corrected. The values of e actually employed, or the approximate change of mean scale reading from day to day, were as follows:-Bifilar at Lake Athabasca, for the month of November 2.47 divisions, for the month of February $2 \cdot 16$ divisions; Incunometer, November 1'29 divisions, December 0.91 divisions, January $0{ }^{\circ} 75$; for the other months the change did not appear large enough to call for the correction. Again, for the Declination at Fort Simpson, from the lst to the 27 th April 1.537 divisions, from the 28th April to the 24th May $1 \cdot 268$ divisions. In the following tables the quantities given are those derived from the readings thus corrected.

TABLE XL.
Value of the Mean Disturbance of the Declination, taken without regard to sign, at the several observation hours at Lake Athabasca, to which are added the corresponding quantities for the same period at Toronto and Sitka, the whole expressed in Arc.

Local Mean Time.	Lake Athabasca 1843-4.						$\frac{\text { Toronto. }}{\frac{\Sigma}{\mathrm{N}}}$	$\frac{\text { Sitka. }}{\frac{2}{N}}$
	Oct.	Nov.	Dec.	Jan.	Feb.	$\frac{\Sigma}{N}$		
Midnight	$7 \cdot 84$	$4 \cdot 51$	8'69	${ }^{10} \cdot 82$	${ }^{9} \cdot 06$	$\stackrel{8}{8} \cdot 50$	${ }^{1} 172$	${ }_{4} \cdot 36$
$1{ }_{2}^{\text {A.M. }}$	9:85	- $\begin{aligned} & 8 \cdot 61 \\ & 8.93\end{aligned}$	$\xrightarrow{7} 9.05$	- $13 \cdot 54$	9.06 8.69 8.6	$9 \cdot 87$ 8.85	(1.33	${ }^{4} \cdot 188$
3 ",	-6.28	4.54	7.69	13.05 9.75 109	8.69 8.01 8	${ }^{8} 8 \cdot 65$	1.60	- ${ }_{2 \cdot 6 \%}$
${ }^{4}$ ",	$18 \cdot 90$	${ }^{9} \cdot 148$	5:35	${ }^{12} 976$	${ }^{8.53}$	${ }^{10} 10.98$	${ }^{1.52}$	2:92
${ }_{6}$ \%"	${ }_{18} 18.67$	-	\% 7.88	${ }^{27} 1 \cdot 946$	10.16 8.36	${ }_{10}^{15} \cdot 60$	- 1.67	- ${ }_{2}^{2.75}$
7	7.16	${ }_{5}^{5} \cdot 96$	12.42	8.03	${ }^{6 \cdot 83}$	${ }^{8.48}$	${ }^{1} 1.29$	2.88
${ }_{8}$	${ }_{4} \cdot 20$	2.41	${ }_{4}{ }_{4} 82$	${ }_{4}^{5} \cdot 39$	${ }_{6}{ }^{5} 1{ }^{2}$	${ }^{5}$	${ }_{1} 1.89$	${ }_{2} \cdot 80$
10	$\stackrel{4}{4} \cdot 7$	3:65	6.80	$5 \cdot 20$ 4.30	${ }^{4} 5$	${ }_{5}^{5 \cdot 14}$	-1.52	- 3.10
Noon'	3.71 4.24	4:51	6.52	$4 \cdot 30$ $4 \cdot 49$			1.68 1.61	- $\begin{aligned} & 2 \cdot 79 \\ & 8.67\end{aligned}$
1 P.M.	${ }_{2}$	${ }_{3} \cdot 65$	${ }_{4} \cdot 67$	${ }_{4} \cdot 69$	${ }_{4}^{4} \cdot 73$	${ }_{4}^{4} 27$	1.54	${ }_{2}$
${ }_{3}$ "	- $\begin{aligned} & 3.32 \\ & 4.39\end{aligned}$	${ }_{2}^{2.52}$	${ }^{6} 5$	5.16	4.51	4:68	1.34	2.20
$\stackrel{3}{4}$ ",	4.39 4.10		${ }_{5}^{5} 547$	5.84 4.95	${ }_{4}^{4.26}$	-	${ }_{1}^{1.31}$	${ }_{1}$
5		${ }^{3} \cdot 14$	3.67	3:84	3.98	3:67	1.65	$1 \cdot 81$
${ }_{7}^{6}$	5.38 4.20	- $4 \cdot 27$	3.47 3.36	- 4 4.42	-	${ }_{3}{ }^{4} 76$	-	${ }_{3}^{1 \cdot 09}$
8	${ }^{4} 778$	${ }_{3}{ }_{3} \times 71$		$5 \cdot 28$ $5 \cdot 58$	4.92 8.62	㐌: 62	- $\begin{aligned} & 1.53 \\ & 2.16\end{aligned}$	2.47
10	13.20	15:36	9.97	${ }_{4.10}$	- 4.49	${ }_{10} 18$	${ }_{2}$	[3.43
11 "	19•80	8.59	4:37	$0 \cdot 33$	$5 \cdot 63$	9.71	2.35	$3 \cdot 32$

a Irregularity produced by a single unusual observation. See remark below.
It appears that the mean disturbance of the Declination at Lake Athabasca, or the mean disturbing force, if that term is preferred, is nearly constant, and at its lowest amount from 9 A.M. to 7 P.M.; it is greatest at 5 A.M., but an inferior maximum is presented at 10 P.M., which is the hour at which the greatest value prevails at Toronto and at Dublin. We have consequently an indication of the existence of at least two classes of irregular movements, the one due to causes which apparently act universally, the other due to some cause which only comes into operation in high magnetic latitudes. The characteristics of the curve for the five months in question at Toronto, are a nearly uniform value from 8 A.M. to p.m., when it begins to diminish ; it is least at 7 p.m., and then increases regularly until 10 p.M., when it is greatest; it diminishes again until midnight, but appears to vary little during the night. There are indications in each of the three curves of a small increase in the mean disturbance about noon. Referring next to the mean for the Russian station at Sitka, the nearest geographically to Lake Athabasca, we find a manifest approximation to the law which prevails at the latter station; the greatest mean disturbance is shown at midnight, but high values prevail from 10 p.m. to 2 a.m. The lowest value is here also at 5 P.M.

There are two observations included in the series at Lake Athabasca taken during disturbance, which differ so much from the means for the same hours, as to produce a considerable effect upon the final result. These occurred on January $25^{\mathrm{d}} 1^{\mathrm{h}}$, and February $2^{4} 7^{\mathrm{h}}$, Göttingen ; by omitting them and taking fresh means for those hours, the mean disturbance for 5 A.m. becomes $10^{\prime} 63$, and that for 11 A.m. becomes $5^{\prime} \cdot 28$, which are in accordance with the values before and after them. The quantities for the individual months in these cases are then $14^{\prime} 56$ and $6^{\prime} 37$ respectively.

The preceding results are independent of the direction of the disturbance. The next Tables are formed by taking the sum of the squares of the easterly and westerly deviations separately, and dividing them by their proper number. It sometimes happens that the scale reading at an individual observation is exactly equal to the mean; in this case the difference being ± 0, the observation is not included in the number with either divisor, but being included for the disturbance without regard to sign, Table XL., occasions that value to.be apparently less than, from the values for the same hours under the special signs, it should be; but such is not really the case.

TABLE XLI.

Value of the Mean Easterly Disturbance of Declination at the same stations and for the same period.

Local Mean Time.	Lake Athabasca 1843-4.							Toronto.		Sitka.	
	Oct.	Nov.	Dec.	Jan,	Feb.	$\frac{\sum(E)}{N}$	Excess.	$\frac{\Sigma(E)}{N}$	Excess.	$\frac{2(E)}{N}$	Ex- cess.
Midn. -	$4 \cdot 0$	${ }_{4}^{4} \cdot 3$	12.0	$7 \cdot 8$	10.5	$8 \cdot 17$		$2 \cdot 16$	0.85	5.07	1.37
1 A.M. -	6.2	11.3	4.1	14.2	8.9	$9 \cdot 63$		$1 \cdot 66$	$0 \cdot 59$	$4 \cdot 62$	$0 \cdot 65$
$\underset{3}{2}$ "	10.5 5.6	2.8 6.0	11.6 8.0	$20 \cdot 1$ $13 \cdot 2$	6.3 7.0	${ }^{11} 116$	$4 \cdot 15$	1.75	0.27 0.56	4.07 3.18	1.30
4 "	$32 \cdot 2$	17.7	8.4	${ }_{6}{ }_{6} \cdot 4$	7.2	13.31	${ }_{3}^{1 \cdot 71}$	1.93 1.59	0.56 0.12	${ }_{2}^{3} 118$	0.41
5 ",	$16 \cdot 1$	$8 \cdot 7$	$8 \cdot 3$	$23 \cdot 6 a$	13.8	$14 \cdot 46 a$	$7 \cdot 58$	$1 \cdot 68$		${ }_{2}{ }^{3} 9.14$	$0 \cdot 20$
6 "	$37 \cdot 3$	$10 \cdot 7$	$9 \cdot 2$	16.9	$11 \cdot 3$	18.06	11.55	1-37		$2 \cdot 69$	
7 "	$8 \cdot 7$	$9 \cdot 4$	18.0	$10 \cdot 3$	9.0	12.02	6.62	$1 \cdot 33$	0.01	$2 \cdot 47$	
8 "	3.3	$7 \cdot 2$	6.3	6.5	6.8	6.22	$1 \cdot 33$	$1 \cdot 19$		$2 \cdot 56$	
${ }_{10}^{9}$ "	$4 \cdot 1$ $4 \cdot 6$	$2 \cdot 1$	4.7	$4 \cdot 7$	$5 \cdot 9$	${ }_{4}^{4} 96$	0.37	$1 \cdot 35$		$2 \cdot 65$	
11 "	$2 \cdot 5$	$4 \cdot 2$	$7 \cdot 2$	$4 \cdot 7$	${ }_{6} \cdot 5$	${ }_{5} \cdot 28.2$	$0 \cdot 34$	1.34 1.43		2.45	
Noon	$2 \cdot 9$	3.4	$5 \cdot 1$	$4 \cdot 9$	$4 \cdot 1$	$4 \cdot 29$		1.29		${ }_{2}$	
1 P.M.	$\stackrel{2}{2}$	$3 \cdot 4$	3.9	$5 \cdot 1$	$3 \cdot 7$	$3 \cdot 89$		1.46		$2 \cdot 15$	
2 "	$2 \cdot 2$	$2 \cdot 5$	$5 \cdot 4$	4.3	$5 \cdot 1$	$4 \cdot 40$		$1 \cdot 18$		$2 \cdot 65$	$0 \cdot 29$
3	3.8	$2 \cdot 6$	4.7	$4 \cdot 2$	4.6	4.04		$1 \cdot 24$		$2 \cdot 06$	
${ }_{5}{ }^{4}$	3.4 2.8	$2 \cdot 9$	5.8 8.5	4.7 3.8	4.1	4.35		1.03		1.92	
${ }_{6}$ "	2.8 5.9	2.5 3.2	3.5 3.6	3.8 5.4 S	3.6	3.28		$1 \cdot 51$		$1 \cdot 96$	$0 \cdot 27$
7 ",	- ${ }_{3} \cdot 9$	${ }_{3} \cdot 6$	3.0	5.4	5.0 4.6	$\stackrel{4}{4 \cdot 47}$	0.12 0.68	2.34	1.32 0.49	1.91	
8	$3 \cdot 6$	$4 \cdot 3$	$4 \cdot 6$	6.2	${ }_{5} \cdot 3$	4.93	0.55	${ }_{2}^{133}$	${ }_{0} \cdot 49$	203	1.91
9 "	6.1	$2 \cdot 8$	$5 \cdot 2$	$8 \cdot 2$	$7 \cdot 9$	$6 \cdot 55$	$0 \cdot 47$	${ }_{3} \cdot 51$	$2 \cdot 38$	2.85	0.70
10 "	16.5	21.0	$15 \cdot 1$	5.0	4.0	12.80	$4 \cdot 98$	4.93	$3 \cdot 75$	$4 \cdot 25$	$1 \cdot 68$
11 "	$32 \cdot 3$	$5 \cdot 7$	$5 \cdot 1$	13.3	$0 \cdot 9$	11 '77	3.97	$1 \cdot 92$		$4 \cdot 17$	1.74

[^15]
Table XLII.

\qquad
Value of the mean westeriy Disturbance of Declination at the same stations, and for the same period.

$\begin{aligned} & \text { Local } \\ & \text { Mean } \\ & \text { Thme. } \end{aligned}$	Lakn Athabasca 1843-4.							Toronto.		Sitka ${ }^{\text {a }}$	
	Oct.	Nov.	D*s.	Jan.	Feb.	$\frac{\text { 2 (W) }}{\text { N }}$	Exciss.	$\frac{\Sigma(W)}{\text { N }}$	Excess.	$\frac{2(W)}{N}$	zux.
Midn.	$18 \cdot 2$	$4 \cdot 9$	$5^{6} \cdot 5$	14:9	$7 \cdot 5$	$8{ }^{8} 95$	${ }^{6} \cdot 78$	${ }_{1} 1.1$	-'	8.70	-
1 A.M. -	14.9	5.6	10.0	12.8	$9 \cdot 1$	10'14	0.51	1.07	- -	8.97	-
2 "	6.5	3.2	4.8	8.0	11.2	7.01		$1 \cdot 48$	- -	$2 \cdot 77$	-
3 "	6.9	25	$5 \cdot 2$	7.5	$8 \cdot 7$	$8 \cdot 56$		1.37	- -	$2 \cdot 77$	-
4 \%	$9 \cdot 3$	$3 \cdot 3$	$5 \cdot 7$	14.5	$9 \cdot 6$	$9 \cdot 46$		1.46	- -	2.67	-
5	$12 \cdot 2$	$4 \cdot 4$	$5 \cdot 9$	716	$5 \cdot 9$	6.883		1.70	0.02	$2 \cdot 74$	-
6 "	2.5	$4 \cdot 7$	8.5	6.1	5.6	6.51	- -	$2 \cdot 18$	0.81	$2 \cdot 81$	$0 \cdot 12$
7 "	$5 \cdot 6$	40	6.3	6.2	4.8	$5 \cdot 40$		1.32	- -	819	0.72
8 "	9.0	3.8	4.0	4.9	4.6	$4 \cdot 89$	- -	$2 \cdot 34$	1.05	3.20	0.64
9 "	$2 \cdot 2$	2.8	$5 \cdot 0$	$4 \cdot 2$	0.5	4.59		$2 \cdot 08$	0.78	296	0.31
10 "	$5 \cdot 7$	2.8	$6 \cdot 9$	$5 \cdot 3$	4.4	$5 \cdot 00$		1.65	0.81	$3 \cdot 73$	1.28
11 "	77	4.8	$5 \cdot 9$	3.5	6.26	$5 \cdot 286$	- -	1.95	0.52	8.07	0.58
Noon	$4 \cdot 8$	4.6	$5 \cdot 4$	$4 \cdot 2$	$5 \cdot 4$	4.84	0.55	\&01	$0 \cdot 72$	3.01	$0 \cdot 66$
$1 \mathrm{P} . \mathrm{M}$.	2.9	3.9	$5 \cdot 5$	$4 \cdot 2$	5.8	4,69	0.81	1 '65	$0 \cdot 19$	$2 \cdot 94$	0:79
2 "	$5 \cdot 1$	$2 \cdot 8$	$7 \cdot 5$	6.0	4.0	$5 \cdot 34$	0.94	1.57	0.39	$2 \cdot 36$	-
3 \%	5.3	31	$5 \cdot 7$	$7 \cdot 8$	$4 \cdot 2$	$5 \cdot 37$	$1 \cdot 38$	$1 \cdot 71$	0.47	$2 \cdot 23$	0.17
4 "	$4 \cdot 8$	$2 \cdot 6$	$5 \cdot 1$	$5 \cdot 1$	4.4	$4 \cdot 48$	$0 \cdot 13$	1.81	0.78	1.98	0.08
5 "	$5 \cdot 4$	$3 \cdot 8$	$3 \cdot 8$	$3 \cdot 6$	4.4	4.09	0.81	1.86	0.85	1.69	-
6 "	4.5	5.8	4.3	$3 \cdot 7$	$3 \cdot 9$	$4 \cdot 35$	- -	1.02		1.95	0.04
7 "	$5 \cdot 5$	$2 \cdot 5$	$3 \cdot 8$	$3 \cdot 5$	$3 \cdot 1$	$8 \cdot 47$		0.84	- -	$2 \cdot 12$	-
8 "	6.0	31	$4 \cdot 3$	4.5	4.7	4's3	- -	0.88		$2 \cdot 06$	-
9	$9 \cdot 5$	$2 \cdot 8$	4.2	4.9	$9 \cdot 7$	6.08		$1 \cdot 13$		$2 \cdot 15$	-
10	10.9	$11 \cdot 4$	$5 \cdot 2$	33	$5 \cdot 1$	$7 \cdot 82$		1.18		$2 \cdot 57$	-
11	21.4	11.4	$3 \cdot 6$	6.8	$4 \cdot 4$	7•80	-	2.60	$0 \cdot 68$	$2 \cdot 43$	-
					*						

b The extreme readings of Jan. 25 and Feb. 2 have been omitted here. The mean disturbance W. is $7^{\prime} \cdot 77$ at 5 A.M., and $8^{\prime} \cdot 40$ at 11 A.M., if they are retained, the monthly values being $9^{\prime} \cdot 6$ and $18^{\prime} \cdot 2$ respectively.

In the column headed "Excess" the difference between the mean values E. and W. is shown in connexion with the one which is greatest. Thus, at midnight, Table XLII., the mean westerly disturbance of Declination is $0^{\prime} 78$ greater than the mean easterly.

It appears by the foregoing analysis, that the westerly deviations at Lake Athabasca are, to a small extent, greater than the easterly, from 11 A.M. to 5 P.M., and also at midnight and 1 A.m. During the
remainder of the night, and from 6 to 11 P.M., the easterly deviations are the greatest. Individual months present irregularities, as must be expected, but the general law is apparent in each of them; namely, a slight excess of westerly deviation during the day, and a much greater excess of easterly deviation during the night, but with atemporary preponderance of westerly tendencies at midnight; the latter particular agrees with Dr. Lloyd's deductions from the observations at Dublin. There is a considerable difference in the value of easterly and westerly tendencies at 10 P.M., a feature which these observations have in common with those at Dublin and Toronto; but the greatest difference is not as at the last-named stations at that hour, but much later in the night; it is shown from 4 to 7 A.M., and thü proves that the maximum value of the mean disturbance, included at those hours, is chiefly occasioned by easterly movements. There is no evidence in the means for five months at Sitka of that westerly tendency about midnight which is, with reference to the physical cause of the phenomena, perhaps, an important feature in the curves at the other stations; in other respects the same general law prevails; and it is interesting to observe, that although this station is in a high latitude, and nearer in point of distance by more than one half to Lake Athabasca than it is to Toronto, yet, being on nearly the same lines of equal magnetic inclination and intensity as the latter station, does not partake to a very much greater extent than Toronto in the great magnetic disturbances shown to prevail so commonly at Lake Athabasca.
Table XLIII.-Mean Disturbance of the Declination at Fort Simpson in April and May 1844;after correcting the scale readings for the progressive change alluded to above, together with the values of the same quantity for Toronto and Sitka. A Mean of the corrected readings at Fort Simpson, excluding incomplete days, is added; those days having been included in the Mean given Table.

Thëdiurnal law of mean disturbance of Declination indicated by the observations of April and May at Fort Simpson，appears to differ but little from that of the winter months at Lake Athabasca， as long as we disregard the sign of the movements．There is a maximum of total disturbance at 9 P．M．，and another at 5 A．N．，or about that hour，the latter being very far the most considerable； on referring，however，to the movements under the respective signs， it appears that the earlier of these two maxima is here caused by westerly and not by easterly movements，the great length of the day at this season having apparently the effect of protracting untii a late hour of the night，and of increasing in relative importance the westerly tendency，which was also shown to be characteristic of the hours of the afternoon in the winter months．The very great increase in the amount of the mean disturbance is also apparently a result of the advance of the season，being participated in to a certain degree by all the stations．The apparent anomaly of an excess of westerly movements at Sitka，distant less than 500 miles from Fort Simpson，at two hours（ 3 and 4 A．m．）when the contrary ten－ dency prevails at the latter station，is most remarkable；but this is not the place to follow out the inquiry it demands．

Table XLIV．

Mean Disturbance of the Horizontal Force and Inclination at Lake Athabasca，after applying the corrections specified abroe（page 75），for the changes of mean scale reading；final ineans for the whole period expressed in scale divisions．

$\begin{aligned} & \text { Hour } \\ & \text { of } \\ & \text { Local } \\ & \text { M.'T. } \end{aligned}$	$\underset{k={ }^{\text {Bifilar }} 00341 \mathrm{X}}{\mathrm{X}}$			Excess．		Inclinometer $a P=0^{\prime} 170$ ．			Excess．	
	－	＋	Total．	－	$+$	＋	－	Total．	＋	－
18.	$49 \cdot 2$	$22 \cdot 1$	$32 \cdot 9$	$27 \cdot 1$	－	$75^{\circ} 6$	21.0	$42 \cdot 9$	$54 \cdot 6$	－
17		20.4			－		15.0	$31 \cdot 1$	37.2	－
18	25．9	16.1	$\stackrel{21.2}{2}$	988	－	$29 \cdot 8$	10.8	20.0	19.0	
${ }_{20}^{19}$	$22 \cdot 9$ 21.6	14.3 13.6	18.5 17.5	8.6 8.0	二	21．4	$9 \cdot 8$ $10 \cdot 3$	${ }^{16} 7$	$14 \cdot 9$	
20 21	21.6 18.6	13.6 13.1	17.5 15	8．0	二	12.0 14.9	10.3 9.4	$11 \cdot 1$ 12	1.7 5.5	－
22	15.5	$12 \cdot 7$	14.1	$2 \cdot 8$	－	$17 \cdot 3^{*}$	$8 \cdot 2$	12.8	${ }_{9}{ }_{9} \cdot 1$	－
23	12.3	$12 \cdot 7$	12.5	－	0.4	0.1	$8 \cdot 1$	$8 \cdot 6$	1.0	
Noon	12.5	$11 \cdot 7$	$12 \cdot 1$	0.8	二	$8 \cdot 6$	7.9	8.3	0.7	－
$\frac{1}{2}$	13.5 12.5	13.1 12.6	$13 \cdot 3$ 12.6	$0 \cdot 4$	$\overline{0.1}$		6.7 8.7	7.4 8.3	$1 \cdot 5$	0.8
8	13.0	$12 \cdot 9$	12.9	$0 \cdot 1$	－	${ }_{6 \cdot 6}$	8.0	8.3 $7 \cdot 3$		0.8 1.4
4	$13 \cdot 9$	$12 \cdot 1$	13.0	1.8	－	$7 \cdot 2$	8.7	$8 \cdot 0$	－	1.5
5	$13 \cdot 1$	12.6	$12 \cdot 8$	0.5		$5 \cdot 8$	$9 \cdot 1$	$7 \cdot 4$		$3 \cdot 8$
7	14.2 13.3	13.0 12.7	13.6 13.0	1.2 0.6	－		$9 \cdot 3$ 10.5	8.3 9.2		2.1
7	$13 \cdot 3$ $13 \cdot 8$	12.7 15	13.0 14.7	0.6	$\overline{1.6}$	77	$10 \cdot 5$ 12.3	$\stackrel{9 \cdot 2}{9.8}$		2.8 4.4
9	$16 \cdot 5$	18.4	$17 \cdot 4$	－	1.9	12.0	18.6	$15 \cdot 1$		6.6
10	$15 \cdot 2$	16.4	15.8	－	$1 \cdot 2$	$8 \cdot 1$	$17 \cdot 2$	$12 \cdot 3$		$9 \cdot 1$
11	$17 \cdot 3$	$20 \cdot 8$	19.0		$3 \cdot 5$	13.6	$22 \cdot 3$	17.4		8.7
Midn．	${ }^{29} 3 \cdot 1$	18.6 17.5	23.4 25.1	10.5 15.9	－	$37 \cdot 7$ 63.6	$14 \cdot 2$ 17	$25 \cdot 7$ 37%	23.5 45.8	
14	38.9	$17 \cdot 9$	$26 \cdot 7$	21.0	二	51.5	17.9	${ }_{30} \cdot 6$	${ }_{33}$	
15	$55 \cdot 9$	$19 \cdot 7$	$35 \cdot 2$	$30 \cdot 2$	－	91．0	21.7	$48 \cdot 5$	$72 \cdot 3$	－

[^16]It appears by the abo e table that the mean disturbance of both the Horizontal Force and Inclination, taken without regard to sign; is greatest at 3 A.M., being two hours earlier than the epoch of greatest disturbance of the Deciination, and the subordinate maximum, which is shown by the latter element at 9 or 10 p.m., is wanting in these. The tendency to disturbance is very nearly constant, and at its lowest value, by both elements from 11 A.m. to 8 P.m. ; it then begins to increase, but not very rapidly, until 11 p.m. ; between this hour and midnight there is a large increase, after which very high values are maintained until 5 A.m. Referring again to the relative values, under the positive and negative signs, we find that there is a very great preponderance of negative movements of force and increasing inclination from midnight to 5 . A.m. ; but for some hours before midnight the contrary tendency prevails, namely, to increase of Horizontal Force and decrease of Inclination; and this latter appears to be more or less the case throughout the day, but the mean disturbance being comparatively small and the opposite tendencies nearly balanced; the latter conclusion is less certain.

All three elements then agree in supporting the conclusion drawn from the daily mean curves in the preceding part of the volume, that at Lake Athabasca a different periodical law governs the irregular fluctuations from the one established for stations in lower magnetic latitudes, or that the reaction succeeding the direct influences preponderating during the day, has its maximum influence at a much later hour. It also appears from the observations, that so regular in their operations in these regions are the so called irregular influences, that the denomination might with propriety be reversed, the observations of four or five months being sufficient to show that the mean diurnal curves of all the elements derive their chief characteristics from them. We have also seen that a similar result as far as regards the Declination is deducible from the observations of only 46 days at Fort Simpson. As the other instruments were twice adjusted in this short period, it would be scarcely worth while under ordinary circumstances to refer to them. For the purpose, however, of adding all the confirmation possible to the periodical law in question, I have calculated the mean disturbance of the Horizontal Force and Inclination at this station also; the results are contained in the next table, and are in complete accordance with the deductions from the longer period of observation.

Table XLV.

Mean Disturbance of the Horizontal Force and Inclination, as shown by 46 days of observation at Fort Simpson, in April and May 1844, expressed in scale divisions of the instruments.

Local Mean Time.	$\begin{gathered} \text { Bifilar. } \\ k=\cdot 000291 \mathbf{X} . \end{gathered}$			Excess.		Inclinometer $a \mathrm{P}=0^{\prime} \cdot 140$:			Excess. ${ }^{\text {/ }}$	
	\square	$+$	Total.	-	+	+	-	Total.	+	-
1515	83.0	$35 \cdot 8$	54'1	$47 \cdot 2$	-	137.0	70.0	101.6	67.0	-
1615	$82 \cdot 9$	$89 \cdot 3$	$57 \cdot 2$.	$43 \cdot 6$	-	$192 \cdot 5$	78.4	128.4	$119 \cdot 1$	-
1715	$72 \cdot 8$	$32 \cdot 6$	$47 \cdot 8$	$40 \cdot 2$	-	$150 \cdot 7$	$61 \cdot 1$	98.9	$88 \cdot 7$	-
1815	$57 \cdot 6$	$28 \cdot 2$	$40 \cdot 5$	$29^{\circ} 4$	-	120'1	$47 \cdot 8$	78^{\prime} '4	$72 \cdot 3$	-
1915	$67{ }^{\circ} 2$	$27 \cdot 1$	$45 \cdot 3$	$40^{\circ} 1$	-	$131 \cdot 2$	48.8	$83 \cdot 7$	$82 \cdot 4$	
2015	61.6	20.9	$38 \cdot 3$	$40 \cdot 7$	-	$108 \cdot 6$	$38 \cdot 7$	$64 \cdot 9$	$74 \cdot 9$	
- 2115	38.5	$13 \cdot 4$	$25 \cdot 1$	$25 \cdot 1$	-	57.8	$23 \cdot 2$	$39 \cdot 2$	$34 \cdot 6$	-
- 22715	$15 \cdot 6$	$9 \cdot 5$	$12 \cdot 5$	$6 \cdot 1$	-	35.5	21.4	$27 \cdot 9$	14'1	-
-2315	$10^{\circ} 9$	15.6	$13 \cdot 4$	-	$5 \cdot 7$	$17 \cdot 3$	$13 \cdot 5$	$15^{\prime 2}$	$3 \cdot 8$	-
Noon 15	$13 \cdot 7$	9.4	$11 \cdot 3$	$4 \cdot 3$	-	$21 \cdot 7$	19.2	$20 \cdot 4$	$2 \cdot 5$	-
115	$12 \cdot 3$	$13 \cdot 3$	12.8	$\underline{-}$	$1 \cdot 0$	20.3	$20 \cdot 8$	23.3	-	$6 \cdot 5$
215	$12 \cdot 3$	$18^{\prime} 6$	14.8	-	$6 \cdot 3$	$18 \cdot 4$	$27^{\cdot 6}$	$23 \cdot 2$	-	$9 \cdot 2$
315	14.0	$24 \cdot 8$	$19 \cdot 2$	-	$10 \cdot 8$	24.6	$27 \cdot 9$	26.3	\square	$3 \cdot 3$
. 415	16.8	23.8	$19 \cdot 5$	-	$7 \cdot 0$	$17 \cdot 2$	$38 \cdot 9$	27.5	\cdots	21.7
515	$17 \cdot 2$	29.4	$22 \cdot 5$	-	$12 \cdot 2$	$20 \cdot 6$	46.5	$32 \cdot 3$	-	$26 \cdot 1$
615	16.6	$33 \cdot 5$	$23 \cdot 9$	-	16.9	21.1	$42 \cdot 9$	32.3	\square	21.8
715	$15^{\circ} 2$	23.6	$19 \cdot 2$	-	$8 \cdot 4$	18.5	$13 \cdot 4$	25.6	$5 \cdot 1$	-
. 815	$17 \cdot 3$	21.0	$19^{\circ} 2$	-	$3 \cdot 7$	$17 \cdot 3$	$27 \cdot 1$	21.8	-	$9 \cdot 8$
915	$25^{\circ} 4$	21.8	23.4	$3 \cdot 6$	-	46.8	$38 \cdot 5$	43.0	$8 \cdot 3$	-
1015	25.6	16.9	$20 \cdot 6$	$8 \cdot 7$	-	41.9	31.6	$37 \cdot 0$	$10 \cdot 3$	-
21115	$31 \cdot 1$	$18 \cdot 1$	$24 \cdot 1$	13.0	-	71.5	31.6	49.6	$39 \cdot 9$	-
Midn. 15	$52 \cdot 3$	$20 \cdot 9$	37.0	31.4	-	96.0	39.5	68.0	$56 \cdot 5$	-
1315	$50 \cdot 2$	20.4	$35^{\circ} 0$	$29 \cdot 8$	-	$92 \cdot 9$	$35 \cdot 2$	59.5	$57 \cdot 7$	
1415	48.8	$20 \cdot 1$	$35 \cdot 3$	$28 \cdot 7$	-	$112 \cdot 1$	$39^{\circ} 0$	$75 \cdot 5$	$73 \cdot 1$	

The co-efficients are added above for convenience, but the values given are probably somewhat exaggerated by the causes before mentioned. 'They represent the relative amount of the disturbing force affecting the Horizontal Force and Inclination, at the different hours of the day and night; and it must be remarked, that the values themselves are so great, that a reduction, of even a fourth part, would still leave them considerable enough to prove, that the force and activity of the causes producing irregular magnetic fluctuations, in the region to which they belong, must be a matter of not less interesting inquiry than the peculiarity of their epoch. For example, the means of total disturbance of the three first hours of the last table, when reduced by one fourth, represent ' 011 X and $12^{\prime \prime} \cdot 4$ of Inclination respectively.

The next Table is added for the purpose of completing the comparison attempted in this Report, by bringing into one view the results at all the chain of American stations; and it is of particular interest, as showing a manifest progression, inclining towards the characteristics presented at the northern stations. This is not a proper place to pursue at length the details of such a comparison, or to enter upon the very interesting subject of the annual variations of the mean curves which represent the tendency to disturbance at each hour ; but it is desirable to give all the confirmation which can be derived from observations in lower magnetic latitudes, of the special
form in which these phenomena present themselves in higher ones, the calculation has been extended to include a full year of observations at the three permanent observatories.

Table XLVI.

Mean Disturbance of the Declination for one year, October 1843 to September 1844, at Philadelphia, Toronto, and Sitka, expressed in arc.

$\begin{gathered} \text { Local } \\ \text { Mean Time. } \end{gathered}$	Philadelphia,			Toronto.			Sitka.		
	E.	W.	Total.	E.	W.	Total.	E.	W.	Total.
Midnight	${ }^{2} \cdot 26$	${ }^{\prime} \cdot 2 \cdot 2$	2'21	3 $3 \cdot 23$	${ }^{2} \cdot 52$	$\stackrel{1}{2} 80$	5.65	${ }_{3}{ }_{60}$	${ }_{4}{ }^{\prime} 57$
1A.M.	$2 \cdot 40$	$1 \cdot 88$	$2 \cdot 10$	3.69	1.82	$2 \cdot 66$	$5 \cdot 95$	4.00	4.95
2	$2 \cdot 41$	$2 \cdot 17$	$2 \cdot 29$	$3 \cdot 43$	$1 \cdot 83$	2.58	4.53	3.63	$4 \cdot 67$
3	$2 \cdot 37$	$2 \cdot 23$	$2 \cdot 29$	3.38	$2 \cdot 37$	$2 \cdot 86$	$4 \cdot 16$	$4 \cdot 49$	4.35
${ }_{5}$	$2 \cdot 12$ 1.93	1.70 $2 \cdot 34$	${ }_{2}^{1} \cdot 91$	$2 \cdot 96$ $2 \cdot 18$	$2 \cdot 53$ 3.03	2.73 $2 \cdot 63$	4.08 3.90	$5 \cdot 30$ 3.11	$4 \cdot 98$ 8.51
6	$1 \cdot 77$	$2 \cdot 45$	2.08	1.88	$2 \cdot 76$	$2 \cdot 31$	$3 \cdot 26$	${ }_{2} \cdot 77$	8.03
7	$1 \cdot 76$	$2 \cdot 65$	$2 \cdot 20$	1.78	$4 \cdot 18$	$3 \cdot 02$	$2 \cdot 75$	2.98	$2 \cdot 88$
8	1.86	$2 \cdot 16$	$2 \cdot 0$	1.63	3.06	$2 \cdot 21$	$2 \cdot 92$	$2 \cdot 86$	$2 \cdot 91$
9	$1 \cdot 90$	$2 \cdot 55$	$2 \cdot 19$	1.65	$2 \cdot 29$	$1 \cdot 95$	$2 \cdot 41$	$2 \cdot 91$	$2 \cdot 65$
10	$1 \cdot 72$	$2 \cdot 14$	$1 \cdot 91$	1.93	$2 \cdot 17$	2.04	$2 \cdot 46$	${ }^{3} 7.79$	${ }^{3} 114$
11	1.87	2.02	$1 \cdot 93$	2.05	$2 \cdot 09$	2.05	$2 \cdot 34$	3.32	$2 \cdot 83$
Noon	$1 \cdot 72$	1.89	1.81	$1 \cdot 71$	1.95	1.81	$2 \cdot 15$	3.06	$2 \cdot 60$
1 P.M.	1.60	1.72	$1 \cdot 65$	1.67	1.93	$1 \cdot 79$	$2 \cdot 09$	$\stackrel{2}{2} 71$	${ }^{2} \cdot 40$
	1.65	2.00	$1 \cdot 76$	1.56	2.08	1.80	2.08	2.36	$2 \cdot 22$
8	1.51	$2 \cdot 06$	1.77	${ }^{1} 162$	$1 \cdot 88$	$1 \cdot 75$	$2 \cdot 17$	2.59	$2 \cdot 38$
4	$1 \cdot 61$	1.92	1:74	1.60	1.86	1.66	$2 \cdot 21$	$\stackrel{2}{2 \cdot 69}$	$2 \cdot 45$
	1.66	$1 \cdot 70$	1.67	${ }_{2} \cdot 62$	$1 \cdot 80$	1.90	$2 \cdot 20$	${ }^{2} \cdot 83$	$2 \cdot 52$
7	1.55	1.72	$1 \cdot 62$	$2 \cdot 11$	$1 \cdot 57$	1.80	$2 \cdot 90$	$2 \cdot 52$	${ }^{2} \cdot 71$
7	$2 \cdot 48$ 3.78	1.32 1.49	1.86	$2 \cdot 58$ $5 \cdot 18$	1.33 1.75	1.89 $\mathbf{3} \cdot 28$	4.92 5.92	2.74 3.03	$3 \cdot 82$ $4 \cdot 50$
8	3.86	1.47	${ }_{2} \cdot 61$	5.04	1.77	3.17	5.05	${ }_{3} \cdot 94$	4.05
10	$8 \cdot 81$	1.56	$2 \cdot 59$	$4 \cdot 90$	1.97	3.32	5.89	3.06	4.42
11	$2 \cdot 36$	1.56	1.88	3.60	$2 \cdot 10$	$2 \cdot 76$	$4 \cdot 35$	3.04	8. 67

The observations at Philadelphia were made 19^{m}, and those at Sitka 28^{n} after the hour named.

It appears by this Table that the characteristic of a maximum value of the mean disturbance of Declination, extending from 8 to 10 P.M., belongs alike to all the stations, and does not materially differ in relative prominence at any of them; when, however, we compare the course of the mean values during the later hours of the night, a well marked difference presents itself. At each station the maximum just referred to is due entirely to easterly movements, and at each station it is succeeded, in the course of the night, by two other maxima, the first of easterly and the second of westerly movements; it is in the relative prominence of these maxima that the results at the three stations exhibit the difference referred to. At Philadelphia they are too inconsiderable to produce any marked result in the mean taken irrespective of direction; at Toronto they are much more decided, and a comparatively high value of the latter prevails in consequence from 1 to 7 A.m. ; lastly, at Sitka they are sufficiently prominent to bear comparison with the maximum at 9 P.m., and so to prepare us for the result of observations in yet
higher latitudes, by which, as we have seen above, they are shown to outweigh the latter maximum so much, as to reduce it to comparative insignificance, and to make those hours of the night in which the forces producing these movements predominate, the most important of the twenty-four, as regards their influence on the character of the mean diurnal curves of each of the magnetic elements.

There is a test of a very simple nature which the numerous observations of disturbances enable us to apply, for the purpose of ascertaining whether there is a determinate direction in the movements of the Declination magnet upon these occasions, which is different at different hours of the day. This consists in reckoning the numbers of individual readings taken during disturbances, at which the magnet was east and west of its normal mean position for that day. The latter value is found by making each day of disturbance the centre of a group of five or seven complete days, and finding the mean scale reading of the whole.

Table XLVII.

Showing the total number of Readings during Disturbances at which the Declination magnet was east and west of its mean position.

Mean Time.	Athabasca.		Fort Simpson.		Mean Time.	Athabasca.		Fort Simpson.	
	East.	West.	East.	West.		East.	West.	East.	West.
$\underset{16}{h}$	272	24	159	15	h 4	-	-	3	8
17	247	11	120	7	5	-	-	-	49
18	174	27	66	1	6	1	3	-	48
19	86	3	55	-	7	27	6	-	27
20	48	14	15	-	8	35	25	4	18
21	27	21	12	-	θ	40	50	5	70
22	8	24	2	-	10	72	80	18	52
23	2	13	-	1	11	61	111	16	65
Noon	4	16	-	1	12	57	114	101	38
1	-	2	-	1	13	120	149	110	6
2	-	1	-	2	14	154	103	105	32.
3	-	1	-	17	15	237	44	168	27

The observations entered at 16^{h} mean time at Fort Simpson were taken at $16^{\mathrm{h}} 15^{\mathrm{m}}$ and so on. It appears from the above Table that from 3 to 7 A.m. the magnet at Lake Athabasca comparatively rarely passes to the westward of its mean position, and from 10 Am . to noon (and doubtless to 5 or 6 P.m.) comparatively rarely to the eastward of it. Westerly excursions have a preponderance which is not shown by the curve of mean disturbance from 9 P.M. to 1 A.m.
during the remaining hours (8 and 9 A.m. and 7 and 8 p.m.) easterly excursions preponderate. The tendency to westerly movements appears by this test also to be rather greater at Fort Simpson in April and May than at Lake Athabasca in the winter, as has been remarked in connection with Table XLIII. With regard to the apparent difference between the tendencies at 9 P.m. and the succeeding hours to 1 A.m. inferred from this Table and from the curve of mean disturbance (Table X.), it must be remarked, first, that no reference is here made to the relative magnitude of the movements to east and west, which is the subject of the other Table; secondly; that the present Table is derived from disturbances connected, it is probable, in almost every instance with the development of Aurora Borealis, that phenomenon having been visible during some part of every disturbance, on which the state of the sky permitted it to be seen with one exception. And it does appear from a careful comparison or the scale readings during disturbances visibly attended by Aurora, that the preliminary tendency in such instances is to a westerly range, the subsequent tendency to an easterly one. As the Aurora was most frequent at midnight and 1 A.m., the consequence of this distinction, if true, will be a comparative preponderance of westerly movements in the early hours of the night, but unless we admit that the same cause which produces the Aurora Borealis produces the ordinary reactionary or irregular movements, it does not appear to follow that the same law should be manifested by the entire body of observations embracing a great majority of hours on which no Aurora was present.
Shocks.-The following Table contains the total number of readings of the Declinometer which may be denominated shocks, according to the usual definition; that is in say, which differ from the mean scale reading for the same hour by a quantity equal to, or exceeding, twice the amount of the monthly mean irregular fuctuation of the element as defined by Colonel Sabine. (Introduction to Toronto Observations, vol. 1. p. xv.) The dates and particulars of these readings will be given in a future section, when we consider the degree of correspondence between the movements at Toronto and the northern stations.

Table XLVITI.

Showing the total number of Shocks or Disturbances of Declination, according to the definition of Colonel Sabine just referred to.

Mean.	: Athabasca,			Fort Simpson.			Mean	Athabasca.			Fort Simpson.		
	East.	West.	Total.	East.	West.	Total.		East.	West.	Total.	East.	West.	Total.
- $16 a$	6	1	7	2	1	S	4	-	-	-	-	-	-
17	7	-	7	5	-	5	5	-	-	-	-	-	-
18	8	1	d	1	-	1	6	-	2	2	-	-	-
19	6	1	7	4	-	4	7	-	-	-	-	-	-
20	3	-	3	2	-	2	8	-	-	-	1	1	2
21	1	1	2	1.	-	1	9	2	1	3	-	2	2
22	-	-	-	1	1	2	10	5	2	7	-	1	1
23	2	2	4	-	-	-	11	5	3	8	-	-	-
. 0	-	-	-	-	-	-	12	4	2	6	1	1	2
1	-	1	1	-	-	-	13	4	4	9	1	1	8
2	-	-	-	-	-	-	14	4	2	6	2	-.	2
$\therefore 3$	-	-	-	-	-	-	15	4	2	6	3	-	8
								61	25	86	24	8	32

a For 0 h Gött. Athabasca, and 1 h Gött. Fort Simpson.
The total numbers are in the proportion of 1 to every 32 observations at Athabasca, and 1 to every 34 at Fort Simpson. In the five months at Toronto, October to February, we find 116 shocks, being in the proportion of 1 to every 27 observations, and in the two months April and May, we find 50 shocks, being in the proportion of 1 to every 25 observations; thus it appears that the high value of the monthly mean irregular fluctuation, caused by the prevalence of a state of disturbance at the northern stations, occasions a smaller proportion of readings to come under the definition of a shock as here applied, than the low value deduced from a comparatively undisturbed series.

It is to be observed that the proportion of easterly shocks is much greater at the northern stations than at Toronto. We have at the latter station in

> 1841,70 easterly to 60 westerly.
> 1842,77 easterly to 63 westerly.

In eight months, 1843-1844, 99 easterly to 89 westerly.
In all 246 easterly to 212 westerly; whereas we have seen that at the northern stations the easterly deflections are more than double the westerly in number, showing that whatever may be the cause which determines the north end of the magnet to the west, it decreases in activity in the winter season as we proceed to the northward in the American continent.

On the Connexton between the Changes of the Magnetical Elements observed at the Northern Stations and those observed at Toronto and elsewhere.
The circumstance that frequent and very considerable magnetical disturbances were observed at Lake Athabasca and Fort Simpson, during the winter of 1843-4 and the following spring, although the same seasons were remarkable for absence of disturbance at most of the other stations of observation which have been examined, would seem to afford a presumption that some of these disturbances were of a local character, or that their influence, when it extended to Toronto or the European stations, was too slight to attract attention. To this we may add the fact, that the hours of the day most affected by them are apparently not the same in high and in medium latitudes, as has been shown in the previous discussion of the irregular changes; lastly, it has been shown by Colonel Sabine from the Toronto observations of 1841 and 1842 (p. xx.) that the tendency of disturbances at that station is to produce westerly deviations of the declination magnet in the morning hours; and the eight months observations of 1843-4 which are here discussed; (Table XLIX.) lead to the same conclusion; indeed an inspection of any of the more important disturbances will show that the greatest movements of the declination magnet at Toronto are to the westward, whereas at Lake Athabasca and Fort Simpson they are almost invariably to the eastward, particularly in the same morning hours. In the case of this element, therefore, we have an opposite tendency in respect to direction, in addition to the difference of epoch in the two localities. Notwithstanding all these circumstances, however, a careful comparison with other published observations has led to the conclusion, that a state of magnetical disturbance prevailed at one or more other stations upon so many of the occasions upon which it was observed at Lake Athabasca and Fort Simpson, as to leave it doubtful whether, without more positive evidence, any of the disturbances, considered generally, can be considered to have been merely local. It is to be hoped, that the extension of automatic registration by means of photography will soon throw more light upon the question, whether any and what magnetic changes may be regarded as local, and how far we may consider movements which have few or no features of resemblance, to be due to a common cause, because they occur simultaneously in distant localities; meanwhile it would be to neglect a principal purpose of the observations under discussion, to omit to pursue the inquiry as far as they permit.
Extra observations at short intervals were taken at the two northern stations, on sixty-six occasions, exclusive of term days, in a period of about one hundred and sixty days of observation. Upon
examination of all the records of magnetical observations for the years 1843-4 which have been published hitherto, namely, those of the four British colonial observations, those of the Russian stations, of Greenwich, Makerstoun, and Philadelphia, there are to be found only twenty-xine instances of corresponding observations elsewhere, and in this number are included five on which the correspondence consists only in one or two extra readings interpolated in the usual series at Greenwich or Makerstoun. This, however, is sufficient to show that in the view of the observers some disturbance existed. The dates to which this remark applies are October 26^{\prime}, December 8^{4} and 26^{4} 1843, April 30^{d}, May $3^{\mathrm{d}} 1844$. Of the remaining thirty-seven northern disturbances, about ten were of the first order as regards magnitude and duration, namely, those of October $15^{4}, 16^{3}$, October $17^{\text {d }}$ commencing 17^{h}, October $25^{\mathrm{d}}, 26^{\mathrm{d}}$, October $30^{\mathrm{d}}, 31^{\mathrm{d}}$, December $5^{\mathrm{d}}, 6^{\mathrm{d}}$, December 19, 20^{-1}, December 29^{4} 1843, April $9^{\text {d }}, 10^{\text {d }}$, April 14^{d}, $15^{\text {d }}$, April 22 ${ }^{1} 1844$; bat on the whole, the coincidences of observation occur generally at the more considerable of the northern disturbances, December 28^{4}, February $8^{\prime \prime}$, and February $29^{\text {d }}$, being the principal exceptions.

Proceeding next to examine the simultansous changes of the several elements in detail, we find considerable diversity. Sometimes the movements of one or more elements correspond in epoch and in direction; sometimes in epoch when they are reversed in direction; sometimes the principal movement at one station is represented by the principal movement at the others, and as often by one of secondary prominence; sometimes there is marked agreement during part of a disturbance, no agreement during the remainder; lastly, there are several instances when movements remarkably similar in character occur at remote stations, but separated by a considerable interval of time.

All this may be shown without the aid of diagrams, by selecting the principal features of each disturbance alone for comparison, for which purpose the following brief notes are subjoined. The references are all to Göttingen time.

1843, October $17^{\mathrm{d}}, 1^{\mathrm{h}}$ to 3^{h}. -A great reduction of the Horizontal Force at Lake Athabasca between 0^{4} and $3^{\text {h }}$, lowest value - 064 X*

[^17]at $1^{\mathrm{h}} 46^{\mathrm{m}}$, but - 048 X at $2^{\mathrm{h}} 1^{\mathrm{mm}}$. Eastenly extreme of Declination, $+52^{\prime} 7$ at $1^{\mathrm{h}} 35^{\mathrm{mi}}$. At Makerstoun observations commenced at 2^{h}, apparently on account of a low range of Horizontal Force, - 0019: X, and the same at St. Helena, where they: were also commenced at $2^{\text {h }}$. with a value of $-0012 \mathbf{X}$; there is no other obvious correspondence.

October 18-19, Term-day.-The principal movement of the Declination, which occurred between 15^{h} and 17^{h}; corresponds in general character at Lake Athabasca, Sitka, Toronto, and Philadelphia, a movement in the contrary direction being presented at the same hour at all the European stations. In the first part of the movement in question the direction is the same at all the American stations; during the latter part it is reversed, and we then have a westerly extreme $-44^{\prime} 5$ at Lake Athabasca corresponding to an eaiterly one $+10^{\prime} 8$ at Sitka, with which the other stations agree. The changes of Horizontal Force between 15^{h} and 17^{h} have a general resemblance at Toronto and Lake Athabasca, save that where the element rises to 2 high value $+{ }^{\circ} 0172 \mathrm{X}$ at the former station, at $17^{\mathrm{h}} 6^{\mathrm{m}}$, it hardly passes its mean value at the latter, and theysare very precisely reversed at the European stations at a later period $29^{4} 4^{\mathrm{h}}$ to 6^{h}. The close resemblance of the changes at all the stations in America and Europe is very striking, and they here agree in direction.

October $26^{\mathrm{d}} 20^{\mathrm{h}}$ to $27^{\mathrm{d}} 2^{\mathrm{h}}$.-The principal movement at Lake Athabasca was between 0^{h} and 2^{h}, the extreme of Horizontal Force -' 0624 X at $0^{\mathrm{h}} 56^{\mathrm{m}}$, and of Declination (easterly) $+41^{\prime \cdot} 7$ at $1^{\mathrm{h}} 5^{\mathrm{m}}$. a single extra reading at $1^{\mathrm{b}} 10^{\mathrm{m}}$ at Makerstoun is the only proof that this disturbance, as such, was observed elsewhere; it shows a low value of the Horizontal Force -. 0017 at $1^{\mathrm{h}} 12^{\mathrm{m}}$, and an easterly range of Declination $-4^{\prime \cdot} 4$ at $1^{\mathrm{h}} 10^{\mathrm{m}}$.

November $13^{1} 4^{\mathrm{h}}$ to 7^{h}, and 20^{h} to 23^{h}.-A low value of the horizontal force prevails at Lake Athabasca from 4^{b} to 6^{b}, lowest $-\quad 0347 \mathrm{X}$ at $4^{\mathrm{h}} 6^{\mathrm{m}}$. Declination not particularly affected, but an easterly extreme $+17^{\prime \prime} 6$ at $4^{\mathrm{h}} 0^{\mathrm{m}}$. At Philadelphia the minimum of horizontal force, -0018 X , occurs at $4^{\mathrm{h}} 11^{\mathrm{m}}$, and a low value is also maintained until 6^{h}. Declination, an easterly extreme $-6^{\prime \cdot} \cdot 2$ at $4^{\mathrm{h}} 0^{\mathrm{m}}$. This was a considerable disturbance at the last-named station, and observations were continued without intermission until $14^{\mathrm{d}} 2^{\mathrm{h}}$. They were discontinued from 7^{h} to 20^{h} at Lake Athabasca, and then resumed on account of an unusual westerly range of Declination, giving a minimum $-1^{\circ} 6^{\prime}$ at $22^{\mathrm{h}} 16^{\mathrm{m}}$. At Philadelphia we

[^18]have a small but frell marked easterly movement at the same hour, the extreme being only $-1^{\prime} \cdot 9$ at $22^{\mathrm{b}} 22^{\mathrm{m}}$.
November $24^{d} 1^{\mathrm{h}}$ to 2^{h}. -A minimum of the Horizontal Force -0240 at Lake Athabasca at $1^{\mathrm{h}} 1^{\mathrm{m}}$; no great change of Declination. At Hobarton extra observations also from 1^{h} to 2^{h}, the Declination chiefly affected; extreme $-8^{\prime} 3$ at $1^{\mathrm{h}} 2^{\mathrm{m}}$; the Horizontal Force above the mean +0008 X at $1^{\mathrm{h}} 7^{\mathrm{m}}$.

December $1^{\text {d }} 21^{\text {h }}$ to $2^{\text {d }} 5^{\text {th }}$. -Unusually large westerly movement of magnet at $22^{\mathrm{h}} 15^{\mathrm{m}},-1^{\circ} 37^{\prime}$, and westerly movements prevailing until $23^{\mathrm{h}} 30^{\mathrm{m}}$; afterwards easterly extreme $+59^{\prime} 2$ at $3^{\mathrm{h}} 27^{\mathrm{m}}$. Lowest value of Horizontal Force - 0443 X at $2^{\mathrm{h}} 34^{\mathrm{m}}$, but a very low vaiue apout $22^{\mathrm{h}} 45^{\mathrm{m}}$, and again from $2^{\mathrm{h}} 0^{\mathrm{m}}$ to $3^{\mathrm{h}} 30^{\mathrm{m}}$. At Hobarton a low value of the Horizontal Force prevailed from $.2^{\mathrm{h}} 52^{\mathrm{m}}$, when extra observations commence, to 5^{h}, the lowest being -.0015 X at $3^{\mathrm{h}} 47^{\mathrm{m}}$; Declination most affected about 3^{h}, extreme $-7^{\prime} 0$ at $3^{\mathrm{h}} 5^{\mathrm{m}}$.

December $8^{\mathrm{d}} 18^{\mathrm{h}}$ to 20^{h}.-Observations commenced at Lake Athabasca for an easterly range of Declination, maximum $+44^{\prime} \cdot 5$ at $18^{\mathrm{h}} .0^{\mathrm{m}}$; disturbance of Horizontal Force not particularly marked, a minimum - 0087 X at $18^{\mathrm{h}} 1^{\mathrm{m}}$, a maximum +0085 at $19^{\mathrm{h}} 10^{\mathrm{m}}$. A few readings were taken at Makerstoun, commencing at 18^{h}, apparently in consequence of a westerly range of the Declination of no great extent, extreme $+3^{\prime} 5$ at $18^{\mathrm{h}} 0^{\mathrm{m}}$; the Horizontal Force a maximum $+{ }^{\circ} 0016 \mathrm{X}$ at $18^{\mathrm{h}} 2^{\mathrm{m}}$.

December $26^{d} 21^{\text {h }}$ to $27^{\text {d }} 2^{\text {h }}$.-A low value of the Horizontal Force from $22^{\text {h }}$ to nearly 0^{h}, minimum - 0354 X at $23^{\mathrm{h}} 28^{\mathrm{m}}$. Declination not particularly affected, maximum $+30^{\prime} 4$ at $23^{\mathrm{d}} 30^{\mathrm{h}}$. At Makerstoun there is one extra observation only, at $23^{\mathrm{h}} 35^{\mathrm{m}}$. Declination $+2^{\prime \prime} 8$. Horizontal Force $+{ }^{\prime} 0001$ X.
December $28^{\mathrm{d}} 3^{\mathrm{h}}$ to 4^{h}. -A great easterly movement of Declination at Lake Athabasca from 2^{h} to 3^{h}, extreme $+52^{\prime} \cdot 3$ at $2^{\mathrm{h}} 0^{\mathrm{m}}$; the Horizontal Force not particularly affected, a minimum - 0188 X at $8^{\mathrm{h}} 1^{\mathrm{m}}$, a maximum $+{ }^{\circ} 0105 \mathrm{X}$ at $5^{\mathrm{h}} 1^{\mathrm{m}}$. At Makerstoun this disturbance attracted attention two hours earlier, a westerly extreme of Declination $+9^{\prime \prime} 7$ occurs at $1^{\mathrm{h}} 52^{\mathrm{n}}$, but the minimum of Horizontal Force occurs at $1^{\mathrm{h}} 57^{\mathrm{m}},-0018 \mathrm{X}$, when this element differed very little from its mean value at Lake Athabasca. At Hobarton observation appears to have been commenced at $2^{\text {h }}$, on account of an easterly range of Declination, extreme $+9^{\prime} 2$ at $\mathbf{2}^{\text {h }} \mathbf{2 2}^{\mathrm{m}}$; the minimum of Horizontal Force coincides with that of Lake Athabasca, being - 0013 X at $3^{\mathrm{h}} 2^{\mathrm{m}}$.
1844. January $4^{\mathrm{d}} 16^{\mathrm{h}}$ to $5^{\mathrm{d}} 9^{\mathrm{h}}$. -Observations connmenced at Lake Athabasca on account of the high range of Horizontal Force, which continued from 16^{h} to 20^{h}, maximum +0.027 X at $19^{\mathrm{h}} 10^{\mathrm{m}}$ 。

This is succeeded by very low values, giving two marked minima; the first and most important $-{ }^{\circ} 0635$ at $23^{\mathrm{h}} 4^{\mathrm{m}}$, the second $-{ }^{\circ} 0342$ at $0^{\mathrm{h}} \mathbf{4 3}^{\mathrm{m}}$; the Declination is also much disturbed, the extremes being $-40^{\prime} 7$ at $21^{\mathrm{h}} 0^{\mathrm{m} .}$ and $+1^{\circ} 6^{\prime}$ at $0^{\mathrm{h}} 57^{\mathrm{m}}$, but with many other great inflexions. A state of disturbance was very generally observed on this day. At Makerstoun extra observations were taken with various intermissions through the 4th, 5th, and 6th of January, and we find a maximum of Horizontal Force $+{ }^{\circ} 0012$ X at $19^{\text {h }} 12^{\mathrm{m}}$, and the minimum at $23^{\mathrm{h}} 17^{\mathrm{m}},-0021 \mathrm{X}$; also the maximum of Declination $+8^{\prime} 8$ at $5^{d} 0^{\mathrm{h}} 50^{\mathrm{n}}$; in the other features no particular coincidence is to be remarked, and the great easterly movement of Declination at Makerstoun between $7^{\text {h }}$ and 8^{h}, giving a minimum $-21^{\prime} 0$ at $7^{\mathrm{h}} 35^{\mathrm{m}}$, is entirely wanting at Lake Athabasca, when the observations were resumed at that hour on account of a decrease of Horizontal Force of no great amount, which on the other hand does not appear at Makerstoun. The mean irregular fluctuation of the Declination and Horizontal Force at Toronto, on the 4th January, was the highest value of the month; the extra observations embrace but the earlier part of the disturbance, and the minimum of Horizontal Force cdincides nearly with the maximum at Lake Athabasca, being - 0019 X at $19^{\mathrm{n}} 2^{\text {n }}$; the value at the regular observation of $4^{\mathrm{d}} 23^{\mathrm{h}} 2^{\mathrm{m}}$, which coincides very nearly with the principal minimum at Lake Athabasca, although also a low one $\sim^{\circ} 0005 \mathrm{X}$, is not nearly so low as the reading at the epoch of greatest force at the northern station. The Declination appears to have been the most affected at Hobarton, but the minimum of Horizontal Force, - 0004 at $23^{\mathrm{h}} 12^{\mathrm{m}}$, although very small in amount, coincides nearly with the principal one at Lake Athabasca.

January $5^{1} 23^{\mathrm{h}}$ to $6^{1} 3^{\mathrm{h}}$. -An extreme depression of the Horizontal Force prevailed at Lake Athabasca from 23^{h} to almost $1^{\mathrm{h}} 30^{\mathrm{m}}$, lowest - ${ }^{\circ} 0627 \mathrm{X}$ at $23^{\mathrm{h}} \mathbf{1}^{\mathrm{m}}$; at the same hour occurs the lowest value of this element at Makerstoun, - 0021 X . Again a westerly extreme of Declination, $-19^{\prime \cdot} 4$, occurs at Lake Athabasca at $23^{3} 0^{\text {m }}$; a minor westerly extreme, $+3^{\prime} 0$, at Makerstoun at the same time, but the principal one, $+4^{\prime} 5$ at $1^{\mathrm{h}} 25^{\mathrm{m}}$, coincides with a considerable easterly inflexion at the former station, $+24^{\prime \cdot} 9$ at $1^{\mathrm{h}} 33^{\mathrm{m}}$.

February $1^{\text {d }} 0^{4}$ to 4^{h}.-Great depression of the Horizontal Force from $0^{\text {h }}$ to nearly $3^{\text {h }}$, lowest - 0465 X at $0^{h} 27^{\mathrm{m}}$. At Makerstoun this clement was not particularly affected ai this time; and extra observations were not commenced until 3^{\prime}, when they show a westerly extreme of Declination $+7^{\prime} 6$, corresponding nearly to an easterly extreme, $+29^{\prime} 5$, at Lake Athabasca.

Again, from $1^{d} 19^{\mathrm{h}}$ to 21^{h} an unusual westerly range of Decli-
nation prevailed at Lake Athabasca, extreme - 1° 22' at $19^{\mathrm{h}} 27^{\mathrm{m}} \mathrm{m}$. Extra observations were taken at Makerstoun from $18^{\text {h }}$ to $19^{\text {h }}$, but only one between 19^{b} and 20^{h}, which one does not indicate a correspondence of this element, but shows a minimum of Horizontal Force - 0011 X , coinciding with the one at Làke Athabasca, which is - 0239 X , also at $19^{\mathrm{h}} 40^{\mathrm{m}}$.

February $2^{4} 6^{\text {h }}$ to $8^{\text {h }}$. -An unusual westerly range of Declination at Lake Athabasca, extreme $-48^{\prime} \cdot 2$ at $7^{\mathrm{h}} 0^{\mathrm{m}}$. There is also a minimum of Horizontal Force - ${ }^{\circ} 0258$ at $6^{\mathrm{h}} 10^{\mathrm{m}}$. Coincident observations were made at Makerstoun and St. Petersburg ; at the former also occurs a minimum of Horizontal Force - 0036 X at $6^{\mathrm{h}} 12^{\mathrm{m}}$, and an easterly extreme of Declination $-11^{\prime} 3$ at $6^{\mathrm{h}} 30^{\mathrm{m}}$, being half an hour before the - extreme at Lake Athabasca. At St. Petersburg an easterly extreme of Declination, $+18^{\prime} 0$, occurs at $6^{\mathrm{h}} 10^{\mathrm{m}}$, and a maximum of Horizontal Force at $6^{\mathrm{h}} 30^{\mathrm{m}},+^{\cdot} 0022$ X. Again, $2^{4} 17^{\mathrm{h}}$ to 21^{h}, we have a marked prevalence of westerly Declination, and a high value of the Horizontal Force, at Lake Athabasca; the extremes - $37^{\prime \prime} 3$ at $17^{\mathrm{h}} 42^{\mathrm{m}}$, and $+{ }^{\circ} 0264 \mathrm{X}$ at $18^{\mathrm{h}} 53^{\mathrm{m}}$. At Toronto extra observa. tions were commenced at the same time as at the northern station, a westerly extreme of Declination, $+18^{\prime} 1$, occurs at $17^{\mathrm{h}} 2^{\mathrm{m}}$, and another of small extent, $+2^{\prime} 6$, at $17^{\mathrm{h}} 42^{\mathrm{m}}$; a minimum of Horizontal Force accompanies the former, --0034 at $17^{\mathrm{h}} 7^{\mathrm{m}}$; the lowest of this element value at the northern station is also at $17^{\mathrm{h}} 1^{\mathrm{m}}$, but it is still above the mean, $+{ }^{\circ} 0015 \mathrm{X}$.

February $5^{d} 0^{\mathrm{h}}$ to 6^{h}.-An excessive reduction of the Horizontal Force occurs at Lake Athabasca between $23^{\text {a }}$ and $0^{\text {h }}$, extreme -0678 at $0^{4} 4^{\mathrm{m}}$; great changes of Declination accompanied this shock, the extreme values being $+1^{\circ} 4^{\prime}$ at $0^{h} 21^{m}$, and $-1^{\circ} 23^{\prime}$ at $0^{\mathrm{h}} 30^{\mathrm{n}}$. At Makerstoun but a single extra observation is given between 0^{h} and 1^{h}, namely, at $0^{\mathrm{h}} 20^{\mathrm{n}}$, which shows a considerable reduction of the Horizontal Force also, -•0029 X, but no particular disturbancé of Declination. At Hobarton extra observations were commenced at l^{h}, and the lowest value of Horizontal Force is at $1^{\mathrm{h}} 12^{\mathrm{m}},-{ }^{\circ} 0017 \mathrm{X}$, being an hour later than that at Lake Athabasca, a westerly extreme of Declination, $-9^{\prime} 0$, accompanies it.

Disturbance observations were resumed at $5^{d} 16^{\text {h }}$ with a high value of the Horizontal Force, giving a maximum $+{ }^{\circ} 0238$ at $16^{\mathrm{h}} 58^{\mathrm{m}}$; extra observations were taken at the same time at Makerstoun, showing low values of this element, minimum - 0034 X at $16^{\mathrm{h}} 32^{\mathrm{m}}$. We have for the Declination the easterly extreme $+42^{\prime} 1$ at $16^{\mathrm{h}} 21^{\mathrm{m}}$ at Lake Athabasca, and the easterly extreme $-0^{\prime} 5$ at $16^{\mathrm{h}} 10^{\mathrm{m}}$ at

Makerstoun; agnin, the westerly extrome $-20^{\prime \prime} 1$ at $17^{\mathrm{n}} 0^{\mathrm{mm}}$ an the former atation, and $+6^{\prime \prime} 5$ at $17^{\prime \prime} 16^{\prime \prime \prime}$ at the latter.

Tebruary $8^{\prime \prime} 0^{\prime \prime}$ to $1^{\prime \prime}$ and $6^{\prime \prime}$ to 6^{11}.-'I'Wo sudden changes of the Horizontul Force, but of no great extent; the lowest value was that at tho rogular rouding at $6^{\prime \prime} 1^{\mathrm{m}},-{ }^{\prime} 0235 \mathrm{X}$. Extra observations were mado at Makerstoui from $4^{\text {n }}$ to 6^{11}, and at Hoburton from 6^{11} to $6^{\text {n }}$; at the former station wo find n minimum of Horizontal Force - '0038 X at $4^{\prime \prime} 62^{\prime \prime}$, nt the latter a relative maximum of the same element - '0004 at $5^{\text {l }} 2^{\mathrm{m}}$, $\quad \Lambda$ gain we have, of the Declination, an castenly oxtrome $+19^{\prime} 77^{\prime \prime} \sigma^{11} 9^{\prime \prime \prime}$ at Lake Athabnson, an easterly extreme - $6^{\prime}{ }^{\prime} 3$ at $4^{\text {n }} 55^{\prime \prime \prime}$ nt Makerstom, and a wosterly extreme $-7^{\prime} \cdot 3$ at $6^{\prime \prime} 7^{\prime \prime \prime}$ at Hobarton.

February $29^{\text {d }} 0^{\text {II }}$ to 1^{11}.-Whe Bifilar was not in adjustment at Lake Athabasca during this disturbanoe, which was one of those most generally observed. We find, however, a relative maximum of the Inclination $+3^{\prime} 1$ nt $16^{\prime \prime}$ at that station, the value being below the menn at $15^{\text {h }}, 17^{\text {h }}, 18^{\text {h }}, 19^{\text {h }}$, and $20^{\text {h }}$; the maximum of the same element $+3^{\prime \prime} 8$ being at $16^{\text {l }} 12^{\prime \prime \prime}$ at Toronto, und npparently a little earlier at Philedelphia; on the other hund, the observations at these two stations do not show the minimum which follows at Lake Athabasca at $17^{\prime \prime},-10^{\prime} \cdot 2$; they also show a very considerable enstorly movement of Declination at $16^{\prime \prime},+25^{\prime} 1$ at Toronto, $+22^{\prime} 2$ at Philadelphin, when that clement was little disturbed at the other station. Extra observations were discontimued at 'Toronto at $28^{\text {d }} 19^{\text {l/ }}$; they were continucd at Philadelphia until $29^{\text {d }} 3^{\text {3 }}$, and we find a minimum of the Horizontal Foree at 23^{11}, at which time a maximum of Inclinatiou indicates the sume thing at Lako Athabnsen. At Makerstoun we find an unusually large easterly movement of Declination between $16^{\prime \prime}$ and 17^{h}, extreme $-21^{\prime} 3$ at $16^{\prime \prime} 35^{\mathrm{m}}$, half an hour later than at Toronto and Philadelphia, and an equally great reduction of the Horizontal Force, extreme - 0051 X at $16^{\mathrm{n}} 27^{\mathrm{m}}$, agreeing, probably, nearly with the maximum of this element at the American stations.

April $2^{4} 22^{11}$ to 0^{11}.-A very great and sudden shock at Fort Simpson, affecting first the Inclination and Horizontal Force, the former gives $+1^{\circ} 5^{\prime \prime} 6$ at $22^{\prime \prime} 22^{\prime \prime \prime}$, when the latter was less than the lowest scale reading of the Bifilar ($<-0.048 \mathrm{X}$)* a secondary minimum of the latter element - 0028 X is shown at Makerstoun at $22^{\text {a }} 17^{m}$, but the lowest value - 0042 X is there at $21^{1 \mathrm{n}} 2 \mathrm{y}^{\mathrm{mm}}$, when there does not appear to have been any corresponding movement at Fort Simpson. We find the minimum of this element - ${ }^{\circ} 0013 \mathrm{X}$ at $22^{24} 35^{\text {mi }}$ at Hobarton. The regular observations at

[^19]Toronto at 21^{h} and 22^{h} indicate a great reduction of the same element. The westerly extrene of Declination $+9^{\prime} 2$ occurs at $22^{\prime \prime} 25^{m}$ at Makerstoun, and at $22^{1 /} 27^{m}$ at Fort Simpson $-43^{\prime \prime} 0$, at the same time is the westerly extreme $-14^{\prime} 3$ at Hobarton. Of the great easterly range which followed at Fort Simpson, there is no very obvious sign at either of the other stations. Again, the extra observations were resumed at $3^{4} 4^{\prime \prime}$, on account of a great easterly range of Declination, with its usual accompaniments, increase of Inclination and Total Force, decrease of Horizontal Force, giving the extremes of each element at or near $4^{4 \prime} 30^{m}$, namely $+2^{\circ} 5^{\prime}$ of Declination - $0505 \mathbf{X}+45^{\prime} ' \theta$. Extra observations were resumed at Makerstoun at $6^{\text {h }}$, but the extreme movements do not occur until near 6^{14}, when they are decidedly past at Fort Simpson. We have at the former station the unusual values of $-20^{\prime} 3$ Declination at $5^{\text {t }} 55^{m}$, and $+{ }^{\circ} 0051 \mathrm{X}$ at $5^{11} 57^{\mathrm{m}}$, a time when no very marked change is shown at Fort Simpson. This second disturbance was not observed at Hobarton, but a few extra observations were made about 6^{h} at Greenwich, and agree with those at Makerstoun.

April 16-17, 1844.-This great disturbance was recorded at nenrly every station of observation, and furnishes at many, probably at all of them, the grentest amount of change of all the elements which had been recorded up to that date. There are, however, several remarkable differences in the character of the changes at different stations: first, as regards the Declination, we have an extraordinary easterly movement at Fort Simpson between 1^{14} and 2^{h} on April 17, the extreme range being no less than $+6^{\circ} 40^{\prime}$ at $1^{\mathrm{h}} 24^{\mathrm{m}}$; at this hour no marked feature is presented at Philadelphia or Toronto, whereas at stations in Europe and at Hobarton we find a resemblance. At Makerstoun the westerly extreme observed is $+17^{\prime} \cdot 9$ at $1^{\text {h }} 0^{\text {m }}$; at Greenwich the westerly extreme is $+16^{\prime \prime} 9$ at $1^{\mathrm{h}} 9^{\mathrm{m}}$; at St. Petersburgh the easterly extreme is $-14^{\prime} 6$ at $1^{\mathrm{h}} 25^{\mathrm{m}}$, but followed at $1^{11} 35^{\mathrm{m}}$ by the westerly extreme $+15^{\prime} 2$; at Hobarton the westerly extreme is $+31^{\prime \cdot} 7$ at $0^{\mathrm{h}} 57^{\mathrm{m}}$; at St. Helena there is no marked feature at this hour; at the Cape the extra observations were discontinued at 1^{1}. On the other hand, we have at Toronto and Philadelphia a great easterly movement between $16^{\mathrm{d}} 20^{\mathrm{h}}$ and $21^{\text {h }}$, which answers to a shock of short duration at Fort Simpson; the extreme readings are at Toronto $+39^{\prime} 3$ at $20^{\mathrm{H}} 45^{\mathrm{mI}}$; at Philadelphia $+26^{\prime} 9$ at $20^{n} 50^{m}$; and at Fort Simpson $+2^{\circ} 0^{\prime \prime} 4$ at $20^{\mathrm{h}} 50^{\mathrm{m}}$. A similar correspondence appears at $21^{\mathrm{h}} 50^{\mathrm{m}}$. Referring next to the Horizontal Force, the greatest reduction of this element at Fort Simpson commenced very suddenly at $17^{\mathrm{d}} 0^{\mathrm{h}} 55^{\mathrm{m}}$; the extreme observed was -0.128 X at $1^{\mathrm{h}} 28^{\mathrm{m}}$, this is, however, but an approximation, the range having passed the limit of the scale;
here are also great negative extremes at or near $17 \frac{3}{4}$, $; 19 \frac{12^{\mathrm{h}}}{}$, and $23 \frac{1}{2}$ ", but none of them approached the one just cited; this is also the epoch of greatest reduction of this element at Hobarton, the extreme being - 0069 at $17^{\mathrm{h}} 27^{\mathrm{m}}$, and we find it a little later at St. Helena; at Toronto we have at the same hour a considerable negative movement also, giving a minimum -. 0106 X at $0^{\mathrm{h}} 17^{\mathrm{m}}$, but at this station and at Philadelphia the lowest value of the day is nearly an hour earlier, and answers to a movement of secondary importance at Fort Simpson; the values atre - 0148 X at $23^{\text {h }} 32^{\mathrm{m}}$ at Toronto, - 0080 X at $23^{\mathrm{h}} 27^{\mathrm{m}}$ at Philadelphia, and --0694 at $23^{\mathrm{h}} 19^{\mathrm{m}}$ at Fort Simpson; about the same time is the lowest value at Sitka and at Greenwich, while at Makerstoun it'occurs between $21^{\text {b }}$ and $22^{\text {l. }}$. It deserves remark that the Horizontal Force begins to return to its normal value at Toronto and Philadelphia at $17^{\mathrm{d}} 3^{\mathrm{h}}$, at Fort Simpison not until $17^{\mathrm{d}} 5^{\mathrm{h}}$, in both cases by a regular change which is perfectly similar in other respects.

April $24^{d} 25^{d}$ Term day.-An easterly movement of Declination of very marked character and great extent prevails at Fort Simpson between $25^{\text {h }} 2^{\mathrm{h}}$ and 4^{h}, the extreme being $+3^{\circ} 7^{\prime}$ at $2^{\mathrm{h}} 55^{\mathrm{m}}$; we haye a corresponding shock at Sitka, but reduced in amount to $+19^{\prime} 0$, this extreme reading being at $3^{3 \mathrm{~h}} 0^{\mathrm{m}}$. A sustained westerly movement of comparatively small extent, but very obviously coinciding in epoch, occurs at Toronto and Philadelphia, giving at the former an extreme westerly reading of $+10^{\prime} 9$ at $2^{\mathrm{h}} 32^{\mathrm{m}}$, at the latter a westerly extreme $+10^{\prime} 1$ at $2^{1 \mathrm{~h}} 48^{m}$. The European stations do not exhibit any particular movement at this hour.

Referring to the Horizontal Force, we find a very low value of this element at Fort Simpson from $2^{21} 17^{\mathrm{m}}$ to $3^{\mathrm{l}} 7^{\mathrm{m}}$, the extreme being $-{ }^{\cdot} 0585 \mathrm{X}$ at $2^{\text {h }} 57^{\mathrm{m}}$; the lowest value at Sitka $-{ }^{\circ} 0101 \mathrm{X}$ occurs at the same reading ; the movement generally is well marked at that station. There is a well marked minimum at Toronto about $2^{d} 17^{\text {b }}$ being half an hour carlier than the one in question, but the lowest value at this station is -0009 X at $7^{\mathrm{h}} 32^{\mathrm{n}}$. Viewed generally, there is a marked resemblance in the successive changes of the element at these two stations, but the epochs of maxima and minima do not coincide; they would be made to do so pretty nearly if the whole northern curve were advanced about two hours of time; for example, the first important minimum at Fort Simpson occurs at 0^{12}, at Toronto at $2^{i} 10^{\prime \prime \prime}$, the following maximum, Fort Simpson at $1^{\mathrm{h}} 40^{\mathrm{n}}$, Toronto $3^{\mathrm{th}} 10^{\mathrm{m}}$. The next minimum Fort Simpson $2^{\mathrm{h}} 57^{\mathrm{m}}$, Toronto $5^{\mathrm{h}} 30^{\mathrm{m}}$; the next maximum Fort Simpson $4^{\mathrm{h}} 30^{\mathrm{m}}$, Toronto $6^{\mathrm{h}} 30^{\mathrm{m}}$. An unusually high value of the element prevailed at both stations on the 24th and 25th April.

Extra observations were resumed at Fort Simpson at 20^{12} on the
$25^{\text {b }}$ April, and continued until $26^{\text {d }} 2^{\text {b }}$; they were resumed at $26^{4} 0^{\text {h }}$ simultaneouslyat Philadelphia, Makerstoun, and Hobarton. Referring them to this part only of the disturbance, we find a very great reduction of Horizontal Force at Fort Simpson between 23^{h} and 0^{h}, the extreme being - 0845 X at $0^{\mathrm{h}} 7^{\mathrm{m}}$; we find a similar movement at Philadelphia, the extreme being - 0016 X at $0^{\mathrm{h}} 2^{\mathrm{n}}$, followed by an immediate return to high values, giving a maximum $+{ }^{\circ} 0010 \mathrm{X}$ at $0^{\text {h }} 58^{\text {n. }}$. At Fort Simpson the succeeding maximum is less marked, and not attained until $1^{\mathrm{h}} 30^{\mathrm{m}}$; at Makerstoun we find a minimum at $0^{\mathrm{h}} 12^{\mathrm{m}}-{ }^{\circ} 0033 \mathrm{X}$, but the lowest value occurs at $0^{\mathrm{h}} 47^{\mathrm{m}}$, and there is no maximum before $2^{\text {h }}$. At Hobarton the Declination is the element chiefly affected, but we have a maximum of Horizontal Force at $0^{\mathrm{h}} 7^{\mathrm{m}}+{ }^{\cdot} 0008$, and the minimum -. 0019 at $1^{\mathrm{h}} 22^{\mathrm{m}}$.

April $26^{d} 18^{\text {h }}$. - A great westerly range of Declination prevailed at Fort Simpson from 18^{h} to $19^{\mathrm{h}} 20^{\mathrm{m}}$, extreme $-1^{\circ} 24^{\prime} 4$ at $18^{\mathrm{h}} 0^{\mathrm{m}}$. At Philadelphia extra observations were commenced at $15^{\text {h }}$; we have an easterly extreme $-8^{\prime} 8$ at $17^{\mathrm{h}} 54^{\mathrm{m}}$, but the principal is at $19^{\mathrm{h}} 20^{\mathrm{m}}$, $-11^{\prime} 1$, and a westerly movement intervenes, corresponding to an easterly one, or a return towards normal values, at Fort Simpson. Philadelphia at $18^{\mathrm{h}} 14^{\mathrm{m}},+1^{\prime} 9$, Fort Simpson at $18^{\mathrm{h}} 30^{\mathrm{m}},-23^{\prime} \cdot 8$. Again, the Horizontal Force at Philadelphia presents two minima, the greater at $18^{\mathrm{h}}-{ }^{\circ} 0013 \mathrm{X}$, the next from $18^{\mathrm{h}} 55^{\mathrm{m}}$ to $19^{\mathrm{h}} 20^{\mathrm{m}}$. At the same periods we have minima at Fort Simpson, but the latter
in this case the greater, the extreme being - 0300 X at $19^{\mathrm{h}} 31^{\mathrm{m}}$. At Makerstoun observations occur from 13^{h} to 18^{h}, and indicate, at the latter hour, values of both elements differing very little from their mean.

April $28^{\mathrm{d}} 21^{\mathrm{h}}$ to $29^{1} 5^{\mathrm{h}}$. -The corresponding readings are confined to a couple at Makerstoun, between 2^{h} and 3^{h}. Referring to this period only, we find a great easterly movement of Declination at Fort Simpson, the extreme $+2^{\circ} 5^{\prime}$ at $2^{\text {is }} 3^{\mathrm{m}}$, accompanied by a very low value of the Horizontal Force, the extreme - 0379 X at $1^{\mathrm{h}} 52^{\mathrm{m}}$, but with no great change for about 20^{m} before and after that hour. The observations at Makerstoun indicate a minimum of this element between $2^{1 \mathrm{~h}} 0^{\mathrm{m}}$ and $2^{\mathrm{in}} 45^{\mathrm{m}}$, the lowest value of those recorded being - 0015 X at the $2^{\mathrm{h}} 32^{\mathrm{m}}$, but the Declination differs very little from its mean value.

April 30 ${ }^{\text {th }}$.-Extra observations were taken at Fort Simpson every 15^{m} from 14^{h} to 16^{h}, in consequence of an unusually high value of the Horizontal Force, but no marked changes occurred; as usual under similar circumstances, the Declination is westward of its mean. Afterwards, at 21^{h}, a considerable disturbance commences. At Makerstoun a few extra readings were taken from 14^{h} to 18^{h}, showing a
small westerly extreme $-7^{\prime \cdot} 9$ at $14^{\mathrm{h}} 5^{\mathrm{m}}$ accompanied by a minimum :-0014X of Horizontal Force; the subsequent. disturbance was not observed.

May $2^{\text {d }} 19^{\mathrm{h}}$.—The commencement of extra observations at Fort Simpson coincides with the conclusion of them at Makerstoun.

May 3.-A sudden and great reduction of the Horizontal Force occurs from $3^{h^{1}}$ to 4^{h} at Fort Simpson, giving a minimum - 0619 X at $4^{\mathrm{h}} 7^{\mathrm{m}}$. At the same time is a considerable easterly movement of Declination, the extreme being $+1^{\circ} 57^{\prime}$ at $4^{\text {in }} 21^{\mathrm{m}}$; at Makerstoun extra observations were also commenced at $4^{\mathrm{h}} 35^{\mathrm{m}}$. Apparently in consequence of the easterly movement of the declinometer, since $4^{\mathrm{h}} 0^{\mathrm{m}}$ the readings were $+5^{\prime \cdot} 0$ at $4^{\mathrm{h}} 0^{\mathrm{m}}$, and $-4^{\prime \cdot} 2$ at $4^{\mathrm{h}} 35^{\mathrm{m}}$; a maximum of the Horizontal Force +.0019 X appears at $4^{\mathrm{h}} 42^{\mathrm{m}}$, but the disturbance was apparently not considered to call for more than occasional readings.

May $8^{\mathrm{d}} 13^{\mathrm{h}}$ to 19^{h}. -An unusual westerly range of Declination prevailed at Fort Simpson, but of no great extent, and without much change. Extra observations, were taken at intervals at Makerstoun from 10^{l} to 20^{h} on this day, but present no particular features of correspondence or the reverse.

May $13^{\mathrm{d}}, 18^{\mathrm{h}}$ to 21^{h}.-Again a westerly range of Declination, attended, as in the last instance, with high value of the Horizontal Force and diminished Inclination. Extra observations were commenced at Makerstoun at 20^{11} for a small easterly extreme of Declination, but present no marked features.

May $22^{1}, 1^{\text {h }}$ to $4^{\text {h }}$.-Extra observations were commenced simultaneously at Fort Simpson and at Hobarton. At the former we find an easterly range of Declination prevailing the whole time, extreme $+2^{\circ} 11^{\prime}$ at $1^{\mathrm{h}} 33^{\mathrm{m}}$, accompanied as usual with increased Inclination and a low value of the Horizontal Force, extreme - 0442 X at $1^{\mathrm{h}} 43^{\mathrm{m}}$. At Hobarton the disturbances commences with a marked westerly range of Declination, the extreme - $11^{\prime} 9$ at $1^{\mathrm{h}} 5^{\mathrm{m}}$; the Horizontal Force is also below the mean until the observations ceased at 3^{h}, extreme - 0009 X at $1^{\mathrm{h}} 32^{\mathrm{m}}$. At 5^{h} extra observations were began at Makerstoun; they were again resumed simultaneously at Fort Simpson and Hobarton at 12 ${ }^{\text {h }}$, and on this occasion, as well as on the 17th April, already described, nearly every stoatin appears to have experienced the disturbance. We find extra observations at Toronto from 13^{h} to 20^{h}, Philadelphia 10^{h} to 20^{h}, Makerstoun 9^{h} to 20^{h}, the Cape of Good Hope 17^{h} to 22^{h}, St. Helena 20^{h} to 0^{h}, and Hobarton 10^{h} to 0^{h}; nevertheless, this disturbance does not appear to have been among the most considerable in point of amount. Referring first to the Declination: the
observations commence at Philadelphia at 10^{h}. with an unusual westerly range, extreme $+8^{\prime} 5$ at $10^{\mathrm{h}} 12^{\mathrm{m}}$; the regular observation at $10^{\mathrm{h}} 0^{\mathrm{m}}$ at Fort Simpson shows no corresponding feature. We have again an easterly inflexion at Fort Simpson at $13^{\mathrm{h}} 6^{\mathrm{m}}$, but the general range being westerly, it only reaches $+3^{\prime \cdot} 1$ as referred to the mean, although a ciange of nearly 56^{\prime} as referred to the preceding westerly extreme at $12^{\mathrm{h}} 24^{\mathrm{m}}$; small as it is in amount it answers to an easterly extreme $-9^{\prime \prime} 9$ at $13^{\text {h }} 7^{\mathrm{m}}$ at Toronto, or $-3^{\prime} 9$ at $13^{\mathrm{h}} 0^{\mathrm{m}}$ at Philadelphia. Again, we have a westerly extreme $-50^{\prime \cdot} 1$ at $13^{\mathrm{h}} 33^{\mathrm{m}}$ at Fort Simpson, and corresponding to it a westerly extreme $+1^{\prime \prime} 8$ at $13^{\mathrm{h}} 32^{\mathrm{m}}$ at Toronto, or of $+0^{\prime \cdot} 8$ at $13^{\mathrm{h}} 24^{\mathrm{m}}$ at Philadelphia. Thé easterly extreme of the day, $+12^{\prime \cdot} 4$, occurs at Hobarton at $13^{\mathrm{h}} 22^{\mathrm{m}}$. We have then another easterly extreme, $+10^{\prime \cdot} 4$ at $14^{\mathrm{h}} 52^{\mathrm{m}}$ at Toronto, and $+7^{\prime \cdot} 0$ at $14^{\mathrm{h}} 44^{\mathrm{m}}$ at Philadelphia, to which there is no corresponding feature at Fort Simpson; then a westerly extreme at both those stations $-0^{\prime} 5$ at $15^{\mathrm{h}} 52^{\mathrm{m}}$ at Toronto, to which a return toward mean values at Fort Simpson appears to answer, it gives $-12^{\prime \cdot} 5$ at $16^{h} 0^{m}$, being still to the westward. So far, therefore, this element has shown several movements apparently common to Fort Simpson and Toronto or Philadelphia, but at the northern station the readings have been chiefly westerly, or of the kind which marks the beginning of a disturbance. At $22^{3} 23^{\mathrm{h}}$ we have the more active disturbance, marked by a range of about 2° to the eastward, the extreme is $+2^{\circ} 96^{\prime}$ at $23^{\mathrm{h}} 6^{\mathrm{m}}$; disturbance observations had been discontinued at all the stations, except St. Helena, before this hour, but the regular observations at Toronto and Philadelphia give no proof whatever that this shock, or a similar one at $23^{\mathrm{d}} 2^{\mathrm{h}}$, extended to them.

Referring next to the Horizontal Force ; we find at Fort Simpson a high value prevailing about 12^{h}, extreme $+^{\cdot} 0285 \mathrm{X}$ at $12^{\mathrm{h}} 31^{\text {nin }}$; a similar feature is presented at Toronto and at Philadelphia. The regular reading at $12^{\mathrm{h}} 2^{\mathrm{m}}$ at Toronto gives +0010 X , and at Philadelphia we have +0012 X at $11^{11} 58^{\mathrm{m}}$, which is, however, somewhat less than a value observed an hour earlier. We have next, at the same stations, a minimum between 1^{h} and 2^{h}, the whole range being as yet high at Fort Simpson ; the minimum in question is only $-{ }^{\circ} 0056 \mathrm{X}$ at $13^{\mathrm{h}} 7^{\mathrm{m}}$ at Toronto, the lowest value is $-{ }^{\prime} 0030$ at $13^{\mathrm{h}} 42^{\mathrm{m}}$, and at Philadelphia - 0018 X at $13^{\mathrm{h}} 18^{\mathrm{m}}$; the correspondence ceases with the minimum. At Fort Simpson the element returns rery rapidly to its high value, and gives $+^{\circ} 0242 \mathrm{X}$ at $13^{\mathrm{h}} 46^{\mathrm{m}}$. At Toronto and Philadelphia there is no corresponding feature; it returns to its mean value gradually, not attaining a maximum until 15^{h}. We have next a maximum at Toronto ber tween 16^{h} and 17^{h}, and again between 17^{h} and 18^{h}, to which țere
are answering features at Fort Simpson; the lowest value at Toronto is - .0040 at $18^{\mathrm{h}} 17^{\mathrm{m}}$; at this hour the values are very slightly below the mean at the northern station, where, on the other harid, 'we have a very great decrease of this element between 23^{h} and 0^{h}, which is indicated by the regular observations at Toronto. The lowest value at Fort Simpson is $-{ }^{\circ} 0609$ at $23^{\mathrm{h}} 25^{\mathrm{m}}$.

The foregoing disturbance completes the list of actual coincidences of observation. In the following cases the observations, although not coincident, correspond so nearly in point of time as to make it probable that the disturbances observed were magnetically the same.

1843, October 25, 26. -Lake Athabasca, $25^{\text {d }} 19^{\text {h }}$ to $26^{\text {d }} 3^{3 \mathrm{~h}}$; Makerstoun, $26^{\text {d }} 4^{\text {h }}$ to 11^{h}; Greenwich, $26^{\mathrm{d}} 7^{\mathrm{h}}$ to 12^{h}.

October 30, 31.-Lake Athabasca, $30^{l} 21^{\text {h }}$ to $31^{\text {d }} 4^{\text {h }}$; Makerstoun, $31^{\mathrm{d}} 6^{\mathrm{h}}$ to 10^{h}.

December 27.-Lake Athabasca, $27^{\text {d }} 18^{\text {h }}$ to 20^{h}; Makerstoun, $27^{\mathrm{d}} 22^{\mathrm{h}}$ to 23^{h}.

1844, January 8.-Lake Athabasca, $8^{\mathrm{d}} 15^{\mathrm{h}}$ to 16^{h} and 20^{h} to 22^{h}; Makerstoun, $8^{\mathrm{d}} 6^{\mathrm{h}}$ to 13^{h} and 19^{h} to 21^{h}.

February 16.-Lake Athabasca, $16^{\text {d }} 21^{\text {h }}$ to $22^{\text {h }}$; Makerstoun, $16^{\mathrm{d}} 18^{\mathrm{h}}$ to 19^{h}.

May 2.-Fort Simpson, $2^{\mathrm{d}} 19^{\mathrm{h}}$ to 24^{h}; Makerstoun, $2^{\mathrm{d}} 11^{\mathrm{h}}$ to 19^{h}.
Lastly, we have several instances in which magnetical disturbances were observed at other stations when they were not observed at Lake Athabasca or Fort Simpson, although the attention paid to the instruments was so close as to make it improbable that any considerable disturbance could escape notice. I select those only at which the observations were made at more than one other station, and a few of the more decided disturbances at single stations.

1843, December 8.-Extra observations for disturbance at Makerstoun 6^{h} to 10^{h}, at St. Petersburg 7^{h} to 10^{h}.

December 10.-Extra observations, Hobarton $5^{\text {h }}$ to $7^{\text {h }}$, St. Petersburg $5^{\text {h }}$ to 8^{h}, Makerstoun 13^{h} to 14^{h}.

December 11.—Extra observations, Makerstoun 6^{h} to 12^{h}, also 18^{h} to 20^{h}, Greenwich 8^{h} to 9^{h}.

December 12.-Extra observations, Makerstoun $2^{\text {h }}$ to 11^{h}, St. Petersburg 3^{h} to 4^{h}, and 11^{h} to 12^{h}.

1844, January 2.-Extra observations, Makerstoun $7^{\text {h }}$ to $14^{\text {lh }}$, St. Petersburg 7^{h} to 9^{h}.

January 9.-A state of disturbance appears to have prevailed more or less all day at Makerstoun.

January 10.-The same remark applies, the station the same.

January 23.-Extra observations, Makerstoun $6^{\text {h }}$ to $8^{\text {b }}$, Philadelphia 12^{h} to 24^{h}.

February 7.-Extra observations, 6^{h} to 7^{h} St. Petersburg, 6^{h} to 15^{h} Makerstoun, $9^{\text {h }}$ to $11^{\text {h }}$ Greenwich.

February 22.-Extra observations, $7^{\text {h }}$ to $9^{\text {h }}$ Makerstoun, faint Aurora being visible.

April 1.-A state of disturbance appears to have prevailed at Makerstoun more or less all day.

April 5.-Extra observations at Makerstoun 12^{h} to 19^{h}, at the Cape of Good Hope 13^{h} to 23^{h}. Aurora visible at the former station.

May 14.-Extra observations, 14^{h} to 17^{h} Makerstoun, 15^{h} to 17^{h} Toronto.

The following Table contains the value of the daily mean irregular fluctuation of both elements at Toronto and the northern stations, to which is added that of the Declination for the same days at Sitka, the whole calculated according to the method of Colonel Sabine (Observations on days of unusual Magnetical Disturbance, Part I. ix.), which is as follows:-The difference is first taken between the scale reading at each observation (reduced to an invariable temperature in the case of the Bifilar Magnetometer), and the mean of the month for the same hour; these differences are regarded as the effect of the irregular disturbing force at the time of observation, and are represented, by Colonel Sabine, by the symbol $\nabla \psi_{n}, n$ being the number of the Göttingen hour of observation. The fluctuation of the element, due to the irregular action between two consecutive hourly observations, is $\nabla \psi_{n}-\psi_{n-1}$, which is expressed by $F \psi_{n}$, and the mean irregular fluctuation for a whole day will be $\overline{\mathrm{F} \psi}=$ $\sqrt{\frac{1}{24} \Sigma\left(\mathrm{~F} \psi_{n}\right)}$, if the number of observation hours have been 24 , as was the case in the present series. Similarly the mean irregular fluctuation for a month or longer period may be found, by dividing the sum of all the squares of $(F \psi)$ by the total number. The scale values employed to convert the mean fluctuation in scale divisions of the Bifilar into parts of the Horizontal Force, were the following: at Toronto $k=\cdot 0001056$, at Lake Athabasca $k={ }^{\circ} 000341$, and at Fort Simpson, from 15th April to 25th May 1844, $k={ }^{\circ} 000283$.

Table XLIX．
Values of the daily mean Irregular Fluctuation of the Declination and Horizontal Force F．（ ψ_{n} ），from October 1843 to May 1844 inclusive．

Date．	Declination．			Horizontal Force．		Date．	Declination．			Horizontal Force．	
		$\begin{aligned} & \text { 易 } \\ & \text { 治 } \end{aligned}$						$\begin{aligned} & \text { 热 } \\ & \text { 范 } \end{aligned}$		웅 0 0 0	碼
1843.						1843.					
Oct． 1	$\underline{4}$	，	－	－	－	Nov． 1	$1^{\prime} 0$	1	$3^{\prime} \cdot 1$	－0005	－0048
2	$2 \cdot 9$	－	－	－	－	2	2.8	－	$11 \cdot 1$	－0006	－0049
3	2.0	3.4	－	－	－	3	$1 \cdot 2$	－	$2 \cdot 0$	－0003	－0070
4	3.2	$3 \cdot 1$	－	－	－	4	1.0	0.8	$5 \cdot 2$	$\cdot 0003$	－
5	1.5	$3 \cdot 1$	－	－	－	5	－	$1 \cdot 3$	．－	－	－
6	1.3	$3 \cdot 2$	－	－	－	6	1.0	$1 \cdot 3$	9：1	－0002	－0066
7	1.6	$1 \cdot 3$	－	－	－	7	$1 \cdot 1$	1.8	$4 \cdot 1$	－0003	－0024
8	\cdots	1.8	－	－	－	8	$4 \cdot 5$.	$2 \cdot 8$	16.2	－0004	－0064
9	1.0	1.6	－	－	1 ${ }^{-}$	9	1.4	$2 \cdot 3$	$3 \cdot 9$	－0003	－0047
10	$0 \cdot 9$	$2 \cdot 1$	－	－	－	10	0.8	1.6	$3 \cdot 4$	－0002	－0034
11	0.6	$1 \cdot 3$	－	－0003	－	11	1.0	$1 \cdot 1$	$4 \cdot 5$	－0003	－0024
12	2.2	2．4	－	－0003	－	12	－	$1 \cdot 1$	－	－	－
13	$1 \cdot 9$	$2 \cdot 2$	－	－0005	－	13	2.7	$4 \cdot 1$	$7 \cdot 3$	$\cdot 0006$	－0082
14	$2 \cdot 0$	1.9	－	－0007	－	14	1.7	$1 \cdot 8$	$5 \cdot 8$	－0007	－0021
15	－	$2 \cdot 7$	－	－	－	15	1＇5	$1 \cdot 3$	$6 \cdot 7$	－0003	－ 0040
16	$3 \cdot 5$	6.7	38.0	－0008	－0130	16	1.5	$2 \cdot 1$	$8 \cdot 0$	－0002	－0026
17	$3 \cdot 6$	3.0	$47^{\circ} 7$	－0012	－01．63	17	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 6$	－0002	－0028
18	2.3	$2 \cdot 3$	$15 \cdot 3$	＇0006	－0052	18	1.2	1.2	$2 \cdot 5$	－0003	－0015
19	$1 \cdot 8$	$2 \cdot 7$	$30^{\circ} 4$	－0006	－0104	19	－	$0 \cdot 7$	－	－	－
20	0.9	1.4	－	－0003	－	20	$1 \cdot 4$	188	$5 \cdot 4$	－0003	－0030
21	0.7	$0 \cdot 8$	11.0	＇0002	－0037	21	0.7 ．	1.1	$2 \cdot 7$	－0003	${ }^{\prime} 0015$.
22	－	0.9	$-$	－	－	22	$0 \cdot 9$	0.9	4.9	－0002	－0024
23	0.7	$1 \cdot 2$	$14 \cdot 2$	－0003	－0048	23	0.7	$1 \cdot 1$	1.6	－0002	－0016
24	1.0	1.6	$17 \cdot 7$	－0004	$\cdot{ }^{-} 0060$	24	1.3	1.4	$7 \cdot 0$	－0003	－0071
25	$1 \cdot 1$	$4 \cdot 8$	19.5	－0003	$\cdot 0066$	25	0.6	$2 \cdot 5$	3.0	－0001	－0012
－ 26	$3 \cdot 8$	4.3	$24 \cdot 1$	$\cdot 0006$	－ 0088	26	－	$2 \cdot 3$	－	－	－
27	$2 \cdot 1$	$2 \cdot 4$	$32 \cdot 5$	－0004	－0111	27	0.7	0.8	$3 \cdot 3$	－0004	$\cdot 0016$
28	1.6	1．0	$13 \cdot 8$	－0003	－0047	28	1.0	1.2	$5 \cdot 9$	－0002	． 0014
29	－	1.8	－	－	－	29	1.4	1．4	$5 \cdot 1$.	－0004	－0045
30	$1 \cdot 8$	1.8	24.9	－0004	－0085	30	12.	$1 \cdot 5$	$5 \cdot 5$	－0003	－0024
31	2.4	2.0	$19 \cdot 9$	－0004	－0068						
Mean ．	2.07	2＇99	11.62	－00054	＇00887	Mean	1．62	1＇70	6.28	$\cdot 00067$	$\cdot 00426$

Table XLIX．－continued．

Date．	Declination．			HorizontalForce．		Date．	Declination．			Horizontal Force．	
	$\begin{aligned} & \text { O. } \\ & \text { H } \\ & \text { E0 } \end{aligned}$	$\begin{aligned} & \text { 忽 } \\ & \text { 荡 } \end{aligned}$			Athabasca．		율 ¢ En	易	嚕	发：	
1843.						1844．					
Dee： 1	$\mathrm{I}^{\prime} \cdot 0$	$1 \cdot 9$	$12^{\prime} 1$	－0003	－0071	Jan． 1	$0: 8$	$2 \cdot 1$	$\pm \dot{\square}$	－0003	－
－ 2	$2 \cdot 5$	1.0	71	－0005	$\cdot 0088$	2	$1 \cdot 3$	13	7.0	－0004	－0082
3	－	1.5	－	－	－	3	0.6	0.9	$4 \cdot 0$	－0002	－0017
．． 4	0.6	0.8	$2 \cdot 8$	－0002	$\cdot 0017$	4	3.9	$4 \cdot 8$	16.4	：0008	－0189
5	0.8	$1 \cdot 4$	$4 \cdot 2$	－0001	－0037	5	$2 \cdot 0$	$2 \cdot 1$	18.0	－0005	－0147
$\cdots 6$	0.9	$1 \cdot 1$	4.5	－0004	－0039	6	1.4	$3 \cdot 1$	10.0	－0004	－0111
7	1.9	0.8	$2 \cdot 0$	－0002	－0015	7	－	3.0	－	－＇	－
8	1.7	2.4	16.2	－0005	$\cdot 0047$	8	2.0	2.5	$5 \cdot 9$	－0005	－0034
2	$2 \cdot 1$	$1 \cdot 6$	5.0	－0008	－0034	9	$1 \cdot 3$	1.7	$7 \cdot 2$	－0003	－0030
－ 10	－	$7 \cdot 4$	－	－	－	10	$1 \cdot 3$	$2 \cdot 0$	6.2	－0002	－0026
11	53	3．2	$5 \cdot 2$	－0006	－0032	11	$1 \cdot 4$	$13{ }^{\prime}$	5.2	－0004	－0034
12	$2 \cdot 6$	1.5	5.6	－0006	－0026	12	1．0	$1 \cdot 3$	$7 \cdot 2$	－0004	－0017
13	1.8	1.2	$3 \cdot 8$	－0004	－0030	13	0.7	$1 \cdot 2$	2.7	－0003	＇0020
14	0.8	1.5	$2 \cdot 9$	－0003	$\cdot 0014$	14	－	0.9	－	－	－
15	$0 \cdot 9$	1.0	$3 \cdot 7$	－0003	－0015	15	0.8	1.4	$4 \cdot 4$	－0002	－0019
16	0.4	0.7	3•3	－0002	－0026	16	0.7	1.0	$4 \cdot 8$	－0002	＇0030
17	－	0.7	－	\square	－	17	0.8	0.9	4.5	－0003	－0027
18	$1 \cdot 1$	0.6	3.7	－0002	－0015	18	1.0	$1 \cdot 1$	5.8	－0003	－0028
19	1.2	1.8	10.0	－0002	－0051	19	1.0	$3 \cdot 1$	$5 \cdot 7$	－0002	－0047
－ 20	0.7	$1 \cdot 1$	6.3	－0002	－0018	20	0.6	$1 * 0$	$3 \cdot 5$	－0002	－0027
－ 21	0.4	1.9	$4 \cdot 1$	－0002	－0016	21	－	1.4	－	－	－
－ 22	0.5	0.6	$4 \cdot 9$	－0002	－0017	22	1.6	1.8	$8 \cdot 9$	－0004	－0035
23	0.5	0.7	$3 \cdot 1$	－0003	$\cdot 0013$	23	0.9	12	6.5	－0003	－0026
－． 24	－	$0 \cdot 9$	－	－	－	24	$2 \cdot 0$	1＇8	$15 \cdot 6$	－0006	－0071
25	－	1.0	－	－	－	25	2.3	3.8	$23 \cdot 3$	－0005	－0055
26	0.9	$1 \cdot 0$	$4 \cdot 9$	－ 0003	－0063	26	0.9	1.2	9.3	－0003	－0039
27	$2 \cdot 1$	4.0	6.7	－0004	－0037	27	1.0	1.2	4.0	－0003	－0022
－ 28	1.8	2.5	19.0	－ 0005	－0068	28	－	1.0	－	－	－
29	0.8	1.2	6.0	－0004	－0071	29	0.8	14	$5 \cdot 4$	$\cdot 0002$	－0031
－ 30	1.0	1.1	3.7	－0008	－0017	30	$1 \cdot 1$	0.0	$4 \cdot 3$	－0004	－0025
81	－	1.2	－	－	－	31	$1 \cdot 3$	1.9	$8 \cdot 1$	－0006	－0071
Magn	1.42	$2 \cdot 04$	$7 \cdot 32$	－00042	－00409	Mean－	$1 \cdot 48$	$2 \cdot 00$	$9 \cdot 29$	－00041	－00835

Table XLIX．－continued．

Date．	Declination．			HorizontalForce．		Date．	Declination．			Horizontal Force．	
	管	$\begin{gathered} \text { 品 } \\ \text { 营 } \end{gathered}$					율	要		¢ Et ¢	
1844.						1844.					
Feb． 1	$2 \cdot 5$	$3^{3} \cdot 5$	$13^{\prime} \cdot 5$	－0008	$\cdot 0078$	Mar． 1	${ }^{\prime} \cdot 1$	$\mathrm{I}^{\prime} \cdot 8$	\pm	＇0003	－
2	711	$7 \cdot 1$	14.4	－0003	－0063	2	$3 \cdot 1$	$3 \cdot 2$	－	－0006	－
3	1.6	17	$4 \cdot 1$	－0005	－0108	3	－	$3 \cdot 2$	－	－	－
4	－	1.5	－	－	－	4	3.6	$3 \cdot 0$	－	－0007	－
5	$2 \cdot 9$	$3 \cdot 6$	18.0	－0007	－0148	5	8.0	$7 \cdot 6$	－	－0009	－
6	1.8	3.2	$7 \cdot 0$	－0004	－0073	6	3：1	$7 \cdot 8$	－	－0011	－
7	1.7	5.0	$5 \cdot 3$	－0007	－0059	7	$4 \cdot 6$	$8 \cdot 2$	－	－0011	－
8	2.6	4.5	8.9	＇0006	－0057	8	4.2	3.0	－	－0005	－
9	1.2	1.3	$4 \cdot 5$	－0003	－0041	9	$2 \cdot 1$	$7 \cdot 0$	－	－0005	－
10	$3 \cdot 9$	$1 \cdot 3$	6.2	－0005	－0046	10	－	$3 \cdot 2$	－	－	－
11	－	0.8	－	－	－	11	1＇3	1.8	－	－0003	－
12	$2 \cdot 0$	111	$3 \cdot 6$	－0002	$\cdot 0047$	12	2.2	$2 \cdot 1$	－	${ }^{-0004}$	－
13	0.8	1.0	$3 \cdot 5$	－0003	－0093	13	1.2	1.4.	－	－0003	－
14	$0 \cdot 9$	$1 \cdot 9$	4.3	－0002	－0022	14	1.6	$1 \cdot 8$	－	－0003	－
15	$1 \cdot 1$	$1 \cdot 9$	4.8	－0003	－0017	15	$1 \cdot 3$	$1 \cdot 3$	－	$\cdot 0003$	\rightarrow
16	1.1	$1 \cdot 4$	$7 \cdot 3$	－0003	$\cdot 0031$	16	$2 \cdot 2$	15	－	－0003	－
17	1.2	$1 \cdot 0$	$7 \cdot 8$	－0004	－0637	17	－	1.5	－	－	－
18	－	0.7	－	－	－	18	$2 \cdot 1$	$3 \cdot 7$	－	－0004	－
19	0.9	1.0	$2 \cdot 7$	－0003	－0018	19	$2 \cdot 8$	$4 \cdot 0$	－	$\cdot 0005$	－
20	1.1	0.9	3.2	－0003	－0016	20	$2 \cdot 1$	1.5	－	$\cdot 0003$	－
21	1.0	$2 \cdot 4$	5.7	－0003	－0040	21	$1 \cdot 6$	$2 \cdot 7$	－	$\cdot 0003$	－
22	111	$2 \cdot 1$	$0 \cdot 1$	＇0003	－0019	22	$1 \cdot 3$	$1 \cdot 4$	－	$\cdot 0003$	－
23	0.8	1.2	$4 \cdot 9$	－0002	－0017	23	$0 \cdot 9$	1.5	－	－0004	－
24	1.3	$1 \cdot 0$	7.8	－0003	－0017	24	－	$1 \cdot 4$	－	－	－
25	－	11	－	－	－	25	$1 \cdot 3$	1.7	－	－0003	－
26	1.3	$0 \cdot 9$	5.0	－0004	$\cdot 0073$	26	$1 \cdot 3$	$1 \cdot 4$	－	－0002	－
27	$1 \cdot 1$	1.0	4.9	－0002	－0010	27	$2 \cdot 5$	3.7	－	$\cdot 0007$	－
28	$7 \cdot 4$	711	14.3	－0010	－	28	$1 \cdot 4$	$5 \cdot 9$	－	－0007	－
29	$1 \cdot 6$	$2 \cdot 1$	－	$\cdot 0003$	－	29	－	15.8	－	－0015	－
						30	6.6	$5 \cdot 4$	－	－0016	－
						31	－	5.6	－	－	－
Mean ．	$2 \cdot 62$	$2 \cdot 80$	$7 \cdot 50$	－00049	－00570	Mean－	4.05	4.86	－	－00070	－

Table XLIX．－continued．

Date．	Declination．			HorizontalForce．		Date．	Declination．			HorizontalForce．	
	$\begin{aligned} & \text { oi } \\ & \text { 0 } \\ & \text { हi } \end{aligned}$						융 ¢ ¢	$\begin{gathered} \text { 星 } \\ \text { 采 } \end{gathered}$		芴	
1844.						1844.					
April 1	$4 \cdot 8$	${ }_{8}{ }^{1} 1$	$17 \cdot 4$	－0009	－	May 1	1×8	$3^{6} \cdot 4$	11＇9	－0007	－0064
2	$2 \cdot 4$	3．3	24.5	－0009	－	2	$1 \cdot 7$	$2 \cdot 9$	10.9	－0008	－0069
3	3．4，	$4 \cdot 8$	31.0	－0007	－	8	$1 \cdot 2$	2.5	12.2	$\cdot 0005$	－0148
4	2.4	1.7	12.1	－0005	－	4	$1 \cdot 3$	0.8	5.5	－0002	－0035
5	－	$3 \cdot 3$	－	－	－	5	－	2.4	－	－	－
6	$1 \cdot 4$	$3 \cdot 3$	12.0	－0007	－	6	1.4	1.6	9.5	－0004	－0044
7	－	2.9	－	－	－	7	$4 \cdot 6$	$1 \cdot 8$	14.2	－0008	－0085
8	2.0	1.1	$10 \cdot 1$	－0003	－	8	$3 \cdot 1$	1.5	$9 \cdot 4$	－0005	－0049
9	$1 \cdot 0$	1.3	$8 \cdot 0$	－0003	－	9	$1 \cdot 0$	$1 \cdot 2$	8.2	$\cdot 0003$	－0063
10	1.7	$4 \cdot 7$	$21 \cdot 3$	－0006	－	10	$1 \cdot 8$	13	$1 / 2$	－0005	－0059．
11	17	1.6	$0 \cdot 0$	－0004	－	11	$1 \cdot 2$	$1 \cdot 1$	8.1	－0003	＇0021
12	1.0	1.0	4.3	－0003	－	12	－	$1 \cdot 4$	－	－	－
13	0.9	1.5	$9 \cdot 7$	$\cdot 00 \cdot 13$	－	13	2.2	$1 \cdot 8$	6.8	－0004	． 0045
14	－	$2 \cdot 0$	－	－	－	14	5.3	1.8	$7 \cdot 3$	－0008	－0048
15	1.1	1.5	$27 \cdot 8$	－0004	$\cdot 0110$	15	$1 \cdot 2$	1.5	$5 \cdot 2$	$\cdot 0003$	－0042
16	8.6	$0 \cdot 1$	18.8	－0016	－0112	16	1.0	1.2	$7 \cdot 8$	－0003	－0023
17	5．0	6.1	26.0	－0027	$\cdot 0171$	17	0.9	1.2	4.8	－0003	－0025
18	$1 \cdot 3$	$2 \cdot 1$	4.5	－0008	$\cdot 0030$	18	$1 \cdot 3$	177	5.8	－0004	－0042
19	1.0	1.5	$7 \cdot 3$	－0003	－0064	19	－	1.3	－	－	－
20	$1 \cdot 0$	111	$7 \cdot 9$	－0003	－0069	20	0.7	1.2	$5 \cdot 2$	－0003	$\cdot 0046$
21	\rightarrow	1.7	－	－	－	21	1.7	$2 \cdot 0$	6.5	－0009	－0000
22	0.7	1.2	6.6	$\cdot 0003$	－0028	22	$5 \cdot 0$	0.6	$29 \cdot 8$	－0011	－0116
23	1.7	20	$12 \cdot 1$	－0004	$\cdot 0050$	23	$1 \cdot 5$	11.5	22.5	－0006	－0060
24	2.2	1.9	$7 \cdot 9$	－0004	－0033	24	$2 \cdot 9$	$2 \cdot 5$	$9 \cdot 0$	－0004	－0063
25	$2 \cdot 8$	6.2	28.3	－0009	－0129	25	1＇7	1.4	－	－0006	－
26	$4 \cdot 2$	$4 \cdot 4$	27.9	－0012	$\cdot 0193$	26	－	$1 \cdot 6$	－	－	－
27	3.8	4.8	$21 \cdot 1$	－0008	$\cdot 0104$	27	1.8	$1 \cdot 9$	－	－0005	－
28	－	$1 \cdot 3$	－	－	－	28	$1 \cdot 1$	$1 \cdot 2$	－	－0003	－
29	$1 \cdot 3$	$2 \cdot 2$	$20 \cdot 6$	$\cdot 0007$	$\cdot 0072$	29	1．4	$1 \cdot 5$	－	$\cdot 0004$	－
30	$2 \cdot 6$	5.6	24.8	－0007	$\cdot 0128$	30	$1 \cdot 0$	0.9	－	$\cdot 0003$	－
						31	1.0	11	－	－0006	－
Mean	$2 \cdot 99$	$3 \cdot 45$	16.45	－00088	－	Mean－	$2 \cdot 27$	$2 \cdot 93$	11.43	－00054	－00832

It appears by the foregoing Table that, with a few exceptions, the days of the larger mean irregular fluctuation of the Declination and Horizontal Force in each month coincide at all the stations, and that very low values, indicating a freedom from disturbance, are also generally the same; the exceptions may arise from an actual difference in the relative condition of the elements as regards this characteristic, but may also, in part, be caused by extreme movements concurring with the periods of regular observation at one station and not at another. It is due to this accidental circumstance that the mean fluctuation of both elements has a lower value on the 16th and 17th of April than on the 25th and 26th, although the amount of disturbance was considerably greater in reality on the former than on the latter occasion. In the following Table a few instances of this cortespondence are selected, the number against each date being the relative place of that day among the other days of the same month at the same station, as regards the magnitude of the mean irregular fluctuation of the elements referred to.

Table L.
Extremes of each instrument during Disturbances at Lake Athabasca and Fort Simpson.

Date.	Relative place of each day.					Date.	Relative place of each day.				
	Declination.			Hor. Force.			Declination.			Hor. Force.	
	Toronto.	Sitka.	Athabasca.	Torosto.	Athabasca.		Toronto.	Sitka.	A thabasca. Fort Bimp	Toronto.	$\begin{aligned} & \begin{array}{l} \text { Athabagecai: } \\ \text { Port Simpo } \end{array} \end{aligned}$
Oct. is	3	1	3	2	2	Jan. 8	3	5	11	6	12
17	2	8	4	1	1	24	4	8	4	3	5
25	10	2	- 2	11	8	25	2	2	1	6	7
20	1	3	6	4	6	Feb. 1	6	6	4	5	3
30	13	18	1	8	5	2	2	1	1	1	6
Nôv. 2	2	wants	2	4	6	5	4	5	3	2	1
8	1	2	1	6	5	28	1	1 bs	2	1 bis	wanting.
13	3	1	5	2	1	-	-				
14	5	7	9	1	19	Apr. 16	1	2	11	2	7
Dec. 1	12	4	3	18	1	17	2	2010	6	1	2
2	2	18	5	6	2	25	7	1	. 2	5	4
12	1	9	9	4	14	26	4	8	3	3	1
27	4	-1	6	10	9	May 1	7	3	5	5	5
28	7	3	1	5	3	14	1	10	18	8	12
Jan. 4	1	1	3	1	1	22	2	2	1	2	2
5	5	6	2	2	2	23	18	1	2	1	8

November 14, December, 12, January 8, and May 14, are inserted to show that occasionally a high relative value of the mean irregular fluctuation of one or both elements prevailed at Toronto, with a low one at the norchern station; but the general conclusion from this comparison must be, that such a state of things is exceptional, a state of disturbance being. more commonly prevalent at the same time over the whole area embraced, which is not an inconsiderable fraction of that of the globe. It has already been shown that there is not in general a correspondence in detail in the movements during disturbances at Lake Athabasca or Fort Simpson and the other stations in America or Europe, although it sometimes exists to a limited extent. The first of these stations is rather less distant, and the latter rather more distant from Toronto, geographically, than Barnaoul in Siberia from St. Petersburg. On referring to the curves of magnetic term days given in the Annuaire Magnetique et Meteorologique, \&c. for these two stations, it will be seen that distance has apparently less to do with this want of correspondence than difference of magnetical position, for while there are numerous and interesting examples of great movements at St. Petersburg, not shown in the curve for Barnaoul, or only to be identified in some minor inflexion by the aid of the curves given for intermediate stations, yet these cases appear to be rather the exceptions, and in general a correspondence is at once perceptible, notwithstanding the distance, which is about 1,750 geographical miles, and exists both in the character and the precise epoch of the greater movements. For the purpose of showing more fully that this is not the case in the stations we are here comparing, a selection has been made of all the observations at Toronto, Sitka, and the northern stations, which differ from the mean for the month by a quantity exceeding twice the amount of the mean irregular fluctuation of the element for the same month. The values of the latter quantity will be found in the preceding Table. The dates of these observations are given in the next Table, together with the amount of the difference in each case from the mean, both at the station at which such difference reaches the given limit or amounts to a shock, and at the remaining stations. To distinguish the latter or corresponding readings from the shocks, they are printed in Itatics.

Table LI.

A List of Shocks of the Declination at Lake Athabasca, or Fort Simpson, Toronto, and Sitka, with the differences of the scale readings at all these Stations from their means respectively at each date. Differences which fall short of $2 \sqrt{\frac{\Sigma}{n} \overline{\psi^{2}}}$, and therefore do not come up to the definition of a Shock, are printed in Italics. A movement of: the north end of the magnet to the east is marked with the + sign at all the stations, the contrary movement with the-sign.

* Observation wanting. S. Sunday, Good Friday, or Christmas Day at the station. d Disturbance observed.

Gött. Date.	Station.			Gött. Date.	Station.		
	Toronto.	Sitka.	Athabasca.		Toronto.	Sitka.	Athabascas,
d. h .	October.			d. h. October.			
219	$4 \cdot 9$	2.5	1	2614	$5^{\prime} \cdot 2$	3.4	$11^{\prime} \cdot 7$
220	$9^{\prime} 1$	$8 \cdot 2$	-	2619	-4.7	$6 \cdot 1$	-29.8
221	$9^{\prime} 2$	-7.9	\square	2620	$-4^{*} 1$	-0.5	$1 \cdot 3 d$
223	-7.0	-25.6	\#	2622	$-2 \cdot 8$	$-10^{\circ} 2$	$1 \cdot 6 d$
30	-0.8	-6.9	-	$27 \quad 0$	$0 \cdot 1$	$-9 \cdot 3$	$8 \cdot 1 d$
316	-2.5	6.4	-	$27 \quad 1$	-6. 5	-12.0	19.8 d
318	-1.4	6.1	-	2922	-4.2	0.7	$-1 \cdot 8$
415	$8 \cdot 9$	5.5	-	$30 \quad 0$	0.7	0.5	$28^{\circ} 0$
50	$1 \cdot 7$	8.1	-	3017	$4 \cdot 2$	-0.1	$9 \cdot 1$
51	$2 \cdot 7$	$7 \cdot 3$	-	3114	8.6	$1 \cdot 2$	$1 \cdot 7$
56	-4.8	-10.7	-		November.		
59	-1.4	-6.9	-	14	3.2	*	-2.5
515	$4 \cdot 6$	-109	-	15	3.5	*	$0 \cdot 8$
618	-2.7	-9.0	-	217	6.6	*	-9.0d
821	-4.1	-0.6	-	218	$+1 \cdot 7$	*	-43.8d
1215	$5 \cdot 0$	1×2	-	219	$1 \cdot 7$	*	$-36.6 d$
1223	-4.5	$0 \cdot 1$	-	220	$5 \cdot 8$	*	$-11 \cdot 2 d$
180	-1.9	9.4	-	30	-4.0	*	-2.7d
1322	-4.3	-2.4	-	521	0.6	$8 \cdot 7$	-11.5
1411	-4.2	-0.4	-	522	0.9	$6 \cdot 1$	$-0.7 . d$
1414	1.4	-5.9	-	523	$2 \cdot 4$	$7 \cdot 9$	$14 \cdot 3 d$
160	-11.3	-5.7	$63 \cdot 0 d$	60	$1 \cdot 9$	8.7	$43 \cdot 3 d$
1610	-4.5	$-3 \cdot 3$	$-1 \cdot 3$	61	0.4	6.4	
1620	$+0.1$	$26^{1} 1$	$0 \cdot 1$	62	0.4	$4 \cdot 3$	22.1
1621	-1.5	$26^{\circ} 0$	$5 \cdot 9$	69	0.5	$8 \cdot 6$	-0.6
1622	-6.0	$16^{\circ} 4$	$3 \cdot 0$	71	-0.9	$3 \cdot 4$	18.3
1623	1.5	$10^{\circ} 5$	$3 \cdot 7$	72	0.9	$5 \cdot 3$	-10.2
172	-110	-6.9	-12.711	73	0.2	$4 \cdot 4$	-2.8
178	-3.4	$-7 \cdot 7$	$-12.8 d$	74	177	$3 \cdot 7$	-1.1
174	-4.1	-3.9	-18.8	75	-4.1	$1 \cdot 0$	2.8
1718	$-3 \cdot 2$	$5 \cdot 9$	$35^{\circ} 6$ d	77	-3.6	-3.6	-12.5
1720	$-5^{\circ} 5$	-103	$-17 \cdot 6 d$	89	-0.6	$3 \cdot 5$	-2.7
1816	9.3	$+3.0$	-3.6	81	-0.4	$4 \cdot 6$	-5.7
1916	-0.9	-6.0	4.4	83	0.2	$4 \cdot 7$	$2 \cdot 3$
1917	-6.8	12.1	-20.9	84	-0.3	$4 \cdot 9$	$1 \cdot 7$
1918	$-2 \cdot 1$	7.5	-30.7 d	$8 \quad 5$	-1.5	$5 \cdot 1$	0.8
241	-0:9	$8 \cdot 4$	$5^{\circ} 3 \mathrm{~d}$	815	15.1	$3 \cdot 5$	8.9
2519	-0.7	12.1	$62 \cdot 0 d$	817	$0 \cdot 3$	$4 \cdot 2$	-1.0
260	-7.6	-0.3	-8.6d	818	-3.1	11.1	$56{ }^{\circ} 6 d$
263	$4 \cdot 2$	-0.8	-3.38	820	-0.7	$8 \cdot 4$	5.6
$26 \quad 5$	-0.3	-6.4	-5.3	821	$1 \cdot 6$	$5 \cdot 7$	$4 \cdot 3$
2610	-4.5	-3.0	$1 \cdot 3$	822	$1 \cdot 1$	6.9	$11^{\circ} 0$

Table LI.-continued.

Gött. Date.	Station.			Gött. Date.	Station.		
	Toronto.	Sitka.	Athabasca.		Toronto.	Sitka.	Athabasca.
d. h .	Nov	,		d. h.			
828	$0 \cdot 7$	$12^{\prime} 5$	$14.3 d$	134	-4.8	$-9 \cdot 3$	$17^{\prime} \cdot 5 d$
90	$2 \cdot 7$	$8 \cdot 1$	$1 \cdot 3 d$	135	-4.6	$1 \cdot 9$	$-5.0 d$
94	$1 \cdot 1$	3.5	-0.9	136	-4.5	0.6	-8.1d
95	0.0	3.8	2.8	$13 \quad 9$	-3.3	-4.7	0.1
96	$1 \cdot 7$	$4 \cdot 7$	-0.1	1314	$7 \cdot 1$	$1 \cdot 2$	$1 \cdot 8$
97	$0 \cdot 1$	$5 \cdot 7$	43	1315	$4 \cdot 1$	$1 \cdot 3$	-2.1
98	0.0	5*3	$4 \cdot 4$	1321	-0.1	-0.7	-13.12
99	0.5	6.1	$2 \cdot 6$	1322	+0.8	-5.0	-2.2d
910	$+0.6$	$5 \cdot 2$	3.0	1323	-0.8	$-8 \cdot 6$	$-2 \cdot 7 d$
911	0.4	$5 \cdot 6$	$2 \cdot 5$	1411	-4.2	-5.0	$-3 \cdot 0$
912	-0.2	$5 \cdot 4$	$5 \cdot 5$	1412	-0.8	-6.1	-4.2
913	-0.6	-5.5	$5 \cdot 1$	1413	-0.4	-3.8	$0 \cdot 4$
914	$+0.6$	$5 \cdot 6$	$1 \cdot 2$	1415	-0.4	-4.8	-2.1
915	$-1 \cdot 1$	$7 \cdot 3$	$3 \cdot 5$	1512	-0.8	-3.8	-2.1
916	$+2 \cdot 6$	$4 \cdot 1$	$1 \cdot 6$	1514	3.9	-1.7	3.2
917	-0.6	$3 \cdot 6$	3.0	1610	-1.1	-3.5	$-5 \cdot 0$
922	-1.7	-7.3	+5.8d	1617	3.4	0.6	$-1 \cdot 8$
923	-0.0.1	-5.0	$1 \cdot 5 d$	1618	$2 \cdot 9$	4.4	$21 \cdot 2 d$
100	0.8	-3.9	-0.1d	1713	$0 \cdot 2$	-4.0	$1 \cdot 2$
106	$0 \cdot 1$	$7 \cdot 0$	$+1.9$	1715	$4 \cdot 4$	-3.5	$1 \cdot 9$
107	-0.2	$6 \cdot 3$	$-1 \cdot 3$	1718	$-1 \cdot 0$	-4.4	- $2 \cdot 8$
108	-0.1	$5 \cdot 1$	2.4	1720	$0 \cdot 1$	-5.0	$1 \cdot 8$
109	-0.1	$4 \cdot 3$	3.7	1721	$0 \cdot 0$	-3.8	0.3
1010	-0.2	$4 \cdot 8$	$1 \cdot 2$	186	-1.9	-3.8	-3.1
1011	$+0.1$	$4 \cdot 8$	0.7	188	$2 \cdot 0$	-5.2	-6.6
1012	-0.4	$4 \cdot 0$	$-1 \cdot 8$	$18 \quad 9$	-0.4	-5.0	-5.8
1013	$-1 \cdot 1$	4.5	-2.4	1810	$-0^{\circ} 2$	-4.3	-2.4
1014	$-1 \cdot 3$	$3 \cdot 9$	-0.8	195	S.	-4.4	S.
1021	-1.9	$7 \cdot 6$	8.12	196	S.	-5.0	S.
1022	$0 \cdot 1$	$7 \cdot 0$	$2 \cdot 0 d$	197	S.	-4.4	S.
1023	$1 \cdot 3$	$7 \cdot 2$	$0 \cdot 3$	$20 \quad 0$	-0.8	-4.1	-2.3
110	-0.6	$5 \cdot 3$	-3.7	201	0.4	-3.8	-0.6
111	0.5	$4 \cdot 3$	-3.7	2021	-3.8	+2.9	17.3
112	0.6	3. 5	-6.2	210	$0 \cdot 8$	$-3 \cdot 7$	-0.7
11.3	$0 \cdot 2$	$3 \cdot 7$	$-3 \cdot 6$	22.2	$-2 \cdot 2$	-3.5	$14^{1} 1$
114	-0.2	$4 \cdot 1$	-1.1	$22 \quad 3$	-1.7	-3.1	$14^{*} 8$
115	-0.6	3.9	$+1.6$	2218	- 0.3	-3.9	-4.8
116	0.2	4.0	-3.9	$23 \quad 4$	-1.8	-4.4	-3.1
1112	-1.5	$3 \cdot 8$	$+1 \cdot 8$	$24 \quad 1$	-3.5	$1 \cdot 5$	$14 \cdot 3 d$
1113	-0.9	$4 \cdot 5$	-0.2	$24 \quad 2$	-1.7	2.5	$13 \cdot 8 d$
1114	-0.3	$4 \cdot 3$	-6.8	$24 \quad 4$	-2.6	+4.4	$9 \cdot 5$
1115	$-1 \cdot 1$	$4 \cdot 4$	-2.1	2419	-0.4	177	17*4
1116	-0.1	$3 \cdot 4$	+3.6	$26 \quad 5$	S.	-11.1	S.
1117	-0.8	$4 \cdot 2$	-3.0	266	S.	-11.4	S.
1118	S.	$3 \cdot 5$	-2.8	$27 \quad 4$	$3 \cdot 2$	-0.8	-0. 5
1119	S.	$4 \cdot 3$	-2.6	$27 \quad 5$	$3 \cdot 5$	$+0.2$	$2 \cdot 0$
1123	S.	$5 \cdot 2$	S.	$28 \quad 5$	3.0	-3.8	-1.8
122	S.	$3 \cdot 6$	S.	29 1	0.4	-4.8	-3.7
123	S.	4.4	S.	$29 \quad 2$	$-1 \cdot 1$	-4.4	-0.4
124	S.	$4 \cdot 3$	S.	294	-0.4	-4.0	-6.5
125	S.	$4 \cdot 1$	S.	2914	0.8	-5.0	$-13 \cdot 2$
126	S.	$4 \cdot 3$	S.	$30 \quad 0$	0.1	-4.3	-4.7
1219	$-1 \cdot 3$	$-4 \cdot 8$	S.	$30 \quad 3$	-0.8	-4.0	-6.0
1220	0.0	-4.0	S.	30 4	$1 \cdot 1$	-4.0	-8.5
1221	0.1	$-4^{\circ} 2$	-51	305	$2 \cdot 7$	-3.5	-5.0
132	$1 \cdot 7$	-4.9	2.6	$\begin{array}{ll}30 & 9\end{array}$	-0.4	-3.4	$-3 \cdot 6$
13 3	$2 \cdot 9$	$-7 \cdot 5$	14.8	3018	-0.9	$1 \cdot 4$	$15 \cdot 2$

Table LI.-continued.

Table LI. - continued.

Table LI.-continued.

Gött. Date.	Station.			Gött. Date.	Station.					
	Toronto.	Sitka.	Athabasca.		Toronto.	Sitika.	Athabasca Fort Simps.			
	Ferruary.			d. h .	March.					
$\begin{array}{cc}\text { d. } \\ 8 & 2\end{array}$	$5^{\prime} .5$-7.3		$16^{\prime} 6$	$\begin{array}{cc}\text { d. } & \text { h. } \\ 8 & 14\end{array}$	$10^{\prime} \cdot 2$	6.1	1			
8 3	$0 \cdot 1$	$-9 \cdot 5$	$4{ }^{\circ}$	819	-1.9	11.5	-			
84	-0.4	-9.5	16.3	820	-1.4	$12 \cdot 6$	-			
85	-8.3	-6'2	$16.0 d$	821	-0.4	$14^{\prime} 1$	-			
922	$0 \cdot 1$	-6.4	$1 \cdot 2$	822	-3.0	12.8	-			
1012	11.2	$-2 \cdot 2$	$-1 \cdot 1$	823	-0.9	11.9	-			
1120	$0 \cdot 4$	-1.7	$28^{\prime \prime} 7$	90	$0 \cdot 6$	$11^{\circ} 2$	-			
1121	$-2 \cdot 3$	-1.3	17.4	9 l	$0 \cdot 1$	$10^{\circ} 6$	-			
155	$-1 \cdot 1$	-6.0	-0.6	917	3•2	$17 \cdot 5$	-			
167	$1 \cdot 7$	$0 \cdot 0$	$15^{\circ} 2$	1022	-10	$10^{\circ} 0$	-			
1820	$0 \cdot 1$	-1.2	$15^{\circ} 4$	2823	3.7	24.1				
2120	$1 \cdot 4$	$6 \cdot 9$	-12.8	2912	$-10^{\circ} 0$	$-5 \cdot 1$	-*			
2121	$1 \cdot 4$	$6^{\prime} 0$	$1 \cdot 2$	2914	$31^{\circ} 0$	-12.2				
220	$1 \cdot 3$	$6 \cdot 5$	-4.7	$29 \quad 15$	$8 \cdot 4$	-6.30.6	-*			
235	$0 \cdot 9$	17	-17.6	2916	- 11.0		-			
262	$2 \cdot 4$	6'3	$1 \cdot 4$	2917	2.9 -13.7		-			
26 3	$2 \cdot 4$	5:7	12.5	2918	-25.9 38.6		-			
287	$2 \cdot 4$	6.1	16.9	2919	$20.2-7.9$		-			
288	-1.7	$-17{ }^{1}$	$7 \cdot 8$	2920	$13.3-1.9$		-			
$28 \quad 9$	-1.9	$1 \cdot 2$	-15.3	2921	-104 -2:2		-			
2811	$-9 \cdot 4$	-13.1	-10.0	2922	$9 \cdot 4 \quad-3 \cdot 7$		-			
2816	$25^{\circ} 1$	-2.2	-4.4	2923	$13.1-1.5$		-			
2817	3.5	-7.8	-20.2	$30 \quad 0$	-10.0 1.7		-			
2822	-10	$0 \cdot 1$	-21.8	$30 \quad 7$	3.4 -10.0		-			
. 2917	March.			9015	8.266		-			
				3518	$-S$. 11.4 5.0 18.4		-			
				3118						
219	S. $\quad-12.6$			3123	0.8	$-9 \cdot 7$	-			
220	S.	-12.9	-	April.						
221	S.	-10.9	-							
222	S.	-13.3	-	10	-1.9-1.7	$-9^{\prime} 3$	$\begin{array}{r} 35.5 \\ -11.1 \end{array}$			
223	S.	-12.7	-	14		-8.9				
30	S.	-12.5	-	16	-1.5	$-7 \cdot 2$	10.4 -3.8			
31	S.	$-10^{\circ} 2$	-	115	13.4	1.8	$\begin{array}{r} -3.8 \\ -147 \end{array}$			
418	$-4 \cdot 1$	9'9	-	120	$1.0 \quad 14.0$					
516	$3 \cdot 3$	$10^{\circ} 0$	-	26	0.4	-6.9-1.7	$\begin{array}{r} -14.7 \\ 8.7 \end{array}$			
517	$5 \cdot 5$	$22^{\prime 7}$	-	216	$6 \cdot 9$$1 \cdot 1$		$-5 \cdot 7$			
523	-8.8	47	-	220		$7 \cdot 5$	17.5			
6.0	$-10 \cdot 4$	$10^{\circ} 0$	-	223	$\begin{aligned} & -2.2 \\ & 10^{\circ} 0 \end{aligned}$	$4 \cdot 5$	$\begin{aligned} & 90 \cdot 1 d \\ & 138 \end{aligned}$			
62	-5.8	26.2	-	$\begin{array}{ll}3 & 16\end{array}$		8.1				
$6 \quad 3$	$-7 \cdot 1$	13.3	-	322	$\begin{aligned} & -4 \cdot 7 \\ & -2 \cdot 0 \end{aligned}$	9'7	$\begin{array}{r} 138 \\ 4.7 \end{array}$			
64	$-8 \cdot 7$	$7 \cdot 6$	-	40		4.4	$\begin{array}{r} 35.4 \\ -0.6 \end{array}$			
617	$3 \cdot 7$	$17 \cdot 9$	-	416	$\begin{array}{r} -2 \cdot 0 \\ 01 \end{array}$	-7.1				
618	6.4	$18^{\prime} 2$	-	515	S.	-10.6	S. S.			
619	$9 \cdot 2$	$19^{\circ} 3$	-	516	S.					
620	$1 \cdot 6$	$18^{\circ} 1$		517	S.	-8.1	S.			
622	-0.4	$9 \cdot 8$	-	518	$-5 \cdot 6$	-13.2	S.			
623	-0.3	$10^{\circ} 6$	-	519	1.11.7	$-10^{\circ} 7$				
70	-0.6	$9 \cdot 9$	-	520		$-8 \cdot 5$	S.			
78	$-3 \cdot 3$	11.6	-	615	$11-69$		-15.3			
711	8. 1	$0 \cdot 0$	-	623	S.	-7.6	S.-42.0			
715	$13 \cdot 3$	$-1 \cdot 6$		87	2•1	0.4				
716	13.6	$10^{\circ} 7$	-	923	2.7		42.3d			
718	-4.8	$18^{\prime} 4$	-	101	2.0	-8.3	$\begin{array}{r} +23.8 d \\ +11.7 \\ 45.3 d \end{array}$			
721	$2 \cdot 3$	$10 \cdot 9$	-	103	-0.7	$\begin{array}{r} -14.2 \\ -0.4 \end{array}$				
810	8.1	$1 \cdot 8$	-	1021	14					

Table LI-continued.

Gött. Date.	Station.			Gött. Date.	Station.		
	Toronto.	Sitka.	Fort Simpson.		Toronto.	Sitka.	Fort Simpsol.
d. h.	Armil.			d. h. Max.	May.		
151	$0^{\prime} 0$	$1 \cdot 5$	$-38^{\prime} \cdot 0 \mathrm{~d}$	d. 118	-2'3	${ }^{\prime} \cdot 6$	$17^{1 \cdot 7}$
15.2	$3 \cdot 3$	$0 \cdot 3$	66.1 d	123	-3.0	-1100	-15.0
1614	2.9	-7.4	$-17.0 d$	20	-2.4	-10.7	*
1615	$2 \cdot 4$	-9.5	$-25 \cdot 3 d$	21	-0.1	-9.2	-9.6
1616	$-1 \cdot 0$	$-7 \cdot 2$	$-7 \cdot 9 d$	22	-0.9	-8.9	-2.7
1617	3.0	-8.4	$-22 \cdot 3 d$	218	$5 \cdot 6$	6.9	6.2
1618	8.4	$-2 \cdot 3$	$-37 \cdot 511$	32	$2 \cdot 7$	-6.0	-14.6
1619	10.0	-10.9	-31.41	$3 \quad 3$	177	-6.6	5.2
1620	$28 \cdot 3$	$4 \cdot 2$	-19.11	34	$0 \cdot 8$	-12.6	$+35.6 d$
1621	$31^{\circ} 0$	$16^{\prime} 1$	24.3al	716	$10 \cdot 8$	$1 \cdot 7$	-2.0
1622	23*7	$29^{\prime} 1$	20.8 d	718	5.5	-2.8	-18.0
1623	-13.5	$42 \cdot 1$	$25 \cdot 5$ d	719	13.6	$-1 \cdot 1$	-23.6
170	-11.7	$25^{1} 1$	$64 \cdot 2 d$	722	-4.1	6.2	$17 \cdot 7$ d
171	-25'2	$32 \cdot 8$	$40 \cdot 9$ d	723	$1 \cdot 3$	$6 \cdot 5$	-10.5
172	-15.4	18.8	$65^{\circ} \mathrm{Od}$	813	6.7	$1 \cdot 6$	-3.0d
17	$-1 \cdot 5$	8.4	$3 \cdot 2 d$	816	$4 \cdot 5$	-0.2	$-11.7 d$
174	-5.0	$10 \cdot 3$	$30 \cdot 2 d$	1016	$5 \cdot 4$	$2 \cdot 6$	$1 \cdot 5$
175	-5.0	$2 \cdot 3$	$90 \cdot 9 d$	1318	$5 \cdot 0$	-3.6	$-17 \cdot 7 d$
176	-5.5	-2.8	$55 \cdot 9$ d	1415	$5 \cdot 2$	-6.9	-8.5
17	-6.3	$-6 \cdot 0$	$+60.3 d$	1416	$21 \cdot 8$	$-3 \cdot 7$	-13.4
178	-7.4	-9.2	14	221	3.3	$2 \cdot 9$	$64 \cdot 7 d$
179	-5.5	-13.2	$-8^{\circ} 2$	$22 \quad 2$	-0.9	$7 \cdot 9$	$57 \cdot 6 d$
1710	-2.9	$-10 \cdot 4$	0.6	$22 \quad 3$	$3 \cdot 5$	$7 \cdot 2$	$20 \cdot 6$ d
1711	$-7 \cdot 2$	-10.9	$-31 \cdot 7$	$22 \quad 5$	6.7	$4 \cdot 6$	$16^{\cdot 2}$
1712	-7.4	$-7 \cdot 3$	$-17 \cdot 1$	2210	-6.8	-8.1	-12.8
1715	$-7 \cdot 9$	$-11 \cdot 3$	$-14.5 d$	2213	8.5	-8.4	$-1 \cdot 5 d$
$25 \quad 2$	-4.9	8.7	38.3	2214	0.9	-6.5	-9.1d
$25 \quad 3$	-8.5	$24 * 6$	116.3	2215	$7 \cdot 4$	-6.1	$-13 \cdot 0 d$
254	-5.5	$7 \cdot 7$	$27 \cdot 5$	2217	83	$12 \cdot 8$	$-9.2 d$
$26 \quad 0$	-6.5	-0.2	$22 \cdot 9$ d	2218	$8 \cdot 7$	$0 \cdot 2$	$-23.0 d$
264	3.5	$2 \cdot 9$	$49 \cdot 9$	2219	4.7	$0 \cdot 3$	$-26 \cdot 8$
26.5	2.7	5.4	$63^{1} 1$	2220	$-2 \cdot 3$	-8.2	$-5 \cdot 2$
2613	$11 \cdot 3$	4.5	6.6	$22 \quad 23$	-2.9	$-10 \cdot 6$	$10 \cdot 1 \mathrm{~d}$
2618	-0.5	-0.6	$-75 \cdot 1 d$	230	-1.3	-22.4	13.6d
2619	-7.4	11.7	$-47 \cdot 1$	231	$-1 \cdot 0$	-47.1	$7 \cdot 3$ d
2621	-0.3	5.0	$-38.9 d$	$23 \quad 2$	0.0	-61.1	-2.8d
2711	$7 \cdot 1$	$3 \cdot 5$	$5 \cdot 4$	$23 \quad 3$	$0 \cdot 1$	-17.3	-9.0
2714	$7 \cdot 1$	49	8.7	2322	-2.9	-3911	$-39^{1}{ }^{1}$
2716	$1 \cdot 1$	18.2	32.9	2413	$7 \cdot 5$	2.8	$2 \cdot 1$
2717	$5 \cdot 2$	$10^{\prime} 5$	$33^{\prime} 7$	2414	$-5 \cdot 3$	$1 \cdot 7$	-12.3
2720	S.	$10 \cdot 1$	$4 \cdot 9$ d	2416	-8.7	5.0	-5.2
292	$-2 \cdot 7$	6.7	95.51	2417	-6.0	-0.4	-2.8
293	$-2 \cdot 0$	6.9	$26 \cdot 3$ d	2418	$-7 \cdot 1$	$2 \cdot 4$	6.0
294	-2.4	$6 \cdot 5$	$68^{\circ} \mathrm{Od}$	2420	$-5 \cdot 8$	$4 \cdot 4$	-14.2
2916 9	$0 \cdot 9$	$9 \cdot 1$	-5.5	271	0.1	$6 \cdot 4$	-
3017	-1.9	16.7	-42.9	$27 \quad 9$		-5.8	
3021	-6.3	$9{ }^{\circ} 0$	$16.6 d$	2716	-4.8	-4.4	
3022	$-5 \cdot 5$	$10 \cdot 3$	$65^{\circ} 1$ d	27 27 29 29	$\begin{array}{r}\text {-5\% } \\ -50 \\ \hline\end{array}$	-4.4 -0.9 0.5	-

It will be seen by the foregoing Table that instances in which the Declination is simultaneously affected, to the extent which is defined as a shock, at Lake Athabasca or Fort Simpson, and Toronto, are comparatively rare; still more so those in which it is so affected at the
same observation at Sitka also. \cdots Of the latter class we find but eleven instances in a list embracing 623 dates of observation, of which number 473 were common to the three stations. It is to be observed, however, as a defect of this mode of comparison, that the number of shocks is generally least where the prevalence of disturbance is greatest, for this circumstance occasions a high value of the mean irregular fluctuation, and the proportion of instances in which the deviation exceeds double that amount is not equally augmented; thus the number of so-called shocks is much greater at Sitka than at Lake Athabasca or Fort Simpson, the value of the mean irregular fluctuar tion being so low at the former station that a temporary prevalence of easterly or westerly ranges without sensible disturbance, and due probably to a different cause than the movements we are particularly investigating, is sufficient to bring nearly all the readings of certain days into the list;' of this we have several examples in November and January, The proportion of shocks to the whole number of observations is 1 in $34^{\circ} 4$ at the two northern stations taken together, 1 in $26^{\circ} 6$ at Toronto, and 1 in $13^{\circ} 3$ at Sitka. Referring again to the individual stations, it appears that out of a total number of 83 shocks at Lake Athabascia, 36 coincided with shocks at Sitka; out of 31 shocks at Fort Simpson, 14 coincided with shocks at Sitka; these numbers are in the proportion of 43 and 45 per cent. respectively, whereas the number of dates coincident with shocks at Toronto are only 17 in the former and 7 in the latter number, being in the proportion of 20 and 22 per cent. This difference in the degree of correspondence is further to be seen, on paying regard to the signs of the differences of the coincidences in date at Toronto and the northern stations, 16 have the contrary and 8 the same sign; of those at Sitka and the same stations, 14 have the contrary and 36 the same sign. The evidences of agreement in the movements at Toronto and at Sitka are somewhat greater, but not materially so, than those we have found at the latter station and the temporary ones. In an aggregate of 187 shocks at Toronto, only 61 are coincident with shocks at Sitka, being 32 per cent., and of this number those with like and unlike signs are nearly balanced, the numbers being 29 and 32 respectively. The limit assigned to shocks being arbitrary, we may consider the above list without reference to it, and solely as a selection of simultaneous deviations of the Declination Magnet, from its normal value at the three stations, under circumstances of apparent disturbance at one or more of them. Thus compared, it appears that the magnet Was: similarly affected, or deviated from its normal position for the same hour, in the same direction at all three stations, in 138 out of 473 instances, or 27 per cent. of the whole; the proportion is the same if we have regard to the sign of the absolute Declination, which
is easterly at the three northern stations, wंesterly at Toronto, and is not greater for movements under one sign than under the other, whether referred to absolute or relative value. The absolute Decli; nation appears to have been increased or decreased simultaneously at all three stations in 140 instances out of the same number. The proportion of instances in which the movements were similar at any two of the stations was as follows:-

Toronto and Sitka, 288 out of 555 selected observations, or 52 per cent.

Toronto and Lake Athabasca, 217 out of 372 selected observations, or 58 per cent.

Toronto and Fort Simpson, 42 out of 109 selected observations, or 38 per cent.

Sitka and Lake Athabasca, 231 out of 370 selected observations, or 62 per cent.

Sitka and Fort Simpson, 75 out of 110 selected observations, or 68 per cent.

As the observations here selected as most favourable for this comparison form somewhat less than one eighth of the whole number at Toronto, and about the same at Athabasca and Fort Simpson, the inference must be that under ordinary circumstances the deviations of the Declination Magnet from its mean position for the hour of observation, at stations so distant as those compared, are not referable to any common cause, and that where apparent resemblance exists, it is entirely casual.

- - In extending this mode of comparison to the changes of Horizontal Force, it was found that in consequence of the low value of the mean irregular fluctuation of the element at Toronto during the months examined, the proportion of readings which differed from their mean by double that quantity was too large to furnish a real criterion of the state of disturbance prevailing.

The numbers were as follows:-
In October 1843, number of observations 432, shocks 77

In November 1843,	"	,	624,	"	211
In December 1843,	"	,	600,	,	181
In January 1844,	,	-,	647,	,	293
In February 1844,	,	\cdots	600,		200
In March 1844,	,	"	-624,	"	135
In April 1844,	"	"	-600,	"	98
In May 1844,		,	646;		152

.To render the view complete, however, as regards the northem stations, a list of the shocks of the Horizontal Force at Lake Athabasca and Fort Simpson is subjoined. The differences are talkeu in the same manner as those given in disturbances, that is to say, each
observation is first referred to the normal mean for that day, and the difference corrected for the mean diurnal change proper to the hour. The latter step has not been taken for the observations of April and May.

Table LII.

A List of Shocks of the Horizontal Force at Lake Athabasca and Fort Simpson, with the difference on each occasion from the mean for the hour, expressed in parts of the Horizontal Force, and the corresponding differences of Inclination; to which are added the differences of the former element from its mean, at Toronto and Sitka, at the same hours. The scale readings at Sitka liave beeni reduced to the temperature of the mean of the month by means of the co-efficient $\frac{q}{h}=7^{\circ} 0$, as stated in the "Annuaire Magnetique," \&c. 1843, a value which makes $q=000038$ in the English notation.
*A shock of the Declination at the same hour at one of the stations.

Gött. Date.	Station.				Gött. Date.	Station.			
	Lake Athabasca.		Sitka.	Toronto.		Lake Athabasca.		Sitka.	Toronto.
	Hor. Force.	Inclin.				Hor. Force.	Inclin.		
	October.				Outober.				
	+ 0151	$4 \cdot 4$	- *0010	- $\cdot 0008$	${ }_{27}^{\text {d }}{ }_{\text {d }} \mathrm{l}^{\text {h. }}$	- -0550	$2^{\prime}{ }^{\prime} \cdot 9$	--0055	-*0016
1523	-.0454	+29.8	-.0015	--0013	$30 \quad 22$	--0204	+14.7	+.0005	-'0010
160^{*}	--0491	$+30 \cdot 6$	--0012	--0014	$30 \quad 23$	-0216	+20.8	+•0003	-.0007
171	--0364	+17.5	-.0020	--0008	November.				
$17{ }^{17}$	-. 0483	+26.2	--0031	-. 0085	122	+•0122	+1.5	- 00005	- $\cdot 0001$
17 20*	--0361	+19.7	+ 00008	- 0000	$218 *$	--0170	+1.8	+.0007	-'0015
1817	- -0206	+20.3	-.0008	- 0009	2 19*	--0129	$+5 \cdot 9$	--0024	-:0012
1922	-.0365	$+20 \cdot 3$	-0000	--0002	22^{*}	- $\cdot 0217$	+11.4	--0009	- 0019
$24{ }^{1 *}$	- -0237	+10.2	+.0008	-.0003	221	-.0109	+11.8	-.0008	--0011
$2519 *$	--0231	+9.5	-.0008	--0006	222	--0139	$+6.0$	--0009	-.0010
$25 \quad 20$	- -0242	+12.3	-0006	--0004	223	--0392	+22.0	-0009	- 0010
2521	--0171	+6.6	-.0008	-. 0005	30^{*}	--0345	+16.6	-*0012	--0008
260^{*}	-.0374	+22.5	+.0012	- -0014	523^{*}	-*0097	$+9 \cdot 2$	-.0001	--0017
2820 *	--0288	+6.0	+.0002	--0002	60^{*}	--0218	+13.4	--0005	- 0011
2621	- 00191	6.2	--0021	-0000	6 4	+.0112	$1 \cdot 2$	+.0004	- 00011
2623^{*}	- •0204	+7.4	-.0010	- 0002	6 5	+'0089	+1.5	+.0005	-'0015
270^{*}	--0265	$+13 \cdot 2$	-.0005	- $\cdot 0004$	66	-.0083	-0.1	+.0006	- 0001

Table LII.-continued.

Table LII.-continued.

Gött.	Station.				Gött. Date.	Station.			
	Lake Athabasca. Fort Simpson.		Sitka.	Toronto.		Fort Simpson.		Sitka.	Toronto.
Date.	Hor. Force.	Inclin.				Hor. Force. :	Inclin.		
Febrtary.					d APRIL.				
d. ${ }_{5} \mathrm{~h}$.	+ ${ }^{0} 149$	$-8^{\prime} 0$	-0013	--0004	${ }_{19}^{\text {d. }} \mathrm{l} \mathrm{h}_{2}$	- - 0278	$+21 \cdot 7$	+.0019	- ${ }^{-0008}$
517^{*}	+ ${ }^{0223}$	-11.3	- 0019	+ 00007	252^{*}	- -0455	+35.3	-.0023	+.0009
¢ 18	+ +0152	-6¹	- '0010	+.0005	$25^{\prime} 3^{*}$	- -0467,	+44.3	+.0068	+.0020
521	--0392	+ $31 \cdot 2$	- 0019	- -0014	28 0*	--0638;	+59.4	$+\cdot 0027$	-'0022
522	- 0178	+15.6	- $\cdot 0023$	-'0008:	261	- 0449 .	+ 35.4	+.0023	- 0023
8.0	-. 0213	$+14.2$	- $\cdot 0015$	-.0009	$26^{\text {7 }}$ *	- 00185	+2211	-'0013	-'0011
85^{*}	-:0235	+12.1	--0017	- 00028	265	--0387	$+20^{4} 4$	-.0024	+.0015
$26 \quad 23$	-.0216	$+10 \cdot 5$	--0003	+.0018	$26^{18}{ }^{*}$	--0144	+13.4	+ 0021	-0000
APRILI.§					26 19*	- 0185	+12.9	+ 0018	- 00010
23^{*}	-04	+40.1	--0067	- 0011	$27 \quad 0$	- 0323	+20.4	+.0002	-.0008
34	- 00168	+27 1	- $\cdot 0029$	0022	27 20**	- 00229	+15.9	$+\cdot 0008$	s.
$3 \quad 5$	- 0352	+23.0	-0031	-. 0024	291	- 00176	+14.3	+ ${ }^{\circ} 0006$	+ 0005
617	+.0163	-7.1'	--0013	- 00024	29 2*	- 00312	+29.3	- $\cdot 0001$	- 0002
9 23*	- 0163	+15.2	--0009	--0005	29 3*	-. 0209	+18.7	- 0002	$+\cdot 0006$
10 21*	- 00435	+1711	- $\cdot 0003$	$+\cdot 0004$	29 4*	- 0198	+15.8	- 0007	+-0004
15 1*	- $\cdot 0380$	+29\%	- 0006	+ $\cdot 0010$	30 , 0	-. 0308	+22.7	+ ${ }^{0} 024$	- 00002
15 2*	--0361	$29 \cdot 7$	- 00005	+ ${ }^{0} 0014$	$30 \quad 1$	-. 0221	+13.7	+ 0026	-.0002
16 14**	+.0286	$-20 \cdot 2$	+•0006	-'0009	$30 \quad 14$	- 0212	+14.2	+ 0037	-. 0001
16 15*	+.0346	$-25 \cdot 5$	-.0003	-.0015	$30 \quad 15$	+.0208	+14.1	+ $\cdot 0008$	+ 0006
16 16*	+.0203	-16.5	--0009	-.0004	$3021 *$	-.0468	+38.6	- 00019	+ 0007
16 18**	- 0.173	+9.1	+-0047	-.0019	30 22*	-0377	+29.1	+.0009	+ 00007
16.21^{*}	- 0332	+24.2	-.0067	-. 0063	$30 \quad 23$	- 0175	+13.2	- 00040	+ 0003
: 16.22^{*}.	-.0329	$+20.4$	+.0021	$\cdot 0000$			may.		
$16{ }^{23}{ }^{*}$	-.0188	+17.1	-.0038	-'0018	34^{*}	--0607	+49.2	+ 0008	-'0019
17 0*	-.0272	+21'1	-. 0297	-'0119	7 22*	-0257	+20.8	--0010	+.0081
17 1**	--0889	+86.6,	-.0215	-.0136	93	- 024	+26.8	--0000	-'0006
17 2*	- 0444	+ 38.9	-.0145	-.0074	94	-.0274	+24.7	+-0007	- 0001
17 3*	-.0367	+33.3	-.0238	- 0068	$\begin{array}{ll}13 & 18\end{array}$	+.0188	-16.7	$+\cdot 0005$	--0017
17 4*	- 0292	+28.6	-. 0256	--0049	$22.1 *$	-0319	$+31 \cdot 0$	$\cdot 0000$	-.0004
$175^{\text {5* }}$	-.0415	+34.2	-'0085	-.0027	$22.2{ }^{*}$	-'0369	+33.7	+-0002	+.0008
17. 6^{*}	-. 0358	+23.9	-.0043	--0008	22..14*	+ 0231	. $-18 \cdot 9$	+.0002	-.0032
17 10*	+.0162	+13:0	-0001	+.0017	22, 23^{*} *	- 0290	+36.3	+ ${ }^{\circ} 0013$ '	- 00022
17 12**	+.0187	+ +151	+ 00004	+.0011	230^{*}	-•0363	+33.2	+.0020	-0014
$17.12{ }^{*}$	+.0222	$+15.8$	+.0033	-0000	23, 1*	- 02330	+22.5	+.0032.	-0015
17 13**	+ 02025	+19.0	+.0025	+.0007	24. 2^{*}	-. $0235{ }^{\prime}$	+24 1 1	-*0008	+ ${ }^{0} 0001$

§ The-values at Fort Simpson in April and May are referred to the datly and not the hourly mean.

It does not appear by the foregoing Table that the great and sudden changes to which the Inclination at Lake Athabasca and Fort Simpson was liable, extended in general even to Sitka, the nearest station. These changes were always accompanied by a pro portionate change of the horizontal component, and, being generally. positive, occasioned those great reductions of the last-named element which are contained in the list of shocks, and form the most conspicuous feature of almost every disturbance. We find that in 105 out of the 170 observations here given, the value of the element had opposite signs at one or more of the stations at the same hour; of these, 74 are observations at Sitka. Of the instances in which the element appears to have been similarly affected, April 16th and 17 th are the most decided, and the great reduction appears to have occurred earlier at Sitka on this occasion than at Fort Simpson. There are 106 of these dates at which the deviation of the Declination from its mean, at one or more of the stations, amounted to a shock, and 64 at which the Horizontal Force alone exhibits the effect.

TERM DAYS AND MAGNETIC DISTURBANCES.

- Introduction.-The regular magnetical Term Days were observed at Lake Athabasca and Fort Simpson, and, in addition, extra observations were taken whenever the irregularity of the scale readings seemed to call for it, as well as upon some occasions when, from the presence of aurora or from some other cause, it was deemed advisable to commence them in anticipation of magnetic disturbance. During October, and for the first half of November 1843, the customary intervals of five minutes were adhered to; the Declinometer was read at $0^{\mathrm{m}}, 5^{\mathrm{m}}, 10^{\mathrm{m}}, \& \mathrm{c}$. Gött. time, the Bifilar at $2^{\mathrm{m}}, 7^{\mathrm{m}}, 12 \mathrm{~m}^{\mathrm{m}}, \& \mathrm{c}$. ., and the Inclinometer at $3^{\mathrm{m}}, 8^{\mathrm{m}}, 13^{\mathrm{m}}, \& \mathrm{\& c}$., after the hour; the great rapidity of the changes led afterwards to a general practice of reading the instruments one after the other in recurring succession, with an interval of only one minute between them; thus each element was observed every third minute. Upon Term Days, and a few other occasions, the five minute intervals were retained. The minute entered is, in every case, that of the Declinometer reading.

In computing the simultaneous variations of the three elements of Declination, Inclination, and Total Force, which are given for each observation, as well as those of the horizontal component, the mean diurnal curves given by the whole period of observation were employed, in preference to those of the individual months, for eliminating the regular changes, the latter curves being more or less irregular from the effects of disturbances. These curves correspond
in epoch to the middle of the period, or about the 23d December; but since the scale readings of each of the instruments show some progressive change, and those of the Bifilar and Inclinometer a considerable one; the numerical values of the hourly means, by these curves, are not correct for the observations at the beginning or end of the series, and are only correct approximately near the middle of it. In order, then, to deduce true differences, each day of extra observation has been taken as the centre of a group of five, six, or seven days, according to circumstances, and the means of all the readings of that group taken as the simultaneous or co-ordinate means of the three elements for the disturbance observations on the day in question. The difference between each scale reading and the mean thus found for the same element is the whole deviation of the element from its normal value; to this being applied, with the contrary sign, the value of the ordinate of the mean curve for the same hour and minute, the sum is the measure of the irregular fluctuation shown by the observation, which, in the case of the Bifilar and Inclinometer, is expressed in terms of the Horizontal Force and Inclination, by means of the co-efficients given in preceding sections, and stated at the foot of each page. The scale divisions of the Declinometer, being minutes of arc, need no conversion.

The actual mode of proceeding was this; a table was formed for each element and for each month, containing twelve columns and twenty-four lines; in the first column were written the hourly means by the whole number of observations \pm the difference between their mean and the mean scale reading for the month; in the succeeding columns the hourly means were repeated + a proportional part of the change of the element from one hour to the next. By taking the difference between the actual readings and the appropriate mean thus found, we have the variation of the element from its normal value, affected by whatever difference there may be between the mean for the month and the true mean for the day of observation, which was sometimes considerable, owing to the progressive changes of scale reading before alluded to. To climinate this effect a constant correction was next applied to all the readings at each disturbance, being the difference between the mean of the month and the normal mean found as above related.

It must be remarked that the curves, which we have taken as types from 110 days of observation, are still sensibly affected by the irregular observations contained in that period, and consequently can be regarded only as approximations to that character ; the degree to which they are affected may perhaps be judged of in some measure by comparing them with the curves given by 46 days selected as free from sensible disturbance, and is shown by the following Table:

Table LIII.

[Difference $(x,-x)$ between the hourly ordinates (x) given by the whole period of observation at Lake Athabasca, and the ordinates (x, given by the curves of 46 days selected as free from disturbance.]

Gobtt time	0	1	2	3	4	5	6	7
Mean time	16	17	18	19	20	21.	22	23
(2) $\begin{aligned} & \text { Whole poriod - } \\ & \text { Selected days - }\end{aligned}$	5:83 3.15	8.23 8.81	1.84 3.55	1.50 3.81	18.00 3.60	$1 / 76$ 3.64	$\begin{aligned} & 1.33 \\ & 2 \cdot 85 \end{aligned}$	$\begin{aligned} & -2 \cdot 88 \\ & -1 \cdot 11 \end{aligned}$
A $\quad x,-x$	-2.68	-4.42	-2,29	-1.75	-0'30	-0.12	+1.02	$+1.87$
$\left\{\begin{array}{l} \text { Whole period } \\ \text { Selected days } \end{array}\right.$	$\begin{aligned} & -00522 \\ & -\cdot 00117 \end{aligned}$	$\left\lvert\, \begin{aligned} & -00424 \\ & -.00112 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -00183 \\ & -00099 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -00083 \\ & -\cdot 00091 \end{aligned}\right.$	-00010 -00066	$\left\|\begin{array}{l} -00019 \\ -00082 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & -00042 \\ & -\cdot 00181 \end{aligned}\right.$	$\begin{aligned} & -.00019 \\ & -.00124 \end{aligned}$
[$x^{\prime},-x^{\prime}$	+ ${ }^{\circ} 00405$	+ ${ }^{\circ} 00312$	$+\cdot 00084$	+.0000s	-.00056	-00063	-.00089	-.00105
	1 +3.20 1 0.77	+2.08 1 0.54	\prime +0.97 \prime 0.25	\prime -0.06 0.05	\prime -0.41 -0.04	\prime -0.20 \prime -0.08	$\begin{gathered} \prime \\ +0.63 \\ 1 \\ 0.68 \end{gathered}$	$\begin{gathered} \prime \\ +0^{\circ} 05 \\ 1 \\ 0.07 \end{gathered}$
". $x^{\prime \prime},-x^{\prime \prime}$	-2.52	-1.54	-0.72	+0.11	+0.37	$+0.23$	$+0.05$	$+0.62$
Gobtt. time	8	0	10	11	12	13	14	15
Mcan time	Noon	1	2	3	4	5	6	7
	$\begin{gathered} 1 \\ -3.03 \\ -3.08 \end{gathered}$	-4.89 -4.55	-5.21 $-3 \cdot 95$	- $-4 \cdot 19$ $-3 \cdot 32$	\prime $-3 \cdot 23$ -2.37	1 -2.88 -1.86	$\begin{gathered} 1 \\ -1 \cdot 80 \\ -1 \cdot 46 \end{gathered}$	$\begin{gathered} 1 \\ -1.32 \\ -0.88 \end{gathered}$
¢	- ${ }_{-}^{0.85}$	1 +0.34	+1*20	1 +0.87	1 +0.86	$\begin{gathered} \prime \\ +1 \cdot 02 \end{gathered}$	$+0.34$	$\begin{gathered} 1 \\ +0^{\prime} 44 \end{gathered}$
组: $\begin{aligned} & \text { Whole period } \\ & \text { Selected days }\end{aligned}$	$\begin{aligned} & +\cdot 00039 \\ & -\cdot 00095 \end{aligned}$	$\begin{aligned} & +.00049 \\ & -\cdot 00060 \end{aligned}$	$\begin{aligned} & +\cdot 00165 \\ & +\cdot 00035 \end{aligned}$	$+\cdot 00202$ $+\cdot 00067$	$\begin{aligned} & +\cdot 00218 \\ & +\cdot 00122 \end{aligned}$	$\begin{aligned} & +\cdot 00254 \\ & +.00116 \end{aligned}$	$\begin{aligned} & +.00252 \\ & +.00123 \end{aligned}$	$\begin{aligned} & +\cdot 00242 \\ & +\cdot 00001 \end{aligned}$
' $\quad x,-x^{\prime}$	+'00056	$+\cdot 00109$	-•00130	- ${ }^{\circ} 00135$	-.0009	-.00138	-.00129	- 000151
约 Whole period	1 -0.05 1 0.59	1 -0.30 1 0.30	1 -0.46 1 0.10	$\begin{gathered} 1 \\ -0.80 \\ -0.33 \end{gathered}$	$\begin{gathered} \prime \\ -0.98 \\ -0.22 \end{gathered}$	$\begin{aligned} & -1.27 \\ & -0.63 \end{aligned}$	$\begin{gathered} 1 \\ -1.41 \\ -0.84 \end{gathered}$	$\begin{aligned} & -1.44 \\ & -0.01 \end{aligned}$
$\stackrel{\text { r }}{ }{ }^{\prime \prime},-x^{\prime \prime}$	$+0.64$	$+0.60$	+0.66	+0.47	$+0.76$	+0.64	$+0.57$	± 0.83

Table LIII.-continued.

The differences of the Declination are in some instances referable to the mean for the same month, and not the mean for the same day; the correction applicable on this account is stated where such is the case, but rarely amounts to 1^{\prime}.
… It appears that at the hours most influenced by disturbances; namely, from about $9^{\text {h }}$ in the evening to $5^{\text {h }}$ in the morning, the simultaneous fluctuations of the three elements are generally less than" they would be if referred to diurnal means uninfluenced by disturbances; but since the means actually employed are derived from corresponding observations, the error thus introduced enters proportionably into all of them, and leaves the values actually presented truc relatively to one another.

The simultaneous fluctuations at Fort Simpson are measured from the true mean of each element for the day of observation, and include the regular diurnal changes, the period of observation having been so short, and attended by such constant magnetic disturbances that the mean curves deduced can scarcely be regarded as a true representation of the action of those forces which it is the object of the other mode of treatment to eliminate. It was found convenient also to refer the observations in October to the mean for the day, in consequence of the disconnexion of the Inclinometer readings from those of succeeding months.

The approximate changes of Total Force $\frac{\Delta \phi}{\phi}$, have been computed by the formula $\frac{\Delta \phi}{\phi}=\frac{\Delta X}{X}+\tan \theta \Delta \theta=$ their accuracy necessarily depends upon that of the scale coefficients of the Bifilar and Induction Inclinometer; the former of these may be considered as sufficiently well determined at Fort Simpson to entitle the values assigned to the changes of the horizontal"component to considerable confidence; at Lake Athabasca, where a lêss delicate method of adjustment was: employed, the scale coefficient of the Bifilar may possibly be itself in error in the fifth decimal. The scale coefficient of the Induction Inclinometer at both stations is liable to whatever uncertainty attaches to the correction we have applied in a previous section for the defect of the method formerly employed of determining the coefficient p, in the formula

$$
\frac{\Delta \mathbf{Y}}{\mathbf{Y}}=p\left(\cos u \Delta u+\sin u \frac{\Delta \mathbf{X}}{\mathbf{X}}\right)
$$

2
by simply inverting the iron bar, and observing the angles of de flection in the direct and inverted position, when it was assumed that $p=\frac{2}{\sin u+\sin u^{\prime}} \quad$ This method, as was there stated, appears to give a value invariably too low, to the deduced scale coefficient, and from a number of experiments the ratio 1.22 was adopted in which to augment it under all adjustments, and has been applied. It is evident, therefore, that in the face of these admissions, great precision cannot be claimed for the values assigned for the changes of Total Force; but, having carefully considered the subject and examined the results themselves, it appeared to me that, with due explanation, they were entitled to be included in this report. Very little appears to have been determined hitherto with respect to the irregular variations of the Total Force in any quarter; the present observations show at the least that this element does nevertheless undergo in high latitudes very considerable changes; and believing their value also to be here assigned with süfficient accuracy for many purposes, I offer them, as approximations only, but approximations deriving peculiar interest from the remote locality and high magnetic latitude in which the observations were made.

The following Table contains the values of $\tan \theta \Delta \theta$ for each $1^{\prime \cdot} 0$ of $\Delta \theta$, at Lake Athabasca, and Fort Simpson.

Table LIV.

Values of $\tan \theta \Delta \theta$.for calculating changes of Total Force.

$\Delta \theta$	Lake Athabas. $0=8137 \cdot 6$	Fimpson. $\theta=81$ 52́.	$\Delta \theta$	Lake Athabas. $\theta=8137 \cdot 6$	Fort $\theta=81 \quad 52 \cdot$		$\left\|\begin{array}{c} \text { Lake } \\ \text { Athabas. } \\ \theta=8 \mathrm{i} \\ 37 \end{array} \cdot 6\right\| \theta$	Fimpson. $\theta=81$ b2́		Lake thabas. $\theta=8137 \cdot 6$	Fort Simpson. $\theta=8182 \cdot 3$
,											
1	$\cdots 00197$	-00204	26	-05135	-05290	51	-10072	'10389	76	-15010	$\cdot 15481$
2	-00395	-00407	27	-05332	-05500	52	-10270	'10592	77	-15207	'15685
. 3	-00592	-00611	28	-05830	-05704	53	-10467	-10788	78	-15405	-15889
4	-00790	-00815	29	-05727	-05807	54	-10665	-11000	79	-15602	-16092
5	-00987	-01018	30	-05925	-06111	55	-10803	-11203	80	-15800	-16295 ${ }^{\text {b }}$
6	$\cdot 01185$	-01222	31	-06122	-08315	56	-11060	-11407	81	-16097	-16500
7	-01882	-01426	32	-06320	-06518	57	-11257	-11611	82	-1619*,	$\cdot 16703$
8	-01580	-01630	33	:06517	-00722	58	-11455	-11815	83	-18392	-16007
9	$\cdot 01777$	-01833	34	-08715	-00926	59	-1165s	-12018	84	-10590	-17111
10	-01975	-02037	35	-00912	-07129	60	-11850	-12222	85	-16787	$\cdot 17314$
11	-02172	-02241	36	-07110	-07333	61	-12047	-12426	86	-16985	-17818
12	-02370	-02444	37	-07307	$\cdot 07537$	62	-12245	-12629	87	-17182	-17722
13	-02567	-02643	38	-07505	-07741	63	-12442	-12833	88	-17380	-17926
14	-02765	-02852	39	.07702	-07944	64	-12040	-13037	89	-17577	-18129
15	-02962	-03055	40	-07900	-08148	65	-12837	-13210	90	-17775	-18338
16	-03160	-03259	41	-08097	-08352	66	-13035	-13444	91	-17972	-18537
17	-03357	-03463	42	-08295	-08555	67	-13232	-13648	92	-18170	-18740
18	-03555	-03667	43	-08492	-08759	68	-13430	-13852	93	-18367	-18944
19	-03752	-03870	44	-08690	-08963	69	-13627	-14055	94	$\cdot 18565$	-10148
20	-03950	-04074	45	-08887	-09160	70	-18825	-14259	95	-18762	-19351
21	-04147	-04278	46	-09085	-00370	71	-14022	-14463	96	-18860	'19555'
22	-04345	-04181	47	-09282	-09574	72	-14222	-14686	97	'19157	-10759
23	-04542	-01685	48	-09480	-09778	73	$\cdot 14417$	- 14870	98	-19855	-19983
24	-04740	-01889	49	-09677	-09981	74	-14615	-15074	99	-19552	-20166
25	-04987	-05093	50	-09875	-10185	75	-14812	-15278	100	$\cdot 10750$	-20370

METEOROLOGICAL OBSERVATIONS.

METEOROLOGICAL OBSERVATIONS

Tre meteorological observations at Lake Athabasca and Fort Simpson are confined to a register of the temperature of the air, and of the wind and weather ; particular attention being paid to the frequent displays of the aurora borealis. Two portable barometers and two thermometers for hygrometric purposes, had formed part of the equipment of the expedition, but were unfortunately rendered unserviceable in the course of the previous journey.
The instrument referred to from the outset as the standard thërmometer, was a spirit thermometer by Newman, one of:several whieh had been sent into the Hudson's Bay territory sometime previously by the Royal Geographical Society, and was recommended by that circumstance, as well as by the character of its maker. The tube, however, wäs so far from being of uniform capacity, that its graduation proved to be many degrees in error at very low temperatures; fortunately, there was on the spot, in the possession of Mr: Colin Campbell, another spirit thermometer, by Dolland, an old instrument, and supposed to be the same which was registered by Mr. Keith in 1825-6*; this proved much the more accurate of the two, and was registered in addition to the other, from the 7th January to the 29th February 1844. These instruments stood as follows in melting snow: -

$$
\begin{aligned}
& \text { N. (Newman) } 33^{\circ} 5 \text { correction -1 } 1^{\circ} \cdot 5 \\
& \text { D (Dollond) } 31^{\circ} 0 \text { correction }+1^{\circ \circ} 0
\end{aligned}
$$

It was soon observed that the difference here shown between them increased regularly in descending the scale, and much uncertainty was felt as to which was the preferable authority, until an opportunity occurred of testing the thermometer Newman in freezing mercury, which was done as follows:-On the 23d January a portion of mercury was exposed in the open air until it became solid, at the same time another portion was allowed to acquire a temperature very little removed from the freezing point, the solid mass being then added to the fluid, the bulb and about two inches of the stem of the instrument to be tested were immersed in the mixture. The experiment was made in a room having a temperature of 35° Fahrentieit, and the spirit of the thermometer remained steadily at $-31^{\circ} 0$ on the scale as long as any of the frozen mercury remained solid. Assuming, then, the solidifying point of mercury to be $-40^{\circ} 9 \dagger$ Fabrenheit, we have the very large correction of $+9^{\circ} 9$, applicable

[^20]to the scale reading; $-31^{\circ} 0$ on the thermometer N. It appears by the following comparisons that the thermometer D. read $-37^{\circ} \cdot 8$ when N. read $-31^{\circ}: 0$, consequently the error of this instrument at the freezing point of mercury was $+3^{\circ} 1$, or the correction at the scale reading $-37^{\circ} 8$ was $-3^{\circ} 1$.

Comparisons of Dollond's and Newman's thermometers at low temperatures:

Newman Reading.	Number of Observatiol s.	Mean.		Difference.
		Newman.	Dollond.	
$\bigcirc \quad \circ$		-	-	-
- -30 to -31	18	-30.40	-37.05	-6.65
-81 to -32	12	-31.13	-37.89	$-6.67\}-6.81$
-32 to - 33	7	-32.11	-39.14	-7.031
-35 to -34	11	-33.34	-40.53	-7.21
-34 to -35	4	$-34 \cdot 12$	-41. ${ }^{4}$	-7*6
-35 to -36	3	-35.33	-43.10	$-7 \cdot 77$
-36 to -37	6	-36.20	-44.22	-8.02
-37 to - 38	2	-37.20	-44.70	$-7 \cdot 50$
-38 to -39	1	-38.60	-46.10	-7.50

These results are confirmed by a number of entries in the meteorological register on the 22d, 23d, and 24th January 1844. A small quantity of mercury being at this time exposed beside the thermometers, it was found frozen at all readings below $-32^{\circ} 9$ of Newman and $-39^{\circ} 5$ of Dollond, with one exception as regards the latter instrument, namely, on January $23^{d} 6^{\text {a }}$ Göttingen, when it is noted that the mercury was thawing, N. reading $-32^{\circ} 4, \mathrm{D} .-39^{\circ} 6$. There are nineteen hours of observation on the above days at which the fact of the mercury being solid was noted, but it appears from the register that the reading was below -31° by Newman, and therefore the temperature below the freezing point of mercury at forty-six hours of observation in that month ; it did not reach it in December or February. Newman's thermometer is entered in the abstracts corrected by subtracting $1^{\circ} 5$ from each scale reading above $33^{\circ} 5$, and $1^{\circ} 5+0^{\circ} 130 \Delta t^{\circ}$ for each reading below $33^{\circ} 5$, where $\Delta t^{\circ}=\left(33^{\circ} 5\right.$-observed temperature $)$. The coefficient $0^{\circ} 130$ is the increase of the correction, which appeared to be uniform for each degree in descending the scale, as shown by the foregoing data. The mean temperature for each day subsequent to January 7th by hourly observations of Dollond has also been corrected independently by subtracting $1^{\circ} 0$ at each reading above $33^{\circ} 0$, and $1^{\circ} 0$ $0^{\circ} 0596 \Delta t^{\circ}$ at each reading below 33°. The non-agreement of the corrected means of the two thermometers, excepting near the two fixed points on the scale, probably shows that the supposition of a uniform rate of increase of the correction is not in accordance with the fact, for there was nothing in the position of the two instruments to account for one standing permanently about one degree higher
than the other, but as neither thermometer was compared with any absolute standard, we appear to have no better resource than to take the mean where both were observed, which has accordingly been done in Table VI.

The position of the thermometer was on the north side of an external porch made to contain the transit instrument; they were attached to a bracket projecting a few inches from the wall, their bulbs about four feet above the soil ; the readings were taken through the transit openings.

Table LV.

Mean Temperature of the Air at Lake Athabasca by Newman's thermometer corrected, also mean temperature for the winter quarter, comprising the months of December 1843, January and February 1844.

1843-44.	Midn.	1 A.M.	2.	3.	4.	5.	6.	7.	
October 16th to 31st	$\stackrel{\circ}{20} \cdot 08$	18.74	${ }^{\circ} 8.35$	18.10	18.78	17.79	${ }^{\circ} 8.37$	$\stackrel{\circ}{19} 16$	
November	9.02	$7 \cdot 89$	$7 \cdot 57$	$7 \cdot 15$	$7 \cdot 58$	7'61	$7 \cdot 69$	8.29	
December	-1.16	-0.00	-0.19	-0.14	$0 \cdot 68$	0.57	0.58	$0 \cdot 42$	
January	-22.82	-23.02	$-23 \cdot 56$	$-24 \cdot 23$	-24.45	$-25 \cdot 10$	$-25 \cdot 10$	$-25 \cdot 55$	
February	$3 \cdot 00$	1.44	1.07	1.45	-0.08	-0.03	-0.48	-0.46	
Winter Quarter	$-7 \cdot 00$	-7'21	$-7 \cdot 30$	-7/64	$-7 \cdot 95$	-8.19	-3.33	-8.58	
1843-44.	8.	9.	10.	11 A.M.	Noon.	IP.M.	2.	3.	
October 16th to 31st	$1{ }^{\circ} \cdot 74$	$21 \cdot 18$	$22 \cdot 39$	23'26	${ }^{2} 4^{\circ} \cdot 69$	${ }^{6} 5 \cdot 35$	$2{ }^{\circ} \cdot 75$	$25^{\circ} \cdot 52$	
November	$8 \cdot 48$	9*29	10.26	11.31	$12 \cdot 39$	$12 \cdot 64$	12.82	12.44	
December	$0 \cdot 46$	$0 \cdot 10$	$1 \cdot 04$	1'77	$2 \cdot 76$	$2 \% 3$	$2 \cdot 19$	1.44	
January	-25.81	$-25 \cdot 30$	$-23 \cdot 77$	$-22 \cdot 25$	-21.52	-20.81	-20.93	$-21 \cdot 11$	
February	0.09	1.54	3.99	$6 \cdot 11$	8.65	10.26	10.33	10.76	
Winter Quarter -	-8.42	-7.89	-6.58	-4.79	-3.37	-2.61	$-2 \cdot 80$	-2.97	
1843-44.	4.	5.	6.	7.	8.	9.	10.	11. P.M.	Mean.
October 16th to 31st	$2{ }^{\circ} \mathrm{C} \cdot 55$	$\stackrel{\circ}{23} 36$	$2{ }^{\circ} \cdot 37$	$\stackrel{\circ}{22} \cdot 21$	$2{ }^{2} \cdot 76$	20.96	$21 \cdot 13$	$2{ }^{\circ} \mathrm{O} .83$	$21 \cdot 44$
November	11.60	11.04	$10 \cdot 65$	$10 \cdot 15$	9.93	$9 \cdot 60$	9.39	8.95	9'76
December	1.02	$0 \cdot 30$	-0.32	-0.63	-0.90	-1.09	-0.91	$-1 \cdot 16$	$0 \cdot 40$
January	$-21 \cdot 46$	-21.69	$-22 \cdot 58$	-21.01	-22.00	$-22 \cdot 30$	$-22 \cdot 47$	-22.51	$-23^{\circ} 00^{*}$
February - -	0.41	$8 \cdot 74$	8.33	$7 \cdot 42$	714	$6 \cdot 48$	4.98	$3 \cdot 94$	$4 \cdot 70^{*}$
Winter Quarter	-3.68	$-4 \cdot 22$	$-4 \cdot 86$	-4.94	-5.28	-5.64	-6.13	-6. 58	-5.94

- See Table LX for the mean by both thermometers.

Mr. C. Camphell, the resident officer of the Hudson's Bay Company, having kindly continued to record the temperature by Dollond's thermometer four times a day after my departure, until he left the station himself, we are enabled to add four months to the foregoing table :

Table LVI.

Mean Temperature at Lake Athabasca-continued.

Month.	Sunrise.	9 А.M..	$3 \mathrm{P} . \mathrm{m}$.	9 P.m;	Approx. Mean.	Corrected Mean.
1844:	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
March*	-2.42	$1 \cdot 18 \dagger$	9'13	$2 \cdot 16$	1.64	2.4
April	$27 \cdot 82$	35.48	42.50	33.96	34'72	3511
May	39'14	46.74	50.31	$42 \cdot 07$	84'40	44:8
June	$47 \cdot 20$	5717	$58 \cdot 83$	$50 \cdot 86$	-3. 52	58.9
Spring Quarter -		28.91	$35 \cdot 03$	$27 \cdot 06$	26.90	27.4

* The first four days of March are wanting.
$\dagger 1^{\circ} 02$ by the 31 days, which are complete for this hour only.
The thermometer recorded by Mr. Campbell has been corrected for temperatures above 32°, by the uniform addition of 1°, and for lower temperatures by the scale already given. The approximate mean is that of the observations at 9 A.m. and 9 P.M., which in each of the other months at this station and at Fort Simpson is below the true mean ; probably the correction $+0^{\circ} 8$, derived from December, January, and February, will be nearly correct for March, and $+0^{\circ} 4$, derived from April and May at Fort Simpson, nearly correct for April, May, and June at Lake Athabasca, giving the quantities in the last column.

Table LVII.

Mean Temperature of the Air at Fort Simpson, M'Kenzie's River, for April and May 1844.

-	Midn.	1 A.M.	2.	3.	4	b.	6.	7.	
April * .	$\stackrel{\circ}{27} \cdot 24$	$\stackrel{\circ}{\circ} \mathrm{P}$-15	$24 \cdot 87$	$20 \cdot 63$	$\stackrel{n}{21} 5$	$22 \cdot 37$	$\stackrel{\circ}{\text { 23. }}$ - 22	$\stackrel{\circ}{\circ} \mathrm{P} .57$	
May*	38: 47	36.05	35•86	34,54	35-18	37.91	87*68	39.65	
Mean of 46 days	32.32	31.14	$29 \cdot 88$	27•86	28.45	$29 \cdot 24$	30'20	32:00	
	8.	9.	10.	11.	Noon.	$1 \mathrm{P} . \mathrm{M}$.	2.	3.	
April	$28^{\cdot 22}$	$32 \cdot 41$	$35 \cdot 85$	$39 \cdot 30$	$\stackrel{\circ}{40.69}$	$41 \cdot 94$	$42 \cdot 14$	$41 * 46$	
May *	42.07	44'91	48.07	51.44	51.49	52, 55	52.92	52.78	
Mean of 46 days	34.541	38.12	41*43	44:84	$45 \cdot 62$	$47 \cdot 57$	47.06	46.63	
-	4.	5.	6.	7.	8.	9.	10.	11.	Mean.
April - .	$\stackrel{\circ}{40} 4$	$\stackrel{\circ}{40} 0$	$38^{\prime} 72$	$\stackrel{\circ}{36} \cdot 40$	$\stackrel{\circ}{\circ} \mathrm{B} \cdot 31$	$\stackrel{\circ}{81 \cdot 48}$	$29 \cdot 98$	29.02	$82 \cdot 48$
May *	52.61	51.67	$50 \cdot 43$	$40 \cdot 16$	46'70	$43 \cdot 62$	$41 \cdot 21$	$39 \cdot 50$	$44.56+$
Mean of 46 days	$46 \cdot 23$	$45 \cdot 33$	44.07	$42 \cdot 23$	39`42	37'02	$35 \cdot 11$	$33 \cdot 81$	37 $\cdot 92$

* From 1st to 25th May.
+ Corrected to the mean of the complete month, at the same average daily increment of mean temperature $\left(0^{\circ} \cdot 30\right)$ the mean for May will be $45^{\circ} \cdot 5$.

The observations at Fort Simpson were taken 20^{m} after the hours named.

In the observations of Mr. Keith at Lake Athabasca in 1825-6, referred to above, the mean temperature is derived from the mean of the daily extremes; for the sake of comparison, a similar value has been formed for each month in the foregoing tables, and is subjoined, together with other approximations to mean values.

Table LVIII.

Various approximations to the Mean Temperature.

Month.	$\begin{aligned} & \text { True } \\ & \text { Meanky } \\ & \text { Hourly } \\ & \text { OLser } \\ & \text { Fations. } \end{aligned}$		$\begin{gathered} 6 \text { А.м․ } \\ 6 \text { р.м. } \end{gathered}$		$\begin{aligned} & 8 \text { A.3. } \\ & 8 \text { p.m. } \end{aligned}$	$\begin{aligned} & 9 \text { А. .I. } \\ & 9 \text { Р.M. } \end{aligned}$	$\begin{aligned} & 10 \text { А.ला. } \\ & 10 \text { Р.м. } \end{aligned}$	$\begin{aligned} & 11 \text { s.M. } \\ & 11 \text { f.M. } \end{aligned}$	$\begin{gathered} 6 \text { А.м. } \\ 2 \text { р.м. } \\ 10 \text { Р.м. } \end{gathered}$	
October	21.44	$2{ }^{2} \cdot 11$	${ }^{2} 0 \cdot 37$	${ }^{20} 0 \cdot 68$	${ }^{20} 75$	$2{ }^{\circ} \cdot 07$	$2{ }^{2} 176$	22.04	$2{ }^{2} \cdot 75$	$2{ }^{1} \cdot 81$
November	9.76	9.51	$9 \cdot 17$	$9 \cdot 22$	$9 \cdot 21$	$9 \cdot 44$	$0 \cdot 82$	10.18	9.97	9.89
December	$0 \cdot 40$	0.57	$0 \cdot 13$	-0.10	-0.22	-0.44	0.06	0.30	0.62	$0 \cdot 23$
January	23.00	-23.64	$-23 \cdot 84$	-23.58	-23.95	$-23 \cdot 80$	-23.12	$-22 \cdot 38$	$-22 \cdot 83$	-23.06
February	4.79	$3 \cdot 60$	$3 \cdot 92$	$3 \cdot 48$	3.52	4.01	4.48	$5 \cdot 02$	4.84	$5 \cdot 05$
WinterQuar. ${ }_{\text {ter }}$ \}	$-5 \cdot 94$	-6.53	-6.59	-6.73	-6.85	-6.76	-6.35	-5.68	$-5 ’ 75$	-6.03
April	32.48	30.90	31.32	30.08	$30 \cdot 76$	31.94	32.91	31.16	32.01	32.02
May	41.56	42.85	44.05	$44 \cdot 40$	44.38	$44^{\prime} 26$	44.64	45.47	43.94	43.97

It appears, by the foregoing Table, that the best approximation to a true mean, from October to February, is obtained by three equidistant observations, beginning with 6^{4} or $7^{\text {h }}$ A.M. ; the mean by the daily extremes, that is to say, the highest and lowest hourly observations, is also a good approximation in October, November, and December, but considerably too low in the subsequent months; the mean by the homonymous hours from $6^{\text {a }}$ to 9^{h} inclusive, is decidedly too low, that of the succeeding homonymous hours $10^{1 \mathrm{~h}}$ and 11^{h} is, however, somewhat better. The same remark applies to the months of April and May; the differonces from the true mean apparent in the latter are, however, considerably longer than those shown in the previous months, the mean diurnal curves of temperature having themselves a marked difference arising from the change of season.

The mean diurnal curve of temperature for the winter quarter at Lake Athabasca differs but little from that of the corresponding season at Toronto. The mean range is $5^{\circ} 92$ at the former, and $5^{\circ} 95$ at the latter station; the coldest hour is the same, $7^{\text {h }}$ A.m., and the curve cuts the line of mean temperature in its morning ascent at pretty nearly the same time. By simple interpolation this epoch will be $9^{\text {an }} 53^{\mathrm{m}}$ at Toronto, and $10^{\mathrm{h}} 21^{\mathrm{m}}$ at Lake Athabasca. There is a slight difference in the descending branch, which is prolonged above the mean to the latest hour at the more northern station, giving a temperature above the mean at eleven observation hours at Lake Athabasca, and at ten only at Toronto. The more rapid relative increase in the power of the sun with the advance of spring at the more northern station, is evinced by the large amount of the mean daily range at Fort Simpson in April and May, namely,
$19^{\circ} 71$, while for the corresponding months at Toronto it is but $15^{\circ} 76$.

Table LIX.

Mean Temperature for December 1843, January and February 1844, at Toronto, also for April and May 1844, for comparison of diurnal curves with those given.

Mean Time	Midn.	1 1.M.	2.	3.	4	5.	6.	7.	
Winter Quarter -	$2{ }^{\circ} \cdot 2$	$2{ }^{2}+6$	$2{ }^{\circ} \cdot 5$	$2 \% \cdot 3$	$2{ }^{\circ} \cdot 2$	$23^{\circ} \cdot 8$	$23^{\circ} \cdot 5$	$23^{\circ} \cdot 3$	
April-May -	45.9	$45 \cdot 2$	41.6	$43 \cdot 8$	43.4	43.3	44.0	46.5	
Mean Time	8.	9.	10.	11.	Noon.	1 P.Mr.	2.	3.	
Wintor Quarter -	$2 \bigcirc \cdot 8$	$2{ }^{2} \cdot 9$	${ }^{2} 6^{\circ} 1$	$27^{\circ} 5$	$28^{\circ} \cdot 5$	$29 \cdot 1$	$29 \cdot 5$	$2 \% \cdot 5$	
April-May .	$48 \cdot 0$	51×3	53.2	$54 \cdot 9$	$56 \cdot 5$	58.4	68.8	59.0	
Mean Time	4.	5.	6.	7.	8.	9.	10.	11.	Mean.
Winter Quarter -	$28 \cdot 9$	28.0	$26^{\circ} \cdot 0$	$26^{\circ} \cdot 3$	$25 \cdot 7$	$25^{\circ} 3$	$2{ }^{\circ} \cdot 0$	24.5	$25^{\circ} \cdot 96$
April-May -	58.5	58.7	$56 \cdot 4$	53.0	50.0	$48 \cdot 5$	$47 \cdot 4$	46.8	50.73

Table LX.-Highest, Lowest, and Mean Temperature observed on each day at Lake Athabasca and Fort Simpson, during

lake athabasca.																FORT STMFSON.					
October 1843.				November 1843.			December 1843.			January 1844.			February 1844.			April 1844.			May 1844.		
Day.	High.	Low.	Mean.																		
1	\bigcirc	\bigcirc	\bigcirc	$29 \cdot 4$	$14 \cdot 6$	21-86	$13 \cdot 4$	-1•2	\% 94	\bigcirc	\bigcirc	\bigcirc	-5.8	-18.3	-12. 10	${ }^{2} \times$ ㅇ.0	$-{ }^{\circ} \cdot 8$	12:02	$\stackrel{\circ}{2} \cdot 0$	옹	20.48
2	-	-	-	$32 \cdot 7$	$20 \cdot 5$	25-13	23.6	-8.1)		-0.6	$-17 \cdot 1$	-6.65	-0.1	$-9 \cdot 3$	-3.05	32.5	-3.3	14.78	38.0	14.0	38.87
3	-	-	-	$30 \cdot 6$	$23 \cdot 8$	28.95	-	-		-7.3	-25.0	-14.65	-	-18.77		$40 \cdot 3$	0.4	24•89	$43 \cdot 3$	$21 \cdot 5$	34-51
4	-	-	-	$29 \cdot 3$	-	$25 \cdot 25$	12.2	$2 \cdot 3$	7.52	-5•3	-7.8	-6.45	7.8	-		$42 \cdot 5$	${ }^{13} 17$	32.07	51.8	${ }^{29 \cdot 5}$	40.60
5	-	-	-	-	$16 \cdot 6$		$15 \cdot 3$	0.6	4.71	-6.5	-38.7	-19.56	$7 \cdot 4$	$-21 \cdot 7$	$-7 \cdot 27$	-	- 5	3201	-	- 5	
6	-	-	-	$24 \cdot 7$	13.4	$17 \cdot 83$	$35 \cdot 3$	$6 \cdot 3$	$21 \cdot 34$	-	${ }^{-39 \cdot 0}$		76	-23*4	-7:83	$17 \cdot 1$	${ }^{3 \cdot 6}$	11.87	$43 \cdot 5$	28.4	35-48
7	-	-	-	$19 \cdot 1$	14.6	16.47	$16 \cdot 7$	$2 \cdot 0$	$7 \cdot 67$	-32.0	-		97	$3 \cdot 1$	6.47	-	-		53\%3	$28 \cdot 1$	$41 \cdot 51$
8	-	-	-	$20 \cdot 2$	$7 \cdot 2$	14.31	$1 \cdot 4$	14.7	21.88	-26.2	-40.1	$-30 \cdot 46^{*}$	21.1	$6 \cdot 2$	$13 \cdot 46$	$45 \cdot 0$	$9 \cdot 1$	31.58	$57 \cdot 5$	34.3	$45 \cdot 38$.
9	-	-	-	10.0	-1.2	$5 \cdot 67$	$22 \cdot 0^{\circ}$?	10.77	-32.8	-39:8	-36.01	14.8	$-2 \cdot 4$	$6 \cdot 80$	$45 \cdot 1$	14.9	36.60	56.5	$35 \cdot 3$	$46 \cdot 32$
10	-	-	-	$\cdot 6$	-1.1	$3 \cdot 99$	-	-3.5	18	-18.4	-32.0	-23•80	$10 \cdot 9$	-		22.8	6.0	$16 \cdot 74$	56.5	36.7	49
11	-	-	-	$7 \cdot 3$	-3		78	-3 3	$0 \cdot 01$	-0.6	-26:8	-8.09	-	-32-1 $\}$	-0.25	$29 \cdot 4$	$0 \cdot 5$	18.53	58.4	${ }^{28} 8$	46.58
12	-	-	-	-	6.8		6.4	-128	-1.06	-1.4	-17.6	-5•50	-10.8	-30.8	-17•48	38.2	14.0	$29 \cdot 16$	-	- 3	
${ }^{13}$	-	-	-	8.0	-6.8	1.64	-12.6	-24.9	-19.51	-17•1	-30.9		-2.2	-25.9	-13•10	38.6	$20 \cdot 43$		$45 \cdot 5$	27^{2}	$37 \cdot 75$
14	-	-	-	19.0	$9 \cdot 1$	15.08	0.0	-23'9	8.94	-	- $\}$		7.7	-15.0	-6.81	-	- $)$	30	$55 \cdot 3$	31.0	45.01
15	-	-	-	13.6	$3 \cdot 4$	8.67	0.7	-11.0	-4.22	-11.0	-20.9	-3.41	$32 \cdot 5$	$4 \cdot 9$	15.97	43.5	193	$32 \cdot 74$	65.7	34.6	$52 \cdot 12$

Table LX.-continued.

lake athabasca.																FORT SIMPSON.					
October 1843,				November 1843.			December 1843.			January 1844.			February 1844.			April 1844.			May 1844.		
Day.	High.	Low.	Mean.	High.	Low.	Mean.	High.	ow.	Mean.	High.	Low.	Mean.									
		$\stackrel{\circ}{9} \cdot 6$	36:30	$17^{\circ} \cdot 8$	8.0	$12 \times$	-	-9.5	。	- -8	-18.3	$-10 \cdot 71$	$3{ }^{\circ}-4$	$\stackrel{9}{9} 9$	$2{ }^{2} \cdot 56$	51.5	$2{ }^{2} \cdot 1$	$38^{\circ} 23$	$7{ }^{\circ} \mathrm{F}$	$42^{\circ} \cdot 0$	
17	33.5	$27 \cdot 0$	31.87	$10 \cdot 4$	4.8	8 83	-3.2	-	-6.44	-18.4	-30°	$-23 \cdot 37$	$37 \cdot 5$	7.5		50°	$27 \cdot 5$	39'7	71.0	$46 \cdot 4$	58.57
18	$38^{\circ} 0$	30.0	33.08	$10 \cdot 9$	$3 \cdot 1$		$7 \cdot 8$	-6.5	0.71	-30.5	$-37 \cdot 6$	-33•86	-	-	$26 \cdot 46$	52	$32 \cdot 4$	$42 \cdot 3$	51.0	32.5	
19	$34 \cdot 0$	$29 \cdot 0$	30.74		-		0.3	-11.0	-7.64	-34	$-39 \cdot 7$	-37.00.	$21 \cdot 3$	$3 \cdot 0$	11-80	55	$31 \cdot 3$	43.64	-	-	4421
20	$33 \cdot 3$	28.1	$30 \cdot 8$	$8 \cdot 4$	4.4	6.86	6.8	-11.9	-4.87	-30-4	-		$32 \cdot 7$	-5.6	$15 \cdot 21$	$45 \cdot 7$	31-4		66.1	$37^{\prime} 3$	$55 \cdot 17$
21	$49 \cdot 9$	-		$9 \cdot 3$	$5 \cdot 5$	6.82	12	$11 \cdot 6$	0.31	-	-48.0		$22 \cdot 2$	-9\%	11.61	-	-)		52	${ }^{28}$	$44^{6} 6{ }^{\circ}$
29	-	14.8		10.0	$-3 \cdot 6$	$5 \cdot 68$	-2.2	-13-4	-9.25	$-35 \cdot 3$	-49.5	-41-42	$31 \cdot 3$	11.6	$23 \cdot 94$	49	28.2	40°	50	29.8	$40 \cdot 36$
23	18.0	14.2	15:88	$9 \cdot 0$	-5 7	4.40	$5 \cdot 4$	-4.9		-34.5	-44.7	$-39 \cdot 86$	$32 \cdot 5$	$0 \cdot 4$	21.17	37.	$27 \cdot 1$	$32 \cdot 8$	62.5	$36 \cdot 5$	51.61
24	$20 \cdot 2$	$12 \cdot 5$	$17 \cdot 27$	$5 \cdot 4$	$2 \cdot 3$	69	-	-	$0 \cdot 97$	$-37 \cdot 5$	-46.6	-41.70	3.3	-		$38 \cdot 8$	$25 \cdot 9$	$32 \cdot 1$	64.4	44.2	55.66
25	$23 \cdot 2$	$\cdot 1$	$15 \cdot 00$	4.1	-0.6		-	-		-26.6	-47.7	-37.	-	$-9 \cdot 2)$		68.	$32 \cdot 5$	52.41	-	-	
26	6.6	-7.6	-0.65		-		-0.2	-6.7	-3.19	-23.9	-38.7	-28.04	$34 \cdot 5$	-10:3	17\%30	50°	$36 \cdot 2$	42	-	-	
27	$9 \cdot 2$	-1.1		9×9	$2 \cdot 0$	$5 \cdot 91$	16.8	-5.6	24	-10.0	-41.3		$3 \cdot 3$	-8.0	-0.68	$50 \cdot 1$	${ }^{28} 4$		-	-	-
98	-	$2 \cdot 4$		$12 \cdot 3$	-2.7	2.38	$17 \cdot 7$	-5.	$8 \cdot 32$	-	-		15.	-2.	$7 \cdot 43$	-)		-	-	
29	22	-		20	$-9 \cdot 4$	18	$-1 \cdot 4$	-11.	-6.20	$14 \cdot 6$	$-20 \cdot 3$	-4.10	143	-6.9	78	$56 \cdot 5$	$29 \cdot 3$	$44 \cdot 5$	-	-	
30	24	19	$22 \cdot 45$	$0 \cdot 3$	-5.8	-2.27	-	${ }^{-35^{-3}}$		14:6	-19	-0.28	-	-	-	51.	12'9	$35 \cdot$			
31	22.7	14.6	$20 \cdot 26$				$6 \cdot 9$	$)$		-12.8	-22:9	-18.37									
	$27 \cdot 35$	$14 \cdot 87$	$21 \cdot 47$	14.68	4.22	76	9.02	-7.88	$0 \cdot 40$	-15.16	-32-12	-22.74	$15 \cdot 34$	-8.13	$5 \cdot 22$	-		32-48	-		44:56.

[^21]The foregoing Tables show a remarkable prevalence of cold in January 1844 at Lake Athabasca; the mean temperature for that month differs by no less than 23° from that of December, the one being probably above, the other below, the normal mean temperature, and the mean-for the hours of. $1^{\mathrm{h}}, 2^{\mathrm{h}}$, and 3^{h} P.M. is 31° lower than that for the corresponding hours of February. A similar state of things prevailed at Toronto, where we have the mean temperature for December 1843, 30° 8, and for January 1844, 20°, difference $10^{\circ} 1$, the means for those months by the observations of twelve years being respectively $27^{\circ} 0$ and $24^{\circ} 5$, difference only $2^{\circ} 5$. We have also in the same month the extraordinary difference of $62^{\circ} 3$ of temperature in the course of four days, the thermometer having indicated $-47^{\circ} 7$ Fahrenheit at 7 A.m. on the 25th, and $+14^{\circ} 6$ at 2 A.m, on the 30 th January; but this is not the whole range in the month, and is indeed exceeded by a change of $64^{\circ} 9$ between 3 p.s. on 22 d March and sunrise on the 25 th, when the temperatures observed were $42^{\circ} 0$ and $-22^{\circ} 9$ respectively. For the purpose of comparing exactly the fluctuations of temperature at these northern stations with those of Toronto, the situation of which, on a peninsula formed by three of the great lakes, gives its climate somewhat of insular characteristics, I have taken the differences between the highest and lowest observation of each day, and found the mean value of the daily range thus shown, precisely as was done for the corresponding ranges of the magnetical elements, Tables I., IV., and XV. These values, and some other particulars in aid of this comparison, are contained in the next Table.

Table LXI.
Comparison of Range of Temperature.

1843-4.	Mean daily Range.		Extremes in each Month.						
	Toronto.	Athabasca. Fort Simp.	Toronto.			Athabasca, \&c.			
			Max.	Min.	Diff.	Max.	Min.	Difl.	
	-	\bigcirc	0	\bigcirc	-	0	-	-	
October	$\{15.0$	-	63.4	25.0	$38^{\circ} 4$	-	-	-	The whole month.
Octobor	\{ 15.2	15.4	57.8	26.0	$31 \cdot 8$	$40 \cdot 0$	-7.6	57.5	The 16th to the31st
November	12.9	11.9	51.6	15.4	$36 \cdot 2$	$32 \cdot 7$	-9.4	42.1	
December	10.2	18.4	$41^{\prime} 4$	4.2	$37 \cdot 2$	$35 \cdot 3$	$-35 \cdot 3$	70.6	
January	14.7	$10^{\circ} 4$	$45 \cdot 0$	-6.0	51.0	14.6	$-47 \cdot 7$	62.3	
February	15.5	$25^{\prime 4}$	47.6	$1 \cdot 2$	46.4	$37^{\circ} 5$	$-32 \cdot 1$	$69 \cdot 6$	
March -	$25 \cdot 1$		50.7	10.0	$30 \cdot 8$				
April -	23.4	$27 \cdot 0$	$75^{\prime} 0$	$21^{\prime} 1$	53.9	68.0	$-3 \cdot 3$	713	
May *	22.0	23.3	78.0	$28 \cdot 3$	48.7	72.5	12.6	58.9	

Winds.

The Direction of the Wind was entered by estimation at each hourly observation, and its force expressed in words. The number of winds from each half quadrant are given in the next Table, where the column North includes N. by W., N.N. by E., and N.N.E., and so on round the circle. The azimuths actually entered were magnetic. This arrangement was adopted to take advantage of the convenient guide furnished by the arrangement of the buildings in Fort Chipewyan, which all ran within half a point of north and south or east and west by compass. They have been converted into true directions, by subtracting two points from each, being the value of the magnetic declination less 5°, the amount of the deviation of the lines to the west of magnetic north. In similar circumstances it will be found preferable to establish a permanent guide of some simple nature to the true directions.

Table LXII.

Number of Observations of the Wind from each Direction.

Direction of thie Wind	At Lake Athabasca.												$\frac{\text { At Fort Simpson. }}{$ By Hourly Observation. }		
	By Hourly Observation.					By Four Ob. servations daily.				Winter Quarter.	Spring Quarter.	The whole Period.			
	Oet.	Nov.	Dec.	Jan.	Feb.	Mar	Apr.	Mny	June				Apr.	May	Total.
N.	0	8	25	32	0	21	34	9	19	66	63	157	73	71	144
N.E.	68	92	83	90	126	26	17	28	29	299	71	559	5	6	11
	15	22	78	34	14	1	1	3	18	126	5	186	53	56	109
S.E.	9	54	33	10	8	2	7	1	0	51	10	124	150	154	304
S. -	1	36	39	7	2	0	8	4	0	48	12	106	42	41	83
S.W.	26	14	11	23	17	13	6	8	15	51	27	134	24	13	37
W.	34	8	38	106	7	6	9	6	5	146	21	214	20	6	26
N.W. -	3	33	92	63	55	14	0	20	14	210	23	309	0.	32	93
Winds	156	267	394	365	238	83	91	85	109	997	238	1,789	428	379	807
Calms	180	357	203	262	338	26	29	39	7	803	94	1,441	172	125	297

Allowing the usual value to each descriptive term (Toronto, vol. 1. xcii.) we have the total pressure from the several quarters, as follows:

Table LXIII.
Sums of the Pressures from each Quarter by estimation, in Pounds upon the Square Foot.

Direction of Wind.	At Lake Athabasca 1848-4.												Toronto, Oct. to June.	
	By Hourly Observation.					By Four Observations				Winter Quar- ter.	Spring Quarter.	The whole Period, Oct. to June.	No. of Winds.	$\left\{\begin{array}{l} \text { Total } \\ \text { Pres- } \\ \text { sure } \end{array}\right.$
	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May.	June.					
N.	$l b s$. 0.0	lbs. $25 \cdot 3$	lbs. $65^{\circ} 4$	$\begin{aligned} & l b s, \\ & 16^{\prime} 7 \end{aligned}$	$\begin{array}{r} l b s . \\ 8.0 \end{array}$	$\begin{aligned} & l b s . \\ & 144^{\circ} \end{aligned}$	lbs. $46 \cdot 3$	$\begin{aligned} & l b s . \\ & 2.5 \end{aligned}$	lbs. $58 \cdot 1$	$\begin{aligned} & l b s .1 \\ & 90 \cdot 1 \end{aligned}$	lbs. $63 \cdot 5$	$\underset{237^{\circ}}{l}$	357	$\begin{aligned} & l b s . \\ & 2744^{\circ} \end{aligned}$
N.E.	$122 \cdot 6$	$205 \cdot 4$	$293 \cdot 7$	$155 \cdot 4$	$267 \cdot 6$	50.3	$4 \cdot 9$	$7 \cdot 8$	84.1	716.7	68.0	$1199 \cdot 8$	220	154,8
\pm.	51.0	$31 \cdot 5$	298.2	80.0	31.9	3.0	0.5	$0 \cdot 6$	51.6	$405 \cdot 1$	$4 \cdot 1$	583.3	520	$435 \cdot 4$
S.E.	86.0	$181 \cdot 5$	71.8	$5 \cdot 3$	$7 \cdot 2$	$0 \cdot 4$	2.0	$0 \cdot 2$	0.0	84.0	2.6	304.4	239	96.2
S.	1.5	181.0	$171 \cdot 5$	21.0	$7 \cdot 0$	0.0	$5 \cdot 9$	111	$18^{\circ} 9$	199.5	$7 \cdot 0$	$407 \cdot 9$	456	$247 \cdot 4$
S.W.	92.0	$35 \cdot 5$	29.0	58.6	$27 \cdot 8$	28.3	1.2	$1 \cdot 9$	51.5	115*4	31.4	325.8	407	$369^{\circ} 2$
W.	$126 \cdot 9$	$36 \cdot 5$	$30 \cdot 4$	64'9	$38^{\circ} 0$	9.6	$2 \cdot 1$	133	$18^{\circ} 2$	$133 \cdot 3$	13.0	327.9	426	$440 \cdot 4$
N.W.	$7 \cdot 5$	$18 \cdot 1$	205•4	$115 \cdot 5$	81.0	21.5	3.0	7.6	143.0	401.9	$32 \cdot 1$	602.6	549	$529 \cdot 7$
Sums	$437 \cdot 5$	713.8	$1160 \cdot 4$	$517 \cdot 4$	468.5	127.8	$65^{\circ} 9$	$23^{\circ} 0$	425'4	2146.0	216.7	$3938 \cdot 7$	-	-

On comparing the results contained in the foregoing Tables with those of the corresponding period at Toronto, it is observable that the proportion of winds from the north-east is much greater at Lake Athabasca than at the more southern stations; at the former the great preponderance, whether we regard number or total pressure, is from that quarter ; at Toronto, on the contrary, it is from the north-west. Resolving the total pressures in the four cardinal directions, and obtaining a general resultant, it appears that the following are the equivalents of all the winds at the two stations for the period under comparison :

Table LXIV.

The Wind.	Lake Athabasca.			Toronto.		
	Winter Quarter, 1848-4.	Spring Quarter 1844.	The whole Period.	Winter Quarter, 1843-4.	Spring Quarter 1844.	The whole period.
Mean Piessure	$\begin{aligned} & l b s . \\ & \mathrm{I} \cdot 19 \end{aligned}$	$\begin{aligned} & l b s . \\ & 0.61 \end{aligned}$	$\begin{gathered} l b s . \\ 1 \cdot 22 \end{gathered}$	$\begin{aligned} & l b s . \\ & 0^{*} 56 \end{aligned}$	$\begin{aligned} & l b s . \\ & 0 \cdot 37 \end{aligned}$	$\begin{aligned} & l u s . \\ & 0.46 \end{aligned}$
Resultant Direction	N. $41^{\circ} \mathrm{E}$.	N. $4^{\circ} \mathrm{W}$.	N. $4.3{ }^{\circ} \mathrm{E}$.	N. $51{ }^{\circ} \mathrm{W}$.	N. $10^{\circ} \mathrm{E}$.	N $74^{\circ} \mathrm{W}$
$\left.\begin{array}{l} \text { Corresponding or lie- } \\ \text { sultant Pressure }- \end{array}\right\}$	$\begin{aligned} & l 1 / s . \\ & 0^{*} 39 \end{aligned}$	$\begin{gathered} l b s . \\ 0.28 \end{gathered}$	$\begin{gathered} 10 s . \\ 0 \times 28 \end{gathered}$	phs. $0^{\circ} 10$	$\begin{gathered} 7 h s . \\ 0 \cdot 06 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 0.08 \end{gathered}$

Thus it appears that the prevalent winds at Toronto and Lake Athabasca belong to different and nearly opposite systems; a northwesterly current preponderates in the lower latitudes ($43^{\circ} 49^{\prime}$), a north-easterly current, inclined to the former at an angle of about 117°; prevails in the higher one ($58^{\circ} 433^{\prime}$). The general fact of a prevalence of N.E. winds is stated in the Meterological Register by Mr. Keith for 1825-1826, which has been before referred to.

The Mean Force appears to be considerably higher at Lake Athabasca than at Toronto.

There is but little correspondence between the winds observed at Fort Simpson in April and May and those recorded at Fort Chipewyan at the same time; at the former station half of the total number of winds was from the east and south-east, at the latter the same proportion was from the north and north-east, but the period of comparison is too short for any conclusion to be drawn from the observations. A local phenomenon of interest was observed several times at Fort Simpson, in the rapid rise of the temperature of the air when the wind changed to the south-west from an easterly direction. It appeared as if the warmer air of the Pacific Ocean were transferred across the neighbouring ridges of the Rocky Mountains, with little loss of its temperature. Thus we have April $3^{\text {d }} 10^{\text {h }}$, wind S.E., temperature $34^{\circ} 5 ; 3^{\text {d }} 11^{\text {h }}$, wind S.W., temperature 39° 5. Again, April $25^{4} 5^{\text {h }}$, wind S.E., temperature $43^{\circ} 5 ; 25^{\mathrm{d}} 6^{\mathrm{h}}$, wind S.W., temperature $58^{\circ} 0$. Again, April $29^{4} 5^{\text {h }}$, calm, temperature $39^{\circ} 5 ; 29^{\mathrm{d}} 6^{\mathrm{h}}$, wind S.W., temperature $48^{\circ} 5$. Lastly, May $8^{\mathrm{d} .} 8^{\mathrm{h}}$, wind S.E., temperature $53^{\circ} 7$; $8^{\mathrm{d}} 9^{\mathrm{h}}$, wind "S.W., temperature, $56^{\circ} 7$.

Aurora Borealis, Weather, \&c.
Owing to the unavoidable circumstance that only one observer could be on duty at a time during the night, whose attention was required by the magnetic disturbances, which accompanied most of the more active displays of the aurora borealis, the notices of that phenomenon are less full than could be wished, notwithstanding the great desire that was felt to do justice to so favourable an opportunity of studying it. The three magnetometers were commonly observed on these occasions in succession, with an interval of one minute between them; it was considered an object in general to miss a reading as seldom as possible; consequently, although the observation was usually an instantaneous act, as the magnets being suspended in heavy copper boxes were seldom in vibration, there was, notwithstanding, barely time for the observer to step out of doors after one of them, take a survey of the sky, and return to his place before the next, repeating the process if necessary, until the particulars required were collected. The same circumstance led to an abbreviated mode of description, which is to be regretted, but it
should be stated that the actual notes taken at the time have been carefully adhered to in the descriptions at the end of this chapter, with no other alteration or expansion than appeared absolutely necessary to malse them intelligible. It must be added, that less stress was laid upon particular features and changes of aspect, or position, than would have been suggested by a better acquaintance, on my part, with what had been recommended in observations of the kind. Having been previously employed in the tropics, and passed but one winter in Canada, my attention had not been much given to the subject, nor was I provided with any such invaluable textbook for this class of observations as the report of M.M. Lottin, Bravais, and Martins, of the Commission du Nord, 1839, has since supplied to Arctic observers. A definite sense was attached from the first to each descriptive term employed, and I took pains that they should be used as much as possible alike by myself and assistant (Serjeant Henry.) Certain convenient signs or symbols were also fixed on to denote, without verbal description, particular forms of aurora, very much as those of Mr. Howard are used to denote forms of cloud. These were always used in the column of the register appropriated to remarks on the weather, but a place was also provided for more detailed descriptions. Some of the terms and distinctions, such as striatecl, serpentine, although suggested quite independently by the forms of aurora which presented themselves, I have since found more or less used by others, a satisfactory confirmation of their applicability.

In the descriptions which follow, then, the term streamer is confined to lines of light in rapid motion, appearing and reappearing suddenly and in any part of the heavens, but directed towards the zenith; they were frequently unconnected with any large body of stationary light. The term stric, striated, refers to a peculiar appearance, sometimes seen in arches and even in detached masses and the larger streamers, an arrangement of the whole body of light in fine parallel lines, directed towards the zenith, and presenting the appearance of wool or cotton combed out; this was considered at the time to indicate a more active state of the electric forces than existed when it was wanting,-to be, in other words, a higher form of development. The terms beams, streans, bands, were used to indicate long narrow portions of light, not sensibly in motion, the last being confined to those which crossed the magnetic meridian nearly at right angles. The term serpentine motion was employed to denote changes of outline different in character from the direct rectilineal motion of streamers, but resembling the changes of the folds of a curtain. Plates A. and B. of the admirably faithful Atlas of Auroras, published in connexion with the report above referred to, exhibit precisely the features described hy the terms striated and serpentine;
save that the vertical divisions are considerably more strongly marked than the writer is conscious of having seen them. The term cirrous aurora indicates light detached patches, scarcely distinguishable in form from cirrous clouds. Lastly, auroral haze denotes a luminous appearance, usually in the northern quarter, without definite form or boundary, and sometimes also the vanishing light of other descriptions of aurora. The reference (a) is given to this appearance in the abstracts as well as to the more definite forms.

The relative brilliancy is generally indicated by figures. Thus, 0.5 represents the faintest description of aurora; 1, faint aurora; 2, moderately bright aurora, and what in low latitudes would be considered bright; 3, decidedly bright; 4, the brightest and most perfect displays. Very few exhibitions were considered to come up to the last class; of these, the principal one was notobserved at Lake Athabasca, but at the Painted-stone Portage near Lake Winnipeg, on the 7th August 1843. Much of the comparative brilliancy of the displays however depends on the absence of moonlight, a circumstance which was not sufficiently taken into account at the time. The dates of the changes of the moon are given in the register for reference. The elcvation of arches was observed with a wooden quadrant and plummet. The directions given are magnetical, the declination being $28^{\circ} \mathrm{E}$. More or less aurora was seen on 49 out of 116 nights of observation at Lake Athabasca. There was no right, properly speaking, at Fort Simpson after the 16th April, the latest date at which the sun sinks in that latitude as far as 18° below the horizon ; neverthelcss, the aurora was seen on twenty-four out of thirty nights of observation between the 1st April and the 6th May. After the last-named date, as the brightness of the twilight made it very difficult to distinguish between light cirrous clouds and patches of aurora, it did not receive much attention, and was not again seen up to the close of the observations on the 25 th May; it is, however, quite possible that close attention would distinguish aurora occasionally, by its motion, to a much later date, as it has been seen in early evening and morning twilight in lower latitudes, and was undoubtedly seen at Toronto in full daylight, on the 29th September and $2 d$ October 1851. It appears to have passed the zenith, when last described, on the 6th May, at about $13^{\mathrm{h}} 15^{\mathrm{m}}$ of local mean time, when the sun's centre was $9^{\circ} 47^{\prime}$ below the horizon, consequently, if its distance from the earth upon that occasion exceeded fifty geographical miles, it must have been within the sphere of the sun's rays. For want of corresponding observations elsewhere, there are no data for computing the height of any of the displays, but I avail myself of this opportunity of stating, that the impression conveyed to the senses upon many occasions was altogether opposed to the idea of the seat of the display being so distant as it seems to be in
lower latitudes. Those who have travelled in mountainous countries must have frequently observed the passage of clouds at a short distance above their heads, and remarked, that without the aid furnished by neighbouring peaks and rocks, there is the most convincing proof of the nearness of the cloud afforded by the manner of its motion, the sensible unfolding of masses of vapour, by the distinctness with which every detail of its form is seen. Precisely of the same nature is the evidence frequently given to the senses in high northern latitudes of the nearness of an aurora, and the universal belief of the fact among those who witness it perpetually, must be allowed to weigh somewhat in the same scale. This inference also is not irreconcileable with the results of actual measurement in Europe and the United States, if we suppose that the circumstances which favour this phenomenon occur nearer the earth in high than in moderate latitudes.

It is important to observe that every night on which aurora was recorded at Christiana in Norway, during the periods of observation under discussion, by M. Hansteen (Mem. de l'Acad. Royale de Bruxelles, tom. xx.) coincides with one of the dates of observation at Lake Athabasca or Fort Simpson; there are, however, but eight of the former and one of the latter, namely, October 24th, October 26th, December 8th, 1843, January 8th, January 16th, January 22d, February 17th, and April 17th, 1844. It would appear by the descriptions of \mathbf{M}. Hansteen, that the phenomenon was generally more perfectly developed at the American than at the European station, although the latter is about 1° more to the north. There are no observations of aurora recorded at any of the Russian stations or Siberian stations, and but five at Sitka, all, except the last, noted as fuible; the dates of these are October 15th, October 19th, 1843, and April 16th, 1844, all coinciding with northern observations, and March 7th and 28th, when no observations were made. Of the observations at Makerstoun in the same periods, seven coincide with obscrvations at our two stations, namely, October 16th, October 26th, November 2d, November 13th, April 5th, April 10th, April 17 th. Of the remaining Makerstoun dates, twelve in number, observation was impossible from clouds on nine; at two the brightness of the twilight equally prevented it; there is but one (when traces of aurora alone are recorded at Makerstoun,) upon which observation seems to have been possible, and no aurora occurred at Lake Athabasca; this date is January 5th. Such a result is the more remarkable, as the displays of the aurora at Lake Athabasca were probably of considerably less than average frequency and brilliancy, The winter of 1843-4, in the opinion of residents in that part of America, was remarkable for the absence of this phenomenon, as it was in lower latitudes.

The following list of Observations, made in 1850-1 by Mr. J. Anderson, C.F., at the same station, supports such an opinion.

	-	Number of Nights observed.	Aurora seen.	Observations impossible.
1850, November " December " January " February " March " April	- - -	24	11	11
	- . -	31	19	9
	-	31	20	7
	- . -	28	21	7
	- -	31	19	11
	- -	80	19	10
		175	109	55

Comparing similar periods, November to February ; it appears in this case to have been seen on 89 per cent. of the nights when observation was possible. In the season of 1843-4, the proportion was 71 per cent.

The number of observations at Toronto from the 16th October 1843 to 28th February 1844 was also unusually small. It is only recorded at four hours of observation in that interval, namely, October $19^{\mathrm{d}} 17^{\mathrm{h}}$, December $11^{\mathrm{d}} 14^{\mathrm{h}}$, and January $24^{\mathrm{d}} 17^{\mathrm{h}}$, and $18^{\text {h }}$ Göttingen. To these may be added October 20th, October 21st, and February 4th, from the reports of the Regents of the University of New York, and December 12th from the record of Mr. Herrick of Newhaven. The latter indefatigable observer, however, recorded suspicions of aurora on November 25th, 26 th, 27 th, December 10th, January 8th, 13th, and April 24th. The whole number of positive observations, however, in this period amounts to seven only, a number considerably below the average, which for Toronto alone, from 1840 to 1850 inclusive, is between eleven and twelve.

There are only four instances of aurora recorded at Lake Athabasca so soon after sunset or so shortly before sunrise as to come within the period of evening or morning twilight. On the 16 th October it was visible at 6 A.M. in the east, very faint, and a portion almost imperceptible in the zenith; at this hour the sun was only $6^{\circ} 44^{\prime}$ below the horizon, and if the elevation of the aurora in the zenith exceeded twenty-four geographical miles it must have been within the sphere of the sun's rays. It was seen at the same hour on the 23d November as a faint light in the north-west, but at this time the sun was $16^{\circ} 9^{\prime}$ below the horizon. It was again observed at 6 A.M. on the 29 th, the sun being at the time $17^{\circ} 20^{\prime}$ below the horizon. Lastly, it was seen at 6 p.m. on February 6 th as a faint arch, the elevation of which is not recorded, and probably did not exceed 4° or 5°; the sun was at this time $11^{\circ} 25^{\prime}$ below the horizon.

There are also a few instances of its being seen very soon after twilight ended, or immediately before its commencement. The relative frequency of the phenomenon at different hours of the night is shown by the next Table.
Table LXV.-Showing the Total Number of Observations of Aurora in each month, and the number of entries of clouded, partially clouded, and unclouded sky. An observation between two hours is included under the first of them; thus, an observation ait 7 h .30 m . is classed at 7 h .

All the hours contained in the foregoing Table may be considered as hours of darkness, except 6 A.m. and 6 P.m. for a short period at the beginning and end of the series, and this will be compensated by the longer absence of daylight in mid-winter. The sun rose at Lake Athabasca on the 16 th October at $6^{\mathrm{h}} 43^{\mathrm{m}}$ A.M., and set at $4^{\mathrm{h}} 49^{\mathrm{m}}$; morning twilight began at $4^{\mathrm{n}} 6^{\mathrm{m}}$, and evening twilight ended at $7^{\mathrm{h}} 22^{\mathrm{m}}$; all of mean time. On the 28th February the sun rose at $7^{\mathrm{h}} 6^{\mathrm{m}}$, and set at $5^{\mathrm{h}} 19^{\mathrm{m}}$; morning twilight began at $4^{\mathrm{h}} 31^{\mathrm{m}}$, and evening twilight ended at $7^{\text {b }} 54^{\text {m }}$. Hence, if the development of auroral light have no relation to the hour of the night, in other words, no diurnal law, we should expect to find the observations nearly equally distributed throughout that period. It is at once apparent that such is not the case; the number under the several hours increases from 6 p.m. to midnight; there is a great excess at midnight and 1 A.M., after which the numbers diminish down to 6 A.m. The result is the same, if instead of counting the number, we allow weight according to the relative brilliancy of the displays, using the scale already explained; but as the necessary observations were not made on the spot to determine, with any precision, the integral value of the auroral light developed from hour to hour, any estimate founded upon that scale is necessarily vague. However, taking the numbers as they stand, and supplying them by estimation from the descriptions, where they are wanting, they sufficiently confirm the present conclusion. The totals for each hour are added in the last column of the Table for Lake Athabasca.

There is a great difference in the total number of observations recorded in the different months, indicating a less average duration, as well as a minimum of frequency, at the winter solstice. Allowing that the aurora might have been seen upon half the occasions when it is entered as partly clouded, the proportion of observation hours in which it was actually seen, bears the per-centage shown in the following Table, to the number of favourable hours:

-	Total Number of Nights.	Aurora seen.	Observations impossible.	Per-centage of Hours of Observations to favourable Hours.
1843-4. In October	16	9 Nights.	7 Nights.	
November	26	10 "	13 "	$0 \cdot 24$
December	25	5 "	12 "	$0 \cdot 08$ 0. 266
January	26	15 "	10 "	$0 \cdot 30$
February	25	10 "	11 "	0.24
April -	25	21 "	7 "	$0 \cdot 29$
May 1 to 6	6	3 "	$1 "$	-

Thus it appears that aurora was visible, in the winter of 1843-4, at Lake Athabasca, at about one fourth of all the hours of obser, vation when it was possible to see it.

On April 18, at Fort Simpson, which is the mean date of auroral observations, the sun rises at $4^{\mathrm{h}} 34^{\mathrm{m}}$ A.M., and sets at $7^{\mathrm{h}} 26^{\mathrm{m}}$ P.M., App. T.; and from 8 P.M. to 4 A.M. inclusive, have been taken as the limits of darkness for the whole period.

It may deserve remark that the month of December, when it was least frequent, was a remarkably mild one, and January an unusually cold one.

If the region in which the auroral development takes place be entirely beyond the limits of the atmosphere, as is commonly supposed, it is difficult to conceive any direct connexion between the aurora and the state of that medium, but this question may perhaps be regarded as not finally settled, and it may be worth while to examine the accompanying meteorological features. The first which will be noticed on referring to the meteorological register, is the apparent connexion between the occurrences of aurora and a state of calm. It appears by Table LXII., that the proportion of hours. entered as calms, to those of sensible winds, is 1,340 to 1,420 or 94 per cent., whereas the entries accompanying aurora are as follows:

Hourly Observations of Aurora.		Lake Athabasca.	Fort Simpson.	Total.			
With High Winds	-	-	-	-	21	5	26
With Light Winds	-	-		-	38	10	48
With Calm	-	-		-	-	97	36

Showing a great preponderance under calm. In order to ascertain whether this could be due to a greater average freedom from cloud under such circumstances, separate abstracts have been formed of the proportion of clear sky accompanying entries of calm and wind. The result is, that the sky was on the average clearer in calm weather than during winds, but in a materially less proportion than is required to account fully for the excess of aurora under calms. The average of clear sky for the thirteen hours included in Table LXV. is -

Under winds, 0.354
Under calms, 0.459
With respect to prevailing winds, it will be noticed, in the same way, that a much larger proportion of the accompanying winds contain easting than westing, and if we admit that the state of the atmosphere may have something to do with the phenomenon, it would follow that the conditions favourable to it, at Lake Athabasca, are derived rather from the side of the Atlantic, or from Hudson's Bay, than from the warmer side of the Pacific.

Table LXVI.
General Statement of the prevailing Winds accompanying Aurora at Lake Athabasca.

Date, Mean Time.	The Six preceding Hours.		Accompanying Aurora.		The Six succeeding Hours.		
	Prevailing Wind.	Descrip. tion.	Prevailing Wind.	Description.	Prevailing Wind.	Descrip. tion.	
$\begin{array}{rr} 1843: \\ \text { Oct. } & 15 \\ " \quad 16 \end{array}$		Calm. Calm	-	Calm. Calm.	$\text { E.N.E. }\{$	Calm. Light. Fresh.	
\% 20	W.N.W.	Calm.		Calm.			
					$\left\{\begin{array}{l} \text { S. by E. } \\ \text { E.N.E. } \end{array}\right.$	Light.	
》 25		High.		Calm. Calm.		Fresh. Calm.	
" 26			$\{\bar{\square}$		E.N.E.	Calm.	
" 28	E.N.E.		S.S.E.	Fresh.Calm.	E.S.E	Light.	
" $31\{$	$\begin{aligned} & \text { N.E. } \\ & \text { S.E. } \end{aligned}$	$\begin{aligned} & \text { Light. } \\ & \text { High. } \end{aligned}$	$\{\quad \overline{\text { S.E. }}$				
" 31 \{				V. High.			
Nov. 1	S. by W.	Fresh.	E.N.E.	Mod.	$\{$ E.N.E. $\}$	High.	
			$\left\{^{\text {E.N.E. }}\right.$				
"	-.	Light.Calm.	$\{$ S. $\overline{\text { S.E. }}$	Calm. High. Calm.	$\begin{aligned} & \text { S.S.E. } \\ & \text { S.S.E. }\} \end{aligned}$	High.	
" 9					T $\overline{\mathrm{NE}}$	Calm.	
" 18	-	Calm.		Calm.	$\left\{\begin{array}{l}\text { E.N.E. } \\ \text { S.S.E. }\end{array}\right\}$	Light.	
\% 17	-	Calm.	-	Calm.			
\# $22\{$	S.S.W.	Calm. Calm. Light.	$\overline{\text { I.E. }}$	Calm.	-	Calm.Fresh.	
", 27				Fresh. Calm.	$\}$ E.N.E. $\{$		
\# 27		Light. Calm.	N.E.			ight.	
" 28	-	Calm.	$\left\{\begin{array}{l}\text { W.S.W. } \\ \text { S.S.W. }\end{array}\right.$	Calm.Light.High.		Calm.	
	-				-		
Dec. 9	E.S.E.	Calm.Calm.Light.		Calm. Calm.	-	Fresh.	
" 13					No observation.		
" 15	S.	Light.	E.S.E. :	Light.Calm.			
" 15					S S by E.		
" $22\{$	$\begin{aligned} & \text { S.S.E. } \\ & \text { E.N.E. } \end{aligned}$	High.		High.	$\left\{\begin{array}{c}\text { N.N. } \\ \text { E. } \\ \text { S }\end{array}\right\}$	Light.	
, $26\{$		esh.				High.	
"1844	S.S.E.	V. Light. $\}$	-	Calm.	S.E.	V. Light.	
1844 8	N.E.	Light.	E.N.E. $\}$	Light.	E N.E.	Light.	
" 9	W.S.W. $\{$	$\left.\begin{array}{c}\text { V. Light. } \\ \text { Calm. }\end{array}\right\}-$		Calm.		Calm.	
$15\{$	$\begin{aligned} & \text { S.S.W. } \\ & \text { W.N.W. } \end{aligned}$	V. Light. Iresh.	W. \{	V. Light.Fresh.	$\left.\begin{array}{c} \text { W.N.W. } \\ \mathbf{W} \end{array}\right\}$	Fresh.	
\% 16 ¢							
\# 16	N.W. $\{$	High.	N.W.	Mod.	N.N.W. $\{$	Fresh. High. High. Light.	
" 17	W.N.W. $\{$	Light.			N.N.E. ${ }^{\text {N }}$,		
		Fresh.		od.	N.N.E		
18	No observa	ght.	W.N.W. ${ }_{\text {N. }}$	Light.	W.N.W.		
\% 19						Light.	
" 21		No observation.	-	Calm. Calm.	-	Calm. Calm. Calm.	
" 22	$\begin{aligned} & \text { N.N.E. } \\ & \text { W. } \overline{\mathrm{N}} . \mathrm{W} . \end{aligned}$	Light. Calm. High. Calm.	$\overline{\text { w.N.w. }}$		-		
" 24				Calm. Calm. Light.			
" $26\{$ W						Calm.	
					-	Calm.	

TAble LXVII.-continued.

Date. Mean Time.	The Six preceding Hours.		Accompanying Aurora.		The Six succeeding Hours.	
	Prevailing Wind.	Description.	Prevniling Wind.	Description.	Prevailing Wind.	Description.
1844: Jan. 28 $"$ $30\{$ $"$ 31 $"$ 31 Feb. 5 $"$ 7 $"$ 11 $"$ 12 $"$ 13 $"$ 15 $"$ 16 $"$ 17 $"$ 20 $"$ 21 $"$ 26 $"$ 28	W. $\bar{N} . \mathrm{W}$. - \qquad N.N.W. No observ E.N.E. — - $\begin{aligned} & \text { W.S.W. }\{ \\ & \text { N.N.W. } \\ & \text { N.E. } \\ & \text { W.N.W. }\{ \end{aligned}$	Calm. Light. Calm. Calm. Light. Calm. tion. Light. Calm. Calm. Calm. Fresh. Mod. Mod. High. High. Mod. Calm.	\} E.S.E. N.N.W. - \qquad E.N.E. \qquad W.S. W. $\{$ \} E. $\bar{N} . E$. \} -	Calm. Calm. Light. Light. Calm. Calm. Light. Calm. Calm. Mod. High. Calm. Calm. Mod. Calm. Calin.	$\left\{\begin{array}{c} \text { E.N.E. }\{ \\ =\begin{array}{c} - \\ \overline{\text { N.E. }} \\ \overline{-} \\ \text { N.N.W. } \\ - \\ \text { W.S.W. } \\ \text { N.N.W. }\{ \\ - \\ - \end{array} \end{array}\right.$	Calm. Calm. Light. Fresh. Calm. Calm. V. Light. Calm. Calm. V. Light. Calm. Light. High. Mod. Calm. Calm. Calm. Calm.

It is to be regretted that the observations are deficient as regards the azimuth of arches, and other displays, or their relation to the magnetic meridian; this particular is always too vaguely expressed, and frequently not noted at all. Careful observations of the point of convergence of streamers in the few instances in which they formed a corona, was also overlooked, which however arose chiefly from an exaggerated expectation of something better defined and more regular than ever presented itself.

The most frequent form of the auroral development was the simple arch;* these arches in many instances underwent changes and assumed other forms, but probably in almost every instance the first definite form assumed was of this class. If we classify the entries at

[^22]the several hours without regard to the subsequent changes, it appears that the numbers are as follow:

Table LXVIII.

Nature of Display.	Before Midnight.	At Midnight.	After Midnight.	Total,
Undefined light, usually in the north	3	8	19	25
A simple arch - - -	34	7	26	67
Arch striated - -	2	-	2	4
Arch combined with streamers -	4	2	3	9
Arch co-existing with transverse bands, which in most cases are probably the remains of earlier arches, advanced to near the zenith	2	-	3	5
Streamers alone, or principally -	3	4	8	15
Detached patohes alone, or principally - Transverse bands alone, or principally -	1	$\begin{array}{r}6 \\ 1 \\ \hline\end{array}$	12 6	19 9
	51	23	79	153

This classification rests on rather an arbitrary division, the descriptions not being sufficiently full to enable it to be made satisfactorily; but may serve as an approximation. On comparing it with the register at Toronto, it appears that the more definite forms of aurora occur in much the greater proportional number at the Northern station; a proof, if the more northern region is the nearer to the seat of the display, that the same object cannot be seen at both stations. Thus, we have at Toronto in $8 \frac{1}{2}$ years of two-hourly and one hourly observations (January 1840 to June 1848 inclusive), the following number of entries:

Table LXIX.

Nature of Display.	Before Midnight.	At Midnight.	After Midnight.	Total.
Undefined auroral light	147	61	116	324
An arch - - -	35	11	27	73
Arch combined with streamers	64	11	22	97
Other combinations, forming the finer displays	57	13	32	82
	283	96	197	576

The arches at Lake Athabasca form rather the largest proportion at the early hours of the night ; the less definable forms, on the contrary, and those which the phenomenon assumes when the display approaches its conclusion, are more numerous in the latter part o_{4}
the night, all tending to show, as already inferred from the numbers in Table LXV., that the luminous display essentially belongs to the night, and that the presence of daylight is not the only reason why it is so very rarely seen when the sun is above the horizon.

A peculiarity may be noticed in the references to the state of the sky accompanying Table LXV., that there are comparatively a small number of entries under the head of "Partially clouded." It may be added, that there are comparatively few observations in the notices which follow, of the definite forms of clouds, the most usual state was a light uniform cloud or haze, covering the entire sky ; this prevailed particularly for two or three hours about sunrise and sunset. The sum total of clear sky is considerably less from 6 to 9 AM., and again from 2 to 5 P.M., than at any other hours. It does not appear, however, that this was the case to a greater extent on the mornings following or the afternoons preceding aurora than on other days, but the reverse. Thus, we have the mean proportion of clouded sky for four hours (6 to 9 A.M.) on mornings following aurora, $0^{\circ} 52$, and on the remaining mornings, $0^{\circ} 78$. Again, for four hours (2 to 5 P.M.) on afternoons preceding aurora, it is $0^{\circ} 61$, and on the remaining afternoons $0^{\circ} 76$. The aurora, therefore, would not appear from these observations, either to result from or to tend to produce, circumstances akin to those which produce common cloud, a view which has been sometimes taken. The sums total of clear sky at the different hours are as follows:-

Midnight	51.2	Noon	$41 \cdot 1$
1 A.m.	$48^{\circ} 1$	1 P.m.	41.2
2 "	$48^{\circ} 1$	2."	$34 \cdot 5$
3 "	$47^{\circ} 5$	3 ,	$33 \cdot 7$
4 ,	$44^{\cdot 8}$	4 ,	$29^{\circ} 4$
5 "	. $50 \cdot 4$	5 ,	$27^{\circ} 6$
6 "	$45^{\circ} 0$	6 ,	$37 \cdot 9$
7 \%	$33^{\circ} 7$	7 "	$48^{\circ} 7$
8 "	$27^{\prime} 2$	8 ,	$49 \cdot 7$
9 ,	$24^{\circ} 7$	9 "	$47^{\circ} 4$
10 "	$40 \cdot 5$	10 ,	$47^{\circ} 4$
11 ,	$42^{\circ} 9$	11 ,	$46 \cdot 9$

With regard to the much disputed question of sound, neither the writer nor his assistant Serjeant Henry, were ever positive of hearing any, but the latter thought he did so upon one or two occasions. The result of inquiries upon the subject was, that opinions were nearly equally divided among the educated residents in the country; a small majority of those the writer consulted, agreed that a sound sometimes accompanied the phenomenon, but among the uneducated and native inhabitants, whose acuteness of sense is probably much supe-
rior to that of the other class, a belief in the sound is almost universal, and many individuals assured the writer they had heard it. Similar testimony has been borne very positively by the assistants at the observatory at Toronto, upon one or two occasions of great display.

Connexion of Aurora witi Magnetic Disturbances.

A lititle experience in North America, whether in Canada or in the more northern regions, suffices to correct the impression that every display of aurora, however inconsiderable or distant, is attended by sensible magnetic disturbance. So far as the magnetometers, observed at short intervals, can be taken as a criterion, that is far from being the case, nor does it appear to be so by the more perfent test of photographic registration, as far as it has been applied at Toronto. To this it may be added that the hours at which aurora is most prevalent are midnight and 1 A.m. at Lake Athabasca and Fort Simpson (Table LXV.), whereas the period of greatest mean disturbance at both stations is 3 to 5 A.m. ; it is also midnight at Toronto, where the period of greatest mean disturbance is 9 or 10 P.M.; if, therefore, the development of aurora has any immediate relation to the disturbance of the magnetic elements, the latter must precede the former in one region, and follow it in the other, a law which does not appear probable. On the other hand it is unquestionable that the more brilliant displays are almost always attended by magnetic disturbances, as are many of the more moderate ones; exceptions in the first class are very rare, but the writer believes that some can be established; the general conclusion must, however, be that an intimate relation exists between these distinct phenomena, although not that of cause and effect. The general practice of the observers was to read the instruments at intervals of a few minutes, during every aurora; if either of the magnets differed decidedly from its usual position, or was observed to be in vibration, readings were taken as on term days, or more usually they were read in succession, with an interval of one minute only between the observations, each being read, therefore, every third minute. If no sign of disturbance was observed, the remark "no disturbance" was made in the register, but the actual positions at the moments of observation were not thought important, and were not recorded ; this omission is to be regretted, since it reduces the amount of proof of the absence of disturbance, which has to be established.

The following are the dates of these entries of "no disturbance;" the character of the aurora on each occasion will be seen by consulting the descriptions appended:

October	n.	${ }^{\text {H. }}$	H.		D.	${ }^{\text {H. }}$		D.	1 Gött.
	27	21	22 Gött.	January	19	16	to	20	
"	28	18	19	"	20	19	"	20	brilliant.
,	31	18		"	21	21	\#	24	
November	17	19		"	22	21	"	22	
"	22	20			26	17			
"	27	20		February	12	18	"	20	
"	29	19	21	-	15	20)	"	21	
January	9.	16		"	16	17			brilliant.
"	17	20		"	27	1			

The following list contains the dates of the more brilliant and the longest displays of aurora, the number of hours at which they were recorded, and the order or relative place of each day among the other days of the same month, in respect to its " mean irregular fluctuation" of two elements (p. 74), together with the values of those quantities:

Table LXX.

Date.	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Hours. } \end{array}\right\|$	Order.		$\left\lvert\, \begin{gathered} \text { Days } \\ \text { in } \\ \text { Month. } \end{gathered}\right.$	Date.	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Hours. } \end{array}\right\|$	Order.		Days Month.
		Dec. F ψ	$\underset{\mathrm{F}}{\mathrm{H} . \mathrm{F} .}$				Dec. F ψ	$\underset{\text { H. F. }}{\substack{\text { F }}}$	
1843-4:					1844:				
October 16	9	3	2.	14	January 20	7	25	18	26
" 17	9	4	1	"	" 22	4	7	10	"
" 26	10	6	6	"	" 24	6	4	5	"
November 2	5	2	6	26	" 26	4	6	9	"
" 13	4	5	1	"	February 5	4	3	1	24
\% 29	6	13	9	$\ddot{ }$	" 12	4	21	9	!
December 26	3	12	5	25	" 16	5	7	18	"
January 16	4	19	16	26	" 21	4	11	12	"
" 19	9	16	8	"	" 28	5	2	-	"

By conforming to Göttingen time, the night is divided at 4 A.m. at Lake Athabasca, but as four-fiths of the observations of aurora fall before that hour, its influence on the daily mean irregular fluctuation should be strongly marked in the dates given. It appears that among these days there are several which take a low place in the order of relative disturbance, so far as the quantity referred to is a criterion. Upon the whole, the mean irregular fluctuation of Declination for fifty Göttingen days on which aurora is recorded, is $6^{\prime} \cdot 65$, and for the remaining sixty-five days is $7^{\prime} 10$; it is 13.28 scale divisions of the Bifilar, upon forty-nine days of observation with that instrument, when aurora was seen, and 13.38 div. on the remaining sixty-five days, thus being actually less with both instruments on the first than on the second class. The means for the month of January, on which the proportion of auroras to hours of observation (p. 145) was 0.30 , are Declination $3^{\prime} 90$, Bifilar $18^{\circ} 66$ div. ; and in December, when the former quantity is only $0^{\circ} 08$, the latter are $7^{\prime} 32$ of Declination and $11^{\circ} 99$ div. of the Bifilar, the Bifilar here exhibiting a diminished disturbance, but on the
other hand the Declination, as in the other comparison, a greater degree of it.

Although, however, it can be shown that there are instances of aurora, to all appearance unattended by magnetic disturbance, it is remarkable that magnetic disturbances unattended by aurora are very rare ; there is but one decided example of it under circumstances of the sky which would have allowed the latter phenomenon to be observed, if it existed; there are also one or two instances in which the disturbance was not observed to commence until some time later than the appearance of aurora, but in every other instance either the sky was clouded or aurora was seen. There appear to be but five instances in which an entire cloudless night passed, without aurora being seen at any time, namely, November 27th, December 20th, January 2d, January 5th, and February 19th. There are also seven half-nights terminating at or commencing from midnight, and some shorter periods, to which the same remark applies, but on only one complete instance of this nature was there any magnetic disturbance observed, namely, January 5th. So far, therefore, as a conclusion can be drawn from such limited data, it would appear that these phenomena are so related, that while the amount of electrical excitement necessary to produce aurora borealis, does not necessarily produce any sensible disturbance of the magnetic elements, yet the latter is almost necessarily attended by the former.

The extra observations on account of disturbance, taken up to the period at which the twilight prevented aurora from being distinguished, are classified with reference to this circupistance in the following list.
[The range of Declination and Horizontal Force is added on each occasion, taking one division of the Bifilar scale $={ }^{\circ} 0003412 \mathrm{X}$ at Lake Athabasca.]

> Table LXXI.
I.-Magnetic Disturbances during which Aurora was visible.

Date.	Mean Timc.	Gött. Time.	Range.		$\frac{\Delta X}{X}$	
			Declination.	Bifilar.		
1843. October	$\begin{array}{lll}\text { D. } & \text { IT, } \\ 15 & 13\end{array}$		$\begin{aligned} & 0 \quad, \\ & 235^{\circ} 5 \end{aligned}$	214*3	$\cdot 0731$	Mem. The differences of Horizontal Force are from the readings, uncorrected for temperature changes.
	$16 \quad 17$ to 19	$17 \quad 1$ to 3	13.2	203.0	-0692	
	$17 \quad 9$ to 13	$17 \quad 17$ to 21	136.4	135'4	-0461	
	$25 \quad 11$ to 19	2519 to 3+	276	233.8	-0798	
	2612 to 18	2620 to $2+$	054.0	$160 \cdot 4$	-0546	
		+ Indicates the following Gottingen day.				

[^23]II.-Magnetical Disturbance with a clear shy, but no Aurora visible.

III.-Magnetic Disturbance when the sky was clouded over.

Date.	Mean Time.	Gött. Time.	Range.		$\frac{\Delta X}{\underline{X}}$,
			Declination,	Horizontal Force.		
$1843 .$October	$\begin{aligned} & \mathrm{D} . \\ & 18 \text { and } \\ & 19 \end{aligned}$	D. H. II.	$\begin{array}{lc} \circ & \prime \\ 1 & 24 \end{array}$	70.5	-0241	Term day.
	19 IIT to 16	1918 to $0+$	0 54'0	184, 8	-0630	Snow.
	$23 \quad 17$ to 19	$24 \quad 1$ to 3	$029 \cdot 2$	$80^{\prime} 0$	-0273	
	$29 \quad 18$ to 20	$30 \quad 2$ to 4	125.0	$77 \cdot 3$	-0264	
	$30 \quad 13$ to 20	$30 \quad 21$ to $4+$	$124 \cdot 0$	213.0	$\cdot 0727$	
November	$8 \quad 9$ to 17	$8 \quad 17$ to $1+$	121.0	124.0	-0424	Cessation from 20h. to 23h. Gótt. Snow.
	$10 \quad 12$ to 14	$10 \quad 20$ to 22	$017 \cdot 8$	83.4	-0285	
	$12 \quad 19$ to 22	13 to 6	$030 \cdot 8$	$101 \cdot 1$	-0342	Daylight.
	$13 \quad 12$ to 15	1320 to 23	111.6	91.0	$\cdot 0310$	
	14.11 to 12	$14 \quad 19$ to 20	050.6	$34 \cdot 3$	- 0117	
	169 to 11	$16 \quad 17$ to 18	037.0	12.9	-0044	Snowing.
	$23 \quad 16$ to 18	240 to $2 \times$	$019 \cdot 8$	78.6	-0268	
December -	113 to 20	121 to $4+$	240.2	136.5	$\cdot 0466$	
	5 ll 5 to 19	$5 \quad 22$ to $3+$	057.6	113.6	-0388	
	19 -	-	-	-	-	See List II.
	$27 \quad 10$ to 12	2718 to 20	019.4	$19 \cdot 3$	-0066	Snowing towards the close.
	$27 \quad 18$ to 20	282 to 4	117.4	85.8	*0293	Snowing.
	$29-$	-	-	-	-	Sce List II.
1844. - January	48 to 19	416 to $3+$	$126^{\circ} 0$	$292 \cdot 5$	-0998	
	50 to 1	58 to 0	015.2	$41 \cdot 2$	-0141	Daylight, an unusual hour for disturbance.

III.-Magnetic Disturbance-continued.

Date.	Mean Time.	Gött. Time.	Range.		$\frac{\Delta \mathrm{X}}{\underline{\mathrm{X}}}$	-.
			Declination.	Horizontal Force.		
1844. January	D. ${ }_{16} \quad \begin{aligned} & \text { H. } \\ & 16\end{aligned}$	D. H. 17 H.	$\begin{array}{cc}0 & 1 \\ 0 & 7 \cdot 2\end{array}$	$37 \cdot 5$	$\cdot 0128$	The Biflar Magnet unusual vibration.
	3116 to 20	Feb. 10 to 4	112.7	128.0	-0437	
February -	$\begin{array}{lll}1 & 11\end{array}$ to 13	119 to 21	$207 \cdot 2$	118.5	-0387	
	122 to 24	2 l (to 8	052.0	63.0	-0215	Daylight. Snow.
	29 to 13	117 to 21	040.6	49.4	-0169	
	410 to 18	50 to 2	$158 \cdot 4$	229.5	$\cdot 0783$	
	$6 \quad 10$ to 12	$6 \quad 18$ to 20	$045 \cdot 4$	39.4	-0134	
	720 to 22	8 4 to 6	020.0	58.0	. 0198	
		At Fort Simpson.				
April	$26 \quad 8$ to 18	$20 \quad 17$ to $2+$	158.5	172.3	-0488	
	2915 to 17	$80 \quad 0$ to 2	136.4	$209 \cdot 5$	-0593	
	$30 \quad 5$ to 16	$30 \quad 14$ to $1+$	215.2	288.8	-0806	

Table LXXII.

Abstract from the Meteorological Journal.

[The entries are given in full when Aurora was visible, but otherwise are given for $3 \mathrm{~A}, \mathrm{M}$. . 9 A.m., 3 P. M., and 9 p.m. alone. The Göttingen time of particular appearances is retained, for convenience of reference to the Magnetical Observations.]

At Lake Athabasca.

Date.		Wind,		Temp.	Weather.
Gött. Time.	Mean. Time.	Direction.	Force.	Newman corrected.	
October 1843.					
$\begin{array}{ll} \mathrm{D} . & \mathrm{H} . \\ 15 & 21 \end{array}$	$\begin{array}{ll} \text { D. } & \text { H. } \\ 15 & 13 \end{array}$	-	Calm.	${ }^{\circ}$	Unclouded. Faint aurora, in bands from W.
22	14	-	Calm.	-	Unclouded. Faint diffused aurora both N. and S. of the zenith, and in motion. Obser-
23	15	-	Calm.	-	Unclouded. Aurora brighter, and gathered to a corona near the zenith. Most westerly position of the Declinometer at $23^{\mathrm{h}} 5^{\mathrm{m}}$ ($-1^{\circ} 2^{\prime} \cdot 6$) ; most efisterly position at $23^{\mathrm{h}} 50^{\mathrm{m}}$ $\left(+1^{\circ} 19^{\prime} \cdot 7\right)$; range, $2^{\circ} 35^{\prime} \cdot 5$.*
160	16	-	Calm.	31.0	Two parallel arches of aurora in the N.; brightest at the extremities, F. and W., and striated. Lowest reading of the Horizontal Force at $0^{\mathrm{h}} 5^{\mathrm{ma}}\left(-{ }^{-} 056 \mathrm{X}\right.$.)
1	17	-	Calm.	$31 \cdot 1$	Unclouded. Brightest portion of aurora to the S. of the zenith; faint auroral bands in the E. Highest reading of the Horizontal Force at $1^{\mathrm{h}} 20^{\mathrm{m}}$ (+.015 X.)
2	18 21	-	Calm. Calm.	$30 \cdot 4$ $33 \cdot 9$	Partially clouded with light cirro-cumuli and cirri. Very faint aurora still visible in the $\#$. Cirrous haze in the atmosphere.

* The actual difference between the highest and lowest readings during a period of disturbance is here called the range of scale. The doviation E. and W., or + and -, are measured from the mean scale reading for the same hour and minute; thus their sum may be greater or less than the difference of scale reading, by the amount of the mean diumal change in the interval between them.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal_continued.

Abstract from the Meteorological Journal-continued.

[^24]Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Date.		Wind,		Temperature.		Weather.
Gött. Time.	Mean Time.	Directira.	Force.	Newman corrected.	Dollond as observed.	
January 1844.						
$\underset{22}{\mathrm{D} .} \begin{array}{r} \mathrm{H} . \\ 0 \end{array}$	$\begin{array}{ll} D & H \\ 21 & 16 \end{array}$	-	Calm.	$-39 \cdot 6$	$-37 \cdot 2$	Unclouded. From 21^{h} to 0^{h} a succession of faint arches and detached patches of light with bright streamers (), sometimes near the zenith, but no disturbance observed. Exposed some mercury, found it partly frozen at $0^{\mathrm{h}} 30^{\mathrm{m}}$.
5	21	-	Calm.	$-46 \cdot 5$	$-44^{\circ} 0$	Hazy. The mercury had been solid since 1^{h}.
11	223	N.N.W.	Light.	$-37 \cdot 9$	$-33 \cdot 9$	Still unclouded, but soon after clouded lightly over.
17	9	N.N.W.	Light.	$-39 \cdot 7$	$-36 \cdot 9$	Unclouded again since 13 ${ }^{\text {h }}$.
20	12	-	Calm.	$-42 \cdot 2$	$-39 \cdot 0$	Unclouded. Faint aurora in patches.
21	13	-	Calm.	$-43 \cdot 6$	$-40 \cdot 2$	Faint aurora in the N. at $21^{\mathrm{h}} 30^{\mathrm{mm}}$. A great quantity of detached cirrous aurora in different parts of the sky, moderately bright, and not in motion. No disturbance.
22	14	-	Calm.	$-43 \cdot 2$	$-40 \cdot 0$	Unclouded. Two dense but faint masses of aurore in the N.E. and N.W. Patches of aurora, striated, diffused at various altitudes to the N. round the zenith. No disturbance. At $22^{\mathrm{h}} 15^{\mathrm{m}}$ no aurora in sight.
23	15	\cdots	Calm.	$-43 \cdot 9$	$-41 \cdot 1$	Uncloudec̃. No aurora visible. At $23^{\mathrm{h}} 30^{\mathrm{m}}$ an arch of aurora extending from N.W. by W. to N. At the western extremity, apparently turned upon itself so as to form a hook, very brilliant; the elevation of the hook was 27°, of the centre 30°, of the N, end 26°. At $23^{\mathrm{h}} 40^{\mathrm{mI}}$ the arch broke up into striated masses, of moderate brightness, generally diffused from N.W. to N.E., and disappeared gradually. The Declinometer and Bifilar showed a slight degree of disturbance by the vibration of their magnets, but without change of mean position.
235	21	-	Calm.	$-43 \cdot 3$	$-40 \cdot 0$	Unclouded. Hazy since 0^{h}, and mercury frozen. At 6^{14} the mercury was observed to be partly melted.
11	$23 \quad 3$	-	Calm.	-34.5	$-31 \cdot 1$	Lightly overcast, with occasional sprinkling of snow.
17	9	-	Calm.	-39.9	-36.4	Hazy, but unclouded since 14 ${ }^{\text {h }}$.
23	15	-	Calm.	-39.9	-36.9	Unclouded. Hazy.
$\begin{array}{rr}24 & 5 \\ \\ 11\end{array}$	21 3	W.N.W.	V. light. Calm.	$-40 \cdot 6$ $-39 \cdot 4$	$-37 \cdot 6$ $-36 \cdot 0$	Overcast, with uniform dense haze. Hazy. Magnetic term day began at 10^{h}.
15	7	-	Calm.	$-43 \cdot 4$	-40.0	Unclouded. No aurora visible. At $15^{\mathrm{b}} 30^{\mathrm{ma}}$ a faint auroral haze in the N. near the horizon. Greatest value of the Horizontal Force about this time. At $15^{\mathrm{h}} 45^{\mathrm{m}}$ a mass of aurora in the N.N.W., another in the N.E., both rising vertically to an elevation of 11°, then extending irregularly to an elevation of about 32°, and thence uniting in an arch at an elevation of 60°, from which arch four conspicuous streamers, in violent motion, rose towards the zenith. Brilliancy (2) to (4.)

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Date.		Wind.		Temperature.		Weather.
Gött. Time.	Mean. Time.	Direction.	Trerce.	Newman coryented.	Dollond as observed.	
l'ebruary 1844. Sunday.						
$\begin{array}{cc} \mathrm{D} . & \mathrm{H} . \\ 5 & 23 \end{array}$	$\begin{array}{cc} \text { D. } & \text { H. } \\ \hline \end{array}$	-	Calm.	-21.7	$-19 \cdot 3$	Continucs unclouded. Disturbance renewed from 20^{h} to 23^{h}. Lowest value of Horizontal Force (-'039 X) at $21^{\mathrm{h}} \mathrm{gm}^{\mathrm{m}}$. Most westerly reading of Declination ($-0^{\circ} 22^{\prime} \cdot 7$) at $21^{\mathrm{h}} 36^{\mathrm{m}}$. Range $1^{\circ} 3^{\prime}$.
65	21	W.N.W.	Light.	-22.0	-19.1	Lightly overcast since $3^{\text {h }}$.
11	63	N.N.E.	Light.	-8.0	$-5 \cdot 8$	Generally unclouded since $6^{\text {h }}$. At present overcast.
17	9	E.N.E.	Light.	4.3	5.6	Overcast. Magnetic shock from $18^{\text {h }}$ to 20^{h}. Most westerly reading of Declination ($-0^{\circ} 23^{\prime \prime} 6$) at $19^{\mathrm{h}} 10^{\mathrm{m}}$. Most easterly ($+0^{\circ} 21^{\prime \cdot}$) at $19^{12} 30^{\mathrm{m}}$. Range $0^{\circ}{ }^{4} 3^{\prime} 4$.
23	15	-	Calm.	6.6	$7 \cdot 6$	Clear at midnight, otherwise overcast since 17^{h}.
75	21	-	Calm.	3.8	$5 \cdot 4$	A few flakes of snow falling.
11	73	-	Calm.	$9 \cdot 7$	11.0	Snowing lightly from 10^{h} to 13^{h}.
17	9	-	Calm.	$5 \cdot 9$	$7 \cdot 2$	Overcast.
23	15	-	Calm.	8.9	9.9	Overcast.
81	17	-	Calm.	6.6	$7 \cdot 9$	Cirro-strati to the S.; remainder clear. A very faint arch of aurora gathering to a focus in the E. A slight disturbance just over. Range of Declination ($0^{\circ} 37^{\prime \cdot} 4$.) Lowest value of Horizontal Force (-.021 X) at $0^{\mathrm{h}} 0^{\mathrm{m}}$.
5	21	-	Calm.	6.6	777	Lightly overcast. A minimum of Horizontal Force (-.023 X) at $5^{\mathrm{h}} 0^{\mathrm{m}}$ 。
11	83	-	Calm.	$19 * 3$	$20^{\circ} 0$	Light cirrus haze, but otherwise unclouded since $6^{\text {n }}$.
17	9	-	Calm.	14.3	14.4	Unclouded.
23	15	-	Calm.	$12 \cdot 3$	12.9	Clouded over since $22^{\text {h }}$.
95	21	-	Calm.	12.0	12.2	Continues overcast.
11	93	-	Calm.	6.8	$7 \cdot 0$	Overcast.
17	9	N. by W.	Light.	-0.8	1.2	Wind sprung up at 13 ${ }^{\text {b }}$.
23	15	-	Calm.	-2.4	0.0	Overcast.
105	21	N.N.E.	V. light.	$0 \cdot 8$	$2 \cdot 9$	A heavy hoar-frost depositing since 0 .
11	103	-	Calm.	$7 \cdot 9$	$9 \cdot 7$	Snowing lightly. A glimpse of blue sky in the S.
17	9	-	Caln.	$8 \cdot 7$	10.0	Overcast, and calm to the end of the observations at 20^{h}.
1121	1113	-	Calm.	-30.8	$-27 \cdot 4$	Unclouded. An arch of aurora, moderately bright (), extending from N.E. to N.W., and rising to an altitude of 54°. A faint patch of aurora () of great extent, near the horizon in the N.E. A slight change in the Horizontal Force and Inclination, but not sufficient to lead to observations for disturbance. At $21^{\mathrm{h}} 30^{\mathrm{m}}$ no traces of aurora.
23	15	N.N.E.	V. light.	$-31 \cdot 8$	-27.9	Unclouded.
125	21	-	Calm.	$-23 \cdot 1$	$-20 \cdot 1$	Overcast; cirro-cumuli and strati.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued,

Abstract from Meteorological Journal.
At Fort Simpson.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Date,} \& \multicolumn{2}{|l|}{Wind.} \& Temp. \& \multirow[b]{2}{*}{Weather.}

\hline Gött. Time. \& Mean Time. \& Direction. \& Force. \& Newman corrected. \&

\hline \multicolumn{2}{|l|}{1844.} \& \multirow[b]{4}{*}{E. by S.
S.E.} \& \multirow[b]{3}{*}{Mod.} \& \multirow[b]{3}{*}{8.7} \& \multirow[t]{2}{*}{}

\hline D. \& D. H . \& \& \& \&

\hline 16 \& 31
April.
Al \& \& \& \& Hazy. Snowing from $\mathrm{I}^{\text {h }}$ to $5^{\text {l }}$ Gött.

\hline 12 \& \multirow[t]{7}{*}{13} \& \& Mod. \& $25 \cdot 0$ \& Overcast, with light cirro-cumuli, interspersed

\hline 17 \& \& S.E. \& Mod. \& $15 \cdot 1$ \& A faint clear spaces. in the N.N.E., at 50° elevation. At $17^{\text {h }} 33^{\mathrm{m}}$ an from S.E. to N.N.W., and at 70° of elevation.

\hline \multirow[t]{5}{*}{18} \& \& \multirow[t]{5}{*}{S.E.} \& \multirow[t]{5}{*}{Mod.} \& \multirow[t]{5}{*}{$11 \cdot 3$} \& Unclouded. The arch has recently separated

\hline \& \& \& \& \& into faint masses () of striated appearance, diffused generally over the sky, and slightly

\hline \& \& \& \& \& in motion. At $18^{\mathrm{h}} 15^{\mathrm{mi}}$ the aurora consider-

\hline \& \& \& \& \& ably brighter () and nearer the zenith,
elevation 82°. At $18{ }^{\text {ch }} 30^{\mathrm{m}}$ still bright and

\hline \& \& \& \& \& about the same elevation, with moderate

\hline \multirow[t]{5}{*}{$\begin{array}{rr}20 \\ 06 \\ 12 \\ & 17 \\ & 18\end{array}$} \& 115 \& S.E. \& Light. \& $1 \cdot 6$ \& Hazy, but uncloude

\hline \& \& S. hy E. \& Light. \& 10.3 \& Unclouded since 0^{h}.

\hline \& 23 \& S.E. \& V. light. \& $29 \cdot 3$ \& Still unclouded.

\hline \& \& \& Calm. \& 16.9 \& Unclouded. A faint arch of aurora () from S.E. to N.N.W., at elevation 74°.

\hline \& \multirow[t]{2}{*}{9} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{Calm.} \& \multirow[t]{2}{*}{$15 \cdot 8$} \& Unclouded. Faint aurora () extending from

\hline 18 \& \& \& \& \& the E. along the worthern quarters; cirrus aurora or haze in various parts of the sky.

\hline 20 \& 11 \& \multirow[t]{2}{*}{-} \& Calm. \& $12 \cdot 7$ \& Unclouded. Cirrus aurora in various parts of

\hline 21 \& 12 \& \& Calm. \& $11 \cdot 2$ \& Unclouded. Faint aurora from E. to N.W.;

\hline \& \& \multirow[t]{2}{*}{-} \& \multirow[t]{12}{*}{Calm.} \& \multirow{13}{*}{8.6} \& and auroral haze in various parts of the sky.

\hline 22 \& 13 \& \& \& \& Unclouded. No aurora. At $22^{\mathrm{a}} 10^{\mathrm{m}}$ a brilliant

\hline \& \& \& \& \& ance of the magnets. It appeared in the

\hline \& \& \& \& \& W.N.W., rising rapidly in vertical streamers,

\hline \& \& \& \& \& which were highly coloured, oxhibiting tints

\hline \& \& \& \& \& pusating or dancing motion; sometimes, also;

\hline \& \& \& \& \& chauging position by serpentine development,

\hline \& \& \& \& \& and presentiug themselves in different parts

\hline \& \& \& \& \& disappeared at $22^{\text {n }} 30^{\mathrm{um}}$. Most eastorly posi-

\hline \& \& \& \& \& tion of the Declination ($+2^{\circ} 37^{\prime}$) at $22^{\text { }} 400^{\mathrm{m}}$;

\hline \& \& \& \& \& most westerly ($-0^{\circ} 50^{\prime} \cdot 3$) at $22^{\mathrm{h}} 50^{\mathrm{m}}$; range $3^{\circ} 27^{\prime}$. The movements of the Inclinometer

\hline \& \& \& \& \& and Bifilar Magncts exceeded the range of

\hline \multirow[b]{5}{*}{0
6} \& \multirow[t]{4}{*}{15} \& \multirow[t]{4}{*}{-} \& \multirow[t]{4}{*}{Calm.} \& \& their respective scales.

\hline \& \& \& \& \multirow[t]{3}{*}{15} \& Unclonded. No aurora visible; but little dis-

\hline \& \& \& \& \& $23^{\mathrm{h}} 30^{\mathrm{m}}$, but resumed at 4^{h}, giving another

\hline \& \& \& \& \& maximum to the E. of $+1^{\circ} 39^{\prime} \cdot 8$ at $4^{\mathrm{h}} 24^{\mathrm{m}}$.

\hline \& \multirow[t]{2}{*}{} \& \& Calm. \& 12.7 \& Light cirrus clouds generally.

\hline \& \& \& Fresh. \& $30 \cdot 8$ \& Cirro-cumulus clouds. Wind since $8^{\text {h }}$ began S.E.

\hline 17 \& 8 \& S. \& V. light. \& 28.9 \& Unclouded. Faint arch of aurora from E. to N.,

\hline \multirow[t]{3}{*}{18} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{-} \& \multirow[t]{3}{*}{Calm.} \& \multirow[t]{3}{*}{30.4} \& at elevation 40°. The magnets not disturbed.

\hline \& \& \& \& \& Two faint arches () from S.E. to N.N.W., at

\hline \& \& \& \& \& 57° and 65° elevation, and a broad diffused band crossing the zenith from S. to N.

\hline \multirow[t]{5}{*}{$4 \begin{array}{r}4 \\ 6 \\ 12 \\ 12 \\ 18 \\ 19\end{array}$} \& 15 \& - \& Calm. \& 22.6 \& Overcast.

\hline \& \multirow[t]{3}{*}{$\begin{array}{r}15 \\ 4 \\ 4 \\ \hline 9\end{array}$} \& \& Tight. \& $29 \cdot 3$ \& Lightly clouded to the E.; remainder clear.

\hline \& \& S. \& Fresh. \& 4.65

3.8 \& Nearly overcast.

\hline \& \& \& \& 33.8 \& Unclouded, but hazy.

\hline \& \& \& V. light. \& $31 \cdot 5$ \& The same. Faint auroral haze in the N. and

\hline \multicolumn{2}{|l|}{Good Friday.} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{-} \&

\hline \& \& \& \& \& brightuess (), chiefly confined to the N.W.,

\hline \multirow[t]{2}{*}{21} \& \multirow[t]{2}{*}{12} \& N.N.W. \& High. \& 22.0 \& Unclouded. Faint auroral haze in S. and W.

\hline \& \& \& \& \& Wind squally, increased to a gale at $22{ }^{\text {h }}$.

\hline \multirow[t]{2}{*}{} \& 15 \& W.N.W. \& High. \& 9'5 \& Clouded since 22h, wind somewhat abated. Snow mixed with rain at $23^{1 \mathrm{~h}}$.

\hline \& \& \& \& \& 2

\hline
\end{tabular}

Abstract from the Meteorological Joułnal-continued.

蚛

Unclouded: The aurora as last described. At disappeared, leaving only a few vertical beams, and streaks of light moderately bright near the horizon. The most easterly reading,
of the Declinometer $\left(+1^{\circ} 10^{\prime}\right)$ was at $22^{\text {b }} 45^{m}$, range $1^{\circ} 16^{\prime \prime} 6$.
Unclouded, but hazy.
Nearly overcast.
Nearly unclouded.
Unclouded. A vertical mass of aurora rising vertical beams extending from N.N.E. to E. near the horizon. Imperfect arches rather in the latter quarter approaching the zenith, $18^{\mathrm{h}} 30^{\mathrm{m}}$ vertical beams till stavainon. And ranging from N.N.E. to E., also an imperfect annuar body of aurora in the N.N.E., at an Imperfect arches, and cirrus aurora or haze aurora had nearly disappeared. The instruments were watched and scale readings taken every 15^{m} during this display, but no disturbance was manifested.
N. at elevation 28°.

Unclouded. A heavy band of aurora, modethe bright, crossing the zenith from s.c. pentine changes, faintly coloured; it vanished in a few minates, and at $21^{\mathrm{b}} \mathrm{f}^{\mathrm{mm}}$ nothing but a visible; this continued with little change to $21^{\mathrm{h}} 45^{\mathrm{m}}$, and at 22^{h} there was no aurora visible. the magnets considerably disturbed. Most at $22^{\mathrm{h}} 6^{\mathrm{m}}$, most westerly reading $\left(-0^{\circ} 0^{\prime} \cdot 9\right)$, at $22^{\mathrm{h}} 3 \mathrm{~m}$, range $1^{\circ} 26^{\circ} 2$.
Und
Unclouded.
Unclquded, but hazy.
Still unclouded. A faint double arch from N^{-}. to \mathbf{E}. at an elevation of 26°, and auroral haze ached masses. extending from N. to E.; also faint bands (), across the meridian near the zenith.
arly unclouded.
vill
Haze gathering since 13 ${ }^{\text {h }}$. at present overcast ${ }^{2}$.
Thickly overcast, and snowing. Very dark.
Still snowing slightly.
Partially clouded, but with clear spaces. .
Overcast since $13^{\text {h }}$, but now, clearing again, Still: Unazy
tude of 33°, which separated at $19^{\mathrm{t}} 40^{\mathrm{m}}$ into. faint serpentine bands of little density, in siderable elevation in the atmosphere. Na,

Dispersed portions of aurora still visible.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Date.		Wind.		Temp.	Weather.
Gött. Time.	Mean Time.	Direction.	Force.	Newman corrected.	
April 1844.					
${ }_{16} 18$.	D. 18 H.	-	Calm.	$37^{\circ} \cdot 7$	Unclouded., No aurora described, but at Toronto an entry similar to the last is found: "A faint auroral light behind the clouds in "the northern horizon." After which it was clouded at that station, and began to rain at $20^{\mathrm{h}} 40^{\mathrm{m}}$. At $18^{\mathrm{h}} 45^{\mathrm{m}}$ imperfect striated arches of aurora extended from \mathbf{E}. to \mathbf{N}, and from S. to N.N.E., moderately bright. A very faint double arch or band crossed the zenith from S. to N.W. Bright cirrus aurora, or haze, in various parts of the sky.
19	10	-	Calm.	$32 \cdot 9$	Unclouded. The aurora nearly the same as at $28^{\mathrm{h}} 45^{\mathrm{m}}$. At $19^{\mathrm{h}} 15^{\mathrm{m}}$ scarcely any traces of aurora, but considerable disturbance, the Declination ranging to the eastward. $A t$ $19^{\mathrm{h}} 45^{\mathrm{mm}}$ two narrow serpentine bands of aurora crossed the sky, near the zenith, from N.W. by N. to S., moderately bright, and with slight motion. The most westerly reading of the Declinometer ($-1^{\circ} 17^{\prime \cdot}$) was at $19^{\mathrm{h}} 50^{\mathrm{m}}$.
20	11	-	Calm.	$30 \cdot 4$	Unclouded. A broad band of aurora in vielent motion, extending from the S.E. to the zenith, with vertical streamers pulsating or dancing in the N. Extra observations were commenced at Toronto at this hour, and continued for sixteen hours. $\Delta t 20^{\mathrm{h}} 15^{\mathrm{m}}$ long vertical streamers in the S.E. and N.E., in moderate motion. $\Lambda \mathrm{t} 20^{\mathrm{h}} 45^{\mathrm{mm}}$ aurora extending from E. to W., and passing near the zenith, in the form of an arch of moderate brightness, faintly coloured at the eastern end. The extrcme casterly reading ai T^{10} ronto $\left(+0^{\circ} 39^{\prime} \cdot 3\right)$ was at this time.
21	12	-	Calm.	$28 \cdot 2$	Unclouded. The aurora rising from the E. and W., in fine vertical streamers, in rapid motion. They all united to form a star or corona near the zenith, having a diameter of 70, its exact position not recorded. At $21^{\mathrm{h}} 15^{\mathrm{m}}$ no traces of the aurora remained, except a few fine streamers in the N. At $21^{\mathrm{h}} 30^{\mathrm{m}}$ the same. $\Delta t 21^{\mathrm{h}} 45^{\mathrm{m}}$ all trace had disappeared.
22	13	-	Calm,	28.6	Unclouded. Aurora reappeared, of irregular form, moderately bright, and extending from N. to S.W., in slight motion, Exira observations were commenced at Greonwich at this hour, in consequence of a change of Declination of $8^{\prime} 45^{\prime \prime}$ between 20^{h} and 22^{h}. Soon after the same hour the range of Declination at Toronto passed to the westward of the mean, and did not rise to the mean value during the remainder of the observations. At $22^{4} 15^{m}$ no traces of aurora were visible; the same at $22^{\mathrm{h}} 30^{\mathrm{ma}}$ and $22^{\mathrm{h}} 45^{\mathrm{m}}$.
23	14	\cdots	Calm.	28.0	Unclouded. Aurora visible, in verlical stream. ers and dense cirrous patches, both N : and S. At $23^{\mathrm{h}} 45^{\mathrm{m}}$ a slender serpentine band crossing the zenith. The most westerly reading of the Declination at Toronto ($-0^{\circ} 54^{\prime} 5$) was observed at $23^{\mathrm{h}} 25^{\mathrm{mm}}$; range, $1^{\circ} 14^{\prime} \cdot 3$.
170	15	-	Calm. .	$27 \cdot 6$	Aurora no longer visible; day dawning. The disturbance still continued, and soon after 1^{h} distrubance stil continued, and soon after exceded the limits of the scales of all the instruments. Most easterly reading of the Declinometer ($+6^{\circ} 32^{\circ} 0$ nearly) at $1^{h} 24^{m}$; range not less than $8^{\circ} 10^{\prime}$, possibly somewhat greater. The more active part of this dis turbance, which was the greatest observed, appears to have terminated about 8^{h} Gött., or 11 A.M. of mean time at the station. It is remarkable that its relative extent was by no observed lias been often exceeded, and was quite inconsiderable at Greenwich. Disre-

Abstract from the Meteorological Journal-continued.

Date.		Wind.		Temp.	Weather.
Gött. Time.	$\begin{aligned} & \text { Mern } \\ & \text { Time. } \end{aligned}$	Direction.	Force.	Newman corrected	
			1	$*$	to have consisted at Toronto, as regards the Declination, of a great easterly excursion, having a maximum at 21^{h}, and followed by a or near $23^{\mathrm{t}} 30^{\mathrm{m}}$, and another at $0^{\mathrm{h}} 15^{\mathrm{m}}$, the two being separated by a marked return to the eastward at 0^{h}. The succeeding maximum is at 3^{h}, after which the changes of this element are unimportant. Referring to the obserfeature corresponding to either of these. Great and rapid changes of Declination prevailed during the whole continuance of the observations, but the most important of ment reached the very large deviation of $6^{\circ} 32^{\prime}$ from its normal value ct the same hour, where at that period the changes of Declination were moderate. As regards the Horizontal Force, we have at Toronto a minimum soon after 20^{h}, succeeded by a very decided incerease of force, having a maximum two hours later; this is followea by two minima, the most considerable between 23^{h} and 0^{h}, and the other soon after 1^{h}, after which there is a very gradual return several hours. It is curious to observe that a feature very much resembling the first of these, namely, a maximum between two earlier, at 19^{h} instead of 22^{h}, but in relative extent is not so great. To the minimum in question at Toronto, there is no Peature corresponding at Fort simpson on the other Toronto has correspondence which cannot Fort being, that the first, which is by far the mosf considerable at Toronto, is the least at Fort Simpson, and the second, which at the latter station exceeds any other observed, is but
	$\begin{array}{ll} 844 . \\ \text { D. } \\ \text { D. } & \text { H. } \end{array}$	-		$40^{\circ} 5$	station exceeds any other observed, is but moderate at Toronto. moderate at oronto. morro-cumuli and cirro-
12	173	-	C m.	50.0	strati. 0.7 of blue sky. Λ few cirro-cumuli and cirrostrati. A slight degree of disturbance was observed from 13^{h} to 14^{h}, the Declinometer ranging to the westward of its mean position. Most westerly reading ($-0^{\circ} 20^{\circ} 9$) at $13^{\mathrm{h}} \mathrm{g}^{\mathrm{m}}$.
18	9	-	Calm.	38.3	Unclouded, but hazy.
22	14	-	Calm.	$33 \cdot 2$	Almost unclouded. A few vertical beams of aurora in the \mathbf{N}.
180	15	-	-	-	No observation. At 23^{h} and at 2^{h} calm and unclouded.
6	21	-	Calm.	$42 \cdot 2$	Nearly unclouded.
12		E. by S.	Light.	51.7	Unclouded.
18	9	-	Calm.	$42 \cdot 1$	Nearly unclouded.
20	11	-	Calm.	38.0	Unclouded. Auroral haze in the S.E.
21	12	-	Calm.	$36 \cdot 3$	Unclouded. A faint arch of aurora from E. to W., at an elevation of 79°. No disturbance.
22	13	-	Calm.	$33 \cdot 9$	Unclouded. A long range of slender vertical beams, ranging from E. to N., of moderate brightness, and showing but little motion.
190	15	-	Calm.	33.3	Uncloud.ed.
6	21	-	Calm.	$44 \cdot 4$	Unclouded.
12		N.W.	Light.	54.5	Still unclouded, but somewhat hazy.
18	9	-	Calm.	$40 \cdot 7$	Partially clouded.
20	11	-	Calm.	$37 \cdot 5$	Unclouded again. Λ dense mass of aurora in E. by S., at elovation $22^{?}$? moderately bright.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Journal-continued.

Abstract from the Meteorological Jonrnal-continued.

Abstract from the Meteorological Journal-continued,

FORT Chipewyan.
Abstract of Hourly Observations made during the month of October 1843.

8^{h} Göttingen time $=$ noon of local mean time.

FORT CHIPEWYAN.
Abstract of Hourly Observations made during the month of October 1843
Spirit Thermometer by Newman, corrected

Fort Chipewfan-continued.
Abstract of Hourly Observations made during the month of November 1843.

Date.	Spirit Thermometer by Newman, corrected.												
Time.	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	14.8	14.6	14.6	14.8	$15 \cdot 7$	$17 \cdot 9$	18.2	20.6	21.9	$26^{7} 7$	$28 \cdot 1$	29.0	29.4
2	21.3	$20 \cdot 6$	20.5	$24 \cdot 1$	21.1	$22 \cdot 9$	26.0	$28 \cdot 1$	$30 \cdot 4$	32.0	$32 \cdot 7$	$30 \cdot 2$	$28 \cdot 1$
3	24.7	$24 \cdot 9$	$23 \cdot 8$	23.8	$24 \cdot 1$	$23 \cdot 8$	$25 \cdot 1$	$25 \cdot 1$	$27 \cdot 4$	$27 \cdot 0$	$29 \cdot 4$	$30^{\prime} 6$	$30 \cdot 3$
4	-	-	-	27.9	$27 \cdot 0$	27.6	28.6	29.3	29.1	29.3	$29 \cdot 2$	27.7	27.0
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	24.8	14.8	14.6	13.4	13.6	$15 \cdot 9$	$15^{\circ} 0$	16.8	22.3	24.7	24.5	$24 \cdot 1$	$20 \% 7$
7	16.9	16.8	$15 \cdot 4$	15\%7	157	$16 \cdot 1$	16.8	$17 \cdot 0$	17.5	18.8	$15 \cdot 7$	$15 \cdot 3$	15.0
8	$19 \cdot 1$	19.0	$18 \cdot 1$	$17 \cdot 6$	18.9	19.5	$20 \cdot 1$	$19 \cdot 3$	$20 \cdot 2$	18.9	18.g	15.6	14.0
9	0.9	6.8	$6 \cdot 6$	6.4	$6 \cdot 4$	7.6	8.0	$8 \cdot 9$	10.0	10.0	9.5	8.9	$8 \cdot 5$
10	$-1 \cdot 1$	$-1 \cdot 0$	-0.2	-0.9	-0.9	1.0	3.5	$8 \cdot 3$	8.5	$9 \cdot 6$	$9 \cdot 1$	$9 \cdot 6$	7.6
11	$2 \cdot 0$	$2 \cdot 1$	23	$4 \cdot 4$	6.4	$5 \cdot 5$	$7 \cdot 2$	$7 \cdot 3$	6.8	5.5	$6 \cdot 3$	6.8	0.0
12	-	-	-	-	-	-	-	-	-	-	-	-	-
13	-6.8	-6.0	$-5 \cdot 0$	-3.3	-0.1	0.6	$2 \cdot 3$	$4 \cdot 4$	4.3	$5 \cdot 7$	6.0	6.5	3.5
14	$9 \cdot 1$	10.2	13.2	11.5	10%	11.2	13.3	14.1	$15 \cdot 9$	18.4	$18 \cdot 9$	17.9	17.2
15	$8 \cdot 0$	6.6	$5 \cdot 1$	3.4	4.2	6.0	$8 \cdot 1$	8.3	$9 \cdot 8$	$4 \cdot 2$	$7 \cdot 9$	8.0	$7 \cdot 8$
16	11.0	$10 \cdot 1$	10.1	$11 \cdot 9$	$12 \cdot 7$	15.1	15.6	17.8	$17 \cdot 3$	15.1	$13 \cdot 2$	12.3	$12 \cdot 3$
17	10.4	$10 \cdot 0$	10.0	$8 \cdot 8$	7×2	9.0	$8 \cdot 3$	8.7	$9 \cdot 2$	$9 \cdot 1$	$8 \cdot 9$	10.0	10.2
18	$4 \cdot 5$	$3 \cdot 3$	$3 \cdot 3$	31	$3 \cdot 6$	$4 \cdot 8$	6.7	8.0	$8 \cdot 9$	$9 \cdot 0$	$9 \cdot 2$	8.7	8.8
19	-	-	-	-	-	-	-	-	-	-	-	-	-
20	$7 \cdot 0$	7×7	$7 \cdot 3$	$7{ }^{7} 7$	77	$7 \cdot 6$	$7 \cdot 8$	$7 \cdot 8$	8.1	8.4	$8 \cdot 4$	8.4	6.8
21	6.7	6.9	6.4	0.2	$7 \cdot 0$	$7 \cdot 3$	$7 \cdot 2$	$9 \cdot 0$	9.3	$9 \cdot 3$	$7 \cdot 7$	$7 \cdot 8$	$7 \cdot 0$
22	$5 \cdot 8$	$5 \cdot 8$	$5 \cdot 6$	5.7	$5 \cdot 6$	$6 \cdot 9$	$8 \cdot 3$	$9 \cdot 3$	9.8	10.0	10.0	9.7	$9 \cdot 6$
23	$-5 \cdot 5$	$-5 \cdot 7$	-3.5	$-3 \cdot 1$	-13	0.2	2.7	4.5	5.5	5.7	6.5	6.7	$7 \cdot 3$
24	5.0	$4 \cdot 3$	$3 \cdot 8$	$3 \cdot 2$	3.0	3.2	$3 \cdot 1$	4.7	$5 \cdot 3$	$5 \cdot 4$	4.7	3.8	$2 \cdot 3$
25	4.1	$3 \cdot 8$	4.1	$3 \cdot 3$	$2 \cdot 2$	0.9	-0.6	-0.6	$1 \cdot 2$	$1 \cdot 9$	$2 \cdot 1$	1.2	0.8
26	-	-	-	-	-	-	-	-	-	-	-	-	-
27	2.7	3.2	$3 \cdot 1$	3.3	$2 \cdot 3$	$4 \cdot 2$	$4 \cdot 6$	$5 \cdot 1$	$7 \cdot 1$	$6 \cdot 9$	8.9	97	$9 \cdot 9$
28	0.3	-0.7	-1.5	$-2 \cdot 6$	-2.7	$-2 \cdot 3$	-0.2	0.3	3.0	4.2	43	3.6	$3 \cdot 3$
29	$13 \cdot 4$	17.9	20.3	$17 \cdot 8$	16.4	14.8	14.6	15.3	15.0	14.9	13.0	11.0	$7 \cdot 8$
30	$-5 \cdot 5$	$-5 \cdot 8$	-E8	$-5 \cdot 6$	$-5 \cdot 5$	-4.7	-3.6	$-3 \cdot 4$	$-2 \cdot 3$	0.0	$0 \cdot 1$	0.3	$0 \cdot 3$
31	-	-	-	-	-	-	-	-	-	-	-	-	-
Sums	289.6	$190 \cdot 2$	192.2	215	$220 \cdot 6$	241.6	$266 \cdot 7$	294.0	$322 \cdot 1$	328.7	333.2	$323 \cdot 4$	$301 \cdot 5$
Hourly Means	\} 7\%58	$7 \cdot 61$	$7 \cdot 69$	$8 \cdot 29$	8.48	$9 \cdot 29$	$10 \cdot 26$	11.31	12•39	$12 \cdot 64$	$12 \cdot 82$	$12 \cdot 44$	11.60
$\left.\left\lvert\, \begin{array}{c} \text { Diurnal } \\ \text { Varial } \\ \text { tion } \end{array}\right.\right\}$	\} $-2 \cdot 18$	$-2 \cdot 15$	-2.07	$-1 \cdot 47$	-1.28	-0.47	0.50	$1 \cdot 55$	${ }^{2 \cdot 63}$	$2 \cdot 88$	3.06	$2 \cdot 68$	1•84

8^{h} Gottingen time $=$ noon of local mean time.

Fort Chipewyan-continued
Abstract of Hourly Observations made during the month of November 1843.
Spirit Thermometer by Newman, corrected.

- Mean by triplets.

Fort Chifewyan-continued.
Abstract of Hourly Observations made during the month of December 1843.

Dato.	Spirit Thermometer by Newman, corrected.												
Time.	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	-1.2	0.6	$2 \cdot 1$	3.4	$5 \cdot 1$	6.4	$7 \cdot 3$	8.0	$8 \cdot 2$	$7 \cdot 2$	$5 \cdot 8$	5.3	5.6
2	23.6	$19 \cdot 1$	$18 \cdot 9$	17.6	15.2	$7 \cdot 8$	$5 \cdot 1$	4.7	4.7	3.0	$1 \cdot 9$	0.6	-0.3
3	-	-	-	-	-	-	-	-	-	-	-	-	-
	4.0	$3 \cdot 1$	$3 \cdot 0$	$2 \cdot 3$	3.0	$3 \cdot 0$	4.6	6.7	10.8	11.5	$10 \cdot 1$	$8 \cdot 9$	$8 \cdot 9$
5	$3 \cdot 7$	3.3	$4 \cdot 4$	4.4	$3 \cdot 3$	3.9	$5 \cdot 3$	$0 \cdot 6$	1.5	$2 \cdot 1$	2.7	3.2	3.2
6	17.9	$10 \cdot 1$	$21 \cdot 1$	$22 \cdot 9$	26.1	$27 \cdot 0$	$29 \cdot 9$	31.6	34.2	34.2	$35 \cdot 3$	$33 \cdot 7$	$33 \cdot 5$
7	4.6	3.2	1.8	$0 \cdot 9$	$-1 \cdot 3$	-2.0	-0.4	3.5	$4 \cdot 1$	$5 \cdot 2$	6.5	77	$9 \cdot 1$
8	17.0	16.4	$15 \cdot 7$	14.7	$15 \cdot 3$	$15 \cdot 1$	$22 \cdot 5$	27.0	30.4	31.4	29.4	28.4	$25^{\circ} 0$
9	19.4	19.4	$21 \cdot 2$	22.0	$21 \cdot 4$	$19 \cdot 6$	21.5	$21 \cdot 9$	$21 \cdot 5$	19.3	15.7	13.0	$9 \cdot 8$
10	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-2.9	-1•3	-1.2	-1.6	-1.4	-1.5	-2.0	$-2 \cdot 1$	-1.9	-1.9	-1.9	$-3 \cdot 3$	$-2 \cdot 6$
12	6.4	4.9	4.4	4.2	4.4	$4 \cdot 4$	$3 \cdot 1$	$2 \cdot 3$	$2 \cdot 2$	2.0	2.4	1.8	1.6
13	$-13 \cdot 7$	-12'6	-13.3	-14.7	$-16 \cdot 3$	-19.8	-18.5	$-16 \cdot 3$	$-15 \cdot 2$	-15'9	-176	-18.3	$-21 \cdot 1$
14	-22.3	-20.5	$-22 \cdot 4$	-23.9	$-19 \cdot 4$	-16.5	-12.7	-10.1	$-9 \cdot 3$	$-7 \cdot 2$	-7.0	-6.0	-5.8
15	-4.7	-3.3	-4.7	-4.0	$-4 \cdot 6$	-4.7	$-3 \cdot 4$	$-1 \cdot 1$	-0.7	-0.]	-0.6	-1.3	-1.4
16	$-5 \cdot 8$	-6.5	-7.8	-8.7	-8.7	-9.5	$-7 \cdot 1$	-6.4	-4.6	-5.8	-5.9	-6.8	$-6 \cdot 9$
17	-	-	-	-	-	-	-	-	-	-	-	-	-
18	-2.8	-1'4	-0.1	$2 \cdot 0$	4.0	4.6	$5 \cdot 5$	$7 \cdot 8$	6.8	$7 \cdot 2$	6.8	5.5	5.2
19	$-7 \cdot 2$	-8.0	-8.2	-8.4	$-9 \cdot 0$	$-9 \cdot 4$	-9.2	$-9 \cdot 1$	-7.8	$-9 \cdot 8$	-10.3	-11.0	$-10 \cdot 3$
20	$5 \cdot 3$	$5 \cdot 3$	6.8	$5 \cdot 5$	$2 \cdot 7$	1.1	$1 \cdot 1$	-2.8	-2.8	-2.7	-4.1	-5.9	$-9 \cdot 1$
21	-11.6	-10.0	-10.1	-9.2	-9.0	$-9 \cdot 1$	-7.0	-7.3	-4.7	-2 3	$-3 \cdot 2$	0.2	4.0
22	-2.2	$-3 \cdot 4$	-4.9	$-7 \cdot 1$	-8.0	-9.2	-9.2	$-9 \cdot 2$	-8.4	-9.0	$-10 \cdot 3$	-12.2	$-12 \cdot 7$
23	$-4: 5$	-4.7	$-3 \cdot 1$	-1.7	-0.1	-01	0.3	2.0	3.3	$3 \cdot 9$	$5 \cdot 4$	1.2	$1 \cdot 2$
24	-	-	-	-	-	-	-	-	-	-	-	-	-
25	-	-	-	-	-	-	-	-	-	-	-	-	-
26	-0.5	$-2 \cdot 3$	-3.4	-2.7	$-3 \cdot 7$	-3.5	$-3 \cdot 5$	-3.5	-2.9	$-3 \cdot 2$	-3.0	$-3 \cdot 2$	$-1 \cdot 4$
27	-5.6	-4.6	-3.5	$-1 \cdot 1$	-0.1	$2 \cdot 3$	3.3	4.8	5.9	$7 \cdot 0$	7.3	8.0	8.9
28	17.7	17%	17.2	15.8	15.8	16.2	16.8	17.7	17.7	16.1	12.5	11.7	$9 \cdot 9$
29	-5.9	$-7 \cdot 1$	-8.4	-8.4	-8.0	-6.3	-4.6	-3.5	-23	-1.4	-1.5	$-2 \cdot 4$	-4.2
30	-11.4	$-12 \cdot 1$	-10.9	$-13 \cdot 8$	-16.3	-174	-20.5	-23.0	-23.0	-22.5	$-22 \cdot 0$	-22.7	-24.5
81	-	-	-	-	-	-	-	-	-	-	-	-	-
Jan. 1	-	-	-	-	-	-	-	-	-	-	-	-	-
Sums -	16.9	14.3	14.6	10.4	$11 \cdot 4$	24	26.0	$44^{2} 2$	${ }^{69} 1$	68.3	54.4	$36 \cdot 1$	$25 \cdot 6$
Means -	0.68	0.57	0.58	0.42	0.46	$0 \cdot 10$	$1 \cdot 04$	$1 \cdot 77$	$2 \cdot 76$	$2 \cdot 73$	$2 \cdot 18$	$1 \cdot 444$	$1 \cdot 02$
Diurnal Variation	1 30.28	$0 \cdot 17$	$0 \cdot 18$	0.02	0.06	-0.30	0.64	$1 \cdot 37$	$\frac{2 \cdot 36}{\mathbf{N}}$	$2 \cdot 33$	1^{178}	$1 \cdot 04$	0.62

$8^{\text {h }}$ Göttingen mean time $=$ noon of local mean time.

Fort Chipewtan-continued.
Abstract of Hourly Observations made during the month of Dacember 1843.

Spirit Thermometer by Newman, corrected.												
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums.	Means.
6.7	6.2	77	7×8	8.9	$9 \cdot 3$	$9 \cdot 6$	10.0	11.6	$12 \cdot 8$	13.4	167.8	7•41
-1.8	-2.6	-2.6	-1.8	-2.5	-3.5	-4.6	$-8 \cdot 1$	-	-	-3	98.5	$4 \cdot 10$
-	-	-	-	-	-	-	-	0.3	16	2.25		
9.2	$8 \cdot 9$	$9 \cdot 4$	$9 \cdot 4$	$7 \cdot 8$	$12 \cdot 2$	11.3	$9 \cdot 9$	$9 \cdot 6$	6.6	6.2	$180 \cdot 4$	$7 \cdot 52$
$3 \cdot 4$	4.0	4.3	4.3	$4 \cdot 1$	$4 \cdot 3$	$5 \cdot 5$	$7 \cdot 2$	$7 \cdot 8$	11.2	$15 \cdot 3$	113.0	4.71
28.6	21.4	17.2	16.4	14.6	12.0	$10 \cdot 2$	97	7×7	6.6	$6 \cdot 3$	512.2	$21 \cdot 34$
$9 \cdot 3$	9.6	10.9	11.7	13.2	$13 \cdot 9$	$12 \cdot 3$	13.5	14.6	15.6	16.7	184.2	767
21.7	22.2	$22 \cdot 1$	22.2	$20 \cdot 7$	21.4	$19 \cdot 1$	$23 \cdot 7$	$21 \cdot 9$	22.0	$19 \cdot 8$	$525 \cdot 1$	21.88
77	6.5	4.4	$3 \cdot 3$	$8 \cdot 1$	$0 \cdot 3$	0.1	$-2 \cdot 4$	-	-	-7		
-	-	-	-	-	-	-	-	-3.3	$-3 \cdot 5$	$-3 \cdot 3\}$	258.6	10.77
-2.5	$-2 \cdot 3$	-0.2	$1 \cdot 1$	0.3	0.3	$2 \cdot 1$	6.6	7.8	$6 \cdot 1$	6.5	0.2	0.01
$1 \cdot 6$	-0.3	$-2 \cdot 4$	-4.7	$-5 \cdot 7$	-6.6	$-7 \cdot 4$	$-9 \cdot 4$	-10.0	-11.8	$-12 \cdot 8$	$-25 \cdot 4$	-1.06
-20.6	-21.9	-21.9	$-23 \cdot 7$	-24.9	$-23 \cdot 9$	-23.9	$-23 \cdot 9$	-23.8	-23.5	-22.9	-468.2	-19.51
$-5 \cdot 8$	-3.5	-3.5	$-3 \cdot 3$	-2.6	0.0	-0.3	$-2 \cdot 4$	-2.6	$-2 \cdot 8$	$-4 \cdot 7$	-214.6	-8.94
-2.3	-2.6	-3.4	-4.6	-6.3	-6.9	-6.3	$-9 \cdot 2$	-11.0	$-8 \cdot 6$	-6.8	$-101 \cdot 2$	-4.22
-6.9	$-7 \cdot 3$	-8.0	-8.0	-7.8	$-5 \cdot 9$	-4.9	$-5 \cdot 1$	-	-	-7		
-	-	-	-	-	-	-	-	$-3 \cdot 5$	$-3 \cdot 5$	$-3.2)$	$-154 \cdot 6$	-6.44
3.8	1.6	$-2 \cdot 0$	$-2 \cdot 9$	-3.3	$-3 \cdot 7$	$-4 \cdot 7$	-5.0	$-5 \cdot 5$	-5.9	-6.5	$17 \cdot 0$	0.71
$-10 \cdot 3$	$-10 \cdot 2$	$-9 \cdot 9$	$-9 \cdot 9$	-6.9	$-6 \cdot 1$	$-4 \cdot 9$	-35	$-2 \cdot 8$	-1.5	$0 \cdot 3$	-183.4	$-7 \cdot 64$
-9.2	-11.0	$-11 \cdot 9$	$-10 \cdot 3$	-10.0	$-10 \cdot 1$	$-10 \cdot 2$	$-9 \cdot 2$	-10.3	-11.4	-11.4	-116.8	-4.87
$7 \cdot 8$	8.9	8.9	$8 \cdot 9$	$12 \cdot 4$	1111	8.3	6.5	$5 \cdot 9$	$5 \cdot 9$	$2 \cdot 1$	$7 \cdot 4$	0.31
$-11 \cdot 6$	-12.2	$-11 \cdot 6$	$-13 \cdot 4$	-13.4	-12.5	$-11 \cdot 4$	-9.9	$-7 \cdot 1$	-7.2	$-5 \cdot 9$	$-222 \cdot 0$	$-9 \cdot 25$
$2 \cdot 1$	$2 \cdot 6$	$2 \cdot 6$	$2 \cdot 3$	$2 \cdot 7$	$2 \cdot 1$	$2 \cdot 3$	$4 \cdot 3$	-	-	- 7		
-	-	-	-	-	-	-	-	-	-	- $\}$	$23 \cdot 3$	0.97
-	-	-	-	-	-	-	-	-0.1	0.1	-0.4		
$-1 \cdot 1$	-1.0	-0.4	-0.2	-45	-4.7	$-4 \cdot 9$	$-5 \cdot 4$	-4.7	$-6 \cdot 1$	-6.7	$-76 \cdot 5$	$-3 \cdot 19$
8.1	5.5	8.1	10.0	13.2	14.6	$15 \cdot 7$	16.6	16.4	16.1	16.8	173.7	$7 \cdot 24$
$7 \cdot 7$	6.4	$3 \cdot 1$	1.8	0.3	$-1 \cdot 1$	$-2 \cdot 4$	-2.4	-4.7	-5.9	-5.8	199.8	8.32
-6.1	$-7 \cdot 8$	-8.0	-8.0	$-6 \cdot 9$	$-5 \cdot 9$	$-5 \cdot 6$	-5.8	-8.6	$-10 \cdot 3$	$-11 \cdot 9$	$-148 \cdot 9$	$-6 \cdot 20$
$-26 \cdot 9$	$-29 \cdot 1$	-28.7	$-30 \cdot 9$	$-33 \cdot 7$	$-33 \cdot 3$	$-34 \cdot 1$	$-35 \cdot 3$	-	-	-7		
-	-	-	-	-	-	-	-	-	-		$-512 \cdot 4$	$-21 \cdot 35$
-	-	-	-	-	-	-	-	$-7 \cdot 1$	$-7 \cdot 3$	-6.9		
$7 \cdot 6$	-8.0	$-15 \cdot 8$	-22.5	$-27 \cdot 2$	$-22 \cdot 7$	-29.1	$-29 \cdot 0$	$-1 \cdot 5$	-4.7	-3.6	+237.2	+10.29
0.30	-0.32	-0.63	-0.90	-1.09	-0.01	$-1 \cdot 16$	$-1 \cdot 16$	-0.06	-0.19	- 314	$+9 \cdot 49$	+0.40
-0.10	-0.72	-1.03	$-1 \cdot 30$	$-1 \cdot 49$	$-1 \cdot 31$	$-1 \cdot 56$	$-1 \cdot 56$	-0.46	-0.59	-0.54	-	-

Fort Chipewyan-continued.
Abstract of Hourly Observations made during the month of Janaary 1844.

gottingen mean time $=$ noon of local mean time.

Fort Chipewyan-continued.
Abstract of Hourly Observations made during the month of February 1844.

Fort Chipawyan-continued.
Abstract of Hourly Observations made during the month of February 1844.

Spirit Thermometer by Newman, corrected.													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	2	Sums.	Means.	mometer.
$-16^{\circ} \cdot 0$	$-12^{\circ} 9$	-11.6	-10.0	-10.5	-10*3	-8.4	$-6 \cdot 3$	-6.1	$-6 \cdot 1$	-5•8	-305.9	-12.71	-11.
-3.8	-4.6	$-4 \cdot 9$	$-5 \cdot 1$	-5.1	-5.8	-6.9	-8.0	$-8 \cdot 2$	$-9 \cdot 3$	$-9 \cdot 3$	-87•5	$-3 \cdot 65$	-2
-9.2	$-9 \cdot 3$	$-7 \cdot 1$	-6.6	-5.9	-6.2	-6.3	-6.1	-	-	-)			
-	-	-	-	-	-	-	-	7.8	7.5	7.3)	$-142 \cdot 2$	-5.92	$-4 \cdot 7$
-6.3	-8.0	-9.6	-10.3	-13.4	-1711	$-17 \cdot 3$	-17.8	-18.3	-17.6	-21.7	-183.3	$-7 \cdot 64$	-6.8
-7.4	-4.7	-2.0	$-3 \cdot 3$	$4 \cdot 3$	$5 \cdot 5$	5.7	6.0	5.7	$7 \cdot 6$	6.6	-191.2	$-7 \cdot 97$	-6:7
6.5	6.5	6.5	6.4	$5 \cdot 9$	$5 \cdot 8$	$5 \cdot 2$	$4 \cdot 6$	6.6	$7 \cdot 7$	$8 \cdot 9$	$147 \cdot 7$	6.15	8
17.3	17.2	16.8	14.1	14.3	$12 \cdot 4$	15.5	14.7	13.4	12.7	$12 \cdot 3$	$317 \cdot 3$	$13 \cdot 22$	$13 \cdot 7$
6.0	$3 \cdot 9$	3.2	2.7	-0.8	0.0	0.3	-0.1	-1.5	-0.7	$-2 \cdot 4$	153.9	6.41	$7 \cdot 2$
6.0	6.0	5.7	6.8	8.7	4.4	$0 \cdot 9$	-2.4	-	-	- 3			
-	-	-	-	-	-	-	-	-30.8	$-32 \cdot 1$	$-31 \cdot 8\}$	-19*3	-0.80	$0 \cdot 3$
$-16 \cdot 7$	-14.8	-14.5	-14.9	-14.9	$-15 \cdot 3$	$-15 \cdot 3$	-15.0	-14.9	$-18 \cdot 2$	-19.2	-433.2	-18.05	$-16 \cdot 8$
-2.2	$-3 \cdot 1$	$-3 \cdot 3$	-6.7	$-7 \cdot 0$	$-9 \cdot 4$	-10.3	-11.2	-11.9	$-9 \cdot 7$	-10.0	-326	$-13 \cdot 60$	$12 \cdot 6$
-12.0	$-9 \cdot 3$	$-8 \cdot 8$	-6.1	-5.7	-3.1	-2.6	-1.1	-0.2	4.4	77	$-166 \cdot 3$	$-6 \cdot 93$	-5.7
31.5	$31 \cdot 3$	24.4	19.5	14.9	12.2	9.8	$7 \cdot 7$	6.6	6.0	5.9	$375 \cdot 3$	15.64	$16^{\prime} 3$
$25 \cdot 7$	26.8	$20 \cdot 1$	25.9	$29 \cdot 2$	29.4	31.5	$29 \cdot 4$	$27 \cdot 0$	28.9	34.4	$538 \cdot 1$	$22 \cdot 42$	$22 \cdot 7$
$33 \cdot 9$	$33 \cdot 5$	$35 \cdot 5$	35.1	$33 \cdot 5$	16.7	9.8	7.5	-	-	-)		-	
-	-	-	-	-	-	-	-	$7 \cdot 8$	$8 \cdot 3$	8.0	634.3	$20 \cdot 43$	- 5
$15 \cdot 6$	$12 \cdot 3$	$11 \cdot 2$	11.5	42	71	$6 \cdot 6$	$3 \cdot 3$	3.0	42	5.5	$271 \cdot 4$	$11 \cdot 31$	$12 \cdot 3$
$31 \cdot 7$	$29 \cdot 9$	27.0	$19 \cdot 3$	8.8	$7 \cdot 7$	$4 \cdot 3$	$2 \cdot 7$	$-1 \cdot 3$	$-2 \cdot 8$	$-5 \cdot 6$	358.1	14.92	$15 \cdot 5$
$19 \cdot 3$	$19 \cdot 1$	$20 \cdot 1$	22.2	$21 \cdot 5$	$21^{\circ} 0$	$20 \cdot 4$	$20 \cdot 4$	21.2	$20 \cdot 1$	$19 \cdot 0$	269.5	$11 \cdot 23$	12.0
23.4	$22 \cdot 5$	24.0	26.6	$27 \cdot 2$	28.1	$29 \cdot 4$	$31 \cdot 3$	30.4	$31 \cdot 1$	30.8	573.2	$23 \cdot 88$	24.0
26.9	23.4	$19 \cdot 1$	13.9	10.9	$7 \cdot 8$	$5 \cdot 3$	2.1	1.7	1.0	0.4	$505 \cdot 1$	21.05	$21 \cdot 3$
$-5 \cdot 6$	-7.4	$-9 \cdot 2$	$-9 \cdot 2$	-4.9	-5.8	$-5 \cdot 3$	-4.7	-	-	-			
-	-	-	-	-	-	-	-	$-2 \cdot 4$	$-5 \cdot 8$	$-9.2\}$	$-80^{\circ} 2$	-3	-1.8
32.5	$29 \cdot 9$	$24 \cdot 7$	$28 \cdot 1$	$27 \cdot 9$	20.7	14.6	6.8	$1 \cdot 0$	$2 \cdot 1$	$1 \cdot 9$	$408 \cdot 3$	17.01	$17 \cdot 0$
-2.6	-2.4	$-1 \cdot 7$	$-2 \cdot 2$	$-1 \cdot 3$	-0.7	-0.4	-0.4	-0.6	$3 \cdot 3$	3.3	-34.3	$-1 \cdot 43$	0.1
12.5	11.2	8.8	6.4	6.4	$1 \cdot 2$	-0.3	-0.6	$-1 \cdot 5$	-2.5	$-2 \cdot 3$	172.2	717	$8 \cdot 3$
11.6	11.2	11.2	14.3	$13 \cdot 6$	$12 \cdot 3$	$12 \cdot 4$	$12 \cdot 1$	-	-	-	$107 \cdot 8$	5'12 $\{$	By triplets, $6 \cdot 4$
+218.6	+208.2	+185'6	+178.4	+161 9	+124.6	$+98 \cdot 6$	+74.9	+34.5	$+40 \cdot 1$	+34.7	$2862 \cdot 4$	$119 \cdot 93$	-
+8.74	+8.33	+7•42	+7•14	+6.48	+4.98	+3.94	+3.00	+1/44	$+1 \cdot 67$	+1.45	$114 \cdot 68$	+4.79	-
3.95	3.54	$2 \cdot 63$	$2 \cdot 35$	$1 \cdot 69$	$0 \cdot 19$	-0.85	-1.79	-3.35	-3.12	-3.34	-	-	-

LAKE ATHABASCA.
Spirit Thermometer by Dollond, corrected.

Spirit Thermometer by Dollond, corrected.

May 1844.					June 1844.				
Sunrise.	$9 \mathrm{a} . \mathrm{m}$.	3. p.m.	9 p.m.	Mean.	Sunrise.	$9 \mathrm{a} . \mathrm{m}$.	$3 \mathrm{p} . \mathrm{m}$.	9 p.n.	Mean.
$45^{\circ} 0$	56.0	49.0	$38^{\circ} 0$	$47 \cdot 00$	-	-	-	-	-
32.0	$28 \cdot 9$	$27 \cdot 9$	21.6	$27 \cdot 60$	$29 \cdot 9$	$35^{\circ} 0$	$39 \cdot 0$	$36^{\circ} 0$	34.97
19.6	$32 \cdot 0$	36.0	31.0	$29 \cdot 65$	28.9	33.0	34.0	29.9	$31 \cdot 45$
31.0	$42^{\circ} 0$	52.0	41.0	$41 \cdot 50$	$31 \cdot 0$	34.0	$35^{\circ} 0$	31.0	$32 \cdot 75$
35.0	53.0	56.0	4.10	46.25	$31^{\circ} 0$	41.0	$45^{\circ} 0$	33.0	37'50
87.0	41.0	$39^{\circ} 0$	31.0	$37 \cdot 00$	35.0	37.0	$46^{\circ} 0$	$41^{\circ} 0$	38.75
36.0	$41^{\circ} 0$	40.0	34.0	37.75	38.0	45.0	$40^{\circ} 0$	38.0	$40 \cdot 25$
35.0	45.0	56.0	$47 \cdot 0$	45.75	$45 \cdot 0$	51.0	56.0	45.0 .	49.25
$37 \cdot 0$	51.0	55.0	42.0	46.25	$37 \cdot 0$	63.0	64.0	55.0	54.75
$37 \cdot 0$	53.0	56.0	51.0	$49 \cdot 25$	$55^{\circ} 0$	68.0	$70^{\circ} 0$	58.0	62.75
${ }^{16} \cdot 0$	56.0	62.0	51.0	53.75	55.0	71.0	75.0	55.0	64.00
$45^{\circ} 0$	$49^{\circ} 0$	55.0	36.0	$46 \cdot 25$	51.0	46.0	$46^{\circ} 0$	38.0	$45 \cdot 25$
33.0	$37 \cdot 0$	33.0	$26 \cdot 8$	$32 \cdot 45$	38.0	$45^{\circ} 0$	$55^{\circ} 0$	46.0	46.00
26.8	31.0	39.0	28.9	$31 \cdot 42$	$48^{\circ} 0$	59.0	$65^{\circ} 0$	59.0	57.75
31.0	$41 \cdot 0$	47.0	$45^{\circ} 0$	41.00	52.0	61.0	$66^{\circ} 0$	58.0	59.25
47.0	49.0	$45^{\circ} 0$	$45^{\circ} 0$	$46 \cdot 50$	$45^{\circ} 0$	55.0	58.0	53.0	$52 \cdot 75$
41.0	53.0	64.0	52.0	52.50	$45^{\circ} 0$	74.0	74.0	63.0	64.00
$37 \cdot 0$	35.0	$45^{\circ} 0$	35.0	38.00	50.0	55.0	54.0	$40^{\circ} 0$	51.25
34.0	33.0	40.0	33.0	35.00	42.0	65.0	64.0	55.0	56'50
35.0	51.0	59.0	$4 \% 0$	$45^{\circ} \cdot 0$	51.0	84.0	88.0	69.0	73.75
33.0	31.0	35.0	31.0	32.50	69.0	88.0	88.0	71.0	79.00
$25 \cdot 8$	34.0	$36^{\circ} 0$	34.0	$32 \cdot 45$	63.0	76.0	74.0	66.0	69.75
$39 \cdot 0$	46.0	51.0	49.0	$46 \cdot 25$	61.0	$66^{\circ} 0$	66.0	58.0	62.75
45.0	49.0	$44^{\circ} 0$	41.0	$44 \cdot 75$	51.0	58.0	61.0	55.0	56.25
47.0	55.0	$69^{\circ} 0$	55.0	66.50	53.0	65.0	68.0	58.0	59.75
65.0	73.0	$66^{\circ} 0$	63.0 .	64.25	$55^{\circ} 0$	$65^{\circ} 0$	64.0	59.0	60.75
55.0	59.0	64.0	53.0	57\%75	57.0	$65^{\circ} 0$	66.0	61.0	$62 \cdot 25$
$49^{\circ} 0$	61.0	56.0	$45^{\circ} 0$	53.50	57.0	56.0	53.0	$49^{\circ} 0$	53.75
51.0	57.0	63.0	53.0	56.00	$46^{\circ} 0$	48.0	44.0	$42^{\circ} 0$	45.00
46.0	47.0	59.0	$45^{\circ} 0$	$49 \cdot 25$	$40^{\circ} 0$	$49^{\circ} 0$	53.0	47.0	48.75
$47 \cdot 0$	59.0	63.0	55.0	56.00	-	-	-	-	-
1213.2	1448.9	$1561 \cdot 9$	1304*3	$1382 \cdot 07$	$1368 \cdot 8$	$1658{ }^{\circ} 0$	1706.0	$1474 \cdot 9$	$1551 \cdot 92$
$39 \cdot 14$	$46 \cdot 74$	$50 \cdot 38$	42.07	44.58	$47 \cdot 20$	$57 \cdot 17$	58.83	50.86	53.52
-	-	-	-	-	-	-	-	-	-

* Not included in Sums and Means.

FORT SIMPSON
Abstract of Hourly Observations made during the month of April 1844.

Date.	Spirit Thermometor by Newman, corrected.												
Time.	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	-2.8	-1.0	0.1	0.8	$3 \cdot 1$	57	$8 \cdot 7$	13.7	17.3	$3 \quad 20 \cdot 4$	$4{ }^{4} 27$	$7{ }^{7}$ 23'9	925
2	1.6	-0.7	$-2 \cdot 1$	$-3 \cdot 3$	$-1 \cdot 3$	$2 \cdot 9$	$10 \cdot 3$	17.2	$23 \cdot 8$	8 24.8	8 32.5	- 51.6	6 29*3
3	$1 \cdot 5$	0.5	0.4	$2 \cdot 1$	73	$15 \cdot 1$	12.7	$27 \cdot 1$	36.0	0 35.5	$5{ }^{54} 5$. 5 39.5	$5{ }_{5} 39 \cdot 8$
4	$22 \cdot 6$	20.4	19.4	$19 \cdot 4$	19.4	$22 \cdot 6$	$29 \cdot 3$	33.4	41.5	5 44.5	5 44.6	C 646	3 46.5
5	-	-	-	-	-	-	-	-	-	-	-	- -	-
6	$9 \cdot 5$	711	6.0	6.0	$7 \cdot 3$	8.2	$9 \cdot 3$	11.6	16.2	216.5	16.0	016.2	216.4
7	-	-	-	-	-	-	-	-	-	-	-	-	-
8	18.2	-	$9 \cdot 1$	$10 \cdot 4$	12.3	13.8	23.7	29.2	$37 \cdot 2$	42'5	44'4	$44^{\prime} .0$	42.5
9	$37 \cdot 1$	37.5	35.5	$37 \cdot 4$	38.3	40.4	$42 \cdot 4$	44.3	45.1	41.0	41.5	540.4	$4{ }^{46} 8$
10	$14 \cdot 9$	14.0	13.8	16.9	16.0	16.3	$20 \cdot 4$	21.5	$22 \cdot 4$	422.5	22.6	6 22.6	- $22 \cdot 8$
11	$2 \cdot 7$	0.5	0.5	$2 \cdot 8$	4.9	6.4	13.8	19.3	24.6	$28 \cdot 1$	29.4	$4{ }^{4} 293$	28.7
12	$17 \cdot 1$	14.0	14.7	15.0	16.0	$19 \cdot 3$	$23 \cdot 7$	28.2	31.5	$34 \cdot 6$	36.4	$4{ }^{4} 2$	37.0
13	$30 \cdot 4$	31.0	31.5	31.5	$31 \cdot 1$	30.5	33.5	$34 \cdot 3$	35.7	36.8	38.6	6 35.9	34.5
14	-	-	-	-	-	-	-	-	-	-	-	-	-
15	20.6	$19 \cdot 3$	21.4	22.6	22.9	26.1	$27 \cdot 1$	32.5	$37 \cdot 5$	41.2	$32 \cdot 5$	543.3	$43 \cdot 5$
16	-	-	-	$27 \cdot 1$	$29 \cdot 1$	36.7	41.4	45.5	$49 \cdot 5$	50.0	51.5	551.8	$49 \cdot 5$
17	$27 \cdot 6$	$27 \cdot 5$	$27 \cdot 6$	$30 \cdot 4$	34.5	36.7	40.5	$42 \cdot 4$	$45 \cdot 4$	48.5	$49 \cdot 4$	[50.0	50.0
18	-	-	32.4	32.4	34.5	$37 \cdot 4$	$42 \cdot 2$	$45 \cdot 7$	49.9	51.3	51.2	51.2	51.7
19	33.3	31.3	31.3	33.6	37.2	39.6	44.4	48.2	52.5	54.5	54.6	55.1	54.5
20	32.8	31.4	31.5	$32 \cdot 4$	$33 \cdot 3$	34.9	36.8	$39 \cdot 4$	$42 \cdot 3$	$44 \cdot 1$	44.5	$45 \cdot 5$	$45 \cdot 7$
21	-	-	-	-	-	-	-	-	-	-	-	-	-
22	$35 \cdot 5$	-	$35 \cdot 3$	36.5	$30 \cdot 1$	$40 \cdot 6$	$44 \cdot 7$	47.5	49.6	49.8	48.5	47.4	$46 \cdot 5$
23	28.1	28.1	28.4	28.5	29.3	32.4	33.4	35.3	37.0	36.7	$37 \cdot 3$	$37 \cdot 4$	37.0
24	$25 \cdot 9$	-	$26^{\circ} 0$	$27 \cdot 2$	28.1	29.0	$30 \cdot 4$	$31 \cdot 7$	$32 \cdot 8$	32.8	34.1	$35 \cdot 7$	$37 \cdot 2$
25	33.0	32.5	35.2	$37 \cdot 8$	$40 \cdot 6$	$43 \cdot 5$	58.0	58.3	58.7	61.5	$65 \cdot 5$	$66 \cdot 5$	68.0
26	37.3	36.2	36.5	40.0	40.5	42.4	44.5	$45 \cdot 6$	48.1	47.6	50.0	46.5	$46 \cdot 5$
27	34.5	34,4	$34 \cdot 8$	$37 \cdot 9$	39.5	40.0	41.9	$42 \cdot 5$	43.5	46.5	49.4	50.0	$50 \cdot 1$
28	-	-	-	-	-	-	-	-	-	-	-	-	-
29	29.6	29.3	32.5	34.2	35.7	39.5	48.5	53.3	54.6	54.3	66.4	56.5	53.8
30	34.6	34.2	35.2	38.5	$40 \cdot 5$	$45 \cdot 5$	48.6	48.6	49.7	51.3	49.4	48.3	43.3
Sums -	520.6	$487 \cdot 5$	537.0	598.1	639.2	705.5	810.2	896.3	9824	10173	$1048 \cdot 5$	1053.61	$1036 \cdot 6$
Means .	22.63	$21 \cdot 37$	$22 \cdot 37$	$23 \cdot 92$	$25 \cdot 57$	28.22	$32 \cdot 41$	35.85	$39 \cdot 30$	40'69	$41 \cdot 94$	$42 \cdot 14$	41-46
$\left.\begin{array}{c}\text { Diurnal } \\ \text { Varia } \\ \text { tion }\end{array}\right\}$. 85	$11 \cdot 11$	-10'11	-8:56	-6.91	-4.26	-0.07	$3 \cdot 37$	6.82	${ }^{8 \cdot 21}$	$9 \cdot 46$	$9 \cdot 66$	8.98

9^{h} Gottingon mean time $=0^{\mathrm{h}} 18^{\mathrm{nm}}$ local mean time.

FORT STMPSON.
Abstract of Hourly Observations made during the month of April 1844.

Spirit Thermometer by Newman, corrected.												
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums.	Means.
$23 \cdot 8$	$22 \cdot 6$	21.5	19.7	15.1	11.3	8.4	8.4	8.2	6.7	4.2	288.5	12.02
$20 \cdot 7$	26.5	26.5	19.7	16.9	15.8	12.7	12.7	11.2	$8 \cdot 6$	78	354.7	14.78
$40 \cdot 3$	$39 \cdot 1$	$37 \cdot 0$	33.0	28.9	$30 \cdot 4$	29.7	$30 \cdot 4$	$27 \cdot 3$	25.2	24.1	597.4	24.89
48.0	44.0	41.5	88.9	85.7	33.8	31.5	33.0	-	-	-		
-	-	-	-	-	-	-	-	22.0	20.4	13.1	$\}^{769 \cdot 8}$	$32 \cdot 07$
$17 \cdot 1$	$10^{\circ} 6$	14.9	$11 \cdot 4$	$8 \cdot 9$	$8 \cdot 9$	6.2	3.6	-	-	-		11.87
-	-	-	-	-	-	-	-	$18 \cdot 2$	17.5	$15 \cdot 3$	$3^{284} 9$	15.87
$40 \cdot 9$	40.5	41.1	40.0	37.5	38.5	38.5	$36 \cdot 9$	36.5	36.3	37.0	7480	$31 \cdot 76$
30.4	$80^{\circ} 4$	30.5	$28 \cdot 2$	26.4	23.7	$23 \cdot 8$	22.8	$17 \cdot 1$	16.4	14.9	$782 \cdot 3$	36.60
22.6	22.0	20.4	18.2	16.0	12.7	$11 \cdot 9$	11.9	711	6.3	6.0	401.8	16.74
29.0	30.9	$29 \cdot 3$	24.2	21.7	21.5	21.5	$20 \cdot 6$	19.3	18.6	$17 \cdot 1$	$444 \cdot 7$	18.53
$37 \cdot 0$	35.9	34.8	$35 \cdot 9$	$33 \cdot 9$	$32 \cdot 9$	$33 \cdot 1$	$33 \cdot 3$	32.9	$32 \cdot 5$	31.9	699.8	$29 \cdot 16$
83.9	$83 \cdot 7$	33.4	$31 \cdot 1$	$30 \cdot 4$	27.5	$26^{6} 9$	25.2	-	-	-		$30 \cdot 94$
-	-	-	-	-	-	-	-	$22^{\prime} 6$	$22 \cdot 2$	20.4	$372{ }^{6}$	30.94
43.0	41.5	$41^{\circ} \cdot 0$	41.7	88.7	32.5	32.7	$32 \cdot 5$	28.2	$27 \cdot 1$	26.4	785×8	32.74
48.7	46.5	44.5	42.5	38.5	37.7	$32 \cdot 9$	30.4	28.2	28.6	28.0	83811	37.89
49.8	50.4	49.5	47.0	41.0	38.3	35.8	38.7	34.2	38.2	30.4	954.7	$39 \cdot 78$
52.1	51.4	52.1	50.6	$45^{\circ} 4$	42.1	$35 \cdot 6$	38.0	36.3	33.9	33.5	954.9	42.09
53.5	52.5	50.7	50.5	43.8	40.7	$39 \cdot 8$	37.5	36.5	35.0	34.4	1045.0	43.54
45.0	42.9	41.8	41.0	38.9	$37 \cdot 6$	85.5	:32.6	-	-	-	$\}_{923} \cdot 0$	38×46
-	-	-	-	-	-	-	-	$38 \cdot 3$	38.0	36.8		
46.5	45.8	43.0	41.0	$38 \cdot 5$	36.7	34.5	32.7	$30 \cdot 9$	$29^{\prime} 6$	28.2	9284	$40^{\circ} 00$
$37 \cdot 1$	36.9	35.8	34.5	$32 \cdot 3$	31.0	32.1	32.5	$30 \cdot 1$	29.5	$27 \cdot 1$	787×8	$32 \cdot 82$
38.3	36.5	$34 \cdot 8$	33.6	$32 \cdot 5$	33.5	83.9	$33 \cdot 1$	33.0	32.5	$32 \cdot 6$	$745 \cdot 2$	$32 \cdot 38$
68.0	66.3	63.0	$60 \cdot 5$	56.1	$54 \cdot 9$	52.5	$52 \cdot 9$	42.4	$42 \cdot 1$	39.5	$1257 \cdot 9$	$52 \cdot 41$
44.8	$45^{\circ} 0$	46.5	$43 \cdot 1$	$40 \cdot 0$	40.7	38.5	$38 \cdot 3$	36.9	36.5	36.7	1009.6	$42 \cdot 07$
$49 \cdot 9$	$48^{1} 1$	$46 \cdot 3$	$45 \cdot 7$	$39 \cdot 3$	36.8	35.0	33.6	-	-		$\}_{966 \cdot 2}$	$40 \cdot 26$
-	-	-	-	-	-	-	-	$29 \cdot 6$	28.4	28.5		
53.0	55.7	53.0	47.5	$46^{\circ} 5$	43.7	$42 \cdot 5$	39.7	$37 \cdot 9$	$55 \cdot 8$	34.8	1068.3	44.51
41.5	37.8	35.0	30.6	28.0	$23 \cdot 7$	20.0	$19 \cdot 3$	16.2	$15 \cdot 4$	$12 \cdot 9$	$848^{\circ} 1$	$35 \cdot 34$
$1021 \cdot 9$	$1000 \cdot 1$	967.9	910.1	832.7	786.9	749.5	725.6	$681 \cdot 1$	6563	621.6	$18226 \cdot 5$	$812 \cdot 74$
$40 \cdot 88$	$40 \cdot 00$	38.72	36.40	33.31	$31 \cdot 48$	$29 \cdot 98$	29.02	27.24	$26 \cdot 15$	24.87	$775 \cdot 92$	$32 \cdot 48$
$8 \cdot 40$	7.52	6.24	3.92	0.83	$-1 \cdot 00$	$-2 \cdot 50$	$-3 \cdot 46$	-5.24	-6.33	$-7 \cdot 61$	-	-

Fort Simpson-continued.
Abstract of Hourly Observations made during the month of May 1844.

Date. Gott. Mean Time.	Spirit Thermometer by Newman, corrected.												
	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	14.6	12.6	6 16.0	- 14.3	314.7	$7{ }^{77} 1$	118°	$9{ }^{9} 20^{\circ}$	$1{ }^{1} 24$	8 24.2	2 27.0	026.0	0
2	-	14.0	$17 \cdot 8$	$820 \cdot 6$	6 23.6	$6{ }^{6} 1$	129°	$\cdot 0$	'5 34.6	-6 $35 \cdot 5$	5 36.3	$3.37 \cdot 2$	
3	$21 \cdot 5$	22.0)	23.7	$7{ }^{7} 24.2$	288	$2{ }^{2}$	5584.	4376	6 39.5	542.4	$4{ }^{4} 43$	342
4	$31 \cdot 2$	$32 \cdot 7$	33.6	35.3	37 37	3 $39 \cdot 8$	842	545.0	0 51.8	8 50.6	$6{ }^{4} \cdot 3$	$3{ }^{5} 50.8$	849
5	-	-	-	-	-	-	- -	-	- -	- -	-	-	
6	$29 \cdot 1$	$30 \cdot 6$	33.5	33.7	$7{ }^{75} 1$	$1{ }^{36} 5$	$538 \cdot 5$	538.6	640.0	0 43.1	$1{ }^{43 \cdot 5}$	$5 \quad 39 \cdot 5$	
7	28.1	$30 \cdot 4$	$31 \cdot 5$	$33 \cdot 4$	436.0	- 39'7	$7{ }^{4} 2^{\circ}$	4.46 .0	0 51.5	5 48.5	5 53 3	3006	6 48
8	$34 \cdot 4$	$34 \cdot 3$	34.5	- $36 \cdot 6$	69 39	$540 \cdot 8$	844.4	446.5	5 53.7	7 56.7	$7 \quad 57 \cdot 5$	$5{ }^{56} 7$	755
0	$35 \cdot 7$	$35 \cdot 3$	39.5	40.3	$3 \quad 42 \cdot 0$	- 45 '5	5 47'1	$1{ }^{1} 51 \cdot 2$	2 54,	$3 \quad 55.5$	$5 \quad 63.3$	3 54.8	8 56
10	36.7	38.3	43.5	$42 \cdot 1$	14.0	48.5	5 54.0	0 54.6	6 56.3	$3 \quad 50 \cdot 8$	8 56'5	565	
11	-	$48 \cdot 5$	$47 \cdot 4$	$47 \cdot 4$	49.5	52.4	$4{ }^{4} 54.8$	8 58.3	$3{ }^{58} 4$	4 56.5	5 56.9	54.5	5
12	-	-	-	-	-	-	-	- -	-	-	-	-	
13	$27 \cdot 2$	29.3	$31 \cdot 3$	31.0	$32 \cdot 3$	33.8	8 36.5	$5 \quad 40 \cdot 0$	${ }^{0} 44 \cdot 1$	$1{ }^{4} \cdot 3$	44.5	$45 \cdot 5$	44.
14	31.0	$33 \cdot 5$	36.0	$36 \cdot 5$	$37 \cdot 6$	40.0	0 43.4	$4{ }^{49} 3$	3 $52 \cdot 5$	549.9	51×3	53.5	54
15	$34 \cdot 6$	37.6	41.2	$40^{\circ} 4$	$42 \cdot 8$	$43 \cdot 8$	847.9	952.5	$5 \quad 58.3$	$60 \cdot 3$	$62 \cdot 4$	63.5	63
16	42.0	44.6	49.0	50.1	$52 \cdot 2$	55%	51.4	4 64.2	66.0	66.5	67.7	68.6	69
17	$40 \cdot 4$	50.6	53.5	$51 \cdot 1$	54.0	56.9	58.5	5 61.0	64.5	$66 \cdot 3$	67.5	71.0	$67 \cdot 7$
18	$47 \cdot 5$	$46 \cdot 5$	${ }^{46} 7$	46.4	48.5	$47 \cdot 5$	48.4	暒 50.0	51.0	49.5	48.6	48.5	47°
19	-	-	-	-	-	-	-	-	-	-	-	-	
20	$37 \cdot 3$	$40^{\circ} 5$	${ }^{4} 4^{\circ} 4$	44.7	$47 \cdot 5$	50.5	53.5	$60 \cdot 9$	$63 \cdot 5$	$64 \cdot 4$	$65 \cdot 5$	65.8	$65 \cdot$
21	$43 \cdot 5$	44.5	$46 \cdot 3$	43.6	43.5	44.5	$46 \cdot 3$	$49 \cdot 1$	$52 \cdot 4$	52.4	$52 \cdot 5$	52.5	$52 \cdot 4$
22	-	$31 \cdot 1$	$29 \cdot 8$	$30 \cdot 7$	32.6	35.2	$37 \cdot 9$	$42 \cdot 1$	44.0	46.4	47.5	$48 \cdot 1$	$50 \cdot 5$
23	$36 \cdot 5$	37.7	44.8	41.3	$45^{\circ} 5$	46.6	48.6	$52 \cdot 9$	57.0	56.9	$57 \cdot 2$	$60 \cdot 9$	61.
24	. 44.4	44.2	-	48.0	50.3	54.5	57.7	61.2	63.9	64.4	63.0	63.5	$63 \cdot 5$
25	-	-	-	-	-	-	-	-	-	-	-	-	
26	-	-	-	-	-	-	-	-	-	-	-	-	
27	-	-	-	-	-	-	-	-	-	-	-	-	
28	-	-	-	-	-	-	-	-	-	-	-	-	-
29	-	-	-	-	\cdots	-	-	-	-	-	-	-	
30	-	-	-	-	-	-	-	-	-	-	-	-	
31	-	-	-	-	-	-	-	-	-	-	-	-	-
Sums	$621 \cdot 7$	738.8	$720 \cdot 3$	$791 \cdot 2$	$832 \cdot 7$	883.4	$943 \cdot 2$	$1009 \cdot 4$	$1080 \cdot 2$	1081 2	1103.6	1111 3	$1108 \cdot 3$
Means	34.54	$35 \cdot 18$	37.91	37.63	$39 \cdot 65$	$42 \cdot 07$	$44 \cdot 91$	$48^{\circ} 07$	51.44	$51 \cdot 49$	$52 \cdot 55$	$52 \cdot 92$	52.78
$\text { Diurnal } \text { Variation }$	-10.02	-9.38	-6.65	-6.88	-5.01	$-2 \cdot 49$	0.35	$3 \cdot 51$	6.88	6.93	$7 \cdot 99$	$8 \cdot 36$	8.22
\int^{Σ}	$1142 \cdot 3$	1166.3	1257*3	$1389 \cdot 3$	1471.9	$1588 \cdot 9$	$1753 \cdot 4$	$1905 \cdot 7$	$2062 \cdot 6$	$2098 \cdot 5$	$2188 \cdot 1$	2164.9	$2144 \cdot 9$
Conths $\overline{\mathrm{N}}$	$27 \cdot 86$	28.45	29.24	30.20	$32 \cdot 00$	34.54	$38 \cdot 12$	41.43	44.84	${ }_{\text {45.62 }}$	$47 \cdot 57$	47.06	$46 \cdot 63$

Fort Simpson-continued.
Abstract of Hourly Observations made during the month of May 1844.
Spirit Thermometer by Nowman, corrected.

13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums.	Mcans.
26.0	$26^{7} 7$	25.0	23×7	23.7	22.1	$20 \cdot 9$	18.4	18.6	15.3	14.0	491.5	$20 \cdot 48$
38.0	$37 \cdot 8$	$35 \cdot 1$	33.9	$32 \cdot 8$	32.0	28.2	$27 \cdot 5$	26.4	21.5	21.7	678.8	$29 \cdot 06$
$41 \cdot 9$	$41 \cdot 7$	41.3	42.0	41.4	$36 \cdot 7$	$36 \cdot 5$	34'1	$33 \cdot 8$	32.5	32.7	805.4	34.58
48.7	$45 \cdot 3$	$46 \cdot 2$	$45^{\circ} 5$	41.0	38.7	$35 \cdot 7$	$33 \cdot 4$	-	-	- $\}$	974.4	40.60
-	-	-	-	-	-	-	-	31.3	$30 \cdot 4$	$20 \cdot 5$		
$38 \cdot 7$	$39 \cdot 5$	$30 \cdot 5$	37.7	$35 \cdot 9$	32.0	$29 \cdot 9$	28.7	29.5	$29 \cdot 3$	28.4	851.6	$35 \cdot 48$
$49 \cdot 2$	48.9	$46 \cdot 9$	$44^{\circ} 2$	43.7	40.0	$38 \cdot 7$	37.7	36.5	35.5	34.7	996.3	41.51
55.5	55.6	53.2	53.1	48.9	43.0	$40 \cdot 5$	$38 \cdot 7$	$38^{\circ} 0$	$37 \cdot 8$	$35 \cdot 5$	$1089 \cdot 1$	45.38
54.5	54.7	52.7	49.7	47.8	44.7	41.8	$40 \cdot 2$	38.7	$38 \cdot 1$	37.8	11117	$46^{\prime} 32$
$55 \cdot 8$	55.5	53.9	$51 \cdot 9$	50.6	$48 \cdot 3$	45.6	45.5	45.5	$45^{\circ} 3$	40.9	1176.0	$49 \cdot 00$
55.7	$48 \cdot 5$	$45 \cdot 7$	43.7	41.1	$37 \cdot 4$	37.0	$35 \cdot 5$	-	-	-7		
-	-	-	-	-	-	-	-	$30 \cdot 4$	28.9	28.8	10728	4022
$45 \cdot 0$	44.9	$45 \cdot 0$	42.5	39.7	$37 \cdot 3$	36.5	34.7	34.5	31.5	31.0	$905 \cdot 9$	$37 \cdot 75$
54.7	$53 \cdot 9$	$55 \cdot 3$	$54 \cdot 5$	52.2	45.1	42.8	40.5	$38 \cdot 8$	37.7	$35 \cdot 7$	1080.3	45.01
63.7	63.0	$62 \cdot 7$	$61 \cdot 8$	58.2	53.3	$52 \cdot 8$	49.5	$47 \cdot 9$	45.5	44.2	$1250 \cdot 9$	$52 \cdot 12$
$72 \cdot 5$	$70 \cdot 6$	$67 \cdot 9$	$63 \cdot 6$	62.1	58.7	57.5	$56 \cdot 7$	54:2	49.5	$48 \cdot 4$	1418'8	59.12
65.0	$64 \cdot 1$	$64 \cdot 1$	$64 \cdot 1$	57×8	68.7	55.7	$55 \cdot 7$	50.5	61.5	$49 \cdot 5$	1405'7	58.57
46.2	$44 \cdot 8$	$43 \cdot 2$	41.2	$39 \cdot 5$	36.7	34.2	32.5	-	-	- $\}$		
-	-	-	-	-	-	-	-	40.5	$38 \cdot 5$	37.7 \%	$1061 \cdot 1$	44'21
65.5	$66 \cdot 1$	$65 \cdot 1$	$63 \cdot 8$	61.5	$56 \cdot 7$	$51 \cdot 3$	$50 \cdot 5$	$47 \cdot 1$	46.5	$45 \cdot 5$	1324.0	$55 \cdot 17$
51.7	$51 \cdot 5$	$49 \cdot 7$	48.5	44.9	$41 \cdot 7$	37.5	$32 \cdot 5$	31.6	$30 \cdot 4$	28.2	1071'7	$44 \cdot 65$
48.7	$47 \cdot 0$	44.8	$46 \cdot 5$	$44 \cdot 8$	42.7	39.7	$37 \cdot 7$	$37 \cdot 1$	$37 \cdot 1$	$36 \cdot 9$	$938 \cdot 9$	$40 \cdot 40$
62.5	$61 \cdot 5$	$59 \cdot 1$	57.9	$56 \cdot 7$	53.8	$50 \cdot 8$	$49 \cdot 9$	$47 \cdot 5$	46.1	$45 \cdot 7$	$1238 \cdot 6$	51.61
64.4	$63 \cdot 5$	$62 \cdot 7$	$62 \cdot 5$	58.4	$56 \cdot 4$	52.0	$49 \cdot 6$	$47 \cdot 4$	$47 \cdot 1$	46.2	12897	55'69
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	\sim	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-
1104.9	$1085 \cdot 1$	1059.1	$1032 \cdot 3$	980.7	916.0	$865 \cdot 5$	829.5	805.8	776.0	753.0	$22233 \cdot 2$	935.04
52.61	51.67	50.43	$49 \cdot 16$	46.70	43.62	41.21	39.50	38.37	36.95	35.86	1067×27	$44 \cdot 56$
8.05	$7 \cdot 11$	5.87	4.60	$2 \cdot 14$	-0.94	-3.35	-5.06	-6.19	-7.61	-8.70	-	-
2126.8	$2085 \cdot 2$	2027.0	1942.4	$1813 \cdot 4$	$1702 \cdot 9$	1615×0	$1555 \cdot 1$	$1486 \cdot 9$	$1432 \cdot 3$	1374.6	414597	-
$46 \cdot 23$	45'33	44.07	$42 \cdot 23$	$39 \cdot 42$	$37 \cdot 02$	$35 \cdot 11$	$33 \cdot 81$	32.32	31.14	29.88	37.92	-

MAGNETICAL ABSTRACTS.

Note.-Regular Observations which were followed by Extra Readings, in consequence of disturbance, are distinguished by Italic figures throughout the following Abstracts. The Daily Means of imperfect days are derived from the 8-hourly series that may be complete. At Lake Athabasca 0^{h} Gött. $=15^{\mathrm{h}} 55^{\mathrm{m}} \mathrm{M} . \mathrm{T}$., or $3^{\mathrm{h}} 55^{\mathrm{m}}$ A.M. At Fort Simpson 0^{h} Gött. $=15^{\mathrm{h}} 14^{\cdot} 6^{\mathrm{m}}$ M.T., or $3^{\mathrm{h}} 14^{\cdot} 6^{\mathrm{m}}$ A.M.

LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843.

Date． Gött． Mean	Declination Magnetometcr．												
	Noon．	1.	2.	3.	4.	6.	6.	7.	8.	9.	10.	11.	12.
						－	－	－	－	－	二	二	二
$\frac{1}{2}$	二	二	二	＝	二	－	－	－	二	二	二	二	＝
3 4	二	二	二	＝	二	二	－	＝	二	二	二	－	二
5	二	－	二	二	二	－	－	－	二	二	－	二	－
6 7	－	三	－	－	二	－	二	二	二	二	－	－	二
8	二	二．	－	－	ב	－	－	－	二	－	－	－	－
10	二	二	－	二	ב	－	－	－	二	－	二	二	二
1218	二	二	－	－	二	－	－	＝	二	二	二	二	二
14	－	－	二	－	－	－	－	－	$\overline{-}$	二	408.4	$410 \cdot 0$	408.2
－ 15	49r． 6^{6}	417 $0^{\text {a }}$	483． $5^{\text {a }}$	482.5	419.1	414.0	416.5 4080	413.6 411.0	${ }_{4}^{408.4}$	4010.0 410	${ }_{410.0}^{4}$	${ }^{406}{ }^{40} 8$	4060° 408.0
宮 17	4.25 .8 414.0	$446 \cdot 0^{a}$ 418	413.0 415.2	${ }_{41818}^{4.8}$	4	414．4	442.0	4	$403 \cdot 0$ 415	4106 410.0 410	408.0 411.8	4	408.0 410.6
－${ }_{\text {a }}(188$	4418.4	${ }_{416}{ }^{4} 6$	449.6	422.0	${ }_{424}^{42} \cdot 5$	${ }_{4122.2}^{4}$	418.2 418.3	4115.4	${ }_{4015}{ }^{\circ} 0$	406.6	$412 \cdot 6$	418.0	414.0
${ }_{\text {E }}{ }^{2} 0^{\circ}$	$430^{\circ} \cdot$		418.0 418.0	426.0 417.2	$4211^{5} 5$ 420	${ }_{425}^{418}$	${ }_{426} 418$	414.0	411.0	$410 \cdot 0$	412.0	$408 \cdot 5$	${ }^{410^{\circ}}$
${ }_{*}^{*} \quad 21$	417.0	418.0	418.0	${ }^{417}{ }^{\text {A }}$ t	Fort Cl								
22 23	$420^{\circ} 0$	419．0	419．0	${ }^{422.0}$	418.6 49.2	418° 419.2	416.0 $416^{\circ} 0$	416.0 415.0	419.4 412.0	411.0 410.0	414.0 410.0	474.0 408.2 48.0	4159.2 495.4
24 25 24	425.0 419.8	$485 \cdot 0$ 420.0	4990 4200	${ }_{424}^{43.8}$	$421 \cdot 0$	412.0	${ }^{406.4}$	410.2 4010	408.0 410.0	408 414.0	407.2	412.0 412.2	415.4 414.3
25 26	${ }_{4}^{490} 8$	${ }^{4251}{ }^{4} 6^{\text {a }}$	431.8	419.5 493.0	$424 \cdot 6$ 419.0	4144^{5} 426°	420.5 417	401.0 411	${ }_{4}^{410.0}$	${ }_{412}^{412} 0$	${ }_{410}^{410}$	411.1	411.6
27 28	$4936 \cdot \gamma^{3}$ 425		414.0 419.6	423.0 423	$422{ }^{41}{ }^{\circ}$	${ }_{424}^{424}$	120	412	414.5	${ }^{407} 8$	$400 \cdot 0$	$398^{\circ} 0$	${ }^{400} 0$
${ }_{29}^{28}$	425°	－ 4	－		Fort C	cipewya		$414 \cdot 4$	413.0	$417 \cdot 0$	412.0	411.4	413.0
30 31	419.6 499	${ }_{4}{ }_{4}{ }^{4} 7^{\circ} 8$	$400^{\circ}{ }^{\circ} \mathrm{O}$ 484	$441^{\circ} 6$ $477^{\circ} 4$	${ }_{421}{ }^{424} 0$	418.0	416.0	$410^{\circ} 0$	412.0	412.0	412．0	408.0	414.0
									55．577	5322．6	$5326 \cdot 4$	5322．8	$5335 \cdot 3$
Sums	$5571 \cdot 9$	5599•8	5533．7	$5496 \cdot 2$	5451.3	5457 \％	5414.0	53523					
Means	42S：62	$430 \cdot 75$	$425 \cdot 67$	$422 \cdot 78$	$419 \cdot 33$	419.81	416.46	$411 \cdot 72$	$412 \cdot 13$	$109 \cdot 43$	409＇72	609 45	$410 \cdot 41$
				${ }_{13}^{\prime} \cdot 35$	$9^{\prime} \cdot 90$	$10 \cdot 38$	$7^{\text {！}} 03$	2＇29	$2^{\prime} 30$	＇0	$0^{\prime} \cdot 29$	$0^{\prime} 02$	$0^{\prime} 98$
${ }^{\text {Diarnal }}$ Variation	$19 \cdot 19$	$21 \cdot 32$	16										

Visible aurora

LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843.

Declination Magnetometer．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Means．	Fortnightly Means．
－	－	－	－	－	－	－	－	－	－	－	－	－	
二	－	－	＝	－	二	二	二	二	－	－	二	－	
－	－	－	－	－	－	－	－	－	－	－	－	－	
二	－	＝	二	－	二	二	二	二	二	－	－	－	
二	－	－	－	－	－	二	－	－	－	＝	二	－	
二	－	二	－	－	－	＝	二	＝	＝	二	＝	二	
－	－	－	－	－	－	－	－	－	－	二	－	－	
二	－	－	－	－	－	－	－	－	－	－	－	－	
二		二	二	二	二	二	二	330．00	$401 \cdot 6$	－ 386	二	${ }^{392} 53$	414.
408.0	$409 \cdot 7$ $410 \cdot 0$	${ }^{407}{ }^{40}$	${ }_{411.8}{ }^{\text {an }}$	$405 \cdot 1$	409．0a	$407 \cdot \mathrm{n}^{\mathrm{n}}$	${ }^{410} 100^{\text {a }}$	${ }^{416} 6^{6}{ }^{\text {n }}$	${ }^{420}{ }^{42} 0^{\text {a }}$	${ }^{422 \cdot 0^{2}}$	${ }^{9987}{ }^{997} \cdot 2$	$416 \cdot 13$ 413	414
411.6 410.0	410.0 412.0	409.0 a 407	$411.0{ }^{\text {a }}$ $409 \cdot 6$			$414 \cdot 6$ $412 \cdot 5$	3929.94 414.5	$410 \cdot 0$ 414.0	$415 \cdot 2$ 410.5	${ }_{413}^{413 \cdot{ }^{\text {a }}}$	${ }_{9889} 992$	413．38	
410.0	412.2	${ }^{4} 12 \cdot 6$	$417 \cdot 6$	392.0	888．0	436.0	410.0	$392 \cdot 0$	$40{ }^{\circ} \mathrm{P}$	$480 \cdot 0$	9901.4	$412 \cdot 56$	
413.0	424．0	414.0	414.8	414．6	412．0	414．4	413．4	414.0	$414 \cdot 0{ }^{\text {a }}$	414．6	9567．2	${ }^{4110^{\circ} 48^{\circ}}$	
412.0	$412 \cdot 4$	411.4	412.0	416.0	403.0	$411^{\circ} 0$	412.0		Sunday		\} 9954.9	414.79	
414.0	$412 \cdot 9$	418.0	$41 \overline{6} \cdot 6$	417.0	416.4	418．0	414．0	414．0	${ }_{417}^{419}$	422.0	$10001 \cdot 9$	416.75	
409.8	$410^{\circ} 4$	414.0	412.0	${ }^{4111^{\circ} 0}$	${ }^{418 \cdot 0}$	412.0	416.0	${ }^{4266^{\circ} 0}$	$420^{\circ} 0$	${ }^{421} \cdot{ }^{\circ} 8$	10018．2	$417 \cdot 42$ $172 \cdot 25$	
413.0 408.0	$\xrightarrow{414.0} 4$	${ }^{414.0}$	${ }^{4111^{\circ}}{ }^{\frac{1}{4}}$	${ }_{420}^{412}{ }^{\text {a }}$	${ }^{4114.4}{ }^{1} 0^{2}$	479．8	$4174^{\circ} 0$ $411 \cdot \mathrm{ga}$	$412 \cdot 0^{3}$ 414 0	${ }^{417}{ }^{1} 0^{\circ} 0^{\circ}$		10014.0 9972.6	$477 \cdot 25$ $415 \cdot 52$	
413.0	472.4	416.0	415.8	$423 \cdot 6$	412.0	414.6	414.0	$408.0{ }^{\text {a }}$	$411 \cdot 5^{\text {a }}$	$4{ }^{4} 5^{\circ} 0$	10015.8	${ }_{417}{ }^{4} \cdot 32$	
398.4	402.0	$400 \cdot 8$	$399 \cdot 4$	408.0	${ }^{407} 8^{8}$	$412 \cdot{ }^{\text {a }}$	$391 \cdot{ }^{\text {a }}$		Sunday		$\} 9851 \cdot 8$	$410 \cdot 49$	115.
414.0	414．0	414.0	$420 \cdot 0$	$422 \cdot 0$	$420 \cdot 0$	$420 \cdot 2$	416．0		$440^{\circ} \mathrm{O}$	408.6	$10100 \cdot 1$	$420 \cdot 84$	10
$407 \cdot 2$	414．0	$410 \cdot 6$	415.6	416.0	$412 \cdot{ }^{0}$	406.0	414.0	4124	$412 \cdot 8$	414．4	$9999 \cdot 2$	$416 \cdot 63$	
5329.0	5360.0	$5347 \cdot 0$	5371．3	5367．7	$5365 \cdot 5$	5432．0	$5329 \cdot 0$	$5337 \cdot 6$	$5420 \cdot 4$	$5437 \cdot 4$	$129635 \cdot 4$	－	
$409 \cdot 02$	412．31	421．31	$413 \cdot 18$	412．90	$412 \cdot 73$	$417 \cdot 85$	409．92	$410 \cdot 58$	$416 \cdot 96$	$418 \cdot 26$	9964•27	$415 \cdot 50$	
$0^{\prime} 49$	$2 \cdot 88$	$1 \div 88$	$3 \cdot 75$	$3^{\prime} \cdot 47$	$3^{\prime} \cdot 30$	3＇70	${ }^{\prime} \cdot 49$	${ }^{\prime} \cdot 15$	${ }^{4} \cdot 61$	${ }^{\prime} \cdot 31$		6.07	

Increasing numbers denote a movement of the north end of the magnet towards the East．

Abstract of Hourly Observations made during the months of November and December 1843.

Latie Atilabasca-continued

Date. Gött.	Declination Magnetometer.												
Time.	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	417.0	423.6	423.0	418.0	418.0	420.0	$417 \cdot 1$	412.0	$413 \cdot 1$	$416 \cdot 6$	413.8	418.0	$473 \cdot 5$
3 b	4177°	414.4	$417{ }^{\circ} \mathrm{C}$	414.8	419.8	418.0	423.5	410.0	$409 \cdot 0$	$409 \cdot 0$	411.0	406.0	416.0
$\stackrel{4}{4}$	$418{ }^{\circ} \mathrm{O}$	425°	420.0	$4140^{4} \cdot{ }^{\circ}$	$416^{\circ} \cdot 0$ 418.0	$4188^{\circ} 2$ 418.0		${ }_{4118.0}^{4}$	408.6 414.0	412.0 415.2	414.0 414.5	416.0 414.2	415° $418^{\circ} 0$
5	464.0	$40^{\circ} 0$	$444 \cdot 5$	${ }_{420}{ }^{\text {at }} 0$	Fort ${ }^{424} 0$	hipewy	${ }^{418.0}$						
7	414.2	416.0	$412 \cdot 2$	418.4	${ }_{419}^{4} 4$	${ }_{422}{ }^{42} 0$	${ }_{413} 18.0$	$4400 \cdot 2$	401.5	412.0 408.0	${ }_{412.0}^{4120}$	410.0 413.6	${ }^{416.0}$
8	418.0	439.6	$418 \cdot 9$	424.0	$422 \cdot 2$	420.0	$416^{\circ} 0$	$413 \cdot 6$	407.8	414.0	$409 \cdot 6$	$410^{\circ} 0$	${ }_{409}{ }^{\circ}$
${ }^{9}$	$4{ }^{42} 0^{\circ}$	419.8	419.0	420.4	419.6	422.0	418.0	417.0	416.0	$415 \cdot 2$	416.0	415.8	${ }^{419} 7$
11	${ }_{417}{ }^{4.0} 0$	${ }_{419}^{4.4}$	421.0 416.2	418.0 4.17	${ }_{4120.0}$	418.4 420	420.0 414.2	411.4 ${ }^{40}$	414.0 405.0	416.3 404.0	${ }_{410}^{410.0}$	414.0 410.3	${ }^{412 \cdot 4}$
12				4.75	Fort C	hipowy	an.		$405^{\circ} 0$	404.0	410.0	$410 \cdot 3$	$416 \cdot 0$
13	${ }_{416.0}^{42}$	414.40	425.0 426.0	436.0	438.0	414.0.	$410^{\circ} 0$	408.0	$416{ }^{\circ} 0$	$412 \cdot 7$	413.0	413.0	$412 \cdot 5$
15	$420^{\circ} 0$	428.0	426.0	4133.2	121.0	4196	$410^{\circ} 0$	416.0	414.4	$412 \cdot 6$	${ }_{414} 410$	$410 \cdot 3$ 414.0	$4110^{\circ} 0$ 413.0
16	414.0	419.2	417.4	416.6	419.4	$420 \cdot 4$	$419 \cdot 2$	$414 \cdot 6$	410.0	$408 \cdot 0$	$408{ }^{\circ} 0$	410.2	${ }_{419}{ }^{6}$
17	418.2	418.0	420.0	42.0	429.0	418.2	418.4	$412 \cdot 4$	414.8	$412 \cdot 0$	414.0	415.0	416.0
18 19	$418{ }^{\circ} 0$	$421^{1} 1$	$418^{\circ} 0$	${ }^{418}{ }^{\circ} \mathrm{A} 4$	Fort 4	${ }^{420^{\circ} 0}$	415%	$410 \cdot 0$	405.0	$406 \cdot 8$	$410 \cdot 6$	$412{ }^{\circ}$	$414 \cdot 4$
20	418.4	$422 \cdot 4$	$427 \cdot 0$	422.0	421.0	12200	418.0	$416 \cdot 2$	412.2	418.0	416.2	414.4	417.6
21	420.0	416.4	$41.8{ }^{\circ} 0$	417.6	420.0	420.4	419.0	417.0	412.2	415.2	412.0	411.8	$412 \cdot 7$
	419.8 422.0	${ }^{4344^{*}}{ }^{\circ}$	${ }_{420}^{436.5}$	433.00	423.4	425°	419.6	$415{ }^{\circ} 7$	$412 \cdot 8$	411.8	413.7	418.0	$417 \cdot 0$
- ${ }^{24}$	$421 \cdot 2$	436.0	$436 \cdot 2$	4184	4	$420^{416.0}$	${ }_{417}^{417}{ }^{\circ} \mathrm{O}$	415.0 408.2	412.5 412.0	$\xrightarrow{414.0}$	414.0 413.0	414.1 414.0	414.0 410.0
退 25	420.0	414.0	419.0	418.4	419.0	$420^{\circ} 0$	418.0	$418 \cdot 4$	420.0	418.0	$415 \cdot 2$	416.4	$412 \cdot 8$
E 26	420.0	$422 \cdot 1$	422.0	${ }_{418}{ }^{\text {At }}$	Fort 4	${ }^{421} \cdot 2$	423.0	$420 \cdot 8$	414.2				
28	$421 \cdot 0$	418.0	418.4	$420 \cdot 0$	$420 \cdot 4$	${ }_{417}{ }^{4}$	$430^{\circ} 0$	$409^{\circ} \mathrm{S}$	$408 \cdot 8$	414.0	419.0	${ }_{417}{ }^{41} 6$	$413 \cdot 4$
29	$419 \cdot 6$	$425 \cdot 5^{\text {a }}$	$422 \cdot{ }^{0} 0^{4}$, 421.0	414.0	$416 \cdot 2$	418.0	417.4	416.7	418.4	$416 \cdot 2$	413.0	$410 \cdot 8$
30	416.0	415.2	414.0	$415 \cdot 2$	412.0	414.2	$410^{\circ} 5$	411.0	$410 \cdot 4$	$400^{\circ} 0$	411.0	412.2	$414 \cdot 4$
Sums	$10096 \cdot 2$	10121 2	10137 5	10108•5	$10091 \cdot 4$	$10060 \cdot 0$	10035•3	$9903 \cdot 9$	9878.9	9902.0	$9912 \cdot 7$	$9919 \cdot 7$	$940 \cdot 8$
Means -	$420 \cdot 67$	421 72	$422 \cdot 40$	$481 \cdot 19$	$420 \cdot 47$	$419 \cdot 17$	418.14	$412 \cdot 66$	411.62	$412 \cdot 58$	413.03	$413 \cdot 32$	414.20
Diurnal Variation	9.05	10.10	$1{ }^{1} \cdot 78$	$9 \cdot 57$	${ }^{1} \cdot 85$	$7 \cdot 55$	${ }^{6} 52$	1.04	0.0	${ }_{0}^{\prime} \cdot 96$	$1 \cdot 41$	$1 \cdot 70$	$2 \cdot 58$
1	422.4	${ }^{430 \cdot 8}$	$417 \cdot 0$	428.0	416.0	$412 \cdot 2$	406.4	408.2	406.0	406.4	$410 \cdot 0$	$410.0{ }^{\text {g }}$	$411 \cdot 6$
$\stackrel{2}{3}$	43.40	$449^{\circ} \mathrm{O}$	$450 \cdot 1$	$446^{\circ} \mathrm{O}$	$449^{\circ} \mathrm{E}$ Fort	422°	416.0	414.2	420°	$417 \cdot 6$	417.0	${ }^{415} \cdot 6$	$416^{\circ} 4$
4	$421 \cdot 2$	420.0	$419 \cdot 6$	$420 \cdot 2$	420.0	$420 \cdot 4$	421.8	$417 \cdot 0$	413.0	$415 \cdot 0$	414.0	413.6	4i2.8
5	416.1	424.40	$427 \cdot 0$	4.4 .4	421.0	$421 \cdot 6$	$417 \cdot 0^{14}$	$410 \cdot 0$	$412 \cdot 3$	408.2	405°	411.0	$414 \cdot 6$
${ }_{7}^{6}$	420.8	496.5	434.8	419.8	$420 \cdot 0$	422.8	$421 \cdot 2$	418.2	418.0	414.0	$413{ }^{\circ} 0$	412.4	414.4
8	4.419		$415 \cdot 6$ 417.8	417.0 419.2	4116° 420	417.0 $410^{\circ} 4$	${ }_{42100}{ }^{\circ}$	${ }_{420.0}^{416.6}$	414.0 420.0	414.4 420.0	${ }_{313.9}{ }^{496}$	416.0 405.4	414.0 419.2
9	414.4	$417 \cdot 8$	424.0	$422^{\circ} 0$	418.0	$420^{\circ} 0$	$420 \cdot 0$	$410 \cdot 2$	$400{ }^{\circ} 4$	410.0	408.2	410.4	$413 \cdot 5$
111			$420 \cdot 8$	${ }_{410}{ }^{\text {At }}$	${ }^{\text {Fort }}$	$147^{\circ} 0$	408.8	410.0		$406^{\circ} 0$	$410^{\circ} 0$	4068	$405 \cdot 0$
12	425.8	414.4	413.6	410.4	416.6	420.0	$425 \cdot 4$	426.0	414.0	419.6	$415^{\circ} 0$	$422 \cdot 0$	428.4
13	424.2 42.29 4	$423^{\circ} 0$	427.5	420.8	421.0	$420 \cdot 2$	423.0	424.2	$420^{\circ} 0$	416.2	419.6	$418 \cdot 2$	424.8
15	4.429.0 ${ }^{4}$	${ }^{432.4 .4}$	${ }_{4}^{4.30^{\circ}{ }^{\circ}}$	$4{ }^{4.26 .0} 4$	427.8 422.0	$430^{\circ} 0$ 423	434.0 426.0	428.8	426.2	424.2	4	426^{6} $420 \cdot 0$	424.400 4
16	$4{ }^{425} 0$	$424 \cdot 7$	$425 \cdot 2$	$420 \cdot 6$	$420 \cdot 4$	$423 \cdot 8$	426.4	426.0	$420 \cdot 8$	$418{ }^{\circ} 0$	418.0	$418 \cdot 2$	4243
17				${ }^{\text {At }}$	Fort C	inewya							
袻 19	$425 \cdot 0$	426.0	4426.3	426.0	${ }_{422.0}^{426}$	${ }_{420} 418$	${ }_{421 \cdot 2}^{416}$	${ }_{421.0}^{4}$	428.4	481.0	$420 \cdot 0$	420.0	419.8 420.0
${ }^{-1}{ }^{20}$	$43^{3} 8^{\circ} \mathrm{E}$	432.0	4332.2	$427 \cdot 0^{\text {b }}$	423.8	422.0	408.4	$410 \cdot 0$	$40{ }^{\circ} 0$	418.0	421.0	416.2	$417 \cdot 9$
E ${ }^{\text {c }} 21$	486.0	415.8	$412 \cdot 6$	414.2	415.0	$418{ }^{1} 1$	417.4	$412 \cdot 2$	412.0	411.0	$410^{\circ} 6$	410.0	412.3
	${ }_{415} 42.5$	449.0	419.2	419.0	${ }_{419}{ }^{4.20 .0}$	420	$420^{\circ} 0$	412.0	${ }^{412.6}$	$411 \cdot 3$	${ }^{4166^{\circ} 0}$	$420^{\circ}{ }^{\circ}$	416.7
24	-	-	-		Fort C	ipewya			${ }^{416.0}$	$417 \cdot$	416.5	414.0	415
$\stackrel{25}{25}$	$420 \cdot 0$	428.0	$429 \cdot 5$	${ }_{426}{ }^{\text {At }}$	${ }^{\text {Fort }}$ C	- ${ }^{\text {dipery }}$							
27	$447^{\prime} 0^{\text {a }}$	$438{ }^{\circ}$	$421 \cdot 2$	419.6	${ }_{419}{ }^{\circ}$	428.0	416.8	406.8	$415 \cdot 8$	419.0	$422 \cdot 1$	$422 \cdot 0$	428.0
${ }_{29}^{23}$	422.4	422.4	410.4	$4{ }^{4} 78$	424.0	426.0	${ }^{426.6}$	415.5	419.8	418.0	418.2	418.6	$415 \cdot 8$
30^{29}	$4{ }_{426}{ }^{4} 4$	${ }_{424}{ }^{42} \cdot 0$	${ }_{429}^{41} 0$	424.0 425	429.0	$423 \cdot 0$ 430	${ }_{4}^{433.4}$	424.0 419	422.0 411.8	420.0 412.0	4138 418	417.0 419.7	4122° 422
Sums	10200.7	10192.4	$10147 \cdot 0$	10204*4	$10125 \cdot 1$	10120	$10093 \cdot 1$	$10014 \cdot 5$	$987 \cdot 7$	$9974 \cdot 9$	$9966 \cdot$	$9986 \cdot 7$	0023•1
Means	$425 \cdot 03$	$424 \cdot 68$	422.79	$425 \cdot 18$	$421 \cdot 88$	$421 \cdot 67$	$420 \cdot 55$	$417 \cdot 27$	416.15	$415 \cdot 62$	$415 \cdot 29$	416.11	$417 \cdot 63$
Diurnal Variation	$\} \stackrel{\prime}{9} 74$	${ }_{9}{ }^{\circ} 39$	$7 \cdot 50$	9•89	$6 \cdot 59$	$6 \cdot 38$	$5 \cdot 26$	1'98	${ }^{\prime} \cdot 86$	${ }^{1} \cdot 33$	0.0	${ }_{0}{ }^{\prime} 82$	$2 \cdot 34$

[^25]Abstract of Hourly Observations made during the months of
Declination Magnetometer.

Laise Atimbasca－continued．
Abstract of Hourly Observations made during the months of January and February 1844.

	Declination Magnetometor．													
Mean	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	
$\stackrel{1}{2}^{\text {b }}$														
${ }_{3}{ }^{\text {b }}$	${ }^{429.1}$	${ }_{4}^{4319.0}{ }^{\circ} \mathrm{C}$	443.0	429.0 481.8	438.0 421.0	$428 \cdot 4$ 424.0	${ }_{422}{ }^{42}{ }^{\circ}{ }^{\circ}$	$416 \cdot 7$ 429	415.8	414．4	416．8	418.2	$42 \cdot{ }^{-} \cdot$	
4	$425 \cdot{ }^{\circ}$	424.9	${ }_{4}^{42.26 .6} 6^{\text {d }}$	429.4	423：0	431	${ }_{427}^{42}$	${ }_{42 .}^{42} \cdot 0$	${ }_{4}^{424.48}$	${ }_{418} 42.0$	4244^{2} 419	$422 \cdot 4$ 407	$420 \cdot 0$ 416.0	
5	499.8	$497{ }^{\circ} \mathrm{C}$	426.0	419.0	$42{ }^{\circ} \cdot 6$	$432 \cdot 0$	420.0	426.0	$419 \cdot 0$	${ }_{422} 6$	${ }_{420}{ }^{\circ} 0$	${ }_{479}{ }^{\circ}$	$424 \cdot 6$	
7	458.0	445^{\prime} \％	43140	44.0	${ }_{\text {Fort }}{ }^{431} 6$	${ }^{436.0}$	$432 \cdot 8$	$430 \cdot 6$	424.8	$417 \cdot 4$	422.0	426°	$418 \cdot 4$	
8	432.0	428.3	42.8	426.0	425.4	425．6\％	4290	422．0	414．2	416.0	408.0			
\％ 10	$429 \cdot 2$ $428 \cdot 0$	$428 \cdot 7$ 429.0	433.0	430.0	432．0	424．0	436.5	424.0	420.4	$420^{\circ} 0$	416.2	428.0	${ }_{416}{ }^{421} 8$	
110	${ }_{4}^{428.0}$	429.0	430.0 432.5	4．29．0	$430 \cdot 0$ 432.2	$430 \cdot 4$ 436	435.6 436.0	425.0 429.8	$420 \cdot 2$ 430.0	416.0 422.0	412.5	${ }^{405} 5$	407.2	
12	424.0	419.0	$417 \cdot 2$	4210°	4421.2	424.8	${ }_{431} 46$	429.0	${ }_{424}$	$42{ }^{4} 4.5$	424.2	$4{ }^{420}{ }^{\circ} \mathrm{O}$		
1.3	$423 \cdot 6$	$423^{\circ} 0$	$426^{\circ} 0$	$432 \cdot 2$	433.0	4312	${ }_{430}{ }^{2}$	428.0	$423 \cdot 4$	$422 \cdot 2$	422.0	422.5	4	
115	$431 \cdot 6$	434.0	428.0	＋ 429.0	Fort 429	Chipowya	42							
15	$421 \cdot{ }^{\circ}$	$437 \cdot 5^{\text {a }}$	$426^{\circ} 2$	424.7	${ }_{427}{ }^{\circ}$	${ }_{426}{ }^{4}{ }^{\circ}$	424：8	${ }_{421}^{424}$	${ }_{433.0}^{419.8}$	432．0	4323.0	426.0 420.3	$419 \cdot 0$ $420 \cdot 6$	
17	435.0	430.8	438.0	438.0	$435 \cdot 5$	4332.0	431.0	$430 \cdot 2$	426.0	419.8	$419 \cdot 4$	424.0	424.0	
19 19	${ }_{4}^{432} \cdot{ }^{43} \cdot{ }^{4}$	436.4 423	$430 \cdot 6$ 429.0	${ }_{432}^{43.6}$	436.6 430.0	440.0 $430^{\circ} 0$	422．8	${ }_{426}^{426}{ }^{\circ} 4$	${ }^{426.0}$	${ }_{422.4}$	$427 \cdot{ }^{4}$	424．0	${ }^{427} \cdot 0$	
20	$434 \cdot 0^{\text {a }}$	$430^{\circ} 0^{\text {a }}$	427.0	429.1	${ }_{426}{ }^{4} 0$	${ }_{426}{ }^{4} 4$	${ }_{430} 42{ }^{42}$	425.2	${ }_{417} 4.5$	${ }_{425}{ }^{4}{ }^{\circ} \cdot 4$	424.0 422.5	424．0	427.0 427	
－ 21			$430 \cdot 8$			硣						20	22	
葡 ${ }^{23}$	$4430 \cdot 0$	434.0		443.0	4445：2	436.0 434.8	416.5	412.0	414.5	424.5	123.6	424.4	$426 \cdot 0$	
成 $\left\{\begin{array}{c}26 \\ \end{array}\right.$	434.0 $484 \cdot \%$	434.0	$430 \cdot 3$	422.2	$425^{\circ} 0$	${ }_{432} 4$	${ }_{432}{ }^{4} 10$	424.4	421.0	${ }_{423}{ }^{423^{\circ}}$	$415 \cdot 8$	430° 420	$432 \cdot 0$ 430.0	
g 25	$484 \cdot 2 \cdot{ }^{2}$	551.0	$48.44^{\circ} 0$	454.0	441.0	427.0	423.0	424.2	${ }^{422}{ }^{\circ} 0$	422°	$420 \cdot 0$	$430 \cdot 8$	$423 \cdot 4$	
	$\underset{-121 \sim}{4}$	${ }_{4}^{423.0}$	$426{ }^{\circ}$	426.8	429.8	$436{ }^{4} 2$	$423 \cdot 5$	426.0	423．0	420.0	421.4	$430 \cdot 0$	$423 \cdot 2$	
$\underbrace{24}_{28}$		$427 \cdot 0^{\mathrm{a}}$	${ }^{429}{ }^{\circ} 6$	${ }^{423^{\circ}}{ }^{0}$	${ }^{427 \%}{ }^{2}$	$429 \cdot 8$	433.0	427.0	$420 \cdot 4$	421.8	419.8	424.0	$419 \cdot 6$	
29	$432 \cdot 4$	434.0	423.0	$424 \cdot 2$	434.4	$424 \cdot 6$	420.0	418.0						
30 31	426.0 432.00	419.0 $432 \cdot 2$	418° 431.0	417.5 430.0	427.5	429．0	426.0	426.0	421.4	$421 \cdot 0$	421.8	$420 \cdot 2$	$420 \cdot 8$	
						4250	4348	$425 \cdot 8$	$421 \cdot 6$	$409 \cdot 8$	$410^{\circ} 0$	$425 \cdot 8$	419.5	
Sums	$9954 \cdot 3$	$10056 \cdot 7$	$9893 \cdot 8$	9896＇5	8996 6	$9900 \cdot 5$	19834．4	7788	$9716 \cdot 9$	$9670 \cdot 7$	$8669 \cdot 2$	9722．0	$9711 \cdot 5$	
Means	$432 \cdot 80$	$437 \cdot 25$	$430 \cdot 17$	$430 \cdot 27$	$430 \cdot 29$	430＊46	$427 \cdot 58$	$125 \cdot 17$	$422 \cdot 47$	$420 \cdot 47$	420.40	$422 \cdot 70$	422．24	
Diurnal Variation	\} 12.40	${ }^{16} \cdot 85$	${ }^{9} 77$	4．87	${ }_{9}{ }^{6} 89$	10.06	718	${ }_{4}{ }^{1} 77$	${ }^{2} \cdot 07$	0.07	0.0	2＇30	1.84	
1	480.8	$476 \cdot 0$	469.5	449	432.2	437.0	$424 \cdot 0$	411.4	$412 \cdot 4$	425.5	$412 \cdot 4$			
${ }_{3}^{2}$	424.0 422.8		424.2	434.0	439.0	433.8	$44^{4} 5^{\circ} 0$		$411 \cdot 0$	414.0	$412 \cdot 8$	418.5	${ }_{426.0}$	
3 4 4	$422 \cdot 8$	$435 \cdot 2$	426.0	$425 \cdot 7$	$425 \cdot 2$	428.0	$420^{\circ} 0$	412.6	$424 \cdot 4$	$412 \cdot 4$	416.8	$476 \cdot 3$	418.0	
5	899.1	486.0	430.0	449.6	420.0	436.0	$420 \cdot 0$	$425 \cdot 4$	411.0	$420 \cdot 3$	410.8	413.5	416.0	
6	434.0 $490 \cdot 8$	425.8 435.8	433.0 439.0	428.00 $437 \cdot 2$	424.8 432.0	4.37 .8 433.0	428．00	421.0 418.0	$416^{\circ} 0$ 423.7	414.4 420.6	414.6	426.0	417.8	
8	$450 \cdot 6$	${ }_{445}{ }^{2}$	449.2	436.0	$446 \cdot 9$	446.4	42.4	$4{ }^{418.0} 4$	${ }_{415}^{423} 8$	${ }_{418}{ }^{42} 0^{\circ} 6$	$410 \cdot 2$	414．0 $41{ }^{\circ}$	416.2 418.8	
9 10	424.2	428.6	$420^{\circ} 0$	422.0	426.0	424．0	42.2	$420^{\circ} 6$	418.8	419.8	$42 \cdot \cdot 2$	$424 \cdot 4$	423.0	
11	42.4	424.0	$427 \cdot 7$	4240	$426 \cdot 4$	$429 \cdot 6$	42.2	$423^{\circ} 0$	42.5	431.6	417.0	4178	422.0	
12	43.40	433.0	$430 \cdot 4$	431.0	426.0	$430 \cdot 6$	$429 \cdot 0$	$424 \cdot 6$	$420 \cdot 3$	$425 \cdot 0$	422.0	426.0		
13	$430 \cdot 2$	434.4	${ }^{4.3006}$	428.2	434.3	432.0	433.0	$424 \cdot 2$	422.8	$418 \cdot 8$	$477 \cdot 2$	$429 \cdot 8$	428.0	
15	428.9	4360° 436	4288° 419	4	$42{ }^{428.0}$	431.0 429	${ }_{4}^{433} \cdot{ }^{4} \cdot 6$	424.0	${ }^{424} 4.7$	424．8	424.0	$421 \cdot 5$	422.0	
15	42.50	42.514	${ }_{429} 416$	$42{ }_{4}{ }^{\circ}$	428.0	429.6	${ }_{4}^{425} 5$	$423 \cdot 8$	${ }^{42484}{ }^{\text {a }}$	${ }_{416}{ }^{21} \cdot 6$	414．00	$414 \cdot 2$	$415 \cdot 2$	
17	$4332 \cdot 0$	430.0	$4330 \cdot 2$	$427 \cdot 1$	$424 \cdot 3$	423.4	$419 \cdot 2$	$416^{\circ} 0$	$419^{\circ} 0$	419.0	$417 \cdot 8$	418.0	${ }_{416}{ }^{46}$	
19	431.4	436.4	438.0	4394.0	432.0	$429 \cdot 2$								
20	$422 \cdot 4$	4436.0	4246	$426 \cdot 2$	426°	$429 \cdot 8$	424．0	432．6	${ }_{420}{ }^{42.0}{ }^{\circ}$	${ }_{422.0}^{42.0}$	424．0	422.0	426．00	
－${ }^{21}$	427	$438: 0$	4.36 .8	$4.38 \cdot 6$	439.6	429.8	$424 \cdot 2$	419.6	416.8	${ }_{415} 7$	412.4	$420^{4} \cdot 2$	${ }_{423}^{42} \cdot{ }^{4} 8$	
䫆 ${ }^{22}$	423．2．	423.9 407	430.4	420．2	431.7	$435 \cdot 2$	$432 \cdot 8$	$430^{\circ} \mathrm{O}$	424.0	$417 \cdot 0$	415.5	$417 \cdot 3$	423.4	
	$4{ }_{43}{ }^{4} 8$	425.0	4342	438.0	4344 434	${ }_{423}{ }^{412} 8$	424.3 430.4	$492 \cdot 2$	${ }_{4}^{420}{ }^{\circ}{ }^{\circ} 6$	419.7	422.0	422.4	424.0	
\％ 25	－	－	－	－	－	－	${ }^{40}-$	4228	$423 \cdot 2$	425.8	424.0	${ }^{426.0}$	426.4	
［26 87	$432 \cdot 0$ 438.8		434.0	44440	434．0	$424 \cdot 2$	426.2	425.0	$422 \cdot 4$	$420 \cdot 4$	419.0	$422 \cdot 4$	$422 \cdot 2$	
28	${ }_{4}^{432} 4$	488.3	${ }_{437}^{43.0}$	429.0	${ }_{430}{ }^{4} 0$	${ }_{430}{ }^{431} 8$	${ }^{430} 48$	$4{ }^{423.0} 4$	${ }_{42848}^{424}$	424.0 404.0	$426 \cdot 0$ $420 \cdot 0$	${ }_{409}^{423.0}$	481.8	
29	$437{ }^{\circ}$	$428 \cdot 2{ }^{\text {a }}$	$430^{\circ} 0 \mathrm{f}$	$438^{\circ} 0$	$427 \cdot 2$	$432 \cdot 3$	431.0	413.0	$420 \cdot 8$	$418{ }^{\circ} 2$	422.6	${ }_{422}{ }^{40} 4$	$\begin{aligned} & 417.8 \\ & 422 \cdot 0 \end{aligned}$	
Sums	10268．8	10383.7	10383．7	10355＊4	10317•3	10328	10927	10099	10094	10062	10	10056	0101＇0	
Mems	$427 \cdot 87$	$432 \cdot 65$	$432 \cdot 6$	431.47	429.89	$430 \cdot 37$	$423^{\prime} 13$	$420 \cdot 81$	$420 \cdot 60$	$419 \cdot 27$	$417 \cdot 48$	419.0	$420 \cdot 87$	
Diurnal	\} 10.39	${ }^{15} \cdot 17$	15.17	13.99	$12 \cdot 41$	12.89	${ }_{8}^{\prime} 65$	$3 \cdot 33$	3.12	$1 \cdot 79$	$0 \cdot 0$	1＇54	$3 \cdot 39$	

Laike Athabasca－continued．
Abstract of Hourly Observations made during the months of January and February 1844.

mo Twelve minutes late．\quad n Three minutes late．
Uncreawing numbers denote a movement of the north end of the magnet towards the East．

Lake Athabasca-continued
Abstract of Hourly Observations made during the months of January and February 1844.

Date. Gütt. MeanTime.	Second Dcclination Magnetometer, 2-inch bar.												
	Noon.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1													
$\stackrel{2}{2 b}^{\text {b }}$	216.6 222.0	${ }_{219}^{217}{ }^{\circ} 6^{\circ}$	241'8 220	220 200 200	$230 \cdot 0$ $219 \cdot 6$	${ }_{220}^{221.0}$	${ }_{218.0}^{216.0}$	${ }_{212}^{212 \cdot 0}$	${ }_{219}^{208 \cdot 2}$	208.0 217.2	209.4	${ }_{216}^{211.0}$	${ }_{220 \cdot 0}^{216 \cdot 6}$
4	220.3	220.0	221.04	22025	$218 \cdot 6$	$224 \cdot 2$	220.0	216.0	216.5	213.6	$216{ }^{\circ}$	210°	$204 \cdot 0$
5	258.5	$300 \cdot 0$	219.8	${ }^{214} 46$	$218 \cdot 8$	223.8	215.8	$210 \cdot 6$	$210^{\circ} 0$	216.0	218.0	2170	218.6
${ }_{7}^{6}$	259.4	948.4	${ }^{281} 1{ }^{\circ} 5$	23415	232.0	$226{ }^{\circ} 1$	$220 \cdot 4$	222^{-2}	219.6	212.0	213.0	222.0	$213 \cdot 2$
$\stackrel{7}{8}$	294.0	223.4	$22 \cdot 0$	$221 \cdot 8$	220.0	$219 \cdot 3$	224.0	$215 \cdot 0$	213.0	214.0	$212 \cdot 6$	210^{-4}	$218 \cdot 4$
9	229.0	228.0	$20.8{ }^{\circ} 0$	22: 8	20.0	217.0	223.0	273.6	$210 \cdot 0$	209.6	207.4	218.0	$217 \cdot 5$
10	227.0	220.0	2es.0		- 23.0	${ }_{238}^{220.0}$	${ }_{23}^{290}{ }^{2} 0$	${ }^{226}{ }^{26} 5$	224.5	218.2	${ }_{292}^{214} 5$	200.0	208.0
12	2298.4	229.0	2;2.0	22.4	230°	236.0	24.0	${ }_{23} 80$	$229 \cdot 6$	2254	${ }^{222} \cdot 6$	224.2	226.4
13	$230 \cdot 7$	$23.4{ }^{\prime} 4$	$233 \cdot 8$	234.8	$238 \cdot 3$	237.0	$236{ }^{\circ} 0$	233.0	220.4	225.2	225.0	226.0	$227 \cdot 0$
$1{ }^{14}$	228.4	232.0	2325	23.0	234.2	$237 \cdot 5$	$238 \cdot 2$	292	224*8	$224 \cdot 3$	22.0	$220 \cdot 0$	$229 \cdot 8$
16	$236 \cdot{ }^{\text {a }}$	$235{ }^{\circ} 0^{3}$	$236 \cdot 2$	233.8	235.7	${ }_{284}{ }^{2} 4$	233.0	23.35 .2	23460	232.0	$230^{\circ} 0$	$230 \cdot 0$	$228 \cdot 0$
17	244:888	236.8	242^{2}	238.0	$238 \cdot 2$	$236{ }^{4} 4$	233:0	$234 \cdot 2$	231.2	$2{ }^{2} 6^{6} 4$	224.2	237.0	$228 \cdot 6$
18	${ }_{2344}^{2312} 2^{24}$	${ }_{233}^{233} \cdot$	$234 \cdot 7$ 233	210.0)	242.1 23700	25i.0	248.0 $230 \cdot 8$	2084	${ }_{238}^{230.0}$	228.0	231.4	${ }_{232}^{233}{ }^{\circ}$	${ }_{230}^{23 \cdot 4}$
20	$28{ }^{2} \cdot 0^{\text {a }}$	231.5	$232 \cdot 0$	231.0	$230 \cdot 4$	$230^{\circ} 0$	$230 \cdot 0$	$229 \cdot 8$	226.8	227.0	$228 \cdot 8$	$220 \cdot 2$	$230 \cdot 0$
${ }_{22}^{21}$	$230 \cdot 0$	229.6	226.0	24.4	211.4	23.10	$211 \cdot 0$	210.0	214.5	$227 \cdot 8$	$230^{\circ} 0$	$230 \cdot 0$	232.0
23	$230 \cdot 0$	$236 \cdot 0$	$236 \cdot 4$	235.0	23.32	23.0	234.0	228×1	224.4	$222 \cdot 8$	$220 \cdot 0$	296.0	228.4
24	$233 \cdot 0$	229.0	231.0	$230 \cdot 6$	23.30	232.0	$228 \cdot 2$	$223 \cdot 8$	$2.00 \cdot 2$	$220 \cdot 0$	$220 \cdot 4$	224.8	$233 \cdot 0$
${ }_{26}^{25}$	$310 \cdot 0^{\text {a }}$ 225	368.0	$300 \cdot 0$ 228.0	254.4	23300	${ }_{234}^{232}{ }^{2}$	2310 231.2	-	${ }^{2226}{ }^{2} \cdot 0$	2:22.6		${ }^{2228}{ }^{2} \cdot 0$	${ }_{228.0}^{230}$
$2^{2}{ }^{\text {b }}$	- ${ }^{\text {a }}$	$233 \cdot 2^{n}$	232.0	230.4	$230^{\circ} 0$	229.4	$230 \cdot 4$	2311°	226.0	$223 \cdot 2$	227.8	238.4	$223 \cdot 0$
289	24.4	238.2	$232 \cdot 0$	1234.2	$23 \overline{5}$	$236 \cdot 4$	232.0	231.8	228.2	222\% 6	228.2		$230 \cdot 0$
30	$232 \cdot 0$	236.0	$2 \cdot 35 \cdot 2$	234.4	$239 \cdot 3$	$240 \cdot 8$	$234 \cdot 6$	2330	232.0	232.0	${ }_{232}{ }^{2}$	238.4	$233 \cdot 2$
31	$241 \cdot 0^{\text {a }}$	$241{ }^{4} 4$	236.0	236.0	$235 \cdot 8$	$222 \cdot 0$	$230 \cdot 2$	$230^{\circ} 0$	$22^{\prime} 70$	$222 \cdot 0$	$222 \cdot 4$	$230 \cdot 0$	226.0
Sums	$5441 \cdot 8$	5532'5	5376.	5346.0	$5341 \cdot 1$	$5338 \cdot 6$	$5269 \cdot 4$	52142	5169*0	$5126 \cdot 5$	51267	$5165 \cdot 8$	$5177 \cdot 2$
Means	236. 60	$240 \cdot 54$	$233 \cdot 74$	$232 \cdot 43$	232.22	$232 \cdot 11$	$229 \cdot 10$	226.70	204.74	$222 \cdot 89$	$222 \cdot 90$	22460	$225 \cdot 10$
Diurnal	\} $13^{\prime} 71$	$17^{\prime} 65$	$10^{\prime} .85$	$9 \cdot 54$	$9^{\prime} \cdot 33$	$9^{\prime} \cdot 22$	$6^{\prime} \cdot 21$	3:81	$1 \cdot 85$	0.0	0.01	$1^{1} 71$	2'21
	24.50	$308 \cdot 1$	260.8	250.4	${ }^{2} 45^{\circ} \cdot 6$	250.0	$229 \cdot 6$	220.0	$222 \cdot 4$	230.0	$220 \cdot 4$	$222 \cdot 0$	222.6
2	$231 \cdot 6$	$237 \cdot 8$	233.0	$243 \cdot 5$	$2488^{\circ} 0$	$249^{\circ} 6$	$238{ }^{2}$	179•8	218.4	224.2	226.0	$226^{\circ} 0$	234.2
3	2334.4	$240 \cdot 8$	239.0	$238 \cdot 2$	236.0	$240 \cdot 4$	231.0	226.0	229.0	219.0	$222 \cdot 8$	226	228.2
${ }_{5}$	218.0	968.0	$252 \cdot 0$	$272 \cdot 0$	243.0	258.0	248.0	248.0	$239 \cdot 0$	24.0	$232 \cdot 2$	$233 \cdot 2$	$234 \cdot 8$
6	${ }^{267 \%} 4$	248.0	264.2	$\stackrel{255}{25}$	250.0	$258{ }^{\circ} 4$	${ }_{251}^{250}$	243.4	24.4	2	239.8	${ }_{23}^{238}{ }^{2}$	24.8
7	2356	${ }_{272}^{229} 2^{\text {a }}$	${ }_{2685}^{208}$	263.0		${ }_{270}{ }^{20}{ }^{\circ}$	${ }_{242}{ }^{250} 4$	2386		2420.2	$230 \cdot 8$ 210.6	${ }_{244}^{2384}$	2288.2
9	260.0	$252 \cdot 0$	$250 \cdot 8$	$240 \cdot 4$	$252 \cdot 2$	$250 \cdot 8$	252.2	246.0	244.0	246	$248 \cdot 2$	$250 \cdot 2$	250.4
10	$253 \cdot 4$	256.0	$253 \cdot 2$	250.0	$252 \cdot 2$	254.8	254.0	$250 \cdot 4$	$248 \cdot 2$	246.0	$242 \cdot 2$	$242 \cdot 8$	243.9
11	244.0	$238 \cdot 8$	$232 \cdot 0$	24.8	241.8	247.0	246.2	$240 \cdot 6$	236.0	241.0	$238 \cdot 8$	24.4	$240 \cdot 8$
13	2478	$252 \cdot 2$	$250 \cdot 2$	248.0	249.8	247.4	2470	$242 \cdot 2$	238.8	238.8	$236 \cdot 9$	$210 \cdot 8$	242.0
14	244.4	246.0	243.6	${ }^{245}{ }^{\circ} 6$	246.0	246.0	245.4	$240 \cdot 6$	$242^{\circ} 0$	2396	$240 \cdot 0$	24.0	$244 \cdot 0$
15	${ }_{245}^{256}$	$261 \cdot 5$ 24.6	244.2							${ }_{2}^{240}{ }^{24}{ }^{\text {a }}$		${ }^{2314} 4$	236.0 2450
176	$245^{\circ} 6$ 259	$245^{\circ} 6$ 256	253.8 256.0	2525.4	250.8	246.2	${ }_{243}^{24.4}{ }^{2} 8$	240.0	24, $245^{\circ} 4$	243.8 241.8	${ }_{241}^{240 \cdot 2}$	${ }_{241}^{240} 8$	$245{ }^{\circ} \mathrm{O}$ 239
18	-51.2												
19	251.2 $244 \cdot 6$	256. ${ }_{2}$	${ }_{246}^{252} \cdot 6$	$2{ }_{247}^{25 \%}$	250.8	${ }_{247}^{250}{ }^{\circ}$	2476	243.0	24.8	${ }^{242}{ }^{\circ} 0$	243.8	24338	${ }^{2444} \cdot 6$
21	248.4	256.0	22568	$251 \cdot 2$	$2{ }_{20}$	${ }_{27}{ }^{24} \cdot 6$	$243 \cdot 8$	$238 \cdot 4$	${ }_{233}^{23} 8$	${ }_{232} \cdot 0$	2	233.0	${ }_{234} 24.0$
22	238.0	244.0	$248 \cdot 2$	$245 \cdot 8$	247%	$250{ }^{\circ} 4$	$248 \cdot 2$	$240^{\circ} 0$	237.0	230.0	$230 \cdot 6$	234.3	240.2
23	245.0	246.0	-248.5	$251{ }^{2} 4$	248.2	$243 \cdot 8$	244.4	241.8	248.0	${ }^{2} 40 \cdot 7$	${ }^{239}{ }^{2} 6$	240.4	$240 \cdot 6$
24	$245^{\circ} 0$	$24^{2} \cdot 6$	${ }^{246}{ }^{\circ}$	$247{ }^{\circ} 0$	247	2424	241.0	234.0	235.5	236.0	$237^{\circ}-2$	239.4	240.0
26	246.0	$240 \cdot 2$	$253 \cdot 8$	258.0	$250 \cdot 2$	$242 \cdot 0$	242.0	$241 \cdot 6$	2420	$235 \cdot 9$	235.0	2400	243.0
27 28	252.6 240.0	$251 \cdot 6{ }^{\text {a }}$ 218	$2{ }^{249} 9$	246.3 283	246.0 245°	248.4 252.0	243.8 250 1	240.8 257	240.8 210.4	238.8 217.6	2353.20	233.8 220.0	244.0 230
Sums	$5947 \cdot 2$	$6029 \cdot 6$	6013.3	$5980 \cdot 6$	5984.9	5998.8	5864.4	5729'1	$5726^{\circ} 5$	5692	$5630 \cdot 1$	$5690 \cdot 5$	$5732 \cdot$
Means	$247 \cdot 80$	$251 \cdot 23$	250.55	$249 \cdot 19$	249.37	$249 \cdot 95$	$244 \cdot 35$	238.71	238.60	$237 \cdot 20$	234'59	$237 \cdot 10$	$238 \cdot 84$
Tiurnal Variation	$\} 13 \cdot 21$	$16^{6} \cdot 64$	$15 \cdot 96$	14'60	14.78	15'36	$9^{\prime} 76$	$4 \cdot 12$	4.01	2'61	0.0	$2 \cdot 51$	$4 \cdot 25$
n Visible c Seven m 1 Seventee	urora nutes minu	late.			$\begin{aligned} & \text { days } \\ & \text { Fifte } \\ & \text { rep } \end{aligned}$	inmut	late.			rine	$\begin{aligned} & \text { hin } 1929 \end{aligned}$		

Laike Athabasca-continued.
Abstract of Hourly Observations made during the months of January and February 1844.

Second Declination Magnetometer, 2-inch bar.													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums.	Means. ${ }^{\text {a }}$	$\begin{aligned} & \text { Fortnightly } \\ & \text { Means. } \end{aligned}$
								$217 \cdot 2$	214.0	214.4	二 2	218.55	
218.8	- ${ }_{014}$	221.6	221.0	${ }_{217}^{217 \%}$	$\begin{array}{ll}320.8 \\ 219.0 & 22 \\ 21\end{array}$	$\begin{array}{lll}220 \cdot 0 \\ 217 \\ 20 & \\ 2\end{array}$	223.0 2178 20	$218 \cdot 0$ 2 220 20		219.2	$5250 \cdot 1$	${ }_{218}^{218.55}$	
215.0	$214{ }^{2}$	${ }_{2216}^{216} .8$	${ }_{217}^{217}{ }^{2}$	${ }_{236}^{219}{ }^{2} 0^{\circ} \mathrm{O}$		${ }_{216}^{217} \times 1$		$78{ }^{3}$		$274{ }^{2}$	58.568 .2	219.42	
208.4	$\begin{array}{ll}212.0 & 28 \\ 200 & \\ 20\end{array}$	220 20	226.0	221.0	216.0 2	2400	223.0	223.2	218.0	2110	53897	244:57	
$222^{\circ} 2$	220.0	230.0	234.5	218.5	$19 \cdot 8$	$218^{\circ} 0$	${ }^{105} 0^{\text {a }}$	27.5	$226^{\circ} 0$	228.0	$5380 \cdot 7$	22420	
223.2	221.8	$220 \cdot 0$	$232 \cdot 4$	$232^{\circ} 0$	218.0	$222 \cdot 4$	216.0a	928*	$2280^{\circ} 4$	2206. 2	$5312 \cdot 3$	221.35	$224 \cdot 46$
218.0	216.4	2205.8	${ }^{230}{ }^{\circ}{ }^{4}$	225. 0^{64}	224.4 2	$22^{24} 42$	224.0 230	226.2	2244° 226		5376	${ }^{22244} \cdot 01$	
${ }^{220.0}$	225.2 2	226.4 228.8	${ }_{228}^{226}{ }^{\circ}$		214.2	2	234.2	2270	232. 6	228.0	547991	${ }_{2}^{228 \cdot 30}$	
${ }_{229}^{220.6}$	232.2	${ }_{232}{ }^{28}$	232.4	232.2	233.0	${ }_{259} 20$	$232 \cdot 8$	234.2	230.4	228.0	5806'7	231.95	
228.2	230.0	232.0	233.0	$232 \cdot 2$	228.4	228.7	$230 \cdot 2$	$230 \cdot 2$	229.6	229.0	5538'1	$280 \% 75$	
$223 \cdot 5$	230.0	229.5	$232 \cdot 0$	232.6	$230^{\circ} 2$	$232 \cdot 0$	232.2	$222 \cdot 4$	224.0	235.2	5528.5	$230 \cdot 27$	
231.0	$230 \cdot 0$	$230^{\circ} 0$	234.0	231.0	23300	${ }_{30}^{230.8}$	$228 \cdot 2^{\text {a }}$	${ }_{233}^{232} \cdot 0^{11}$	${ }^{231.8}$	$234 \cdot 0$ 230.4	㐌 $5581 \cdot 1$	${ }_{232}^{235}$	
228.4	${ }_{236.0}^{233}$	${ }_{236.0}^{233}$	${ }_{236}^{234} 0$	2344^{\prime} 235.0 2 2		${ }_{235}^{232} \cdot 0$	232.00°	22050	231.2	$230^{\circ} 0$	$5612 \cdot 4$	23385	
232.6	${ }_{224 \cdot 1}^{236}$	${ }_{20}^{236} 0^{\circ}{ }^{\text {a }}$	${ }_{229}^{23} \cdot 6^{\text {a }}$	$227 \cdot 8^{\text {a }}$	230.0n	$230^{\circ} 6^{33}$	$234 \cdot 4{ }^{\text {a }}$	2460.0	$237 \cdot{ }^{\circ}$	$234 \cdot 2{ }^{\text {a }}$	5546	331.11	
$230 \cdot 0$	229.8	230°	$200^{\circ} 0$	$228 \cdot 0$	$229 \cdot 0$	$226.0{ }^{\circ}$	$229 \cdot{ }^{4}$	$226^{\circ} 0^{\circ}$	$228{ }^{\circ}{ }^{\text {a }}$	$228 \cdot 0$	$\} 5500 \cdot 7$	$229 \cdot 20$	
$229 \cdot 4$	230.0	$227 \cdot 3$	226.2	230.0 g	$229 \cdot 0$	$22^{-2} 0$	$238 \cdot 4^{\text {a }}$	$216^{\circ} 0^{\text {a }}$	206.0^{2}	212.08	5414.0 5517.8	225.58	231.84
229.0	230.8	230.0	${ }_{231}^{231.0}$	${ }^{23180}{ }^{\circ} 0^{4}$	$232^{\circ} 0$	232.0	$223 \cdot 0$	230.8	${ }^{231} 0^{\circ} 0^{\circ}$	${ }_{233.4}$	$5605 \cdot 2$	${ }_{233} 2.55$	
228.4	224.8	${ }_{222}^{225} \cdot 0$	${ }_{226}^{23.4}$	${ }_{226.0}^{218.0}{ }^{2}$	${ }_{234}^{219}{ }^{\circ}{ }^{4}$	${ }_{237}^{236}{ }^{2} 4$	${ }_{225}^{246}$	2	226.0	225.2	5801.4	241.72	
226.4 227 20	228.0	237.3	${ }_{2274}^{226}{ }^{2} 4$	${ }_{240}{ }^{262} 0^{\circ}$	$230 \cdot 0$	232.0	${ }_{230}{ }^{20} 0^{\circ}$	2290	$219^{\prime 5} 5^{\text {be }}$	242.0	$5510 \cdot 3$	228.60	
229.0	228.0	$229 \cdot 2$	$227 \cdot 4$	230.0	231.0	226.0	2311°	234.4	238.0	237-4. ${ }^{\text {a }}$		$230 \cdot 56$	
229.0	232.4	233.0	233.0^{1}	$232 \cdot 8$	$230 \cdot 0$	$232 \cdot 4$	$230 \cdot 0$	234:0	23,448	234.0	5568.9	232.04	
233.2	234.7 23.0	${ }_{231}^{233} \cdot 8$	$231 \cdot 2$ $232 \cdot 2$	$233 \cdot 2$	230.00 ${ }^{230}$	229.2	224.6 204.0	$233^{\circ} 0^{2}$ 217	240.0	${ }_{236} 240$	561198	${ }_{229}^{2311}$	
$232 \cdot 2$	232.0	$231 \cdot 5$	$232 \cdot 2$	228.0	$230 \cdot{ }^{\circ}$								
5195'7	32157	$5246 \cdot 9$	$5232 \cdot 9$	$269 \cdot 5$	5217 - 4	53092	$5178 \cdot 8$	$5236 \cdot 9$	53357	5218.4	126432.0	5268.0	
225.90	$220 \cdot 77$	228.13	$22 \cdot 69$	$229 \cdot 11$	226.84	$230 \cdot 83$	$225 \cdot 17$	$227 \cdot 69$	$231 \cdot 09$	231.23	5497.02	$228 \cdot 04$	
3'01	\% 68	4	$6 \cdot 80$	$6^{\prime} 22$	$3 \cdot 95$	$7 \cdot 94$	2'28	${ }_{4}^{4} \cdot 80$	${ }^{\prime} \cdot 10$	34	-	${ }_{6} 615$	
	$230 \cdot 0$	228.8	$230^{\circ} 0$	224.0 m	228.0	258.0 ${ }^{\circ}$	$988{ }^{\circ} \mathrm{s}$	220.0	$220 \cdot 2$	231.44	$5633 \cdot 0$ 5447	$235 \cdot 96$ 226.97	
219.8	224.0	$230 \cdot 0$	215.2	2. $30^{\circ} 0$	216.4	${ }^{298} 0^{\circ} \mathrm{O}$	$210{ }^{2} 4$	$216^{\prime 6}$	$230^{\circ} 0$				
216.0	$229 \cdot 7$	227.4	223.0	$230 \cdot 9$	$230 \cdot 0$	231.0	231.0	$212 \cdot 6$	214.0	$217 \cdot 2$	$5473 \cdot 6$	$22 \cdot 07$	
$232 \cdot 8$	$255.0{ }^{-1}$	$253.0 \mathrm{~m}^{\text {a }}$	240.8 ${ }^{\text {a }}$	290.0 a	942\%	243.0	246.0	269.8	244.0	248.8	5871.0	${ }^{244} \cdot 62$	
$244 \cdot 0$	246.8	$243^{\circ} 0$	244.0	250°	$2{ }^{245} \cdot 2$	${ }_{241}^{235}{ }^{\circ} \cdot 6$		243.0	244. ${ }_{24}$	$\stackrel{2468}{201.2}$	$5920 \cdot 3$	246.	
$240 \cdot 0$	244.0	241.1	$252 \cdot 8$	253.8	243.2	- 24.6	${ }_{249}^{23} 8$	${ }_{236}^{233}{ }^{23}$	${ }_{252}$	${ }_{250}^{20.6}$	$6028 \cdot 6$	250.94	
${ }_{21}^{245.3}$	${ }^{24540^{\circ}}$	2299.8	248	${ }_{250}^{250} 0$	${ }_{250}^{248}$	248.2	239.0	$253^{\circ} 2$	249.0	251.5	$5966{ }^{\circ} 6$	6 248.61	
24470	${ }_{253} 2.6$	251.4	254.0	253.6	$252 \cdot 6$	251.0	283.0				\} 6033%	1. $251 \cdot 38$	
		$243^{\circ} 0$	243.0	$242 \cdot 0$	$235 \cdot 6^{\text {a }}$	240	$239 \cdot 0$	$243{ }^{\text {8 }}$	$249 \cdot 5 \mathrm{n}$	$248 \cdot 0^{0}$	$5801 \cdot 7$	$7241 \cdot 74$	
242.0	240.0	240.4	$243 \cdot 2$	$242 \cdot 2$	$242 \cdot 0$	$2 \cdot 40 \cdot 6{ }^{\text {a }}$	$240 \cdot 3$	$2 \cdot 9 \cdot 2$	242.4	243×8	$58388^{\circ} \mathrm{C}$	2 243.17	
242.6	242.0	$245{ }^{\circ} 0$	243.2	242.0	$\stackrel{247}{24} \times 2$	254.0 2450	${ }_{237}^{243.80}$	220.0	${ }_{244}^{24.0}$	${ }_{245}^{248}$	${ }_{58580} 58.1$	1.	
242.0	24.0	$2{ }^{244.4}$	${ }_{245}^{24.2}$	242.6	249.04	244.8	${ }_{246}^{234}{ }^{\circ}$	${ }_{247}{ }^{24} \cdot g^{\text {a }}$	$243^{\circ} 0^{\text {a }}$	2524	5950.2	$2248 \cdot 17$	
$243 \cdot 0$	${ }_{238}{ }_{2}^{246} \cdot 0$	${ }_{240}^{249} \cdot{ }^{\circ}$	${ }^{\text {a }}$	240	$243 \cdot 6$	2438	264.0				\} 5900%	$0{ }^{-245} 88$	
					243^{-1}		236.0	${ }_{236} 24.6$	${ }_{2424}^{24.2}$	$240 \cdot 0$	5875.4	4 244.81	
$242 \cdot 0$	$242^{\circ} 0$	24d:3	${ }_{250}^{24.0}$	${ }_{2422^{\circ}}^{24}{ }^{\circ}$	2414	240.6		al $242^{\circ} 0^{\text {a }}$	2 $245 \cdot 3$	$2488^{\circ} 0$	5889.4	$4{ }^{4} 248.89$	9 24277
${ }_{234}^{24.6}$	2,40.4	241.6	${ }_{236}{ }^{250}{ }^{\circ} 0$	2438. ${ }^{24}{ }^{\circ}$	$243 \cdot 8$ 237	244.6 245 2	$224.4{ }^{2}$	${ }^{\text {n }}$ 241.0 ${ }^{\text {a }}$	a 2442^{2}	$243 \cdot 6$ $245 \cdot 6$	5761.4 5813.5		
240.0	$240 \cdot 6$	$241{ }^{\circ} 6$	24.4.0	244.2	$2{ }^{24.4} 0$	${ }_{24}^{24.0}$	${ }_{244}^{244} \cdot 0$	${ }_{246}^{233.2}$	${ }_{246}^{254}{ }^{\circ} 0$	${ }_{246}^{248} \cdot 0$	$\begin{aligned} & 5813.5 \\ & 5844 . \end{aligned}$	9243	
${ }_{240}^{241} \cdot 0$	24040.6	2440.6	240. ${ }^{242}$	234.0	${ }_{2414}^{24.5}$	${ }_{241}^{24.8}$	24410	240			5784.9	24.04	
240.0								214.2	${ }_{247}^{240} 0$	243.4 2450			
241.0	243.0	$240 \cdot 0$	248.4	${ }^{245}{ }^{2}$	24.8	${ }_{20}^{24.0}$	${ }_{230}^{241.8}$	$2440 \cdot 5$	${ }_{260}^{247}{ }^{\circ}$	2550° 260	58788	8	
${ }_{2}^{2+4.4}$	$238{ }^{2}+6$ 229	2400° 224		${ }_{209}^{217 \cdot 8}$	240		$239 \cdot 0{ }^{2}$	d $254 \cdot 0$	${ }^{\circ}{ }^{\circ} 220^{\circ} 0^{\circ}$	248.0	5635	$234 \cdot 81$	
							\%788.	5752.1	5830°	5902.8	139694.		
5733.4	4 5772-3	$5789 \cdot 8$	$8{ }^{5759} 8$	5756	5788.2	5020							
238.89	240'51	$241 \cdot 24$	4 239.99	$239 \cdot 85$	$241 \cdot 17$	241.75	241.17	239.67	$7242 \cdot 92$	245	5820.	$242 \cdot 52$	
4.30	($5 \cdot 9$	-6.65	5 5.40	$5 \cdot 26$	$6 \cdot 58$	${ }^{7} \cdot 16$	6 6.58	$8{ }^{5}$	8.33	11•36	-	$7 \cdot 98$	

[^26]
FORT SIMPSON．

Abstract of Hourly Observations made during the months of April and May 1844，

Dato．	Declination Magnetometer．												
Mean	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	$396 \cdot 0$	354．0	$382 \cdot 4$	398.0	$362 \cdot 4$	376．0	371.7	348.0	352.0	$343 \cdot 5$	334．0	$342 \cdot 0$	$333 \cdot 6$
2	$340^{\circ} 0$	$353 \cdot 6$	358.0	361.4	$377 \cdot 2$	371.0	$371 \cdot 6$	364.0	$348{ }^{\circ} 4$	347.0	3336.9	$3330^{\circ} 0$	$342 \cdot 0$
3	354.6	344.0	358	3600°	4500°	376．6	382.0	$3788^{\circ} 0$	346.0	345.0	$341 \cdot 6$	${ }^{338} .8$	342.4
$\stackrel{4}{5}$	${ }^{399}{ }^{\prime} 6$	$368{ }^{\circ} 0$	${ }^{368.0}$	368.4	368.0	351.0	362.0	360 ＇8	361.0	353.0	$348^{\circ} 6$	$346^{\circ} 0$	348.0
${ }_{6}^{5}$	553.4	358．8	－354．0	354．0	361.5	363．0	363.0	352.0	354.0	375.0	$352 \cdot 0$	$339 \cdot 8$	342.0
8	$353 \cdot 2$	－	358.4	358.4	359.8	362.8	356.0	326．0	346.0	354.0	347.0	$349 \cdot 0$	349.8
9	$357 \cdot 1$	$357 \cdot 0$	361.5	362.0	362.8	$305 \cdot 0$	$364 \cdot 8$	365＊0	358.0	352．5	354．0	353.0	$355 \cdot 2$
10		$395 \cdot 8$	379.8	$397 \cdot 8$	$370 \cdot 8$	$368^{\circ} 0$	${ }^{368.0}$	$362^{\circ} 0$	$358^{\circ} 0$	3515	$355 \cdot 5$	354.0	${ }^{352} \cdot 1$
11	－ $363 \cdot 1$	374.0	$380{ }^{\circ}$	372.0	374.6	374.0	371.0	364．8	${ }^{365} 5^{\circ} 0$	${ }^{363} 3^{\circ} 0$	$356{ }^{3} 0$	$3588^{\circ} 2$	362.0
13	364.7 3684 8	${ }_{390}^{372.8}$	376	372．4	3777° 377	373.0 378.0	364.0 376.8	374.0 375.0	$368^{\circ} 0$ $371 \cdot 2$	3622° 369	$360 \cdot 5$ 360°	${ }^{3611^{\circ} \mathrm{b}}$	364．4
14	08	－	－	－		－	－	\checkmark				－	－
15	$380 \cdot 8$	S48．0	4590	421.0	3888.2	385.0	382：0	380.4	374.0	$3688^{\circ} 0$	364.0	${ }^{362.0}$	$366{ }^{\circ} \mathrm{C}$
17	$44^{-1}{ }^{\circ}$	444.0	$460^{\circ} 0$	4880		${ }^{4015}{ }^{4}{ }^{\circ} 5$	3599° 449°	378．4	378.0 3750	373.2 362.0	$372 \cdot 6$ $308 \cdot 0$	${ }_{3}^{363.0}$	${ }_{348} 36.2$
18			388.0	331.0	3918	$303 \cdot 0$	383．5	380.9	378.0	374.0	$364 \cdot 8$	374.2	372.0
19	386.0	396.0	387.6	3392	386.8	3899.2	399.5	392.0	388.4	384.8	${ }^{382} \cdot 6$	378.4	$378 \cdot 1$
${ }_{21}^{20}$	${ }^{394} \cdot 6$	416.4	$410 \cdot 0$	398.2	$394 \cdot 2$	301.0	$388^{\circ} 4$	301.0	384.0	381.0	${ }^{377} \cdot 5$	374．8	${ }^{378^{\circ} 4}$
	$400 \cdot 8$		401.8	308.6	398.5	383.6	305＇2	$386^{\circ} 1$	389．8	385.0	382．6	379．8	$380 \cdot 3$
吿 23	42.20	$400 \cdot 6$	338.0	416.0	394.4	$388{ }^{\circ} 0$	382.0	380.0	378.6	374.0	371.9	$369 \cdot 2$	$374: 3$
－${ }^{24}$	385.8 414.2		389．8	392.0 520.2	393．2	390.0	${ }^{395} 5^{\circ} \cdot 0$	$388{ }^{\circ} 0$	${ }^{385}{ }^{\circ} 8$	380	378.0	380.0	$374 \cdot 0$
䃘 ${ }^{26}$	4482	480	423.6	${ }^{526}{ }^{2}$	${ }^{4393}$	4700% 470	40777° 432.0	4199．8	${ }_{378}{ }^{368}$	376	${ }_{3784}^{38.2}$	385．4	$376 \cdot 0$ 399
E－ 27	378.4	5080	${ }^{399} \cdot 0$	$417 \cdot 8$	403.0	398.0	$405^{\circ} 0$	$408 \cdot 6$	394.0	404.4	$386 \cdot 8$	$3366^{\circ} 0$	376.0
$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 306.0 \\ & 400_{4} \end{aligned}$	$\begin{aligned} & 406 \cdot 0 \\ & 397 \cdot 8 \end{aligned}$	$500 \cdot 0$ 402.2	44.0	$\begin{aligned} & 485 \cdot 3 \\ & 408 \cdot 8 \end{aligned}$	$\begin{aligned} & 426.0 \\ & 402.2 \end{aligned}$	$\begin{aligned} & 40-9 \cdot 0 \\ & 400.0 \end{aligned}$	$\begin{aligned} & 394 \cdot 0 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 390 \cdot 0 \\ & 385 \cdot \mathrm{~T} \end{aligned}$	$\begin{aligned} & 385 \cdot 0 \\ & 360^{\circ} 7 \end{aligned}$	$\begin{aligned} & 380 \cdot 0 \\ & 377 \cdot 0 \end{aligned}$	$\begin{aligned} & 352.6 \\ & 380 \cdot 0 \end{aligned}$	$\begin{aligned} & 390 \cdot 2 \\ & 334 \cdot 8 \end{aligned}$
Mcans	386.02	$382 \cdot 72$	399.03	397.97	398×22	388•43	385＇63	$380 \cdot 75$	369｀52	367－13	363：13	$300 \cdot 46$	$361 \cdot 9$
Diurnal Variation	$\} 25.56$	$22 \cdot 20$	$38^{\circ} 57$	$37 \cdot 51$	$35 \cdot 76$	27．97	$25 \cdot 17$	$20^{\circ} 29$	$9 \cdot 06$	6.67	$2 \cdot 67$	$0 \cdot 0$	1.51
1	406.4	309：8	413.5	396.0	410.0	407.0	415.0	4．04．0	396.6	394．6	359.0	386.0	884.0
2		395.8	424.0	414.2	$4113^{\circ} 6$	$414^{\circ} 0$	414.5	392.0	403.6	41010°	390.0	3301.0	384.0
3	397.	405.2	$404 \cdot 6$	4260	$455^{\circ} 0$	44．0	408.4	4060°	399.0	3886.2	3×7.5	$386^{\circ} 0$	$390 \cdot 0$
$\stackrel{4}{5}$	${ }^{398} \cdot 0$	$400^{\circ} 0$	404.0	411.0	419.2	$411 \cdot 8$	449.0	40.0	$401 \cdot 2$	${ }^{396} 5$	${ }^{392} \cdot$	386.0	${ }^{386} \cdot 7$
6	408.8	$419 \cdot 6$	$402 \cdot 8$	$407 \cdot 8$	$425 \cdot 4$	426.0	419.0	$402 \cdot 0$	$401 \cdot 6$	396.6	$393 \cdot 9$	$339 \cdot 8$	$390 \cdot 8$
7	415.8	$4100^{\circ} 0$	$411 \cdot 6$	418.0	$421 \cdot 6$	430.0	412.2	$417{ }^{\circ}$	402.0	398.0	397.0	$3{ }^{392 \cdot}$	$300 \cdot 2$
8	$4080{ }^{\circ} 4$	40.0	434.0	435.0	429.6	$439^{\circ} 0$	4．18．01	$172 \cdot$	404.0	$388{ }^{\circ} 9$	391.5	$388{ }^{\circ} 4$	$334 \cdot 0$
$1{ }^{9}$	${ }_{397}^{406}$	40310	$4417 \cdot 2$	4140	${ }_{421} 4.4$	434.0	${ }_{413.0}^{43.6}$	${ }_{40}$	4	${ }^{4} 494.0$	400%	${ }_{393}{ }^{4016}$	394.0 $401 \cdot 2$
11		412.0	$412 \cdot 4$	$433 \cdot 2$	420.0	417.0	$416^{\circ} 0$	$412 \cdot 2$	4179.6	412.0	$400 \cdot 8$	386.4	$380 \cdot 2$
13	409．0	4， 2.0	471.8	428.0	$421 \cdot 2$	418.0	172．0	$40{ }^{-1} 0$	407.0	$400 \cdot 5$	$400 \cdot 0$	3978	$401 \cdot 6$
14	$410^{\circ} 0$	427.0	44.00	$448{ }^{\circ}$	428.0	$4310 \cdot 0$	den ${ }^{0}$	414.8	$412 \cdot 2$	$410 \cdot 0$	410.0	${ }^{3} 3^{4} 5^{\circ} 6$	$417 \cdot 5$
15	4	423．0	43	$4381{ }^{4}$	4	433．8 4	${ }^{425}{ }^{\circ}$	480.0 483.1	4.14 .0 414.6	$417{ }^{\circ}$	4	411．0	413．0
17	416.0	42.11	4．9．0	4330°	4380	$4{ }_{4} 5^{2} 0$	431.0	426.0	44×0	$4710^{\circ} 0$	$4{ }^{4} 90$	4110	$406 \cdot 0$
18	$417 \cdot 2$	$422 \cdot 6$	127.0	$428^{\circ} 0$	$425 \cdot 8$	432.0	$420 \cdot 8$	4：2：${ }^{\prime} 10$	41075	411.0	412：5	411.0	4 J 0.9
19 20	424.8	$422 \cdot 0$	124.0	426.0	4：30．0	$429 \cdot 0$	431.0	429.0	424．0）	419.0	418.0	412．0	408.0
21	419.0	$426^{\circ} \cdot$	$4410 \cdot 3$	4410	437．0	439．0	$434 \cdot 2$	430.0	429．0	404．2	413.0	41950	$415 \cdot 9$
\％	－	$4900^{\circ} 0$	$500 \cdot 8$	4560	${ }^{4} 44^{\circ} 6$	457.0	$4386^{\circ} 0$	426.0	417%	$4166^{\circ} 0$	412.8	$4133^{\circ} 0$	$80 \% .4$
ค）${ }^{24}$	439	4	納 ${ }^{8}$	${ }_{4}^{43} \cdot 0$	433.2	4424	$415{ }^{415}$	438.0	417.0	140\％${ }^{2}$	${ }_{421}^{41 \%}$	${ }_{414}$	410.0
g 25	Sco	rin－diay	iserva	\％us．	－	－	－	－	－	－	－	－	
	二	二	－	＝	ב	二	二	二	二	二	二	－	二
	－	－	－	－	－	－	－	－	－	－	－	－	－
$\stackrel{29}{30}$	二	二	－	二	－	－	－	－	二	－	－	二	－
31	－	－	－										
Sums	$414 \cdot 01$	$415 \cdot 14$	$421 \cdot 88$	$427 \cdot 86$	133．21	428＇80	$419 \cdot 25$	$115 \cdot 30$	$409 \cdot 66$	195.08	103．69	$400 \cdot 92$	100：52
Diurnal	\} 24.19	${ }^{14} \cdot 69$	$22^{\prime} \cdot 36$	$27^{\prime} \cdot 34$	32＇ 69	$25^{\prime} \cdot 28$	$18^{\prime} \cdot 73$	14．78	$0 \cdot 14$	${ }^{\prime} \cdot 56$	$3 \cdot 17$	0． 40	${ }^{\prime} \cdot 0$

a Visible aurora．

FORT SIMPSON．
Abstract of Hourly Observations made during the months of April and May 1844.

LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843.

Date． Gött． Mean Time．	Bifilar Magnetometer．												
	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	－	－	－	－	－	－	－	－	－	－	－	－	－
3	－	－	－	二	－	二	二	二	二	二	－	二	－
${ }_{5}^{4}$	－	二	－	－	－	－	－	－	－	－	－	－	－
6	－	－	－	－	－	－	－	－	－	二	二	－	－
8	＝	二	二	－	－	－	＝	－	二	二	＝	－	二
${ }^{9}$	二	二	二	－	－	二	－	－	－	二	二	二	＝
11	－	－	－	－	－	－	－	－	－	－	－	－	－
13	－	二	－	－	－	二	－	二	二	二	二	－	二
14.	二	二	二	二	二	－	－	－	－	－	二	－	二
$\bigcirc \quad 16$	$77 \cdot \sigma^{\text {a }}$	944． $6^{\text {a }}$	$277 \cdot 4^{\text {a }}$	294.8	97\％${ }^{\text {g }}$ 9	273.0	$287 \cdot 3$	275.6	$285 \cdot 7$	283.9	$289 \cdot 3$	284.3	$287 \cdot 6$
¢ 17	${ }_{231 \cdot 3^{26}}$	147．6 ${ }^{\text {a }}$	115．3	261.2	${ }_{223}^{253.1}$	${ }_{26}^{261.8}$	${ }_{26}^{256} \cdot 9$	${ }_{271}^{28 \cdot 9}$	${ }_{260}^{280} 1$	${ }_{278}^{278}$	$290 \cdot 1$	2926	${ }^{285} 5$
年 19	268.7	$273 \cdot 3$	270.1	$265 \cdot 1$	$267 \cdot 1$	2574	$275 \cdot 3$	$279 \cdot 2$	250.7	${ }_{258}{ }^{4}$	267.0	263.1	276.9
20b	22.6		$266 \cdot 1$	${ }^{260 \cdot 1}$	$265 \cdot 9$	$260 \cdot 4$	258.6	$260 \cdot 9$	$257 \cdot 3$	$262 \cdot 3$	258.6	$252 \cdot 1$	$267 \cdot 2$
－1 21	$272 \cdot 3$	268.1	$270 \cdot 9$	268.5	$260 \cdot 3$	264.6	$269 \cdot 8$	268.9	$268 \cdot 9$	$271 \cdot 9$	277.5	$277 \cdot 2$	$273 \cdot 8$
23	$209 \cdot 6$	$265 \cdot 6$	$262 \cdot 7$	255.3	261.6	266.7	265.0	253.7	2473	$267{ }^{1} 1$	$276 \cdot 9$	$261 \cdot 6$	263.4
24	$214 \cdot 1$	159.6 237	217．	${ }_{291}^{233} \cdot 3$	$244 \cdot 2$	$227 \cdot 5$	$239 \cdot 0$	236.8	$233 \cdot 2$	$229 \cdot 7$	237.3	$240 \cdot 3$	$236 \cdot 6$
25 26	${ }^{229} 11 \cdot 68^{\text {a }}$	208．${ }^{237}$	${ }_{217}^{231} \cdot$	2321 223		227.9 2078	$222 \cdot 5$ 230	${ }_{207}^{227}{ }^{1}$	${ }_{230}^{232 \cdot 5}$	2355 221.7	${ }_{2}^{240 \%}$	${ }_{236}^{239} \cdot{ }^{4}$	232．88
27	$145^{\circ} 1^{18}$	6．9．4 4^{4}	211.0	206.5	218.9	213.7	216.7	218.7	$209 \cdot 4$	210.5	221.4	${ }_{222}{ }^{2} 6$	$217 \cdot 3$
28	$160^{\circ} 2$	206.1	212.8	$214 \cdot 1$	218.4	$212 \cdot 3$	$225 \cdot 4$	229.7	$231 \cdot 3$	$227 \cdot 2$	$257 \cdot 8$	248.7	241．8
39 30	$248 \cdot 1$	195.0	$230 \cdot 1$	276．7	274.3	$280 \cdot 6$	$279 \cdot 6$	$279 \cdot 9$	282.0	268.6	276.0	$281 \cdot 9$	$276 \cdot 9$
31	188.6	175\％s	$248 \cdot 1$	${ }^{279} \times 7$	268.3	$270 \cdot 0$	$262 \cdot 3$	$261 \cdot 1$	$261 \cdot 5$	264．9	258.8	263.0	$259 \cdot 3$
Sums	$2679 \cdot 1$	2701.5	3012．4	3185＇8	3253.0	3226.9	$3292 \cdot 2$	3294．8	3273.0	3294＊8	$3413^{\circ} 0$	${ }^{386} 1$	$3353 \cdot 7$
Means	206.08	207•81	231.72	245.06	$250 \cdot 23$	248.22	$253 \cdot 25$	$253 \cdot 45$	251.77	$253 \cdot 44$	262．64	$260 \cdot 47$	$257 \cdot 98$

[^27]LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843

Bifilar Magnetometer．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Moans．	Fortnightly Means．
－	－	－	－	－	－	－	－	－	－	－	－	－	
二	二	二	－	二	二	－	二	二	二	－	二	二	
二	－	－	－	－	－	二	二	二	二	－	－	－	
－	－	－	－	－	－	－	－	－	－	－	－	－	
－	二	二	－	二	二	－	－	－	－	－	＝	二	
二	－	＝	－	二	－	－	－	二	＝	二	二		
－	－	二	二	－	－	－	－	二	二	二	－	二	
－	－	－	－	－	－	－	二	二	二	－	－	二	
				－				$295 \cdot 1 \mathrm{~A}$	$204 \cdot 8$		608.9	202．97	254．07
279.9	${ }^{300} 1$	${ }^{300 \cdot 6}$	$280 \cdot 3$	275	203.5	${ }^{2645} 0$	$210 \cdot 8$	236.5	$227 \cdot 3$	234．59	$6286 \cdot 2$	${ }^{261 \cdot 92}$	
${ }_{266}^{282} \cdot 1$	${ }_{260}^{265}$	${ }_{2688^{\circ} 6^{24}}$		${ }_{311}^{254} \cdot{ }^{\text {a }}$	209\％${ }^{2}$	2739．4n ${ }^{\text {a }}$		254.5 266.1	$263 \cdot 7$ $260 \cdot 0$	${ }_{278 \cdot 7}^{256}{ }^{\text {a }}$	$6115 \cdot 3$ 6402	$254 \cdot 80$ $266 \cdot 77$	
276.0	27.3	${ }^{2685} 7$	$240 \cdot 9$	223.7	277 ${ }^{\circ}$	$2810 \cdot 2$	264.2	${ }_{260} 0^{\circ} \mathrm{Q}$	143.8	\％／8＊${ }^{\text {c }}$	6199.8	258.32	
$270 \cdot 3$	$273 \cdot 1$	$265 \cdot 3$	2693	$239{ }^{\circ} 6$	$272^{\circ} 0$	$2{ }^{259} 9$	271.7	$268 \cdot 3^{\text {a }}$	2741	$271 \cdot 9$	－	$263 \cdot 27$	
273.0	272．4	2741	${ }^{273}{ }^{\prime \prime} 7$	263.1	${ }^{260}{ }^{\circ}$	2711	2725		$273 \cdot 3$		$6490 \cdot 8$	$270 \cdot 45$	
250.3	252.4	232.6	236.7	239.6	240.0	230.1	247.3	244.4	240．3	${ }_{226}^{26.1}$	6062.7	252.61	
${ }^{239} \cdot{ }^{23} \cdot 6$	$242 \cdot 3$	${ }_{234}^{241} \cdot 1$	${ }^{23} 23.9$	${ }_{926}^{24.7}$	${ }_{230}^{246.8}$	234.8	$200 \cdot 4$	${ }_{182} 22.2$	${ }_{220}^{222 \cdot 5}$		$6483 \cdot 1$ 53293	$228 \cdot 46$ 22.05	
${ }_{240}^{235}$	230．88	${ }_{236}^{234 \cdot 9}{ }^{\text {a }}$		${ }_{230}^{29.6}{ }^{\text {a }}$	${ }_{228}^{23} \cdot 7^{\text {a }}$	178.9	16484	$180 \cdot{ }^{1}$	${ }^{20}{ }^{20} \cdot 7_{18}^{\text {a }}$	$100^{4} 4^{\text {a }}$	$5329 \cdot 3$ 5050	222．05	
216.8	215.1	$216 \cdot 3$	216.1	$222 \cdot 1$	231.5	216.7	216.1	$214.7 n$	$187 \cdot 9 \mathrm{ar}$	217×7	$4946 \cdot 2$	$206 \cdot 09$	
238.7	244.0	251×4	244	241.8	$24.3 \cdot 84$	$241{ }^{-2 "}$	217＊1＂				5602＇2	$233 \cdot 42$	
283.7	$2 \mathrm{SS} \cdot 5$	$283 \cdot 5$	$283 \cdot 6$	$272 \cdot 6$	$280 \cdot 8$	286.6	275.4	$2{ }_{292}^{27}$	${ }_{163} 72$	${ }_{156}^{258} 4$	6246.7	260．28	234．93
$275 \cdot 3$	268 ＊ 8	266.2	$268{ }^{\circ} 0$	$278{ }^{\circ}$	2513^{3}	223.6	263.5	2576	$252 \cdot 3$	2517	6109 ＇8	254.67	
$3383 \cdot 9$	3336.7	3341.0	3294．8	3312：3	3340＇3	3148.8	2881．3	$3072 \cdot 4$	289149	$2979 \cdot 6$	－	－	
$258 \cdot 76$	$256 \cdot 67$	$257 \cdot 00$	$253 \cdot 45$	$254 \cdot 79$	$256 \cdot 95$	$242 \cdot 22$	221.87	$236 \cdot 34$	$222 \cdot 68$	229•20	－	$245 \cdot 97 \mathrm{~d}$	

${ }^{4}$ Mean of the Hourly cusve（from which the 20th is excluded）24A．68． Increasing numbers denote increase of Horizontal Force．Including Octover 20th，

Lake Athabasca－continued．
Abstract of Hourly Observations made during the months of November and December 1843.
${ }^{\prime}$ Lake Amimasasca－continued．
Abstract of Flonaly Observations made during the inonths of November and December 1843
$175 \cdot 05$
$170 \cdot 76$

Date． Gött． MeanTime．	Horizontal Force Magnetometer．												
	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	252	$239 \cdot 0$	$229 \cdot 5$	252.0	256.4	257.0	$252 \cdot 1$	24773	246.6	$256 \cdot 3$	253.3	24.6	$251 \cdot 4$
2	$247 \cdot 4$	$255 \cdot 1$	$249 \cdot 3$	$246 \cdot 3$	$245 \cdot 7$	$241 \cdot 1$	$234 \cdot 2$	$239 \cdot 6$	$242 \cdot 1$	$237 \cdot 9$	244.6	2447	266.3
${ }_{4}^{3}$	129．9	2114	$232 \cdot 4$	233 $23.0{ }^{6}$	$237 \cdot 3$ 247	$238 \cdot 9$ ${ }_{214} \cdot 3$	243.2	${ }_{243}^{2315}$	${ }_{241}^{229}{ }^{\circ} 7$	230.8 210.7	2313 237	${ }_{24}^{228} \cdot{ }^{2} \cdot 1$	$232 \cdot 3$ 2415
5			02		At For	t Chipe	vyan．						
6	156.8	218．2	225.0	256.5	$267 \cdot 1$	$258 \cdot 4$	260.0	255.4	255.6	$260 \cdot 1$	263.3	264.9	$251 \cdot 3$
7	$233 \cdot 8$	246.9	$231 \cdot 9$	$234 \cdot 6$	233.0	$234 \cdot 1$	$2336 \cdot 9$	2．27－1	$237 \cdot 5$	$239 \cdot 2$	234.6	$234 \cdot 9$	237.9
8	$222 \cdot 9$	$217 \cdot 3$	$207{ }^{20.4}$	$225 \cdot 1$	218.3	$231 \cdot 6$	$232 \cdot 4$	$228 \cdot 6$	$233 \cdot 0$	${ }^{226}{ }^{2} 1$	22213	238.4	$238 \cdot 9$
10	207.5 219.6	238.6 2206	24.9 2.3 2.6	236.7 209	234.5 204.3	${ }_{20}^{206}{ }^{214} 6$	${ }_{2108}^{216}{ }^{\circ}$	$217 \cdot 7$	$213 \cdot 5$	${ }_{2015}^{217 \cdot 1}$	${ }_{207}^{221.0}$	$221{ }^{2} 6$ 214.3	${ }_{215}^{216.8}$
11	185．5	203.0	$\stackrel{2074}{20.4}$	209．8	2113.3 213	2104．6	$198{ }^{20} 4$	20.4	20400	${ }_{216.5}^{215 \cdot 5}$	2076 2065	$\xrightarrow{205}$	208.4 208
12	－20．0	－209．0	－208． 5	1914	At For	t Chiper	wyan．	$206 \cdot 0$	$200 \cdot 4$	$187 \cdot 9$	206.0		
14	202．2	198．7	2190.9	${ }_{207}^{194} 4$	190 197 1	1780° 219.4	194．4	206．0	${ }_{199} 20.4$	$197 \cdot 9$	$206 \cdot 0$ $200 \cdot 3$	203.9 197 1	198．4
15	209%	189.5	2110.9	176%	$208 \cdot 3$	211.6	2067	$199 \cdot 2$	204.0	212.9	21090	$210 \cdot 4$	$204 \cdot 3$
16	$207 \cdot 6$	2017	$199 \cdot 9$	213.5	2066°	20.4	$195 \cdot 8$	195.9	198．2	198．9	$242 \cdot 0$	$210 \cdot 3$	$208 \cdot 5$
17	$201 \cdot 3$	$195 \cdot 5$	$221 \cdot 3$	197＊6	198.9	$197 \cdot 3$	$197 \cdot 6$	199.9	$195 \cdot 7$	$197 \cdot 9$	$203 \cdot 2$	198.7	$197 \cdot 1$
18	194．4	$197 \cdot 2$	199.0	197.0	194．8	1961	187＇2	$189 \cdot 9$	188.2	$200 \cdot 7$	197.0	199.5	$201 \cdot 7$
19			$101 \cdot 3$	$213 \cdot 0$	${ }_{21}$	t Chipe	wyan．			$193 \cdot 3$			$205 \cdot 8$
${ }_{21}^{20}$	$202 \cdot 1$	203.0	2015	20176	2025	2014	190.3	194.1	1993	144.4	197.8	$204 \cdot 4$	$200 \cdot 4$
－ 22	198.2	178.1	2020	118.0	196.8	1956	192．7	1994	198.9	$201 \cdot 3$	203.0	198．8	$210 \cdot 3$
ค ${ }^{\text {ค }}$	191.6	$193.4{ }^{4}$	$190 \cdot 6{ }^{60}$	193.7	195.2	196.2	188.2	$183 \cdot 1$	$188 \cdot 2$	188.9	192.0	191×7	195.4
－${ }_{25}$	$185 \cdot 2$	1818.8	185.4	${ }_{187} 18$	190.0	1886．${ }^{186}$	187 184 1	${ }_{185} 188.4$	$187 \cdot 3$ 182.7	186．0	1866° 186.9	${ }_{197}^{191} 7$	191．4
出 26					At For	t Chiper	wyan．						
－ 27	$189 \cdot 8$	181.0	$187 \cdot 4$	185.7		184.0	$182^{\prime} 9$	$185 \cdot 4$	184.6	$186^{\circ} 6$	185．4	$187 \cdot 9$	189.0
28 29	185.2 177	$186 \cdot 0$ $1 / 41 \cdot 6^{2}$	$18{ }^{184}{ }^{\circ}$	$185 \cdot 1$ $165 \cdot 4$	18.7 165%	183.9 187	$175 \cdot 9$ $1 \times 8 \cdot 3$	1884.0	181.5 190.9	1866° 19100	${ }_{186}^{18.1}$	$183 \cdot 9$	$190 \cdot 6$ 187 1
30	$180 \cdot 8$	$182 \cdot 6$	181＇4	$150 \cdot 3$	132.0	182.0	$171 \cdot 2$	175.0	171.9	1693	168． 9	155	$177 \cdot 1$
Sums	4965＇4	5022．4	$5109 \cdot 9$	5168．6	5132．2	7100＇3	511．6 3	5127•3	$5132 \cdot 6$	515154	$5187 \cdot 6$	3237	5257
Means	198．62	$200 \cdot 90$	20140	$206{ }^{\text {＇66 }}$	$2015 \cdot 29$	$207 \cdot 61$	204．37	$295 \cdot 09$	$305 \cdot 30$	$206 \cdot 62$	$207 \cdot 50$	$209 \cdot 49$	$210 \cdot 2$
Differences	4.59	6.87	10：37	12．63	$11 \cdot 26$	13．58	$110 \cdot 54$	11．06	11•27	12．59	$13 \cdot 47$	$15 \cdot 46$	$16 \cdot 26$
$\frac{\Delta \mathrm{X}}{\mathrm{X}}$－$\}$	－001629	$\cdot 003439$	－003681	$\cdot 004484$	＇003097	－004881	－003742	$\cdot 003024$	－004001	－004469	－004782	－005488	005772
Nov． 30									These th	ree ob	rvatio	are re	eated
Dec． 1	168．1	1534	$174 \cdot 9$	1：8．1	176.8	$176 \cdot 5$	170．4	168.8	$170 \cdot 6$	$172 \cdot 0$	174．7	173．3	$181 \cdot 9$
	141.8	$130 \cdot 9$	88^{6}	68.8	136.4	$178 \cdot 9$	184’1	$181 \cdot 6$	178．4	177＊2	176.7	175.9	174．6
3 4	167.4	168.4	${ }^{169 \cdot 1}$	$170 \cdot 1$	1695	169.4	169.9	$171 \cdot 1$	174． 6	$175 \cdot 4$	177.9	181．3	$185 \cdot 9$
5	$171 \cdot 1$	$172 \cdot 8$	$169 \cdot 4$	184.7	178.2	175.7	174＊2t	$176 \cdot 3$	174.6	$169 \cdot 0$	$175 \cdot 8$	174＇2	$174 \cdot 8$
${ }_{7}^{6}$	127.1	196．5	1718	＋185．7	186.3	181.9	177.0	$179 \cdot 2$ 178.7	188.9	$18{ }^{186}{ }^{7}$	$192 \cdot 2$	$1792 \cdot 4$	190：3
${ }_{9}^{8}$	187.3	184.0	$157 \cdot 5$	$\stackrel{1518}{158}$	188.7	186.9	${ }_{185}^{16.8}$	1688 182.9	${ }_{185} 18.8$	${ }_{187}{ }^{201}$	188．3	193.8	192．3
10					${ }^{1} \mathrm{t}$ For	t Chiper	vyan．						
11	379.6	169.1	$179 \cdot 3$	178.6	163.0	164．2	$176 \cdot 4$	175.4	$169 \cdot 8$	165.2	184.2	182.0	$190 \cdot 9$
12	$165 \cdot 2$	$179 \cdot 0$	$171 \cdot 4$	174．6	$170 \cdot 6$	166.4	178．4	187.4	$177 \cdot 9$	$191 \cdot 7$	189.2	193.4	$199 \cdot 4$
13	173．4	170.4	168.3	1871	171.4	$168^{\prime} 1$	$165{ }^{\circ} 8$	${ }^{158.6}$	$162 \cdot 5$	$155 \cdot 5$	171.4	183.4	$170 \cdot 8$
14	$143 \cdot{ }^{\text {n }}$	$113 \cdot 3^{\text {a }}$	$148 \cdot 7$	$15+1$	159\％1	158.1	157.8	158.7	$160^{\circ} 7$	157.9	161.0	164.4	164．2
15	$165 \cdot 7$	31626	$160 \cdot 6$	151.4	$1150 \cdot 7$	178.0	${ }^{169.5}$	165.4	160.7	${ }^{165 \%} \cdot{ }^{\circ}$	107.3	$16{ }^{165} \cdot 6$	168.5
16	$167 \cdot 3$	168.5	$169 \cdot 1$	171.6	${ }_{\text {A }} 169.8$	169．0	163.6	103.8	$166 \cdot 4$	167.5	164.7	$165 \cdot 2$	$164 \cdot 2$
－18	$161 \cdot 2$	165.2	$162 \cdot 9$	168.0	$196 \cdot 3$	1720	171.0	165	$169 \cdot 4$	17．0．3	172．2	$176 \cdot 1$	$174 \cdot 2$
定 19	$107 \cdot 5$	$162 \cdot 8$	163.4	164.2	1688.7	170．2	$164 \cdot 2$	162.4	$172 \cdot 3$	$166 \cdot 6$	165.7	175．8	$175 \cdot 2$
Q $\{20$	155.6	154．8	$169 \cdot 3$	$179 \cdot 3{ }^{\text {e }}$	$182 \cdot 2$	180.0	$179 \cdot 2$	178.4	$180 \cdot 6$	182.0	183.1	$180 \cdot 2$	$178 \cdot 7$
：$\{21$	$168 \cdot 7$	11376	$170 \cdot 7$	$170 \cdot 4$	$167 \cdot 1$	169.8	164.0	163.0	$166^{\circ} 3$	165.8	168．6	168.4	$170 \cdot 7$
定 22	173.0	177.1	176.8	$170 \cdot 8$	$169{ }^{4} 4$	169.0	167.6	173：3	$182 \cdot 3$	173.9	175＇3	$173 \cdot 8$	172．2
E－ 23	164.0	$164 \cdot 8$	$166 \cdot 1$	166.9	11647	1655	163.7	162\％	$166 \cdot 9$	$108 \cdot 9$	172.0	175＇2	$175 \cdot 7$
		－	二	－	${ }_{\text {At }} \mathrm{F}$ For	t	wyyn．		－				
26	$169 \cdot 3$	$173 \cdot 7$	$187 \cdot 3$	187×3	181.5	$184 \cdot 3$	181.0	$178 \cdot 1$	174．7	178.8	$180 \cdot 0$	$181 \cdot 5$	182.5
27	148． $0^{\text {a }}$	$169 \cdot 8$	187.0	183.0	130.0	170＇4	167.0	158.6	18：3 8	178．5	180.7	178．0	180.0
28	174.7	$175 \cdot 1$	164.6	119．6	$199 \cdot 1$	2004	$179 \cdot 6$	$180 \cdot 6$	$181 \cdot 3$	$180^{\circ} 7$	183.3	1876	$185 \cdot 3$
29 30	176.5 $170 \cdot 4$	$173 \cdot 6$ 107	$179 \cdot 3$ $102 \cdot 8$	183.0 167	183.8 165.4	${ }_{163.1}{ }^{177}$	173.1	$169 \cdot 4$ $100 \cdot 0$	16.5	$166 \cdot 8$ 760.2	19， 16.3	${ }_{161} 17.8$	174.2
31					At For	t Chipe	wyan．						
Sums	$4117 \cdot 9$	$4150 \cdot 7$	$4190 \cdot 8$	$4140 \cdot 9$	4321.7	4847＊6	4291.3	4271 4	$4333 \cdot 3$	1349.5	4441.5	455．6	4463＇8
Mcans	$164 \cdot 72$	$166^{\circ} 03$	167．63	16564	172．87	$173 \cdot 90$	171.65	170.86	173． 33	173.98	$177 \cdot 66$	178.22	$78 \cdot 55$
1 ifferences	84	15	10.75	8.76	15.99	$17 \cdot 02$	$14 \cdot 77$	13.98	16.45	$17 \cdot 10$	20.78	$21 \cdot 34$	$1 \cdot 6$
$\Delta \mathrm{X}$ X $\}$	－0027S3	－003248	－003816	$\cdot 003110$	$\cdot 005676$	－006042	＇005243	$\cdot 004963$	．005840	＇006070	－007377	－007576	$\cdot 007693$

Horizontal Force Magnetometer．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Means．	$\begin{aligned} & \text { Fortnightly } \\ & \text { Means. } \end{aligned}$
$252 \cdot 3$	251.0	$254 \cdot 6$	286.9	$264 \cdot 4$	268.0	252.0	$246 \cdot 6$	$219 \cdot 4^{\text {a }}$	268.7	$249 \cdot 1$	$6026 \cdot 3$	$251 \cdot 10$	
	250.6 235 20	${ }_{238}^{246} \cdot 1$		${ }^{2355}$		215＊．9	188.8 234 23	$160^{\circ} 0^{\text {a }}$	$195^{\circ} 9^{\text {a }}$	$117^{\circ} 9^{\text {a }}$	5534.5	${ }^{230 \cdot 60}$	
242.4	241.1	$248 \cdot 6$	248.6	$243 \cdot 3$	${ }^{243} \cdot 6$	242.9	236.8		Sundar．			231	
$252 \cdot 8$	$257 \cdot 9$	$256 \cdot 3$	257.6	$257 \cdot 6$	$255 \cdot 8$	253.5	$246 \cdot 6$	239．9	230.4 248	10.9 22.60	5979•1	$249 \cdot 13$	
$239 \cdot 1$	2413	234.8	$238{ }^{\circ} \cdot 0$	$230 \cdot 8$	231.0	232.0	229.5	236.3	$235 \cdot 8$	$233 \cdot 3$	$5643 \cdot 3$	${ }_{235} 244$	
237.3	${ }^{243}{ }^{24} 8$	249.0	${ }^{235}{ }^{23}{ }^{\circ}$	${ }^{236} \cdot 1$	948．0	8888．9	237.8	${ }^{203} \cdot 6$	$169 \cdot 6$	139.1	$5363 \cdot 8$	228．49	
$220 \cdot 3$ 216.0	${ }_{215}^{226.3}$	$219^{\circ} 7$	$219 \cdot 0$	219.4	${ }^{2211^{\circ}}$	${ }_{213}^{219} \cdot 0$	219.989	$211 \cdot 3$	156.7	108.1	$5229 \cdot 7$	$217 \cdot 90$	
216.0 211%	${ }_{214}^{215.1}$	$213 \cdot 9$ 214.8	213 217	$220 \cdot 0$	233．8	213.9 223	${ }_{\text {222 }}$	169.8	Sunday．	$204 \cdot 1$	$5018 \cdot 2$	209＇09	
								$222 \cdot 5$	$220 \cdot 1$	$210 \cdot 6$	$5078 \cdot 9$	$211 \cdot 62$	
2．88．1	$220 \cdot 6$ 208.3	${ }_{221}^{221 \cdot 0}{ }^{\text {a }}$	${ }_{213}^{23 \cdot 6}{ }^{6}$	215.0	${ }^{203}{ }^{206}$	$202 \cdot 9{ }^{9}$	188.14		188.3 18.3	$207 \cdot 7$	$4777 \cdot 6$	199.07	
208．3	$208 \cdot 3$ 2076	208．${ }_{213}$	213.0 208.1	202%	$207 \cdot 8$ 201.9	$\begin{aligned} & 216 \cdot 1 \\ & 206.6 \end{aligned}$	$215 \cdot 1$ 205	${ }^{2065}{ }^{206}$	205.3 208.0	193．1	$4899{ }^{\circ} 6$ $4900^{\circ} 5$	204．02	
206.7	$207 \cdot 1$	210.4	$203 \cdot 9$	$210 \cdot 7$	${ }_{237}{ }^{\circ} 5$	$230 \cdot 5$	$210 \cdot 3$	206.2	204.6	${ }_{203} 203$	$4.965{ }^{\circ} \mathrm{4}$	${ }_{206} 20.89$	
199＇3	$200 \cdot 4$	197.4	197．6	$200 \cdot 0$	195．9n	$198.1^{\text {a }}$	$200 \cdot 3$	2001	$197 \cdot 8$	$197 \cdot 0$	4785.9	199＇41	
$200 \cdot 7$	198.6	$196 \cdot 8$	199.0	198.8	$200^{\circ} 0$	$200 \cdot 3$	198．3	$203 \cdot 6$	Sunday．	203.0	\} $4741 \cdot 6$	197．57	
$203 \cdot 3$	2076	$205 \cdot 2$	$203 \cdot 6$	$211 \cdot 0$	$209 \cdot 3$	205.2	19\％ 9	176.0	$203 \cdot 9$	20461	$4846 \cdot 3$	$201 \cdot 93$	
$202 \cdot 8$	$200 \cdot 4$	198.0	$200 \cdot 2$	198.4	1198.4	$209 \cdot 6$	197.8	196.0	196.0	193．5	4777.8	199.07	
${ }^{2019} 16$	202.6 192.3	$200 \cdot 5$ 199.3	${ }_{197}^{200 \cdot 1}$	$1202 \cdot 3$	1993 193	${ }^{2029}{ }^{\text {＇}} 6^{\text {a }}$	${ }_{20}^{203 \cdot 8.8}$	${ }^{194 \cdot 1 \cdot{ }^{\text {a }}}$	189．6	${ }^{183.3}$	4743.5	$197 \cdot 65$	
192.0 189	$192 \cdot 3$ 198.6	1994 194	1975．4	191．3	1930．3	194.3 187	$200 \cdot 2$ $183 \cdot 3$	194．2	192.6 $182^{\prime} 6$	191．4	$4620 \cdot 5$ 4398	$\xrightarrow{192 \cdot 52}$	
186.2	$187 \cdot 5$	$185 \cdot 6$	$185 \cdot 2$	$185 \cdot 6$	183.3	182.9	183.5		unday．				
185.8	185.2	187．1	$187 \cdot 6$	$186^{\circ} 8$	$183 \cdot 5$	193.0	391－8a	${ }_{187} 19.7$	${ }_{185}^{195} \cdot 1$	197.4 189 1	$\} \begin{aligned} & 4483 . \\ & 4479.8\end{aligned}$	18682 $186 \cdot 66$	184＇99
$189 \cdot 2$	184．6	185.2	184.9	$177 \cdot 1$	180.0	$187 \cdot 0^{4}$	$183 \cdot 1{ }^{1}$	$179.0{ }^{\text {a }}$	183.0	$180 \cdot 2$	$4406 \cdot 2$	${ }_{183 \cdot 59}^{186}$	
1927 176	$196 \cdot 6$ 177	194.9 175.8	186.2 176.8	184.8 169	188.6 184	$179 \cdot 9$ 152 1	$191 \cdot 4^{4 n}$ $180 \cdot 2$	154. 165 16.8	154.6 168.9	${ }_{171}^{179} \cdot{ }^{\circ}{ }^{\text {a }}$	$4.308 \cdot 8$ 4226.1	179.53 176.09	
					26.0		14		4.63	$4850 \cdot 8$	1230765		
$211 \cdot 45$	$212 \cdot 16$	$212 \cdot 0$	$219 \cdot 22$	$210^{\circ} 04$	$210 \cdot 76$	209.93	$205 \cdot 90$	197•49	198.75	194.03	4947．07	$296 \cdot 13$	
$17 \cdot 42$	$18 \cdot 13$	17.97	$18 \cdot 19$	16.01	16.73	15.90	11．87	$3 \cdot 46$	4.72	$0 \cdot 00$	－	－	
－000184	006430	－006379	－006457	－005684	－005939	005644	－004214	00122s	－001676	－000000	－	－	
on this sheet to complete the days．）					－			165.8	$168 \cdot 9$	$171 \cdot 7$			
186.3	${ }^{176 \cdot 1}$	182．6	181.0	188．0	191.0	$190 \cdot 8$	$192 \cdot 6$	123.6	$141^{\circ} 9$	90.4	$4073 \cdot 8$	169.74	
176．0	174．0	180.2	185.0	177＊3	$183 \cdot 7$	176．6	$174 \cdot 9$	1653	Sundey．	$167 \cdot 2$	$\} 3913 \cdot 4$	$163 \cdot 06$	
$183 \cdot 1$	181.6	$175 \cdot 4$	17772	$180 \cdot 4$	179．9	$180 \cdot 5$	180.6	$179 \cdot 8$	182.3	$173 \cdot 7$	4224.5	176.02	
1744.2	$178 \cdot 3$	178.7	${ }_{177}^{173}$	${ }_{214.9}^{176}$	176.3 220.0	${ }_{1917}^{17.6}$	176.0 188.9				4061.0	109．21	
$199 \cdot 9$ 181.6	$191 \cdot 7$ 181 1	194.5 175.0	197．4	214.6 179.5	${ }_{183.4}^{20.0}$	192 184 1	188.9 182	183.9 $174 \cdot 6$	1780	$179 \cdot 6$ 180	4424.2 4329	184.34 180.39	
192.9	191.4	189.9	$195 \cdot 9$	$190 \cdot 3$	161.5	20938	187.0	$190^{\prime 3}$	181.3	$183 \cdot 9$	$4473 \cdot 4$	186＇39	
195.6	19711	194.8	$193 \cdot 3$	$194 \cdot 0$	191.0	102．2	$182.0{ }^{10}$	205.5	Sunday．	$172 \cdot 8$	$4456 \cdot 0$	185＊67	
191.3	191.5	179.6	$180 \cdot 9$	$191 \cdot 7$	194.1	105．4	$192 \cdot 6$	178.7	$176 \cdot 8$	178.6	4328.9	$180 \cdot 37$	
195.4	$183 \cdot 8$	1810°	$181 \cdot 7$	174．2	177－1	$175 \cdot 7$	$177 \cdot 4$	167.4	$167 \cdot 5$	$169 \cdot 6$	4294．4	$178 \cdot 93$	
	165.3 165.5	$172 \cdot 8$ 167	$106 \cdot 9$	1165.2	169.2	${ }_{171} 1674$	${ }_{1613.6}^{151.5}$	149．2	1563.2		$3964 \cdot 0$ $3863 \cdot 5$	165．17	
170.0	170.0	167.6	$169 \cdot 1$	$170 \cdot 6$	$1771{ }^{1}$	169 －	$170 \cdot 2^{\text {a }}$	167.7	${ }_{165} 16$	${ }_{165}^{16 \%}$	3863．5	${ }^{166} \cdot 1.98$	
$166 \cdot 8$	$166 \cdot 3$	166.5	165.4	$161 \cdot 5$	$161 \cdot 7$	162.0	$161 \cdot 1$		Sunday．		$3977 \cdot 0$	$165 \cdot 71$	
173．6	$175 \cdot 3$	173．56	374．4	179.0	173.4	$170 \cdot 9$	$169 \cdot 0$	165．ge	${ }^{162} 6^{\circ} 9$	162.8 163.4	$4079 \cdot 5$	$169 \cdot 98$	
174.4	173.8	174.6	$170 \cdot 2$	169.1	167．4	$169{ }^{\circ}$	158.8	170°	$110^{\circ} 4$	$101{ }^{\circ}$	$3918 \cdot 1$	$163 \cdot 25$	
${ }^{177 \%}$	1775	$178 \cdot 1$	1766^{4}	$176{ }^{\circ} 4$	${ }^{175}{ }^{\circ} 0$	1722°	$170 \cdot 4$	$169 \cdot 2$	$171 \cdot 2$	$171 \cdot 1$	$4198 \cdot 1$	174.92	
1719	1635	$167 \cdot 1$	$168{ }^{\circ} 4$	173.8	$180 \cdot 6$	$179 \cdot 3$	$179 \cdot 6$	165.3	$167 \cdot 9$	$170 \cdot 8$	4074.3	$169 \cdot 76$	
170.7 173	$170 \cdot 2$	169.0	$167 \cdot 9$	$1188 \cdot 6$	$183 \cdot 4$	$163 \cdot 9$	$163 \cdot 9$	$161 \cdot{ }^{\text {7 }}$	164.2	164．4	$4082 \cdot 4$	$17 \cdot 10$	
173	1750	$169 \cdot 8$	174.8	174．5	174＊	175＇6	174．8		iumay		－	$170 \cdot 62$	
－	－	－	－	二				$167 \cdot 8$	$168{ }^{\circ} 0$	168.0			170×76
$182 \cdot 6$	185.3	182.6	178.4	$179 \cdot 3$	187.1	176.4	169.5						
184.0 102	183.0 190.4	182.0 183.8	184.4 184	${ }_{183} 18.9$	$195{ }^{\circ}{ }^{\circ}$ 183.1	${ }_{179}{ }^{208}{ }^{\circ}$	195.3 181.1	$186 \cdot 6$ 176.8	$179{ }^{\circ} \cdot 3$	${ }_{165.2}^{174.4}$	$\begin{aligned} & 4293 \cdot 3 \\ & 4281 \cdot 1 \end{aligned}$	$178 \cdot 89$ 178.38	
172．4	$180 \cdot 3$	$173 \cdot 6$	178.6	$172 \cdot 8$	168.7	171.5	$173 \cdot 2$	140°	$7{ }_{7} \cdot 8$	$159 \cdot 0$	$4023 \cdot 5$	167.65	
$162 \cdot 8$	$162 \cdot 1$	158.6	$157 \cdot 7$	$160 \cdot 5$	$156 \cdot 1$	$160^{\prime} 8$	$154 \cdot 2$		Sunday．		－	$163 \cdot 31$	
											$95468 \cdot 2$	$3977 \cdot 85$	
$-$	－	－	－			－	－	New	Yea	Day．		172.95	
$4478 \cdot 4$	4.545	$4417 \cdot 1$	$4435 \cdot 0$	$4456 \cdot 1$	4454＊0	$4468 \cdot 1$	4364.3	＋209－1	$3922 \cdot 1$	$3931 \cdot 3$	103466．8		
179 14	178．21	$176 \cdot 68$	$177 \cdot 40$	$178 \cdot 24$	$178 \cdot 16$	178.72	174．57	168．36	156.88	$157 \cdot 25$	4138.65	172．44	
$22 \cdot 26$	$21 \cdot 33$	$10 \cdot 80$	$20 \cdot 52$	$21 \cdot 36$	$21 \cdot 28$	$21 \cdot 84$	$17 \cdot 69$	$11 \cdot 48$	0.00	0.37	－	－	
－007002	－007522	－007029	－007288．	－007583	－007504	－007753	－006280	－004075	－000000	－000131	－	－	

Lake Athabasca－continued．
Abstract of Hourly Observations made during the months of January and February 1844.

Date． Gött． Mean． Time．	Horizontal Force Magnetometer．												
	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
					At For								
${ }_{2}^{1}$	$160 \cdot 8$	$157 \cdot 8$	$80 \cdot 8$	$143 \cdot 4$	${ }_{177} \cdot 1$	173.0	171.1	$162 \cdot 4$	158.9	165：9	$173 \cdot 4$	$177 \cdot 0$	181.9
3	$141 \cdot 7$	148.5	156.4	160.9	158.5	159.6	153.5	156.1	159.5	155.9	1155	156.6	$156 \cdot 8$
4	159.4	$160 \cdot 6$	$159.1{ }^{\text {d }}$	$155{ }^{\circ} 7$	$167{ }^{165}$	166.7	${ }^{165}{ }^{1} 1$	166.5	$162 \cdot 7$	161.7	158.8	164.6	${ }^{1680}{ }^{16} 5$
5	107	71．6	165.9	178.4 94.5	175．6	166．3	15999	${ }_{147} 162$	148.8	$142 \cdot 5$	$142 \cdot 1$	$135 \cdot 8$	140.4
7	9		－4		At For	Chipew	yan．						
8	121.	121.8	$125 \cdot 7$	128.2	$129 \cdot 3$	133.9	$125{ }^{\circ} 4$	133.0	$149 \cdot 9$	$122 \cdot 6$	134.2	${ }^{154.6}$	${ }^{152} 5 \cdot 1$
${ }^{9}$	125.7 128.5	133.9 129	${ }_{126.9} 12$	1338.9	145.9	140．1	128.8 140.2	${ }^{1388 \cdot 1}$	$143 \cdot 9$ $136 \cdot 5$ 18	$1143^{10} 5$	${ }_{138} 14.1$	${ }_{157}^{13.1}$	157 154.1
11	141.7	134.1	$112 \cdot 4$	144.0	146.4	144．5	141.5	$136 \cdot 8$	138.1	144.9	146.1	$145 \cdot 3$	$147 \cdot 9$
12	$146 \cdot 9$	$148 \cdot 9$	$152 \cdot 4$	$150 \cdot 4$	150.0	156.2	144．0	142.4	$142 \cdot 8$	$14.4 \cdot 2$	143.0	153.3	$149 \cdot 5$
13	142．7	145.0	$143 \cdot 8$	${ }^{146}{ }^{1}$	${ }^{146}{ }^{\circ} \mathrm{F}$ For	${ }^{144}{ }^{\circ} \mathrm{C}$	143.7	$141 \cdot 5$	154.2	1426	$144 \cdot 4$	$146 \cdot 5$	146.3
15	$143 \cdot 6$	142：5	$142 \cdot 9$	141．5	$142 \cdot 3$	$141^{\circ} 6$	140.0	$140 \cdot 5$	138.2	140.4	141.5	143.7	142．0
16	$156 \cdot 3^{\text {a }}$	$157.0{ }^{2}$	156.8	156.4	$155 \cdot 5$	155.3	153.4	152.5	$148 \cdot 8$	${ }^{1.18 .6}$	$151 \cdot 2$	163.1	$152 \cdot 4$
17	1895	135．3	$147 \cdot 8$	$150{ }^{\circ} 4$	1477	$145 \cdot 7$	344.3	142.4	${ }^{139} 13.3$	${ }_{135}^{139} 7$	144.4 139.9	${ }_{133}^{143} 8$	${ }^{1444.7}$
18	$137 \cdot 3^{\text {a }}$ 134	${ }_{135}^{137}{ }^{\circ}$	1366° 132.7	${ }_{131}^{131.6}$	123.5 127	127．7	$137 \cdot 9$ $128 \cdot 9$	${ }_{131}^{132} \cdot 8$	135.0	${ }_{134}^{135} \cdot 7$	${ }_{132}{ }^{3} \cdot{ }^{\circ}$	${ }_{128}{ }^{18} 8$	133.6
20	$148 \cdot 9{ }^{\text {a }}$	$141 \cdot 2^{\text {a }}$	137%	139．3	140.8	143.1	137.2	$137 \cdot 6$	150.5	136	$138 \cdot 7$	$133 \cdot 4$	129.1
21 22	$112 \cdot 3$	$112 \cdot 1$	$114 \cdot 1$	$109 \cdot 4$	${ }_{110}{ }^{\text {At }}$ For	Chipew	${ }^{\text {yan．}} 10$	$120 \cdot 7$	$131 \cdot 7$	130.5	134．7	133＇7	135．4
鱼 23	138.4	131.3	$123 \cdot 1$	$125 \cdot 5$	$127 \cdot 3$	124.7	$124 \cdot 7$	126.3	131.7	$132 \cdot 2$	131.7	$132 \cdot 2$	135.1
－${ }^{24}$	112．6	117．6	$115 \cdot 9$	$118 \cdot 5$	$119 \cdot 3$	118^{6}	${ }^{115} \cdot 9$	$117 \cdot 2$	12.8	${ }_{121} 12.4$	${ }^{125}{ }^{2} \cdot 4$	125．4．	${ }^{1325}{ }^{13}$
既 26		24.5 130.0	66.9 124.0	$129 \cdot 3$ $129 \cdot 3$	1240° 125	$141^{\circ} 4$ 125	${ }_{134}^{134}{ }^{\text {a }}$	${ }_{127}{ }^{130} 8$	${ }_{127}{ }^{13} 4$	${ }_{225} 12$	12.8	125.3	${ }_{123}{ }^{\prime} 4$
－${ }^{-1} 27$	${ }^{1} 115 \cdot 6{ }^{\text {a }}$	$111 \cdot{ }^{\text {a }}$	116.3	$123 \cdot 2$	118.1	116．4	$115 \cdot 8$	112.7	114.6	$117 \cdot 1$	$113 \cdot 3$	117.5	120＇4
					${ }^{\text {at }}$ For	t Chipew	yyan．						
29 30	119.1 139	$136 \cdot 1$ $148 \cdot 3$	135.0 149.0	$136 \cdot 0$ $150 \cdot 3$	137% 147	14.	${ }_{146}{ }^{135}{ }^{\circ}$		151.8	149.7	$114 \cdot 6$	${ }_{146}{ }^{-7}$	1479
31	138.	$140 \cdot 1$	138.4	$139 \cdot 2$	$137 \cdot 6$	$133 \cdot 2$	138.0	$139 \cdot 7$	138.5	$133 \cdot 8$	$135{ }^{\circ} 0$	142＇2	$143 \cdot 2$
Sums	3016.6	3002．2	$3210 \cdot 1$	3300.0	$3360 \cdot 9$	3853.3	3301.5	$9 \cdot 1$	3361.4	$3340 \cdot 6$	3353.4	3411.9	$342 \cdot \stackrel{ }{ }$
Means	125.69	127．59	133.75	137．50	140.04	139.72	137．56	138.30	$140 \cdot 06$	$139 \cdot 19$	$139 \cdot 72$	$142 \cdot 16$	$142 \cdot 76$
Differences	8.41	10．31	16.4	20．22	22.76	22.44	$20 \cdot 28$	＇02	$22 \cdot 78$	$21 \cdot 91$	$22 \cdot 44$	24.88	$25 \cdot 48$
$\left.\frac{\Delta X}{X} \quad\right\}$	002986	－003660	－005847	－007178	－008080	－007966	007199	462	88087	－007778	007966	＇008832	4 4
Jan． 31													
Feb． 1	49．7	$\begin{array}{r}3.4 \\ 130 \cdot 0 \\ \\ \\ \\ \hline\end{array}$	38．88 132.1	$109^{\circ} 7$ 132.5	$120 \cdot 5$	$110 \cdot 1$ 112.4	132．4	141．5	${ }_{139} 139.5$	${ }_{149}^{125} \cdot 0$	${ }_{152}^{135}$	134.9	15158.0
	145.0	$133 \cdot 8$	$137 \cdot 8$	138.2	$137 \cdot 5$	138.6	132.0	118.2	$144 \cdot 4$	$139 \cdot 3$	151.0	$140 \cdot 6$	$138 \cdot 3$
${ }^{4}$	－18．0	$69^{\circ} \mathrm{O}$	$160 \cdot 9$	124．4	At For 109	${ }^{125} 4$	${ }_{150}{ }^{\text {y }}$	$135 \cdot 8$	$159 \cdot 2$	155．0	$150 \cdot 3$	$191 \cdot 1$	177．0
6	67.4	151.5	$140 \cdot 3$	142．4	145.9	137.4	134.6	143.1	144.4	117.8	146°	153.2	$151 \cdot 4$
7	$145^{\circ} \mathrm{O}$	$139 \cdot 2$	134.1	$142{ }^{2} 8$	148.9	148.5	${ }^{1156} \cdot 1$	$146 \cdot 3$	145.9	${ }^{149} \times 1{ }^{1}$	178．9	153．6	154．9
8	17.5 182.1	${ }_{164}^{117.5}{ }^{\text {a }}$	1	133.1 162.7	$122 \cdot 2$ 161	＋ $76 \cdot 3$	136．9	161.0	${ }_{161.9}^{153}$	1653．3	163.6	169．9	162．4
${ }_{10}^{9}$	162.5	165.8	$153 \cdot 6$	$153 \cdot 9$	152.6	$153 \cdot 1$	153.3	$155 \cdot 6$	$151 \cdot 1$	$148^{\circ} 4$	162.4	164.5	179 4
11	，			－11．	At For	t Chinew	yan．						
12	140.8	$142 \cdot 5$	113.7	${ }_{151} 14.4$		139.4 138	${ }^{136}{ }^{146} \cdot 6$	144.7 138	141．4	${ }_{139} 14.4$	143.3 139	${ }_{143}^{138.9}$	142．7
13 14	134.5 150.2	$149 \cdot 7$	148.1	147.2	144.7	$1445 \cdot 2$	$146 \cdot 3$	$147 \cdot 2$	$147 \cdot 8$	$148 \cdot 3$	$151 \cdot 2$	$147 \cdot 9$	148.4
15	$126 \cdot 3$	143.2	$157 \cdot 8$	151.7	$147 \cdot 6$	143.9	$149 \cdot 0$	$156 \cdot 3$	154．0	154.6	157.5	$160 \cdot 6$	167.7
16	174.6	172．4	$162 \cdot 8$	164.2	$180{ }^{\circ} 4$	174.2	$173 \cdot 5$	$163 \cdot 6$	${ }^{1766^{\circ}}{ }^{4}$	178.3	${ }^{176 \cdot 6}$	$1788^{\circ} 7$	176.0
17	164.9	177	${ }^{179 \cdot 2}$	1842	180 At Fo	t $175{ }^{\text {Chiper }}$	$177 \cdot 0$	$180 \cdot 5$	$182 \cdot 1$	185.9	$185 \cdot 6$	1915	194.3
19	179.0	180.2	183.3	183.2	183.6	188.7	182.4	181.6	182.6	184.9	$185 \cdot 1$	187.8	188.0
20	$184 \cdot 2$	183.8	184.8	184.0	$181{ }^{10} 0$	1818.2	179.8	173.3	183.9	187.5	191.8	191.6	194.7
\bigcirc	158.	${ }_{196}^{186.4}$	${ }_{190} 16.4$	175.6	181．0	${ }_{187} 17.1$	178.2 184 15	176.2 184	$187{ }^{17.0}$	178.9 186	193.7	180.4 193.2	183．${ }_{1}$
A $\{23$	197%	＇194．9	${ }_{196} \cdot 6$	$197 \cdot 6$	$200 \cdot 2$	199.6	$197 \cdot 3$	$197 \cdot 6$	197.9	199.4	198.3	198.6	$201 \cdot 8$
：	188	$187 \cdot 9$	185.5	186.0	182．3	183.6	$183 \cdot 2$	$181 \cdot 1$	$185 \cdot 5$	184．3	$183 \cdot 8$	183.0	$181 \cdot 4$
品 25		$162 \cdot$	$157 \cdot 3$	$\overline{179} \cdot 9$	${ }_{181}{ }^{\text {at }}$ \％	${ }^{+}$Cliper	${ }_{179}{ }^{\text {ryan．}}$	$177 \cdot 6$	181．4	178.9	$187 \cdot 9$	$190 \cdot 2$	
27 28 28	$163 \cdot 6$	174．2a	$175 \cdot 1$	${ }^{180 \cdot 4}$	176.0	174．4	174.2	$171 \cdot 4$	$173 \cdot 6$	$173 \cdot 2$	176.0	$175 \cdot 9$	$177 \cdot 5$
Sums	3258.4	$3428 \cdot 4$	$3612 \cdot 1$	$3660 \cdot 5$	$3629 \cdot 8$	$3551 \cdot 6$	$3595 \cdot 9$	$3655 \cdot 5$	$3749 \cdot 1$	3727 －4	3855	$3881 \cdot 8$	925．3
Means	141.67	149.06	$157 \cdot 05$	$159 \cdot 15$	157.82	154 42	$156 \cdot 34$	158.93	163.00	162.06	$167 \cdot 63$	168.77	70．67
Differences	0.00	$7 \cdot 39$	$15 \cdot 38$	17．48	16.15	12.75	14.67	$17 \cdot 26$	$21 \cdot 3$	$20 \cdot 6$	25.9	27.	29.
$\frac{\Delta X}{X}$	－000000	－002623	$\cdot 005160$	006205	005733	004526	005208	008127	007572	007317	09216	－009620	010295

Lake Athabasca－continued．
Abstract of Hourly Observations made during the months of January and February 1844.
Horizontal Force Magnetomoter．

Horizontal Force Magnetomoter．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Means．	Fortnightly Means．
								$148 \cdot 5$	$154 \cdot 3$	155.8			
$173 \cdot 1$		174.7	168.5	171.8	165.3	164.2	158.6	15993	159	$156{ }^{15}$		$162 \cdot 01$	
159.1	$157 \cdot 5$	158.1	159.1	159.0	159.1	$159^{\circ} 1$	158.3	155.8	$152 \cdot 7$	150．3	3756.8	156.53	
$175 \cdot 2$ 161.0	179.0 158.1	$177 \cdot 7$ 159	${ }^{8188 .}$	$\underline{205.9}$	198.5 156.2	294 182.7	${ }_{1517}^{178}$	54 157	1776：0	$-37^{\circ} 5$ $-49^{\circ} 0$	$3802 \cdot 6$ 3506	158.49 146	
155.1	$145 \cdot 1$	161.0	137.4	150.8	$142 \cdot 8$	$146{ }^{\circ} 5$	$80^{\circ} 9$		Sunday．		\} $3152 \cdot 5$	$131 \cdot 35$	
152．2	144．1	$147^{\circ} 8^{\text {a }}$	143．3	151．9	$153 \cdot 5$	147.3	$18{ }^{-9} 8^{4}$	$138 \cdot 1$	$154 \cdot 1$	$137 \cdot 9$	$3329 \cdot 1$	$138 \cdot 71$	
148.4	$150 \cdot 5$	$155 \cdot 5$	$143.2^{\text {a }}$	$145.5{ }^{\text {a }}$	144.1	146.2	$147 \cdot 8$	，	1.31 .3	12.7		140.71	$146 \cdot 70$
$139 \cdot 9$	148.5	149.7	${ }^{145}{ }^{\circ}{ }^{\circ}$	$1400^{\circ} 7$	142.4	148.9	1375	141.9	${ }^{137} \cdot 1$	${ }^{1388^{\circ} 1}$	$33688 \cdot 6$	140．36	
151.4 152.5	${ }^{1475}{ }^{\circ} \cdot 4$	153.3 154.3	$150 \cdot 7$	${ }^{149}{ }^{1} 1$	150.4 159.8	150.0 163.6	149 157 15	${ }^{144.4}{ }^{1} 7$	143.0 143.2	$148{ }^{14} 4$	34616.9 3607	$144 \cdot 25$ 150	
1477	$147 \cdot 6$	$147 \cdot 1$	144.2	142.6	$147 \cdot 1$	141.6	$143 \cdot 8$		Sunday．	14．	$3468 \cdot 9$	15	
								138	140.4	140.7	$3468 \cdot 9$	144．54	
153.6	$152 \cdot 8$	$150 \cdot 2$	152.7	$150{ }^{1} 6$	151.1	152.4	144．8．	154．0a	$152 \cdot 5$	149．4	${ }_{3661}{ }^{3531}$	$152 \cdot 66$	
146.3	$145{ }^{\circ} 6$	144.2	$140 \cdot 5$	141.4	143.9	141.5	162.0	$145 \cdot{ }^{\text {a }}$	$142 \cdot 5$	138.7	$3440 \cdot 5$	$143 \cdot 35$	
$140 \cdot 8$	$145 \cdot 5$	${ }^{135}{ }^{\prime} 1$	$140{ }^{\circ}$	$140 \cdot 3$	$138 \cdot 7^{\text {a }}$	135.8	138.5	124.9	$132 \cdot 5$	137.5	\％264． 1	$136 \cdot 00$	
${ }_{1431}{ }^{141} \cdot 4$	1478	${ }^{155}{ }^{\text {c／}}$	153．49 ${ }^{\text {a }}$	152．4a ${ }^{132}$	154．9a	155．8n	160 ${ }^{-3}{ }^{\text {a }}$	104．5a	121／ 1 al	$143 \cdot 5{ }^{\text {a }}$	3304.5	137＇69	
${ }^{131}{ }^{\prime} 4$	$131 \cdot 2$	134.1	134：9	${ }^{133 \cdot 4}$	$131 \cdot 1$	${ }^{132}{ }^{\text {c }}$ a	${ }^{123}{ }^{5}$	110.	Sunday． $118^{\circ} 1^{a}$	125•3a	\} $3223 \cdot 9$	13.43	
134.7	$132 \cdot 1$	131.3	137.1	$142 \cdot 1 \mathrm{l}$	147.1	142.8	$156.8{ }^{\text {a }}$	${ }^{157} \cdot{ }^{12}$	$145 \cdot 80$	152.14	81355	$730 \cdot 65$	$130 \cdot 94$
$133 \cdot 1$	133.0	131.1	$127 \cdot 1$	128.5	122.4	124.8	126.5	${ }^{121 \cdot 1}$	${ }^{120} 0^{\circ} 8$	122．5	8	128．46	$130 \cdot 9$
${ }_{135}^{125} 7$	123.4	${ }_{127}^{139}$	128.4	${ }^{720}{ }^{74}$	${ }_{119} 12.1$	${ }_{125} 112$	128.5	${ }^{523} 9$	${ }_{123}{ }^{59} 8$	$120^{\circ}{ }^{\circ}$	29113.3	120．97	
127.4	${ }^{125} 5$	125.7	$127 \cdot 7$	119.8 A	131.8	124．9	$122^{\circ}{ }^{8}$	$120 \cdot 1$	nge ${ }^{\text {a }}$	$90 \cdot 8{ }^{\text {a }}$	$2952 \cdot 8$	123.03	
118.1	$122 \cdot 7$	$121 \cdot 1$	125.5	126.0	1277	135.5	${ }^{108} 3$	134.0	Sunday．	121．7a	2884.3	$120 \cdot 18$	
138.0	137.8	141.0	$140 \cdot 8$	141.0	140.5	145.3	145.5	143.6	1438	106.3	32.46	135．23	
1474.4	151.5	$150 \cdot 3$	$149 \cdot 6$	151.1	$159{ }^{4}{ }^{4}$	$1{ }^{157}{ }^{\circ} 6$	$147 \cdot 2$	$117 \cdot{ }^{\circ}$	$137 \cdot 3$	138.6	$3527 \cdot 1$	146%	
140.4	139°	$137 \cdot 7$	$139 \cdot 2$	143.9	$157{ }^{4}{ }^{\text {a }}$	$137 \cdot 2$	$139 \cdot 3$	$159 \cdot{ }^{\text {m }}$	$144 \cdot 3 \mathrm{~m}$	112．2m	3353×2	13372	
$3455 \cdot 6$	$3455 \cdot 0$	$3482 \cdot 4$	$3506 \cdot 5$	3428.0	3511.4	$3545 \cdot 2$	3820．5	$3112 \cdot 8$	$3187 \cdot 1$	2778．4	79636.5		
143.98	143.96	$145 \cdot 10$	$146 \cdot 10$	$142 \cdot 83$	146.31	$147 \cdot 72$	138.35	$129 \cdot 70$	132．80	115.76	138．26	－	
28．70	$26^{\circ} 68$	$27 \cdot 82$	28.82	$25 \cdot 55$	29.03	30.44	21．07	$12 \cdot 42$	15.52	0.00	－	－	
－009478	－009471	009876	010231	009070	． 010306	010806	007480	－004409	－005510	－000000	－	－	
								159.5	144	$112 \cdot 2$			
164.4	154.5	1165	${ }_{1615} 17$	${ }_{155}^{15}$	$170{ }^{163}$	${ }_{204}{ }^{185}$	2016	173.7	${ }_{167} 16$	${ }_{148 \cdot 1}^{118 \cdot 1}$	35.56	$148 \cdot 18$	
158.0	168.6	$173 \cdot 7$	156.0	$143 \cdot 1$	145.1	151．9	159.3		Sunday		\} $3482 \cdot 2$	145.09	
276．3	$178 \cdot 4^{\text {a }}$	$180 \cdot 4{ }^{\text {a }}$	$108 \cdot 7{ }^{\text {a }}$	$214 \cdot 8{ }^{\text {a }}$	195.4	178.4	153.0	14.80	$80^{\circ} 7$	$133 \cdot 4$	$3395 \cdot 6$	$141 \cdot 48$	
$150 \cdot 3$	146.6	$147 \cdot 9$	144：8	154.9	$162 \cdot 6$	198．9	$164 \cdot 2$	$150 \cdot 0$	155%	$145 \cdot 3$	34.48	$142 \cdot 87$	
$150{ }^{\circ}$	$167 \cdot 1$	${ }^{156}{ }^{\circ} 6$	172.7	162.4	154.8	165.7	166.3	153.7	162.2	$122^{\circ} \cdot 6$	37103.3	154：30	
$175{ }^{\circ} 7$	$175{ }^{2}$	$173{ }^{\circ} 0$	$162 \cdot 5$	163.5	185.8	161.3	162.4	154．1	$163 \cdot 3$ 131.3	${ }^{164.1}$		148＊66	
$162 \cdot 1$ 158.6	$1{ }^{162 \cdot 3}$	$1{ }^{162}{ }^{2}$		162＇9	$172 \cdot 9$ 158.1	$164 \cdot 5$ 156.3	$161{ }^{162}$	$170 \cdot 3$	Sundlay．	$167 \cdot 1$		161•92	
								117．2a	133.8	$128 \cdot 1$	\} $3641 \cdot 6$	$151 \cdot 73$	
150.5	149.8	151.0	$149 \cdot 5$	$142 \cdot 4$	153 ${ }^{18}{ }^{\text {a }}$	155.4	158.4	135．98	$9{ }^{96} 0^{4}$	$140 \cdot 6{ }^{\text {a }}$	$3442 \cdot 2$	143.48	
$145 \cdot 9$ 145	1495	147\％${ }^{148}$	$1468 \cdot 6$	${ }_{149.3}^{14.1}$	$149 \cdot 3$ $161 \cdot 8$		$153 \cdot{ }^{156}{ }^{\text {a }}$	$149 \cdot 3$ 169	${ }_{1157}^{150} 4$	150.8 150	3493.9 3633.9	${ }^{1455^{\circ} \cdot 63}$	
$172 \cdot 7$	173.3	$177 \cdot 9$	181.4	181.6	$1{ }_{182} \cdot 1$	$182 \cdot 6$	$183.6{ }^{\text {a }}$	$179 \cdot 1$	177.0	174.5	393600	164．00	
184.8	$187 \cdot 5$	$180^{\circ} 2$	185.6	193．5 ${ }^{\text {a }}$	$200 \cdot 2{ }^{\text {a }}$	184.1	178.5	$175 \cdot{ }^{\text {c }}$	$157 \cdot 9 \mathrm{l}$	$171 \cdot{ }^{\text {a }}$	$4200^{\circ} \mathrm{L}$	177＇51	
$197 \cdot 6$	$201 \cdot 9$	$202 \cdot{ }^{\text {a }}$	$204 \cdot 6{ }^{\text {a }}$	$189 \cdot 9$	189.7	183.0	164．6	190．2	Sunday． $101 \cdot 3$	185．7	$\} 4459.6$	185．88	
$190 \cdot 7$	$189 \cdot 3$	189＇3	184．6	187.1	$187 \cdot 6$	186.6	186．8	186.8	$175 \cdot 8$	$179 \cdot 2$	4488.2	184．51	
${ }_{19196} 196$	196.9	197.0	192．6	192．6	192.6	191．4	188．74	${ }^{192} \cdot{ }^{5 a}$	181.7	172．6	4493.8	187．32	177 22
${ }_{1981}^{181}$	${ }_{201}^{182} \cdot{ }^{18}$	1989	${ }_{196}^{189}{ }^{\circ}$	${ }^{189}{ }^{18.4}$	${ }^{1956}{ }^{196}$	195.7	${ }_{199} 18.7$	${ }_{186}^{186}{ }^{18}$	${ }_{1946}$	${ }^{172}{ }^{172}{ }^{\text {a }}$	4369.7 4643	193.50	
$204 \cdot 0$	204.2	205.0	201.1	199.8	$196 \cdot 3$	$195 \cdot 8$	194．6	196．7	$193 \cdot 1$	$189 \cdot 1$	4756	$198 \cdot 20$	
181.4	182.4	180.1	181.3	181.0	$278 \cdot 3$	176.7	$175 \cdot 1$	． 2	sunday		\} $4361 \cdot 8$	18174	
190.4	$190 \cdot 5$	192．3	$191 \cdot 9$	195.9	$\underline{195} 9$	198.3	202.9	191.7	175.0	100°	${ }_{4362.1}$	181.75	
$175 \cdot 8$	$173 \cdot 4$	174．1	$170 \cdot 9$	167\％	$168 \cdot 5$	$172 \cdot 2$	$169 \cdot 9$					172．91	
39574	$3985 \cdot 9$	3994＇1	3969 ＇9	3985.2	$4035 \cdot 7$	$4044 \cdot 1$	$3938 \cdot 6$	$3734 \cdot 4$	$3625 \cdot 4$	3578.2	$90385 \cdot 1$	－	
172．06	173 30	173．66	$172 \cdot 60$	173＇27	$175 \cdot 47$	175．83	171 24	$102 \cdot 37$	$157 \cdot 63$	155． 57	3929•79	$163 \cdot 74$	
$30 \cdot 39$	31.63	31.99	30.93	31.60	33.80	$34 \cdot 16$	29.57	$20 \cdot 70$	15.96	$13 \cdot 90$	－	－	
－010788	011229	－011366	＇010980	－011218	011999	－012127	010497	－007345	－005666	－004934	－		

${ }_{a}$ a Twenty minutes lato．

[^28]Abstract of Hourly Observations made during the months of April and May 1844.

Abstract of Hourly Observations made during the months of April and May 1844.

Horizontal Force Magnetometer．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Means．	Fortnightly Means．
								2177	168.5	239.8	614.4		
245.6	$262^{\circ} 0$	253.7	255.3	$268 \cdot 5^{\text {a }}$	$2563 \cdot 6^{\text {a }}$	248.9	$240 \cdot 3$	196.3	$160 \cdot 0$	${ }^{199} 9$	5120.6	${ }^{213} 366$	
235.1	$244 \cdot 3$	245.9	$260 \cdot 7$	$248{ }^{2} 7^{\text {a }}$	${ }^{276} \cdot 3^{\text {a }}$	284.7	${ }^{441} \cdot 6^{\text {a }}$	${ }^{238}{ }^{23} 5^{\circ}$	109．3a ${ }^{20}$	${ }^{79} 9$	$5490 \cdot 1$	228．75	
$\underline{242.0}$	2493	$283 \cdot 6$ 257	${ }_{253}{ }^{276}$	${ }_{300}{ }^{26} 8^{-8}$	294.9	${ }_{281}{ }^{26 a}$	$273 \cdot 7$				$5625 \cdot 1$		
								$237 \cdot 7$	244.5	236.3	$5837 \cdot 9$	$243 \cdot 25$	
$522 \cdot 2$	$263 \cdot 8$	283.0	$286 \cdot 1$	291．4	2811^{11}	${ }_{\text {g7a }}$	$265 \cdot 0^{\text {a }}$	$237 \cdot 6$	$235 \cdot 4$	244．4 ${ }^{\text {a }}$	$6130 \cdot 6$	$255 \cdot 44$	234．14
249.6	254.6	250.4	$248 \cdot 7$	$258 \cdot 3$	253.0	$260 \cdot 4$	261.5	262.8	$253 \cdot 3$	254.3		$250 \cdot 01$	
246.0	$249 \cdot 5$	$251 \cdot 3$	$256 \cdot 9$	${ }^{250 \cdot 1}$	$249 \cdot 9$	$243^{\circ} 0$	$245 \cdot 5$	${ }^{241}{ }^{\circ} 0^{\circ}$	$195^{\circ} 6^{\prime \prime}$	187\％${ }^{\circ}$	5897.9	${ }^{245} 75$	
${ }^{219}{ }^{\circ}$	${ }_{20}^{240.8}$	${ }_{292}^{234} 4$	232.9 22.2	239 244 2	2383 7^{7}	${ }_{237}^{228}{ }^{\circ} 0$	${ }_{227}^{247} \cdot 6^{6}$				5356．4	$223 \cdot 18$ 22967	
－ $2193 \cdot 8$	${ }_{229}^{224}$	226．3	226．${ }_{2}^{21}$	244.8 216.5	243．1	${ }_{221}^{23}{ }^{23} \cdot{ }^{\text {a }}$	${ }_{216}^{227}{ }^{\circ}$	${ }_{231}^{20} 8$	${ }_{210}^{231}{ }^{4}$	${ }_{221}^{20 \cdot 6}$	${ }_{5417} 51$	${ }_{225}^{29} 71$	
$222 \cdot 7$	$222 \cdot 5$	$222 \cdot 3$	229.3	$232 \cdot 1$	$233 \cdot 1$	$229 \cdot 8{ }^{\text {a }}$	$223 \cdot{ }^{5}$					226.09	
237•30	244：97	247 ．02	$249 \cdot 8$	$255 \cdot 31$	$256 \cdot 95$	252．33	$244 \cdot 87$	220．95	$209 \cdot 91$	$213 \cdot 06$	－		
								${ }^{2} 974$	979.8	${ }_{2887}^{287}$	841.6		
284.4	285．3	$289 \cdot 6$	$279 \cdot 0$	$271 \cdot 6$	$282 \cdot 8$	876．8．${ }^{\text {a }}$	216.6	$272 \cdot 6$	${ }^{286}{ }^{\circ}{ }^{\circ}$	${ }_{1889} 278$	$6287 \cdot 3$	${ }^{261} \cdot 9$	$256 \cdot 21$
298.2 343	${ }^{354}{ }^{2} 4^{2} 6$	377.6 26.7	344 262.1		1999 $270 \cdot 9$	271．4 ${ }^{\text {a }}$		${ }_{280}^{137}{ }^{\text {c }}$	139 ${ }^{130^{\circ}}$	188.68 285			
343．9	294.9 281	$262 \cdot 7$ $262 \cdot 7$	${ }_{264 \cdot 9}^{26 \cdot 1}$	268．5		274．0	${ }_{269}{ }^{286}{ }^{\text {¢ }}$	${ }_{2688^{\circ} 9}^{280}$	${ }^{285}$	${ }_{255}^{28.5}$	$5575 \cdot 9$	边 238.33	
265%	2591	$260 \cdot 6$	259.6	$265 \cdot 6$	$269 \cdot 3$	272.5	$269 \cdot 1{ }^{\text {a }}$	$260 \cdot 8{ }^{3}$	244＊${ }^{\text {a }}$	161\％ 5	6129＊6	$255 \cdot 40$	
258.0	$263 \cdot 3$	$263 \cdot 3$	$262 \cdot 9$	$262 \cdot 4$	$269 \cdot 8$	271.5	$267 \cdot 2^{\text {n }}$	264.5	$251^{\circ} 0^{\text {a }}$		6136.4	$255 \cdot 68$	
$270 \cdot 6$	$269 \cdot 4$	$265 \cdot 7$	268.0	$266 \cdot 9$	$268 \cdot 3$	$268 \cdot 6$	$270 \cdot 9$	272.5	$287 \cdot 8$	$230 \cdot 5$		$261 \cdot 98$	
$285 \cdot 9$	$270 \cdot 5$	$273 \cdot 3$	$275 \cdot 5$	278.0	$282 \cdot 4$	$274 \cdot 1$	266.1	$246 \cdot 9$	278.5	254．5	6203.2	258.47	
273.0	$275 \cdot 1$	$270 \cdot 9$	$276 \cdot 1$	286.2	$292 \cdot 7$	304.2	288.6	284.3	${ }^{266}{ }^{66}$	264.9		$275 \cdot 84$	
288.8	${ }^{266.1}$	$25^{257} \cdot 3$	${ }^{298 .}$	283．5	${ }^{265} 3$	269.9	939．4	${ }_{232}^{208}$	${ }_{255}^{255}{ }^{24}$	$\stackrel{244.9}{289^{\prime}}$	5821	${ }_{2}^{242}$	
${ }_{287}{ }^{296}$	$283 \cdot 2$	${ }_{276}{ }^{28}{ }^{\circ}$	309.2	${ }_{287} 27$	$260 \cdot{ }^{2}$	$289 \cdot 2$	$170 \cdot 0$			－			
								$230 \cdot 3$	296．0			$256 ; 44$	
$\xrightarrow{259}{ }_{20}{ }^{\circ} \mathrm{H}$	$\begin{aligned} & 260 \cdot 3 \\ & 326 \cdot 4 \end{aligned}$	$\begin{aligned} & 285 \cdot 1 \\ & 3249 \\ & 35 \cdot 9 \end{aligned}$	${ }_{308}^{273.7}$	$\begin{aligned} & 262 \cdot 5 \\ & 308 \cdot 9 \end{aligned}$	$\begin{aligned} & 281 \cdot 5 \\ & 278 \cdot 6 \end{aligned}$	$\begin{aligned} & 268 \cdot 3 \\ & 265 \cdot 3 \end{aligned}$	$\left\lvert\, \begin{aligned} & 261.3 \\ & 240^{\circ}-1 \end{aligned}\right.$	$\begin{gathered} 2010^{\circ} 6 \\ 80^{\circ} \end{gathered}$	261．1	$\begin{aligned} & 2550^{\circ} 3 \\ & 189^{\circ} 7 \end{aligned}$	$\begin{aligned} & 5870 \cdot 2 \\ & 5845 \cdot 0 \end{aligned}$	$\begin{aligned} & 244 \times 59 \\ & 243 \\ & \hline 59 \end{aligned}$	\} $254 \cdot 81$
288.0	$230 \cdot 8$	$287 \cdot 3$	278.6	288.2	$265 \cdot 3$	$242 \cdot 5$	294.7	2797	$263 \cdot 7$	$274 \cdot 3$	$6402 \cdot 4$	$266 \cdot 77$	
303.6	296.0	$3{ }^{336}{ }^{\circ} 4$	$297 \cdot 6$	309.2	$298{ }^{6} 6$	$239 \cdot{ }^{\text {an }}$	${ }^{2959}{ }^{2} 4$	${ }^{2505} 0^{\circ} 9$	296.9	${ }^{2550}{ }^{2} 9$		${ }^{268}{ }^{26} 94$	
$280 \cdot 3$	$284 \cdot 1$	$264 \cdot 2$	$\stackrel{271 \cdot 2}{272}$	${ }^{2666^{\circ}}{ }^{4}$	${ }_{281}^{2616}$		${ }^{2699^{\circ}}{ }^{2}$	${ }^{267} \cdot 6$	$267 \cdot 3$	${ }^{264} 4^{\circ}$	5969.2	$248 \cdot 72$	
208.7	$267 \cdot 0$	$287 \cdot 4$	$269 \cdot 2$	$278{ }^{\circ} 6$	285.7	${ }^{286} 7^{\text {a }}$	252.	$238 \cdot 5$	15が	$240 \cdot 3$	$6247 \cdot 6$	260	
$262 \cdot 7$	258.6	$268 \cdot 9$	$277 \cdot 3$	$277 \cdot 6$	$270 \cdot 6$	$271 \cdot 3$	254．3	$276 \cdot 7$	281.7	$259 \cdot 8$	$6264 \cdot 8$	261.03	
258.6	$269^{\circ} 2$	$275 \cdot 8$	279.5	300.3	272.4	$275 \cdot 1$	2882.1	254.7	167.9	${ }^{257}{ }^{27}$	6146.8	256.12	
3007	${ }^{238}{ }^{\circ}$	294.3	294.4	${ }^{284}{ }^{\text {c }} 4$	298.3	${ }^{286} 5$	${ }_{252}^{238.1}$	${ }^{2264.3}$	241.7	241．4		${ }^{255.58}$	
$270 \cdot 3$	2595	$278 \cdot 1$	263.9	284.4	${ }^{262} \cdot 6$	${ }_{285}^{2512}$	${ }^{252}{ }^{2}{ }^{\circ}$	${ }_{267} 26.1$	254．8	$253 \cdot 8$ 259.4	5998.0 6245	${ }_{260}^{249.92}$	
264.3	$262 \cdot 9$	$267 \cdot 9$	261.3	$272 \cdot 1$	${ }_{262}{ }^{2} \cdot 3$	$266 \cdot 3$	$267 \cdot 9$	20．			－	26024	
								$274 \cdot 1$	268.6	$267 \cdot 6$	）	$260 \cdot 79$	
$269 \cdot 9$	$269 \cdot 7$	${ }_{281}^{271} 3$	268.2	${ }_{2929}^{29} 5$	${ }^{395} 5{ }^{\circ} 6$	305.1 273.4					6465.9 6458	${ }^{269 \cdot 41}$	$257 \cdot 57$
$307 \cdot 3$ 291.8	${ }_{266}{ }^{325}{ }^{\circ}$	${ }_{268}^{281} \cdot 7$	284．0	${ }_{257}^{282} \cdot 1$	${ }_{263}^{280}{ }^{\circ}$	${ }_{262}{ }^{273}{ }^{\circ} 4$	$250{ }^{260}{ }^{\circ}$	241.4 $262 \cdot 8$	2259＇2	$\xrightarrow{236 \cdot 9}$	6458.5 6242.1	$269 \cdot 10$ 260	，
251.8	2576	255.6	259.9	$248 \cdot 6$	256.8	261.9	$267 \cdot 5$	245.9	$240 \cdot 6$	253.9	$5932 \cdot 6$	$247 \cdot 19$	
258.4	248.4	245．2	250.9	248.1	$252 \cdot 4$	253.0	$262{ }^{\circ} 4$	246.6	248.2	$241 \cdot 9$	6043.0	$251 \cdot 79$	
$269 \cdot 9$	251.8	$249 \cdot 1$	2571	274.9	$283 \cdot 3$	$262 \cdot 3$	258.9	$266 \cdot 4$			\} $6151 \cdot 5$	$256 \cdot 31$	
250．3	$251 \cdot 6$	$250 \cdot 6$	$250 \cdot 9$	$251 \cdot 1$	$254 \cdot 8$	259.7	259.8	258.1	$200 \cdot 1$	$238 \cdot 7$	6102.6	254．27	
$278 \cdot 9$	267.9	$266 \cdot 1$	264.7	259.4	251.4	$249 \cdot 9$	254.9	$251{ }^{\circ} 7$	$259{ }^{29} 2$	254．8	6053.6	252．23	
${ }^{2559}$	${ }_{251}{ }^{395}$	${ }^{2955} 5$	${ }^{267 \%}{ }^{5} 5$		2093．4	2．989\％	${ }_{261} 28.4$	2442．2	$2{ }_{24} 23 \cdot 3$	$140^{\circ} 5$ 247	5761.0	$235 \cdot 38$ 240.04	
279.5	${ }_{285}{ }^{26}$	288.8	${ }_{267}{ }^{261}$	$260 \cdot 3$	260.7	206.7	209.2	$239 \cdot 8$	243.4	$244 \cdot 9$	5916.2	246.51	
二	－	二	－	二	二	－	－	二	－	二	二		
二	二	－	二	二	－	－	－	－	－	－	－	－	
二	二	二	＝	－	－	二	二	二	二	二	－	＝	$243 \cdot 54$
－	－	－	－	－	－	－	－	－	－	－	－	－	

$\begin{array}{lllllllllllllll}275 \cdot 86 & 276 \cdot 94 & 277 \cdot 01 & 274 \cdot 58 & 272 \cdot 45 & 267 \cdot 20 & 266 \cdot 60 & 255 \cdot 07 & 248 \cdot 30 & 245 \cdot 34 & \cdot 255 \cdot 18\end{array}$

Increasing numbers denote an increase of Horizontal Force．
Increasing numbers denote an in

LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843.

	Induction Inclinometer．												
T Time．	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
； 1	－	－	－										
	－	－	二	二	二	二	＝	－		二	二	二	－
	－	－	二	二	二	－	二	－	－	二	－	－	－
	二	二	－	－	\square	－	－			－			
7	－	－	二	E	二	－	－	－	－		－		－
${ }_{9}$	－	－	－	－	－	－	－	－	－				
； 10	－	－	－	－	二	二	－	－	－	－			
11	－	－	－	－	－	－	－	＝	－				
－ 13	二	－	二	二	－	－		－	－				
－ 14	－	－	二	二	二	二	＝	二	二		－		
－ 15^{15}			－	－		二		二	二	－	－	－	
	${ }^{375}{ }^{39} \cdot{ }^{\circ} 8^{4}$	151.51 84.60	146．90 ${ }^{28}$	${ }^{7585}{ }^{\circ}$	17804	123.9	86.9	118.8	$120 \cdot 9$	$133 \cdot 8$	135.7	$123 \cdot 8$	126.0
ค！ 18	$152 \cdot 6$	137.0	1315	1331.6	129.4	$132 \cdot 8$	$141{ }^{16}$	$117 \cdot 9$	$122 \cdot 0$	127.6	$130 \cdot 4$	127.0	128.0
\％ 19	$118 \cdot 3$	115.5	$120 \cdot 2$	$117 \cdot 2$	116.2	122.9	1116.6	${ }_{118}^{126}$	${ }^{933} \cdot 9$	113.3 126.5	${ }_{12129}{ }^{1} 8$	$120 \cdot 9$	$122 \cdot 3$
地 $20{ }^{\text {b }}$	265.7											124	${ }^{117} 7$
	233.6	239.2	${ }_{237} 23$	${ }_{337} 24.4$	${ }_{241}^{238} \cdot 0$	${ }_{2}^{239} \cdot 4$	$241 \cdot 1$	$245 \cdot 1$	245.5	$240 \cdot 2$	241.0	$250 \cdot 6$	
			$2{ }^{2}$		2416	$245 \cdot 1$	$185 \cdot 0$	$212 \cdot 7$	231.4	$232 \cdot 6$	$231 \cdot 3$	$227 \cdot 0$	$230 \cdot 8$
${ }_{24}^{23}$	246．7	24770	248.1	252.4									
$\stackrel{24}{25}$	271.4 253.2	－893．9．	2.89 .7	${ }^{257} \cdot 1$	241.4	253.9	${ }_{245}^{24}$	${ }_{248} 26.4$	${ }_{247}^{269}$	${ }_{249}^{25.6}$	254.9	${ }_{241}^{249} \cdot 4$	248.9 243
${ }_{26}^{25}$	${ }_{301}^{253.5}{ }_{5}^{2}$		${ }_{25}^{252.5}$	259.5	255.3	256.4	$250 \cdot 4$	$254 \cdot 9$	252.0	248.9	249.0	${ }_{252}{ }^{24}{ }^{2}$	${ }_{256.3}^{243}$
27	${ }_{954}{ }^{3} 5$		261.2	${ }_{265 \cdot 3}^{24}$	$\stackrel{261.9}{ }$	${ }_{260}^{264} 7$	254.1	$267 \cdot 2$	254．2	254.8	265.9	261.8	254.3
28	307.7	$271 \cdot 4$	261.3	$262 \cdot 4$	$255 \cdot 3$	260．6	253.0	${ }_{269}^{249} \cdot{ }^{\text {a }}$	${ }^{260}{ }^{26}{ }^{\circ}$	$\stackrel{260 \cdot 2}{276}$	$252 \cdot 1$	252.5	254.3
30	294.1		$-$								， 4	$257 \cdot 0$	$258 \cdot 1$
31	${ }_{3} 97 \% 6$	$341 \cdot 0$	$\begin{aligned} & 308 \cdot 8 \\ & \dot{9} 76 \cdot 8.8 \end{aligned}$	$\begin{aligned} & 975.9 \\ & 955.9 \end{aligned}$	$\begin{aligned} & 275 \cdot 8 \\ & 255 \cdot 7 \end{aligned}$	$\begin{aligned} & 266 \cdot 0 \\ & 257 \cdot 3 \end{aligned}$	269．7	270．5	${ }^{269 \cdot 6}$	277.8	$277 \cdot 1$	268.9	$263 \cdot 8$
Sums	$3703 \cdot 6$	$3352 \cdot 9$	3231.0									264	$270 \cdot 3$
				$3095 \cdot 6$	$3041 \cdot 9$	$3052 \cdot 7$	2953.5	3021 －1	$3050 \cdot 1$	3058.0	3068•8	$3020 \cdot 9$	$3015 \cdot 2$
rans．－	26454	257	234.36	$221 \cdot 11$	$217 \cdot 28$	218.05	$210 \cdot 97$	$215 \cdot 79$	$217 \cdot 88$	$218 \cdot 49$	$219 \cdot 20$	$215 \cdot 78$	$215 \cdot 37$

－Visible aurora．
${ }^{b}$ Not included in the Mean at the foot，being imperfect days．

LAKE ATHABASCA．
Abstract of Hourly Observations made during the month of October 1843.

Induction Inclinometer．													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	Sums．	Means．	Fortnightly Means．
二	－	－	－	－	－	－	－＇	－	－	－	－		
二	二	二	＝	二	二	二	二	二	－	ב	－	二	
二	二	二	二	二	二	二	二	二	二	－	二	－	
－	－	－	－	－	－	－	－	－	－	－	－	－	
－	－	－	＝	二	二	二	二	二	二	二	二	－	
二	二	－	－	－	二	二	－	二	二	二	二	二	
二	－	－	－	－	－	－	－	－	－	－	－	－	
－	－	－	－	－	－	－	－	二	－	－	－	－	
－		－	二		－	二	－	118．9a	－-8.6	328．12	643.6	$214 \cdot 53$	
129.0	121.8	$119{ }^{\circ}{ }^{4}$	$134 \cdot 0$	122．5	$115^{1} 1{ }^{\text {a }}$	134.12	$191 \cdot{ }^{\text {a }}$	153．9a	$183 \cdot{ }^{4}$	155 ${ }^{6} 6^{4}$	342.29	142：62	
$129 \cdot 0$	${ }^{138}{ }^{\circ} 0$	$129.8{ }^{\text {a }}$	$12{ }^{15} 5^{\text {a }}$	$181 \cdot{ }^{3}$	$15^{\circ} 8^{\text {a }}$	$186{ }^{18}{ }^{\text {a }}$	945 ${ }^{5} 5^{\text {a }}$	189．8	138.7	${ }^{1429} 0^{08}$	$3518 \cdot 7$	${ }^{146} \cdot 61$	
116：8	$115 \cdot 2$	$120 \cdot 1$	$109 \cdot 1$	123.9	$118^{\circ} 5$	${ }_{91}{ }^{126} 4$	${ }_{115} 12.1$	122.0	125.3	108.0	29076	$121 \cdot 15$	
235.9							－	288． 5	388.8	985．9	$3378 \cdot 3$	$140 \cdot 76$	
2315	${ }_{23}^{243} 5$	$\stackrel{231.4}{23.9}$	236．9	${ }_{239}^{236} \cdot 9$	${ }_{2274}^{234}{ }^{6}$	${ }_{234}^{24.5}$	${ }_{242}^{235} \cdot 6$	$235 \cdot{ }^{\text {a }}$	$232 \cdot 8$	$233 \cdot 2$	5522．5	$240 \cdot 26^{c}$	
								248.0	$246 \cdot 3$	247．5	$\} 5600^{\circ} 0$	238：33	
${ }_{24}^{244 \cdot 8}$	241.9	254.3	253.5	254.4	$253 \cdot 4$	258.0	$244 \cdot 1$	243.8	$246 \cdot 2$	250.0	6007.6	$250 \cdot 32$	
249.9	$2440^{\circ} 9$	${ }_{249}^{24 \cdot 1}$	247 $250 \cdot 4$	254．74	238：1		${ }_{3}^{292 \cdot}$	${ }^{2699^{\circ} 6}$	${ }_{271}^{261.64}$		6118.8 6311.9	$264 \cdot 95$ 263	
241.5	254.6	$245 \cdot 7 \mathrm{7a}$	$246 \cdot 1{ }^{\text {a }}$	248．2a ${ }^{\text {a }}$	$240^{\cdot 6} 6^{3}$	${ }_{282}{ }^{3} \cdot{ }^{\text {a }}$			${ }_{315}{ }^{\circ} 6^{\text {a }}$	${ }_{976}{ }^{\text {29 }}$	63454．3	${ }_{368}{ }^{263} \cdot 90$	T
256.3 259	$253 \cdot 8$	258.8	256．8	$251 \cdot 6$	254.5	$264 \cdot 7$	264.8	$276 \cdot{ }^{\text {a }}$	$279{ }^{\text {a }}$	$266^{\circ} 0$	$6472 \cdot 5$	$269 \cdot 69$	
$239 \cdot 8$	256.5	$252 \cdot 0$	$254 \cdot 1$	$260 \cdot 7$	${ }^{268}{ }^{\prime} 9^{3}$	$\stackrel{266.5}{ }{ }^{\text {a }}$	287＇8	$271 \cdot 5$	$273 \cdot 3$	285.0	$\} 6445 \cdot 2$	$268 \cdot 55$	
264：4	258.9 259.4	$282 \cdot 9$ 260.9	$\underset{2615}{269 \cdot 5}$	$270 \cdot 6$ 27568	259．8	${ }_{201}^{261.4}$	${ }_{264}^{264}$	${ }^{316}{ }^{\circ} 7$	${ }_{347^{\prime} 7}$	$890 \cdot 2$	$6812 \cdot 1$	283.84	
$255 \cdot 6$	$259 \cdot 4$	$260 \cdot 9$	259•7	$255 \cdot 8$	$277 \cdot 3{ }^{\text {a }}$	$290 \cdot 5$	$261{ }^{4} 4$				$5710 \cdot 8$	276－14c	
2978．9	$2985 \cdot 9$	2986.7	2981.0	$2968 \cdot 5$	$2959 \cdot 7$	3119.8	$3399 \cdot 5$	3236：5	3482.0	$3515^{\circ} 0$	$75328 \cdot 8$	224，98．	
21278	$213 \cdot 2$	$213 \cdot 34$	$212 \cdot 93$	211.89	$211 \cdot 41$	$222 \cdot 84$	242．82	$231 \cdot 18$	$248 \cdot 71$	251.07	5398．90	$224 \cdot 95$	

c Means by the observations forming complete 8 －hourly services

Lake Athabasca－continued．
Abstract of Hourly Observations made during the months of November and December 1843.

Date． Gbtt． Mean	Induction Inclinometer．												
	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1	$106 \cdot 0$	115.2	$133 \cdot 3$	${ }^{97} \cdot 1$	98.1	91.5	${ }^{96} \cdot 1$	$100 \cdot 3$	101.8	105.8	105.2	105．8	102．8
2	$100{ }^{\circ} 4$	${ }^{93}{ }^{1} 7$	98.8	97.0	94.8 9.8	102.3	$100^{\circ} 4$	1073	107.4	$110 \cdot 2$	${ }^{99}{ }^{\circ} 6$	${ }^{99}{ }^{\circ} 7$	${ }^{95 \cdot 4}$
$\stackrel{3}{4}{ }^{\text {b }}$	292＊0	${ }^{124}{ }^{\text {¢ }}$	$108 \cdot 9$	103.94 90.8	$\begin{array}{r}99 \\ 1029 \\ \hline 9\end{array}$	104.5 103.1	101.0	103.8	108.0 108	$100 \cdot 5$	114.2	108.5	$112 \cdot 4$
5		－				－		－					$114 \cdot 9$
6 7		197 104 108	122.9 103.4	${ }_{111} 11.4$	102.6 119.3	118.9 121.9	$109 \cdot 8$ 115	${ }_{125}^{115} \cdot$	113.0 113	$109 \cdot 0$ $101 \cdot 2$	$110 \cdot 6$ 110.8	$115 \cdot 3$ $109 \cdot 6$	$114 \cdot 9$ $110 \cdot 8$
8	$120 \cdot 4$	124．8	114．3	129.9	$122 \cdot 2$	$110 \cdot 1$	$111 \cdot 8$	$117 \cdot 3$	114.7	$122 \cdot 5$	$129 \cdot 8$	114.0	$100^{\circ} 0$
9	$135{ }^{\circ} 9$	91.8	$102 \cdot 5$	$10{ }^{\text {．}}$－	107.3	115.9	120.1	120.5	$122 \cdot 2$	$122 \cdot 1$	118.9	115．0	${ }^{122}{ }^{7} 7$
10	113：${ }^{\text {a }}$	109.2	${ }^{119}{ }^{\circ} \mathrm{C}$	122.6	1212.2	1120.2	114.5	${ }^{115}{ }^{\circ} 7$	119.3	${ }^{133.4}$	${ }_{120} 12.1$	118.8 118.4	115.8 118.5
11	14.1	126；4	109.0	$109 \cdot 8$	$113 \cdot 2$	$122 \cdot 7$	128.1	$12{ }^{\circ} \mathrm{C}$	$123 \cdot 2$	$121 \cdot 4$	${ }^{120} 1$	118.4	${ }^{118 \cdot 5}$
13	$123 \cdot 8$	113.9	$120 \cdot 5$	138.5	$245 \cdot 9$	155.1	188.7	$104 \cdot 9$	119.6	121.8	118.6	128^{12}	138.4
14	$117 \cdot 9$	119.9	134.5	118.2	124.0	112.5	$119 \cdot 1$	$121 \cdot{ }^{5}$	$119{ }^{\circ} 4$	124.4	123 118.9	$125{ }^{1218}$	${ }_{120} 11.1$
15 16	$12 \cdot 9$ $118 \cdot 9$	${ }^{1366}{ }^{136}$	112.8	151.1 117	103.5 116.1	115.9 119	1820.4 127 1	$119 \cdot 3$ 132	$118 \cdot 2$ 12.9	${ }_{132}^{121} \cdot 6$	1188° 13	121.6 $112 \cdot 8$	$120 \cdot 9$ $117 \cdot 1$
17	$122 \cdot 3$	129.8	120．2	126.9	$123 \cdot 9$	122.8	125.8	122.0	123.8	119.5	118.8	123.1	$125 \cdot 0$
18	124.7	$122 \cdot 7$	121.7	$121 \cdot 8$	121.5	122.0	131.3	131.4	$125 \cdot 3$	124．2	124．4	$115 \cdot 8$	$118{ }^{\circ} 1$
19 20	123.5	$132 \cdot 4$	139．2	$132 \cdot 2$	131.0	129.1	$126 \cdot 5$	124． 1	125•7	129.1	$130 \cdot 7$	131.8	127：3
21	$130 \cdot 9$	126.4	$12+\cdot 7$	$127 \cdot 1$	12.1	126.7	136.4	$137 \cdot 7$	137.9	$142 \cdot 7$	133.4	$129 \cdot 2$	$1285 \cdot 9$
砍 23	131.7	148.7	${ }^{136}{ }^{\circ} 6$	147.9	130.0	137.8	${ }^{136}{ }^{2} 2$	$132 \cdot 3$	129.4	128.7	${ }^{1272} \cdot 5$	131319	128．0
	1379 139	${ }_{\text {2，95 }}$	144.1	139.0	$126^{12.8}$	$130 \cdot 9$	${ }_{132}^{136}$	${ }_{127}{ }^{137}$	${ }_{135}^{13} \cdot$	${ }^{1345} \cdot 6$	${ }_{138} 130$	128	${ }^{130} 7$
祘 $\{25$	136.0	$136 \cdot 3$	$133 \cdot 8$	132.7	133.8	133.6	$135 \cdot 8$	138.3	142.0	138.8	131．7	$133 \cdot 7$	1300
－ 26	$\underline{140} 0$	151.0	$141 \cdot 3$	$139 \cdot 2$	137：8	$\overline{139}$ ¢	144.2	141.7	$133 \cdot 7$	$136 \cdot 3$	$137 \cdot 6$	$141 \cdot 1$	137.4
28	$143 \cdot 7$	139.4	$139 \cdot 2$	139%	139.0	136.5	125.6	137.1	141.7	143.4	151.0	$146 \cdot 1$	138.9
29	$14{ }^{\circ} \cdot{ }^{\prime \prime}$	$182 \cdot 2^{\text {a }}$	$163.4{ }^{\text {a }}$	159.0	$152 \cdot 2$	135.0	135．2	141.2	$143 \cdot 2$	146.5	146.9	$142 \cdot 9$	$142 \cdot 3$
30	$138 \cdot 9$	$139 \cdot 8$	$136{ }^{\circ} 5$	$138 \cdot 7$	134.7	134.7	144．8	141.6	$146 \cdot 8$	$152 \cdot 4$	$148 \cdot 2$	$142 \cdot 8$	$134 \cdot 7$
Sums	338077	$3209 \cdot 1$	$3148 \cdot 5$	$3142 \cdot 6$	$3160 \cdot 8$	$3086 \cdot 6$	3153.2	3128.7	3135.4	3171×1	$3142 \cdot 8$	$3092 \cdot 9$	$3046 \cdot 9$
Means	134.71	$130 \cdot 76$	125．94	$125 \cdot 70$	$126^{\prime} 43$	$123 \cdot 16$	126.13	125．15	125.42	126.84	$125 \cdot 71$	$123 \cdot 72$	$121 \cdot 88$
	$149 \cdot 7$	$163 \cdot 8$	145：3	148.9	$139 \cdot 4$	139.8	132.0	143.7	1352	134.5	145.9	$147 \cdot 28$	$140 \cdot 3$
2	$190 \cdot 3$	109°	253.1	$874 \cdot 7$	177＇s	138.5	134.1	134．4	$150 \cdot 1$	149.6	149.0	$14.5 \cdot 9$	147－5
4	157.0	159.0	158.2	158.0	$155 \cdot 5$	155.4	155.8	$157 \cdot 1$	155.3	$155 \cdot 7$	154.5	151.4	$149 \cdot 3$
5	$153 \cdot 1$	1574	$157 \cdot 0$	$143 \cdot 5$	149.4	151.9	147.6	$150 \cdot 3$	$150 \cdot 1$	152．7	${ }^{152}{ }^{18}$	155.2	152．8
6	102．5	205．0	151.8	141.9	${ }^{1415} \cdot{ }^{1} 9$	${ }^{1449}{ }^{\circ} 7$	153.9 154	${ }_{150}^{156}$		153.2	148.3 154 18	${ }_{155} 151$	$\xrightarrow{151} 15$
8	155.0	151.0	154.3	${ }_{156 \cdot 3}$	158.3	155.5	$178 \cdot 5$	$178 \cdot 9$	194：0	161.8	${ }^{117} \cdot 1$	142.7	158.5
9	150.8	154.6	$181 \cdot 4$	185.5	158.7	146.9	159.9	$151 \cdot 9$	155.1	151.0	$156 \cdot 8$	158.8	156．0
10	1625	${ }_{185} \cdot 2$	105.9	141＇3	173.4	$177 \cdot 7$	$150 \cdot 5$	150：3	154．0	149.7	$160 \cdot 8$	157.5	136.2
12	$177 \cdot 6$	160.7	$185 \cdot 3$	$157 \cdot 2$	166.4	$171 \cdot 1$	167.5	$170 \cdot 0$	170%	161.1	146.1	151.3	$145^{\circ} 7$
13	162.4	$172 \cdot 0$	$171 \cdot 8$	$170 \cdot 6$	16711	$163 \cdot 3$	178.4	183.6	$183 \cdot 6$	183.4	175.7	$150 \cdot 7$	$172 \cdot 2$
14	$188.3{ }^{\text {a }}$	$188.5{ }^{\text {a }}$	1770	$366^{\circ} 0$	174．4	$177 \cdot 3$	$180 \cdot 3$	$174 \cdot 1$	174.9	$176^{\circ} 7$	178.7	174.4	$174 \cdot 1$
15	173.8	170.2	$175 \cdot 5$	183．6	$169 \cdot 1$	$160 \cdot 9$	$170 \cdot 0$	$177 \cdot 3$	$167 \cdot 8$	$167{ }^{\circ} 8$	$1770^{\circ} \cdot 9$	1771	$170 \cdot 1$ 181
16	172＇9	$172 \cdot 6$	$170 \cdot 6$	$166^{\circ} 7$	166.8	$171 \cdot 7$	179.6	$177 \cdot 6$	$171 \cdot 3$	$169 \cdot 8$	171.9	176	181－2
18	$179 \cdot 3$	168.0	166.9	159.9	167%	$159 \cdot 1$	183.0	180.0	$170 \cdot 8$	171.0	$173 \cdot 3$	$165 \cdot 1$	165.2
蓇 19	$161 \cdot 8$	171.2	166.1	1670	$162 \cdot 7$	1559	159.9	$170 \cdot 6$	$173 \cdot 3$	$170 \cdot 8$	169＊3	${ }_{169}^{169}$	${ }_{165}^{165} \cdot 6$
${ }^{\circ}{ }_{g}\left\{\begin{array}{l}20 \\ 20\end{array}\right.$	181.8 181.0	189 168. 1	$172 \cdot 7$ 154	$115{ }^{16.5}$	160.0 158.6	${ }_{157}^{158}$	160\％	161 174	164．7	$16{ }^{164}{ }^{\circ} 7$	159.8	164.7	${ }_{168.3}$
违 22	1163.2	$160 \% 6$	160.4	$167 \cdot 0$	$162^{\circ} 0$	$15^{155} \cdot 9$	$173 \cdot 7$	167＇2	168．3	174.5	$165 \cdot 3$ $169 \cdot 6$	16762 182.8	${ }_{164} 168$
E－ $\begin{array}{r}23 \\ 24 \\ \hline 24\end{array}$	166.0	1057	167＇5	$169 \cdot 8$	172．0	175＊0	173．6	$175{ }^{\prime} 6$	$173 \cdot 8$	$171 \cdot 9$	169＊	182.8	1249
25						－			－				
29	$182 \cdot 8$	171.7	150.5	163.0	164.8	161.3	163	173.0	177.2	171.7	171.6	370.8	
${ }_{28}^{27}$	178．3．9a	176.8	165 ${ }^{156} \cdot 3$	${ }^{105.9}$	1158.8	${ }^{175}{ }^{\circ} 8$	${ }_{166 .} 17$	$186{ }^{\circ} \mathrm{C}$	179．9	171.3	${ }_{17179}^{172}$	${ }_{187}^{173} \cdot 1$	${ }_{167}^{168}$
29	174．5	1713	167.0	104.9	115%	165.8	$176 \cdot 5$	174．8	$173 \cdot 4$	$182 \cdot 8$	172.0	$175 \cdot 9$	163.2
30 31 31	165%	166.9	$179 \cdot 6$	$172 \cdot 7$	$171 \cdot 7$	174.6	$178 \cdot 2$	$182 \cdot 1$	176．5	173.0	181.4	178.2	$170 \cdot 8$
Sums	4309•8	$4264 \cdot 8$	$4179 \cdot 2$	$4212 \cdot 6$	4034．7	$4000 \cdot 0$	$4099 \cdot 3$	$4159 \cdot 7$	$4150 \cdot 1$	4103.9	$4056 \cdot 3$	$4056 \cdot 3$	$4325 \cdot 2$
Means	172 39	$170 \cdot 59$	$167 \cdot 17$	168．50	$101 \cdot 39$	$160 \cdot 00$	$163 \cdot 97$	166：39	1466 36	$164 \cdot 10$	162.25	$162 \cdot 25$	161．01

－Visible aurora．
GThis day is omitted from the Mean at the foot as being imperfect．

Lake Athabasca－continued．
Abstract of Hourly Observations made during the months of November and December 1843.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Induction Inclinometer．} \\
\hline 13. \& 14. \& 15. \& 16. \& 17. \& 18. \& 19. \& 20. \& 21. \& 22. \& 23. \& Sums． \& Means． \& Fortnightly Means． \\
\hline \(102 \cdot 2\) \& 101.9 \& 97．1 \& 83.6 \& 83.8 \& \(81 \cdot 6\) \& 97.8 \& 98.5 \& \(133{ }^{\circ} 4^{\text {a }}\) \& \({ }^{117} 7^{\prime} 6\) \& 1028 \& 2459
2493 \& \(102 \cdot 47\)
116.62 \& \\
\hline 81.1 \& \({ }^{96}{ }^{\circ} 9\) \& 101．6 \& 95：30 \({ }^{\text {a }}\) \& \({ }^{970}{ }^{81}{ }^{\text {a }}\) \& \(100^{\circ} 8\)
108.1 \& 134.4
111.6 \& 173.9
109.1
10. \& \(186^{\circ} 9^{a}\) \& \& \({ }^{255} \mathrm{~S}^{\text {3 }}\) \& 2918.1 \& \(117 \cdot 4{ }^{\text {c }}\) \& \\
\hline 112.4 \& 107.5 \& \(102 \cdot 2\) \& 102． 5 \& 108.0 \& \(105 \cdot 5\) \& 111.0 \& 1171 \& \& \& \& \& 119．90 \({ }^{\text {c }}\) \& \\
\hline \& \& \& \& \& \& \& \& \({ }^{359.4}\) \& \({ }_{115}^{1712}\) \& \({ }_{131} 18{ }^{\text {a }}\) \& 2845．5 \& 118.50 \& \\
\hline \({ }_{107}^{112.6}\) \& 1180
1045 \& 108.4 \& 107.1
104.0 \& \(105 \cdot 7\)
\(102 \cdot 8\) \& 110．2 \& 114.7 \& \(116 \cdot 1\)
\(115 \cdot 5\) \& \({ }_{111} 11 \cdot 9\) \& 1112．3 \& 1113.4 \& 2659.7
287 \& 110．82 \& \\
\hline 105.3 \& 49.5 \& 90．8 \& \(117 \cdot 2\) \& 1015 \& \(70 \cdot 1\) \& 104.4 \& \({ }^{106.3}\) \& \({ }^{139} \cdot{ }^{16.4}\) \& 187.2 \& \({ }^{217}{ }^{\circ} \mathrm{P}\) \& 2876.7
2877 \& \begin{tabular}{|c}
\(119 \cdot 86\) \\
11989
\end{tabular} \& \\
\hline 121.0 \& \(113{ }^{15} 5\) \& \(122 \cdot 7\) \& \({ }^{116 \cdot 1}\) \& \(110^{\circ} 9\) \& \({ }_{115}^{115} 9\) \& \(117 \cdot 3\)
114 \& \(107 \cdot 7^{n}\)
123 \& 116．4． \& \(1492 \cdot 3\) \& 134.8
125 \& 2979.3 \& \({ }_{121} 194\) \& \\
\hline 1114.4 \& 1104．3 \& 118.8
12.9 \& 116.0
120 \& \({ }_{123} 11 .{ }_{1}\) \& 114.9 \& \({ }^{114.3}\) \& \({ }_{94.12}\) \& － 11. \& \& \& \} \(2787 \cdot 3\) \& \(116 \cdot 5\) \& \\
\hline 119.0 \& 103．3 \& 102．6＂ \& 100．5 \({ }^{\text {a }}\) \& 107.9 \& \(122 \cdot 0\) \& \(118.4{ }^{\text {n }}\) \& \(770^{\circ} 0^{a}\) \& 113.9
149 \& \(113 \cdot 6\)
1959 \& \(113 \cdot 2\)
116.8 \& －3102．2 \& 120．26 \& 120＇12 \\
\hline 121.1 \& 116.5 \& 116.1 \& 11.0 \& 117.8 \& \(114 \cdot 5\) \& \(102^{\circ} 9\) \& 113.6 \& \(112 \cdot 6\) \& 117.9 \& 115.8 \& 2834.3 \& \(118 \cdot 10\) \& \\
\hline 112.0 \& \(120 \cdot 6\) \& \(110 \cdot 5\) \& \(117 \cdot 3\) \& 118.5 \& \(120 \cdot 1\) \& 112.9 \& \({ }^{120 \cdot 1}\) \& 131.4 \& \({ }^{118}{ }^{\circ} \cdot 0\) \& 133．4 \& 2916.9
2846.0 \& 121．54 \& \\
\hline 118.4 \& 118.0 \& 115＇8 \& \(120 \cdot 2\) \& 114.8 \& 84．9． \& \({ }_{120.1}^{97}\) \& 121．2 \& 1124.0 \& 118.3
124.9 \& \({ }_{123}^{12.8}\) \& 2945．6 \& 12.73 \& \\
\hline \(\xrightarrow{123 \cdot 2}\) \& \({ }_{122}^{121.1}\) \& 123.4
122.4 \& 120.0 \& 121.2
126 \& \({ }^{123}{ }^{123} 4^{4 \prime}\) \& 125.0 \& 131.5 \& 12.0 \& \& \& \} \(2073 \cdot 9\) \& 123.01 \& \\
\hline \& \& 186：3 \& \(126 \cdot 2\) \& 117.0 \& \(121 \cdot 3\) \& 121.5 \& \(129 \cdot 7\) \& \(122 \cdot 8\) \& 128.2 \& 125.4
125 \& \(3078 \cdot 1\) \& 128．05 \& \\
\hline 127.0 \& 127．3 \& \(129 \cdot 2\) \& 129.0 \& 126.1
130.7 \& 128.0 \& \(129 \cdot 1{ }^{\text {a }}\) \& \(126{ }^{2}\) \& \({ }^{130 \cdot 1} 1^{\text {a }}\) \& \(138{ }^{\circ} 4\) \& 142\％\({ }^{120}\) \& 3178.1 \& 132．42 \& \\
\hline 129.9 \& 129．5 \& \({ }^{126}{ }^{126} 5\) \& 126．6 \& \({ }^{1330}{ }^{\circ} 7\) \& 128.8
118.8
18 \& 136.2
136 \& \(\xrightarrow{131.5}\) \& \({ }_{135}^{127} 9\) \& 140.0 \& \(135 \cdot 7\) \& 33302•1 \& 137＊59 \& \\
\hline \(131 \cdot 2\) \& \(129 \cdot 4\) \& 134．8 \& 133.5 \& 133.0 \& 135.6 \& \(136^{\circ}\) \& 133.1 \& \& \& \& \} \(2231 \cdot 0\) \& 13＊ 62 \& \\
\hline \(142 \cdot 4\) \& \(139 \cdot 9\) \& 138．3 \& \(137 \cdot 7\) \& \(139 \cdot 9\) \& \(137 \cdot 7\) \& \(133 \cdot 6\) \& \(136^{6} 3^{\text {n }}\) \& \(142 \%\) \& 141.8 \& 1372 \& \(3347 \cdot 9\) \& 139.50 \& 130＇55 \\
\hline 131.4 \& \(139 \cdot 3\) \& \({ }_{137}^{13 \%}\) \& \(140 \cdot 7\) \& \(144 \cdot 3\) \& 144.9 \& \(138.8{ }^{4}\) \& \(1486^{\text {a }}\) \& 138.8 \& \({ }^{138} \cdot{ }^{18} 4\) \& \({ }^{1411^{\circ} 6}{ }^{14}\) \& \(33487 \cdot 3\)
3512.0 \& 141．14 \& \\
\hline 134.6 \& 135.4 \& 131.7 \& \(137 \cdot 3\) \& \(135 \cdot 9\) \& \({ }^{132} \cdot 1\) \& \(14143{ }^{\text {a }}\) \& \begin{tabular}{l}
\(136.5{ }^{\text {a }}\) \\
134 \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(167^{\prime} \cdot 4^{\text {a }}\) \\
137 \\
\hline 8
\end{tabular} \& \(178{ }^{\circ}{ }^{4}\)
140
4 \& \({ }^{141}{ }^{141} \cdot{ }^{\text {a }}\) a \({ }^{\text {a }}\) \& 3512.0
3372.7 \& 140.63 \& \\
\hline 134.7 \& \(145 \cdot 1\) \& 142.0 \& \(140 \cdot 7\) \& \(150 \cdot 3\) \& \(133 \cdot 1\) \& \(137 \cdot 1\) \& 134.9 \& 1375 \& \& \& \& \& \\
\hline \(3000 \cdot 8\) \& \(2991 \cdot 1\) \& \(2980 \cdot 4\) \& \(3000 \cdot 7\) \& 3014.9 \& \(2935 \cdot 1\) \& 3005 2 \& \(3159 \cdot 8\) \& 3391.7 \& \(3445 \cdot 1\) \& 3474．7 \& \(75445 \cdot 8\) \& \& \\
\hline 120.03 \& 119.64 \& \(119 \cdot 22\) \& 120.03 \& 120.60 \& \(117 \cdot 40\) \& \(120 \cdot 21\) \& 120＇39 \& 135．67 \& 137－80 \& 138.09 \& 3017•83 \& 125．74 \& \\
\hline 145．9 \& \(151 \cdot 7\) \& \(142 \cdot 7\) \& \(143{ }^{\circ} 6\) \& 137.5 \& 128.8 \& 131.8 \& 131.1 \& 208.9 \& 194．3 \& 270.6 \& 3661 ＇6 \& 152 \& \\
\hline 146.3 \& 148.6 \& \(142 \cdot 6\) \& 141＇3 \& \(142 \cdot 4\) \& 136＇6 \& \(144 \cdot 4\) \& \(145 \cdot 7\) \& 149.7 \& \(157 \cdot 7\) \& 155.7 \& \(\} 3850 \cdot 5\) \& \(160 \cdot 44\) \& \\
\hline 149.5 \& 148.5 \& 155.9 \& \(155 \cdot 1\) \& 151.7 \& 150.8 \& 150.6 \& \(152 \cdot 6\) \& 146．4 \& \(150 \cdot 9\)
\(93 \%\) \& 153．1 \& \(3687 \cdot 3\)
\(3802 \cdot 1\) \& 163.64
158.42 \& \\
\hline 156.6
142.9 \& 149.5
150 \& \begin{tabular}{l}
148.3 \\
145 \\
\hline 8
\end{tabular} \& \(149 \cdot 3\)
\(142 \cdot 9\) \& 147.6
124 \& 1149.5 \& \(151 \cdot 3\)
147 \& \({ }_{150}^{15} \cdot 5\) \& \({ }^{156}{ }^{155}\) \& \begin{tabular}{l}
937\％ \\
159 \\
\hline 1
\end{tabular} \& 925
\(160 \%\) \& \(3802 \cdot 1\)
3651 \& 152.13 \& \\
\hline 151.1 \& \(152 \cdot 8\) \& 1578 \& 154．4 \& 151.1 \& 154．0 \& 151.0 \& \(149 \cdot 7\) \& 150.8 \& 1598 \& 155.4 \& \(36844^{\prime 3}\) \& 153.51 \& \\
\hline \(153 \cdot 3\) \& \(152 \cdot 2\) \& \(152 \cdot 6\) \& \(139 \cdot 9\) \& 155.2 \& 159.5 \& 138.4 \& 152.2 \& 151.1 \& 158.4 \& 156.0 \& \({ }^{3726.6}\) \& \& \\
\hline 156.7 \& \(151 \cdot 9\) \& 148.4 \& \(129 \cdot 2\) \& \(148 \cdot 0\) \& 151.9 \& 150.1 \& \(1517{ }^{\text {a }}\) \& \(145 \cdot 4\) \& 155.1 \& \(160 \cdot 6\) \& \(\} 3716 \cdot 4\) \& 154．85 \& \\
\hline 141.2 \& 132.4 \& \(152 \cdot 6\) \& 147.0 \& 143.0 \& 144.0 \& \(147 \cdot 1\) \& 147.4 \& 160．3 \& \& 160.5
163.4 \& 3705.9
3875 \& \(154 \cdot 41\)
161.48 \& \(161 \cdot 19\) \\
\hline 148.9 \& 144.4 \& \(1{ }^{161}{ }^{\circ} 0\) \& 160．6 \& 167．9 \& \(162 \cdot 6\)
171.8 \& 1763 \& 191.8 \& \({ }_{190}^{169} 9\) \& \(167 \cdot 3\)
\(178 \cdot 0\) \& \({ }^{163 \cdot 4}{ }^{169}{ }^{\text {a }}\) \& \(3875 \cdot 6\)
41618 \& 173．48 \& \\
\hline \(172 \cdot 4\)
171 \& \(174 \cdot 9\)
\(172 \cdot 1\) \& \(1766^{15}\) \& \(165^{\circ} \cdot 8\)
168 \& \(163 \cdot 9\)
169 \& \({ }_{171} 17.8\) \& \(1769^{\circ} 1\) \& 173.9 \& \(167 \cdot 6\) \& \(167 \cdot 1\) \& 169.0 \& 4173.9 \& 173.91 \& \\
\hline 164.5 \& 168.8 \& \(170 \cdot 3\) \& 167.2 \& \(166^{\circ} 0\) \& \({ }^{1666^{\circ}} 1\) \& \({ }^{169}{ }^{6}\) \& \(169.8{ }^{\text {a }}\) \& 1715 \& \(172 \cdot 7\) \& \(172 \cdot 8\) \& \(4086 \cdot 5\) \& \(170 \cdot 27\) \& \\
\hline \(170 \cdot 2\) \& \(172 \cdot 0\) \& \(171 \cdot 4\) \& \(170 \cdot 8\) \& 172．5 \& 168＇5 \& \(166 \cdot 3\) \& 168.5 \& 170.0 \& \(167 \cdot 6\) \& \(177 \cdot 8\) \& ；4124•4 \& \(171 \cdot 85\) \& \\
\hline \(163 \cdot 7\) \& \(161 \cdot 2\) \& 183．0k \& \(162 \cdot 2\) \& 155.3 \& 163.9 \& 164.0 \& 164．6 \& \(166 \cdot 88\) \& 165.9 \& 169.4
\(955 \cdot 8\) \& 3966.6
4174.9 \& \& \\
\hline \(165^{4.4}\) \& \(16{ }^{163}{ }^{2 / 4}\) \& 162．8 \& 161.8 \& 166．8 \& \({ }_{165}^{16.8}\) \& 1764.0 \& 184.5 \& 779\％\({ }^{176}\) \& \(244^{\circ} 9\)
172.6 \& \begin{tabular}{l}
1055 \\
170.8 \\
\hline 18
\end{tabular} \& \({ }^{41741} 4\) \& \({ }_{167} 199\) \& \\
\hline 162.7
167 \& \({ }_{165} 167\) \& 171.7
159 \& \(164 \cdot 7\)
160 \& 165.3
\(i 62.9\) \& 1169.5 \& 176.4 \& \(172 \cdot 5\) \& 179.8 \& \(177 \cdot 2\) \& \(168 \cdot 3\) \& \({ }_{3}^{4958} 1\) \& 164.92 \& \\
\hline 165.0 \& \(163 \cdot 7\) \& \(163 \cdot 1\) \& 161.8 \& \(165 \cdot 1\) \& 170.5 \& \(172^{2} 7\) \& 172.7 \& \(176 \cdot{ }^{1}\) \& \(165 \cdot 9\) \& 167．5 \& \(3997 \cdot 8\) \& \(166 \cdot 57\) \& \\
\hline 169.2 \& \(168 \cdot 9\) \& \(165^{\circ} 0\) \& 163.5 \& \(183 \cdot 3\) \& 162．5 \& 166＊3 \& \(163 \cdot 8\) \& － \& － \& － \& \} \(4068 \cdot 3\) \& \(166 \cdot 89\) \& \\
\hline \& 二 \& \& － \& 二 \& 二 \& － \& \& 178.8 \& 177.9 \& \(180 \cdot 9\) \& \& \& \(169 \cdot 80\) \\
\hline \(169 \cdot 3\) \& \(167 \cdot 9\) \& 166.2 \& \(173 \cdot 5\) \& \(169 \cdot 9\) \& \(163{ }^{\circ} 6\) \& 173.3 \& \({ }_{183}{ }^{182} \cdot 7\) \& 197.7
167

168 \& \& \& ${ }_{4}^{4311}{ }^{4} 7$ \& $179 \cdot 65$
$167 \cdot 98$ \&

\hline ${ }_{168} 16.2$ \& $163 \cdot 5$
160 \& $162 \cdot 9$ \& 161.0
166.3 \& ${ }_{165} 168$ \& \& 143.6
$170 \cdot 1$ \& ${ }_{169} 18$ \& $167 \cdot 4$ \& 191.9 \& $181 \cdot 1$ \& $4098 \cdot 9$ \& 170.79 \&

\hline 171.5 \& 165.4 \& 171.0 \& 167.3 \& 172.0 \& $172 \cdot 1$ \& $168{ }^{\circ} \mathrm{L}$ \& 172.2 \& $201 \cdot 1$ \& ${ }_{276}{ }^{\circ} 8$ \& 187% \& $42 \mathrm{z} 2 \cdot 6$ \& $177 \cdot 19$ \&

\hline $173 \cdot 7$ \& 178．3 \& 176×3 \& 177＇6 \& $175 \cdot 9$ \& 174.1 \& ${ }^{158}{ }^{\circ}$ \& $180^{\circ} 1$ \& 188．3 \& 189.6 \& 189．9 \& \} $4233 \cdot 5$ \& $176{ }^{\text {¢ }} 0$ \&

\hline $1006 \cdot 5$ \& $3996 \cdot 1$ \& $4012 \cdot 7$ \& 3956.2 \& 3966.2 \& $3947 \cdot 7$ \& $3959 \cdot 6$ \& $4075 \cdot 8$ \& $4267 \cdot 8$ \& 4572.6 \& $4611 \cdot 4$ \& 99033．5 \& \&

\hline $160 \cdot 26$ \& $159 \cdot 84$ \& $160 \cdot 51$ \& 158.25 \& 158．65 \& $157 \cdot 91$ \& 158.38 \& 163.03 \& $170 \cdot 71$ \& 182．90 \& $184 \cdot 46$ \& 3961 ＇33 \& 165.06 \&

\hline
\end{tabular}

f Taken thirty minutes late．s Fifteen minutes late．in Five minutes late．${ }^{k}$ Twelve minutes late．

Eake Athabasca-cóotiviued.
Abstract of Hoirly Observations made during the monthe of January and February 1844.

Date. Gött. MeanTime.	Induction Inclinometer.												
	Noon.	1.	2.	8.	4.	5.	6.	7.	8.	9.	10.	11.	12.
1													
${ }_{3}{ }^{\text {b }}$	$190 \cdot 1$	192.3	$281 \cdot 6$	${ }^{204} 9$	$149 \cdot 1$	175.3	180.2	$189 \cdot 0$	189.7	188.7	$183 \cdot 7$	178.3	169.8
3 4	198.1 198.3	${ }_{1918}^{186}{ }^{\text {a }}$	${ }_{1885}{ }^{183}{ }^{\text {e }}$	179 190 18	175.0 175	$181 \cdot 6$ 175	187.8 182.9	$1819{ }^{1912}$	${ }_{188.7}^{1917}$	${ }_{185}^{1909}$	180.9	$189 \cdot 8$ 174.1	${ }_{173 \% 6}^{184.6}$
5	249.9	$261{ }^{\circ} 9$	181:9	$167 \cdot 8$	173.5	196.5	$180 \cdot 1$	185:3	213.6	$189 \cdot 1$	204:1	177:4	181.1
7	$3388^{\circ} 4$	$\underline{939}$	281:\%	$215 \cdot 1$	$169 \cdot 3$	183.5	188.1	$189 \cdot 3$	182.3	190.3	$1.99^{\circ} 1$	204.9	$195 \cdot 6$
8	209.9	$209 \cdot 5$	$205 \cdot 6$	$196 \cdot 9$	194.8	$192 \cdot 9$	206.5	$198 \cdot 6$	175.8	176:0	196.1	180.4	179.5
3^{96}	${ }_{210}^{210.4}$	215.1	$210 \cdot 9$	2088	191.3	$186^{\circ} \mathrm{L}$	228.5	$195{ }^{\text {12 }}$	$190{ }^{19} 2$	$197{ }^{\circ} 0$	${ }_{202} 20.3$	208.7	184.5
10	$202 \cdot 3$ 195.2	1993 207	$205 \cdot 3$ 236	198.7 $190 \cdot 6$	${ }_{187}^{193} \cdot 7$	$188 \cdot 1$ 189	${ }^{2036}{ }^{63}$	${ }_{204}^{2004}$	202.0 212.9	${ }_{1}^{2059}{ }^{19} 9$	${ }_{198}^{198}$	1855° 189	184.1 203 1
12	196.4	$190 \cdot 5$	184.5	$190 \cdot 6$	$18 \% \cdot 7$	186.5	$191 \cdot 4$	198.1	203.8	198.7	213.2	194.0	194:5
13	198.4	198.7	200.0	$199 \cdot 1$	208.3	$203 \cdot 9$	$200 \cdot 4$	$202 \cdot 6$	205.2	206.4	203.0	199	194.8
15	198.0	$197 \cdot 1$	$198 \cdot 6$	$198 \cdot 1$	$196 \cdot 1$	$196 \cdot 1$	196.5	$198 \cdot 6$	196.8	$215 \cdot 1$	215.0	$201 \cdot 1$	194.3
16	190.4a	$196.5{ }^{\text {a }}$	194.1	195.8	194.8	${ }^{192}$ 20.4	193.5	191.3	208.5	$200 \cdot 3$	193.8	195.0	${ }^{196}{ }^{3} 3$
17	93935	$211 \cdot 1$	$201 \cdot 4$	$199 \cdot 1$	209.5	2013	$202 \cdot 2$	207•3	$210 \cdot 3$	$207 \cdot 6$	203.0	205.2	$200 \cdot 3$
18	${ }_{20}^{208 .}{ }^{4} \cdot{ }^{4}$	213.9	${ }^{206} \cdot 1$	214.3	207.4	204.3	2015	${ }_{21}^{207} 5$	${ }^{201} \cdot 7$	$204 \cdot 2$	212.0	${ }_{208}^{2085}$	208'2
20	2015	${ }_{206}{ }^{\text {a }}{ }^{10}$	201.4	$200 \cdot 1$	${ }_{201}^{205}$	$\stackrel{207}{20.8}$	216	${ }_{205}^{21.5}$	$202 \cdot 5$	$\xrightarrow{208}{ }_{19}{ }^{\text {c/ }}$		$\xrightarrow{206.3}$	$2110^{\prime} 2$
$\stackrel{21}{21}$	209°	212.8	$215 \cdot 6$	218.8	225.5	$2 \overline{217} 8$	$261 \cdot 3$	229.5	212.2	204.3	$203 \cdot 7$	198.8	$204 \cdot 2$
¢ 23	194.6	$207 \cdot 2$	$206 \cdot 1$	$211 \cdot 1$	$211 \cdot 3$	$212 \cdot 5$	$211 \cdot 1$	$211 \cdot 2$	$203 \cdot 5$	$198 \cdot 9$	$205 \cdot 7$	207•3	$204 \cdot 7$
¢ $\{24$	208.5	$212 \cdot 7$	209.9	$200 \cdot 5$	205.8	214.3	219.8	215.1	208.9	$212 \cdot 7$	$202 \cdot 3$	$209 \cdot 8$	$204 \cdot 7$
g 25	${ }^{343}{ }^{4} 66^{6}$	${ }^{392} \cdot 9$	318.6	${ }_{20}^{215} 7$	203.8	${ }^{194.1}$	$215{ }^{2} 5$	214.2	$211 \cdot 2$	$205 \cdot 9$	192.0	$209 \cdot 9$	${ }_{208.1}^{208.1}$
先 26	${ }^{202} 2 \cdot 1 \cdot 6^{\text {a }}$	206.92	20612	207.0	${ }_{206}^{215}$	212.4		${ }_{209}^{2118}$	208.0	209.2 209	${ }_{205}^{207} 3$	${ }_{210}^{219} \cdot$	188.7
${ }_{29}^{28}$	228.2	205.2	$200 \cdot 9$	$200 \cdot 0$	$207 \cdot 2$	1997	203.9	198.7	204.7	204.9	203.5	204.6	197.0
30	203.0	196.5	193.6	$191 \cdot 1$	198.9	$199 \cdot 5$	$203 \cdot 3$	203.4	199.1	201.8	$201 \cdot 3$	199.6	204.7
31	$208{ }^{1}{ }^{1}$	209.2	$206 \cdot 9$	$213 \cdot 3$	203.9	203.9	205.5	208.2	214.6	$212 \cdot 9$	209*9	$202 \cdot 9$	$198 \cdot 1$
Sums	5623.0.	$5561 \cdot 9$	$5472 \cdot 8$	5914.8	5093.9	5135.0	52977	5258.5	$5266 \cdot 9$	5218.0	$5238 \cdot 5$	5169•3	$5074 \cdot 1$
Means	216.27	213.02	210.49	$200 \cdot 57$	$195 \cdot 02$	197.50	$203 \cdot 76$	200.25	$202 \cdot 57$	$200 \cdot 69$	201.47	198.82	$195 \cdot 16$

Lake Athabasca-continued,
Abstract of Hourly Observations made during the months of January and February 1844.

Induction Inclinometer.													
13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	:23.	Süns.	Means̈.	Fortnightly Means.
-	-	-						188.3	18976	$189 \cdot 6{ }^{\circ}$			
185.9		168.4	180.0	172:4	180.4	178.1	167:5	${ }^{1855}$	182.6	$185 \cdot 1$	4263.0	${ }^{185} \cdot 73$	
$186 \cdot 1$	$185 \cdot 4$	183.4	$186 \cdot 7$	$187{ }^{\circ} 7$	$182 \cdot 3$	$185 \cdot 1$	${ }^{189}{ }^{\circ} 6$	193.5	198.4	${ }_{6}^{192 \cdot 6}$	-4502:1	:187.59	
180.5	$173{ }^{\circ} 0$	$1700^{\circ} 8$	128:5	$130{ }^{\circ} 4$	$148{ }^{\circ} 5$	$110 \cdot 8$	184:2x	358.9	177.9		4650 4716.8	${ }_{198}^{193 \cdot 75}$	
178.2 176.8	$1789 \cdot 0$	${ }_{164} 17.7$	$180 \cdot 1$ $193 \cdot 1$	182.9 176.2	$181 \cdot 9$ $185 \cdot 8$	${ }_{177}^{152} \cdot$	1841:5	180.4	$177 \cdot 9$		4716		
								208.7	212.0	$220 \cdot 6$	\}.4781:2	199'22	
$191 \cdot 5$	189'5	$190^{\circ} 5^{\text {a }}$	$183 \cdot 1$	184.1	${ }^{4} 193.7$	$189 \cdot 7$	$20.5{ }^{4}$	291- ${ }^{\text {\% }}$	$185 \cdot 9$	${ }^{189} 5$	4656:6	194.02	$194 \cdot 65$
189.3	164.0	$175 \cdot 9$	$188 \cdot{ }^{\text {a }}$	$195 \cdot 3{ }^{\text {a }}$	$195 \cdot 8$	190.5	${ }^{159} 5$	$190 \cdot 1$	$210 \cdot 5$	${ }^{218 \cdot 0}$	4490.5	195:95	
$185^{18.4}$	$179 \cdot 7$	${ }^{190 \cdot 0}$	$187 \cdot 4$	198.5	${ }^{1951}{ }^{1}$	${ }^{2381}$	195	${ }_{2015}^{196}$	198.2	${ }^{197 \%}{ }^{195}$	$4732 \cdot 0$ 4728.2	197'17	
191.2.	189 188 1	187.5 189	184.6 18.1	186.5 138.8	191.4 185	1955° 178.1	$1955^{\circ} \cdot 4$ 185	${ }_{2}^{201}$	198.3	${ }_{213} 195$	${ }_{4599}{ }^{4728}$	${ }_{191} 197.61$	
189.7	193.5	191.4	$189 \cdot 7$	189'6	$191 \cdot 2$	187.1	$104 \cdot 6$				\} $47600^{\circ} 6$	198.61	
196	195.4	199	196.8	193.8	197*8	193.8	196.9	${ }_{201}^{21} \cdot 48$	197.7	${ }^{1956} 5$	${ }^{4786} \cdot 7$	188.61	
192.0	192.4	194.5	192.0	193.6	$197 \cdot 4$	196.7	$201 \cdot{ }^{\text {a }}$	$191 \cdot{ }^{1}$	$195^{\circ} 0$	199.5	$44888^{\circ} 5$	$195 \cdot 35$	
$198 \cdot 7$	197.5	104.4	199.0	$205{ }^{\circ} 2$	199.5	201.1	${ }^{180}{ }^{\circ} 5$	${ }^{198 .}{ }^{\text {a }}$	$207 \cdot{ }^{\text {5a }}$	201.1	${ }^{4875}{ }^{\circ} 0$	${ }^{203} 13$	
${ }^{204} \cdot 1$	211.5	${ }_{216}^{216}$	${ }_{211}^{200.4}$	${ }_{21}^{201.8}$		${ }_{214}^{20 \cdot 8}$	${ }_{207}^{205}{ }^{\text {a }}$	${ }^{262} \cdot{ }^{20} \cdot{ }^{\text {a }}$	234.9	${ }_{208}^{208} 5^{\text {a }}$	${ }^{49073}{ }^{4} 6$	207 208	
$202 \cdot 1$	197.8	$202 \cdot 7$	198.2	$202 \cdot 6$	$199 \cdot 3$	$198 \cdot{ }^{\text {a }}$	$196 \cdot 7^{\text {a }}$			$\stackrel{-}{\square}$	$\} 4896.4$	204.02	
$200 \cdot 3$	194.3				191.2	190	$173 \cdot 6^{n}$	$181 \cdot{ }^{\text {an }}$	${ }^{201} \cdot{ }^{18} \cdot 3^{n}$	$173 \cdot 9$	4894.7	203.95	
$200 \cdot 0$	196.8	204.5	$207 \cdot 8$	204.1	212	199.5	$212 \cdot 2$	205•9	208.0	$208 \cdot 5$	4944.9	206.04	$200 \cdot 74$
$203 \cdot 6$	$210 \cdot 9$	195'9n	$203 \cdot 3^{n}$	$310 \cdot{ }^{4}$	$218 \cdot 3$	2478	$381 \cdot 2$	${ }^{358} 1^{1}{ }^{n}$	$325.0{ }^{\text {n }}$	$375{ }^{\text {c }}{ }^{\text {a }}$	$5755^{\circ} 0$	239.79	(1) 7
205.8	$210 \cdot 5$	$210 \cdot 3$	$207 \cdot 8$	204.8	$206 \cdot 5$	$221 \cdot 1$	$214 \cdot 1$	212.4	'201.9	199,0	$5417{ }^{7}$	225:74	
$210 \cdot 1$	206.7	$201{ }^{\circ} 7$	108.8	$202{ }^{8}$	196.5	199.2	$2\left(13^{\prime} \cdot\right)^{\text {a }}$	$203 \cdot 8$	$254 \cdot{ }^{\text {g }}$ b	$27 \cdot 9$	504	210.11	
201.9	195.6	205.6	2045	203.7	2017	$193 \cdot 2$	$219 \cdot 2$	20.1	210.5	233:3	$\} 4900 \cdot 6$	$206 \cdot 69$	
204.5	202.9	$189 \cdot 1$	190.7k	193.5	$206 \cdot 5$	2065	1943	195.0	196.4	2385	4878.4	$203 \cdot 27$	
1997	196.0	195.0	$199 \cdot 0$	19998	${ }^{183 \cdot 1}{ }^{\text {a }}$	187.8 191	${ }_{2017}^{178}$	${ }^{229}{ }^{29} 7^{\text {a }}{ }^{\text {a }}$	$2060 \cdot 6$ 1914	2119 219	$4777 \cdot 2$ 4823	1900.09	
197×4	198.9	213.4	$191 \cdot 1$	189.0	$167{ }^{7}$	191.0	$201 \cdot 2$	175.0	$191 \cdot 3$	$219 \cdot 4$		$200 \cdot 99$	
5075:9	$4842 \cdot 1$	$5007 \cdot 6$	$4989 \cdot 2$	5056.5	$4 \cdot 1$	5019.5	5204.2	5410.0	5434.2	5981 ${ }^{\text {'3 }}$	125659.0		
195:23	$193 \cdot 68$	192.60	$191 \cdot 89$	194.48	192.85.	183.06	$200 \cdot 10$	210.40	209.01	2310.05	4848.80	202.03	
185:7	1968	192.6	202.7	$174 \cdot{ }^{4}$	$168 \cdot 9$	115.10	156.5	$189 \cdot 1$	199.2 195.4	${ }^{216} 0^{\circ} 0$	$5029 \cdot 3$ $4714 \cdot 0$	209'55	
188.7	1888	171.3	$170 \cdot 7$	$184{ }^{4}$	174.7	148.3	164.9 160.5	$193 \cdot 8$	195.4				
$168 \cdot 9$	169.5	103.6	189.6	185.4	184.1	$170 \cdot 5$	1605	$187 \cdot 9$	178.6	190.3	$\} 4519 \cdot 1$	188'30	
$15 \% \cdot 9$	$151 \cdot 6^{n}$	$147 \cdot 3 \mathrm{n}$	148.12	$181 \cdot \mathrm{ga}$	158.2	$183 \cdot 2$	$220 \cdot 6$	$300^{\circ} 8$	298	213.0	$5008 \cdot 4$	208.68	195.83
$180 \cdot 8$	$189 \cdot 3$	$185 \cdot 3$	186.7	182.7	$171 \cdot{ }^{1}$	298984	$175 \cdot 3$	180.6	184.7	${ }_{21}^{189 \cdot 1}$	${ }_{4}^{46085}$	192.63	
192.6	${ }^{180} 0^{-2}$	101.5	$158{ }^{189}$	1780^{3}	$190 \cdot 1$	-185.9	${ }_{187} 18.4$			${ }_{186}{ }^{231}{ }^{\circ} 9$		187 199 198 188	
$169^{\circ} 3$	${ }^{1777^{\circ}}$	$171 \cdot 9$	$191 \cdot 2$	188.0	${ }_{179}^{172 \cdot 8}$	187.5	${ }_{192} 18.1$	174.0	184.8	178.2	${ }_{4}^{4790 \cdot 6}$	182.94	
184.8	${ }_{180}{ }^{183}$	188.8	${ }_{188} 18.4$	1788^{17}		190.5	$246 \cdot 3$						
$191 \cdot 7$	$180 \cdot 8$	188.8	188.4	188.7	1895			$235 \cdot{ }^{\text {a }}$	205.8	$215 \cdot 7$	$\} 4673 \cdot 4$	194'72	
195.3	191.5	$190 \cdot 5$	$187 \cdot 6$	187.8	$185{ }^{\circ}{ }^{\circ}$	183.1	179'5	${ }_{192} 11.4{ }^{4}$		${ }^{2059} \cdot{ }^{\text {a }}$	4775.5	198.98	
194.5	${ }_{292}^{192}$	$190 \% 1$	$1{ }_{200 \cdot 9}$	${ }_{201}^{197} \cdot 5$	193.1			$178{ }^{192}{ }^{\circ}$	191.6	196.7	${ }_{4540}^{4661}$	194.18 198.58	
204.0	${ }_{199}^{200}{ }_{5}^{4}$	196.5	$200 \cdot 9$ 194	$201 \cdot 2$ 194	193.1 194	$197 \cdot 5$	${ }_{188} 176^{\text {n }}$	$194{ }^{5}$	2078	1994.0	47882.1 47201	199.25	
190.0	180.9	184.7	181.1	174.7	$181.0^{\text {a }}$	$196 \cdot{ }^{4}$	$192 \cdot 1$	2049^{88}	$211 \cdot 3^{n}$	$207 \cdot 7^{\text {a }}$	$4701 \cdot 1$	$195 \cdot 84$	
187.8	184.8	$182 \cdot 3$	$185{ }^{7}$	$185 \cdot{ }^{\text {a }}$	$193 \cdot 7$	$198 \cdot 7$	${ }^{213}{ }^{1}$	196.2			$\} 4715 \cdot 8$	$196 \cdot 49$	
$195 \cdot 6$	195.7	$102 \cdot 5$	$191 \cdot 4$	196.5	193.9	$192 \cdot 5$	$196 \cdot 1$	${ }_{191} 1971$	${ }_{205}^{205}$	196.0	$4750 \cdot 2$	197.93	
191.4	$189 \cdot 2$	$190 \cdot 8$	$193 \cdot 3$	$192 \cdot 9{ }^{\text {n }}$	192.0	${ }_{187} 19.0$	189.9a ${ }^{\text {a }}$	${ }_{193}^{19}{ }^{19}{ }^{\text {a }}$	${ }_{203}^{207}{ }^{\text {a }}$	${ }^{2198 \cdot 3}{ }^{\text {a }}$	'4701.9		197
1994.4	194.3 188.7	193.9	191.5	${ }_{191} 197$	${ }_{195}^{18.1}$	193.4	$192 \cdot 5$	2045	193.4	188.8	. 4712.0	196.33	
$189 \cdot 2$	$189 \cdot 7$	$191 \cdot 2$	$187 \cdot 9$	$190 \cdot 1$	$197 \cdot 3$	194. ${ }^{\text {d }}$	195.6	$191 \cdot 2$	$191 \cdot 5$	$192 \cdot 9$	$4633^{\prime 2}$	102'63	
$196 \cdot 2$	$197 \cdot 1$	$200 \cdot 3$	194.2	$196 \cdot 8$	196.0	199.4	$197 \cdot 8$	$205 \cdot 7$	$202 \cdot 6$	$201 \cdot 5$	$\} 4771 \cdot 4$	198.81	
195'7	$185 \cdot 1$	186.9	194.2	188.3	188.1	$181 \cdot 4$	$175 \cdot 8$	189.0	205.3	${ }^{877} 9$	4751.4	197.97	
194:2	$190 \cdot 0$	192.2	$193 \cdot 6$	$194 \cdot 4$	201.5	$192 \cdot 1$	$209 \cdot 4$	$207{ }^{\circ} 6$	${ }^{233 \cdot 2}$	218.8	4807.3	$200 \cdot 30$	
188.0	$169{ }^{\circ} 4$	158.0	$210 \cdot 2^{\text {a }}$	$144 \cdot 88^{\text {a }}$	168.4	$160 \cdot{ }^{14}$	186.8	${ }^{\text {e } 261}{ }^{-4}$	$277 \cdot 0^{4}$	304.0	4795.4	199.81	
188.2	$195 \cdot 8$	191.4	$187 \cdot 0$	176'2	189'4	$190 \cdot 2$	${ }^{193}{ }^{-4}$				4279	$\begin{aligned} & 204.62 \\ & 197.09 \end{aligned}$	
$4729^{\circ} 0$	$4671 \cdot 5$	$4631 \cdot 1$	4693.4	$4587 \cdot 6$	4640.0	$4612 \cdot 0$	$4757 \cdot 9$	4918.4	4932.4	$5009 \cdot 6$	$117396 \cdot 2$		
$189 \cdot 16$	186.88	$185 \cdot 24$	187.74	183.50	185.60	184*48.	$190 \cdot 32$	204.93	$205 \cdot 52$	20873	4728.48	$197 \cdot 02$	

a Visible aurora,
b Day omitted as incomplete.
c This portion of a day is included under the same hours for December to make the numbor complete.
e Tifteen minutes late.

FORT SIMPSON．
Abstract of Hourly Observations made during the months of April and May 1844.

Date． Gött． Мепи Time．	Induction Inclinometer．												
	Noon．	1.	2.	3.	4.	5.	0.	7.	8.	0.	10.	11.	12.
1	394	251.4	$268 \cdot 1$	$291 \cdot 6$	255.6	137.6	$177 \cdot 9$	$132 \cdot 0$	100．0	100．0	84.4	100．2	107•2
$\stackrel{2}{3}$	$144: 0$ 235	139.8 $120 \cdot 2$	${ }_{123}^{13} \cdot 1$	$183 \cdot 3$ 159	219．5	${ }^{170.0}$	193．7	$101 \cdot 1$	1585	108.7	${ }_{120}^{136} 3$	122.4	123.7
4	368.1	274＊4	180.9	$170 \cdot 3$	3142.6	${ }_{123}{ }^{\text {a }}$	$245 \cdot 7$	${ }_{137}^{1818}$	127．0	${ }_{137}^{127}$	144.3	${ }^{128.5}$	124.0 $130^{\circ} 6$
${ }_{6}$	145.9	148.5	138.3	132.4	138.9					$112 \cdot 1$			
7				132	138	167	140.0	120^{-5}	${ }^{131 \cdot 1}$	12 L	$150 \cdot 1$	$130 \cdot 3$	$150 \cdot 1$
8	${ }_{137} 14.9$	136.6	$152 \cdot 2$	178.0	141.2	150.7	150.5	194.7	163.2	$153 \cdot 7$	158.9	146.2	$147 \cdot 5$
10	1916	${ }_{216}^{136}$	$1420^{\circ} \mathrm{b}$ 20	$1372 \cdot 5$	$140 \cdot 1$ 250.5	145.9 112.2	128．1	133.2	188.9 120.3	140．6	${ }_{125}^{14.6}$	124.7	138.9
11	1295． 4	$142 \cdot 2$	189.8	$130 \cdot 6$	123.4	$127 \cdot 4$	$125 \cdot 3$	126.6	$125 \cdot 3$	$120 \cdot 4$	$132 \cdot 7$	133.6	$130 \cdot 4$
13	133.5	$13+7$	132．2b	$12{ }^{\circ}{ }^{4}$	121.8	125.6	137.0	129＊8	$126 \cdot 7$	$130 \cdot 9$	$127 \cdot 2$	$131 \cdot 6$	124．1
${ }_{14}^{13}$	124.1	$102 \cdot 6$	123.5	123.5	124.3	$130 \cdot 9$	129.2	131.1	$134 \cdot 7$	$135 \cdot 1$	134.9	$131 \cdot 1$	130.9
15	$147 \cdot 0$	3883	388.7	929 $\cdot 9$	$149 \cdot 9$	102．4	$118 \cdot 2$	121.0	120．6	$115 \cdot 3$	120．8	$107 \cdot 8$	$120 \cdot 6$
16				137.6	167%	153.0	138.9	126.7	$131 \cdot 3$	132.0	$130 \cdot 6$	$112 \cdot 6$	$97 \cdot 9$
17	330.8	$83 \%^{\circ} 9$	470.4 129.1	429.5	389 118. 	438.2 133	S59．8	${ }_{111}^{214} \cdot 1$	148.0	${ }^{83} 19$	${ }_{143} 671$	60．8	${ }^{45} \cdot{ }^{\circ} 7$
19	$188 \cdot 3$	158.5	141.0	$125 \cdot 7$	127.0	$1148 \cdot 7$	$143 \cdot 2$	${ }_{138}{ }^{\circ} 4$	1395	127.4	${ }_{143}^{143} 1$	117.3 164.9	104．0
20	2557	$254 \cdot 6$	$109 \cdot 0$	154．8	$134 \cdot 3$	136.6	126.5	134.7	$136 \cdot 0$	143.5	$137 \cdot 1$	$139 \cdot 2$	$136 \cdot 2$
－ 22	114．3		$178 \cdot 1$	$162 \cdot 9$	154.1	135.0	$140 \cdot 9$	$130 \cdot 7$	$134 \cdot 7$	$147 \cdot 0$	154．0		
ค ${ }^{23}$	304	$242 \cdot 9$	246.0	$277 \cdot 3$	184.5	$146 \cdot 7$	$147 \cdot 1$	148．4	$149 \cdot 8$	$159 \cdot 8$	1576	$157 \cdot 9$	$156 \cdot 3$
g ${ }_{25}$	159	276.0	152．0	139.7	$147 \cdot 1$	142.1	$146 \cdot 3$	$148 \cdot 3$	153.0	$153 \cdot 7$	$161 \cdot 7$	$158 \cdot 5$	$151 \cdot 1$
兰 26	$645^{\circ} 9$	$400 \cdot 1$	240．3	－${ }^{\text {c }}$	357．9	$3390 \cdot 6$	785°	$242 \cdot 5$	${ }_{165} 16.5$	${ }_{161}^{138}$	$160 \cdot 2$ 162	1138.7	${ }_{1159} 1{ }^{\circ} \cdot 4$
－ 27	344．6	$201 \cdot 5$	$193 \cdot 7$	196.0	$123 \cdot 2$	$140 \cdot 4$	211.4	186.4	168.2	$161 \cdot 3$	$177 \cdot 2$	146．5	$129 \cdot 1$
29	$200 \cdot 1$	307.0	$47^{9} 9$	301.8	318.1	$251 \cdot 8$	157.4	154．9	$163 \cdot 4$	$161 \cdot 1$	175.2	$139 \cdot 5$	$17 \overline{6} 1$
May ${ }^{30}$	366.8 256.9	2906% 210.7	$180 \cdot 1$ 231	$173 \cdot 5$	$172 \cdot 9$	175．7	$171 \cdot 5$	208.3	174．1	172．6	183.3	174.2	$120 \cdot 3$
May 1	256	210%	$231 \cdot 7$	144.0	$176 \cdot 3$	$179 \cdot 1$	185.9	$180 \cdot 6$	$171 \cdot 5$	$180 \cdot 3$	171＇9	160.0	$129 \cdot 4$
											Mean	from 1 s	April
Means	$240 \cdot 61$	$215 \cdot 18$	217．34	199.87	$191 \cdot 47$	$175 \cdot 69$	$163 \cdot 74$	153.05	$142 \cdot 27$	$138 \cdot 13$	$142 \cdot 45$	$133 \cdot 25$	128.68
${ }_{2}^{1}$				－	－	－	二	－	－	－	－	－	－
3	${ }_{233}^{241} \cdot 2$	242.0	$239 \cdot 9$	$201 \cdot 5$	614.1	${ }^{316} \cdot 7$	206.6	223.0	239.8	238.8	231.5	$229 \cdot 0$	$220 \cdot 4$
4	2332	$242 \cdot 0$	$244 \cdot 4$	$250 \cdot 4$	228.8	231.6	$227 \cdot 0$	$236 \cdot 9$	$238 \cdot 8$	2475	263.0	241.0	$215 \cdot 2$
6	255.2	282.4	221.0	214.8	$252 \cdot 6$	$260 \cdot 6$	$279 \cdot 0$	241.0	$240 \cdot 8$	$243 \cdot 4$	236.1	233.0	$248 \cdot 8$
7	$276 \cdot 4$ 279	$\underline{264 \cdot 8}$	300.4 400.8	266.0 387.0	290.8 295.2	276.0 289.8	24．4．0	233．0	244．0	249.6	2478	250.0	289.8
9	$252 \cdot 8$	258.0	$374 \cdot 2$	$422 \cdot 6$	407.2	$299 \cdot 1$	$250 \cdot 4$	233．0	${ }_{233}{ }^{252}{ }^{\circ} 1$	${ }_{235}^{261.0}$	${ }_{238}{ }^{24}{ }^{\circ} 5$	${ }_{284} 18.1$	${ }_{280} 18.7$
10	258.4	253.4	$260 \cdot 8$	281.6	$279 \cdot 6$	$257 \cdot 5$	$250 \cdot 0$	252.0	$255 \cdot 4$	262.0	$260 \cdot 0$	258.4	$263 \cdot 2$
112	－	284.0	288.4	2890	258.0	261.0	$270 \cdot 2$	264.8	$265{ }^{4}$	$265^{\circ} 6$	$260^{\prime} 2$	$271 \cdot 8$	$291 \cdot 8$
13	231.0	240.0	286.2	276.6	233.0	234.0	245.0	218.0	$245 \cdot 0$	$244 \cdot 5$	242.0	$240 \cdot 2$	$235 \cdot 6$
14	$31^{\circ} \mathrm{O}$	283.0	268.8	254.0	1978	210.0	$235 \cdot 6$	$227 \cdot 2$	$230^{\circ} 8$	231.0	228.0	$222 \cdot 4$	${ }_{2265} 28$
15	205.6	235.0	257.0	258.8	251.0	247.2	270.0	240.0	252.0	233.0	$223 \cdot 2$	244.8	$217 \cdot 0$
16 17	34.8 246 4.0	$316 \cdot 2$ 251.0	331.3	205．6	268．6	$\xrightarrow{232.8}$	219.0	${ }^{24510}$	${ }^{2464 .}$	241.6	$245 \cdot 6$	246.6	241.1
18	$244 \cdot 8$	259.6	$251 \cdot 6$	236.4	24.2	$250^{\circ} 0$	$225 \cdot 2$	$251 \cdot 0$	$244{ }^{23}$	${ }_{252 \cdot 5}^{246}$	${ }_{251}^{254} \cdot 7$	244．0	249＊
19		－						－				－	－
20	257.0	246.0	258.0	246.8	236.0	237.2	248.0	248.0	259.8	$285 \cdot 0$	$268 \cdot 2$	$262 \cdot 0$	$253 \cdot 6$
${ }_{22}^{21}$	$289 \cdot 8$	300.0 4840	306.2 501.6	292：8	$285 \cdot 6$ $315 \cdot 4$	281.8 246	－ 286.5	259.8 275	$\xrightarrow{265.8}$	$\xrightarrow{269 \cdot 6}$	272．4	220.0	$218 \cdot 3$
23	${ }^{1919} 1$	424.0	359.6	351.4	348.8	$256{ }^{\prime} 4$	$247 \cdot 2$	268.0	2413．8	－${ }_{246}{ }^{31}{ }^{\circ} 6$	$\xrightarrow{356.8}$	267.0 2538	$\stackrel{910}{981}$
24	$341 \cdot 2{ }^{\text {a }}$ $301 \cdot 9 r$	344.0	$440 \cdot 0$	$333{ }^{3} 0$	$292 \cdot 2$	294.6	258.5	271.0	$268 \cdot 8$	$274 \cdot 6$	$267 \cdot 3$	$248 \cdot 7$	251.0
46	301	308．4	$\stackrel{296}{ }{ }^{-2}$	277	$\underline{269}{ }^{1}$	$283 \cdot 8$	$271 \cdot{ }^{\text {f }}$	$264.0{ }^{\text {f }}$	$266^{\circ} 0^{r}$	$296 \cdot{ }^{\circ}$	$266 \cdot{ }^{\text {b }}$	$265 \cdot 6$	$273 \cdot 1^{\text {r }}$
27	－	－	－	－	－	－	－	－	－	二	二	二	二
28	二	二	－	－	二	－	－	－	－	－	－	－	
${ }_{31}^{30}$	－	－	－	－	－	－		－	－	－	二	二	
Auril to	$\}^{250 \cdot 41}$	$294 \cdot 15$	$306 \cdot 84$	292.13	201.47	$259 \cdot 23$	$250 \cdot 63$	248×2	24976	253.21	251.02	241 －54	$236 \cdot 41$
25th May													
a Visible aurora． e At $0^{\mathrm{h}} 21^{\mathrm{m}}$ ．			${ }^{\mathrm{b}}$ At $2^{\mathrm{h}} 25^{5}$ ． ${ }^{\mathrm{c}}$ At $3^{\mathrm{h}} 30^{\mathrm{mm}, 203 \cdot 5 .}$						${ }^{d}$ At $1^{\mathrm{s}} 30^{\mathrm{m}}, 373 \cdot 8$ ，both included．				

[^29]
FORT SIMPSON．

Abstract of Hourly Observations made during the months of April and May 1844.

Induction Inclinometer．													
13.	14.	15.	16.	17.	18.	10.	20.	21.	22.	23.	Sums．	Means．	Fortuightly Means．
88.1	65.8	78.3	71.9	61．2a	${ }^{67} 2^{\text {a }}$	81.6	${ }^{68} \cdot 9$	$279 \cdot 1$	$298 \cdot 9$	209.5	$3768 \cdot 6$	157.02	
130.2	$108 \cdot 1$	119.6	880°	${ }^{113}{ }^{\circ}{ }^{\prime \prime}$	（124．50	${ }^{58.0}$	$117 \cdot 5^{\text {n }}$	${ }^{1616} 7^{\circ} 7^{\circ}$	$2311^{\prime} 1{ }^{\text {a }}$	467	$3597 \cdot 2$	149.88	
14.15 127	124.6 129	${ }^{116.0}$	$86 \cdot 6$ 111.1	107．4＂${ }^{10}$	${ }_{60} 83.7$	${ }_{116.6}{ }^{16}$	$\begin{array}{r}135 \\ 80 \\ \hline 8\end{array}$	${ }^{135} 4$.	151：5	177．4	$3772 \cdot 9$	$157 \cdot 20$	
		10				－		$152 \cdot 4$	138.5	144．6	$\} 3428 \cdot 4$	142.85	
$122 \cdot 1$	$105 \cdot 9$	81.6	${ }^{63} \cdot 0$	$05 \cdot 0$	$86^{\circ} 4^{8}$	100．0	104． $6^{\text {b }}$				\} $3033 \cdot 1$	126．38	
$145 \cdot 4$	143．2	136．7	136．7	$132 \cdot 5$	$145 \cdot 6$	149＇8	$141 \cdot 4$	133.5	${ }_{129} 18$	${ }_{138 \cdot 6}$	$3392 \cdot 7$	$147 \cdot 93$	
141.5	${ }^{1388} 6$	$138 \cdot 1$	124.0	128.6	${ }^{135}{ }^{1} 1$	133.4	139.2	169 12	${ }^{249}{ }^{\circ} 0^{\circ}{ }^{\text {a }}$	264.0 130 10	3575.8	$145 \cdot 99$	
139.0 133.1	${ }_{135}^{13 \cdot 6}$	${ }^{124} 126$	$125 \cdot 1$ 117	${ }_{115}^{126.6}$	126．8n	115 112	${ }^{130}{ }^{126}$	${ }_{144}^{280} \cdot 1{ }^{14}$	${ }_{152}^{18 \cdot 6}$	${ }_{146}^{130}{ }^{\prime} 3^{\text {a }}$	3702.0 3162.4	$154 \cdot 25$ 131 127	
125.5	126.7	$132 \cdot 6$	126.9	123^{3}	124．7	$129 \cdot 6$	129＇2	128.8	$143 \cdot 1$	129＇3	$3093 \cdot 5$	128.90	
$120 \cdot 6$	124．3	$126 \cdot 9$	133＇9	122.0	$115 \cdot 0$	116＇5 ${ }^{\text {n }}$	${ }^{127} 7^{\prime \prime}$	$18^{\circ}{ }^{\text {a }}$	$128 \cdot 7$	$11 \overline{7} 7$	$\} 3018 \cdot 0$	125．75	
107.4	102．8	$100 \cdot 7$	$115 \cdot 1$	124．8	117.4	140．2n	$195 \cdot 3 \mathrm{a}$	$132 \cdot 7$	113.8	112.0	$3574 \cdot 1$	148．92	
99.4	11^{10}	${ }^{29}{ }^{\circ}{ }^{\circ}$	390\％		2379＊＊	69．5n	$\frac{251.10}{}{ }^{\text {a }}$	335\％${ }^{\text {San }}$	345＊${ }^{\text {a }}$	29908 ${ }^{80}$	$3092 \cdot 7$ 816.7	1419	
－	${ }_{123} 10.1$	${ }_{125}^{124} 1$	${ }_{136}^{134}{ }^{13}$	${ }_{123}^{133} \cdot 4$	$135 \cdot 9$ $131 \cdot 2$	${ }_{124 .}^{130}$	${ }_{128.8}^{125}$	${ }_{128.1}^{18.1}$	112．4n	${ }_{1}^{122} \times 8$	5116.7 2815.0	${ }^{213 \cdot 20}$	
132．6	$131 \cdot 6$	$140 \cdot 3$	$128 \cdot 4$	126.6	128.5	134.6	$131 \cdot 0 n$	$139 \cdot 5$	$161 \cdot \hat{r}^{\text {n }}$	319.6	3574×5	${ }_{148} 194$	
121.2	138.3	$137 \cdot 7$	$127 \cdot 3$	$123 \cdot 7$	$130 \cdot 1$	120＇4	$135 \cdot{ }^{\text {a }}$				\} $3507 \cdot 9$	149．92	
137．5	$140 \cdot 5$	$145 \cdot 7$	$131 \cdot 4$	1377	142．5	$161 \cdot 4$	142．0	$140 \cdot 4$	${ }_{144}^{14 \cdot 8}$	$194 \cdot 6$	3386	147 ＇13	
157.5	$1500^{\circ} 4$	145.0	141.8	$127 \cdot 3$	131：3	$144 \cdot 1$	158.1	186.2	139.1	154.9	4109.8	$171 \cdot 24$	
153.0	${ }^{166 \cdot 1}$	$160 \cdot 9$	155.9	$133 \cdot 6$	$127 \cdot 2$	109.5	134.7	$18 \% 7$	$160 \cdot 7$	173：6	3424.2	$149 \cdot 30$	
11900	$150 \cdot 5$	164.9	88.2	${ }^{114}{ }^{\text {P }}$	$151 \cdot 3$	140.8	$348 \cdot 3$	216.9	$176 \cdot{ }^{2}{ }^{\text {a }}$	$194 \cdot 7$	5004.0	$208 \cdot 50$	
108．2	108.4	$1182 \cdot 6$	${ }^{149}{ }^{\text {P }}$ ． 1	$1319 \cdot 4$	$\underline{290} 0^{\circ} 6$	286.8	$1119 \cdot 6$	$192 \cdot 5$	195．9	198.6	$5380 \cdot 7$	$224 \cdot 20$	
115.8	${ }^{138}{ }^{\circ}$	169.5	$85^{\circ} 2$	$0{ }^{2} 1$	168.6	119.0	$300 \cdot 8$		258.9	188.0	$\} 4213 \cdot 3$	175．65	
${ }^{156} 9$	149．0	130.0	134.0	152.8	126.1	149.9	$183 \cdot 6$	161	161.7	181.5	－ 4596.4	101.52	
143．7\％	80% 150%	（18．98	$\begin{aligned} & 117.3 \\ & 156.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 148 \cdot 8 \\ 139.5 \end{array}$	1475 $135 \cdot 5$	174＊0	$173 \cdot 5$ 125	449．1	$415 \cdot 8$ 158.8	298．3．	$4834 \cdot 1$ 3068.7	$201 \cdot 42$ $165 \cdot 30$	
to 1st 1	May ine	sive	－	－	－	－	－	－	－	－		159.01	
125．53	121＇51	121．97	116.37	$120 \cdot 60$	$132 \cdot 01$	128．04	151．43	181.81	183．80	$190 \cdot 72$	160.55		
－	－	－	二	－	$158.3{ }^{\text {r }}$	$265.0{ }^{\text {a }}$	$102 \cdot 8{ }^{\text {r }}$	$208 \cdot \sim$			二		
$237 \cdot 1$	$932 \cdot 3$	$217 \cdot 9$	204．0	$227 \cdot 1$	224.4	214.5	23.5	217.1	231.3	$238 \cdot 2$	$6054 \cdot 4$	$252 \cdot 27$	
229.6	$212 \cdot 2$	216.0	211.6	202．4	194.2	$184 \cdot 00^{n}$	$240 \cdot 2$				$\} 5694.5$	236.02	
$233 \cdot 4$	24.3	$228 \cdot 2$	231.0	$217 \cdot 0$	$227 \cdot 8$	$225 \cdot 6$	$242 \cdot 4$	2194	$235 \cdot 2$	$251 \cdot 3$	$5766 \cdot 3$	$240 \cdot 26$	
$244^{\circ} 2$	237.7	$214 \cdot 2$	$222 \cdot 2$	165.4	218.2	211.0	204.0	$234 \cdot 2$	407%	245.3	5985.0	$249 \cdot 37$	
$760^{\circ} \mathrm{y}$	20.30	191.5	184.0	$203 \cdot 8$	$181 \cdot 2$	$199 \cdot 9$	$270 \cdot 2$	$290 \cdot 4$	276.0	$269 \cdot 2$	$5717 \cdot 1$	$253 \cdot 79$	
${ }_{241}^{241}$	${ }^{2338.4}$	221．4	${ }^{239} 3$	${ }_{2}^{236.4}$	${ }^{251.8}$	264.2	${ }_{25}^{258.3}$	${ }_{230}^{238.2}$	${ }^{265.7}$	${ }_{20}^{2612.4}$	6392.5	266．35	
262.0 244	2581 2317	228．2	$232 \cdot 0$ 229.9	$245 \cdot 7$ 222	${ }_{234}^{24 \cdot 2}$	${ }_{230}^{242 \%}$	255．0	$230 \cdot 4$	263.0	$209 \cdot 9$	， $6117 \cdot 6$	$204 \cdot 90$	
								219.5	$230 \cdot 2$	235.0	$\} 5834 \cdot 5$	$254 \cdot 25$	
229.0	$224 \cdot 1$	$219 \cdot 9$	225.8	196.2	194．0	$170 \cdot 9$	176.8	208.0	$270 \cdot 2$	2299．1	$5482 \cdot 4$	228.43	
176.5	${ }^{138}{ }^{\circ} 4$	215.8	${ }_{211}^{218}$	2014．0	207．8	219．9	${ }_{210}^{210.0}$	274．0	${ }_{261}^{24.8}$	$226 \cdot 3$ 2579	5490．3	${ }_{236}^{228.76}$	
198．0	226.3 23.3	224．4	${ }_{2125}^{218}$	${ }_{240.9}^{24}$	235．9	224．0	${ }_{2}^{240} 2$	${ }_{260}^{231} \cdot 3$	$261 \cdot 3$ 2573	227．9	5675.0 6059	236 25248 2.48	
2274	2371	238.0	2378	$211 \cdot 3$	$245 \cdot 3$	245.0	$229 \cdot 2$	$252 \cdot 2$	243.2	$258 \cdot 7$	5853.6	$243 \cdot 60$	
：33．4	233.1	250.0	2178	218.0	$219 \cdot 6$	$241 \cdot 6$	237.0		264.0		$\} 5885 \cdot 3$	$245 \cdot 2$	
259.0	252.0	254.4	254.8	249.4	254.3	2，49 3	246	2867	269.10	$276 \cdot 9$	6132．3	$255 \cdot 51$	
216.7	236.0	2996	233.8	$251 \cdot 7$	262.4	$268 \cdot 2$	$\underline{2360}$	$261{ }^{\circ} 4$	258.2	$266^{\circ} 7$	68249.6	$261 \cdot \% 3$	
949\％．7	${ }^{161}+6$	$298 \cdot 9$	254．9	255． 4	238.8	488	268.0	${ }^{293} \cdot{ }^{2} \cdot 2$	3130．1	519．9	$6844 \cdot 2$	301．23	
209．4	264.3 211.0	264：3								${ }^{278 \cdot 1}$		$293 \cdot 15$ $279 \cdot 58$	
2	211.0	22.7	229	256	2.4	246	$324 \cdot$	295.8	283.	2707	$6710^{\circ} 0$	$279 \cdot 58$	
－	－	－	－	－	－	－	－	－	－	－	－	－	
－	二	－	－	二	＝	二	二	－	二	二	二	－	
二	二	－	二	二	－	－	二	二	二	二	二	－	
－	－			－	－	－	－	－	－		－		
$230 \cdot 48$	$225 \cdot 52$	$226 \cdot 15$	229.58	$227 \cdot 46$	$230 \cdot 43$	$231 \cdot 25$	$245 \cdot 11$	$25 \cdot 47$	$272 \cdot 91$	$270 \cdot 06$	$6100 \cdot 35$	$254 \cdot 18$	

1			
いののかんートのめー © $\underset{\sim}{\infty} \infty$			
…			
monocosono． 			
品 000000000 天 			
○o，			
$\dot{\mathcal{F}}$			
o o o o o 门价 1111			

Oct., $17^{\mathrm{d}} 15^{\mathrm{h}}$. Faint auroral arch, elevation 12^{o}, extending from N. E. to N.W. 16^{h}. Arch stationary, appearance of aurora little changed. 17^{h}. The same as hefore.
18h. Arch slighty risen, altitude 17°, and broader. 19^{h}. Arch rising; at $19^{\mathrm{h}} 6^{\mathrm{m}}$. began to break up into waves in quick motion, but receded from the zenith to
the N. 20^{h}. Detached masses of aurora resembling cirrous clouds in the zenith, and to the S. ard E., which disappeared before $20^{\mathrm{h}} 4 \mathrm{C}^{\mathrm{m}}$. 23^{h}. Faint cirrous aurora visible.
Magnet：cal Disturbances，Lake Athabasca，1843－continued．
October 18．Term Day．Ocrobre 18－conitinued．

	䀼安	 －ब17T1T1T1T100001100000000007
	$\begin{gathered} i \\ i \\ i \end{gathered}$	
	$\stackrel{3}{4}$	
	$\stackrel{\square}{6}$	$000000000000-000000000+\infty 0400$
产㖘㗊		
	$\begin{gathered} \text { ai } \\ 1 \\ \alpha^{\prime} \end{gathered}$	
	$\left\lvert\, \begin{aligned} & \dot{4} \\ & \frac{2}{4} \\ & \frac{2}{4} \end{aligned}\right.$	
	$\stackrel{\rightharpoonup}{4}$	 ＋1111＋＋111＋4＋t1111＋＋11＋＋110 ＋｜｜｜｜＋＋｜｜1＋＋＋＋｜｜｜1＋＋｜1＋＋｜1＋
	皆	0000000400－00000－00000000000000
		$\underset{\sim}{\infty} \underset{\sim}{*}$

 11.1111111111111	 $111111111111111 \mid 11111$
1111111111111111	 1111111111111111111111

 $1\|1\| 1\|1\| 1 \mid 1+++++$	 $+11111111111111111111$
$\infty 0 \infty 0$ NOOONHONNOON 	
－	○以
 11｜1｜1｜1｜11．1｜｜11．	 $1111111 \mid 11111111111$
 111	 $+1++++1++++++++++$
000 ल． 6050000 W600に 	0 N0000n000000000n0以 000
స	9

	景	
	$\stackrel{8}{4}$	 111111丁1丁11 1111
	$\stackrel{\rightharpoonup}{4}$	 $++++++++$
	皆	$000407 \infty 0000-0000<\infty=0<004 \infty 004$
获		－$\ddot{\sim}^{\circ}$
	$\begin{aligned} & \text { ai } \\ & 1 \\ & \sim i \end{aligned}$	
$\begin{aligned} & \text { 它 } \\ & \text { 品 } \end{aligned}$	迷迷込	
		以
	θ	 $111+++++++1 \quad 11$＋ $1+$
	皆	

111111	$1+111$
11111111111111	
$+\infty$ 111	
のツーのトトののトののト 	Hrrestrfrthraranomamm जै
 	－000．00040000010010．00000

	$\begin{gathered} \text { fi } \\ 1 \\ \text { an } \end{gathered}$	
	$\xrightarrow[4]{3}$	
	守	0000000000000000000000000000
	0 0 0	
产晏		
	$\stackrel{\rightharpoonup}{4}$	 117アブT11111711111111111
	毞	
演范宫		오붕 ä

	11111111111111111
 1111＋1＋＋	
$0+000000000000000$ 	
 11111111111111111	
 111111111111111111	$1+\infty+\infty$
®o 	
$\overbrace{\circ}^{\circ}$	

11111	1111111111
 ｜1 1 1｜1｜｜1｜	
$1\|1\| 1\|\|\|\|\|\mid 1$	｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜
000000000015600 	
 ＋1s	
守灾＂かo	
on40000040hoto 	
 ∞	

Magnetical Disturbances，Lake Athabasca，1844－continued．

	$\begin{gathered} \text { ai } \\ 1 \\ \text { a } \end{gathered}$	
$\frac{\stackrel{4}{4}}{\frac{5}{4}}$		
	$\stackrel{7}{4}$	1171
		おジ ๙ 웅
		 111
	－	$\dot{Q}\|1\|\mid$
	碳め｜	
	$\stackrel{7}{4}$	 111111111
	$\begin{aligned} & \dot{\circ} \\ & \stackrel{\circ}{\tilde{g}} \\ & 0 \end{aligned}$	

	$\begin{aligned} & \text { 芯。 } \\ & \text { à } \\ & 4 \end{aligned}$	－ 11 i
	$\begin{gathered} \text { fi } \\ 1 \\ i \end{gathered}$	$111111\|1\| 111$
\pm	$\stackrel{i}{4}_{\substack{2}}^{4} 4 x$	 ○．O．O०．O．OOOO．OO．OOOO．OOO
	4	 $111 \overrightarrow{1}$
		00000 HOHOOHNOMOHみんONNHOHO
灌 号号		
	$\begin{aligned} & \text { Ai } \\ & 1 \\ & \text { i } \end{aligned}$	11111111111111111111111
怠		 $i\|i\| i\|i\| i\|i\| i \mid$
	\cdots	 $171.11 .111,1$
号淢		

 ब～

80 +20

\xrightarrow{i}

 1111

道 11111111111111

がいもにか
Magnetical Disturbances，Lake Athabasca，1844－continued．

	$\begin{gathered} a \\ i \\ i \\ i \end{gathered}$	シ111111111111
宊		
$\dot{\tilde{\circ}}$	7	ーいのーにかんののかにO
		00 n000000000
言		
	$\begin{aligned} & \dot{0} 0 \\ & 0.0 \\ & \frac{2}{4} 4 \end{aligned}$	
	$\begin{aligned} & \text { Ai } \\ & 1 \\ & \text { ai } \end{aligned}$	$\underset{\sim}{ \pm}\|1\| 1\|1\| 1 \mid 11$
$\frac{\stackrel{y}{6}}{\stackrel{y}{c \mid}}$		엉융ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 111111111111
	\rightarrow	

	$\begin{aligned} & \text { ai } \\ & 1 \\ & \text { ai } \end{aligned}$	めのルー○ 1111911111111111111
荡		
	$\begin{aligned} & n \\ & 1 \end{aligned}$	111111111111111111111111
	4	
	$\frac{\dot{6}}{6}$	
		萂的 9
	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned} 0$	
	$\begin{aligned} & \text { 苞 } \\ & 0.4 \\ & 0 \end{aligned}$	$\operatorname{H}-100000000000000000000000000$
	$\begin{gathered} \text { Ai } \\ 1 \\ \mathrm{a}^{n} \end{gathered}$	
$\stackrel{:}{\stackrel{y}{E}}$	$\left.\begin{aligned} & \dot{x} \\ & \stackrel{y}{4} x \\ & \frac{0}{4} \\ & \frac{1}{4} \end{aligned} \right\rvert\, x$	
	侖	
	$\stackrel{7}{4}$	
	$\frac{\dot{0}}{\boxed{y y}}$	
		芯：브응

$\frac{0}{\dot{O}} 0$		
	产	111111111111111111111111
	$\begin{aligned} & \text { ai } \\ & 1 \\ & 2 \end{aligned}$	1111111111111111111111111
$\frac{\ddot{0}}{\text { 总 }}$		
	$\stackrel{0}{1}$	
	$\stackrel{*}{4}$	
	边竞	
	$\begin{array}{r} 4 \\ 1 \\ i \\ \hline \end{array}$	
	$\stackrel{7}{4}$	

 － $1 i 1 i$ 688
111

$\begin{array}{r}111 \\ \hline 004081\end{array}$

引门门门门1
ゅの 웅

260.	IRREGULAR FLUCTUATIONS．	
		 $11111111111111 \underset{11111111111}{1111}$
	$\begin{array}{c\|c} \stackrel{i}{\circ} & \rightarrow \\ \stackrel{y}{\pi} \\ \hline \end{array}$	
	荡 范	
	芯 呺	

	\％	
 	$\stackrel{\sim}{i}$	
	－80	
	$\stackrel{9}{8}$	
 	－	909 Ėiou 111
 117111	－	
 	－ $\stackrel{+}{+}$ + +	
\&		
15600006N6－m＋0の 		

[^30] ∞ or

Magnetical Disturbances, Lake Athabasca, 1844-continued.

Magnetical Disturbances，Lake Athabasca，1844－continued．

Gött． mean Time．	Declinatio：		Bifilar．		Inclinometer．		$\begin{aligned} & \text { Approx. } \\ & \frac{\Delta \phi}{\phi} \end{aligned}$	Gött． mean Time．	Declination．		Bifiar．		Inclinometer．		$\begin{gathered} \text { Approx. } \\ \frac{\Delta \phi}{\phi} \end{gathered}$
	Scale．	$\Delta \psi$	Scale corrected for Temp．	Approx． $\frac{\Delta X}{X}$	Scale corrected for Decl． and Bif．	$\underset{\Delta \theta}{\text { Approx. }^{2}}$			Scale．	$\Delta \psi$	Scale corrected ferp．	$\begin{aligned} & \text { Approx. } \\ & \frac{\Delta \mathbf{X}}{\mathbf{X}} \end{aligned}$	Scale corrected and Bif for Decl．	$\underset{\Delta \theta}{\text { Approx. }}$	
$\begin{aligned} & 2 \mathrm{D.} \\ & \mathrm{H.} . \end{aligned}$		1				＇		$\begin{gathered} 2 \mathrm{n} . \\ \mathrm{H} . \end{gathered}$		＇				1	
160	$338 \cdot 2$	＊－14．8	$260 \cdot 7$	＊ 0112	88.0	＊－9．1	－． 0074	2325	350．8	-2.2	196．1	－． 0093	$227 \cdot 9$	$8 \cdot 9$	－0090
17 0	$334 \cdot 2$	-18.8	$248 \cdot 6$	－0073	$113 \cdot 5$	－4．5	－－cot9	30	356．0	$3 \cdot 0$	$217 \cdot 7$	－．0025	184•1	S． 3	－0043
180	$361 \cdot 4$	$8 \cdot 4$	$276 \cdot 3$	－0162	$62 \cdot 5$	－12．4	－． 0091								
$19 \quad 0$	$345 \cdot 6$	$-7 \cdot 4$	$285 \cdot 0$	－0189	$58 \cdot 0$	-13.0	－－0163								
$20 \quad 0$	$362 \cdot 8$	$9 \cdot 8$	$241 \cdot 5$	－0051	$117 \cdot 5$	$-5 \cdot 3$	－．0071	3 n.							
210	$354 \cdot 4$	$1 \cdot 4$	$238 \cdot 5$	－0041	$166 \cdot 7$	$1 \cdot 1$	－0263	H．M．							
$22 \quad 0$	$331 \cdot 8$	-21.2	$199 \cdot 6$	－．0082	$231 \cdot 1$	$9 \cdot 4$	－0129	00	$354 \cdot 6$	$1 \cdot 6$	$233 \cdot 5$	－0025	$235 \cdot 9$	$10 \cdot 0$	－0178
	$374 \cdot 0$	$21 \cdot 0$		7	$695 \cdot 0$	69.4		10	$344 \cdot 0$	$-9 \cdot 0$	$250 \cdot 7$	－0080	$120 \cdot 2$	$-4 \cdot 9$	－． 0020
18	$364 \cdot 0$	$11 \cdot 0$			$742 \cdot 3$	75.5		20	35\％．2	-0.8	$248 \cdot 5$	－0073	123．1	$-4 \cdot 3$	－． 0010
21	$360 \cdot 4$	$7 \cdot 4$			$743 \cdot 2$	$75 \cdot 6$		30	$360 \cdot 0$	$7 \cdot 0$	$295 \cdot 0$	－． 0001	$159 \cdot 7$	$0 \cdot 2$	－0002
24	338.2	-14.8	退		$633 \cdot 9$	61.4	3	40	$450 \cdot 0$	$97 \cdot 0$	$124 \cdot 6$	－．0320	$368 \cdot 2$	$27 \cdot 1$	－0232
27	$310 \cdot 0$	－43．0	\％		$481 \cdot 0$	$41 \cdot 7$	．		$427 \cdot 0$	$74 \cdot 0$	$118 \cdot 6$	－． 0340	$346 \cdot 4$	$24 \cdot 3$	－0156
30	$33 \cdot 4$	$-20 \cdot 6$	号		$634 \cdot 9$	$61 \cdot 6$	E	6	$422 \cdot 0$	$69 \cdot 0$	$116 \cdot 6$	－． 0346	$402 \cdot 6$	$31 \cdot 6$	－0297
35	$312 \cdot 4$	$-40 \cdot 6$	$\stackrel{\sim}{0}$	－048	$596 \cdot 8$	$43 \cdot 8$	B	9	$423 \cdot 5$	$70 \cdot 5$	$104 \cdot 4$	－． 0535	$393 \cdot 8$	$30 \cdot 4$	－0236
40	$503 \cdot 4$	$155 \cdot 4$	言碞		$623 \cdot 6$	$60 \cdot 1$	\because	12	$434 \cdot 9$	$81 \cdot 9$	$94 \cdot 1$	－．0418	$417 \cdot 5$	$33 \cdot 6$	－0264
45	354．0	$1 \cdot 0$	－		$617 \cdot 7$	$59 \cdot 4$	$\stackrel{\square}{\circ}$	15	$433 \cdot 0$	$80 \cdot 0$	$69 \cdot 6$	$-\cdot 0496$	$464 \cdot 2$	$39 \cdot 5$	－0309
50	$301 \cdot 4$	$-51 \cdot 6$			$633 \cdot 6$	61.4	\％	18	$444 \cdot 6$	91．6	$75 \cdot 6$	－． 0477	－	－	－
55	$384 \cdot 2$	31.2			$623 \cdot 8$	61－4		21	$459 \cdot 0$	$6 \cdot 0$	$73 \cdot 2$	－．0483	$456 \cdot 2$	$38 \cdot 5$	－0301
$23 \quad 0$	$442 \cdot 1$	$89 \cdot 1$		J	$467 \cdot 7$	$40 \cdot 0$		24	$472 \cdot 0$	$119 \cdot 0$	$70 \cdot 7$	－． 0492	$474 \cdot 0$	$40 \cdot 8$	－0345
5	$444 \cdot 0$	$91 \cdot 0$	$98 \cdot 9$	－． 0402	$387 \cdot 7$	$29 \cdot 7$	－0213	27	$462 \cdot 3$	$109 \cdot 3$	$66^{7} 7$	－－0．05	$451 \cdot 6$	$38 \cdot 0$	－0268
10	$403 \cdot 6$	$56 \cdot 6$	$153 \cdot 7$	－． 0298	274．8	$15 \cdot 0$	－0278	90	$458 \cdot 4$	$105 \cdot 4$	$66 \cdot 7$	－． 0505	$484 \cdot 5$	$42 \cdot 2$	－0355
15	382.0	$29 \cdot 0$	$172 \cdot 9$	－． 0167	$275 \cdot 4$	15．1	－． 0140	83	$430 \cdot 4$	$77 \cdot 4$	73•7	－－0483	429.6	$35 \cdot 1$	：020s
20	$384 \cdot 4$	$31 \cdot 4$	$178 \cdot 7$	－．0149	$265 \cdot 5$	$13 \cdot 8$	－0132	36	$448 \cdot 0$	$95 \cdot 0$	$89 \cdot 7$	－．0432	$474 \cdot 1$	$40^{\circ} 7$	－0401

11

268	IRREGULAR FLUCTUATIONS．	
		ㅂo Noco $\dot{\sim}$
		 1111111111111111111111111111
		OnOOQOOOOOOONOOOO，MOOOOOOOOO
	蓉 品怘	$\approx: 0$ －
April 16－17－continued．		
	$\begin{array}{l\|l} \dot{5} & 7 \\ \frac{3}{3} & 4 \\ \hline \end{array}$	
		뚭 뭉堗

Magnetiogal Disturbances, Fort Simpson, 1844-continued.

ApRIL 24．Term Day．

$\frac{1}{0} \dot{0} \cdot \theta$		
		 111111111111111111111111111
总		
Declination.	4	
$\underset{\substack{0 \\ 心 \\ 4}}{ }$		 \qquad
$\begin{gathered} \text { 品 } \\ \text { 穴 } \end{gathered}$		
	4	
	¢	
	范	

APRIL 24－continued．

111111

i i i i i i i i	
\%	

iiiiiiiiiiiiliiiiiiiiiiiiiiiiiliiiiiiii

\qquad

$\therefore \quad \underset{\sim}{\infty} \quad \underset{\sim}{\infty}$

			 11।1।
	苞		
	号		
	管		
宸	\％		
太్ర	．	$\stackrel{3}{4}$	
$\underset{\sim}{\infty}$ $\hat{8}$	号	\％	
			路 6
		浐边	
	空		
		$\stackrel{7}{4}$	
			俞 a ∞

irregular fluctuations．
Magnetical Disturbances，Fort Simpson，1844－continued．

		Nㅜㄱㅋ웅 $i i i i j i j i \quad i j i i i 1 i 11 i 1$
	4	 1111111111111111
		© 옥
	迺	
淢		 $1\|1\| 1\|1\| 1\|1\|\|1\| 1\|1\|\|1\| 1 \mid 1$
	4	
	弟	

Foy	
$\rightarrow \infty \infty$ のかに以ットの。 ヘ ${ }^{\circ} \mathrm{OH}$	
त领路	－
㓣	

－00una $\dot{\operatorname{win}} \dot{0} \dot{\circ}$ is $\dot{\mathrm{c}} \dot{0}$ 11111	
	Oᄋ
$\begin{aligned} & 0 \\ & 0 \\ & \dot{\circ} \dot{1} \dot{0} 0 \\ & 0 \end{aligned}$	
－HNOOO $\dot{8} \dot{8} \dot{8} \dot{8}_{8}^{8} 80_{8}^{\circ}$ 	
	घローNの世 $\rightarrow 0$
	 i i i i i i i i i i \quad i i i i i
－ 	 1111171111
$\text { Bin } \dot{\sim}$ ON N 응	
Noncor －isic	
$\infty \infty+\infty \infty$ 下 べ	
－ $\stackrel{\circ}{0}$ สี	

\qquad

 111111111711! 11111717177777711

竐

 11111111111111111111111111111111

\pm
$\stackrel{3}{-}$

i°
i i i

117 シ

111

∞	
9 웅웅 	
 	↔ヶの५ヶゅャッ
	○○○○ọo 1｜11｜1｜
	omboquax

1111111

的

为
 $\underset{\sim}{\infty} \Omega$

 $\underset{\sim}{\circ}$

		守	
		\％	
$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$		$\left\|\begin{array}{l} x \\ \frac{0}{2} \\ \frac{2}{4} \end{array}\right\| x$	 ijilijiili
		年	
		－	

 i

 i i i i i

11

Magnetical Disturbances，Fort Simpson，1844－continued．

$\stackrel{0}{e}$		11111111111
$\frac{\dot{6}}{\stackrel{y}{E}}$		1।1।
	$\stackrel{7}{4}$	
	\％	$\bigcirc \circ 000 \% 000000 \%$
苟 岢 品		天
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{2}{2} \\ & \frac{2}{4} \end{aligned}$		1।1।1।1।1！
	为这边	ilililiilili
$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$		
	$\stackrel{7}{4}$	
		0000000000000
		皆ジー

SIR JOHN RICHARDSON'S MAGNETICAL OBSERVATIONS

REDUCED AND DISCUSSED

BY CAPTAIN YOUNGHUSBAND, R.A.

The Magnetic Instruments supplied to Sir John Richardzon for observation in North America were-

1. An Azimuth Compass.
2. A Declinometer for observing Changes of Declination.
3. An Inclinometer, fitted with Deflection Apparatus. This instrument is constructed for observing the Magnetic Inclination or Dip in the usual manner, and then, by deflecting the dipping needle by another magnet, results are obtained from which (combined with an observation made with the Unifilar) the total force can be obtained in absolute measure.
4. A Unifilar Magnetometer for determining the absolute Horizontal Force, and to be used as a Declinometer in observing Changes of Declination.

Instructions for the use of these instruments in the observations recommended to be made with them were contained in the following letter and memorandum addressed by Colonel Sabine to Sir John Richardson previous to his starting on the expedition:-

From Colonel Sabine to Sir John Richardson.

My dear Sir,
Woolwich, 22d March 1848.
I hope that you will find the subjoined directions sufficient for the use of the magnetic instruments with which you are supplied; and it remains only that I should indicate to you the points which it appears to me are most deserving of your attention.

1. Azimuths everywhere; we cannot have too many determinations in the quarter to which you are going, on account of the convergence of the lines, and the importance of ascertaining the point or points towards which they converge.
2. I hope that you will find the Declinometer of service in enabling you to record "some of the principal disturbances of the Declination during your winter residence. It will in particular enable you to observe the movements of the magnet accompanying momentary auroral phenomena.
3. The diurnal variation of the Declination, both in amount and in turning hours, would be an important determination, especially if
you should find it convenient to determine them for each of the months of winter and of spring.
4. The determination of the Horizontal and Tetal Forces in absolute measure at your winter residence, is of an importance which I will venture to say will recompense all the time you bestow upon it. It would probably be referred to for centuries to come in connexion with the secular changes of the magnetic elements.
5. If you should be able, without too great a sacrifice of time or convenience, to obtain a second good determination of the absolute total force in a longitude more to the east than your winter residence, say between 90° and 100° west longitude, it will be extremely valuable. You will see by the directions that this may be done without carrying about the Unifilar Magnetometer.

Most cordially wishing you and Doctor Rae health for your noble enterprise, and a safe return to England, either with Sir John Franklin, or to be welcomed by him on your route,

I remain,
Sincerely yours,
Edward Sabine.

Magnetic Directions for Sir Johin Richardson.

$$
\text { Woolwich, 22d March } 1848 .
$$

The magnetic instruments furnished to Sir John Richardson are four in number; viz.

An Azimuth Compass.
A Declinometer.
A Dipping Needle, with Deflection Apparatus.
A Unifilar Magnetometer.

1. Azimuth Compass.-No directions respecting this instrument are considered necessary, except the caution that the magnet should always be lowered very gently on its support, for fear of injuring either the cup or the point, which are very carefully worked. The point is of steel, and a spare one is also sent which is of iridium. When azinuths are observed, the wooden stand on which the instrument is placed should be correctly levelled.
2. Declinometer.-This instrument is intended to serve the double purpose of observing the diurnal variation of the Declination and the fluctuations of the Declination in times of magnetic disturbance. The magnet may be used either on a point or suspended by a silk thread. The point support is preferable, except it should be found that in very high magnetic latitudes the friction on the point impairs the free movement of the magnet, and thus prevents its taking
up its true direction. In such case the silk suspension must be resorted to.

The instrument being placed on its support, the bottom platelevelled, and the suspension tube in its place, screw in the steel point, place the magnet upon it, and fit on the top cover; then raise the point support (and with it of course the magnet) until the opposite portions of the graduated ring are seen in good focus in the two microscopes. The instrument is then ready for use.

If it is found that the magnet when resting on the point does not return after vibration in small arcs to (nearly) the same division in successive trials, it may be necessary to employ the silk suspension. In such case, the magnet resting on the point support, lower the support as far as it will go, lift the magnet off it, lower the screw attached to the thread, so that there may be no danger of breaking the thread whilst the screw is fastening; having then attached the magnet by the screw to the suspension thread, replace the magnet on the point support and raise the support as high as it will go, then shorten the thread until the magnet is relieved from the support and lower the support; now examine if the magnet must be either raised or lowered (by the thread), in order that the graduation on the ring may be in focus. When in focus, examine whether the suspension be truly central as regards the microscopes; it is so when the ring is seen in each microscope in about the same part of the field, and when precisely opposite divisions of the ring are cut by the two microscope wires. If this adjustment be not correct, make it so by moving the suspension either way by means of the adjusting screws which act on the suspension tube; fasten on the top cover, and the instrument is ready for use.

The magnet and ring are correctly balanced at present for the Dip at Woolwich; in any other Dip the balance may require to be adjusted afresh, by means of the cross of wires attached to the magnet. This adjustment is proved by the graduation being in distinct focus in both microscopes at the same time: 1°, when the magnet is in its natural position; and 2°, when it is deflected by another magnet 90° from its natural position. The instrument must be correctly levelled when this adjustment is made.

When the magnet is suspended by a silk thread the influence of torsion should be ascertained in the usual manner, i.e. by turuing the torsion circle through an angle of 90°, first in one direction and then the other, and noting the difference of the readings in the microscopes in the three positions of the torsion circle, viz, before the torsion circle is turned, and when it is turned 90° on either side.

The agreement or otherwise of the diurnal variation observed by this instrument and by the Unifilar Magnetometer will assist in judging whether the friction on the point support operates unfavourably or not.
3. A Dip Circle, with Apparatus for Deflection.-This instrument is to serve the double purpose of observing the Dip, and of determining the ratio of the magnetic moments of each of the two 3'67 inch magnets of the Unifilar Magnetometer to the total force of the earth's magnetism. As the latter determination is novel, and as circumstances have prevented Sir John Richardson's practice with the instrument, full directions may be required.

Two dipping needles are supplied, A 1 and A 2 ; both are to be used and the same observations made with each. I shall therefore describe the process with A 1, only premising that a precisely similar process is to be pursued with A 2.*
4. If Sir John Richardson should have leisure to make a determination of the Total Force at any other than the winter station, deflections of the dipping needle will suffice, and the Unifilar Magnetometer need not be employed on that occasion; but the values of $m \mathrm{X}$ and $\frac{m}{\overline{\mathrm{X}}}$ must be ascertained by experiments with the Unifilar Magnetometer, either at the same or some other station, as soon after as leisure and circumstances will permit.

Be very careful at all times to pack the magnets S and C with their opposite poles adjacent to each other, and attend to the same precaution with the dipping needles A1 and A 2. The deflecting tube and its counterpoise are only to be screwed on the vernier plate during the experiments of deflection, as if left on during travelling they might strain the instrument. The temperature should be noted at each determination of u or u^{\prime}. The thermometer should be near the deflecting magnet.

Unifilar Magnetometer. - This instrument is supplied for the purpose of determining the absolute value of the horizontal component of the magnetic force, and (in conjunction with the deflection apparatus accompanying the dipping needle) the absolute value of the total magnetic force. Sir John Richardson is already furnished with printed instructions, in a paper entitled "On Magnetic Observations, by Lieutenant-Colonel Sabine," containing directions for the use of the Unifilar; and for his further guidance he is referred to the observations of the absolute Horizontal Force, which have been made at Woolwich by Captain Younghusband with the instrument supplied to Sir John Richardson, and have been entered in the

[^31]register books furnished for the record of the observations in America.

There are two deflecting magnets, C and S, each 3.67 inches in length, which will require to have their respective moments of inertia carefully determined. For this purpose three inertia rings are supplied, and each of the three will have to be used with each of the magnets \mathbf{C} and S . The observations for this purpose may be made at any time in the winter when most convenient.

Instead of the distances between the magnets named in LieutenantColonel Sabine's paper (above noticed), Sir John Richardson had better employ those adopted for this occasion by Captain Younghissband, viz., $1^{\prime} 1$ foot and $1^{\circ} 4$ foot. Should it be convenient to make one determination of the values of m and \mathbf{X} early in the winter, and a second towards its close, the two determinations may suffice. Six repetitions of the experiments at the two distances (i.e., six at each distance) may be considered to constitute a determination of the values of m and \mathbf{X} with the Unifilar.

When not employed in experiments on the magnetic force, the Unifilar Magnetometer may be used for determining the diurnal variation of the Declination, and should give results in accordance with those of the Declinometer. The hourly observations for this purpose need not be carried on through the twenty-four hours. From 6 or 7 A.m. to 8 or 9 P.m., on days on which it may be otherwise inconvenient to observe lourly, will probably suffice.

Edward Sabine.

The instruments were adjusted at Fort Confidence on Great Bear Lake, situated in $66^{\circ} 54^{\prime}$ north latitude, and $118^{\circ} 49^{\prime}$ longitude west of Greenwich; this being the first opportunity afforded to Sir John Richardson for employing the instruments since arriving in America, owing to the rapid rate he found it necessary to travel, so as to be able to explore the coast lying between the Mackenzie and Coppermine rivers, and reach Fort Confidence before the close of the season.

Declination.

Absolute Value.-The absolute value of the Declination at Fort Confidence was determined in March and April 1849, with the Azimuth Compass. The observations are as follow, and show the reading of the Declinometer corresponding to each absolute observation.

Table I.

Date.	Absolute Declination.	Corresponding Reading of the Declination Magnet- ometer.	Date. ${ }^{\circ}$	Absolute Deelination.	Corresponding Reading of the Declination Magnetometer.
1849 :			1849 :		
March 31st	5026 E .	421	April 21st	5034 E .	4 :12:
31st	4952 "	422	" 21st	4905 "	: 4 . 50
" 31st	5026 "	419	" 21st	$5038{ }^{\prime \prime}$	4.08
" 81st	5016 "	422	21st	4932 \%	450
" 31st	50 50	418	, 21st	5012	4, 03
81st	5015 "	422	\% 21st	4980 "	450 -
" 31st	50.26 :"	415	May 7th	4727	5.20 :
\#', ${ }^{\text {arist }}$	$\begin{array}{llll}50 & 04 \\ 58 & 37\end{array}$	422	".8th	4932 ;	435
April 4th	5337 "	128	", 12th	4917	5 24
" 4th	$\begin{array}{lll}53 & 54 \\ 58 & 56\end{array}$	158	\# 14th	5258 :"	'4, 45 ¢',
\% 4th	53.56 53.36	$\begin{array}{ll}2 & 06 \\ 3 & 18\end{array}$	" 19th	$\begin{array}{llll}49 & 53 \\ 49 & 29\end{array}$	5.03
$\therefore " 16$	$\begin{array}{llll}53 & 36 \\ 48 & 53 \\ & \end{array}$	$\begin{array}{ll}3 & 18 \\ 4 & 18 \\ \end{array}$	" 19th	49 48 48	5.27 ${ }^{\prime}$
..., 16th	$\begin{array}{lll}55 & 21\end{array}$	418	. 21 st	$\begin{array}{lll}48 & 51 \\ 52 & 40\end{array}$	5 21
\# 16th	4916 "	441			
			General Mean -	5042 "	$4 \quad 17$:

From the mean of these observations it appears that the Declinat: tion was $50^{\circ} 42^{\prime}$ E. at the period referred to, and that this Declination corresponded to the reading $4^{\circ} 17^{\prime}$ of the Declinometer scale; whence, having the mean reading of the Declinometer for each month of observation, we may obtain the mean absolute values of the Declination for the same periods. Table II. contains these values.

Table II.

	Date.		Mean Reading of the Declinometer.	Differences from the Zero $4^{\circ} 17^{\prime}$.	Absolute Declination 50° $\mathbf{4 2}^{\prime}+$ Diff.

Diurnal Variation.-The Declinometer with which the principal series of observations was made has been fully described in Colonel Sabine's memorandum above; the instrument was used as directed by the instructions, and nothing further seems necessary to be stated with reference to it, except that of the two modes of adjusting the needle of which the instrument is capable, that was chosen in which the magnet is made to traverse upon the steel point instead of being
suispended by＇a silk thread；this＇is＇now to be regretted，as the observations show that the friction was so great as to impede the free movement of the needle．The observations made with another magnet，suspended by a silk thread in the Unifilar；prove that the range of movement of the Declinometer Magnet was limited by the friction on the point，but that the direction of the movement was recorded faithfully．The additional observations with the Unifilar extend over a portion of three months，and are valuable as con－ firmatory of the general accuracy in direction of the movements of： the Declinometer Magnet，and as affording a truer value of the extent of the diurnal change in those months than can be obtained from the： impeded action of the Declinometer Magnet．
－Observations were made with the Declinometer during the months： of October，November，and December，1848，January，February， March；and April，1849，commencing at 6 A．M．and continued hourly i until 9 p．m．${ }^{\text {i }}$ Occasionally；observations were taken at 4 and 5 A．m．； and on two days generally in every month an observation was made at the night hours omitted on ordinary occasions．These observations are given in full，pp． 28 to 35 ，Table VIII．

The mean monthly diurnal variation appears in Table III．

Table III．

Mean Diurnal Vrariation in the several Months of Observation．

Mean Time at Fort Confidence． Astronomical Reckoning．	Noon．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.
1848：		＇	1					＇			，	，
Octaber－	23.2	20.3	29.5	38.8	48.7	${ }^{53.4}$	53.3	${ }^{53} \cdot 6$	56.8	61.2		－
November		${ }^{1} \cdot 6$	$7{ }^{7} 4$	$10 \cdot 7$	$15 \cdot 6$	$19 \cdot 9$	$19 \cdot 5$	${ }^{23} \cdot 6$	$26^{3} 3$	$27 \cdot 1$		
December	8.0	$9 \cdot 1$	$10 \cdot 4$	$11 \cdot 6$	13.8	14.9	$15 \cdot 8$	16.3	16.8	18.6	－	－
January－	$2 \cdot 3$	$5 \cdot 4$	$4 \cdot 5$	$7 \cdot 7$	9.5	11.9	$13 \cdot 2$	$14 \cdot 8$	$15 \cdot 8$	$17 \cdot 7$		
February	0.0	0.9	$3 \cdot 7$	4.4	$8 \cdot 3$	$11 \cdot 5$	$13 \cdot 3$	$16 \cdot 2$	17.8	$18 \cdot 1$	$20 \cdot 8$	－
March－	${ }^{6.6}$	${ }^{7} 7$	${ }^{13} \cdot 1$	18.9	$20 \cdot 9$	${ }^{23 \cdot 6}$	25．9	$27 \cdot 1$	29.2	29.7	30．6	\cdots
April－	$10 \cdot 8$	18.5	$26^{\circ} 0$	33.0	$37 \cdot 2$	$44 \cdot 3$	$45 \cdot 8$	$49^{\circ} 4$	$52 \cdot 2$	$52 \cdot 5$	$55 \cdot 3$	
Means	$7 \cdot 4$	$9 \cdot 1$	13.5	$17 \cdot 9$	$22^{\circ} 0$	$25 \cdot 7$	28.7	28.7	$30 \cdot 7$	$32 \cdot 1$	－	－
Means reduced	$4 \cdot 6$	6.3	$10 \cdot 7$	$15 \cdot 1$	$19 \cdot 2$	$22 \cdot 9$	$23 \cdot 9$	$25 \cdot 9$	$27 \cdot 9$	$29 \cdot 3$	－	－
$\begin{aligned} & \text { Mean Time } \\ & \text { at Fort Confidence. } \\ & \text { Astronical } \\ & \text { Reckoning. } \end{aligned}$	Mid－ night．	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.
1848：				＇		1	\bigcirc	＇	1	＇	＇	1
October－	－	－	－	－	－			38.2			4.1	17.7
November－	二	－				26.9	$15 \cdot 9$ 13.6	${ }_{11}^{12} \cdot 2$	14.4	7.7 0.6	7.3 2	
December 1849：	－	－	－	－	－		$13 \cdot 6$	$11 \cdot 9$	0.0	$0 \cdot 6$	$2 \cdot 1$	5\％
January－	－	－	－	－	－	$12 \cdot 8$	$4 \cdot 3$	$5 \cdot 3$	3.8	$2 \cdot 5$	0.0	$0 \cdot 3$
February	－	－	－	－	－		20.4	20.9	$19 \cdot 4$	$9 \cdot 9$	6.0	$2 \cdot 5$
March		二	二	－	－	－	${ }_{49}^{27.8}$	26.6	$22^{\circ} 0$	$8^{8.7}$	0.0	$3 \cdot 9$
Means	－	－	－	－	－	－	$25 \cdot 0$	$22 \cdot 9$	14.9	4.7	$2 \cdot 8$	4.6
Means reduced	－	－	－	－	－	－	22.2	$20 \cdot 1$	$12 \cdot 1$	1.9	0.0	1－8

From these observations, it appears that on taking the first observation in the morning, the north end of the needle was found to be proceeding eastward, that the easterly extreme was attained by a rather rapid movement about 22^{h} (the time varied in the different months between 20^{h} and 0^{h}), that the north end then moved westward and continued a tolerably uniform movement until $9^{\text {l }}$, after which no observation was made. The westerly extreme was attained some time in the course of the night, but from no observation having been made later than 9 r.m. the exact time is unknown, the north end of the magnet being found moving eastward, as has been already stated, on taking the first observation in the morning.

If we compare these movements with the diurnal variation in middle latitudes in the Northern Hemisphere, we find a very striking dissimilarity, and the difference is worthy of attention, because it appears probable that the diurnal variation of the Declination needle in high latitudes follows a law differing materially from that of the diumal variation in middle latitudes, now well known and established. The principal feature of the diurnal variation in middle latitudes of the Northern Hemisphere is the attainment by the north end of the magnet of its extreme westerly position about l o'clock P.M. daily, whereas, as stated above, at Fort Confidence the extreme easterly position occurs at 11 A.M., from whence a movement westward takes place, continuing until the latest hour at night at which any observation is made, the extreme being attained between 9^{h} and 18^{h}.

So few observations of the diurnal variation of the Declination in high latitudes are up to this time at command, that not even an approach can be made towards indicating a general law of the phenomena in such localities; we can only present those facts that have been already obtained, and direct attention to points of similarity and of discordance from movements in middle latitudes. In the accompanying plate is drawn the curve of the diurnal variation of the Declination at a number of places, for the purpose of showing the diurnal movement at Fort Confidence and at other stations in high latitudes in comparison with each other and with the movement in middle latitudes. It is thus shown that at Reikiavik in Iceland, the extreme easterly position is attained at 2 p.m., which is about the hour that the westerly extreme is attained at every other station from which we have observations, with the exception of Fort Confidence; thus presenting, perhaps, as strong an instance as could be ound of the widely differing phenomena of the diurnal variation in high from middle latitudes. The curve at Reikiavik differs also from that at Fort Confidence in the westerly extreme, which occurs in inceland at $22^{\text {h }}$, the same hour that an easterly extreme is attained at Fort Confidence. It is true that the observations at Reikiavik

Plate IlShowing the Diurnal Variation of 'he Declination at

Fort Confidence, from Oat" $184 \mathcal{S}$ to MFarsh 1849.
Iceland, fivm $21^{\text {st }}$ to $28^{\text {th }}$ A ugust 1836
Lake Athabasca, from Oct ${ }^{T} 1843$ to Reby 1844
Christiamia, from June to Now ${ }^{r} 7842$
Bossekop fivm Oct? 1838 to Aprid 1839.
St Petersburg, from Octr to April; 1541 to 1945.
(atherinenbourg, fivm Oct." 10.1 prl/; 19't to IS 4
Barnaoull, from oct? to Spot; 18ft to 1 B't $^{\prime}$ Nertchinsk, from Octr to Aprt; 19: to 18si Sitka, from October to Apmi\%. 1842 to 184, Toronto, from Oct"to Aprili; 1843 to 1849 Geenwich, from oct 'to.1prul, 1541101840

Scale 0-1 Inch - I'ofare; \uparrow. Morth end moning tovard the $14 ; \downarrow$ lowards the A^{\prime}

include only one week's series, in the month of August 1836, taken hourly; they are, however, very accordant, and the curve drawn from the observations proceeds from a maximum to a minimum and back again in a regular continuous progression.

Plate II. contains the curves of the diurnal variation at several stations in the Northern Hemisphere; it illustrates better than any verbal description the great change that takes place in the law of the diurnal variation when advancing into high latitudes. The stations are :-

		Latitude.		Longitude.
Fort Confidence	-	$66^{\circ} 54^{\prime} \mathrm{N}$.	-	$118^{\circ} 49^{\prime} \mathrm{W}$
Reikiavik, Iceland	-	$64^{\circ} 08^{\prime} \mathrm{N}$.	-	$21^{\circ} 55^{\prime} \mathrm{W}$
Athabasca	-	$58^{\circ} 41^{\prime} \mathrm{N}$.	-	$111^{\circ} 18^{\prime} \mathrm{W}$
Bossekop	-	$69^{\circ} 58^{\prime} \mathrm{N}$.	-	$21^{\circ} 10^{\prime} \mathrm{E}$.
Christiania	-	$59^{\circ} 55^{\prime} \mathrm{N}$.	-	$10^{\circ} 34^{\prime} \mathrm{E}$.
St. Petersburg	-	$59^{\circ} 57^{\prime} \mathrm{N}$.	-	$30^{\circ} 19^{\prime} \mathrm{E}$.
Catherinenburg	-	$56^{\circ} 50^{\prime} \mathrm{N}$.	-	$60^{\circ} 34^{\prime}$ E.
Barnaoul	-	$53^{\circ} 20^{\prime} \mathrm{N}$.	-	$83^{\circ} 27^{\prime}$ E.
Nertchinsk	-	$51^{\circ} 18^{\prime} \mathrm{N}$.	-	$119^{\circ} 21^{\prime} \mathrm{E}$.
Sitka	-	$57^{\circ} 03^{\prime} \mathrm{N}$.	-	$135^{\circ} 18^{\prime} \mathrm{W}$.
Toronto	-	$43^{\circ} 39^{\prime} \mathrm{N}$.	-	$77^{\circ} 05^{\prime} \mathrm{W}$.
Greenwich	-	$51^{\circ} 29^{\prime} \mathrm{N}$.	-	$00^{\circ} 00^{\prime}$

By this plate we perceive that at Christiania, St. Petersburg, Catherinenburg, Sitka, and Toronto the extreme westerly position of the north end of the magnet was attained at 1^{h} for the period included in the observations; at Athabasca, Bossekop, and Greenwich at $2^{\text {h }}$, and at Barnaoul at $3^{\text {h }}$, while at Reikiavik a westerly maximum was reached at 22^{h}, and again at 8^{h}, and at Fort Confidence some time in the course of the night between 9^{h} and 18^{h}; thus at once poirting out the irregularity in the law of diurnal movement in high latitudes, and the marked contrast from the persistent general law of movement which everywhere obtains in middle latitudes. The curves are all drawn to the same scale, and show the relative amounts of the daily excursions at each place.

We may now examine in more detail the diurnal movement at the several stations. At Reikiavik we find the north end of the needle at its extreme observed westerly position at 9^{h}, from whence it proceeds uniformly to a secondary east at 17^{h}, thence to west at $22^{\text {h }}$, again to east (the maximum) at 2^{h}, then back again to west at 9^{h}; the double curve is very fully exemplified by the two excursions (west to east and back again), being very nearly the same in extent.

The observations at Athabasca are those of Captain Lefroy, printed and discussed in the second part of this volume... They comprise hourly observations made in the months of October, November, and December, 1843, January and February 1844; the several months' observations accord with each other, and haying been made regularly at each hour in the twenty-four, very valuable evidence is afforded of the duurnal movement at that station; the results may perhaps with advantage be again stated in this place for the sake of, making the account of the comparison more complete. At Athabasca we find the easterly extreme occurring at 17^{h}, viz., the same hour at which one of the easterly extremes was attained at Reikiavik; a fact specially worthy of nọtice, because at no other station iṣ this period of the day marked by a similar position of the magnet:

From 17^{h} the north end proceeds pretty uniformly to extreme west at $2^{\text {b }}$, showing an accordance in this respect with the general law of the diurnal variation; thence again to east at $17^{\mathrm{h}} .4$ An interruption occurs from 10^{h} to 13^{h}, when the north end turns and moves west, but the retrograde movement is insignificant compared with the whole diurnal excursion.

At Bossekop a single curve is formed. Extreme west at 2^{h}; extreme east at 14^{4}.

At Christiania a double curve. Extreme west at 1^{1}; extreme east at 10^{h}; a secondary west at 17^{h}; a secondary east at 19^{h}. This curve is similar in form to that at. St. Petersburg and several other places, but the amount of the excursion is much greater, as, for example, at Christiania, 20'; at St. Petersburg, 6'. It must, however, be remarked, that the months of observation are not the sameat the two stations; they are June to November at. Christiania, and October to April at St. Petersburg.

At Catherinenburg the curve is nearly the same as at St. Petersburg, showing at these two places the evening easterly extreme greater than the morning easterly extreme. At Barnaoul, Nertchinsk, Sitka, and Toronto, the morning easterly extreme exceeds that of the evening, while at Greenwich we have the morning easterly movement nearly obliterated, and the extreme easterly position at 10^{h}.

It will now be seen that there are no general characteristics of the diumal variation of the Declination in very high latitudes; also, that in middle latitudes there is a consistent law, the most prominent feature of which is the occurrence in the Northern Hemisphere of the maximum westerly Declination during the day at $1^{h}-2^{h}$. This is invariable. There is, also, a distinction between the character of the movement on the Siberian from that on the American continent, particularly if we study the law of the variation during the several
seasons of the year ; but such considerations are not relevant to the present:discussion, and need not be here further noticed.

- It is necessary to mention that every observation made has been included in forming the mean results upon which the discussion: of the phenomena of the diurnal variation at Fort Confidence is founded, consequently the diurnal variation spoken of includes the modification to which it is subject, caused by the disturbed observations remaining, these disturbances having themselves a distinct: and different laiv. Now it may be reasonably assumed that the effect due to disturbance varies considerably at different stations, and it seemed not improbable that; from the position of Fort Confidence, the effect there might be greatly magnified, even so much so as to cause the diurnal variation, without the disturbances; to present a very different aspect from the curve drawn from all the observations without omission. It may therefore be satisfactory to state that the process of eliminating the disturbances was undertaken, and that the diurnal curve of the residual observations was found only modified in the extent of range, but not altered in general character.

Absolute Horizontal Force.

The instrument employed by Sir John Richardson in observing the Absolute Horizontal Force was a portable Unifilar Magnetometer of the usual construction, viz., one in which the deflecting magnet is kept at right angles to the suspended magnet, and the angle of deflection read on the horizontal circle. Two magnets, $3 \cdot 00$ inches in length were supplied for suspension in the deflection apparatus. The deflecting magnets were C 1 and S 1 , each 3.67 inches in length. These magnets were also employed as deflecting magnets in Dr. Lloyd's Inclinometer for determining the Total Force in absolute measure. The distances from the suspended magnet at which the deflectors were placed were in the Unifilar $1 \cdot 1$ and $1 \cdot 4$ feet, and these two distances were employed whenever experiments of deflection were made. The nearer distance, $1 \cdot 1$ feet, was chosen as being just beyond the limits of the quantity expressed by three times and a half the length of the longer magnet, and the second distance is in proportion to the first as 1.3 to 1 nearly.

For the experiments of vibration the magnets were suspended in the wooden box allotted to this purpose; the same stirrup was used during the whole series, and the moments of inertia of the magnets and stirrup determined by means of Dr. Lamont's Inertia Rings. The temperature coefficients of the deflecting magnets were determined after the instruments had been returned to Woolwich; and as the range of temiperature to which they had been exposed during the winter had been very great, involving consequently very large cor-
rections, the experiments for determining the coefficients were conducted with particular care, and it is believed that the value of the coefficients at different parts of the thermometric scale is known with sufficient accuracy. The observations made at Fort Confidence included temperatures varying from -36° to $+70^{\circ}$ Fahrenheit.

The value of the coefficient P, depending upon the distribution of magnetism in the suspended and deflecting magnets, was found to be inappreciably small when the suspended magnet was one of the 3.0 inch Unifilar magnets, but to have a sensible value when the dipping needle was suspended; the corrections on this account have been applied in calculating the value of the Total Force.

Table I. contains the data from which the values of K , the moment of inertia of the deflecting magnets, C 1 and S 1, were calculated. Three rings were employed in their determination, of which the weights and dimensions are as follows:

	Outer Diameter. Inches.	Inner Diameter. Inches.	Weight. Grains.
Ring 5	-3.536	2.951	1493.14
"	-3.026	2.472	960.14
" 8	-3.002	2.477	638.64

The value of \mathbf{K}^{\prime} for each ring was calculated by the formuia $\mathrm{K}^{\prime}=\frac{1}{2}\left(r^{2}+r_{1}^{2}\right) w$, when r and r, denote respectively the outer and inner radii of the rings in decimals of a foot, and w the weight in grains; whence we have

$$
\begin{gathered}
\text { For Ring } 5 ; \mathrm{K}^{\prime}=27 \cdot 949-\quad-\text { Log. }=1 \cdot 44636 \\
\Rightarrow \quad 6 ; \mathrm{K}^{\prime}=12 \cdot 724-- \text { Log. }=1 \cdot 10461 \\
\Rightarrow \quad 8 ; \mathrm{K}^{\prime}=8 \cdot 397-- \text { Log. }=0 \cdot 92412
\end{gathered}
$$

Table IV.
Olservations for the Moment of Inertia of the Magnet and Stirrup.

Magnet C 1.				Magnet S 1.			
Date.	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Ring. } \end{gathered}$	Vibrations with Ring. Logs. of $\mathrm{I}^{1 / 2}$.	Vibrations without Ring. Logs. of T ${ }^{2}$.	Date.	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Ring. } \end{array}\right\|$	Vibrations with Ring. Logs. of T"	Vibrations without Ring. Logs. of Ts.
$\begin{aligned} & \text { 1848: } \\ & \text { Nov. } 16 \end{aligned}$	-	-	1-83537 ($10{ }^{\circ} \cdot 0$)	1848:	-	-	1.92842 ($30^{\circ} \cdot 0$)
20	-	-	1-83822 (10.0)	17	-	-	1.92943 ($30^{\circ} 0$)
20	-	-	1.83541 (10.0)	17	-	-	1.92371 ($30 \cdot 0$)
21	5	$2 \cdot 71178\left(10^{\circ} 0\right.$)	-	Nov. 9	-	-	1.95449 (0.0)
21	5	$2 \cdot 71552$ (10.0)	-	9	5	$2.82535 \quad\left(0^{\circ} \cdot 0\right)$	-
22	5	$2 \cdot 70839(10 \cdot 0)$	-	13	5	2•83219 (0.0)	-
23	6	$2 \cdot 42341$ ($10 \cdot 0$)	-	13	6	2.55273 (0.0)	-
23	6	$2 \cdot 42876$ ($10 \cdot 0$)	-	13	6	2.55232 (0.0)	-

The degrees following the logs of the squares of the vibrations, with and without rings, signify the temperatures corresponding to the vibrations.

Table IV.-continued.

Magnet C 1.				Magnet S 1.			
Date.	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Ring. } \end{gathered}$	Vibrations with Ring Logs. of $\mathrm{I}^{1 / 2}$.	Vibrations without Ring. Logs. of ' I^{2}.	Date.	$\left\|\begin{array}{c} \text { No. } \\ \text { of } \\ \text { Ring. } \end{array}\right\|$	Vibrations with Ring. Logs. of T/2.	Vibrations without Ring. Logs. of T2
$\begin{aligned} & \text { 1848: } \\ & \text { Nov. } 27 \end{aligned}$	8	$2 \cdot 29678\left(10^{\circ} 0{ }^{\circ}\right.$	- ${ }^{\circ}$	$\begin{gathered} 1848: \\ \text { Nov. } 14 \end{gathered}$	8	$2 \cdot 43614$ ($0 \cdot 0 \cdot 0)$	- 0
27	8	$2 \cdot 29515$ ($10 \cdot 0$)	-	14	8	$2 \cdot 42177 \quad(0.0)$	-
$\begin{array}{cc} \text { Dec. } 22 \\ & 22 \\ \text { M1849: } \\ \text { Mar. } & 23 \end{array}$	-	-	$1 \cdot 83550\left(-20^{\circ} 0\right)$ -	15	-	-	$1.95991 \quad(0.0)$
	-	-	$1 \cdot 83608(-20 \cdot 0)$	Dec. 18	-	-	1.96809 (-30.0)
	-	-	1.84473 (-5.0)	18	-	-	$1 \cdot 96117(-30 \cdot 0)$
April ${ }^{\text {a }}$				1849:	-	-	2.00021 (-5.0)
	-	-	1•84645 (-5.0)		-	-	$2 \cdot 00023(-5 \cdot 0)$
	-	-	1-85101 (-5.0)	0	-	-	1.98974 (-5.0)
	-	-	1-85019 (-5.0)	2	-		100M(-50)
	-	-	1.84173 (5.0)	21	-	-	1.99532 (-5.0)
				21	-	-	1.99431 (-5.0)
	-	-	184993 (5.0)	April 10	-	-	1.98720 (5.0)
	-	-	$1 \cdot 84565 \quad(5 \times 0)$	10	-	-	$1 \cdot 99406$ (5.0)
	8	$2 \cdot 33157 \quad(5 \cdot 0)$	-				
	8	$2 \cdot 32559 \quad(5 \cdot 0)$	-	10	-	-	$1 \cdot 99359$ (5.0)
				11.	8	$2 \cdot 45641$ (5.0)	-
	8	$2 \cdot 32532 \quad(5 \cdot 0)$	-	11	8	$2 \cdot 45904$ (5.0)	-
	6	$2 \cdot 45582$ ($5 \cdot 0$)	-			2.45763 (5.0)	
	6	$2 \cdot 45681 \quad(5 \cdot 0)$	-	11	8	24.4563 ($3 \cdot 0$	
	6	$2 \cdot 46098 \quad(5 \cdot 0)$	-	13	-	-	$1 \cdot 99113 \quad\left(5^{\circ} 0\right.$
				14	6	$2 \cdot 58786$ (5.0)	-
	j	$2 \cdot 73246 \quad(5 \cdot 0)$	-	14	6	$2 \cdot 58680$ (5.0)	-
	5	$2 \cdot 73330$ (5.0)	\cdots	0			
	5	$2 \cdot 73375$ (5.0)	-	16	6	2.59764 (5.0)	-
	-			17	5	$2 \cdot 91789$ ($\left.5^{\circ} 0\right)$	-
	-	-	185028 (${ }^{\circ} \mathrm{O}$)	17	5	$2 \cdot 91068$ (5.0)	-
	-	-	1.85498 (5.0)				
	-	-	$1 \cdot 84705 \quad\left(5^{\circ} 0\right)$	18	5	292048 (50)	
	\checkmark	2772626 (20.0)	-	18	-	-	1.99055 (5.0)
				25	-	-	1.99079 (20'0)
	6			25	8	2.46344 (20.0)	-
		246194 (20.0)	-	25	6	2.59175 (20.0)	-
	8	$2 \cdot 32597(20 \cdot 0)$	-	25	5	$2 \cdot 03349$ (20.0)	-
	-	-	1•84970 (20.0)				

The deduced values of K for each magnet, and from the observations with each ring, are as follows:-

Magnet C 1.

With Ring 5.	With Ring 6.	With Ring 8.
$4 \cdot 2941$	$4 \cdot 4053$	$4 \cdot 4626$
$4 \cdot 1890$	$4 \cdot 1444$	$4 \cdot 1682$

The mean of all these is $4^{\circ} 2772 ;=$ Log. $0^{\wedge} 63116$, which is the value employed in the calculations.

Some undiscovered source of error existed in the second series of experiments with Ring 6 and Magnet S 1; the result has therefore been omitted in taking the mean. The mean of all the others is $4.3161 ;=$ Log. $0 \cdot 63509$, which is the value of K employed in the calculations with this magnet.

Temperature Corrections.-The experiments for ascertaining the temperature coefficients of magnets C 1 and S 1 were conducted according to the method of deflection. The suspended magnet employed was $3^{\circ} 00$ inches in length, and the deflecting magnet was placed at right angles to it at a distance of 9 inches; the mean deflection produced was 25°. The angle of deflection, by magnet C 1 , was ascertained at the following temperatures, viz. :-

At $36^{\circ} 57,55^{\circ} 42,73^{\circ} \cdot 62$, and $90^{\circ} 79$; and by a second series of experiments, at $32^{\circ} 71,53^{\circ} 39,72^{\circ} 47$, and $88^{\circ} 99$; and the coefficient q determined as follows:-

$$
\begin{array}{rlrl}
q & =000412 \text { at a mean temperature } 44^{\circ}{ }^{\circ} 5 \\
& =000488 & 63^{\circ} \cdot 7 \\
& =\cdot 000496 & \prime, & 81^{\circ} \cdot 5
\end{array}
$$

For magnet S 1, the angle of deflection produced by it was ascertained at the temperatures $32^{\circ} 61,52^{\circ} 89,71^{\circ} 34$, and $88^{\circ} \cdot 91$; and by a second series of experiments, at $32^{\circ} 04,50^{\circ} 82,70^{\circ} 45$, and $88^{\circ} 69$; from whence the coefficient q for this magnet was determined, viz.:-

$$
\begin{array}{rlcr}
q & =\cdot 000309 \text { at temperature } 42^{\circ} 0 \\
& =000375 & , \quad 61^{\circ} 3 \\
& =.000382 & , & 79^{\circ} 3
\end{array}
$$

The rapid decrease in the value of the coefficient between 64° and 44° in the case of one magnet, and between 61° and 42°. in the case of the other, rendered it desirable that the coefficient should be ascertained at lower temperatures than those just stated. Accordingly an attempt was made, by subjecting the deflecting magnet to temperatures varying between 0° and 32°, to ascertain the angles of deflection at low temperatures, which should be known with tolerable exactness. A mixture of pounded ice and salt was employed to surround the magnet, and the temperature reduced to -6° (as indicated by the thermometer employed, whose index error at that temperature was not, however, precisely known). Deflections were observed at $-6^{\circ}, 14^{\circ}$, and 32°.

The observations are subject to some degree of error, dependent upon the rapid changing of the temperature of the freezing mixture at a degree so much below the natural temperature; but great pains were taken to sustain a' constant circulation:

The final results obtained were for Magnet $\mathbf{C} 1$ -

$$
\begin{array}{rlr}
q & =000361 \text { at temperature } 4^{\circ \cdot 6} \\
\text { and } q & =000366 \quad, \quad 23^{\circ} \cdot 8
\end{array}
$$

For magnet S 1, the results were-

$$
\begin{array}{rlr}
q & =000298 \text { at temperature } & 14^{\circ} \cdot 3 \\
\text { and } q & =000328 \quad, \quad 21^{\circ} 8
\end{array}
$$

After allowing for the probable amount of error occasioned in these values from the cause already mentioned, it appeared evident that the coefficient did not diminish in value in the same rapid ratio below 42° as it was proved to do between 42° and 62°, and it was considered that the temperature coefficients were sufficiently well obtained for every purpose of correction in the observations under calculation. The experiments were continued in the hope of ${ }^{-}$ ascertaining more precisely the law of change with the change of temperature; but it is sufficient here to mention that the conclusionis previously arrived at were substantially confirmed.

The magnetic moment (m) of the deflecting magnets was found by combining together the values of $\frac{m}{\mathbf{X}}=\frac{1}{2} r^{3} \sin$. u obtained from the experiments of deflection, and of $m \mathbf{X}=\frac{\pi^{2} \mathrm{~K}}{\mathrm{~T}^{2}}$ from the experiments of vibration ; here some difficulty occurred on account of the experiments of deflection and of vibration having been conducted in separate series on different days. A mode of grouping the results of each experiment was eventually adopted, which gave, it is believed, the most satisfactory value of the magnetic moments of the bars that could be obtained from the observations, as well as the rate of the loss of magnetism, which it was found had occurred largely in the case of each magnet. A value of m has accordingly been calculated for every day on which observations were made. The Horizontal Force (X) was then found by the usual formula.

Table V．
FORT CONFIDENCE．
Horizontal Force．－5th October 1848 to 26th April 1849.

Table V．
FORT CONFIDENCE．
Horizontal Force．－5th October 1848 to 26th April 1849.

Experiments of Vibration．					$\begin{gathered} \text { Log. Values } \\ \text { of } m \\ \text { employd } \\ \text { at'Temp. } 20^{\circ} . \end{gathered}$	Result－ ing Values of \mathbf{X} ．	Monthly Means．	Remarks．
$\begin{gathered} \text { Observed } \\ \text { Temp. } \\ \text { of } \\ \text { Maguet. } \end{gathered}$	$\begin{aligned} & \text { Observed } \\ & \text { Thime of } \\ & \text { One } \\ & \text { Vibration. } \end{aligned}$	Log．Values of＇ ＇2 corrected for Torsion of Thread and Rate of Chronometer．	Temp． to which the Values of Th are 2 reduced．	$\left\lvert\, \begin{gathered} \text { Log. Values } \\ \text { of } m \mathrm{X} . \end{gathered}\right.$				
\bigcirc	$\stackrel{3}{ }$		－		9＊71533			
－	－	－		二	$9 \cdot 62753$	1.264		
28.5	9•194	1．92842	$30^{\circ} 0$	9•70097	$9 \cdot 62413$	1－197		
$28^{\circ} 0$	$9 \cdot 205$	1＇02943	$30^{\circ} 0$	9•69996	9．62379	1．195		
$28^{\circ} 0$	9•143	－ 92371	$30^{\circ} 0$	9＇70568	$9 * 62379$	$1 \cdot 211$		
－	－	－	－	－	$9^{\circ} 71308$	1•169		
－	－	－	－	－	9．71308	1．199		
－	－	－	－	－	9.62277	$1 \cdot 266$		
－	－	－	－	－	$9 \cdot 62977$	$1 \cdot 266$		
－	－	－	－	－	$9 \cdot 62141$	$1 \cdot 239$	1＇233	
－	－	－	－	－	9.62141	$1 \cdot 247$		
－	－	－	－	－	9．71203	$1 \cdot 208$		
－	－	－	－	－	971203	$1 \cdot 217$		
－	－	－	－	－	9＊71203	$1 \cdot 213$		
－	－	－	－	－	$9^{\circ} 71203$	1.193		
－	－	－	－	－	9．62039	$1 \cdot 326$		
－	－	－	－	－	90620：39	$1 \cdot 295$		
－	－	－	－	－	$9^{\circ} 662 \mathrm{COJ}$	1．301		
－	－	－	－	－	$9^{\circ} 62005$	1.299 1.252		
－	－	－	－	二	$9^{\circ} 71113$ $9^{\circ} 7113$	－ $1 \cdot 252$		
－	－	－	－	－	$9^{\circ} 61835$	1•313		
－	－	－	－	－	9.61835	$1 \cdot 509$		Vibrations
15.0	$9^{\cdot} 487$	1．95449	$0 \cdot 0$	9＊67490	${ }^{\circ} 6161597$	1－138		with
$15 \cdot 5$	25．772	$2^{\circ} 82.535$	$0 \cdot 0$	$9 \cdot 67768$	${ }^{*} \cdot 61597$	1．146	－－	Ring 5
$2 \cdot 8$	25＇898	2.83219	0.0	${ }^{9} 667084$	${ }^{\circ} 661461$	$1 \cdot 131$	－－	Ring 5
3.2	18.805	2． 55573	$0 \cdot 0$	$9 \cdot 67304$	$9 \cdot 61461$	1.137 1.138	－－	Ring 6
$3 \cdot 8$	18．796	¢． 55232	$0 \cdot 0$	$9 \cdot 67345$	9.61461	1－138	－－	Ring 6
$1 \cdot 1$	$16^{\circ} 444$	2．43614	$0 \cdot 0$	${ }^{\circ} \cdot 66241$	${ }^{\circ} \cdot 61427$	1．111	－	Ring 8
$1 \cdot 3$	16． 203	$2 \cdot 42177$	$0 \cdot 0$	$9 \cdot 67678$	${ }^{\circ} \cdot 61427$	1．148	－	Ring 8
$-2 \cdot 8$	9． 525	$1 \cdot 95991$	$0 \cdot 0$	$9^{\circ} 666948$	${ }^{\circ} \cdot 61393$	1.130	－ 198	
$3 \cdot 5$	8.245	$1 \cdot 83537$	10.0	9．79009	9．70903	1－202		
13.2	8．282	1．83829	10.0	9•78724	$9^{\circ} 70843$	1．195		
14.1	8．265	1－83541	10.0	$9^{\bullet} 79005$	9＇70843	1－202		
14.6	$22^{6} 622$	$2 \cdot 71178$	$10^{\circ} \mathrm{O}$	$9^{\circ} 79078$	$9^{*} 70898$	$1 \cdot 205$	－－	Ring 5
$15^{\circ} 5$	22＇721	2．71552	$10^{\circ} 0$	$9^{\cdot} 78699$	$9^{\cdot} 70828$	1．194	－－	Ring 5
$15^{\circ} 1$	$22^{\cdot} 529$	2．70839	$10 \cdot 0$	$9 \cdot 79412$	9•70813	1.215	－－	Ring 5
16.3	16． 272	$2 \cdot 42341$	$10 \cdot 0$	9＊80137	$9^{*} 70798$	$1 \cdot 235$	－	Ring 6
16.2	$16^{\circ} 366$	$2 \cdot 42876$	$10^{\circ} 0$	9＇79602	$9^{*} 70798$	$1 \cdot 220$	－－	Ring 6
$0 \cdot 3$	$14 \cdot 027$	$2 \cdot 29678$	10.0	9•80044	$9^{*} 70738$	1.234	－－	Ring 8
1.4 -3.6	14.007	$2 \cdot 29515$	10．0	${ }^{9} 9.80207$	${ }^{9} \cdot 70738$	$1 \cdot 239$	－－	Ring 8
-36.6	9．498	1－95809	-30.0	9•67130	${ }^{*} \cdot 60271$	$1 \cdot 154$		
-36.0	${ }^{9} \cdot 533$	1－96117	$-30^{\circ} 0$	9•66822	${ }^{9} \cdot 60271$	$1 \cdot 146$	1•177	
$-22^{\circ} 4$	8． 265	1．83550	-20.0	9＊78996	$9^{*} 70363$	1－201		
$-22^{3} 3$	$8 \cdot 265$	1•83608	-20.0	$9^{\circ} 78938$	$9^{\circ} 70363$	1－199	J	
－	－	－	－	－	$9^{\cdot} 57789$	1．295		
－	－	－	－	－	9.57755	1．249		the face
二	－	－	－	－	9•69298	1．242	$1 \cdot 210$	of the
－	－	二	－	二	$9 \cdot 69298$ $9^{*} 69268$	1．236		mirror．
－					9＇69268	1．240		

Fort Confidence-continued.
Horizontal Force.-5th October 1848 to 26th April 1849.

Fort Confidenoe-continued.
Horizontal Force.-5th October 1848 to 26th April 1349.

Fort Confidence-continued.
Horizontal Force.-5th October 1848 to 26th April 1849.

Fort Confidence-continued.
Horizontal Force.-5th October 1848 to 26th April 1849.

Total Force.-The values of $\frac{m}{\phi}$ were calculated by the formula

$$
\frac{m}{\bar{\phi}}=\frac{1}{2} r^{3} \sin u\left(\frac{1}{1+\frac{\mathrm{P}}{r^{2}}}\right)
$$

$r_{\text {, and }} r_{/,}, u_{\text {, and }} u_{/ \prime}, \& c$. being substituted in the formula for the value of $\frac{m}{\phi}$ at the second and third distances.

Three distances were employed in the experiments of deflection, viz., $8^{\circ} 0,9^{\circ} 2$, and $10^{\circ} 5$ inches. It was found, in making the calculation for the value of P, that the formula for two distances was preferable to that which it is intended should be employed when deflections at three distances are observed; and accordingly \mathbf{P} was calculated for each combination of two distances that can be formed, viz., at $8^{\circ} 0$ and $9^{\circ} 2,8^{\circ} 0$ and $10^{\circ} 5$, and $9^{\circ} 2$ and $10^{\circ} 5$ inches; the results are as follows:-

Magnet C. 1.
$8^{\circ} 0$ and $9 \cdot 2$ inches $---\mathrm{P}=-.0193$
$8^{\circ} 0$ and $10^{\circ} 5 \quad, \quad---\mathrm{P}=-\cdot 0153$
$9^{\circ} 2$ and $10^{\circ} 5 \quad, \quad---\mathrm{P}=-.0094$

Magnet S. 1.
8.0 and $9^{\circ} 2$ inches - $-P=-.0156$
$8^{\circ} 0$ and $10^{\circ} 5 \quad, \quad-\quad-\mathrm{P}=-.0173$
$9 \cdot 2$ and $10.5 \quad$, $\quad-\quad-\mathrm{P}=-.0091$
The mean values were employed, viz.,-
For magnet C.1, $P=-\cdot 0147$. For magnet $S .1, P=-.0140$; and from them the following factors were obtained:-

$$
\begin{array}{ll}
\frac{1}{1+\frac{P}{r^{2}}} & \text { Log. }=0.01459 . \\
\frac{1}{1+\frac{P}{r_{/}{ }^{2}}} & \text { Log. }=0.01099 . \\
\frac{1}{1+\frac{\mathrm{P}}{r_{/ \prime}{ }^{2}}} & \text { Log. }=0.00842
\end{array}
$$

Magnet S. 1.

$\frac{1}{1+\frac{P}{r^{2}}}$
Log. $=0.01389$.
$\frac{1}{1+\frac{P}{r^{2}}}$
$\frac{1}{1+\frac{P}{r_{\prime \prime}}}$ Log. $=0.01046$.

The quantity m was derived from the observations of absolute Horizontal Force, the value being calculated for the particular day on which the deflections of the dipping needle were observed.

The Total Force ϕ was found by the formula

$$
\text { Log. } \phi=\log \cdot m-\log { }_{\phi}^{m}
$$

Log. m receiving the necessary correction to reduce it to the same temperature as that of m in the quantity $\frac{m}{\phi}$.

Table VI.-Total Force.

Total Force-continued.

	Date.	Magnets employed.			Mean Temp.	Angles of Detlection.		$\begin{gathered} \text { Log. } \\ \text { Values } \\ \text { of } \\ \frac{1}{2} r^{3} \sin u \\ \frac{1}{2} r_{i}^{3} \sin u u^{\prime} \\ \& c . \end{gathered}$	Log. Values of $\frac{m}{\varphi}$	Values of		Inclination dedured from Deflection Observatious.
						Circlo lace East.	Circle face West.			$\stackrel{m}{\text { at } 20^{\circ}} \text {. }$	ϕ	
	184											
	D. Ir.			Inches.								
	(13 \%2	A. 1	S. 1	$10 \cdot 5$	$33^{\circ} 0$	$459 \cdot 7$	$423 \cdot 8$	8.43803	$8^{\circ} 44605$	$9 \cdot 60441$	14.336	$84.47 \% 8$
		A.	S.	$9 \cdot 2$	37.5	651.6	6427	8. 42584	$8 \cdot 43630$	$9^{9} 60441$	14.650	$84.47 \cdot 3$
	1400	A.	S. 1	8.0	41.5	$1032 \cdot 0$	$1023 \cdot 8$	$8 \cdot 43056$	8.44445	$9 \cdot 60407$	14.334	84.43 .3
		A. ${ }^{2}$	S. 1	10.5	$41^{\circ} 7$	4.42 .5	$4.30 \cdot 9$	$8 \cdot 43726$	$8 \cdot 41528$	$9 \cdot 60407$	14.305	8443.7
	02	A. 2	S. 1	$9 \cdot 2$	$42 \cdot 0$	$657 \cdot 3$	6 53.6	$8 \cdot 43456$	$8 \cdot 44502$	$9 \cdot 60107$	14.313	$8450 \cdot 3$
	02	A. 2	S. 1	$8 \cdot 0$	41.5	1028.5	$1034 \cdot 3$	$8 \cdot 43158$	$8 \cdot 644547$	9.60407	14.301	84.48 .0
	1501	A. 1	S. 1	1115	$40^{\circ} 0$	$431 \cdot 4$	427.8	$8 \cdot 42140$	$8 \cdot 42942$	$9 \cdot 60373$	14.850	$81.51 \cdot 2$
	02	A. 1	S. 1	$9 \cdot 2$	$36 \cdot 5$	658.8	$641^{\circ} 0$	$8 \cdot 42880$	$5 \cdot 43926$	$9 \cdot 60373$	14.532	84.48 .7
	03	A. 1	S. 1	8.0	41.5	1024.8	9550	S-41828	$8 \cdot 48217$	$9 \cdot 63373$	14.734	8448.9
	22	A. 1	C. 1	$10 \cdot 5$	$42 \cdot 5$	614.7	$552 \cdot 8$	$8 \cdot 54267$	$8 \cdot 55109$	${ }^{9} 70468$	14.116	84.58 .0
	23	A. 1	C. 1	$9 \cdot 2$	41.0	$900 \cdot 1$	834.4	8.53987	$8 \cdot 55086$	${ }^{9} \cdot 70468$	14.131	8458.9
	23	A. 1	C. 1	8.0	40.0	$1336 \cdot 3$	$1310 \cdot 8$	8. 53611	8.55070	$9 \cdot 70468$	14.142	84.42 .0
	1600	A. $\stackrel{2}{2}$	c.	$10 \cdot 5$	$41^{\circ} 8$	$6117 \cdot 6$	$605 \cdot 2$	8.55186	$8 \cdot 56028$	$9 \cdot 70453$	13:819	84.497
		A.	C.	$9 \cdot 2$	45.5	859	9015	8.54800	8.65899	$9 \cdot 70453$	$13 \cdot 840$	$84.52 \cdot 3$
	01	A.	C.	$8 \cdot 0$	42.8	$1339{ }^{\circ} 0$	1335.6	8. 54337	$8 \cdot 55796$	$9 \cdot 70453$	$13 \cdot 888$	845011
		A.	C.	10.5	44.0	614.0	545.5	8.54387	8.55249	$9^{*} 70453$	14.063	$84.52 \cdot 8$
		A. 1			$45^{\circ} 0$	858.2	$852 \cdot 6$	8. 54408	8.55507	$9 \cdot 70453$	$13 \cdot 968$	$84.48 \cdot 8$
		A. 1	C.	$8 \cdot 0$	47.0	1321.4	$1330 \cdot 2$	8.53733	8.55192	$9 \cdot 70453$	14.059	$84.42 \cdot 2$
	184										14.243	$84^{\circ} 49^{\prime \cdot 1}$
	(15 23	A. 1	S. 1	10.5	$36 \cdot 2$	4.49 .6	428.9	8.43416	8.44918	9.59819	14.088	8444.7
		A. 1	S. 1	9•L	$41 \cdot 3$	$64.4 \cdot 2$	$640 \cdot 2$	$8 \cdot 42061$	$8 \cdot 43107$	$9 \cdot 59319$	14.417	8446.9
	23	A. 1	S. 1	$8 \cdot 0$	41.2	1021.7	1009.9	$8 \cdot 42220$	$8 \cdot 43609$	$0 \cdot 59319$	$14 \cdot 252$	84.52 .0
	1622	A. 2	S. 1	$10 \cdot 5$	34.0	438.2	${ }^{4} 35 \cdot 1$	8.43011	$8 \cdot 4.3818$	9599285	14.221	$84.46 \cdot 8$
		A. ${ }^{2}$	S. 1	$9 \cdot 2$	$39^{\circ} 5$	6510	65173	$8 \cdot 42954$	$8 \cdot 44000$	$9 \cdot 69285$	14.136	$8448^{\prime} 1$
	23	A. 2	S. 1	$8 \cdot 0$	$40^{\circ} 8$	$1018 \cdot 1$	$1021 \cdot 2$	8:42484	$8 \cdot 43873$	$9 \cdot 59285$	14.128	$84.47 \cdot 1$
	1700	A. 1	S. 1	$10^{\circ} 5$	46.0	$4.32 \cdot 3$	4. $31 \cdot 2$	$8^{*} 42236$	$8 \cdot 43038$	$9^{\circ} 5925 \mathrm{E}$	14.395	$8445 \cdot 0$
	01	A. 1	S. 1	8.2	57.7	654.0	$640 \cdot 1$	- $\mathbf{8}^{4} \mathbf{4 2 5 7 4}$	$8 \cdot 48620$	$9 \cdot 59251$	14.152	8447.9
	$\left\{\begin{array}{l}02 \\ 02 \\ \end{array}\right.$	A. 1	S. 1	$8 \cdot 0$	64.0	1026.2	$949{ }^{4} 4$	$8 \cdot 41658$	$8 \cdot 43047$	$9 \cdot 59251$	14.303	84.52 .2
)			10.5	51.8	607.4	548.6	8.54182	8.55024	$9 \cdot 69973$	13.932	$8451 \cdot 5$
	12	A. 1		8.0	54.8	907.6 1342.1	$837 \cdot 6$ $1315 \cdot 2$	8.54182	8.55281 8.55340	$9 \cdot 69973$ 9.64973	$13 \cdot 840$ $13 \cdot 814$	84.53 .9 84.34 .6
	180	A.	C.	$10^{\circ} 5$	56.8	${ }^{6} 00 \cdot 3$	$\bigcirc 0$	8.54747	$8 \cdot 55589$	$9 \cdot 69958$	$13 \cdot 720$	8446.5
		A.	C.	$9 \cdot 2$	$60 \cdot 8$	855.6	859.1	8.54560	$8 \cdot 55659$	$9 \cdot 69958$	13.676	84.47 .9
	01	\wedge.	C.	$8 \cdot 0$	$58 \cdot 3$	$13: 7 \cdot 9$	$1330 \cdot 6$	8.53912	8.55371	$9 \cdot 69958$	$13 \cdot 780$	8445%
	102	A.	C.	$10^{\circ} 5$	57.3	$610 \cdot 7$	546.0	$8 \cdot 54219$	$8 \cdot 55061$	$9 \cdot 69958$	13.885	8449%
	02	A. 1	C.	$9 \cdot 2$	$60^{\circ} 0$	858.5	$850 \cdot 2$	$8 \cdot 54327$	$8 \cdot 55426$	$9 \cdot 69958$	13'754	84.47 .8
		A. 1	C.	$8 \cdot 0$	$63^{\circ} 0$	$1313 \cdot 3$	$1322 \cdot 2$	8.53302	$8 \cdot 54761$	$9 \cdot 69958$	$13 \cdot 950$	$84.42 \cdot 8$
苼											14.025	8447×3
	11222	A. 1	S. 1	10.5	$36^{\circ} 8$	436.6	$416 \cdot 1$	8.41366	8.42168	$0 \cdot 58367$	14.449	8446.8
		A. 1	S. 1	$9 \cdot 2$	42.5	654.4	$634 \cdot 3$	$8 \cdot 42286$	$8 \cdot 433332$	$9 \cdot 58367$	14.026	$8445 \cdot 3$
		A. 1	S. 1	$8 \cdot 0$	$43^{\circ} 5$	1011.5	$955 \cdot 3$	$8 \cdot 41846$	$8 \cdot 42735$	- $5 \cdot 58367$	$14 \cdot 206$	$8441 \cdot 6$
	1301	A. 1	S. 1	$10 \cdot 5$	51.8	$453 \cdot 9$	$415 \cdot 0$	$8 \cdot 42665$	$8 \cdot 444467$	$9 \cdot 58333$	$13 \cdot 927$	$8452 \cdot 8$
		A. 1	S. 1	$9 \cdot 2$	51.5	651.5	$634 \cdot 1$	8.42125	$8 \cdot 4.3171$	$9 \cdot 58333$	14.024	8449.9
	01	A. 1	S. 1	$8 \cdot 0$	53.8	$1013 \cdot 9$	$1013 \cdot 6$	$8 \cdot 42073$	$8 \cdot 43462$	$9 \cdot 58333$	13.922	$84.45 \cdot 1$
	02	A. 2	S. 1	$10^{\circ} 5$	55.5	$433 \cdot 6$	$434 \cdot 2$	$8 \cdot 42586$	$8 \cdot 43388$	${ }^{9} \cdot 58333$	$13 \cdot 934$	84437
	03 03	A. 2	S. 1	$9 \cdot 0$ 8.0	55.0	\% 64.6	646.3	8-4.2616	$8 \cdot 43662$	$9 \cdot 58333$	13.849	84 44'8
	03	A. 2	S. 1	$8 \cdot 0$	77.3 45.0	$1017 \cdot 9$	1017.7	8.42359	$8 \cdot 43748$	9.58333	13.811	8443.2
		A.		10.5 9.2	45.0	${ }_{6}^{608.4}$	${ }^{6} 050.7$	$8 \cdot 55257$	$8 \cdot 56099$	$9 \cdot 69568$	$13 \cdot 501$	$8446{ }^{\prime} 3$
	23	A. 2		8.2	4960	$912 \cdot 6$	$859{ }^{\circ}$	$8 \cdot 54840$	8.55939	$9 \cdot 69568$	13•539	8419.8
	14.60	A. 1	C.	$10 \cdot 5$	58.0	${ }^{13} 838$	$1333{ }^{\circ}$	$8 \cdot 54128$	8'55587	$9 \cdot 69568$	$13 \cdot 600$	84478
		A. 1	C.	$9 \cdot 2$	61.5	$900 \cdot 7$	589.8 8.52 .4	8.58855 8.54496	$8 \cdot 54697$	9.69553 9.64553	$13 \cdot 870$	84 84 84.53 .3
	01	Λ.	C.	$8 \cdot 0$	62.5	1316.7	$1328 \cdot 8$	$8 \cdot 53569$	$8 \cdot 55029$	$9 \cdot 64553$	13.738	8446
	02	A.	C.	$10 \cdot 5$	63.0	¢ $10 \cdot 6$	${ }^{5} 488^{\circ}$	$8 \cdot 54339$	$8 \cdot 55181$	$9^{\cdot 695553}$	13.687	$8452{ }^{\prime} 7$
	03	A. 1	O.	$9 \cdot 2$	61.0	900.6	$832 \cdot 2$	8-53677	8.54776	$9 \cdot 69553$	13.827	$8450 \cdot 6$
		A.	C.	$8 \cdot 0$	59.3	$1325 \cdot 6$	$13 \quad 02 \cdot 7$	8.53109	8.54508	$9 \cdot 69553$	$13 \cdot 814$	$8434 \cdot 8$
											13.849	$8445 \cdot 4$
皆	(11 21	A. 1	S. 1	10.5	$39 \cdot 8$	426.6	$415 \cdot 1$	$8 \cdot 40462$	8*41264,	$9 \cdot 57449$	14.431	84521
	23	A. 1	S. 1	$8 \cdot 2$	$49 \cdot 2$	645.3	624.0	$8 \cdot 41236$	$8 \cdot 42282$	9-57449	14*036	84.52 .4
		A. 1	S. 1	88	51.5	$1001 \cdot 3$	936.2	$8 \cdot 44286$	$8 \cdot 41675$	$9 \cdot 57449$	14.222	84475
	1201.	A. ${ }^{\text {A. }} 2$	S. 1	10.5 9.2	56.0	428.5	426.1	8*41529	$8 \cdot 42331$	9.57415	$13 \cdot 977$	$8445^{\circ} 1$
	01	A. 2	S. 1	9.2 8.0	$62 \cdot 8$ 56.5	$640 \cdot 3$ $1001 \cdot 1$	$637 \cdot 0$ 1003.9	$8 \cdot 41672$	$8 \cdot 42718$	9.57415	13.820	84.463
	05	A. 1	S. 1	$10 \cdot 5$	53.5	$1001 \cdot 1$ 4 4.4	$1003 \cdot 2$	8.41253	8.426442	9.57415	$13 \cdot 874$	8446.4
	15	A. 1	S. 1	$9 \cdot 2$	52.8	637.8	$48.45 \cdot 5$	8.41545 8.40906	8.42347 8.41952	${ }^{9} \cdot 57415$	$13 \cdot 983$ 14.114	84474.0 84 8.3
	06	A. 1	S. 1	$8 \cdot 0$	51.5	$1000 \cdot 3$	1001.0	$8 \cdot 41146$	8.42535	$9 \cdot 57415$	13.933	$8{ }^{84} 45^{\prime} 6$
	22	A. 1	C. 1	10.5	56.0	$607 \cdot 7$	- 43.8	8-53903	$8 \cdot 54745$	$9 \cdot 69163$	$13 \cdot 740$	844 49.3
	23	A	C. 1	$9 \cdot 2$	56.8	$901 * 3$	$86^{6} 2$	8.54672	$8 \cdot 55771$	$9 \cdot 69163$	13•414	84, 49.2
			C.	$8 \cdot 0$	56.5	$1320 \cdot 0$	13 31.4	$8 \cdot 53728$	$8 \cdot 55187$	9'69163	13.598	$8443 \cdot 7$
				10.5	55.3	606.0	605.4	$8 \cdot 55103$	$8 \cdot 5594.5$	9-69148	$13 \cdot 364$	8445.9
		A. ${ }^{\text {A }} 2$		$9 \cdot 3$	53.8	$900 \cdot 3$	$857 \cdot 7$	8.54696	$8 \cdot 55795$	9'69148	$13 \cdot 419$	8448.7
	03	A. 2	C. 1	8.0 10.5	$56 \cdot 5$	$1335 \cdot 4$	$1333 \cdot 9$	8. 54196	8.55655	$9 \cdot 69148$	13.448	8443.6
	03	A.	C. 1	10.5 9	59.0	6067 90017	5 8 8 $16 \cdot 3$	8.54001	8.54843	${ }^{9} \cdot 69148$	13.688	84 84 84 $50^{\circ} 7$
	05	A. 1	C 1	8.0	56.0	13293	${ }^{13} 807 \cdot 8$	8.53930 8.53345	8.55029 8.54804	969148 9696148	13.637 13.716	8443.64 84.3763
											13.801	$8446 \cdot 3$

Inclination．－The Inclination was observed by direct reading of the needle，forming results independent of those deduced from the deflection experiments．

Table VII．contains the particulars of these obscrvations．All were made with the same needle，A．1，except in a few instances， when A． 2 was employed．

From the whole number of observations，it was found that the mean readings of＂poles direct＂and＂poles reversed＂differed by a very small amount，and less than the probable error of a single mean；so that the half determination，whether＂poles direct＂or ＂poles reversed，＂has been taken as an observation of the Inclination， and the monthly means found from all the observations in the month without any correction．

Table VII．

	Date．	Needle． No． or Mark．	$\begin{aligned} & \text { 荘 } \\ & \text { 品 } \\ & \text { 复 } \end{aligned}$	Poles direct．				Poles reversed．							Incli－ nation．	Monthly Means．
				Face of Needle．				Face of Needle．								
				Direct．		Reversed．		Direct．			Reversed，					
				a	a^{\prime}	$a^{\prime \prime}$	$a^{\prime \prime \prime}$	\checkmark		b^{\prime}		$b^{\prime \prime}$		$l^{\prime \prime \prime}$		
	848：															
	D. II. M.			$8{ }^{\circ} 10 \cdot 14 \cdot 25$	${ }^{\circ}+477^{\prime} 20$	$4.303 \cdot 75$		－－＇		－＇				－${ }^{\prime}$	$8454 \cdot 19$	
	［120	A． 1	－	－	－	－	－	$8452 \cdot 75$		$46 \cdot 50$		$7 \cdot 00$		44.50	84． 47.69	
	30130	A． 2	－	8421.25	84， $52 \cdot 50$	84 57•25	84 38．75	－		－				－	84， $42 \cdot 44$	
	62115	A． 1		－${ }^{1}$	－			$8452 \cdot 50$		04.75		07.75		03．25	（34 47．06	
	70300	A． 1	－	85 14．00	84，32．25	85 06•75	8423.75	－						－	34．49＇19	
	102100	A． 1	－	$8420 \cdot 75$	8507×25	$8434 \cdot 3$	$8515 \cdot 75$								3．4 $49^{\circ} \mathrm{E} 0$	
	11 11 13 21	A． 1	－	8510.50	84 $\overline{41} \cdot 00$	8504.75	84 －29．00	$8447 \cdot 75$		$55 \cdot 50$				$42 \cdot 75$	34．44．50	
	13 14 18	A． 1	－		－4	－	8429	8451.00		53.05		50.00				
	140330	A． 1	－				84 30．03	$8438 \cdot 25$		$49 \cdot 75$		$50 \cdot 00$		$45^{\circ} 00$	34 48.10	$84^{¢} 49^{\prime} \cdot 37$
	202100	A． 1	－	8450.07	84 58．05	8524.05	84 30．03	85 － 04.00		－54．25				－${ }^{1}$－ 00	34 56．00	
	210300	A． 1	－		4 $\overline{54} \cdot 00$		84 $\overline{96} \cdot 3.3$	8504.00		$54 \cdot 25$		53.05		31.00	34 50.69	
	241500	A． 1	－	84 48.50	84 54.00	8518.88 85 21.67	84 26.33 84 29.50	－		－				－	94 51.91	
	24 24 25 21	A． 1		8433.50	$8451 \cdot 38$	85 21．67	8429.50	$84 \overline{41} \cdot 67$							$\left\lvert\, \begin{array}{ll}84 & 49.00 \\ 84\end{array}\right.$	
	250330 250300	A， 1		S4 39．17			84 $\overline{08} \cdot 67$								84 49.71	
	250900	A． 1	－	84， $57 \cdot 17 \mid$	85 02.67	$8532 \cdot 17$	34．30．33	－		－				－	$353500 \cdot 5$	
	［312100	A． 1	－	8444.00	$8450 \cdot 01$	3524.50	84 21.67	－		－		－		－	84 $50 \cdot 04$	，
	［ 10300	A． 1		－				$84 \quad 23.00$		$59 \cdot 67$		16＇50		$23 \cdot 17$	3450	
	10230	A． 1	－	$8440 \cdot 83$	$8504 \cdot 17$	8519.33	84： 14.50	－						，	$3449 \cdot 71$	
	32100	A． 1	－	T2．03	－ 51.0	5	－ 07.07	84.48 .00		03＊50		$16 \cdot 17$		19.83	84．51．88	
	40300	A． 1	－	8442.08	S4 51.07	85 22．00	$8407 \cdot 07$	－						－	84 46.85	
	51950	A． 1	－	$8444{ }^{\circ} 00$	$34.51 \cdot 33$	55 26．50	$84.07 \cdot 33$								84 $47 \cdot 20$	
	62200	A． 1	－		－	－	－	8443.83		04． 6		11.5		$23 \cdot 17$	$84.50 \cdot 79$	
	72100	A． 2	－	－	－	－	－	84 28＇25		$16 \cdot 05$		$58^{\circ} 50$		31.00	$8448 \cdot 56$	
	102100	A． 1	－					$8450 \cdot 83$		09＊33		22.50		$2{ }^{\circ} \times 0$	$84.57 \cdot 661$	
	110300	A． 1	－	84 39.338	8453.338	85	84 03.67	－						－	34．45＇．25	¢ $4^{\circ} \mathrm{Jl} 1^{\prime \prime} 08$
	14．2100	A． 1	－	8447.83	85 02＇17	$8535 \cdot 17$	$84,15 \cdot 67$								84 $515{ }^{\prime} 21$	
	$\begin{array}{lll}15 & 02 \\ 17 & 91 \\ 18\end{array}$	A． 1	－	－	－	－	－	84 41.33		01．83		14．83		18.17	84，49．04	
	172100	A． 1						34023		$14 \cdot 17$		$25 \cdot 17$		$30 \cdot 17$	85 02．96	
	18 21 0306	A． 1	－	84 84 35.67	$\left\lvert\, \begin{array}{ll}84 & 58.17 \\ 85 & 07\end{array}\right.$	85 $8126 \cdot 33$	844 15.00	－		－		－		－	${ }^{84} 484.79$	
	212100 220305	A． 1	－	34 $45^{\circ} 33$	850717	853517	841700	84 $\overline{48} 00$		10．33		12.88			84456．17	
	282100	A． 1	－	S4 45.66	84 57.83	8517.00	8418.33								$8449 \cdot 70$	
	$\underline{290305}$	A． 1	－				－	$34 \pm 0 \cdot 17$		$54 \cdot 17$		$20 \cdot 17$		$10 \cdot 83$	$84.46 \cdot 33$	
	［13 2215	A． 1	－	8446.83	$8502 \cdot 34$	－	－	－		－		－		－	8454.58	
	140330	A． 2	－		－			$23 \cdot 33$		06．05		－			S4：44．69	
	150115	A． 1	－	－		－	－	$45^{\circ} 00$		$57 \cdot 75$		－		－	844 52.87	
	152145	A． 1	－	－	－	－	－	54.00		02＇25		－			\＄4 58．12	
	160000	A． 2	－	－	84.70	－	－	$83 \cdot 25$		13.00		－		－	$8448 \cdot 12$	84，4993
	160335	A． 1	－	8443.00	$8449 \cdot 75$			－		－		－		－	8446．37	
	$\left(\begin{array}{lll}29 & 21 & 10 \\ 30 & 03 & 00\end{array}\right.$	A． 1	－	84 84 46.83 180	84 52.838	85 27.00	84 10.67	－		－		三		－		

Table VII.-continued.

The monthly mean results of the Inclination are-

		\circ
October	$\theta=84$	49.4
November	$\theta=84$	51.1
December	$\theta=84$	50.0
January	$\theta=84$	48.8
February	$\theta=84$	53.9
March	$\theta=84$	50.4

Mean by direct observation $84^{\circ} 50^{\prime} 6$
The monthly means, by the method of deflections, are not so regular, and somewhat less in amount, viz. $84^{\circ} 45^{\prime} 9$.

The Horizontal Force experiments were made in series at certain periods, and not at regular intervals; there are therefore some
months in which no observations are made, and others that contain very few. Taking, however, monthly means of all that were observed, the results are as follows:-

The Total Force for these months, derived from the horizontal component multiplied by the secant of the Inclination, is as follows:-

The values of ϕ, found by the direct method for the several months, are-

The mean Horizontal Force during the whole period is 1.205 , which, multiplied by sec. $84^{\circ} 50^{\prime \prime} 6$, is equal to $13{ }^{\circ} 407$. The mean of the whole of the values of ϕ by the direct method, is $13^{\prime} 886$. The mean of both determinations is 13.646 .

Table VIII．

Table VIII．

Contains the hourly observations made with the Declinometer in the months 1849．These observations show correctly the direction of the diurnal move－ suspension of the Declinometer needle，as stated in page 7．In the months same object were made with the Unifilar Magnetometer，the magnet of correct amount as well as direction of the diurnal variation．These obser． in direction，but indicate that the range of the diurnal variation is nearly are those of mean time at the station．

FORT CONFIDENCE

Abstract of Hourly Observations during the month of October 1848.

Date．	Declinometer．												
	$1^{\text {h }}$	$2^{\text {a }}$	$3^{\text {h }}$	$4^{\text {h }}$	$5^{\text {h }}$	$6^{\text {b }}$	$7^{\text {h }}$	$8^{\text {h }}$	$9^{\text {h }}$	$10^{\text {h }}$	11 ${ }^{\text {h }}$	Noon．	$1^{\text {h }}$
	\bigcirc	－，	－，	－，	－，	－，	－，	－，	\bigcirc	－，	－，	$\bigcirc 1$	0,
1	二	－	二	－	二	－	－	－	－	二	－	－	－
3	－	－	－	－	－	－	－	－	－	－	－	－	－
4	二	－	二	二	二	二	二	二	－	二	二	－	＝
8	－	－	－	－	－	－	－	－	－	－	－	－	－
8	－	－	－	－	二	－	－	二	二	二	－	－	－
9	－	－	－	－	－		－	－	－	－	－	－	
10	－	－	－	－	二	－	515	514	5	5	5	524	520
11	－	－	－	－	二	$5 \cdot 3$	${ }_{5}^{515}$	514	507	505	505	506	50.3
12 13	－	二	二	－	二	530	¢ 519	5 5 0 0 15 15	－ 458	4 4 4 4 51	449	500	－
14	－	－	－	－	－	－	510		－	－	500	458	－
15	－	－	－	－	－	－	－	502	511	510	506	509	510
16	－	－	－	－	二	－			510	5	$\begin{array}{lll}0 & 00 \\ 4 & 10\end{array}$	010	－
17	－	二	二	－	二	－	4,33 450	437	422	430	4 4 3 10	－	50 m9
19	－	－	－	－	二	－	－	－	－2	二	${ }^{3}-$	$4{ }^{-1}$	527
20	－	－	－	－	－	518	510	425	355	352	450	450	401
21	－	－	－	530	－						${ }_{4}^{4} 48$	446	440
22 23	－	－	－	－	二	5	503 505	500 3 36	500 3017	501 4 4 15	442 416	4126 416	4 4 4 42
24	－	－	－	5	450	454	449	417	415	${ }_{4} 425$	430	${ }_{4} 29$	431
${ }_{26}^{25}$	二	二						440 450	435 447	${ }_{4}^{4} 32$	445	${ }^{5} 09$	－ 5.59
26 27	二	－	－ 35	5 27	－		515	4 4 4 30	${ }_{4}^{4} 47$	4332	${ }_{5}^{5} 08$	504	515
$\stackrel{27}{27}$	二	二	\bigcirc	527	二	5	501	${ }_{4}^{430} 4$	4 4 4 4 14	${ }_{4}^{422} 4$	436 4 4 4	438	${ }_{4}^{4} 4$
29	－	－	－	－	\square	402	402	355	401	－	432	456	457
30	－	－	－	－	512	504	503	${ }_{4}^{4} 42$	406	405	410	415	350
31	－	－			－		44.5	437	320	301	331	407	420
Suns	－	－	1020	1612	1002	5439	4848	5336	5049	4720	5422	5528	5453
Means－	－	－	510.0	524．0	501.0	458.1	$152 \cdot 3$	4.28	414.1	418.2	$431 \cdot 8$	$4{ }^{47} 3$	434
Diurnal Variation	\} -	－	055.9	109.9	046.9	044.0	$038 \cdot 2$	013.9	000.0	004.1	017.7	023.2	020.3

Increasing numbers denote a movement of the north
of October，November，and December 1848，and January and February ment，but not its amount，in consequence of the friction on the point of of December 1848，January and February 1849，observations having the which instrument is suspended by a silk thread，and shows，therefore，the vations confirm the genernl accuracy of the Declinometer observations twice the amount shown by the Declinometer．The hours in Table VIII．

FORT CONFIDENCE．
Abstract of Hourly Observations during the month of October 1848.

Declinometer．												
$2^{\text {h }}$	$3^{\text {h }}$	$4{ }^{\text {h }}$	$5^{\text {h }}$	$6^{\text {h }}$	$7{ }^{\text {h }}$	$8^{\text {b }}$	$9^{\text {h }}$	$10^{\text {h }}$	11 ${ }^{\text {h }}$	Midnt	Sums．	Means．
01	\bigcirc－	－	\bigcirc－	$\bigcirc 1$	－，	$\bigcirc 1$	$\bigcirc 1$	\cdots	$\bigcirc 1$	$\bigcirc 1$	－	
－	－	－	－	－	－	－	－	－	－	－	－	－
－	－	－	－	－	－	－		－	－	－		
二	－	二	二	－	二	－	－	－	－	－	二	二
－	二	－	－	二	二	－	二	二	－	二	－	－
－	－	－	－	－	－	－	－	－	－	－	－	二
57	$\overline{5} 25$	530	530	432	－	520	－	－	－	－	－	－
${ }^{5} 11$	515	515	510	二	二	519	－	－	－	－	二	二
二	500	二	512	－	－	－	－	－	－	－	－	－
$-$	512	－	－12	－	$\stackrel{\square}{4}$	－	二	二	－	二	二	－
510 510	519 0 0	411	412	－	415 525	－	－	二	二	二	二	
－	530	－	541	－	－	－	552	－	－	－	－	－
＝	$\bar{\square}$	－	$\overline{5} 20$	$\overline{530}$	${ }_{5} 53$	531	535	－	－	－	－	二
708	439	516	${ }_{5}^{5} 25$	525	535	535	535	－	－	－	7754	$452 \cdot 1$
446	4155	459	504	507	507	506	509	－			7938	458.6
430	440	450	505	512	512	511	515	－	－	－	7838	454.9
450	410	429	440	440	441	445	${ }^{4} 46$	－	－	－	${ }^{71} 53$	${ }^{4} 29.6$
432	529	530	532	535	535	53.5	536	－	－		8424	457.9
500	506	510	516	520	515	520	554	－	－	－	8931	458.4
515	515	522	520	520	519	520	520	－	－	－	8246	510.4
448	458	458	501	507	504	${ }_{5}^{507}$	511	－		－	8359	${ }^{4} 56.4$
455	500	530	－	－		531	531	－	－		${ }^{62} 47$	${ }^{4} 49.8$
500	459	454	453	455	500	501	505 4 4 5	－	－		7012	${ }^{4} 40 \cdot 8$
431 430	$\begin{array}{r}420 \\ 507 \\ \hline\end{array}$	434 501	459	440 500	436 501 50	435 505	435 506	－	－	－	7218 6730	431.1 430.0
5643	5835	6033	5115	5621	5625	6211	6303	－	－	－	92130	5750.0
448.6	452.9	$502 \cdot 8$	507.5	507.4	5077	510.9	515.3	－	－	－	9216.3	449.5
029.5	038.8	048.7	053.4	053.3	053.6	056.8	101.2	－	－	－	－	－
end of only in	ne need uded in	towar the me										

FORT CONFIDENCE．
Abstract of Hourly Observations during the months of November and December 1848.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date．} \& \multicolumn{13}{|c|}{Declinometer．} \\
\hline \& \(1^{\text {b }}\) \& \(2^{\text {b }}\) \& \(3^{\text {h }}\) \& \(4{ }^{\text {a }}\) \& 5 \& \(6^{\text {b }}\) \& \(7{ }^{\text {h }}\) \& \(8{ }^{\text {h }}\) \& \(9^{\text {n }}\) \& \(10^{\text {h }}\) \& \(11^{\text {h }}\) \& Noon． \& \(1{ }^{\text {h }}\) \\
\hline \& \(0 \cdot 1\) \& － \& －， \& \(\bigcirc\)－ \& \(\bigcirc\)－ \& \& \& \(\bigcirc\)－ \& －， \& \& \(\bigcirc\) ， \& \& \(\bigcirc\) ， \\
\hline 1 \& － \& \(\sim\) \& － \& \(5 \cdot 05\) \& － \& 502 \& 500 \& 459 \& 500 \& 500 \& 500 \& 501 \& 500 \\
\hline 2 \& － \& － \& \& \& \& 454 \& 447 \& 450 \& 448 \& 450 \& 445 \& 450 \& 480 \\
\hline 8 \& ＝ \& － \& 二 \& － \& \& \({ }^{5} 52\) \& 580
510 \& 521
509 \& \({ }^{812}\) \& 513
480
480 \& 811 \& －\({ }^{5} 1818\) \& 511 \\
\hline 4 \& － \& 二 \& － \& 二 \& － \& \(\overline{4}_{52}\) \& 510 \& 509
450
450 \& 435 \& 450
430
4 \& 4 \& 451
4
4
45
45 \& 4
4
4
4 \\
\hline 8 \& － \& － \& － \& － \& 440 \& 440 \& 440 \& 441 \& 441 \& 441 \& 442 \& 442 \& 442 \\
\hline 7 \& － \& 二 \& － \& ＝ \& \& 443 \& 442 \& 443 \& 442 \& 487 \& 438 \& 4 48 \& \({ }_{4}^{4} 34\) \\
\hline 9 \& － \& 二 \& － \& \& 430 \& \({ }_{4}^{4} 48\) \& － 59 \& \({ }_{4}^{4} 57\) \& 409 \& \({ }_{418}^{4}\) \& 425 \& 465
430
4 \& \({ }_{4}^{4} 81\) \\
\hline 10 \& － \& － \& － \& － \& \& 435 \& \({ }_{4}{ }^{4} 50\) \& 417 \& 420 \& 422 \& 335 \& 410 \& 415 \\
\hline 11 \& － \& － \& － \& － \& 437 \& 412 \& \({ }_{4} 13\) \& 417 \& 405 \& 417 \& 418 \& 417 \& 42 \\
\hline 12 \& － \& － \& － \& \& \& \& \({ }_{4} 10\) \& \({ }_{4} 08\) \& 407 \& 409 \& \({ }_{4}^{411}\) \& 415 \& 415 \\
\hline 18 \& ＝ \& － \& \& \(4 \cdot 22\) \& \begin{tabular}{l}
413 \\
4 \\
4 \\
\hline
\end{tabular} \& 418
4
4 \& \begin{tabular}{l}
421 \\
359 \\
\hline
\end{tabular} \& 482
485
3 \& \begin{tabular}{l}
419 \\
849 \\
\hline
\end{tabular} \& 4
4
355 \& \begin{tabular}{l}
4 \\
4 \\
3 \\
57 \\
\hline
\end{tabular} \& 4124
4
4 \& \(4{ }_{4}{ }^{25}\) \\
\hline 14
15 \& 二 \& 二 \& \& 4．22 \& 436
406
406 \& 4180
4
4 \& 359
402
402 \& 355
402
408 \& 3
3
3
58
48 \& 3
3
3
857
85 \& \begin{tabular}{l}
3 \\
4 \\
4 \\
4 \\
01 \\
\hline
\end{tabular} \& \({ }_{4}^{401}\) \& 4 \\
\hline 16 \& － \& － \& － \& \(4 \cdot 54\) \& \({ }_{4}^{4} 54\) \& \({ }_{4}^{4} 54\) \& \({ }_{4}^{4} 52\) \& \({ }_{4} 47\) \& 450 \& \({ }_{4} 449\) \& \({ }_{3} 34\) \& \({ }_{3} 33\) \& 340 \\
\hline 17 \& － \& － \& － \& － \& \& 230 \& 241 \& 249 \& 242 \& 312 \& 144 \& \(123+\) \& 120 \\
\hline 18 \& － \& － \& － \& － \& 441 \& \& \({ }^{4} 47\) \& 430 \& 422 \& 355 \& 330 \& 230 \& \\
\hline 19 \& － \& － \& － \& － \& \& 408 \& \({ }_{4} 410\) \& \({ }^{4} 06\) \& 407 \& 411 \& \({ }_{4}^{430}\) \& 429
405
4 \& \({ }_{4}^{4} 196\) \\
\hline 20 \& 二 \& － \& － \& 二 \& \& 316
4
4 \& \({ }^{3} 18\) \& 319
4
4 \& \begin{tabular}{l}
3 \\
4 \\
4 \\
4 \\
\hline
\end{tabular} \& 350
3
3 \& 3
3
3 40 \& \(\begin{array}{r}405 \\ 340 \\ \hline\end{array}\) \& 419
347 \\
\hline \(\stackrel{21}{22}\) \& － \& － \& － \& － \& 485
430
4 \& 426
432
4 \& \begin{tabular}{l}
4.28 \\
8.30 \\
\hline
\end{tabular} \& 4
427
427 \& \(\begin{array}{r}4 \\ 410 \\ 4 \\ \hline 10\end{array}\) \& 342
4
4
21 \& 3
3
419
4 \& 340
425
4 \& 347
430
4 \\
\hline 23 \& 二 \& 二 \& \& \& 4 \& ¢ 488 \& 3.30
3
35 \& 848 \& \({ }_{3} 46\) \& \({ }_{3} 51\) \& \({ }_{3} 57\) \& 352 \& 344 \\
\hline 24 \& \& － \& 640 \& 626 \& 622 \& 609 \& \begin{tabular}{l}
530 \\
\hline
\end{tabular} \& 510 \& 505 \& \({ }_{4} 06\) \& 404 \& 420 \& 420 \\
\hline 25 \& 501 \& 455 \& 448 \& 450 \& 447 \& 446 \& 444 \& 442 \& 439 \& 440 \& 442 \& 443 \& \\
\hline 26 \& － \& － \& － \& \& \& \& \& 445 \& 444 \& 445 \& \(4{ }_{4}^{46}\) \& 448 \& \({ }_{4}^{4} 47\) \\
\hline \[
\begin{aligned}
\& 27 \\
\& 28
\end{aligned}
\] \& 二 \& 二 \& － \& 三 \& \& 429 \& 4
4
4
4
44
4 \& 466
435
465 \& 4.28
420
4 \& 4.27
417
4 \& \begin{tabular}{l}
4 \\
4 \\
4 \\
4 \\
4 \\
4 \\
4 \\
\hline 15
\end{tabular} \& 408
416
4 \& 410
420 \\
\hline 29 \& － \& － \& － \& 437 \& 437 \& 435 \& \({ }_{4}^{40}\) \& 420
420 \& 422 \& \({ }_{4} 419\) \& 423 \& \({ }_{4}^{4} 25\) \& \({ }_{4} 4\) \\
\hline 30 \& \& \& \& \& 423 \& 422 \& 420 \& 426 \& 417 \& 410 \& 415 \& 410 \& 418 \\
\hline Sums \& 501 \& 455 \& 1129 \& 3014 \& 6521 \& 11207 \& 11927 \& 13347 \& 12605 \& 13014 \& 12224 \& 12707 \& 127 \\
\hline Means \& － \& － \& － \& － \& \(440 \cdot 1\) \& 429.1 \& \(425 \cdot 4\) \& \(427 \cdot 6\) \& 420.9 \& \({ }_{4} 20.5\) \& \(413 \cdot 2\) \& 414.2 \& 4148 \\
\hline \begin{tabular}{l}
Diurnal \\
Variation
\end{tabular} \& － \& － \& － \& － \& 028.9 \& \(015 \cdot 9\) \& \(012 \cdot 2\) \& 014.4 \& 0077 \& \(007 \cdot 3\) \& 00.00 \& 001.0 \& \(001{ }^{\circ}\) \\
\hline 1 \& － \& － \& － \& \& \& － \& 429 \& 342 \& 342 \& 402 \& 411 \& 420 \& 424 \\
\hline \& 二 \& 二 \& － \& 500 \& 459 \& 457 \& 430
515
50 \& \begin{tabular}{l}
3 \\
\hline
\end{tabular} \& － 3 32 \& 356
3
519 \& \& 431
510
5 \& 439
510 \\
\hline 4 \& － \& － \& \(\cdots\) \& － \& － \& 509 \& 528 \& 455 \& \(4{ }_{4} 54\) \& 457 \& \({ }_{4} 55\) \& 455 \& \({ }_{4} 5\) \\
\hline \& － \& － \& － \& － \& － \& 44.1 \& \({ }_{4} 40\) \& 440 \& 439 \& 489 \& 437 \& 436 \& 437 \\
\hline 6 \& 二 \& 二 \& 二 \& \& \& \(\begin{array}{r}3 \\ \hline\end{array}\) \& 355 \& 354
4
4 \& \({ }^{3} 20\) \& 355 \& 425 \& \({ }_{4}{ }^{24}\) \& 426 \\
\hline \& － \& 二 \& 二 \& － \& － \& \({ }_{4}^{42}\) \& \begin{tabular}{l}
4 \\
4 \\
4 \\
4 \\
28 \\
\hline 18
\end{tabular} \& 402
402
40 \& 359
4
4
4 \& 400
415 \& 405
410
4 \& 407
412
4 \& 410
420 \\
\hline 9 \& － \& － \& \& － \& \& － \& 420 \& \({ }_{4} 10\) \& 424 \& 435 \& 439 \& 429 \& 415 \\
\hline 10 \& － \& － \& － \& － \& \& \({ }_{4}^{430}\) \& 317 \& 136 \& \({ }_{2}^{2} 25\) \& 230 \& \({ }_{2}^{241}\) \& 300
300 \& 310 \\
\hline 11 \& － \& \& \& \& \({ }^{337}\) \& \& \& \& \& \begin{tabular}{l}
317 \\
3 \\
\hline
\end{tabular} \& \& \& 3
3
402
404 \\
\hline 13 \& 二 \& － \& － \& \& \& \begin{tabular}{l}
3 \\
4 \\
4 \\
4 \\
\hline 10 \\
\hline
\end{tabular} \& 3
3
4
4 08 \& 3
4
4
467 \& \begin{tabular}{l}
3154 \\
4 \\
4 \\
\hline
\end{tabular} \& \begin{tabular}{l}
3 \\
\hline
\end{tabular} \& 355
406 \& 400
400
4
4 \& 404
410 \\
\hline 14 \& － \& － \& －－ \& － \& － \& 345 \& 350 \& 340 \& \({ }_{3} 62\) \& \({ }_{3} 32\) \& 330 \& 330 \& 340 \\
\hline 15 \& \& － \& － \& 二 \& \& － \& 354
358
3 \& \& 350
350
3 \& 358
3
3 \& 349
3
3
39 \& \begin{tabular}{l}
350 \\
3 \\
3 \\
40 \\
\hline
\end{tabular} \& \begin{tabular}{l}
3 \\
3 \\
3 \\
463 \\
\hline 16
\end{tabular} \\
\hline 16
17 \& － \& － \& － \& \& \& \(\overline{3} 56\) \& －3585 \& 348
3
3
35 \& 3
3
3 \& 33
3
3
3 \& 339
330
3 \& 340
3
30 \& 346
328
3 \\
\hline 18 \& － \& － \& － \& － \& 500 \& 450 \& \({ }_{4} 48\) \& \({ }_{4}^{4} 45\) \& \& \({ }_{4} 45\) \& \({ }_{4} 420\) \& \({ }_{4}^{4} 33\) \& 405 \\
\hline 19 \& － \& － \& － \& \& － \& 402 \& 402

3
3
38 \& ${ }^{4} 04$ \& 402
300
30 \& 358
3
3
3 \& 356
3
3
3 \& － 35 \& 350
342
3

\hline 20
20
20 \& 3－5 \& 3 59 \& 250 \& 312 \& 319 \& 325 \& ${ }_{3}^{3} 35$ \& 342
3
35 \& －${ }^{3} 404$ \& －337 \& ${ }_{3} 38$ \& 3
3
3
3
3 \& 342
3
38

\hline 22 \& \& \& － \& － \& \& \& 400 \& 359 \& ${ }_{3} 58$ \& 355 \& 355 \& 357 \& ${ }_{3} 58$

\hline 23 \& － \& － \& － \& － \& 338 \& ${ }_{3} 40$ \& \& \& ${ }^{3} 27$ \& \& 339 \& 339 \& 341

\hline －24 \& － \& － \& － \& \& \& | 3 |
| :--- |
| 3 |
| 3 |
| 36 |
| 36 | \& 342

346
346 \& 341
343
3 \& 364
345

326 \& | 3 |
| :--- |
| 3 |
| 3 |
| 20 | \& 342

397
3 \& 345
349

3 \& | 3 |
| :--- |
| 3 |
| 3 |
| 31 |
| 14 |

\hline 25
26 \& － \& \& － \& 205 \& （3） $\begin{aligned} & 38 \\ & 232 \\ & 3 \\ & 3\end{aligned}$ \& $\begin{array}{r}336 \\ 253 \\ \hline\end{array}$ \& $\begin{array}{r}340 \\ 240 \\ \hline\end{array}$ \& 343
215
215 \& 329
245
245 \& 3
3
2
242
4 \& 397
315
315 \& 349
320
3 \& 331
326
36

\hline 27 \& － \& 333 \& － \& \& － \& － \& 330 \& 329 \& 319 \& 325 \& 327 \& 331 \& 335

\hline 28
29 \& － \& 二 \& － \& 359
403 \& 3
4
4
4
08 \& ${ }_{4}^{3} 588$ \& 3
3
4
4 \& 3
4
4
4
08 \& 3158
402
4 \& 357
400
4 \& 355
400
4 \& 354
402
4 \& 356
358
358

\hline 30 \& － \& \& － \& \& 446 \& 446 \& 435 \& 329 \& 335 \& 337 \& 346 \& 356 \& 356

\hline 31 \& \& \& － \& \& 258 \& 302 \& 304 \& 308 \& 310 \& 313 \& 312 \& 316 \& 316

\hline Sums \& 358 \& 732 \& 250 \& 1819 \& 4222 \& 8854 \& 12421 \& 11813 \& 11830 \& 11917 \& 1210.4 \& 1222 \& 12256

\hline Means \& $58^{\circ} 0$ \& 46.0 \& 250.0 \& 339.8 \& 351.1 \& 409.4 \& $400 \cdot 7$ \& 348.8 \& 349.4 \& 350.9 \& 354.3 \& 356.8 \& 35719

\hline $$
\left\{\begin{array}{c}
\text { Diurnal } \\
\text { Variation }
\end{array}\right\}
$$ \& \& \& \& \& \& 013.0 \& $011 \cdot 9$ \& $000 \cdot 0$ \& $000 \cdot 6$ \& 002.1 \& 005.5 \& 008.0 \& $009 \cdot 1$

\hline
\end{tabular}

nometer moved to clean tho glasses，and replaced with the foot screws in the same holos of titale
Increasing numbers denote a movement of the North end of the ncedle towards tho West．

FORT CONFIDENCE．
Abstract of Hourly Observations during the months of November and December 1848.

Declinometer．													
$2^{\text {b }}$	${ }^{\text {s }}$	$4^{\text {h }}$	$5^{\text {h }}$	${ }^{\text {b }}$	7^{7}	$8{ }^{\text {4 }}$	$9^{\text {n }}$		${ }^{10}{ }^{\text {h }}$	$11^{\text {b }}$	Mid	Sums．	Means．
${ }_{4}^{4} 478$	${ }_{4}^{4} 55$	${ }_{4}^{4} 55$	485 5 500	55	${ }^{4}{ }^{5}$	45		55	$\stackrel{-}{-}$	－	－		
	¢	450 812 4 4 4	－		\％ 8	－ 512		${ }_{13}^{15}$	＝	＝		－ 7819	${ }_{4}^{4} 575$
${ }_{4}^{4} 85$	${ }_{4}^{4} 58$	452 440 4	${ }_{4}^{4} 4$	［14	${ }_{4}{ }_{4}$	¢		$\begin{aligned} & 13 \\ & 18 \\ & 124 \end{aligned}$	二	二	${ }_{5} 12$	$\begin{array}{r}89 \\ 89 \\ 85 \\ 45 \\ \hline\end{array}$	
442 440 4	${ }_{44}^{4} 4$	442	${ }_{4} 42$	42	${ }_{4}^{4} 4$	${ }_{4}^{4} 4$		${ }_{44}^{42}$	二		－	${ }^{69}{ }^{69} 45$	439.0
${ }_{4} 58$	${ }_{458}^{48}$	${ }_{4}^{4} 59$	${ }_{5}^{4} 40$	${ }^{4}$	${ }_{5}^{4} 40$	${ }_{4}^{4} 40$		40	二		－	$\begin{array}{r}7956 \\ 747 \\ \hline 78\end{array}$	${ }_{4}^{4} 48.4$
${ }_{4}^{4} 31$	4 49	${ }_{4}^{4} 38$	${ }_{4}{ }^{36}$	35	${ }_{4}$	5 4 4 4 4 0		${ }_{48}^{00}$				${ }_{68} 68$	${ }_{4}^{4} 535$
${ }_{4}^{4} 21$	${ }_{4}^{4} 80$	430 430	${ }_{4}^{4} 30$	［100	${ }^{4} 35$	430	0	${ }_{3} 3$	435	434	－	（7748	${ }^{4} 343 \cdot 8$
${ }_{4}^{4} 15$	415	419	${ }_{4}^{4} 20$	${ }^{0}$	＋ 423	5 4 4 4 104 10		${ }_{30}^{12}$	${ }_{4} 14$			7904	${ }_{4}^{42} \cdot 6$
${ }_{4}^{4} 28$	${ }_{4}^{4} 208$	${ }_{4}^{4} 275$	4 4 4 4 30	${ }^{3}$	${ }_{4} 30$	${ }_{4}^{4} 30$	${ }_{4}$	${ }_{31}^{30}$	二		－	－6402	${ }_{4} 4186.1$
4	${ }_{4}^{4} 804$	${ }_{4} 08$	414	${ }_{4}^{4}{ }_{4}^{4}$	${ }_{4}^{4} 15$	${ }_{4}^{4} 109$		09			－	${ }_{73} 31$	${ }_{4}^{405} 51$
${ }_{1} 15$	${ }_{1} 15$	－ $\begin{aligned} & 350 \\ & 310 \\ & 3\end{aligned}$	${ }_{4}^{355}$	${ }_{5}^{5}$	${ }_{4} 10$	409	4				二	－ 76898	${ }^{4} 188.5$
${ }_{4}^{432}$	452	${ }_{4} 42$	${ }_{4} 48$	${ }_{8}{ }_{4}^{400}$	${ }_{4}^{4} 48$	50 448 4 4			150		－	4956	${ }_{2}^{4} 56 \cdot 2$
438 420 4	${ }_{4}^{4} 40$	${ }_{419}^{4} 4$	${ }_{4}^{4} 8$	439	${ }_{4} 42$	${ }_{4} 27$		${ }_{26} 8$				${ }_{71}^{68} 15$	${ }^{4} 166^{\circ} 9$
347	350	358	${ }_{4}^{4} 0$	14	${ }_{4}^{4} 100$	${ }_{4}^{4} 420$	${ }_{4}^{4} 2$		二	－	－	${ }_{64} 09$	${ }_{4}^{4} 00^{\circ} 8$
$3{ }_{3 i 1}$	${ }_{3}^{4} 56$	${ }_{4}^{4} 280$	${ }_{4}^{4} 290$	${ }^{4} 40$	449	4.43	4		－		二	${ }^{69} 1804$	${ }^{4} 03.8$
${ }_{4}^{4} 48$	${ }_{4}^{4} 40$	439	44.4	443	44	${ }_{4}^{4} 45$			440			${ }^{91} 55$	358.2
457	455	${ }_{4} 4.38$	${ }_{4}^{4} 57$	446 4 45 5	4.46 465 45	${ }_{4}^{4} 47$	$4{ }_{4} 4$		40	46	$\underline{4}$	${ }_{100}^{100} 5$	${ }^{4} 5$
${ }_{4}^{42}$	415 422 4	${ }_{4}^{4} 18$	48	${ }_{4}^{4} 20$	422	423	42		二	二	－	67 69 69	
4 4 4 49	4 4 4 4	428 426 4	${ }_{4}^{4} 27$	428	427	${ }_{4}^{4} 4$	${ }_{4}^{4}$		－	－	－	${ }^{95} 46$	${ }_{423}^{4} 1$
					443	450						${ }_{75}^{83}$	${ }^{4} 2888$
13017	13156	13425	2	13622	13823	13946	08		58	92	1000	23810	
42	3.9	28.8	$433 \cdot 1$	432.7	436.8	$439 \cdot 5$	440		－				$427 \cdot 5$
0074	$010 \cdot 7$	$15 \cdot 6$	$019 \cdot 9$	0195	$023 \cdot 6$	$026 \cdot 3$	$027 \cdot 1$		－	－			
432 439 4	${ }_{4}^{4} 35$	${ }^{4} 35$	${ }_{4}^{4} 38$	438	438	440							
510	510	511	－ 58	${ }_{5}^{5} 24$	5178	517 5 5				三	二	－ $\begin{array}{r}65 \\ 88 \\ 8814 \\ 88\end{array}$	${ }_{4}^{4} 2374$
450 487	4	${ }_{4}^{448}$	${ }_{4}^{4} 47$	447 438 4	4．4 4 4 8	${ }_{4}^{445}$	${ }_{4} 4$		二	二	二	78 788 78 81	${ }_{4}^{51235}$
${ }_{4}^{4} 125$	427	${ }_{4} 26$	${ }_{4} 25$	$4{ }_{4}$	${ }_{4} 25$		${ }_{4}^{4} 365$		二	二	－	${ }^{74} 707$	437.9
419	${ }_{4} 19$	${ }_{4}^{415}$	${ }_{4}^{4} 20$	${ }_{4}^{4} 17$	${ }_{4}^{4} 16$	${ }_{4}^{4} 17$	419		－	－	二	6712	$413 \cdot 9$ $412 \cdot 9$
4116 3	438 3	${ }_{4}^{4} 19$	${ }_{4}^{417}$	${ }_{4}^{420}$	420	419	${ }_{4}^{4} 20$		－	－	二	${ }^{64} 492$	${ }^{4} 17.3$
3 3 4 4 0	3 3 4 4 40	－340	3 340	－ 342	$\begin{array}{r}335 \\ 342 \\ \hline\end{array}$	338 342	－ 340		＝	＝	ב	${ }_{51}^{63} 40$	${ }_{3}^{413.8}$
${ }_{4}^{4} 10$	${ }_{412}^{4} 1$	${ }_{4}^{4} 12$	4 4 4 4 13	${ }_{4}^{410} 4$	${ }_{4}^{4} 10$	411	410		－	$=$	－	${ }_{604}^{60} 17$	
－ $\begin{array}{r}344 \\ 3 \\ 355\end{array}$	－ 343	${ }^{3} 47$	352	350	352	${ }_{3}^{413} 5$	414 4 45 3		二	こ	二	－6635	${ }^{4} 09.7$
${ }_{3} 48$	${ }_{3} 52$	${ }_{363}{ }^{4}$	${ }_{3}^{4} 5$	${ }_{3}^{4} 500$	4 3 360	${ }_{4}^{400}$	${ }_{4}^{4} 00$		二		－	${ }_{58} 59$	344 3 3 55
－ 402	－	${ }_{4}^{3} 305$	${ }_{3}^{335}$	${ }^{3} 393$	345	${ }_{3} 46$	${ }_{4}{ }_{4}^{45}$		－		二	－5720	3 3 3 3 39
－3 35	${ }_{3}^{3} 05$	${ }_{3}{ }^{3} 2$	${ }_{3} 05$	${ }_{3} 307$	${ }_{310}^{4}$	－ 406	408 312 3			－		7485	${ }_{4}{ }^{3} 22 \cdot 6$
337	－ 343	－ $\begin{aligned} & 345 \\ & 3 \\ & 3\end{aligned}$	－ 3 3 40	－ $\begin{array}{r}345 \\ 3 \\ 30\end{array}$	－ 3 3 40	－	356 3		358	356	356	${ }_{67} 43$	${ }_{3}^{3} 454$
${ }_{3}^{4} 43$	${ }_{3}^{4} 02$	4	${ }_{3}^{4} 12$	${ }_{8}^{4} 82$	402	${ }_{4}{ }_{4} 02$			${ }^{37}$	${ }^{359}$	$\underline{401}$	8754 89 59	3 3 3 59 59
347	348	350	350	${ }_{3} 56$	340	－${ }^{3}$	－ 350		三	二	－	${ }_{62} 33$	${ }_{3}^{3} 40.8$
${ }_{3} 35$	－	－ $\begin{array}{r}343 \\ 3 \\ 3\end{array}$	－ 345	345 388 38	345 3 3 3	345 3 3	${ }_{3} 345$		三	三	－	6058 6142 61	
－ $\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 58\end{aligned}$	${ }^{3} 5$	355	356	358	${ }_{3} 59$	－	－ $\begin{array}{r}3 \\ 3 \\ 39 \\ 59\end{array}$		三	二	二	5540 59 59	${ }_{3} 305 \cdot 6$
${ }_{4}^{4} 403$	405	${ }_{4}{ }^{4}$	${ }_{4}^{4} 02$	＋ $\begin{aligned} & 403 \\ & 404 \\ & 4\end{aligned}$	4 4 4 4 05	4 4 4 4 4	－ 405		二	二	二	${ }_{71} 79$	3 3 3 59
（358 316 16	3 3 3 189	400 322	$\begin{array}{r}4 \\ 3 \\ 3 \\ 20 \\ \hline\end{array}$	402 326	405	${ }_{4}^{4} 04$	${ }^{4} 038$				－	7240 68	${ }_{4}{ }_{4} 02.2$
						328	327					${ }_{55} 27$	$402 \cdot 2$ 315 15
					12638	54	12749		755	755	757	2，041 11	12351
	$00 \cdot 4$	$402 \cdot 6$	403.7	$4 \cdot 6$	$405{ }^{\circ} 1$	405.6	4074		3575	3575	358.5		358.7
$12 \cdot 4$	0 11＇6	$013 \cdot 8$	014.9	$015 \cdot 8$	016.3	${ }^{16} 16$	018.6		－	－	－		

aurora in the evening．（See Notes on Aurore．）

FORT CONFIDENCE．
Abstract of Hourly Observations made during the months of January and February 1849.

Date．	Declinometer．												
	$1^{\text {h }}$	2^{4}	$3^{\text {h }}$	$4^{\text {h }}$	$5^{\text {h }}$	6	$7{ }^{\text {h }}$	8^{4}	$9^{\text {h }}$	$10^{\text {h }}$	$11^{\text {h }}$	Noon．	$1^{\text {h }}$
	－，	$\bigcirc 1$	－，	－，	－，	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	－ 1	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
1	－	－	－	328	－	320	${ }^{3} 20$	322	322	322	332	359	${ }_{4}^{403}$
2 3	－	－		322	＋408	409 317 317	$\begin{array}{r}408 \\ 305 \\ \hline\end{array}$	408 306 1	$\begin{array}{r}488 \\ 4 \\ 3 \\ \hline 26\end{array}$	408 388 8	408 308 30	407 330	4111 3
4	－	二	414	${ }_{4} 13$	${ }_{4} 13$	${ }_{3} 16$	312	409	405	408	403	4106	406
5	－				－	${ }_{4} 11$	${ }^{412}$	${ }_{4} 12$	${ }_{4} 12$	410	${ }_{4} 10$	${ }_{4} 11$	411
${ }^{6}$	－	二	二	\square		415	${ }_{4}^{415}$	${ }_{4}^{4} 1.4$	415	${ }_{4}^{4} 15$	415	${ }_{414} 14$	415
7	二	二	－	二	二	${ }^{3} 15$	${ }^{4} 20$	${ }_{3}^{4} 20$	${ }_{3} 20$	425	440	${ }_{3}{ }_{42}$	${ }_{3}{ }_{42}$
${ }_{9}^{8}$	二	二			二	315	337 3	342	340	${ }_{3} 40$	341	344	344
10	－	－－	－	－	－	334	${ }^{3} 34$	342	340	336	342	352	${ }_{4} 04$
11	二	－	－			二	405 503 0	－ 350	352 448 4	3 4 4 4 4 4	3 4 45 45	3 4 4 4 45	4.56 445 4
12	－	二	－	－	336	$\stackrel{\square}{37}$	503 3037 3	$\begin{array}{r}450 \\ 347 \\ \hline\end{array}$	448 345 3	448 35.5	445 3 3 50	4 4 3 35 50	445 3 56
14	－	－		－		－	347	349	348	342	${ }_{3} 36$	330	${ }^{3} 33$
15	－	－	40	5	${ }^{4} 088$	353	3 3 3 3 59 5	3 39	${ }^{4} 08$	340	${ }^{3} 488$	3 3 3 3 10	3 3 3 3 2
16	－	二	406	407 3 59	4 4 4 4 00	408 358 3	3 3 3 3	205 305	208 355 358	230 355 3	2 ${ }_{3}^{55}$	3110 3158 3	330 359
17	－		$\overline{407}$	$\begin{array}{r}3 \\ 4 \\ 4 \\ 4 \\ \hline\end{array}$	${ }_{4}^{4} 000$	358 405 405	350 406 00	－ $\begin{aligned} & 355 \\ & 4 \\ & 402\end{aligned}$	－ 355	355 347	356 350 3	－358	－3 ${ }^{3} 595$
19	－	－	－	356	357	358	356	355	355	${ }^{3} 54$	355	${ }_{3} 56$	357
20	－	－	401	400	400	400	${ }^{4} 00$	357	388	${ }^{3} 55$	344	345	${ }^{3} 44$
21			－			350	${ }_{4} 504$	356	355	354	${ }^{3} 46$	350	355
22	402	402	4． 02	4.02	402	${ }_{4}^{4} 02$	402	402	413	4	${ }^{4} 802$	${ }^{4} 05$	${ }^{4} 05$
$\stackrel{23}{26}$	－		428	${ }_{4}^{4} 28$	4 4 4 4 4	4 4 4.14 4	4.28 418	427 412	413 4 4 07	4 402 402 4	358 358 3 57	3 4 4 4	3154 403 0
25	430	430	${ }^{4} 28$	427	428	${ }_{4}^{4} 28$	${ }^{4} 28$	424 3 30	$4{ }^{4} 23$	－320	${ }^{3} 288$	${ }^{3} 28$	${ }_{3} 311$
${ }_{27}^{25}$	－	－			342	332 337 3	33 3 3 43	33 3 3 4 4	$\begin{array}{r}3 \\ \hline 3 \\ \hline\end{array}$	3 3 3 3	3111 3 3	315 3 3	315 3146 346
$\stackrel{27}{27}$	二	二	357	$\stackrel{3}{ }-$	${ }^{342}$	$\underline{3}$	－3438	3 3 59	－	－3 35	352 3 5	－358	${ }_{3} 34$
29	－	－	－	－	407	403	${ }_{4}^{403}$	${ }_{4}^{4} 03$	359	${ }_{3} 358$	${ }^{4} 00$	${ }_{4}^{4} 00$	${ }_{4}^{4} 00$
30 31	二	－	3.41	406 3 40	402 340 3	402 389	3 3 3 3	$\begin{array}{r}3 \\ 3 \\ 3 \\ 39 \\ \hline 9\end{array}$	318 339	315 315 3	3 3 3 39	3 3 3	$\begin{array}{r}330 \\ 340 \\ \hline\end{array}$
Sums	832	832	37－04	59.53	7218	9852	12040	11953	11911	1175	11802	11904	12041
Means	－	－	－	－	401.0	352.5	3535	$352 \cdot 0$	$350 \cdot 7$	348.2	348.5	350.5	353.6
$\left.\begin{array}{c} \text { Diurnal } \\ \text { Varia- } \\ \text { tion } \end{array}\right\}$	－	－	－	－	012.8	004.3	005	003.8	0 㬉＇5	$000 \cdot 0$	$000 \cdot 3$	$002 \cdot 3$	005×4
1	－	－	－	424	436	${ }_{4}^{4} 26$	427	${ }^{4} 27$	355	${ }^{4} 20$	${ }^{4} 00$	${ }_{4}^{4} 02$	${ }_{3} 07$
2	－	－		354	3 4 4 4	3878	3 488 4 04	3 38	${ }_{4}^{4} 00$	3	3 3 4 4 05 1	3	3 3 4 4
3	二	二	＝	－	${ }^{403}$	40102 408	404 408 408	402 407	401 347	44 3 3 3	${ }_{4}^{4} 34$	${ }_{3}^{4} 05$	$\begin{array}{r}4 \\ 3 \\ 3 \\ 36 \\ \hline\end{array}$
${ }_{5}^{4}$	二	二	－	－	3 43	3 343	${ }_{3} 42$	342	${ }_{3}^{3} 39$	${ }_{3} 33$	－3 37	3 335	${ }_{3} 340$
6	－	－	－	342	342	343	44.2	442	342	${ }_{3} 36$	340	340	${ }_{3} 342$
7	－	二	二	二	354 3 3 57	3 3 3 3	455 457	457 458 4	355 3558 358	356 358 358	356 3 355 3	357 358 358	357 359 59
${ }_{9}$	－	二	二		$\stackrel{-}{-}$	${ }_{4} 00$	400	359	${ }_{4} 400$	${ }_{3} 58$	${ }_{3} 59$	400	${ }_{4} 00$
10	－	－	－	－	二	401	400	${ }^{3} 57$	347	345	347	347	350
11	－	二	二	－	417	-17	${ }_{4} 357$	355 415	$\begin{array}{ll}3 & 48 \\ 4 \\ 4 & 10\end{array}$	3 3 3 355	$\begin{array}{lll}3 & 46 \\ 3 & 55 \\ 3\end{array}$	$\begin{array}{r}34.5 \\ 340 \\ \hline 40\end{array}$	${ }_{3}{ }_{3} 44$
12	－	二	二	二	417	41 402 402	${ }_{4}{ }_{4} 01$	400	${ }_{2}^{4} 58$	${ }^{8} 80$	812 312	$\stackrel{3}{3} 3$	${ }_{3}^{3} 34$
14	二	二	－	－	－	354	352	354	353	353	353	${ }^{3} 53$	353
15	－	二	二	二		4 4 4 4 4	4.34 432 4	4 433 4 4	4 4 4 4	4.45 430 3	4.23 4 48 4	4.23 327	${ }_{4}^{4} 23$
16	－	二	－	二	424	432 4.5 4	432 427 4	4 4 4 4 25	4 4 4 4 4	330 325	${ }_{4}^{4} 2$	－328	4 429 429
18	－	二	二	－	－	－．	431	430	420	${ }^{3} 12$	402	355	355
19	－	二	－	－	417	${ }_{4}^{4} 17$	418	418 431	$\begin{array}{r}4 \\ 4 \\ 4 \\ 4 \\ 24 \\ \hline\end{array}$	320 3 3	414	420 315	${ }_{4}^{4} 20$
$\stackrel{20}{21}$	415	414	411	406	408	4 4 4 4 4	433 410 4	431 4 4	4.26 850 50	350 355 350	358 3 3	315 3 3	315 340 3
${ }_{22}^{21}$	415		－	－	－	419	410	400	${ }_{3} 32$	${ }_{3} 28$	245	247	250
23	－	－	－	－	－	348	348	348	350 30	${ }_{3}^{348}$	${ }_{3} 40$	3 38	340
24	424	424	${ }^{423}$	421	421	${ }^{418}$	4 426 421	${ }_{4}^{418} 4$	${ }_{4}^{3} 120$	3 4 4 103 10	$\begin{array}{r}3 \\ 4 \\ 4 \\ 4 \\ \hline 10\end{array}$	318 410	400 410
${ }_{26}^{25}$	二	二	－	－	－	${ }_{4} 16$	413	${ }_{4} 11$	${ }_{4}{ }^{46}$	332	327	${ }_{3} 32$	336
27	－		－			4106 442	4.02 4 4	400 442	335 429 4	3 4 428 4	3 429 4	325 427 4	3 426 427
28						$4{ }_{4}$	${ }_{4}^{4} 47$						427
Sums	839	838	834	2027	4817	10401	11642	11602	11135	10946	10807	10657	10723
Means	－	－	－	－	－	409.6	410.1	408.6	$359 \cdot 1$	355.2	351.7	349.2	350.1
$\left.\begin{array}{c} \text { Diurnal } \\ \text { Variau } \\ \text { tion }- \end{array}\right\}$	－	－	－	－	－	020.4	$020 \cdot 9$	019×4	009.9	0060	$002 \cdot 5$	$000 \cdot 0$	$000 \cdot 9$

FORT CONFIDENCE．
Abstract of Hourly Observations made during the months of Januairy and February 1849.

the needle towards the West

Fort Confidence－continued．
Abstract of Hourly Observations made during the months of March and April 1849.

Date．	Declinometer．												
at Station．	1^{4}	$2^{\text {h }}$	$3^{\text {b }}$	4^{4}	5 h	$6^{\text {h }}$	7 h	$8^{\text {n }}$	$9^{\text {h }}$	$10^{\text {h }}$	$11^{\text {h }}$	Noon．	$\mathrm{I}^{\text {h }}$
	0	\bigcirc ：				0.	0 ，	01	\bigcirc	\bigcirc ，	\bigcirc	\bigcirc	\bigcirc
	－	－	－	－	－	${ }_{4}^{4} 23$	424	424	412	412	412	412	413
$\begin{array}{r}1 \\ \hline\end{array}$	－	－	－			418	420	422	415	380	365	369	348
	二	＝	＝	＝		415	${ }^{41} 14$	412	411	${ }^{4} 12$	${ }_{4} 18$	${ }^{418}$	415
	－	二	＝	－		348	350	352	345	348	350	358	405
						408 4020 4	405 418	${ }^{4} 0.4$	${ }_{4}^{4} 15$	${ }_{3}^{4} 16$	${ }_{4}^{4} 15$	${ }^{4} 15$	${ }_{4}^{4} 18$
1：7	－	－	－	二		449	448	448	${ }_{4}^{418}$	${ }_{438}{ }^{3} 88$	${ }_{4}^{107}$	424	${ }_{421} 12$
		－	－	－		427	4.27	410	352	359	359	357	400
1＊${ }^{\text {P }}$		＝	－	－		421	424	415	${ }^{4} 08$	－ 405	${ }_{4}^{4} 14$	4， 15	428
	二	－	二	－	F	${ }_{3} 14$	${ }_{4} 413$	－4130	4106 411	408 410	5 409 409	555 410	358 410 48
－ 12	－	－	－	－		418	417	$\bigcirc{ }^{-1} 407$	405	845	342	400	405
1． 18		＝	－	－		418	${ }_{4}^{4} 16$	${ }^{41} 14$	400	405	408	410	410
			＝			${ }_{4}^{414} 4$	414	414	418	${ }^{4} 18$	${ }_{8}^{4} 11$	410	${ }_{4} 10$
－ 18		＝				4 48	427	415	－ $\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 18 \\ & 18\end{aligned}$	410	8		4105 418
		－	－			417	416	－． 415	413	410	4.10	4.10	410
$\bigcirc 18$	－	－	－	－		405	432	－426	407	350	331	320	815
－ 19						418	${ }_{4}^{415}$	404	245	237	232	227	235
			4			437	429	415	${ }^{3} 20$	310	320	321	311
！＇ 22	448	$4{ }_{4} 4$	${ }_{4}^{4} 38$	${ }_{4}^{4} 29$	${ }_{4}^{43}$	437	4.24	414 408	402 330	400 382	4 8 8 26	＋ $\begin{array}{r}326 \\ \mathbf{3 2 5} \\ +\end{array}$	
	－	－	－	－	－	415	401	＋403	340	337	3.40	＋ 347	${ }_{3}{ }_{53}$
：	－－	－	－	－	－	426	425	419	319	230	259	310	${ }^{3} 38$
		－	－		－	${ }^{4} 238$	4．23	420	＋${ }_{+}^{42}$	4.06	400	427	488
$\because 28$	二	二	－	－	－	441 419	439 418	433 417 4	348 418 4	315 4.14 4	318 4.15	－ $\begin{array}{r}10 \\ \hline 15 \\ \hline 15\end{array}$	4 4 418 17
8	1－	－	－			418	414	412	412	340	3． 45	338	338
－． 29	－	－	－	－	二	426	${ }^{4} 24$	－4．20	－ 4.20	4.16	416	414	414
${ }_{31}$					－		4 4 4 31		$\begin{array}{r}420 \\ 425 \\ \hline 1\end{array}$	369 419 4	404 418	${ }_{4}^{4164}$	
Sums	818	816	901	857	845	13503	1344 25	13204	12511	12042	122	1240	124
Means	－	－	－	－	－	421.4	420.2	415.6	402.3	353.6	357	400	4013
$\begin{gathered} \text { Diurnal } \left.\begin{array}{c} \text { Varial } \\ \text { tion } \end{array}\right\} \end{gathered}$		－		－		$027 \cdot 8$	026.6	022.0	008.7	0000	0 03＊9	008.6	0077
	－	－	－	－	－	427	428	424	420				
${ }^{2}$	－	－	－		－	428	417	255	212	312	822	325	325
3 4 4		二	－		－	434 413	430 414 4	402	－3 89	${ }^{2} 46$	${ }^{3} 35$	${ }^{4} 100$	${ }^{4} 804$
${ }_{5}$	－	－	－			${ }_{4}^{4} 57$	452	＋330	－${ }_{4} 19$	${ }_{4}^{2} 15$	205	${ }_{4}^{217}$	
－ 8	－	－	－	－	－	435	438	406	345	340	382	340	332
	＝	－	－			430	415		405	406	410	408	422
8	二	－	－		－	440	438	， 422	420	418.		420	422
［ ${ }^{9}$	ב	二	－		－	${ }_{4}^{4} 40$	442 430	443 4 4	${ }^{1} 05$	318	${ }^{3} 25$	$\begin{array}{r}382 \\ 38 \\ \hline\end{array}$	422
， 11	＝	二	－			430 485	430 435	430 482 48	4 420	402 415	314 407		405 418
－． 12	－	－	－	－	436	435	432	427	422	${ }_{4} 21$	425	425	435
		－			－	430	422	428	420	410	385	410	${ }_{4} 08$
		－	－			420	433	420	322	317	422	350	417
15	－	－				430	430		425	421	422	423	425
18		－	－			428	422	427	247	252	252	305	315
17	－	－	－		440	440	440	427	408	355	348	． 43	347
18	－	二	－		－	435	427	${ }^{4} 18$	${ }^{388}$	423	422	330	344
＇1901	－	二	－	\pm	4	434 434 4	432 417	422 385	$\begin{array}{r}342 \\ +415 \\ \hline\end{array}$	484 440 4	438 440	3 3 8 50 80	${ }_{55}^{50}$
21	－	－	－	－	455	485	450	${ }_{4}{ }^{3} 88$	400	${ }_{4} 10$	${ }^{4} 40$	${ }^{3} 552$	3 4 45
－，22	－	二	－	－	－	${ }^{5} 10$	445	458	458	425	488	430	430
${ }_{2}$	二	二	二	＝	444	419 500	$\begin{array}{r}485 \\ 515 \\ \hline\end{array}$	438 5 5	437	425	410	${ }^{2} 5$	4381
	－	－	－			443	435	430	4.11	${ }^{4} 22$	352	415	421
2	－	－	－	－	420	425	420	325	317	303	814	412	421
－${ }^{28}$	＝	二	＝		－	505	439	425	417	418	420	425	426
29			＝		－	488 58	${ }^{4} 40$	$\begin{array}{r}439 \\ 435 \\ \hline\end{array}$	429 419	$\begin{array}{r}405 \\ 410 \\ \hline\end{array}$	405 412	410 415	413 420
30			－			436	434	435	429	422	${ }_{4} 32$	424.	4
Sums	－	－	－	－	2756	13906	16	13000	11019	438	50	12000	12351
Means			－	－	439.3	438.2	434.5	4200	$352 \cdot 0$	$349 \cdot 2$	351.7	$400 \cdot 0$	$407 \cdot 7$
$\begin{array}{\|} \text { Diurnal } \\ \text { Variation } \end{array}$				－		$042{ }^{\circ}$	04.53	$030 \cdot 8$	． $003 \cdot 4$	$0 \quad 000$	002.5	010.8	018.5

Fort Confidence－continued．
Abstract of Hourly Observations made during the months of March and April 1849.

Declinometer．												
$2^{\text {h }}$	$3^{\text {h }}$	$4^{\text {h }}$	$5^{\text {h }}$	$\mathrm{g}^{\text {h }}$	$7^{\text {h }}$	$8^{\text {h }}$	$9^{\text {b }}$	10 ${ }^{\text {b }}$	11 ${ }^{\text {h }}$	Midnt	Sums．	Means
\bigcirc	\bigcirc	$\bigcirc 1$	\bigcirc									
${ }_{4} 18$	417	419	419	420	420	420	420	420				${ }^{\circ} \mathrm{O}$ 17．
4 4 4 4 10	401 415	402 415	402 416 40	402 4	402	402	$4{ }_{4}^{4}$	416 416		－	7305 6918	
415 407	415 408	415 407	416 407	417 4 4	417 407	417	410 407	355			7142	${ }_{4}^{4134} 1$
418	438	4107 428	407 421	4 4 4 4 2	$\begin{array}{r}4 \\ 4 \\ 4 \\ 4 \\ 24 \\ \hline\end{array}$	407	${ }^{4} 07$	408			6757	359.8
421	421	457	${ }_{4} 54$	453	${ }_{4}{ }^{24}$	${ }_{4}{ }_{4}{ }^{2}$	4.23 450 4	423 450			7258	$417 \cdot 5$
422	422	424	424	425	427	${ }_{4} 28$		450 428			7631	$430 \cdot 1$
405	410	418	${ }_{4} 18$	422	424	425	－ 428	－${ }_{4} 28$			7634	$430 \cdot 2$
425	421	422	420	${ }_{4} 25$	${ }_{4} 25$	425	426 425 4	426			7154	${ }_{4} 13.8$
358	402	405	417	420	420	${ }_{4} 22$	${ }_{42}^{4} 2$	42			7336	${ }_{4} 19 \cdot 8$
410	410	410	${ }_{4} 10$	414	${ }_{4} 15$	${ }_{4} 20$	421	－ 422			7439	$428{ }^{\circ} 5$
411	415	418	415	415	415	415	418				7142	${ }^{4} 18{ }^{\circ} 1$
410	411	411	412	414	414	415	415	415			$\begin{array}{r}70 \\ 718 \\ \hline\end{array}$	${ }^{4} 109 \cdot 4$
421	430	430	430	430	430	431	430	430				${ }^{4} 111.6$
407	412	418	4.25	425	426	427	427	425				${ }_{4}^{4} 121.5$
4115	${ }^{4} 14$	${ }_{4} 15$	415	415	415	417	420	420			7238	${ }_{4}^{416.1}$
318	${ }_{318} 10$	${ }_{3}{ }_{3} 15$	415 345 45	${ }_{3}^{418}$	422	430	442	442			7309	418.2
245	835	${ }_{3} 37$	${ }_{4} 15$	＋1825	${ }_{4} 11$	${ }_{4}^{4} 12$	415	430			6551	$352 \cdot 4$
309	440	820	${ }^{415}$	${ }_{8} 25$		${ }_{3}^{4} 20$	4 435	${ }_{8}^{43}$			6220	340.0
420	424	435	438	438	430	${ }_{4} 42$	${ }^{4} 81$	335	331	830	6733	$333 \cdot 3$
405	404	405	410	412	415	420	441 4 4 4	449	502	449	10349	419.9
410	420	425	430	431	430	430		4			9144	$410 \cdot 2$
350	417	419	410	419	425	428	430	＋ 430	－		7054	$410 \cdot 2$
452	449	447	447	445	445	445	445	4			${ }^{67} 32$	358.3
412	415	417	415	415	418	422	420	420			775	${ }^{4} 31{ }^{3} 1$
412	418	410	415	415	419	420	420	${ }_{4} 420$			7107	411.0
410	422	425	425	425	425	425	425	425			7240	418.5
415	415	417	420	4.25	424	425	425	${ }_{4} 26$				
415	415	415	418	428	430	434	435	＋ 4			${ }_{73} 782$	${ }^{4} 20.1$
421	422	423	425	425	425	425	425	427			${ }_{74} 72$	${ }_{4}^{4} 18.9$
12728	13028	13130	13253	13403	13442	18547	13602	13630	833	819	2278	
408.7	412.5	414.5	$417 \cdot 2$	419.5	$420 \cdot 7$	$422 \cdot 8$	423.3	424.2				
$013 \cdot 1$	018.9	$020 \cdot 9$	023.6	025.9	$027^{\prime 1}$	$029 \cdot 2$	0297	$030 \cdot 6$	－	－	－	－
415	415	${ }_{4}^{417}$		428								
${ }^{3} 32$	${ }^{4} 36$	346	347	350	485	$4{ }_{4}^{4} 4$	${ }_{4}^{4}{ }_{41}{ }_{4}^{29}$	4430 440				
${ }^{4} 05$	${ }^{4} 05$	4.05	407	${ }^{4} 08$	${ }^{412}$	412	412	${ }_{4} 13$			${ }_{68} 64$	3 $402 \cdot 1$ 402
	${ }_{4}^{412}$	${ }_{4}^{4} 15$	432	445	446	455	500	505			6333	$344 \cdot 3$
${ }_{4}^{4} 250$	433 4 4	488	$4{ }^{4} 45$	445	445	445	4． 45	445			${ }_{77} \cdot 64$	${ }_{4} 34.9$
432	4 483	${ }_{4}^{4} 4$	${ }_{4}^{4} 31$		440	441	440	440			$71 \cdot 32$	$412 \cdot 5$
422	424	427	430	4 430 4	${ }_{4}^{4} 30$	4 4 42 4 4	142 435	442	－	－	7551	427.7
422	422	430	430	430	433	4.32	${ }_{4}^{435}$	$\begin{array}{r}44 \\ .44 \\ \hline 4\end{array}$			7548	$427 \cdot 5$
415	438	440	442	442	${ }_{4} 42$	440	440	$\begin{array}{r}14 \\ \hline 4 \\ \hline 40\end{array}$			7013	${ }^{4} 97 \% 8$
425	425	425	430	434.	434	435	435	435			7437 7530	${ }^{4} 23.3 .38$
${ }_{4}{ }^{24}$	${ }^{4} 25$	423	426	427	427	430	430	－ 30			8819	4.26 .5 4.27
410	${ }_{4}^{425}$	430	430	428	435	435	440	442			7436	$4{ }_{4}^{4.3}$
4	420 400	4 4 4 00 05	427	428	430	432	434	437			7132	${ }_{4}^{4} 12 \cdot 5$
340	342	350	${ }_{4}^{4} 20$	${ }_{4}^{4} 22$	${ }^{4} 400$	430 439	481 4 4	429			7321	418.9
358	420	430	435	${ }_{4}^{4} 35$	${ }_{4}^{4} 43$	439 4 48	440 437	438 4.37			6639	$355 \cdot 2$
401	416	428	455	454	455	459	－ 459	4.37 500			7811	${ }^{4} 200 \cdot 6$
405 305 55	408 429	422 4 4 4	418	420	425	440	443	446			7148	$418 \cdot 9$ 413.3
${ }_{4} 50$	4 4 40 48	430 450	440 510	442 502	445 500 500	445 504	445 445	450	455	502	8706	$421 \cdot 3$
430	430	434	435	4.40	${ }_{4} 45$	504 4 4 4	445 440	5． 25 440 4		－	8551	446.2
434	435	435	455	446	446	447	446				79 78 78 16	${ }^{4} 41.9$
${ }_{4}^{431}$	445	445	458	455	455	453	${ }_{4}^{4} 52$	${ }_{4}^{4} 52$			78 88 16	${ }^{4} 36{ }^{\circ} \cdot{ }^{2}$
436 452 4	439 458	440	${ }^{4} 46$	501	500	510	509	510			7800	${ }^{4} 474 \cdot \frac{1}{3}$
${ }_{4}{ }^{4} 5$	452 428 4	5 4 4 00	500 4 4 45	510 435	509 435	507 4 4	${ }^{5} 10$	${ }^{5} 10$			8007	${ }_{4}{ }_{27}{ }^{2} \cdot 1$
${ }_{4} 15$	420	425	429 4	430 430		4360 440	435 440	4.35 4.52 4			7845 8723 8	
420 425 4	4 4 4 4	4.25 428 4	427 440	432 434 4	4344 440 4	4355 4 4	440 444 4	4.32 440 4	540	558	8723 7700	43359 431.8
		428	140	440	440	441	444	445			7725	$433 \cdot 2$
12735	13100	13311	13644	13730	13917	14042	140 b2	14216	1035	1100	227542	$422 \cdot 6$
415.2	$422 \cdot 2$	426.4	$433 \cdot 5$	435.0	438.6	$441{ }^{\circ} 4$	441.7	444.5	517.5	530	－	$422 \cdot 6$
026.0	030.0	${ }_{0}{ }^{5} 37 \cdot 2$	0443	045.8	049.4	052.2	052.5	055.3	－	－	－	

the North end of the needle towards the West．

METEOROLOGICAL OBSERVATIONS

By Sir John Richardson.

The following meteorological observations were made at Fort Confidence, on Great Bear Lake, in connection with the magnetic experiments. The fort (a mere log-house) stood on the banks of the lake, on limestone strata about ten feet above the level of the water, in lat. $66^{\circ} 54^{\prime} \mathrm{N}$. ; long. $118^{\circ} 48^{\prime} 45^{\prime \prime} \mathrm{W}$. of Greenwich or $8^{\mathrm{h}} 35^{\mathrm{m}} 01^{\circ} 5$ W. of Göttingen. The observatory (a small log building, without a fire-place) was built for the reception of the Declinometer and Unifilar Magnetometer, in front of the house, or between it and the lake. The temperature of this isolated apartment was regularly recorded as often as the Declinometer was observed. On the north end of the store-house (which formed the west side of the square or yard of the house, and was ${ }^{\text {parallel t to the observatory), were hung a }}$ dozen spirit thermometers, constructed by Adie, for the observation of the temperature of the atmosphere in the shade. These were generally compared with each other at each observation, but one was selected for record which stood, in a mean of various trials, at -36° when plunged into freezing mercury. The temperature of a thermometer, having a bulb blackened with China ink and indigo, and enclosed in a glass hottle exposed to the sun's rays, was also noted hourly during the day. Delcros's barometer was suspended in my sleeping apartment, with the cistern about 14. feet above the surface of the lake. This barometer is constructed with a moveable brass scale, which is adjusted to the surface of the mercury in the cistern by an ivory point. The degrees were read off on the millimeter scale, and a correction made by the addition of $0^{\circ} 34$ mill. as the mean error for capillarity and deviation from the standard barometer of Fortin.* The actual indication of the barometer was written down at the time, with the temperature shown by the attached thermometer in contact with the mercurial column; the corrections were made afterwards, and for December, January, and February were reduced to English inches for each hour, and corrected for temperature 32° Fahr. by Schumacher's table appended to the Report of the Committee of the

[^32]Royal Society for 1840 . In that form they are presented in the tables for these three months. For October, November, March and April, the observations are printed on the millimetric scale after the correction for the mean error; and at the bottom of each column the reduction to English inches with the corrections for temperature 32° are added. Care was taken to suspend the barometer in a part of the room out of the direct radiation from the fire, and where it was sheltered as much as possible from currents of air; but it was unavoidably exposed to rapid fluctuations of temperature, since the fire when well built up heated the room rapidly, but when the door of the apartment was left open for the ten minutes which the bringing in of the daily supply of fire-wood occupied, the temperature would fall at once to the amount of 30 or 40 degrees, if at the time the external air happened to be very cold. These rapid transitions were doubtless the occasional cause of more or less error. As the surface of the mercury in the cistern tarnished rapidly, that fluid was thrice cleaned by filtering through paper in the course of the winter, the construction of the instrument permitting this to be readily done without disturbing the mercury in the tube. The wooden cistern, however, was found to shrink considerably in the extremely dry air of the apartment, and it was necessary to wind a little floss silk round it to cause it to fill its place accurately; this may perhaps have produced a little change in its capacity, but as the scale was a sliding one the error of its indications could be very trifling. An aneroid barometer was hung alongside Delcros's instrument, and a record kept of its indications; but as it was one of the earliest of its kind, and in some degree imperfect, it has not been thought neces. sary to print the observations made by it. In December, January and February, the aneroid stood generally between 0.020 and 0.060 inches below the Delcros's barometer when the latter was corrected for temperature 32°, no correction being made for the aneroid, but the differences were not uniform, and sometimes exceeded $0 \cdot 100$ inches. No correction for temperature was furnished to us with the aneroid.

The thermometers employed for ascertaining the temperatures were constructed by Mr. Adie of Edinburgh. On former expeditions I had used thermometers made by London artists of great eminence; but finding that the instruments varied greatly from each other at very low temperatures, I applied to Professor Forbes of Edinburgh, who kindly undertook to superintend the maising of instruments which might be more comparable with each other in great degrees of cold. The following is an extract from a letter written on the subject by him subsequent to my return from America:-
" My idea was in constructing the thermometers (or rather in superintending their construction) to ensure comparability, and definiteness in the principles of graduation, which you are aware does not exist in alcohol thermometers as usually made, both from uncertainty in the density of the spirit used and, especially, because only one fixed point (freezing water) is employed, the other points being taken by comparison with a mercurial thermometer. But as alcohol and mercury do not expand alike, the value of 1° of the alcohol thermometer will depend upon the point of comparison with the mercurial one.
"What I intended, and should recommend in principle, would be to use absolute alcohol (or as nearly so as possible), to fix the freezing point of water and of mercury, to call the latter -40° either on the centigrade or Fahrenheit's scale (which here coincide), and to divide the space uniformly, and also to graduate uniformly above 32°. There can be no possible harm in defining freezing mercury to be at 40° Fahrenheit.
"I intended to verify these fixed points myself, but I was rather seriously unwell that winter, and as your time was limited, I abandoned the freezing of mercury on a large scale, and satisfied myself with general instructions to Mr. Adie, which, I think, the results show to have been well carried out.
"The alcohol was prepared on purpose by Dr. George Wilson, chemist, and his report is enclosed. It shows that the alcohol is very nearly absolute. The tubes had round bores, and were examined in the usual way, by passing columns of mercury along them; a variation of the apparent length of the column of mercury, amounting to $\frac{1}{50}$ inch, and that, in any part of the tube, causing the rejection of the tube.
" The fixed points were 32° in ice, and 62° by comparison with a carefully corrected mercurial standard thermometer. The degrees were run up and down to the same measure.
"As you have accurately ascertained the freezing point of mercury on these thermometers, it would be easy to infer the change which my proposed method of graduation would have produced.
" Yours sincerely,
" (Signed) James D. Forbes."

" ' Extract of a Letter from Dr. Wilson to Professor Forbes.'" " ${ }^{\circ}$ Dear Sir,

" ' I enclose a note* of the specific gravity of the alcohol, with such other particulars as it seemed desirable to put on record for the sake of subsequent comparison, should that be made. The uncoloured alcohol was determined with a 1,000 grain bottle. The residual coloured spirit amounted to little more than 100 grains. Its Sp. Gr. was ascertained with a bottle containing $124 \cdot 18$ grains of distilled water at 60°. The unused coloured alcohol, barely amounting to a quantity equal in volume to 1,000 grains of water, could not be made to fill entirely a 1,000 grain Sp. Gr. bottle when transferred from the vessel containing it; I thought it best, therefore, to determine its density in the bottle made use of for the residual alcohol. The coloured alcohols are thus directly comparable; and as the balance was delicate, and three hours were spent on the two determinations, which were repeated in each case three times, I think the results may be considered tolerably accurate.
" ' It is gratifying to perceive that the difference in density between the coloured alcohols is so small, that when spread over the twentyfour thermometers (which may be supposed to contain an increasing dense spirit, in the order of their formation), it will be inappreciable.

$$
\begin{aligned}
& \text { " ‘ Yours very sincerely, } \\
& \text { "، (Signed) Geo. Wilson." }
\end{aligned}
$$

The mean height of the mercury in Delcros's barometer at temp. 32° Fahr. for seven months, \dagger observed sixteen or seventeen times daily (the hours between 10 р.м. and 6 А.м. being omitted), was $29^{\circ} 046$ inch. The lowest pressure recorded in the seven months occurred at 7 A.m. on the 25 th of October, being $28^{\circ} 265$ inches, and the highest at 8 p.m. in January, being $29^{\circ} 900$ inch, which gives a range of 1.635 inch within little more than half a year. The last page of Table I., however, shows that the mean horary variation is very small, being only 0.006 for the same period. As during the very low winter temperatures of that locality the atmosphere

* Note.-Specific Gravity, at 60° Fahr., of alcohol employed in filling thermometers for Sir J. Richardson.
Uncoloured alcohol, rectified from fused carhonate of potass and unslaked quick lime

794*65
Same alcohol after being coloured with extract of cudbear (prepared by evapo-
rating the tincture made with absolute alcohol), to dryness in a water bath,
and leaving the extract over oil of vitriol in vacuo for two days - $\quad 795.37$
Residue of coloured alcohol after thermometers were filled $\quad-\quad$ - $\quad 795.41$
Feb. 28, $1848 . \quad$ (Signea) Geo. Wirson.
\dagger In the first nine days of October the barometer was rarely examined, and less regularly during the remainder of that month than in the six following ones.
holds very little moisture in solution, the very small diurnal oscillation supports the opinion that it depends on the presence of vapour. The depression is greatest at night, and at noon, and in the afternoon; but the regular recurrence of two daily maxima and minima cannot be made out either in the individual months or in the aggregate of the seven months. The casual fluctuations arising from snow storms and other sudden changes in the constitution of the atmosphere appear to overlie and conceal the diurnal curves.

As there are no corresponding observations on the Arctic Sea for comparison, we can scarcely venture to assign the height of Fort Confidence from these observations. By employing Sir Edward Parry's olvervations at Winter Island, in latitude $66^{\circ} 11^{\prime} \mathrm{N} . .^{*}$ made in 1821-22, we may indeed get, as a very rough approximation, 640 feet for the altitude of Bear Lake above the sea. This is liable to the errors arising from the great distance between the places of observation, also to that from the annual fluctuations of pressure, and to the differences which most probably existed between the barometers, which were not compared with each other, nor with the same standard. From calculating the rate of descent of Bear Lake River, and of the Mackenzie below its influx, when compared with other rivers whose velocity and rate of descent were known, I had assigned 500 feet as the altitude of the lake above the sea; but this estimate is also liable to much error.

All the metcorological instruments were observed at the exact hours mean time at the station, kept by chronometers whose rate and errors were frequently ascertained by astronomical observations of the fixed stars. Göttingen time was used only on the term days, for observations on the magnets.

During the winter dense clouds or cumuli were never seen. The clouds generally were of the nature of thin stratus and cirri, or rarely cirro-cumuli, and the mean extent to which these overspread the blue sky is shown in Table VII. Very often the stratus was so rare that the stars shone through them previous to the rising of the moon, and their actual existence and extent became known only in the bright moonlight. It seems to be a cloud of this kind which forms the dark space near the horizon from behind which the arches of the Aurora Borealis are frequently observed to spring. On several occasions an arch of filmy cloud, of a greyish hue, was olserved in the twilight crossing the magnetic meridian at or near a right angle. On watching this until daylight had wholly departed, it was seen to assume

[^33]gradually the yellow hue and brilliancy of the usual auroral arch. The clouds which accompany the most brilliant displays of the aurora are seldom so dense as to hide the larger stars, except when the moon is shining. Sometimes the stars shone through sheets of auroral light, at other times they were altogether obscured by it. I am inclined to believe that the appearance or non-appearance of the stars during displays of the aurora depends on the density of the accompanying stratus cloud. This cloud may be so rare as merely to communicate a greyish tinge to the apparently clear sky, and yet become sufficiently visible by the refraction of the moon's rays to show its true nature and extent.

Several times during the winter the auroral light was seen, both by myself and Mr. Rae, to pass in front of a mass of cloud. As we were hoth aware of the ease with which the eye may be deceived in such observations, we watched the displays of the phenomenon with sufficient scepticism to keep the attention on the alert, and no doubt remained on our minds of the reality of the fact. In former years I had seen seen similar occurrences more frequently, and even more manifestly.* Thirty years previously I had entertained the belief that the aurora was connected with the formation of cloud, and other changes in the constitution of the atmosphere, and the nightly observations of this winter all tended to strengthen that opinion. The great dryness of the winter atmosphere in the interior of Arctic North America may, perhaps, be the cause of the more frequent emissions of the electric light than in more southern and moister localities. Fine spiculæ of ice or minute snow were often seen falling from a clear sky, especially after a brilliant display of auroral lights. This I had also noticed many years ago.

I have written out in extenso the descriptions of the aurora at the hours of observation for two months. To have done so for the whole seven months would have occupied too much space. A few brief notices are substituted for the months in which the full details have been omitted. The compass bearings hereafter mentioned are true, not magnetic, unless when so expressed.

October (1848).-Aurora ohserved on the 1th, 13th, 17th, 18th, $19 \mathrm{th}, 20 \mathrm{th}, 21 \mathrm{st}, 23 \mathrm{rd}, 24 \mathrm{th}, 25 \mathrm{th}, 26 \mathrm{th}, 27 \mathrm{th}, 28 \mathrm{th}$, and 30th. Did not occur or was not noted on the other evenings. On the 19th, after the sky had been overspread for the first half of the night by a very thin stratus, scarcely obscuring the blue vault, and from which fine icy spicula fell, between three and four in the morning there was a bright blue sky with flocculent clouds,

[^34]which occasionally became luminous, sometimes in one quarter of the: sky, sometimes in another. At $7 \frac{1}{2}$ P.M. in the evening of the 23 rd the Declinometer was observed to move suddenly 10^{\prime}, simultaneously with some quick flashes of auroral light. The aurora disappeared in a few minutes, and the needle remained stationary afterwards. On the 29th the Declinometer fluctuated upwards of 1°, the sky being wholly obscured during the whole day, without any auroral light shining through. A small snow fell in the evening. On the 31st the Declinometer ranged 2°. During the previous night there was a deposit of moisture from the atmosphere, and all the instruments in the observatory were found to be encrusted with fine crystals of ice, particularly the rough lines and lettering of the scales. The auroral arch in the evening crossed the magnetic meridian at right angles, and the light as it flashed over the stars was bright enough to dim their lustre, but not to hide the larger ones.

November 1.-Fine snow falling for seven or eight hours in the day. At 6 P.m. all the northern and part of the western horizon banked by luminous clouds, through which stars of the first magnitude shone. A few. patches of light in the south also. Fine snow falling from a cloudy zenith. At 7 P.M. a curtain-like arch of the aurora, bearing north about 25° degrees high, partially in motion. A faint sheet of light spread over the rest of the sky, here and there obscured by cloud-like dark patches. Stars visible through the aurora in every part, except in the northern arch which hid them. At 8 an arch about $80^{\circ} \mathrm{high}$, on the south side of the zenith. At 9 the arch in same position but fainter.

November 2.-At 6 A.m. an auroral arch, rather faint, crossing the zenith in a due east and west direction. At 9 p.M. an auroral cloud bearing south, emitting the usual yellow light. Elsewhere an uniform haze or cloud overspread the sky. At midnight a remarkably deep blue cloudless sky, with bright stars, an auroral arch rising in the N.N.W. point of the horizon, crossing the zenith, including the whole constellation of the Little Bear, and passing over Orion in the east. The arch, which often changed its form, occupied a considerable breadth of sky, and was generally made up of oval oblique bars. The moon had set before this hour.

November 3.-At 9 p, M. sky cloudless. Bright moonlight. Stars somewhat dim. An auroral arch, composed of parallel beams of light rising in the N.N.W. to the height of the Great Bear only. Auroral clouds at a greater altitude bearing north-east. At 8 P.m. several arches of light rising from one point near the N.N.E. horizon, and crossing the sky at various altitudes, so as to occupy
most of the northern half of the heavens, and part also of the southern half. They became fainter after passing the zenith, and were lost in a diffused sheet of light which spread over the eastern part of the sky. The principal arch, which was brighter and more continuous than the others, passed over the tail of the Great Bear, covered the whole of the Little Bear, and as it descended in the east made a curve to the north. At 9 the aurora faint.

November 4.-At 6 P.M. aurora banging like a curtain in the northern sky, at an altitude of about 15°, and spreading from N.N.W. to N.E. Beams of light shooting upwards from the curtain, the largest ones bearing N.N.E., but some also bearing north. The sky cloudless, and still tinged red in the west, though the sun had been set three hours. At 8 P.m. long variable streams of light rising from the N.N.W. and north to the zenith. At 9 a narrow auroral arch, extending from N.N.W. to S.S.E., its crown having an altitude of about 80°.

November 5.-At 8 p.m. oblique bars of auroral light, lying over each other, and rising from the horizon in the N.W. by N., and then dividing into several arches, one of which, crossing the Great Bear, kept to the north of the zenith. Another crossing Cassiopeia and passing to the south of the zenith, and others, which were brighter, taking a still more southerly course, but disappearing before they reached the south-west horizon. Bright moonlight in a cloudless sky. Stars not shining brightly. At 9 aurora fainter, and the arches lying for the most part to the south of the zenith.

November 6.-At 5 A.M. sky clear, with bright stars, except a dark space skirting the southern horizon, and looking like a heavy cloud, but one bright star shining through it. Along the upper border of this dark space the auroral light had the form of a series of cumulo-stratus, above which there was a light blue sky. At 11 a.m. some light cirri clouds in the north and west resembling some forms of the auroral light.

November 7.-At 1 P.M. a halo round the sun, with red rays reflected from a cloud on each side, forming small segments of an arc.

November 9.-Faint arch of the aurora in the west at 5 A.M.
November 10.-At 7 A.m. the moon, when near the horizon, had a very oval shape, the long axis being transverse. At 6 p.m. the aurora in cirrus-iike streaks, 30° high, bearing south. At $6 \frac{1}{2}$ P.m. a falling star passed from east to west, close by Lyra. A low auroral arch terminating abruptly, as if rolled back on itself on reaching its greatest altitude in the magnetic meridian, but becoming some time afterwards more lengthened out, and at the same time fainter. The
ice in the lake, which was frozen over everywhere within six or seven miles, making a rumbling noise. At 7 p.m. the aurora was in active motion. It generally formed a complete arch, along which waves of light moved rapidly, and most so about 15° above the southern horizon. The beams lay at right angles across the magnetic meridian, but their wave-like line of motion was in that meridian. The compass needles steady; sky cloudless. At $7 \frac{1}{4}$ P.m. a slender auroral arch, waving to and fro, extended from the N.W. to S.E., passing across the zenith. The magnet, suspended in the Unifilar Magnetometer and loaded with the large ring (No. 5.), which was previously steady, began at this time to vibrate from 315 to 380 , and the Declinometer moved from $4^{\circ} 35^{\prime}$ to $4^{\circ} 25^{\prime}$. At 7.50 the aurora wholly gone. The unifilar magnet was now vibrating from 270 to 340 , and the Declinometer had gone back to $4^{\circ} 35^{\prime}$. Sky clear. At 8 no aurora. Sky cloudless. Declinometer $4^{\circ} 30^{\prime}$. At 9 P.m. a faint auroral arch lying to the south of the zenith. The Declinometer vibrating from $4^{\circ} 30^{\prime}$ to $4^{\circ} 35^{\prime}$. At $10^{\mathrm{h}} 45^{\mathrm{m}}$ long banks of auroral light in the south resembling stratus cloud, the uppermost of ihem arched, assuming at times a brighter hue, but always yellowish ; the end of the arch curling back like cirro-stratus, but in a contrary direction to the light wind then blowing.

November 11.-At 5 A.m. a narrow auroral arch in the west, 30° high. At 6 p.m. the moon in the north-east quarter of the heavens grazing the upper edge of a cloud-bank, which produced a burr round her. The bank sunk below the horizon on the north point. Auroral light in detached masses and beams, the latter in form of arcs, which cross the magnetic meridian in various directions. These cloud-like masses resembled thin clouds illuminated by the moon, but were distinguishable by their variableness both in form and in the intensity of their yellowish light. At 7 P.m. the sky generally overspread by a rare stratus clond, most visible in parts directly opposite the moon, permitting the blue sky to be seen through it elsewhere. Auroral light in arcs and streaks. The moon surrounded by an imperfect halo, 22° in semi-diameter, produced by somewhat oblique stratus clouds. The paraselenæ yielded prismatic tints. At $7 \frac{1}{4}$ P.M. the aurora suddenly became active and variable, the great body of light being in the southern half of the sky. Of the prismatic tints exhibited yellow was the predominating colour, but green was occasionally seen, and the lower ends of the fringes when most vivid were crimson. In its motions the auroral light resembled the folds of a curtain made to wave to and fro; that is, the prismatic tints became visible and disappeared again in rapid succession along an are or bar of light, first in one direction, then back in the opposite one.

This kind of motion has been denominated by some writers pulsation. After a continuance of this phenomenon in a variety of forms and places, the southern ends of the arches and of the banks of light lying to the eastward began to twist and curl on themselves, and to sway backwards and forwards before the stratus cloud, which they concealed in their passage. The cloud was strongly illuminated by the moonlight, and would have been seen had the auroral light been beyond it. In the course of the rapid evolutions of the lights, large sheets of it seemed several times to pass before the cloud, entirely concealing it, and consequently appearing to the eye to be much nearer. The needle of the Declinometer was steady at 7 P.M., but when the aurora began in the eastern part of the sky to exhibit prismatic light, it vibrated from $4^{\circ} 32^{\prime}$ to $4^{\circ} 25^{\prime}$, and at $7^{\mathrm{h}} 45^{\mathrm{m}}$ it had settled quietly at $4^{\circ} 49^{\prime}$, the aurora at that hour having become comparatively inert. At this period a streak of auroral light crossed the stratus clouds under the moon, traversing the blue spaces between the clouds, and forming a continuous line in front of them, well defined on their surface. The upper bar of the lunar halo had disappeared by this time; the space within the limb of the halo, which was now three quarters of a circle, being mostly blue sky. The oval paraselenæ still gave out prismatic tints. At 8 P.m. the moon, having risen into a blue space in the heavens, the stratus cloud was less visible. The prismatic paraselenæ now emitted rays of light outwards, and a beam of auroral light stretching towards the north, and, passing near the zenith, cut off a portion of the circumference of the halo. At this time the Declinometer was vibrating slowly from $5^{\mathrm{h}} 10^{\mathrm{m}}$ to $5^{\mathrm{h}} \cdot 15^{\mathrm{m}}$, the numbers increasing slowly. At $8 \frac{1}{2}$ P.M. fine snow or minute spiculæ of ice falling, occasioned a haze sufficiently dense to conceal the blue sky, but not to prevent the stars of the first magnitude from appearing. The lunar halo was this time complete, the paraselene distinct, and an are showing above the halo at the distance of a quarter of its diameter. Aurora in arcs faintly seen through the mist. At 10 p.m. hazy, circle of the lunar halo very distinct, but the paraselenæ scarcely to be made out. Stars invisible, and uo auroral lights.

November 12.-Hazy. At 4 P.m. the Declinometer vibrating from $4^{\circ} 15^{\prime}$ to $4^{\circ} 20^{\prime}$.

November 13.-Hazy.
November 14.-At A.m. auroral clouds, emitting yellow light near the zenith. At 5 P.m. clear blue sky; a complete auroral arch from N.W. by N. to S.E. by S., crossing the magnetic meridian in the zenith at right angles; the arch composed of oblique yellowish beams, often moving and changing. At 6 P.m. the auroral arch
occupying the same general position, but waving backwards and forwards; a few scattered masses of light in other parts of the sky. Needle steady. At 7 clear blue sky. No auroral light. At 8 a north-east wind setting in, the mercury in the barometer fell suddenly to a small extent. At 9 small, round, fleecy clouds, not dense, covering most of the sky, with blue intervals. No aurora.

November 15.-At 5 a.m. light N.E. winds, clouds coming from the N.W. At 1.40 p.m. the sun set in a halo. At 5 p.m. a broad auroral arch rising at its summit, about 18° or 20° above the southern horizon, vivid on its lower border, with quick motion backwards and forwards along the line of the arch. The upper border not defined, but fading gradually away. At 6 p.m. auroral arch in the same position, but not' so bright. At 7 P.M. an auroral arch springing from the S.S.E. horizon and crossing to the N.N.W., occupying in the middle a space extending from near the zenith to within 16° of the S.S.W. horizon, but tapering towards the ends.' The arch was composed of brighter streams of light, lying in the direction of its length and connected by fainter diffused lights. No auroral light was emitted from any part of the sky north of the zenith. At 8 p.m. only a few patches of auroral light remained; no clouds were visible, but the skiy, generally, was greyish-blue. At 9 p.m. masses of auroral light shone dimly through the haze in the southern quarter of the sky. A very fine and slight deposition of snow, more readily felt than seen, was taking place at this hour.

November 16. - Air to-day inclined to part with moisture, evinced by the parchment windows becoming slack.

November 17.-This day the magnetic needles moved much. At 11 A.m. the magnet, suspended in the Unifilar Magnetometer, was vibrating between 520 and 540 , and, subsequently, beyond the scale; and at noon the Declinometer moved suddenly from 1°. 21^{\prime} to $0^{\circ} .29^{\prime}$. At 6. P.m. clear blue sky, with some stratus cloud near the horizon, above which there was a bank of luminous clouds, having a slightly reddish tint, resembling clouds tinged with the rays of the setting sun. Shortly afterwards the red tints became more vivid, and the quick east-and-west to-and-fro movement of vertical bars was exhibited. At 7 auroral light spreading from south to west. A falling star shot from east to west past Altair, having an apparent angle of descent of 40°. At 8 the Declinometer needle was $5^{\circ} 5^{\prime}$, but ten minutes afterwards returned to $4^{\circ} 45^{\prime}$, the auroral light having then disappeared. At 9 p.m. a dark cloud, concealing the stars in the southern quarter of the sky, to the height of 8°. Along the arched edge of this bank a yellowish light was emitted. Unifilar magnet moved back to 95 . At 10 P.m. the auroral light diverged
from a point in the sky, adjoining Cassiopeia, to all parts of the horizon. The beams of light varied and moved rapidly: Soon afterwards the light had disappeared from the southern sky, and the auroral light was mostly in the north-west quarter. At the hour the Declinometer stood at $]^{\circ} 50^{\prime}$, but moved quickly to 5°, and at $10^{\mathrm{h}} 15^{\mathrm{m}}$ the northern rays of the aurora had vanished, and then the needle had moved to $6^{\circ} \mathbf{2 8}^{\prime}$.

November 18.-At 5 A.m. an auroral streak crossing the zenith from east to west.

November 19.-Snow. Sun very dimly seen at 1 .
November 20.-At 6 p.m. an arch of the aurora, much like the via lactea, crossing the zenith from N.E. to S.W. At 7 auroral arches, having the above direction. At 8, and subsequently, no aurora.

November 21.-A burr round the crescent moon at 5 and 6 A.M. At the latter hour faint auroral light in the zenith. At 6 p.m. a bank, of clouds along the southern horizon, emitting a white light. At 8 a broad low bank of yellowish light extending along the southern sky, and indented by dark clouds. Higher up several auroral arches crossed the blue sky, barred at their origin in the south-west by stratus clouds, and seated therefore beyond them. "These arches did not go much beyond the zenith, but curved there in variaus directions. Stars pretty bright. The Declinometer moved 30^{\prime} after the aurora shone out.

November 24.-At 6 and 7 P.M. faint auroral light near the zenith. At 11 auroral clouds. At midnight a patch of an arc to S.E. by E., and another bearing S. by W., about 8° high.

November 25.-At 2 A.M. patches of auroral light in many parts of the sky. At 4 many auroral arcs. At 5 and 6 A.m. patches and beams of auroral light. At 4, 6, 7, and 8 P.m. auroral light in various forms, banks, beams, and arcs, mostly of a yellowish hue. At 9 P.m. a more than usually fine auroral display. A great curtain extended from the east to the north-west quarters of the sky, at an altitude of about 60°, appearing as if suspended from a deep blue starry sky. This luminous curtain waved up and down, narrowed and expanded, and rolled back on itself at the ends. In the south part of the sky there were clouds, from behind which flashes, of light were occasionally seen to shoot.

November 26.-At 9 am. a mackerel sky, that.is, short cirro-stratus lying across a line running north and south, and a long tract of cloud stretcling from the N.W. in a S.E. direction, commencing about 12° from the horizon, and rising to about 70°; very thin and delicate, so as to be almost transparent, but appearing to the eye to
lie under the mackerel sky which it crossed. Part of this cloud had a wavy and flickering motion like the ordinary auroral light, and in a few minutes it faded entirely away like the aurora. It reappeared again more to the south somewhat altered in form, and in a minute or two vanished again. The motions of this stratus identify it with the auroral light, but had it been stationary it could not have been distinguished from a filmy cloud. I have no doubt but this variable cloud would have been luminous in the absence of daylight. At 4 P.M. an auroral are, having a direction from N.W. to S.E., composed of detached and somewhat oblique and twisted bars. This are occupied the site of the aurora-like cloud seen in the morning. Elsewhere a clear blue starry sky. At 5 p.m. much of the sky occupied by patches and banks of light. Several nearly contiguous arches crossed the zenith in a N.W. and S.E. direction, their ends uniting into single twisted stems as they approached the horizon. At 6 p.m. the whole sky nearly covered with auroral lights in different shapes. At 7 P.m. an arch crossing the zenith in the ordinary N.W. and S.E. directions. Patches of light elsewhere; all more or less changeable. At 9 p.m. several concentric arches, covering all the southern half of the sky from the zenith downwards. Brilliant fringes of light rising obliquely from the upper borders of the arches in continual motion ; the lower edges of the arches were of more continuous light. At 10 p.m. a continuous sheet of light spread over all the southern half of the sky, but was traversed by brighter arches; a space near the horizon was the only dark part.

November 27.-At 6 A.m. auroral light in various quarters of the sky. At 7 A.M. banks of auroral light bearing south. Dawn just appearing in the east.
November 28.-At 4 P.M. an auroral arch crossed the zenith. Sky greyish; a few stars visille. At 9 a sheet of light shining faintly through clouds in the southern quarter of the sky.

November 29.-At 4 a.m. faint sheets of light in the S.W. At 5 and 6 A.m. auroral light as before, and at 7 auroral streaks still visible though the day was breaking. At 10 A.M. the suspended magnet moved in the course of two or three minutes from 330 to 350 , with quick minor vibrations. At noon the magnet was vibrating in arcs of 12^{\prime}, and at 4 P.M. in arcs of 10^{\prime}. At 5 P.m. beams of aurora rising in the north and tending to the east, the greatest altitude 15°. At 6 P.m. a bright curtain-formed arch rising to 50° in the north, extending from N.W. to N.E. with obligne fringes of light rising from its upper edge, and inclining to the eastward. At 7 p.m. two arches rising in the N.W., and crossing the magnetic
meridian; their ends on attaining the zenith curling back. At 8 P.M. an auroral arch; and at 9 P.m. an are, not very bright, rising in the N.W., and holding a flexuouse course to Cassiopeia, where it terminated. Several rays diverging from its end there towards the south, north, east, and west.

November 30.-At 5 A.m. faint auroral beams. At 8 dawn. Suspended magnet vibrated all day in arcs varying from 5^{\prime} to 15^{\prime} in extent; and had a progressive but not uniform motion from 309^{\prime} to 254^{\prime}. At 5 P.M. a broad auroral arch crossing the sky in a N.E. and S.E. direction, passing over the zenith. At 6 P.m. auroral light in patches. At 7 P.m. the arch interrupted in places, having a direction from N.W. to S.E., and touching both. horizons. It was composed of detached bars and masses of light, not uniform in direction, but mostly crossing the general line of the arch obliquely. Clear bluc starry sky. At 9 P.m. a faint arch having a direction from N.W. to S., and reaching both horizons; its greatest altitude about 70°. A dark cloud ranging along the southern horizon, and emitting pale light from its upper edge.

On the 7 th the Declinometer fluctuated 1°, and the aurora was active in the evening. On the 8 th the fluctuation was even greater. On the 17 th the Declinometer ranged from $1^{\circ} 20^{\prime}$ to 6°, its motions being unusually great. On the succeeding day it fluctuated about 3°.

December 1.-At 7 A.M. no aurora. At 9 A.m. was able to write comfortably by daylight near the window. Sun hidden at noon by Fishery Island, but visible from a gentle eminence behind the house. Aurora invisible till 8 p.m., when an arch of yellowish lights about 16° high stretched from N.W. to N.E. The arch on a north bearing was a broad shect of light, but near the N.W. horizon it was a twisted stem. Several broad pale sheets of white light, like the Milky Way, in the northern and eastern quarters of the heavens. At 9 pom. the sky clear and starry, several arches of light springing from the N.W. horizon, and passing through the northern half of the heavens to the E.S.E. or S.E. by E. point of the horizon. The uppermost crossed the constellation of the Great Bear, passed a little south of Cassiopeia, and faded away in the S.S.E. near the horizon. Elsewhere some streams and banks of yellowish light existed. These arches vanished, and re-appeared at short intervals, and also moved from their sites, but had little internal motion.

December 2.-At 4 A.m. faint auroral light in the north and west. At 5 an auroral arch bearing south, at an altitude of 14° and extending for 160°. At 7 a.m. considerable deposition of rime on the
thermometer scales. Arch of light bearing north, 16° high; also beams of light near the zenith. Dawn of day at 7 , being an hour earlier than on the 30th November. Open water in the lake producing mist. At 6 p.m. auroral light near the northern horizon. At 8 and 9 P.M. faint auroral light, ditto.

December 3.-Mercury froze solidly this day. At 5 P.m. rays of auroral light in the north 10° high. At 7 P.M. an arc of the aurore in the east, and also one in the north-west, the middle part of the arch being deficient. Deep blue sky at 8 , little activity in the auroral lights.

December 4.-At $4 \frac{1}{2}$ A.M. bright auroral arch, with patches of light in the W. At 6 A.m. patches of yellow light near the zenith, and also in the N.W. At 7 fragments of an arch shooting up from the N.W. horizon to near the zenith, and having a direction at right. angles to the magnetic meridian. [At $6 \frac{1}{4}$ P.M. Dr. Rae, being then in latitude $67^{\circ} 12^{\prime}$ N., longitude $118^{\circ} 16^{\prime} 24^{\prime \prime}$ W., saw a falling star descending vertically on a nearly due north bearing, and passing a few degrees to the eastward of the pointers of the Great Bear.]

December 5.-[At 6 $\frac{1}{4}$ A.M., in latitude $67^{\circ} 7 \frac{1^{\prime}}{}$ N., longitude $117^{\circ} 58^{\prime}$, a falling star was observed by Mr. Rae, about 10° from the horizon, a little to the westward of north, travelling horizontally towards the east.] At $5^{\mathrm{h}} 40^{\mathrm{m}}$ A.M. an auroral arc, directed towards. the east, rose from the west as high as the zenith. At 6 A.m. a bright beam of yellowish light rose from the N.E. horizon, to the height of 20°. At 7 first appearance of dawn. Mercury crystallizing in the open air in the middle of the day. At 5 p.m. faint beams of ${ }^{2}$ light rising from the N.W. to the height of 18°, vanishing and reappearing rapidly. At 6 p.m. a curve of auroral light, rising abruptly and interruptedly by steps in the N.W., continued to the S.E. in a parabolic curve, but formed throughout of slender vertical rays in motion. At 7 P.m. a faint belt of light crossed the zenith at right angles to the magnetic meridian. At 8 p.m. an arch crossed the zenith from N.W. to S.E., being nearly at right angles to the magnetic meridian. A few minutes before 9 p.m. a rather brilliant aurora. The light rose in the N.E. in successive steps, like the folds of a curtain hanging obliquely, and then dividing into three streams, held on across the zenith, and making a bold convex bend to the S., the ends curved to the N.N.W., but did not approach within 30° of the zenith. The light had a yellowish colour, and a quick lateral pulsation of the fine vertical rays of which the streams were composed.

December 6.-At 6 A.m. a broad beam of light rising from the N.W. horizon to 30°, and in the S. a dull bank of light occupying the space between the horizon and 6° altitude. At 9 A.m. was
able to write near the window by daylight, and at $2^{\text {h }} 12^{\mathrm{m}}$ 'P.m. was unable to do so distinctly,-the window looking S.S.E.

December 7.-Great refraction this morning. At 7 p.m. a slight burr round the moon. Faint streaks and bands of auroral light near the zenith, the masses mostly lying across the magnetic meridian. At 8 p.m. no aurora. At 9 bright moonlight. Blue sky, with stratus cloud near the southern horizon only, an auroral arch springing from the N.W. and crossing the magnetic meridian at right angles. It frequently changed place, being sometimes in the zenith and at other times more to the southward.

December 8.-Considerable refraction; distant land much raised. At 5 P.M. a stream of auroral light rising from the N.W., crossing the zenith at right angles to the magnetic meridian, but not going onwards to the S.E. Soon afterwards this stream moved to the southward and vanished. . It had an internal waving motion. At 6 P.M. a broad arch of yellowish light, extending from N.W. by W. to S. by E., and having an altitude of 20° at its crown, rose from the N.W. horizon, and without anywhere exceeding an altitude of 20°, bent round to the S . in a flexuose band, with ohtuse projections to the E.S.E. It exhibited rapid changes of form, during which the suspended magnet vibrated 30^{\prime}, and the Declinometer was also in motion. At 8 p.m. a broad sheet of light, including two brighter arcs, now occupied the place of the above-mentioned band, but did not extend farther to the eastward than a south bearing. At 9 only a small part of an auroral arch remained, including merely one point of the compass, and bearing S.W. and S.W. by W.

December 9.-At 7 this morning, on approaching my hand to the iron latch of my bedroom door, a spark was emitted. I was then dressen merely in my night dress, with flannel drawers. At 9.10 A.m. able to read minion type of a bible by daylight. At 4 p.m. a series of bars of light, rising obliquely in the S.E. by E., and a similar steplike succession of bars in the N.W.; there was no continuous arch across the zenith connecting these two groups of bars, but in place of it a very narrow streak of light curved boldly and convexly to the north in the zenith, and a mass of yellowish light lay more to the south. At 5, 6, 7, 8, and 9 P.m. no auroral light. Moon very clear and bright.

December 10.-At 6 A.m. bright moonlight; no aurora. At 7 A.M. some thin sheets of light distributed irregularly, several of them in the S., S.E., and S.W., having a convergence towards the zenith. At this instant the suspended magnet was observed to be moving from 390^{\prime} to 405^{\prime}, and, after vibrating somewhat
irregularly in a mean arc of 10°, to settle for a time at 420°. The Declinometer was then $3^{\circ} 17^{\prime}$. After recording this observation in the bedroom, and returning to the open air, the aurora had ceased to be visible, and the suspended magnet was found at 370^{\prime}. A burr at this time round the moon. At 8 A.m. faint streals of light near the zenith, stretching to S.S.W., or nearly in the magnetic meridian; these streaks vanished and reappeared with rapidity. Burr round the moon. At 9 and 10 mist near the horizon. At 11 and noon the sun below horizon, but beams of light shooting up from it into the sky. Full moon at $3^{1 \mathrm{~h}} 48^{\mathrm{m}}$ this morning, Fort Confidence time. At 6 P.M. an auroral arch from N.W. by W. stretching across the zenith, and disappearing on a S.E. bearing. A burr round the moon, but the sky elsewhere cloudless bluc. 7, 8, and 9 p.m. no aurora.

December 11.-At 5 and 6 A.m. no aurora. At 7 a faint burr round the moon; and at 8 and 9 paraselenc. At 10 great refraction. At 11 redness in the sky above the sun's place, bright and circumscribed, the sun itself hid by Fishery Island. At noon a parahelion seen to the east, where the island is lower ; the sun itself invisible. At 1 the same appearance, but less distinct. (At 6.15 r.m., in latitude $67^{\circ} 6^{\prime}$, longitude $118^{\circ} 22^{\prime}$, Mr. Rae saw a bright falling star in the west, making in its descent an angle of 45° with the horizon. It vanished when about 14° high. At $6^{11} 40^{\text {n }}$ he observed another star falling from near the zenith towards the west, and passing to the south of Lyra. At $7^{\mathrm{h}} 10^{\text {mi }}$ he saw a falling star in the same quarter of the sky as the one he noticed at $6^{\mathrm{h}} 15^{\mathrm{m}}$, and taking the same direction.) At 8 and 9 r.m., at Fort Confidence, an arch of clouds in the S.W., brightly illuminated by the moon, and not to be distinguished from some exhibitions of aurora in the absence of that luminary.

December 12.-[At $2^{\mathrm{h}} 32^{\mathrm{m}}$ A.M., in latitude $67^{\circ} 6 \frac{1^{\prime}}{}{ }^{\prime}$ N., longitude $118^{\circ} 22^{\prime}$ W., Mr. Rae saw a falling star descending almost vertically, or slightly inclined northwards.] At 6 A.m., at Fort Con.fidence, the sky almost wholly overspread by a filmy stratus, which was rendered visible by the bright moonlight. Stars of the first magnitude visible through it. At 7 A.m. a general mistiness, with a deposit of fine snow. A dim lunar halo, with a semidiameter of 22°. Snow occasionally in the day. At 4 p.m. a broad yellowish auroral arch rising from the S.E. horizon, and passing south of the zenith in a S.W. direction, but terminating in a luminous cloud, at an altitude of 60°. At 5 p.m. two parallel arches of light rising in the S.E. and proceeding to the N.W., occupying a middle height between the southern horizon and the zenith. Considerable motion, resembling that which would be caused by a
dark bar carried with extreme rapidity towards the west in front of the light. At 6 p.m. the arches of the aurora rather lower and not in motion. Their crowns are in the magnetic meridian. At 7. p.m. an arch of the aurora bearing south, and reaching from the S.E. to N.W. its crown about 20° high. It was rather broad, yellowish, and nearly motionless. At 8 p.m. two broad and fainter arches, partly blended into each other in the south, about 12° high; also some masses of light near the zenith. At 9 p.m. the southern arch now reached from N.W. only to about S., where it terminated at the height of 25°. There was no auroral light in the S.E.; but five or six arches passed from N.E. to N.W., the uppermost of them crossing the zenith, and the lowest one running near the horizon.

December 13.-At 7 A.m, early dawn. No aurora until 9 p.m., when a broad arch of yellowish light in oblique bars extended between the N.W. and S.E. horizons, passing about 30° to the north of the zenith.

Decmber 14.-No aurora in the morning. Some fine snow deposited about noon. At 6 p.m. sky greyish, but no visible clouds; a few stars shining out. A faint but broad arch extending from N.W. to S.E., appearing and disappearing in 'rapid succession. At 3 P.M. a belt of pale light about 10° broad, extending from N.W. to S.E. horizons, and crossing the zenith. Sky clearer and bluer, with more stars, but a fine snow continuing to fall;-the stars shining through the auroral light. At 9 minute snow. Sky not quite so clear. Arches of light bearing south, and some masses scattered over the sky.

December 15.-About a quarter of an inch of fine snow fell in the night. At 7,8 , and 9 A.m. lunar halos. At 10 A.m. there was a light air from the W.S.W. at the height of twenty feet, and one from the N.N.E. nearer the ground, as shown by a zig-zag column of smoke from our chimney. At 6 P.m. O Scxtantis occulted by the moon. No aurora this evening. Deep blue sky, with many stars. Fine spiculæ of snow falling thickly.

December 16th.-At 5 r.m. a sheet of pale light like the Milky Way, overspreading the southern half of the sky, with dark, narrow, oblique bars crossing it. The rapid shifting of these dark bars across the light showed it to be the aurora, otherwise it might have been thought to be twilight lingering in the sky. At 6 P.m. faint streaks of aurora rising from the N.W. horizon to past the zenith in a S.E. direction, but ending short of the Pleiades. In a few minutes this stream changed into several fainter rivulets, having the same direction, and occupying greater breadth in all. Sky dark blue, and starry. At 10 p.m. a broad luminous arch in the south.

December 17.-At 1 p.m. temperature of the atmosphere, -61°. Long prismatic crystals were formed in nitric acid, having the strength recommended in the London pharmacopeia, and at 3 P.m., when the temperature had fallen to $-63^{\circ} 8^{\circ}$ Fahrenheit, almost the whole of the acid in the vial (2 oz .) was frozen. Sulphuric acid had frozen solidly long before. Mercury at this time could be cut with a knife more easily and more smoothly than lead. At 7 p.m. two bright auroral arches to the southward, having a curtain-form, and a rapid to-andfro bar-like movement; the highest was 20° from horizon. At 8 only a few patches of dull light in the south. At 9 two bright arches in the south; very changeable. They reached from W. to S.S.E., but did not in general rise above 20°. Sometimes they appeared as if twisted and bent or broken, occasionally sending shoots down towards the horizon, and exhibiting in their upper borders the quick bar-like motion, with fringes shooting upwards ometimes to the extent of 15° or 20°, or nearly half-way to the zenith. The Declinometer varied 35^{\prime} between 8 and 9 . The temperature of the atmosphere was now -61° Fahrenheit; the nitric and sulphuric acids, and of course mercury, remained solidly frozen. Muriatic or hydrochloric acid was perfectly fluid.

December 18.-At 5 A.m. beams of aurora in the west. The temperature of the air at 9 A.m. was $-63^{\circ} 9^{\circ}$, being the lowest observed in the winter.* Sulphuric acid had an opake white colour. At 6 p.M. a slender auroral arch from N.W. to S.E. passed across the zenith. At 7 and 8 no aurora. At 9 faint beams of light shooting towards the west from near Cassiopeia. The mean temperature for forty-eight hours was $-61^{\circ} \mathrm{Fah}$., or 93° below the freezing point of water. We had travelling parties out at this time.

December 19.-At 7 A.m. two beams of light rising in the west, one of them taking a course to the S.E., the other diverging from it to the E., or E. by N. They did not reach the meridian, but approached it. At noon the suspended magnet was vibrating irregularly. At 7 P.M. two broad arches crossed the zenith from N.W. to S.E. Sky generally bluish-grey. Abundance of stars overhead; none within 20° of horizon. No other sign of clouds. At 8 P.m. five broad streams of light rising in the E.S.E., and diverging in their ascent so as to spread over most of the sky. The light more dilute towards the edges of the streams, which in some points touched each other. The central streams crossed the zenith. The arches were rapid in their changes of form and extent.

[^35]December 20.-At 10 A.m. could not write by daylight at this hour. Sulphuric acid freezing partially at a temperature of -8° Fahrenheit. Nitric acid limpid. At 6 P.m. faint auroral light in the north. At 7 no aurora. At 8 p.m. faint arches rising N. by W., and extending towards the south. At 9 two faint arches of light in the south, having an altitude of 14°, and 6° at their crowns. At 10 the arches had an altitude of from 40° to 45°. At midnight patches of auroral light scattered over the sky.

December 21.—At 1 A.M. stars shining very brightly. A brilliant aurora in rapid motion, and momentarily changing its form. Its lower edge had a fine lake colour, and it was brightest on the S.W. and the W. bearings. At 2 A.m. a very bright display of auroral light. Declinometer and Dipping Needle vibrating much. At 4 A.M. faint beams of aurora in the north. At 6 A.m. curtain-shaped aurora extending north and south, with active motion. At 7 A.m. no aurora. Light variable winds. Temperature, $47^{\circ} 3^{\circ}$. At 7 P.m. a faint auroral arch rising from the N.W. to past the zenith. At 8 p.M. an auroral arch rising from the S.E. for 35°; some short beams in the N.W. At 9 p.m. a beam of light in the north.

December 22.-No aurora observed in the morning. At 5 P.m. beams of light on a S.E. bearing, and some also bearing N.W. At 6 p.M. beams in the same quarters more faint. At 7 p.m. faint auroral light bearing north. At 8 an arch of faint light crossing the zenith from the N.N.W. to the S.S.E. At 9 p.M. an arch 10° high in the S.W. extending from S.S.E. to N.N.W.

December 23.-At 5 A.M. a broad arch of light standing from W.N.W. to E.N.E. and crossing the zenith. At 6 A.M. faint rays of light in the N.W. and also to the east. At 7 A.M. an arch of light 6° high bearing S.S.W. Was able to write by daylight, when close to the window, this day for $4 \frac{1}{2}$ hours, viz., from 10 A.m. to $2 \frac{1}{2}$ P.M. At 5 P.M. auroral light rising vertically from the north horizon. At 6 p.m. a broad, irregular, and broken arch of light having a direction from N.N.W. to S.S.E., and passing south of the zenith. Its greatest altitude, 45°. At 7 P.m. a mass of light in the S.S.E. about 6° high. At 8 P.m. beams of the aurora in the south and S.W. At 9 P.M. auroral light bearing S.S.W.

December 24.-At 6 A.m. rays of light rising vertically from the eastern horizon. At 7 a.m. a faint auroral arch, its crown bearing north, and having an altitude of 12°. Another arch bearing S.W. with an altitude of 7°. At 10 A.M. stratus cloud along the E.S.E. ; horizon beautifully tinged red by the sun's light. Intervals of
mountain green sky in that quarter. Rest of the heavens greyish blue. At noon the sky very bright on the southern meridian for some distance above the horizon. The southern sky retained the red tints of a rising and setting sun from 10 A.m. till 2 P.m. At 6 p.m. an arch of light formed of oblique rays crossed the zenith and reached the N.W. and S.E. horizons. At 7 p.m. a similar arch in the same portion, with its tranverse bars in motion. Masses of light near the horizon all round the sky. At 8 p.m. curtain-shaped, interupted ares of light directed across the magnetic meridian at right angles.' One of them lay a little to the south of the zenith; the others were situated a little more to the northward. The arches were separated from each other, and also interrupted in the direction of their lengths, by vertical dark spaces, which were continually changing their places and dimensions, but did not exhibit the rapid to-and-fro bar-like motion so conspicuous on cther occasions. Stars moderately bright. New moon. At 9 P.m. there existed five handsome curtain-formed arches more or less twisted and uneven. One crossed the zenith; the rest were more to the southward. They occupied the whole southern half of the sky, and were directed at right angles across the magnetic meridian. The brightness of the arches varied continually, and they were occasionally connected by beams of light shooting between the contiguous arches.

December 25. - At 5 A.m. snow drift. Masses and beams of light bore E. and N.W. At 6 A.m. an auroral arch whose crown, 6° high, bore S.W. At 7 beams of aurora in the N.E. having a direction to the S.W. At 8 A.m. dawn. At 5 P.m. a bank of auroral light extending near the horizon from the N.W. by N. point of the compass round to N . and onwards to E. by N. Numerous beams shot up from it to the height of from 8° to 12° or 14°. At 6 p.m. rounded and oblong patches of auroral light near the zenith, and also in other quarters of the sky, particularly in the north. A bank of light lying along the southern horizon. At 7 P.m. faint patches of auroral light. At 8 P.m. a horizontal band of light at the height of 30° in the north. A stream of brighter light rising in the north joined the west end of the band. Faint patches of light existed elsewhere. At 9 a.m. irregular masses of aurora-like columns of mist resembling smoke in various parts of the sky ; the most conspicuons are rising from the N.W. by N. points of the horizon.

December 26.-At 4 A.m. a fine auroral arch having an extent of 80° and rising in the south to an altitude of 20°; also masses of light in the east and vertical beams in the N.N.W. At 5 a.m. faint rays having a N.N.W. and S.S.E. direction. Their changes of position were rapid. At 7 A.M. aurora in masses and beams in the S.W.
quarter of the sky. Faint appearance of dawn in the east. At 7 P.M. two faint arches crossing the zenith and having a direction of from S.E. to N.W.

December 27.-At 2! A.M. a patch of light in the N.W. at an altitude of 45°. At 7 a narrow arch crossing the zenith from the eastern to the western horizon. At 4 P.m. temperature of the air, $-43^{\circ} 9^{\circ}$ Fahrenheit. Nitric acid crystallized in beautiful clear crystals. At 6 P.m. a broad, yellowish, quiescent arch, extending from the N. by W. horizon to the N.E. one. Its summit not rising more than 9°. Many rounded cloud-like patches of polar light between Cassiopeia and the Great Bear. At 7 P.m. the arch near the northern horizon continued, and there was an inverted cone of light, having its base elevated 12°, and its apex touching the N.W. horizon. Also some patches of light near the zenith. At 8 A.M. the arch in the north less complete and less bright. Large masses of ycllowish light lying a little to the west of the zenith. Some beams rising from the S.E. horizon and a solitary one from the N.W. At 9 p.m. two bright arches springing from the N.W. by N. point of the horizon, and spreading wider as they rose towards the zenith, where they covered 40°; thence narrowing as they advanced to the S.E.

December 28.-At 5 P.m. masses of pale light in the north forming a low, broken arch. A few patches to the north of the zenith. At 7 a dull yellowish arch from the N.W. to S.E. passing to the north of the zenith. No clouds visible, but only stars of the first magnitude shining out. At 8 p.m. the same arch, more interrupted and also connected with large cloud-like patches of light. Sky dullish, not cloudy. At 9 no aurora.

December 29.-At 4 A.m. an arch of light standing across the zenith, with patches in the S.W. and N. by W. At 5 A.m. faint patches in the east and north and near the zenith. At 6 A.m. no aurora. At 4 P.m. sky tinged yellowish in the western horizon by the sun's rays, though that luminary was considerably under the horizon. At 7 P.m. an arch of light from N.W. to S.E. passing a little to the north of the zenith. It was barred across near the zenith by layers of stratus cloud. At 8 p.m: the extremitics of the arch had the same bearings, but its crown had passed to some distance south of the zenith, against the wind. At 9 P.M. five arches covering the sky from 30° north of the zenith to about 50° south of it or a zone of 80°. The ends of the arches converged in the N.W. and S.E. points of the horizon. Some internal motion existed in the arches.

December 30.-At 5 A.m. auroral rays rising vertically from the N.N.W. horizon. At 6 A.M. an arch of light crossing the zenith
from east to west. At 7 A.M. an arch from W.N.W. to S.S.E., rising about 20° above the southern horizon. A cloud-like patch of light in the N.W. by W. near the horizon, and a slender curved stream passing from the same point towards the arch. A pale sheet of light diffused over the northern half of the sky, and widely spread in the east also. At 9 temperature of air $-39^{\circ} 6^{\circ}$. Mercury wholly fluid. Nitric acid solidly crystallized. Sulphuric acid solid, and semitranslucent. Hydrochloric acid fluid. At $10^{\mathrm{h}} 40^{\mathrm{m}}$ temperature of the air $-40^{\circ} 5^{\circ}$ Fahrenheit.* About the fifth part of the mercury exposed in a shallow basin frozen; the solid part lying at the bottom, and having serrated edges as usual. At 11 A.m. rays of light shooting up from the sun's place. The men who went for meat two days ago, in passing over a hill saw the sun a good way above the horizon. At 2 p.m. a bright vertical beam of light rose from the sun's place. The quantity of frozen mercury has rather increased, the temperature of the air having been for two hours $-39^{\circ} 5^{\circ}$ Fahrenheit. At 4 r.m. red sky in the S.W. At 5 P.m. broad vertical beams of auroral light in the north, extending from N. by W. to N. by E., separated from each other by considerable intervals of blue sky, but arranged so as to form a low interrupted arch, whose summit was 18° high. The westernmost beams were midway between the horizon and Great Bear. At 6 p.m. the interrupted arch in the northern sky had risen to the elevation of 35°. It was broadest and brightest in the N.E. At 7 p.M. two bright, contiguous arches, emitting yellowish light, spanned the sky from N.W. to S.E., the uppermost of the two crossing the zenith. Their breadth varied greatly, and their limbs in appioaching the horizon were much curved and twisted. At 8 P.m. a bright arch crossed from N.W. to S.E. passing above 20° south of the zenith. It was composed of oblique beams of yellowish light, and was twisted near the horizon. Two pale arches, of the intensity of the Milky Way, and covering about 30° in breadth, existed to the north of the zenith. At 9 P.m. two arches springing from the N.W. by N. part of the horizon, became fainter as they rose to near the zenith, where one disappeared; the other, passing a little north of the zenith, was prclonged to the S.E.

December 31.-At 5 A.M. rays of light bearing S. and S.W., in rapid motion. At 6 A.m. patches of light and rays in the S ., S.W., and W. near the horizon. At 8 P.M. vertical beams of light in the N., and N.W. by N., and a horizontal bank bearing north. At 9 P.M. an obscure but broad arch of the aurora bearing south,

[^36]with large inactive masses of light a little way above it. Stratus cloud running all round the horizon.

On the 1st of December the Declinometer fluctuated 1°. On the 20th the fluctuation amounted to $1 \frac{1}{2}^{\circ}$, the sky being cloudless, but a deposition of crystals of ice on glass and rough metallic surfaces going on. On the 10th the fluctuations of the needle exceeded a degree. On the 18 th it was as great. On the 26 th it was $1 \frac{1}{2}^{\circ}$. On other days it was generally below a degree, as may be observed by a reference to the table of variations of the Declinometer, the most remarkable movements only being pointed out in this summary.

On the 4th January 1849 the Declinometer fluctuated 1°. No aurora was visible, a thin haze overspreading the sky in the evening. During the low temperatures of the 6 th and 7 th there was little fluctuation of the needle. On the 11th the movement of the card exceeded a degree, and in the evening sheets of auroral light, with considerable changes and flashes, overspread the sky. On the 16 th the needle moved 2°. Only faint appearances of aurora were observed, and the sky was perfectly cloudless all day and in the evening. On the 25 th the movements of the needle again exceeded a degree; the sky was completely obscured. A fine snow fell in the evening, and no aurora was visible. This was one of a number of instances in which the needle was observed to be affected considerably when the sky was inclined to deposit a minute crystalline snow.

The aurora was comparatively seldom seen in this month. It was noticed at the hours of observation, only on the 10th, 11th, 14th, 15 th, 16 th, 17 th, 19 th, 20 th, 22 nd, 23 rd, 24 th, 27 th, 28 th, and 30 th.

February, 1829.-The aurora was visible at one or more hours on the 1st, $2 \mathrm{nd}, 10 \mathrm{th}, 11 \mathrm{th}, 12 \mathrm{th}, 13 \mathrm{th}, 16 \mathrm{th}, 17 \mathrm{th}, 19 \mathrm{th}, 20 \mathrm{th}, 21 \mathrm{st}$, $23 \mathrm{rd}, 24 \mathrm{th}, 25 \mathrm{th}, 26 \mathrm{th}$, and 27 th .

On the 13th the movement of the Declinometer exceeded 1°. Mackarel sky, with sheets of auroral light. On the 20th the movement was $\frac{1}{4}^{\circ}$, and there were considerable displays of auroral light at all the hours of observation in the evening. On the 21st, at 3 A.M., the temperature of the air in the shade, when corrected for the error of the thermometer for the freezing point of mercury at -40° Fahrenheit, was $-56^{\circ} 7^{\circ}$ Fahrenheit. At this time an ounce of nitric acid, which had been standing in a vial with a glass stopper in the open air all night, was fluid; but at 5 A.m., when the temperature of the air was $-56^{\circ} 4^{\circ}$, it was solidly frozen. Sulphuric acid was also at the latter time frozen, and its upper part of an opake white colour. A bottle of creosote (4 oz .), which had been out of doors all day, began to show round opake balls at the bottom. At 4 P.m., the tempe-
rature of the air having then risen to $-35^{\circ} 7^{\circ}$ Fahrenheit, two or three round flat cakes existed at the sides also of the creosote bottle; the rest of the fluid was transparent, but thicker than usual. Each of the round patches was marked with concentric rings of a darker colour, like the frond of ulva pavonia, or a section of maple wood. At 7 r.m. these cakes had augmented in size, and had a central point. The appearances of the aurora this day are detailed in the term day observations.

On the 22 d February the fluctuation of the Declinometer amounted to $1 \frac{1}{2}$, the sky being overcast most of the day and no auroral light visible. On the 23 rd at 3 p.m. the phials of sulphuric and nitric acids and of creosote were wholly frozen, the temperature of the air being -39° Fahrenheit, and colder than it had been previously in the day. On the 27 th the fluctuation of the Declinometer was $1 \frac{1}{2}^{\circ}$ and there were some curtain-shaped, arch-like displays of the aurora.

March 1849.-The auroral light was visible on the 1st, 3rd, 6th, 8 th, 11 th, 12 th, 14 th, 15 th, 17 th, 18 th, 19 th, $20 \mathrm{th}, 21 \mathrm{st}, 22 \mathrm{nd}, 24 \mathrm{th}$, 25 th, 26 th, and 30 th.

The fluctuation of the Declinometer amounted to 1° on the 6 th. The sky was wholly obscured most of the day, but in the evening there was an arc of aurora extending from the N.W. to the S.E. horizon, and passing about 50° south of the zenith; the sky then being almost cloudless and Venus shining most beautifully. On the 18th the next fluctuation of the needle to the same extent was observed, the displays of aurora being very faint, and in the southern quarter of the sky. On the 19 th the Declinometer varied more than 2°. At 9 P.M. an arch of the aurora sprang from the N.W. horizon, and, passing over the zenith, descended to the S.E. On the 20th the fluctuation was $1 \stackrel{1}{2}^{\circ}$. A cloudless sky with streams of auroral light and long fringes in the S.E. part of the sky. Also at 10 P.m. curtain-like expansions, rolling occasionally inwards like a scroll, and expanding again.

On the 21 st the fluctuation of the Declinometer at the hours was more than $1 \frac{1^{\circ}}{2}$. The appearances of the aurora are detailed in the term day observations. On the 22nd the Declinometer varied more than $1 \frac{1^{\circ}}{4}$, and a few patches of aurora early in the morning were all that were seen; the sky remaining perfectly cloudless the whole 24 hours. On the 24th the Declinometer varied 2°. The sky was obscured wholly till 7 P.m., when it cleared up entirely, and as had been observed in such cases, the north end of the needle then moved more towards the east. The displays of the aurora in the evening were faint.

April 1852.-From the extent of daylight in this month the aurora was seldom seen before 10 P.M., at which hour our observations ceased for the day. It appeared, however, on the 4th, 8th, 13th, 14th, 15th, 18th, and 21st. The Declination observed by eight sets of azimuths in the fore and afternoon of March 31st, was found to be $50^{\circ} 16^{\prime} 52^{\circ} 7^{\prime \prime}$ easterly, the Declinometer being $4^{\circ} 22^{\prime}$. On the 16 th the Declination was by the mean of six sets of azimuths, $51^{\circ} 58^{\prime} 52^{\prime \prime}$, the north end of the Declinometer having at the time a mean direction of $3^{\circ} 37^{\prime}$. The needle fluctuated much during these observations. On the 21 st the mean variation deduced from six sets of azimuths was $49^{\circ} 54^{\prime} 36^{\prime \prime} \mathrm{E}$., the mean direction of the north end of the Declinometer being $4^{\circ} 25^{\prime}$ The mean easterly variation by the three series was $50^{\circ} 44^{\prime} 14^{\prime} 2^{\prime \prime}$, and the mean direction of the north end of the Declinometer during the observations for azimuth, $4^{\circ} 04^{\prime} 1^{\prime}$.

On the 2nd of April the fluctuation of the Declinometer was $2^{\circ} 28^{\prime}$, the sky being obscured the whole day, and no aurora visible. On the 3rd the fluctuation was $1 \frac{3^{\circ}}{4}$, the sky continuing obscured, without aurora. On the 4 th the sky was nearly cloudless the whole day; only a faint arch of aurora at one time in the evening; but the fluctuations of the needle were $3^{\circ} 40^{\prime}$ in the day. On the 6th the fluctuation of the Declinometer exceeded 1°. The sky, which was cloudless all day, was obscured after sunset. On the 9th the Declinometer fluctuated $3 \frac{1}{2}^{\circ}$. The sky was partially cloudy in the day, quite cloudless after sunset, and no aurora was seen. On the 10th the fluctuation exceeded 1°. The sky, as on the preceding day, being cloudless till 7 P.m.; after which it was more or less cloudy, but no auroral light was scen. The red tints of the setting sun had scarcely departed entirely from the sky before 10 p.m., when our obscrvations ceased. On the 14 th, the Declinometer varied more than 1°. The sky was wholly cloudless till 10 p.m., when three-tenths of the vault was cloudy, and an auroral arch crossed the zenith, having a direction from N.W. to S.E. On the 16 th the fluctuation of the needle exceecled $1 \frac{1}{2}^{\circ}$; the sky being almost wholly covered with clouds till 10 p.M., when seven-tenths of it was cloudless; no aurora was seen, On the 18 th fluctuation to the extent of $1 \frac{1}{2}^{\circ}$ occurred. The sky was wholly cloudless, and a faint auroral arch was seen at 10 P.m. in the usual direction, or crossing the magnetic meridian at right angles. Daylight not wholly gone, and the red tints of the western sky extensive.

On the 19th the Declinometer varied 1°. A cloudless sky, and no aurora. On the 20 th the fluctuation was also about 1°, the sky being wholly covered with clouds till 10 p.m., when it cleared up, nine-tenths becoming blue, but no aurora was seen. On the 21 st the

Declinometer varied $1_{4}{ }^{\circ}$, and very suddenly at 9 P.M., when the sky, after being quite cloudless, had hecome rapidly overspread. Some of the clouds resembled auroral arches ; but emitted no light, the daylight not having gone. At 10 p.m. auroral arches contended with the twilight, and half an hour later their peculiar light was more apparent. After this date no aurora was recorded, the daylight being too powerful for its display at 10 p.m. The degrees of the thermometer could be read in the open air by daylight between 9 and 10 p.m. on the 23rd. The fluctuations of the Declinometer exceeded a degree on some of the subsequent days of the month, as may be perceived by a reference to the tables.

On a review of the observations made during the seven months, many instances of the simultaneous occurrence of fluctuations of the needle with movements in the auroral light were noticed; but there were also examples of fluctuations of the needle in the absence of the aurora, and very numerous ones of brilliant auroras accompanied by a stationary or sluggish needle. I cannot therefore venture to ascribe the movements of the needle in any case to those of the aurora, or to any particular direction of the beams and arches. I think, however, that the needle varied more frequently during the sudden formation of clouds than at other times; and I am also inclined to say that the formation of clouds often followed brilliant and active auroras. It is a popular belief in the fur districts that very fine displays of the aurora presage windy weather.

With respect to sounds of the aurora, the belief prevails in the arctic regions that it is occasionally audible when very bright and active, at which times it is believed by the natives to be near the earth. Having witnessed the phenomena some thousands of times without hearing it, I have become sceptical of its ever producing sounds audible on the surface of the earth. The sounds it is said to cause are likened by many to the rustling of silk; and I may observe that the curtain-like appearances and motions of the brightest auroras are likely to be associated witb the remembrance of such sounds, and also that the formation of minute icy spiculæ in very cold clear nights is accompanied by a crackling in the air.

[^37]
DELCROS'S BAROMETER.

FORT CONFIDENCE．
Abstract of Hourly Observations in the month of October 1851.

	Delcros＇s Barometer，corrected for capillarity and mean deviation											
Civil Time．	i．	2.	3.	4.	5.	6.	7.	s．	9.	10.	11.	Noon
	Millm．	Mill ${ }^{\text {m＇}}$	Mill ${ }^{\text {m }}$ ．	Millm．	Mill ${ }^{\text {m．}}$	Millm．	$\mathrm{Mill}^{\text {m }}$	${ }_{\text {Mill }}{ }^{\text {F }} 3.69$	Mill ${ }^{\text {man }}$	Mill ${ }^{\text {n }}$	Millw．	Millm
9	－	二	二	二	二	二	38.09	${ }^{39} \cdot 34$	${ }^{40} 90$	－	$742^{\prime} 00$	$41.8{ }^{1} 8$
10	－	二	二	－	－	二	35.83	$38 \cdot 71$	$35 \cdot 16$	733.15	－	
11	二	二	二	－	－	$732 \cdot 19$	33．69	31．14	－	${ }^{33} 70$	－ $32 \cdot 54$	${ }^{33}{ }^{3}$
13	－	－	－	二	二	－	29.90 44.12	31.	－		$45 \cdot 19$	$4{ }^{1} 11$
14	二	二	－	二	二	二	－	$35 \cdot 19$	34.29	33.49	33.06	33．09
15	二	二	二	－	－	－	$29 \cdot 82$	－	$30 \cdot 02$	99．66	39.68 38.99	$39 \cdot 8$
16 17	二	二	－	－	二	－	34.04 38.19	$33 \cdot 84$	27•34	32．32	${ }_{27}{ }^{2} \cdot 24$	237
18	二	－	二	二	二	－ $20 \cdot 84$	28.19	$27 \cdot 84$	$2{ }^{2}$	－	－	
19	二	－	二	二	二	20	33．89	33.34	$33 \cdot 29$	$33 \cdot 19$	$32 \cdot 54$	${ }_{3}^{30} 12$
20	－	二	－	$731 \cdot 54$	－		31.59	31.99	${ }_{31} \cdot 72$	－ 3.89	32．02	329
21.	二	二	－	－	－	$32 \cdot 02$ 33.79	$33 \cdot 54$ $33 \cdot 84$	33.34 33	31.84 33	33.89 33	${ }_{33} 3.79$	${ }_{34}{ }^{2}$
23	－	－	－	－	728.74	${ }_{28}{ }^{3} 39$	${ }_{27} \cdot 69$	26.34	25.89	24.89	23.74	$23 \cdot 1$
24	－	二	－	－	$72{ }^{2}$	71.89	$10 \cdot 79$	$17 \cdot 49$	$17 \cdot 79$	18.19	18．34	${ }^{18}{ }^{\prime} 6$
25	二	二	－	－	－	24.07	24.19	$24 \cdot 04$	23.54	24.59	24.34	23．7
26 27	二	二	$724 \cdot 14$	－	－	－27．04	${ }_{28}^{24} 14$	24.19	2.484 28.59	294．04	29．74	${ }_{30}{ }^{2}$
28	二	－	－	－	－	27－04	37.99	37.94	${ }_{88}{ }^{28} 09$	38.09	38.59	397 44.5
29 30	二	－	－	－	－	42.82 35.89	$43 \cdot 64$ 36.79	$\begin{gathered} 43 \cdot 04 \\ 45 \cdot 89 \\ \hline \end{gathered}$	$\begin{aligned} & 43 \cdot 74 \\ & 45 \cdot 29 \end{aligned}$	$\begin{aligned} & 43 \cdot 84 \\ & 34 \cdot 34 \end{aligned}$	$44 \cdot 34$ $34 \cdot 09$	415
31												
Millimètres	－	－	724．14	$731 \cdot 54$	$723 \cdot 74$	$729 \cdot 99$	732.51	$732 \cdot 14$	$731 \cdot 87$	$731 \cdot 28$	732\％70	732
Inches	－	－	28.509	$28 \cdot 801$	28.690	$28 \cdot 740$	28.840	28.825	28.813	$28 \cdot 791$	28.847	$28 \cdot 8$
$\left.\begin{array}{c} \text { Corrected } \\ \text { for } 32^{\circ} \\ \text { Fahrenheit } \end{array}\right\}$	－	－	－	－	－	28＇691	2S•783	$28 \cdot 768$	28．752	28•729	28.788	
						$0 \cdot 000$	0.092	0.077	0.061	0.088	$0 \cdot 097$	
Oscillation												

FORT CONFIDENCE．
Abstract of Ernurly Observations in the month of October 1848.
from Standard Barometer，but not for temperature

1.	2.	3.	4.	5.	6.	7.	8.	？．	10.	11.	Midnt．	Means．
Millm．												
776.42	${ }^{738}{ }^{\circ} 34$	$785 \cdot 69$	735.39	734．93		－		$782 \cdot 49$	－	－	－	$736 \cdot 44$
${ }^{41}$－82	$\stackrel{42 \cdot 29}{ }$	${ }^{43} \cdot 29$	48．99	42：99	$42 \cdot 39$		741.94					$4 \mathrm{4} \cdot 65$
33．59	－	二	$\stackrel{-}{-}$	－	二	－	二	$3 \overline{-} \cdot 6$			－	342.57 32.94
二	二	$44^{\prime} 92$	－	二	－	二	二	－	\cdots	二	－	314.50
32.34	32.24	$32 \cdot 29$	$32 \cdot 30$	－	－	$731 \cdot 69$	－	－				32.99
30.09 30.79	$30 \cdot 19$	－	30.89			－	－		－	－		$32 \cdot 52$
$32 \cdot 79$ 20.79	$31 \cdot 99$	25.44	24.74	$32 \cdot 24$	－			30.84				$32 \cdot 26$
$27 \cdot 24$	${ }_{28}{ }^{26} 139$	25	24.4	${ }_{28}^{24.94}$	$31 \cdot 14$	${ }_{31}^{24} \cdot 69$		$25 \cdot 94$ $3 \cdot 21$	725－54	$726 \cdot 34$	$726 \cdot 44$	$2 \cdot 9 \cdot 98$ 29.63
${ }^{38} 14$	$83 \cdot 29$	32.94	33.04	$32 \cdot 64$	$32 \cdot 21$	31.86	$32 \cdot 34$	$32 \cdot 22$		－	－	$32 \cdot 67$
${ }^{33} \cdot 66$	$32 \cdot 89$	$32 \cdot 99$	$33 \cdot 79$	$32 \cdot 99$	$33 \cdot 14$	$33 \cdot 14$	33.14	33.09				$32 \cdot 71$
$32 \cdot 34$ $33 \cdot 24$	32.54	${ }_{3}^{33 \cdot 14}$	33.09	${ }^{33} \cdot 14$	33.09	${ }^{33} \cdot 2.24$	${ }^{33} \cdot 49$	$33 \cdot 29$	－	－	－	32.88
${ }_{22}{ }^{38} 244$	${ }_{21}{ }^{33} 44$	${ }_{21}{ }_{21}{ }^{34} 19$	${ }_{20}{ }^{34} \times 69$	${ }_{19} 3.94$	19．59	33.44 19.04	33 18.19	33.04 17.79	\cdots	－	－	$33 \cdot 71$ $22 \cdot 00$
$19 \cdot 04$	$19 \cdot 49$	19.89	$20 \cdot 59$	21.09	$21 \cdot 59$	$21 \cdot 79$	22.59	$23 \cdot 24$	－			19.59
24.14	${ }^{23} \cdot 64$	23.94	23.49	$23 \cdot 34$	$23 \cdot 34$	$23 \cdot 84$	24.09	24.04	－			$23 \cdot 90$
24.79 30.89	$\stackrel{24.94}{ }$	${ }^{25} 5.09$	24.54	24.59	24.94	$24 \cdot 24$	24.84	24．79	－		－	24.58
${ }_{39} 94$	39.99	${ }_{35} \cdot 9.90$	${ }_{40}{ }^{32} 174$	32.89 40	${ }_{40}{ }^{31} 89$	${ }_{41}{ }_{4}^{33} \cdot 19$	${ }_{41}{ }^{31} 14$	241.54 41.29	－	－	－	$30 \cdot 32$ 39
44.60 32.94	44.29 38.84	44.34	44.09	44.34	43.99 32.94	44.44	44．44	43.04			－	$44^{\circ} 01$
32.94	$32 \cdot 84$	33.24	$33 \cdot 14$	33.94	32.94	33.54	33．79	33.89				34.09
731.66	731．49	r32 39	732.05	$731 \cdot 54$	731.87	$730 \cdot 70$	$731 \cdot 61$	$730 \cdot 44$	$725 \cdot 54$	$726 \cdot 34$	728.4	731.69
28．806	28．799	28.839	$28 \cdot 821$	28.801	28．814	$28 \cdot 768$	28.804	28.758	$28 \cdot 565$	28.597	28.600	28.807
28.742	28.736	$28 \cdot 778$	$28 \cdot 760$	28.737	$28 \cdot 748$	28＇705	28•740	28．692	－	－	－	28「746
0.051	0.045	0.087	0.049	0.046	0.057	0.014	$0 \cdot 049$	0.001	－	－	－	0.054

Highest，29｀278．Range，1•102 inches．

Hobr Conpidenoe－continued．
Abstract of Hourly Observations in the months of November and December 1848.

Fort Confidence－continued．
Abstract of Hourily Observations in the months of November and December 1848

from Standard Barometer，but not for temperature．												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．
Millm．	Mill ${ }^{\text {m }}$ ．	Millm．	Millw．	Millw ．								
735.35 44.99	$\begin{array}{r}736.64 \\ 45 \\ \hline 14\end{array}$	$735 \cdot 94$ 44.39	${ }^{737}{ }^{\circ} 04$	${ }^{737}{ }^{\circ} 04$	738.19	${ }^{738}{ }^{\circ} 74$	739.04					$735 \cdot 99$ 44.54
$\begin{array}{r}44.99 \\ \hline 10.09 \\ \hline\end{array}$	$45 \cdot 14$ 39	$44^{\prime} 39$ 39	$44 \cdot 94$ 89		44.99 38.94	$44 \cdot 99$ $39 \cdot 44$	$44 \cdot 84$ 39.84	$45 \cdot 14$ $40 \cdot 89$			741.09	${ }_{40}^{44.54}$
； $48 \cdot 44$	49.06	${ }_{49} \cdot 64$	${ }_{49}{ }^{\circ} 84$	${ }_{49}{ }^{-84}$	50.94	50.89	51.54	$52 \cdot 94$			$\underline{-}$	$48 \cdot 64$
． $56 \cdot 29$	${ }^{56} \cdot 34$	$56 \cdot 19$	$56 \cdot 19$	56.22	$56^{\circ} 74$	56.64	$56 \cdot 54$	56.69				${ }^{65} 84$
$52 \cdot 99$	59.69	$52 \cdot 54$	52．24	51.74	51.49	$51 \cdot 14$	$49 \cdot 69$	$49 \cdot 99$				$52 \cdot 94$
$44 \cdot 68$	$43 \cdot 29$	43.09	$42 \cdot 24$	41.44	$41^{1} \cdot 34$	40.79	39．94	39.44				${ }^{43} \cdot 18$
（ $35 \cdot 19$	35.01 33.54	34.79 34.04	34.72 34.44	${ }^{34} \cdot 72$	34．21	$33 \cdot 99$	34．01	${ }_{35} 3.14$	736.19			$39 \cdot 99$ 38
38.99	${ }_{38}{ }^{36} 4$	${ }_{30}{ }^{\circ} 09$	30.99	$40 \cdot 04$	40.09	40.04	${ }_{40}{ }^{3} \cdot 19$	${ }_{40}{ }^{\circ} \cdot 1$	$40 \cdot 34$	740．54		${ }_{39} \cdot 07$
41.89	41.19	41.19	41.04	40.84	39.89	$39 \cdot 44$	38.74	$38 \cdot 14$	$37 \cdot 49$	－		$40 \cdot 60$
27.09	$27 \cdot 17$	27.09	26.69	27.57	26.36	$26 \cdot 92$	36.59	36.54				$28 \cdot 62$
$33 \cdot 36$ $39 \cdot 19$	34.04 40.54	$33 \cdot 99$ $42 \cdot 09$	34.09 42.24	34.02 42.56		34.79 43.60	$34 \cdot 63$ 43.35	33.34 43.62	$4 \cdot 14$	－		32.58 40.47
－	43.09	$42 \cdot 19$	$42 \cdot 19$	$40 \cdot 36$	$30 \cdot 49$	$38 \cdot 72$	38.59	$37 \cdot 44$				41.51
22.64	22^{26}	$20 \cdot 96$	19.73	${ }^{19} \cdot 69$	${ }^{19} 3 \cdot 36$	${ }^{19} \cdot 14$	$19 \cdot 34$	$19 \cdot 92$				${ }^{23} \cdot 27$
$\stackrel{29}{29} 3$	${ }^{30} 39$	30．39	${ }^{30}{ }^{\circ} 75$	${ }^{30} 16$	${ }^{30}{ }^{\circ} 78$	30.94	30.29	${ }^{30}{ }^{\circ} 29$	$29 \cdot 68$			${ }_{2} 29.30$
$24 \cdot 99$ 25.99	24.69 26.14	$23 \cdot 84$ 26.94	24.44 27.59	23.84 27.89	23.84 26	$23 \cdot 94$ 27	23.54 27.04	$23 \cdot 44$ 28	－			${ }_{26}{ }^{25} \cdot 01$
28.75	23.69	$28 \cdot 84$	$29 \cdot 14$	28.89	28.74	28.34	28.44	$28 \cdot 59$				$28 \cdot 76$
25.49	26.09	$24 \cdot 64$	24.99	$24 \cdot 39$	24.14	24.49	24.64	24.89				$25 \cdot 37$
$27 \cdot 74$ 34.44	28．59	$28 \cdot 74$	28.59	29.04	$29^{\circ} 04$	29.09	29.44	${ }^{29}{ }^{\circ} \cdot 4$				${ }^{28}{ }^{\circ} \cdot 44$
42．89	342.49 42		＋ 35.43	35.78 43	42．38	37.04 42.72	472．75	${ }^{37} 4.69$	$42 \cdot 89$	41.96	42.47	－ 42.92
41.31	－ 41.44	40.89	40.99	$41 \cdot 24$	$41 \cdot 24$	41.19	$41 \cdot 14$	$40 \cdot 79$	－			41.58
41.32	． 41.79	$22^{\circ} 09$	$42 \cdot 19$	42.84	$42 \cdot 79$	$42 \cdot 19$	$42 \cdot 36$	$42 \cdot 10$	42．69	43.04		$42 \cdot 10$
38．72	${ }^{37} \cdot 9.94$	37.84	${ }^{36} \cdot 89$	${ }^{36} \cdot{ }^{\circ} 44$	36.34	35.69	${ }_{55}^{55} 4$	34.24	－	二		析．83
31.79 8764	－ 32.04	32.24	31.99	${ }^{32 \cdot 54}$	$32 \cdot 10$	32.89	33.04	${ }^{31} 779$				${ }_{36} 3 \cdot 15$
${ }_{37} 39$	－38．79	${ }_{38} 36$	${ }_{39} 37$	${ }_{39} \cdot 94$	40.54	${ }_{40}{ }^{36} 40$	40.44	${ }_{41} \cdot 48$			－	$38 \cdot 07$
786.63	736.94	736.89	736.99	737．01	736.88	$730 \cdot 73$	$737 \cdot 22$	$737 \cdot 18$	$730 \cdot 06$	$741 \cdot 84$	741.78	$736 \cdot 86$
29．002	29．014	29.012	29.016	$29 \cdot 017$	29.011	29.005	$29 \cdot 025$	29．023	29.198	$29 \cdot 207$	29．204	29.011
28.951	28.961	28.959	$28 \cdot 960$	28•963	28.953	$28 \cdot 948$	28.973	28.969	－	－	－	$23 \cdot 961$
0.018	10.023	0.021	$0 \cdot 022$	0.025	0.015	0.010	$0 \cdot 0,35$	$0 \cdot 031$	－	－	－	0.014
$\operatorname{In}_{29 \cdot 417}$	$\operatorname{In}_{29 \cdot 426}$	$\operatorname{In}_{29}{ }_{420}$	$\operatorname{In}_{29 \cdot 37}$	In_{29}	In.	In_{29}	In.	In_{29}	$\mathrm{In}_{29 \cdot 611}$	$\underline{\text { In．}}$	$\underline{\mathrm{In}}$ ．	In．
${ }^{29} \cdot 630$	${ }_{\cdot}{ }_{-621}$	${ }_{\cdot 632}$		${ }^{29} 4.607$	29．4610							－59\％
－690	－679	－675	－664	－632	$\cdot 627$	－611	－609	－617	－	－	－	－664
－ 530	$\cdot 536$	－539	－527	． 526	－ 506	－509	－ 508	$\cdot 487$				－529
－287	.271	.2680	$\stackrel{-238}{-411}$	－220	${ }_{-} \cdot 2138$	$\because 201$	${ }_{-543} \cdot 203$	－191			二	$\cdot{ }^{269}$
－ 418	－$\cdot 307$	－371	－351	${ }^{3} 23$	${ }_{-293}$	${ }_{-} 270$	－255	－238	二	二	－	${ }^{3} 373$
－138	－$\cdot 141$	－139	－150	－155	－ 102	$\cdot 175$	$\cdot 150$	$\cdot 168$			－	－142
${ }_{-} \cdot 1184$	－ 209	${ }_{-} \cdot 218$	－223	－232	${ }^{-223}$	$\cdot 217$	${ }_{-048} \cdot 228$	${ }^{2} 2202$				－219
28．991	28．974	．011	28.984	28．968	$28 \cdot 975$	28．993	28.988	28． 983				28．971
－829	－ 834	28．799	－ 791	－784	${ }^{-783}$	$\cdot 773$	－756	$\cdot 761$	－	－	－	． 825
－707	$\cdot 716$	${ }^{7} 794$	－735	－756	－772	${ }^{-778}$	－794	－821			－	－730
－938	$\cdot .925$	－ 9724	－920	${ }^{\cdot 9710}$	－913	－997	－894	${ }^{-879}$				－918
－493	－504	$\cdot 526$	－528	－545	－656	－576	－593	－698	28.641		－	${ }^{5} 26$
－ 29.966	${ }^{29} \cdot 975$	29.07	29．029	29．059	28．077	29．091	29：107	29．112	$29 \cdot 123$	－		－9976
${ }^{29} \cdot 270$	${ }^{29} \cdot 2930$	28． 988	${ }_{28}{ }^{\cdot 2989}$	${ }_{28 \cdot 970}{ }^{298}$	${ }_{28} \cdot 288$	${ }_{28} \cdot \underline{294}$	${ }_{28} \cdot 2903$	${ }_{28} \cdot \underline{288}$	$\cdot 275$			${ }^{29 \cdot 274}$
28：377	28.405	－ 454	－ 500	${ }^{2} .578$	－667	－ 723	－ 7.77	－824	28：870	28．928	28．959	28.563
－993	－968	${ }^{\cdot 9} 9601$	－905	－865	－850	－800	.777	$\begin{array}{r}\cdot 760 \\ \cdot 721 \\ \hline\end{array}$	${ }^{7} 7$	${ }^{\prime} 702$	${ }^{6} 65$	－948
－855	－861	－868	－855	－8444	－856	－857	$\cdot 853$	$\cdot 853$	－			－854
$\bullet 931$	－942	$\cdot 947$	$\cdot 951$	－959	$\cdot 950$	$\cdot 942$	－939	－931	－	－	－	－938
． 7884	${ }_{-} \cdot 768$	${ }^{-721}$	－703	${ }^{\cdot} \cdot 693$	－679	－665	－646	－631	－622	－	＝	－719
${ }^{4} 881$	－ 543	${ }^{4} 532$	${ }^{-430}$	${ }^{.} 4638$	． 545	－ 4.48	－ 614	－ 4481	50.4		＝	－526
－269	－270	$\stackrel{281}{ }$	${ }^{-837}$	－304	－328	－ 354	． 368	－ 387	－ 409	－	－	$\cdot 304$
29．480	29．501	$29 \cdot 510$	$29 \cdot 522$	29．526	29.647	$29 \cdot 543$	$29 \cdot 555$	$29 \cdot 103$.552			－	29．483
${ }^{3} 361$	－359	${ }^{348}$	${ }^{\text {• } 346}$	－325	－315	－315	－304	－305	－260			－348
29.006	29.006	29.008	$29 \cdot 007$	$29 \cdot 010$	29.011	$20 \cdot 013$	29.014	29.016	28.969	28.815	28．809	29.009
0.013	0.018	0.015	0.014	0.017	0.018	$0 \cdot 020$	0.021	$0 \cdot 023$	－	－	－	$0 \cdot 012$
780.75	736．75	736.80	$736 \cdot 79$	736.85	736.87	$736 \cdot 93$	$736 \cdot 95$	$737 \cdot 00$	－	－	－	736 ＇88

Highest， $29 \cdot 731$. Range， $1 \cdot 808$ inches．
to a temperature of 32° Fahrenheit．
Highest， $29^{\prime} 682$ inches．Range， $1^{\prime} \times 440$ inches．

Fort Confidence-continued.
Abstract of Hourly Observations made during the months of January and Fetruary 1849.

[^38]Fort Confidence-continued.
Abstract of Hourly Observations made during the months of January and February 1849.

Barometer of Delcros, and the Obscrvatory at Paris, for capillarity, and reduced to temperature 32° Fahrenheit.												
i1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt.	Means.
29•127	29.130	29.109	${ }_{\text {In }}^{1}$	${ }_{\text {In }}$	in.							
${ }_{23}{ }_{2}^{29} \cdot 645$	${ }_{28}^{29} \cdot 6667$	$29 \cdot 109$ $23 \cdot 645$	29.093	${ }_{29}^{29 \cdot 103}$	${ }_{28}^{29} \cdot 103$	${ }^{29} \cdot{ }^{2} \cdot 693$	$23 \cdot 050$	29.015	$29^{\circ} 000$	23'950	$28 \cdot 952$	29.094
29.014	29.043	29.059	$29 \cdot 100$	$20 \cdot 119$	${ }_{29}^{29} 155$	${ }_{29} 2 \cdot 168$	${ }_{29}^{23} \cdot 201$	${ }_{29}{ }^{29} \cdot 625$	28.649			28.666
-452	-473	-489	${ }^{2} 494$	${ }^{-490}$	${ }^{-1519}$	${ }^{2} \cdot 588$	${ }_{\cdot}^{20} 539$	${ }^{29} \cdot{ }^{525}$	- 29.			29.043
. 763	.759	$\cdot 767$	$\cdot 778$	$\cdot 778$	-769	-786	791	$\cdot 780$	$\cdot 786$			$\cdot 768$
${ }_{-783} \cdot 8$	${ }^{-888}$	-883	- 877	- 874	- 993	-888	-900	-894	-896			${ }^{862}$
-276	${ }^{-238}$	${ }_{-217}$	- 187	- 717	. 7155	-692	- 131	- 672	-665			-753
. 174	. 097	-093	-103	-103	$\cdot 115$	-106	$\cdot 114$	- 124	-113		-	. 112
${ }^{\cdot} \cdot 174$	-174	$\cdot 191$	-20.4	2,22	-2:5	-2,2	-229	-224	-225			${ }_{162}$
28.707	$28 \cdot 668$	25.622	23.588	${ }_{28}^{29} 5$	28.502	28-490 ${ }^{-274}$	28.460	$\begin{array}{r}28.470 \\ \hline 20\end{array}$	$\cdot 263$	$29 \cdot 257$		248
'751	'743	-822	-832	-886	$\cdot 921$	-977	-991	$29 \cdot 014$	29.038			28.675
- 878 29.079	861	829	-827	-799	$\cdot 792$	$\cdot 752$	$\cdot 750$	$29^{\prime} 758$	$23 \cdot 749$		-	850
$\begin{array}{r}29.099 \\ \\ \hline 54\end{array}$	- ${ }^{29} \cdot 6981$	$29 \cdot 252$ $\cdot 606$	${ }^{29} \cdot \underline{245}$	${ }^{29} \cdot 1930$	29.205	29:213	$20 \cdot 228$	29'263	$29 \cdot 284$			29.017
-541	523	$\cdot 517$	-492	-461	${ }_{4} 420$	-397	${ }^{403}$	${ }^{695}$	${ }_{-392}$			'587
-168	-170	$\cdot 163$	-182	-184	-197	- 196	-226	-245	-206			- 6199
${ }_{28} \cdot \underline{498}$. 38	:333	-319	- 303	-234	:189	-161	-118	-051			-313
${ }^{28} \cdot 94298$	23.412	28.407	${ }_{28} \cdot \mathbf{0 3 0 3}$	+ ${ }_{25} \cdot \mathbf{4 0 6}$	28.392	${ }^{2} \cdot 015$	28-991	28.971				28.956
29.074	29.003	29.075	29.069	29.077	${ }_{29}{ }^{29} 068$	${ }_{29}^{29} \cdot 081$	${ }_{20 \cdot 063}$	${ }_{29} \cdot 4029$	${ }_{29}^{25} \cdot \underline{010}$	23.459 29.013	${ }^{28 \cdot 503}$	460
-058	-069	$\cdot 076$	-080	${ }^{-097}$	-096	$\cdot 109$	${ }^{-121}$	- 104	-108	${ }^{29}$ -	$2{ }^{2}$	9.073
- 279	${ }^{2} 287$	- 172	$\cdot{ }_{-217} 16$	- 100	${ }_{\cdot}^{\cdot 149}$	$\cdot 151$	$\cdot 156$	-142	$\cdot 148$	-154	$\cdot 167$	-107
$28 \cdot 819$	$28 \cdot 790$	29•775	$23 \cdot 762$	$23 \cdot 747$	$28 \cdot 729$	$28 \cdot 712$	29.702	- 28.711	28.704			216
29.199	$29 \cdot 233$	$29 \cdot 771$	$29 \cdot 293$	29.331	29.357	29`377	20'401	$29 \cdot 410$	$29 \cdot 414$			${ }_{29}^{28 \cdot 149}$
${ }^{28} \cdot 7429$	28.714	$\cdot 383$	-380	-318	'324	${ }^{-295}$	-271	-260	${ }^{2} \cdot 223$			$\cdot 1775$
-845	-848	${ }^{8} 850$	${ }^{23} \cdot 8.85$		28.640	23.653 .803	${ }^{28 \cdot 606}$	${ }^{28 \cdot 621}$	23.633	-	-	28.751
- 856	$\cdot 870$	-878	-888	-910	-919	$\cdot 923$	-950	. 956	$\cdot 975$			${ }^{-884}$
$29 \cdot 142$	$29 \cdot 139$	$29 \cdot 144$	$29 \cdot 140$	29.138	29.134	29.133	$29 \cdot 131$	$29 \cdot 129$	$29 \cdot 145$	28.967	$28 \cdot 019$	$29 \cdot 130$
0.014	0.011	$0 \cdot 016$	$0 \cdot 012$	$0 \cdot 010$	0.006	$0 \cdot 005$	$0 \cdot 003$	0.001	0.017	-	-	0.009
$740^{\circ} 20$	$740 \cdot 13$	$740 \cdot 25$	$740 \cdot 15$	740.10	740.00	$739 \cdot 98$	$739 \cdot 93$	739×88	$740 \cdot 27$	-	-	739.90
29.111	$29 \cdot 105$	29.098	${ }^{29} 0099$	29.073	29.057	$29 \cdot 030$	29.028	29.008	$20 \cdot 009$			
8.858 8.906	8.860	88.867	8.881 8.869	8.889 8.859	8.915	8.911	8.931	8.949	8.953	-	-	${ }_{28}{ }^{2973}$
$8 \cdot 913$	8.938	8.961	${ }_{8} 8.968$	$\stackrel{8}{9.000}$	${ }_{9}$	8.829	$8 \cdot 828$	8 8.797	8.805	-		23•903
${ }^{9} \cdot 053$	${ }^{9} \cdot 051$	9.029	9.013	$9 \cdot 017$	9.001	8.989	${ }_{8}^{8} 9659$	9.052	9.061	-	$\underline{-}$	${ }_{20}^{28.939}$
$9 \cdot 003$	9.034	$9 \cdot 056$	9.079	$9 \cdot 106$	$9 \cdot 144$	$9 \cdot 157$	$9 \cdot 179$	$9 \cdot 191$	${ }_{9} \cdot 199$			${ }_{29}{ }^{29} \cdot 027$
8.047	9.034	$8 \cdot 988$	$8 \cdot 972$	$8 \cdot 913$	8.869	$8 \cdot 826$	$8 \cdot 832$	$8 \cdot 801$	8.761	2;-743		${ }_{29} 9.011$
8.854 9.053	8.873 9.051	8.875 9.066	8.877 9.078	8.886	8.887	8.892	8.890	$8 \cdot 899$	$8 \cdot 913$	-	-	$28 \cdot 847$
$9 \cdot 302$	$9 \cdot 039$	$9 \cdot 312$	$9 \cdot 306$	9.313	${ }_{9} \cdot 323$	${ }_{9} \cdot 308$	$9 \cdot 303$	$9 \cdot 181$ $9 \cdot 308$	- ${ }_{9} \cdot 175$			29.059
9.477	9.491	$9 \cdot 504$	$9 \cdot 525$	$9 \cdot 527$	${ }_{9} \cdot 536$	${ }_{9} 536$	${ }_{9} \cdot 552$	$9 \cdot 552$	${ }_{9} \cdot 550$			- 29.488
$\xrightarrow{9 \cdot 608}$	${ }_{9}^{9.619}$	9.609	${ }^{9.608}$	${ }^{9} 6627$	$9 \cdot 650$	$9 \cdot 615$	$9 \cdot 616$	$9 \cdot 608$	$9 \cdot 612$			29.612
$9 \cdot 307$	$9 \cdot 311$	${ }_{9} 9.292$	$\stackrel{3}{8} 293$	${ }_{9}^{9.282}$	- ${ }_{9} \cdot 2 \cdot 252$	-9.378	- ${ }_{9}^{9 \cdot 362}$	9.384,	9.386 9.196	-	-	29.432
9.323	${ }^{9} \cdot 314$	9.342	$9 \cdot 350$	$9 \cdot 357$	9•349	$9 \cdot 346$	${ }_{9} \cdot 368$	${ }_{9} \cdot 358$	${ }_{9} \cdot 319$			- 29.301
- ${ }_{9} \cdot \underline{048}$	$8{ }^{8} 935$	$8 \cdot 896$	8.868	8.913	9.006	9.024	${ }^{9.050}$	$9 \cdot 101$	$9 \cdot 100$	-	-	$5_{50} 031$
8.789	9.058 8.759	$9 \cdot 061$ 8.736	9.066 8.721	9.059	9.054	${ }^{9} 8.038$	9.010	${ }^{8} \cdot 976$	$8 \cdot 9$	-		$29 \cdot 037$
8.855	8.861	8.876	8.870	$8 \cdot 894$	$8 \cdot 890$	${ }_{8} \cdot 897$	8.686 8.921	8.691 8.930	8.056 8.936			$28 \cdot 761$ 28.858
9.056	${ }_{0}^{9.062}$	${ }^{9} 9063$	${ }^{9 \cdot 076}$	9.093	$9 \cdot 993$	$9 \cdot 117$	$9 \cdot 116$	$9 \cdot 115$	${ }^{8 \cdot 113}$	29.198	$23 \cdot 105$	
9.234	${ }_{9} 9.241$	${ }^{9.238}$	$9 \cdot 253$	9.263	$9 \cdot 282$	9.297	9301	${ }^{9} 363$	9.314	$9 \cdot 336$	${ }_{9} \cdot 356$	29.240
$9 \cdot 439$	${ }_{9} \cdot 444$	${ }_{9} \cdot$	9.446	${ }_{9}^{9} \cdot 450$	${ }_{9}{ }_{9} \cdot \mathbf{4 6 7}$	${ }_{9} 9 \cdot 512$	${ }_{9}^{9 \cdot 518}$	9.510 9.491	${ }_{9}^{9.510}$		-	29.485
9.652	${ }_{9}^{9 \cdot 651}$	${ }^{9} 6.606$	9.645	$9 \cdot 635$	${ }_{9} \cdot 632$	${ }^{9} \cdot 627$	${ }_{9} \cdot 616$	$9 \cdot 609$	$\stackrel{9}{9} 9$	9.515	$9 \cdot 534$	${ }_{29}^{29}{ }^{\circ} \cdot 617$
$9 \cdot 508$ 9	${ }_{9}^{9 \cdot 609}$	-9.499	${ }_{9}{ }^{9} \cdot 605$	9.501	${ }^{9} 9.502$	9.515	$9 \cdot 524$	$9 \cdot 524$	${ }^{9} \cdot 5.53$	-	-	$29 \cdot 513$
${ }_{9} 9.480$	9.485	9.501	9.495	9.483	${ }_{9} 9429$	9.542	-9.522	9.517	9.474 $9 \cdot 547$			
$9 \cdot 433$	9•429	$9 \cdot 413$	${ }_{9} \cdot 418$	9.450	$9 \cdot 100$	${ }_{9} 939$	${ }^{9} \cdot 377$	${ }_{9} \cdot 369$	${ }_{9 \cdot 381}^{9 .}$	$3 \cdot 56$		29.425
$29 \cdot 204$	$29 \cdot 211$	29.206	29.208	$29 \cdot 211$	29'209	$29 \cdot 210$	$29 \cdot 213$	29.212	$29 \cdot 209$	$29 \cdot 255$	$29 \cdot 342$	29'210
0.004	$0 \cdot 011$	$0 \cdot 006$	0.008	$0 \cdot 011$	0.009	$0 \cdot 010$	$0 \cdot 013$	$0 \cdot 012$	0.009	-	-	$0 \cdot 007$
-	-	-		-	-	-	-	-	-	-	-	-

Range, $1 \cdot 512$ inches.
Range, 0.993 inches.

Fort Confidence－continued．
Abstract of Hourly Observations in the months of March and April 1849.

Delcros＇s Barometer，corrected for capillarity and Mean deviation												
$\begin{gathered} \text { Day. } \\ \text { Civil Time. } \end{gathered}$	：1．	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
	Millm．	Millm ${ }^{\text {m }}$	Millm．	Millm．	Mill ${ }^{\text {m }}$	Millm．	Millm	Millm．	Millm．	Millm．	Millm．	Millm．
${ }_{2}^{1}$			二	二	二	744.14 39.78	744084	444．89	744．89	744＊ 49	$744 \cdot 84$	$4744^{\circ} 78$
8		－	－	－	二	${ }^{34} \cdot 39$	${ }_{38}{ }^{30} 40$	－${ }_{34.08}$	${ }^{38} \cdot{ }^{38} \cdot 96$	${ }_{34}^{38.09}$	39．04	${ }^{4} \begin{aligned} & 38.89 \\ & 84.14\end{aligned}$
${ }_{5}^{4}$		二	－	－		27．76	－27.49 2.84	${ }^{28} 14$	${ }^{27} 0$	${ }^{26.04}$	25．89	$9{ }^{26}{ }^{\text {a }}$
${ }_{6}$			－	－	二	22 $22^{\prime} 89$	22．84	${ }_{28}^{23.44}$	${ }_{2}^{23} \cdot 14$	${ }_{2}^{23 \cdot 14}$	${ }_{2}^{23} 14$	$4{ }^{29} 19$
7	－	－	－	二		${ }_{32}^{23.02}$	－${ }_{33} \cdot 24$	（ ${ }_{33}^{24.89}$	25.09 34.29		25.84 $35 \cdot 29$	
8	－		－	－	－	41.64	${ }_{41}{ }^{\circ} 84$	42＇84	$43 \cdot 19$	${ }_{43}{ }^{34}$	34.69 44	${ }^{(1)}$
${ }_{10}^{9}$	－	－	－	－		45.09 49	45．34	46.18	45.59	45.94	$45 \cdot 54$	45.59
11	二	－	－	二	二	42.18 46.85	$43 \cdot 99$ $47 \cdot 04$	43.44 43.74	$42 \cdot 79$ 49	$48 \cdot 14$ 49	43.76 50.89	${ }^{\text {c }}$
12	二	－	－	－		$5{ }^{5} \times 74$	53.84	$5{ }^{53} \cdot 64$	54．04	54．34	54.34	（ ${ }^{51} 51.79$
13 14	二	－	－	－	二	50.07	51.39	51.09	50.79		50.39	50．39
${ }_{15}^{15}$	\sim	二	\sim	二	二	41.64 24	42.26 24.99	41．79	40．49	40.84	39.84	${ }^{39} 14$
16	－	二	－		二	$\stackrel{25}{24}$	${ }_{25} 2.19$	${ }_{25}^{25} 54$	${ }_{25}{ }_{2}$	${ }_{25}^{25} \cdot 10$	$\stackrel{25}{25 \cdot 69}$	－ $\begin{aligned} & 25.09 \\ & 25.04\end{aligned}$
$\begin{array}{r}17 \\ \hline 18 \\ \hline\end{array}$	＝	$=$	－	－		26.58	27.84	28.19	28.34	${ }_{29} \cdot 04$	30.94	${ }_{31} \cdot 44$
－ 18		二				$40 \cdot 89$ $39 \cdot 24$	42.54	42.74	$42 \cdot 84$	43.50	43.09	$42 \cdot 94$
20	二	－	二			39.24 $30 \cdot 32$	39.89 81.04	39．99	$39 \cdot 64$ $30 \cdot 64$	${ }^{39} 964$	889	$39 \cdot 14$
21	733.84	$738 \cdot 94$	734×12	$738 \cdot 83$	738.59	${ }_{3} 3.72$	${ }_{33} 3184$	35．94	30．64	$30 \cdot 69$ 85 854	${ }_{35} 3 \cdot 64$	31.09 35.84
22 28	${ }^{37} 114$	$37 \cdot 14$	36.96	$36 \cdot 88$	36.84	37．24	37.04	37.24	37.84	${ }^{37} \cdot 34$	$37 \cdot 34$	${ }_{37} 14$.
24	－	二	－	二	二	38.14 38.49	39984	40.29	40.19	40.22	$40 \cdot 34$	$40 \cdot 29$
25	－	－	二	二	－	38.49 88.30	39．44	39.89 37.69	$39 \cdot 6.6$ 87.24	－ $30 \cdot 04$	${ }^{39} 9.34$	39.14 87.44
27	－	－	－	－	二	${ }_{35} \cdot 09$	${ }_{35}{ }^{3} 44$	${ }_{35}{ }^{3} 84$	${ }_{35}{ }^{8 .} 44$	37 35 84	${ }_{36}^{37}{ }^{36}$	37.44 86.44
$\stackrel{27}{ }$	＝	二	二	二	－	38.53	34.54	34.89	34.94	35.39	${ }^{56} 34$	${ }_{35} .54$
29	－	二	二	－	－	38．29	${ }^{39} \cdot 94$	$39 \cdot 84$	－ $34 \cdot 07$	－ 34.59	－ $3 \cdot 78$	34．04
30 81	＝	二	－	－		$35 \cdot 90$ $87 \cdot 96$	$37 \cdot 14$ 8019	${ }^{37} \cdot 79$	${ }_{37} 3784$	${ }_{38}{ }^{34} 14$	${ }_{38}^{3} 64$	${ }_{38} 8.56$
										$38 \cdot 44$		$38 \cdot 16$
Millimetr	$785 \cdot 49$	$735 \cdot 54$	$785 \cdot 54$	$735 \cdot 86$	$735 \cdot 21$	$736 \cdot 52$	737×25	$737 \cdot 56$	$737 \cdot 22$	$737 \cdot 36$	$737 \cdot 48$	$737 \cdot 64$
Inches	28.957	28.959	28－959	28.971	$28 \cdot 946$	28•997	29．026	29＇038	$29 \cdot 025$	$29^{\circ} 030$	29.034	29．087
$\left.\begin{array}{l}\text { Corrected } \\ \left.\text { or } 322^{\circ} \text { Fahr．}\right\}\end{array}\right\}$	－	－	－	－	－	29.005	29•000	$29 \cdot 001$	$28 \cdot 997$	28．992	$28 \cdot 988$	28． 889
Oscillations	－	－	－	－	－	$0 \cdot 015$	$0 \cdot 012$	0.013	$0 \cdot 009$	0.004	0.000	0.001
	－	－	－	二	－	734×9	735×22	735×29				
${ }_{3}^{2}$	＝	－	－	－		$35^{\circ} 04$	34.29	33.44	32.44	32．24	31.84	${ }^{31} \cdot 84$
	二	二	二	－	－	33.62 39.14	34.46 40.79	34.44 41.24	34.79 41.99	34.82 41	34.84 42.44	36.14 40.64
5	－	－	－	二		${ }^{35} \cdot 39$	${ }_{36}{ }^{\circ} 24$	$3{ }^{46} 24$	41.99 36		$42^{*} 44$ 36	42.644 35%
$\begin{array}{r}\text {－} 6 \\ \hline\end{array}$	－	二	－	－	－	34．74	35.844	${ }^{36} \cdot 14$	35.89	${ }_{36} \cdot 77$	${ }_{36} \cdot 94$	${ }_{36}{ }^{\circ} 72$
$\begin{array}{r}1 \\ \hline\end{array}$	二	二	－	－		38.04 43.84	$30^{4.44}$	$39^{\prime} 74$	40.04	40.34	40.74	41.54
	－	－	－	－	－	$4{ }^{49} 14$	$4{ }_{4}^{4} \cdot 64$	44.32 50.04	43.84 50.69	44.04 51.49	44．14 52.59	$4{ }^{41} 44$
10	－	二	－	－		55.70	源	55．24	50.59 54.64	51.49 54	52.59 54	52.84 53.49
112	－	二	－			338.34	${ }^{39} 9.94$	39.62	39\％${ }^{\circ} 4$	39．74	${ }^{39} \cdot 84$	${ }_{39}{ }^{\text {\％}}$ 94
13	二	二	二	－	${ }^{747}$－ 84	4774 57	48．34	48.54	48.94	49.44	49.84	51.74
14	－	－	二	二	－	53.34	－ 59.04	59.54 53.44	59 52.59 529	59.84 53.14	59.64 58.74	59.69
	＝	二	－	－		43.89	4.84	${ }_{5}^{53} 584$	${ }_{45}{ }^{\text {\％}}$ ， 34	${ }_{45}^{5} \cdot 14$	44．44	52.64 44.04
16	二	－	－	二	$42 \cdot 84$	37.89	38.44	38.74	38.94	39.14	$39 \cdot 14$	39.49
18	－	－	－	－	$\underline{-}$	$43 \cdot 34$ 50.84	$45 \cdot 12$ 52.69	45.34 52.24	45．54	48.04	477.24	47.64
19	二	－	－	－		$40 \cdot 14$	49.84	49.74	${ }_{49}{ }^{52} 94$	52.84 48	52.89 48	53.64 48.09
${ }_{21}^{20}$	－	－	二	二	$40 \cdot 34$ $44 \cdot 34$	41.14	41.14	41.14	42.24	${ }_{41}{ }^{4} \cdot 14$	${ }_{41}{ }^{\circ}{ }^{\circ 9}$	48.09 41.54
${ }_{22}^{21}$	二	二	－	－	44.34	${ }_{41} 45 \cdot 34$	45．84	46.54	46.94	47.34	$48 \cdot 34$	48.99
23	－	－	二	－		${ }_{41}{ }^{41} \cdot{ }^{44}$	42．844	42.74 42.94	$4{ }^{42} 32$	42.59	42.84	$42 \cdot 74$
－ 24	$=$	二	－	二	46.44	${ }^{47}{ }^{17} 14$	47.50	47%	${ }_{46} 4814$	43．14 46.64	$43 \cdot 74$ 46.64	44.64 46.24
	二	二	－	＝	42．04	39 40.54 1	40.84	41.34	$40 \cdot 74$	40.94	415	41.44
${ }_{27}^{26}$	二	－	－	－	$\stackrel{4204}{-}$	42.84 52.14	43.14 53.34	43.04	43.84	44.64	45.44	$46 \cdot 34$
	－	－	－	－	二	$\stackrel{52.14}{524}$	$53 \cdot 34$ $52 \cdot 44$	53.44 63.34	53.14 52.64	52.84	${ }_{5}^{53.14}$	53.34
29 30						48.34 43.84	47.34	${ }_{48} \cdot 14$	$48 \cdot 34$	${ }_{48}{ }^{2} 04$	${ }_{47}{ }^{62} \cdot 64$	47．14
						43.84	44.54	44．20	$43 \cdot 84$	$43 \cdot 64$	43.64	43.84
Millimetros	－	－	－	－ 7	$743 \cdot 97$	$743 \cdot 86$	744.66	744.77	744.74	744.84	$745 \cdot 07$	$745 \cdot 27$
nehes	－	－	－	－ 2	29．291	$20 \cdot 286$	$29 \cdot 318$	29．322	29＇321	29.325	$20 \cdot 334$	29.342
$\left.\begin{array}{l} \text { Corrected } \\ \text { or } 32^{\circ} \text { Fahr. } \end{array}\right\}$	－	－	－	－ 2	$29 \cdot 256$	29＇263	29’267	29．268	$29 \cdot 274$	29＊270	29＇277	$29 \cdot 278$
Oscillations	－			－	－	$0 \cdot 000$	$0 \cdot 004$	$0 \cdot 005$	0.011	$0 \cdot 007$	0.014	0.015

Lowest at 32° Fahrenheit， $28^{\circ} 396$ inches；highest， $29 \cdot 664$ inches．
Lowest at 32° Fahrenheit， 28.710 inches；highest， $29 \cdot 865$ inches．

Fort Confidenoe－continued．
Abstract of Kourly Observations made during the months of March and April 1849.

Range， $1 \cdot 155$ inches
i) Fort Confidence-continued.

Fort Confidenoe-continued.
Mean height of the Barometer for Seven months, and montily Means for the several hours of Observation,

Months.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon.
1848-8. October	In.	$\underline{\mathrm{In} .}$	$\xrightarrow{\text { In. }}$	In.	$\underline{\text { In. }}$	${ }_{28^{\circ} \cdot 691}$	$\operatorname{In}_{28^{\circ} 783}$	${ }_{28^{\circ} \cdot 768}$	${ }_{28}{ }^{\mathrm{In}} \cdot \mathrm{76}$		${ }_{28} \mathrm{In}_{888}$	$\operatorname{In}_{28 \cdot 780}$
November -	-	-	-	-	-	8'938	8.940	8.054	8.957	$8 \cdot 661$	8.680	8•963
December -	-	-	-	-	-	9'009	9.001	8•993	8.993	8.997	8.997	00002
January -	-	-	-	-	-	9'180	9129	9'128	9'135	$0^{\prime} 169^{\prime}$	9•140	9'139
February -	-		-	-	-	9'202	9•200	9.201	9'208	9•208	9•207	9'208
March -	-	. -	-	-	-	9.005	9'000	9'001	8.997	8.992	8.988	8•989
April -	-	-	-	-	-	9'263	9'267	${ }^{9 \cdot 268}$	3•274	9•270	$9 \cdot 277$	9•278
Means	-	-	-	-	-	$29^{\circ} 033$	29.046	$29^{\circ} 045$	29.016	29.042	29.051	$29^{\circ} 052$
Oscillation -	-	-	-	-	-	-	$0 \cdot 006$	$0 \cdot 005$	0.008	0.002	0.011	0.012

corrected for capacity, capillarity, Mean deviation from Standard, and for temperature 32° F'alurenheit.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt.	Means.
$\begin{gathered} \mathrm{In} \cdot \\ 28^{\circ} 742 \end{gathered}$	$\operatorname{In}_{28^{\prime} \cdot 786}$	$\operatorname{In}_{28 \cdot 778}$	$\operatorname{In}_{28^{\circ} 760}$	$\mathrm{In}_{28 \cdot 737}$	$\operatorname{In}_{28 \cdot 748}$	$\begin{aligned} & \text { In. } \\ & 28 \cdot 705 \end{aligned}$	$\operatorname{In}_{28} \cdot 740$	$\underset{28 \cdot 692}{\mathrm{In}}$	In.	$\stackrel{\text { In }}{\square}$	$\underline{\mathrm{In}}$.	$\operatorname{In}_{28^{\circ} \cdot 740}$
8.051	8'081	8.850	8.080	8.063	8.953	8.948	8.873	8.969	-	-	-	8.961
$0 \cdot 003$	9'000	$0 \cdot 008$	8'007	9.010	9.011	90013	9.014	9•016	-	-	-	$8 \cdot 009$
8'142	0.130	$0 \cdot 144$	$0 \cdot 140$	9•138	9•134	0'133	9•131	9•129	$29^{\circ} 145$	-	-	9'130
9•204	8'211	$0 \cdot 200$	9.208	$0 \cdot 211$	9'209	9•210	9•213	$9 \cdot 212$	$0 \cdot 209$	-	-	0•210
8'083	8.088	8.000	8.088	8'990	8.093	$8 \cdot 092$	8.983	8.800	8.998	-	-	8.091
$0 \cdot 280$	0.284	8'280	0.278	0.280	9.282	0.280	$9 \cdot 286$	0.280	0'278	-	-	9•277
$29^{\circ} 045$	$20 \cdot 040$	20.052	$20 \cdot 049$	29.047	29.047	$29 \cdot 040$	29.050	29.041	$29 \cdot 157$	-	-	$29 \cdot 048$
0.005	0.008	0.012	0.009	$0 \cdot 007$	0.007	0.000	$0 \cdot 010$	$0 \cdot 001$	-	-	-	0.008

FORT CONFIDENCE．
Abstract of Hourly Observations in the month of October 1848.

Day．	Centigrade Thermometer attached to Delcros＇s Barometer，											
Civil Time．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon，
	－	\bigcirc	。	－								
${ }_{2}^{1}$	三	二	二	－	二	二	二	二	二	二	－	二
4	二	－	二	二	二	二	二	二	二	二	二	二
${ }_{6}$	＝	二	二	ニ	二	－	二	二	二	二	二	二
${ }_{8}$	二	二	二	二	二	二	二	二	二	二	－	－
${ }^{9}$	＝	＝	二	二	－	二	10．4	10：3	${ }^{13} 1.4$	二		${ }_{11} 1.1$
11	＝	二	－	＝	－	4.6	4	${ }_{11} 10$	$117 \cdot 4$	$\overline{10} 0$	$\underline{16}$	${ }^{5} 12.4$
12	三	－	二	－	二	$9 \cdot 4$	15.8	$8 \cdot 6$		14.4		${ }^{13}$
14	－	－	－	－	－	－	7.6	－			${ }^{8} 112$	11．4
15 16	＝	二	二	－	－	二	$7{ }^{10} 4$	$9 \cdot 4$	－${ }^{9} \cdot 9$	${ }_{9}^{11} 7$	13：68	$\begin{array}{r}14.1 \\ 8.4 \\ \hline\end{array}$
17	－	－	\cdots	－	－	－	$9 \cdot 6$	$9 \cdot 6$	－	$12 \cdot 1$	$13 \cdot 4$	
19	－	二	二	二	－	$\stackrel{7}{12} 1$	$10 \cdot 8$	$\overline{14} \cdot 6$	$\underline{11} 1$	－	11.6	${ }^{10} 9$
${ }_{21}^{20}$	＝	－	二	9.4	二	二	${ }_{12}{ }^{\prime} 1$	12：6	14.6	13.5	13.4	10.7
22	－	－	－	－	－	6．4	${ }^{14} 4.1$	${ }_{16} 1.1$	${ }_{9}^{7} 9$	$7{ }^{10} \cdot 4$	${ }^{6} 2.0$	${ }_{10}^{11 \cdot 6}$
${ }_{24}^{23}$	こ	－	－	－	${ }_{9} \cdot 1$		${ }^{13.8}$	96．6	$10 \cdot 1$	${ }^{10} 106$	${ }_{11} 1$	${ }^{11} \cdot$
25	－	二	二	二	－	9.6	${ }_{11} 1.1$	${ }_{13} 13.6$	${ }_{10} 0^{\circ} 6$	11.6	$12 \cdot 6$	${ }_{13}{ }^{6} 6$
${ }_{27}$	二	二	$\overline{8} \cdot 6$	二	二	$\underline{10.6}$	${ }_{7}^{12} \cdot 6$	10.1 8.6	${ }^{9} 8.1$	${ }_{9}^{14.1}$	11.6	13＇6
${ }_{29}^{28}$	二	三	－	－	二	$9 \cdot 6$	${ }_{13} .1$	\bigcirc	${ }_{9}^{9.6}$	11.1	10.8	${ }_{13 \cdot 2}$
${ }_{30}^{29}$	二	三	二	二	ニ	$4 \cdot 6$	9.1 10.1	10.1 10.1	${ }^{11} \cdot 1 / 6$	11：8	$7 \cdot 6$ 10.6	${ }^{11} 1{ }^{1} \cdot 1$
31	－	－	－	－	－	$2 \cdot 2$	${ }_{13} \cdot 6$	$8 \cdot 6$	12.8	${ }_{6}{ }^{1}$	$11 \cdot 1$	$11 \cdot 1$
Hourly Means	－	－	$8 \cdot 6$	$9 \cdot 40$	$9 \cdot 10$	8．57	10．36	10．43	11.00	11.38	10.88	$11 \cdot 12$
Fahr．Scale	－	－	47＇43	48．92	48：38	478	$50^{\circ} \cdot 66$	50%	5i＇80	$5{ }^{5} \cdot 48$	5i：58	52.02

FORT CONFIDENCE．
Abstract of Hourly Observations in the month of October 1848.
corrected for Mean deviation from Paris Standard Thermometer，-0.38 ．

1.	$\cdots 2$	3.	4.	5.	6.	7.	8.	0.	10.	11.	Midnt	Means．
\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
二	－	－	＝	＝	二	－	－	二	二	－	＝	
＝	－	＝	－	二	二	二	二	二	二	＝	二	
二	二	三	二	－	二	－	二	－				
11.	14.0				二	二	＝	$0 \cdot 1$	二	二	二	11.9
${ }_{3} 1.8$	7\％	${ }_{14}$	10．4	92．4	4.6	三	8．6	$\underline{9}$				${ }_{8}^{11988}$
72．5	10^{14}	ב	${ }^{16 \cdot 2}$	$12 \cdot 6$	二	ב	－	$\overline{12} \cdot 9$	－	－	ニ	－${ }^{12} 18.83$
二	二	$\overline{9} \cdot 6$	二	二	二	こ	二	－	二	－	三	7.05 9.95
$12 \cdot 4$	$12 \cdot 8$	${ }_{1}^{18 \cdot 1}$	8.5	二	－	${ }_{12} 12$	二	－		－	二	${ }^{11} 1979$
$10 \cdot 1$		7.6	－	$11 \cdot 6$	－			$9 \cdot 6$				10.45
12	$10 \cdot 6$	$5 \cdot 4$	$4 \cdot 1$	4.6 ${ }_{1}{ }^{3} \cdot 6$	${ }^{16} \cdot 1$	8：66	8.8 14.1	${ }^{15} 4.0$	$\underline{14.6}$	$\underline{14.2}$	$\underline{13} 8$	10：39
18：5	11.8	10.6	11.7	${ }_{12}{ }^{2}$	12.1	11.4	12.6	13.6	－	－	－	12.39
15：8	${ }_{11} 1$	${ }_{146}^{76}$	11.6 10.6	${ }_{13}{ }_{12} \cdot 1$	${ }_{1}{ }_{18 \cdot 1}$	－11．18	$10 \cdot 8$ 14.6	10.8 15.1	二			${ }^{9} 1.77$
13.1	17.1	10.4	${ }^{11} \cdot$	${ }_{12}^{12} 1$	${ }_{13}^{13} 1$	8.6	$10 \cdot 6$	$10 \cdot 2$	－	－	－	11.70
14．4．	${ }_{9} 9$	$12 \cdot 1$	${ }_{8}{ }^{\circ} \cdot 6$	${ }_{13}{ }^{2} \cdot 8$	15.1	12.1	${ }_{16}^{12} \cdot 1$	${ }_{16}{ }^{13}$	二	－		12.50
17.9	＋10．6	${ }^{9} 1.6$	${ }^{9} 9.1$	${ }^{10.1}$	${ }^{10.6}$	13：4．	13．8	12.	二		二	111：39
19.	13：6	13：8	${ }^{13} \cdot 6$	${ }_{13} 18$	$10 \cdot 6$	$6 \cdot 9$	$10 \cdot 8$	$11 \cdot 6$	－	－		11.39
16．8	－ 18.6	${ }_{14}^{9.6}$	${ }^{12} 12.1$	${ }_{17}^{17} \cdot 1$	${ }^{9} 3 \cdot 2$	－${ }_{13}^{12 \cdot 6}$	${ }^{9} 9.4$	$10 \cdot 6$ 8.6	ニ	－	ㅡㅡㄹ	112．01
12.6	10.6	14.6	${ }_{13}{ }^{6}$	$9 \cdot 6$	13.6	${ }_{14}{ }^{14} 4$	14.6	14：6	＝	二	二	11． 48
11.61	${ }^{11} \cdot 35$	11.06	11.07	11.68	12．19	11．58	$12 \cdot 02$	12.29	14：60	14＇20	13：80	$11 \cdot 20$
52̊：90	$5{ }^{2} \cdot 4$	51．91	$5{ }^{\circ} \cdot 93$	$53^{\circ} \mathrm{O}$	63．94	52.84	${ }^{53} \cdot 64$	${ }^{5} 9$	58.28	57\％ 56	56.84	$5_{2}{ }^{\circ} 16$

Fort Confidence－continued．
Abstract of Hourly Observations in the months of November and December 1848.

$\frac{\text { Day. }}{\text { Civil Time. }}$	Centigrade Thermometer attached to Delcros＇s Barometer，											
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{-}$	$8 \cdot 1$	$1{ }^{\circ} \cdot 1$	$\stackrel{\circ}{9} \cdot 1$	$18 \cdot 6$	$\stackrel{\circ}{9} 1$	$1{ }^{\circ} \cdot 6$	$\stackrel{\circ}{9} 1$	$\stackrel{\circ}{9} 8$
$\stackrel{1}{2}$	－	－	二	－	81	$\underline{1}$	$9 \cdot 1$	-9.1	$8 \cdot 1$	${ }^{18 \cdot 1}$	10.4	12.1
3	－	＝	$\underline{-}$	二	－	－	2.8	$17 \cdot 2$	10.1	7.6	10.6	11.1
${ }_{5}^{4}$	＝	－	－	＝	－	－	－ $0 \cdot 1$	1.8	${ }_{2}^{2} \cdot 1$	$5_{5} \cdot 1$	-4.1 6.4	${ }^{5} 1$
6	＝	－	二	－	$7 \cdot 6$	$8 \cdot 1$	－8：2	$5 \cdot 6$	${ }_{5}{ }_{4}$	3.7	7.0	${ }_{2 \cdot 6}$
7	－	－	－	－	$\underline{-}$	81	$2 \cdot 1$	4.8	$9 \cdot 2$	${ }_{0} \cdot 6$	$11 \cdot 1$	$8 \cdot 4$
8	－	－	－	－	－	－		$7 \cdot 8$	12.4	12.4	$12 \cdot 3$	9.7
${ }_{10}^{9}$	－	－	二	＝	－	$2 \cdot 1$	0.6 10.3	${ }_{7} 9 \cdot 2$	8.4 8.8	${ }_{9}{ }_{9}^{*} 4$	${ }_{7}^{5 \cdot 2}$	－0．6
11	－	－	－	－	－	-6.4	1.8	$-2 \cdot 8$	$3 \cdot 6$	$5 \cdot 1$	2.7	$6 \cdot 0$
12	－	－	－	－	－	－	$2 \cdot 1$	$2 \cdot 8$	$6 \cdot 8$	8.6	$7 \cdot 4$	$0^{6} 6$
13	－	－	－	－	$2 \cdot 1$	${ }^{6} 1.1$	$5 \cdot 4$	13.3	8.4	$8{ }^{8.8}$	$8 \cdot 8$	13.4
14 15	二	－	二	－	二	$1 \cdot 1$	$6 \cdot 3$ $1 \cdot 3$	7.5 9.6	$5 \cdot 3$	${ }_{4}^{5 \cdot 6}$	${ }_{7}^{2: 6}$	3.6 9.9
16	－	－	－	－	$4 \cdot 6$	$7 \cdot 3$	$11 \cdot 2$	$11 \cdot 1$	$12 \cdot 1$	$13 \cdot 8$	$11 \cdot 1$	$15 \cdot 1$
17	－	－	－	二	7.8	－	$10 \cdot 1$	8.8	$9 \cdot 3$	$10^{\circ} 5$	10.9	$11 \cdot 2$
18 19	－	－	二	二	$\underline{6}$	$\underline{12 \cdot 6}$	${ }_{5}^{4} \cdot 1$	$8 \cdot 9 \cdot 1$	$14 \cdot 1$ 9.5	$\begin{array}{r}14.2 \\ 9.3 \\ \hline\end{array}$	${ }_{9}^{4.6}$	15.8 10.2
20	二	二	－	二	－	－	$4 \cdot 2$	8.8	${ }_{11} \cdot 1$	$11 \cdot 1$	$9 \cdot 3$	${ }_{8}{ }_{8}$
21	－	－	－	－	－	$7 \cdot 6$	$7 \cdot 2$	$10 \cdot 1$	10.6	$10 \cdot 1$	$6 \cdot 1$	$9 \cdot 0$
22	－	－	－	－	－	－	$11 \cdot 3$	$13 \cdot 6$	$10 \cdot 6$	$13 \cdot 1$	$13 \cdot 2$	11.6
${ }_{24}^{23}$	二	二	二	二	二	$4 \cdot 1$	$\begin{array}{r}11.8 \\ 9.8 \\ \hline 8\end{array}$	${ }_{9} 12 \cdot 0$	$\begin{array}{r}14 \cdot 1 \\ 9.1 \\ \hline 1\end{array}$	${ }_{9} 9 \cdot 4$	8.0 9.4	${ }_{13}{ }^{4} \cdot 6$
25	12	11	$7 \cdot 6$	$3 \cdot 2$	$1 \cdot 8$	$-0 \cdot 8$	9.5	$8 \cdot 6$	${ }_{4} \cdot 6$	$5 \cdot 1$	$3 \cdot 6$	-1.2
26	－	－	－	－	－	－	－	-4.4	$10 \cdot 3$	$3 \cdot 5$	$3 \cdot 4$	$8 \cdot 8$
${ }_{28}$	－	－	－	－	二	二	$-5 \cdot 0$	3.3 5.6	$4 \cdot 4$	$11 \cdot 3$ $7 \cdot 6$	12.4 3	${ }_{5}^{4} 5$
29	－	－	－	$\underline{\square}$	－	－	－3．9	5.0 8.0	$6 \cdot 1$	${ }^{4} \cdot 6$	$7 \cdot 1$	${ }^{5} \cdot 6$
30						$5 \cdot 8$	$3 \cdot 9$	8.0	$7 \cdot 6$	$2 \cdot 6$	$3 \cdot 1$	4.6
Means	12.1	11.6	$7 \cdot 6$	$3 \cdot 2$	$5 \cdot 51$	4.97	$5 \cdot 16$	$7 \cdot 62$	$8 \cdot 11$	$8 \cdot 19$	$7 \cdot 62$	8.18
$\begin{aligned} & \text { Fahr. } \\ & \text { Scale . } \end{aligned}$	－	－	－	－	－	－	41.29	$45^{\circ} \cdot 72$	$4{ }^{\circ} \cdot 60$	$46^{\circ} \cdot 74$	$45^{\circ} 72$	$46^{\circ} 68$
	－	$\stackrel{\circ}{-}$	$\stackrel{\circ}{-}$	\bigcirc	응	－	$1{ }^{\circ} \cdot 12$	$8{ }^{\circ} \cdot 44$	39．92	$3{ }^{\circ} \cdot 50$	${ }^{3}{ }^{\circ} \cdot 44$	$38 \cdot 92$
8	－	－	－	－	－	20.84	14.18	$28.41)$	46.04	${ }^{39} 38$	33．98	${ }_{37} \cdot 58$
3	－	－	－	－	－	－	11.48	$31 \cdot 28$	31.28	$32 \cdot 18$	37.58	44.04
4	－	－	－	－	－	24.98	41.72	$3{ }^{3} \cdot 16$	29.48	${ }^{3} \cdot 174$	30．38	33.98
${ }_{5}^{5}$	＝	－	－	$=$	－	16.88 7.88	39．38	${ }^{33}{ }^{2} \cdot 26$	34．88	30.38 30.32	31.46 31.82	${ }_{32}^{27.32}$
7	－	－	－	$=$	－	$\underline{-}$	${ }_{35} \cdot 78$	39.38	${ }_{38} \cdot 12$	${ }^{31} \cdot 28$	${ }_{41} \cdot 72$	${ }_{35} \cdot 66$
8	－	－	－	－	－	－	15.98	27.68	31.64	43.88	40.28	$40 \cdot 28$
9	＝	二	－	＝			${ }^{4} \mathbf{4} 28$	${ }_{23}{ }^{7} 72$	42.44	${ }_{3}^{38}{ }^{3} 48$	40．28	40.28 30.98
10	＝	二		＝		20.12 26.96	30．32	33.08 29.12	36.14 31.28	39.56 31.82	39.20 39	
12	－	－	－	－	${ }^{23 \cdot 18}$	26.96 12.92	$34 \cdot 88$ 41.18	${ }^{29} \cdot{ }_{4} \cdot 12$	$31 \cdot 28$ 29	31.82 41.18	39.02 45.32	24.08 42.98
13	－	－	－	－	－	${ }^{20}{ }^{\circ} 78$	42.44	${ }^{37} \cdot 58$	25.88	32.36	${ }^{35} 5$	${ }^{35 \cdot 78}$
14	$=$	－	＝	二	二	$20^{\circ} 48$	32．90	$36 \cdot 14$ 36.50	37.58 40.64	30.56 33.44	$32 \cdot 36$ 39.56	${ }^{39} \cdot{ }_{3} \times 65$
15	二	－	二	－	二	－	16.88	${ }_{42}{ }^{36} 98$	${ }_{30}{ }^{40} 02$	${ }_{44} 4.78$	${ }_{4}{ }^{\circ} 52$	${ }_{38}{ }^{35} 12$
17	－	－	－	－	－	18.28	2642	$42 \cdot 44$	36.32	36.32	29.48	34．88
18	－	－	－	－	$4 \cdot 28$	15.08	$22 \cdot 46$	31．28	$23^{\circ} 18$	18.50	$23 \cdot 18$	25.88
19 20	－	－	二	－	－	$13 \cdot 28$	33.08 25 ${ }_{2} \%$	${ }_{42}^{42} \cdot 98$	33.26 $50 \cdot 18$	41.00 44.78	41.00 42.26	$40 \cdot 10$ 45
21	$42 \cdot 62$	$41^{\circ} 00$	$47 \cdot 12$	42．80	36．50	30．38	${ }_{35}{ }^{4} 42$	${ }^{38} \cdot 48$	${ }_{38}{ }^{12} 12$	$40 \cdot 64$	33.08	28.94
${ }_{22}^{22}$	－	－		－	－	－	28.04	${ }^{38.48}$	${ }_{25} 288$	388	39.38 31.28	33．08
${ }_{24}^{23}$	－	二	二	二	－	二	18．68	36.32 42.08	27.32 24.08	＋30．28	31.28 34	${ }_{41} 3.72$
25	－	－	－	－	－	－	$33 \cdot 80$	$51 \cdot 98$	$39 \cdot 56$	36.86	$41 \cdot 72$	38.48
26	－	－	－	二	－	－	23．00	$42^{\prime} \cdot 6$	${ }^{35} \cdot{ }^{\circ} \cdot 24$	39.56	$42^{2} 26$	$42^{42.98}$
$\stackrel{27}{27}$	二	二	＝	＝	二	－	29.28 29.12	24.08 47.12	46.04 34.85	42.08 45.68	$41 \cdot 72$ $46 \cdot 04$	$4{ }^{40} 58$
29	－	－	－	－	－	－	37.58	45.14	${ }^{40} 6.64$	44.78	37.04	59.72
30 31	－	二	－	－	－	二	23.00 18.68	35.78 40.28	34.16 38.66	$36 \cdot 32$ 39	$43 \cdot 52$ 41.36	47.30 42.08
Mcans	42.62	41.00	47•12	$42 \cdot 80$	$21 \cdot 32$	19.22	26.92	36．95	34.96	37.06	$37 \cdot 52$	37.88

The temperature observed in December is reduced to 32° Fahrenlcoit，

Fort Confidence－continued．
Abstract of Hourly Observations in the months of November and December 1848.

rrected for Mean do												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．
$10 \cdot 6$	14．6	$\stackrel{\circ}{\circ} \cdot 1$	$1{ }^{\circ} \cdot 1$	${ }_{9} 91$	$17 \cdot 6$	$1{ }^{\circ} \cdot 6$	$10^{\circ} \cdot 6$	$1{ }^{\circ} \cdot 1$	－	－	－	${ }^{12} \cdot 17$
14.1	$13 \cdot 2$	$15 \cdot 1$	$11 \cdot 6$	$11 \cdot 4$	12.4	$15 \cdot 1$	$12 \cdot 1$	$13^{6} 6$		－		11.72
11.6	10.1	$10 \cdot 6$	$9 \cdot 4$	$8 \cdot 1$	$11 \cdot 2$	$13 \cdot 3$	${ }^{14.1}$	9.44				10.48
$7 \cdot 1$	5.8	11.0	78.6	${ }_{9}^{4} 1$	11.4	8.1 11.8	10.1	${ }_{11}^{12 \cdot 6}$				${ }_{8}^{6.07}$
$10^{\circ} 6$	8.4	$8 \cdot 1$	8.8 10.6	9.6 7.1	12.6 3.6 12	11.8 13.8 18	$\begin{array}{r}12.1 \\ 0.8 \\ \hline\end{array}$	${ }_{12} 12$	－			$7 \cdot 40$
${ }^{3.6}$	$7{ }^{7}{ }^{4}$	8.6 10.0	10.6 9.6	7.1	3.6 11.4	12.1	$10 \cdot 4$	10.6	－			$9 \cdot 49$
$\begin{array}{r}16.2 \\ 9 \\ \hline 15\end{array}$	10.1 $0 \cdot 2$	10.0 12.2	19.2 11.7	13.1	88.0	${ }_{7} \cdot 3$	$4 \cdot 1$	$9 \cdot 4$				$9 \cdot 94$
$10 \cdot 1$	$8 \cdot 8$	$10 \cdot 8$	14.8		$16^{\circ} 6$	14.2	$10 \cdot 3$	$12 \cdot 8$	$15 \cdot 1$			$9 \cdot 31$
8.8	3.4	7.4	$\stackrel{12.2}{7.2}$	14.6 6.4	15.6	${ }_{15} 1.8$	$5 \cdot 4$	5.0 5.1	2．1	$1 \cdot 6$		$\stackrel{8}{3.25}$
5.4	$3 \cdot 2$	$5 \cdot 4$	$7 \cdot{ }_{9} \cdot \frac{1}{4}$	${ }_{6}^{6.1}$	1．6	1.4 12.1	4.4	5.1 8.7	$5 \cdot 2$	－		$7{ }_{7}$
$8 \cdot 8$ $10 \cdot 6$	12.4	$\underset{ }{9} 14 \cdot 1$	10.7	14.1	－18．2	${ }^{19} 9$	$17 \cdot 1$	10．2	－	二		11.44
3.8	4.7	$5 \cdot 6$	$6 \cdot 1$	$7 \cdot 1$	$9 \cdot 9$	10.7	$5 \cdot 1$	$9 \cdot 8$	$8 \cdot 8$	－		${ }^{6.08}$
	19．1	12.4	8.4	$9 \cdot 1$	$9 \cdot 2$	77	$9 \cdot 7$	7.1				${ }^{8.63}$
$10 \cdot 3$	14.5	$14 \cdot 6$	13.8	12.6	11.8	14.8	13.9	${ }_{19}^{13.2}$				${ }_{13}{ }^{12}$
${ }_{12} 12 \cdot 1$	16.7 11.1	$\begin{array}{r}16.1 \\ 8.6 \\ \\ \\ \hline\end{array}$	${ }_{4}^{19 \cdot 1}$	${ }^{12} 12$	17.6 12.7	$15 \cdot 1$ 11.8	16.4 10.1	19.1	10.6	－		10.32
$10 \cdot 2$	10.2	$11 \cdot 1$	$12 \cdot 6$	13.4	$5 \cdot 6$	6.1	3.4	$12 \cdot 5$	－			$9 \cdot 11$
$9 \cdot 4$	4.8	8．2	$9 \cdot 1$	$3 \cdot 1$	$9 \cdot 0$	$5 \cdot 4$	$8^{\circ} 4$	$10^{\circ} 6$	－			8.07
$8{ }^{8} 0$	16.4	$9 \cdot 2$	13.2	$9 \cdot 1$	8.4	$9 \cdot 8$ $7 \cdot 8$	${ }_{9}^{11} 4$	${ }_{7} 12 \cdot 4$			－	${ }_{11} \cdot 78$
7.6	${ }_{8}^{18.6}$	14.9	$11 \cdot 1$	10%	11.4	12.6	$11 \cdot 1$	10.0	－	－	－	10.05
8.2	$2 \cdot 1$	$6 \cdot 3$	7.0	$7 \cdot 6$	$3 \cdot 6$	$6 \cdot 0$	$5 \cdot 3$	$7 \cdot 1$	$9 \cdot 8$	$1 \cdot 8$	$\cdot 6$	7.02
4.2	$5 \cdot 8$	$7 \cdot 4$	6.6	6.8	$7{ }^{7}$	${ }^{8 \cdot 6}$	${ }^{7 \cdot 6}$	$2 \cdot 6$	－14．6		－	5.84 8.39
11.1	${ }^{4} \cdot 6$	${ }^{6.4}$	7.6	$12 \cdot 9$	10.6	${ }_{9}^{9 \cdot 6}$	11.3 9.6	${ }^{10} 4.4$	14.6	$13 \cdot 8$		$8 \cdot 19$
${ }^{12.5}$	7.0	17.9 7	$7 \cdot 6$	9.6	11.4	11.6	11.6	$0 \cdot 1$	－	－	－	6.30
－0．3	$2 \cdot 0$	$4 \cdot 8$	4.4	10.6 9.6	6.8 7.6	-0.4 7.6	10.4 1.6	9.6 4.8	－			4.81
2.6	11.1	$2 \cdot 8$	62	9	76	16						
8.87	$9 \cdot 44$	$9 \cdot 49$	10．00	0.59	$10 \cdot 63$	$10 \cdot 46$	$9 \cdot 35$	$0 \cdot 58$	$9 \cdot 46$	5•73	$4 \cdot 6$	$8 \cdot 63$
$4{ }^{\circ} \mathrm{i} \cdot 97$	$\stackrel{\circ}{48} \cdot 99$	$\stackrel{\circ}{49} 08$	$5{ }^{50} \cdot 00$	49.20	51.12	${ }_{50}{ }^{\circ} \mathrm{S3}$	$4{ }^{\circ} 8.83$	$\stackrel{\circ}{49} \cdot 24$	－	－	－	$47 \cdot 53$
${ }^{3} 7 \cdot 40$	24.98	$\stackrel{\circ}{30} \cdot 92$	$4{ }^{\circ} \cdot 88$	${ }^{\circ} 4.78$	$43 \cdot 34$	$\stackrel{\circ}{4} \cdot 88$	$42 \cdot 44$	$4{ }^{\circ} \cdot 48$	$\stackrel{\circ}{46} \cdot 9 \cdot 4$	－		$\stackrel{\circ}{37} \cdot 14$
${ }_{20}{ }^{3} \times 88$	$3{ }^{24 .} 94$	$30 \cdot 56$	29.84	38.66	$46^{\circ} \cdot 04$	$4{ }^{4} \cdot 9 \cdot 9$	38.48	43.52				34.56
37.94	42.08	44.24	${ }^{46} \cdot 76$	37.22 410.46	${ }_{46}{ }_{4} \cdot 98$	$37 \cdot 94$ $47 \cdot 48$	41.72	$46 \cdot 76$ $36 \cdot 86$				$37 \cdot 89$ 37
${ }_{31}^{40} \cdot 2.28$		${ }_{26} 3.78$		41， 3.88	28.04	43.90	10.58	38.48	二	二		$30 \cdot 01$
33.80	$35^{\circ} \cdot 78$	41.18	41.18	37.76	$42 \cdot 26$	45.68	15.08	15.08	－	－		${ }_{31}{ }^{1} 30$
$34 \cdot 16$	36.68	39.38	45.68	37.68	42.08	42.80	41.00	40.64	－	－		${ }_{3}^{3} \cdot{ }^{3} \cdot 76$
$40^{\circ} 28$	${ }_{49}^{49} 10$	45.32	$4{ }^{4} \cdot 2.2$	39 42.38 4	39.38 $42 \cdot 98$	15.08 51.98	43.88	40．28	$\underline{\square}$	－		38.56
36.32 34.52	43．08	35 43	－ 4.24	$3{ }^{46} 68$	$39 \cdot 56$	36.86	14.72	${ }^{35} \cdot 24$		－		$34 \cdot 88$
11.12	$27^{\circ} 68$	35.60	38.48	39.38	38．66	43.88	20.84	39.74 59.88				31.51 41
$40^{\circ} 46$	40.28	44.78	44.86	52.16	${ }^{40} 0 \cdot 28$	44．06	${ }_{29}{ }_{29} \cdot 28$	52．88				${ }_{37} 9.04$
$4.44^{\circ} 06$ 36.50	42.98 38.48	43.88 40.28	51．08	41.18	$40 \cdot 28$ $38^{\prime} \cdot 66$	${ }_{35} 3.06$	41.54	${ }_{50.00}^{35}$				$37 \cdot 01$
42.08	46.22	42.98	50.18	44.06	41.18	42.80	40.28	38.12				39．02
32.00	36.32	43．52	45.32	39.56	$4 \cdot 60$	42.44	41.72	37.40	${ }_{20.68}$			${ }_{32 \cdot}{ }^{3} 16$
${ }^{36}{ }^{6} 68$	${ }^{33} \cdot 26$	${ }_{3}^{33 \cdot 44}$	45.68	31.64 36.68	${ }^{37}{ }^{1} \cdot 10$	34.88 40.28	26.78 38.48	${ }_{25}{ }_{2}^{30} 88$	${ }_{3}{ }_{3}^{27} 168$			$29 \cdot 11$
36.86 42.26	36.86 39.38	＋33．08	36.68 42.08	${ }_{47} 36.68$	${ }_{50} 41.90$	${ }^{4} 3.78$	${ }_{43} \cdot 10$	$47 \cdot 18$	$-$	－		40.81
47.48	45.68	48.92	51.62	48.38	52.52	$4{ }^{49 \cdot 64}$	$45^{\circ} 68$	$40 \cdot 46$	39．38	${ }_{4} 4.24$	$48 \cdot 74$ 34.88	${ }^{45} 5 \cdot 34$
38.30	42.98	40.28	42.98	$40^{2.28}$	38．48	${ }_{33}^{41} \cdot 18$		${ }_{36} 47.68$	38.48	33.68		${ }_{37} \cdot 12$
$39 \cdot 38$ 47	$30 \cdot 38$ 40.28	51.08 37 88	$45 \cdot 68$ 37	${ }_{45}^{36} \cdot 68$	35.78 42.08	33.98 38.12	43.00 41.00	31.28 31	－			$36 \cdot 00$
40.82	30.38	37.76	42.08	34.52	38.84	${ }^{38} 8.12$	$40^{\circ} 64$ 49.28	39.38 47	46．04	－		$31 \cdot 60$ 42.96
38.84 38.48	$42 \cdot 26$ 44.60	$47 \cdot 48$ $47 \cdot 30$	43.52 49	$47 \cdot 84$ $43 \cdot 70$	46.58 46.04	35.78 45.68	＋49．28	46.79	4604			42.31
38.48 42	44.28 40	47 46.24	48．56	${ }_{4}{ }^{4} \cdot 68$	45.32	43.52	48.56	47.30	47：30	－		41.84 4168
40.82	40.82	47.48	$47^{4} \cdot 30$	48.20	60.98 52.52	53.78 50.00	51.08 52.34	52.52 15.80	50.72 49.64			46.38 46
51.08 49.46	519．28	${ }_{51}^{52 \cdot 62}$	51.08 58.34	50.54 50.18	－${ }_{44}$	$48 \cdot 20$	${ }_{4}{ }^{52} \cdot 52$	${ }_{37} \cdot 76$	${ }_{43}{ }^{6} 52$	－		$43 \cdot 29$
42.62	$41 \cdot 18$	43.88	44.42	53.24	$46^{\circ} \cdot 1$	45.50	$47 \cdot 48$	48．38	65．94			$43 \cdot 14$
38.42	$38 \cdot 97$	41.49	44.54	$42 \cdot 13$	$43 \cdot 18$	$41 \cdot 79$	$39^{\circ} 23$	$39 \cdot 73$	43.34	40.46	41.81	$38^{\prime} 29$

and corrected for deviation from Paris Standard Thermometer

Fort Confidence－continued．
Abstract of Hourly Observations in the months of January and February 1849.

Fort Confidence－continued
Abstract of Hourly Observations in the months of January and February 1849.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{for mean deviation from Paris Standard Thermometer，and reduced to Fahrenheit Scale．} \\
\hline 1. \& 2. \& 3. \& 4. \& 5. \& 6. \& 7. \& 8. \& 9. \& 10. \& 11. \& Midnt． \& Means． \\
\hline \(48^{\circ} \cdot 6\) \& \(39 \cdot 4\) \& \(48 \cdot 2\) \& \(4{ }^{\circ} \cdot 6\) \& 54.0 \& \(5{ }^{\circ} \cdot 1\) \& 58.1 \& 58.8 \& \(49 \cdot 3\) \& \(4{ }^{\circ} \cdot 1\) \& 58．3 \& \({ }^{\circ} 0^{\prime} 3\) \& \(49 \cdot 31\) \\
\hline \(47 \cdot 3\) \& \(49 \cdot 6\) \& 58.4 \& 50.9 \& 55.0 \& 53.8 \& 51.4 \& \(55 \cdot 0\) \& \({ }_{55}{ }^{\circ} 6\) \& \(56 \cdot 1\) \& \(\bigcirc\) \& \& \({ }_{50} 9.40\) \\
\hline \(55 \cdot 9\) \& 52.0 \& 54.9 \& 56.5 \& 52.3 \& \(50 \cdot 2\) \& 53.8 \& 53.1 \& 54.1 \& 53.8 \& － \& \& \(53 \cdot 70\) \\
\hline \& \({ }^{45} \cdot 7\) \& \(48 \cdot 4\) \& 47.5
48.0 \& 57.0
47.5 \& \(53{ }^{53} 4\) \& 48.6
89.9 \& \({ }_{23}^{53.2}\) \& 52．3 \& 52.9
40.1 \& \& \& \({ }^{47} \cdot 55\) \\
\hline \begin{tabular}{l}
36.9 \\
47 \\
\hline 8
\end{tabular} \& 454．19 \& \({ }_{34}{ }^{44} \cdot 1\) \& 48.0
39.9 \& \(47 \cdot 5\)
\(48 \cdot 5\) \& 43.5
36.1 \& 39.9
41.5 \& \({ }_{36}^{21.4}\) \& － 35.2 \& 40.1
39.9 \& \& \& 40.46 \\
\hline \(36 \cdot 7\) \& \(41 \cdot 2\) \& 34.9 \& \({ }_{35}{ }^{3} 6\) \& \(40 \cdot 3\) \& \({ }_{34} .9\) \& 38.5 \& \({ }_{88}{ }^{3} 8\) \& \(45 \cdot 3\) \& \({ }_{43}{ }^{3} \cdot{ }^{3}\) \& \& \& －36．34 \\
\hline \(36^{7}\) \& \(42 \cdot 1\) \& \({ }^{45 \cdot 3}\) \& 51.1 \& 51.1 \& \(42 \cdot 3\) \& \(49 \cdot 1\) \& \(49 \cdot 3\) \& 44.6 \& 44.2 \& \& \& \({ }_{43} \cdot 40\) \\
\hline 44．6 \& \(45 \cdot 7\) \& 45.7 \& \({ }^{45} 9\) \& 51.3 \& 54.7 \& 55.0 \& \(50 \cdot 7\) \& \(49 \cdot 1\) \& 48.4 \& \& \& 45.88 \\
\hline 40.3 \& \(40 \cdot 3\) \& \({ }^{40}{ }^{4} 6\) \& 41.7 \& \(34 \cdot 5\) \& 88.1 \& 31.6 \& 43.5 \& 37.6 \& 39.0 \& \& \& \(88 \cdot 17\) \\
\hline 28．4 \& 28．00 \& 33.8
36.8 \& 37．6 \& 37．6 \& 43．5 \& 40．3 \& \(4{ }^{4}{ }^{\circ} \mathrm{O}\) \& 34.5
48.4 \& 36．9 \& 41.2 \& \& \(37 \cdot 10\) \\
\hline ：39．8 \& \(37 \cdot 9\)
\(44 \cdot 1\) \& 36.3
42.1

4 \& \begin{tabular}{l}
$44 \cdot 2$

48

\hline

 \&

43.9

44

\hline
\end{tabular} \& 51.4

46.6 \& 50.2

$40 \cdot 3$ \& \& \& | 58.6 |
| :--- |
| 38.5 | \& － \& － \& $40 \cdot 71$

$43 \cdot 23$

\hline ： 32.7 \& 37.6 \& 39.0 \& $40 \cdot 1$ \& $47 \cdot 1$ \& $44 \cdot 4$ \& $40 \cdot 3$ \& 41.2 \& 38.7 \& $45 \cdot 7$ \& \& \& ${ }_{39} \cdot 63$

\hline ${ }^{36} 7$ \& $38 \cdot 5$ \& 41.4 \& $36 \cdot 7$ \& $34 \cdot 9$ \& $34 \cdot 0$ \& $35^{\circ} \cdot 2$ \& $40 \cdot 1$ \& $29 \cdot 8$ \& 33.8 \& \& \& $33 \cdot 99$

\hline $30 \cdot 4$ \& 28.9 \& $30 \cdot 6$ \& $28 \cdot 6$ \& $28 \cdot 8$ \& $38 \cdot 1$ \& $29 \cdot 8$ \& $30 \cdot 4$ \& 32.0 \& $36 \cdot 7$ \& \& \& $27 \cdot 62$

\hline 81.3 \& 31.8 \& 34.2 \& $40 \cdot 6$ \& 35.8 \& 36.7 \& $48 \cdot 9$ \& 42.1 \& 40.3 \& ${ }^{33} 3^{1} 1$ \& \& \& $33 \cdot 39$

\hline 46．8 \& $52 \cdot 9$ \& 48.6 \& $48^{\prime} 4$ \& $53 \cdot 2$ \& $48^{\circ} 0$ \& $47 \cdot 7$ \& $48 \cdot 7$ \& 51.1 \& 4775 \& \& \& $44 \cdot 56$

\hline 43．50 \& ${ }_{41} \cdot 0$ \& ${ }_{45}{ }^{9} 9$ \& ${ }_{42 \cdot 8}$ \& ${ }_{46}{ }^{35} 8$ \& 42.1 \& 44．6 \& 52．9 \& 54.0 \& 41 \& \& \& ${ }_{45} .61$

\hline ， $44 \cdot 1$ \& $44^{4} 4$ \& 41.2 \& $50 \cdot 7$ \& 54.0 \& 57.9 \& $63 \cdot 7$ \& $57 \cdot 9$ \& 57.9 \& $60 \cdot 8$ \& 57.9 \& $55 \cdot 8$ \& $51 \cdot 69$

\hline $45 \cdot 3$ \& $47^{1} 1$ \& 46.0 \& $45^{\prime} 7$ \& $42 \cdot 1$ \& $40 \cdot 6$ \& $40 \cdot 3$ \& $42 \cdot 4$ \& $45 \cdot 3$ \& 45.0 \& 41.5 \& 42.8 \& $43 \cdot 45$

\hline 43．3 \& 39.4 \& 51.1 \& 43．9 \& 38.7 \& 62.9 \& 5 \& ${ }^{46.8}$ \& 47.7 \& 52.2 \& \& \& ${ }^{45} 5 \cdot 07$

\hline $45 \cdot 7$ \& $41 \cdot 7$ \& $31 \cdot 3$ \& $35^{\prime} 6$ \& $35 \cdot 6$ \& $35 \cdot 6$ \& $33 \cdot 1$ \& 22.8 \& $25 \cdot 9$ \& $33 \cdot 1$ \& 33.4 \& 37.6 \& ${ }^{35} \cdot 74$

\hline ${ }^{32 \cdot 7}$ \& $42 \cdot 1$ \& $4{ }^{48}{ }^{\circ}$ \& ${ }_{47}^{45} \cdot$ \& | $43 \cdot 9$ |
| :--- |
| 44.8 | \& 44．00 \& ${ }_{4}^{46.6}$ \& ${ }_{4}^{46.9}$ \& ${ }^{47}{ }^{17} 1$ \& 53.1 \& 二 \& \& 39．91

\hline $45 \cdot 2$
37 \& $\stackrel{46}{ }{ }^{46}$ \& 41.0 \& ${ }_{41}{ }^{\circ} 5$ \& 42.8 \& 41.2 \& $44 \cdot 8$ \& 41.5 \& ${ }_{39}{ }^{49}$ \& ${ }_{47} 5 \cdot 5$ \& 二 \& － \& ${ }_{41} \cdot 65$

\hline 39．2 \& 33.4 \& 28.8 \& 27.0 \& 39.2 \& 33．4 \& 38.5 \& $41^{\circ} 4$ \& $40 \cdot 3$ \& 43.3 \& \& \& 34.05

\hline － $400^{\circ} 6$ \& ${ }^{43} \cdot 9$ \& 48.9 \& ${ }^{43}{ }^{\circ} \cdot 0$ \& 48.4 \& 48.4 \& 46.4 \& 48.9 \& 48.2 \& $55 \cdot 4$ \& － \& － \& 40.97

\hline － 876.9 \& $4{ }_{4}^{48} \cdot 7$ \& ${ }_{41}^{41} \cdot 2$ \& ${ }_{41}{ }^{42.6}$ \& 48.7

45 \& | 43 |
| :--- |
| 44 | \& 66.5

46.6 \& ${ }_{37}{ }^{43} 6$ \& ${ }_{41}{ }^{43} 7$ \& $42 \cdot 8$ \& \& \& $$
\begin{aligned}
& 43 \cdot 68 \\
& 43 \cdot 20
\end{aligned}
$$

\hline 40.79 \& 41.27 \& 41.96 \& 42.82 \& 4.4×23 \& $44 \cdot 45$ \& 45.25 \& 43.87 \& $43 \cdot 60$ \& $45 \cdot 18$ \& $46 \cdot 46$ \& $49 \cdot 12$ \& 41.77

\hline $20 \cdot 1$ \& 36.3 \& $34 \cdot 9$ \& 34.8 \& 38.5 \& 48.0 \& $41^{1} 7$ \& 39.9 \& $32 \cdot 7$ \& 32.9 \& － \& － \& 32.85

\hline 30．7 \& \& 37．4． \& 31.8 \& ${ }_{41} 36.5$ \& ${ }^{42} \times 1$ \& \& 38．8 \& 38．8 \& ${ }_{51}^{37.4}$ \& \& \& 33＇28

\hline 35．8 \& 28.8
45.0 \& $33 \cdot 8$
$46 \cdot 4$ \& $4{ }^{45} 5$ \& 41．4 \& 47.5
48.9 \& 58.4
51.8
51 \& ${ }_{46}{ }_{4}{ }^{6} \cdot 6$ \& ${ }^{44} 56.6$ \& 51.4
49.8 \& 二 \& \& 38.88
42.00

\hline 39.0

44.8 \& \& \begin{tabular}{l}
$46 \cdot 4$

54.0

\hline

 \&

45

\hline 507

50
\end{tabular} \& ${ }^{45}{ }^{4} \cdot 0$ \& $48 \cdot 9$

44.6 \& 51.8
53.1 \& ${ }_{37}{ }^{46} \cdot 4$ \& 53.6
49.3 \& ＋49．88 \& \& \& ${ }_{42 \cdot 53}^{42}$

\hline ${ }_{4} 4.9$ \& $47 \cdot 5$ \& 41.9 \& 44.8 \& 42.8 \& $48^{\cdot 2}$ \& $4{ }^{4} \cdot 2$ \& 42.8 \& 50.0 \& 52.5 \& \& \& ${ }_{40}{ }^{8}{ }^{2}$

\hline 41.2 \& 44.2 \& 40.5 \& $39 \cdot 4$ \& $43^{4} \cdot 0$ \& 42.1 \& 49.3 \& 43.0 \& 39.0 \& 43.2 \& $48^{\circ} 0$ \& \& 38.36

\hline ${ }^{46}{ }^{6} 6$ \& 46.8 \& $48^{\circ} 2$ \& 48.9 \& 53.6 \& 50.7 \& 47.1 \& 46.9 \& $4{ }^{48} 7$ \& 46.9 \& \& \& 43.53

\hline 38.8
39.7 \& 43.2
43.9 \& $43^{\circ} 0$
41.2 \& $43 \cdot 2$
49.6 \& 43.0
50.0 \& 45.0
44.2 \& 45
415

4 \& \begin{tabular}{l}
$43 \cdot$

44

\hline 1

 \&

28.6

411°

\hline

 \&

37.4

41.4

\hline
\end{tabular} \& \& \& $39 \cdot 81$

$37 \cdot 94$

\hline 41.0 \& ${ }_{34}{ }^{4} 2$ \& 38.3 \& 41.9 \& 40.3 \& 43.5 \& $44 \cdot 2$ \& 36.5 \& 38.7 \& 42.8 \& \& \& $35 \cdot 90$

\hline $33 \cdot 1$ \& $3{ }^{3} \cdot 7$ \& 39.6 \& $43 \cdot 9$ \& $48^{\circ} 0$ \& 27.7 \& $43 \cdot 3$ \& ${ }_{32}{ }^{2} \cdot 1$ \& 44.2 \& ${ }^{43} \cdot 9$ \& － \& － \& $34 \cdot 15$

\hline ${ }^{27} 48$ \& $31 \cdot 3$
48.6 \& 40.6
51.8 \& 40.6

52.9 \& 41．0 \& | 48.9 |
| :--- |
| 59 | \& 47.1

53.6 \& \begin{tabular}{l}
$34 \cdot 3$

53

\hline 8

 \&

$43 \cdot 9$

66.8

\hline

 \&

$45 \cdot 3$

52.9

\hline
\end{tabular} \& \& \& 34.43

48.28

\hline 58.3 \& $55^{\circ} 2$ \& 56.8 \& 58.8 \& $56^{\circ} 5$ \& 52.2 \& 51.4 \& 56.5 \& 52.9 \& 53.8 \& \& － \& 53.32

\hline $5{ }^{50} 7$ \& 50.2 \& $45^{\circ} 0$ \& 52.7 \& 54.1 \& 52.7 \& E22 ${ }^{3}$ \& 54.7
57.8

5 \& $55^{55} 4$ \& 55.0 \& \& \& $53 \cdot 26$

\hline 39.6 \& $40 \cdot 6$ \& ${ }^{42}{ }^{\circ} 4$ \& 42.3

37.9 \& 43.2 \& \begin{tabular}{l}
43.7

88

\hline 8

 \& 42.1 \&

37.8

42.8

\hline
\end{tabular} \& $4{ }^{41}{ }^{\circ} 4$ \& 44．1 \& ＝ \& － \& ${ }^{40} 3.46$

\hline 31.6
35

35 \& －34．2 \& $4{ }^{41} 7$ \& \begin{tabular}{l}
37.9

36.9

\hline

 \& ${ }_{35}{ }^{42} \cdot 4$ \&

38.8

37

\hline
\end{tabular} \& 40.6

36.1 \& 48.8

38.1 \& ${ }_{39}{ }^{43}$ \& | 43：0 |
| :--- |
| 38 |
| |
| | \& \& \& 34．56

\hline $36 \cdot 3$ \& 30.9 \& 30.6 \& 36.3 \& 34.5 \& $86 \cdot 3$ \& 26.6 \& $31 \cdot 3$ \& $34 \cdot 3$ \& 34.3 \& 33.8 \& 36.3 \& $29 \cdot 83$

\hline ${ }^{38 \cdot 1}$ \& ${ }_{29}^{29.8}$ \& 32．4 \& 34.9 \& 34.9

28.9 \& ${ }_{3}^{34.5}$ \& ${ }^{37}{ }^{\circ} 8$ \& 36.7
33.8 \& 3． 3.7 \& ${ }^{41}{ }^{4} \cdot 4$ \& $37 \cdot 6$ \& $32 \cdot 2$ \& $30^{\circ} \cdot 91$

\hline ${ }^{28}{ }^{\circ} 6$ \& 36.9 \& $3{ }^{32.7}$ \& ${ }_{35}^{25.5}$ \& | 28.9 |
| :--- |
| 38 |
| 8 | \& 33.3

41
4 \& \& 33.8

34.5 \& | $32 \cdot 9$ |
| :--- |
| 29.0 | \& ${ }_{33}^{33 \cdot 1}$ \& 29.8 \& \& 29．16

\hline － | $31 \cdot 3$ |
| :--- |
| 38.1 | \& ${ }_{34}^{33 \cdot 5}$ \& － 33.4 \& ${ }_{32}{ }^{38} 1$ \& ${ }_{33} 38$ \& ${ }_{33}{ }^{41} \cdot 1$ \& ${ }_{35}{ }^{35} \cdot 8$ \& 30．0 \& ${ }_{39}^{29} 6$ \& ${ }_{35}^{35} 6$ \& $\underline{-}$ \& \bigcirc \& 32.35

\hline ${ }^{23.4}$ \& ${ }^{27.9}$ \& 30.9 \& 30.2

30.6 \& | $29 \cdot 1$ |
| :--- |
| 29 |
| 1 | \& ${ }^{29 \cdot 6}$ \& $\stackrel{37}{ }{ }^{27} 9$ \& 23.9

3.9 \& 28.8
30.8 \& 28.0
29.5 \& 二 \& 二 \& ${ }_{23}^{23}{ }^{40}$

\hline $27 \cdot 7$
29
39 \& ${ }^{27} 9$ \& $32 \cdot 4$
34.9 \& $30 \cdot 6$
$43 \cdot 9$ \& 31.3
46 \& $34 \cdot 9$
$33 \cdot 4$ \& $35 \cdot 6$
39 \& $32 \cdot 2$
34.5
3 \& 30.2
37.6 \& 29.5
37.8 \& $42 \cdot 4$ \& \& 24.21
$33 \cdot 87$

\hline $50 \cdot 5$ \& 47.5 \& 51.4 \& $43 \cdot 9$ \& $47 \cdot 5$ \& 45.3 \& $33^{\circ} 4$ \& 30.9 \& $45^{\circ} 0$ \& 47.5 \& － \& － \& 39.09

\hline 37.66 \& 39．04 \& 40．44 \& 41.16 \& $42 \cdot 18$ \& $42 \cdot 23$ \& 42．32 \& 39.30 \& 41.22 \& $42 \cdot 31$ \& $38 \cdot 32$ \& $34 \cdot 93$ \& 36．88

\hline
\end{tabular}

Fort Confidence－continued．
Abstract of Hourly Observations in the months of March and Aprili1849．

Day．	Centigrade Thermometer attached to Delcros＇s Barometer，corrected											
Civil Ti	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
	\bigcirc	\bigcirc	$\stackrel{-}{-}$	－	\bigcirc	－3．9	8.4	$\stackrel{9}{4.6}$	$\stackrel{9}{4} \cdot 1$	$\stackrel{9}{4} 2$	9.1	\％＇2
	二			－	－	6.8	$8 \cdot 4$	$7 \cdot 6$	$4 \cdot 1$	10.4	13.6	$13 \cdot 3$
3		－		－		－0．9	$3 \cdot 6$	3.1	$7 \cdot 4$	${ }_{6} 6.6$	$10^{\circ} 0$	$\begin{array}{r}18.6 \\ 4.8 \\ \hline\end{array}$
4						0.6 -0.4	${ }_{3}{ }_{3} \cdot 1$	14.8 10.1	$6 \cdot 2$ 6.7	$3 \cdot 2$ 8.2	51 +8.4	4，788
5	＝	－		－		－ 1.4	${ }_{5}{ }_{5} \cdot 1$	12.0	88.0	${ }_{11}{ }^{8.0}$	${ }^{18.1}$	10
7	－	－	－	－	－	$-5 \cdot 8$	$2 \cdot 4$	$5 \cdot 6$	$2 \cdot 7$	4.0	6.4	${ }_{8} 1$
8	－	－	－	－		$4 \cdot 6$	$4 \cdot 6$	$2 \cdot 8$	$5 \cdot 8$	$5 \cdot 6$	9.2	9
${ }^{8}$		－	－	－	－	-8.4 -10.9	$\begin{array}{r}-2.4 \\ -4.4 \\ \hline\end{array}$	3.1 -0.4	-0.6 -3.6	${ }_{1}^{2} \cdot 8$	${ }_{5}^{2 \cdot 8}$	1.6
10	＝	－	二	二	－	${ }_{-8}-10{ }_{4}$	－8．00	-1.6	-0.4	$\underline{-0.1}$	6.4	5
12	－	－	－	二		－8．8	0.7	$1 \cdot 4$	－2．1	${ }^{-1} 1$	$8 \cdot 1$	11.1
13	－	－	－	－	－	-6.8	$8 \cdot 6$	$6 \cdot 2$	$3 \cdot 5$	$9 \cdot 7$	$7 \cdot 8$	11.5
14		－		－	－	－1．4．4	$4 \cdot 7$ $3 \cdot 3$	6.0 8.7	${ }_{9}^{17}{ }^{1}$	$2 \cdot 9$ $12 \cdot 2$	4.1 14.1	3.8 9
15 16	二	－	二	二	－	－${ }_{-1 \cdot 1}{ }^{-1}$	$\stackrel{3}{3 \cdot 0}$	${ }_{9}{ }^{8} 1$	${ }_{7} 96$	${ }_{7} 12.6$	10.6	10.
17	二	二	二	－	－	$0 \cdot 2$	$6 \cdot 2$	$10 \cdot 6$	$8 \cdot 6$	$8 \cdot 1$	$9 \cdot 1$	$\therefore 5$
18	－	－	－	－	－	$-6^{\circ} 4$	$7 \cdot 2$	$7 \cdot 1$	$4 \cdot 1$	$7 \cdot 4$	$6 \cdot 1$	4
19		－	－	－	－	$-7 \cdot 4$	$1{ }^{1.4}$	1.9	－0．9	${ }_{3}{ }^{4} 4$	4.0	－81
20	－	$9 \cdot 8$	8	－		$-5 \cdot 9$	6.8	$5 \cdot 8$	3.0	3.4	8.6	9^{9}
21	10.0 8.4	$9 \cdot 8$	8.3		-0.4	1．99	2.3 0.4		4.6 8.5			8
22 23	8.4	$4 \cdot 6$	$1 \cdot 1$	$0 \cdot 8$	$\underline{-0.6}$	3.2 -4.4	80．4	$3 \cdot 1$ 9.6	8.5 6.6	$5 \cdot 6$ 6.1	8.1 7.4	－${ }^{2 \cdot 6}$
${ }_{24}^{23}$	二	二	二	－	－	－10．0	－1．2	${ }_{4} \cdot 3$	$2 \cdot 8$	${ }_{12}{ }^{1}$	8.6	10°
25	－	－	－	－		-8.2	7.0	6.6	$1{ }^{10}$	3.3	6.3	$3 \cdot$
26	－	－	－	二	－	-9.9	$-{ }_{-3}{ }^{2}$	1.7	-1.4	2.6 4.7	6.6 4.8	11.6
${ }_{28}^{27}$	二	二	二	－	二	－3．2	2.3 4	8．1	4．0	$\underline{4}$	4.8	4
29	－	－	二	－	－	－	\bigcirc	71.5	14.4	9.6	8.1	$11^{\circ} 0$
30 31	－	－	二	二		0.2 -8.1	8.3 5.4	11.5 6.9	6.9 1.8	${ }^{9} \cdot 1$	${ }^{9.4}$	10 5 5
Means	9.20	$7 \cdot 20$	4.70	$1 \cdot 45$	-0.50	-3.75	3.58	$5 \cdot 96$	$4 \cdot 28$	6.09	$7 \cdot 62$	8.09
Fahrenheit－	$48^{\circ} \cdot 56$	$44^{\circ} \cdot 96$	$40^{\circ} \cdot 46$	$34^{\circ} \cdot 61$	$31^{\circ} \cdot 10$	$25^{\circ} \cdot 25$	$38^{\circ} \cdot 44$	$42^{\circ} \cdot 73$	$39^{\circ} 70$	$42^{2 \cdot 96}$	$45^{\circ} \cdot 72$	$46^{\circ} \cdot 56$
		－	－	－	－	-4.9	$4 \cdot 8$	$4 \cdot 3$		3．1	$9 \cdot 2$	877
2	－	－	－	－		$7 \cdot 4$	$9 \cdot 3$	7.3	－ $5^{5} 1$	$10 \cdot 1$	$10 \cdot 3$	14.8
3	－	－	－	－	－	$9 \cdot 9$ -2.3	$10 \cdot 7$	12.4 9	10.9 4.8	13.4	${ }_{12} 14.4$	16.2
$\stackrel{4}{5}$	－	－	－	－		－0．3	$10 \cdot 1$	11.9	10.3	$13^{\prime} 5$	13.3	$10 \cdot 2$
6	－	－	－	－	－	$0 \cdot 1$	8.8	$13 \cdot 1$	$7 \cdot 9$	14.6	11.9	$13 \cdot 1$
7	－	－	－	－		-1.2	$10 \cdot 1$	8.0	$8{ }_{7} 8^{\circ} 4$	9.4	6.6	$9 \cdot 5$
8	－	－	－	二	－	2．5	13.0 4.9	$13 \cdot 5$	$7{ }^{7} 4$	8.8	$8{ }^{8.1}$	8.5
10	－	－	－	－		－ 7.2	${ }_{4} \cdot 1$	${ }_{6} .8$	${ }_{3} \cdot 1$	${ }_{9.8}$	1 9.6	13.6 8.8
11	－	－		－		2.6	14．0	$14 \cdot 1$	$15 \cdot 4$	$15 \cdot 1$	$15 \cdot 3$	15.6
12	－	－	－	－	11.0	8.6	$10 \cdot 5$	7.8	$7 \cdot 3$	6.6	${ }_{7}{ }^{1}$	8.2
13	－	二	二	二			$\stackrel{3.1}{12}$		7．0．	$7{ }^{7} 5$	$7{ }^{7} \cdot 0$	8．0
$1{ }_{15}^{14}$	－	－	－	－		－ $1 \cdot 7$	11.1 -0.5	$\begin{array}{r}4.6 \\ 12.8 \\ \\ \hline\end{array}$	$5 \cdot 1$	9.6 10.6	11.0 10.6	13.6 9.6
16	－	－		－	－	$4 \cdot 3$	12.0	$14 \cdot 4$	$10 \cdot 8$	12.0	11.6	$13 \cdot 1$
17	－	－	－	－	3.0	$12 \cdot 1$	11.6	9.6	${ }_{7}^{6.0}$	$7 \cdot 1$	11.6	11.6
18	二	－	二	二	二	-2.4	11.0 8.2	7.5 9.1	$7 \cdot 1$	${ }_{7} 8.4$	${ }^{9.0}$	${ }^{12}{ }^{1} \cdot 1$
$\stackrel{19}{20}$	二	－	－	－	$2 \cdot 3$	11.1	10．6	9.8	${ }_{9 \cdot 2}^{6.2}$	7.4 12.8	10.6	
21	－	－			6.6	11.0	$13 \cdot 4$	14．2	11.6	$11 \cdot 4$	$10 \cdot 8$	19.0
22	－	－	－	－	－	2.8	13.9	12.4	9.45	$9 \cdot 1$	12.4	$12 \cdot 2$
23	－	＝	二	二	$2 \cdot 6$	8.1	$12 \cdot 2$	12.6	$12 \cdot 1$	$10 \cdot 6$	12.1	15.4
25	二	＝	二	－	26	$8 \cdot 9$	${ }^{14.1}$	${ }^{12} 12$	10.8 12.2	13.6 14.6	13.8 13.4	13 $16^{\prime} \cdot 6$ 1
28	－	－	－	－	7.6	$15 \cdot 7$	$12 \cdot 8$	$11 \cdot 6$	$11 \cdot 3$	14.0	13.6	14．8
$\stackrel{27}{28}$	－	二	－	二	－	－${ }_{-5}$	－ 2.4	77.6	${ }^{6} \cdot 6$	4.0	6.6	${ }^{6} \cdot 6$
29	－	－	－	二	－	-5.9	-0.1	－76	5.8	＋ $10 \cdot 2$	1.8 9.8 8	\％${ }_{7} \cdot 6$
30	－	－	－	－	－	$1 \cdot 1$	$9 \cdot 1$	6.6	5.0	3.8	6.2	$7 \cdot 0$
Means	－	－	－	－	$5 \cdot 52$	$2 \cdot 97$	$8 \cdot 86$	$9 \cdot 73$	$7 \cdot 92$	$9 \cdot 71$	10．30	11.63
Fahrenheit－	－	－	－	－	$41^{\circ} \cdot 94$	$37^{\circ} 35$	$47^{\circ} \cdot 95$	$49^{\circ} \cdot 51$	$46^{\circ} \cdot 26$	$49^{\circ} \cdot 48$	$50^{\circ} \cdot 54$	$522^{\circ} 93$

Fort Confidence－continued．
Abstract of Hourly Observations in the months of March and April 1849.

Paris Standard Thermometer．												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．
$8{ }_{7} 9$	$\stackrel{\circ}{5} \cdot 6$	$\bigcirc \cdot 8$	$9 \cdot 8$	8.6	8.4	$\stackrel{\circ}{7}$	$\stackrel{9}{7} \cdot 4$	$\stackrel{\circ}{5} \cdot 8$	$\stackrel{\circ}{7} 3$	\bigcirc	\bigcirc	${ }_{5}^{\circ} \cdot 62$
11.9	15.5	11.6	13.6	14.1	$11 \cdot 3$	$12 \cdot 4$	$10 \cdot 0$	$8 \cdot 1$	8.9			10.74
$10{ }^{7}$	11.0	9.8	12.4	12.0	10.6	$10 \cdot 8$	$12 \cdot 1$	$12 \cdot 6$	$10 \cdot 0$			$9 \cdot 16$
8.0	$7 \cdot 2$	10.4	$9 \cdot 6$	$7 \cdot 3$	$9 \cdot 8$	$10 \cdot 4$	9.4	$11 \cdot 6$	$10 \cdot 3$			$8 \cdot 12$
10.4	$12 \cdot 6$	14.5	14.5	$10 \cdot 6$	11.0	$13 \cdot 1$	$10 \cdot 6$	$3 \cdot 1$	$9^{\prime} 6$			$9 \cdot 23$
11.8	14.4	16.4	16.4	$15 \cdot 3$	11.6	14.0	9.8	7.4	$9 \cdot 5$			11.31
10.4	$8 \cdot 2$	$9 \cdot 0$	11.0	$9 \cdot 5$	$10 \cdot 6$	11.1	11.0	$10 \cdot 8$	$11 \cdot 3$			$7 \cdot 43$
8.4	6.8	6.4	$9 \cdot 1$	6.6	6.1	7.4	8.4	5.4	5.0			6.66
$2 \cdot 1$	$7 \cdot 6$	11.0	11.6	10.4	$9 \cdot 1$	10.1	8.4	$5 \cdot 2$	3.4			4.58
$\stackrel{0}{7} 8$	0.2 7.4	${ }_{6}^{1} \cdot 5$	${ }_{5}^{4.1}$	5.6 6.8	$5 \cdot 2 \cdot 4$	6.6	$4 \cdot 6$	6.1	6.9 7			$\stackrel{2 \cdot 24}{ }$
$7 *$ 10.6	7.4 10.6	${ }^{6} 8.8$	$5 \cdot 1$ 8.6	${ }^{6.8}$	5.4 9.6	${ }^{6} 18$	$7 \cdot 6$	6.1 10.2	7.7 10.2			$3 \cdot 70$ 7 7
$12 \cdot 4$	11.3	14.6	13.6	$12 \cdot 8$	13.7	10.6 9	10．2	13.0	10.1	－		$9 \cdot 65$
$8 \cdot 8$	$5 \cdot 1$	$8 \cdot 4$	${ }_{8}{ }^{4} 4$	${ }_{9} \cdot 6$	$11 \cdot 0$	$9 \cdot 3$	$4 \cdot 6$	$4 \cdot 4$	$4 \cdot 6$			$5 \cdot 62$
8.6	$8 \cdot 6$	$9 \cdot 5$	11.6	$10 \cdot 8$	$11 \cdot 4$	$11 \cdot 1$	$6 \cdot 9$	11.0	$8 \cdot 1$			$8 \cdot 89$
11.1	14.6	15.0	14.4	$11 \cdot 2$	13.6	14.8	$14 \cdot 8$	$9 \cdot 1$	10.6			10.48
$5_{5.0}$	$5 \cdot 8$	$6 \cdot 8$	$7 \cdot 1$	$5 \cdot 8$	6.2	6.2	$6 \cdot 1$	4.8	4.8			$6 \cdot 26$
3.3 $7 \cdot 1$	$5 \cdot 9$	4.4	$3 \cdot 8$	$2 \cdot 4$	6.1	$5 \cdot 7$	7.6	$7 \cdot 6$	${ }^{7}{ }^{4} 4$			4.97
${ }^{7}{ }^{7} 1$	$7{ }^{71} 1$	$9 \cdot 6$	9.6	$9 \cdot 3$	10.5	$9 \cdot 9$	4.6	$7 \cdot 5$	$10^{\circ} 6$	7.8		5.61 8.29
${ }_{9} 9.6$	${ }_{11} 1.18$	（13．9	11.1	${ }_{12} 10^{6}$	120．8	${ }_{8}{ }_{8}{ }^{2} 4$	5.5	${ }_{71}{ }^{7} 6$	8.6	7.8 4.0	$\begin{array}{r}12.8 \\ 4.6 \\ \hline\end{array}$	8.29 7 7
$11 \cdot 6$	$15 \cdot 1$	11.8	$16 \cdot 1$	15.0	14.6	14.6	$12 \cdot 9$	12.6	$7 \cdot 6$			$8 \cdot 08$
$3 \cdot 6$	6.4	$6 \cdot 1$	$11 \cdot 6$	8.8	14.6	$12 \cdot 6$	$12 \cdot 8$	$9 \cdot 3$	6.6	－		$7 \cdot 60$
$8 \cdot 5$	13.5	11.6	$13 \cdot 8$	$10 \cdot 6$	12.4	$11 \cdot 4$	$10 \cdot 2$	$9 \cdot 8$	$7 \cdot 4$		－	8.01
$2 \cdot 6$	6.6	$3 \cdot 6$	$3 \cdot 6$	$6 \cdot 2$	$7 \cdot 4$	$11 \cdot 2$	－4．1	5.7	6.5	－		4.04
$9 \cdot 6$	6.9	$10 \cdot 7$	$9 \cdot 6$	$8 \cdot 6$	$6^{6} 6$	$5 \cdot 6$	8.4	$7 \cdot 4$	$3 \cdot 1$			$4 \cdot 97$
$7 \cdot 1$	$6 \cdot 1$	$8^{\circ} 6$	$10^{\circ} 6$	$9 \cdot 8$	$7 \cdot 2$	$8 \cdot 0$	$7 \cdot 3$	$7 \cdot 4$	$7 \cdot 5$		－	$5 \cdot 87$
$7 \cdot 1$	$\overline{10} 1$	7.8	$9 \cdot 1$	12.1	$12 \cdot 3$	$7 \cdot 2$	$14 \cdot 4$	73.3	$10 \cdot 8$	－－	－	8．38
$8 \cdot 8$	9.9	7.8	8.8	9.1	14.0	$10 \cdot 0$	7.3	$9 \cdot 3$	$8 \cdot 6$			$8 \cdot 78$
$6 \cdot 2$	$8 \cdot 3$	$11^{\circ} 0$	12.8	$10 \cdot 1$	14.0	14．5	10.4	． $12 \cdot 2$	11.0			7－82
8.07	9.04	$9 \cdot 54$	$10 \cdot 47$	$9 \cdot 80$	$10 \cdot 05$	$10 \cdot 18$	$8 \cdot 44$	8．51	8.05	95：90	8.70	Cent．7•24
$46^{\circ} 53$	$48^{\circ} \cdot 27$	$49^{\circ} 17$	$50^{\circ} \cdot 85$	$49^{\circ} \cdot 64$	$50^{\circ} 09$	$50^{\circ} 32$	$47^{\circ} 19$	$47^{\circ} \cdot 32$	$46^{\circ} 49$	42.62	$47^{\circ} \cdot 66$	Fah．${ }^{\text {5 }}{ }^{\circ}{ }^{\circ} 03$
4.0	$10 \cdot 1$	11.0	$11 \cdot 1$	$11 \cdot 1$	$12 \cdot 6$	12.3	12.0	11.0	8.7	－	－	$7 \cdot 92$
$10 \cdot 8$	12.5	11.6	$9 \cdot 6$	$12 \cdot 6$	14.4	$13 \cdot 1$	11.3	9.3	$10 \cdot 6$	－	－	$10^{10} 59$
17.4	13.1	$10 \cdot 8$	14.0	10.0	$11 \cdot 3$	11.4	$10 \cdot 3$	$10 \cdot 8$	$10 \cdot 2$			$12 \cdot 18$
$11 \cdot 1$	$9 \cdot 9$	$10 \cdot 8$	13.8	14.2	$19 \cdot 1$	$15 \cdot 8$	$10 \cdot 6$	$11 \cdot 4$	$11 \cdot 7$	－	－	$10 \cdot 36$
$13^{18} 8$	$12 \cdot 2$	14.8	14.4	14.6	$15^{\circ} 0$	17.6	$7 \cdot 6$	$13 \cdot 6$	14．4			12.21
$12 \cdot 6$	$12 \cdot 2$	$13 \cdot 0$	14.4	14.0	$15 \cdot 3$	$13 \cdot 1$	$13 \cdot 6$	$12 \cdot 1$	$13 \cdot 6$			$11 \cdot 96$
$9 \cdot 6$	$8 \cdot 1$	$12 \cdot 1$	$10 \cdot 4$	9.4	13.0	10.8	$11 \cdot 1$	7.9	$7 \cdot 6$	－	－	8.87
6.6 14.8	8.2	$8 \cdot 7$	$12 \cdot 2$	11.4	11.4	11.3	$10^{\circ} 6$	$10 \cdot 2$	$8 \cdot 6$			$9 \cdot 47$
－${ }^{14 \cdot 8}$		16.6 13.6	＋18．6	${ }_{15}^{16.0}$	$13 \cdot 1$ $14 \cdot 3$	12.6	15.1	$8{ }^{8}$	$11^{\prime 6}$	－	－	${ }_{10}^{10.54}$
$15 \cdot 1$	$13 \cdot 8$	18.4	$18 \cdot 6$	15.6	$18 \cdot 2$	$16 \cdot 1$	13.1	14.1	16.4	－		14.68
$10 \cdot 4$	$9 \cdot 6$	$9 \cdot 8$	$8 \cdot 1$	$13 \cdot 6$	11.6	$11 \cdot 6$	11.0	$11 \cdot 2$	10.0	－	－	$9 \cdot 61$
$8{ }^{8} 8$	$9 \cdot 1$	8.0	$9 \cdot 1$	$30 \cdot 8$	14.6	13.7	14.8	$9 \cdot 1$	$7 \cdot 6$			$8 \cdot 41$
$12 \cdot 6$	$13 \cdot 4$	$13 \cdot 2$	$12 \cdot 6$	$11 \cdot 6$	14.0	15.4	14.6	11.6	$12 \cdot 5$	－	－	$10 \cdot 87$
$11 \cdot 1$	$10 \cdot 1$	$11 \cdot 1$	12.4	$13 \cdot 4$	12.0	15.6	$14 \cdot 3$	13.8	13.8			10.57
9.8	$13 \cdot 1$	$15 \cdot 2$	14.4	13.6	17.6	$12 \cdot 6$	$12 \cdot 4$	$13 \cdot 6$	$14 \cdot 1$	－	－	12.62
$10 \cdot 1$	$10 \cdot 4$	11.6	13.6	$16 \cdot 2$	15.6	16.8	14.2	$9 \cdot 8$	$9 \cdot 1$	－	－	11.11
$10 \cdot 6$	$9 \cdot 2$	8.0	10.9	11.8	$11 \cdot 4$	10.4	$12 \cdot 8$	$9 \cdot 6$	$7 \cdot 2$			9.08
$19 \cdot 8$	$15 \cdot 1$	18.2	15.1	18.2	$15 \cdot 9$	$15 \cdot 8$	$12 \cdot 0$	$11 \cdot 6$	$12 \cdot 8$	－		12.45
$18 \cdot 0$	13.6	$14 \cdot 9$	16.5	14.8	14.0	$16^{\circ} 6$	16.0	$16^{\circ} \cdot$	$18 \cdot 6$	$17 \cdot 1$	$15 \cdot 6$	13.60
18.5	18.5	$21^{\circ} 4$	15.6	18.0	$17 \cdot 8$	16.4	14.6	$15^{\circ} 4$	$15 \cdot 4$	－	－	14.98
11.6	$11 \cdot 6$	$11 \cdot 9$	13.6	14.6	16.0	$16^{\circ} 0$	$14 \cdot 1$	$9 \cdot 9$	$8 \cdot 6$	－	－	$11 \cdot 72$
$17 \cdot 6$ 13	$16 \cdot 8$ 11.1	$13 \cdot 9$ $11 \cdot 9$	15.8 12.6	114．6	${ }_{13}^{13.1}$	12.6 14.6	9.6 13.1	$12 \cdot 6$ $10 \cdot 1$	$\begin{array}{r}9.8 \\ 12.6 \\ \\ \hline\end{array}$	二		$12 \cdot 82$ 11.82
$1{ }^{16} 4$	16.4	18.0	$16^{\circ} 5$	15.6	14． 1	14.8	16.2	11.8	14.0			14.25
17.4	14.4	13.4	12.0	10.0	9.2	7.9	$3 \cdot 2$	$2 \cdot 6$	$3 \cdot 2$	二	－	10.82
$7 \cdot 4$ 4.6	$\stackrel{9}{7} 1$	8.0 8.3	9.6 10.8	8.1	$9 \cdot 0$	6.0 8.6	${ }_{9}^{6 \cdot 2}$	$-{ }^{-0 \cdot 2}$		$12 \cdot 1$	10.0	5.99 6.85
－${ }_{6}^{4.0}$	${ }_{7} \cdot 6$	8.6 9.6	${ }_{9} 9.1$	112．6	${ }_{9}^{101}$	8.8	$10 \cdot 1$	10.0	${ }_{8} 8 \cdot 1$			$7 \cdot 85$
7.0	6.1	6.8	$8 \cdot 4$	$10 \cdot 1$	$7 \cdot 2$	$6 \cdot 7$	$5 \cdot 4$	$4 \cdot 2$	6.6	－		$6 \cdot 31$
11.86	11.63	$12 \cdot 46$	13.01	$13 \cdot 14$	$13 \cdot 45$	13．04	11.78	10.51	10.09	14.60	12•80	Cent． 10.73
$53^{\circ} \cdot 35$	520．93	$54^{\circ} \cdot 43$	$55^{\circ} \cdot 42$	$55^{\circ} 65$	$56^{\circ} 21$	$55^{\circ} 47$	$53^{\circ} \cdot 20$	$50^{\circ} \cdot 92$	$51^{0.78}$	$58^{\circ} \cdot 28$	$55^{\circ} 04$	F＇ah． $511^{\circ} \cdot 31$

B B

FORT CONFIDENCE．
Abstract of Hourly Observations made during the month of October 1848.

FORT CONEIDENCE
Abstract of Hourly Observations made during the month of October 1848
Spirit Thermometer constructed by Adie．

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．
\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{-}$	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	－	\bigcirc
－	－	－	－	－	－	－	－	－	二	－	－	－
＝	－	－	－	－	－	－	－	－	－	－	－	
－	－	－	－	－	－	二	－	－	二	二	二	－
－	－	－	－	－	－	－	－	－	－	－	－	
－	－	$=$	二				－					
31.0	$32 \cdot 0$	32.0	29.0	28.0	－		－		－	－	二	$29 \cdot 67$
18.2	19.5 25.0	19.0 2.0	17.0 25.0	$15 \cdot 5$ 24.8	二		－	－	－	－	－	18.02
$17 \cdot 0$	－	－	－	$\underline{-}$	－	$12 \cdot 0$	二	$9 \cdot 4$	二	二	－	16.62
－	－	21.0	－	二	$5 \cdot 5$		－	－	－			11.45
$23 \cdot 0$	$22 \cdot 8$	$22 \cdot 9$	22.0	－	－	－	－	－	二	二	－	18.00
$24 \cdot 0$	26.0	－29．5	－	－ 0		－	－		－			25.07
24.0 300	－	$23 \cdot 5$	－	23.0		21.0	22.0		$23 \cdot 0$	$24 \cdot 0$	－	$20 \cdot 37$
26.0				24．0	$22 \cdot 5$	22.0	220.8	220.8			－	${ }_{22}{ }^{25} \cdot 94$
$17 \cdot 2$	17.0	$15 \cdot 8$	14.2	$18 \cdot 2$	13.0	$12 \cdot 7$	12.0	12.0	－	－	－	14.83
11.0	11.8	${ }_{21}^{11.0}$	${ }^{6.8}$	3.5	${ }^{7} \cdot 6$	7.0	8.5	$11^{\circ} 0$			－	${ }^{8} \cdot 65$
28.0	20.0 20	${ }_{26}{ }^{21.5}$	22.5 26.0	22．0	22．00	22.5 17.0	${ }_{21}^{23 \cdot 0}$	23.0 22.2	二	－		17.77
$26^{\prime} 7$	$27 \cdot 8$	28.1	$28 \cdot 3$	28.2	28.0	28.0	$28 \cdot 5$	${ }_{27}^{22} 5$		－	－	${ }_{26.61}$
28.8	${ }_{27}^{27.9}$	28.1	26．0	$\underline{25.2}$	24.6	24.3	22.0	23.0	－	－		26.55
26.8	${ }_{26}{ }^{20} 3$	${ }_{26}{ }^{20} 2$	19,3 25%	$\stackrel{17}{ }{ }^{17} 5^{\circ} \mathrm{O}$	${ }_{24.6}^{15}$	${ }_{24}^{16.0}$	16．0	$16^{\circ} 0$	－	－	－	21.64
23.6	23.5	$22 \cdot 9$	${ }_{21} \cdot 8$	${ }_{21} \cdot 4$	$21 \cdot 3$	${ }_{20}{ }^{24} 6$	20.0	${ }_{20}{ }^{24} 0$		二	－	23．72
19.5	16.8	16.0	16.3	16.7	$17 \cdot 0$	$17 \cdot 2$	$18 \cdot 8$	$19 \cdot 2$	－	－	－	$19 \cdot 19$
10.5	9.0 18.0	7.0 10.6	3.0 16.5	-5.0	-6.0	-6.5	-3.0	-1.0	－	－		${ }_{3} \cdot 93$
$20^{\circ} 0$	$18^{\circ} 0$	$16 \cdot 6$	16.5	16.0	$15^{\circ} 0$	14．2	18＇0	10.0	－	－	－	$15 \cdot 60$
$22 \cdot 42$	22.01	21．29	19.95	19.32	16.56	16.80	17．98	17.82	23.00	24.00	－	$20 \cdot 01$
5.86	$5 \cdot 45$	4.73	3.39	$2 \cdot 76$	0.00	0.24	$1 \cdot 37$	$1 \cdot 26$				

for five hours in the afternoon of the 30th
the ground，facing the north Fohrenho corrections made this month

Fort Confidence－continued．
Fort Confidenge－continued
Abstract of Hourly Observations made during the months of November and December 1848.

$\underset{\substack{\text { Mean Time } \\ \text { at Station. }}}{\text { Day. }}$	Spirit Thermometer constructed by Adie．											
	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
	은	－	은	$12 \cdot 6$	$1{ }^{\circ} \cdot 5$	$1{ }^{\circ} \cdot 4$	$1{ }^{\circ} \times 0$	$1{ }^{\circ} \cdot 0$	16.0	$0 \quad 1{ }^{\circ} \cdot 1$	17.0	$16^{\circ} 0$
2	二	－			12	－0．9	$\underline{-4.6}$	$\underline{-7 \cdot 0}$	－5．0	－$-2 \cdot 0$	$1 \cdot 1$	$2 \cdot 8$
3	－	－		－	－	$-5 \cdot 3$	－4．7	-5.1	－2．5	$5-0.6$	10.1	0.3
4							-21.5	-21.5	-17.5	5 $\begin{aligned} & -13 \cdot 8 \\ & -13.0\end{aligned}$	－ 10.4	-7.5 -6.8
6	二	－	－	－	－12．0	$-13 \cdot 0$	－14．5	-17.0	${ }^{-12.0}$	${ }_{0}^{-18.5}$	－4．3	－6．0
7	－					3.0	2.0	3.0	4.3	5 50	$5 \cdot 5$	$5 \cdot 5$
8	－	二		二	3.3	9．0	9.0	$8 \cdot 8$	8．2	8 8.5	8.8	8.8
	二	二	二	二	3	－21．0	－2 2.0	－25．0	－23．0	－21．0	-17.5	-17.1
	－	－	－	－	－30．3	-30.8	$-30^{\circ} 0$	-30.0	$-23^{\circ} 4$	-22.5	-19.5	-15.8
12	－	－	－		－10．0	-5.0	-3.0	－4．0	－3．7	－ 0.0	－0．00	0.3 -12.7
13	－	－	－	－12．5	-10.0 -9.9	-11.2 -7.8	-12.0 -9.5	-17.0 -10.0	－20．5	－ $\begin{aligned} & -19 \cdot 8 \\ & -13\end{aligned}$	－13．8	$-12 \cdot 7$
15	－	二	二	－	$-17 \cdot 6$	-15.0	-12.4	－11．0	－14．0	－13．	${ }_{-6.8}^{-13}$	-12.1
16	－	－	－	0.5	3.6	4.0	8.0	10.0	$11 \cdot 2$	14．0	14．5	$15 \cdot 5$
17	－	－	－	－		$4 \cdot 7$	$5 \cdot 0$	＋5．5	$5 \cdot 0$	4.8	$5 \cdot 9$	$6 \cdot 0$
18	－	－	－	－	$7 \cdot 7$	9.0	8.0	＋8．8	$13 \cdot 2$	14.0	17.0	18.2
19	－	－	－	－	－	$12 \cdot 2$	11.8	$11 \cdot 8$	11.5	10.0	$9 \cdot 0$	$8 \cdot 1$
20 21	二	二	－	－	$0 \cdot 1$	9.0 12.2	${ }_{13.0}^{9.2}$	11.0 13.0	$11: 3$ 15	12．2	$13 \cdot 5$ 14.0	14.1 15.0
22	二	－	－	－	10.8	$10 \cdot 8$	10.8	10.7	9.9	6.8	$7 \cdot 0$	$11 \cdot 0$
23	－	－	－	－	－	$11 \cdot 0$	$11 \cdot 5$	$12 \cdot 8$	$12 \cdot 0$	$12 \cdot 3$	$12 \cdot 7$	12.5
24				$9 \cdot 0$	$8 \cdot 8$	$9 \cdot 3$	$9 \cdot 0$	8.0	$2 \cdot 0$	－0．0	-3.0	$-3 \cdot 1$
25	－9．	-8.6	$-15^{\circ} 0$	$-18 \cdot 3$	$-15 \cdot 5$	$-20 \cdot 7$	-19.3	$-10 \cdot 7$	-20.6	-17.5	-14.3	-11.0
$\stackrel{26}{27}$	－	二	二	二	二	$\overline{-0.4}$	-6.5	-11.8 -6.7	$-10 \cdot 7$ -6.8	-115 -6.8	－12．0	-12.0 -6.5
28	－	－	－	－	－	－	-3.2	-3.5	-1.5	－1．2	-2.0	$-1 \div 1$
29 30		－	－	－10．0	-10.5 -13.2	－11．6	－11．5	-13.8	$-15 \cdot 2$	$-15^{\circ} 1$	-14.0	-12.0
eans	$-9 \cdot 00$	-8.60	－3．00	－3．12	$-4 \cdot 15$	－2．57	－3．50	－3．65	－3．03	－2．14	－0．97	$0 \cdot 11$
Corrections	－	－	－	－	－	$2 \cdot 83$	-3.85	－4．23	$-3 \cdot 33$	－2．34	－1．07	0.11
Oscillations	－	－	－	－	－	$1 \cdot 45$	$0 \cdot 43$	0.05	0.95	1•94	$3 \cdot 21$	4.39
	－	－	－	－	－	－	$-30 \cdot 8$	-31.0	－29．0	－2s．0	$-27 \cdot 8$	-26.5
2	－	－	－	-35.5	$-36 \cdot 3$	-30.6		35.0	36.5	36.8	35.8	33.0
3	－	－	－		－		37．3	39．00	$3{ }^{39} 5$	39.5 29	30.7 30.7 0.7	$\stackrel{37 \cdot 2}{27}$
${ }_{6}$	－	二	二			36．8	$37 \cdot 6$	$38 \cdot 5$	${ }_{37} \cdot 5$	36.0	34.0	36.0
6	－	－	－	－	－	38.0	$39 \cdot 8$	$38 \cdot 8$	38.4	${ }_{37}{ }^{\circ}$	35.0	$37 \cdot 0$
7	－	－	－			37.0	$36^{\circ} \cdot 0$	$36^{\circ} 8$	$37 \cdot 8$	37.0	32.0	27.0
8	－	－	－	－	－	－	$27 \cdot 8$ 39.0	${ }_{40}^{28.0}$	31.0 40.8	32.0 40.4	29.9 39.6	29.5 41.0
10	二	－	－	－		41.0	42.5	$42 \cdot 4$	$43 \cdot 0$	42.5	$42 \cdot 5$	41.8
11	－	－	－	－	$35 \cdot 5$	35.5	39.0	$39 \cdot 0$	$37 \cdot 0$	$40 \cdot 0$	$39 \cdot 2$	$39 \cdot 5$
12	－	－	－	－	－	31.0	27.4	23.5	$23 \cdot 3$	$22 \cdot 5$	$22 \cdot 2$	24.0
13	－	－	－	－	－		$4{ }^{4} 3^{\circ} 0$	42.5	43.5	$43 \cdot 5$	44.2	44.5
14 15	－	二	二	－	－	$48^{\circ} 0$	4.48 .8	$45 \cdot 5$ 36.1	46.5 35.0	$44 \cdot 7$ 34.8	${ }_{35}^{42} 5$	42.3 36.0
16	－	－	－	－	－	－	31.3	${ }_{31}{ }^{\circ} \cdot 0$	${ }_{34}$	34.5	365	${ }_{36} 6^{\circ}$
17	－	－	－	－	F－．	57.0	$55^{\circ} 0$	55.0	$56 \cdot 1$	57.0	55.0	55.5
18	＝	－	－	－	$55^{\circ} 0$	56.5	$570^{\circ} 0$	$55^{5} \cdot 0$	58.1	54.0	55.0	54.0
20	－	－	二	二	二		9．5	90.5	88.8	＋42．88	${ }_{8.0}^{38.0}$	32.0 7
21	-41.5	$-43 \cdot 6$	－44．0	42.2	44.5	43.0	$42 \cdot 2$	40.7	41.5	42.0	41.6	$40^{\circ} 0$
22	－	－	－	－	－	－	$39 \cdot 6$	$36 \cdot 6$	$36 \cdot 3$	35.5	37.7	$38^{\circ} 0$
${ }_{2}^{23}$	－	－	二	－	$44 \cdot 8$	45.5	$4{ }^{42} 5$	${ }_{41}^{41} \cdot 8$	$43 \cdot 2$ 46.0	44.0	$42^{4} \cdot{ }^{\circ}$	${ }^{44.1}$
25	－	－	－		25.6	＋ 25.2	22.5	22．0	${ }_{21}{ }^{46} \cdot 0$	19.0	18.5	$19^{\circ} 0$
26	－	－	－	31.6	$31 \cdot 3$	26.5	$27 \cdot 5$	23.0	$23^{2} 0$	$20 \cdot 5$	19.0	18.8
27	－	$27 \cdot 4$	－	$\overline{18}$	\cdots	－	34.0	31.8	$32 \cdot 7$	34.2	$35 \cdot 5$	$36^{\circ} 0$
29	－	－	－	18.3 19	${ }_{21}{ }^{16.4}$	15.8	16.0 18.0	$16 \cdot 9$ 16.0	15.2 14.7	14.0 14.0	14.2 14.0	14.0 11.0
80	－	－	－	－	$3{ }^{35.0}$	37.5	35.5	$35 \cdot 2$	$36^{\circ} 0$	37.0	$37 \cdot 0$	$35 \cdot 2$
31	－	－	－	－	18.8	$17 \cdot 1$	16.0	$16^{\circ} 0$	11.0	$11 \cdot 2$	$9 \cdot 9$	8.6
Means	－41．5	－35．5	－44．0	－28．43	－33．15	$-36 \cdot 56$	$-34 \cdot 80$	-34.06	$-34 \cdot 15$	－33．82	－33 15	$-32 \cdot 53$
Corrections	－	－	－	－	－	$-40 \cdot 22$	$-38 \cdot 28$	－37 $\cdot 47$	－37．56	$-37 \cdot 20$	$-30 \cdot 46$	$-35 \cdot 78$
Oscillations	－	－	－			0.00	$1 \cdot 94$	$2 \cdot 75$	$2 \cdot 66$	$3 \cdot 02$	$3 \cdot 76$	$4 \cdot 44$

Freezing point of mercury -36.0 in thermometer used
the north，five feet above the ground．
rations recorded without correction
The whole of the readings for

Fort Confldenoe－continued．
Abstract of Hourly Observations made during the months of January and February 1849.

Day．	Spirit Thermometer constructed by Adie．											
at Station．	1.	2.	S．	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
	－	－										
${ }_{2}^{1}$		二	－	． 5	$-{ }_{-4} \cdot 3$	$-0 \cdot 2$ -4.7	－ 4.2	-6.0	-2.0 -4.0	-1.0 -4.0	－1．00	$-2: 0$ -4.6
3		－			1.3	－0．5	-0.1	-1.1	－3．0．	－4．5	-5.0	-6.0
4		－	-14.2	$-14 \cdot 6$	-16.0	-16.0	-17.0	-176	-15.0	$-16^{\circ} 0$	－ 166	－18．8
${ }_{8}$				二		-27.0	－27．0	-31.5	-34.5	-35.5	－38．5	-37.5
7		－	二	二		-42.5	－43．0	-43.6 -40.0	-43.2	-38.0	－40．5	-41.1
$\bigcirc 8$		－	二	\mp	二	－17．7	－ 17.5	-16.8	-15.5	-15.0	－14．0	-14.0
9		$\underline{\sim}$	－		－	－17	－18．5	-14.0	-14.0	-12.7	－10．8	－9．0
10		－	－			－36．0	－34．0	-38.2	-23.5	-21.5	－25．0	$-25^{\circ} 0$
11		－					－25．0	-26.5	-27.5	-33.0	－34．0	-29.0
18		－	－	－	－		－23．0	$-20^{\circ} 0$	-17.0	－14．0	－12．0	-11.5
13		－			18.0	－6	10.8	9.5	8.0	0.5	1.8	-3.0
14	$=$		－	－			－14．5	$\underline{+14.2}$	-13.0	－11：5	-9.5	－9．0
15	$=$	＝		$\overline{-}$	－34．8	-35.5	-36.0	-36.0	-34.0	$-35^{\circ} 0$	-35.0	-35.8
16 17	－	ב	－49	－47	-48.4	－50	-51.0	－49．0	-47.5	－46．6	-48.0	-44.0
18.	－	－	－14．2	-13.6	－12．8	-12.6	－14．0	－13．0	－12．0	-13.0	-12.5	－ 12.5
19	－	－		$-33 \cdot 6$	$-36 \cdot 5$	－38．0	－38．0	－39．5	-42.0	-38.0	-35.5	-32.5
20		－	－6．5	-5.7	－4．6	-3.2	$-3 \cdot 6$	－14．0	-16.0	$-17 \cdot 5$	$-17 \cdot 0$	-12.6
22				5.0	9.0	13.8	17.4	19.6	20.0	20.2	20.5	－2200
22	14	10	6	2.7	-2.0	－4．0	－3．5	-3.5	$-7 \cdot 2$	-8.2	-8.6	－8．0
${ }^{23}$	－		－5． 3	－3．5	-2.3	$-1 \cdot 3$	－0．5	-0.5	-0.5	－0．5	$0 \cdot 2$	$0: 2$
24	－ 3.0			－16．5	－21．8	－24．4	－25．8	－24． 5	-21.4	-20.5	$-19 \cdot 8$	-20.4
25	$-33^{\circ} 0$	$-33 \cdot 5$	－33．4	-36.3	$-35 \cdot 2$	$-32 \cdot 3$	-30.0	－28．1	$-27 \cdot 9$	-25.0	-21.8	-20.0
26		－			－	-1.0	-2.3	-3.0	$-3 \cdot 2$	－3．8	－6．2	－9．0
${ }_{28}^{27}$	＝	二	$-8 \cdot 9$	$-10 \cdot 4$	－12．3	－14．0	-15.5	－16．8	－19．0	－19．8	-20.0	-20.8
28	－				－	－	－39．6	-42.5	-41.4	-35.8	-36.0	-33.5
${ }_{30}^{29}$	－	二	－	－-1.2	-20^{2}	$-20^{\circ} 0$	－18．3	－18．2	-17.6	$-18{ }^{\circ} 0$	－17．5	-17.8
31			$-12 \cdot 2$	-12.5	-15.2	-18.8	-31.6 -20.5	-32.5	${ }_{-25}-317$	－21．0	-17.6	-18.0
Means	－	－	－	－	－		－19．20	－19．70	－19．23	－18．85	－18．46	－17．76
Corrections	－	－	－	－	－	－	－21．12	－21．67	$-21 \cdot 15$	-20.73	－20．31．	-19.54
Oscillatious	－	－	－	－	－	－	$0 \cdot 7$	$0 \cdot 19$	$0 \cdot 71$	$1 \cdot 18$	$1 \cdot 55$	$2 \cdot 32$
	－	－	－	$-38 \cdot 5$	－40．5	$-40 \cdot 7$	－42．3	－43．0	－43．5	$-42 \cdot 0$	-36.0	-36.0
8	二			-32.0	-33.9	-33.6	$-29 \cdot 5$	-31.0	-28.8	-30.0	-25.2	$-21 \cdot 5$
8	二			－	-16.0	－16．0	$-18{ }^{\circ} 2$	－14．0	-11.0	－9．0	-8.0	-6.5
5	－				$-7 \cdot 2$	-25.2	-22.4	-19.5	-18.2	$\begin{array}{r}-15 \\ -4.2 \\ \hline\end{array}$	－12．2	－9．9
6	－		－	$-20 \cdot 0$	-25.2	$-29 \cdot 5$	－28．8	－28．8	$-26 \cdot 0$	$-27 \cdot 0$	－22．0	-20.5
7	－			－	-40.5	－38．9	-34.5	$-33 \cdot 6$	-37.0	-25.0	-25.5	$-25^{\circ} 0$
8	－		－	－	－10．6	$-12 \cdot 5$	－9．8	－8．7	-8.8	－8．0	-8.0	-8.0
$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	二			－	－	-17.6	-17.2	$-15 \cdot 8$	-13.5	-11.0	-10.0	$-9 \cdot 0$
11	＝		＝	＝	－	－36．0	-36.4	-37.3	$-35 \cdot 7$	-30.2	-29.2	$-27 \cdot 0$
12				－	$-32 \cdot 1$	－29．0	－28．7	－ 26.3	-22.5	－19．0	－18．0	$-18 \cdot 4$
13	－		－		－	$-30 \cdot 2$	－30．0	－29．3	-28.0	-20.0	-22.2	$-19 \cdot 0$
14	－		－	－	－	－4．6	-3.7	-2.0	0.0	$2 \cdot 6$	$7 \cdot 5$.	$9 \cdot 2$
15	－		－			23.0	22.6	$25^{\circ} 0$	22.5	23.5	22.2	24.0
16	－					$17 \cdot 3$	19.2	$21^{\circ} 0$	$22 \cdot 8$	22.8	$22 \cdot 5$	24.0
17	－		－	－	＋3．0	-2.9	-7.7	$-9 \cdot 0$	-8.4	-8.0	-7.5	-7.4
18	－						-5.5	-6.0	-6.0	$-5 \cdot 5$	-5.0	－4．0
19	二	－	－	－	－21．5	-21.5	$-21 \cdot 7$	-22.4	-22.5	-21.8	－21．0	-20.0
${ }_{21}^{20}$	－4	－47	51			-28.8	－28	－29	-30.0	-30.1	-29.5	-30.0
22	－	－	－	－51．0		-50	$-51 \cdot 7$	－50．2	－45	－40	－	-33.0
23			－			$-32 \cdot 2$	$-32 \cdot 0$	$-32 \cdot 4$	－29．8	$-27 \cdot 0$	-26.0	-24.0
24	－47	$-46 \cdot 8$	$-46 \cdot 3$	$-46 \cdot 5$	－49．0	$-49 \cdot 0$	$-52 \cdot 2$	－49－3	$-43 \cdot 5$	－39．0	-39.5	-38.0
${ }_{26}^{25}$	－						-53.0	$-52 \cdot 6$	$-48 \cdot 5$	-46.0	-40.0	-38.2
${ }_{27}^{26}$		－	－	－		$-54 \cdot 7$	-56.0	-54.5	－50．5	-47.0	－41．8	$-40^{\circ} 0$
${ }_{28}^{27}$						-44.7	－44．5	$-42 \cdot 8$	-40.0	$34 \cdot 8$	-32.0	-31.0
	－					－27．0	-27.0	－27．5	$-20^{\circ} 0$	－16	$-17 \cdot 0$	-12.0
Means	$-46 \cdot 75$	$-47 \cdot 00$	$-48 \cdot 90$	$-37 \cdot 60$	$-27 \cdot 07$	－24＇92	-25.80	－25＇10	－23．23	$-20 \cdot 71$	－18．90	$-17 \cdot 36$
Corrections	－	－	－	－	－	－27．41	－28．38	$-27 \cdot 61$	$-25 \cdot 55$	-22.78	-20.79	$-19 \cdot 10$
Oscillations	－	－	－	－	－	0.97	$0 \cdot 00$	0.77	$2 \cdot 83$	$5 \cdot 60$	7•59	$9 \cdot 28$

Suspended in the shade．

Fort Confidenoe－continued．
Abstract of Hourly Observations made during the months of January and February 1849.

Fahrenheit＇s scale．Cbservations recorded without correction

Fort Confidence－continued．
Abstract of Hourly Observations made during the months of March and April－1849．

Day．	Spirit Thermometer constructed by Adie．											
Mean Time at Station．	1.	2.	3.	4,	5.	6.	7.	8.	9.	10.	11.	Noon．
	\bigcirc	－	－	－	\bigcirc	－18．0	$-2 ¢$	$-20 \cdot 9$	$-10 \cdot 7$	$-10 \cdot 0$	-6.0	$\therefore 2.2$
2	－	二	二	二	－	－18．0	-27.0	-8.0	－ 7.5	－2．9	－1．0	3.8
3		二	－			-15.4	-13.3	－9．4	-5.0	－2．2	$0 \cdot 0$	$1{ }^{1.5}$
$\stackrel{4}{5}$	－	二	－	－		－17：2	${ }_{-1}-17$	－ 1.0	-4.0	2.5	5.0	${ }_{6}{ }^{\circ} 0$
6	二	－	－	－	二	－3．0	2．5	$2 \cdot 6$	$3 \cdot 5$	3.8	$4 \cdot 5$	$8 \cdot 2$
8	－	－	－	－	－	－30．5	-31°	$-25^{\circ} 0$	-20.5	$-10^{\circ} 5$	-13.8	－ 9.0
8	－	－	－			$-21 \cdot 9$ $-35 \cdot 6$	－ 22.5	-21.7	-20.1 -28.0	－19．0	－17．0	－16．00
10	－	－	－	－		$-44 \cdot 0$	-43.4	－41．0	－31．8	－25．0	-20.0	－19．8
11	－	二	－	－	－	-26.3	-26.3	-25.2	-23.0	－21．0	－18．3	-17.5
12	－	－	－	－		－－30．3	$-28^{\circ} 4$	－24．0	-21.0	－18：0	-15.2	-13.5
13	－	－	－	－	－	-21.2	-22.0	－19．8	－17．0	-12.4	-10.5	-10.0
14	－					-17.5 -9.7	－17．2	－16．0	－13．0	-12.0 -1.2	-11.5	－-9.8
16	－	－	－	－	－	－9．3	-8.0	-1.8	－3．2	-8.0	$7 \cdot 5$	10.0
17	二	－	－	二	－	-16.5	-18.2	－18．8	-16.0	-16.0	-16.0	-15.5
18	－		－	－	－	$-32 \cdot 5$	$-29 \cdot 4$	－26．0	-24.0	-22.2	-20.8	-18.5
19	二	－	－	－	－	－41．5	－37．2	-32.6	-27.0	－29．8	-20.0	-18.5
20	－					－24．8	－21．8	$-17 \cdot 1$	$-12 \cdot 4$	$-11 \cdot 2$	－9．8	-9.0
21	-26.0	-26.5	-29.5	$-32 \cdot 3$	-31.6	-35.3	－28．6	-27.0	-21°	－151．3	-14.8	-12.5
22	-35.2	$-37 \cdot 8$	$-37 \cdot 2$	$-40 \cdot 2$	$-40^{\circ} 2$	－39．8	-37.2	$-32 \cdot 2$	－25．4	－21．5	$-20^{\circ} 6$	-18.0
${ }_{24}^{23}$	－	－	二	二		－29．0	-25.5 -27.0	－ 21.7	-20.0	${ }^{-15}$	${ }_{-9}^{-12.8}$	${ }_{-8}{ }^{10}{ }^{4}$
25	二	－	二	－	－	$-31 \cdot 3$	－29．4	－25．2	-21.0	-20.0	$-18 \cdot 3$	-10.5
23	－	－	－	－	－	-29.0	-28.5	-26.0	-20.0	－16．5	$-15 \cdot 2$	-13.0
27	－	－	－	－	－	-39.0	-33.2	－27．0	-20.8	-16.0	-12.0	-13.0
${ }_{29}^{28}$	－	－	－	二1	二	－42．5	－35．3 0.0	－28．5	－21．4	－15．5	-12.5 6.3	-9.6
29 30	－	－	二	－	二	-12.0	－4．8	-1.3	$2 \cdot 0$		${ }_{0}^{6.6}$	${ }_{2} \cdot 0$
31				－	－	-34.7	－30．4	-24.5	-18.2	$-17 \cdot 5$	$-12 \cdot 5$	－10．2
Means	－30．60	－32．15	－33．35	$-36 \cdot 25$	$-35 \cdot 90$	$-23 \cdot 63$	－21．69	-18.88	－14．69	－11•82	－9．68	$-7 \cdot 97$
Corrections	－	－	－	－	－	$-25 \cdot 99$	－24．19	$-20 \cdot 77$	－16＇16	-13.00	－10＇65	$-8 \cdot 77$
Oscillations	－	－	－	－	－	0.00	1.80	5．22	$9 \cdot 83$	12．99	15：34	$17 \cdot 22$
1	－	－		－	－	-26.5	-19.5	-13.7	-6.5	-8.0	-5.4	-3.5
$\stackrel{2}{3}$	－	二	＝	二	二	－17．2	－9．5	-3.0 6.0	3.0 16.3	5.0 17.8	8.0 19.8	10.4 14.2
4	－	－	－			$-20 \cdot 2$	$-13 \cdot 8$	$-11 \cdot 2$	$-7 \cdot 5$	-5.0	－4．0	-2.0
5	－	－	－	－	－	0.7	$2 \cdot 2$	5.4	8.0	${ }_{9} \cdot 6$	$12 \cdot 0$	$11 \cdot 8$
6	－	－	－	－	－	$-15 \cdot 0$	-10.6	-7.5	-3.6	-0.3	$0 \cdot 0$	1
7	－	－	－	－	－	-11.3 3.8	-8.0 6.8	1．0	＋2．0	$7 \cdot 5$ 10.0	6.5 11.1	7.8 10.5
8	－	－	二		－	-21.5	-18.0	-16.0	-10.0	-8.0	-6.9	－5．5
10	－	－	－	－	－	-34.0	－28．2	－24．0	-16.0	-12.0	-10.0	－7．0
11	－	－	－	－	$-2 \cdot 8$	－5．5	－3：5	$-{ }^{2.0}$	－ $2 \cdot 0$	5.5 -9.8 -8.	10．5	＋6．2
12	－	二	－	－	$-9 \cdot 8$	－ 212.0	－12．2．	－ 12.0	－110．0	-9.8 -9.9	－8．${ }^{-7}$	-5.6
14	－	－			-21.0	-18.5	－15．0	$-5 \cdot 5$	-1.5	1.4	4.0	4.8
15	－	－	－	－	二	-2.0	－1．8	1.2	3．00	7.0	8.5	10.0
$\stackrel{16}{17}$	－	－	二	－	-11.5	4.8 -11.0	8.0 -5.0	6.0 -5.0	9.0 -1.2	14．0	18.0 -0.5	11.8 1.0
18	二	－	－	－	-115	－22．5	-17.0	-17.0	-15.0	-13.0	-11.0	-10.0
19	－	－	－	－	－	-18.9	－9．5	－7．0	-2.0	1.0	3.0	3．5
20	－	－	－	－	－6．0	-8.0	－0．0	3.5 -0.0	4.8 -0.0	$8{ }^{8.0}$	10.0 3.5	10.2 4.8
21 22	二	－	＝	二	-2.5	$\begin{array}{r}-2.0 \\ -3.5 \\ \hline 1\end{array}$	－1．0	-11.0	-0.0 11.2	14．0	3.5 15.8	
23	－	－	－		－	17.0	13.0	$13 \cdot 7$	14.0	$16 \cdot 8$	18.0	78.5
24	－	－	－	－	1.0	2．0	3.9	${ }^{6} 0$	7.6	10.0	12.5	11.5
25	－	－	－	－	$6 \cdot 0$	$15^{\circ} .0$	17.5	17.5	19.5	18.5	18.5	24.5
${ }_{27}^{26}$	－	－	－	－	6.0	6.0 -17.5	－7．5	10.8 -4.6	－ 1.0	8.8 3.0	3.0 3.4	6.5 5.5
${ }_{28}^{27}$	－	－	－	－	－	-9.0	-7.8	－4．3	-0.8	$3 \cdot 0$	4.0	5.4
29	－	二	－		二	-5.0 -7.0	-2.5	-1.0	10．5	0.5 9.0	1.5 7.9	3.0 11.0
Means－	－	－	－	－	-6.26	－8．82	－4．68	$-1 \cdot 84$	$1 \cdot 69$	3.53	4.71	
Corrections	－	－	－	－	－6．89	-9.70	$-5 \cdot 15$	－2．02	$1 \cdot 69$	3.53	4.71	571
Oscillations		－	－	－	$2 \cdot 81$	$0 \cdot 00$	$4 \cdot 55$	$7 \cdot 68$	11.39	13：23	14．41	15．41

Fort Confidence－continued．
Abstract of Hourly Observations made during the months of March and April 1849.

Spirit Thermometer constructed by Adie．												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．${ }^{\text {a }}$
							$-17 \cdot 8$	$-15 \cdot 0$	-12.5	－	\bigcirc	－i1． 59
-3.5 -4.2	3.0 -3.2 4.2	-3.0 4.0	-5.5 2.0	－ $9: 5$	-15.0 $-8: 0$	-17.2 -13.5	－17．8	－15．0	－11．2			－${ }^{4} \mathbf{4} \cdot 18$
1.2	-0.2	-1.0	-4.4	-5.0	－ 9.5	-11.5	－11．0	－7．5	－5．0			－0．48
5.8	0.5 7.0	7.5	$7{ }^{7} \mathbf{7}$	5.8	5.0 4.1	4.8 3.5	$2 \cdot 0$ 3.5	1.8	3.5			3．63
7．0	7．0	${ }^{7} 1.0$	6.8 1.8	-3.0	-6.5	－14．5	$-17 \cdot 5$	-20.5	$-22 \cdot 2$			－2＇73
-10.2	-5.5	-7.0	-6.0	-7.0	-10.2	－9．8	-9.0	-212.5	－-10.0	二		－ 20.29
-15.0	－14．8	-14.5	-17.0	－ 20.0	-24.0 -2.0	-25.0	－25．0	－26．0	－${ }_{-39}$			－27．73
－21．0	-218.0	-20.8 -18.0	－ 21.2	－22．5	-23.5	-23.5	－ 23.5	－22．5	-22.5	－		－25．80
－18．2	－ 20.0	$-20^{\circ} \mathrm{O}$	－ 21.2	－23．5	$-25^{\circ} 0$	-25.0	－24．4	-24.4	-230°			－22：28
－14．5	-13.5	-15.0	-16.0	－18．6	-20.5	－－22．6	-26.5 -14.8	－32．6	－31．5	－		－13．53
-8.8	-8.0	-8.5	－${ }^{-9.5}$	-10.5 -10.8	-12.5 -15.6	－14．5	－1488	-16.8	－16．8			-13.60
－10．0	-10.0 4.0	-9.0 -0.5	－10．0	－10．8	-2.5	-1.4	-2.5	－8．0	-8.0			－2．44
${ }_{9} \cdot 0$	${ }_{9}{ }^{\circ}$		$3 \cdot 8$	25	1.0	-1.5	－4．2	－4．0	$-4 \cdot 0$ -30.5			－18．61
-15.8	-16.0	-15.4	-16.0	$-10 \cdot 2$	-20°	－21．0	-24.5	－28．0	${ }_{-}^{-30 \cdot 5}$	二		－22．85
$-17 \cdot 0$ -18.0	－17．0	-16.9 -14.6	-17.5 -15.8	-19.0 -16.8	－21．5	-24.5 -21.8	－-2.2	－24．0）	-24.0			－23．44
-18.0 -6.8	${ }_{-6.5}^{-16.4}$	－14．6	${ }_{-150}^{-15}$	－11．2	-16.2	－20．4	-23.0	-24.0	－24．0	－25．2	-28.0 -35.3	－${ }^{-16 \cdot 14}$
－12．4	-14.0	-13.8	-13.6	－17．0	－20．0	-28.0	－31．00	-32.5 -20.0	-32.0 -30.0	－370		－27．02
－15．0	$-16^{\circ} 5$	-16.0	－16．0	-16.5 -17.0	－ 20.0	－29．2	－ 30.8	-34.0	$-30 \cdot 0$			$-20 \cdot 66$
－13．0	-12.5 -4.2	－13．0	-6.0	－ 7.8	－12．9	-18.8	-23.0	-25.5	$-25 \cdot 5$			－15．71
－16．6	-17.0	-16.6	-17.5	$-18^{\circ} 0$	－21．5	－26．2	-28.8 -30.5	-30.8 -31.5	－ 31.4 -32.5		－	－21．44
－12．0	-14.0	-15.5 -10.5	－15．2	－17．5	－ 21.5	－26．0	-26.5	-31.0	$-39 \cdot 0$			－20．66
－11．0	-10.5	－10．5	-6.8	${ }_{-8,3}$	－12．8	－20．5	-20.2	-25.3	$-22 \cdot 4$			$-17 \cdot 65$ 6.20
$9 \cdot 6$	10.5	$11 \cdot 8$	$12 \cdot 8$	$9 \cdot 0$	7.5	－6．6	${ }^{6.5}$	＋ $\begin{array}{r}4.5 \\ -20.4\end{array}$	4.8 -22.0			－5．44
1.8	-0.5 -8.0	1.0 -7.8	-2.0 -6.8	－ 4.8	－${ }_{-14.5}$	－${ }^{-11 \cdot 0}$	－ $10^{16.5}$	－20．4 -27	－30．0			$-17 \cdot 79$
9．8	-8.0								$-20 \cdot 83$	－31．10	$-31 \cdot 65$	
$-7 \cdot 45$	－7．41	$-7 \cdot 69$	－8．53	-10.50	-13.75	－10＇94	－18．74	-29.51	－20 80	－31．10		
－8．20	$-8 \cdot 15$	-8.46	$-9 \cdot 38$	$-11 \cdot 55$	-15.12	$-18 \cdot 63$	-20.01	$-22 \cdot 50$	$-22 \cdot 91$	－		$-15 \cdot 58$
－17＊29	17•84	17：53	16．61	$14 \cdot 44$	10.87	$7 \cdot 36$	$5 \cdot 38$	$3 \cdot 43$	3.08	－		
					$-5 \cdot 0$	－10．0	-15.5	$-19 \cdot 5$	-21.0	－	－	-9.09 4.46
$15 \cdot 0$	12.0	$8 \cdot 8$	9.8	8.0	7.0	5.5 -1.9	5.0 3.0	4．00	4.0 -6.2	二		${ }_{6} 4.81$
18．0	7 78	8.0 1.0	4.9	3.0 1.0	1.1 -3.0	-1.9 -125	-16.0	－140	－15．0	－		-7.16
$-1 \cdot 2$ 12.2	－0．2	1.0 11.5	7.8	$7 \cdot 5$	－5．0	－2．0	-6.0	－8．0	－11．0			－2．68
3.5	$4 \cdot 5$	4.5	$4 \cdot 3$	$2 \cdot 0$	-1.0	－4．5	－6．5	－6．5	-6.5 3.0	二		3.02
6．0	6.0	${ }^{6.2}$	7.5	5．0	3.0 -4.8	－ 3.0	－ 3.2	－9．0	－14．5	－	－	2．42
11.0	$4 \cdot 0$	2．2	100	-2.0 -9.8	－ 12.0	－15．6	-26.0	－22．5	$-26 \cdot 3$			-13.08
-6.2 -8.0	－4．5	-6.6	-3.6	-5.8	－10．5	－15．0	－14．5	$-12 \cdot 0$	$-10 \cdot 0$ -3.0			－12．78
－8．2	－4．8	$2 \cdot 5$	$2 \cdot 0$	－2．0	1.0		0．5	1.0 -12.5	-3.0	－	－	－8．84
－5．2	－5．00	-5.0 -4.0	－5．5	－6．5	－8．0	-10.0	－11．0	-12.5 -2.0	－	－	－	－ $10 \cdot 8.4$
-5.0	－4．0	－4．0	－7．0	6.0	$4 \cdot 0$	$0 \cdot 0$	-3.0	-2.5	－2．5			$7 \cdot 32$
9.5	11.5	13.0	14.0	$12 \cdot 5$	11.0	10.0	$7 \cdot 0$	－5．0	－${ }_{-3.5}$			$7 \cdot 12$
12.0	11.0	11.0	$10^{\circ} 0$	10.0	6.0 -2.5	2.0 -6.0	0.0 -9.0	－-1.0	－20．0	二	－	－4．31
$\begin{array}{r}2.2 \\ -8.8 \\ \hline\end{array}$	3.0 -7.5	$2 \cdot 2$ -6.5	－ 1.5	0.2 -4.8 -4.8	－2．5	-8.0	－13．0	－ 20.0	－21．5	－		$-12 \cdot 18$ 0.68
-8.8 4.0	－7．5	－6．8	－6．4	－ $7 \cdot 0$	$6 \cdot 0$	5．0	0.0	1.0	-1.2		11.0	$8 \cdot 24$
16.2	16.0	17.0	16.2	13.0	$13^{\circ} .0$	13.0	13．4	14．5	－10．0	13.		$0 \cdot 32$
52.0	$5 \cdot 5$	6.2	${ }^{6.0}$	$5 \cdot 0$	17．0	－3．0	-13.0	－13．2	13.0	－		14.94
4．00	22.0 16.0	19.0 14.0	20．0	${ }_{8} 18.5$	17．0	${ }^{15.5}$	-1.0	-3.0	－2．5	二		10.68 9
12.5	$12 \cdot 5$	11.5	11.0	13.0	$11 \cdot 8$	11.0	9．0	9.0 5.0	4.5			$16 \cdot 80$
24：5	28.5	24.0	20.3	17.2	14.5	12.0 0.0	－9．0	－${ }^{\circ} \mathrm{1} \cdot 0$	－19．0			$2 \cdot 91$
${ }^{6 \cdot 0}$	4.8	6.0	5.5 6.0	${ }_{6}{ }^{\circ} 0$	1.0	$0 \cdot 0$	$-2 \cdot 0$	-13%	-16.5	－		${ }^{1} \cdot 14$
$7 \cdot 0$ $5 \cdot 0$	5.8 10.2	13.0	6.0 13.8	${ }_{11}{ }^{6}$	6.0	3.0	$2 \cdot 0$	－4．0	-6.5	-10.5	－-7.0	${ }_{7}^{1}$
4.0	4．0	6.0 11.2	$\begin{array}{r}7.0 \\ 72.0 \\ \hline\end{array}$	5.5	$8{ }^{3.0}$	3.0	0.0 5.0	-4.0 3.5	－7．0			702
12.0	$12 \cdot 5$	$11 \cdot 2$	$12 \cdot 0$	10.0	8.5	78						
70	6.47	$6 \cdot 28$	6.06	472	$2 \cdot 22$	-0.25	-3.09	$-5 \cdot 19$	$-7 \cdot 19$		5	
6.70	6.47	6．28	0.06	4.72	$2 \cdot 22$	－0．27	$-3 \cdot 40$	$-5 \cdot 71$	$-7 \cdot 01$	－	－	0.91
16.40	$16 \cdot 17$	$15 \cdot 98$	15’76	14．42	（ $11 \cdot 92$	－ $9 \cdot 43$	6.30	$3 \cdot 99$	1：79			

[^39]1. Fort Confidence-continued.

Mean Temperatures in the Shade for the Months at the Hours of Observation, and for the entire Periods

Observations in thermometer used stood at 36° in Observations in this table corrected for the error

Fort Confidence-continued
Mean Temperatures in the Shade for the Months at the Hours of Observation, and for the entire Periods.

Spirit Thermometer constructed by Adie.												
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt.	Means of Months.
$2{ }^{2} \cdot 42$	$\stackrel{\circ}{22} \cdot 01$	$2{ }^{\circ} \cdot 29$	${ }^{10} \cdot{ }^{\circ} 95$	$\stackrel{\circ}{19} \cdot 32$	16.50	${ }^{\circ} \mathrm{B} \cdot 80$	$17 \cdot 93$	${ }^{17} 182$	-	-	-	$19 \cdot 62$
$0 \cdot 41$	-0.09	-1.06	-1.80	$-2 \cdot 83$	$-3 \cdot 32$	$-3 \cdot 97$	$-3 \cdot 86$	$-4 \cdot 28$	-	-	-	$-2 \cdot 40$
-35 78	$-37 \cdot 07$	$-37 \cdot 45$	-37•37	-37•81	$-37 \cdot 64$	$-37 \cdot 78$	$-37 \cdot 82$	$-37 \cdot 72$	-	-	-	$-37 \cdot 46$
$-18 \cdot 61$	-29 88	$-20 \cdot 34$	-21.01	$-21 \cdot 86$	-21.09	$-21 \cdot 04$	$-21 \cdot 41$	$-21 \cdot 14$	-	-	-	$-20 \cdot 86$
-18.14	$-17 \cdot 93$	$-19 \cdot 03$	-20.68	$-22 \cdot 79$	$-23 \cdot 80$	$-25 \cdot 59$	-25.31	-25.92	$-25^{\prime 25}$	-	-	-23.29
$-8 \cdot 20$	-8.15	$-8 \cdot 46$	$-9 \cdot 38$	$-11 \cdot 55$	$-15 \cdot 12$	$-18 \cdot 63$	-20.61	$-22 \cdot 56$	$-22 \cdot 91$	-	-	$-15 \cdot 59$
6.70	6.47	6.28	6.06	4.72	$2 \cdot 22$	-0.27	-3*40	$-5 \cdot 71$	$-7 \cdot 91$	-	-	-0.82
$-7 \cdot 46$	$-7 \cdot 95$	$-8 \cdot 40$	$-9 \cdot 18$	-10×40	-11 74	-12.92	-13.47	$-14 \cdot 65$	-	-	-	-11.59
$-25 \cdot 33$	-26.14	-26.46	$-27 \cdot 23$	$-28 \cdot 29$	-28.42	-29.07	$-29 \cdot 12$	$-29 \cdot 20$	-	-	-	-27.91

freezing mercury. Zero point correc
of -4° between the zero point and -40' Fahrenheit.

FORT CONFIDENCE．
Abstract of Hourly Observations in the month of October 1848

Day．	Spirit Thermometer by Adic，Fahrenheit＇s scale．Kept within the Observatory．Stands											
at Station．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
			－	\bigcirc	\bigcirc	。	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }_{2}$	二	二	二	－	＝	二	－	二	二			＝
3	－	－	－	－	－	－	－	－	－	－	－	－
4	二	二	二	－	－	二	－	＝	二	二	二	－
6	－	－	－	－	－	－	－	－	－	－	－	－
8	＝	＝	二	－	＝	二	－	－	二	－	－	－
9	－	－	－	－	－	－	－	－	－	－		－
10	－	－	－	－	－	－	－	二	－	－	－	－
12	－	－	二	－	二	－	－	－	二	－	二	
13	－	－	－	－	－	－	－	－	－	－	－	－
14	－	－	－	－	－	－	－	－	－	－	$16 \cdot 0$	1910
15	－	－	－	－	－	－	－	$21 \cdot 5$	$21 \cdot 5$	$22 \cdot 0$	$22 \cdot 0$	22.2
16	－	－	－	二	－	－		24.0	24.0	$25^{\circ}{ }^{\circ}$	$26^{\circ} 0$	$27 \cdot 0$
17	－	二	－	二	－	－	$2{ }^{\circ} 0$	$25^{\circ} \cdot$	二	$18^{\circ} 0$	28．0	－
19	二	二	－	－	－	－	二	二	－	－	$3{ }^{-0}$	
20	－	－	－	－	－	26.0	26.0	25.0	$26 \cdot 0$	$26^{\circ} 0$	$25 \cdot 0$	$27 \cdot 5$
21	－	－	－	$23 \cdot 0$	－	－	$2: 40$	22.0	$21 \cdot 5$	23.0	$24 \cdot 0$	$25^{\circ} 0$
${ }_{23}^{22}$	－	＝			－			20.0		19\％8	18．5	18.5
${ }_{24}^{23}$	－	二				24.0 25	－ 24.0	24．0	25.0 25.0	$\stackrel{27}{ }{ }^{-8}$	$28^{\circ} 0$	$\underline{8.0}$
$\stackrel{24}{25}$	－	二	28.0	28.0	25°	${ }_{28} 2.0$	${ }_{28} 8^{\circ} 0$	2.0	$2{ }^{2} 0$	－	29．0	29．0
26		－	－	－	－	$25^{\circ} 0$	$28 \cdot 0$	29.0	$30 \cdot 0$	$30 \cdot 0$	$31 \cdot 0$	$32 \cdot 0$
27	－	－	28.0	$27 \cdot 0$	－	－7	26.5	$27 \cdot 0$	25^{-0}	$29^{\circ} 0$	30.0	31.0
28	－	－	－	－	－	$27 \cdot 5$	$23^{\circ} \cdot 0$	29．0	29.0	$30^{\circ} 0$	$3{ }^{30.0}$	30.0
29 30	－	－	－	二	21^{-4}	26.5 22.0	26.5 21.0	26.8 20.5	－21．0	22．0	26．0	26.0 20.0 20
${ }_{31}^{39}$	二	二	二	－			$13 \cdot 5$	14．0	14.6	$15 \cdot 0$	$16^{\circ} 0$	17.0
Means	－	－	$28 \cdot 00$	$26^{\circ} 00$	$23 \cdot 20$	$25 \cdot 11$	$24 \cdot 12$	23.77	$23 \cdot 80$	23．97	25.53	25.61
Oscillations	－	－	－	－	－	$1 \cdot 34$	$0 \cdot 35$	$0 \cdot 00$	0.03	$0^{\prime} 20$	$1{ }^{1} 76$	$1 \cdot 84$

All the Temperatures above zero．

FORT CONFIDENCE
Abstract of Hourly Observations in the month of October 1848.
at 36° degrees in freezing mercury．Same Temperature with Declinometer and suspended Magnets．

1.	2.	3.	4.	5.	6.	7.	8.	0.	10.	11.	Midnt．	Means．
\bigcirc	－	－	－	\bigcirc	\bigcirc							
二	二	－	二	\cdots	二	二	－	－	二	－	二	－
＝	－	二	二	－	－	－	－	－		－	－	－
－	－	－	－	－	－	－	－	－	－	二	二	
二	－	二	二	二		－	－	－	二	－	二	
－	二	二	－	－	－	－	－	－	－	－	－	－
－	－	二	－	－	－	二	－	二	二	二	二	
二	二	二	二	二	＝	－	－	－	－	二	－	
－	$\underline{-}$	$21 \cdot 0$	二	－	二	二	＝	－	二	二	－	
22.0	22.0	22.0	23.0	二	二	－	＝	二	二	－	－	$18 \cdot 67$
$=$	28.0	$20^{\circ} 0$	－	－	二	二	＝	－	－	－	－	25.67
$29 \cdot 0$	二	20.	二	$23 \cdot 0$	－	－	－	${ }_{3}^{23.0}$		－	－	24.00
					$29 \cdot 0$	$29 \cdot 0$	$29 \cdot 0$	$2{ }^{2} 0$	－		－	${ }_{29}^{32} \cdot 00$
${ }^{27}{ }^{\circ}{ }^{\circ} 0$	25.5	${ }^{29.0}$	26.5	${ }_{21}^{28.0}$	${ }^{27.0}$	28.0	${ }_{27} 2 \cdot 2$	$27^{2} \cdot$		－	－	26.68
23.0 19.2	22.0 20.2	22．0	21.0 21.0	$21 \cdot 3$ 21.0	21.0 21.0	21.0 21.0	－ 20.4	20.0 20.0	－		－	$92 \cdot 15$
$28 \cdot 0$	28.0	28.0	$27 \cdot 0$	26.0	$27^{\circ} 0$	27.0	$27 \cdot 2$	${ }_{26}{ }^{2} 0$	－	－	－	${ }_{26}^{20} 56$
29.0				28．00	28.0 28.6	${ }^{28.0}$	$28^{2.0}$	28.0				25.50
${ }_{33}{ }^{2} \cdot 0$	23．0	${ }_{33}^{28.0}$	${ }_{32}{ }^{28}$	${ }_{29}^{28.0}$	28.6 29.0	$\xrightarrow[29.0]{27.5}$	28.5 29.0	28.5 29.0	二	－	－	28.48 30.28
$28^{2.0}$	29.0	31.0	31.0	30.5	31.0	31.0	30.0	29.0	二			32.24
30.0 2600	30.0 25.6	28.0 25.5	－ $25 \cdot 5$	$\stackrel{-}{25 \cdot 3}$	$25 \cdot 2$	$\stackrel{-1}{25}$	25．0		－		－	$29 \cdot 15$
20.0	19.2	19.2	19.0		17.0	${ }_{13} 2.5$	250	25．0				${ }^{25 \cdot 72}$
$17 \cdot 8$	$17 \cdot 8$	18．0	17.7	17•8	17．5	17．0	18.0	18.0	－	－	－	16.65
25.54	25．33	$25 \cdot 11$	$24 \cdot 85$	$25 \cdot 33$	$25 \cdot 11$	24.77	25.77	$24 \cdot 98$	－	－	－	$24 \cdot 90$
$1 \cdot 77$	1.56	1•34	$1 \cdot 08$	$1 \cdot 50$	$1 \cdot 34$	1.00	$2 \cdot 00$	$1 \cdot 21$	－	－	－	－

All the Temperatures above zero．

Fort Confidence－continued．
Abstract of Hourly Observations in the months of November and December 1848.

Day．	Spirit Thermometer by Adie，kept within the Observatory．Stands at 36°											
Mean Time at Station．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Noon．
			\bigcirc	\bigcirc	$18 \cdot 2$	19.5	$20^{\circ} 5$	$19 \cdot 3$	$19 \cdot 3$	19.5	${ }^{\circ}{ }^{\circ} \cdot 0$	$18 \cdot 2$
$\frac{1}{2}$	三	二	二		192	14.5	14.0	$13 \cdot 6$	$13 \cdot 8$	13.5	15.4	14：5，
3		－			－	$9 \cdot 2$	$8 \cdot 3$	8.4	8.1	7.1	${ }^{7} \cdot{ }^{2}$	7.2
4	二	－				－2	0.0	0.0 -3.0	0.0 -3.0	0.0 -3.0	$-0 \cdot 2$ -2.3	1.0 0.0
${ }_{6}^{5}$	二	二			－4．0	－-2.0	－3．0	－3．0	－3．0	－3．0	-1.6	-1.0
7	－	－		－		2．38	$3 \cdot 0$	3.5 3	$3 \cdot 7$	4.0 10.0	4.0	$4 \cdot 9$
8 9	－	二		＝	${ }_{9} \cdot 3$	9.5 9.0	$9 \cdot 0$	9.8 9.0	$9 \cdot 0$	10.0	－	10．0
${ }^{9}$	二	二	二			－9．0	－9．0	－9．0	-1.5	2.0	0.0	0.0
11		－	－		-9.0	－10．0	-10.0	${ }_{-5}^{-10.5}$	-10.8 -5	-10.0 -4.0	-10.0 -4.0	-9.0 -2.8
12	二	二		－	$1 \cdot 0$	-1.0	－8．0	-0.0	－0．5	2.0	3.0	3.0
14				－0．5	－0．8	－0．8	－0．8	-1.0	$2 \cdot 0$	$1 \cdot 8$	$1 \cdot 8$	0.0
15	－				－5．7	－7．5	-7.0	－7．0	-6.0	-4.0 -1.0	-4.0 4.7	－5．0 -5.2
16	二			－2．3	－1 7	－2．0	-1.0 9.5	0.8 9.8	11.0	10.6	10.1	$9 \cdot 8$
18	－	二	二	－	$7 \cdot 3$	7.4	7.5	77.5	8.5		12.0	9.8
19	－	－	－	－	－	13.5	13.8	13.4	13.5	13.8	$13^{\circ} 5$	13.6
20	－				$11 \cdot 0$	11.3	111.0	111.0	$12 \cdot 8$ 11	14.5 12.0	14.0 13.0	14.0 14.0
$2{ }_{22}$	二	－	二	二	13.5	$13 \cdot 5$	13.0	13.0	13.0	15.2	$15 \cdot 2$	$15 \cdot 5$
23	二	－	－	－	－	$13 \cdot 6$	$13^{\circ} 0$	$13 \cdot 6$	14.0	13.5	16.8	16.5
24	－	－	13	$13 \cdot 6$	$13 \cdot 5$	$13 \cdot 5$	13.0	13.0	$12 \cdot 8$	$\underline{12.0}$	$\underline{120}$	$\stackrel{12}{ }{ }^{1}$
${ }_{26}^{25}$	二	二	－	二	二	二	二	1.5	$1 \cdot 0$	0.5	0.0	0.0
27	－	－	－	－	－	－2．5	-3.0	-2.7	－2．7	$-1 \cdot 0$	$-1 \cdot 2$	－2．00
28 29	－	二	－	1.0	8	． 2	0.5 0.0	0.5 0.0	2.0 -0.8	1.0 $\times 08$ $\times 08$	$\begin{array}{r}1.0 \\ -0.8 \\ \hline\end{array}$	1.0 -1.0
30	二			0	-3.6	-4.0	-4.2	-4.0	-4.0	－3．8	-4.5	－4．2
Means－	－	－	$13 \cdot 80$	$2 \cdot 95$	3.63	4.17	3.87	3.89	$4 \cdot 28$	$4 \cdot 61$	5.00	$5 \cdot 56$
Oscillations	－	－	－	－	$0 \cdot 00$	$1 \cdot 54$	0.24	$0 \cdot 26$	$0 \cdot 65$	$0 \cdot 98$	1337	${ }^{1} 93$
		－	二	－14．0			$-10 \cdot 0$	－10．3	－10．8	-11.1	$-11 \cdot 0$	$-11{ }^{1} 8$
	－	二	二	－14．0	$-14 \cdot 4$	－15．0	$15 \cdot 2$ 18.0	15.0 19.0	16.0 19.0	16.0 19.2	$16 \cdot 0$ 19.0	16.0 19.3
	－	二	二	－		20.0	$20 \cdot 5$	20.0	$19 \cdot 8$	19.0	$19 \cdot 0$	17.5
5	－	－	－	－	－	19.0	19.0	$19 \cdot 0$	19.0	19.0	20.0	$20^{\circ} 0$
6	－	－	－	－	－	22.0	$\stackrel{21.5}{ }$	$\stackrel{21.5}{ }$	${ }^{21} 5$	$\stackrel{21.6}{ }$	21.5	${ }_{22.0}^{22.0}$
8	－	－	二	$=$	二	$\underline{22}$	22．00	${ }_{20}^{20^{\circ}}$	$2{ }_{20} 0^{\circ}$	220．0	19.8	${ }_{19}^{22} 8$
8	二	＝	－	＝			$23 \cdot 0$	$22 \cdot 9$	$22 \cdot 0$	23.0	23.0	$23^{\circ} 0$
10		＝	－	－	－	25.0	$24 \cdot 4$	$24^{6} \cdot 6$	$25^{2.0}$	25.0	25.0	$25^{\circ} 2$
11	－	－	－	二	$25 \cdot 5$	${ }_{25}^{25 .}$	25．00	25．0	25.0 24.8	$25^{\circ} 0$ 24.0	25．0	${ }_{23}^{25.0}$
12	－	－	－	二	－	－ 24.4	${ }_{24.0}^{25.5}$	${ }_{24.2}^{25.0}$	424.6	24．0	${ }_{25}^{25}$	${ }_{25}{ }^{2} 3$
14	－	－	－			$29 \cdot 0$	$29 \cdot 0$	$29 \cdot 2$	29.2	$29 \cdot 4$	29.2	29.0
15	－	－	－	－	－	－	${ }^{26.0}$	$26^{2.0}$	$26^{2.0}$	25．9	$2{ }^{25 \cdot 9}$	${ }_{25}^{25 \cdot 5}$
16	－	－	－	－	－	$31 \cdot 0$	26.8 31.0	26．5	26.5 32.0	－ 25.4	25.5 32.2 	32．6
17	－	－	二	二	36.6	$37 \cdot 0$	$37 \cdot 2$	38.0	38.0	87.0	${ }_{35}{ }^{\circ} 0$	$36^{\circ} 0$
19		－	－	－	－	34.0	33.8	34.0	34.0	34.0	32.0	$32^{\circ} \cdot$
20	－	－	－	－	$\overline{-10}$	－110	${ }^{18 \cdot 6}$	18．0	17.8	17.8	15．5	${ }^{15} 5^{\circ} \cdot$
21	$\underline{-9} 0$	$\underline{-9} 9$	－10．0	$-10 \cdot 6$	－10．8	$\underline{11} \cdot 8$	$\stackrel{12 \cdot}{ }$	11.8 24.3	${ }_{24} 1 \cdot \frac{1}{3}$	24．5	${ }_{24}{ }^{13} 4$	${ }_{24}{ }^{14} 4$
${ }_{23}^{22}$	－	－	二	－	$25 \cdot 6$	26.0	26.5	26.9	27.0 81.0	27.3	$27 \cdot 5$	$\stackrel{27.5}{ }$
24	－			二		${ }^{30 \cdot 2}$	30．0	30.8	31.0	31.0	31.0	${ }^{31.0}$
${ }_{26}^{25}$	$\underline{-}$	二	－	$\overline{22.0}$	27.3 22.0	27.0 22.0	26.0 22.0	25.7 22.0	25.1 22.0	－ 22.1	＋ 21.6	${ }_{21}^{24.0}$
${ }_{27}^{26}$	＝	二	－	$\underline{22}$	－	－	$19 \cdot 3$	19.6	19.7	20.4	20.5	$2{ }^{20} 5$
28	－	－	－	${ }^{21.8}$	21.2	21．0	20.0 15.0	${ }_{15}^{20.1}$	19.9	19．0	$1{ }^{19.0}$	19.0 14.0
29 30	－	－		$\underline{14.6}$	14.5 14.2	14．5	$\xrightarrow{15.0}$	${ }^{15}{ }^{\circ} \mathrm{O}$	14.9 17.0	14．0	14：8	$1{ }^{19}{ }^{\circ}$
31	－	－		－	$21 \cdot 7$	$21 \cdot 0$	$21^{\circ} 0$	$21^{\circ} 0$	$19^{\circ} 5$	19.0	$18 \cdot 6$	17．6
Means	-9.00	$-9 \cdot 90$	-10.00	-6.76	－16．67	$-22 \cdot 15$	$-21 \cdot 00$	－22．04	－22．03	－21．99	－21．65	－21．75
Corrections	－	－	－	－	－18．34	－25．36	$-23 \cdot 10$	－24．24	－24．23	－24．19	－23．81	－23．92
Oscillstions							1•09	$0 \cdot 00$	0.01	0.05	0.38	0.27

Fort Confidence－continued．
Abstract of Hourly Observations in the months of November and December 1848.
when meroury freezes．Same Temperature with the Declinometer and suspended Magnets．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. \& 2. \& 3. \& 4. \& 5. \& 6. \& 7. \& 8. \& 9. \& 10. \& 11. \& Midnt． \& Means．

\hline 19.4 \& $1{ }^{8} \cdot 4$ \& 19.4 \& 20.0 \& 19.0 \& $19 \cdot 5$ \& 19.0 \& 18.7 \& 18.6 \& － \& \bigcirc \& \bigcirc \& $19 \cdot 38$

\hline 14.0 \& 14.3
7
7 \& 17.0
8.0 \& 14.3
7 \& 14.8
7 \& $\stackrel{15.0}{7}$ \& 16.0
7 \& 15．00 \& 14.0
6.0 \& \& \& \& $14 \cdot 61$

\hline ${ }^{7} 10$ \& 7.7
1.0 \& 8 \& 7.6
1.0 \& 7.5
2.0 \& $7 \cdot 0$
2.0 \& $7 \cdot 0$ \& $7 \cdot 0$ \& 6.0
1.0 \& － \& \& \& 7.52
0.83

\hline $0 \cdot 0$ \& －0．2 \& －0．2 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& $0 \cdot 0$ \& 0.0 \& － \& \& － \& －0．95

\hline 0.0 \& $0 \cdot 0$ \& 1.0 \& 1.5 \& 1.2 \& $1 \cdot 2$ \& $2 \cdot 5$ \& $1 \cdot 2$ \& 1.2 \& \& \& \& －0．81

\hline 550 \& 55^{50} \& 6.0

0 \& 6.0 \& 6.0

0.5 \& ${ }^{6} 6$ \& $\begin{array}{r}6.5 \\ \hline 10.5\end{array}$ \& | 6.8 |
| :--- |
| |
| 10 | \& 7.0

10.2 \& \& \& \& $4 \cdot 99$

\hline 10.5
15.0 \& 10.0
1.50 \& 10.4
16.0 \& $10 \cdot 1$
15.0 \& $10 \cdot 5$ \& 10.5
13.0 \& 10．5 \& 10.8
12.0 \& 10.2
12.0 \& － \& － \& ב \& $10 \cdot 22$
12.16

\hline 0.0 \& 0.0 \& -1.0 \& -1.0 \& -1.0 \& － \& － \& -8.0 \& -3.0 \& －5．0 \& -6.0 \& \& －2．91

\hline -9.0 \& -8.0
-2.0 \& －8．5 \& －8．5 \& －8．5 \& -8.2 \& 0.0 \& -7.5 \& -8.5 \& -8.0 \& \& \& -9.06

\hline ${ }^{4} \cdot 0$ \& 3.0 \& －4．0 \& －2．5 \& －3．0 \& －1．0 \& 4.0 \& 1.5 \& 0.0 \& 二 \& \& \& －3．02

\hline 0.5 \& $1 \cdot 2$ \& 2.0 \& 0.0 \& -1.5 \& -2.0 \& $-2 \cdot 4$ \& -3.0 \& -4.0 \& \& \& \& －0．42

\hline －2．5 \& -1.3 \& -2.0 \& －2．0 \& -3.0 \& －4．0 \& -3.0 \& -3.0 \& -3.0 \& － \& \& \& ${ }_{-4} \cdot 12$

\hline 6.0
12.0 \& 6.5
10.0 \& 5.2

10.5 \& 5.8
11.0 \& 6.5
10.0 \& $\begin{array}{r}7.0 \\ 10.0 \\ \\ \hline 18\end{array}$ \& 7.0
9.5 \& 8.0
9.5 \& 9.0
8.5 \& $9 \cdot 0$ \& \& \& 3.69
10.04

\hline $9 \cdot 0$ \& $9 \cdot 2$ \& $11 \cdot 0$ \& $11 \cdot 0$ \& 11.5 \& 11.8 \& 12.0 \& $12 \cdot 0$ \& 12.0 \& \& \& \& $9 \cdot 97$

\hline $13 \cdot 5$ \& $13 \cdot 5$ \& 13.0 \& $13 \cdot 2$ \& 13.0 \& 13.0 \& $12 \cdot 7$ \& $12 \cdot 4$ \& 12.2 \& － \& \& \& 13.22

\hline 14.0 \& 14.5 \& 14.5 \& 14.0 \& 14.0 \& $13 \cdot 7$ \& $13 \cdot 5$ \& $13 \cdot 5$ \& 13.2 \& \& \& \& 13.34

\hline 14.5 \& 14.5 \& $15^{\circ} 0$ \& $16^{\circ} 0$ \& 14.8 \& $15^{15} 0$ \& 14.0 \& $15^{\circ} 0$ \& 14.4 \& \& \& \& 13.36

\hline | 15.5 |
| :--- |
| 16.5 |
| |
| 15 | \& 14.0 \& 14.0 \& 14.0 \& $1{ }^{14.0}$ \& 13.8 \& 13.8 \& $13 \cdot 8$ \& $13 \cdot 9$ \& － \& \& \& 14.04

\hline 16．0 \& 15° \& 15.8 \& $14 \cdot 9$ \& 17.5 \& 16.5 \& 15.0 \& 14.8 \& 14.5 \& － \& 二 \& \& 15.09
12.85

\hline － \& $9 \cdot 0$ \& 6.5 \& $5 \cdot 3$ \& 5.0 \& 5.0 \& $4 \cdot 5$ \& $4 \cdot 0$ \& $4 \cdot 5$ \& \& \& \& $5 \cdot 47$

\hline 0.0 \& $0 \cdot 0$ \& -0.3 \& -0.5 \& $-1 \cdot 0$ \& $-1 \cdot 0$ \& $-1 \cdot 2$ \& $-1 \cdot 5$ \& $-2 \cdot 1$ \& － \& － \& \& －0．33

\hline $-1 \cdot 0$ \& -2.0 \& -1.2 \& $-1 \cdot 3$ \& $0^{\circ} 0$ \& $1 \cdot 0$ \& $2 \cdot 0$ \& $1 \cdot 5$ \& -0.5 \& \& \& \& －1．04

\hline 1.5
-1.5 \& 1.5
-2.0 \& 1.5
-2.0 \& 1.8
-1.5 \& 2.0
-2.0 \& $\begin{array}{r}2.0 \\ -2.8 \\ \hline\end{array}$ \& 2.0
-2.6 \& 2.0
-3.0 \& 2.0
-3.0 \& － \& 二 \& \& 1.49
-1.21

\hline －4．5 \& －5．0 \& $-5 \cdot 1$ \& -6.0 \& -6.0 \& -6.0 \& -6.5 \& -7.0 \& -7.0 \& － \& － \& － \& －5．02

\hline 5．86 \& $5 \cdot 65$ \& 5.86 \& $5 \cdot 56$ \& $5 \cdot 30$ \& 5.75 \& 6.42 \& 5.41 \& 4.93 \& －1．33 \& -6.00 \& － \& $5 \cdot 03$

\hline $2 \cdot 23$ \& 2.02 \& $2 \cdot 23$ \& 1.93 \& $1 \cdot 67$ \& $2 \cdot 12$ \& $2 \cdot 79$ \& 1.78 \& $1 \cdot 30$ \& － \& － \& － \& －

\hline -12.0 \& -12.0 \& -12.0 \& $-12 \cdot 0$ \& $-12 \cdot 6$ \& $-13 \cdot 0$ \& -12.6 \& -13.0 \& -13.5 \& － \& － \& － \& $-11 \cdot 85$

\hline 16.0 \& ${ }^{16.5}$ \& 16.2 \& $17 \cdot 0$ \& 17.0 \& 17.0 \& 17.3 \& 17.3 \& $17 \cdot 5$ \& \& － \& \& $9 \cdot 57$

\hline 19.5 \& 19.6 \& 20^{20} \& $19 \cdot 6$ \& $2{ }^{20} 0$ \& 20．8 \& 20．8 \& 20．2 \& 20.5 \& － \& 二 \& 二 \& $19 \cdot 63$

\hline 17.8
2000 \& 17.9
20.0 \& $17 \cdot 5$
20.0 \& $17 \cdot 2$
20.0 \& 17.0
20.0 \& 17.0
20.0 \& $17 \cdot 5$
$20 \cdot 2$ \& 17．5 \& 17.0
20.5 \& 二 \& － \& \& $18 \cdot 26$
19.76

\hline 22.0 \& $22 \cdot 2$ \& 22.0 \& 22.0 \& 22.0 \& 22.0 \& 22.0 \& $22 \cdot 2$ \& 22.0 \& － \& － \& － \& 21.87

\hline 22.0 \& 22．0 \& $22^{\circ} 0$ \& 21° \& 21．0 \& $21^{\circ} 0$ \& ${ }^{21.0}$ \& 21.0 \& $22^{\circ} 0$ \& \& \& \& 21.63

\hline 19.0
23.0 \& 18．5 \& 19.0
24.0 \& $19 \cdot 5$
23.4 \& $19 \cdot 5$
23 \& 19．6 \& 20.0
24.0 \& 20.0
24.2 \& 20.4
24.5 \& － \& － \& 二 \& 19.67
29.36

\hline ${ }_{25} 5$ \& ${ }_{25}{ }^{23} 2$ \& ${ }_{25}^{24.5}$ \& ${ }_{25}^{23.5}$ \& ${ }_{25}{ }^{23} 4$ \& ${ }_{25}{ }^{25} 4$ \& $25 \cdot 5$ \& 25.5 \& ${ }_{26}{ }^{24} 0$ \& － \& 二 \& \& 25．23

\hline $25^{\circ} 0$ \& $25^{\circ} 0$ \& $25^{\circ} \cdot$ \& 25.0 \& $25^{2.0}$ \& $25^{\prime} \cdot 3$ \& ${ }^{25 \cdot 6}$ \& $25^{5} 5$ \& 25.0 \& － \& － \& － \& 25.11

\hline ${ }^{22.6}$ \& 22.5 \& $21 \cdot 5$ \& ${ }^{21} \cdot 6$ \& $21^{2} 5$ \& 21.4 \& 21．0 \& $2{ }^{21} \cdot 1$ \& $21^{\circ} 0$ \& \& \& \& 22.84

\hline － 25.5 \& $25^{\circ} 2$

29.1 \& | 25.6 |
| :--- |
| $29 \cdot 2$ |
| | \& 26．0 \& － 26.0 \& 26．0 ${ }_{28}{ }^{2} 9$ \& 26.5

$28 \cdot 5$ \& 26.5
28.5 \& － 26.5 \& － \& － \& 二 \& $25 \cdot 41$
28.99

\hline $25^{\circ} 0$ \& $25 \cdot 5$ \& $25 \cdot 5$ \& 25.5 \& $25^{\circ} 5$ \& 25.4 \& $25^{8} 6$ \& 26.0 \& $26 \cdot 1$ \& \& － \& － \& 25.69

\hline 23.5
33.2 \& 25．0 \& $25 \cdot 4$

$34 \cdot 0$ \& | 25.6 |
| :--- |
| 34.8 | \& 26.0

35.0 \& 25.8
35.0 \& 26.0
35.0 \& 27.0
35.2 \& 27.0
$35 \cdot 2$ \& 二 \& － \& 二 \& 25.83
33.34

\hline 36.0 \& ${ }^{35 \cdot} 0$ \& 36.0 \& 36.5 \& 35.0 \& 36.0 \& 36.0 \& 36.0 \& 36.2 \& \& \& \& $36 \cdot 32$

\hline $30^{\circ} 0$ \& 29.0 \& 30.5 \& 30.0 \& 29.0 \& 29.0 \& ${ }^{28.0}$ \& 27.0 \& 22° \& \& \& \& 30.52

\hline $15 \cdot 2$
14.5 \& ${ }_{17} 17.5$ \& 9.8
79.0 \& $9{ }^{9} 0$ \& $\stackrel{8.0}{80}$ \& 8．2 \& 7.1
22.0 \& 7.5 \& $7 \cdot 3$ \& -7.0 \& -7.5 \& －8．00 \& 9．10

\hline 14.5
21.0 \& 17.0
19.5 \& 19.0
22.6 \& 20.0
23.5 \& 20.0
21.0 \& 20．0 21 \& 22.0
23.2 \& $22 \cdot 1$
23
28 \& $22 \cdot 1$
24.0 \& 23.0 \& $\underline{23 \cdot 5}$ \& $23 \cdot 5$ \& $11 \cdot 78$
23.06

\hline 27.6 \& $28^{\circ} 0$ \& $28^{\circ} \cdot 0$ \& 28.2 \& $28 \cdot 3$ \& 28.5 \& 28.6 \& 28.7 \& $29 \cdot 0$ \& － \& － \& － \& $27 \cdot 60$

\hline ${ }^{31.0}$ \& 31.0 \& 31．00 \& 31.0 \& 31.0 \& 30.8 \& 30.8 \& 30.5 \& 30.1 \& － \& \& － \& 30^{76}

\hline ${ }^{23}{ }^{23} \cdot{ }^{\circ} \cdot{ }^{+}$ \& ${ }_{20}^{23.5}$ \& ${ }_{20}^{23.0}$ \& ${ }_{20}^{22 \cdot 3}$ \& ${ }_{20}^{22.5}$ \& 22．5 \& ${ }^{22.5}$ \& 22．5 \& 22．5 \& － \& － \& － \& 24．09

\hline 20.5 \& 22.0 \& 21．9 \& 22.0 \& $22 \cdot 2$ \& 19188 \& 23.0 \& 23.0 \& 28.0 \& － \& － \& － \& $21 \cdot 29$

\hline $17 \cdot 6$ \& 18.0 \& $18 \cdot 5$ \& $17 \cdot 0$ \& $17 \cdot 0$ \& 17.0 \& 17.0 \& $17 \cdot 0$ \& $17 \cdot 0$ \& － \& － \& － \& 18.73

\hline 14.0
18.6 \& 14.0

19.0 \& | 13.0 |
| :--- |
| 19.5 | \& 13.0

19 \& 13.0
20.0 \& 13.0
20.4 \& $12 \cdot 1$
21.0 \& $12 \cdot 0$
21.0 \& 12.0
21.0 \& 二 \& $\underline{\square}$ \& － \& 13.75
18.01

\hline $16 \cdot 8$ \& 16.0 \& 16.0 \& 15.0 \& 15.0 \& $14 \cdot 5$ \& 13.8 \& 13.0 \& 11.5 \& － \& － \& \& $17 \cdot 12$

\hline $-21 \cdot 42$ \& －21．38 \& －21．59 \& －21．54 \& －21•38 \& $-21 \cdot 42$ \& －21．65 \& －21•56 \& －21．35 \& -8.00 \& －8．00 \& $-7 \cdot 75$ \& －21．01

\hline －23．56 \& -23.52 \& －23．75 \& －23．69 \& －23．52 \& $-23 \cdot 56$ \& －23．70 \& $23 \cdot 72$ \& 23.48 \& － \& － \& － \& －

\hline 0.63 \& 0.67 \& 0.44 \& 0.50 \& 0.67 \& $0 \cdot 53$ \& $0 \cdot 49$ \& 0.37 \& 0.71 \& \cdots \& － \& － \& －

\hline
\end{tabular}

above，without a prefixed sign．
ahove，without a prefixed
below zero in December．

Fort Confidence－continued
Abstract of Hourly Observations in the months of January and February 1849．

Day．	Spirit Thermometer by Λ 免ie，kept within the Observatory，stands at 30° when											
$\underset{\text { at Station．}}{\substack{\text { Mean Time }}}$	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11．．	Noon．
	－	－	－	-9.0	\bigcirc	-8.0	－ $7 \cdot 0$	$-7 \cdot 8 \cdot$	$-{ }^{\circ} \cdot 5$	－－io 0	$-7 \cdot 2$	-6.0
${ }_{2}^{1}$	－				－4．1	－ 4.2	－4．0	－4．5	－4．5	－5．0	－4．9	－4．0
3				－3．2	-3.0 -6.0	$-3 \cdot 0$	-3.0 -6.8	－－2．5	－2．5	－2．5	－2．5	$-2 \cdot 3$
4			-56	－	－6．	－12．0	$-11 \cdot 0$	－11．5	-120	－11．8	－12．0	-14.0
6				－	－	-22.0	－23．0）	-22.5	－22．5	-24.0	-23.5	$-24 \cdot 1$
7							－27．0	－27．0	－27．4	-27.5	-27.4	-27.4
8		－		－	－	-23.5	－23．0	$-22^{\circ} 5$	-21.0	$-10^{\circ} 0$	-17.5	$-19^{\circ} 0$
9							－15．50	－15．00	－17．0	－17．0	－10．0	-14.5
10	二	二	二	－	－	－15	-18.0	-10°	-17.5	$-1{ }^{-17} 0$	－18．5	－17．0
11		－		－		－	-23.0	$-23 \cdot 6$	－8355	$-23 \cdot 0$	－22．0	－20．5
13		－	－	－	－4．0	－3．8	-3.5	-3.0	－2．0	$-1 \cdot 8$	-2.0	$-2 \cdot 0$
14		－		－		－15	-9.0	$-9 \cdot 0$	-9.0	－9．1	-9.5	－9．0
15		－			－14．2	－15．0	$-15^{\circ} \cdot 2$	-16.5	-17.0	-17.0	-17.5	-17.5
16		－	－24．0	$-25 \cdot 0$	-25.2	－25．8	-26.8	$-27^{\circ} 0$	-27.5	-27.5	-27.5	-27.5
17				-27.5	－27．0	－26．6	－26．4	-27°	-26.0	－25 5	$-2,50$	$-25^{\circ} 0$
18	－	－	-16.7	－16．5	－10．0	-15.5	$-15^{\circ} 0$	$-15^{\circ} 0$	-14.0	-14.0	-14.0	－14．0
19		－		$-15 \cdot 8$	－16．2	-167	-17.0	-17.0	-17.0	－18．8	-19.0	-19.4
20		－	$-16 \cdot 3$	－16．0	$-15 \cdot 2$	－14．0	－13．4	${ }_{-13 \cdot 8}^{-13}$	$\xrightarrow{-13 \cdot 6}$	-17.5 -3.0	-12.5	－12．5
21	8.			－9．8	－9．9	－7．3	－6．0	-3.1	－3．0	-3.0 -4.6	－2．0	1.2 -1.0
23	\bigcirc		－1．5	$-2 \cdot 0$	-2.9	-1.8	$-1 \cdot 6$	$-2 \cdot 0$	$-1 \cdot 8$	-1.5	-1.5	-1.5
24		－	－	-2.5	-3.0	-3.3	-40	$-4 \cdot 5$	－4．8	-5.0	-6.2	$-5 \cdot 6$
25	$-4 \cdot 9$	-5.0	－6．1	-6.9	－6．5	-6.6	－6．7	-6.2	-7.0	－6．3	-5.6	－5．8
26	－		－			-5.5	-5.5	-5.3	-5.2	－5．0	－5．0	－5．0
27	－	－－	$5 \cdot 8$	-5.7	－6．0	-60	－6．0	-17.5	－17．8	$-7 \cdot 0$ -18.0	$-7 \cdot 0$ -17.6	－7．0
${ }_{29}^{28}$	－－	二	－	－	－17．6	－17．5	-17.0	-17.0 -17	－17\％	－18．0	－17\％${ }^{-17} 0$	-17.5 -17.0
30	－	－		-14.5	-15.0	-15.0	－15．2	-15.6	-15.6	-16.0	-16.0	-16.0
31	－		－14．4	-14.0	$-15 \cdot 2$	$-13 \cdot 6$	$-13 \cdot 6$	-13.7	-12.5	-12.5	－12．5	-12.5
Means	15：5	$1 \cdot 50$	$-9 \cdot 16$	－10．40	－10．40	－11．23	$-12 \cdot 40$	$-12 \cdot 43$	-12.52	$-12 \cdot 70$	－12．54	－12．52
Corrections	－	－	－10．08	$-11 \cdot 44$	－11 $\cdot 44$	$-12 \cdot 35$	-13.64	$-13 \cdot 67$	$-13 \cdot 77$	-14.04	－14．79	$-13 \cdot 77$
Oscillations－	－	－	－	－	$2 \cdot 35$	$2 \cdot 44$	115	$1 \cdot 12$	$1 \cdot 02$	0.75	0.00	$1 \cdot 02$
				$-19 \cdot 7$	-18.0	-18.6	$-1.9 .2$	-19.7	－20．0	$-20 \cdot 0$	－20．0	-20.0
2	－	－	－	-22.0	$-22 \cdot 9$	－22．0	$-22 \cdot 2$	-22.0	－22：0	-22.0	－29．0）	-21.2
	－	－－		－	－19．2	－18．8	－18\％	－18．4	-18.0 -14.0	-17.8 -14.0	－17．0	－16．0
4	二	－	－	－．	－10．0	－9．6	－9．5	－-14.4	－10．9	－190	－14．5．	－14．5
5	－			-10.1	－10．4	－10．8	-11.3	-11.5	－12．0	-12.0	-12.0	-11.2
7	－	－	－	－	$-18 \cdot 2$	$-18 \cdot 7$	-19.1	-19.3	-20.0	-19.5	-19.0	－18．0
8			－	－	-10.4	－10．4	－10．4．	$-10 \cdot 3$	－10．0	－10．0	－10．0	－9．0
9	－	－	－		－	－ $-14 \cdot 2$		－14．8	－85	－8．8	-8.8	－ 8.8
10	二	二	－	－	二	－143	－ 20.5	－ 20.8	－ 21.0	-21.0	-21.0	－ 20.5
12	－	－			－21．4	-21.7	-21.6	$-21 \cdot 3$	－21．8	－20．8	－20．0	－19．8
13					－	－19．5	-19.5	-19.7	-210.0	-20.1	－20．0	－18．5
14			－	－		$-12 \cdot 0$	-11.6	-11.9	-7.0	-9.5	$-9 \cdot 0$	－8．5
15				＝	－	${ }_{13}{ }^{7} 1$		$7{ }^{76}$	9.0 13.8	${ }^{8.5}$	10.0	110.0
16	－	－	－	－	$9 \cdot 8$	13.0 9	$13^{\circ} \mathrm{O}$	${ }^{13.0}$	$\begin{array}{r}13.8 \\ 6.0 \\ \hline\end{array}$	14.0 4.5	13.8	13.8
17	－	－		二	$9 \cdot 8$	$9 \cdot 4$				4.5 -1.0	$3 \cdot 5$ $-1 \cdot 2$	2.0 -1.2
18	－	＝	－	－	-4.3	-5.7	－ 0.5	-6.6	－ 7.0	-1.0 -8.0	－-8.0	－1．2
20					－4	－17．0	-17.2	-17.6	-17.6	-18.0	-18.0	-18.0
21	$-21 \cdot 5$	－220	$-22 \cdot 5$	－22：5	-23.2	-23.7	-24.3	-24.6	-2.5	-25.6	-20.4	$-25^{\circ} 0$
22	－	－	－	－	－	-23.7 -23.3	－24．0	-24.2	－23．5	－23．0	－23．0	－23．0
		-15.0		$-\overline{16} \cdot 3$	－16．2	$-17 \cdot 3$	－ 2171	$-23 \cdot 5$	－ 17.1	－ 17.4	$-23: 9$	-24.4
$\stackrel{24}{25}$	－150	－	－150	－	－	－	-28.0	-28.5	－28．5	-28.2	-28.0	-27.9
26	－	－	－	－	－	－29．6	-30.0	－30．3	-30.5	-30.0	-29.8	－29．8
27 28						－27．01	－ 23.0	-27.0 -33.0	-27.0 -2.2	$-26 \cdot 5$ -21.8	－ 26.0	-26.0 -19.8
Means	-18.50	－18．50	$-19 \cdot 05$	－17．72	$-13 \cdot 63$	－14．38	-1×94	－14．90	－14．82	－14．81	$-16^{6} 65$	－14：40
Corrections	－	－	－	－	－	－15．82	－16．43	－16．39	－16．30	－16． 29	-16.11	-15.84
Oscillations－	－	－	－	－	－	$0 \cdot 61$	$\cdot 00$	$0 \cdot 04$	$0 \cdot 13$	14	$0 \cdot 32$	$0 \cdot 59$

Fort Confidence－iontinued
Abstract of Hourly Observations in the months of January and February 1849.

mercury freezes，Same Temperature with Declinometer and suspended Magne												
，	＂ 2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means．
$0 \cdot 0$	－ 5.5	－-5	－5． 5		-5.7	－						
－4：0	－4．0	－4．8	－4．9	－4．9	－5．0	$-5 \cdot 0$	-5.0	$-5 \cdot 0$				
	－2．8	－2：8	$-2: 6$	$-2 \cdot 6$	－2．8	$-2 \cdot 6$	-4.0	－4．4				2．85
	－8	-9.0	－9：0	8.5	－8．8	－9；0	－9．0	－9．0				$7 \cdot 91$
－ 15°	－15．	$-16^{\circ} 0$	-17.0	-17.0	-17.0	-18.7	-19.0	-19.2				$-14 \cdot 86$
－24．	－24：	－25．0	－25．0	－25．2	－25．5	$-25 \cdot 6$	－25．6	－26．0				－ 24.32
－-18	－ 18	-27	${ }^{-17}$	－27．0	－27．5	-27.0 -18.4	－ 26.5	-16.0				－18．70
－14：	－19．5	－13．0	－12．8	-12.0	-12.0	-12.0	-12.0	-12.0				－13．57
-17	－15．8	－18．0	－18．5	-18.5	－18．0	-18.5	-18.5	－18．8				－17．32
-19	－19．5	－18：5	$-19 \cdot 6$	$-19 \cdot 9$	-20.0	－20．1	-20.5	-20.8	－21．0	-21.0		－18．58
－ 20.0	－20：0	－20．0	－18．0	$-17 \cdot 0$	$-15^{\circ} 0$	-15.0	－14．0	－14．0				－19：20
－2	-2.3 -9.0	-2.0 -9.0	－2．0	-3.0 -9.0	-3.0 -9.0	-3.5 -9.5	-3.5 -9.5	－ 4.11				－9．17
－17	－18	-18.9	－19．0	-19.8	－20．0	-20.0	－20．5	－ 21.2				－17．93
－27	-27×5	－28．0	-28.0	－28．2	$-28 \cdot 0$	－28．4	-29.0	$-23 \cdot 6$				－27．21
－24：	$-24: 0$	－24．0	$-23 \cdot 8$	－23．0	－22．0	$-21 \cdot 5$	－21．0	-20.0				－24．41
－14：0	-13.5	－13．5	${ }_{-13.5}^{13}$	-13.0	-13.0 -20.0	－13．0	－ 13.5	－ 13.0	－19．0			－14．25
－ 20.0	－ 20.0	－ 20.0	-20.0 -13.2	-20.0	－ 20.0	-20.0 -12.6	－ $20^{\circ}{ }^{\circ}$	-19.0	$-13 \cdot 0$			-13.53
1.0	1.0	2.0	$3 \cdot 2$	4.0	$4 \cdot 3$	4.9	5.0	$5 \cdot 0$	6.5	7.5	7.9	0.38
2.0	1.8	$0 \cdot 0$	$0 \cdot 0$	-0.2	－1．0	-1.0	－1．9	－2．0	-1.5	$1 \cdot 4$	－1．4	$1 \cdot 94$
$1 \cdot 5$	－1．4	-1.0	$-1 \cdot 0$	-1.0	$-1 \cdot 2$	-1.7	$-1 \cdot 2$	-1.2	-1.5			-1.49
	－3．4	－3．0	－3．0	$-3 \cdot 2$ -9.7	－3：20．5	-3.2 -9.2	－3．2	-3.4 -9.0	$-3 \cdot 6$	－4．2	－4．6	－-7.25
－4．6	－5	－5．0	-5.0	$-5 \cdot 1$	$-5 \cdot 5$	－5．5	－5．0	$-5 \cdot 0$		－		$-5 \cdot 14$
-7.2	-7.0	－7．0	-7.8	$-8 \cdot 2$	-9.0	－9．5	-10.0	-11.0				$-7 \cdot 37$
－17\％3	-17.2	-17.0	$-17 \cdot 1$	-17.4	-17.5	-17.5	－17．8					$-17 \cdot 45$ -15.83
－1	－15	－15．0	$-15 \cdot 0$ -15.5		-14.0 -15.8	－14．0	－14．0	－14．0				${ }_{-15}$
－12	－12	－12．5	-13.0	－13	-13.0	－13．5	-14.0	－				－13．29
－12．51	$-12 \cdot 36$	-12.55	－12．55	－12．48	－12．51	－12．65	-12.62	$-12 \cdot 74$	$-7 \cdot 26$	－4．82	－0．	－11．96
－18：76	$-18 \cdot 60$	-13.80	－13．80	-13.73	$-13 \cdot 76$	$-13: 80$	-13.88	－14．01				
$1 \cdot 03$	1.1	$0 \cdot 99$	0.99	1.0	1.0	$0 \cdot 0$	$\cdot 91$	0.78	－	－		
－	-19.8	－19	－20．0	－20．0	－20．0	-20.0	－20．8	$-20 \cdot 8$	－21	－	－	-19.74
-21.0			-19.9	-19.2	－19．0	$-19 \cdot 8$	-20.0	－1900	$-19 \cdot 2$	－		－20．76
－15．5	－15．5	-14.3	－14．0	－13．0	－14．0	－14．0	－13．0	-13.2	$-13 \cdot 5$ $-11 \cdot 0$			$-15 \cdot 76$ -13.01
-138 -8.5	－ $\begin{gathered}13.2 \\ -8.0\end{gathered}$	-13.0 -7.5 -170	-13.0	-12.5 -7	$-11 \cdot 0$ -7.4	－12．0	-12.0 -7.5	－115	－ 11.0	－		－${ }_{-1}{ }^{\circ} 4.4$
－11．0	-11.0	-11.0	-11.0	-10.9	-11.5	-12.0	-12.5	－13．0	－13．8			-11.53
-17.0	-17.0	－17．0		－15．0	－14．7	$\begin{array}{r}-14.2 \\ -7.8 \\ \hline\end{array}$		－13．9	－13．0			-16.87 -8.78
-8.5 -8.0	-8.0 -8.0	-8.0 -8.0	-7.5 -8.0	－8．0	-7.8 -8.0	-7.8 -9.0	-7.5 -9.0	-7.5 -9.4	-7.0 -10.0			-8.78 -8.55
－8．0	-8.0 -15.8	-8.0 -15.5	－15：8	-8.0 -16.0	－88．0	-16.0	－16．8	－17．0	－17＊0	＝		-15.61
-20.0	-21.0	－20．5	-19.0	-19.5	$-19 \cdot 2$	－19．8	－19＊8	-20.0	-20.5			$-20 \cdot 26$
－18．2	－18．0	-175	-17.0	-17.0	-17.0	$-17 \cdot 0$	－17．0	$-17{ }^{-15}$	-17.0			-19.02 -17.79
-18.5 -6.4	-18.0 -5.5	-17 -5 -5	-17.0 -4.8	-16.0 -4.0	－16．0	-16.2 -2.0	-16.0 2.0	$-15 \cdot 0$ 1.0	-15.0 1.0			-17.79 -5.61
10.5	10.5	10.5	11.2	11.5	12.0	12.0	$12 \cdot 2$	12.2	12.5			${ }_{10}^{10.29}$
14.0	14.0	14.0	14.2	14.0	14.7	14.5	14．0	13.8	${ }^{13.0}$	二		13．80
2.0 -1.1	$2 \cdot 0$ $-1 \cdot 1$	－1．0	0.5 -1.1	$-1 \cdot 1$	-0.2	-0.2 -1.1	-0.2 -1.1	0.0 -1.3	－			-1.06
-9.0	$-9 \cdot 2$	-1.8	-10.0	-10.4	-10.5	-11.5	-12.0	-12.0	-12.0			－8．88
-18.0	－18	-18.0	－18．0	-18.5	$-19 \cdot 1$	-19.5	$-20^{\circ} 0$	-20.5	$-20^{\circ} 4$	－20	-20.4	$-18 \cdot 64$
－24	－24．	-24.0	-24.0	-23.0	－23．0	－23．0	-24.0	-23.0	－23．0	－23．5	－23．0	－ 23.68
－23．0	－23．	－23．5	-23.6	-23.5	－23．5	${ }^{-23.5}$	－ 13.8	－13：3	－ 24.3	－14．	-15.9	－18．58
－16．6	-18.0	-18.0	$-18 \cdot 2$	-19.0	-19.0	-20.0	-20.0	-21.0	-22.0			17．82
－27．0	－25．	－26．	－25	$-25^{\circ} 4$	-25.6	-25.6	-26.0	$-20^{\circ} 0$	－26．4	二	－	-26.71
-28.9 -26.0	－28	－27．	－27．2	－ 27.0	－27．0	－27．0	－27．0			2		－24．18
-18.0	-17.5	－16．8	-15.0	-14.0	－14．0	-13.6	－13．9	-14.0	－14．0	－		5
－14．03	$-13 \cdot 55$	-13.35	-13.05	$-12 \cdot 84$	$-12 \cdot 72$	$-12 \cdot 92$	－12．92	－12．94	－13．02	－20．08	19.	$-13 \cdot 96$
－15．43	－14．90	-14.70	-14.35	－14．12	－13．99	-14.21	－14．21	－14．23	－14．32	－		－
1＊00	1.53	1.73	$2 \cdot 08$	$2 \cdot 31$	$2 \cdot 44$	$2 \cdot 2$	$2 \cdot 22$	$2 \cdot 20$	$2 \cdot 11$	－		－

those above，without a prefixed sign

Fort Confidence－continued．
Abstract of Hourly Observations in the months of March and April 1849.

Day．	Spirit Thermometer by Adie，kept within the Observatory．Stands at 36° when											
Mean Time at Station．	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11：	Noon，
	\bigcirc	\bigcirc	－	－	－	-14.0	$-1{ }^{\circ} \cdot 0$	$-1{ }^{\circ} \cdot 0$	$-1{ }^{\circ} \cdot 0$	$-18 \cdot 0$	$-10 \cdot 5$	$-10^{\circ} 0$
$\frac{1}{2}$	二	－	二	二	－	-8.5	-8.5	－8．4	－ 780	-5.0	－7．55	－2．88
3	－					-4.5	－5．0	-5.0 -3.0	-3.0 -3.2	－1．0	－2．5	－1．2
${ }_{5}^{4}$						－2．3	－2．6	$-{ }_{0}$	－3．4	${ }_{-3} \cdot \mathbf{4}$	4．0	4.2
${ }_{6}^{5}$	二	－	－	－	二	－8．5	3.0	3.0	4.8	$5{ }^{5} 5$	6.0 -2.0	6.2
7	－	－	－	－	－	－4．7	－5．6	-6.3 -8.6	-6.8 -9.5	-3.5 -8.5	－2．0	$\square_{5}^{2.4}$
8	－	－				-8.0 -13.7	－8．8	-8.6 -15.0	－ 11.0	－81．2	-9.2	－8．0）
${ }_{10}^{9}$		－		二	－	-18.7 -17.6	－18．3	-18.5	-18.3	-17.0	-16.5	－16．0
11		二	二	二	－	－15．8	-16.2	－16．0	-16.2	$-16^{\circ} 4$	-15.3	$-15^{\circ} 0$
12		－				$-16^{\circ} 6$	－16．8	-17.4	-13.0	-11.5	-10.2	$-10^{\circ} 0$
13	二	－	－	－	\div	$-15 \cdot 4$	$-15 \cdot 4$	－ $15^{\circ} 0$	－11．5	－ $\mathbf{- 1 0}^{\circ} 0^{4}$	-8.2 -8.0	-7.0
14		－	－			$-8 \cdot 8$	-11.5	－ 11.0	－18．0	$-7 \cdot 2$	－6．2	－5．1
15						－8．5	-8.3	-3.2	-3.0	-2.0	-2.0	－1．0
17					＝	-0.7	-1.5	-1.9	-1.8	－2．0	－2．0	－1．5
18		－	－	－	－	-2.5	-14.0	－ 14.2	-15.0	－14．0	－ 13.8	－13．0
19	－	－	－	－	－	－ 17.7	－18．2	－17．8	-16.0	-10.0	-10.0	－6．8
20 21		$-9 \cdot 8$		$-10 \cdot 8$	-11°	－ 12.2	－12．7	－12．8	$-10 \cdot 8$	$-9 \cdot 0$	－8．8	－6．0
22	－	－	－	－	－	－	－	－13．5	－11．2	－ 11.2	－11．2	－11．0
28	－		－	－	－	-13.5	－13．5	－13．5	－11．2	－ 11.2	$-110 \cdot 2$	-11.0
${ }_{25}^{24}$	二	二	－	－		－13．2	－13．5	${ }_{-13.2}$	－12．8	-12.4	-11.5	-10.3
${ }^{25}$	二	－	－	二	＝	${ }_{-13.0}$	－13．4	-13.3	-12.8	$-11 \cdot 5$	－10．2	-10.0
26	二	二	－	二：	－	-14.5	$-15 \cdot 2$	－14．9	$-13 \cdot 0$	-13.0	-12.0	-100
$\stackrel{27}{27}$	二	二	－	二	－	-15.0	-15.5	－15．2	-14.5	$-13^{\circ} 0$	－12．5	－10．5
29	－	－	－	－	－	－8．5	－6．8	－5．2		－8．0	-1.5	-0.2
30 31	－	二		－	二	0.8 -9.0	0.3 -9.6	0.2 -9.5	0.1 -76	0.5 -8.0	－7．6	－6． 0
Means	－9．00	$-9 \cdot 80$	－10．10	-10.80	－11•40	-9.60	－10．37	－10．27	-9.06	-8.19	－7：21	－8．18
Corrections	－	－	－	－	－	－10．56	－11．41	－11．30	-9.97	-9.01	-7.93	－6．80
Oscillations	－			－	－	0.85	0.00	$0 \cdot 11$	1．44	$2 \cdot 40$	3.48	4.61
								-10.0	$-10 \cdot 0$	$-9 \cdot 2$	$-7 \cdot 2$	$-6 \cdot 1$
$\frac{1}{2}$	二	＝	二	－	－	-6.0	-6.7	-6.0	-5.6	-5.0	-4.0	－3．0
3	－	－	－	－	－	-1.0	－3．0	－ 3.8	－1．8	－1．5	－6．5	2.0
4	－	＝	－	二		－1．0	-1.0	－1．8	－4．3	$5 \cdot 6$	$7 \cdot 0$	8.2
5		－	＝	二		3.0	$2 \cdot 3$	${ }_{3} \cdot 2$	$4 \cdot 6$	\square	8.0	10.0
6	二	－	－	二		3.0	2.2	$2 \cdot 0$	$7 \cdot 0$	11.0	13.5	$7 \cdot 9$
8	－	－	－	－	－	$5 \cdot 0$	5.0	$5 \cdot 0$	$5 \cdot 5$	7.0		8.5
9	－	－	＝	二	－	-1.0	-1.5 -9.0	－17．8	1.5 -6.0	2.0 -3.0	－${ }^{3.5}$	－2．0
10	二	－	＝	－		-8.0	－9．0	${ }_{-3}-1.0$	－6．0	$0 \cdot 0$	$1 \cdot 0$	$2 \cdot 0$
11	－	\cdots	二	二	$-{ }_{-0} \cdot 2$	-0.2	－4．8	－4．8	－4．8	－4．0	－3．0	－2．0
13	－	－	－	－	－	-8.0	-8.0	-8.0	-8.0	－8．0	-5.0	－4．0
14	－	－	二	－	－	－4．8	－6．0	-6.5 1.0	－ 0.0	-0.8 4.0	$0 \cdot 1$ 6.0	$7{ }_{7}$
15	－	－	＝	$=$		${ }_{6} 6.0$	6.0	${ }_{6}{ }^{\circ} 0$	－${ }_{7}{ }^{2}$	9.0	$9 \cdot 0$	$12^{\prime} 0$
16	二	－	二		$5 \cdot 0$	4.5	$4 \cdot 0$	$4 \cdot 0$	6.0	$6 \cdot 1$	$7 \cdot 0$	7.0
17 18	－	二	\sim		5	-1.6	-1.0	-1.0	-1.0	-2.0	－2．0	-2.0
19	－	－	－	－	－ 0	-7.0	-7.0	-7.0	－3．0	-1.0	2.2 7.0	． 0
20	－	－	－	－	3.0 8.8	5.0 8.0	${ }^{5.5}$	6.0 10.2	8.0 9.5	$8{ }_{8} 8$	73.0	15.0
21	－	二	－	－	8.8	8.5	10.0	77.2	9.5	${ }_{9} \cdot 0$	$9 \cdot 0$	10.2
${ }_{23}^{22}$	－		－	－	－	14.2	15.0	15.0	17.0	$18 \cdot 6$	20.0	$20^{\circ} 0$
24	－	－	－	－	$7 \cdot 9$	$7 \cdot 2$	10.0	$7 \cdot 5$	$10^{\circ} 0$	${ }^{9.0}$	$\begin{array}{r}9 \cdot 2 \\ 7 \\ 7 \\ \hline\end{array}$	$10 \cdot 2$
25	－	－	－		$\overline{16.0}$	12.0	14.0	14.2 20.0	${ }_{17}^{15}{ }^{17}$	119.0	17.0	18.6
26	－	－	－		$\underline{16}$	15.0 5 5	17.5	$\stackrel{5}{5} 0$	$5 \cdot 0$	770	8.0	$9 \cdot 0$
${ }_{28}^{27}$	－	二	－		－	$1 \cdot 0$	1.0	$2 \cdot 0$	$2 \cdot 2$	$3 \cdot 0$	$4{ }^{4} 5$	0.0
$\stackrel{28}{28}$	二	－	－		－	1.0	1.0	$2 \cdot 5$	4.0 4.0	$5 \cdot 2$ 5.0	6.5 6.0	8.0 7.0
30		－	－		－	$2 \cdot 0$	$2 \cdot 0$	2.0	4.0		6	
Means	－	－	－	－	6.75	$1 \cdot 64$	1.67	$1 \cdot 94$	$3 \cdot 38$	4.30	5.49	6.68
Oscillations	－	－	－	－	－	$0 \cdot 00$	$0 \cdot 03$	$0 \cdot 30$	174	$2 \cdot 66$	$8 \cdot 85$	5.04

Temperatures ahove zero without a prefixed sign．

Fort Confidence－continued．
Abstract of Hourly Observations in the months of March and April 1849.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	Midnt．	Means，
－ $5 \cdot 0$	－4．5	-3.0	$-{ }^{\circ} \cdot 0$	－$\sim_{5} \cdot 5$	$-8^{\circ} \cdot 0$	$-{ }^{\circ} \cdot 0$	－-6.0	$-6 \cdot 5$	$-{ }^{\circ} \cdot 5$	$1 \pm$	\bigcirc	$-8 \cdot 8$
-0.8	-1.0	－3．8	－0．5	-0.0	-6.0	-1.0	-6.0 -0.2	－6．5	$-{ }^{-6.5}$	－	－	－8．26
3.0	4.8	2.0	2.0	2.0	1.5	$1 \cdot 1$	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$			0.18
-1.0	-0.2	0.0	0.5	1.2	2.0	$2 \cdot 2$	2.0	$1 \cdot 8$	$-1 \cdot 6$			－0．46
$5 \cdot 0$	6.0	$6 \cdot 0$	${ }^{6.0}$	$4 \cdot 0$	3.9	$3 \cdot 5$	3.5	$3 \cdot 5$	3.5			3.50
8.0 -100	8.2	8.0 -1.0	5．4	5．0	5	4.4 -4.4 -8.8	4.0 -2.0	－3．5	3．00			5.06
－100	0.0 -6.0	-1.0	－2．0	-2.0 -6.0	-1.8 -6.0	-1.8	-2.0 -8.0	-2.5	－3．00			－2．82
-7.0	$-6 \cdot 0$	－3．5	-8.0	－8．0	－8．8	-9.5	－8．8	-10.5	－11．0	－		-7.31 -9.68
-15.5	-15.0	－15．0	$-15 \cdot 0$	-14.5	－14．0	-14.0	－14．0	-14.5	－15．0	－		－15．81
-13.5	-13.4	-13.0	-12.5	-12.5	-12.0	-13.0	-13.2	－14．0	－14．0	－		－14．23
-10.5	-10.0	－10．0	-10.0	－10．0	-10.8	－11．0	-11.0	-11.5	－12．0	－		－11．88
－7．0	-6.5 -4.5	－6．5	$-7 \cdot 0$ -4.0	-7.0 -4.6	－7．5	－7．5．	－8．0	-8.2	－8．5			-9.15
－5．0	－4．5	-1.0 -3.0	－4．0	－4．6	－5．0	-6.0 -2.0	$-7 \cdot 0$ -2.0	－7＊${ }^{-2} 4$	-8.0 -3.0		二	-6.85 -4.74
0.8	$1 \cdot 8$	$2 \cdot 5$	$3 \cdot 0$	3.5	3.5	－ 4.0	－4．0	$-{ }_{3}{ }^{2}$	－3．0	－		－4．65
－1．0	-1.0	0.0	-0.4	-1.0	-1.0	-1.5	－2．0	-3.0	-3.5			$-1 \cdot 52$
-13.0	-13.9	-12.5	-12.5	-12.5	-11.5	－12．0	-12.0	-12.5	-13.0	－		$-12 \cdot 41$
－13．0	-12.0	-12.0	-12.0	－10．0	－10．0	－11．0	－10．0	－10．0	－11．0			$-13 \cdot 26$
－6．5	－4：8	-3.0	-1.0 -2.0	-4.0 -1.0	-5.0	－5．0	-5.0 0.5	－6．0	-7.0	$\underline{-7} 8$	－8．0	－789
－ 8.	-6.5	－6．5	－6．3	－6．0	$-7 \cdot 0$	-7.0	-7.0	-7.6	-8.5	－	－	－6．93
－8．5	$-7 \cdot 0$	－5．8	-4.0	－3．8	-3.4	－4．8	-6.0	-7.0	-7.8	－		－8．42
-7.5 -9.5	-7.6 -8.0	-7.0 -7.5	-7.0	-7.0 -6.0	-7.0 -6.0	-7.0 -6.2	-7.0 -7.0	-7.5	-7.8 -8.0			－9．29
－8．2	－8．0	-7.0	－6．7	－6．5	-6.0	-6.0	-7.0	-7.5	－8．2	－		－9．914
-9.0	-8.0	－6．5	-6.5	-5.5	$-5 \cdot 2$	-5.5	-6.0	-7.0	-7.0	－		－9．34
-7.0 1.0	－7．0	-6.0 3.0	-5.5	-5.0 4.0	-5.0	-50	$-5 \cdot 0$	$-5 \cdot 2$	$-5 \cdot 4$			－8．96
2.0	${ }_{2 \cdot 0}$	2.0		$2 \cdot 0$	${ }_{1} 1.6$	${ }_{1}{ }_{1} \cdot 0$	4．2	4.0 -0.2	3.5 -0.8	－		0.26 0.86
-5.0	-4.0	－2．0	-1.5	-1.0	－0．8	-0.8	$-1 \cdot 0$	-1.8	-2.0			－4．57
－4．98	$-4 \cdot 37$	-3.78	－3．76	$-3 \cdot 89$	－4．04	-4.35	-4.42	-5.09	$-5 \cdot 53$	$-7 \cdot 80$	-8.00	-6.21
$-5 \cdot 48$	－4．81	-4.16	－4．14	－4．28	－4．44	-4.78	－4．86	-5×60	-6.08	－	－	－
6．93	$5 \cdot 60$	$7 \cdot 25$	$7 \cdot 27$	713	6.97	6.63	6.55	5.81	5.33	－	－	－
-4.5	－3．0	-2.0	-1.0	0.0	0.0	$0 \cdot 0$	0.0	-0.5	-0.8	－	－	－4．37
－2．0	$-1 \cdot 0$	$1 \cdot 0$	$1 \cdot 8$	1.0	$2 \cdot 0$	$2 \cdot 5$	$3 \cdot 0$	3.0	$2 \cdot 6$			$-1 \cdot 32$
$9 \cdot 2$	$9 \cdot 0$	$9 \cdot 0$	$8 \cdot 8$	9.5	8.0	$7 \cdot 5$	$7 \cdot 0$	5.0	$5 \cdot 0$	－	－	6.82
3.0	$4 \cdot 5$	$7 \cdot 0$	$7 \cdot 0$	$8 \cdot 2$	$9 \cdot 0$	$10 \cdot 0$	6.0	6.0	5.0			$3 \cdot 56$
14.0	$12 \cdot 5$	$13 \cdot 3$	14.0	14.5	14.2	$13 \cdot 2$	12.2	12.0	$11^{\circ} 5$	－	－	$9 \cdot 42$
10.0	12.0	12.0	12.0	12.8	12.4	14.0	10.5	$9 \cdot 5$	$9 \cdot 2$			$9 \cdot 09$
8.0	8.0	8.0	$9 \cdot 0$	8.0	$7 \cdot 5$	$7 \cdot 4$	$7 \cdot 0$	$7 \cdot 0$	$7 \cdot 0$	－	－	$7 \cdot 26$
9.0	$9 \cdot 9$	$11^{\circ} 0$	$10 \cdot 5$	10.0	$9 \cdot 8$	$9 \cdot 8$	9.0	$8 \cdot 5$	$7 \cdot 0$			$8 \cdot 15$
4.0	6.0	6.0	$6 \cdot 0$	7.5	$7 \cdot 0$	$4 \cdot 5$	4.0	3.5	$2 \cdot 0$		－	$3 \cdot 36$
0.0 8.1	-0.5	2.2	$2 \cdot 0$	$4 \cdot 5$	4.5	0.0	0.0	-1.0	$-2 \cdot 0$	－		-1.87
$13 \cdot 1$ -0.8	4.0	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 2$	6.0	5.0	$5 \cdot 0$	$4 \cdot 2$	4.0			$2 \cdot 03$
-0.8 -3.6	0.5 -1.0	$\xrightarrow[1]{1}{ }^{1} 0$	$\stackrel{1}{2 \cdot 5}$	1.8 2.0	2.0	${ }_{1}^{1.0}$	1.0 2.0	0.0 2.0	$1 \cdot 2$			－0．93
$7 \cdot 5$	$7 \cdot 5$	8.0	$8 \cdot 6$	9.8	$9 \cdot 8$	$7 \cdot 0$	$5 \cdot 0$	$5 \cdot 0$	$4 \cdot 6$	－		$3 \cdot 36$
$9 \cdot 9$	10.0	$10 \cdot 5$	10.5	$11 \cdot 5$	11.0	10.2	$10^{\circ} 0$	9.0	8.5			$7 \cdot 20$
12.0	13.0	13.0	14.0	15.0	13.0	12.0	$11^{\circ} 0$	10.0	$9 \cdot 5$	－	－	10.47
77.5	$9 \cdot 0$	$9 \cdot 5$	$12 \cdot 5$	12.0	10.0	$9 \cdot 2$	$8 \cdot 8$	$8 \cdot 0$	$7 \cdot 5$			$7 \cdot 64$
$0 \cdot 0$	$1 \cdot 0$	1.0	$2 \cdot 0$	$2 \cdot 0$	3.0	3.0	$2 \cdot 5$	$1 \cdot 5$	1.0	－		$0 \cdot 38$
9.0	．		8.0	$9 \cdot 0$	$9{ }^{9} 0$	8.0	776	77.0	6.0			${ }^{2} \cdot 45$
9.0 34.0	9.0 14.0	13.2 14.9 15	12.8 16.0	${ }^{12.0}$	$1{ }^{12}{ }^{\circ} \mathrm{O}$	12.0 15.0	12.0 14.0	114.0	12．0	12.0	12.0	9.62 12.80
10.5	11.0	12.0	14.0	15.0	14.8	14.2	14.0	$14^{\circ} 0$	14.0			11.23
19.5	18.0	$17^{\circ} 0$	17.0	19.0	17.0	$15^{\circ} 0$	14.5	13.0	11.5	－	－	16.55
10.0	12.0	12.0	12.0	13.0	13.2	32.5	12.0	12．0	12.0			$10 \cdot 65$
$1{ }^{19.5}$	20.0	22.0	$21 \cdot 0$	25.0	$25 \cdot 1$	22.0	24.0	20.0	20.0			19．14
18.0 10.0	18.0	20.0	$19^{\circ} 0$	$18^{\circ} 0$	$18^{\circ} 0$	17.6	$17^{\circ} 0$	10°	14.0			$17 \cdot 53$
10.0 7.0	$10 \cdot 0$	12.0	12.0	12.0	$12 \cdot 0$	$12 \cdot 0$	12.0	11.5	10.2			$9 \cdot 25$
7.0 8.0	$8 \cdot 0$	$9 \cdot 0$	10.0	$10 \cdot 0$	10.0	10.0	$10^{\circ} 0$	9.5	8.5	7.0	$7 \cdot 0$	${ }_{6}^{6.62}$
8.0 7.5	8.0 8.0	8.0 8.0	8.0 10.0	8.0 10.0	8.0 11.0	8.0 11.0	8.0 10.0	7.5 10.0	7.5 10.0	－	－	$6 \cdot 31$ $7 \cdot 26$
$7 \cdot 56$	$8 \cdot 19$	$9 \cdot 12$	$9 \cdot 53$	10.08	$9 \cdot 94$	$9 \cdot 21$	$8 \cdot 64$	$7 \cdot 97$	$7 \cdot 58$	$9 \cdot 50$	$9 \cdot 50$	6.67
$5 \cdot 92$	6.55	$7 \cdot 48$	$7 \cdot 89$	$8 \cdot 44$	8×30	$7 \cdot 67$	$7 \cdot 00$	$6 \cdot 33$	5.04	－	－	－

Temperatures below zero marked－．
CH 2

Table I.

Directions of the Winds at Fort Confidence within 30 feet of the Ground.

Direction.	October.	November.	U-cember.	January.	February.	March. 11	April.	Seven Months.
	Hours.							
North.	3	12	8	11	11	10	2	57
N. by E.	8	9	6	4	2	1	5	35
N.N.T.	5	15	6	24	7	8	7	72
N.I. by N.	21	11	9	9	1	7	3	61
N.E.	38	90	41	29	42	42	21	303
N.E. by E.	34	28	12	3	-	6	4	"87
E.N.E.	23	41	45	28	14	16 .	14	181
E. by N .	16	28	7.5	20	7	21	6	173.
East.	29	57	114	62	102	97	86	547
T. by S.	15	28	48	23	7	45	8	174
E.S.E.	36	84	18	39	13	30	78	298
S.E. by E.	9	17	2	5	5	16	8	62
S.E.	27	24	12	13	13	32	34	155
S.E. by A.	3	-	3	4	-	1	1	12
S.S.E.	-	2	4	-	2	4	2	14
S. by E.	-	-	1	1	-	1	-	3
South.	-	1	2	4	6	1	-	14
S. by W.	-	-	3	-	2	1	1	7
S.S.W.	-	-	1	9	2	5	1	18
S.W.by S.	-	-	4	5	5	-	-	14
S.W.	-	2	15	27	16	7	6	73
S.W. by W.	-	-	1	7	2	-	3	13
W.S.W.	-	-	8	28	12	10	14	72
W. by S.	-	-	-	7	6	22	16	51
West.	4	13	4	35	54	61	125	286
W.by N.	-	15	8	26	16	17	15	97
W.N.W.	3	3	3	24	39	6	13	91
N.W.by W.	-	-	-	3	2	-	-	5
N.W.	2	3	2	33	34	-	25	99
N.W. by N.	-	-	1	4	3	-	2	10
N.N.W.	4	2	2	5	1	3	5	22
N. by W.	1	4	3	7	1	1	3	20
Calm -	27	15	49	58	75	63	7	294
Hours of Observation	$\} 308$	504	510	557	502	534	515	3,430 3,136
$\underset{\text { Mection }}{\text { Mean Di- }}\{$	$\begin{gathered} \mathrm{N} .70^{\circ} \mathrm{E} . \\ \text { D. by } \mathrm{N} . \frac{\mathrm{n}}{\mathrm{n}} \mathrm{~N} . \end{gathered}$	$\begin{gathered} \text { S. } 84 \frac{13}{\circ} \mathrm{E} . \\ \text { or } \\ \text { E. } \frac{1}{2} \text { S. } \end{gathered}$	$\begin{aligned} & \text { N. } 80^{\circ} \mathrm{E} . \\ & \text { or } \text { or }^{\mathbf{E} .} \mathrm{Ny} . \end{aligned}$	$\begin{gathered} \text { S. } 16^{\circ} \mathrm{E} . \\ \text { or } \\ \text { S. by E. } \mathrm{E} . \end{gathered}$	$\begin{gathered} \mathrm{S} .13^{\circ} \mathrm{E} . \\ \mathrm{or}^{2} . \\ \text { S. by E. } \mathrm{E} . \end{gathered}$	$\begin{gathered} \text { S. } 45^{\circ} \mathrm{E} . \\ \text { or. } \\ \text { s.0. } \end{gathered}$	$\begin{aligned} & \text { S. } 7^{\circ} \mathrm{E} . \\ & \text { or } \mathrm{S} \cdot \frac{3}{3} \mathrm{E} . \end{aligned}$	$\begin{aligned} & \text { S. } 53^{\circ} \text { E. } \\ & \text { or } \\ & \text { S.E. } \frac{3}{3} \text { E. } \end{aligned}$

Of 3,430 hours of observation 294 were calm, and in 3,136 there was wind of various strength, from a storm down to an air just sufficient to move a light vane. For the mean strength of the winds, see the following Table (III.)

Table II.

Table of the Mean Force of the Winds at Fort Confidence.

Direction.	October.	November.	December	January.	February.	March.	April.	Seven Months.
:								!
North.	$1: 00$	$1 \cdot 17$	0.75	0.91	$1 \cdot 00$	1.80	$2 \cdot 00$	1*23
N. by E.	$1 \cdot 00$	$1 \cdot 78$	$2 \cdot 17$	$1 \cdot 12$	$1 \cdot 00$	$2 \cdot 00$	$1 \cdot 20$	$1 \cdot 45$
N.N.E.	$1 \cdot 20$	$2 \cdot 13$	0.67	0.88	$1 \cdot 00$	$1 \cdot 88$	$1 \cdot 14$	$1 \cdot 27$
N.E. by N.	$2 \cdot 34$	$2 \cdot 36$	$2 \cdot 89$	$1 \cdot 11$	$1 \cdot 00$	$2 \cdot 29$	$1 \cdot 34$	$1 \cdot 90$
N.E.	3.68	2.45	$1 \cdot 18$	$1 \cdot 24$	$1 \cdot 01$	$1 \cdot 98$	1:67	$1 \cdot 89$
N.E. by E.	$2 \cdot 09$	3.57	$1 \cdot 37$	3.67	-	1. 16	2.25	$2 \cdot 35$
E.N.E.	2.04	$1 \cdot 56$	$1 \cdot 53$	0.55	1.64	$2 \cdot 31$	2.79	$1 \cdot 77{ }^{\prime}$
E. by N.	3.56	$2 \cdot 11$	$1 \cdot 41$	$1 \cdot 97$	1-14	1.21	$2 \cdot 17$	$1 \cdot 94$.
East.	3. 90	$2 \cdot 05$	$1 \cdot 02$: 44	$1 \cdot 41$	$1 \cdot 64$	$1 \cdot 78$	1.89
E. by S.	3.07	$2 \cdot 64$	$2 \cdot 13$	$2 \cdot 09$	$1 \cdot 00$	1.96	1'38	2.04
E:S.E.	3.72	$3 \cdot 13$	1.61	$2 \cdot 56$	$2 \cdot 85$	2.45	$2 \cdot 33$	$2 \cdot 66$
S.E.byE.	8.22	$4 \cdot 24$	3.50	$3 \cdot 20$	$4 \cdot 40$	$5 \cdot 69$	1.38	$4 \cdot 38$
S.E.	$4 \cdot 48$	2.60	2.50	2.46	$1 \cdot 30$	$2 \cdot 30$	3.09	2.65
S.E. by S.	$2 \cdot 14$	-	$1 \cdot 67$	3.75	$-$	3.00	$5 \cdot 00$	3.11
S.S.T.E.	-	3.00	$1 \cdot 25$	-	$0 \cdot 50$	$3 \cdot 25$	9.50	3.50
S. by E.	-	-	$2 \cdot 00$	3.00	-	$3 \cdot 00$	-	$2 \cdot 67$
South.	-	$1 \cdot 00$	3.50	3.75	0×83	3'00	-	$2 \cdot 42$
S. by W.	-	-	1.33	-	$1 \cdot 00$	$3 \cdot 00$	$5 \cdot 00$	$2 \cdot 58$
S.S.W.	-	-	0.50	2.55	$2 \cdot 00$	$2 \cdot 60$	$1 \cdot 00$	$1 \cdot 78$
S.W. by S.	-	-	1.50	$3 \cdot 20$	$2 \cdot 60$	-	-	2.43
S.W.	-	0.75	$1 \cdot 80$	3.00	3.69	$0 \cdot 86$	$2 \cdot 50$	$2 \cdot 10$
S.W. by W.	-	-	$4 \cdot 25$	4.00	$1 \cdot 00$	-	4.33	$3 \cdot 39$
W.S.W.	-	-	$1 \cdot 06$	4.75	$2 \cdot 00$	$1 \cdot 40$	3.00	$2 \cdot 44$
W. by S.	-	-	-	3.86	2.58	$1 \cdot 78$	3•12	$2 \cdot 84$
.								
West.	$1 \cdot 50$	3.15	1'37	$4 \cdot 62$	$2 \cdot 26$	$2 \cdot 44$	3.09	$2 \cdot 63$
W. by N.	-	2.87	$1 \cdot 38$	$4 \cdot 19$	3.68	$2 \cdot 76$	$1 \cdot 80$	2.78 ,
W.N.W.	$3 \cdot 67$	$2 \cdot 33$	$1 \cdot 33$	3.50	$4 \cdot 68$	$1 \cdot 67$	$3 \cdot 38$	$2 \cdot 94$
N.W.by W.	-	-	-	6.33	8.50	-	-	${ }_{7}{ }^{4} 1$
N.W.	$1 \cdot 00$	0.67	$1 \cdot 00$	$4 \cdot 85$	$7 \cdot 44$	-	3. 12	3.03
N.W. by N.		-	$0 \cdot 50$	6.75	8.67	-	2.50	$4 \cdot 60$
N.N.W.	$2 \cdot 00$	1.25	0.50	3. 10	$1 \cdot 00$	$2 \cdot 00$	$2 \cdot 00$	$1 \cdot 69$
N. by W.	1.00	$2 \cdot 00$	$1 \cdot 67$	$1 \cdot 29$	$1 \cdot 00$	$3 \cdot 00$	5.33	2. 18
Mean Force	2.99	2.47	1•33	$2 \cdot 46$	2.01	1.91	$2 \cdot 48$	$2 \cdot 26$
Calm Hours -	27	15	49	58	75	63	7	294

The force of the wind is denoted by figures, as recommended by Rear-Admiral Sir Francis Beaufort, K.C.B. Thus, 12 denotes a hurricane, 11 a storm, 10 a whole gale, and I a light breeze, just perceptible. It will be observed, by looking at Table, that though the N.E., East, and E.S.E. winds were most frequent, they were comparatively light, and that the N.W. winds were stronger.

Table III.

Table of the Mean Extent of Cloudy Shy at Fort Confidence for each Month, and for Seven Months, with the Number of Hourly Observations.

Nore.-A sky totally covered with clouds, whether rare or dense, or obscurcd by mist or snow, so that the blue sky is wholly hidden, is denoted by 10.00 .

24, $\because \quad \therefore \quad$, 4

LONDON:

Printed by George E. Eyre and Winciam Spotiswoode, Printers to the Queen's most Excellent Majesty. For Her Majesty's Stationery Office.

[^0]: * In every instance in which the observations at Sitka are referred to, the mean for the month of November 1843, as given in the Annuaire Magnetique, \&c., has been corrected by adding $23^{\cdot} 2$ div. to each scale reading of Declination from $1^{d} 0^{\text {b }}$ to $14^{4} 10^{h}$ Gott., being the difference between the means for the 24^{h} before and after the last-named hour. This difference is permanent, and appears due to some accidental cause, although no explanation of it is given.
 $\dagger 0^{\mathrm{h}}$ Göttingen mean time at Lake Athabasca.

[^1]: * A second Declinometer, having a Magnet of only two inches in length, was observed from the 16 th December to the 29th February. The means by 58 complete days of observation in this period are given below :

[^2]: * The Horizontal Force is 2.02 at Lake Athabasca, and $1 \cdot 95$ at Fort Simpson; the inclination is $81^{\circ} 37^{\circ} 6$ and $81^{\circ} 52^{\prime} 3$, the total force $13^{\prime} 92$ and $13{ }^{\circ} 84$, at the same stations respectively.

[^3]: * The regular division is continued at Sitka; at Fort Simpson the fortnights are taken from Λ pril 1 st to 14 th, and so on.

[^4]: ＊Imperfect day．

[^5]: * By observations with an instrument of one bar from 16 th October 1843 to 10th February 1844,1 division - $0 \cdot 820$.

[^6]: ＊The details of the adjustments will be found in a future section，

[^7]: * The advantages of the Instrument are these: Its construction is not attended with any of the mechanical difficulties which have led to the failure of the Balance Magnetometers. The changes of inclination being given directly, the deduction of those of the total force is much facilitated. It can be employed with increased advantage where the Balance Magnetometer, which is its only substitute, becomes nearly useless from its limited range of scale, and its unsteadiness in disturbances. It is easily adjusted, and not liable to get out of adjustment. It is observed with the same facility as a Declinometer, and its coefficient can be verified as often as we please without interrupting the series of observations ; this last circumstance was not known at the period of the present observations, which was prior to the suggestion by Dr. Lamont of the method of deflection, to be referred to presently.
 \dagger Proceedings of the Royal Irish Academy, 1842 and 1850; also Letter to Colonel Sabine, dated 12th October 1848, printed and circulated for the information of the Directors of the British Colonial Observatories.

[^8]: * Seven or eight times the length of the defucting magnet is the distance recommended, but it does not appear to be sufficient.

[^9]: * The foregoing explanation is, in substance, derived entirely from the Papers of Dr. Lloyd referred to in a previous note, and is given as much as possible in his own words.

[^10]: ${ }^{\text {a }}$ Readings interpolated.
 ${ }^{4}$ Readings taken simultancously with those of the Inclinometer.

[^11]: ${ }^{\text {a }}$ Readings interpolated．
 b Readings taken simultaneously with those of the Inclinometer．

[^12]: * One day less than for the other elements, the 14th February being excluded on account of the omission of an observation.
 \dagger I take the experiments with $7^{\circ} 5$ inch deflector alone as the best series.

[^13]: * Decrease of Horizontal Force as actually observed, hut the numbers having been inverted, Increase of Force in the register.

[^14]: * Preface to Observations during Magnetic Disturbances. Part 1. p. ix. 1842.
 \dagger Transactions of Royal Irish Academy. Vol. XXII. part 1.

[^15]: a The extreme readings of Jan. 25 and Feb, 2 are here omitted; the mean disturbance is $23^{\prime} \cdot 21$ at 1 A.m., and $5^{\prime} \cdot 52$ at 11 A.m. if they are retained, the monthly values being then $75^{\prime} \cdot 1$ and $7^{\prime} \cdot 1$ respectively.

[^16]: ＊This high value appears to be chiefly produced by the observation of February $2 \mathrm{~d} \mathbf{6 h}$ ．Gott．

[^17]: * The values here given are the differences of the actual readings from the mean fur the same hour and month; + or - signs before the change of declination indicate increase or decrease of the absolute value of that element, not simply easterly or westerly movements, as the absolute declination is east at Lake Athabasca, Fort Simpson, and Sitka, but west at Toronto, Philadelphia, Greenwich, Makerstoun, and St. Petersburg; the + sign indicates an easterly merement at the former and a westerly movement at the latter stations. It will be seen that the general tendency in disturbances is to an increase of absolute declination at all these stations, which reduces the difference of direction remarked above to a common principle. In selecting as the characteristic of each principal movement referred to, that one reading which happens to differ most from the mean, it is

[^18]: necessary to remember that from various causes, some of them perhaps instrumental, there may be an apparent difference of many minutes between the epoch of movements at two stations, which, nevertheless, viewed generally are coincident, and this is considered to be the case in all the cases cited unless otherwise stated.

[^19]: * The readings at Fort Simpson are referred to the mean for the $24^{\text {n }}$.

[^20]: *. Franklin's second Journey to the Shores of the Polar Sea, Appendix II.
 \dagger° In adopting this datum instead of the more usual value $-39^{\circ} 5$, I am guided by verbal information from M. Regneault, that he has found by accurate experiments with the air thermometer, that the true freezing point of pure mercury is between -40° and -41° centigrade; the mean of these two values is equivalent to $-40^{\circ} 9$ Fahrenheit. The mericury employed in the experiments at Lake Athabasca had been purified with nitric acid some time previously, but was dull from exposure and shaking in the constant use it had been put to in the artificial horizon.

[^21]: * Mean of both thermometers, corrected, from 7th January to 29th Febrasry.

[^22]: *.Mr. Roderick Campbell, an officer in the service of the Hudson's Bay Company, kept, at my request, a meteorological register at Frances Lake, on the west side of the Rocky Mountains, situated about latitude $61^{\circ} 30^{\prime}$, longitude $129^{\circ} \mathrm{W}$., from November 1844 to April 1846. This register comprises 13 months of .observations of Aurora Borealis, exclusive of the Midsummer half year, when it could not be distinguished. It was seen on 66 evenings of that period, and is described as an arch in 41 of the entries; it possibly, also, had the same form on some of the nine occasions on which it is not described. There are only five dates on this list coinciding with observations at Toronto, and six more on which coincident observations are found in the Regent's Reports.

[^23]: * Beyond the scale on the negative side.

[^24]: - The Scale Readings of Dollond's thermometer are added, to the end of the abstract, as a check upon the true temperature deduced from the Scale Readings of Newman's. Dollond stood at 3-37.8 in freezing mercury. (p. 126.)

[^25]: Visible aurora. Hourly readings taken during disturbances are distinguished by a difference of type.
 cight minutes late.
 Eig
 Omitted from the Means, as not being complete days.

[^26]: ${ }^{k} 11,0^{\mathrm{h}} 20^{\mathrm{m}} 232 \cdot 2$.
 Eight minutes late. m Twelve minutes late.
 ncreasing numbers denote amovemont of the north end of the magnet towards the East.

[^27]: Omitted from the Hourly Means，as being imperfect days．

[^28]: ${ }^{n}$ Twelve minutes late

[^29]:

[^30]:

[^31]: * The process is the same which has heen suhsequently printed in the "Admiralty Manual," pp. 34 to 39, and 44 to 48; and is therefore omitted here.

[^32]: * The corrections for the barometer furnished by the maker were, more exactly, Correction moyenne totale de capillarité - $\quad-\quad+0,446$
 Correction du baromètre 269 donné par bar. typal, - -0,108
 Equation des Observations brutes $\quad-\quad-\quad+0,338$ or as applied on the tables $+0,34$.

[^33]: * The mean height of the mercury in the barometer at Fort Confidence for seven months is $29^{\circ} 046$ at 32° Fahr., the mean temperature of the air in the shade being -12.28 Fahr. At Winter Island the mean height of barometer for one yeár (1821-22) was $29^{\circ} 798$ at 32° Fahr., and the mean annual temperature $+9^{\circ} 8$ Fahr.

[^34]: * These appearances are, however, to be understood as very rare in comparison with the common phenomenon of the auroral light issuing from behind a clowd.

[^35]: * A spirit thermometer by Nosotti, constructed probably in the ordinary way alluded to by Professor Forbes at page 40 , stood at $-81^{\circ} 5^{\circ}$, having sunk nearly to the bulb.

[^36]: * The temperatures noted in these remarks were corrected for the error of the thermometer on the assumption that -40° is the proper freezing point of mercury. The temperature actually read off at $10^{\mathrm{h}} 40^{\mathrm{m}}$ A.M. was $-36.8^{\circ} \mathrm{F}$.

[^37]: Haslar Hospital, 12 January, 1852.

[^38]: Lowest at 320° Fahrenheit, $28 \cdot 686$ inches. Highest, $23^{\circ} 679$ inches

[^39]: Fahrenheit＇s scalo．Observations recorded without correction．

