The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculieCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui à été possible de se procurer. Les détails de cet exemplaire qui sont peut-8tre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur
Pages damaged/Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
1 Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Pagination is as follows: 1-2, 45-66, 3-14.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol. XXI.
TORONTO AND MONTREAL, MARCH, 1904.

WILSON, PATERSON * Co.

30 st. John Street, Montreal, bepresenting in canada
The United Alkali Company of England,

Caustic Soda, 50° to 78°, Caustic Potash, Salt Cahe, Salsoda, Soda Ash (dimmonia and Leblanc processes),-Cblorate of Soda, Chlorate of Potash, Hyposulphite of Soda (Curlew Brand), Chloride of 'Calcium, Bichromate of Soda, Bichromate of Potash, etc., etc.
 810 to:818.sit. Paul st. and DYE MONTREAL STUFFS

ANLLINES

ALIZARINES
DOYINION DYEWOOD \& CHEMICAL CO. TORONTO
Direct Imigesters. ,. Sole Aseats in Cannada for Meosms. The FARBENFABRIKEN Vomals FRIEDR. BAYER \& CO., Elberfeld, Germany.

WATSON JACK \& COMPANY, MONTREAL.
 aNLLiNES and DYESTUFFS. Chrome Acid folors. Excellent on Yarn or Pieces

Send for dyed Samples illustrating their great utility.

Ner York and Boston Dyemood Co. MEANUEAGTURKIAS OE DYEw00DExtracts Importers of INDIGO AND ANILLNE COLORS. selling agrint in canada:
A. W. LEITCH, 16 Hughson St. South, Hamilton, Ont.

CASSELLA COLOR COMPANY. Lcopold Cassella \&: Co.l Dye Stuffs

NEW YORK, 182-184 Front Strect.
HOSTON, 68-Essex Strcet.
PHILADELPHIA, 12G-128 South Front Street.
PROVIDENCE, G_{4} Exchange Place. ATLANTA, 47 North Pryor Strcet. MONTREAL, 86.88 Youville Square.

W. T. BENSON * CO.

aniline colours

DYEWOOD EXTRACTS
CHEMICALS, \&C., \&C. Spoctartiens
Logwood for Cotton and Wool. Fast Onedip Cotton Dyes. Alizarines \& Azo-Alizarines. 164 8t. James 8t., Montreal

Logwood Extracts

 wi fisitr Ano powner- Purest and Cheapest in the Market. Manufactured right on the ground.
The West Indies Chemical Works, Limifed, Spanish Town, - Jamalca. Bellhouse, Dillon \& Co. Sole Agents
hOMTREAL: TORONTO. HEH YORK. PHILADELPHIA.

USE THE "Halton"

Jacquard

begt machine on the manket

Siagle Lifts Dobble Lifts Rise and falls Double Cylliders Cross Borders Bressels

Tho oniy
Rellablo
Flodex
Index
Nachine.

Thomas Halton's Sons

Alleghany avenue and C. Street. - Failadelpina

C. BISCHOEF \& CO.

Aniline Colors and Alizarines

Dye-Stuffs and Chemicais

Rain Offce, 38 Park Place, - - Now York. Canadian siranch, 416 St . Paul St., Montreal.

sole Agent
 EOF TORONTO - Cansda

[^0]
GARLAND MFG. CO.,

SACO, MAMNE.
(Formenty Loom Plaker Co. Bldioferd, Maine). iI. F. GARLAND, TREABUKEk.

MANOYAOKUORITS OE
Rawhide and Leather Loom Pickers, Loom Harnesses and Reeds, Duck and Ticking Lug Straps, Tape Ploker Loops, Leäther Strapping, Black Oak-Tanned Énglish Ploker Leather, North Carolina Hickory Plicker Sticks. inlustratoil Cetaloguo nent on appiplicuzion.

ROBERT S.
 FRASER

Wools, Paryuian Cotroas; Woils, Toje Taxns, Tico

Tetlow's Caric olotaing.
(Stock in Monireal).
Mantiacturers-of westes and Skodibei - \quad.
If Lemoine Street, MONTREAL

Mechanical Draft Mpmaralus. Heaiers and Fais. Blowers and Exhausiers.

Drying Apparatus for all Textle materlals. Heating aud veatilating for Mills and Factories.

Fer critaiogney nodi Prioca withom
SHEEDON S SHELDON,
GAET, Ontario, Canada.
Formeris McEachren F eaing \& Veatlating Co.

Canadian Fournal of Jabrics

A Monthly Journal devoted to Textile manufactures and the Dry Goods and kindred trades.
Subscription: Canada, United States and Great Eritaill, *1.00 per year 1 oreugn, 5\%. Advertising rates calapplication.
Ufives 18 Court St., cor. Chureh, Toronio, und the Fraser Bullding, Montreal BCOAR-BANUEL, HNITED, Publiehers

Travellino Repkesentative: A. W. SMith.
Toronto Telephone, Main 43 io \mid Montreal Telephone, Main 2589
Hualneas correapondence should be midreased to Montreal, but culs, nows items and editorial correapondence to Toronto; outs from abrond should be sent by poat wherever posalble, ant by exprosn, Changes of advertisemente should be in our hande not later thau the list of emoh month to eagure incertlou.

THE CAMAOIAN TEXTILE DIAECTOAY

A Handbook of all the Cotton, Woolen and other Textile manutactures of Canada, with lists of manufacturers' agents and the wholesale and retail dry goods and kindred trades of the Dominion, to which is appended a vast amount of valuable statustics relating to these trades. Fourth edition. Price, \$3.00.

BIGGARrSAMUEL, LIMITED, Publisners.

CONTENTS OF THIS NUMBER.

Ting on 1
ussels and Will
Pet
Carter. E. T.. The
remicals and DY(
Cotton Growing Within the En
tion Textiles. had
acing Cnderwear
abric ltem
arm Fixing
, 1.
casurea, The Coming
tric Syster

Personal.................................... so
Raga for Re-Manufacture. Treat-
ment of räting in Tciil........ Sped of. 6s Siating in Tuxtle Mills, speed of... 57
Silk. indian Yellow FF on
Textile Centres, Fureign
Textile Trade of Amonite. The
 Weaving Improvements of Last Year 59 Wonl in Ontarionand Qucber 45 Wool Markets
Wool Markers, British "
Wiool Mercerization
Wool Yroduction. The World's......... si
Wools Something About
Work-a-Day Thoughts. $\$$
$\$$
$\$$

WOOL IN ONTARIO AND QUEBEC.

The Dominion Guvernment recently isstied adsance bulletins of the agricultural cemsus for 1901 in (hutario and Quehee, containing statistics of the sheep and wool products of these provinces. In 1891, Ontario had $1,021,769$ sheep with a clijp of $733,1,32$ lbs. fine, and $3,871,421 \mathrm{lb}$. coarse woul. In sun there were $1,046,456$ sheep with a clip of $S y, 2,182$ lhs. fine, and $+.125,403 \mathrm{lbs}$. coarse noul. This is an increase in ten a, irs of only 24,087 shecp, and $+12,532 \mathrm{ll}$ s. of woul. Quelsec in $18 y \mathrm{y}$ had 730,28 , shicep with a clip of yol,oor lbs. fine, and $1,641,2+4$. 1 l s. coarse woul. In $1, y 1$ the number of sheep was $0.54,503$. and the clip 1,19 , 397 llis. fine, and $1.57(1,29) 7 \mathrm{lbs}$, coarse wool. This is \because Nutase of. 5.588_{3} shece!, and an increase in the clip, of $225,649 \mathrm{lbs}$. The Ontario clip in $18 y \mathrm{t}$ averaged 4.5
lbs. per sheep and in 1yor, $4 . \% 9$ lbs. In Quebec the average clip per sheep in 1801 was $3: 488 \mathrm{llos}$. and in 1401, 4.230 lbs . Taking the ! (2ueloec ligures first it is disappointing to find that there has been a decrease in the number of sheep during the past ten years. althugh there is a morsel of satisfaction in the fact that the average clip of wool per shesp has inereased. This would seem to indicate that Quebee farmers are pasing more attention than formerly to the production of wool and is a healthy sign; they are still, however, lechind the Ontaiou fammers in this deppect. It man be well to point out that had the number of sheep been maintained the total wool clip in lyot wouk have been, taking that years average, $3.043 .+90 \mathrm{lbs}$. an increase of $320,596 \mathrm{lbs}$. which at the average value of 201 's conts per ll). would have produced an additional revenue of $\$ 65,722$, in wool alone.

In regard to Ontario, there is a considerable difference between the figures of the Dominion Census Commissioner and those issued by the Burean of 1 n dustries for the provincial department of agriculture. These latter shon the mumber of sheep in yor to tee $1,715,513$ or $6 x_{x}, 0.57$ mure than the census report, and the wool clip as $5,8,3+, 0,7 \mathrm{liss}$. or $-16,512 \mathrm{lbs}$, more than the census report. These differences are so great is to suggest some explanation on the part of the combplers, but inasmuch as the I'rovincial Guvermment are in a position to ubtain mure accurate imformation and pablish returns enore ficquently, we prefer to take their figures as more correct. While, however, the provincial returns show a much larger production, it is disappointing to find that they also indicate a decline in the number of heeces and amount of clip. In. $18, y 3$. the number of flecees was $1,015,497$ and the clip $\overline{5}, 815$,-

 and $206,218 \mathrm{lbs}$. of woul The average clip per heece has huweter increased frum 5.81 lbs . in $18 y, 3$, to 6.21 lls. in 1902 and it is gratify ing to note that since $1 \mathrm{R}_{\mathrm{y}} 5$ the average dip has been steadily increaning gear log jear. This fact should be an incentive to farmers 1.1 pay more attention to the production of woml in authonity on this subject recently puinted out that wenil is worth ten ents a pound more than ten years asw. and that with "good luck and gunl management" for the capital imsoted, the ..mome of labor incolver and the risk, sheep will to d.ty pay larger dividends than any other stuch. The same authority s.". - on to say that "If gone into systematicall, a we humdref-ar:
farm can corry three hundred breeding ewes, from which can be sold fifteen or sixteen hundred dollars worth of mutton and wool," and he adds: "The most of the time you may sit under a slade tree and watel the lambs grow."

The following statistics are from the report of the Ontario Bureau of Industries:

> Wool Clip in Ontario 1893-1902.

Year.	Flecees.	Pounds.	Per	
			Flecee lbs.	Value. \$
1893	1,015,497	5,896,891	5.81	1,073,234
1894	1,002,467	6,235,036	5.71	1,033,721
1895	1,109,140	6,214,81I	5.60	1,242,962
1896	991,371	5,581,387	5.63	1,026,975
1897	887,003	6,139,984	5.79	945,757
1898	865,179	5,204,686	5.90	847,378
1899	928,184	5,525,122	5.95	700,092
1900	957,307	5,805,921	6.06	894,112
1901	950,229	5,834,097	6.14	781,769
1902	916,002	5,690,673	6.21	728,406
		\% \%		

THE CARPET TRADE.

In a recent article dealing with the carpet trade of Great Britain, the Kidderminster Shuttle gives some interesting figures which must afford encouragement to those engaged in this industry in Canada. The statistics given show, that while the exports from Great Britain are increasing from year to year, those of the United States are decreasing. The exports of United States made carpets to all parts of the world for the past three years have been as follows:

```
1901 .... 119,514 yards. .... value, f19,368
1902 .... 98,509 yards. .... value, f15,628
1903 .... 71,434 yards. .... value, f12,184
```

The total exports of British carpets for the past two years were:

$$
1907 \text {....7,672,100 yards. value, } 8870,000
$$

$$
1903 \text {.... } 8,595,100 \text { yards. value, } f 947,633
$$

The returns show further, that the export of Iritish carpets for the month of December laist, was live times geeater than that of the United States for the whole year. Great Britain also during those years, notwithstanding the hostile tariff, exported to the United States, British-made carpets to more than five times the value of the American-made carpets exported to all the markets of the world.

These figures indicate that Canadian carpet manufacturers have nothing to fear from United States competition, and the further fact that last year carpets to the value of $f_{3} 10,357$ were imported from Great Britain into Canada serves to show that there is room for further development of this industry in the Domin-

$$
\begin{aligned}
& \text { English Carpets American Carpets } \\
& \text { to America } \\
& \begin{array}{l}
\text { American Carpets } \\
\text { to all the World }
\end{array} \\
& 1902
\end{aligned}
$$

$$
\begin{aligned}
& 1903 \text {.... } 573,457 \text {........... } 612,184
\end{aligned}
$$

ion. Canada at the present time takes one-third of Cireat Britain's total exports of carpets, and there does not appear to be añy adequate reason why a fen British carpet manufacturers could not successfull! transfer some of their plant to Canada, to cater to the demand on the spot. The consumption of carpets per head of popylation is evidently far greater in Canada than in Great Britain.

THE COMING SYSTEM OF MEASURES.

In another part of this issue will be found Mr. Halsey's reply to the letter of the secretary of the Decimal Association of Great Britain, referring to the continued use of certain old terms of measures in countries using the Metric System. The survival of terms used in special trades might naturally be looked for alongside of the acceptance by the general public of any national system of weights and measures. But while the terms referred to are used in the silk factories, they are not recognized beyond. When the silk merchant puts his goods on the market, he uses the terms of the Metric System. The sailor still takes his soundings in iathoms, but when he goes. ashore he finds he cannot buy cloth by the fathom. He must buy by the yard. So with the silk manufacturer; and the survival of a factory custom in a particular trade or place does not diminish the significance of the steady and uninterrupted advance of the Metric System for general purposes over the world. The circumstance that some English terms are still used in the textile trades on the continent merely follows from the predominance hitherto held by British textile manufacturers in the markets of the world, and not because there is any inherent disadvantage in adapting. the metric measures to the trade. At the recent international congress, at Paris, held to promote a universal standard of yarn counts, it was agreed by the British representatives that such a universal system should be in metric terms and no other; and Mr. Halsey's. present arguments on these points are pretty fully answered in a report published by the American Chamber of Commetce, in Paris, last year on a conference with the Sociêté des Ingénieurs Civils de France. The Chamber, with a view to weighing all objections to the Metric System, submitted thirty questions to the society, and these were answered in detail. Considering the conse vatism of British manufacturers, the report of the yarn congress referred to is a striking testimony in favor of the Metric System. We have this report before us and two paragraphs are wort! quoting. They are: "The urgent need of the trade is a system of counts which will embrace all classes of yarns, be convenient for the spinner and reeler, and also for the manufacturer, and which will be understood in all countries. 'Count' being the re-
hatonship of length to weight it is obvious that such a arstem could not be attained unless there were one uniform system of weights and measures. The Metric System of weights and measures is so perfect and has been adopted so widely that it forms the most suitable basis for a uniform system of counts of yarns."

Mr. Halsey is struck by the fact that the United States appears to be the strongest iortress of the English system of weights and measures. This is because the United States has, nationally speaking, livell like the oyster, self-contained within its shell, and with comparatively little forsign trade outside of the English-speaking peoples, until in recent years. Great Britain lives by her foreign trade, and her past refusal to adopt a system now used in practically all the rest of the world has cost her the loss of millions of pounds. Now she realizes it, and hence the House of Lords has passed the second reading of a bili to render the Metric System compulsory in Great Britain on and from 5th April, 1906. Inasmuch as a majority of the members of the House of Commons have already signed a memorial in favor of the system, there appears to be little doubt that it will pass. Canada and the other colonies will fall into line, because the Premiers of all the colonies at the last Colonial Conference in London, expressed themselves formally in favor of the change. Costly and inconvenient though the change may be for the time.being; the gain will be worth the cost, as all Canadians will realize when they compare our present decimal coinage with the old Canadian currency of pounds, shillings and pence.
-Speaking at Westmount, Quebec, last month, Hon. W. S. Fielding made a more explicit statement on the tariff than has yet been vouchsafed by a cabinet minister since tariff revision has been agitated under the present Government. He said that "time would not allow of the systematic investigation necessary for a seneral revision at the next session, but urgent needs of special branches of trade would be dealt with." The tarift has remained practically untouched for seven years. The woolen manufacturers of Canada take this to mean that the discriminations against which they have vainly striven for the last three or four years, will be remedied. As will be remembered from quotations in these columns in recent months, a number of independent journals as well as newspapers on both sides of politics have frankly conceded that the woolen manufacturers are peculiarly placed, and that while their mills have been equipped under high tariff conditions, necessitating heavy expenditure for machinery, their goods are sold under almost free trade conditions, on competition with the best organized industry of Cireat Britain. The Bradford Trade Annual Review, for 1903 shows that the shipment of goods from that district to Canada for the year were valued at $\$ 7: 222$,400, and that these shipments were larger than to any
other country in the world. No one will envy the liritish merchant or manufacturer a large trade in Canada, but when this trade is done at the cost of extinguishing an industry that has been built up by great labor and the outlay of large capital, and has as many ramifications with other home industries as the Canadian woolen industry, the question may well be asked, is the policy that brings such destruction fair or wise?
-Captain C. A. Matge, of the Royal Warwicks, who fought in the Bocr war, is visiting the United States in the interests of the Transvaal Consolidated Land Co., which controls $3,250,000$ acres of fertile land in the Pretoria district, a large part of which it proposes to plant in cotton. He is travelling through the cotton belt of the south, studying the conditions of cotton culture. He says Pretoria is similar to this section as to climate, and he is of the opinion that the staple can be successfully raised.

* * π^{6}

-St. John Broderick, the secretary of state for India, replying recently to a deputation of the British Cotton Growers' Association and representatives of the cotton manufacturing centres of Lancashire, said the cotton acreage of India would be greater this year than ever before, and added that he believed the viceroy of India, Lord Curzon, would make every endeavor to further promote cotton growing with the view of supplying the British market. Nothing would be left undone to utilize the vast ficids of India.
in cin
-"Woolman," writing to the American Wool and Cotton Reporter, states that on the whole the British wool market has sufferen but little from the outhreak of war, due, probably, to the fact that the hostilities are being waged in a district so remote from the great centres of the woolen industry. The exports to Japan for the month of Jamuary of this and last year compare as follows:

	1903.	1904.
Worsted goodsyards.	490.800	159.100
Woolen goodsdo.	185,400	105,300
Cotton picce goods...do.	5.77.5.200	87, 1.200
Cotton yarn and twist do.	284.	6

THE METRIC SYSTEM.

Editor. Canadian Journal of Fabrics:-

Sir,-Referring to the letter on the Metric System. by' E. Johnson, which appenrs in your issue for February. I note the statemen: that: "It is not a fact that in France and Germany there are used old units side by side with those of the Metric System. There do exist old names-or nicknamesfor some of the present units," etc.

That statement could only have been made by some one who is in entire ignorance of the lacts.

I have in my possession a scaile, "made in Germany;" on which there alt graduations for the Rhenish and the lirench mehes, which are in large. use in their respective countries. Mr. Jolmson may find an engraving of this scale on page 40 of The Metric Fallacy. Will he be so good as to say for which melric units the Rhenish and the French inches are nicknames?

In Zeitschrift des Vereines deutscher Ingenieure for September 5ta, 1903, he may find a table (reproduced on page 42 of The Metric Fallacy), of a standard of pipe and pipe threads, which was adopted at the annual meeting of "the German Sucicty of Engineers last July, and in this table he will find the bore of the pipe and the pitch of the threads given in English inches and in no olher way. Will Mr. Johnson please tell me for what metric unit the term English inch is the nickname?

In T.cipziger Monatschrift for October 315t, 1902, he will find a German yarn table (reproduced on page 186 of The Metric Fallacy), in which, against the set of the loom in threads per Vienna inch, lie will find the weight in English pounds of the yarn reguired for 100 meters of cloth. Will he tell me for what metric units the Vienna inch and the English pound are nicknames?

In L'Industric Textile for October 15th, 1002, may be found an article by a leading French textile authority, Af Panl I.amoiticr, reading in part as follows:
"It is ahsolutely unworithy of us French, who were the first to find and apply the Metric System, to retain the aune and denier for measuring silk. Ah! these Americans are not ennsiderate of our feclings and they are right. We are as much in the anarchy of weights and measures for the textile industry as at the tine of the Revolutinn. for we have the irnier of Montpelier and of Milan, for silk, with the aune as a unit of length. We still have the diverse standards of Roubaix. Faurmics and Reims fine worsted, the mojue of Sedan, the livire, the nuart and the sous of Elbocul. the yard for linen. ete. Ah! the fomous aune. do you know its equivalent? Exactly 3 feet 7 inches to lines and in points, or in other words. $1 / 2 \mathrm{RS}_{4} 47$ metres, the font being equill to $.3248,3 n$ metres and divided into 12 inches. the inch into 12 liites and the line into 12 points:
"The yarn count in the north of France is a length and in the centre, a weight. I will tak.: my oath that the manufacturer of Rouen, if he has not studied each section saparately. has no idea what is the standard of Reims or the denier of Lyons or Milan. And on the other hand, the manufacturers of Reims and Lyons are likewise nuzzled in making comparisons of the diverse numberings of the diverse materials.
"And this is the repson why they are right in mocking us when they say we do not use the Metric System for numbering yarn and for weaving calculations. Nothing is more arbitrary than to reckon the yarn by the thonsand metres and the wilth of the cloth and the picks nf the filline by the inch. It is nonsense and a derision. Note also that. while I speak here only of France. I could say as much of all Europe."

You will note the value of the aune, given with so much .care by M. Lamoitier, but Mr. Juhnson would have us helieve that the word aune is only a nickname for metre! I.et him not oveslook the last sentence by M. Lamoitier, and list him also note that the value given for the foot stamps it and the inch. line and point as French units, and will he then tell us for what metric units the French font, inch, line, and pinint, stand as nicknames?

In Kalkulator für Artikel der Textil brancle, by Fricurich l'ruwcin, page 79, may be found a table (reproduced on page 18: of The Metric Fallacy), giving the value of cight or the old ells, which are still in use in German textile mills. This values are given in centimeters, $2 s 67,62,78$, cte., but Mr. Jolmsen would have us believe that the word ell is nuls and. nitier nickname for aune.

Since the exposure by my associatc, Mr. Dale, and myself of the persistence of old units in metric countries, the explanation given by Mr. Johnson has appeared mariy times, hut, in uniecling Yankee slang, it is "tou thin," it "won't wash." In hastily adopting this explanation of uncomiontable facts, the metric advocates are only continuing the convenient process of assuming anything to be true which they would tike to have true, as described in the following extract from the prefice of The Metric Fallacy:
"Whenever the metric advocates liave learned that a govcrnment has passed a law favorable to the system, they have straightway conveniently assumed that it has become the common system in trade and commerce. They have not enquired into the working of these laws nor into their scope or nature. Their logic has been: 'Such a, country has passed a Metric System law, therefore the people of the country have dropped their old units and taken up the new.' Thei. stories of the imposing number. of hutidreds of millions of people who use the system lave no other basis than this. They have simply added the figures ine the populatinn of those cotuntries which have passed sone kinu of a metric law, including those in which the laws are simply permissive, and those in which the system has been adopted for govermment purposes alone. If the facts which are given in these pages turn their case to ridicule, they have nothing to thank but their own crédulous willingness to believe anything.-favorable to their system and to their free use of their own im. agivintion without regard to facts."

Mr. Johnson should, try again; really, though, Mr. Editor. inesn't it strike you as-a little odd to see the Englisli system assailed from England and defended from the United States? I do not need to remind yolt that Mr. Johnson is not at lilerly to ignore or evade my guestinns. The large use of these old names is proven. and, having made this ridiculous explanation, he will now slone for what metric units thes are used as nicknames, or your readers will understand that lie has abandoned his explanation.

I probably know alontt as much aboutt the present state of the Metric System hill briore the American Congyess as Mr. Johnson does, and T im ready to stake my repitation as a prophet on the prediction that it has no better chance of becnming law than Mr. Johnson h. has of heing struck hr rightning. i

> New York, Februiary 2nnd.
F. A. Halsei

Foreign Textlle (Wentres

[^1]III the raw matorial. In some quarters is heard of more trade know on both for leading and minor outlets, and manufac-marci-motably of light goods, such as thoolies and mullscer" iv be moderately engaged, as is also the case in certaul deserptions of fine reed printing cloths. Shirtings are repuried very slow, and salesmen are uneasy in regard to the thate of their order books. In heavy goods very. low prices have to be taken to move even sorting-up lots. Home trade enquiry is fair, but generally at limits unworkable, though isolated sales of moderate weight are tioted.

Bradiord-There is a continued quietness among yarn spmucrs. although those engaged on crossbreds have their frams: going on old contracts, and do not seem concerned about the future. The opening of the year has scen a hardening of prices of all Bradford goods. On the whole, spinners and manufacturẹs are fairly well occupied, buit the general advance in taw material tends to check new business.

Lecels.-For the spring trate prospects much improved. The sale for shipment has improved somewhat, and Auscralian spring orders are readily coming in, while South Atric.a is taking numerous small consignments. For readymades there was a good demand from the Cape, and a consulerable bespoke trade is steadily developing.

Lecester.-Xarn spinners complain of the impossibility ot doung profitable business at current rates. Cashmere sarns. lambs' wool, fancy and worsted yarns selling slowly. The hosiery industry is improving very slowly.

Huddersfield.-Little progress made with orders for sprugg, and not many confirmations for the, winter. Trade in the iron districts a d in Lancashire is. slow, and traveliers find great difficulty in doing business. Much short time is prevalent in mills, both woolen and worsted. The Canadian and Australian markets are fairly prosperous, but the Continent, South Africa, and particularly the United States, dull Wools. meet a hand-to-mouth sale without change in prices.

Kidderminster.-Manuacturers are busy. The delincry of carpet continues on a large scale, partly on account of an unproved demand from London. The yarn trade tends to umprove, though spinners are not tempted to. sell or make local carpet yarns at the prices offered. The trade can be quoted as fully firm with a better all-round demand.

Rochdale.-An undoubted move in the direction of new lmsmesis, but, as yet, too early to ascertain what has actually been concluded; the fact, however, that mills have now gone on full tinue gives some indication of the position.

Bolton.-Tone in spinnings strong. Has been a big trade done and producers are well fortified with orders for carded yarns. Their position has been strengthened since the leguning of the year.

Kirkcaldy.-The linoleum trade is not so busy, and a number of workers are idle. Linen manufacturerṣ complain יi scarcity of work, and there is keen competition. Some fair orders received from Australia and Sounh America, and Canadian buyers now on this side; but high prices seriously affect contracts.

Dundec.-Jute yárns quiet, and fancy trade dull. In brown fax not much doing. The ordinary linen trade shows sigus of more life, and is altogether better.
bicliast.-Spinning branch quiet. No material change in maunuacturing for past few weeks. More doing with the Limeel States, present orders being satisfactory.

en in st

'he warehouse of the Merchants' Dyeing Co., Toronto, was damaged by fire on February 29th. Loss, $\$ 20,000$; covcred by insurance.

Among the Mells

 It applitee te moweyngpere ne to everything chec Take an ahem
 nionally suoh ltema an may comie to your kaswledien, mar recolvo ae dividomit ain trupeoved paper.

The new 125 -h.p. Wheelock angine in the Elmira Felt Factory has been started. The capacity of the factory is the largest in the Dominion.

The Alvinston Flax Company have placed the contract for their new mill with John Brown. The company have also accepted the site offered by the M.C.R.

The Dominion Cotton Company have just received 18,000 bales of cotton for their mills at Magog. As soon as the water rises the cotton and print mills will be run full hlast again.
J. Childerhose \& Son's woolen mill, Eganville, Ont, was closed down for a couple of weeks recently. Some repairs have been made, and new machinery installed, which will increase the capacity of the mill.

A return submitted by the Perth, Ont., council shows the wages paid by the Perth Woolen Co. during the past three years to be: 1901, $\$ 5,978.86 ; 1902, \$ 4.786 .11$, and 1903, $\$ 7,580.40$, together with $\$ 1,006.96$ for picking.

The Dominion Government has secured three convictions against the Wilson Cordage Company, of Chatham, for infraction of the Binder Twine Act, by selling twin under measure. A fine was imposed of three hundred dollars.

The Ojibwa Knitting Mills, at Sandwich, Ont., was closed recently owing to lack of material, about 200 hands being thrown out of employment. The company manufacture home-made mitts and socks, mostly for the North-West and the Klondyke.

It is stated on good authority that the Singer Sewing Machine Company is likely to locate its Canadian headquarters near Ottawa. The announcement was made some time ago that the concern had decided to 1 Jeate at St. John's Que., but this move, it is understood has been abandoned in favor of a location at Deschenes, six miles from Ottawa.

On February 19th, fire broke out in the flax mill of the Ripley Flax Company, Limited, totally consuming the building and contents. Estimated loss, $\$ 3.500$; insurance, $\$ 1,500$. The engine room being a separate building, with a fire wall between it and the mill, enabled the firemen to save the engine and boiler. The barn, stacks and other buildings. where valuable stock was stored, were saved.

The Master-in-Ordinary has given judgnent holding that the assets of the Patent Cloth Board Company, of Parry Sound, Ont., now in liquidatica, are not liable for taxes claimed by the town, on thic ground that proper notice of the town's intention to abolish the ten-year exemption granted the company was not given to the latter. This will leave a larger amount for distribution among the creditors of the company.

James Kendry, M.P., has resigned his position as manager of the Canada Woolen Mills, Hespeler He will in future devote his whole attention to the Auburn Mills, at Peterbero, of which he is president and managing director. Charles. Moore, who has been for many years a successful wool manager, and for the past four years was in charge of the Excelsior Mills, at Mentreal, has been appointed manager of the Fespeler Mills.

A proposition is afoot in Brantiors to start a factory for naking full fashioned ho'siery.

An edvertisement cisewhere in this issuc, announces a good woolen mill property in castern Ontariv for sale.

As will be noticed by card elsewhere, a reputable firm of manufacturers of white and colored worsted yarns, for coatings, serges, and hosiery. is open to appoint a good agent in Canada.

The factory of the Berlin, Ont., Felt Boot Co., (George Rumpel \& Son), was destroyed by fire on February toth. The fire originated in the picking room. The damage is cstimated at $\$ 150,000$, of which $\$ 55,000$ is covered by insurance. The lirm have sceured premises in the new building of the Merchants' Rubber Co., and will continue manufacturing. New machinery has been ordered, and the felt department, which was saved, is in full operation. A staff of men are clearing away the ruins of the old building and a modern threc-story factory will be erected on the site.

The Alaska Feather and Down Company, Limited, of Montreal, will establish a factory and warehouse, in Winnipeg, and have purchased the business of Bromley \& Co., at Winnipeg. The western branch will be equipped with the latest improvements in bedding machinery, including machinery upon which the company have Canadian patents. A. W. Johnson will be in charge of the Winnipeg office, and represent the firm in Manitoba, while Assiniboia, North-West Territories and British Columbia will be cared for by J. A. Loudon.

Joseph L. Haycock, inspector of binder twine, has beell appointed by the Trade and Commerce Department to examine all claims for the bounty voted by Parliament last session on manila fibre used in the amanufacture of binder twine. The bounty amounts to 75 cents per 100 kilos, which eatals the export rate charged by the Philippines on manilat shipped to all countries oth r than the United States. There are fifteen factories in Canada manufacturing binder twine. Mr. Haycock left recently for the Nova Scotia Binder Twine Factory, and from that will pass on to the others throughout Canada.

Messrs. Rinaldo and Walthausen, of South Norwalk, Conn., propose to build a hat factory in Cornwall. Ont. The undertaking will be styled the Walthausen Hat Manufacturing Company of Cornwall. They offer to erect a three-story solid brick factory, 50 by 150 fect, and to install plant and machinery costing $\$ 50,000$. They will employ one hundred men and fifty women, exclusive of book-keepers, travellers, ctc., and will pay annually in wages not less than $\$ 100,000$. The corporation is to give a bonus of $\$ 20,000$, payable when $\$ 100,000$ stock is subscribed and the factory in operation, a free site and exemption from taxation, except for school purposes, for twenty years.

Japan has every kind of manufacturing-cotton goods, telescopes, microscopis, watches, knives, spoons, electric machinery, matches, clocks, woolen goods and a host of other lines. In 1870 manufacturing in Japan was almost nil; now she has over 8,000 factories of various kinds, including 201 cotton mills, with 887,000 spindles. The cotton growing and manufacturing industry employs $1,000,000$ people. The average cotton production is 360 pounds to the acre, against 250 pounds in ihe Southern States. Japan does weaving in 660,$40 \$$ dwellings or establishments, containing 924,123 looms and employing $1,042,866$ persons. The weaving is done in cot(III, silk, and silk and cotton mixed.

The Hespeler, Ont., branch of the : anada Woolen Mill. went on short time on March 7 th, and will run 40 hour, per week instead of 57 . Lack of orders is the cause.

When the Walkerton Binder Twine Co. was being pro moted, J. T. May, of Guclph, subscribed for one share, paid ten dollars for it, but was given a certificate for three shares, which lie sold to Mr. Thorp, of Guclph. The Board refused to transfer shem, the result being a law suit. Judg. ment has been given in favor of Thorp.

On March .5th the first tapestry carpet ever made in Canada was turned out at the new Guelph carpet mills. T. McMaster, castern representative of the company, states that the present capacity of ten looms will be doubled. The new building cost $\$ 75,000$, and expert workmen were bruught from Scotland. Tapestry and velvet carpets will be manufactured.

Frank H. Lancaster, manager of the Richter Manufacturing Company, of Tenafly; New Jersey, makers of burlaps, buckrams and house draperies, has interviewed Assessment Commissioner Fleming, of Toronto, on the proposition to establish a Canadian branch in Toronto. The company, which is not ircorporated, operates 16 looms, of which 13 are broad looms, at their factory in Temafly.

The Medicine Hat Woolen Mills proposition is assuming definite shape. The new company, in which Brantord parties are chiefly intcrested, has purchased the property, and has had a large engine house addition built. The steam plant is being installed, and it is hoped to have the mill in operation in Junc. The officers of the company talk of putting down a natural gas well to supply fuel for operating the power plant. The machinery is all under order in England, Canada and the United States. When completed, $\$ 85,000$ will be invested. The company's first work will be on wool blankets, for which there is a big demand in the North-West. The mill will require about half a million pounds of wool during the first scason, which will uilize most of the clip of the district, and should prove a great belp to the sheepmen. . Philip Whelen, the manager, has a high reputation in Ontario as, 2 successiul woolen manufacturer. George Whelen is the secretary.

Personal

J. M. Masson, formerly superintendent of the Hawthorn Woolen Mills, Carleton Place, and previous to that with the Auburn Mills, Pcterboro, is now with the Concord Mig. Co., woolen manufacturers, Penacook, N.H.
E. N. Heney was found dead in his bed at his home in Montreal last month from heart discase. Mr. Heney, who was 58 years old, wás a large carriage and harness manufacturer, and was also a manufacturer of horse blankets, having looms of a special type for that class of goods.

William Wilson, president of the Canadian Spool Cotton Company, and a director of the Spool Cotton Company, New York; died on February 28th, at Brouklyn, N.Y., after a lingering illness. He was born in Paisley, Scotland, in 1849, and had been connected with the thread business for over thirtl-eight years. He leaves a widow, three sons and two daughters.

It is with deep regret that we have to record the death of Joseph Porritt, chairman of the directors of Samuel Por-
, itt \& Sons, Limited, Bamford Woolien Mills, near Rocídale, lancashire. The late Mr. Porritt was a man who will be ureatly missed. His splendid business qualities and upright - haracter had won respect alike among his customers and his competitors. He was a justice of the peace, and was schior deacon of Bamford Chapel, Rochdale, with which place of worship he had been intimately connected for nearly forty sears, and he had several times filled the office of Sunday , hool superintendent.-Páper Máker.

The Toronto Evening News is publishing the portraits ..i Mayors of leading Ontario towns. Wm. Thoburn, of the Ihuburn Wonlen Mills, Almonte, is one of the series, and the following sketch appears with his picture; Mayor Tholurn was brirn in Portsniouth, Eng, and attended the Public shools of Woolwich, Eng., and came with his parents to Canada in 1857. In 1869 he operied a store in Alnonte, which the conducted for some years, and which he disposed of to go into woolen manufacturing. He has been engaged in manufacturing since 1880 , having enlarged his plant on several occasions. He has served both on the Board of Education and the Town Council.

Fabric. Items

Villeray, Quc., have granted exemption from taxes for iwenty years, and $\$ 3,000$ bonus to the St. Lawrence Clothing Cu., who will establish a factory for waterproof clothing, etc.

The customs officers at Brockville, Ont., on March 6th setzed 1,100 pounds of upholsterers' silk. This is one of the biggest seizures in fifteen years at Brockville, and was due to the information of a man connected with the smuggling. The name of the owner is unknown, and unless he turns up and makes a settlement, the silk will be sold by auction.
-Graphite is stated to be an excellent preservative for manila rope. One rope manufacturer treats the inner yarns wi each strand as well as the core in a bath of lubricant, the ugredients of which are graphite and oil. This lubricant thoroughly permeates all the fibre, thus overcoming internal wear, while sufficient comes to the surface, and the lubricant does not injure the rope.-Engineer, London, Eng.

The Winnipeg Board of Trade have a communication from a man in New England, who proposes establishing a factory for the manufacture of ladies' blouses, skirts, etc. . 4 c will furnish half the capital, if the remainder is secured locally; the Winnipeg directorate to control the company.

A rival to India rubber has just entered the field in a cloth known as "Shower-proof," which repels water and yet remains porous, appearing exactly like ordinary wetable cloth. Petroleurn is one of the most successful shower-prooi preparations. The only reliable shower-proof is obtained by impregnating the cloth outside and in with a fine film of wax. Paraffin wax is the staple, but owing to its low melting point u is not fit for use alone. The composition used is so alloyed with other waxes and chemicals that at the boiling point of water the wax stands firm. A rather elaborate preparatory form must be gone through, and atzer the wax has been applied a finishing process is required. The interesting fact remains that it is petroleum that keeps out the wet. In tailors' windows many aquatic displays have been arranged to show that clotis can mysteriously be made to exhibit the power of the duck's back. Wool, cotton, silk, linen, awnmgs and tent cloths are thus wrapped in an invisible film oi rock oil.-Oliver J. D. Hughes, Consul-General, Cobourg, Germany.

E. T. CABTER.

The news of the death of E. T. Carter, wool merchant, of Toronto, will have been received with sincere sorrow by the woolen manufacturers of Canada, among whom he has been so long known and so much esteemed. Mr. Carter, who was born in Waterloo, Ont., in 1847, and afterwards moved with his parents to Beamsville, came to Toronto when 17 years old and sntered the cmp. دy, as bookkeeper, of the late John Hallam, wool and hide dealer. By force of his ability and industry, he gradually rose in the estimation of his employer, till he became manager of the extensive business, the ownership of which he succeeded to on the death of Mr. Hallam, four or five years ago. Since Mr. Hallam's death the business was further extended, till it became the largest in this line in Toronto. Mr. Carter was a member of the Toronto Board of Trade since 1889, and a member of its council during the past year. He belonged to the National Club, having been elected first vice-president for 1904. Mr. Carter married Miss Hall. a sister of Dr. J. B. Hall, and she survives him, with three sons and two daughters. The sons are: W. E. H. Carter, secretary of the Bureau of Mines of the Department of Crown Lands, and Inspector of Mines for Ontario, and H. J. and E. W. Carter, who have been associated with their father. The business now passes into the hands of his three sons, and will be conducted by them. The daughters are Mrs. Wellington and Miss Madeline Carter. When deceased left Toronto for Nassau early in February he was sufferitog froar the grippe. But later, while on the journey, cerebral meningitis developed and finally caused his death. The body was brought to Torontc for burial.

Mayor Cane, of Newmarket, Ont., and Andrew Yule interviewed the Premier of Ontario recently, regarding a honus for the Lake Superior and Long Lake Railway Co., which proposes building a line from Peninsula Harbor, Lake Superior, to Albany River and thence to Hudson Bay.
-The exports of raw cotton to Canada from the United States for the fiscal year ending June 30th, 1903, were valued at $\$ 5.932,429$; in 1893 for the same period they were worth $\$ 2,803,326$. The ten-year period showed an increase of over 100 per centum in cotton consumption and the figures form an interesting commentary on the growth of the textile industry in Canada. The exports of cotton goods from the United States to Canada for the same period in 1903 were valued at $\$ 2,907,906$, as against $\$ 1,922,680$ in 1893, an increase of nearly $\$ 1,000,000$ in ten years.-Textile Excelsior.

COTTON GROWING WITHIN THE ELCPIRE.

A survey of the work and prospects of the British Cotton Growing Association was given by J. Arthur Hutton, vicepresident, before the Manchester Statistical Society, recently. Mr. Hutton said that the question of the future supply of cotton was not to be regarded as a local matter affecting the interests of merchants and manufacturers in England, or those of the millions of people directly or indirectly dependent upon the cotton trade, for hardly a country was maffected by an insufficient supply of raw material. England was not the only country affected. Germany, France, and esen the United States, were feeling the effects of this short supply, and the evil was aggravated by the unscrupulous operations of speculators. He'did not think that legislation could remedy these evils. The normal annual inrease in the consumption of cotton was about 400,000 to 360,000 bales, and if it continued, in ten years we should r-quire an addition of $4,000,000$ bales. The production of raw cotton hat nut increased su fast as the consumption That was due to the want of elasticity in the United States production The present supply of culton was insufficient to keep the spmetles of the world iully employed, and the cotton trad: land developed intu a scramble for the available supplies

In dealing with the work already accomplished, he alludel to British India, and said that the quality of Indian cotton had deteriorated in the last ten years, no attempt having been made to select the best seed for planting purposes. The methods of cultivation, too, were primitive The establishment of model farms in the cotton fields might semedy this. Kepresentations had been made to the Government on the subject.

In the West Indies, it had been arranged that grants sluuld be made to planters who wished to undertake the glowth of cotton-so much when the land was planted, so much when the crop was partly grown, and a fio.ther amount on shapment. The cotton would be consigned to tire assmiation, and the surplus procecds hamied over to the planter Furmerly pracipal supplies came irom the West Indies, anil it was hoped we should again have a large supply of entinn from those islands.

In Egypt there was a want ui labor and transport. The thrst ditficulty tame alume could uvercome, but the SuakimBerber Kallway would sulve the transpurt questirn. Recently a new field had been discovered near Tokar, on the Red Sea, and in that district there were large possibilities, and the land available was said to be capable of growing a crop as large as the present total Exyptian growth.

Nyassaland was one of the most promising fiches. A considerable acreage had been put under cotton, and advances ui $£_{1,000}$ each were being given this year to two planters, muder Government supervision, gins and other marhinery being supplied. Two shousand acres would be put under cot1on, and the crop would be sent to the association for sale, and tive profit, less the advances and expenses, would go to the planters. It was said that one or two hundred thousand acres might be cultivated in 1905 .

In Southern Nigeria a large tract of country was suitable ior cotton-growing. Mr. Prince, an axpert. cleared and cultivaied a-plantation of alonit fifty acres on the Niger river, near Ouitsha. This was sown with American seed, and a large sample lac' been semt home, and was just the cotton wamed in lancashirc; and if $\mathbf{8 . 0 0 0 , 0 0 0}$ balex of it were availsble every mill in Lancashire wothl $\mathbf{2 0}$-day be running full tume. One adrantage Southern Nigeria possessed was that as natural waterways existed, no railways are necessary.

Northern Nigeria, with an area of over 300,000 square miles and $10,000,000$ infabitants, offered an enormous field cultivation, more so than any other of our West African possessions. The Haussas were intelligent and civilized, and a peaceful race, devoting their eunergies to agriculture and commerce. $\$ 5,000,000$ was, however, required to construct a railway connceting the interior with the Niger River.

It had been argued that if the association's efforts were successful, an over-production would result, and the price nould fa!l so low as to make the cultivation of these new liclds unprofitable. So far, however as long-stapled cotton was concerned, a substantial fall in prices would still leave an ample margin cf profit. The main question was, could West Africa compete with the United States? On this point, while we could, not yet tell to a fraction the cost of growing West African cotton, we did know that labor in West Africa was very much cheaper than in the States, for any amount could be had for 6d. to is. a day. Land could also be had at an almost nominal rent, and if cultivated by the native, as a rule, no rent at all was paid, except, perhaps, some small tribute to the chief of the community. On the other hand, in the United States a cash rental of ios. to 20 s . per annum per acre had to be paid, or when, as was mostly the case, the rent was paid in kind, about one-third was handed over for rent of the land and another third for the use of implements, fertilizers, ctc., if provided by the landlord, leaving one-third for the farmer. Although in the States there were many plantations of considerable acreage, the bulk of the crop was grown on small farms, varying in size from a few acres up to twenty acres. Larger farms were the exception. These small farmers could not afford to wait until the crop was harvested. They, had to get credit from the local stores or mortgage their growing crops. This and the rent was a very heavy tax on the cultivator, and a serious addition to the price of cotton. On the other hand it was the opinion ni every West African governor to whom the question was submitted, that cotton growing could be carricd on without any such advances. Messrs. Neely and Prince, both gent!emen brought up in American cotton fields, and accustomed to the credit system, also confirmed these opinions. Under these circumstances, he, Mr. Hutton, was firmly convinced. that West Airica would soon be able to grow cotton much more cheaply than America, and should production overtake consumption, it was the American iarmer who would suffer by the fall in price, and not the West African.

New Zealand flax is now used in Canadas for the manufacture of binder twine. Up till recently the fibre has been going to Canada, via London, but owing to the low freight freights most of the material is now sent to Vancouver. Recently a firm shipped from Wellington 450 bales to Sydney for trans-shipment to the next steamer for British Columbia, and a week later the same firm despatched another lot via Auckland and Fiji to catch the same steamer.-Textile Mercury; Manchester.

The Cosmos Cotton Co., Yarmouth, N.S., has filed a suit ior $\$ 10,000$ damages against the Alabama Great Southern Railway, for shortage. Cotton shipped to them from J. H. Coughlin, Birmingham, Ala., purporting to weigh 52,000 pounds, weighed only half that amount on delivery. Bill oi lading for $\$ 5.400$ was paid by the complamants. J. H. Coughlin iailed sereral monihs ago, and firms all over the world have charged that he shipped them short weight cotten. Coughlin was recently; indicted. Several other firms have filed actions similar to that taken by the Cosmos Company.

BRUSSELS AND WILTON CARPETS.

I.rom the Textile World Record. Continued from liebruary.)

Fig. + shows such a wire, which, after having been placed in the shed of the loom, as if it were a filling thread, is thus wered by the two hundred and fifty-six (or whatever number the texture (pitch) of the fabric may be) warp threads, and then a comparatively thin hempen, jute, or cotton pick (ground 1,hing) is passed across; thus a series of loops are formed -wer and around the wire, and it is woven into the fabric as doough it were a thick filling thread, and intended to form a warse corded or rep-like fabric. Wire after wire is thus wored by the pile threads and woven into the fabric, till

wenty or more rows of loops have been formed around the wres, when the wire which was first covered by loops, is .atomatucally withdrawn by a hook which catehes in its looped and. Another set of loops is formed in front, and another wre is withdrawn behind, and the affair thus continued; but during the process of weaving, a sufficient number of wires are wways kept in the last-formed portion of the fabric in order in keep the loops intact; i.e., prevent them from being pulled out.

Thus it is now clear that when a thread of pile yarn is not actuve in the formation of the figure. it is covered or conccaled by the wire and ground picks of silling.

Each class of pile threads interweave with the ground pick on the same system, producing a carpet of uniform strength, and one in which every species of pile is equally permanent.

Brussels carpets are woven upon the double shed princ:ple, the wire forming the loops being inserted at the same revolution of the crank shaft of the loom as when the shuttle i.s thrown ior inserting the ground or body (hemp, cotton or jute) filling. There are three different warps found in the l,russels carpet, viz.: the pile wasp c, the body or groand warp k, and the stuffer warp g (see Fig. 3). The first mentioned warp, of course, is operated by the facquard harness, the sccond by means of two common harnesses n, n^{\prime}, and the third cither by 1 or 2 common harnesses j, or from spare uecdles of the Jacquard. Warps number 2 and 3 are carried upon two common beams, 1 and h respectively, placed at the back of the loom. The face warp, only, consists of worsted sarn, the ground or body and the stuffing warps being of colton. linen or similar material, as is also the filling.

The pile warp c as forming the face of the carpet is wound upon small bobbins b, placed upon the frames of the ciccl a. as. is clearly shown at the back of the loom in our alustration, Fig. 3. The frames in the creel vary in uumber ar:cording to the quality of the carpet. For what is known as a "five-frame carpet" five frames in the crecl are necessary: inr a "four-ifame carpet" iour frames in the creel are requircd, and for a "three-frame carpet" three irames in the crecl. Some times, however, a variation in the pattern causes the use oi a sixth frame in the crecl for the making of a five-frame fabric, a similar increase in the number of frames in the crecl being sometimes necessary in the case of a three or four-frame fahric; the reason for it being that some- Brussels carpets are "pianted."

For instance, the nature of the design may be such that muly very small quantities of one or more colors are visible in some portions of the design, and which should be "stopped nat" by substituting some of the other colors. There wonld,
therefore, be a certain number of ends vacant; that is, a cortain number of bobbins of yarn of one or more colors would be saved. The same number of bobbins might be placed upon the sixth creel, and this an extra effect of color would be obtained in the design. This "dodging" of color is, however, oftener resorted to in three and four-frame carpets, four or five crecls thas being used. It is by no means an uncommon occurrence in a three, four or five-irane fabric to "stop out" portions of color many one frame and to abstan from introducing a corresponding amount of color in another place. The result of this is that a certain quantuty of yarn is saved,
d the gencral effect of the design is little, if any. the worse tor the saving.

In the best grades of five-frame lorussels carpets in the market as a rule the standard pitch is 256 ends, this number of ends (loops) showing upon the face in the width (27 inches) oi the fabric, but, in reality, this number (256) of ends must be multiplied by five, in comnection with a five-frame carpet= 1,280 ends, the latter number representing the full number oi ends of pile warp threads empluyed in the construction of this t:ibric, plu:, the necessary body or ground and stuffer warp threads. There are, therciure, with reference tu the pile warp, 256 bobbins of yarn upon each oi the five creels. In connec tunn with a four-irame, the affair would equal $256 \times 4=1,024$ ends $=$ full number of pile warp threads to be used in such a carpet, ctc.

Through each dent in the reed 0 , one end of each colos of the frame is drawn plus two ground or body warp threads and the stuffer warp, thus with reference to a five-irame carpet there are no fewer than eight ends in each dent of the reed.

the Jacguaxd machine

employed in connection with weaving Brussels carpets varics from those regular or common wire hook machines as used for weaving upholstery goods, table covers, dress goods, ete, in that in the Jacquard machine as used for weaving Brussels cirrpets, in most instances, there are no wire uprights or hooks in this machune, their places being taken by cords, yet the result is the same, the necessary warp threads being raised as regured. However, machines have been also made in which ware uprights were employed, but those mostly used have cords, in place oi the uprights, worked by needles, precisely as in the common Jacquard. The eard cylinder is of hexagonal (six stdes) shape. There is a "lifter board," situated towards the tup of the Jacyuard, periurated with hules corresponiling with the number of needies empluyed, which raises the tail cords to which the cords of the Jacquard harness are attachet. The "lifter board" is placed so as to impart a tilting movement to the Jacquard harness, and in turn to the warp threads, in order to produce a clear top shed. The comber board rises and falls by the aid of a lever and a cam as lixed in the main driving shait of the loom. The object of this is that in weaving a five-irame carpet, four irames, according to the exigencies oi the pattern, may be lifed out of the way, so that the shuttle may pass ior the purpose of binding the iabric There is no spring box used in connection with this string Jâquard, the needles being pushed back at every pick oi the pattern by means of a back board, actuated heg gravity, the same as used in connection with anl lugrain carpet Jacquard.

Three sets oi Jacequard cards are required for a threeguarters ($=7$ incl:es) wide carpet. When a greater width is required. an extra set of cards is used for each enarter of a yard in the width of the fabric, for which reason a yord wide carpet will require four sets of cards. elc. The more sets of eards to be used, the larger the Jacquard must be the more needles, tail cords and hamess cords are recuired. One harness cord. heddle, mail and lingo is required ior each pile liarg, iliread.

THE WIRE MOTION.
The wire motion is a very important mechansm of the Brussels carpet loom, it being situated at one end of the loom, and has for its object to actuate several long wires (see Fig. 4) upon which the loops of the falmere are formed. These wires vary from $3 x$ to $31 / 2$ inches in length. Wires for weaving Wilton carpets, and which will be dealt with fater on, are slightly shorter on account of the knife end varying from $301 / 2$ to 31 inches in length.

The number of wires used in connection with the motion at weaving varies, as a rule, from 26 to 28 , covering about three inches of fabric being employed. Suppose 26 wires are cmployed and the loom is working, and the 26 wires have been cjerated upon, that is to say, 26 loops or picks of the pattern lave been formed. The twenty-sixth wire being operated upon, the loops of the fabric being formed upon the wire, then at the same moment this has been done, the first interwoven wire in the set is automatically drawn out of the fabric, and, when quite clear, passed forward and inserted in position, that $i=$, taking the twenty-seventh position of a wire in the fabric, and upon this wire the next pick of the pattern is formed. linis feature is repeated over and over again, every one of the inenty-six wires in turn being inserted over and over again.
(To be continued.)

cin sin
 LOOK FIXING PONTIS.

Some Mrehanical Reasons for Imperfect Work in Weav-ing.- Poor weaving has been the cause of the failure of many textile enterprises, as is well kn:own to interested persons. We will undertake to illustrate some of the chief causes of defective work in the line of mispicks, double-picks, shedsuarls, etc., which are often seen in the finished goods. In Fig. 1 we present the ball of the warp chain in its perfect order. The ball sets evenly on its bar or shaft and no trouble results. After the loom has been in service a few years, the chances are that the bearing of the ball on the shaft will become worn, or the bearing of the ball itself may wear down. as shown in Fig. 2, so that the action of the ball becomes uneven. The result is that the finger of the harness jack is not lifted properly and we have mispicks. Again, if the bar of the ball wears oblong. as frequently happens, as shown in Fig. 3. we get another type of irregular motion which produecd mispicks. In Fig. 4 is shown the way some machinists bore out the bearing of a worn ball and make it suitable for further service by inserting a ring. But it is better to put in a new ball, and then we will get the even. firm stand as shown in Fig. 5. Otherwise, if we attempt to run the ball in a wabbly shape, it may assume the attitude shown in Fig. 6. by which the fingers of the jacks may slip off. In Fig. 7 is the position ordinarily taken by abll in which the bearing is worn so large that the ball is permitted to drop below its proper level. In Fig. 8 we show a very neglectiful way in which fixers sometimes tie up the harness and filling chains of looms, to the detriment of effective work. The chain blanks and balls liave hecome so worn at the edges that they do not fill out the space as originally intended. with the resolt that they are loose on the bar and permit loss of motion and wabble. The fixer finds it to be an casy way out of the trouble io tie in the cords or threads between the blanks, thus filling out the void. But it is a shiftiess way and nught not to be done. The proper way is to substitute new balls and blanks for the worn ones.

As to the Links.-Links of chain bars are also neglected more or less in loom work to the disadvantage of perfect weaving. All inspectors have had trouble with harness skips
and the like due to the use of worn links on chains. In Fig. 9 is a chain in good order. In Fig. 10 is a chain which has seen so much service that the holes are worn oblong, with the consequence that the bars are elongated and the chain made too extended for sure work. The proper bar may not be pulled over in time for the jacks and we get mispicks in numberless order. In Fig. in are the final or worn links. The best way is to make careful examination of the links whencver it is being found that mispicks are being caused. All extended portions of chain ought to be looked into, and new links put on to take the place of the worn ones. Put on the new links in pairs, for if you put a new one on one side only, that side will be drawn up closer, providing the link of the apposite side is worn.

Illustrating Mechanical Points for Loom Fixers.
Bars.--The chain bars also require notice. In Fig. 12 is a bar in good order, the section end being shown only. In Fig. 13 is the end of the bar which has had a few years' setvice. The links have cut grooves in the ends and the bar is about ready for the waste heap. If used, the. chances of causing mispicks are very great. I would remove bars in this shape and restore with new ones. Sprung bars are the hormor of the fixer, one of which is represented in Fig. 14. It is hard to detect a bar like this without close watching. It will take a mispick almost every ran, and yet it may require some time to find it. Then substitute it with a new one, unless you can straighten it. I have seen bars in as bad order, 25 shown in Fig. 15, due to the "wrapping" or "jloubling up" of chains. Such bars cannot well be restored. In Fig. 16 is the familiar sight to old fixers of bars worn ly ball, in which definite grooves appear and permit the ball to sink too low to operatc in the head motion. The only remedy. is a new bar.

When the Plate is Cut.-In Fig. 17, reference is made to the condition in which the finger plate head is often found in harness motions. The plate is of the best of steel and calculated to last for ycars. But carcless fixers sometimes
wet the head motion of the loom set a little too carly or a mule too late with the result that the fingers of the jacks are - sed in too soon on the plate and there occurs scraping ue to frictlonal contact for a brief period in every turn of tic loom. The period is enough to gradually wear of either dhe fingers or the plate and the plate seems to go first. I l...se seen plates cut into and seriously grooved in a few uunths when the head is not rightly set. The only way out . i the trouble is first to restore the grooved plate with it new one, then set the head over again so that the jacks will not dise down on the plate until the plate is clear and in proper position.

But there is as much skill needed in setting the fingers as in regulating the plate. The plate may be worn to the condition referred by the jactik fingers slipping off after once gripping, due to improper adjustment of the chain cytinder. If the cylinder is right, so as to bring the fingers at proper level to get a good and full grip on the plate as in Fig. 18. no trouble is liable to occur. If, however, the chain cyliniter is so set that the finger is elevated too high, as in Fig. 19. the chances are that the finger will slip over the edge of the plate frequently, resulting in a very short while in wearing ofl the rdge to a rounded condition, as shown.

Showing Defective Condition of Parts of Head Motion of Looms.
Look to Your Boxes.-The head motions of all 100 it of modern make and in fact of olden types are provided with effective bearings and journals when they are shipped from the builders. But some one may rap 2 cap with a hammer, or screw down the set screws so far as to fracture a cap, as in Fig. 20, leaving the bearing exposed to lint, dust, etc. The foreign matter gets into the lubricating oil, gums the parts and trouble occurs. I have seen choked parts due to gummed oils with fiyings causing endless bother. Such caps as here shown should be removed and new ones put on.

Lost Motion.-The head motion of the pattern or fancy weaving looms will not permit of very great loss of motion. You can have loss of motion to considerable degrec in the plain cam loom or the four harness twill loom, but when you
get to using 6, 8, 10 or more harness with pick and pick or with any intricate work at all, you must look out for loss of power and motion in all parts. In Fig. 21 we present a common place in which lost motion occurs, due to the wear mg of the bearing on which the lever operates. The fact that this bearing is worn compels the lever to be lifted and depressed considerable space before it begins action on the parts operated by it. During this interval, the other mechanical parts of the loom are moving forward, and the los, of motion in the worn part is scriously felt. If it is in excessive degree, the loom will make numberless mispicks, which can be rectified only by restoring the worn part with new. I would look to the levers and the studs upon which they operate whenever mispicks occur.

Don't Be Too Free With Strings and Wires.-The builders of modern power looms put about the best descript:ons of power weaving machinery on the market that it is possible for one to conceive. The looms of modern build are narvels of perfection in every particular.

Old fixers need not be told this, for they who struggle with cams and tappets.for years, are now able to produce periect patterns by changing filling and harness chains. There is no need of spending all day examining tappets as formerly. Still we can pass through the weave room of a mill and find that the fixers have not forgotten how to use strings and wires too freely, even on high-class looms. A pin breaks out of the end of a stud, for example, and sometimes, instead of getting a nice, new pin to replace the old one, the fixer grabs 2 bit of wire and tangles it through the p'n bore and wraps it about the stud end, as shown in Fig. 22. The wire holds the washer on and the washer sustains the lever, but it is a poor piece of work. In Fig. 23 is the proper ray, showing the pin. Strings are sometimes used to tie up things and this ought not to be. Take time to do the r:ork right and it will pay in the end.-Southern and Western Textile Excelsior.

SOMETHING ABOUT WOOLS.

To the average man, a sheep is simply a sheep. He knoss the meat is good to eat, and he probably pictures it in his mind like Mary's lamb-"whose fleece was as white as snow." He has learned that sheep are sheared, that it is a peaceful animal, and that in a body they follow a leader blinidly, beyond this, he has probably very few jdeas on the subject.

Wherever the climate is not too cold, or too hot, if protected from savage beasts, sheep will be found. In Asia, the fat-iail variety prevails, and has remained practically without change, in breed, for gencrations. The wool has a long, coarse fibre, with a short, finer undergrowth, in the colder sections. It is a striking fact that where the climate is severe, nature gradually supplies a fine silky undergrowth for the ketter protection of the shecp. This is shown particularly in Iceland wool.

The Chinaman, $2 s$ a rule, combs the wool off the sheep with his fingers, when the warmer season causes their sheep to shed its wool, and he twists it into short rope, which is then twisted into a ball. Bret Harte has said that "for deeds that are dark.and for tricks that are vain, the 'H'eathen Chinec' iss peculiar," and it is not surprising that dirt, gravel and inferior wool are frequently found in these little balls, when they are opened by the manufacturers here. In Western China, India and other sections the wool is twisted into long ropes about as thick as the wrist and in this form is transportec to the seaport maskets, where in some cases it is
sorted and washed, at other points it is sorted without washing, and the various colors shippel separately. A much larger proportion of colored wool is grown in Asia than in Europe or America. One gets not only black, but fawn, and gray and red wool, and often there is less white than colors in a line of wool from the Orient.

Someone puzzled a body of scientists once, by asking why the black sheep ate less than the white, in this country. After a long, fruitless investigation, theyr were told it was "because there are fewer of them." On our western plains, the herders like to keep one black sheep in every hundred, and when they round them up at night, if they find all the black sheep in sight, they assume the flock is safe in the fold, bat if a few black sheep are missing. they know they have lost some of their flock during the day, and they stir around to find them. While we are discussing black sheep, it might be interesting to mention that there is a great demand for natural black scoured wool, for use in underwear. "The real thing" is very expensive, as only a small proportion of the flecce is fine enough, or dark enough, and the cost is high. Black sheep in the sun all day will get bleached on the back, and the wool turns brown, which makes it unfit in color for natural wool goods. Fashion demands "natural wool goods." and people want them at low prices, and so the chemists come in and dye cotton the right shade, and the weare - of the chean underclothing is none the wiser.

We have spoken of the Asiatic sheep which have remained unchanged in breed for centurics, but when we examine the flocks of Europe, we find distinct breeds whicin have been periected by years of care and study, and in a general way we will mention a merino. The Spanish merinn, which reached its greatest perfection during Spain's prosperity, declined with her power. though a few nocks are still maintained by the nobility in Spain. These sheep were the progenitors of the merino sheep all over the world, and were almost the only sheep raised for many years in France, America, Australia, and Buenos Ayres But the increase in Australia and South America became so great that woon growing became unprofitable and with the facilities for shipment of frozen mutton, wool became a by-product and sheen were bred for carcass rather than wool; so that in the past few years, merino sheep have been killed off, and Errglish breeds substituted, fashion adapting itself to the changed conditions. Crossbred wool, the product of mutton shecp, are in the greatest demand, and it would seem as if the beautiful fine merino wools, of which the finest flannels and broadcloths, and finest worsteds are made, would soon become a fancy article, to be made into garments only for the very rieh-C. F Avery, in the Textile American

CANADIAN BINDER TWINE DEFENDED.

A correspondent. siening himself "Canodian Manufacurer," writes to the "Cordage Trade Journal." as follows: "We are somewhat surprised to hear that the Treasury Departmen: at Washington. D.C.. have issued an official circular to the customs officers, to give close scruting 10 all Canadian twine entering the United States on account of the fraudulent action of a Canadian hinder twine fastory in turning out twine short of the legal measure. As this circular will have the effect of harting the reputation of Canadian twine we think it only fair that the true state of affairs should be laid before the American pub. lic. The Canadian Government. a few ycars ago. passed an act, wherchy the number of feet per pound and the manufacturer's or inporter's name had to be printed on a tag to
be attached to every ball of binder twine offered for sale 4 Canadi. To see that this act wais enfored, a binder twime inspector was appointed last year, whose duty was to inspect all binder twine offered for sale in Canada and see that it wa properly tagged, and measured as many feet to the pound as marked on the tag.

During last year this inspector seized and confiscated fourteen lots of binder twine. Out of these fourteen lots cleven were American, one Mexican, one English, and one Canadian. Now, we think that, when you take into consideration that eleven lots of inferior twine, offered in Canada, were manufactured in the United States, and only one lot in Canada, the American authorities have, perhaps, been a little hasty in taking the matter up in the way they have. As binder twine of any description is allowed to enter into Canada frce of duty, the imports into Canada are much greater than the exports to the United States. The Canadian Government will no doubt now issue similar circulars to their officers, which will in all likelihood affect the American manufacturer more than the Canadian."

INDIAN FELLOW FF ON SIHE.

Among new color samples issued by the Cassella Color Co., New York and Montreal, is a card showing dycings of Indian Yellow FF on silk. Indian Yellow FF is a new dyestuff, which is especially, well suited for the dyeing of silk. This new type possesses the good leveling power and properties of fastness of the older brands of Indián Yellow, over which it offers the great advantage of a very much better solubility in addition to a clearer and brighter shade. In point of fastness to rubbing and water, Indian Yellow FF is also somewhat superior to the older types. Indian Yellow FF is dyed, as usinal, in boiled off liquor, and has proven very usciul for the production of clear yellow shades and for use in compound shades of all sorts. It may be discharged with both tin salt and zinc dust, similar to the other brands.

INVENTION OF THE POWER LOOM.

In view of the great importance of the power loom, it is perhaps well not to forget the name of its inventor, so that the lapse of time may not obliterate it. and his invention be contended for by a number of claimants, as is the case with so many others.

In the year 1793, a Scotchman, by the name of Andrew Kinloch, who was an instrument maker by profession, with the assistance of an old wathmaker, built the first two power looms that were ever constructed. in his little shop. in a monastery in Glasgow. The money necessary was fur nished by two merchants of the city. The actuation of the looms was effected by a common crank, and after about fifty yards of good fabric had been woven on them, the experiment was considered to be successful. Kinloch at once received an order to build forty others, and the first fortytwo looms were afterward operated by water-power at Milton, in the vicinity of Dumbatton, Scotlarid. He was also appointed superintendent of the mill, and taught two pupils to become loom fixers. Onc of them, Walter McLutheon, was for many years alterward superintendent of the Wellington Mill. Hutcheston, near Glasgow, while the other, Archihald Barlay, received a similar position in the Coterine Mills in Ayrshire. These two men were the first who used a screw wrench for regulating a power loom. The walls of the small old mill, at Milton, are still standing, overrun with ivy, as
a hoary reminiscence of bygone days. The old wheel house sull contains the water wheel of thirty-three feet diameter, ued for actuating the looms. Two of the old looms had even been preserved, and were to be sent to the London World's Exhibition of 1851. It happened, however, that the warchouse in which they were kept was destroyed by fire, and the looms shared the same fate.

After having been in operation for about twenty years, the mill was finally suspended in $\mathbf{1 8 1 3}$, because it was not sufficiently remunerative. The beaming and sizing machine had not yet been invented. A firm at Paisley, Scotland, bought the forty looms, and operated them for a number of years with steam power. A short time after their purchase, however, the beaming and sizing machine was introduced in Glasgow, by which power loom weaving became remunerative, and within \# few years after, thousands of such looms were built and operated both in England and Scotland. In 1842, Walter McLutheon was still superintendent of the Wellington Mills, in Glasgow, and also old Mr. Kinloch was still alive. He went once on a visit to Glasgow, and the bosses, fixers, and beamers of the already numerous mills in Glasgowi celebrated the occasion by, tendering him a sumptuous dinner. At the close a collection was taken up for the old man, which resulted in sixty pounds. He spoke of his carly trials and mishaps, and said that, in Scotland, the weavers had offered no opposition to his invention. It had becn otherwise in England, however, where the hand loom weavers had been of the opinion that they would be reduced to starvation by the introduction of the power loom. The first mill, at Staleybridge, England, which he had fitted up with one hundred looms, had been destroyed and burned during the night. It had been rebuilt shortly afterward. however, and fitted out on a larger scale than before. His liic had been threatened repeatedly, for which reason he had lived for some time in America, where he had on all sides been received with open arms, and every facility had been offered him to introduce his loom in the different parts of the country. A few years afterward his looms had been introduced all over the continent of Europe.-Industrial Record.

FAET BLEACHITG OT HOSHETRI.

The economical arrangement of a dyehouse depends entirely upon its size, and, like every other enterprise, the larger the dyehouse the better can it be managed, and at the least possible cost. In taking the arrangement of a dychouse into consideration, it will be discussed entirely from the standpoint of a hosiery manufacturer dyeing aniline oxidized black. In the first place the saturating room, in which the goods are started, should have a concrete or vitrified brick floor, pitched slightly to a gutter or trough with a grating in the centre of the room that will carry away the refuse matter into the sewer. The tomtoms should be placed as close to the extractors as possible, so that in removing goods irom the tominms there will be a minimum of waste liquor. A separate extractor should by all means be used for saturating and chroming soods. After they have been-passed from the oxidizing room, and taken into the ageing room, there are two methods of finishing. One is by allowing them to remain in the oxidizing cages a sufficient length of time to take on a lisle finish. The other is, thoroughly to oxidize them, remove them, and give them sufficient time to age, then pass through the singeing machine. The writer has fonnd that the lisie finish gives a prettier shade and a finer finish, although goods that are singed are probably stronger,

The point in oxidized blacks that gives the dyer the most trouble is the question of letting the goods become tender; it is a continual nightmare to every dyer, no matter how careful he may be. There are so many different causes that tend to weaken his goods, that it is only by exceeding caution and care that this can be obviated. But as no other black has yet been discovered that is as fast and as cheap us aniline black, it is still the universal method of dyeing cotton hosiery.

sULphut hlacks.

During the past two years sulphur blacks have claimed the attention of the dyer, and with more or less success, and for those with small plants, who do not care to go to the expense of equipping a dyehouse, they have answered the requirements very fairly. Sulphur black does not dye the fibre black all the way through. The fibre takes the dye only on the outside. Again, sulphur: black develops so irregularly that it is almost impossible to get them the same shade twice in succession. In passing from the sulphur black bath into the cold water bath, the coming in contact with the atmos. phere has such an effect that it very often ruins the shade oi the goods, unless very great care is taken. Some dyers use an open kettle with very good results in dyeing sulphur black, while others use the laundry machine. There are also several special kinds of machines, including Obermaier, Vacuum, and Klauder-Weldon, made expressly for dyeing sulphur blacks. In dyeing sulphur black better results are obtained if the goods are first taken out of the sulphur black bath and put into a cold water bath containing a slight percentage of sulphide of sodium, which will dissolve any of the dyestuff left in a precipitous form on the goods, and afterwards pass through another cold water bath.

There is a fortune awaiting the chemist who will invent 2 process as cheap as the oxidizing process for fast black, and which will give us as good color, and at the same time remove the great bugbear of tender goods. This drawback to oxidized black is one that must be overcome, and, it is to be hoped, that it will shortly be discovered how this can be removed. There is also the question of cost to be considered, and as soon as a cheaper one is invented the better it will be for all concerned. Mill managers are making experiments with other blacks; odie very large manufacturer is using sulphur black with fair success, another both single finish and lisle finish oxidized black, but one and all make the same complaint, and that is that a different process from the ordinary oxidized lisle finish black is required. With so many different manufacturers experimenting, it can only be a question of time before there is some new development, and it is needless to say that the chemist or the dyer who discovers it will be able to make a fortune for himself, as well as place the hosiery trade under everlasting obligations.Textile Mercury.

gREED OF gRAFILAG IH THXTIIE ITITS.

Textile manufacturers demand high speed in order to get a large proiluction, and as a result the speed of the shaiting in textile mills exceeds the speed which generally is found sufficient for all purposes in other manufacturing establishments. Two methods are used in securing the desired speed. The older way is to run the line shaft at a slow speed and use large pulleys on it to transmit a higher speed to the other shafting; the latter method is to run the line shait at a ligh speed. It is generally admitted that it is more economical to run the main shaft at a high speed than to in-
crease the belt velocity by using large pulleys, as large pulleys mean a proportionally heavy shaft to carry them, which not only ancreases the first cost of equipment but also the danly cost of runming. In the transmission of the power lrom the engine to the machines operated a large percentage of the powes is lost in overcoming friction and by slippage of the belts.

The larger the diameter of the shaft the greater its werght, unless hollow, and the greater the surface that comes in contact with the bearings, and consequently a greater amount of friction will be created which will require power to overcome. The shaiting is subjected to a torsional stram, due to the effort of the belts on the pulleys, and a transverse stram, due to the weight of shaft and pulleys and pull of the belt. The transverse strain has a tendency to bend the shaft, which must have enough weight to resist this tendency. In order that the power consumed in overconing the frictional resistance of heavy shafting may be used to produce useful work, the shaft should be no heavier than is necessary to enable it to resist the strains to which it is subjected. Some manufacturers hang their shafting in lines the length of the room, which, in long rooms, requires a comparatively heavy shafting to resist the strain. Others use a light-weight shaiting and run it in short length, thereby getting rid of loss of power in overcoming the friction of heavy shafting.

The journal bearings in the hangers support the weight of the shait and is the place where the frictional resistance to the rotation of the shaft is generated by the surface of the shaft grinding on the surface of the bearings. This friction may be so increased by negligence that all the benefits derived by the use of light-weight shafting are lost.

The length of the journal bearing depends on the speed of the shaft and the pressure the shaft excrts on the bearings. With long bearings the pressure is distributed over a larger surface and there is less danger of the bearings becoming heated. When shafts are run in short length the pressure per square inch of bearing surface is less than when the same amount of work is done by shafting hung in a long, continuous line. A pressure of ten pounds to the square inch of bearing surface will not heat the bearing, but hot bearings frequently occur when the pressure is less than this amount. When the bearings are too tight an unnecessary amount of friction is created, which requires power to overcome. Neglect to oil the bearings at regular intervals also creates fruction. Babbitt metal, brass bushings, roller bearings and ball bearings will not make up for neglect of this important function, although they do minimize the evil re-sulting.-The American Wool and Cotton Reporter.

THE WORLDS WOOL PRODUCTION.

The following figures, regarding the world's wool production in 1903, are published by the National Association of Wool Manufacturers in the Uinited States:

Central America 5,000,000
South America:-

Argentina	370,000,000
Brazil	1,500,000
Chili	7,500,000
Uruguay	96,000,000
Venezuela	15,000,000
All others	20,000,000

Europe:-
Great Britain $134,000,000$
France 103,610,000
Spain 102,1 . 100,000
Portugal ... $13,410,000$
Germany 49.5 .590,000
Italy 21,451,000

Austria-Hungary $64,300,000$
Sweden and Norway $8,200,000$
Russia, including Poland $361,100,000$
Turkey and Balkan Peninsula 67,500,000
.fll others 14,000,000
Asia:- $\quad \overline{939,761,000}$

Asia:-	
Russia	60,000,000
Central Asia	46,000,000
- British India	85,000,000
Asiatic Turkey	33,000,000
China	35,000,000
All others	15,000,000
	274,000,000

Africa:-

Australasia	500,000,000
Occania	50,000
Grand total	,667,686,000

(4) ต ต
 WORE-A-DAY THOUGHTS.

"Sir, I am a true laborer; I carn that I get; get that I wear; owe no man hate; envy no man's happiness; glad of other men's good; content with my harm."-Shakespeare"As You Like It." (Corin., Act iii., Sc. 2.)
"We are but toilers-in whate'er estate, Weaving our various fabrics well or ill. Some are, who ply with happy-handed skill
The deft, swift shuttle, and who ne'er abate, Th' appointed task. but to strive to emulate Some fair design, which the controlling Will Hath given them forth to pattern and fulfil.
But there are others, who, disconsolate,
Their textures weave with foolish fears and sighsLike thriftless, thankless craftsmen, who deride Their labor, with its ieire dissatisfied-
While to and fro Tinic's subtle shuttle flies. O men O toilers, let us blithesome be, And weave brave garments for Eternity!"

INDIA'S COTTON TEXTILES.

The Frankfort Commercial Gazette states that efforts of the cotton-producing countries to establish factorics for manllf.cturing raw cotton simultancously with its cultivation have Led to a great increase of the cotton-textile industry in India. In 1883 there were in operation 62 factories, with $1,554,000$ spindles, and 15,000 looms; in 1903 the numbers had increased to 201 factories, with $5,164,000$ spindles and nearly 14,000 looms. Of these factories 113 were for spinning exclasively, four for weaving only, and 84 for spinning and weaving. Seventy per cent. of the spindles and 75 per cent. of the looms are situated in the lembay district. The capitai invested in these establishments is estimated at $\$ 60$, 000,000 , and the number of workmen at 178,500 . Aside from those employed in cotton factories, large numbers are engaged in the cotton hose industry, so that in both about $1,000,000$ persons are employed. The production of yarns during the last year was 559,000 pounds and shows a small decrease over the previous y tar; in the finer grades, however, especially in Nos. 21 to 30 , the increase was considerable. The export of yarns has caused much loss to the factories in the Bombay region and in consequence they are now restricting themselves more to the home demand. With reference to the number of spindles, India occupies the sixth place, and to the number of looms the eighth among the countries of the world. The exports are principally to East Arica and Turkey.

WOOL MERCERIZATION.

Many experiments have been made in the attempt to obtain useful results by mercerizing wool. They have simply proved that various strengths of caustic soda lye have very little effect on the lustre, and rapidly rob t'ic fibre of strength. A. Karge, of Mulhouse, has discovered a composition, however, that can be used very successiully: with a lye wi from 38 deg. to 42 deg. B. This solution acts in the proportion of one-tenth of the lye. This proportion of glycerine, etc., would be quite useless. The yarn is treated in the hank as in ordinary mercerization, but with the difference that the wool does not require the enormous tension applied to cotton. It is washed with slightly soured water at a temperature of from 62 to 65 deg . C. The effect on the strength of the wool is interesting. Wool which beiore treatment breaks with a load of from 550 to 560 grammes, breaks after treatment, the caustic soda lye having been of 38 deg. B. strength, with 750 grammes; with 790 grammes if the lye has been 40 deg. B., and with 840 grammes if its strength has been 42 deg. B. If the soured water used for washing the wool is too cold or too hot the increase in strength is not so great, as shown by breaking loads in the following table:

Lye Used.	Temperature of Wash Water.	Breaking Load, Granımes.
38 deg. B.	55 deg . C.	700
38 "	70 "	690
40	55	740
40	70	690
42	55 "	720
42 "	70 "	710

Of still greater importance than keeping the washing water at $62-65$ deg. C. is a proper drying aiter mercerization atd rinsing. The drying has great influence on the structure, lustre, and softness of the wool. The duration of the mercerization must be about two and one-half minutes, and the
same for the rinsing, so that the processes can only be carried out with machinery entirely automatic. The lustre is the icsult of the joint action of the ingredients of the mercerization bath and not of the caustic soda alone. It is true that the microscope has not revealed any change in the anatomical structure of the fibre due to the treatment, but it shows an alteration in the surface of it, which consists in making that surface much smoother and more lustrous. The brightness of the lustre depends on the strength of the wool and the temperature of the mercerization bath. This must not exceed $16 \mathrm{~d} . \mathrm{g}$. C. Experiments with a mercerizing bath cooled to zero C. gave purely negative results, and at certain stages the strength of the fibre is gravely imperiled. To get a really good result the caustic soda lye should show about 40 deg. 13. before the other ingredients are added, and a temperature of about 12 deg. C. Wool merccrizing, as above, shows no special features. After drying it is hardly likely that the wool could show any increasing affinity for dye. The tests of successful mercerization are that the wool should show a beautiful silky lustre and that its strength should be very distinctly; increased.-Dyer and Calico Printer.

weaving improvements of hast year.

hy t. w. fox, textile department, manchester munictpal SCHOOL OF TECHNOLOGY.

During the latter half of the nineteenth century, the productiventess of the power-loom was repeatedly increased by the simple expedient of enlarging the circumference oi the driving drum and reducing that of the loom pulley. With higher speeds certain modifications were made in the details of the machine, and the shattle received its share of attention, especially with regard to enlarging its weft-carrying capacity. But it came to be recogni.ed that much higher speeds or larger shuttles were impracticable, and that future efforts would have to be directed towards the construction of a new type of loom. Some means for automatically supplying a loom with weit appeared to offer a possible solution of the problem, as this might result in increasing the productiveness of each loom, or, failing that, the cost of production could be reduced by allotting a larger number of looms to each weaver without materially adding to his or her labor.

After the first serious attempt had been made in this direction, an almost feverish energy was manifested to attain success upon similar lines. The contagion has spread so rapidly that it is now almost impossible to find a loommaker who has not at least one self-feeding loom upon the market or in his experimental room, and it is jocularly said that every overlooker and mechanic who has the misfortune to be without regular employment derotes his enforced leisure to the inventing of an automatic loom. Be that as it may, the great efforts made during the last tive years to perfect a new weaving machine are certain to be exceeded during the ensuing five years. Old inventions which failed chiefly because they were introduced long before other conditions were iavorable to success, have been reintroduced, but more or less modified in detail. New devices have been, in many instances, hastily put upon the market before they were capable of fulfilling commercial conditions. In short, the methods by which inventors are now attacking the loom problem are so many and varied that even to tabulate them is no casy task. By resorting to classification, however, and ignoring chronological sequence, some idea may be formed of the extent and variety of the schemes launclied or about
to be launched upon the market. These include automatie spool or cop changers, automatic shuttle changers, weftcarriers with means for supplying a loom with sufficient weft for many hoars' continuous running, the use of two or more shutles that move continuously, and many labor-saving attachments to ordinary and special looms.

Of spool or cop changers the Northrop loom is the most notable example, and is more extensively adopted than all other self-feeding looms put together. It contains parts which automatically eject an exhausted spool or cop, insert a full one, ant draw a thread into a shuttle-cye while the loom is working at its normal speed. A warp-stop motion is also provided. It may be affirmed of the parts that eject and insert spools or cops that neither acts with appreciably greater certainty or at a higher speed than those of certain other so-called automatic looms. But the self-threading contrivance is the most original, and probably the most valuable, part of the investion. By its aid time and labor are economized to an extent impossible of attainment by the ordinary: method of shuttle-threading. This is so generally recognized that, in the ceent of no satisfactory automatic or semi-antomatic shuttle-threaders being previously developed, it is saie to assume that on the expiry of the Northrop patent rights a shutle more or less modelled upon the original will be promptly adopted. The Crossiey No. 2 foom also contains parts which change a cop or spool white the loom is ruming at full speed. The scheme reintroduces an old principle of enclosing weft in a metal case and inserting the case into and ejecting it from a shuttle automatically. But the method of accomplishing this appears to be original, and, so far as can be ascertained from the working of one loom is likely to attract its full share of attention. Threading a tube, however, makes as great a demand upon time and labor as threading a shuttle. Much has been said regarding the relative merits of cop or pirn versus shuttle changing, and although there can be no doubt that it is an easier matter to cause a loom to run satisfactorily with one sluttle than with a dozen shuttles, the final word has not been spoken upon the subject.

Shutte-changers are built upon most diverse lines. There are those which stop to discharge an empty shuttle and, after replacing it with a full one, restart. The Farriman and the Hattersley looms are typical examples. The Blackburn puto matic loom effects its changes while the loom is moving at a greatly reduced speed. Others eject a spent shuttle and insert a full one without any reduction of speed. These include the Crossley No. 1, the Ross, the Baker-Kip. the Cowburn, the Walker. the Gregson and Monk, the Marling and Todd, the Manchester automatic, and many other looms. In the above-named inventions devices are to be found for ejectint a spent shuttle behind, in front of, beneath, and above the shuttle-box. also for feeding-in a shuttle at one end of a loom and ejecting it at the other end. The Ross and the Walker loonts are each provided with a hopper from which shuttes are fed into chambers of revolving boxes, and on the failure of a weft threañ the boses make a partial revolution and move another stuttle into working position. The empty one is next ejected from its chamber and a full one takes its place. In a Walker loom if a weft thread breaks, the loom stops. In order to prevent broken picks in the cloth, the Northrop, the Baker-Kip, and the Manchester automatic looms have mechameal or clectrical feeders to put the change mechanism in action shortly before a cop or spool is spent. In the Walker loom the same object is attained by ejecting a cop or spool as soon as a predetermined length of weft has been drawn away, and substituting for it a flll one. The llowarth pick-counting motion is also attached to some self-
iecding looms to effect a change of shuttle on the comple. tion of a definite number of picks, and the loom stops when the weft breaks. This aame pick-counter may be fitted upon ordinary looms, but its action is then to warn the weave: that only a few picks remain upon the cop, and upon their completion the loom will stop.

It is quite possible that in bestowing so much attention upon the weft supply of a loom other things of equal importance may be overlooked. The question of how best to prevent warp-breakages, for instance, requires attention, because far more time is needed to repair a broken warp thread than to replace a spent shuttle; further, if a broken thread is not repaired at once it becomes entangled amongst adtjoining threads and breaks them also, which entails further and greater loss of time. Such mechanical and electrical warp stop motions as are attached to the Northrop, the Baker-Kip, and other looms may prevent a broken thread from breaking others, but they add something-to the strain which the warp must resist. Large shuttles and deep sheds, however, are more fruitful causes of breakages, and a tendcncy unduly to enlarge the shuttle is one sign of the times.

It must not be assumed that the attention of inventors has been entirely engrossed in devising cop and shuttlechanging mechanism, for that would imply a lack of imagination and initiative on their part which would be altogether unwarranted. The loom problems have been attacked simultancously from many sides, and upon no side with more ingenuity than that of removing the shuttle and replacing it with a carrier which draws from a large supply of weft a sufficient length for one pick or two picks. Of these schemes the Scaton loom and the Smith feeder are the best known examples. In the former a store of uniform or muiti-colored wefts, sufficient' to last for many hours' working, is placed upon the floor at each end of the loom and led through small tubes to the shuttle-boxes. A thin metal carricr, provided at each end with a pair of nippers, enters a shattlebox, and the outer jaws of the nippers close upon the end oi a thread presented by, one of the guide tubes. In passing through the warp the carrier draws in enough weft for one pick. A similar sequence of movements occurs at the opposite end of the loom with the other nippers and with another weft thread. Meanwhile parts at each side of the loom measure are cut off the exact lengths of weft required for following picks. This loom is now in the works of the Anderston Foundry Company, of Glasgow. Smith's feeder is merely an attachment to an ordinary loom, and consists of a cone composed of several pounds', weight of weft, a carrier, and a catch-thread. Weft from the store is passed through an eye into the carrier, and as the latter is driven through the warp two weit threads are leit behind it, the catch-thread passes between them, and when the carrier roturns to the starting end both picks are left in the same shed.

It is well known that a shuttle only periorms useful work for one-quarter of every pick, and is moving into, or out of, or remaining idle in a shuttle-box for the remaining threequarters of each pick. If a sluttle could be kept constanty moving through the warp a great cconomy would obviously be effected. At least one selieme for attaining this end is being worked out at present. The chief features of the scheme consist in sectional shedding, sectional beating-up, and constantly moving shuttles. The threads of four warps are led vertically upward, and distributed uniformly, around a large circle, except for a small gap between warp and warp. A series of short reeds forms a horizontal, circular platform. upon which two or four shuttles constantly travel by reason of contact with rotating arms from a central vertical shaft.

The warp threads are divided in advance of and closed belind each shuttle, and the short lengths of reed move upward In rotation to beat lame the weft. Cutters are placed in the centre of each gap between the warps, and as soon as a shattle has passed the weft bridging the gap is cut, and feelers fold back the short lengths into the respective warps to form selveuges.

Whether or no any of the looms referred to in this article will ever supersede the present power-loom, it is intpossible to say; but it is safe to predict that a more productwe, as well às a more perfect, weaving machine will be forthcoming. It cannot be conceived that all the ability, energy, and money now being bestowed upon the solution of this problem will be unproductive.

DYGING UNDERWEAR.

by roger williams, in the textile world record.
The dycing of underwear is done by four methods; in the saw stock; in the skein; in the garment partly made up but not finished; in the roll just as it leaves the knitting machine.

The goods for dyeing in the garment are first knit into rolls, then cut and made up, but not finished; they are then counted into dozens, tied with strings and sent to the dyehouse. After coming to the dychouse they are first boiled out, either in open kiers or vats, and aiter boiling are dyed in a cylindrical machine having six compartments.

This machine rotates through the dye, kecping the goods in motion and contributing to evenness of the color. These machines dye from tyo to 400 pounds in a batel so that case lots can be dyed in one batch. Care must be taken, however, not to run the machines at too great a speed and cause the goods to roll and knot up, as this will cause uneven dyeing and seconds will resuit.

The Klauder-Weldon Kit Goods Dycing Machine. !

After boiling out, the goods are washed in running water and then extracted; after extracting they are counited so that each compartment will have about an cqual share of the batch and then the dycing is begun. For liglit shades the goods are generally entered at 140 and run one-hall hour, the salt or Glauber's salt added and the dycing continued for one-hall hour longer, when it is completed.

The accompanying illustration shows the well-known Khauder-Weldon garment dyeing machine, which is one of the bese types of machines in use for this purpose.

The Klauder-Weldon machine has been in general use throughout the country for many years and most of our readers are familiar with its construction and operation. Among its advantages are the uniform application of the color, the large production, small amount of labor required, economy of steam and dyestuff, and simplicity of construction. The goods are placed in the six different compartments of the cylinder which revolves in liquor in the tub. The goods are thus alternately brought into the liquor and then carried around with the cylinder. During this passage the goods fall from one side of the compartment to the other, and thus are in a different position when entering the liquor fiom that during the preceding immersion. In this way all parts of the material are exposed to the action of the dye in the same degree.

The compartments are separated from each other by partitions oi round wooden slats which allow the free passage of the liquor. Perforated doors in the outside of the cylinder permit the liquor to pass from the tub into the cylinder, thus maintaining a frec circulation.

The machine is easily loaded and unloaded. When in operation its action is entirely automatic and requires attemion only for the regulation of the steam and the application of dyestuff. As the liquor is practically protected from exposure to the atmosphere, very little steam is required to kecp it at a boil. The volume of liquor is reduced to a minimum, as compared with the amount of mi. terial being dyed; this results in using the dyestuff to the best advantage. The construction is simple and in some cases the cylinder is driven by pinions on a shaft located across the back of machine. The gears on this shaft connect with bronze gear racks that extend around the periphery of the ends of the cynnder. From 150 to 400 pounds of goods can be colored at one time, and, if properly prepared for the dycing process, will come out uniform in shade.

The Klauder-Weldon machine is built for raw stock and yarn, as well as knit goods, and gives equally good results on cither oi these materials. We lately saw one of the first of these machines to be built running side by side with one of the latest machines, and both were giving excellent results.

After being extracted the goods are sent to the boarding room to be shaped and dried. This is done by putting the garments on wooden forms called boards when they are wet - and allowing them to dry in this stretched condition. The goods are dried by the well known hot air principle; they are first placed on a movable truck, put into the dryer and left there until dry. The garments are next removed from the boards to be finished, that is, to have the bands and buttons sewed on and to be pressed and boxed. They are pressed between cardboard or leather papers under pressure of hot plates.

The system of dyeing knit goods in the roll is now coming into general use and is carried out as follows: The goods are sent to the dyebouse in the form of rolls just as they come from the knitting machines. These rolls are usually boiled out in an open kier, then put through a washing machine and extracted. Aiter extracting they are dyed in kettles specially constructed for this purpose.

These kettles have a roll over which the pieces are passed, the ends being sewed together to make an endless picce, so that they are continually massing through the hquor until the dycing is completc. The length of these pieces should be as nearly equal as possible, so they will all get the
same circulation in the same time. If one giece is, say, 100 yards long and another 200 yards in length, both travelling at the same rate over the reel, one would pass through the lifuor twice as many times as the other. Tlis is likels to cause different shades in the same dyeing.

The dyeing of knit goods, whether in the roll or in the garment, requires cart and experience. The dyes used are nearly all of the "direct" type, that is, colors which require no previous mordant. For light shades the goods are gellerally boiled for one-hall hour in the dye before adding salt or Glauber's salt, and then the dyeing continued for mehalf hour longer in order to complete the dyeing and dhor. oughly exhaust the dyebath. The dyes chosen for this work are those which are fast to washing and hot pressing, and those which are easily soluble and go on evenly. For very light shades the goods are bleached before dycing, but in most cases this is omitted and the dycing is done in the gray. Whether the goods are dyed by one method or the other every care should be taken by the dyer to get the very best results; his bateles should weigh as nearly alike as possible; in weighing out dyestufts he should see that his weigh. ings are correct and insist on having thoroughly reliable scales. A color can be thrown off shate very easily by :th crror in weighing either the goods or dyestuff, especially when 100 pounds of goods are dyed with one-half ounce of dycstuff or even less. Managers should provide their dyer with enough machines or kettles to dye the different ranges oi shades, so that the dyer should not have to dye, say, pinks, browns, and blues in the same machine, losing time and moncy, cleaning out and changing from one shade to another.

The ventilation should be good, the steam should be carried out to prevent condensation on roof or ceiling of the dyehouse, thus preventing drops of dirty water from falling from the ceiling and staining light colors.

No matter how good the dyer is he cannot do the best work without the best machinery and under the best conditions, and if the mill management desire the best results at the lowest cost, they should piace their dyer in a position to get them and then insist on their being produced.

ON THE ORIGIN OF MILDEW IN WOOL GOODS.

Under the term "mildew" a disease of the wool fibre is anderstood which is generally attributed to micro-urgansms cither of fungus or mould growth. It is frequently met with, and in dyed goods usually appears as light patches. The microscopic appearance of mildewed wool, described by V . Guorgievis and Schimke, differs materially from that of woul attacked by acids or alkalies. In its initial stage it is considered by some to be curable, whereas by others the contrary is maintained. The author set out to isolate the microorganism with the idea of being able by its study to indicate how to combat it. He found it impracticable to make cultures from pieces showing mildew since such goods, by the time they were exammed, had passed through several processes which had effected the extinction of the micro-organism, though its effects remained. - He succeeded in producing characteristic mildew spots in perfect eloth oy rolling it up after thoroughly wetting with a piece of rotten wood, and then keeping in a moist chamber at 41 deg. C. In three days mildew could be detected under the micruscope, and from fibres taken from the infected parts pure cultures of the microorganism of which it consists were easily produced. With these cultures a series of experiments on cloth were carried oust

A piece of white cloth previously boiled for one hour in water was inoculated with a pure culture of the bacteria, and
placed along with a second piece not inoculated in a moist chamber, in which the temperature was maintained at 40 deg. C. In three days the inoculated places showed the characteristic appearance of mildew, made easily apparent to the naked eyc by dycing both samples with acid green. The uninoculated piece dyed perfectly level, whilst the other one showed light patches on the inoculated places. This experiment was repeated a number of times, but always with the same results. For a further experiment two pieces of eloth were dyed with acid green, in one case with acetic, in the other with sulphuric acid, and together with an undyed piece previously boiled in water, were inoculated and tested, as above cicscribed. In four days the undyed piece was mildewed, whilst the dyed ones were not.

In order, then, to determine whether the dyestuff or the acid had prevented the bacteria developing, two pieces oi white cloth were taken and boiled, one in sulphuric, the other in acetic acid, corresponding in strengith to the dyebaths previously used; rinsed, inoculated, and treated as before. In iour days it was found that a sample which had not been treated with acid had become mildewed, whilst the acid trated ones were quite free from it, proving that the acid prevents the development of the bacteria. Similar experiments on indigo-dyed cloth first boiled one hour in water showed that it was attacked much more rapidly than undycd cloth, as the inoculated places showed mildew in twenty-one loours. This fact is well known to practical men, and may be owing to the dyestuff or the slightly alkaline state of the cleth. In view of the preservative action of acids demonstrated by the previous experiments, the author tried their effect in this instance. He boiled a piece of indigo-dyed cloth in N_{20} sulphuric acid, and afterwards inoculated it. After (ight days' treatment no trace of mildew could be detected under the microscope.

The author afterwards learned from a practical man that it was his custom in summer to pass indigo pieces through acid if they could not be finished without delay, to prevent their mildewing. Further experiments showed that indigo cloth dyed in a fermentation vat was more liable to mildew :han when dyed in an alkaline hydro-sulphate vat, whilst when dyed in a slightly acid hydrosulphite vat no mildew could be c'etected after eight days' treatment. Seeing that indigo apparently favors the development of mildew, the behavior of nther dyestuffs in this respect was tried. Cloth samples were c'yed with the colors named, after which they were boiled one hour in water, and afterwards inoculated with the following results: From previous results it was to be expected that the slightly acid patterns would not develop mildew, but from line fact of a piece in an alkaline state like that dyed with methylene blue not developing mildew, it may be concluded that some colors act as antiseptics. The author's finding was confirmed from a practical source that pieces dyed in an ació bath never become mildewed, and if such show mildew it has been present before the pieces have been dyed.

According to an experiment made by the author, it appeared at first sight as though cochincal searlet covers mildew, as shown by the following experiment: A piece of cloth upon which mildew had been developed by inoculation and cultivation was dyed by him with cochineal scarlet. The color was quite cven, and no mildew visible to the cye. In a few days, however, after the cloth had been frequently rubped, the mildew places became visible. An attempt to develop mildew on cochineal-dyed cloth, even after sixteen days' cultivation, gave negative results under the microscope on the inoculated parts. The author is of opinion that all mordant colors are like cochineal in apparentl, covering mildew. He dyed two mildewed samples one with Chrome black, the
other with Alizarin Bordeaux on a Chrome mordant. In both cases no signs of the mildew were apparent after dyeing, but after drying light plac : showed themselves. The conclusions the author arrives at are the following:
r. Mildew is the effect of a form of bacteria. 2. The mildew lacteria is very susceptible to dilute acids cither inorganie or organic. 3. Pieces dyed in acid baths will not mildew before the acid is washed out. \& Pieces dyed in an acid bath, which show mildew spots after dyeing, were mildewed befure dyeing. 5. Mildew is most rapidly developed on indigodyed pieces which are slightly alkaline. 6. Indigo is actually destroyed by the bacteria of mildew, and the ligitat patches in mildewed indigo pieces are due in part if not entirely to this. 7. Many dyestuffs, such as Methylene blue, act as antiseptics to mildew, so that goods even in an alkaline condition, it dyed with such colors, do not develop mildew.

In a supplementary article, the author gives results of experiments made with Methylene Blue, Methyl Violet, Magenta, Safranine, Malachite Green, and Auramine, showing that Methylene Blue, Malachite Green, and Safranine entirely prevent maldew, which cannot consequently be developed upon goods dyed with these colors. On material dyed with Methyl Violet a very slight development of mildew took place, whilst on material dyed with Magenta or Auramine the mildew was strongly developed, and its ravages on the fibre easily visible to the eye, the Magenta being almost decolorized on the parts infected, whilst the shade of the Auramine was uil-affected.-W. Kalmann, in Hosicry Trade Journal.

THE TEXTIE TRADE GE ATMONTE.

The Almonte Gazette publishes an interesturs report on the manufactures and trade of the town, from which the following extracts are taken: Our townspeople have also been well employed, and the output of our mills has been larg : and profitable with one exception. The product of the Rasamond Woolen Co. is this year below the average, which the management claim to be due to the competition of British woolens admitted under the preferential tariff.

Last year there were shipped over the C.P.R. from Almonte $1,335,000$ yards woolen and worsted cloths and flannels, valued at $\$ 427,000$, and knitted goods to the value of $\$ 262,560$.

The output of the several factories is as follows:
Jas. H. Wylie, Limited:
450,000 yards of. flannel, vaiued a..................... $\$ 82,00000$
Wm. Thoburn:
385,000 yards flaniiel
70,00000
Rosamond Woolen Co., Limited:
500,000 yards woolen and worsted cloth........... 275,00000
Almonte Knitting Co., Limited:
Underwear, sweaters, etc. 130,000.00
Anchor Knitting Co., Limited:
Underwear, hosiery, etc. 132,500 00
Total
$\$ 689,50000$
-A great deal of cotton machinery is idle in New Eng. land cotton manufacturing towns, such as Fall River, Biddeford, Holyoke, Burlington. The cause is not altogether due to scarcity of cotton, but in some cases owing to the war between Japan and Russia, some of these mills being devoted to cloth for the Chinese and Japarase markets, wlich may be temporarily closed by hostilities.

Texätle ${ }^{*}$ Design

Designs in Fancy Tweeds.
Fancy Tueds.-These still remain very rich in coloring and simple in weave. The novelty consists either in the mix-

Fig. A.
ture yarns used, or in the methods of warping or wefting. The style illustiated, Fig. A, is suggestive of the lines of pattern being developed in these textures.

2 threads" black.
thread " green and white twist.
3 threads " black.
1 thread " green and white twist.
f 3 threads" dark green.
(I thread " white.
thread orange.
thread; "green and white fwist.
threads" bleck.
thread " green and white twist.
3 threads" dark green.
I thread " white.
3 threads " dark greeln.
thread " white.
thread " green and white twist.
threads" black.
thread "green and white twist.
2 \{ 3 threads" dark grect.
thread " white.
threads " red.
threas " green and white twist.
threads" black.
thread " green and white twist.
threads" dark green.
threads" dark green.
thread " whitc.
thread " green and white twist.

3 threads" black.
$2\left\{\begin{array}{l}1 \text { thread " green and white twist. } \\ 3 \text { threads" dark green. } \\ \text { i thread " white. }\end{array}\right.$
8's reed, 4's.
Weft.
7 threads of dark Urown.
3 threads" black and white twist.
I thread " dark brown.
3 threads" black and white twist.
$6\left\{\begin{array}{l}9 \text { threads" dark brown. } \\ 3 \text { threads" black alld white twist. } \\ 1 \text { thread " dark brown. } \\ 3 \text { threads " black and }\end{array}\right.$
3 threads " black athl white twist.
\pm threads " red.
30 picks per inch.
All $2 / 32$'s skeins yarn.
Strije and Suiting Patterns.-Some examples in singleweave textures are given in Figs. 13 to E. They are not only useftul as suggestons for these styles in wooler: or worsted yarns, but being of a igpical character, are of special value to

Fig. B.

Fig. C.
the student of wowen design. They show, in the first place, the effect of weave structure and of compounds of weaves, and in the second, they give an illustration of how a variation in weave changes the effect duc to a simple order of coloring. Taking the weave contrast first, and refersing to Fig. 13, the notelty here ur ireshness of pattern is due to the knops in the worsted yarms, which are almost white in color, and crossed with a black weft. The weave itself is a simple

angled iwill (Design 175\%), the counts of the warp yarn being 10 skeins, and of the weft 16 skeins, with 28 threads and pieks per inch in the loom.

Fig C is 2 $\xrightarrow[2]{\text { twill (Design }}$ 1758), and therefore weavable on four shafts. The warp

yarn is $2 / 36$ skeins, and the weft 15 skeins, with 32 threads and 36 picks per inch on the loom. This is an excellent weave for over-checking or for striping. As seen in Fig. C, it makes a tweed of a suiting class.

Figs D and E are also stripe compounds of derivatives 2
of the ___ twill, a form of pattern which may be varied 2
to an unlimited extent, both in respect to the relative dimen-
Fig. D.

Fig. E.
sions of the stripings, and to the methods of applying color. The examples emphasize the weave contrast, the warp being light and the weft dark shade.

Fig. E is in worsted yarns, and hence the clearness oi weave detail, but weave compounds are equally successful in Cheviot, as well as Saxony.

The warping for Fig. D (Design 1759) is:
1 thridd of $2 / 30$ skeins.
2 threads of 20 skeins,
the weft being all 20 skeins, with threads and 46 picks per meh.

Design 1759.
2
Fig. E is a \qquad twill, cut in 2 's angled, with 92 2/44's worsted warp. 2/60's worsted weft,
threads and 64 picks per inch. The comparatively small number of picks per inch gives the elongated characteristic ro the weave.-Roberts Beatumont. Professor of Textile In. dustries, Yorkshire College, in the Textile Recorder, Manchester.

```
*) se ce
```

M. Dupont, a manufacturing hosicr, of Paris, France, whose stockings, colored with black aniline dye, caused bloodpoisoning to one of the wearers, has just been condemned to a fortnight's imprisonment and to pay a fine of $\$ 20$ and $\$ 20$ damages.

TBEATITBNT OF RAGS FOR RE.TANUFACTURE.

II. SCIIRI, UNTER-DARMIN, GERMANY, IN THE TENTIIE: JOURNAI..

The manufacture of goods in this and other countries from old rags, remnants and the like, has assumed considerable proportions during the last quarter century; and, although the use of shoddy goods may not be the highest form of economy, there is no doubt whatever as to the great demand on the part of the poorer classes of people for them. The chief centre for the manufacture of goods from old materials, which are broken up and afterwards spun into coarse yarn for the making of eloth, is, so far as Great Britain is concerned, in the districts of Dewsbury and Batley; whilst there is a great deal of this class of manufacture carried on on the Continent, in Germany, Belgium, Austria, and Italy, in addition to Russia, Norway and Sweden, and some other countries which also carry on the manufacture in a fairly extensive way.

The rags and other remnants are generally collected by wholesale rag merchants, who roughly sort them into colors and qualities, bale them, and deliver them to the carbonizing mills, whose special object is to thoroughly sort the rags, clean them, and break them up ready for delivery in a state suitable for use in the cloth mills, where the rough fibres ar: spun into coarse yarns and woven into cloth. Sorting is carried on by women, who spread out the rags on sorting tables and put the different colors and qualities in skips. After this operation has been performed, it is necessary that the rags be thoroughly carbonized. This process may be carried out either by the wet or dry process. In the former the
cylinder in which the rags to be carbonized are placed, and B is the retort in which the hydrochloric acid is vaporized on its way to the former. The retort B is combined with a hullow axis i of the eylinder A, and consequently rotates with same; d is the furnace below the retort, and is designed to enable the heat to thoroughly circulate round $B ; w$ is a tank, arranged at the exterior of the retort chamber, colltaining a supply of acid, which is discharged therefrom into a semi-circular vessel, arranged below the axis of the retort. The outer end of the retort has secured to it a pipe: ' f, which can revolve with it. The end of this pipe is fitted with a scoop g, which, at each revolution of the retort, picks up a definite quantity of acid from the semi-circular vessel h. and transfers it to the retort B , wherein it is vaporized. The scoop g has an atutomatic closing arrangement which locks in the acid immediately it has been lifted up, thereby preventing any escape of vapor from the retort. As the acid is vaporized, it passes directly through the axis i into the carbonizing cylinder A, with the result that no vapor is lost, and there is a great saving of acid over other known methods. It will, of course, be understood that, prior to the passing of vapor into the cylinder A, the rags thercin have been thoroughly died. This drying is carricd out by means of a battery of pipes below the cylinder A. The latter, we should say, is pentagonal in cross section, is provider with a hinged door, and is fitted internally with hooks, which lift up the rags during the rotation of the cylinder, and retain them for a time, thus preventing the formation of balls. The cylinder is rotated by the pulleys, shown at the right of Pig. \therefore which transmit motion to the train or gear wheels indi-

Fig. 1.
Fig. 2 .
rags are dipped in a. reservoir filled with diluted sulphuric acid, in which they remain till thoroughly impregnated. They ard then shaken, and taken to the carbonization or drying room, which consists generally of a rectangular building, in which there is a platiorm of strong wire mesi arranged a little distance from the floor, on which the rags are laid. On one side of the space covered by this wire is a heating apparatus, designed either to force or induce a current oi hot air through the goods to be carbonized. The wet process, is an old-fashioned arrangement, and had a great deal of vogue up to a few years ago; but it is also a costly one, and. what is more, a great deal of space was necessary in order to accomplish even a comparatively small amount of work. Consequently, this process has given. way to various systems of mechanical carbonization, of which the treatment of the rags with hydrochloric acid vapor in a closed cylinder is considered to be the best, both on account of its simplicity and cheapness. Figure 1 is an exterior view of the retort chamber, and Eigure 2 a longitudinal section through the chamber in which the rotary carbonizing cylinder is placed. From these latter views, it will be seen that A is the

Fig. 3.
cated. As the rags continually rise and fall, the acid supur enters into every fibre, whilst the dust from rag, can escape: from the perforations q into the pit 4 which is separated from the chamber containing the battery of pipes by the par tition 3. A carcful provision is made for discharging any gaseous fumes direet to the flees comeeted with the mill
chmmey. By means of the apparatus we have just describel, the whole of the earbonizing process, including drying, macking. and mpreting. occupies about three and one-half

Fig. 4.
luenrs. and ar zelive hours, according to the size of the apparatus, 500 to 1,000 kilogrammes of rags are carbonized, athl the yuatity and color thoroughly retained. The size oi the machine also determines whether one or two men are necessary to its operation. The saving effected over the ofd v: : י-acess comes out at about 50 per cent.

Fig. 5.
. Wer the rags hav: been carbonized, they are placed in a rotary ducting eylinder, and then taken to be washed. The washing room is indicated in Fig. 3. Ench washing machine "onucts of a robary tank, proviled with a talse periorated boultom, and so arranged that the dirty water does not now
directly on to the ground. but first rises through a central upright chamber, and then flows away. This arrangement prevents any loss of the rags. The circulation of the rags in cach tank is carricd out ly a pair of risi. and falling forks, arranged and operated in a very similar mamer to the old type of forks used in ordinary; wool-washing machines. If the rags are required to be dyed, they are transferred to the dyeing room, indicated in Fig. 4. The dycing apparatus consists of three tanks, as illustrated. The dye liquor is contained in the bottom central tank, and from thence can be lifted, by means of a central pipe and a circulating pump, into one or other of the dyebaths arranged above the tank. The central pipe is fitted with a swivelling curved end, so that it can be readily turned from one tank to the other. Whilst dyeng is taking place in one tank, the other is being charged with rags. The liquor is in continuous circulation through the dyebaths. each of which is furnished with valves and delivery cocks, by means of which the goods can be rinsed after dying. The decing apparatus is exceedingly simple, and reequires very little attendance.

The next process is to dry the rags, and this is carried out out in a very similar manner to the carbonizing process except that no retort is used. The drying cylinder is provided with periorated sides, and in place of the revolving retort. there is arranged a coke fire air heating apparatus. Two similarly arranged chambers bring air to the fire, and their mets can be controlled as desired. The heated air is led through both ends of the axis to the interior of the drying cylinder. After being thoroughly dried, the rags are transferred to the tearing or breaking-room; and passed through the willows, a number of which are indicated in Fig. 5. The rags are placed upon endless lattices, sprinkled with oil. and fed through rollers into the interior of the machine, where they are broken up by the revolving spiked cylinder and stationary spiked surface of the machine. After the breaking up the material is baled for transierence to the mills manufacturing shoddy goods.

DYER OR CIENIST-American-marriod, - Expericnood on Raw Wool, Pieco Dyero-Sike, Noils, Crmes Drecre Ragd Warp; Yarns of all kinds, Union Will zo anywhere but Smith. Striciv temperato and a hustler. Address, "W. B." care of Canadian Journal of Fabrick, Torritan Ont.

WhNTED, - To Lease or Buy a SMALL wOOLEN MILL, of
One or Two Sets, in Ontario. Plant must be Equipped for Making Yarn, and in good condition. One baving a Water Power preferred. Address, "F. S. J.," care Canadian Journal of Fabrics, Montreal.

1-3.

ACENT WANTED
 For sale of colored and White Worsted Yarns in Canada.

THOMAS AMBLER \& SONS, Bradford, England.

FOR SALE

Onc of the Beat One set Weolien mille in Eaptern Ontario.

Everything in First Class Running Order. Surrounding couatry of the very beat. No other mill withia twenty miles square. Good chance for the right man.

Address, "G. W. C.;
3-1. Care Canadian Journal of Fabrics, Montreal.

O. स. RIIEY \& COTY.

281-285 Congress 8treet, Boston, Mass.
mame MACHINERY
GARD CLOTHING, EMERY FILLET, EGYPTIAN COTTON,
SPINDLES, FLYERS, FLUTED AND SHELL ROLLS, GRINDING ROLLS, àc.

G. TH IMPSOM. J. S. MITCHELL.

THOMPSON \& CO. SHERBROOKE, QUEBEC. Manafacturers of
Bobbins and Spools
OF EVERY DESCRIPIEON
For Woolen, Coiton and Rope Mills. Extra facilities for supplying new mills and filling large orders.

Correspondence Solicited.
Orders Promptly Filled.
-The Argentine Republic has passed a jaw granting exemption from import dutics in regard io machinery for spinning cotzon and for combing wool, or for spinning combed wool, and on the accessrics and matcrials necessary for the installation of such machinery, to all companies or individuals who shall have established, or shall seek withan threc years to establish, factories for sueh purpose. The law iuther exempts such factories from joament oi all national iaxes for a period of ten years. The executive is empowered to limit in each case the amount of duty to be remitted.

THENEW

French Shoddy Picker Machine

SUPERIOR TO ALL OTHERS.
High Test Awarded at Paris Exposilion, 1900.

Of SILK, WUOL, COTTON, WASTE, JUTE, cic., it will produce fify per cent. more production than the Garnett Machine on one-half the power,-Has no rival on the market.

Toronto Woollen Machinery Cornpany

118 DUKE STREET. TORONTO.
Io RREDANMAZ, Manager.

Sure Agents for Canada and the United States.

BRITISH WOOL AND TEXTILE MARRETS.

(Correspondence of Canadian Journal of Fabrics.)

Since our last report, the London sales have come and gone, and on the whole left raw material considerably harder than was expected, although the volume of trade transacted is not above the average for the time of the year. The advances made at London have not only established themselves on the Bradiord and Continental markets, but the valucs lave even advanced since the close of the sales. Our re ports from Continental centres fully confirm this hardening tendency which has already affected not only wools but also noils, wastes and shoddics.

In a report, which we received from Roubaix a $\mathfrak{\text { few days }}$ ago, we were informed that at the recent auctions, both wool and noils had shown an advance of to per cent. on December prices. The manufacturers around that centre report that their travellers are booking good orders in corkserews and cheviots; stripes seem to be well in favor in different combinations and in various descriptions. Our reports from Germany report the same advances in raw material there. Manufacturers report that in wools dark colors are being sold most readily. In Germany also striped goods appear to be in great demand. From Mazemet we are informed that all descriptions of wools are selling well, especially crossbreds.

In England business cannot be said to be in a satisiactory condition, especially in merinos. Spinners, who wish to buy are obliged to pay higher prices, and cannot get corresponding adwances for their yarns. It was expected in many quarters that the outbreak of war would cutail a general bowering oi priers. and a depression in trade, but such has not been the case, although we have heard of several local stuff and wool merchants, who have had their orders from China and Japan cancelled.

From the Areentine we have been informed that the clij:
this year is estimated at 10,000 tons, against 11,000 tons last yrar, and 13.000 tons two years ago. A considerathe business is said to have been done there and the stack; practically cleared.

The exports from the british Isles ior last month, in wool, stow a considerable decrease from that oi the same month of last year, especially those to the United States, which show a decrease on the month of over 800,000 llis. The exports of yarns and wastes are practically the same,
(Markets continued on page 6.)

 CHEMICAIS AND DYESTUFFS.

There has been a marked improvement in trade duriug the last two weeks; buyers of heavy chemicals are placing :heir orders for spring delivery. Prices remain firm on all lines.

Ateaching powder\$ 160 to \$ 180	
Bicarb. soda	175 to 200
Sal. soda	080 to 100
Carbolic acid, i lb. bottles	035 to 040
Caustic soda, 60°	2 10 to 225
Gaustic soda, 70°	235 to 250
Clilorate of potash	009 to 0 10
Alum	135 to 150
Copperas	065 to 075
Sulphur flour	160 to 170
Sulphur rock	175 to 180
Sulphate of copper	006 to $006 \% / 2$
White sugar of lead	007 to 008
Sumac, Sicily; per ton	5750 to 5800
Bich. potash	- 7\% $1 / 20008 \%$
Suda ash. 487° to 587°	12510135
Clip logwood	150 to 175
Castor oil	007 to 008
Cocoanut oil	007 to 008

NEW ELACK FOR WOOL

EMPIRE BLACK

Absolutely Fast ONE DIP Elack
Unequalled for depth of shade. Users of black stould investigate. Fastest Black on the market.

A. KLIPSTEIN \& CO.
 122 PEARL STREET, MEW YORK.

 MONTREAT. Sue.
 12 Lemolise Streez Chemicals and Dyestuffs. CARBIDE BLACK E

Cheapest and Best One Dip Black on the Market

 meadquartars forChlorate of Potash Bleaching Powder
Phosphate of Soda Reaned Cuteh A.K.C.
Yellow Prussiate Potash Yellow Prussiate Soda
BRANCHES-

CHICAGO-15 kinzic St. PROVIDENCE-i3 IVatherion St.

8ole Agents for the Society of Chemical Industry, Basie, 8witzerland.

POLLACK BROTHERS \& CO., Canadan sanar Dopat for
 H. A. METZ \& CO., NEW YORK. Sole Agents for the producis of fanbweare vanm. melster lugils a maining, hoechst o/ mill.

Anilines, Alizarines, Synthetic Indigo, Etc.

FIRE PROTECTION.

FIRE HOSE-Cotton-Rubber Lined. FIRE HOSE-Linen-Unlined.

Full Stock constantly on hand.

HIGH GRADE "GENUINE OAK"

(ENGLISH TANNED)

LEATHER BELTING

No Shoulders, Necks or Bellies.

ENGLISH CARD CLOTHING

Full Stock on Hand.

$$
\begin{gathered}
\text { 2UALITY UNEXCELLED. } \\
\text { D. K. McLAREN, }
\end{gathered}
$$

132 Bay Street, Toronto. $\quad 751$ Craig Street, Montreal.
(British Wool Markets Continued).
Whereas worsted tissuts and blankets show a decrease. The exports of carpets, on the other hand, amome to about double the amount of the corresponding month hast sear.

The wools, which are the most difficult of sale, are the finest qualities, and we have heard of merino tops being sold at slightly lower prices than we realized a month ago. On the other hand, crossbrels and low wools and wastes in cor: responding qualities seem more difficult to buy every day.

Bradford, February $17 \mathrm{th}, 1904$.
D. H. Ross, Dominion Government agem at Melbourne, Australia, reports that the wool exports of the Commonwealth, for the six months ending December, were 107.000 bales. Some 100 bales went forward from Melbourne to Boston by the December sailing of the Vancouver steamer. If shoments can be sent to the principal American wool market by this route, Mr. Ross asks why cannot Canadian buyers operate in Australia for their requirements, and thas save intermedhate profits, by which means the cost of theiproductions is lowered.

The second senes of the 1004 anction sales of woot opened in London on the 8 th inst. There was a large attendance. The offerings numbered 13.082 bales, including a large supply of crossbrcds. Competition was brisk. Yorkshire buyers were keen bidders for crossbreds. German and French buyers competed for merinos, the offerings for which were light. Scoureds sold readily: The offerings of Cape of Good lione and Natal were principally greasies, and they declined 5 per cem. American purchasers included a few combing greasy, yel also some neck wools antl pieces.

Gustav Ebell \& Co.'s ammal report of the wool trade of Germany for 1903 shows that German imports of South African wools continue to merease. In ligat the Cape wools imported by Germany were estimated at 97,000 bales, and these figures were mereased year by year till 1899 when the maport reached $\mathbf{1 5 5 , 0 0}^{5}$ bales. The next year the import fell (1) So.000 bales, but it has regularly inereased since then, and stands at 150.000 bales, in 1903 , a significantly large total. Messrs. Ebell \& Co. predict a growing demand for merino wools due to the tendency of inshion for goods of fine texture.

4 3 3
 WOOL MARKETS.

Turanto. Narket quet. Enquiry from domestic mills moderately active. Little or no enquiry for flecece, stocks of wheh have been pretty well cleared up. Prices quoted are. Ficece, combing. $171 / 2 \mathrm{c}$.; clothing, 19c.; unwashed, fine, inc.; unwashed, coarse, ioc.; pulled, super, 19 to alc.; extra, 22 to ב-1c.

Montreal.-Fine and medium crossbreds unchanged; coarse, 5 per eent. higher than closing prices last month.

cest

The dppleton Mills closed down on February agth owing to scarcity of water.

An order-in-council has been passed by the Dominion Government, extending the trade preference of 33 1-3 per cent. to New Zealand, in return for the preicrence granted to Canada by that colony. South Africa reccived the Canadian preference some time ago.
-The census bulletin for roor, dealing with New Brunswick, shows a total of 182,524 sheep, in 1901, compared with 182,941 in 1891. The product of wool shows that $68,009 \mathrm{lbs}$. of fine wool was produced in 1891, and 351,250 in 1901, whereas the coarse wool protueed in 189 r was $624,889 \mathrm{lbs}$., against only 358,566 in 1901. Either the census figures are incorzect, or the ten years has developed a noteworthy increase in the average yield of wool per head.
-Over a ton of cotton seed has been distributed from the Giove Station, in the island of Montserrat, West Indies, to 63 persons. About 700 acres have been planted, and despite the ravages of the cotton worm and the leaf blistermite, preparations are already being made to increase the area next season. It is estimated that there are about 10 ,000 acres of land sutted to the growing of Sea Island cotton in Montserrat, and with a three years' rotation this would tmable planters to have over 3,300 acres annually in cotton.

REASONS WHY The Canadian Oliier Typerriter

IS GUPERIOR TO

ALL OTHERS

VISIBLE WRITING.-The writing is visible, each letter being in plain sight the instant it is made.
DOUBLE TYPE-BAR.-It has a double or $\underline{\mathbf{u}}$ shaped Type-Bar provided with a shaft bearing as broad as the bar is long, thus insuring Permanent Alignment without guides.

SPEED.-Its visible writing, rapid escapement, direct type bar connection, down ward stroke, and light touch, make it the most speedy of all writing machines.

TYPE, face upivard for CLEANING.-The type are of steel and lie face upward so that they can be cleaned with one sweep of the ordinary type brush.

PRICE.- $\$ 30.00$ cheaper than imported machines of like standard; because made in camada.

Why Pay Duty?
LINOTYPE COMPANY, • MONTREAL manufacturers

Branch : 55 VICTORIA STREET, TORONTO.

EVAN ARTHUR LEICH

232 summer street, Boston, Mass., U.s.A. importer of

Textile MACHINERY

Sole Agent for the U. S. and Oausde for

Uessrs. PLATT BROS. \& CO. (LIMITED), OF OLIDHAM, ENOLAND.

gy far the largest makers of textlle machimery in the worlo
Platt's Cotton, Woolen and Worsted Machinery.
Sole makers of Brown's Patent Carding Rollers for Wool-give woolen yarn a worsted appearance.
Platt's Special Machinery for making English \& French Worsted Yarns. Platt's Special Machinery for making Cotton Waste into Yarns. Aino Sold Agent for U. S. and Canuda for

Messrs. MATHER \& PLATT

 Snifurd Iron Workn, Munchenter, Engiand.Bleaching, Dyeing and Finishing Machinery and Archbutt-' Deeley System of Softening and Purlfying Hard Water. The Best System on we Market.
Wool Washing and Drying Machines. Garnett Machines. French and English Napping Machines. Sykes's Card Clothing for Cotton. Critchley's Card Clothing for Woolen and Worsted. Varey's Fallers. Harding's Pins and Circles. Dronsfield's Grinders and Emery Fillet. Comber Aprons, Condenser Aprons, etc.
Textile Machinery Association, Limited, Flax, Hemp and Jute Machinery.
George Hodgson, Limited, Bradford, Looms for Worsteds, etc.
The Automatic Feedina Machine Company, Feeders for Fibres of all classes.

Complete Cloth Finishing Plants
Tentering and Drying Bachines
Wool and Cotton Drying Machines
Improved Self Acting hules
Winding. Warping and Sizing Machines and other Woolen Machinery
Kercerizing Machinery. Complete Plant for Aniline Black. catalogue on application.

HYORO-EXTRACTORS FOR WOOL, COTTON, WORSTED

 and all other TEXTILE TRADES

48 in. Engine Driven Suspended Hydro Extractor.

```
WATSON, LAIDLAW \& CO.
```


SENDFOR OUR I9O4 CATALOGUE:

PILLIM Fikth

WILLIAM

EDWin Barnss. Vico-President. HRTH COMPANY
67 Fquatimble Bldse, - 160 Devonehire St., BO8TON, Mase. SOLE IMPORTERS OF
ASA LEES \& CO., Limited, Textile Machinery of every descrip. tion for Cotton, Woolen and Worsted.

JOSEPII STUBBS, Gassing. Winding and Reeling Machinery for Cotton, Worsted and Silk.
GEO. HATTERSLEY \& SONS, Ltd., Makers of every description of Looms, \&c.
TAMES MACKIE \& SONS, Ltd. Makers of Flax. Tow. Hemp and Jute-Preparing and Spinning Machinery.
GEO. ORME \& CO 'S Patent Hank Indicators, \&c.
JAMES YATES \& SON, Hardened and Tempered Steel Card Clothing for Woolen and Worsted Cards.
LOCKETT, CROSSLAND \& CO. Engravers and Builde s of Leather Embossing Machinery, \&c.
R. CENTNER FILS. Heddles.

GOODBRAND \& CO., Yarn Testing Machinery. Wrap Reeis, \&c. JOSHUA KERSHAW \& SON, Roller Skins, \&e.
GEORGE SMITH. Doffer Combs, \&x.
BRADFORD STEEL PIN CO. Comber Pins.
[\&c.
CLAPHAM. SMIITH \& CO. Caps. Tubes and Spindles for Worsted,
JOSEPH SYKES BROS AO AGENTH FUR
Clothing for Cotton.
VIILLIAM TATHAM \& CO.. Waste Machinery.
DRONSFIELD BROS.. Limited, Emery Whecl Grinders, Emery Fillet and Flat Grinding Machines.
COTTON CORD \& VELVET CUTTING MACHINE CO.
Corduroy Cutling Machines, \&c.
Pick Glasses, Leather Áprons, Patent Wire Chain Aprons

The Manual of Lubrication,

Or, Fiow to Chonse and Pow to Une Lnioricants for any deacription of Machinery
With Methods of Determining the Purity and other Jroperijes of Olls, eic Hy Louts Simpson

[^2]
Hamilton Cotton Co., Hamilton MANUEACTURFRH OF

Whito and Colored Yarns, Single or Double, Hosiery Yarns of all descriptions, Warps, Twines, white or colored. Webblnge \& Bindings in great variety, Lampwicks, etc.

sEE.LEMG ACENTS
WIE. R. STEWART, 18 Frout 8t. Eant, Toronto. Axent for Warps: GEO. RKid, 11 \& 18 front st, F. TORONTO.

Canala Bobbin Company, WALKERTON, Ont.

Succrasom to Succzazora
Kion hancourt. \square Eatabliahed
186\%.

Largest Makers of Bobbins in Canada.

;
MANUFACTURERS OF ALL KINDS OF

Spools and Bobbins

Used In Woolen, Cotton, Slik, Rope and Wire Mills, and Small Wood Turnery.

Having lately enlarged and improved our plant, and having a large quantity of well-seasoned stock in the rough always on hand, we are prepared to fill any order carofully and promptly.

STEVENS
 Twisted Bristle End CLEANING ROD.

- No. ses.

This rod is made of twisted coppered wire and has a ringed handle and a twisted end of pure bristles. It is 27 inches in length, and furnished for .22, . 32 and .38 calibers.

PRICE, - - - 16 Cents fach.
Your Jobber Has Them. Beind for Oatalos of Firearms.
J. Stevens Arms \& Tool Co., ${ }^{\text {natatemate }}$, Chicopee Falls, Mass.

HIGTEN MARGAN'N SUCCPSNOK BRADFORD (England.)

Expurters of Wool Tops, Noils, Rags, Shoddies, Silk, Mohair, Camel Hair Noils, and all Specialties in Raw Materials required by Cloth, Hosiery, Blanket, Carpet and Felt Manufacturers.
An enquiry will cost you two cents and two minutes' time. If you will favor us with the same we shall be glad to send you samples of any raw material which you may require-quoted at lowest prices delivered at your station, duty and other charres paid.

CABLES-"LUCIEN. BRADEORD"
ODES-A. B. C. Ith and 8th Editions and Yrivate Code.

[^3]
Philadelphia Textile Machinery Co 7
Pollack Bros. \& C.10
Reiche \& Co. 10
Reid \& Co., George 3
Riley \& Co C, E 3
Roessler \& Hasslacher Chemical Co.. $\stackrel{2}{10}$
Kosamond Woolen Co
2
Sheldon \& Sheldon $\stackrel{2}{10}$
Smith Woolstock Co
8
8
Stevens Arms \& Tool Co.
Stevens Arms \& Tool Co. 12
Thompson \& Co 8
Toronto Woolen Machinery Co 3
Turnbull Co.. The C10
Want Advertisement 66
Watson, Ladlaw \& Co 7
Watson Mfg. Co., L. S 14
Whiteloy \& Sons, Limited, William 7
Wilson Bros. 9
4. Paterson \& Co 1
Young Bros. 9
Batabluaced 1848.
A. EICKHOFF(A. TEAMCer, Proprletor)Nanufacturer and Dealer inHatters', F'arriers', Pailors'.Gloveing' and Shirt Cutters'KNIVES AND SCISSORS.

Knives for all kinds of businessalways on hand and warranted. All kinds of Cutlery ground and repaired.
No. 381 BROOME STREET,
Betwean Broadway and Bowary, NEW YORK CITY

Matte's, Hughes' and Robinsonian Interest Tables

Buchan's, Oates' and Robinsonian
Sterling Exchange Tables

Tables in French and

 Corman Exchange.Eenil for Catalogue.

MORTON, PHILLIPS \& CO.
Stationery, IMank ISook Makern and Printer

1755-1757 Notre Dame St., Montreal

WILSONBROS.
 W001 Importers

38 Front Straet East, - Toronto.
B. A. WOOLS and OARBONIZED NOILS a apoolalty.

The Lachute Shuttle Company

 Wo are the largeat shuttlo Menufacturera in Cannda,
 Slubbing, Roving and all hinis of Bobbine and 8pools for Cotton and Woolen Mills
 We have mlwaye on hand
 a large stock of
 Thoroughly Somsoned Lumber.
 Orders soliclted and all work guar.
 anteed to give satisfaction.
 E. F. AYER8, Manager LACHUTE, P.Q.

 Enittine Yarnn, Yerfoot Fitting Laclies' Ribbed Venta, Emonters, Jersers. Knlcknrm.
"WE HOLD THEE BAFE."

The Dominion

Guarantee Cu. LIMITRD.
Head Office, Montreal, Can. OAPITAL, \$200,000.
Insurance against burglary and housebreaking. Policies clear and fros from vexatious or restrictive clausen.

CHAS. W. HAdiAR. Goneral Mnnager

ROSAMOND WOOLENCO.
 ALMONTE, ONT.
 - ALMOM,

 Fine TWEEOS, CASSIMERES, and Fancy WORSTED SUITINGS AND TROUSERINGS

Colors warranted as iast as the best British or Foreign Goods.

 Manupacturers or

af every dencription
Floor Oil-Cloth, Table Oil-Cloth, Carriage Oil.Cloth, Enamelled Oil-Cloth, Stair Oil-Cloth, ctc. Ofice and Works:
Corner St. Catherine and Parthenais Ste., MONTREAL, QUE.

SMITH WOOLSTOCK CO

Mantifacturara of Woal Stock and
Shodules of every descrlptlon.
eril) eing and matching of colors for the Woolen Mill trade a spniatty:

Omce and Works:
219 FRONT STREET EAST. TORONTO
RAILWAY ENGINEERING.
By Cecil B. Sxith. Ma. E.
A concise Treatise on Railway Construction, etc., for Engineers and Students.

Cloth. 200 1'ages.
Profusely Illustrated. . \$1.60.
Biggar-Samuel, Limited, Publishers Tominon and slatitent.
You are interested in the Metric System Of Weights and Measures, because it will soou be adopted in Canada.
CHART so cts. PER CUPY.
Biggar-Samuel Limited, I8 Court Street, Toronto

TO WOOLEM MANUFAOTURERS.

MESSRS. REICHE \& CO.

Wool, Tops, Noils, Yarus, etc. BRADFORD, ENULAMB.

24 St. John Street, Montreal.
Samples and Lowest Quetationa promptly supplied. Correspondence solicited.

THE MONTREAL BLANKET CO. Manufacturers of
Shoddies, Wool Extracts and Upholstering Flocks
Omee and Worke: COTE 8T. PAUI. P.N. Allilfan: MONTREAE

If You WISH to learn sumetinu: about the Metric System of Weights and Measures, write for a copy of the Metric Chart, 40×14 inches, malled on receipt of ten cents in stamps or coin.
Ardress BIGGAR-SAMUEL, Limited, Toronto or Montreal.

AGENTS WANTED.

Local agents wanted to take subscriptions for an Engineering Publication. For terms apply, Box B.

Offee of Canadian Engineer, 62 Church Street, Toronto, Ont.

WILIIAM CRABB \& CO.

Manufacturers of all k!nds of
Hackle, Cill, Comb and Card Pins, Plcker Teeth, Needle Pointed Card Clothing in Wood and Leather for Flax, Jute, Tow, etc.

Hackles, Gills and Wool Combs made and repaired; also Rope Makers' Pins, Picker Pins, Specia Springs, Loom and Sbuttle Springs, Einglish Cast-Stebl Wire, Cotton Banding and Cieneral Mill Furnishings Bloomfield Avenue and Morris Canal, NEWARK, N. J.

JOIN W. BARLOW

Manufacturer of
Loom Piğgers,
LAWRENCE, MASS.

This cut reprenents Beriow'n Pat. How Pleker with wolld interlocking foot. Yat. Fob, 2R, 1889.

CONTENTS OF FEBRUARY NUIIBER.

Subscription \$1.00 a year.

If interested write the publishers.
EIGGAR-SAMUEL, Limited,

STODDARD IMPORTERE OF OOTTON, BILK,
MORETED, WOOLEN AND FIRRE
MAONINERY, MILL BUPPLILE,
BOYPTIAN OOTTON AND EURLAPS

Sevo Ampican Amprenatation ifr
 Domeor a suliow, ris.

New Hıpper Hale Hreakers. Pichers. Carda, Gimbers. Fly Firamian Muken. Ciasorrs, etc. Impriwed Worsted Cardiace Enkince.

Fanos, Blytit som
Cill Bones, Nuthic Combe. Itrawing, Rowing, Spinning. Twinting and feeting Inecthinery for Wispted.

carion, moandrozxt \& 00.
Wiont Wushera, Nothe Comita, Rowk Washera, Cardinge Eingines. Cione Diawing for Carpet Shack.
BADUESEAW EOM, LTD
(ard Chwhing of Every Itecriptinn. WIL WHxET \& 80m
Mulen. Tenterink Machines, Warpera, Merveriang Machinery, ett E FOTLE \$018, ETD.
Wheing and Finimhing Mashinery. IIydraulic Prentern

Gill and Cowning Pins. Nerelies.
 Spindte Rands and Tapox.

Jogit DEXOH \& 80N Mill Bebbins.
J. Parycimon

Lanm Temples.
J. HAYE \&0ME. LTD.

Patent Oil Cans.
J. WIty stom

Apmon \& Pisker Leather.
soonsri Arsacusine to comirevorions
mennegre to Motmoors
Alentanl Caxtion Civibera. Slashere for Finc Warpos Frewth Syolem ot Townad spinniows.
 Stinn. Wirmed IVrup Twine. efc

NEW COMPANIES.

Dominion.-The Elite Costume Co, Limited, Montre, Capital, $\$ 40,000$. To carry on the busiluess of dealers in, in manufactures of, ladies' skirts and outer yarm.nis, etc. Ha. ris Wener, Samucl Wener, Zelig Wener, Allan R. Ouglitre and E. Tobias, of Montrcal.

Ontario.-The ldeal Women's Wear, Limited, Toromt. Capital. $\$ 40,000$. To manufacture, sell and deal in women' and children's wear of every description. and th acquire the business of the "AlcKay Manufacturing Company." John Tianner, F. F. Allison, Catharine I. Woodruff, T. II. Barto.. and A. C. McMaster, of Toromto.-E. Van Allen \& Cי. Limited, Hamilton. Capital, $\$ 100,000$. To manufacture and deal in textile fabrics, particularly shirts, collars, cuffs and other clothing, and to acpuire the business of E, Van Allen \& Co. Eli Van Allen, W. Southan. C. S. Scott. G. I.yuch Staunton, and Clara Van Allen, of Hamillom. --The Bram ford Hosiery Co., Limited, Brantiord. Capital. \$75.0co. "i., manufacture, buy, sell and deal both at wholesale and retal in knitted hosiery and underwear. Frank Cockshutt. R. ! Strauss, Nora V. Cockshutt. J. II. Hines, and E. Sweet, of Brantford.-The Ontario Govermment have issued a license to the Geigy Aniline and Extract Co., of New York, t. manufacture, import and sell inilines. dyestuffs, colors and chemicals. Capital, $\$ \neq 0,000$. T. D. Wardlow, Toronto. iappointed attorney.

4 \% 4

The annual meeting of the Paton Manufacturing Com pany, of Sherbrooke, was held oll February 2th in Mom real. The reports and statements presented were satisfactory, and the following board was elected: Lord Strathcona. Hon. Robert Mackay, D. Forbes Allgus, Robert Brodic. Jonathan Hodgson, George Hyde. George M. Loy, M.P.: Fobert Reford and Johul Turnball. At a subsequent inceting. John Turnbult was clected president and managing director. and the Hon. Robert Mackay, vice-president.

m m M

The leading manufacturers of cloth. silk and cotton goods in Venice. Italy, some of whose places of busines: were opened all Sunday, have undertnken to close their work. warchouses, shops, and offices from Saturday night till Mon day morning, and so to observe in lts entirety the Day in Rest. Some time ago resolutions were passed by the Sull day Closing Societies urging upon Parliament the immediat. passing of the Sunday Closing Acts. All over Italy an agita tion in favor of the observance of Sunday is being systemat, cally carried on, and with good results.

Henry A. Moore, of Worcester, Mass., has made a prי position to the Sherbrooke city council, to acquire the plant of the defunct Dominion Carpet Co. This company is pre pared to purchase the property, to instal new mach:ancrs. and to agree to run the business ior five years, paying $\$$ so. 000 a year in wages. The company would aloo enter into : bond for $\$ 10,000$. stubject to a reduction of $\$ 2,000$, for eact $\$ 2,000$ paid in wages. The city is asked for exemption from all taxes, except school taxes, for ten years. such exemp tion to be extended for a further ten years, it the pay roll is doubled; also a bontus of $21 / 2$ per cent. on the wages pail The city council have decided in accent this offor subicet t.
 :mbum be paid in wages, and that the taxer due by the wis company, about $\$ 2,000$. wasther witl, the conts of litigation in the matter, be paid.

Teiegrame "Y゙ヲisons, Cornholme" A.b.C. nod A1 Colen used.

BOBBIWS \& SHUTTLES

Postal Andaess:
Cornholma Mills, Garston, Llverpool.

CARD CLOTHING
TETLON'S Condenser Aprons

Stock in Canada
Condenser Aprons prinin $\&$ Grooved
Oak-Tanned and White Beitlng
Cotton Banding, Rim Spindie and Braided Shuttles, Pickers, Heddles, Harness
Potent Frames, general FURNISHINGS

ROET. S. FRASER

EEEnglish Sales Attended.
17 INTMOIIJE ST. MOINTEEAI,

IntPROVED DOUBLE-BEL ROTARY CLOTH PRESS the: levers that operato them being monnted upon sliding stel fulcrum bars withinithe frames. 'The trussing apparatos ofthe bedplates is 50 arranged as to perimit not only a forcing of the centres of the bed, plates in a forward direc. tjon, toward the cylinder, but also away fom it, which is of the utmost import. ance if the bed plates should ever become spruag. Bed plates and cylinder after being cold finished, are ground absolutely true while heated by steam at 75 lbs pressure,jinsuring perfecily straight and. uniform prosoing surfaces. Pressure is applied and removed instantancousiy, and by power.

What Makes the Wheels Go ?

OUR "EXTRA"

Fairbairn Lawson Combe Barbour, Ltd.

LAWSON BRANCH

Hope Foundry.

LEEDS.

England.
Makers of Machinery for
Preparing and Spinning Flax, Hemp, Tow and Jute and of Special Machinery for the Manufacture of Twines,
\qquad

GOOD'S COMBINED HACKLING AND SPREADING MACHINE,

L_ong Reach Screw.Gill Drawing Frames, PATENT HIGH-SPEED HORIZONTAL AND AUTOMATIC SPINNING FRAMES FOR MANILLA, AND OTHER
SPECIAL MACHINERY FOR THE MANUFACTURE OF ROPE YARNS AND BINDER TWINE
Improved Laying Machines. Haskell-Dawes Tubing Twisters
Complete Plans and Estumates for Flax, Tow, Hemp and Jute Mills, Trawl Twine Factories and Steam Ropeworks.

Trelten \&y Guilloaume, CBarbwerk
 Manafactungrs of
Tinned Cast Steel Wire Heddles
male on Patent A comaztre Mfachinet and consequently perfectly ugdform in eoery curpossed ov any other Wire Beddics to the market

Patent "Favorite" Shafts for Weaving
 now enther maik twith one or two ourrying wartes ansule the woulen frame. INate shafts have already been adopted by a grest number of weavers, who speak move fanorabiy of them, as can be aren from many cestimontals the the possestion of the shakers. Por Prices epply to
L. S. WATSON MANUFACTURING 60 , Leicester, Mass.

[^0]: Specially represehting:-
 Mfexira 1 ihn Smith \& Sons, Ltd, Bradford. Enfig Worsted Yarns.
 Sr. ADorino Yarna.
 Mr. I. Cinorsfall. Crosa Hinta, Enge, Knitting Iurns.
 Mr. I. Ii. Wriey. Bradfed Eng. Fanit Loops and other ctiect
 Yaras in Wertied and Mohair.
 Maxars. Aykroyd \& Grandagc. Fin, of the Bradford Dyers Astcciation, Mferecrized Cotton Yaros.
 Knitting Manufacturers will fond grat satisHORSFALI'S GEBOWNED WAFFELD KHITTIMS YARMS FOR SWEATERS AND HOSIERY.

[^1]: Manchester.- Yarns-In some quarters rather more trade has transpired making a muderate turnover. In other directions, chicfly medium and coarse counts of twist and weit, spinners complain of slackness of demand ant uiremunerative prices. Shipping yarns said to be in fair cinquiry. Clnth --Enquiries continue to a fair extent, and given steady raw material there would be a healthy flow of business. Just now buyers and sellers are-hamperedi by the constant fluctuations

[^2]: Price \$1.00
 Address BIGGAR-SARUEL. Limitod.
 Mraeor Midty MONTEBEAL, Can.

[^3]: - A woolen mamiactury is proposed at Vancouver, B.C. The owner of a jarge Australian shecp ranch came to Canada recentiy to look into the question. He was invited here by a well-known eitizen, who believed there was an opening for such a factory. The C.P.R. steamship line are anxious to carry freight from Australia ,and the rates yuoted-on wool are very low: It is stated that the first cost of laying the wool down in Vancouver for the manufacture of garments, would enable the wool to be manufactured and quoted in British Columbia, Manitoba and the North-West, so far under Ontario prices, as to make those markets sure. The scheme can be casily finaneed. and it is probable the factory will be built at an early date.

