The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
It se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les dètails de cet exemplaire qui sont pect-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages dėtachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagine-ion continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Gėnérique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiquè ci-dessous.

TEE

$\mathbb{C} \mathbb{N} \mathbb{A} I \mathbb{N}$

PHARMACEUTICAL JOURNAL,

PUBLISEED UNDER THE AUSPICES OF THE

EDITED BY E. B. SHUTTLEWORTH,

 j. T. Shapter, f. f. Rose, f. flooper, . N. C. Fove.

VOLUME I. 1868.

TORONTO:
. J. M. TROUT, PUBLISEEER. PRINTED AT TIE DAILY TELEGRAPH PRINTING HOUSE, BAY STBEET, CORNER OF EING.

A paor		F．pros．
Absinthe，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．03， 102	Carbolle Acld and Youlne．．．．．．．．．．．．．．．．．．．．．．．．．． 107 Cement，Diamond：．． 35	Farnday as a Discoverer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {Pros．}}$
Achl，Phospl．dilute，Preparation of．．．．．．．．．．．．．．．． 7	Cument，Jas Proof．．．．．．．．．．．．．．．．．．．．．．．．．． 61	
Acld，Sulphurous，Clieap sonrco for ．．．．．．．．．．．．．．．． 108	Cement，Oraphite．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． co $^{\text {a }}$	Ferri Carb Preclp．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 111
Acid，Sulphuric，sfanufacture of ．．．．．．．．．．．．．．．．．．．． 75	Cement，Mard．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 108	Fiuor Spar．．． 61
Acetate of Lime．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {c }}$	Courent，Now．．． 45	Fuot Rot Ointment．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15
Adulteration ．． 9	Sement，Waterproot．．．．．．．．．．．．．．．．．．．．．．．．． 77	Frult Syrups，l＇reyiration 01．．．．．．．．．．．．．．．．．．．．10，29， 61
Adulteration of Bread．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 58	Thanges．．．．．．．．．．．．．．．．．．．．． $52,48,64,80,96,112,158$	Fusible Sletal．．． 124
Adulteration of Essentlat Olls．．．．．．．．．．．．．．．．．．．．．．．． 103	Shenistry，As It ls．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{28}$	G
Adulteration of 3tanna．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 78	Shemistry，Progress of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10	a
Alcohol from Wood．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 53	Shemistry，Lectures on．．．．．．．．．．．．．．．．．．．．．．．． 103	Galvanle Batteries，Liquld for．．．．．．．．．．．．．．．．．．．．．．．．．． 184
Alcohol from Lichens．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 109	Jhemistry of Oil Paints．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{3}$	Gnlena．． 48
Alcohol，Ethylic and Jethylic．．．．．．．．．．．．．．．．．．．．．．．． If $^{\text {a }}$	Shemical Sclence．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 82	Gas Proor Cement．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 61
Alcohol，Recognizing Source of．．．．．．．．．．．．．．．．．．．．．．．is	－hemical Prizes．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．il	Geological Nogatives．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 102
Alcohol，to Rectify by Gelatino．．．．．．．．．．．．．．．．．．．．．．．．1is	Yicmical Nomenclature．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 61	Genuine Vines．． 15
Alcohotomoter，Ner．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 112	Shemical Relations of Podophyllin．．．．．．．．．．．．．．．．．． 5	Glazu for Iron Yersels．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 76
Alloy，Now．． 63	diloroform，Restoration After．．．．．．．．．．．．．．．．．．．．．．． 01	Class Stoppers，to Prevent Adhesion of．．．．．．．．．．．．．．． 124
Aloes ．．．${ }^{0}$	＇hloroform，Acion of Light on．．．．．．．．．．．．．．．．．．．．．．． 13	Glass，Ornsmental．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20
Alkall Trade of Oreat Britaln．．．．．．．．．．．．．．．．．．．．．．．．． 75	ihlorolyne．． 60	Glycerine．．． 01
Alkalies，Testing of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 45	shromium，Oxiels of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 38	Glycerine，Lotion of．．．．．．．．．．．．．．．．．．．．．．．．．．83，．125
Amalgam，Sodium．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 92	Shlorate of Potash，3fanufacture of．．．．．．．．．．．．．．．．． 105	Glycerine，Solvent Power of．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{76}$
Amalgamation，Utillzation of，Wasto from．．．．．．．．．．．．．\＄7	Mharcoal Cruciblcs．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 05	Glue，Liquid．．．．．．．．．．．．．．．．．．．．．．．．．．． 45 4，88， 122.
Anilin Colors．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11	children，How to Polson．．．．．．．．．．．．．．．．．．．．．．．．．．．． 107	Gilding，EElectro．． 7 7
－ dilin Colors，Dylug with	Jireassian Cream．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 103	．Gold，Yiold of．，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 25
Anilin Dyc．．． 184	Ditrate of Bismuth and Ammonia．．．．．．．．．．．．．．．．．． 106	Gold Jines of Canada．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 77
Artincial Ivory ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 87	こ̇oth，Waterjroofivg．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {o }}$	Gold Mines of Thannsjlvania．．．．．．．．．．．．．．．．．．．．．．．．．． 118°
Assaying for Amateurs．．．．．．．．．．．．．．．．．．．．0i，89，160， 117	Doins ．．． 39	Graphite Cenicat．． 60 $_{0}^{0}$
B	Colons，Anilin．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 21	Graluated 3easurcs．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 68
Back Numbers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 120.		Gutta Percha，Decotaposition of．．．．．．．．．．．．．．．．．．．．．．．．． 80.
Balloon	oloring 3latter．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 108	
Ball，Camphor	Cold Cream．．． 60	H
Balm of a Thousand FTowers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15	Sonii Ext．．． 32	Hair Dyo．．． 60.
Baking Porrder．．． 15.	Vonitu，freparations of．．．．．．．．．．．．．．．．．．．．．．．．．．．． 118	Hair Dye，Nerr．． 60.
Bandolinc．．． 10.	－ontributlons Wanted．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 72	Hair Restorer．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10.10°
Battery，Constant	こonstipatiou，Case of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 59	Harness Blacking．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15
Battery，Exciting Liquid for．．．．．．．．．．．．．．．．．．．．．．．．．．． 121	Crcam，Circissian．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 100	
Beans，Calabsr．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．s， 61	Sream，Cold．．． 60	Hints to Young Jien in tho Trade．．．．．．．．．．．．．．．．．．． 120°
Beetroot Sugar．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{29}$	Crystallization．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 100	Human Vyology．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 12.
Benzoin in Ointm	Crystals of Lead．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 00	Hydrastis Camadensis．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 35
Bismuth，Notes	Cirstalline Pomsde．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 109	Hydrncarbons，Distiliation of．．．．．．．．．．．．．．．．．．．．．．．．． 74
Bis nuth Liquor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{6}$	Cryolite．．． si $^{\text {a }}$	Hydrophobia，Cure for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 60
Bisnuth and Ammonia，Citrate of．．．．．．．．．．．．．．．．．．．．．．． 106 Blsulphide of Lime，Uses of．．．．．．．．．．．．．．．．．．．．．．．．．．． 50	Wylinders for Electrical Machines．．．．．．．．．．．．．．．．．．．．． is 9	Hydrophoba，Cure for．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Blacking，Boot．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15.	D	
Blacking；\＃nancss．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15	Dinmond Cement．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 15	Ice，Camphor．． 83
Blistcring Paper．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 61	Diamonds，New Theory of．．．．．．．．．．．．．．．．．．．．．．．．．．． 01	Indianite．．． 125
Bleaching Patm Oil．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 122	Disinfectants，Action of．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 107	Ink，Indelliblo．． 76
Botainy，Medical．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．0，0，83， 81	Uruggist＇s and Drysalter＇s Prices Current．．．．．．．．．．．．． 27	Ink，Shocmakers＇．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．ision 6s
Bread，Adulteration of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50	Dread of an Examination．．．．．．．．．．．．．．．．．．．．．．．．．．．． 120.	Ink，Sympathetic．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． si $^{\text {a }}$
British Pharmacopocia．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＆	Duckweed，Action of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 108	Introductory．．． 8
Bromidic or Putassium．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． it $^{\text {a }}$	Dunspaugh \＆Watson＇s dierr Stand．．．．．．．．．．．．．．．．．．． ss $^{\text {d }}$	Indigo．． 8 \％
Burns ．． it	Dge，Euir．． 60	Insect，Persian Porrder．．．．．．．．．．．．．．．．． ：．．．．．．．．．．．．．． 18.
0	E	Insects；to Repel．．． 124 Iodine and Carbollc Acld．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10%
Camphor Ball．． 83	Electro－Gilding ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． － 施	Iodide of Sulphur．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 98.
Camphor Ico．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathrm{ss}^{\text {a }}$	Est，Development of the．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 103	Iron，Purifylng，．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 108
Canada，lrou Miniog in．．．．．．．．．．．．．．．．．．．．．．．．．．． 22,37	Encouragement ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 120	Iron，Carbonato of ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 111
Cana゙da，Gold Mining in．．．．．．．．．．．．．．．．．．．．．．．．．．． 77	Essential Oils，Adulteration of．．．．．．．．．．．．．．．．．．．．．． 103	Iron，Perchloride of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． as $^{\text {a }}$
Cansda，Minoral Resourcos of．．．．．．．．．．．．．．．．．．．．．．．． 7	Ether，Antiseptic propertits of．．．．．．．．．．．．．．．．．．．．．．． 31	Iron Liming in Camada．．．．．．．．．．．．．．．．．．．．．．． 29 ， 37
Cantharidin．．．B．	Ethics，Pharmaccutical．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 113	Iron Vestels，Glaze for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．${ }^{\text {e }}$
Cahtharidin，Dotermination of．．．．．．．．．．．．．．．．．．．．．． 77	Examination，Dread of．．．．．．．．．．．．．．．．．．．．．．． 12.12	Iron，Siriup of Iodidc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 27
Calntar Beans．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．58， 01	Explazators．．． 9_{4}	Itch，Treaunent of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．on
Castile Soxp．．．is	Extract Conil．．． 58	Itch，Solutiun for．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 124.
Carbjn，Sulphide of．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 128.	Examination of Jalap ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 80	Ivory，Artitcial．． 27 ．

,	Oxalle Acla Synthoses of 125	Sola Lakos of Mcxico..............................
Jalap, Examination of............................... ${ }^{\text {so }}$	Oxalle Acla, Synthoges of \qquad	Soda Lakos of M
Jalp, Percentagoor Resia in........................ 122		Specile Gravity, Tablo
L		Spar, Fluor
...\%	P	Starch, in Yoik of EE6.
Lead, Whito, 105	Pal	Stoppers, To Provent Autheston of................... 124
Leaw, Crystals of.................................. 80	palnt for Stoves.. 65	sloves, Unhealthh
Leather..! 28	Papaverine, Action-or............................. 12	Stoven, Insalubrity
Leechen, Horr to Utilize.......................... 10 s	Papier, Bustering 81	Stoves, Paint fo
Lemion, silt	Pajicr, Styptl 75	strontium...................................... ${ }^{23}$
Lichens, Alcoliol	Paralne as a Lubrleant........................... 124	styptic Paper..................................... ${ }^{\text {73 }}$ 73 styptic Collota.......................... 109
Liline, Acctate of................................. 70	Paraino to proteet Crystallzing Vessels 124	styptic Collolu \qquad 109
Lime, Blsulphite, Usos of.................... 58	Patent Safery Mathes............................ 1 e in	Sugar, Beetr surar, Anals
Liquor, Dismuthi.... \&	Perchloride of Iroth os	Nitar, Analssid of..................... :.............. 23 , sulphur, Iodldo of.................................... 03
Linutd Glue..................... ; 45, 88, 122	Pepper ... 70	sulphur, lodldo of. \qquad 03 sulphur, Its Uses in the Arts............... 101
Linuors for 3cdical Uso........................38, is	Pepsino	Sulphur, Its Usce in the Arts............... 101 sulphur, Suft \qquad
Lip Salve....................................... 09.	Petroleum. Properties of \square Bl	sulphur, Sunt... 77
Lotion of Glycerine. $3^{3,} 124$	Pharsaacy, at Howe and Abroail λ	Sulphuric Achd. Hauufacture of........................ 75
rognuod Olatimeat.................................... 90 Lunge. Health.of.................. 81	Pharioacy Act of Great Britain................. .92, 8s	Suphurvas Acid, Cheap Suarco f r r................... 108
Luthg forstills............................. 48	Plarimacy Act of Ontario 150	Sulphito of Magnesia, Manuficturc of............... 123
	Pharmaceutical Ethes............................ 18 \%	Sulphato of Quinine................................ 45
- M	Pharinaccutical Legisjation........................ \&	Sulphate of Quinine, Action of..................... 58
der. 64	Pharmacentical Sociely, acotinga of, 10, 28, 11, 50, 71, 57, 104. 120	Sujer
dder, Coloring from........................... 108	Pharmaceutical Society's Annual Report 30	Sweet
【tinnx; Adtulteration of............................ 70	Phurmaceutical Soctety Great Brilaik, Ingulations of 0.	Syrupus, Ferri lailde. \qquad 27
Magmasa; Sulinhde, Janufacturo of................. 123	Plarnacoprea, British.	Syrups, Frutt, Prop of
Yatches, Patent Sarety........................... 112	Phosphorus Pasto 80	Syruss, Mineral Water.. 16 ,
Measures; Graduated ${ }^{58}$	Phosphoric Aciu, Dilhte, Preparation of 7	sjmpyathotic Ink................................... 31
	Photography, Novelty in 44	
Medtcal Botany, Prizes fori.. :i.. : 103	Protographic Chemicaly, Janger in................. s3 $^{\text {a }}$	I' T
Medlual Persons. 29	Physostigux, Tincture of 124	
Moddetic, Dispensing or. .:.......... .7............ 104	Planchetre................................ 57	Tablo of Specific Gravity.......................... 31
Metal Fastble.: : : :: : 124	Mlaster of Paris, to harden	Tanning.
Hetal, Moulding Frut 'ni. 14	Podophylin..	Tarilf, The.
3italas, Extraction ofi....................	Popopiy:iln, Chemical relations of.................	Teeth, Filling for
3 Secarial Olatment, Prep. of........................ 108	Podophyllin aud dis Originators 71	Tusllium
Hexico; Soda Caves of............................. 75	Poison, 3ushroom 125	Thalltum, Curio
xuk of Roses.... ${ }^{3}$	Pomade, Crsstalline.	Thoukand Flowers,
Nincrai 17 ater Syrups.........................20, 29	Potassiun, Bromide of is $^{\text {a }}$	Tinct. Physostigmx,
Minerel Yeine, Growth of......................... 22	Potash, Chlorate of.... 105	Tubseco, Effects of.
Minargent...... 60	Pricos Carrent,14, 30, 46, 62, 78, 04, 110, 120	Trade Marks...............................58, 65, 70
3iontreal Chemists' Association, 120	Prizes, Cheratcal 91	Tracing Pap
30ths; Herzedy for.............................. 76	Prussian Justice.......................... 125	Trausylva
3ushroom Poison. 125		Turacine.
	Q	
	Quina, Sulpiste of................................. 45	U
Napthaline, to.repil Jnsects........................ 124	Qnina, Sulphito of, Action of ss $^{\text {a }}$	Ong. ¥ydrarb. Nitit, 29
New. Lebaq¢ 28		Ung. Hydrarg., New Mode of Preparigg, 108
Nor Yedecincs.................................... ${ }^{102}$		Use of Refuse................................... 19
Negallises, Gpological 102	Befuse, Use of....................................... 19	
Nitroglycerin Detection of \qquad 85	Resin, Aromatic Substance from................... 2^{29}	V
NHtric Aclis Stalis, Remoral of....................... ${ }^{\text {es }}$	Rexin, Porcentage in Jalap......................... 123	Vaccino Yatter.................................... 31
	Retrospective.................................. 10	Velminckx' Solutio
0	Rheum Russica.................................. 125	Violet Pow
Ofl of Lemon, Artigiki 28	Mhubarb, Falsincation of.......................... 79	
Oll Paints, Chemistry of.........................: is $^{\text {a }}$	Richapdson's Styptic Colloid....................... 109	W
Oll, Extration of, bs Bisulphide of Carbon.......... 121	Roses, 314k of..................................... 293	Walking Fishes................................. of
-Ou, Palm, Bleacuing of 122		Water, Distlled, Substluto for...................... ${ }^{23}$
Ointment, Benzoin............................... 12	S	Water in Varlous substance
Ointment, Citrine ${ }^{20}$	Saltof Lemon.................................... 15	Waterproor Cen:cut............................... 77
Olatment, Foot rot.............................. ${ }^{45}$	Silt, Source of.................................. 0	Witerproofing Cloth.............................. \%
Oinf	Scienre, Progress of.............................. 82 2	Waltham Chemioal Works......................... 45
Oi 2 Scecurisl, Prepzration of................ 109	Show Bottles, Culors for........................... 197	Whats' Dictionary.
Oatario, Proposed Pharmacy Aet of............... 110	Shop Windows, Objects for.......................... b7	Weights and 3easures
Oplam...	Silvering Solation.	White Lexad, Manufacture of.fy! ofstif. 105
Oplum Eating.................................... 32	Small Hf anss but Great Ends...................... 27	Wiaes, Genulic.................................. 15
namen		Wood, Alcohol from................................... 83

3 utes af gituextisimy.

Advortisements trill bo inserted at the follopiving low rates :-
One columin, with right of changing
every 3 months-1 year... $\$ 6000$

1One coll	mn,	"	6 montlis	4500
One		'	3	2000
Ono	"	"	1 "	750
:Half	"	"	1 year ...	3500
Half	"	"	6 months	2000
Half	"	"	3 "	1250
;Halí	"	"	1 "	500
Quarter	*	"	1 year....	2000
Quarter	¢	"	6 months	1250
Quarter	،	"	3	750
Quarter	${ }^{6}$	"	1 "	300

Advertisements of Business for sale, or Business wanted, occupying one-and-a-half inch space, will be charged $\$ 1.50$ for each insertion.

Situations or Assistants jvanted, $\$ 1$ each insertion. -
 must be paid strictly in advance, in all cases,

Registored lotters mailed to our address will be in all cases at our risk.

KERRY, GRATHERN \& CO, 41 YONGE ST., TORONTO, IMPORTERS OF BRITISH \& FOREIGN
DRUGS AND CHEMICALS, Periumerj, Flavoring Extracts, rollet Articles, Dietctic Articles.

DRUGGISTS' SUNDRIES!

Patent Medicincs, Classware, Shakcr's Herbs, Dyo Stuff's, \&c., \&c.
K. C. \& Co., have jusi received a large and varied assortment of Druggists' Sundries, and would respectfully solicit a call.

Orders by Post will receive our best. Attention.
quotamions given on application.
Druggists opening brisiness can be furnisged with every requisite.
casteacturere nin boid of
Tinotures and Alcoholio Preparations.
2-1y.

Orighat iemprets.

茳 4

LABBELS.

Considoring the large number of labels used, it is oxthaordinary that the details which should bo attended to in their production, aro not better understood and applied.
The first intention of a labol is to notify the contents of the bottle or package labelled, therefore the name of tho article should he in the largest and plainest type, or writing. The direction or explimation of uses should follow, and this may be in smaller type, as it will only be consulted by thuse who have use for the contents. The name of the vendor follows, and shonld be in type only inferior to the name of the article. The occupation generally follows, but is not essential, boing sufficiently apparent, from the name of the article. "The name of the place of business finishes the "matter."
For articles intended for intermal use, the paper should be of the purest white, and the ink of the deepest black. For perfumery and fancy articles, greater latitude in the color of ink and paper is allowablo; butin overy case cara sloula be tinken that while the texture of the paper is firm and uniform; it is not so stifi as to provent the paste or gom "taking" readily. These are the points of a good label, whether executed by letterpress printing, or lithography.
The errors to be guarded against, are the use of so-called ornamental types which are difficult to read; disproportion in the aizes of type, and putting the umimportant parts in large type; putting on borders that do not present a regular line to trim by, and placing the labels on the sheet in such a manner that an unnecessary amomit of cutting requires to be done.

We havealways foumd it best to keep labels in a shallow drawer, each kind in a seiditz box, with a sample pasted on tha cover. In this way waste is prevented. If arranged in alphabetical order, the proper label is obtained in a moment.
The plan of gumming the shect makes the labels curl, and has no particular advantage to compensate for this inconvenience.
Below are some examples of good and bad la bels :-

Puttern A.

SWEET SPIRIT OF NITRE.

Soid by T. WHITE, Chemist, 19 Southampton Row.

Pattern B.

From James wililamis, Capmist, de.
SWEFT SPIRITS OF NITRE.
33 Lower Tooting

©゙Mtenta,

The Pritils foh Medichl, Botant 103
Lectirnes on Chemystry. 103
Bitforion of Adulteination if Exomarjal Oilains
Mrans of Iodine: .103
RIGINAL PAPERS.
lıABT:L907
MINLEG.
Assajing for Amatours 100
TRANSAOTIONS OF TEE SOOTETY:
Monthly Mectlug-Rejort or Lecture Committec. . 20 I
MSOELLANEOUS.
Sulphur, its usce in the drts 101
Gcological Negatives-Abslatho-New Sculicinoz. 102
Facilitics fur Dispanshing Iedtelue 101
Sinnufactura or Chiorato of Potash-Manufaciatre
of Winto Icad-Ozone-Cider iCitrate of Bistmutly nud Ammonia-Photography:-Crystallization-Ingniubrity of Castiron Stoves 100Action of -vativus Disintectants-Kodinu and Car-bolic Acid- How to Poison Children-Tannius. 10%Coloring Sintter-110w to Ütilizu iecchos-ColoringMatier from Saduder-Durfyiug Írn-Syr. IocriPhosph, Quitcte et Strycinito-New moule of proparigg. Mercincial alnitnenh-Cheap sonreo forSulphurous Aču-iIard Ceanonts-Cinátitacing
\qquad
Richardson's Styptic Colloid - icolioi front Itchens-sation of Duckwech-Duscopmedfoot.the Es\%.200
USEEUL RECEIETS.
Cristallato Pomade-109
prices Curbent 110
Tzade Reront. 111Cilasgrs.112

LYMAN, ELITOT \& Co.,

Cluemists and firaggists.

Office ano S.urle Rooss,.. 157 Finig Strect Kast.

 Rethll Der.armext.......... j55 Iing Streel, Fast. Warehouses, al \& 83-Front Strct.IMPORTERS and Manufacturers oi evory requirement of the Retail Drug Trade. A full assortment of the following classes of Goods always on hand:-

Furniture.

Surgical Instruments and

Patentialedicincs.
Perrímery.
Preparations.
Soaps.
Bronze, Gold Leaf, \&c.
Cohrs, Dry:
Colorsin oil.
V:rnishes.

Druggist's Earthexifare and Grasswabe,

 in whole Packages at Factory rates.Enquiries and orders by mail will receive prompt and careful attention.

Sce following announcements.
Toronto, May, 1868.
1 ly.

EVANS, MERCER \& CO., Wholesnle Drug Merchants, manufacturing ohemists,
Inzporters of Patent Mredicines, British cued L'oreign Perfumery, Surgical Instruments and Appliances,
GLASS, EARTHENIVARE, and
Druvgarsts' Sundmass of every description. manufacturers, in bond,
Of Tinctures, Either, Chloruform, dec.
Office-2g5 Notre Dame Street,
bonded yactory, mabarotohy and min, 41 \& 43 St. Jean Bartiste Stheet,
1-y
MONTREAL.

ATEEINSONTS APARISIAN TOOMH PASTE.

THEE Wholesale Houses in Montreal, Toronto, Hamilton, and London, supply this celebrated Dentifrice nt $\$ 2$ per doz., less 5% for Cash.
N.B.-If every proprictory article had the merit of this Paste, the Druig Business would be more lucrative and respectable.

May, 1868.

WOODRUFF, BENTLEY \& C0.,

WHL : ESALE DEALERSS, ayd 及asuractunens of

Patent Medicines, broveham, ontario.

Established 1844.

W ${ }^{\mathrm{E}}$ are sole Manufacturers and Propric tors of the following Medicines :-
Dr. Fowler's Extract of Wild Strwwerry.
Dr. Boyer's Galvanic Fluid.
National Pain Remover.
National Pills.
Dr. A. E. Fife's Worm Lozenges.
Wilson's Maguctic Ointment.
Chicopee Indian Worm Tea.
Ortental Hair Gloss.
Egiptian Salve.
Oriental Black Oil.
Woodriuff, Bentley \& Co.'s Conelition Powders.
These Medicines hava a well established reputation, and command a good sale, and -give entire satisfaction to the public.

Orders to be addressed to the Proprietors, as above, or to

LYMIAN, ELLIOT \& Co., NORTEOP \& LYMLAN,

Neiccastle. J. WINER \& Co., Hamitton. HENRY SIMPSON \& Comito Montreal. LYMANS, CLARE \& Co., JOHN ROBERTS,

Montreal.
Ottava.
Brougham, May, 1863.
1-6m

Pattern C.

Sweet Spirit of Nitre.

Paeramed dy T. C. JONES, Chemist, dec. 40 Southampton Street.

Patlern D.
SPIRITS CAMPHOR.
HIX, PHINNEY \& CO,
chemists and Druggists,
KALamazoo, michigas.
Pattern E.

concentrated essence of
THE WOOD VIOLET.
THE DEMFUSF: OF HERFUSIS.
1rnivart: ${ }^{\text {H: }}$
F. BREIDENBACF,

Perfumer and Distiller of Flowers то tine ques.
157n. New Boan Stret, Lomivn.
 Pattern F.

HIGILLY PERFUMED

ALMOND OIL,
roll
CLEA.NSING, Strengthening and Boautifying

HAIR.

prepaben my
ABOUSSAN E. THAA표ER, dhuggist to the: calimi, bagdad, persia.

Pattern G.

In this useful and elegant preparation are combined the medicinal virtues and fine Aroma of

PURE MAGNESIA,
 And propared Jamalca Gingor.

> prepared ar
W. TWIDALE, agi hing sersing chemist, eg4 King Strect, East, TORONTO.

S. J. LYMAN \& Co.,

44 JOHN STREET, MONTREAK, dealems in
Lssential ©ils, Chemicals, IERUGS, \&C. agents for
New Jersey Esseutial Oil Distillery. : Ontario Chemical Works.
Secombe Manufacturing Company.: Hamilton Glass Works.

All kinds Sula Apparatus, including Morse's;" celebrated Mrachinery for charginy 32 galls. Solde in tuvelve minutes. also,
Morse's Improced ('ounter Shenel, which sccures Soda Water in the best possible condition to cool and rafresh.
(Y) LYMAN © Co. will Buy and Sell on N. Commission, any Drugs, Cuenicals, or Essential Uils; of the latter, they have always Consigmments on hand.
Thade Mahks fumished and taken out from the Dominion Government.
Patent Rights obtained with despatch.
The attention of Druggists is directed to Elniot's Dentifrice, as a popular and salable toilet article.
Agents wanted in every Town in Camada.
Circulars fumished, with name of Agent, together with handsome show cards.

Eliotots Destifrice is for sale by
LYMLANS CLARE \& Co., HENRY SIMPSON \& Co., KERRY BROS. \& CRATHERN, EVANS, MERCER \& Co. Wholesalc Druggists, Arontreal. also, BY LYMLAN, ELLIOT \& Co., and HOOPER \& Co.
1-3m.
Wholesale Druggists, Toronto.
Beaver Drug Mills and Laboratory.

Alcoholic Preparations.
TTHERS, Chloroform, Flarouring Extracts, Spirit Varnishes, Tinctures, and every description of Medicinal Alcoholic Preparation, manufactured in bond, and supplied for export, less the duty.

> Drugs and Spices-Poudercl.

Every article of this brand is warmanted .ic. Clemzcals and Pharmaceutical Preparations.
Nitrate Silver Crystals, Citrate Magnesia, granulated, Carb. Potass, Cyanide Potass, Potassi Sulphuret, Ferri Carb. Precip., Ferri Carb. Sacch., Plasters, Extracts, ©c.

Paints Ground in Oil.
White Lead, various qualities; White Zinc, Colors, and Patent Dryers, in assorted packages.

Price Lists mailed on application.
LYMAN, ELLIOT \& Co.,
157 Kiny Strcet East,

TOMLINSON \＆CD．＇S CELEBRATED

BUNTMRERER

 ronImproving the Quality and Flavoar of Buttor，
Inoreasing the quantity，lessening the time of Oharning，and producing good， sweet and firm Butter at all secsons of the year，
The above Powler is well worthy the notice of all Druggists and Storekecpers， being put up in attractive Boxes，

6d．，Is．，2s．Gd．※ \％s．Gul．Each，
And wherever introduced commands an ex－ tensive and ready sale．

N．B．－All orders will be accompanied by a liberal supply of handsomely illustrated Handbills，Show Cards，Posters，dic．，with name and address printed on free of expense．

Prices and Terms Free on Application

SOLE MEANOFACTURERS AND EXPCRTERS，
TOMLINSON \＆HAWYARD，CHEMISTS， macoing ceglasil．
SOLD WHOLESALE BY
J．R．Hinds，King Strect，Hamilton，Ont．；Evans， Mercer \＆Co．，Montreal；Avery，Brown \＆Co．， Halifax，N．S．；and J．A．Armstront，Philadelphin， Pa．U．S．，and Lyman，Elliot \＆Cu．，I＇oronio．
Retail by Druggists，Storekeepers，Sic．，throughout the world．

1－1y．
EROWN EROTHERS，
WHOLESALE STATIONERS， BOOEBIND』卫S， sind masufactubers of
account Books，Wallets，Pocket Books，de．， 66 \＆ 68 KING STREET，TORONTO．

A LARGE ASSORTMENT OF

ALWAYS IN S＇POCK，
To which the attention of the Trade is re－ spectfully solicited．

1－1y．

MEDICAL PARTNERSHIP．

J．I．KENG，M．B，M．R．C．S．，Eng．，
AND

May be consulted at their Office，
$2 \mathbb{Z}$ RICHMOND STIREET EAST TORONTO，ONT．
－：0：－
－OFFICE HOURS：－
9 to 11 a．m．， 250 to 4 p．m．，and 7 to 8 p．m．
Toronto，May， 1868.

18－1：

HUGII MIELERE © CO．，

 wholesnie
CHEMISTS \＆DRUCCISTS，

167 KING STREET，TORONTO．
Importers of Druggists＇Sundries，Oils，Paints and Vamishes，Dye Stuffs，\＆c．，©ce．
prometetons of
MHIEx＇s Tick Dentroyor for Sheop，
MILLER＇S ILLUMINATOR，
The best Burning Fluid，Patented Oct 9th， 1862.

Toronto，May， 1868.
1－3m

THE UNTTED SOCIETY OF SHKEERS，

NEWK LEBANON，N．Y．
prepabe avery deschiptio：of

VEGETABLE MEDICTNES

of superior uality，including
hoots，barks llenbs，\＆c．，Packed． alcoliohic extricts，Solla．

ALEUHOLIC EATHACTS，Fluid．
AqUEOUS EXTRACTS，SOILA．
POWDERED DRJGS．
POWHERED SWHET HERBS．
In ordering goods from Wholesale houses；order Shaker Ierbs，to secure satisfaction．
Sold by the leading Wholesale Drug Houses in Camada，and by

BENJAMIN GATES，

3－1y．
Now Lelchom．N．Y．

JOY TO THES AFELICRE期：

The greatest Diaretic \＆Diaphoretic of the Age

IS
 IR．BACIIEJS
 Concentrated Fluid Extract of Buchu．

if is warranted to core
Chronic Influmnation of the Bladder，Chronic Rheumatism，Wealniess and Pain in the Back，and all Chronic Maladies of． the Urino genital Organs．
TTS constitutional effects are referable． Firstly；Te its action on the Stomach； and secondly；To the absorption of the vola－ tile oil which is subsequently thrown ont of the system by the secreting organs，on which it appears to act topically in its passages through them．
prepared oniy dy
JAMIES TULLY，
Wholesale Dealer in Drugs，
Iruntingdun，P．of Q ．
wholesale agents：
HENRY SMIPSON \＆Co．， Monircal．

Retall Price， 50 Cents．
1－6m

DUNSPAUGII \＆WATSON，

No．hinfing stremet mast． Toronto， importers， and whombale deaners in DRUGS，MEDICINES，CHEMICALS de：sturas，
PaINTS，
OILS，
COLORS， VARNISHES，

SPIRITS TURPENTINE， PATENT DRYER， zive faints，
 aRTISIS＇Materials， ESSENCES．

PATENT mEDICINES， DRUGGISTS＇SUNDRIES， FANCY GUODS， P曰尺FUMI巴RT， \＆c．，\＆c．，sce．
 Toronto，May， 1868.
 1－1y

HANDKERCMIFF Extracts，Juckey Club，Frangipanni，Patchouly，West End，Musk，Spring Filowers，Mignonetto，New Mown Hay，Sweet Pea，and all the popmlar scents．

Extra Quality．－6 oz．Octagon Cut； 3 uz． Octagon Cut；1i oz．Plain，stoppured．
Best Quality．$-1 \frac{1}{4}$ o\％．Main，stoppered．
No． 1 Ouality．－ $1 f$ uz．Squat Cork＇d； 1 r $\%$
 Squat； 1 oz．Squat ； 1 u\％Uval；$\frac{1}{4}$ o\％．Squat． The extra quality are equal to Iabin or Rimmel＇s Perfumes，at 30 per cent．less cust． Hiar Oils，J＇mades，N＇ooth Wiashes，Tooth Powders，Colognes，Lavanders，Sachets，Cam－ phor Ice and Roll，＇Toilet Vmegar，Malk of lioses，ctc，in all the pupular styles．
Price Lists on applacition to

> LYMLAN, ELLIOT \& Co.,

1－ly．
1 107 King Astreet Eust，
Toronta．

ARTIFICIAI IIMIES． NORRIS EAG思

Would assure thoso necking such assistumec，that hue can d．for them ali that art can acromplis：Ifis
urices are as low 2 compable with frices are as low aq compable with ävod work．
IIC is also agent mole tuls：

Whichare the best for both Manfucturing and Family inse
Ihey will be funmil to thin the chenure in the end
I＇hey wil！be funmil to lu the Chenjust inf the end，
thongh the first cost mity thongh the Ifrst cost mity bealitite mitore thais bome others．
A FUlil supidi of the：
NEW ENGLAXD WAX THBEAD MACHINE：
For Sloo Manafacturing，constantly on hand．
\triangle DDRESE，
NOEIRIN REACIE，
16 King St．Eas＇，Toronto，Ont．
1－1y．
of tho Daliy Thlearapi have all the founts required to make a good job in this depart－ ment of printing，and it，will bo found on appliation that their prices are vory reason－ able．

The matter fur labels shonld be writen in I^{1} very legible hamd，and it is necessary to read tho proof carcfully to avoid mistakes in spelling the names of druggists＇articles，with ｜which printers have little arquaintance．

It is impossible in the Jounval to give examples of the lithographic styles，and this is less to be regretted inasmuch as the best hcuses in the drug and perfumery trades seem to be abandoning the deseription of work usually produced by lithugraphy as too florid to meet the requirements of correct ｜taste，it is still used for cheap，flashy goods， intended to catch the eye and be bought once． There remains to notice the use of vermillion borders and capitals，with＂antique，itadic， script，＂and other fancy founts，which pro－ duce very beautiful effects when judiciously applied to perfumery labels．
had suffiored no loss at the expiration of three months．When，however，it is alloyed with silver or lead，a small portion appears to vola－ tilize with those metals，as is proved by its prosence as a doposit in the flucs of a cupel－ ling fumace，where a largo quantity of an alloy of silver，lead，and gold had been－oper－ ated on．The ordinary simple acids have no effect upon gold，nor is it tamished by ex－ posure to the air，sulphuretted hydrogen，or the compounds of sulphur．Chlorine gas readi－ ly attacks it，at ordinary temperatures；it is to this property of chlorine that the solvent aetion of apue reyia depends．By the mixing of the two acids，$c^{1,1}$ orine is set free，which combines with the gold，forming a terchloride． Although gold is so stablo and unalterable itself，yet the terchloride is one of the most mustable of salts．It is easily decomposed by organic substances，a great number of me－ tallic salts，and by the arency of light．When exposed to a heat of 420° it loses part of its chlorine，and，ultimately，becomes recluced to metallic gold．It has been asserted that it is volatile and capable of distillation． Gold unites with mercury very readily，form－ ing an amalyam，from which the mercury can be agrain separated by heat．The combining weight of gold is 196.

In nature，gold is found associated with a number of metals，but generally in such small quantity that no advantage can be taken of t ．Tha the native state，it is said to be more widely diffused than any other metal．It has
been questioned whether it railly been questioned whether it really exists in any other form，but most authorities agree that it sometimes occurs as a sulphuret，and then，chiefly associated with iron pyrites． Nearly always，however，it contains a small amount of silver．For all practical purposes－ and particularly as referring to Canada－we shatl consider gold ores as belonging to one of thee classes．Firstly．Free gold，in par－ ticles visible to the naked eye，or by the arid of a magnifier．Secondly．Particles of gold diffused through the rock，and invisible to the cye by the aid of a magnifier；and thirdly，as a sulphuret，associated with iron pyrites，or encrusting it，as the case may be． Sometimes，a specimen may be found ex－ hibiting all three of these modifications，and in nearly all cases iron pyrites is present．
The student should carefully examine all specimens with a magnifying glass，but must be particularly on his guard against three substances which bear a great resemblance to gold，and are very frequently mi manen for it．Iron pyrites is the great misleader of the inexperienced eye，and many unfortunate and ludicrous mistakes occur regarding it． Many of these have come under our own notice，and wo may be pardoned for quoting the instance of a man，cited by an American author，who broughta specimen of a supposed rich ore to a San Francisco assayer：on being
informed that it was iron pyrites，and com－ informed that it was iron pyrites，and com－ paratively worthless，ho exclaimed：＂Great heavens！there is au old woman up our way who owns a hill of it，and I married her！＂ Pyrites may，be rendily distinguished from gold by its superior hardness，as demon－
strated by attempting to scrateh it with the
point of a knifo; gold is readily cut, but pyrites rosists the stecl, or at most, flios off in gritty piecos; a particlo on boing heated with nitric acid will quickly dissolve, giring off red fumes of nitrous acid,-gold will romain maflected. The socond substance liablo to bo mistaken for gold is copper pyritos, this may bo detected by its soluhility in nitrio acid, and its loss of lustro when lieated in the blow-pipe flame. Micat is the third substanco, and, in finn spangles, it is very decoptive. By wetting the specimen the mica is dimmed and loses color, but the gold appears to better advantage. It may also bo distinguishod by its woight, which is only about one-sixth that of gold. Mica resists the action of nitric acid, it fact which munt be borne in mind.
Tho student must exercise his judgment in selecting specinens for analysis, rejecting those pieces of ore which exhibit the most favorable appoarance, as very fallacious results would ensuo. He should endeavor to select those specimens which represent the average rock, and this is best accomplished by chipping off pieces, at random, from difforent samples, and from different points of the same specimen. In Canada, native gold is generally found in the quartz rock, and, more especially, in certain thin black yeins which intersect the quartz, or divide it from the accompanying rock.
(ro ne comtinurd.)

SULPEIUR-ITS USES IN THE ARTS.

Every one of our readers is acquainted with the appearance of sulphur. Possibly many of them were made acouainted with its medical properties early in life, like Squeer's school-boys, to whom it was regularly administered, in molasses, always before breakfast. It is quite possible that many are not 'so familiar with its chemical properties and its oxtended uses in the arts. It is kept for sale everywhere in two forms; roll sulphur, popularly known as brimstone, formed by concretion after fusion, and in : powdered state, obtained by pulverizing the roll sulphus, by sublimation, or precipitation from its solution in limewater by muriatic acid. Sublimation is the heating of any solid substance until it becomes vaporized, and collecting it again when cooled by passing the vapor into a refrigerating chamber. Sulphur thus sublimed can be obta; .ed in a very fine and impalpable state, called flowers of sulphur. When obtained from the soluiion as described above, it is called lac-sulphur, or milk of sulphur.
Sulphur is an element, that is, it has never been found to be resolvable into wther sub-
substances. Its afinities or tendencics to substances. Its afinities or tendencics to and strong, and under favorable circumstances it will combine with a vast number of simple and complex bodies. Its combinations with simple substances or cloments are called sulphurets or sulphurides. Such compounds form a large proportion of the ores of different metals, as they are found in nature A simple experiment will illustrate the formation of these ores. Mix 21 parts by weight of fowers of sulphur with 30 parts of iron, and put it gradually into a red hot crucible, waiting until each portion becomes incandescent before adding more. After the Wholo is put in, cover the crucible and raise the heat until the entire mass is fused. The compound is called the proto-sulphide of
iron. There aro, also, other sulphides of iron, which contain mors sulphur in proportion to the weight of the mass than the proto-sulphide. Of theso the bisulphile may be mentioned. It has a pale yollow metallic lustre, and has of en been mistaken for gold by the inexpert.

In the enrly settloment of this comatry an entorprising adventurer shipped a wholo enigo of this stulf to England, supposing it to bo gold, and that ho had, to use a modern phrise, "struck oil." His chagrin was great upon findiag the value of his venture less than an equit bulk of good garden soil. So many similar mistakes have been made that the sujstance has been calle " fools' gold." 'Ihe mineralogical name for it is iron pyrites. 'These sulphides are types of the sulphides of nther metals, as found nativo or artificially produced. The proto-sulphide of iron is used in tho laboratory for making hydro sulphuric acid gas, to which the names sulphydric acid and sulphureted hydrogen are also given. Hydrosulphuric acid is most valuable reagent in analytical chemistry, and thercfore deserves some mention here. When fragments of proto-sulphide of iron are thrown into dilute sulphuric acid, a series of reactions take place, which may bo described as follows :
Sulphoric acid is a combination of sulphur and oxygen ; the proto-sulphide of iron is a combination of sulphur and iron; the water usod to dilute the acid is a combination of oxygen and hydrogen. When these couples come together, iron, which loves not sulphur less but oxygen more, deserts its own martner and unites with the faithless oxygen of the Water, which leaves fund hydrugen desulate. Sulphur and hydrogen, mader these circumstances, mutually sympathizing with each others wronga, strike up a bargain and adree to unite their fortumes. The sulphuric acid aids and abets the disruption by providung for the protoxide of iron as fast as at is formed by the union of iron and oxygen, and uniting with it, forms the sulphate of ir, in. The sulphureted hydrugen formed by the union of the sulphur and hydrogen not being so
fortumate, goes off in exceedingly bad odor. fortumate, goes off in exceedingly bad oldor. The smell of this gaz is discemable in the decay of all organic substances which contain sulphur, as turnips, cabbages, egss, etc. The smell of rotten eggs is its most prominent characteristic, and in the principal test for its presence. The most minute quantities, imperceptible to smell, may be detected by moistening a bit of paper with a solution of acetate of lead. Paper so prepared is turned black by the action of the gas. The reason for this change of color will give the clue to the value of this reagent inchemical analysis. Metallic salts are formed by the union of their oxides with acids. When sulphydric acid comes in contact with solutions of these salts, a mutual decomposition takes place, the hydrogen of the sulphydric acid unites with the oxygen in the metallic base, and forms water, while the sulphur combines with the metal itself, to form asmlphide which generally falls to the bottom as a bulky precipitate. The conditions under which these reactions take place vary from different metals. Thus, the metals capable of being precipitated may be classed into groups. The alkalies are not precipitated by it under any circumstances, neither are the alkaline carths. A third group, comprising the salts of alumina and the sesquioxide of chrominm, and a number of others of very rare occurience, are net pre-
cipitated by sulphydric acid but by sulphide of ammoninu. The motals of the third group, and the romaining metals are precipitate under certain conclitions, oither by sulphide of ammonium or by sulphuroted hydrogen, tho precipitate being in tho third group a hydmatod oxide, that is, an oxide combined with water, and in all other cases a sulphide, or the mixed sulphides of all tho metals precipitablo hy thses reagents. Suppose now a chemist wishes to detormino whether sodium is a constitucnt of a very complex solution mader cammination. By passing a sufficient quantity of sulphureted hydrogen through tho solution under the proper conditions, ho can eliminato all tho metals, except the groups above spiccified not precipitable by this regent. The field of research is thus greately narrowed, and a very long step is taken towards the con,pleto isolation of the substance sought. This brief description: will give a correct idea of the great value of this reagent in chemical analysis.
Sulphur foms acids by combination with oxygen, the most important of which is sulphuric acid, more popularly known as oil of sitriol. This substance may be called the Goliath of chenistry: No other substanco known has such extended and diversified applications. There is scarcely a department of the arts that does not directly or indirectly involve its use. From iron founding to the manufacture of gingerbread ; in agriculture, in dyeing, in painting; indee' it would bo very difficult to suggest a tradic, occupation, or profession that does not depend more or less upon this most important substance. A friend askes over our shoulder, "Do you include lawsersand clergymen ?" Most certainly we do. The paper upon which, and tho ink with which lawyers and clergymen write, involve in their manuficture the use of sulphuric acid. Try something elso. Hesita-tingly-" boot-blacks." Out again. No blacking without the immediate or remote use of surphuricacid. Once more. "No, I give it up if the two extremes are not exempt. 'll nonc of the means."

The processes of manufacturing sulphuric acid are various. The fuming Nordhausen acid is distilled from the sulphate of iron, popularly known as green vitriol. The acid as thus obtained is in a state of the highest concentration it can attain in a fluid form. A proper redistillation of this acid produces a whito fibrousmass of a silky appearance-solid sulphuric acid. This is called anhydrous sulphuricacid, the termenhydrous meaning without water. 'ihis is a most remarkablo substance. Notwithstanding it is the most concentrated fom in which the acid can be obtained, it has no acid propertier. It is tough waxy in consistence, and may be molded in the hands without danger. The concentrated liquid acid would soon reduce them to a stato resembling younded raw beefstenk. Anlydrous sulphuric acid, or concentrated liquid acid is a very thirsty substance. Its fondness for water isonly equaled by the disgust which the fluid seems to excite in some individuals of the human species. If it cannot get water elsewhere the acid will nosorb it from the air. The anhydrous acid thus becomes liquid after a time, and the liquid gradually becomes weaker by exposure. It is therefore necessary to keep it from the air. Advantage is taken of this property to dry cortain substances from which it is difficult to extract water. An open vessel containing acid is placed under a bell-glasa, together with the substance to bo
dried. Being thus imprisoned togother, the acil appropriates to itself all tho moisture which the bell-glass incloses, and so without artificial heat a substance may be porfectly dried. Its attraction for water is 80 great that when purred anto the latter it hisses like a red hotiron. Strong acid exposed to the air will absnob water enough to double its werght. Dix four punts of this acid with ono pint of water, and there wall be consuderable less than five piats of the maxture. Thas shows that the attraction oi sulphuric acid for water is very strome indeed, suiticient to compress if mure than a pressure of hundreds of tums to each syuare inch of surface would do if applied to that fland separately. Were we not right in calling it a Goliath?

We have already cail that very larde ghantities of this substance are used. In England alone over one hundred thousand tons are used annuaily, and its manufacture is conducted on a large scale in quite a differcut manner, from the method abovedescribed for making the Nordhausen acid. That method is only practused at Nordhausen, in Saxony, from which the aid takes its name. In order to understand the manufacture of silphuric acid as it is conducted on at large scale, we mast irst know something of nitric asid. Nitric ach is composed of matrogen and oxygen. These two grises mixed constitute thie bulk of the atmosplacre which we breathe, but when chemically combined in the proper proportions they form the nitric acid of chenistry-the apuafortis of the shopsan acid ranking next in strength and importance to sulphuric acid. The salt hoown as nitrate of silla is composed of nitric acid and soda. W': e:a salphuric acid is poured upon nitrate of soda, the salt is decomposed, the sulphuric acirl unites with the soda to form sulphate of soda, and the nitric acsd becomes free. It is liberated in the form of a gas, and in this state it is used in making sulphuric acid. Remember its componentsoxygen and nitrugen. When sulphur is burned in air the oxygen of the air combines with it, and forms sulphurous acid. This is also a gas, but like most other acid gases it is freely absorbed by water. One hali mure oxygen than it already contains would, if cum bned with it, change it in sulphuric acil. The process of makiug sulphuricacid cin now be understood. First, salphur is burned to iorm snlphurous acid; scound, nitric acid is made to give a portion of its oxygen to transforn the salphurous acid into sulpharic acid; then the compound of mitrogen and oxygen which remains (deutoxide of nitrugen) sizes oxygen from the air (though not as much is wheabsorbed at first by the sulphurous iumes) becoming peruxude of nitrogen, only to be aznin robbed of its oxygen be the sulphurous anid, and so on rul bibitum, the sulphuricacid, as fast is it is iormed, combines with steam which is generated ior that purpose, and is farther absorbed by water. The engraring illustrates the apparatus by which this prooiss is cifectel. A An fumaers in which the sulphur is burned; in the current of hented gas is suspended an iron pot, \mathbf{B}, containing nitrate of soda and oil of vitriel. The nitric acid rapors are thus intimately mingled with the sulphurous funce, and pass throngh flues anto the clamber, FF. This chauber is of lead, and is supported on strong timber framework. Water two or three inclies in depth is placed upon the flix s oi the clamber D D, to absorb the acid. Jets of steam are admitted from the briler, E, through the
pipes, CCC. An exit fhe, G, permits the escape of nitrogon and nitric oxide, the only gases which can escape in a properly mamaged chamber. Some modifications of this process havo been invented by Gay Lussac and others by which saving is made in the amount of the salt used, but the general principle remains unchanged. The leaden chambers are frequently of enormons size, some of thens being thaee humdred fect in length by twenty in width, and twelve to fifteen feet in height. The acid as drawn off from the chambers is too dilute for use in the arts. It is therefore concentrated in lead, glass, or phatinum vessels, lead being used only for acids whoso specific grivity 18 not required to bo more tham 1-720. Thas is the brown acid of commerce, and it usually cuntains many mpur11 ties. The concentrated acid of commerce is much stronger, having as specific gravity of I-842, accordmg to Bineau.

We have already noticed two acids, mamely, sulphuric :and sulphurous, formed ly the union of sulphur and oxygen, as well as one formed by the union of sulphur and hydro-gen-sulphureted hydrogen. There is still another vaaced, contammg a small proportion of oxygen, called hyposulpharons acd. All of the oxacids combine with numeruus bases to form salts extensively used in the arts. It would extend this article too much to specaly thenr appheations and descrive them; they wonld fill volumes. But there is one class of those salts we must say sumethng about, mamely, the alums. There are several kinds of alums, of which the common alum of the shops is a type in its composition and its qualities. If ,ou examine a crystal of alum you will sec a white, partially transparent substance, which has a sweetish astringent characteristic taste. From such an examiantion yon יonuld hardly guess that it is composed re: five different elements, yet such is the cise. Two of these components are gases, oxygen and hydrogen, tryo of them are metals, alluminum and potassium; and the other is sulphur, which forms nearly one seventh of its entire weight. Throw your crystal upon a hot stove, and it will melt and froth and bubble, and finally become a dry, hard, white, and opaque mass. You liave partly decumpused the salt by the process ; at has lost $216-474$ th of its former weight. What passed off was only water, which is emmposed of hydrogen and oxygen; what remains is composed of four elements, and sulphur now composes nearly one-fourth the entire weight. In this state it is called anlydrous alum. The alums are in large demand in the art of dyeing, and the manufacture of the common alum is a large and growing indistry. it some other time we may describe the process of masing alum in full.

Take a lump of charcoal and a roll of brimstone and place them side by side. Nothing, to one unacquainted with the wonders of chemistry, would seem more improbable than these hard and opaque substances conld naite to form one of the clearest, most limpid and coloricss fiuids known. That is so, however, Charcoal is nearly pure carbon. Sulphur and carbon unite to form the bisnlphide of carbon, a flnid so clear and of so high a refracting pnwer that it has been used, inclosed in a triangnular glass box, for the prism of that most wouderful instrument, the spectroscope, of which you hare heard and read mach, and mill probebly hear a great deal mone cre another decaile passes.

Tako a piece of the ordinary rubber sold at the present in the shops: put it on a firo shovel and hold it over the coals ; in a short time it will so ${ }^{51}$-n and fry, and presently it will comur ance burning with a hlue flame. It is sulphur which burns with the blue flame, a very large propurtion of the substance called indiu-rubber being sulphus. By it feculiar process this rubber can be rendered hard as form, and in thes stato it is now used for combs, brush and knive handles, and ovon for the plates upon which dentists fix artificial teeth.

Sulphur is also largely used for bleaching, its fumes whale burning producing that effect. Straw goods are thus whitened.

We might fill this paper with the enumeration of the uses of sulphur and its compounds. Any chemist will tell you that we have only shimmed uver the surface of the subject. We have omitted to mention many of the properties of sulphur, sone of which have given rise to much speculation. Wulphur is found plentıfully distributed in the crust of the earth, but is most abundant in volcanic regions, nne of the principal sources being the Island of Sicily, where it is found in an uncombined state. There is perhapis no other substance, unless it be iron, unon which the arts and refinements of civilization are more dependent. The world could infinitely better afford to lose all of the precious metals and precious stones, rather than be deprived of its sulphur deposits. The thought may serre to render the substance more palatable, when your plysician prescribes it in the future.-Scientific dmericun.

> Geological Negatives

Mr. James Thompson, of Glasyow, Scotland, has contrived a new method of producing photograplic negatives of geolugical specimens. He saws from the stones thin slices containing fossil remains or other specimens; these when polished are so thin and transparent that they may be used as negatives for photographic printing upon the usual sensitive paper. Beautiful prints are thus obtained, having all the fidelity of nature itself. Large numbers of these fossil negatives have been prepared by Mr. Thompson, and he has undertaken to supply the British Muscum with duplicates.

A French pinysician has found by experiment that when six drops of absinthe are placed in an quart oi water, fishes will die more quickly when put in the mixture, than would be the case vere the same amount of prussic acid contained in the mater. The experiment only confirms the fact already well knorm that this drink is poisonous in common with all other strong stimulants. It may howerer have the effect to retard somewhat the growing uso of absinthe in this country.

New Memennes from Cochis Cempi.MM. Condamine and Blanchard have sent to the French 4 cademy specimens of the barl of a tree called haofach, which the Annamites regard as a sovercign remedy against diarrhain, dysentery and colic. Another bark called couden had similar properties ascribed to 2t. Haofach is considured best for certain intermitfent fevers, and couden preferred for diarrhoua and colic.-Student.

PUBLISIERS NOTICE.

The Canadian Phaimsaceuticari Jouratal is issucd monthly from the ofice of peblication on the Fiftcenthof cecry month. It will always contair information inraluable to Druggists, Clemists anel othcrs intercsted and connected w th the sale, compoundong, and dispensing oidrugs and medicines. The present munber will be sent io erery druggist in the Dominion, all of whom, it is hoped, will shono their appreciation of the enterprise by givany it sulbstantial support. Members of the Canalian. Pharmacentical Assuchation wall reecite the peiper frce as of right.
To Advertisers this Journal offers the best and indecd the only medium of reaching by a single adtertisentent crery Druggist in Canadu. Our rates, pullished on the first payc, will be foumbl love, and will be strictly adhered to in all cases. Advertiscments in urder to secure iusertion should be in the publisher's hands not later than the end of the month preceding each issue.
The Juurnal will be unaler the control of the fullowing Committee, who will be responsible for the due performance of all culvertisitu! contracts:
W. H. Duxispaugh, Chaimnen.
J. T. Sharter. H. P. Brunell.

Jous Coombe.
N. C. Irure.

Clarles Hooper. Robert W. Elliot.
E. B. Shuttleworth.
H. J. Rose, Scerctary.

All Communications connected reith the paper to be adlicessel, post-paid,
J. M. TROU'T, Pudisuer,

Canadian Pharmaccutical Journal, Toronto.

CANADLAN PILARMACEUTXCAL SOCIETY.

President, - - - Wh. ELLiot, Esq.
The reyulur meetings of the Shociety take place on the first Walncsiay crening of cach month, at the Mechanics Institutc, when, after the transaction of business, therc is a paper read, or discussion engayed in, upon subjects of interest and valuc to the members.

The Socicty admits as members, Chernists and Druggists of good standing, and thcir assistants and apprenticas, if ciected by a majority motc, and on payment of the folioncing fees:
Principals - . . . - \$4 00 per Annnm Assistants \& Apprentices, 200 "

The Jovrial is fumished free_to all mentbers.

Parlics ucishing to join the Socicty may send their names for proposal to any of the members of the Society. A copy of the Sonstitution and By-laurs of the Socicty acill be furnished on application.

BENRY J. ROSE, Sccretary.

TURONTO, ONT., NOV., 1868.

THE PRIZES FOR MEDIOAT BOTANY.

An amouncement will be found in another part of our columns regarding these prizes, and containing rules for the guidance of competitors. The liberal offer made by R. W. Elliot, Esq., to' place the sum of twenty dollars at the disposal of the Society, as a prize for the best cullection of Canadian medicinal plants, has had the effect of calling foeth two additional prizes, offered by the Society for the same object.

We hope our young friends will not alluw this excellent opportunity for distinction to go unimproved. The amount of the prizes is, by no means inconsiderable, and the honor to be achieved well worth attempting. Of still greater value is the amount of information and instruction which the competitor must inevitably derive from his researches in the field of botany ; and in this respect the successful and unsuccessful share alike. We trust the stimulus afforded by these prizes will have a good effect in inducing a desire for knowledse, on the part of our apprentices, not oniy in this, but in other depart. ments of science in which the druggist is interested.

In an able paper by Mr. Elliot, in the last number of this joumal, will be found a list containing the names of over three hundred Canadian plauts from which to select. It is not expected that the competitor will collect specimens of all these plants, in fact, number is unt essential to success, but general excellence and correctness.

IEOTURES ON CHEMISTRY.

The lecture committec have completed an arrangement for the delivery of lectures on chemistry, under the juint auspices of the Pharmacentical Society and Mechanic's Institute, of this city. The classes are to meet tro erenings at week, in the lecturo room of the Institute, and assistants and apprentices connected with the Society will be privileged to attend, without the payment of any iec. Opportunity for experiment will be afforded to students, and cortain eveniugs will be devoted to this purpose. The course will extend orer the winter months, and will, no doubt, be rell attended. We look formand to the time when the Societs will be able to proride a labomtory, and professors of its own in the rarious departments of Pharmacy; but, in the meantime, the arrangement which lias been made must bo deemed satisfactory.

DETEOTION OF ADULTERATION IN
 ESSENTIAL OILS BY MEANS OF IODINE.

To dealers in essential oile, the discovery of Dr. Tuchen has proved itself of great value, as affording a ready memes of detecting adulteration. At the present tine it is cmployed by many druggists in Canada, and it is necessary for thoso who regard the purity of the olls they use or soll, that they bo made accuuainted with the mode of using it. We brietly describe the methul recommended by Zeller-the best authority on the subject -and also give his classification of the different volatile oils in their behaviour towards ioline.
Five or six drops of the oil to be examined are placed in a watch crystal, or on a piece of glass, and about two grains of iodine, in powder, are dropped in the middle of the oil ; after the reaction is over the nixture must be stirred with a glass rod, and its appearance carefully noted. A refercace io the accompanying classifiation will at once indicate the nature of the oil under examina. tion.
I. Fulminating or decomposing with detonation, with much heat, and the generation of violet, and yellowish-red vapour.
(a) Quick and riolent fulmination, with mostly violet rapours-Oleum terclinthina, saliuke, juniperi, macidis.
(b) Brish, but less quick and violent fulmination, with principally yellowish red vapours -Oleum zeroli, bergami, limonis, aurantii, lurniulula, origani, copaira.
II. Quict and noiscless evolution of yellowish red or gray vapours, accompanied with a rise of temperature.
(a) Many yellowish red vanours, considerable riso of temperature,--Oleum cardamomi melissa, marjorance.
(b) Few yellowish red rapours, with perceptible heat,_Oleum rosmarini, Iyysopi, anisi vulgaris.
(c) Few yellowish red rapours, with little heat,-Olcum thymi vulgaris, saleia, millefolli, cubcha, cajcuuti, nentim, .risja, matricaric, arnica fior, ancthi, foniculi, anisi stellati, carni.
(d) Few groyish yellow vapours, little heat, Olcum calami, valcricuce.
(c) Fers grey vapours, littlo heat,-Oleum nigclles, cumini.
III. Solution without rapours, but with as rise of temperature.
(a) Considerable heat,-Oletm cinnameni Ccylon.
(b) Little, and very little heat,-Oleum cascurille, cydonic, absinthiii, cinnamomi Clin., caryophylli.
IV. Solution without vapours or heat.
(a) Forming a homogencous solution,-

Olcum cynar, tenaccti, menther piper, pet;oselini, sem. sinapis, sassafias, ruta.
(b) Forming two strata, -Olem asphulli, cera, succini.
V. Partial and very sparing solution, without reaction,- Oleum amyghlala amara, rosir.
The above renctions are supposed to take phace at ordinary temperatures, except in the case of oils of a thick consistency, in which n heat sufficient to proluce emmplete liquefaction is used
In a papur on this sulject veraten by J. M. Maisch, and published some time ago in the (Henbecal Newes, it is stated that hromine may bo advantageously employed for the same yurpose as iodine, and, indecd, to greater advantage, as it is in the liquid state, and capable of more energetic action. The use of a solution of iveline is also recommended. It may be prepared by allowng ether to tako up as much iodine as it will ; the solution is used in the proportion of three drops to five or six of the oil. The reactions are somewhat different, but can be easily ascertained by experment, or by reference to the paper alluded to, in which the subject is treated in a very able and exlanustive manner.

THE OANADIAN PEARMAOEUTIOAL SOOIETY.

The remel ir monthly meeting was held in the usual phace, on Wednestl:y cremmg, 4th inst., \dot{J}. T. Shapter in the chair.

After rontine busimess, the following were elected members :-

J. A. Nasmiti, Woolstock,

 George RaNhin, Turuntu,Astistants.
The Lecture Commettee presented the following heport:-

Our amtangement has heen made with the Mechanics' Institute and Dr. May, whereby junior members to the number of tharty-sin will have the right of attending chenical lectures, on Wednesday and Friday evenmas for fire months, conmencing after the 1 the instant.
This society is to pay the sum of ninety dollars as its proportion for lectures, light, heating, and rent, but a scparate arrangement will have to be made with the professor for anparatus bonken, and chemenls used by students in their experiments, or stadents may provide their own apparatus and reagents. The commitiec are of opimon that it will be better if the professor providns all things requisite without any charge wha der to the students and will endearor to agree rith Dr. May on that point.

The committee feel that it rould be entirely supertinous to urge cither on employers or juniors the muportance of these lectures as ameans of attaining a knowledge of the elements of chemistry.

The only expense to the student is the meraly nominal fee for membershin to this society. It is requested that those intending to join the class should leave their names as soon as possible sith MIr. hose, who will be
ablo in a few days to supply tickets, and information as to the text-books, $\mathcal{d c}$.
All of which is respectfully submitted. (Signed,)
W. H. Dunspavoh.
'loronto, November 4th, 1808.
On mution of Mr. Ellintt, sechnded by Mr. Hodgetts, the roport was received and adopted.
The Secretary called the attention of the meeting tu the dasimbihty of heepung up the practice of reading original papers each month, when the chairman: Mr. Shapter, hoped to be able tu supply one for December.

The committee on Legislation presented no report, but expect to do so next meeting. Mecting adjoumed.

Henix J. Rose, Secretury.

FAOMITIES FOR DISPENSING MEDIOINE.
 By HENRY HMOTH.

The position held towards the public by the aputhecary is an extremely difficult one. His qualifications entatle him to the first rank of sucucty; but whale the puble expects that he should have all the lugh qualifications nccessary for the proper performance of his duties, it by no means extends to him commensurate prase. Courtcousness and aflability, conscientiousness and accuracy, are but a fow of the qualifications that are demanded of the pharmacist.
To fill'his position to the general satisiaction, le should be it model of taleat and virtue. As the compoumding of prescriptions is the true object of pharmacy, all other tasks and efforts being but expedients for attaining this end, it is requisite for the apothecary to pussess cleverness and activity in preparing prescriptions. In appending the following, 1 therefore believe I can offer him some facilithes wheh wall prove both time and laborsaving.

1. A sulation of Sulphate of Quininc in Nulphatar Arul. - Take of sulphate of quinine one mance, mix with eight onaces of water, then drop carefully into it concentrated sulphuric acid, and stir until the quinine is diss,hved, then ald sufficient water to make the whole measure ten fluid ounces. Ten parts of thes solution will represent one part of qumane.

A smmarar solution may be made with aromatie sulphume acid.
2. A solution of Nitrate of Silter.-The exart weighmg of mitrate of silver in smadl quantities is very diflicult, and takes a great deal of time, which in dispensing is of great muportance. The solution is made by dissolving an ounce of mitrate of silver in sufficient distilled water to make it measure ten fluid oumces. Thas solution has to be kept in dark-culured bottles to prevent its decumposition by lught.
3. A Solutimn of Chloride of Zinc.- Chloride of zunc, being a delaquescent salt, will soon bucome unfit for weighing by using it often. The solution is made in the same way as the abore, by dissolving one ounce of chloride of zinc in sufficient distilled rater to mako it mensure ten fluid ounces.
4. A Mixture of Stry. uies veth Sugar.-
camnot be too carofully handled. Doses of one-twelfth, one-eighth, or one-quarter of a grain cannot be weighed with as much accuracy as when mixed with sugar ; the lightest breezo of air often nffecting the correctnese of the scale. Ono drachm of strychnia mixed with sufficient white sugar to make the whole weigh twelvo drachms, is a convenient mixture in most all-cases where small portious of strychia are prescribed.
5. Similar mixtures as the abore can bo made with morphine, opium, and tararemotic. The proportions may be made the same, or smallor.
6. A Concentrated Solution of Gum² Arabic. -Instead of using the powdered gum arabic wherever prescribed in liquids, it is better to use a solution of the gum in proportion 1:2; with this the medicine will always look nice and clean, and cmulsions made with it will be elegant.
\therefore In a good many instances the dispensing druggist will avoid straining mixtures by keoping solutions in the proportion of 1:2 of the following salts: Ammonia murias, magnesse sulphas, potasse nitras, sode sulphis.
8. Very practical are sulutions of several narcotic extracts, for example: Extracium hyosciami, extractum aconiti, extractum belladonne, extractum opii. As these extracts are often used in ointments, their solutions have to be concentrated 1:2, and as they are lisble io decompose when dissolved in water alone, an addition of alcohol is necessary ; glycerine is also a good solvent for them.
9. Misturre cretee is a preparation which only should be made extemporancously. For this purpose the dry mixture may be kept ready according to the Pharmacopuia, i. e.: 11. Crete preparate, two parts: ssechari albi; pulvis acacie as one part: mix. One drachin of this with half ounce each of water and cinnamon water mill make ono ounce of chalk mixture.
10. We cannot always get fresh lard, and as long as our unguentum sinplex is directed to be made with white wax-an already rancid body-it happens very often that an ointment of iodide of potassium gets yellow, instead of being perfectly white. A fer grains of hyposulphite of soda dissolved in a little water, added to such ointment, will turn it snow white.
11. Acctate of lead will change partly into carbomate of lead by the carbonic acid of the atmosphere or of the water; therefore solutions of it will always have a milky appearance. In all cases where it is prescribed for internal use, the precipitated carbonate of lead should be redisolved with a ferm drops of acetic acid, and the solution will be clear.
12. It is very impurtint in cases of poisoning to prepare a freshly precinitated hydrated oxide of iron. This should be done in the shortest time possible; therefore the necessary angredients hare to be kent ready separately in their respective proportions, that is: Solution of tursulphate of iron, four ounces; aqua ammenix, sufficicat quantity The precipitation is made according to the D. S. Pharmacopoin, straiaed, pressed fimmly with the hands, and then ir ixed with sufficient water to make it measure six ounces. The sulphate of ammonia partly remaining in the precipitate, does not interfere with the effect of the antidote.
All these prepamtions should be labelled in it proper nay, so that no mistake in using them may ever occur.-The Pharmacist (Chi-
cago.)

Manafaoture of Ollorate of Potasse.

Dr. Lunno (Dingler's Journal, vol. clexxix. p. 488) gives a clear and able description of some English manufactures and processes for this salt, of which, so far as wo know, none is mado in Amorica.

The method pursued is that usually mentioned in chemical text-books, i.e., pursing chloriue gas through milk of lime until its complote conversion into chlorate, and decomposition of the resulting solution by means of chloride of potassinm. The apparatus omployed is, in general, tho gamo as that originally used for liquid chlorido of lime ; but the apparatusnowadaysaro of such perfection as to allow no smell of chlorine to be perceptible on the premises. Both the gas and absorption-vessels are double and act alternately, the latter being provided with rotating stirrers, by which milk of lime is kent moring. An apparatus of this kind in a Lancashire establishment has is large number of absorbers, which are closo square tanks of cast-iron, 5 feet in ciameter and height, lined with stone-tilos, the iron being little affected by the chlorino; besides the tanks are kopt constantly nearly full of milk of lime. One of these tanks becomes saturated once in 3 days, and then yields $3 \frac{1}{2}$ cwts. of chlorate of potissa.
The mille shows at the beginning $8^{\circ} \mathrm{Tw}$. (sp. gr. 1-040), and when saturated with gas 28° Twr. ($1-140$). It is then of a pinkish color, and almost clear, except the gritty sediment from the lime, and a small portion of lime which will remain unattacked. The color is due to permangarates carried over in thec chlorins. The liquor after settling is evaporated in iron boilers, the sediment being mado to yield its freo chlorino by treatment with muriatic acid in a gas-apparatus proper connected with the absorbers.
While boiling down the solution chloride of potassium is added until the density reachos $1 \cdot 180$, the Stassfurth (Prussia) salt being proforred for the purpose. Evaporation is then continued until the density has arrived at $1-280$, when the first crystallization is allowed to take place; the mother-liquor from which is concentrated to 70° Tw. ($1 \cdot 3 \overline{5} 0$) for another crop of crystals, and in the larger factories a third crystallization is necoserry. The first salt-crop requires to be recrjstalized, for which purpose it is dissolved in boiling water until the solution shoms $1 \cdot 160 \mathrm{sp}$. grar., or by wet steam without fresh water, which operation is periormed in stono or leaden tanks. To facilitate the crystallizing, leaden strans are fastened scross the sides, is is the custom in making rock-candy; and for the purpose of obtaining large crytals, and especially in winter, to lengthen the time of crystal. growth, the tionks are surrounded by non-conducting material. A puculiar trick for forming fino largo crystals consists in adding in recrystallizing to orery 400 gallons (imp.) 10 lbs. of sal-soda, which undoubtedly sorres to remoro tho remaining lime from solution, and the precipitato of carbonato of lime carrics with it mechanical impurities. The crystals aro transferred to largo iron funnels lined with lead, on which thoy are mashed with cold mater, and then dried in a proper room at a temperature rarying from 65 to $70^{\circ} \mathrm{C}$., or upon hollor boxes of shect-lend, heated within by means of hot air or steam. The consumption for orery crit. of chlorate seens to be $6 \frac{5}{5}$ cirt. of manganese ar 60 per cont.

Manufacture of White Lead.

White lead, or carbonate of lead, is oxtensinely used in the arts. As a pigmont, when puro and mixed with linsced oil, it produces a beautiful white. It is also the baso and vehiclo for colors used in painting. Coments for n rtals are composed mainly of it, and in tho proparation of vulcanized rubber and liquid gutta percha it enters largely. In medicino it is employed mixed with linseed oil as an ointment for burns, scalds, ulcers, and excoriations. Of all the different preparations of lead the carbonate is the most poisonous to the human system, inducing what is known as the painter's colic in those engaged in its manufacture and in painters. This terrible disease, even if not fatal, frequently produces local paralysis, and the victim becomes a permanent cripple.

The method of manufacture is simple. The material, usually in pigs, of the purest quality, is melted in a fixed liettle and then run into very thin sheets. When made by hand, the process of casting these sheets requires consideablo skill. The operator holds in his left hand, by a suitable handle, a sort of shovel of sheet brass, the sides turned up, and dipping up a small quantity of the melted metal, he dexteronsly throws it over the surface of his shovel, when it almost instantly cools in a thin sheet, the supertinous metal running back into the kettle. A mumber of these shects are loosely coiled, forming a sort of cylinder to be submitted to the aiter action of the acid.

In large concerns, however, this hand casting las been supereeded by a method very much superior, the invention of Mr. Augustus Graham, of Brooklyn, N. Y. A serics of molds, correspondung to the shovel just mentioned, and connected to an endless chain, are successively presented to a current of melted lend, forming shects in the shape of grates, called "buckles." from their resemblance to the large shoe and knce buckles worn in furmer times. These buckles are discharged at the further end of the apron and placed in earthen pois, their endges resting on inward projecting ledges about three inches from the bottom of the pois. Each pot contams a small quantity oi acetic acid, not however reaching the lead buchles. The pots have holes near the top, and they are set on a floor covered with tan, the holes of the pots opposite each other to insure a free passage, from one to the other, of the acidulated gases. The first layer of pots is covered with boards, over which is spread another layer of tian, and on this another layer of pots, and so on to the height of perhaps twenty fect. The whole is covered with a thick layer of tan.

Then tho process of decomposition begins. The tan femments, generating heat, which causes the vinegar to evaporate and its vapors to circulate among the lead. This gocs on for sereral weeks, and the whito carbonato falls down in snowy heaps. When the process is supposed to be completed, or the sction of the acid ceases, the pile is taken down, the carbonate removed, and those portions of the lead which have not been reduced, called "blue lead," aro cleansed of their white coating and returned to the melting pot.
The carbonate or white lead, in the form of powder, is then mashed in tanks with water. These tanks are placed high enough to draw off the lead paste irom their bottoms to immense pans called drying kilns, which hare
false bottoms, botween which and the true
bottoms stoam is admitted to hasten the ovaporation of the water. When dry, tho powdered lead may bo packed ready for market, but usually it is ground in oil, in which form it is generally sold.

It is seldom, hovever, thant it is offored pure; sulphato of barytes being extensivoly used to adulterate it. This substance is nearly as heavy as white lead, and is perfectly white but not so brilliant. It has not the body of white lead, but $1 s$ not so easily affected in color by nuxions gases, whito lead being soon discolored by sulphureted hydrogen gas. -Šcientific Americun.

Ozone.

This remarkable substance, discorered by Schoinbein in 1840, has lately been the suluject of numerous researches. dialignani says: "Our readers linow that when air or oxygen is traversed by frequent electric sparks, it acquires a certain smell similar to that which is sometimes observed after a storm, or oven a strong flash of lightning. It was generally admitted by our forefathers that when the Evil One did mortals the honor of paying them a visit his exit was always marked by a smell of brimstone, that being very like the odor wo are alluding to, and most appropriately attributed to the enemy of mankind, who was known to be as great amateur of the electric fluid. Ozne is not soluble in water to any degree worth taking into account : a heat of from two hundred and fifty to three hundred degrecs contigrado will decompose it: but it should be remarked that it hasnerer yet been obtained in astate of purity, it being gencrally mixed with an enormous quantity of air and oxygen. But even in that stato it evinces much greater power than the latter; it will, for instance, transform silver moistened with water into black peroxido of that metal without the aid of heat; it is rapidly. absorbed by iodine and mercury, each in a dry state, and it will transform nitrogen into nitric acid by the aid of potash or slackened lime. Its property of turning starch blue when impregnated with iodide of potassinm has been long used as a test of its presence; but it is a very imperfect one, since other substances produce a similar effect. It exercises a powerful action upon organic substances, and it is this which has recently called it into notice again. It has been shown by Dr. Scharr, of Berne, that ozone, as rell as substances impregnated rith it, will kill animalcule with certainty and rapidity; and, as recent rescarches seem to place it beyond doubt that mest epidemics, and cholera among the number, are owing to micrezoaria, great hopes are entertained of its being possible to use ozone in hospitals as a disinfectant; and, perhaps, to extend its use still further. As might have been forseen, howevor, from its being amodification of oxygen, it exercises an innitating action on the respiratory organs, a drawback which must necessarily reduco its application to sanitsry purposes nithin narrow. limits."

Cider may be preserved sweet for years, by putting it up in nir-tight cans after the manner of prescring fruit. The cider should be first scttled and racked off from the dregs, but fermentation should not bo allowed to commenco before canning.

Oitrato of Bismuth and Ammonia.

The want, long realized, of sume componnd of bismuth which will dissolvo in the stomach, or may be administored in the form of a solution, has given rise to one or two formule which are comparatively now, and which wo publish withont any romarks upon their therapoutical action or curative merits. Tho moot approved of these is the dunble citrate of bismuth and ammonia, tho first step in the preparation of whech $2 s$ the formation of the citrate of bismuth alone. This is done by dissolving 240 grains of the subcarbonate of the metal in 360 grains of oflicinal nitric acid, and when the solution is effected, adding an equal part to tho acid, by weight, of distilled water in small quantities at a time. 'I'o this solution another, composed of 300 grains of citrate of potash in one pint of water, is slowly ndded, with constant stirring to favor reaction. By a combination of the nitric acid of the ternitrate of bismuth, as above formed, winle at the same time an insoluble precipitate is formed by the union of the citrate acid with the bismuth, which latter salt is thorvughly washed with distilled water to free it from the nitrate of potash, and dried with a gentle heat uyon a filter.

To prepare the citrate of bismuth and ammonia, the bismuth salt as prepared above is rubbed with water sufficient to make a paste, or if the two operations are immediately consecutive, the drying of the citrate of bismuth after tho washing may be omitted. Strong aqua of ammonia is then to be added to the paste until the citrate is dissolved, carefully avoiding an excess of ammomi. After filtering, the solution should be spread on glass or porcelain plates to dry. As thus prepared it is in the form of shining, colorless, scmitransparent scales, having a slight acid reaction and taste. It is soluble in cold and hot water and in diluted alcohol, but less soluble in ether.

Its formula is BiO^{3}, $\mathrm{NH}^{4} \mathrm{O}, \mathrm{C}^{19} \mathrm{H}^{5} \mathrm{O}^{11}+\mathrm{o}$ $\mathrm{HO}=\mathrm{BiCl}^{12} \mathrm{~N} \mathrm{H}^{140} 0=473$. Besides being sometimes given with some vegetable extract in the form of a pill, it is likewise employed in solution in water, or water and a little alcohol, sixteen grains of the salt being allowed to one ounce of the solvent, and the dose being one drachm, containing two grains of the citrate.

Another process his been proposed for making this substance in solution, which inrolves less trouble than the other. It is by dissolving trenty ounces of citric acill in tro pints of water, and adding eighteen and onefourth ounces of the crystallised ternitrate of bismuth. When the latter is dissolved, the strong aqua ammonia. previously diluted with an equal volume of water, is added until the liquid is neutral. It is then diluted still further, until it becomes of the required strength for uso, as already manied. It is already beginning to be preseribed by the faculty of this country, but mas first propssed in England.-Jour. of Applici Chemistry.

Photography.

Produchig Colored Pictcres.-Vaious attempts have been made to obtain photographs of objects in their natural colors. Theso attempts have been so far successinl is to produco photographs in which every color of the original mas faithfully represented ; aren the iridescent colors of the pea-
cock's feather hovo been beautifully photographed. It is, however, not yot quite certain whother any means havo beon discovered by which the colors can bo permanently fixed, as hitherto they linve slowly faided away, and becomo mo uniform reddish tint. It is generally admitted that, up to the present time, tho most successful jhotogmphor in producing colored pictures is M. Niopeo de Saint Victor, whose process is thls : He takes a daguexrevtypo, or silver cunted plate, and dips it into at weak solution of hypochlorite of sudium, having a specitic gravity of $1 \cdot 35$, until it lins assumed a bright pinhish hue. The plato is then covered with a solution of dextrine, saturated with chloride of lend; it is then dried, and subsequently submitted to the action of heat for several hours until the temperature of the plate reaches from 95° to 100°, or elso expuse the plate to the rays of the sun as as substitute for artificial lient, under a sheet of paper which had been stecped in a: acid solution of sulphate of quinine. The plate is then ready to be placed in the cameri obscman, and to receive the colored picture of the spectrum, or any other object. It is said that he has succeeded in incrensing the stability of the colurs developed on the sensitive surface by covering the plate with an alcoliolic solution of gum benzoin. This branch of photography has been called Heliochromic.

Orystallization.

A very curiuns discuvery has recently been made by M. Auguste Bertsch, and turned to practical accuunt by M. Kulhmann, the celebrated chemist. Who is there that has not, during cold winters, stopped to admiare the beatifully symmesrical and yet fantastic figures of leaves and flowers depicted on the window-panes of a well-heated room, the air of which is charged with aqueous particles? M. Bertsch has found that Epsom salts (sulphate of magnesia) dissolved in beer, together with a small quantity of dextrine (artificial gum), and in this state applied to a pane of glass with a sponge or bansh, will, on crystallizing, produce the ilentical designs above alluded to, hitherto considered peculiar to water; with this improvement, however, that the liquid may receive any color whatover, at the option of the operator, The ephemeral productions of frost may thus be easily perpetuated; but M. Kuhlmann, on being apprised of the fact, conceived the idea of going a siep further, and transferrang these farylike creations to stuffs and paper. For this purpose he furst got the arystallizations on sheets of iron, on wheh he afterwards laid one of lead. By means of a powerful hy: draulic press the minutest details of the figures in question were durably mpronted on the soit metal, and a copy of them in relief was then obtained by galvanoplastics. But inere another difliculty arose : in the impression of cotion stuffs the pattern must be continnous; whereas in M. Kuhlmann's plates tho lines at one end would clearly not coincide with those at the other, so that disagrecable interruptions trould be caused in the printed desigas. This obstacle, howerer, has been overcome in a most ingenions manner by cfiecting the crystallization on the cylandrical surface of 3 roller. A slight rotary motion mparted to it will prevent the liquid from accumulating at any particular point before it las eraporated.

Insalubrity of Oast-Iron Stoves.

When the attention of the Academy of Sciences of Paris was drawn somo time since by M. Carrot, one of the physicians of tho Hotel Dicu of Chambery, in soveral papers, to the possible evil conseduences of the use of cast-iron stovea, but little interest was excited in the matter. Recontly Genoral Morin lins again brought tho subject forward with bettor success. M. Carrot does not lesitato to assert most positively that cast-iron stotes are sources of danger to those who habitually employ them. During an opidomic which recently provailed in Saroy. but upon which M. Carret does not furnish us with any detailed information, ho observes that all the inhabitants who wro affected with it mado use of cast-iron stuves, which had lately been imported into the country, whereas all those who employed other modes of fixing, or other sorts of stoves, were left untouched by the disease. An epidemic of typhoid fover, which broke vit some time after at the Lyceum of Chambery, was resrarded by the same author as being influenced by a largo cast-iron stove in the children's dormitory. General Morin speaks in the lighest terms of M. Carret's memoirs, to which the recent experiments of MML. Troost and Doville give additional importance. These ablo investigatora have esrablished that iron and castiron when heated to a certain degreo become pervious to the passage of gas. They have been cnabled to state the quantity of oxide of carbon which may, as they suppose, transude from a given surface of metal, and have shown that the air which surrounds a stovo is satumated with hydrogen and oxide of carbon. They conclude that cast-iron stores when sufticiently heated absurb oxygen, and give issue to carbonic acid. General Morin related some comparative experiments which had been performed by M. Carret, and which, he said, corroborate this theury. Thus, after having remained one full hour in a room heated to 40° (centigrade) by means of a sheet-iron stove, M. Carrot perspired abundantly, got a good appetite, but felt no sickness whatever; he had obtained the same result with an carthenvare stovo; but the expeximent, when performed during only one half-hour with a cast-iron stove, had brought on intense headache and sickness. M. Deville, at the same sitting of the Academy, supported these views with cunsiderable warmth. The danger which attended the use of cast-iron stures, lie sad, was cnormous and truly formidable. In his lecture room at the Sorbonne he had placed two electric bells, which weso set in motion as soon as hydrogen or oxide of carbon was diffused in the room. Well, during his last lecture the tro cist-iron stuves had scarcely been lit when the bells began to ring.
"These facts are certainly startling, if we consider the reputation of comparative harmlessness which these articles of domestic use had hitlierto enjoyed. In France, particularly, the lodigings of the joorer classes, the barrack-rooms of the soldiery, the artists' studios, the class-rooms of large schools, dic., are commonly heated by this means. Of course we are inclined to question M . Carret's conclusions; but the apparently accurate character of the facts recorded, joined to the authority of those who have brought them forrard, demand for them a serious inrestigation. We are glad to be ablo to add that a comimittee has been appointed by tho Aca-
demy for the purpose of oxamining thoroughly into the subjent This committec is composed of MDD. C sue Bernard, Morin, Fremy, Deville, and Bussy, and wo shinll nut fail, when tho time comes, to mention what shall have beon the result of their researchos." Lancet.

On the Oomparative Aotion of Various. Disinfeoting Agents.

Dr. Beranger- Ferrud, of the Fronch navy, nfter trying wood charcoal, chlovine, chloride of lime, carbolic acid, and protosulyhate of iron in devdorizing the bilge water of ships, comes to tho conclusion that permanganate of potassan far exceeds them ull in rapidity of action and thoroughness of effect, and says: "I made uso of a solution of permanganate of potash, of the strength of half an ounce of crystals to a quast of water. Ono ounce and a half of this solution, which hasa fine crimson color, added to a pint of foul bilge water, effectually removed all bad odor in three minutes, with a clange of color to a dirty grayish-brown.
"The purifying action of permanganate of potassa is so remarkable that its success in the disinfection of putrid matters of every kind may safely bo assunned. Ihave derived the greatest advantage from its use for many other sanitary purposes besides those just mentioned. It not only effectually destroys the foul odors arising from suppurations, and from putrefying and fecal matters, but it acts likewise on many other odorous substances. I will site an curious fact in conformation of this. Having one day inadvertently inbued my hand with a concentrated solution of carbolic acid, 1 could not rid myself of the penetrating and offensive smell. Repeated washings with soan, followed by applications of vinegar, chlorite of lime and ammonia, failed to remove the odor. Being on the point of attending a consultation to which I was very reluctant to carry so nasty a sunell, I was in despair. The idea occurred to dip ny yingers in permanganate solution. The frist application caused a shotable diminution of the carbolic odor; after the third it had: entirely gone."-Med. Press and Circular.

Iodine and Carbolic Acid.

A solution, containing ivdue, carbolc :acld and glycerine, has been introduced to the medical profession by Dr. Percy Boulton, who claims for it therapeutic virtues of superior efficiency.
Dr. Boultun's solution as prepared as fol-lows:-

Acid Carbolic Crjst. (fusa).

The iodine color gradually disappeass, and the solution eventually becomes colorless. The time necessary to complete this change depends on the teniperature-at $60^{\circ} \mathrm{F}$. eight to ten days are required ; if the cork of the botile is secured, and the mixture exposed in a water bath to a temperature of from 90° to 100° F., the clange will be effected in eight or ten hours. The change takes placoas quickly in diffused light as in direct sumshine, provided the temperatures are equal. The solution exposed to sunshine becomes somewhat tarbid and doposits a muddy precipitate.

The change is due entirely to the carbolic
acid, glycorino alono, medersimilarconditions, offecting no chango in the fodino solution, whilo carbolic acid acts equally well with or without tho presonce of glycerine.

The character of the change is probably the transformation of tho rodino into iodide of formyle (iodoform), at the expense of the carbon atoms of the carbolic acid.

Tho solution prospesses antiselptic and stimulant proporties in himarked degree, and las not with favor as an application in the form of injections, gargles, and lations "in cases of sure throat, ozema, abscessos in the ear, and foul or indolent ulears."

It has also been recommended as an injection in cases of maternal hiemurrlooids, and by malalation for throat and bronchial affections. When used for inhalation the glycerinu cim bo omitted. -Charles Juilloch, in Julnmal of Pharmacy.

Eating Olouds.

Dr. Livingstun, relating his adventures on Lake Nyassa, thus tells one cumiusity which he fell in with. During a portion of the year, the northern dwellers on the lake have a harvest which furnishes a singular kind of food As we appruached our limit in that direction, clunds, as of smoke arising from: miles of buming giass were ubserved bendins in a southeasterly direction, and wo thonght that the unscen land an the upposite side was closing in, and that we were new the end of the lake. But next morning wo sailed thrungh one of the cluads mo our own side, and discuvered, that it was nuthut smone or haze, but commtless milhons of mmute midges called "kungo" (a clund of fug'. They filled the air to an inmense hiyht, and swamm upon the water ton light to sink in it. Eyes and month had to be closed while patssing through this living cloud, they struch upon the face like fine drifting snow. Thousands lay in the boat after emerging from the clonds of millges. The people gathered these insects by night and boiled them into thick cakes, to be used as a relish--millions of midges in a cake. A kungo catke an inch thick, and as large as the blue bonnet of at Scotch plowman, was offered to us, it was very dark in color, and tasted not unlike caviare or salted locusts.

How to Poison Ohildren.

One naturally tunches the point of his pen with great timidity at a reputation like that of the illustrions Liebig. But the learned professnr, since his stay in Paris in attendance on the exhibition, has promulgated in the journals of science new foud for children, which he decinres is being fed with success to thousunds of children in Gernany; or, to use his omn expression: "4 dics petits tudesques par milliers." This food is a clemical compound, intended to contain the component parts of human milk, and to be a substitute for it. To nccomplish this object, that is to say, to furnish tonaco-born children, deprived for any reasnn of their natural food, a substitute, he went to work and reproduced a milk by chemistry, which, chenically speaking, was correct, and which, he contends, cliildren may take with perfect safety and advantage.
With such an anthority as that of Licbig, therefore, the wholusoientific world of Europe has been tryiug this new coupound; for, to find a substitute for mother's mills, esnccially for the use of the founding hospitals, is an
immenso desidoratum. But here at Paris it was trici on but four childron, and theso four it killed two in threo days, and two in four days. The oxperiment was minde at the Lying in Hospi'al of Dr. Depani, professor of climical obstetrics of tho faculty of Paris, nnd the children solected wore those abamdoned by theii mothers. The artificial milk quickly bronght un biluous purgus and prostration. Of conrse, Prof. Licbig declams loudly against tho fairncss of tho experiment ; but Dr. Depaul is ac computent julge, :and the whuld Academy of Medicine, after a fair report from the chemists in their body, have decided nut to take the responsibility of a further expernuentation with so dangerous a compunul. What is the use, the Academy judicluusly says, since wo have in our hands so excellent at substitute, nud so nearly an analogous substimee, in cow's milk, with tho addition of a little wnter iud sugar? And upon this substance, which is so easily obtainable, tho Academy has decided to rely for tho feeding of the fummelings aul all other children pliked m their charge. Prof. Liebig has undoubtedly lust a point in this discussion.I'aris Con. 'Limes.

Tanvas.-Mr. H. Miller Raghand has invented a prucess for preparing hides to receive more readily the nction of tannic acid. After the hair :mad particles of Hesh have heen remaved and the hides have been moperly cleaned by the action of lime, the first stcy in this ness process is to phace the hides in water sufficient to cover them. The hides are to be idaced in separately with the fleshy side upnatds, and are to be spronkled with bran in the followings propurtions:-
Light hides, for uppers, etc., ench skin 6 ounces calf skins
Sheepskins....
Heary hidits, for sole leather
In this vat the skins must remain until fermentation lhas taken place, which will be, in warm weather, in about two days, but in cold weather somewhat longer. After this the skins must be removed and seraped from any adhering particles of linne or other substances. When this has been done the skins are suljected to the action of mustard seed, which forms the distinguishing characteristic in this process. It is carried out in the following manner:-A wat of proportionate size is filled with a sufficiency of water to cover the skins, and to this water there must be added for every hundred pounds weight of the skins, whlen drg, five pounds of ground Italian mustard seed, and five pounds of barley meal. When these ingredients hare been thoroughly mised with the water, the skins must be dipped therein, so that they may be perfectly siturated with it, and they must be left in this dip for the following length of time:-
Calf, shecy or gaat skins................... 24 hours
Light hides and kips.
Heary liites, for sole leather................ 48
When this time has expired the skins must be taken out and hung up to dry, but only partinlly, as when suhbjected to the noxt process they should stillto in a danup condition. The dip which has just been doscribed has a yery porterful action on the skins; the combined action of the mustard seca, barley meal, and heat thereby genernted, is to open the pores of the shins, and thus to rendor the remaining processes ini tanuing thent by means of bark much more speedy than under any oiher methods hitherto known.-Student.

Colourina Mattar.-This invention consists in the proluction of a red colouring matter, by tho oxidation of a product isomoric with maphtalamine, mad which is obtained by distilling naphataline and taking tho products of higher distillation to mix with the naphtalamine. The maphtaline is trented with nitric acid of 1.33 degrees density; the nitromaphtalino obtained is thon washed and reduced by either irom and acetic acid, or by hydrochloric acid and zine; this reduction is energetic. It is distilled after reduction. The nophtaline passes over first, then the retort cools a little, and afterwards it is heated to a higher temperature, when a second body will phas over. This product of higher distillation is treated at about 250° Fah. with about 50 per cent. of nitrate of mercury, very dry, mid a quantity of napthalamine equal to that of the second body is added. They are left in contact for about a quarter of an hour, and are then treated with boiling water containing an acid, preferably a vegetable acid. The colouring matter is dissolved and the mixture filtered to separate the raw materials. M. Alexandre Clavre, of Basle, is the discoverer of this process.-Stin deat.

Extracteng Colouring Matter fron Madoer.- MI. Alexandre Claver, of Basle, has discovered is method of extracting the colouring matter from madder, which seems to be useful in that it increases the yield of colour. It consists in extracting the colouring matter or properties of madder by petroleum or other hydro-carbon in the presenco of mineral acids. The petroleum or other hydro-carbon is heated to 100°, and the alizarine or flowers of madder brought to 3 pasiy, sticky state with about five times their weight of hydrochloric or sulphuric acid which is added to them. The mixture is lept at the same temperature for an hour or two, it is then filtered, and on cooling, the colowring matter will precipitate from the petroleum which held it in sulution. The chicf feature in this invention is the use of acids, without which the madder flowers would yield to the solvents only a very small part of the colouring matter. The advantage of the extraction of these products is to bo ablo to apply the madder, that is to say, the colouring matter or properties of the madder, directly in printing.-Student.

How to utrize Leeches.-A paragroph with the above title was copicd from Once a Week into the Jovrsal of the 3d inst., giving the credit of the inrention to the "German doctors." There is nothing ner in the discovery that they may be tapped and continue sucking. is long ago as when (I was physician to tho Boston D ispensary (1845), we used to puncture then with a cataract needle or the point of a lancet, shile at work, Ieeches were not so abundantly supplied as we then thought necessary, and this was tried satisfactorily. One leech rould often do the rork of two or three. The United States Dispensatory says: "Ireches will continue to suck after their tails are cut off, which is sometimes done, though it is a barbarous practice." Puncturing does not kill then, and some physicians have emptred them in that way, as they are less injured than by stripping, salting or pickling.-C.E. BocinvaHax, MID., in the Bostor Mredical and Surgical Journal.

Syr. Ferry Phospir. QoineetStryohnice. - Λ syrup now in uso under the above name is made as follows. As this mroparation is very linale to chango, it should not be kept for my length of timo :-"5 drs. Ferr. Sulp., 6 drs. Sodie Phosph., 192 grs. Quina Sulph., q. s. Acid Sulph. Dil., q. s. Aque Ammonio, 6 grs. Strychnio: 14 oz. Acid Phosph. Dil., I4 oz Sncchar. Alb. Dissolve the Sulphate of Iron in 4 oz. of boiling water, and the Phosphate of Soda in 2 oz . of boiling water. Mix the solutions, and wash the procipitated Plosphate of Iron till the washings are tasteless. With sunficient diluted Sulphuric Acid dissolve the Sulphato of Quinine in 2 oz of water; precipitate the Quinine with Ammonia water, and carcfully wash it. Dissolvo the Phosphate of Iron and the Quinine thus obtained, as also the Strychnia, in the diluted Phosphoric Acid, then add the Sugar, and dissolve the wholo without heat. The above syrup contains about 1 grain of Phosphate of Iron, 1 grain of Phosphate of Quinine, and 1-32 of a grain of Strpelmia, in each drachm.

Pumpying Inosi-Mr. Charles Denton Abel has patented a communication from John Francis Bennett of Pittsburgh, United States, for the purifying of iron, from sulphur and phosphorus csuccially. After the molten iron has been treated by Bessemer's process for elimination of the carbon, it 18 furthen subjected to the action of carbonic acid, which it is said becomes decomposed, the carbon remammg with the iron while the oxygen unites with the sulphur to form sulphureous acid gas which escapes. In like manner the phosphorus unites with the oxygen of another portion of the carbonic acid forming phosphoric acid, and its carbon remains with the iron, should it be desirable to get rid of this carbon, air may be be passed in as in Bessemer's process, and this carbon introduced by the carbonic acid can be burnt out. There will be also a decomposition of the carbonic acid by the iron with deposition of carbon. While the blast of carbonic acid is passing through the molten iron the temperature of the metal will fall somerrhat, losing about one-fourth of the additional heat gained by the passage of the atmospheric blast. Thas, however, is rather an advantargo than othervise, as it is found that by the atmospheric pnemmatic process, the iron is rendered almost too fluid by extreme heat. If preferred, the carbonic acid may be heated before entering the converter or vessel where the molten iron is acted upon. Carbonicacid may also be used with advantage in removing sulphur, and other impurities, from sulphides of copper, zinc, nickle and other metals, by passing it as a blast-current through the metals when in a molten state. A modification of this process may be employed; it consists in allowing a small portion of carbonic acid to enter the blast cylinder together with the air, and thus subjecting the molten crude iron to a combined blast of atmospleric air and carbomic acid gas; by this means the impurities are removed during the process of decarbonization.-Student.

New Mode of Praparing Mercurlal Ontuent. - By T. H. Hart, Apothecary, New Orleans.-Finding the nercurial ointment, as usually met with in commerce, to vary in strength and purity, and many complaints by physicians having been madu of its irritating effects, I rould suggest the follow-
ing mode of proparing the same as offering tho advantage of cortainty, freshucsa mid oasy expection. Take of stearino (ind doprived of its fluid parts by strong pressure) and mercury, each 1 lb ., tincture of benzoin (saturated) 4 drachms; into a mortar to which the ointment is intended to be made place n freczing mixture of ice pounded 12 , salt b_{1} potiss nit. 5 parts. Introduco into this tha mercury containcd in a test tube or other suitable vessel; nllow it to remain till thu tomperaturo has fallen to 32 deg.; or bulow ; removoand wipe the mortar thoroughly dry; immediately introduco the stearine and mercury ; when the trituration is nearly completed, add the tincture of benzoin by small portions at a time. In this manner, under favorablo circumstances, 2 lbs . of ointment cam be made in fifteen minutes. The tincturo of benzoin can ve omitted if desired, but will be fomd of great benefit in retarding ran-cidity:-The New Orleans $\lambda[5 c d$. and Surg. Journal.

Cabar Sounces fon Sulphunous Acid in the Ladoratomy.-For ten years or more the preparation of sulphurous acid and oxygen from oil of vitrol or white vitrol, mixed with incombustible matter, has been applied. Nowadays sulphurous acid and its salts likewise are coming more and more into demand as antiscputics and disinfectants, and new methods are introduced to produce them still cheaper. Among these are now to be mentioned proninently the cheap sulplates, as copueras, lead sulphate, white vitrol, and bluestone, not alone, however, but mixed with a portion of brimstone, the calcination of which together yields motallic sulphurets and sulphurous acid gas, of which the former product in many cases is even the more valuable by far. So in the case of copperas, the usful sulphate of iron, and in that of bluestone, a blue sulphate of copper.

Hard Cements.-(1) To four or five parts of clay, thoroughly dried and pulverized, add two parts of fine iron flings free from oxyd, one part of peroxyd of manganese, one-half of sea salt, and one-half of borax. Mingle thoroughly and render as fine as possible, then reduce to a thick paste with the necessary quantity of water, mixing thoroughly well. It must be used immediately. Aftor application it should be exposed to warmth, gradually increasing almost to white heat. This cement is very hard, and presents complete resistance alike to red heat and boiling water. (2) To equal parts of sifted peroxyd of manganese and well-pulverized zine white, add a sufficient quantity of commercial soluble glass to form a thin paste. This mixture, when used immediately, forms a cement quito equal in hardness and resistance to that obtained by the first method.-M. Scluartic.

Clenr Tractisg Paper.-This paper is made with Canada balsam, dissolved in turpentine, and applicd to the surface of the sheet; after which the paper is hung upon a fine thread line to dry. If not sufficiently transparent, a second coat like the first may be given. When the second coat of balsam varnish is dry, the surface of the paper should be rubbed with a mixture of equal parts of nut oil and turpentine, and aftervard with wheat flour, which must be all carefully wiped off again, with a clean rag. The sheet is then hung upon a line again and thoroughly dried.

Richarnson's Styptio Colcord. - Ethor (absolute), l'annin (pure), to be treated with absolute alcohol, by digesting for several days. This makes a thick mixture, to which the other is now to be added, until the wholo has become quite fluid. Next take gun-cotton, (pyroxyline), and add to the solution of tannin until it will no longer readily dissolve. This reoms to be the "Styptic Colloid of Richardson." Tu improve its odor a little tincture of benzoin is fimally mixed in. All this appears plain enough, and if tho directions to use strong articles bo followed the article will, no doubt, be produced. It may probably bo purchased now from the manufacturing chemists.-Drugyists' Civcular.

Axcohol from Lichens.-The "Archives des Sciences" for August contains a trauslation of a Swedish paper by M. Sten Stenberg, showing the large quantity of amylaceous manter contained in cortain lichens, among them the reindeer moss, (Clandophora rungiferina), existing in immense quantities in certain countries of the north. He converts the amylaceous matter into grape sugar by heat and acids, ferments it, and obtains alcohol, which he states to have an aromatic odor like that of almonds.-Student.

Action of Duckweed.-M. Deleérain has a short paper in "Comptes Rendus" on the decay and decomposition of plants in marshy water when duckweed grows on the surface, and intercepts the solar action. He shows that the plants no longor give ont oxygen, and that $;$ sh die for want of that element. This he considers the trie cause of their decease, and nut the presence of sulphuretted hydrogen, arising from the decomposing submarine plants.

Development of the Eac.-From observations on snails, frogs, nevts, etc., M. Perez affirms that an egg begins by the formation of a nucleus at the bottom of the orary. The second step is the transfurmation of the nucleus into a cell by scission of its perpheral layer, which 'indivadualizes itself into a membrane (the vitelline). Third step, first scission of the nucleus, producing the germinal vesicle and spot. Fourth, deposit of vitelline granulations in the primitive liquid of the ovule. He adds that the genesis and development of the male cells (spermatozords) follow the same course, but with differences arising from the relative quantity of the vitelline granules. Situdent.

OANADIAN MEDIOLNAL PLANTSS.

prizes.

Pryzes are offered for collections of indigenous medical substances of vegetable origin, as follows:-

1 1st Prize-Fifteen Dorlabs-a copy of Griffith's Medical Botany, and Certificate.
2D Prize-TEN Dollars-a cony of $W_{\text {ood's }}$ Class-Book of Botany.

3D Prjze-FrveDorians-a copy of Wood's Class-Book of Botany, and Certificate.
Conditions of competition to bo-
Ist. Competitors to have becn engrged in the druy trade, and for not morc than thrce yars, and to be members of the Pharmacentical socieity previous to 1869.
2. Sinecimens to be forwarded (carriage paid) to. the Secretary of the Society, Toronto, by 1st September, 1869, with a sealcil letier, cnclosing the address of the competitor, a certificatc from
his employer that the collection has been made by the competitor solely within ayecer; that he haes been engaged in the driey trade charing that time, cund thut he has not bech more than three years so enyagcel at the date of this notice.
3. Euch specimen is to be carefully prepared reudy for sale or use, and packed in a paper bag. On cach shatly be vertten layilly, the common and scientific names, the dete and locality of collection, and a private mark, which shail «lso be put on the outside of the letter accompanyiny the collection.
4. I'hree judges shall determbne the orler of merit; they shall lic at liberty to withhohl any or all of the Prizes, if the collections du not warrant an aucurd, and to select such specimens as thry may dem meritorivus for the Museum of the suciety, which specimens will hate the nume of the collector pat upon them.
5. The points of competition to be namber of specimens, condition, correctuess of naminy, and gencral cxcellence; quentity a scooudary consideration.

Collections to which Prizes are auturded will be sent to the Provincial Exhibition at the expense of the Socicty; and any Prizes secural there, shall be for the benefit of the collector. Adelicss-C'ollections.

Chuedian Phamuceutical Socicty, H. J. ROSE, Secretary,

Septenber 15th, 1868.
Toronto.

The buttles should be slightly warmed before filling the pomade, and in summer fifty per cent. more spermaceti should be used.
circassian C'resm.
B. Best Olive Oil 24 oz.

White wax.............................. 3 oz.
Spernaceti................................ 2 oz.
English Nil of Lavender....... 2 drams.
Oil of Cloves $\ldots . . \quad1$ "
Ess. of Ambergris............... 4 "
Colour the oil with a little Alhanet Root
to a slight red strain, and add the other ingredients, secuudum artem.

Bear's Grcase.

B. Prepared Suet 6 oz.

Lard-washed. 4 oz.
Olive Oil 2 oz.
Oil of Bays $\frac{1}{\ddagger}$ oz.
" Iremon..................... $\frac{1}{4}$ nz.
": Thymender $\frac{1}{\frac{1}{8}}$ dram. Mi
A small quantity of the genuine grease is generally added for conscience sale.

Bandolinc.

B. Gum Tragacanth, best........ 1 oz .
Rose Water \qquad 1 nint.

Allow it to stand, with occasional stirring, for 24 hours, then press through fine muslin, and add 10 drops oil almonds disolved in spirits-color if desirable with lincture Cochineal.

NOTRCE TO THE TRADE:

RIDGE'S PATENT FOOD COMPANY,

(minuted),
BERMONDSEY ST., S. E., LONDON.

4d. 8d. 1s. 2s. Oll.
30s. 60)s. 90s. 22Rs. Stg. per gross, Less 25% discount.

Orders for 10 gross or more, ass'd., 30% off.
A LL orders to be accompanied witl a bank bill on London, or Y. O. order, and forwarded to J. H. Woolmer, Halifax, N. S., solo authorized agent for B. N. A., or direct to the Company.

WOOIRICEIS

 $\$ 40$ per gross, less 10% for Cash.

August, 1868.

J. GROSSMITH \& SONS, Fivhibitiol Prize Medal Perinmery, Wholesnle at
 C. W. GROSSMIIHTS, mantracterbe and mimomen,
 34, King Street East, Toronto, Opposite the Golden Lion.

BRANCH OF J. GROSSMITH \& SONS, 85 Newgate Strcet, London, England, Manufacturers,Distillers,\& OperativeOhemists,

PRIZE MEDAL MALLOW SOAP MAKERS, IMPROLED QUINTESSELCAS, for flavorinas, etc.

Dil of Errandy, Rum, Gin, Sce, \&c,
and a New and excellent prepliation,
HMMES ANB GLYCERINE,
For Nourishing and Buautifying the Hazr, possessing the properties of Mair-1i ush and oil conbined, rendering the lair Soft and Glossy.
Highly Perfmed at $\$ 1.50$ aull $\$ 2.25$ ner doz.
Latest and most Fashionable Perfumes, namely:
Ylang Ylang; Rondelétia; Magnolui; Our Exhilition; Spirit of Love; Rose Geranium; dic., dc.
Labin's sten, and superiar in quallty, 33.50 per dozen
a lange assomtheit always on havd.
Samples forwarded to any part of Canada on receipt of order amiounting to $\$ 10$.
ast Temas Liberalm C. W. GROSSMITH, 31 King Strect Rast, Toronto.
2-tf
Box 180.

CANADA GLASS COMIPANY, (innted,)

MANDFACTURE to order, and keep for Sale, Soda Waier, Ginger Bcer, Wine, Bitters, and Pctent Medicine Botlles, initialed or plain. Also, Druggists Wrare of all descriptions.
Works at Hudson. Office-No. 10 St. Nicholas Strect, Montreal.
C. W. WALKEM, Secretary.

May 1868.

WFIOIESAエE PEICES CUTEREINT,-NJつV., 1868.

Only Silver Medal Awarded，Paris Exhibition， 1867．junor， 1862.

Pure Chemicals，\＆all New Medicines需 MORSONS SON，
 31，3is，and 124

gootmampton row，russhli．squame，工ON゙エONT．
Chemical Works：－Hornsely Road，and simm－ merfield Worlis，Itomerton，
COPPLY PORE CEEMICALS and all
New Mbdicinar，Preparations，melud－ ing the following specialities：－

PCPSINE，

The active digestive principlo of the gastric juice；an agrecable and popular remedy fur weak digestion．
In Powder，Wine，Lozenaes，\＆Globules．
PANCLEATMC EIIULSION，
Supplied in bult for Dispersing Purposes． PANCRHATINR
In powder，containing the active principle obtained from tho Pancreas，by which the digestion and assimilation of fat is effected．

CHEORODYM要，

（Morson＇s）the universally approved anodyne． Snchaniated Wheat Phosphates， A valuable dietetic preparation for invalids and children，supplying the－elements for the formation of bone．

CREASOTE，

（Cantion）－：from Wood Tar，of which＇S．M． and Son are the only British Manufacturers．

GELATINE，

A perfect and economical substitute for Isin－ glass．
Artificial Essences for Flavouring．
CLonofqBy and other preparations．
PREPARASTONS OF PEPSINE．

32ORSON＇S

Medicinal Pepsine，or Digestive Powder， （Pepsine－Acide Amylacee，on Poudree Nutritire．）
Contilns the ictive digestive principle of the sastris Contec of the stomach，priniled and rendered pernaucat and pantalle Dose， 15 tw 20 grims．
 Powiter with sul ounce of water aud t：0 prans of pure molst tibrine：alyly a gente heat，not exceeciling 100 itrores Fahr．（hic eunjerature or the stumach），fir alowh hatif an hour，stirring the mixture ocessionally；when the jrmecss of digestion will tic found to have commeneed，the flbrue becombug sort and pu！ory．This action may be conthmed until，after the lajse of a few hours，a solation is cifected， such as necurs in tho stomach．In 1 uz Bottles．

MORSON＇S PEPSINA PORCD，

Or Pepsine obtained from tho Stomach of the Pig，in a．Puro and Palatabla form．
（NEUTRRMI
This ts a concentratcd preparation of Peprine，containing the digestive principle of the gastric jujce in a very artive state suing nentra，it requinus the adaition of a sithe
 the frec acilis of the stomach．Dose－5 to 10 gralins．

Test of its Digistive Power－Mix 10 grains of the Power with an onunce of water，thon add 35 drops of the Concentrated lactic ar Hjolrochioric acld and 120 grains of moist fibrine Conduct the progress is ileseribed under the head Medicinal Pepsine，when the results there indicat－
ed whil be obtalned． ed whil be obtalned．
－These prejaralions of Pepsine are carcfully cramined and tested by Professor Realuool，and guaranieci Ly him to ansuer the fists inulicated．Eterit Bottle conlaining the Pre． paration named，and bearing the Trate marli of T ．Morson a Son，BUT NOT OTHERDISE，is sold tcith such guamates．

Paris Depori：Cliavis et Cantor，Dhace Saint－Onjortunc． Agent－Castirelaz，Iue Saints－Croix de la Bretonneric．

©rabe hicport

As is usual nt this seasen of the year， wholesale houses are busy receing their fall stocks of gcods by sailing ships，and in a few days stucks of heavy goods，glassware，earth－ unwaro，and such other items as will not bear stemmer＇s freight，frill be at their highest point for the year．The importations this season are on a moderato scaloso far as quan－ tities are concorned，and if trade proves at all good，many items will be scarce before the opening of navigation．In the meantime the assortment is pretty complete．Below are our notes of recent changes in prices：
Drugs：－Alcohol remains at the reduction noted last month．Cantharides，Castor Oil， ＇lurkey lhubarb，Chiretta，Glycerine，Oil Almonds Sweet，and Ipecac are quoted lower． Oil Lemon，Cardamons Gum Arabic，and Ergot are higher．Opian has againadranced， for some time the Now York Market was lower than Lond：m，but within a few days prices have advanced in Now York 62 sc．

Chemicals．－Newcastle sorts aro dull，flat and neglected．The depression is so areat that many manufacturers are abandoning the business．Murphia salts are firmer，in sym－ pathy with Opium．

Dye Shuffs．－The population of St．Dom－ ingo，instead of cuttang Lugwoud this sum－ mer，have engaged in a revolution，and in consequance，both cut Logwood and Extract are very scarce and dear；the latter has advanced lc．within a fow days．Madder is also dearer．Other articles without change．
Oils and Naval Stores．－Cod Oil，Seal Oil and Whate Oil are a little dearer．Olive Oil second，is coming out higher than was expected，and will n dear：Lard Oil is out of tho Market at present．Linseed Oil is very chenp，and is tho only exception to the general advance in the price of Oils．Pitch， Tar，Rosin and Spirits of Turpentine are selling at remarkably low rates，and are un－ doubtedly good stock at present prices．

Ferri Carb．Precip．－It is unfortunate that this much ased preparation should hare been introduced under a wrong name．In spite of the efforts of the European Pharma－ copeas to rectify the matter loy calling it： Feri sasquiocid；the old designation is still： retained by the United States Dispensatory， and by the trade，and in all probability will remain so until the end of the chapter．At best，it is a rery uncertain compound，and varies much according to the manner of its preparation When recently precipitated，it is certainly a carbonate of iron，hat it imme－ diately commences tos change，and parts with its carbonic acid，becoming ultimately，an－ oxide of iron，contrining variable amounts of water of hydration，dependant on the wiay in which it is dried．It is the cus－ tom of some manufacturers to calcine the dry mass in order to improve its colour， which would otherwise be a brown，and Which，by this treatment，becumes a red of various shades of intensity．This exposure to heat is ruinous to tho article，ns its solu－

RY A YOUNG MAN，a situation in a Wholesale Drug Establishment in To－ ronto．Satisfactory references will be given． Address，＂ F ．＂ Box 1011，Toronto． ＇loronto，August 4th， 1868. 41 It

DSTABLISTEF1803．

Iymans，clare \＆Co．，

wholesalz：

mportens of
Forcign Drugs and Chemicals， SURGICATE INSTRUMENTS， AGBiculumbal seeve．
Window Glass，Spices，and Dye Stuff．

LINSERH OIL，PANTIS，PUTTY，
VARNISHES，OM CAKE，
CEMENT，OALCINED PLASTER， IAIND PLASTIER， SUPERPHOSPEATE OF LIME， DRIG AND SPICE GRYYDERS．

Fartory－haghene casaz Basix．
Office ：Warehouse－382，384，386，St．Paul St． MONTREA工．

GEORGE Y．STOECKEL＇S

PArPENTT

graduated bottles ano vill．

FLINT AND HLIE GRELN GLASS， frois 1 to 16 ounces，
For Braggists，Pilysicians，and Family Use．
Also，Wine and Brandy Bottles Graduated． EVERY dRUGGIST SHOULD USE THEM．

GEO．W．STOECED工， Patentee and Manufacturer of the
GRADUATED VLALS FLINT \＆GREEN Also Manufacturer＇s Agent for Glass and Glasswaro generally．

政. T. SMITIEX,
Brass-Founder, Plumber, Steam and Gas Fitter, and

soda water maciine maker.

Nickel Silver, Show Cases and Sash Bars;
Gas and Coal. Oil Chandeliers, un hand and made to order.
95 QUEEN STREET WEST. ALSO, PROPMETOR OF
TORONTO STEAM SOOA WATER MANUFACTORY templrance: st., west of day St:
Soda Water, Lemonade, Sarsaparilla, Ginger Ale, Ginger Beer, and overy description of Frated Waters of first quality.
The trade supplied with Bottles
(ready capped), Corks, Colouring Symps, ïc., \& c .
Partics in the city wishing to ront SODA WATER FOUNTAINS, will please apply at once to ensure filling of their orders. 1-1y.

- CAINADIAN

SCHOOL BOOK DEPOT, 60 KING STREET EAST.

ROBERT McPHAIE,
General Stationer and Account Book 3Hanfacturer,
Importer of-Enylish, French, German and
Americain Fancy Goods.
To his large and well-assorted stock of the following articles he begs to call special attention:
Albums,
Brushes,

- Brooches,

Combs,
Oatlery, Oourier Bage, Dominoes,
iDraggists' Sandries,
Ear Ringg,
Indiage Satotiols,
Masiojal Instraments, Purses, Playing Oards, - Pipes,

> Rings,

Toronto, May 1868.
\&c. \&c. \&o.
$\because \quad$ R. C. JAMIESON \& CO., chivoracyungns or eteky descmition of
Warishes 及nd Jayaxs distilleers and impoiters of

- American Turpentine, Benzine, Rosin, Pitch, Tar, \&e., \&e.
- Dealers in

Linseed Oil, Leads, Paints, Colours, \&c.
R. C. J. \& Co., have business connexions throughout the Dominion of Cauada.
arP Orders promptly allended to and forvoarded with despatch
BONTREAL, Junc, 1868.
3-6mo
bility in acid is much decreased theroly, and it is still numeh ompluy ed in solution, a heat above 212° should nevor bo omployed, and druggists purchasing should select that of a brown color, rejecting the bright red and insoluble proparation.

New Aloholometer.-A new and very ingenious method of determining the strength of alcoholic liquors, has been devised by Basilo Rakowitseh, of the Russian Navy. It is based on the fact that chloroform readily dissolves alcohol but takes up but a minute quantity of water: if then, a mixture of alcohol and water bo shaten with chlorofurm, the water will separate, and can easily be estimated. The inserument used py ha, Racowitsch is a graduated tube, into which a known quantity of chloroform is poured, and to this is added a given quantity of the liquid. On being well agitated, the liquor is left to subside. when the water will be found floating in a distinct layeron the top, and can be at once readoff by means of the graduations on the tube. We have notyettried this plan, but it seams feasible, and if so, will be of great service to druggists and others who have determinations of this kand to mako. The amount of absolute alvohol, contained in a given amount of any tincture could be obtained without having recourse to the process of distillation-a process, by the way, which reguires mure than urdinayy care to yield exact resulte. In such instances, the hydrometer is of no use, as the extractive or resinous matter cuntained in the tuncture renders the indications of the hydrumeter false. We recommend a trial of this now method to our readers.
Lucifer.-Tfe Patlint Safb-i Matuhes manufictured by Bryant \& May, contain no phosphoris whatover. The match is propared by dipping the usual splints of wood in a mixture of oxidizing substances, as chlorate of potash, red lead, or binoxide of maganese. The friction surface on the box is prepared with amorphous phosphorus, and the match is, with difficulty, ignited in any way except by rubbing on this surface. Amorphous phosphomis may be prepared by various pro cesses, but that most generally adupted, on the large scale, is to exposo phosphorus to a heat of about 450° out of contact with oxygen, as in an atmosphere of carbonic anhydride, or dry carbonio acid gas. The phosphorus by this treatment suffers neithor increase or decrease in weight, but becomes of a red color, and is sersibly alteredin its properties. It is not liable to ignite, and canbepreserved in the air without risk. It is no longer poisonous, and is not soluble in the ordinary solvents of phosphorus. On being heated to 500° it roturns to its former condition and properties.
Apprentice, Halifax.-The Botany prizes are open to all comers, and are not subject to repeal in the case of Nova Scotians. It is likely that the best manner of proparing and preserving specimens will be nade the subject of a paper in this journal. We wish you success.

CEIANTGFS.

R. Owen has become a partner in the establishment of J. T. Shaptor, Toronto. Business is continued at the old siand, Yonge street.
A. W. Wallis, of Kleinburg, Ont., has removed to 287 Queen St. West, Toronto, and will carry on his business as before at the new stand.

BARSON BROMETBES

Golesale Dealers in and Manufacturers of LI GLASSW ARE, LAMPS, Refined Petroleum of very best quality Lubicating Oils in endless variety. Paints and Colors ground by ourselves, Dry or in Oil.
Gur prepared Linsed Oit contains Dryers and Thimures. For Painting purposes it will answer fully as well as the most expensive Paint oils. A very extulnsive stock of LAMP Goods of all kinds, ani at a wide range of prices. Sole Agent for
SPENCELIS IMPROVED FRUIT JAR.
agevcy of the monimeal vahsien co.
SI FRONT STREET, TORONTO. ter Pricos Low, Terms Liberal. 8.1y -TO-
CIEMISTS \& DRUGGISTS.
The undersigned desires to bring before the Notice of the Trade, his
CHERRY TOOTH PASTE.
It is the most agreeable and at the same time THE CHEAPEST ARTICLE
In the Canadian Market, and will fully justify any recommendation it may receive. For Price, address
A. EARVARD,

Manufactuver, 230 Queen Street. WHOLESALE AOENTS:
Messrs. LYMLAN, ELLTOT \& Co., DVNSPAUGGI \& WATSON, KERRY, CRATHERN \& CO.
1-13.
TORONTO.

H. NERLICI \& CO., IMPORTERS OF

Frienoh, German, English \& Amerioan

German Toys, Watches, Jewelry, Musical Instruments, Looking Glass Plates, \&ic.,
IMPORTED \& DOMESTIC CIGARS, Havanna and other Leaf lobaccos,
NO. 2 ADELAIDE STREET WEST TORONTO, ONT.
д. зеraicti.
P. backlr.
N.B. - For the quality of our Goods any Druggist
in Toronto can be referred to.
1-6m.

PROPRIETORY ABTTCLES.

Fly Papers to retail, at 3 and 5 cents. Fluid Magnesia.
Condition Powders for Horses.
Eunter's Blistering Oil do.
Oniversal Liniment. do.
Indelible Ink.
Carmine "
Oriental Hair Wash.
Electric Hair Dye.
Buchan's Anti-Bilious Pills.
Buchan's Mixture.
Togethet with all the other popular Patent and Proprictory Medicines of the day.

SOID BX
LYMAN, ELLIOT \& Co., 157 King Street East,

Toronto.
1-1y.
The Datly Tclegraphe Printing House; Bay Sk, corner of King Toronto.

