The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers dam3ged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurét et/ou pelliculce

Cover title missing/
Le titre de couverture manqueColoured maps/
Cat tes geographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'aurres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves adced during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte. ma's, lorsque cela ètait possible. ces pages niont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison
\square Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires: Various pagings.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Hioh-speed Engine, Dunamo, Rollino-Mill, Steamship, Railroad, Saw-Mill, Gotton-Mill, Paper-Mill, Woolen-Mill, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill. Flour-Mill and all Machinery Bearings.

JOHN LANGTON \& CO.
 Canada Life Building, Toronto

ELEGTRIGAL - ENGINEERS - AND - GONTRAGTORS

Complete Plants instaliecd.--
Plants requiring speciai combinations of Electrical Machinery a Specialty. correspondence: solictole
"DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERATORS AND MOTORS.
Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.

We beg to draw attention to the merits of our

Solid Core Rubber Covered Wire

. for Interior Wiring and use in damp locations.
This wire has the purest and most homogeneous insulation of any rubler covered wire in the market.
We do not aim on produce a cheap and conse equently an inferior insulat tion, but we have spared no expense towards the production of a high grade of wire at a low price Wie use no "recovered" rublor or other refuse stock. but only pure rubber compound.

Send rample order and test the matamon. lincolower than for any like grode

THE CANADIAN CENERAL ELEETRIC CO., LIMITED.

Heud Office (mis to al Frout Street West, TORONTO, ONT. Furturias revenhoneotall, ovt.

Morriell Lnsulateo Wire Wons.
J. ROS8, SON \& CO.
manufactukras of

INSULATED EleGTRICWIRES

And Hires for Anhuchciatoris, Optcen, Mаинеts anis Dyвамоя.

Factory: $41 / 1 / 2$ Whanam St.,

MONTREAL

Orders solicited and carefully executed. p. O. Nor. 1486.
E. Garl Breithaupi CONSUI.TING
Electrical Engineer Giraduate in Electrical Eng'neering at Johns Hopkins Universily, Kalumore.
. AdArras : BRHETA; oNT.
THE GALVANIC BATTERY WORKS

${ }^{2}+5$ Wellington St. West
. . . TORONTO.
EIxCTRIC BEIL Ansunctatoks (any size)
Laclanche Cri.1s. Aleinicai. Batteries. "'rile for l.rsts.

Use Somenting Good
 PEERLESS OILS
 TAKE NO OTHER

MADR SFRCIALIT FOK YOUR USE.
 PATENT.
lient Oil in the market. Doee iettet work and more of t. Sa res the 3 I achibery and laste looser. Try it. 12 GOLD MEDALS IN 6 YEARS. Sole Mancuacturans:
SADIUEL IROQRES d CO. 30 Front Stifkt East. Toronto. Ont.

STEAM USERS

manting the enretcee of COMPETKNT IEN-
 oabep, imprlifgrni and miliable men, ty mpanding to

canadian assoctation

 STATHOMARY EMGMEERS.Gro. Ilenj. Itesudent, 625 Dorehester Street. Monirral.
J. J. Yokz. Secretary Monteal Mranch. Boart of Trade fluilding. Montreal.

TENDERS WANTED

[^0]
EUGBNE F. PFILLIPS ELBCTRICAL WORKS

Magnet Wiro, Office and Annunciator Wiro,
Rubber Covered Wire, Lead Encased Wire, TELEPHCME AND IMCAMDEsGENT CORDS. FARADAY GABLES. RAILWAY FEEDER AND TROLLEY WIRE.

OFFICE AND FACTORY:

New York Uffice: 10 cortlandt Strest. Pors. MtIBal, Ganada.

Columbia Metal

THE BEST ANTI-FRICTION METAL ON THE MARKET!
Less Friction; Less Wear; Less Heating in Journais; and lefs Oil Used than with Any Other Metal.
As liquid as water when melted. Once used, always used. Prices right.

A TRIAL SOLICITED.

The P.E. Dixion Beling © 0 . (LIMITED)
 manuyacturers of

LEATHER BELTING

70 KING STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

FIRSTBROOK BROS.
King st. EIAN, - TORONTO. TOPPINB,

8ILIB-BLOCK8
AND CROES•RRMS. write por particuliaks.

DID YOU EVER

stop to consider what your Dynamo Brusbes cost you? WK KNuW TIAAT THK

"Columbia Ailoy Dynamo Brush"

LESS WEAR ON COMMUTATOR THAN ANY OTHER BRUSH. All sizes kept in stock. l.iberal diseounts to large consumers. Send us a trial order.

TOEIN R. BURNE, B. F. BQ.,
SPECIAITY:
hiretriral and Merhanical stnglmper
installing comprete plants for any service.
686 Grald Strest, MONTREAL.

Special Motor and Dynamo Pulleys

Jas. St. Charies, Manager.

THE JAS. ST. CHARLES
Henky Pringle, Sec'y-Treas.

BELLEVYLLE, ONT.
Manufacturers of
 . LfTD[P TTDTT Pino
and various styles of Omnibuses
and Hose Wagons . LfuTn[f OTD[TT Gind
 (

$, \quad, \quad \therefore 1$.

Kay Electric Works

No． 263 James Street N．，Hamilton，Ont．

DYNAMOS

For Arc and
Incatndescent Lighting．

MOTORS

From is H．P．to $50 \mathrm{H} . \mathrm{I}^{\prime}$ ．
Electro Plating Machines and General Electrical Appliances．Special attention to Mill and Factory Lighting． \qquad
WRITE FOR CIRCULAKS．

LIMITED

For General Water Supply anal Fire Protection．
BOILER FEED PUMPS AND PUMPS FOR ALL DUTIES

CONDENSERS，ETC．

FOR HIGH DUTY．SUITABLE FOR TOWN AND CITY WATERWORKS．

いした SPECIAI．T

We also manufacture Horse and Trail Cars of every description．

PATTERSON \＆GORBIN．
st．CATHA MINES，ONT．

TELEPHONES

THE＂T．H．NESS＂
Automatic－－
－－Telephone
D＇ATENTRD
Canacha．Sept． $12 \cdot \mathrm{~h}, 1893$ ．
United States．Sept．19th． 2893 ．
France，Sept．19th， 1843 ．
Specially Designed for Warehouse and Factory ilse．
Send for new catalogue Na． 7 ． saMPLE LETTET． Montre：al．Oct．10， 2893 － Messess．T．W．Ness \＆Co． 749 Cmig St．，Montreal．P．Q．
Drar Siks：－In reply to yours of the gth，we beg to say that we have used one of your Automatic iele－ phones for some lime，and find it sitisfactory in every respect．

Yours truly．
Grezn a Sons Ca
T．W．NESS \＆CO． 749 Craig St．－MONTREAL．

CANADIAN
Electrical News
AND

STEAM ENGINEERING JOURNAL.

Yot IV

THE TORONTO ELECTRIC LIGHT COXPANY'S NEW STATION.

Tht: accompanying illustration represents the new buildings and plant of the Toronto Electic Likht Company. They consist of spacious enyine and dynamu rooms, boiler house and office. The offices, as seen in the cut, front the Esplanade at the corner of Scott street. On the ground floor are the public offices, manager's office, pivate room and lavatory; on the second floor is a large room used as a board-room, library, with spiral staircase to tower, laboratory and instrument room, and clerk's
weighed over three tons, the interstices of the phing bemg filled with broken stone and cement. (ipon the lower courses of large stones the engine and boiler foundiunns wete bult, and are found after a year's use to be as firm and solid as ever.
The smoke-stack was buit on a sumilar foundation, poles bemp. driven as close together as possible over the whole area. Difficulty was found here, as there was only aliout two teet of Inose mud over the rock, not enough in some cases to boid the piles down in the ten feet of water that was ovet it. Now that the entire work is completed, however, its soldity and freedom from

private room. The interior finish is all quartered oak, polished, which presents a very handsome appearance. The dynamo room immediately in rear of the offices contains the power gencrators for the 250 and 500 volt systems on the main floor, with smaller dynamos for are lighting on a rasised platform over the shafting. The whole is driven by the pair of compound vertical Corliss engines of one thousand horse power, of which we gave an illustration in a previous number. Further on is the boiler house, of brick, containing four water tube boilers of $250 \mathrm{~h} . \mathrm{p}$. capaciry each, with accommodation for double that amount. The brick chimney shaft is 22 feet square at the foundation and 125 feet in height, having a square flue parallel from bottom to top, 8 feet 0 at each side. The foundations for boiler and engines are of the most massive character, and required considerable skill in their design and execution, as the whole had to oe built on the mud bottom of the slip, and at the same time the depth of water had to be maintained in the dock alongside. As the slipp could not be filled up, piles were driven to the rock and cut off by a specially designed circular saw about two feet below the water. On these massive stones were laid, some of which.
vibration leaves nothing to be desired. The advantages in being at the headquarters of fuel supply and having unlimited water at command for beiler supply and rondensing purposes, far more thian compensate for the extra difficuley and expense of obtaun ink a good foundation.

The extension of the company's whaves to the new line afford abundant room for coal storage and a pole yard, the saze being 600 by 140 feet. The whole of the wotk, includinis foundations and superstructure, was designed by and executed undet the immediate supervision of the manager of the company, Mr. J. J. Wright.

The recest storms are said to have cost the IEll Triephone Company aboitl $\$ 45,000$ for reparss to therr systern in liastern Ontarro.
The down council of Castetion Place. Ons.. hive been consudering the question of granting a bonus of $\$ 20.000$ aniu exempuon from taxes for 15 years. in Messrs. T. W. Niess $\&$ Co.. of Montent, tor the purpuse of in. ducing them to remove thers manufactory to that place. Application is to be made to the Ontario : egistature for authorty to carry out the undes. tiking. A condition of tize bargain is that Messss. Ness $\$$ Co. must employ cunstantly an a"erage of 100 hands.

QUESTIONS AND ANSWERS.

J. WV. K., Hamilon, Gnt., writes The IIamiton Spectator states that the new bliake pumping ensine at Toronto has had to have a new set of pismps placed in 1:, and that it has been standing wde for the last two months for this purpose. This engine broke down disastrously somen after its erection lant year. As no account of it has appeared in the loronto dails papers, the stationary engineers would like your account of the trouble The $\mathrm{Hamm}_{\text {and }} 8,000,000$ grallon pump has now run six years wilhout any tronde whatever, and with kreat fuel economy; so also have the fingston and London ones-all bult here by Killey.

Asswith We have made inquiries of the otficials of the Turonto Witerworks Deparmient respecting the subject of our corresponient's mquiry, and are informed that the first breakdown of the Hake engine took place while the engine was under test by the manulaceurers, and before its acceptance by the (it). The break down was sue to the breakink of the cratlik pin, as the result of which the cylunder head of the engine was blown out. The breaking of the crank pin is said to have been caused by an internal flaw in the metal which was not observable on the surface. The engine was again shut down on the evenug of the 8th of January, and has not been in operatoon sunce. It is stated that after the enpine had been for some time in operation the manufacturers concluded that the cylinders were not sufficiently heavy for the unusually severe work which was required of liem, and decided to replace them by cylinders of greater weigh. To do this required the shuting down of the machme for about sox weeks. This is the explanation of the difficulty as it has been given to us by the officials of the 1)eparcment.
"Meter," Arnpror, Ont., write- V. ould you please answer throush your journal the following questions:
1 Kindly gave the principle of construction of alternating; curient motors to drive fans.
2. What would be the effect in the reading of a sinallenberger meter, cerified correct with 16,000 alternations per munute, if the alleenations were lowereal to 14,000 ?
3 What are the qualifications necessaly to oblain 2 nil class enginect', papers, and what books do you recommend as being uscful in qualifying for papers?
4. What kind of storage battery is best adapted for a boat with one h. p. motor; also weight of tatteries that would supply 1h. p. motor for 12 hours, they being charged by a 4 anıpere circuit of about 500 volts?
ANSWRK. - The time at our disposal will not atmit of an answer being given until our April issue. 2. The storage battery having the least weight for a given output is best suited for boat propulsion, but the numerous forms of lead plate batterics differ very litle from each other in this respect. Their averise weight, with cells and acid solution complete, is about 140 pounds for a capacity (at nomal discharge rate) of i kilowatt hour. For a one h. p. motor running 12 hours, i. e., for 12 horse power hours delivered by your motor, you should provide at least 12 kilowatt hours battery capactity. We should say that 500 volts is 100 hish a voltage for use in a bont, on account of insula. tion dificulties. 100 volts is quite as high as can be managed comfortably. 3. This information may be obtained by writing to any member of the l3oard of Ex.mminers of the Ontario Eupineers Association. The names and addresses of the examiners are printed on nur editorial page. 4. The Shallenberger meter readings will not be correct on a circuit of different frequency from that for which the meter is adjusted, but not in proportion to the number of alternations per mince.. A little adjustment can be made in the neter fro change of frequency by changing the angle of the secondary coil. The makers state " the meter is practically correct within 1000 alternations per minute above or beiow that or which it is adjusted."

TELEGRAPHIC REVOLUTIONS.

THE days for the use of the primary battery for telegraphy in this country are numbered. It will not be long before the battenes that are now used in the various stations of the New England states will be releguted to antiquity. At the main Boston office, where 14,000 cells were employed for sending niessages the first year, occupying one-fifth to one-s:xth the space, there are now motor (h) namos which take u_{i}, but a small room in the basement. The advantages of the mo or dynamo or transform. crs, as they are generally called, are miny.

The siaving alone over the whole sysiem is said to be between 40 and 45 per cent. This remans to be demonstmated, however. Then, asain, the new practice has the great advantage of cleanliness and steadines-

With the use of we cells the voltage varied from $=6$ to 36 pminis from the standard of 180 volts supposed to be delivered. Whth the motor dynamo as a generitor of current, there is hardIy any vanaiton; at the most, 2 or 3 volts. The motor dynamo transforms or reduces the ordinary direct incandescent lighe current into one of small volume for the telegraph business.
In the Western Union Company's lloston office the current is taken in a commutator on one side of the machine and sent out from a commutator on the opposite side, the transformation being effected by twn different mindings on the armature.

The Boston plant has at present nineteen of these transformers in use and will put in ardition probably ten more. Of these machones now in use five are of 3 horse-power each, three are 1 one-horse, tho are th horse-power, two are if horse-power and seven are 'h horse power. The potential of these machines varies anywhere from 25 up to 210 .

The farthest point 10 which a message has to be sent from Boston is Buffalo, N. Y', and this can be accomplished by throwing one large machine of 260 into service, or several connected in tandem, or in series. The small machines, which are wound from 50 to 70 volts, are thrown into what 19 known as the loop from New lork to l'ortand, thus necessitating the send of but one messige.

METHODS OF BOILER SETTING.

Editor Pr.artanial Nans.
Sik, - In response to the request of the Bamilton Association C. A. S. E. re boiler satting in your last issue, I would like to pive a little of any experience in that line. But first let me say, that it is with no desire to criticise mu llamilon friends or assail the decision they may have arrived at on this important subject; but smuly to net and thy to give information, that beibg the object of the C. A. S. E.

About cighteen months ago I took charge of a new plant ; the boiler is $14 \mathrm{ft} \times 66^{\circ}$, and was bricked in before $!$ took charge and was set somewhat like the sketed of the Hamilton plant referred to above, with the bridge buile perpendictlar and circled round the boiler; but it did not give the sattsfaction 1 would like.
About a month awo, another boiler of exactly the same dimensions, and built by the same firm, was placed by the side of the first one. With boiler No. $2 I$ was more anxious to have a little of my own way, as repards the selting, and the firm gave instructions that my wishes should be :lltended to in every partucular. This is a rough sketch of the setting

Now here are two bollers isientical in every respect, but which differ in the setting ; No. I has the plumb bridge which is circled and built to within $8^{\prime \prime}$ of the boiler. Now it will be seen by looking at the sketch that the greatest heat will strike the boiler at or near the bridge, and in this case on one of the two seams running round it. In No. 2 there is pinctically no bridge wall, only raised about $6^{\prime \prime}$ to keep the coal in place, then a fiat bed sloping to within 10° of the boiler.
It is only just to say that I have not been able to weigh the roal and water and make a thorough test of the two boilers separately, but I have no hesitation in saying that No. 2 makes more steam and is more satisfactory in every respect than No. I. That this is the case is particularly noticeable in getting up steam and before they are connected tngether; the steam in No. 2 alwiays gains from 101015 jbs , on No. I. I believe the greater advan. tage lies in the more equal distribution of the heat under the boiler, an 2 at the same time the liability to unequal expansion is lessened. Imight give other reasons for recommending this plan of setting, but will reirain lest I should take up too much space.

Geo. Gilchrist,
Toronto No. 1 C.A.S.E.

According 10 the decision of the Supreme Court of Georgia in The Westenn C'mon Telegrapt Company vs. Rountree, under the act of October 23. 1887, a telegraph company is not liable for the penalty of $\$ 100$ for a vertal, though material. inaceuracy in the iransmission of a message, and the nords "shall transmit and deliver * with ampartuality and good !sith. and with due diligence," relate, so far as the purposes of ths act is concerned, to the timpe within w. th the transimission and delivery must be accomplished, and not to accuracy and correctness in sending and transcribing dispaiches, In the case of The Western Union Telrgraph Company va Timmons the court held that a non-resident of a city doos not make himself a resident within the meaning of the proviso to the second seetion of the act of October, 22, 1887. touching the duttes of telegrapt companies, by giving to the company an address within the city at which be can be found semporarily, The second section of the act, the court said, deals exclusiveIy with the daty of delivery to residents of cities and towns, and persons resuding within a limit of one mile from the telegraph office. The dury of deli, ery to other persoos is not embraced in that section, but in the general requarement se: forth in the first section, and as 10 non-residents, the quesuon whether due diligence in making delivery requires the company to go outside of its office to deliver at a designated place within a city or town is one of fact for the determination of a jury on the circumstances of each case. incluching any right and reasonabie usige of the company in dealing with messages of this kind, and if the company in the conduct of its business delivers natside of its office to one customer it must to another under like circumsinnces and condit ns.

the economical installation of small lighting

 Plants.
iv J. B. Calloon

A careful investigation of the small electric lixht plants throughout the country will show, says the Electrical Workl, that many of them are only just barely clearing expenses, without netting any profit to the owners; as many more are running at a loss, while a very few are a source of profit. One fault of these stations whi h tends to make them non-profitable is the lack of econonny in their operation. By economy we mean a true spirit of economy, and not a spirit of pirsimony which sometimes passes for economy atmong the people who have considerable to do with electric properties. But leaving this out of the question, if we were to take a very smali plant, say one running 600 or 700 incandescent liehts, and try to run this at a profit in a country town, we find that, handling this as best we can with the old methods, there is little or no profit derived from its operation, especially if we charge off a certain percentage tor depreciation each year. Now let us look into this a little more closely and see if we can ascertain why such a plant should not yield a fair return on the investment. In the first place, situated as our plant is in a country village with its long, strageling streets and extensive distances to cover, with only an occasional store, and here and there a light to be placed on the highway, if we run the two-wire system and use the direct current incandescent machine, we find that we are using a great deal of copper to maintain the requited service, and that the cost of this copper is so great that the return for the use of the few scattered lights is insufficient to pay a fair rate of interest on 50 much copper

We can resort to the alternating current and distribute at a potential of 1,000 or 2,000 volts, as the case may be, and so cover the main points to be lighted at a failly reasonable outlay, but this will necessitate the use of a large number of small transformers, which means the production of light at a less efficiency and greater expense than if we could make use of large transformers. This will, however, furnish us with an incandescent system of lighting from which we can hope for some return of our investment. Or, we can install an arc plant which will enable us to distribute lights over the required area, and this will be perfectly satisfactory for street lighting and for use in some large buildings and stores, but it will not meet the demand for lighting private houses, small stores, and the various odds and ends which are liable to require light; therefore it is questionable if the are light plant will be a profitable one, and it cannot contract for any of the small installations and practically will only serve to light the town. Again, as we start with the assumption that the town is too small to warrant the installation of both arc and incandescent circuits, it becomes necessary to decide upon some plan which will meet all conditions in a farrly satisfactory manner. After carefully watching the operation of alternating circuits with three-wire transformers I am convinced that this three-wire transformer system is the one which will be the most profitable to install in such places as mentioned above, as well as in larger towns and cities where distribution is to be made at long distances from the central stations and over a considerable area

The system is an extremely simple one and is well illustrated by the plant of the Peterborough Electric Light and Power Company, Pcterborough, N. H. In brief, the ided is to place large transformers at certain points, which may be called centres of distribution for the area in which said transformers are situated, carrying the primary to those transformers at 1,000 to 2,000 volts and running off three wires from the secondary coils and carsying these along the streets to the points where they are needed. The difference of potential between the two outside lines will be 104, and between the middle and outside lines 52 volts. We can then tap directly off these lines and enter any house or building that wants lights without the necessity of installing any small transformers; in other uords, we have by following out this method as flexible a system for incandescent lighting as the threz-wire system now so much used for.

This method presents some remarkable features deserving the earnest study of those interested in such wotk, the principal being the great saving effected in copper over a two-uire system and the saving effected by the use of large transformers over small ones. This also presents a system which is flexible to an extreme degree in that, as the demands for lights increase and we reach the capacity of cur transformer installed, we have but to put up another large transformer and we have another centre of distribution to cover the same area, or, if lights are wanted beyond a reasonable distance from our first transformer, by the installation of a second at this further point, we shall have very little loss in transmitting the current to it over the primary wire at 1,000 volts, so that we are ready to take a contract with any and every householder and furnish him with light at a price which shall be reasonable and which will prove as beneficial to the user as to the plant. It will be seen at once that ihis is one of the great features of such an installation. If is not necessary to skip anything, but to reach out and get all the business that there is in the whole town, and if this is done, I thint 1 can safely assure the payment of a handsome dividend on the investment.

Application will be made to the Dominion Parliament by the Plate Glas and Boiler Insurance Ca, of London. Out. for power to insure against loss of life or injury to person of engineers or firemen in charge of steam boilers.

ON LIGHT AND OTHER HIGH FREQUENCY PHENOMENA.

iv Nikola Trsla

(Continnat.)

In this experiment the potential difference at the termunals of the lamps varies in sign thocretically three to four millon times a second. The ends of the filaments are correspondingly electrified and the gas in bulbs is violently agotated and a large portion of the supplied energy is thus comerted into heat. In the non exhausted bulb, there being a few inillion limes more gas mole. cules than in the exhausted one, the bombardment, which is most violent at the ends of the filament, in the neck of the bulb, consumes n large portion of the energy without prolucing atny visible effec:. The reason is that, there being many molecules, the bombatdment is quantitatively considerable but the individual impacts ate not very violent, as the speeds of the molecules are comparatively small owing to the stmall frec path. In the exhausted butb, on the contrary, the speeds are very great, and the individual impacts are violent and therefore betier adinpted to produce a visible effect. Besides, the convec tion of heat is greater in the former bulh. In both the bulbs the current traversing the filaments is very small, incompatibly smaller than that which they require on an ordinary low-fre quency circuit. The potential difference, however, it the eads of the filaments is very creat and might be possibly 20,000 volts or more if the filaments were straight and their ends far apart. In the ordinary lamp a spark generally occurs between the ends of tr. filament or between the platinum wires outside, before such a difference of potential can be reached.

It might be objected, in the experiment before shown, that, the lamps being in multiple are, the exausted lamp night take a much larger current, and that the effect ohserved might not be exaclly attributable to the action of the gas in the bulbs. Siuch objections will lose much weight if 1 connect the lamps in series with the same result. When this is done, and the discharges are directed through the filaments, it is again noted that the filament in the none-exhausted bulb, 1 , remains dark, while that in the exhausted one, 1 , glows even more intensely than under us normal conditions of working, Fig. 22b. According to seneral ideas, the current through the filaments should now be the same, were it not modified by the presence of the gas around the filaments.

At this juncture I may point out another interesting feature, which illustrates the effect of the rate of change of potential of the currents. I will leave the two lamps connected in series to the bars B, B, as in the previous experiment, Fig. 22b, but will presently reduce considerably the frequency of the currents, which was excessive in the experiment just shown. This I may do by inserting a self-induction coil in the path of the discharges, or by augmenting the capacity of the condensers. When Inow pass these low frequency discharges through the lamps, the exhausted lamp, l, again is as bright as before, but it is noted also that the non exhausted lamp, 1 , glows, though not quite as intensely as the other. Reducing the current through the lamp, I may bring the filament in the latter lamp to redness, and thoush the the filament in the exhausted lamp I, is bright, Fug. 22c, the degree of its incandescence is much smaller than in Fig. 22b, when the currents were of a much higher fiequency.

In these experiments the gas acts in two opposite ways in determining the degree of the incandescence of the filaments ; that is, by convection and bombardment. The higher the frequency and potential of the currents, the more important becomes the bombardment. The convection, on the contrary, should be the smaller, the higher the frequency. When the currents are steady, there is practically no bombardment, and convection may therefore with such currents also considerably modify the degree of incandescence and produce results similar to those just before shown. Thus, if two lamps exactly alike, one exhausted and one not exhausted, are connected in multiple arc or series so a direct current machune, the filament in the non-exhausted lamp will require a considerably greater current to be rendered incandescent. This result is entirely due to convection, and the effect is the more prominent the thinner the filament. Prof. Ayrton and Mr. Kilgour some time ago published quantitative results concerning the thermal emissivity by radiation and convection in which the effect of thin wires was clearly shown. This effect may be strikingly illustrated by preparing a number of small, short glass tubes, each containing thiough its axis the thinnes obtainable platint m wire. If these lubes be highly exhausted, a number of them may be connected in multuple arc to a direct current machine, and all of the wires may be kept at incandescence with a smaller current than that required to rander incandescent a single one of the wires if the tube be not exhausted Could the tubes be so highly exhausted thit convection would be nil, then the relative amounts of heat given off by convection and radiation could be determined without the difficulties attending thermal quantitative measurements. If a source of electric impulses of high frequency and very high potential is employed a still greater number of the tubes may be taken and the wires rendered incandescent by a curtent not capable of warming preceptibly a wire of the same size immersed in air at ordinary pressure, and conveying the energy to all of them.

I may here describe a result which is still more interesting, and to which I have been led by the observation of these phenomena. I noted that small differences in the density ot the air produced a considerable difference in the desree of incandescence
of the wires, and ' ${ }^{\text {h }}$ ought that, since in a tube, through which a limmous dise harge is passed, the pas is senerally nut of umform density, a very thin wire contaned in the tube mikht be rendered intandestent at certan places of smaller density of the kas, whine 11 would remain lark il the places of preater density, where the ennved ton would be preater and the bombardment less intense Arcorlongls a whee, 1, was prepared, as illustrated in Fix 23. whin contumed throush the maddic a very fine platumin wite u The tube was exhausted to a moderate de pice. and it was foumd thit when atarhed to the terminal of a hukh frequeticy eal the platinum wire w would, mileed, become incandescent in pathes, as Hustrated in Fik 23. Later a num ber of the e tules with one or more wires were prepared, earh whowing this result. The effict was best noted when the striat. ed dischirge orcurred in the tube, but was also produced when the strier were not vistble, showing that, even then, the gas in the tube was not of umform density The prosition of the strice was kenerally such that the sarefartions corresponded to the places of miandescence or greater bughtness on the wite w. Mut in a few insianens it was noted that the bright spots on the wite were covered by the dense parts of the striated dischaiges as indicatad by 1 in riok 23, though the effect was barcly preceptible. This was explanned in a plausible way by assuming that the con vection was not widely different in the dense and rarefied olaces, and that the tombardment was greater on the dense places of the striated discharge. It is, in fact, often observed in bulbs that under certann conditions a thin wire is broukht to bikher incandescence when the ais is not tos highly rarefied. This is the case when the potential of the coil is not high enough for the vacutun, but the result may be attributed to many different causes. In all cases this curious phenomenon of incondescence disappears when the tule, or rather wire, acquires throughout a unlerm temperature.

Distegarding now the modifying effect of convection, there are then two distinct causes which determine the incandesrence of a wire or filament with varying currents ; that is, conduction
current passing dirroph it. if the frequency and potential, and piimipally the latter, be increased, the insulated plate need be but very amall, or may be done away with entirely; still the filament will become incandescent, practically all the heating being then due to the bombardinent. A practical way of combining both the effects of conduction current and bombariment is illus. irated in Fir. 24, in which an ordinary lamp is shown provided with a very thin filament which has one of the ends of the latter connected to a shade serving the purpose of the insulated plate, and the othe: end to the terninal of a high tension source. It should not be thought that only rarefied gas is an important factor in the heating of a conducior by varying currents, but xas at ordinary pressure may become important, if the potential difference and frequency of the currents is excessive. On this subject I have already stated that when a conductor is fused by a stroke of lightning the current through it may be exceedingly small, not even sufficient to heat the conductor perceptibly were the latter immersed in a homogeneous medium.
From the preceding it is clear that when a conductor of high resistance is connected to the terminals of a source of high frequency currents of high potential, thete may occur consider. able dissipation of energy, principally on the ends of the conductor, in consequence of the action of the gas surrounding the conductor. Owing to this, the current through a section of the conductor at a point midway between its ends may be much smaller than through a section near the ends. Furthermore the current passes pancipally through the outer portions of the conductor, but this effect is to be distinguished from the skin effect as ordinarily interpreted, for the latter would or should orcur also in a continuous incompressible medium. If a great many incandescent lamps are connected in series to a source of such currents, the lamps at the ends may burn brightly whereas those in the middle may remain entirely dark. This is due principally to bombardment, as before stated. Hut even if the currents be steady, provided the difference of poteritial is very great, the lamps at the ends will burn more brightly than those

shosk Wiarfi.

Drest Winhing.

Alternate Motor Winimsg.

Ring Winimg.

SOMF OF THE ISEIGNS DRODLCED BY INTERMIITENT DISCHARGES.
currerit and bombardment. With steady currents we have io deal only: with the former of these two causes, and the heating effect is a minmum, since the resstance is least to steady fow. When the curem is a varying one, the resistance is greater, and hence the heating effect is increased. Thus, if the rate of change of the current is very great, the resistance may inctease to such an extent that the filament is brought to incandescence with inapprectable currents; and we are able to take a short and thick block of carton or other material and bring it to bright meandescence with a current incomparably smaller than thit required to bring to the same degree of incandescence an ordinary thin lamp filament with a stezdy or low frequency current. This tesult is important, and illustrates how rapidly our views on these subjects are changirg and hou quickly our field of knowledge is extending. In the $z^{-\cdots}$ of incandescent lighting, to vew this result in one aspect only, thas bren commonly consulered as atn essential requirement for practical success that the lampfilament stauld be thin and of high resistance. But now we know thit the resistance to the steady flow of the filament does not mean anything; the filament might as well be short and theck: for if it be munersed in rarefied was it will become incandescent by the passage of a small current. It all depends on the frequency and potential of the currents. We may conclude from this that it would be of advantage, so far as the lamp is considered, to employ high frequencies for lighting, as they allow the use of short and thick filaments and smaller currents.

If a wire or filamers be immersed in a bomogeneous medium, all the heating is duc to true conduction current; but it it be inclosed in an exhausted vensel, the conditions are entizely different liere the kins begins to act, and the heating effect of the conduction current, as shown in many experiments, may be very small compared with that of the bombandment. This is especiaily the case of the circuit is not closed and the potentials, of course, very high. Suppose a fine filament inclosed in an exhausted vessel be connected with one of its ends to the terminal of a high tension coil, and with its other end to a large insulated plate Though the circuit is not closed, the filament, as I have before shown, is brought to incandescence. If the frequency and potental be comparatively low, the filamen: is heated by the
in the midile. In such case there is no thymthical bombardment and the result is produced entirely by leakage. This leakaxe or dissipation into space when the tension is high is consuterable when incandescent lamps are used, and still more considerable with arcs, for the the latter act like fames. Generally, of course, the dissipation is much smaller with steady than with varying currents.

I have contrived an experiment which illustrates in an interesting manner the effect of lateral diffusion. If a very long tube is attached to the terminal of a high frequency coil, the luminosity is greatest near the terminal and falls off gradually toward the remote end. This is more marked if the tube is narrow.

A small tule about one-half inch in diameter and twelve inches lonk, Fig. 25. has one of its ends drawn out into a fine fibre f nearly three feet long. The tube is placed in a brass socket T which can be screwed on the terminal T_{1} of the induction coil. The discharge passing through the tube first illuminates the bottom of the same, which is of comparatively large section; but through the long glass fibre the discharge cannot piss. But gradually the rarefied gas inside becomes warmed and more conducting, and the discharge spreads into the plass fibre. This spreading is so slow that it mity take half a minute or more until the discharge has :rorked through up to the top of the glass fibre, then presenting the appearance of a strongly luminous thin thread. By adjusting the potential at the terminal the light may be made to irnvel upward at any speed. Once, however, the glass fibre is heated the discharge breaks through its entire length instantly. The interesting point to be noted is that, the higher the frequency of the currents, or in other words the greater relatively the lateral dissipation, at a slower rate may the light be made to propagate through the fibre. This experiment is best performed with a highly exhausted and freshly made tube. When the tube has been used for some time the experiment often fails. It is possibie that the gradual and slow impairment of the vacuum is the cause. This slow propagation of the discharge through a very narrow glass tube corresponds exactly to the propagation of heat througli a bar warmed at one end. The quicker the heat is carried away laterally the longer time it will take for the heat to warm the remote end. When the
current of a low frequency coil is passed through the fibre from end to end, then the latcral dissipation is small, and the dis charge instantly breaks through almost without exception.
After these experiments and observations, which have shown the importance of the discontinuity or atomic structure of the medium, and which will serve to explain, in a measure at least, the nature of the four kinds of light effects produceable with hese currents, I may now give you an illustration of these effects. For the sake of interest I may do this in a manner which to many of you might be novel. You have seen before that we may now convey the electric vibration to a body by means of a single wire or conductor of any kind. Since the human frame is conducting I may convey the vibration ('rough my body.
First, as in some previuus experiments, 1 connect my booly with one of the teiminals of a high tension transformer, and lake in my hand an exhausted bulb which contains a small catbon button mounted upon a platinum wire leading to the outside of the bulb, and the button is rendered incandescent as soon as the transformer is set to work (Fig. 26). I may place a conducting shade on the bulb which serves to intensify the action, but it is not necessary. Nor is it required that the button should be in conthrough ducting connection with the hand through a wire leading the phass, for sufficient energy may be transmilted through the glass ifself by inductive action to render the button incandescent.
Next I take a highly exhausted bulb containing a strongly phosphorescent body, iboove which is mounted a small plate of aluminum on a platinum wire leading to the outside, and the currents flowing through my body excite intense phosphores cence in the bulb, Fig. 27. Next again 1 take in my hand a simple exhausted zube, and III the same manner the gas inside the tube is rendered highly incandescent or phosphorescent, Fis. 28. Finally, I may take in my hand a wire-bare or covered with thick insulation, it is quite immaterial; the electric vibra tion is so intense as to cover the wire with a luminous film, Fig. 29

A few words must now be devoted to each of these phenom: ${ }^{n}$ nit In the first place, 1 will consider the incandescence of a bution or of a solid in general, and dwell upon some facts which apply equally to all these phenomena. It was pointed out before that when a thin conductor, such as a lamp filament, for inst.ince, is connected with one of its ends to the terminal of a transformer of high tension, the filament is brought to incandescence partly by a conduction current and partly by bombardment. The shorter and thicker the filament, the nore important becomes the latter, and, finally reducing the filament to a mere button, all the heating must practically be attributed to the bombardment. So in the experiment before shown, the button is rendered incandescent by the rhythmical impact of freely movable small bodies in the bulb. These bodies may be the molecules of the residual kas, particles of dust or lumps torn from the electrode ; whatever they are, it is certain that the heating of the button is essentially connected with the pressure of such treely movable particles, or of atonic matter in general in the bulb. The heating is the more intense the greater the number of impacts per second and the kreater the energy of each impict. Yet the button would be heated also if it were connected to a source of steady potential. In such a case electricity would be carried away trom the button by the freely movable carriers or particles flying about, and the quantity of electricity thus carried away might be sufficient to bring the button to incandescence by its passage through the latter. But the bombandment could not be of great importance in such case. For this reason it would require a comparatively very great supply of energ; to the button to maintain it at incandescence with a steddy potential. The higher the frequency of the electric impulses, the more economically can the button be maintained at incandescence. One of the chief reasons why this is so, is, 1 believe, that with impulses of very high frequency there is less exchange of the freely movable carriers around the electrode, and this means that in the bulb the heated matter is better confined to the neiphborhood of the button. If a double bulb, as illustrated in Fig. 30, be madie, comprising a large slobe B and a sinall one b, each containing as usual a filament f mounted on platinum wire w and w, it is found, that if the filaments $f f$ be exactly alike, it requires less energy to keep the filament in the globe b at a certain degree of incandescence than in the large globe, B. This is due to the confinement of the movabic particies around the bution. In this case, it is also ascertained, that the filament in the small globe b is less deteriorated when maintained a certain length of time at incandescence. This is a necessary consequence of the fart that the gas in the small bulb becomes strongly heated and therefore a very good conductor, and less work is then peifemed on the button, since the bonibardment becomes less intense as the conductivity of the gas increases. In this construction, of course, the small buib becomes very hot, and when it reaches an elevated temperature the convection and radiation on the outside increase. On another occasion, I have shown tulbs in which this drawback was largely avoided. In these instances a very small bulb, containing a refractory button, was mounted in a large globe, and the space between the walls of both was highly ex. hausted. The outer large globe remained comparatively cool in such constructions. When the large globe was on the pump and the vacuum between the walls maintained permanent by the continuous action of the puinp, the outer globe would remain quite cold, while the button in the small bulb was kept at incandescence. But when the seal was made, and the button in the
small bulb maintained incandescent some length of time, the large globe too would become warmed. From this I conjecture that if vacuous space (as brof. Dewar finds) cannot convey heat, it is so merely in virtue of our tapid motion through space or, kenerally speakink, by the motion of the medium relatively to us, for a permanent condition could not be maintained without the medium being constantly renewed. A vaccum cannot, according to all evidence, be permanently maintained around a hot body.

In these constructions, before mentioned, the small bulb inside would, at least in the first stages, prevent all bombardment against the outcr, large globe. It occurred to me then, to ascertain how in metal sieve would behave in this respect, and several bulbs, as illustrated in Fig. 31, were prepared for this purpose. In a globe b, was mounted a llin filament for button) upon a platinum wire w passing through aglass stem and leading to the outside of the globe. The filament f was surrounded by a metal sieves. It was found in expertments with such bulos that a sieve with wide meshes apparently did not in the slightest affect the bombardinent against the jilohe b. When the vacuum was high, the shadow of the sieve was clearly projected aganst the plobe, and the latter would get hot in a short while. In some bulbs the sieve was connected to at platinum wire sealed in the glass. When this wire was connected to the outer terminal of the induction coil (the F.. M. F. being kept low in this case) or to an insulated plate, the bombariment agannst the outer globe b was diminished. By taking a sieve \sim ith fine meshes the bombardment against the globe was diminished, but even then if the exhatustion was carried vety far, and when the potential of the transformer was very high, the globe b would be bombarded and heated quickly, though no shadow of the sieve was visible owing to the smallness of the meshes. But a glass tube or other continuous body mounted so as to surround the filanient, did entirely cut off the bombariment and for a while the outer globe b would remain perfecily cold. Of course when the glass tube was sufficiently heated, the bombardment anainst the outer globe could be noted at once. The experiments vini these bulbs seemed to show that the speeds of the projected molecules or particles must be considerable (though quite insignificant when compared with that of light), otherwise it would be difficult to understand how they could traverse a fine metal sieve without being affected, unless it were found that such small particles or atoms cannot be acted upon directly at measurable distances. In regard to the speed of the projected atoms, l.ord Kelvin has recently estimated it at about one kilometre a second or thereabouts in an ordinary Crookes bulb. As the potentials obtainable with a disruptive discharge coil are much higher than with ordinary ci 3 , the speeds must, of course, be much greater when the bulbs are lighted from such a coil. Assuming the speed to be as hish as fivekilometres and uniform through the whole trajectory, as it should be in a very highly exhausted vessel, then if the aliernate electrifications of the electrode would be of a frequency of five million, the greatest distance a particle could get away from the electrede would be one millimetre, and if it could be acted upon directly at that distance, the exchange of electrode matter or of the atoms would be very slow, and there would be practically no bombardment agains the bulb. This at least should be so, if the action of an electrode upon the atoms of the residual gas would be such as upon electrified bodies which we can percetve. A hot body inclosed in an exhausted bulb produces always atomatic bombardment, but a hot body has no definite rhythm, for its molecules perform vibrittions of a!! kinds.

If a bulb containing a button or filament be exhausted as hixh as is possible with the greatest care and by the use of the best artifices, it is often observed that the discharge cannot, it first break through, but after somie time, probably in consequence of some changes within the bulb, the discharge finally passes through and the button is rendered incandescent. In fact, it appears that the higher the ciegree of exhaustion, the easict is the incandescence produced. There seems to be no other causes to which the incandescence mught be attributed in such caise, except to the bombardment or similar action of the residual gas or of particles of matter in general. But if the bulb be exhmested with the greatest catc, can these play an important part? Assume the vacuum in the bulb to be toletably perfect, the great interest then centres in the question: Is the medium which pervades all space continuous or atomic? If atomic then the heat ing of a conducting bution or filament in an exhausted vessel might be due largely to etherbombardment, and then the heating of a conductor in general through which currents of hiph frequency or high potential are passed must be modified by the behavior of such merlium; then also the skin effect, the apparent increase of the ohmic resistance, etc., admit, partially, at least, of a different explanation.
It is certainly more in accordance with many phemonena observed with high-frequency currents to hold that all space is pervaded with free atoms, tather than to assume that il is devord of these, and dark and cold, for so it must be, filled with a continuous medium, since in such there can be netther heat nor light. Is, then, energy transmitted by independent carriers or by the vibration of a continuous medium? This importan! nuestion is by no means as yet positively ansucred. liut most of the effects which are here considered, espectally the light effects, incandescence, phosporescence, involve or the presence of free alloms and would be impossible without these.
(To be Continued.)

FUM,BSHKB ON THE PIKST OF EVREY MONTH EY
CHAS. H. MORTIMER,
Office: Confederation life Butiding, Corner Yonge and R'whmond Streets. TORONTO, Jelephore $23 \overline{6} 2$ OANADA.

Gs Tyminer Builuing.
ISell Telephone 2299.
Adverising rates sent prompty on application. Orders for adverticing should
 reach the onice of pubbication not iner than the ssth dily or the month immedimely without cout to the advertiser, but to thsure proper complianve with the instructions of the adreatiser, requests for change abould reach the ofice as early as the saxd day the month.

AGBNCETPEIONS.

The E, Lertaical News will be mailed to subacribers in the Dominion, or the United Stases, post free. for $\$ 1.00$ per sanum, 50 cents for sis montha. The price payable to C H Morimer Please do not send cheques on local banks unlesi as cents is added for cost of discouns. Money sent in unreginered letters must be at
 Unoon. \$1.so pet apnum. Sulecriptiona are pajable in advance. The paper will be diccontinued at expitation of term paid for of so stipulated by the subacriber, but ontinue are received and all antearage paid. Subucribers may have the mailing addresi
 The Publatier, should be notified of the fallure of nuberribers to rect procupely and zegulath.

EDIEOR'S ANNOUNCEARESTM,
Correspondence is invited upoo all sopics comung legitimately within the scope of this iournal
THK: "CANADMAN EL.HCTKICAL. NELS" HAS TEEN APTOINTED THE OFYICIAI. MAPEK OF TAK CANADIAN EI.ECTMICAL ASSOCIATION.

CANAIIAN ELECTRICAL ASSOCIATION.

OFFICERS :

frysibest:
J. J. WRIGilt, Manazer Toronto Electric I.ight Company. $15 T$ Vice-Prisubrest:
K. J. DU'NSTAN, Local Misnaxet lkil Ielephone Company. Tormata 2Nu Vicf. Prizsibf.-Tt:
jOHN \& ARROI.I., Sec-Treas Eugene I'hilips Ejectneal Works, Montreal. Sfcektaky-Treastoxer :
C. 11 MORIIMER. ElBhisher EL.hCTRICAL Nipws. Toronio. ExECUTIN: COMMITTEE: D. TiIOMSUN. Hamilton, Ont.

1) A. SlidRR, Koyal Electric Company. Montreal.
11. O. FISK. Electracian Electnc Laght Company. Peterboro'. Ons. GEO BiatCK. G. N. W. Telegraph Co., Hamition.
A. A. SMiliH. Inspector Canadian Hoard Fire Underwriters, Toronia
I. H. McFARI_ANE. Bell Teiephone Compony. Montreal.
T. R. ROEERRUGII. Jecturet in Electncity. School of Practical Science. Toronto.
E. C. HREITIBALPT, Herlin. Ont.

JOIfN St'E. Managez Cipeiph Gas and Eiectrac Laght Company. Civelph. Ont.
TIIOS AllEARN, of Ahearn \& Soper, Oliawa. Ont.

MONTREAL EI.ECTRIC CLUB.

Presndent. W. B Sitaw.
Vice I'resident. H. Voodmas.
Siecreizry. James burinetr.
Itcasurer. L. Mi. Pinolst.
140 Dorchester Nireet.

CANADIAS ASSOCIATIOX OF STATIONARY ENGINEERS
Prosident. G. Iflest.
Vice fresident. Wm. Sution.
Serretary. J.). JiORK.
Treasury. W. g. Itaicxgrova.
conductor. T. King.
Dond herpar. F. Ronents.
Nontreal Electric Co.
Alontreal Street Railway Co. ig Shater Sirect. Jas. Dovglas. D. Black.

Toxonto suavcit Na 2.-.Neets and and ith Fnday each monh in Koom 1. Shaftesioury flall. Wilson Fhallips. I'resudent: 11. F. Terty. Secretary. 19 Hayter sureet.

Hanitjóx BxaNcu Na 2-Meets isp and 3rd Friday each moorb. in Mincaber's Hall. W:. Swect. Presudent; Wra. Norris. Secretary, 218 Weilington Suret Norin
Sirattorin fravcis Na 3-John Hoy. Presndert. Samoel ti. Wert. Secretary.
 Thos Ihanm Fresulent : Joseph Ople. Secretart. Lianiford Cordage Ca

London Hrancu No. 5.-Moets in Sherwood Hall first Thursclay and last Friday in each monit. F. Mitchell. Presudent. Willam Meaden, Secretary Treasurer, 533 Richmond Street.
Montkial. Bkancil No. 1. -Meets ast and 3 rd Thursday each month, in Eingineers ${ }^{\prime}$ iall. Craik street. Preantent. Jos. Robinson; first vicepresident. 11. Nultall. second vice-president. Jos Badger; secretary, J J. York, Board of Irade Huthding; treasurer. J'hos. Ryan.
St. L.aukknt Ibkancil No. a.-Neets ist and zrd Tuesday each month. in Mechanics' Institute, aot St. james stret. Mitthias Gumond. Presiin Mechanics institute, age St. James stret. Mitithas Guimond
dent: Alfred Latour, Secretary. 300 Delisle street. St. Cunegonde.
Bxanion, Man. IBxancil No. 1.-Mects sit and 3rd Friday each monh. in Ciiy liall. A. R. Criwford. I'resident: Arthur Fleming. Secretary.
Gurini Branch No. 6.-Mrets ist and 3rd Wednesday each month at 7:30. p.m. C. Jorden. I'resident: H. T. Flewelling, Secretary, Hox No 8. Ottawa Branch, No 7. - Meets and and $4^{\text {th }}$ Tuesday, each month. corner tkink and Spirks sireets, trank Robeti. President . J. A. B. month. Corner bink and Sparks streets
Iatour, Secretary, il Bolton Street.
Dukstrsn Brancil No. 8. - Meets every and week in each month; Thos. Merrill, Necretary.
Brkbin Brancii No. 9-Mets and and 4 th Saturday each month at 8 p. m. W. J. Rhodes, P'resident: G. Steinmetz, Secretary, Berlin Ont.
Kingston Bxanch No. 20-Metets ist and 3rd Tuesday in each month in Fraser Hall. King Sireet, at 8 p.m. J. Devlin. I'resident: A. Strong. siecretary.

ONTARIO ASSOCIATION OF STATIONARY ENGINEERS.

Regisirar. A. M. WICKRNS
Treasurer. if Mackik.
Solictor. J. A McAndiews. 20 Berkeley si., Toronto.

Tozonto-A. E. Edkine. A. M. Wickens, E. J. Phillips, F. Donaldson. Hamiliton-l'. Stoti. R. Mackic. R. Dickinson.
Petkuburo -h. Potter, care General Electric Co
BRANTHORD-A. Ames, care Patterson \& Sons.
Kincston-). Vevhin (Chief Engrneer Penetentiary). J. Campbell.
LoNixON-F. Mischell.
Information regarding examinations will be furnished on application to any member of the Hoard.

There are 546 students enrolled on the books of the Toronto Technical School. The accommodation afforded by the present building has been found to be very inadequate to the requirements. A committee has therefore been appointed to petition the City Council for incieased accommodation.

It is strange notwithstanding the fact is now known that a fan motor will keep the frost off a window that there should not be more of them in use. To any store having incandescent light a fan surely is a good investment, as it cin be used in winter to keep the frost off the windows and in summer to assist the ventilation of the apartments.

In view of the lack of agreement between various County Judges as to whether gas mains in the public streets are subject to taxation 25 real properiy, the Ontano Legislature has been petitioned by several of the municipalities to decide the question by lepislation. Sir Oliver Mowat has expressed the opinion that the mans should be taxed where it can be shown that the Company is paying a dividend. The Government has promised 10 consider the matter.

To many seekers after electrical knowledge the announcement has been received with regret that the course of lectures announced to be delivered by Prol. Cox at MicGill University will not take place. Purchasers of tickets for the course of lectures have been notified to this effect and requested to call and have their money refunded. A rumor is current to the effect that the faculty of McGill do not wish the professors to lecture to other than regular students of the University.

A FEW days ago there appeared a letter in one of nur daily papers under the caption, "Something Wanied in Toronto." The texter went on to state that repair shops for electrical apparatus, where duplicate parts of motors could be kept was a thing mach needed in Toronto. It is known to some that there are such places in Toronto, where everything of the sort can be obtained, but the proprietors cfthese establishments do not avail themselves of the advertising columns of the press, consequently work they mixht get is sent away to other places to be done.

The Hon. Mackerzic Howell, who recently retumed from Australia, which he visited with the object of developing our trade relations, indicated in his speech before the Manufacturers' Association, many lines of trade which are being supplied by the manufacturers of the United States, with whom the manufacturers of Canada might profitably enter into competition. Among other information, Mr. Bowell stated that it should be possible for Canadian manufacturers of clectrical machinery and appliances to find a considerable market in Australia for these lines of production. No doubt the hint will not be thrown away on this class of manufacturers, who are undoubtedly among the most wide-awake and enterprising in the Dominion

A perition has been presented to the Ontario legislature by Mr. Bronson, at the request of certain stean users of the City of Ottawa, praying that the Engineers' Act may be so amended that engineers operating engines of 15 horse power and over must hold certificates as a proof of their competency. A smmiar amendment to the ensting law is to be asked for by the Executive of the C. A. S.E. Thus we regard as a step in the right direction, and one which should reccive the support of all interested in the endeatvor to bring about a bigher standard of education and efliciency on the part of engineers.

It was pointed out in the Elfecrrical. News some time ago that the inauguration of rapid strect railway transit in Poronto would have a tendency to induce business men and others employed down town to lunch at home instead of at the restaurants. The tact that correspondents of the datly papers are complaining that standing room only can be procured on cars on certain lines during lunch hour is a prooi of the correctness of the assumption. It is sile to say that the ralway com pany's business mixht be lareely increased by a refluction in the price of tickets used between the hours of noon and two o'clock p. m .

Large incandescent lamps are beginning to make their appearance in several buildings in Montreal, 200 and 300 c . p. lamps being used. The manufacturers of these lamps claim a higher efficiency than the ordinay 16 c . p. lamps. If this clam is borne out the large lamps will no doubt become popular for interior illumination of large areas, such as stores, halls, efc. At the same time, however, it must be borne in mund that the calor of the light is still of a yellow hue and the distinguishing colours of silks and other goods, as for example certain sha ies of green as compared with blue, cannot be told by it with the precision that they can by the are light.

THE absurd method of giving lights by contract is still followed by a fow companies, and it would surprise some electrical people to know that this 15 even done in Montreal whete they might suppose the electric people would know better. What is to hinder a man, contracting for a certain number of 16 c . p. lights from buying a few 32's or jo's if he choose and srewing them into his sockets in place of the 16 's as often as he sees fit? The inspectors (if there are any) certainly will not make their rounds and examine the lamps after 6 o'clock at night, and this is just the time when such exchanges would be made-in fact it is done, and the cases are not few either.

A great deal of interest has been aroused by the offer of the Meiropolitan Traction Company, of New York, to give a prize of $\$ 50,000$ to the inventor of a practical street railway system to take the place of the trolley and cable systems. The offer has apparently been made in good faith, as evidenced by the fact that the judgment of the merits of the invertions which may be submitted is placed entirely outside of the Company's hands. The offer of so large an amount of money bears testimony to the value of the trolley system. We are in accord with the opinion of the New York Electrical Revien; which states that the man who invents such a system as the Metropolitan specifies can get $\$ 1,000,000$ for it just as easily as he can get $\$ 50,000$.

The discussion which for some time past has been going on in these columns with regard to the relative advantages of high versus slow speed engines for electric railway work, might we think be profitably supplemented by one in which proper consideration would be given to appliances for bringing to a sudden stop electnc cars while travelling at a high rate of speed. This is one of the most important subjects to which attention can be caller at the present time, in view of the demand for rapid iransit in cities, the dancer to human life which attends complance with this demand, and the serious financial losses to which street railway companies bave recently been subjected by adverse decisions of the Cnurts in actions for damages. The question as to what should be the limit of speed for electric cars and a suitable means of determining the speed at which cars are being run might very propetly form a feature of the discussion. We invite an expression of views from our teaders on this important subject.

The difficulty which we referred to in our last issue as existing in Truro, N. S., between the telephone and electric light companies has, we are pleased to note, been satisfactorily arranged, the contestants like sensible people, having decided to call the fight off rather than demonstiate which has the longer purse. The local electric light company proposed to give its patrons a free telephone system and had actually erected a plans with this view. The Nova Scotia Telephone Company then took steps for the prompt instalment of an electric light plant with such a big cut in rales that there was nothing left in the business and af the same time boldly announced that if necessary for the protection of their business, they would do the same in every town in the province. The lighting company recognized the inevitable and withdrew before it was 100 late. Such a fight would have been worse than tiseless, absolutely senseless, as both sides would have been hard hit financially two legitimate lines of business would have been destroyed, and no one would
have benefitted permanentiy. Of course the trouble was the culmination of recurring differences over trivial matlers. Eleceric companies occupying the same field, but in no sense rivals, may and should be mutually helpful ir working together harmomously. This little far away scrimmage has an important noral which it were advantageous and profitable to be generally recognized and regardecl.

The attention of superintendents of electric lighting stations was directed in these columns a few months ago to the necessity of frequently examining current meters, and thereby satisfying themselves that they were in proper working condition. The fact was mentioned that one callse of inefficiency was found to be the disposition of spiders to weave their neibs about the mechanism of the meter in such a way as to prevent it from properly recording the rurrent. A case of this kind hat just cone to light in St. Thomas, Ont. The meter in one of the stores in that city, when examined, showed no change from the preceding month, notwithstanding that the regular amount of light had been used. The experiment was tried of increasing tie number of lamps used, in the belief that the small amount of current previously employed was not sufficient to operate the mechanism of the meter. When it was discovered that the increased current consumed had no effect upon the meter, an examination was made, and it was found that the industrious spider was at the bottom of the difficulty.

THE question as to who should be liable for the cost of protecting railway crossings in cases where steam railroidds are crossed by electric street cars within the boundaries of city municipalities, has been argued within the last few days before the Railway Committee of the Privy Councll at Ottawa, in connection with the dispute on this point which has arisen between the Grand Trunk and Canadian Pacific Railway Companies and the Toronto Street Railway Company, with reference to the King street east crossing. Mr. 11. 13. Osler, counsel for the Toronto Street Kailway Company, raised the novel contention that an electric street railway was a highway for the carsying of passengers, on the same principle as if busses or carria; es were used ; that the right to use the highway for this purpose was granted to them under the General Public Act, this right being recognized b; the Provinces of Ontario and Quebec. From this contention he argued that the question was one beyond the jurisdiction of the Committee, and one which should be submitted to the Supreme Court for final decision The Committee decided to hear the arguments in the case, and reserved its judgment as to the question of jurisdiction.

Several city municipalities are considering the advisabilty of purchasing the necessary electric plant and doing their own lighting. The impression has seemingly not abroad that it would be possible to get cheaper light by this method than by contract with a private company. The ratepayers of the City of London apparently thought otherwise, and voted down a by-law submitted to them recently by the City Council to authorize the appropriation of money for the purchase of an electric plant. The cities of Hamilton, Woodstock and Ottawz are now considering the question. The last named city has obtained ofters from several manufactunng companies for the supply of the necessary machinery for a 500 light plant. The estimated cost of such a plant, exclusive of poles, is about $\$ 200,000$. The interest and sinking fund on this amount would be about $\$ 12,000$ per year. The city now pays, under contract, $\$ 26,000$ a year for lighting. This would leave $\$ 1,000$ per year with which to operate the plant, and the aldermen who have been appointed to deal with the subject appear to think that alarge proportion of this amount could be saved. It seems questionable, however, whether they are at pres in possession of the information necessary to enable them - irive at a cor alusion on this point, and therefore it may not be . - of place for us to submit the estimate of one of the most experienced station managers in Canada, as to the cost of operating at Ottama a 500 light plant. It is as follows:

It would be well for municipal officials and the dally press to obtain their data from imparial sources. Many of the estimates of cost published in the dally papers-the Hamition Herald for example-are very wide of the mark; and we surmise were either fumished by the representative of an eleciric manufacturing company desirous of securing an order, or a person on the look-nut for a position in the city's employ.

NOTES FOR ENGINEERS.

If steam boilets are tequired to carry safely a working p.essure of 160 pounds per square inch, and the quantity of steam is so ureat that boilers wills furnaces as large as a man can handle, even if fitted with shaking grates, should be used, what style of boiler would be mosi serviceable?

The ordinary make of hornontal tubular boiler of 72 inches diameter and 16 feet in length would take a furnace as large as a man can well manage.
What thickness of plates would be necessary, allowing a factor of safety of 5 , and making butt joints with double straps, giving 80 per cent. of sold plate as the strength of joint. The plate to have a tensile strengith of 60,000 pounds pet square inch?

The problem is, having the diameter of boiler and the strength of joint and of plate given, and the pressure and facts of safely, to find the thickness. The inside diancter of the shell in inches at the largest orthe rings, multiplied by the working pressure, will form one side of an equation. The other side is found by taking the tensile strength per square inch multiplied by two and divided by the factor of safe:y and multiplied by the fraction representing the percentage of strength of joint, and by whatever number will make it equal the fygures found for the first side of the equation. This last number is the required thickness of plate, and is found by dividing the first side of the equation by the quantity found by the process stated.

In the example, the boiler is to be about 72 inches diameter, and 72 may be used as the internal diameter. The pressure is to be 160 , therefore $160 \times 72=11520$ pounds per square inch is the strain put upon the boiler plate by the steam pressure. To resist this there are two thicknesses of metal, one on each side of the boiler. The metal is 60,000 pounds per square inch; mul tiplied by 2 , it is 120,000 ; but it is to be strained to only one-fi/fh, therefore, 120,000 divided by $5 \approx 24,000$. Then the joint is 80% of the solid metal, and as $80 \% 15$ eight-tenths, the 24,000 must be divided by ten and multiplied by eight-ihat kives 19,200 . If the plates wete ome inch thick it would give a strength of $\mathbf{1 9 , 2 0 0}$ pounds, and by the first part of the calculation, 11,520 pounds was all that was required. Therefore, $\mathbf{1 1 , 5 2 0}$ divided by 19,200 Lives the fraction of an inch which would represent the thickness of plate. $\frac{11530}{19200}$ reduced to its lowest terms is three-fifihs, and the plate would require to be three-fifihs of an anch thick or nemily five-eighths of an inch. This is too heavy to have exposed to the sction of the fire, and it may at once be settled that for steam pressure of 160 pounds per square inch and over, and where large guantities of steam are required the horizontal tubular boiler is unsuitable.
The same line of reasoning will show that for internally fired boolers the ou:cr shells require to be so large in diameter, and to be made of such very thick plate, that it is desirable to look out for some other siyle.
Hithero most marine boilers carrying 160 lbs steam pressure have been made with internal furnaces and enormously heavy shelis. At the present time there is a demand for something better, and for higher steam pressure. This his led some to adopt the water tube boiler, and the old dispute as to whether tubes should contain water or fire in a steam boiler is revived with all appearances in favor of "water" being victorious, owing to the demand for uncreased pressure.
A water tube boiler made for a Torpedo Destroyer boat for the British Navy, when filled with water ready for use, weighed a lithe over six tons.
Steain was got up to working pressure from cold water in iwenty-iwo minutes, and boiler made steam so raf dily that over 12,000 pounds of water per hour were required to keep up the supply. This shows that it is possible to constru 7 a steam boiler safe for the high pressures in use, (180 to 300 lbs per squate inch) which, when ready for steam, will weigh less than seven tons, and will require no brick setting, and yer give four hundred horse power according to United States Government standard.
lie is something for electrical engineers to investigate. If such boilers can be made and used in a war vessel, why can they not be fot for an electric station?

ERRATA.

An error inadventently crept into the paper published in the February number of the Neus on the "T. H1. Lyazma," by Mr. James Burnett. In serond column, "the two leading (top brustes) are moved about three times as fast as the two following (side brushest" the wori "slow " should be substituted for the word "fas:".

A commatee of the Eiamition Cuy Council tas been appointed to ingure into the cont of electixe machibery and the expense of operaling she same Ihas infurmation is requared to erable the Coumcil to decede whether of not it woold be probiabie tor the City to uniterake $t 2$ do its own listring.
The " Monirral Jabior Electine Club" has teen organized. and has had seortal inierexing meetinga. Ibe oficets of she club are. E. W. Singer. presorbt, Willum Sution, vere-presudert, H. Sircet. Trrabures: H. O. J. iniertsing papers were read on .. Eiectice Bells and Bavienes of the clath Wmath and papers were read on "Exectric Bedsand Ballernes" by Mr. Wm. sefism." by Mr. E. W, Sayct. The mexing was beld at Na 8 Richmond averaur

MOONLIOHT SCBEDULE FOR MARCH.

Day of Month.	Light.	Extinguish.	No. of Hours.
	\%. M .	H.M.	
	F. M. 6.00	A.N. 4.40	10.40
	" 6.20	" 5.00	10.40
3.	11 6.20	" 5.00	10.10
	- 620	5.00	10.40
	- 6.20	" 5.00	10.40
	- 6.20	" 5.00	10.40
	" 6.20	1) 5.00	10.40
8	" 0.20	5.00	10.40
9.	- 6.20	" 5.00	10.40
10	" 6.40	- 5.00	$10 \leq 0$
11	" 8.10	1 5.00	8.50
12	- 9.00	" 5.00	8.00
13.	- 10.00	- 5.00	7.00
14.	" 10.40	11 5.00	6.20
15.....	"1 11.20	11 5.00	5.40
	" 12.00	" 5.00	5.00
17......	\cdots	- 5.00	
18.	A. M. 1.10	\cdots) 3.50
19.	No light.	No light.
	No light.	No light.	
31	No light.	No light.	
	No light.	No light.	\%...
23......	P. M. 6.10	P. M. 9.10	- 33.00
24......	" 6.10	1 10.20	4.10
$25 \cdots$	6.10	" 11.00	4.50
26......	6.10	" 12.00	5.50
27......	6.20	A. N. 12.30	6.10
28......	6.30	" 8.00	6.40
29	1-620	" 8.30	7.10
.so.	" 6.20	" 3.40	8.20
3:......	" 6.20	- 3.50	9.30
		Total,	206.40

AN AUTOLATIC WAREEOUSB TELEPBONE

A new warchouse teleptone has just been placed upon the market by the well-known telephone and electrical manufactur ing firm of T. W. Ness \& Co., Montreal. The special feature of this new instrument, which is the invention of Mr. T. W. Ness, and has been patented in Canada, the United States and other countrics, is an automatic switch return, by means of which the switch is brought back automatically to its normal point after conversation is finished. Those who are familiar with the old system, in which connection is made by inserting

Ness Truephose. a plug in a sorket corresponding with the line lesired, which plug requires so be withdrawn after through talking, but is constantly overlooised, or the old style of switch, which requires 10 be returned by hand to its normal point, will at once see and appreciate the value of this new invention.

The automatic switch, receiver hook and bell are combined in the centre box. This automatic system is particularly suitable for connecting the different departments of factories, warehouses, offices, banks, colleges, etc., and it will be observed that no central office for making the different connections is required. Each instrument in 2 series has switch points corresponding or connecting with each of the other instruments, so that any one telephone can call up, or be calied up, by any other by simply turning the switch lever around to the print corresponding with the instrument desired, and at the same time "ringing up, ${ }^{n}$ which is dane by pressing the lever down upon the outer ring, shown below the switch points; this causes the bell of the instrument required to ring. After conversation is finished, the hanging op of the receiver causes the switch lever to retorn automalically to its own point, thus leaving the telephone in position to be called up by any other insirument. When desired, the instruments can be so arranged that only certain ones in a series can call up certain crbers, instead of having the whole system interchangeable in ringing up, only the bell of the instrument required sounds, so none of the others are disturbed, and conversation is at the same time private. in 2 series $o f$, say, cipht instruments, I and 3, 2 and 4,5 and 6 might converse at the same time, withoat interfering with one another.

Note.-Secrotaries of the various Associations are requested to forward to us matter
for pablication in thes Dopartment not later than the goth of ench moath

MONTREAL ASSOCIATION NO. I

In a letter dated the 8th of February, addressed to the officers and members of the above Association, Mr. Joseph G. Robertson, the l'resident, announces his intention of resigning office, giving as his reason the lack of interest manifested by a large number of the snembership in the work of the Association.

KINGSTON ASSOCIATION NO. IO
We are pleased to learn from Mr. H. Hoppins, the treasurer of the above Association, that the membership is steadily increasing, the meetings are well attended, and the discussions animated and interesting. This information is very satisfactory as far as it yoes, but it would interest many of our readers to learn more in detail what the animated and interested discussions are about.
hamilton association no. 2.
HAMILTON Feb. 20th, 1894.
Edict Evictaical Nexis
The two last meetings of the above Association were ones of no small interest. At the regnlar meeting on Feb. 2nd, Mr. S. H. Milson was initizted and other business of importance transacted.

At the instruction meeting held on Feb. 17th, a very interesting time was spent, the subject for discussion being the most economical and best methods of handling a stenm plant. The first question asked was what is the best and most economical boiler to be employed, and was discussed at some length. The water tube boiler was spoke of as being a sood steam senera. tor and a good many things were said about its form of construction.

Other questions asked were regarding the best style of grate bars to be employed and whether it is necessary to have different s:yles of grate bars for different kinds of coal ; many instructive points were brought out under this head.

We find that this system of having instruction meetings is the means of getting all present interested, as is indicated by the number of those who take part in the discussions.

Another important matter which was dealt with at the last two meetings, and which we are sure from past experience a great many members of sister lodges will hear of with pleasure, was concerning our annual dinner, which is to be held on the evening of March 22nd at the Commercial Hotel. An extraordinary good time is promised to all who shall be present on that evening.

WM. Norris
Rec.-Secretary.

ottawa association no. 7.

ditor Electuical Naws.
Sir, - At the last rexular meeting we were favored with the unexpected presence of Bros. Thomas Stewart, of Arnprior, and F. M. Donaldson, of Toronto, who gave very interesting addresses on the construction and efficieucy of steam boilers, accompanied with blackboard examples.

The steam dome received its fair share of attention, and parricularty the misleading idea that it is an absolute necessity to have one on all boiters in order to obtain what is termed dry steam. It was very clearly demonstrated that by the use of a dry pipe extending lengthwise in a well designed boiler, a better quality with more uniformity could be obrained.
The next :hing considered was the weakness due to the cutting of the plate for the passage of steam to the steam dome, this hole being somelimes made the foll diameter of the dome. Even if it wele smaller and re-intorced it is very doubsful if the strength obtained would be sufficient so overcome the weakness caused by the cutting. Another objection to the steam dome was that the part of shell within was in a balanced condition so far as steam was concerned-the pressure being the same below as above it, consequently the strains on the ott.er parts of the shell have a tendency to flatien that part undar the dome, and as it was not so effectively resisted, the joints were subjected to very trying strains. This interesting subject brought out remarks on the abuse to steam boilers by being in charge of incomperent men.

The boiler explosion at Byers' Corners furnished a good theme for discussion, and particular attention was drawn to the duties and liability of the working engineer, that of using the boiler carefully, of keeping is clean and examining it at such intervals as the nature of the water in use require:-

One common practice which was very much condemned is the overfoading of sifely valves-"to keep them from leaking" as the eacineer (?), says and entire dependence on the steamgauge. One member here cired a case which came under his notice of a connection from boiler to stcam gauge, including a syphon next to gauge being exposed to a stiff current of air from the engine room window sufficiently cold to freese the water from condensation in the pipe, consequently making the steam gauge useliss, for it would not indicate the varying pressure in the boiler. Fortunately in that case the safety valve was in good working order; but any one can imagire the result if the safety valie
had been overloaded or stuck to its seat. The speaker's opinion was that such was the cause of the last fatal explosion (except some expert brings freth the low water theory) as it was a portable saw mill, and as a general rule such mills are not very well protected from inclement weather, and the majority of men in charge of such portable boilers are using the safety valve lever as a tool rack.
After some appropriate remarks on the tensile strength of iron and steel and the bursting and safe working pressure of boilers, the President kive the first of a series of lessons on decimal fractions and decimal numerations. In opening his remarks he said that owing to numerous calculations relative to the steam engine decimals were absolutely necessary, the knowledge of their use and relation to ordinary fractions was dependent on their position to the unit, and that the decimal point was the most important in all calculations. After showing how to reduce ordinary fractions into decimals together with the signs and terms used universally, he announced that at the next meeting the first four rules of arithmetic would be the subjects taken.
Before the meeting adjourned a vote of thanks was tendered Bros. Donaldson and Stewart fol their very instructive addresses.

PROGRESS.
TORONTO ASSOCIATION NO. 1.
The membership has increased rapidly of late. There has not been a meeting for a long time past without one, two on three members being initiated, and propesitions for membership are being continually received.
The meeting of Jan. 26th was an exceptionally good one with a numerous attendance, induced no doubt by the rumors of a war of arguments between the believers in high speed engines and the lovers of the slow speed enyine.
After routine business had been hastily disposed of, the doors were opened to the public.

Bro. Chas. Heale was the first to take the floor in favor of high speed engines. He said the subject of high speed in stationary engines had been well thought out by constructive and designing engineers. The principles of steam engine economy were well understood by Watt a century ago, and yet it is only within the last few years that we have got nearer to a satisfactory solution of the problem. Watt found that the greal suurce of loss was the heating and cooling of the cylinder at each stroke. To remedy this defect he insulated the metah attached a separate condenser, shortened the stroke, increased the number of revolutions, and in fact made a high speed engine. The pnnciples that must govern the enginger to-day said Bra. Heale may be summarized thus:- The steam must enter the cylinder at the highest admissable pressure; all exterior waste of heat must be pievented as far as possible, and the much sreater waste that occurs within the engine by cylinder condensation and re-evaporation inust be checked as far as practicable; this could best be done by a high speed engine. The greatest amount of work must be done with due regard to the preceding conditions; this compelied the driving of the engine at the high highest safe speed and adopton of the highest cconomical M. E. P. The two first conditions gave maximum efficiency of engine In additions to these requisites the designers and builders of engines were compelled by some modern industries to meet demands more imperative than in others; the chief of these are great regularity of speed, case and cheapness of connecting them to their work, simplicity, compactness, rigidits; strength and durability. In the attempt to meet these demands the present high speed ero :ne has taken shape. When the above qualisies are blended in a high speed engine all difficulty of operation vanishes'; high speed being a great revealer of defects, it follows necessarily that everything about the machine must be in first class working order, everything balanced and futed up with the best workmanship; on the other hand slowly revolving machinery does not easily show defects, nor does it receive the same ateention as the high speed. There is only one standard of work permissible in the thigh speed engine, and that is "perfection"-when it is otherwise the machine is a failure. Objections were made to the high speed engines, that on aicount of their great speed they were more liable to accidents, but after reading in the different mechanical papers so many accounts of fly wheel --cidents charged up to the slow speed engine, he had concluued that the high speed engine was much safer to be with. Opponents of high speed lay great stress on the losses by clearance, entirely ignoring the adrantages of compression in preventing cylinder condensation and the fact that by giving an engine a great speod the time allowed for cooling dowr. on the return stroke is reduced, and the cylinder practically kept as Watt said it should be, viz, as hot as the steam that entered it ; whereas the slow speed engeine has its cylinder walls exposed to the atmosphere five or six times longer during a stroke than the high speed, therefore the lasses from condensation must be greater in the slow speed. In addition to the advantages already enumerated, Bro Heale added the great saving in space and foundations, lighter fy wheels, consequently less friction and immunity from burseng, the absence of belting and counter shafting, and when be's are re tuired, short parallel ones with large contact can be used. H2, h° cfficiency under great vanations of load and steam pressure is 2 characteristic of the high speed engine owing to the action of the governor
increa ing coinpression with increasing expansion, and decreasing compression with decreasing expansion, thus utilizing the heat of compresston to check cylinder condensation. Bro. Heale then gave some illustrations on the blackboard of the percentages of variations between friction and full load, also the opmons of several emment authorities on steam engineering to convince lis heaters that his arguments in favor of high speed engines were correct.
Bro. Wickens then took the floor in defence of the sluw speed engine and saud: 1 will first answer some of the statements made by Hro. Heale. I thank as far as economy in the use of steam is concerned we cannot do better than to look at some of James Watts' old Cornish pumping endines. Some of those engines have leen working continuously for the last 80 or 90 years setting an example of cconomy ($120,000,000$ foot pounds per 100 pounds of coal) that later engine builders have very rarely reached and still more seldom exceeded. Those engines give us an object lesson in durability that even the very best hugh speed builders do not expect to rearh. Hro. Heale tells us of the great advances made by the high speed builders in the seneral workmanship and proportion of their engines; now 1 thank we will all admit that the builders of slow speed engines have also adopted good proportions and better methods of cunstruction, and his reference to the bieakdowns or fly wheel accidents to the slou engines during the past year can hardly be taken as a very strong point against that style of engine, as it is only necessary to build the tly wheels stronger and put on automatic stops to act in case the govemor fails in tts duty. The mechanical engineers had hopes that a great saving in steam from cylinder condensation would follow a high rotative speed, but the result has been somewhat disappointing to them, or at least it inas developed the fact that they lost more in the clearances they must necessarily use than they saved from cylinder condensation. I have made or copied 2 diagrams from 2 engines one : $11^{*} \times 12^{*}$ ranning at 300 revs., and one a $12^{*} \times$ 30° sunning at $t 00$ revolutions per minute. In doing this i have tried to get a good card from each engine. We will now look at the difference in them, using the same steam pressure and cuting off the steam at the same point in each case.

In same of the high speed engines the clearance is as much as 20\% of piston displacement, and very few below 12%; in fact
it is only recen: engines that reach the lower figure. Slow speed clearances run from 3% to 8%; we will take 5% as a fair average, or $.05 \%$ of piston displacement. The high speed piston displacement in our card is 1357.20 cubic inches; clearance equals 203.58 , ot 15%; this filled 600 times in one minute equals $\mathbf{1 2 2 , 1 4 8}$ cubic inches. If this was all lost it would be runation to the economy of the engine. Wart of it is utilized in compression to fill up the clearance. In this case the compression pressure went up to sixty pounds, thus reducing the loss by twothirds, which would represent at least 4 lbs. water per h. p. per hour. This great amount of compression also has the effect of reducing the M. E. P. of the card, and th: power of the engine accordingly. The M. E. P. is 37.7 lbs., and the H. P . is 77.54 , as measured from the card. The slow speed engine has a piston displacement of 4071.6 cubic inches; the volume of the clearance is 5%, equals 203.58 cubic inches: this waste room is filled up 200 times per minute in this rase, and anrounts to 40.716 cubic inches. Now, in thes card we only have about 16 jbs . pressure made by the compression, and our gan for that reason is very small. Our wasie water amounts 2.02t lbs. per H. P. per hour ; this is without any allowance for compression, so we presume that we gain .02t of a pound by it. The M. E. P. of the slow speed card is 41.5 and the total H. P. is 85.36 . This gain in power is somewhat used up in extra friction with shafting, pulleys, etc. in oil and general wear the slow speed has the advantage. The manufacturers of high speeds have done wonders in the way of improvir a the methods of construction, and all these methods have been utilized by good slow speed engine makers.
Bro. Ed. Phillip, of the incandescent electric light station, then took the floor and proved himself an able advocate of the high speed engine. He said: 1 think in taking up this subject for debate we sthould have defined the term "high speed engine" and should have attached some specific purpose to the subject of debate. High speed applics really to piston speed, and 25 all piston speeds are high to day compared to the ume of James Vatt, we may say all engines are high speed. I understard st is seally Corliss or equivalent valve gear against wheel governors. Now 1 do not believe that engines with wheel governors are adapted in point of economy for all purposes, alongside of the longs stroke automatic, but there are places with variable loads where the short stroke or high speed engine will show a greater degree of economy than the slow speed, as has been proved in railroad work in the United States. Take an engine with a luad that is one-fourth its maximum,-the engine with high rotalive speed will show a degree of economy over the slow speed, but as the load approaches maximum, so will the economy of the slow speed overbalance the high speed, and when the average and maximum load is nearly the same, the slow speed is the more economical. It is well known that in the high speed, condensation is less than in the slow speed; and as condensation is loss, this is one point in economy in favor of the high speed. The range of cut-off is much greater without loss of speed in the short stroke engine with wheel governor than in the long stroke or slow speed engine. Take the two kinds of engines and let each have one revolution, drop from no load to full load, and see the difference in the percentage of speed; for instance, an engine running 100 revolutions per minute and another runnirg 300 -the loss in the first is one per cent., in the latter $1 / 3$ of one per cent, which is a very important factor, especially in electroc lighting. The shape of the card in the modern high speed is the same as the Cqriss; the only point that changes is the cutoff. A great many engineers object to the high speed engines on the score of hot boxes, broken cross-heads, bursting cylinders, \&ic. but these difficulties are only imaginary. I do not think a high speed engine requires any more watchfulness on the part of the engineer than the slow speed, and during the time that I have been operating them I nave come to the conclusion that the high speed engine is better adapted to variable loads than the slow speed.
President Wiison Phillips said he supposed according to the rules of debate be as president should not be allowed to say anything either one way or another, but he could not allow some of the statements made by Bro. Ed. Philip, relative to slow speed engines, to so unchallenged. In the first place be contented it that is possible for the governor of a slow speed engine to work very accurately, even if the load thrown off and on amount to 70\% of the total power of the engine. If when standing by an engine, when a load somes on and of a variation in speed is noticed, then there is something radically wrong with the governor. If a spring governor, there is $t 00$ mach tension or 100 little; if a ball governor, then the weights are not adjusted right. He had stood by slow speed enpines driving electrical apparatus whese changes of load were frequent, but not the least varation of speed in enkines could be detected nor could any difference be observed in the lights, because the governors of those engines were work. ing correctly. He said further that the slow speed engine does not require the same lyax-eyed watchfulness on the part of the engineer that the high speed does, for once it is in good working order it will keep so for a long time whilst a high speed may start un seemingly all right and before it has go: through its trip it is pounding like so many steam hammers. In the matter of oiling, the oil can be put on a slow speed encine's bearings where it is required: the engineer does not need to thraw it at random as does the engineer of the high speed, who oils the
frame and bed as much or more than he oils the wearing parts. Repairs to slow speed engines are infinitesimal compared with those of high speed. Slow speed engines do not often require cylinders to be bored out, nor boxes and bearings babbitted, piston rods turned up, dic., but it is a commonoccurtence for the high speed engine to undergo these repairs. Then as to the cleaniness of the two engine tooms, in the one everything is polished and bright, whilst in the other the floors teek with oil, the bed and frame of the engine ditto, and the passer-by is bespattered with oil from head to foo: the engines revolving so swiftly seem to draw all the dust from the four quarters of the earh, and it seems to sette on everything in the place. Then when there are many high speed engines at work the sum of all their great clearances must make the fuel bill very expensive, whilst in the slow speed all those wasteful clearances are compressed into the one engine, and percentage of clearance in the slow speed being so much less than in the high speed it must result in a great saving of fuel. Again, the roaring of *xhausting steam of high speeds is very annoying, whilst with slow speeds the steam is exhausted down to atmospheric pressure, thus making but very little nnise. Taking his own experience into consideration he preferred the slow speed to the high speed.
This ended the debate.
At the regular meeting on February 9th, there was a good attendence notwithstanding the very stormy night. Various reports from committees were received, commented upon and adopted. The president gave out the new pass-word and those members who were not present should get it without delay, as without it their admittance to future meetings will be difficult if not impossible.
The business part of the meeting was pushed through as rapidly as possible until "Good of the Order" was called. Under this heading the decision of the judges in the late debate on the subject of "High versus Slow Speed Engines" was loudly called for. By an agreement among the judyes, Bro. Gilchrist had been appointed to render the verdict. In doing so he expressed his regret that the Association had appointed him as judge, thereby completely closing his mouth. During the hottest part of the debate he was obliged to hold himsel down in his seat to keep from expressing his views. With great difficulty he managed to keep out of the discussion, but in future some other person would have to be judge, for he proposed hav ing a hand in the next debate. He hoped the two contending parties would bury the hatchet and immediately go in training for another fight, for he believed such debates were the making of young engineers. By a series of calculations which he ex plained he declared that the advocates of "slow speed" had beaten the "high speed" men by six points to four. This decision of the judges is not to be regarded as any reffection on high speed engines, but that the slow speed advocates presented their case in a better light than the high speed men. The "high speed" men, after putting their heads together for a few moments, were overheard predicting renewal of the battle and an overwhelming defeat for their opponents in the near future
Bro. Edkins, who had arrived home a few days before the meeting from a visit to his home in England was asked as to his welfare, and for a few words about his trip. In a short speech he expressed his thanks for the interest manifested in his welfare and assured the brethren that he had enjoyed himself thoroughly, with the exception of the retum tijp, on which his vessel had encountered foul weather and accidents by reason of which she was delayed for six days. He then desclibed the series of accidents that befel his ship and the means the engineers aboard took to repair the damages.
The "Question Box," which is always present, was on this oceasion overfowing, and the president had serious intention of calling a special m ting to dispose of the numerous questions. However, some were answered, and some taken home by members to be explained at next meeting on February 23rd.

Chas. F. Kinsey,
Corresponding Secretary.
ANNUAL DINSER MONTREAL NO. 1.
The annual dinner of this Association was held on the evening of February 2nd, at the Richelieu Hotel, and was a most enjoyable affair
The chair was occupied with much felicity by the President, Mr. J. G. Robertson, who first proposed the toast of "Queen and Country" which was duly honored.
This was followed by the toast of "Electrical Engineering," which was responded to by Messrs. J. Smillie and J. J. York.
Mr. Smillie, after explaining that be had been called upon most unexpectedly and feit unprepared to respond to the toast of one of the most important sciences that the practical mind had to grapple with to-day, said every one at present was almost compelled to take an interest in electricity for the practical applications of it were to be met everywhere. It used to be said that an electrical engineer should be nine parts mechanical and one part electrical. Now, however, electricity and mechanics were more nearly equal and be considered that the proportions should be about three parts mechanical and two elec srical. Electricity and mechanics had both made great progress, but recent accidents had shown that there was something still to be accomplished in the practical application of these sciences.
Bro. J. J. York, in replying, said it was strange no explanation
had been given of the cause of the accident which had recently happened to engines in electric power and lighting stations.

It be had time he would like to make some experment to ascertain if possible why these engines had run at a considerably hixher speed just before the arcidents, which apparently was the cause of the break down. He might then be able to throw some light on the question. Notwithstanding the fact that the strength of the fly wheels had been increased in modem times, they still occasionally give way.

The next toast was that of the "Manufacturing Interest" and was responded to by Messrs. Hugh Vallance Andrew Young and H. Mitchell.

Mr. Vallance, in replying, sald the manufacturing interests were in a flourishing condition in Canada, though somewhat unsettled by rumors of changes in the tariff. He advocated the placing of a bigher duty on scrap iron, which would cause the rolling mills to use iron from native ores and lead to the establish. ment of smelting works throughout the country.

The toast of "Steam Engineering" was then proposed, and wis responded to by Mr. P. Cowper, who said that though the methods employed in steam engineering had been improved eince the time of James Watt the principles had practically remained the same. In his time, all engines were of the vertical type and " 5 day this type is returning to favor. He then gave a brief 'istory of the steam engine from the first crude types to the present highly developed forms.
"The Faculty of Applied Science" was next toasted enthusiastically, but as !'rofessor Nicholson of McGill University, who was to have replied, was unavoidably absent, there was no response.

The toast of "License Law and Inspection" followed, and was responded to by Mr. P. Fisher, wiot said that if governments were for the greatest good of the greatest number, the people should see that men were elected to Parhament who were pledged to intruduce a licesse law. No one had a right to kill his neiphbor with impunity. If he wished to kill his enemy and did it with a revolver, he would be pharshed by the government, but if he invited his enemy to visit his boller room and increased the pressure so as to cause the boiler to explode and thus blow his enemy into eternity, the verdict would be "accidental death."
The next toast was to the "Brotherhood of Locomotive Engineers," which was coupled with the name of Mr. Thomas Claik, who said the present idea was to resort to legislation instead of s:rikes. Legislation could be easily obtained if all were united. He then gave a brief history of the Lehigh Valley Railroad strike which he said had been caused by the failure of the officers of the company to keep their agreement with the men.

The National Association of Stationary Engineers and the Canadian Association of S ationary Engineers were then toasted.

Bro. Hunt, in responding, said among other things, that the motto of the Canadion Stationary Engineers was "Forward." The Association endeavored to educate its members up to a high standard, and he hoped the engineers would never be obliged to resort to strikes in self defence.

Bio. York also responiled, and in the course of his remarks said employers should understand that the object of the Association was to educate its members. The meetings were solely for the purpose of mutual inprovement.

Mr. Cowper advised the younger members as well as the older ones if they were going to leave their employers to keep the marchinery in the best possible order up to the last.

Then came the toast of the "Press" which was responded to very happily by the representative of the Canadian Engineer. During the evening songs were given by Messrs. Hunt, Cowper, and Wheeler.

We are indebted to Mr. C. E. Robertson, of Winnipeg, for some particulars of a meeting of enginecrs held in that ctity recently with the object of forming a.: Engineers' Association. The meeting was held in Mf. Roberssco's office in the Grain Exchange. Among those present were the follow ing :-Mr. C. E. Rcberison. Edward Alberg. James T. McDonald. J. A. Binns. H. A. Stratton, L. Brandon, John Stanley. I. Schneder, T: Hapnes, J. Hurmson. T. Gordon, W. Brown, M. Saunders. Robert Hall, of Winnipeg, and C. R. Forge, of Morden. Mr. Robertson was elected charman, and after baving discussed the advantages which would be derived by engineers organizing ibemselves into a branch of the Canadian Association of Stationary Encineers, it was decided that a register and the necessary papers be prepared and signed, and an application made for a charter.

MORTREAL ELECTRIC CLUB.

Montreal, February 18th, 1894.
Elitor Caxadiax Elictaical Naws.
Dear Sir, - I have been requested by the Committee of the Montreal Electric Club to express to you through this medium the hearly thanks of the Club for the interest and encouraging remarks you have accorded them, and also for space for papers in your estecmed journal, which last I might say raises the tone of the articles, and stimulates the witers to further efforts.

Yours respecifully,
James Burnett, Sectctary M.E.C.
19 Shuter strect, Montreal.
Mr. G. W. Stevens, one of the largest propety holders of Montical. threatens to bring suit for $\$ 80,000$ damages against the City, on the ground of deprectation of the value of his property, should the construction of an elerated railway on certain streets be permutied.

ELEGTRIG RAILWAY DEPARTMENT.

THE MONTREAL STREET RAILWAY SYSTEM.
The Montreal Siteet Kailwoy have lately experienced hard luck. In the temporary power house on Cote street they have two hish speed engines, one belled to two Westinghouse generators, the other to two Edison. One night recently they had some tricuble with the engine running the Westinghouse generator. This was promplly repaired, however, only to be followed the succeeding day by the one which was running the Edison kenerators going all to pieces. One piece went through the roof and fell in the yard. It is difficult to say, what really was the trouble. The ensine was one of the Harrisbuig "Ideal." The hrunt of the work was then thrown on to the remaining engine on Cote street and the one at the Royal Electric Company's works. At 6 o'clock on the same day the armature of one of the generators at the Royal Electric Works burnt out. The Street Railway Co., however, hustled things at theit ne: fower house on Willian street and are running part of it now.
Between the thankless public (who forget the oid times, when their feet wele soaking in wet pea straw and their heads thrust against a frosted canvass root) and very inclement weather, they are indeed to be congratulated that they have managed to keep cars out on the rond at all.

LEGAL DECISIONS.

The following cases werr recently argued at Toronto before Chief Justice Galt. fustices Rose and Mc.Mahon-
Ewing h. Tosonto Railway Co.- Judgmenton motion by the defend. ants to set aside the vertict and judgment entered by Street, J., who tried the uction at Toronto with a jury, avvarding the plaintuff damages in the amount of $\$ 1.400$ for injuries recevved by bim in a collision with an electric car on the defendatit's street railway line at Tanney Hollow in Yonge street in the city of Toronta. The plainutf was going south in Yonge street on the street railway track in a democrat watgon driven by one McMillan, and was overtaken by the car, which was moving at a high rate of speed. The delendants contended on shis motion that speed, however great, did not per se constitute aegligence: that the very object of the legislation iscorporatung the company was io insure rapid transit: that the burden of care to avoid a collision lay on the person whose business it was to get out of the way, and not on the motorman, who hard the right of way; that there was room on each vide of the track; and that the accident was attributable to the negligence of McMsillan in remaining on the track and altempting to keep athead of the car (whose approach he had observed at a distance of 75 yards) until it was too late for him to curn of in safely. Motion dismissed with costs, the court holding that the case could nut propetly have been withdrawn from the jury, and as the evidence was of the most conflicting character the jury s findings could not be set aside or ignosed. Mc. Msahon. 1. referred to the fact that in Osfoodby v. Toronto Street Railway Co. a hish rate of speed was held not to be per se evidence of negligence. Rose. circumstances, and not so under others, and that it was always a question for the jury.
Gosmall y. Toronto Rallway Company. - Judgment on motion by the defendants to set ande the verdict and judgment entered by areet. J., who tried the action at Toronto with a jury. awarding the plain. lis damages to the amount of $\$ 1.160$ for injuries receivto by bim resulting roma a collision berwoen a waggon driven by hinn and a car on she defen. dants \&reet Pnilway line at the intersection of Scollard and Yenge streets in the City of toronto. The defendants contended that the ervience showed that the driver or the car tad exercsed due care and had done all in his
power to stop the cat, and that the plaintifit had been euilty of megligence. power to stop the cat, and that the plaintia had been euility of megligence.
Motion dismissed with costs. the Court bolding that the finding of the jury Mouid not be interfereth with upon the evidence.
Gxivstead 1 . Tozonto Rallway Company.-Judgment on motion by the defendznis io sel sade the verikt and judgment for the plaintiff eatered ly Sireet. J.. Who tried the action with a jury. awarding bim damages to he amount of $\$ 500$ for his ejection from a car on the sureet ralway line opperated by the defendants The plaintiff claimed to be entitled to ride on he car as a transfer under an agreement betwren certain persons (who subsequently asygned their rights thereunder to the company) and the corporaron of the City of Toronto. Tbe conductor refused to accept bis statement hat he had been properly transferred from another car, on which be had paid his fare. and the phintia's bealih suffered in consequepce of bis being sbliged to watt in the street in rery cold weather for another conveyance. On this motion the defendants contended that the evidence did not show that they were strictly speaking. subject to this clause of the agreement un. der which alone the plaintifis actioo could be brought ; that it was incumcmi on the planita, at all events. to show that itanscer provisions were in force and that he had complied wath them. snd that the learned trial Judge had erred in allowing evidence to be given and damages to be asresed in respect of the injury to the plaintut's bealth, such damages being 100 remote. The jury found $\$ 200$ for the assault and $\$ 300$ tor the plansial; consequent sufternasi. The jury found that the injury was the axtural and probable resuit of the cjection Under these circumstances the Court held that the case had been properly submitted to the jury, that there was evidence 10 go to the jury, that the defendants were operating the railway, and that the verdict could not be disturtied. Alotion dismissed with eosta.

Tile Prasirvation of Blatr. - The following empirical formula fo a machine belt preserntive ${ }^{18}$ due to I. Industrie: Warm in a covered ressel to a temprature of $50^{\circ} \mathrm{C}$. 1 kitogramme of inda- fubber broken up nio pieces and mixed with ikilogramme of essence of turpentine. Alter the rutsoce thas taelted add 800 grammes of colophone: sir antil this 100 is dissolird, then add 800 grammes of fellow wax In anothex ressel put 3
 unh ine tatiom meits. and then pout it into the first vesel, stirning con.
 greate soldity, and slipping at the palkeys is aroided."

SPARES.

The Toronto Railway Company's cars have recently been fitted with palsenger registering devices.
It is satd to be the intention to extend the Walkervilie Electric Railway to a point opposite Belle Isle, and to establish a ferry line to connect Belle lsie with the Canadian shore.
The necessary legistation bas been obeained authorizing the Montmorency. Quebec and Charlevoix Railway Company to change their motive power to lectricty and to run their line into the City of Quebec.
Mr. James Armsirong, on behalf of himself and other ratepayers of the lownship of York, is endeavoring to quash a by-law passed by the township granting a bonus of $\$ 0,000$ to the Toronto and Richmond Hill Railway.
A Sydncy. N. B., Law fimm, at the head of which is Mr. Gillies, M. P. Tor Kichmond, is avking for the incorporation of the Boynton Bicycle Electric R. R .

The consuruction of 50 new motor cars and 50 trailers luas been commenced in the Toronto Railway Company's shops. From these shops 180 menced in the Toronto Railway Company s shops. From these shops 180
cars have been turned out. These cars are in usc in Montreal, Winaiper and clsewhere.
The I'eterboro' Electric Railway Company has been much anooyed by stones being placed on the track by boys, und by drivers of vehicles getuing in the way. The Railway Act, under which cecectric roads are operated, provides severe penalities lor those who tbus obstruct the cark.
Two of the new engines in the Montreal Street Railway Company's power house, were put in succeasful operation a few days ago, developing ${ }^{1,000}$ road will be in operation al the commencement of the summer.
An inspection of the new bridges to be ueed in the double tracking of the Niagara Falls, Park and River Railway, was recently made by Mr. W. T. and Mr. W. A. Grant, general manager of the road lennings. the engineer, and Mr. We. A. Grant, general manger or
Mr. Campbell, manager of the Winnipeg Electric Street Railway, has returned to that city after spending a consijerable time in Ontario. Imme distely following his retum, be announced a reduction in the price of tickets so tickets are now being sold for $\$ 1 . c o$. This reduction, it is understood. has been brought about by competition with other roads
The following gentiernea have been elected directors of the Quebee Street Railway Compiny for the ensuing year: C. St. Michel, G. R. Renfrew. W. Hossack, J. C. Thomson, D. C. Thumson, G. Lemoine and F. Tessier. Mesms. C. Se. Michel and W. Hossnck were respectively elected President and Vice. i'resident at a subsequent meeting of the new buard.
The Hamilton Beach and Electric Railway Company is seeking incorporation. The capital stock of the company will be $\$ 48,000$, divided into 480 shares of $\$ 100$ each. The following are the incorporators: Mesgrs jlton: W. Kearns, M.L.A., Richard Baxter, and W. Allen, Burlingion.
The Toronto Railway Company will apply to the Ontario Legislature for an amendment to their act of incorporation empowering the Board of Direcors to increase the number of directors and make regulations in relation to the transfer of the stock of the company : also to authorize the company to establish superannuation, provideni and insurance funds for its officers and employees.
Application is being made by officers of the London Street Railway Company for the mporporation of the London and Springbank Eloctric Strec Railway Company, 10 construct and oprerate an eloctric railway from ibe 'ower is also sought to acquire or build a hotel and recreation grounds at Springbank.
Negotiations are in progress between the town council of Cornwall, Ont, and Mr. W. R. Hitchoock, who is seeking a franchise to operate an electric street railway to carry both passengers and freight. It is propssed to form at company for thas purpose. and utilize power from the Cornwall Canal. a company sor tass purpose, and utilise power from the cornwalt canal.
which will be nuade available on the completion of the dams now in coarse of erection at Sheik's Island.

The Hamilton Radal Electric Streat Railway Company ws meeking to have its charter aneended in sucha way that the word "stree"" shall bo struck out of the name of the Compuny and the capital atock increased trom $\$ 1,000,000$ to $\$ 1,000,000$. The purpose is to extend the line from Hamition to Niagara Falk and Erantford, Grom Oakville to Mimico, and from Elmira i0 other places in Waterioo County, also to ronvey power from Niagara Falls to Hamiltoo for manafacturing purposes The Company claim to to have already secured contracts for the suppiy of $5000 \mathrm{~b} . \mathrm{p}$. so Hamilion manufacturers.
The City Council of Toronto is seeking legislation from the Ontario Government to compel the Toronto Strea Railway Company to place vestibules upon their cars. The Council will also ask power from the Lexisiature to enforce the terms of tbe franchise granted by the County of fork to the Toroato and Mimico Eleatric Railway. This road is now within the City limits, and a dispute has arisen between the City Engineer and the company regardiog the mainteoance of the roadway between and at the sides of the track. There is niso involved the question of the right of the City Council to representation on the Board of Direstors of the Com. pany.
The County Council of York, at its last meeting, approved of an akreenent with the Metropolitan Railway Corapany giving to the company
 saide power, provided ibe zortibern himit of Richmond millis reached by said extension: also extending the company's framchises for 35 years from this date. renewable on such serms as may be detesmined by arbitration. Under the agreement, the company musp baild ibe rond before the first of
October. 1805 , unless br the certificate of the. County Engipeer and Solicitor October. 1895. unkes by the certificate of the County Engineer and Solicitor It shail appear that they were uax roidubly prevented from so doing, in Council After the line shall have been completed to Richmord Ail the council Ale the line shallave den completed romber mension. ib company tanst withun two years proceed with the furtber ertension of the line northward: in defauts of 30 doing the agreement naxy be revoked.

A company is being organieed at Lethbridge. Alberta, to constract a teiephone lide between that place sad Caudsone.

Thomson-Houston Street Railway Generators and Motors

(Same as built by us for Niagara Falls Park \& River Rallway.)

> Thomson-Houston Systems of Alternatiag Current Apparatus for Incandescent Lighting.
> Edison-Systems of Low-Tension Direct Current Apparatus for Incandescent Lighting.

Electric Arc Lighting Apparatus. Electric Mining Apparatus. Apparatus for Long Distance Transmission of Power.

We Manufacture in Camda Every Description of Electrical machineay and electrical Supples.
$x \times x \quad x$

IMSULATED

WIRES

FOR ELECTRICAL USES
Our wire factory is one of the best equipped on the continent.
We manufacture every description of insulated wires and cables, and our large production enables us to offer special values.
We desire at this season to call attention to our
Standard Weatherproof Wires,
White Weatherproof Wires,
Rubber Covered Wires,
Magnet Wires,
Othce and Annunclator Wires,
Flexible Incendescent Light cords.
Our solid core Rubber Covered Wire has the best insulation resistance, best quality of rubber, and gives the most general satisfaction to users.

TRANSFORMERS

To no other class of apparatus can the axiom that "the best is the cheapest ${ }^{7}$ be more truly applied than to electrical machinery and appliances. To transformers does this especially apply. It will pay you to buy the best in the market, and we now offer you the very best at such a reduced price that the essentials of quality and efficiency are combined with extremely low prices, which is rendered possible only by the introductinn of improved laborsaving machinery, added to a large increase in our output.
The Transformer we offer is the improver type F. Thomson-Houston design, ceiebrated for its high efficiency and perfect regulation.
The following points in a Transformer are all essential: (1) Perfect safety; (2) high efficiency ; (3) good regulation: (4) smaill core loss; (5) convenience in installation.
These are attained in the New Type F. Oil Insulated Transformers (which we are now manufacturing at our works at Peterborough, On2.), in a greater degree than any other upon the market.

```
Write to mearre: office for prive wreat discominera.
```

IMCANDESCENT
LAMPS

We have, during the past two months made such changes and improvements in our methods of manufacture, and in the general appearance of our lamps, that we offer jou, with confidence, a lamp that we are assured is now superior to any other in the market.
We have adopted an entirely new method of treating and handling our catbons, and have so improved our methods of inspecting and testing throughout each department and process that all inimerent defects are eliminated before the lamps are passed for shipment.
frice liot and diocounin forminhere an explication.

PRRSONAL

Mr. Henty W. Darling, late of Toronto has been electel assistant treasurer of the Genetnl Electric Company in the Unuted States.
Mr. Mathew Kennedy, of the firm of Wni. Kennedy a Sons, has been edected President of the Owen Sound lloird of Imde, and $\overline{4} \mathrm{fr}$. S. J. Farker, of the Electric Dight and l'ower Co. 10 a seat on the Councll of the Board.
On severing his connection with the Royal Electric Company, to assume the management of the Montmorency I Ight and Power Company, Quebec, Mr. F II. Badger, Jr., was presented by his fellow emply yeea with a gold chain and locket.

The position of Electrical Superintendent of the Hamilton, (irimsby and Heansville Electnc Kalway, has teen oflered to Mr. F. E Handy. Who lately returned to 1 oronto from Vanccuver. 1. C. Mr. Mandy has accepted the position, und will enter on lus duties on the first of Aprit. The appointurent is one which is likely to be mutually satisfactory to the partues concestued.

We regret to have to eceord the denth of Mir. Mohr, manager of the Quebee and I ris Electric Lapht Company. Mr. Mohr's death was due to influmminton of the lungs. induced by a severe cold which he contmated white superintenitarg repritrs durng a aeary snow-storm. The decected. Who was (if years of age. was the onginal promoter of the telephone and electric light in the Clly of Quebec, and more secently of the proposed electric street railway.
For nearly half a century Geo. II. Simon lived the life of a recluse at Mimico. on the boundary of the City of loronto. Very little was known about him. even thy tus ummediate neighbors, beyond the fact that he was deeply in:erested in scienificic studies and experiments, lattetiy the fact leuked out that he was engaged on the probiem of producing electnety wishout the ald of a steam engine, and he clammed that the discovery would shorily be put in pracucal form and patented. A couple of weeks ago the house in which the old man lived alone was discovered to be on fire, and the ocrupant in his frantic endeavors to save the building, and the models, etc. upon which he had for so many years been working. sustanned such imjunes from fire and frost as shortly afterwatds proved fatal. The decensed was nearly 87 years of age. Whatever value might have attached to his latiors had his life not bern so suddenly cut of, it is impossible to say, as everything wis swept away by the fire.

AN EXCELLENT IDEA.

The Columet electric street railway, operating about fifty-four mies of track in the southern part of Chicago and a number of its suburbs, has placed in each of its cars a map about 17×14 inches in size which shows plainly how to get to points on the line. The map is a blue print, the routes are shown in heavy white lines, and only the streets through which the tracks run are siven. The names of these streets and of the suburbs are prinied in large white letters, easily read from any seat in the car. The maps have proved of much value to the visitors in Chicago during the Columbian Exposition as well as to the residents of the sections where the lines run.

TBADE MOTES.

It is said to be the intention of the General Electric Co., to engage in the manuficture of electric cars.
The Toronto Ralway Company bave given a contract to the Canadian General Electric Company for 80 street car motors.
It is reported to be the intention of Mesars. T. W. Ness \& Cu., of Montreal. to establish a branch of their buetness in the United States.
Mr Waderlow, of Leamington, Ont , has made arrangements with an Illinois firm to commence the manufacture is Cannda of steam sovernors.
The Electric Iaght Co.. Windsor. N. S., are hacreasink their plant and have ordered a 150 horse power Tandern Compound Robb.Aımatrong enRine.

The Montreal Electric Company are manufacturng a iransformer for doctors' and denists use for reducing a 5 a colt incandescent current to a current of from 2106 volts.
The Canadlan General Electric Company have recently issued and sent out to their customers and frierds, a very neal and usetul souvenir in the shape of a memorandum book.
The fame of the "Packard" lamp has extended to Brasil, from which country an order for $\mathbf{8 0 , 0 0 0}$ lamps was received recently at the Packard Lamp Company's factory in Montreal.
Messra. Ahearn \& Soper are putting a new trolley bell or line insulator on the market. It is made of malleable iron and is said to be a great improve. ment over anything heretofore used for this purpose.

It is a guod plan to watch your voltage pretty close on incandescent ighting mains, as a few volts variation above the no is apt tu pluy havoc with the lampes, and reduce therr life very materiany. Most standard machines will regulate very closely and need little watching, but as an engineer watches bis water line, refardless of the fact that he has a tell tale on it 100, so the dynamo tender should watch the voliage, or the potential indicator occasionally in spite of the fact that he bas a regulator on the machine. enther in the form of compound windings or otherwise. Plants that have no measuring in:truments are not included here, as then the only guide is the lamp's bilightness as judged by the eye, which is by no means a sure indication. Potential and curtent indicators are cheap now and should be used on every circuit. no matter if the dynamo is only lighting your own shop. American Mechanic.
The new power station of the Montmorency Light and Power Company, Quebec, has heen completed, and a contract given to the Royal Electric Company for a large alternation plant to replace the old one. The ma. chinery will be operated by eight horizontal water wheels working under a head of 160 feet and run at 600 revolutions per minute. Four of these wheels are of a capacity of $620 \mathrm{~h} . \mathrm{p}$. each, and four of $310 \mathrm{~h} . \mathrm{p}$. each. The smalles wheels will be used to nperate the arc plant and the larger wheels, the alternating dynamos, compnising four 210 k . w. machines, which will be run at 600 revolutions per minute, the current baving a frequency of 60 periods per second and a pressure at full load of 2,500 volts. Iwo dynamos will be mounted upon a single base. connected by clutch coupling, and arranged so as to be capable of running in parallel and giving two phase cur. rents for power: each pair will be belted to a 620 h . p. water wheel. The switch-board will be of marble, and so divided into sections as to allow of additional machines being crnnected.

Reliance Automatic Alternating Current

The Rellange electric Mfc. Co.

WATERE'ORD, ONTI.

Write for prices and investigate before purchasing

BRANCH OFPICES:

\qquad
106 King St. West, TORONTO, ONT. 749 Craig Street, MONTREAL, QUE.

SPARKS.

There is a movement on foot to establish an incandescent lighting plant at Napanee, Ont.
The Toronio Railway Co. have placed an order with Messers. Ahearn \& Soper, of Ottawn, for to additional Westinghouse equipments.
A dispatch from London. Eng., announces that Mr Gero. A. Goodwin, in Canadtan, has teen elected president of the Society of Engineers.
Mr. C. J Myles, precident of the Hanilion. Grumsby and Beatusville Electric Rallway, wrs in Otrawa a few daysago with the object of endenvoring to induce the Customs Department to allcw the steel rails for the new raad to be brought in free of duty.
Messes. R Wilson Smith, John Torrance and Albert W. Alwater. of Montreal. Henry W. Dasling, of Toronto and Boston. and Robers H . Frases, of Toronto, areasking to be incorporated as the Tomnto Suburban Rallway Company, with power to take over the franchises and property of the City and Suburban Ralway Company and the Davenport Sitreet Railway Company.
At the annual meeting of shareholders of the Hamilion Electric Light and Power Company, held on the gth of February. Mir. Robert Thomson was elected presilent, and Mr. John Knox, vice-president of the Company. The following directors were elected for the ensuing year: Rovert Thomson. Terizel. Q. C., of Hanilton, and Mesers. S. F. MacKinnon, A. H. Cample'I and H . Mi. Pellati, of Toronio.
The engineer of the steanmer Artel, owned by Messrs. Hiram Walker \& Sons, of Walkerville, Ont., and whech runs betwren Walkerville and Detroit. discovered a few days ago, when about to start up the engine. shat some miscreant had unscrewed and removed a number of nuts and bolts, leaving the muchinesy in such a condition that serious damage would hatre resulted from putting it into operation had not the matier bern fortunately found out. Detectives are at work on the case.
The Fire and light Committee of the Ciey Council of Woorstock. Ont. have been instructed to ascertam fron the Electric Latht Company of that place on what terms they would be willing to enter upon a renewal contract or one, swo or three years from November next; also at what price they would be willing to sell their plant to the city; and if the information on these points is not considered satisfactory, to ndvert-- for tenders for lighting and plant. and report to the Courcil in April.
The St. Jean Baptiste Electric Light Co.. of Montreal, were reported to be in difficulties haterly. They are sald to have called a meeting of several of the important creditors, among whom might be mentionert Messrs. Ahearn \& isper, of Ottawa, and it is understood that the difficulties bave been tuded oier and natters arranged. We hear that the artangement for credtors over $\$ 200.00$ was that they would receive netes for their ctains at the rate of 50 cents on the dollar: the smaller creditors would probably be paid in full.

Some very strikins and orisinal effects in electrime illumanntion were introduced at the Acudemy of Alusic, Montreal. during the recent proluction of "Erninie" by the Montreal Amateur Opremitic Club. Over 450 fivn c. p. Packird incandeceent lamps were used to light up the stage noll scenery. Bouquets and stands of flowers were made brilliant by mumature incan. descent lamps among the flowers. On evenings whell some of the local dubss attended in a borly, the letters composing their inutals were spelled out in lamps of the club color. These illumnations were a very stlraclive feature of the enterainments and reflected much credit upon Mr. C. W. Henderson, electical contmetor of Montresh, who designed anil carried out the illuminations.
The Street Ralway Review for February publishes illustrations and a description of the suspended raluay spanming the Tennesser River at Knoxvilte. Ienn Two cables 1)/ meh dinmeter are stretched across the river a distance of 2.060 feel. The ends of the cables at one side of the river are 350 feet above the starung point at the other sude, or in other words the grade is about 33 per cent. The cable furnishing the motive power is one ing inch in dianietcr and its permanently fastened to the car. poles are 150 ing eables each have a breaking stmin of to tens. These cables are. I50 cars are it feet in length, exclusive of a three foot platforni, and are of fiet wide and 6 feet high. with a senting capacity of 16 passengers. The up trip takes about three anid a half minutes, and the decent atoout a half a minute by gravity. The road is said to be well pattonized.
The annual meeting of the Bell Telephone Ca, took place at Montreal on the aznd of February, the Presdent, Mr. (: F. Sise.! presiding. The annual report showed the gross revenue for the past year to be $\$ 961,174.69$. expenses. $\$ 724,701$ sa, making a net revenue of $\$ 236383.37$. The paid uy captal is $\$ 2,421,600$. The numiber of subscribers added during the year were 2.634 and the rotal number of sets of instrumuents now earning renial is 26.806 . Twenty four exchanges and fiftern agencles have been coastructed and adder to the system. The company now owns and operates 275 exchanges and 256 agencies. Two hundred and thirty two mike of 5893. Of ihese 60 pole nules and 888 wire nules are in the Ont rio depart. 1893. Ond 72 pole mies and 328 wire miles are in the Eastern departmirn. The long distance lines now owned and operated by the connpany comprise the lonk
 amount s4, There was no discussion on the reporn and the sharcholders sosi,972.iz.

$$
2
$$

Mr. Howard D. Black bas resigned his position with the Royal Electric Ca . of Montreal, and accepted that of electrician of the Chateau Frontenac Hotel ut Quehec.
Mr. H. W. Woodman has severed his connection with the Montreal Street Railway Co., and accepted the position of electrician to the corpora. tion of the town of Joliette, Que.

HAWORTH BELTING CO.

Makers of all the wide double leather belts

Used In transmitting power for the
TORONTO, HAMILTON, BRANTFORD, KINGSTON, PETEREORO', WINNIPEG, and VICTORIA, B. C.,
ELECTRIC RAILWAYS
OFFICE AND FACTORY: 9 AND \because JORDAN STREET,
TORONTO

SPARKS.

Application is being made to the Ralish Columbia legislature for a charter for a new telegraph commany which proposes to construct a line connecting South Westmingter with Vancouver, Victorin and Nansimo, and making connection with the Great Northern system.
In tendion, Eing., there was recently discovered the apparatus by means of which Franklin proctuced an electric light sufficient for reading Durposes. The current was generated from a large cylinder of glass, which was rubbed by brushes with silk covers. and a light made its appearance between a ball and a metulic point.
It is reported that the Ottawa and Chaudiere Electric Light Companies have purchased for $\$ 3.000$ four water tots on the Chaudiere, which formerly beionged to Mesks. ferley \& inatiee. For some time the water power thelonging to these lots has been employed to run the dynamos of the Ottawu company. By this purchase the electric companies have secured control of four twenty-sixths of the total nower under lease from the Chaudiere.
The booler in the steam saw mill owned hy Jomeph Whrren, at Hyers Corners. near Ottawa. Ont., exp'oded a few days ngo as the engineer was about to start up the machinery. The engineer. John Yossell, a Swede, was blown a distance of thuty feet and had bis skulf fractured by a frag. ment of the lxaiter. Pirces of the boiter, tools, etc., were found hundreds of yards away from the scene of the explosion. Singularly enough, with the exception of the engineer, no one was injured.

The Bell Telephone Co's

 OF CAMADA, LTD.
MONTERERK

manupacturis and ias hor salx eviery daschirtion or

TELEPHONIC and ELECTRICAL APPARATUS

 LIME MATENLAL AND SUPPLIES.Will furmsh tenders for supplying Warehouses, Public Buidtings, Hotels. and Dwellings with

PRIVATE AND LOCAL TEI.EPHONE SYSTEMS BURGLAR ALARMS, HOTEL, ELEVATOR AND OTHER ANNUNCIATOKS. HOTEI. ROOM AND FIRE CALL BELIS. ELECTRIC BEILS. PUSH buTrons, ETC.
Will also furnish zenders to Cities. Towns and Villages for Firk Alakm and Police Patrot. Systems.

Catalogwes will of furmished on appicatiow.

1. © SALES DEPARTMENT

MONTREAL:
Bell Telephone Building. 367 Aqueduct Street.

TORONTO:
Hell Telephone Building
37 Temperance Street.
HAMILTON:
Bell Telephone Building. Hughson Streel.

OTTAWA ;
Bell Telephone Building. Queen Street.
QUEBEC:
lell Trelephone Building. St. John and P.lace Strects.

WINNIPEG:
Forrest Block, Main Street.

The district assembly of the Knights of Labor of Montreal. on tehalf of members of that organteation who are employed as linemicn by the vatious local electric compankes, will memorialise the City Council to compel the use of better insulated wires. This action is taken in view of the many injunes which the linemen claim to bave sustained by reason of poor insulation.
While arcending the steep incline near Brock's Monument at gucenston, the trolley of the motor car of a ballast train on the Niagara Fails Park and River Railway. jumped the wire. and before the brakes could be applied the train was plunging down the hill at inghtiul speed. It left the rails when oppostle the old Mechodist chureb. anit plunged into the building. tearing away almosi the enure front Fortunately no one was injured The incerdent is a striking indication of the necrasity for more eflecture conitrolling devices for electuc cats.

TORONTO ELECTRIC MOTORCO. Dynamos and Motors
ARC LANIS TOR INCANDKSCENT CUXRENT. MXTAIKING A MPECIALTT.
107 fidelaide St. W. - Toromto, Ont.

Subscribed Capital, \$200,000.

When were your Eoilers last inspected by a Compettat Engineer? It pays to know that you are right: start the year right.

ELECTRIC

 WATER WHEEL GOVERMOR
PATENTED.

Varatioos in speed detecred by fast running. sensitive Gove nor Balk. Gate movement instantly Gate movement instantly set in oprecation by elecno current. Quick and powefful action.

Write for particulars.
WM. KENMEDY
\& SOMS
Owa Sound, Oat.

Contracting Electrical Engineers

※ 出 ※

AHEARN \& SOPER

OITAWA, OINT.
camadian representatives of the

Westicheruse Elecrieq \& Mre. Co.

Railway Managers who have had practical experience with our Motors and Generators pronounce them the Best in the Market. They embody all the requirements demanded by electric railway practice.

Efficiency, Durability, Easy Operation,
 Least Cost of Repairs, Noiseless in Use,

and Perfect Mechanical and Electrical Construction.
NOTIF The Westinghouse Alternator is the only Alternator of its type in which the Armature Coils are removable and may be kept in stock. Coils are lathe wound, thereby securing the highest insulation. All armatures are iron clad.

(LIMITED)

MOINTRFA工

As Compared with Arc Lamps

Absolutely steady ligh.

No dead resistance in current.
Does not have to be burned two in series on 100 volts.
The color of the light is much pleasanter, and it casts no sharp shadows.

Will give nearly two thirds the light and a more satisfactory illummation with the same expenditure of power.

Kenewals will cost no more than the carbons and trimmings of an arc light.

No carbons to replace every day, and requires so attention from the time it is installed until it burns out.

Kequires no special transformer to be used on alternating curients, and is absolutely noiseless.

Sample in Arithmetic

A 300 C. P. Packard Mogul, burning at 2.66 watts per C. P., consumes

780 watts.
This lamp is equal to $18316 \mathrm{C} . \mathrm{P}$. lamps,
which burning at 3.6 watts per C. P.
efficiency, will consume
1080 watts.
A saving each hour ot - - 300 watt hr
Or at 15 cents per 1000 watts a saving of $4 / 2$ cents.
If the lamps average 4 hours use daily it means
a saving in current every month of - $\$ 5.40$.
As a Packard Mogul Lamp burned under these conditions "ill have an average life of about five months, this means a saving of $\$ 27.00$ in current before the lamp has to be rencwed, and last, but not least, Packard Moculs cost less than the same capacity in 16 C . P. lamps.
The saving in current over Low Candie Power Lamps will more than pay for renewals.

More Economical than Brick-set Boilers, with all advantages of light portable forms.
Robb Engineering Co. (LIMITED) Auhenst, - Mova Scotia.

If you want to

 ANYTHING
to the wholesale and retall hardware merchants and manufacturers

ANYWHERE
in Canads, you can reach them through the
Camadian Hardmare Merchant
J. B. MCLEAN CO., LTD. 10 Front St. E. Fishars - Toronto.

AND CUT OFF COUPLINGS

For Electre Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,
 (Snocoscore to Mullor Bros \& Mitohent)

Toronto Office: 74 York Street.
MONTREAL, QUE.
ESTRABLISHED 1869.

THE CANADIAN LOCOMOTIVE \& ENGINE CO., Ltd. KINGSTON,
manuracturers of ontario.
Locomotive, Marine and Stationary Engines

NOTICE.
The Canadian Locomotive \& Engine Co. . Limited, of Kingston. Ontario, have the exclusive license for building our Improved Patent High Speed Engine for the Dominion of Canada, and are furfor bailding our Improved Patent High Speed Engin
nished by us with drawings of our latest improvements.
Providence. R.J.. Nov. 18ih, 1889.
(Signed)
ARMINGTON \& SIMS.

C. W. HENDERSON Mantiature and Gontatiot ELECTRICAL SUPPLIES ESl゙IMATES r(RNISHE1) FUK

Wiring and Installing Complete Electric Plants

Heckivi lammatist lamm.

44 Bleury Street.
(CORNER JURORS)

STEAM PIPE AND BOILER COVERINGS Anbenton Goods Steam Puckings Cotton Waste , Geaskets, dec., de. b.akgest and be:t asookthe:tin canaida.

Ganadian Mineral Wool Go., Ltd. $\quad 122$ Bay Street, TORonto. Telephone 2376.

MONTREAL

LONDON MACHINE TOOL CO., LONDON, ONTERRIO,

 Machinist \& Brass Finishers' ToolsA. H. HILLIAMS, General dyent, TOKONTO, ONT.

It is no longer necessary to import Carbon Points.

THE PETERBOROUCH CARBON AND PORCELAIN CO. (IIMMITEDD) ... can furnish them ed yanctactivenior worid, as they are

 Carbon Points for all systems of arc Light, Battery Plates, Carbon Brushes, AMD ALL KIMDS OF PORCELAIN FOR ELECTRICAL AND HARDWARE LIMES.

G TORONTR
THE J. C. MCLAREN BELTING CO. montreal

The Imported
 English Liquid Vegetable "Anti-Scale"

BEST BOILER COMPOUND ... LOCOMOTIVE. MARINE and STATIONARY BOLLERS.
Efticuent in is working without injury to the boiler plates and zubes.

 Used in Girmat Brifasiss and the Colonies.

(Agent for John C. Taylor \& Co., Lid., Banufacturers, Bristol, England)
4.36 Richmond Street
LONDON, ONT.

[^0]: A Weekly Jousmal of adrance inflorma. thon exd pratic works.
 The recognimb mecium for mirertive-
 CANADIAN CONTRACT RECORD GRONTC

