## IMAGE EVALUATION TEST TARGET (MT-3)



Photographic Sciences
Corporation

(716) 872-4503

# CIHM/ICMH Microfiche Series. 

# CIHM/ICMH Collection de microfiches. 

The Institute has attempted to obtein the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Collverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
$\square$ Cover title missing/
Le titre de couverture manque


Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées


Pages iestored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées


Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression


Includes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.


The copy filmed here has been reproduced thanks to the generosity of:

## Library of the Public Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and In keeping with the filming contract spacifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed baginning on the first page with a printed or illustrated imprassion, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol $\rightarrow$ (meaning "CONTINUED"), or the symbol $\nabla$ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may ba filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premiar plat at en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole $\rightarrow$ signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés è des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un soul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.


# THE <br> - CANADIAN <br> agriculwural reader, 

DESIGNFD PRINCIPALJY
FOR THE USE OF SCHOOLS:

COMPILED EROM THE MOST APPROVED
AND
PRACTICAL AUTHORS,
by a vice prestment

OF THE

## madaba mistact nomedreal segiety,

and
TOWNSHIP SUPERINTENDENT OF COMMON SCHOOLA.


NIAGARA:

PRINTED BY JOHN SIMPSOK.
1845.

$$
\begin{aligned}
& S \\
& 535 \\
& C 2.3
\end{aligned}
$$

[Entered, acen:ding to Net of the Provincial Langistature, in the year One Thousand Light Jhondred and Fonty-tive, by Jown Smpan \& Co., in the Office of the Registrar ol the Province of Camonda.]

## PREFACE

## TO THE

## CANADIAN AGRICUL'IURAL READER.

When the Spartan King was asked, What things ho thought most proper for bors to larn? his answer was this:-"'ihose thing they expect to do when men."

The principle insolved in that wise answer has colled forth this little work. The compiler has seen the youth of this rauntry-seven-eighths of whom bermme, in the course of time, rimged in the noblest of mere earbly employments, the cultion ' m ot the soil-pass through our schools without receiving the slightest instruction in that probession, to which they hope to devote the remainder of their days. Not one of the homs, in which they learn to spell or to read, tells them of things which they can turn to profit in their future arocrion ; not one of them tells them of the improved modes of agriculture adopted by experienced farmars, or of the changes which the application of science to this art has effected since the time their parents first set out in life.

They are obliged to pick up instruction in these mnters an they best can, and, not mirequently, to envy the more highly favored lot of better instructed agriculturists, who, settling in their neighbourbon, with no better land and no hardre labom, invariably secure better crops and mise better animats than they ean.

In corrobomtion of this statement the eombiler would retr to the farms of scores of scientific English and Sentch famors scatterod over the country, compared with the Garms of their si rounding neighbours.

The English and the Scotch farmer generally bring to bear upon our lants that improvel systen of agriculture, withmat which the fammens o! Yoghand and Seatlat could never live; :ad io the farmers of his conntry wish the thive they must adopt in inprovod systen. for their virgin soil is gone, ant all the fanom they can put upon tionip forms, without knowlotge and julgmeatat seconeen


To give them, whilst at school, a mass of useful information on what is to be the business of their future lives, and at the same time a little insight into the improved system of agriculture, adopted by all scientific lamers, is the ohect of this work.

And if it begets in the yomig farmers of this country an anxiety to become hefter acpuatinted with what belongs to their noble profession, and induces them to peruse agricultural jommals and more seientific works on the subjert, the compiler will feel himself well mpaid for his labours by the conscionsners of being, in some menstre, at lenst, a phblic benctactor.

The witers from whose works this compilation has been made ( 10 whom the compiler here wishes bexpreses hisobligations) and Whose manes must commend it to every one megnamed with their aritings, aro men who have carved their wimen ont into practice, vir: the late dalges buet and biatly, the late ' l . ( i . Fesomden, Willis Goylorl, I. J. 'Thomas, lavid' 'hemas, I. S. Randall, A. 13. Allen ant John [hare Ponoll, of the linitmistates; the present


 son, 3. A., F. R. S., de. de. dre, athon whe Aplications of Chemishy and Coology to Agrendure of Boghom.
'To those persons who looti onty to imme inate results (and such there are and alwats will be), it mety not be amies to state, that ahmost crery section, whilst it alforls cxechent lasons to those baming to beat, tocms also with inkomotion, whoh, if carried out in o practice, wond repay ton-fold the pace of the work. If any one is dubisus on this point. let him carchally cxamine the work and juige for himseif bedre he purchases it.

Niagara, July © $441,1845$.

## THE CANADIAN AGRICULTURAL READER.

## CHAPTER I.

## Section 1.

1. Brief Hivts for Jwinus.-During winter, enttle are very apt to suffer from a want of water, as runing streans are generally frozen, and they are mostly fed on dry folder.
$\therefore$ Catlle will drink several times a day, it the water is good and of easy access ; preper provision shond therefore be mate dion them.
2. Farmers will stre a great deal of hay, especially in wet and muddy wather, if, instoad of spreading it upon the gromed bor them, to be trodilen under foot, suitable racks are provided, so that none of it may be wasted.
3. As milk is very valuable in winter, great care shomb be taken that cows are now milked very clean. But as the operation is apt to be tedious, at this scason, in consequence of the showness with which it is given down, it is best, atier having obtained whet milk can be done ersily at ene milking, to pass round all the cows at the conclusion, and give them a second miking, being carctul to drain them to the last lrop.
4. Cows hould not bedried up of their milk too soon efore their time of having a cali-this care is especially requisite in case of young eows whencha milied for the first season; for when these are drich up toa soon it is apt to caluse a permanent shortoning of their timo of giving milk for each suceessive serson. If they are the filst sens:m drien andy in the fill, it is difiecult to obtain much milk aftor thet priad in any year atherwarts.
5. With careind milling particularly the first year. and good keoping, cows may be mide to give milk for almost any period required, cren but a vory short time before having a calt.
6. Farmers havedifleced with regarl to the pioper time of drying up cows; but this rale we believe to be nearly correct-if they are woll fed ami in grod condition the milking niay be continued until nearly the time of having calf; but if they are not in good condi.
tion, they shouk be dried a montit or two before that period, in order to allow them to recover their hoalth and strength.
7. During the present month, apple trees mav be prumed to great advanatage, provided there is mild weather to atmit of it being done comfortably to the operator.
8. 'Trees which areneglected in this particular, becomo thick and crooked in their bramelese, produce poor und imperfect fruit, the smaler hranches die, and the trees become old betare their time.
9. This operation is commonly hest performed with a hand-saw. Crooked and stmated side banches should be franowd so that those which remain may have an opportunty to grow freely, and that the light and air may be admatted thomgh all pats. The top of the tree shond be leit of good shape, and the bramehes equidistant from each other in every prit, as is casily practicable.
10. Too mush pruming at a time is apt to cheek the growth of trees and is therefore not good, but they should be pruned moderately each yetur.

1\%. In cuting ofilarge branches, avoid as muchne possible broad wounds; wheh is effected by cuting themoff wearly at rightangles, and by not chating them too clusely. $\Lambda$ stump or projaction should, at thu same time, be aroided.
13. As the stumps of large branches are apt to cmack, anmit water and rot, or breed insects, they should bo covered with thick paint, or a cont of tar and brick dust.
14. During mild weather in this month, will also be a good time to prume hardy grape vines, if not alrcady denc. Miny persons, having but few grapes, and those hardy, are apt to neglect them, and let them grow too thick; the guality of the limit would be greatly improved il they were kept properly pruned, which would be but a few minutes' work.
15. Dy performing the operation now, the wounds would have timo to dry and contmat, and the sap-vessels to become closed before spring: and prechade the danger of bleeding.
16. Theonly ware needed in this operation is to cut offoll the smaller and least hritiy branches, and the ends of the larger, so that the buds leli may be those which are lirgest and most vigorous, and that they may have sufficient light and air for healthy growth.
17. As fruit trees are apt tobe ingurd by mice whenever there are a few inches of snow to conceal them in their depredations-especially in grass has been suffered to grow round the trees-it will be proper, whenever snow falls, to tread it firmly about them, by which the evil may be prevented.
18. Many other operations may be porformed during winter, which
a little observation or reflection will point out-such as procuring and selecting seeds, removing mamure to its place of destimation, procuring linel, collecting seions tor gralting, making grating plasters, \&ic. Great care shomblatan to get gemuine seds, und to obtain the best varicties of fruit for grating-for it is bettor not to plant a garden than to plant it with spurious seeds, and to umit grafting a troe than to graft it with a poor varicty.

## Section II.

1. Bhef IInts for Febmunc:- Wevery thing relating to the winter-kepping of cattle must be consideredhy hamers at the present time as of the first interest. A great dical may be saill of the vast benelits derived liom entting striw am hay.
$\because$. I'lese benelits hatwe been satislactorily determined by direct experiment; they may permps be ascribed notonly to the operation of cuting, rembering this fiod more palatable to the ammal, and thas inducing it to cat a sullicioney ; but ako to its cansing the nore complete mastication of its food, and of conse contributing to the more complete extraction ol the nutriment it contaibs.
2. If eom-stalk lodder is cut up about a quarter of an inch in length, cattle will eat it entirely without any thing else being mixed withit. 'I'oaccomplishthis is ofereaimportance, as thecentrestalks, which are commonly rejected by cattle, are the sweotest ane most nutritions part. If one of the hinpored eutting machines eonld be attached to the horse power of it thrashing machine, corn-stalks could be cut cheaply and with great bality.
3. It is a very suitalle time dariag the present month to procure and collect seions for gratiting. In some instances, as when the trees from which they are to be taken are rendy at hand, cutting them may be delerred till spring ; but in most cases, the business should not be put off thll then, as the multiplicity of other asocations prerents the attention to it which is requisite ; for the greatest care should be talen to procure the best tarictios, and the present season of leisure athits of this being rione properly. A lithe additional care may well be taken, when it is remembered that alter the seions areoner procured, it is as casy to graftimed mise good as bad varicties.
4. Eanly truit is always exccedingly desimble, coming at a time when, on account of the previous want of truit, it is so acceptable. Wo last summer, at the time of wheat harvest, visited the gurden of a cultivator of fruit, who had taken considemble pains in this respect, and found fully ripe three varietics of apples, two of the pear, two of plums, three of apricots, and one variety of peach just beginning to be ripe.
5. A succession of fruits is also of the first importance. Scions should be carcially labelled at tho time they are cut from the tree, if preserving the names correctly is any object. They may be preserved from drying byburying them in earth neither wet nor dry, in a cellar or other suitable place, taking particular care to protect them from the mice.
6. It is a very proper time now for pruning gooseberries. These are genorally nallowed to grow without control ; the branches become mmeronsambdense, and a small and inferior fruit is the eonsequence. To procure good fruit, the braches must be thimned, by cutting ofi crooked, stunted, and nseless ones, and leaving the straightest and most thrify, and admitting light and air.
$x$. To present too much hury early in spring, hot hed frames should now be male where they are needed. il proper earo is taken of them the may be presemed many yenrs. 'ihey should be well painted and kept under shelter when jot in actmal use.
7. 'They should besomade that the plank of the frane may be taken apart, to admit, of their being easily paked awny. This may be eflectal by miling themat the endstocomer posts by large wronght mails, cienching them fimmy. 'Ihey are comected together, when used, by iron bolts passing through the comer posts, am' keyod on the inside. By withtrawing the kers, they are rendily taken apart.
8. During winter a supply of thel shomb be procured and eut up sufficiont to lest throngh the year. 'This not only prevents interrmption during other business, in summer, but it dinits of its beroming dry, by which one cord will prodine often more thin twice as much hent, as one cord of green wood.
9. Wood, drici in a woud honse, is found to yield much more heat than that dried in the open air, on accomb, of the process being more eflectually pertomed. Whenever wood is intemied for surh thorongh drying, (ats all wood should be, it shond not be split finely,
 the ermonens beliel that dre wood does not albiays yied so much hoat as that which is in a green smo.
B.othe II.

 which may prevent incomptorn ia in ipse yon or the year.





more. Where n man can do one third more work by using a good tool, he will soon pay for the additional expense.
10. A common but expensive mote of raising calves, is to suffer them to suck the cow. 'Jhe practice which not untrequently occurs, of suffering calves to run constantly with the cow, should bo strongly repmbatad, as themilk is drawn irregularly, and not often clean, ind the cow is conseymently soon spoiled. "Where the calf sucks regularly, and the milk is dimwn completely firom the udder, the expense shmaddeter fomm the pratice, as the milk will be worth more during the sinsson, than the calt in the alumme. But it the calt is soon weancl to whtain the milk, a gool mamml cmmot be

11. A gooll wisy to mise colver, is to let them surk the cow a few days, then lot them suck the tinger in a pail of new millk until they leam to drime, then mix a small quatity of wator with the milk, at the sume fame whime meal and mising it, and then gratually substituting witer mal mon! for milk, muth the milk is chtiroly diseontimen!. 'Jhme suhtro changes are:moded, whichare ahwas injurions to erives. Whamed skim milk may be used in phace of new milk, ation the litst liw dass.
12. Cilves, as will as other animals, stould have a good supply of clean liter.
13. Milk yome cows denn, if you do not wish tospil them. Sore teats may be perented by whing them ench the before milking with water.
14. Working eattle and horses must be kept in good orler, that they

 work, and conseruenty emable the man who drives dicm to do twice ats much.
15. Cherer enculmy be sown any time during this month. and whon the season of dreceing and thatiog the soil artives, hey will be gradually vorlant into the gromi by the operation. Illas is fomm by repented eypominma to be better than to doder it thll the gromad becomes setth i. . . lime.



 should be cat mit t itme or lime leet high, int tien to stalies driven into the gramblutanp them erect. Larly in the spring the ground should be cieared ol grias and weods, and loosened about them.
16. Grafing plasters may be now made, and we liave found the
cheapest and by far most convenient material to spread the wax upon, to tho brown paper. A sheet may be covered by spreading the wax with a knife, and then cut by scissors into plasters of the required size.
17. Gralting wax may be made by melting tngether the following substances: two parts tallow, two beeswax, four rosin ; or, three rosin, three beeswas, one tallow; or, four parts pitch, four rosin, two beeswat, one hog's lard, one turpentine.
18. Farmers oiten sufler much at this season from wet feet, we therefore request lave to recommond them to the following India rubber application:-
19. Melt one pound of tallow in an iron kettle, add from four to six ounces of Lndia rubber cut small, and heat the melted taflow until the Ladia rubber in it is dissolved. It will then be fit for greasing brots and shoes, and will render them perfectly impervious to water, thongt in it all day. During the preparation of this mixture it will boil up in foam, and send ofl copious pungent fumes, but this does not injure it. One-twenticth part of becswax improves it. Old worn out India rubber over-shoes may be uscd in the mannfacture.
20. As system and looking ahead is indispensable to suceess in farming, we would urge upolt every farmer a recommendation for making a memorandum book. Provide a small blank book with a flewible le ther cover, that it may bo conveniontly carrice in the pocket, and spproprinto one page to each woek in the season; set down every tining on its proper page, which is to be done at the time denoted.
21. By havig this book constratly in the poeket, many things may be noted duw the moment they vecur to the mint, either during reatilig or otherwis, wheh without this would ho forgotten and negiectet. Inther. provido another similar book, and note down in it bricts, haring the progress ol the senson, whatever work is done at the time, with hins of such improvements as may occur. This will finm an excellent memorandum bok for the next season. Thus the funder has every thing in black and white betore him ; he sees his business at ono view, and he makes his arrangements according!y, wihout unforeseen and unexpected interruptions.

## Section IV.

1. Bref IIfxts for April.-During the presentmonth, farmers should enteaver as much as possible to get their land into the best condition for planting, for on this will depend in a great measure the success of the crop.
2. No pains should be spared to apply manure copiously to corn and potato crops-the product will abundantly repay the labor.T'o the smaller grain crops, as for instance, oats and barley, manure should not commonly be applied, as the benefits in such cases may not overbalance the injury.
3. Wheat, which has been injured by the heaving of the frost, has in some cases been greatly benefitted by passing a roller over it, thus pressing the roots again into the earth.
4. New meadows should be rolled in the spring, to render the surface smooth for mowing.
5. Plaster, to be bencticial to the greatest extent, should be sown on mendows carly in spring.
6. Green sward, in order to be turned over neatly, should have the furrow slices one half wider than thick.
7. Seed barley, by being limed and rolled in plaster, has produced crops freer from smut in consequence of this operation; and yielded larger products.
8. The planting of locust trees for timber should be more attended to. The seeds when sown, should be previousty scalded by pouring hot water on them and sullering it to stand several hours-the swollen ones should then be sown, aid the others re-scelded.
9. Stocks of pach and other fruit trees, hhould now be cat and trimmed. Levery bud should be remored except the one intended to grow.
10. The soil round fruit trees which do not stand in cultivated ground should be spaded for two or three feet on each side. This is absolute!y necessary for young trees.
11. The roots of peach trees should be examined for the purpose of removing all he worms which may have caten into the bark, and all the holes which appear should be searched to their termination that the worm may not escape.
12. We wish agein to urge upon farmers, the great bencfit to be derived from the culture of root crops-the amount of cattle food thus obtained is too much overlooked. ly good culture, many hundred buthels may be safely calculated on, exceeding many times in value a grod crop of hay from the same quantity of land. Drilling, instead of sowing the sced, greatly lessens the labor of hocing.

## Sectios V.

1. Brefe Iints for Mat-As regards the application of time with the farmer, there is not a month in the yenr that demands more attention than the month of May. If the farmer does not plani he will not reap, and if he does plant his grounds before they are
properly prepared, the labor required for their after culture is greatly increased.
2. It is also essential that crops should he put in in season, as well as that the ground should be well prepared. Oats should always be sown before the time for planting Indian corn, otherwise, although there may be a great growth of straw, the grain will be light.
3. Peas, when intended as a preparatory crop for wheat, should be sown as soon as the ground can be prepared, as they are not subject to be injurel by the frost, and by sowing early, there is a greater opportunity for proparing the ground alter they are off for wheat.
4. Early potatocs may be planted as soon as the frost will admit; and although they may be phanted at almost any the from the middle of April to the midale of July, yet, we think, they produce best when planted from the middle of April to the middle of May, or when left until from the midile to the last of June.
5. In the first case, the tubers make their growth before the mid-summer drought ; and in the latter, after the fall rains have set in ; in either case the potitues will bo better in quality than when grown in the heat of mid-summer, allowing the soil to be sufficiently miost.
(6. One mistake universally prevails in selecting soil for potatoes, and we often hear farnicrs recommending them as fine in quality because they grew on dry, sandy soil. Potatocs growing on a dry, sandy soil are never as good is those which grow upon a deep soil, rather damp than dry, in which there is a large proportion of vegetable matter, which has a tendency to prevent such soils from becoming heated by the sun.
6. We think that our farmers are becoming more and more convinced of the importance of atenting to this crop, and of selecting seed with relerence to the ne for which they are intended. Those varieties which are ennsidered best for the thhe aro not always found to be the mostabument bearers, and of courso could not be raisol at the samo price por bushel as sume of the larger varieties, which may mewer equally well for toctag onck.-
7. Until the presehteras on we have known but lialodherence in the price of potatocs in the market-a bumel of imetators has beon considered a bashel of potatnes, without regard io quality, and all sold at the same price. Pat this spring we have known somo varietics sell at from $2 s .6 d$. to $3 s$. $9 d$. by the load, at the same time that others were solling for 1 s. $3 d$. This difierence ought to stimulate farmers to be select in their seed.
8. For the table we have recommended the Mercer, the Pinkoyc, and the Sanlt Sit. Marie, and we might add the Foxite; for stock the large, mund, yellow and flesh colored potatoes, as being valuablo for "ation. In addition to the common farming operations, the endens and orehnels require somentention during the oarly pare of this month. No man ought to be called a good farmer whodses not chlimate a gonl garden and orehned, both of which we havo reaton to believe have required much attention from the er licr ages.
9. At this senam, stock genem!ly requires es much attention as at any soason in the yoar; and perhas hare are as many catto die in the last hatf of ipril and fist half ot May, we in all the remain lor of the yoar; therebore, mach attention is required in this denmamont.
10. This in the month in which comoniog formora make additions to their focls by the pumban of inm anmals. There are
 in the apming fin less muny than the world bo woth which they have comand: and, as and bannana not to bo overlouk.
 in most: amons mako whlunagen pareluses.
11. Fembard shoulnbe haronfor vornolthismonth, so that the manas? hay he mised wilh the sul? insmaner crops.
 barn to lion I waste.
12. Mon haing oprations during this month depond upro the quant's of team work which is anabatile, therefore the strictest attentinn should bo paid whoth oxen and borens. One team well fed, will do move than two starved mess; and farmers should not allow their oxen or horses to run to grass until atter spring ploughing is orer.
13. It should be considered of inst importance to krep the plough moving as prepmatory to all kindis of crops, as even frod grass is rarely produced from soils that have not been well plougher.
14. Famers often become very nuch olated about procuring new seeds in the spring; but we would caution them against giving up all old practices and plants. Improvernents march slowly-better be slow and sure than wild and speculative. He that studies much to find what has been before him, frequently bonefits mankind as much as those who study to find that which never was.

## Section VI.

1. Brief Hints for June.-As early in this monthas possible, ground should be got rendy for Ruta Baga. Any soil will answer well if it is not wet, and is deep, mellow and rich. Too much manure can scarcely beapplied, especially if it be fine and well rotted.
2. The most economical method, is to prepare the ground in the very best mamer, and plant the seed in drills about 15 inchos apart, so that they may be thimed to 8 or 10 inches in the drill. 'The manure may thus be spread broadeast, and the eflect of none of it is lost by lying between remote rows. The cleaning is all done with a hoe, which is quite as economical for the amount of the crop, as where a cultivator is used.
3. The only advantage of ridging, is where the soil is not sufficiently decp or fertile, and repuires to be accmanated in ridges for this purpose. Where this is the case, it is best to plough the land into ridges and furrows abont two and a hall feet apart, fill the furrows with manure, split the "Kges with a plough and throw them apon the manure, thus finis $g$ new drills, on which the seed are planted. 'This is best adapted to heavy soils suffering from wetness.
4. 'lie seed shoukd he phanted an inch deep il the soil is moist, but deeper if inclining to be dry. Sbout one pound to the acre is, in ordinary cases, sulficient. If no drilling mathe is at hand, drills may be made witi an instrument resembling a large conrse rake with short teeth, each tooth for a drill ; the seed may be rapidly and evenly dropped, by means of a tin cup fistened to the lower end of a rod, with a small hole in the bottom, holding the cup by the rod and walking with an even pace and shaking it constantly.
5. The average crop to the acre is abont 500 or 600 bushels- 900 and $\mathbf{1 0 0 0}$ have frequently been obtainel, and in one instance they produced at the rate of $: 200$ bushels to the acre.
6. Cropsol Mangel Wartzel phanted last inouth, slould be thinned when th: plants are 2 or 3 inches high, leaving them from 6 inches to a foot in the driil, in fertile soil requiring more rom than otherwise.
7. Too mach pains cannot be taken to have root crops early cleared of weeds; a chief cause of failure is owing to a neglect of this care.
8. In oll cases keep ahead of weeds. This is cheaper, and saves, a part of the crop.
9. It is a crod tine now to clear grain fields of weeds which may injure the erop or render the seed foul.
10. Mastering cora soon after it is up is often bencficial, and ie some instances has incrensed the crop ou per cent.
11. Manure should be taken care of to prevent its wasting by fermentation or evaporation. To this end it should be piled in heaps, and covered a bew inches with enrth or a coating of lime. The quality of lime in retaining the exhalation of fermentingsubstances, was strikingly proved hy covering the carcass of a cow 6 inches with earth continuing about one-third lime. No sumbll was perceived during the puteflaction, and the crop to which the lime was afterwards applied, was for more lenefitted ihan the mf, ining erop, where the same quantity of lime was applied. Stached and old limo is quite as beneticial for manure, as Iresh lime.
12. Save yournwneed. Famers are neglectial in this respect, and rely ton much on the sead box of the merchant, ur a supply from a sont store. when they might, in most cons, prodnce ail they require atome. lecein with the earliest that rifa, and save those of grod $\mathrm{q}^{2}$ mality of all the kinds you genmally nem. It takes but lath time, and anoums to a handsome sum in saving expense.
13. The diflorent varicties of turnip ripen thair seed early, and the reed should he saved soon. If you have mom than you nocd, abablate your ruta baga among your neig' !ovs; it may conter a grat benefit on them, for there are some at $t$ whind plant will mot le at the troublo to procne seed, and he wo has raised rocts onco will genorally do so again.

## Secrion VII.

1. Parerlints for Jim.-A subject to muchne plected during the middle of smmer is the extirpation of weels. the nourishment which goos to support the weets on some far were applied to the crop, the owne:s would soon get rich. If, ods are as injurious to the crop as a herd of intruding catte, and shouid therefore be removed with as much determination.
D. There is one rale whin willaphly in derorimen weeds of whaterer kincs ; that is, that they cammlime fincy emmot have access to the air. Hence weeds, the most diffir aht of extirpation, are som ronted by chating them off as fast an hey apoar above ground, or by burying them repeatelly with a ploug:
2. Ropeated ploughing for destroying weeds is lust whenever they have ohtained possession of the gromb, as in ase of Canada Thisthes, st Jhanswort, and some others; and ia 'ent it is much beter to devote the ground a year or two to clenting. where they have spread extensively, than to lose two-thirds of the use of it by them prepectually.
3. Som wheds are easily remnved with a common !ne, ns, for instnnee, mullians, thistles, \&c., which infest nasturcs; cutting theme
off at the surface of the ground generally destroys them at once, Docks are very easily removed when the gromid is sutiened with rain, by pulling them up.
4. In order to prevent the trouble of dectroying a fich of woeds, they should bo watched and rooted out at their first ipporance, when it will not cost a thousandh part of the labor. Camada thistles, milk weods, ox-ego daisy, cotel giths, charluck or field mastard, and othons, whenever thoy first apmar, shuld be immediately destroyed.
5. Wholo fichds are frepiontly seon coverel witha lizuriant crop of the largo fich thisto; if they wore con .nnt math with a horse

 serve all the mano that can be done- - hary shand vecollow has a grod load of mane propmy appliod, is beterthanativer dultar.
6. What mot hects aticntion now, is apmene tho manure

 a coating of carth mixe i whaboth one-parier thene.


 cops, is inguions: and it is tom by eypermen an ali mornmon casce, preservig the surtice of the gramathe on noty so is much proiereble. Vor this reason the cuthon, shand be hised in preforence to tho ono-inose plungh; and ifthe mas have been phanted straight and cyen, allano woeds may be cut up by it withia two or three inches of the plants.
7. Mowing should not be commenced matib the:talks of grass begin to chango a liule to a brown color, or when the seeds are opproaching maturits. A greater quantity of mutriment is then contained, the hay is swenter to the tasto and is not so tough as otherwise, and the hay is more casily driet. Cimss beaten down by rain, should however be cut before it hecomes injured in this way while uncut.
8. A great defect in curing hry, and more especially clover, is drying it too much in the sun. The more improved plan is to dry it partially in the swath and finish by what is termed the sucating process, or drying in small cocks, the heat of a very slight fermentation assisting. The labor of spreading is thus saved, $\mathfrak{t}$ ere is little injury from exposure to dew, and the thin leaves and succulent stalks become equally dried together.
9. Where this plan has been tried, many successive day of
rainy weather have not prevented the making of excellent hay : and indeed while the outside of the cock is wet by the falling rain, the interior has been constantly drying by the slight heat generated. Every farmer should at least try this method; and every one who tries it fairly, adopts it.
10. We still see, in many places, the common hand rake employed to collect the hay on the meadow. This should be no longer tolerated. When it cin be raked by a horse with one-fifth the expense, it is surprising that so many adhere to the old practice. If farmers are unwilling to procure a revolving rake, let them at least provide themselves with the common horse rake.
11. The cost is only two dollars, and it will pay for itself in less than half aday, and in hall an hour if a shower of rain is coming upon a crop of new hay. Attach the draught ropes to the outer teeth cut to about one-third the length of the others, and no difficulty will be found in managing it.
12. We last year saw a meadow of fifteen acres raked with a common horse rake, in about six hours of time actually employed, a part of which yieided three tons ; and the whole of the hay was drawn to the stack, chiefly from the winrow, by the horse and rake, sufdiciently fast to lieep a strong active inan (who had previously laughed at the plan) haid at work all day to pitch it on the stack.
13. By regulating properly, by means of the handles, the pitch of the teeth, loads were collectod which were a good load for one horse to draw. One man only (without any rider) was sufficient to manage it. It abridged the labor so much, that cutting the grass was more than two-thirds of the work done on the meadow.
14. On extensive and smooth meadows, we would by all means recommend the revolving rake in preference to any other: and the hay sweep to collect ard draw it to the stack or place of de. posit. But the comunon horse rake may be used on any meadow, if not intolerably rough.
15. Mowers should commence work by four o'elock in the morning, when the air is cool and tho grass moist, and then they may rest in the heat of the day.
16. In harvesting grain, ii is much bettor to cut it a fow days before it is perfectly ripe, than to allow it to stand too long. If cut when not errtirely ripe, and bound up before the stall: becomes ilry, it will derive nourishment from the stalk sufficient to ripen it before the sheaves become thoroughly dry.
17. The great advantages of cutting early are, the grain is mot wasted by shelling, the straw is worth more and it enabler the
farmer to drive business and prevent losses from bad weathe: and other delays.
18. Loulgod and rusty grain should, in all cases, be cut as soon as admissible, as little is gained by suffiering it to stand too long.
19. Whenover it is necessary to leave grain upon the field alter it is cut, it shuuld be put so as to withstand any rain without injury. This may be easily effected by placing about six sheaves closely logether, pressing their hends to a point, and capping tho whole with a seventh. The cap is made by binding a sheat firmly near the lower end and spreading the stritio on all sidos by breaking it down over the band.
20. At this busy season of the year, the garden must by no means be neglected-the ground must be kept clear of weeds,-plants which need it watered in dry weather, always in the evoning to allow the water to penetrate the soil beforo evaporating; - herbs, ats they come in flower, must be cut and dried for future use ; they must be cut in dry warm weather, and always dried in the shade: -iruit trees which bear too thick must have their fruit thinned, if it is wished to have it of any value as to flavor.
21. In tice llower garden, seeds nust be gathered, labelled, and preserved as they ripen, and the roots of bulbous plants taken up as the tops wither and die ; they are best preserved by drying them somewhat, in small heaps covered with sand or dry soil io protect them from the rays of the sun. As soon as taken up they should be labelled to prev it masing.
22. Clover hay sho\%, never be scattered out of the swath, because in addition t. ac labor in scattering and again raking up, the hay is thereby $g$, atly injured.

26 . indeed, if the weather be favorable for curing, neither timothy nor any other kind of hay should be scattered, because the less any green grass is exposed to the sun and air in the process of curing, the greater will be tha value oi the hay, and the less labor required.
27. Let the clover lay in the swath untouched, until about twothirds of the upier part be sulficiently cured, which in good weather will, if the swath be tolerably heavy, be effected in eight or ten hours; if the swath be light, in a proportionably shorter time.
23. When thus farcured, turn the swath bottom upwards with the fork, an operation speedily performed. Let it then lie exprosed to the sun untilthe under side be curer, which will be, accerding to the thickness of the suath, in trom feur to six hours; ciden throwi haceu swahis, togetheri ini winrows, and commence
hauling in, the waggon running between two winrows and londing from rech.
23. a can hardly be necessary to observe, that all those must be performed after the dew has dried oll. It is to be recollected that clover will koep with less drying than almost any other grass. A common test is, to take up a bunch of grass and twist it, if no paico exules, the hay may bo hauled in with safety.
30. We have often hatod in clover cut in the morning in the evening, and ahwas the succocding day, unless provented by bad weather. Sprinkling every layer of hay with salt, at the rate of iwelve or fifteen pounds to the ton, of interposing a layer of dry straw, from six tu twolve inches thick, between every two layers of clover of the stune thiciness, we found a great preservalive; and especially the latter modo will enable the farmer to put up the hay in a greener state than could otherwiso be done with satety.
31. Besides this advantage, the straw interposed between the layers of hay, by absorbing its juicos, will be rendered much more valuable as provender, and il salt be sprinkied on the hay will be greedily consumed both by cattle and horses.
:\%. From the great quantity of this grass produced on an arre its highly nutritive quality, the ease with which it is cut and cured, fromers will find that clover hay is the cheapest food on which they can keep their stock in grod order during the winter. If put up in good order in the fall, sheltered from bad wetther, and salted, both horses and cattle will keep fat on it alone through the winter, without the aid of grain, muless when worked.
33. The prevalent notion of the difliculty of curing clover iny, is entirely erroneous. In a climato like ours, there will seldon: be found any; in a wet and cool climate, liko that of England, the difliculty may exist to some extent, as clover when put in cocks will not resist rain as well as timothy and some other grasses ; but in the course of fifteen years' experience we have seldom loit an, or had it mach injured by the weather.
34. Indeal we have found it comparatively easier to save clover: hay than corn blades, and as three or four tons of the former, with the aid of plaster, can be made at less expense than one tor: oi the latter, the farmer must be blind indeed to his own interest, who does not take care to provide himself with at least as much 4 olover as will furnish an abundant supply of proyender ford his: stock.
35. Clover should be cut for hay wher' abont one half of the?

the hay will not be so nutritious; if later, the stems will have become harder, and the grass be on the decline.
36. For hogs, howevor, and young stock, it will be advisnble to cut some so soon as it is in full bloom; when cut in this state and salted, hogs are very fond of it, and it is believed might be chiefly wintered on it, if otherwise carefully protected from inclement weather. At all events, by the use of it as food for hogs in part, a great snving of corn may eflected.

## Section VIIT.

1. Braef Itexts for August.-The pressure of work which farmers nee obiged to attend to throngh haying and harvesting, often causes them to neglect the extrpation of weds at this time, when they are about going to seed. 'This should the carefully avoided.
2. After the second hocing of corn, the weeds among the crop, of which there always spring up more or less, are suffired to have undisturbel possession, and the ground becomes compl-tely seeled with them by another year. A little seasonable lahor would prevent this evil.
3. We observed a pieco of ground which was kept clear of weeds last year, and another which was but imperfectly eleared of them; the consequence was, that the crop this season (field beet) which grew on the latter piece, wasliterally hid with adense growth of weeds, while the other was comparatively free.
4. Canadn thistles, must, in no instance whatever, be allowed to ripen their sced.
5. 'Thistles, mulleins, burdocks, \&c., in pastures and fence corners must be destroyed without fail.
6. Root crops, as ruta baga, and mangel wurtzel, are liable to be too much neglected after one or two hoeings; they should be kept all the season perfectly clear from weeds, and the benctit they derive from this, and from stirring the earth around them, amply repays the expense of the labor.
7. With a little pains, it is as cheap to raise a good crop, as a crop of noxious weeds; and seed now selected should be therclore us perfectly freed from foul stuff as possible. If clean wheat is always sowed, we may expect, on clean ground, a clean crop; but land will become more and more infested with weeds so long as we sow the seeds with the grain.
8. Chess being almost universally the worst weed among wheat, no pains should be spared to separate it. It may be done by means of harine, first made strong, and then weakened till the wheat will just
$\qquad$ refully
sink in it, when the chess, being lighter, flonts, and is skimmed from the surface.
9. A basket should be used, to let the brine run off the more freely. The wheat should then be spread on a barn floor, two or three inches thick, and about one-fifteenth part of air slaked lime sifted ower it and well stirred. 'This assists thedrying, and destroys the smit.
10. A good limning mill will clear most of the chess from wheat by passing it through a few times.
11. Nuseed wheat should be considered clean, until, by repeatedly spmading hantfuls of it on a timbe, no chese can be fimud. There is not moch of what is temmed eery chean seed that will endare this: te.t.
$1 \therefore$. Lnder draining should be performed during the dry season, and those farmers who have wet suots of ground in cultivated fields shoubl no longer delay this simple mode of rembering such land prothetive. Open drains shond never be mate but to carry ofl'surtice whter.
12. Nombein for any othor pupose should be much less than three feet dey $;$ but an open one this depth most be nime fee wide to prevent the banks slidting, and this is an enormons wasie of land.
13. lint in coveral drain ocrupies no gromad. 'The expense of digging, from this cause, is also much greater in case ot open drains.
14. Covered amins may be filled withstone or brush. 'The stone may be laid so as to leave a small open channel at bottom; or if they are quito small, and the quantity of water passing off not large, such chamel is mot necessiny.
15. Jimsh drains are filled by placing the branches of trees, freshly cat and with the leaves on, in a sloping direction in the diteh, the loaves upwards, and then covering them with earth. The spaces between the branches below allow the water to flow off. 'Thismethot ot filling is best in samly ground where stonesarescarce.
16. In entring ofl under gromat chamels of water, particularly. those which ooze ont of the surface of sloping ground, by means of covered drains, the mode of operating should be adapted to circumstances. The common crror is to cut in at the wet spot; whereas the proper place is a little above, before the current reaches the surface. The judgment and close examination alone can direct the proper course and situation for the drain in such cases.
17. Horses often suffer from slobbering during the latter part of summer, especially when they feed in succulent pastures. The best remedy is drier food.
18. Fruit trees are frequently injured in collecting the fruit, by resting ladders against the branches, and thas broising the bark. Apricots, plums and peaches, often suffer much in this way.
19. Tho remedy is to uso self-supporting ladelors, constructedlike a common ladder, with either one or two expanding legs of equat length, which servo to support it without any other prop.
20. Budding or inowalating should be performed while the stocks are growind most rapilly, or while the cambium or mbrilaginons substance ander the batk is in the greatost abundance. This ece inents the inserted buds and makes them adhere the better to the wood.
21. Cherries and phoms should be budded immediately, but peaches may be delamal three or lon weeks later, if necessiry. The general rule is, bwaling may be performed suceessfully at any time when the bark proms licely.
22. If the stocks ame thrify; if the bark is carefully cot and mised so as not to ingue the cambinm ; it the buis are cat smonthly off the shoot so that they may be applied closely to the wood of the stock;
23. If tho bandines are bound so evenly that they may just maintain the close contact between the bud and stock; and if they are carefully romoved is som as they begin to indont the growing stock, there can be little donbt of sitccess in budding.

## Section IX.

1. Bref Mints ron Seprember.-Seed wheat should always be selected from the largest and finest part of the field; for as the product always partakes more or less of the nature of the seed, no pains should be spared to procure the best. In this way the variety may bo constantly improved.
2. Spare no pains to clean it effectually, so that not a grain of chess or uther weed can be found by close scarching. There will be weeds enough in all cases, without sowing the seed upon the land.
3. One of the best modes of preventing the ravages of the Hessian fly, and perhaps the only one of much value, is to sow wheat so late that it may come up after the first autumnal frost, where there is reason to apprehend its attacks.
1 4. All wheat fields, in the least degree liable to surface flooding, should be well supplied with well cleaned furrow drains.
4. In harvesting corn, always cut it up at the surface of the ground in preference to topping it, as the latter method has been found to diminish materially the crop, in some casesseveral bushels
to the acre, as was proved by measuring. At the same time cutting it up gives $n$ much greater amount of fodder.
5. Where corn is nipped by a premature frost, the best method of securing tho crop, is to set all hande at it with seythes heloro sum. rise, so that it may ho all prostrate beliore the heat of the day has melted the frost. The hent gradually emitted loum the earth, then slowly thaws it, and as soon ns convenient on the same day, it is gathered and properly secured.
6. If the glazing process has commenced on the ear, the mourishment ohtained from the slowly drying stalks will ripen it sufficiently, and the fudler will be well preserved.
7. Seed corn should always be carefully solocted ; if the crop stands long enough in the field, it should the taken from tho statks before they are cut, in order that the solection maty be more perfect.
8. Look for those new stallis which support two or more cars, and take the upper one only. 'This method practised for suceressive years, has greatly improved tho variety and increased its froductiveness.
9. As straw is always valuable, either for fodiler when cut, or for the mannacture of mamure, it should be carefinly preserved.
10. When from the thrashing machine, it is most conveniently secured by binding it in large bundes by means of hay ropes, as fast as it is thrown out from the mathine. $\Lambda$ suflicient momber of hay ropes for this purpose may be previously twisted from a stack and placed in readiness.
11. Farmers who have hogs to fatten, will find if they will but try it, that common apples are as good or the purposo ns any thing they can obtain, and far cheaper. If the number of hors be large, it may be advisable to cook them, ns this process gratly improves their quality.
12. Whenever grain is fod to hogs, it should always be ground, and not only ground but cooked. The advantages of these two processes combined is indeed great. An excellent way of preparing Indian meal, is to boil about one peck in a five pail kettle of water; this will furnish five pails of most excellent and nutritious feed.
13. Unlike fattening swine, very little advantage is óerived from cooking fond for cattle,-not sufficient to pay the labour and expense.
14. In all the experiments with feeding and fattening animals, accurate accounts should be constantly kept, the animals should ibe frequently weighed, and the best and cheapest food thus deter-
mined. The farmer will then know what he is about, instead of working in the dark.

## Section X.

1. Brief IIints for October. - This month will be mostly occupied with the securing of crops, and it is important for their preservation that this be done in the best manner.
2. Root crops especially, should be placed beyond the danger of injury ; it is bette: to take some additional pains than to lose one half the amount by carclessness.
3. Potatoes should be packed away in such a manner that they may keep well, even if the winter should be much sevorer than common.
4. Their preservation deponds on securing them from frost and from moisture. Hence these requisites should bo particularly observed, both in placing them in cellars, and in heaps in the open field.
5. The best method of preserving ruta bnga in open ground, is the following:--They are to be placed in long heaps, three or four feet wide, and of any desirable length, in a root-like form, and terrinating in a ridge at the top. They are then covered, first with straw, and afterwards with earth. They need not be covered to so great a depth as potatoes require, as they are not so casily injured by frost.
6. But is they are liable without precaution to ferment and rot, in large he:ups, holes should be made with a crow-bar through the earth into the heap, at intervals of a few feet, to suffer the warm air which may be caused, to escape ; and these holes may be partially closed by straw. Where the soil is such that there is no danger from moisture, these heaps may be placed in broad trenches made for the purpose.
7. Mangel Wurtzel require nearly the same treatment in preserving as the potato-they are more easily injured by frost than ruta baga, and should consequently be sooner secured. As a general rule, they should never be left out later than the latter part of this month.
8. A dry, warm cellar, which will admit of some circulation of air, is the most convenient place for keeping both mangel wurtzel and ruta baga, when they are to be fed out daily during the winter.
9. All ground intended for spring crops next season, should be ploughed before winter without fall. Teams are strong in autumn, the weather is cool and favorable for their labour, and the operation greatly assists in destroying grass and weeds. The diminished
labour in hoeing next season, from this alone, will in many cases compensate for all the expense.
10. In the Garden, seeds are to be gathered as they ripen, carefully labelled, and secured; where they do not ripen similtancously, and the ripe seed cannot be collected without too much labour, the whole plant should be taken up by the roots and suflered gradually to dry in the house, during which time most of the seeds will become ripe.
11. All hardy poremial aromatic and modieinal herbs may be conveniently transphated-strawhery phats should be removed enrly in this mouth, if not already done, for forming new beds -onions for seed next year shonlid nosy be set ont, selecting the hardest and best shaped roots, and phasing them in drills a foot apart and sis or eight inches in the drill.
$1 \approx$. Asparagus beds should be cleared when the stocks turn yellow and begin to die.
12. Weeds ripening their sceds are to be remored and carried off the gromd to prevent seeding ;-aml all vacant spues made so by the remonal of crops should be paded for the action of winter, andilor destroying young weeds.

## Section XT.

1. Briff Hists for November.-As the fumer's work is now generally completed, implements should be ceranei, dried and laid aside. Levery tamer should have a building for his cirts, ploughs, harrows, hoes, rakes, \&c.
2. There should be a place for every thing and cvery thing in its place, in order to prevent looking hall a day at a time fion lost tools. 'Tools will last much longer if' so used, and now is a good time to do the work.
3. Wherever practicable, plough the grome for spring crops. Look ahead for next spring, or you will get in your seed too late.
4. Eimploy leisure time in repairing fences, to prevent hurry next season.
5. Preserve all your refuse apples for leeding hogs and cattle during winter. They are worth more than potatocs, as has been proved by experiment in weighing.
6. 'To salt pork properly, it is essential only to immerse pieces completely in salt. Place a layer of salt at the botom, then a layer of pork in the usual manner, filling the interstices, and so on till the barrel is filled. Use plenty of salt, it will not be lost. Saltpetre, when used should be in very small quantities, say a 400th part. Some add a small quantity of sugar.
7. To curc hams, mix a bushel of good salt with a pound of nitre, rub the hams well with the misture, and put them down. Rub them again in a few days that they may absorb the salt more evenly. In about four weeks, (sooner, if the pieces are smail) wash them and hang them up in the smoke honse.

8 The following misture has been recommended as good for ham. One pound salt, one ounce nitre, pulvorized and mixed, added to two quart; of molasses; the pieces are to be thoroughly rubbed with this and laid flesh side up, and suffered to remain three weeks.
9. In tho Garten, a fow vegetables remain tobe gathered; cabbages shoukl be taken up on a warm dry day, drainel in an inverted position of such water as they contain, and properly protected from water and too great dryness, and from fiost. They may be thus protected in vorious ways. One is to place them in a cellar with the roots buriod in a box of earth.
10. Another is to place thom in a row in a dry part of the garden, in in upright position, the roots and stems buried, and then covering them with two broad boards or slabs in the form of a roof, and burving these with enth. Another is to sorarate the lonse leaves, and bury them in a conical pile, precisely as turnips and potatoes are treated. When put in the cellar, they should be dry and clean, otherwise in warm weather they will cause unwholesomo air.
11. Near the er in menement of winter, lay down tender exotic grape vines, first $!$ sing a fow stones on them to keep them down until two or three inches of earthare thrown on the vines, whe a the stones are removed and the vacancies supplied with earth.

1:. All tender shruls meot protection before winter. Flexible stems may be laid down ; stifl upright ones may be protected by incasing them well with the branches of evergreens. All transplanted bribous roots will also need protection.
13. Asparagus beds when the tops are dead, should be clenred off, and a layer ol dung one or two inches thick spread evenly over.
14. Seeds of parsnips, carrots, onions, \&c. may be sown in autumn to advantage, if done so late that they will not vegetate before cold weather. Larly peas may be sown to great advantage, if there is no danger from mice.
15. A writer on gardening says: "To cultivate parsnips, 'sow the seed in autumn soon after they are ripe, by which meansthe seed will come up early the following spring, and let ihe plants get strong before the weeds will grow to injure them."
16. All vacant ground should be ploughed or spaded, to be sub-
jected to the action of winter frosts, and to be in readiness as early as possible in spring.

## Section XII.

1. Brief Hints for December.-Domestic animals should always commence winter in good condition, and this should be preserved through till spring. 'To do this, never attempt to winter more than you have abmant means of providing for.
2. All amimals should be regularly fod, they should be kept warm and comfortable by suflicient shelter, chould have a regular supply of water, and, sheep and cattle especially, should have a portion of roots constantly intermixed with their daily food.
3. Large tieughs for teeding with hay, are preferable to racks, as they more effectually prevent waste. Shecp, instead of being left out exposed to the weather all winter, shonld be properly protected by suitable shods. If this were attended to, and thry have a daily supply of roots with their hay, very low would ever be lost in wintering.
4. Oats, for horses, will afford much more nourishment when ground, than when left unground. Ruta hagas are excellent winter food for horses, fed in moderate quantities, with hay, and a small quantity of oats.
5. All stables for cattle and horses, should be kept constantly ventilated, very clean and well littered with straw.
6. Straw, and poor hay, are readily eaten by cattle if salted by sprinkling brine over them; and they are still better if in addition to this, they are chopped previously.
7. It is a very suitable time during this month, to cart lenched ashes on land whichmay need it. It is particularly valuable on wet meadows; a friend spread eight or nine loads on an acre on his meadow (which was occasionally overflowed by the large creek which passes noar it) and the consequence was an increase of one hall more grass, although it had produced yearly two or more tons to the acre. 'Ihis eftect continued for several years.
8. Chaptel says, "The action of buck-ashes [leached ashes from asheries] is most powerful upon moist lands and meatows, in which they not only facilitate the growth of useful plants, but if employed constantly for several years, they will free the soil from weeds."
9. In the Garden, if the ground continues open, manure may be spread and buried, vacant ground ridged or spaded, sticks for peas, beans, \&c. preserved or made, trellises repaired, and vegetables securely covered.
10. To color Green.-Take half a pound of the oil of vitriol,
one ounce of indigo, pulverized; put them in a bottle, shake it repeatedly thrce or four days ; then put it in a hickory bark dye, with two pounds of alum. This mixturo will color twelve pounds of yarn. It is to be simmered over the fire several hours, frequently taking it out to air, on a pole over the kettle ; you can dye it in iron, copper, or brass; when the yarn is dry, wash it in cold water; the hickory dye is to be taken off the fire when the mixture is put in out oi the bottle, or it will run over ; for the hickory dye must be boiling hot when it is put in.
11. 'To colon Orangr.-Make a strong sonp suds, enough to cover your yum well ; put the arronetta in a big, let it lay all the night in the sorp suds; next morning rub it out, then pit in as much strong lye as you can without roting your yarn ; put it on the fire and let it nearly come to a simmer ; before you put in the yarm, mise it frequently and air it, and add more lye if you wish it deeper ; eight ommees will dye twenty cuts.
12. 'lo color Reb.- Co three pounds of yarn, take one pound of alum, and one pound of madler ; dissolve your almm, in a sufficient quantity of water to cover your yarn ; scald it woll in that water, then rinse it well in pure water ; mix wheat bran and water to the consisience of thin gruel, a sufficient quantity to cover the yarn well ; mix the madder well in this propamtion; put in the yarn and boil two or three hours, stirring and keeping it loose in the vessel.
13. If you do not wish it deop, take it out in a very short time, but let it remain several hours if you wish it deep. Rinse it in cold water after letting in air. The bran must be boiled the night before, and a crock part full taken out and strained, and the madder put in to raise the rest, strained in the morning, and that in the crock misad with the other, before put on to boil.
14. 'To colon Yellow.-'Take three-fourths of hickory bark, with the outside shased off, and one-fourth of black aak bark done in the same manner, boil them well together in a bell metal kettle until the color is deep, then add alum sufficient to make it form, when stirred up; then put your yarn in, and let it simmer a little while, take it out and air it two or three times, having a pole over the kettle to hang it on, so that itmay drain in the kettle ; when dry rinse it in cold water.

## CHAPTER II.

## Section I.

1. The Plougir and res Use. - In no one thing has the striking advance of what may be termed the mechanics of agriculture, or the manufacture of farming implements, within the last twenty years, been more fully shown, than in that most important article of husiandry, the plough.
2. When we compare the present beautiful, light, and yet strong plonghs, in general use, with the clumsy, heavy, illoonstructed implements used twenty or thirty years since, it is imposible to deny, that in this respect, at least, a great improvement in the means of good farming has been eflected.
3. Some twenty years since, a gentleman of Massachusetts, convinced of the inefliciency of the common plough, ordered from England a new plongh, which was highly spoken of: but on its arrival, found it such i huge, clumsy, heary combination of wod and iron, that after various unsuccessful attempts at use, he was obliged to lay it by, it requiring more team and hands to manage it, than even the ordinary bull plough of New-England, to which he had been accustomed.
4. Wood, about this time, invented the cast iron plongh, and this discovery, in the hands of skilful and scientific men and good mechanics, has effected a total revolution in the qualities and construction of that implement.
5. We well remember the first cast iron plough that fell under our notice, (and it was one of Wood's earliest invention, and so associated with brittleness and fragility were all our ideas of cast iron, that we should not have deemed it worth an hour's purchase in any field, other than the cleanest and best. Experience, howover, showed the fallacy of such impressions ; patent alter patent was taken for what were deemed improvements, and each new plough received a fair share of public favor and patronage.
6. It would be somewhat amusing, and certainly instructivo, to trace the history of this implement from the earliest notice it has received, or its earliest delineations on the coins and sculptures of antiquity, down to the present day.
7. The plough of the ancients, and the teams used, were of the amplest kind. The top of a tree, of which one branch constituted
the handle; an opposite one, shortened and slarpened, was the plough proper ; and the main stem, trimmed of its superiluous branches, and cut off at the proper length, constituted the beam.
8. Asses or heifers formed the teams, when socicty had so far advanced as to substitute animal for human labor. Bofore that. mon, or more fre fuently, women, drew as well as hold the pough; and so slow were changes in domestic matters in the east, that Pliny speaks of seeing, in Africa, fields that produced most luxnrianty, worked by an implement like the above, to which was yoked an ass and an oid woman.
9. In some learts of the eastern world, the plough, still used, in not much superior to the primitive one, though a piece of iron isometimes tied to the under branch that penetrates the ground and bullocks are in some places used to draw it ; the plough used by the Polish $p$ casantry is of this kind, and in Africa, asliarpened stick, or a wooden padde, constitutes the implenent used for stirring the earth preparatory to a crop.
10. We do not intimate that the plough, even the best kind, can be considered as having reached its limits of perfection. With that implement, as with other things, one decided inprovement serves only to suggest another.
11. The changes in material point to changes in structure ; and instead ol the blunt, wedgelike form of the old plough, a tapering lifting form has been given, which, penctrating the carth easils, and reversing it reedily, dispenses with much of the force formerly required to move it, while at the same time the work is done in it manner to which the old plought could make but faint approaches.
12. The effect of early habits is still to be scen in our ploughs, though not to the extent it formerly was. In the early settloment of any wocion country, knolls made by the turning up of the former forcst irees, will abound, giving an unevenness to the surface. requiring several ploughings to remove.
13. Onsuch lands, none but ploughs with short beams and nearly upright handlos, can be used to advantage ; and such is the character of tho plough in all new comptries.
14. Ploughs of this description do not run as easy, and require more labour in the holding, than those made with large beams, and a corresponding increase in the length of the share and point.
15.. A well constructed plough has its under surface rumning parallel with the surface of the soil, no matter what may bo the depth plouglied; but when constructed in such a way that the plough is continually on its heel, or its point, the ploughman finds hard work, and the:workitself must be inperfectly performed.
15. Erery one who ploughs, is aware that on the same soils, one plough will run so true and steady as to require scarce an effort to guide it while another demands constant attention and effort ; and he also knows that in most cases, the easiest rmming plough will be the one with the longestexposedsurface, and handles ol the greatest inclination; and the reasons for this, are so evident. as not to require elucidation.
16. Farmers have been considerably divided in opinion: on two points connected with ploughs, or rather with plowerhing; one of these regarding the manner in which the furrow slice should be turned over; and the other, the depth to which liand shouid be ploughed.
17. Some have contended that the furrow slice should never be laid flat, but always in such an inclined position, that the edge of one slice should just rest on the next one, leaving under the edge so raised, a vacancy nearly as deep as the thickness of the furrow slice.
18. This, it is contended, is advantageous, by hastening decomposition, and by allowing water to pass freely off without injury to young plants.
19. Other armers maintain as strenuously that the furrow slice should in "il cases be laid perfectly fat, or reversed in such a menner that a fiold alter ploughing should be as l' vel as before, the piough simply reversing the surlite of the slice.
20. In this, as in a majority of controverted points, our experience and observation lead us to conclude that both sides are partly right, and both partly wrong.

2i. We have found that, if on lands strong and witi: a tenacious or impervias sabsoil, which retained for sume time what water fell upon it, the furrow slice was slightly lapped, so as to leave a space below, young plants suffered lews from a wet: "ason, or an undue accumalation of water, than they would if the furrow slice was fully inverted, and the surface made smooth and even.

23 . On the contrary, we have been led to believe that on a light soil, or one inclining to be dry or porous, it was better to invert the surface completely, and by rolling render the surface smooth, and its particles as compact as pussible.
24. A surface so treated, will retain its moisture longer than if left in a state more lonse and triable, and the conducting powe: will be incroased by the particles being inought more closely in contact.
25. Let the farmer, then, whose subsoii is impormeable to water, lay his furrows as dipping, as he please ; the mor space below,
the better for him ; but on a light porous soil, lay the surface fint, and make it as dense as it well can be.
26. 'The benefit which compressing sand soils confers, is well understood in Norfolk, in England, where the treading of sheep in feeding the turnips in the field, is considered not the least beneficial part of the culture required for the production of wheat.
27. Nearly the sume remarks may be applied to the other controverted point, vi\%: that which relates to the depth of ploughing. The propricty or impropriety of deepploughing must be determined by the soil itself; by its condition, in refrence to a supply of vegetable matter in the soil, and the depth to which it has been formerly ploughed.
24. Where the stratum of fertile soil is thin, and the subsoil, no matter from what cause, incapable of promoting vegetation, it is bad policy to bring this infertile subsoil to the surface, as a stratum in which seeds are to germinate.
29. And where the soil is pormealle to the depth of twelve or eighteen inches, or as low as the plough can penetrate, and is filled with fertilising materials, deposited by the procosses of nature, or by manure applied to the service in cultivation, then the plough may run deep without fear of injury' to the present crop, and the certainty of benefit to the future ones.
30. We think the true method of rendering any soil deep and fertile, is to plough no deeper, and bring up no more of the infertile earth at a time to the surface, than can be thoroughly corrected by manures, to be incorporated with it, and thus made friable and productive.
31. At each successive ploughing, if this course be followed, the soil will be gradually deepened and rendered productive to any desired depth.
32. By pursuing this course of manuring and ploughing, Judge Powell rendered his soils fertile to the depth of fourteen inches, and where the roots of plants have this depth of good earth to range in and seek their food, the farmer can hardly fail of securing first rate crops.
33. Every part of a soil so prepared, is fit for the germination of seeds to the lowest depth to which the plough can reach ; and the more thorough the ploughing is given, the greater will be the surface exposed to the bencfits of aration, or the ameliorating influences of the atmosphere.
34. One of the greatest differences between the old and the new busbandry, depends on this question of ploughing.
85. In the old mode, the plough was used year after year to the
same depth, and the manure applied with reference to the crop, solely, while the inprovement of the soil was wholly left out of sight.
36. As a natural consequence, "there was no depth of soil." and when manure frilei, the fertility of the land was gi, with scarcely a possihility of renovation under such a process.
37. In the new husbandry, the permanent improvement of the soil, by grauiual manuing and deepening, is kept steadily in view ; and hence the accumulation anduseot manures hasreceivel an additional importance.
:so. The garden is usually far the most fertile part of the furm, and this is brought about by the gradual meorporation of manures with the suhsoil raised at cach successive phoughing, matil the requisite depth and fertility is gained.
39. On lands long ploughed to a uniform depth, as they were under the old system, the pressure of the plough on the same surfuce gradully formed an impenetrable strati, thens forming: fital obstruction to the roots of phats, where it did not naturally exist.
4). In England, on soils inclining to clay, and which haro heon mater the plough occasionally, or almost perpetailiy for ecmame. this impermoable pan is common, and one ol the mont deceded advantages found to result from the subsoil plough, is the breakits up and demolition of this artificial obstruction to the spread anm depth of the roots of plants.
41. On the old cultivated fields of some parts of this provin.a. the same diticulty exists nore or less, and can be remowent, and inn shil rendered fertile by the same means so succosstial abrod.
42. Tho too liequent ploughing of land is not to be recommont. od in any case, and unless absolately required to destroy foul went. it should receive no further moving than is requisite to fit it for it cry. The great mistake of 'Cuil, was, that ploughing or pulverization would supersede the use of munuring.
43. But experience shows what indeed philosophy inculeates. that beyond a certain point, ploughing is injurious ; and that thouns essential benefits aro derived to the soil from the action of atmm... pheric agents, maturing in some form is indispensable to succes. iul farming.
44. It may be said that an aypleation of manure should tabn place every time land is plonghai and cropped. On land that has been brought to a his! stan it britity, the decomposition of the rich sward will usmety werment dressing for a single crop: but for a repotition ur sumpu ne sops, manures cannot be with-
held without a certain detcrioration of the soil, and a probable les.. sening of the crop.
45. Ploughing and manuring must go together, and without this. combination, each will be found defective and incapable of producing such results as are certain to ensue when both separate processes are skilfully united.
46. We are therefore disposed to consider every decided improve. ment in the plough, as a sure indication of progress in agriculture, a prool that another step in the correction and dissipation of anciont error has been grined; and the wayopened and the means provided for still farther and more important advances.

## Section II.

1. Plovamis.-l'loughing.is justly considered the most impor. tant ol agricultural operations, as on the manner in which this is performed, deponds the facility of exccuting all succeeding operistions on the same piece of land.
2. The manual operation of lolding the plough in a proper !msition, and directing the horses or cattle which draw it at the sume time, is only to be acquired by experience; when once atthined $\mathrm{i}^{\text {t }}$ is perhaps one of the most agrecable and healthy of agricultural excreises, the body being kept upright, the arms and legs being brought into action, and also the eve and the mind, to keep the furrow stright, and of regular width and depth, and the voice to sperk to the horses.
3. I'hree different points require perticular altcntion in pïngh. Sing; 1st, 'The broadtin of the slice to be cut ; 2nd, its acpth; and' sind, tho degree in which it is to be turned over ; which hast circumstance depenis both upon the construction of the plough, particularly the monld-board, and the cure of the ploughmen.
4. The brealth and depth of the furrow-slice are regulated by juidciously placing the draughts on the nozzle or bridle of the plough; sctting it so as to go more or less deep, and to take more or less land or breadth of slice, according as may be desired.
5. In general the plough is so regulated that, if left to itself and mercly kept from filling over, it would cut a little broader and a little deeper than is required. The coulter is also placed with some inclination towards the ieft or land side, and the point of the suce or share has a slight tendency downwards.
6. I'he degree to which the furrou-shice turns over is in a great measure determined by; the proportion between its breadth and. depth, which for general purposes is usually asthree is to two, or when. the furrow is: nine inches broad it ought to be six. inches in degth.
7. When the slice is cut in this proprotion it will be early ha turned over or recline at an angle of forty or forty-five diegrees ; sund a field so ploughed will have its ridges longitudinnlly ribbed into angular drills or ridglets.
8. But if the slice is much broader in proportion to its depth, it will be almost completely overturned, or left nearly flat, wih its ariginal surtice downwards; and each successive slice will the somewhat overlapped by that which was turned over immediately before it.
9. And finally, when the depth materially exerefls the width, each furrow-slice will fill over on its side, leaving ath the original surfaco bare, and only laid somowhat obliquely to the horizon.
10. Plowghing with the breath and dephla nearly in proportion of three to neo, is best adapted ior laying up stubble land atter harvest, when it is to remain during the whater exposed to the mellowing influenco of frost, ireparatory to fallow or turnips.
11. The shallong furrou of consituratile width, as inve inches in depth by eight or nine wide, is understord to answer best for breaking up leys, bectuse it covers up the grass turf, atml doess not bury the minured soil.

1:. Phoushing with the depth of the furrow consithrahly exceed. ing the withe, is a most umprofitatbe and useless! y slow operation, which oneht soldom or never to bo adopted.
13. Whe most senerally asefiel breatho of a furrou-stice is fom eight to ten inchos, and the $i$ pth ought to bo soldom less than tour inches, except in sails arionmonly thick and fertile.
14. When it is necossary to go deceper, is for carrots and some other deep rooted plants, a trench ploughing may bo given by means of a second plough following in the same furrow.
15. Shallow phoughiug ought always to bo aropted aftor turnips are eaten on the ground, that the manure baty not be buriod too deep ; and also in covering lime,-ospecially if the ground be pulverizod by fallowing, because it naturally tends to sink in the soil.
16. In ploughing down farm-yard dung, it is commonly necesin. ry to go rather deep, that no part of the manure may be left exposed to the atmesphere.
17. In the tirst ploughing for fallow or green crops, it is advishable to work as deep as possible ; and no great danger is to be approhended, though a small portion of the sub-soil be at that time brougit to the surface.
17. The furrow-slices are generally distributed into beds varying in breadth according to circumstances; these are called ridyes or bunds, and are divided from one another by guttors or ogen fir--
rows. The last serve as guides to the hand and eye of tho sower, to the reaper and also for the application of manures in a regular manner.
18. In soils of a strong or retentive nature or which have wet, close sub-soils, these furrows serve likewise as datins for carrying ofl the surface water, and being cleared out, after the land is sowed and harrowed, have the name of water-furrous.
19. Ridges are not only different in breadth, butare raised more or less in the middle, on diflerent soils. On clny retentive soils, the great point to be attended to is the discharge of superluous water; but harrow ridges or stitches of from three to live feet, are not approved of in the best cultivated countrics.
:30. In these a breadth of fifteon or eighteen teet, the land raised by two gatherings ol the plongh, is most commonly adopted for such soils; such riuges being thought more convenient for manuring, sowing, harrowing and reaping, than narvower ones; and the water is drained ofl quite as eflectually:
:2!. Ridges th dry porous turnip soils, may be format much hnodor; and were it not tor their use in directing the liboners, baty be, andsomemmes are. dispensed with atogether. They are aften thinty or thirty-sisi foet broad, which in scotland are ceallot han win ridges, becanse reaped by a band of shearers, commonly six served by one binder.
22. If it be wished to obliterate the intermediate furrows, this may be done by casting up a narrow ridglet, or single bout ridge, between the two broad ridges, which is afterwards levelled by the harrows.
23. 'The mode of forming ridges straight and of uniform breadth, is as follows: let us sumpose a field perfectly level, that is to be laid off into ridges of any determinable breadth. The best plonghman belonging to the farm performs the operation, with the aid of three or more poles shod with iron, in the following manner : the first thing is to mark off the head ridges, on which the horses turn in ploughing, which should in general be of an equal breadth from the bounding lines of the ficld, if these lines are not very crouked or irregular.
24. ithe next operation, arsuming one straight side of the field, or a line that has been made straight, as the proper direction of the rudges, is to measure off from it with one of the poles, half the intended breadth of the ridge, if it is to be gatheret, or one breadith and a nalf if to be ploughed fleit; and then the plonghman sets up a proie as a direction lir the plough to enter.

Bis a line with this, an at some distance, he phants a socond
pole, and then in the same manner a third, fourth, \&c, as the irregularity of the surface may render necessary, though three must always be employed,-the last of them nt the end of the intendel ridge, and the whole in one straight line.
26 . He then enters the plough at the first pole, keeping the line of poles exactly between the horses, andploughs down all tho poles. successively; hatting his horses at each, and rephacing it atso many feet distant as the ringes are to be broad; so that when ho reaches the end of the ridge, all his poles are again set up in at now the parallel to the first. He returns, however, along his for mer track, correcting any deviations, and throwing a shallow furrow on the oposite side of his former one.
27. This mode has a decided preference over the common pracetice, of laying the two furrows first towarls nach other. By fret throwing them from eachother, and then reserving them, the whole ground is phoughed; and, if the lirst furrows are shallow, the ridgo has but a slight elevation in the centre.
23. These furrows, when reversed, form the crown of the ridge and direct the ploughmen who aro to follow. The same operations are carried on mutil the whole fied is marked out.
29. Direction and length of ridges aro points which must evidently bo regulated by the mature of the surface, and the siza of the field. Short angular ridges called bulls, which aro often necessary in a field ol i regular boundaries, are always attensed with a considerathe loss of time, and onght to be avoided as mach ats prossible.
30. In phughing slecp laml, it is advisable to give the ridges an inclination towards the right hand at the top, by which in going up to the acelivity, the furrow falls more radily from the plough, and with loss fatigue to the horses.
31. Another advantage in forming ridges in a slanting direction on such land is, that thesoil is not so likely to be washed down from the higher ground, as if the ridge were laid at right angles.
32. Whenever circumstances will permit, however, the best direction is due north and south, by which the grain on both sides of the ridge enjoys nearly equal advantages from the influence o: the sun.
33. In plougling relatively to season it is well known that clayey or tenacious soils should never be ploughed when wet ; and that it is almost equally improper to let them become too dry, especially if a crop is to be sown without a second ploughing.
34. The state in which such lands should bo ploughed is what is commonly indicated by the phrase, "between the wet and the

## dry"-while the ground is slightly moist, mellow, and the least cohesive.

## Section III.

1. Fali Plodgims.-The question issometimesasked, is it best to plough land in the fall? and if answered in the affimative, the reasons for such a procedure are demanded.
2. We think that fall ploughing is desmable in most cases, and on most soils, for the following, among other reasons that might be given.
3. It is one of the established principles of philosophical agriculture, that the soil derives much of its productive property from the air, and that chomical changes and combinations ure constantly going on, by which fertility is much increased. These altemative offects of the atmosphere, and these changes of the qualities of the soil, are the more active and efficient as new surfices are exposed toncw action.
4. For instmen, mach greater quantitios of carbonic gas will ho aborbed ! a given surthco orearth, if that earth is frequenty stirred, than il it was: $:$ howed toremain with a single saturated surface.
5. Ploughing, hy exposing now surfares to the action of the ntanosphere, mast le productive of (sential bencfit; and as ball phaghing genorally takes phace after erogs which have partially whatsted the surfece of some of its nutrisive and absorbent qualities, its service in aid of spring crops is greatly erhanced.
(f. There is chways on land more or less grass, weeds, stubble, or other vegetaila mations convortible into moald by fermentation and decomposition, a process which is greatly aided by being turned under the surtice of the earth.
6. Fall ploughing renders such sulstances much sooner availaWe in arvancing the growh of crops, than they would be if left uncovered during the winter; independent of the great loss nece:sarily sustainedty the washing away of the lighter materials and their dispersion by the winds.
7. Nothing acts more cficiently on moist soils in promating vegetation, than high pulverization ; and fall ploughing aids this opreation most essentialy. Lands that if ploughed in the spring nuly will remin in large cakes or lumps, delying the efforts of the farmer to reduce them suitably, will ir ploughed in the fall be foand loosened in texture, and fitted for carly operations in the spring of the year.
8. Frost is the most efficient disintegrator of the soil with which the agriculturist is acquainted, and he should avail himself of its valuable labors in all practicable cases.
9. The carlier the ground canbe prepared for the suitable reception of spring crops, such as corn, spring wheat, and barley, the better it will be found for the cultivator ; and in nine cases out of ten, early sown crops are the heaviest, and most productive.
10. Ploughing land acts more effectually in destroving insects than any other mode of treatment, and fall ploughing for this purpose is preferable to any other.
11. Those insects which produce the most mischiei to the farme:, wich as the fly, cut worm, grub, \&c. cannot resist the frost of our minters, if prematurely exposed to its action by a fall ploughing. The cut worm, which accumulates in such numbers in old meadens mi pistures, is thins destroyed, and crops planted on them saver?
12. Lastly-Our summers are so limited in duration, that umless the time allotted to vegetation is fully occupied by the growth and ripening of plants. the ecrtain failure of crops mivy be anticipatect. Hence the famer usually is more hurried by his wirk in the spring than hoought to be, in order to aroid having his crois caught by the frot and snow.
13. i: should be the object of the farmer to hare his necessary labour as nearly equalized through the soasom as pussible, and thm awoid all pressures at inconvenient seasons of the yent.
14. Exporicnce shows that the firmer in mont cares has more leisure homs in the fall of the yenr than at any nther time, and he who would work it right, should employ this time in advancing his next spring's work, for such ind ploughing emphatically is. and thus preventing the pressure oibusiness thon nathly felt.
15. These reasons we think sufficient to justify the practice of falt ploughing: and unless in cases where the edep silicious on porous nature of the soil seems to forbid its use, we cannet denbt that our farmers will find their account in adopting the practice.

## SectionlV.

1. Funowe- - There is noprocess in agriculture inore important of the farmer, or that contributes more to tho durability and ferdilty of the soil, than fallowing, when skilfully pertomed; and probably there are few processes, the reasons for which are more imperfectly understood, or the principles that render the operation lecessary more completely orerlooked, than in this casc.
2. With most farmers, it is sufficient to know, that by fallowing the ground is made finc, and thus fit for the reception of the seed, while the more important changes the soil undergocs liy contact wth the atmospheric agents, and which are indispensable to insure fetility, are unheeded.
3. The mechanical part of the process of fallowing is very simple. In our country it usually commences in the fore part of mimmer, and consists of two or more ploughings and harrowings, as time will admit, or the earth seems to require, until the seed is sown in autumn. 'This mode, though obviously defective, as not allowing sufficient time for the action of the air and other agents, is still better than simply ploughing up the land and sowing the seod immediately upon it, as is practised by many.
4. In Europe, with the best firmers, the process commences in antum, and the land thus rendered meven by the plough is lat © 0 the cilects of frost, which most materially aids in pulverizing the soil, and rendering it fit to commence operations upon earicr in the spring then would otherwise he practicable.
$\therefore$ Late ia the scason, or carly in the spring, there is much land that canot bo plonghed with benefit, as it will knoal, or shmeth over, which will shut out air, and obviato the end in folLawing. Sneh soils must be drained, or only plotighed whice dry. Grom live to six plou hings, and as many harrowings on dessing for the scurifier, are it milly considered proper, before the equisite fineness and aration of the soil is otatined.
fi. Suils naturally good and friable require but a comparatively litto labor to bring them into a proper state for the sced, or rostore their beriity when partially exhatsted by cropping; but those 10 whin the original earths are less favorably blended, and are then and stubborn, require a longer time for pulverization, and far consepuent atmospheric action on the particles.
5. The particles of mater, or the earths, when at rest, gradualIr assume an cquiibrium in their position and affinities, unfavoraWic to the action of fertilizing agents. This balance of affinities is broken ap by the plough, the particles are separated and exposed 1. the action of water and air, fermentation is essentiolly promoted, and the earth rendered permeable to the tender roots of young phants.
$\therefore$ As a soil in its quiescent state has formed its chemical changes, and its particles may be considered as filled with the substances of Which their position would :dmit the combination, it is evident that to give greater fertility, new particles mnst be exposed, and new chemicul changes produced, until the whole mass is saturated.
6. 'To show how the changing the position of the particles of matter promotes fermentation, we have only to look at the manure in a houp or yard, part of which has been so pressed as to excluce air, and part has been moved by the trampling of animals, 0 ? otherwise, so as to be exposed to the moisture and the air.
7. It will be found that the fermentation in the last is mush more advanced than in the first; and that by moving the hard pressed, by admitting the formation of new chemical changes, is much hastened in its decay. So with soils; when broken up and pulverized, this important end, fermentation, is gained, which in those compact and ummoved is impossible, as the free action of the atmospheric agents, moisture and air, are excluded. Both air and water undergo decomposition when brought in contact withnewly tumed sols, and act an important part in the fertilization of the carth.
8. In all soils there is always more or less water and air, but in the umoved soil they are in a state of eomparative rest ; they have parted with all the valuable gases, or salts they contam to the earths with which they have come in contact, and can, of course, contribute no further to chemical changes ; now if this soil is disturbed, new surfaces are exposed to the water and air as they are renewol, and a continuation of the benelicial results is cermin.
$1 \because$. The chemical combination of water with soils, is on much the sane principles as water with lime, though the alhesion or mion is not so strong ; still this union or affinity is increased by the frepment moving of the soil.
9. 'this is proved by the fact, that portions of soil were taken from a cullivated and from an meultivated field near hy, and subineted to examination, and it was found that the fallow retained moisture longer than the exhansted part, and when both were equally drien, the hllow earth acquired moisiure from tho air much more rapidly than tha from the menltivated field. 'This fact is interesting, as showing the absurdity of the doctrine which maintains that corn or other vegetables should never be hoed in very dry weather. The contrary is the fact, and the ofterer the earth is movel the better.
10. Moving the earth and pulverizing it thoroughly, while it enables it to feel more fully the eflects of air and moisture, als, gives it a higher temperature, and of course renders it more congenial to vegetation. Thus a thermoneter insericd into the earth finely pulverized a few hours before, to the depth of three inches, rose two or three degrees higher than when placed in undisturbed earth close by.
11. This is accounted for by the partial circulation of the warmed atmosphcre through the loosened and friable soil. Ploughing or moving carths, however, when they are wet, has the effect of destroying this permeability, by smoothing the exposed superfices, and rendering them hard and solid when dry.
12. That pulverization increases the chemical pawers of the soil is evident from the fact, that manure of any kind will produce a more lasting effect on fallows, than when applied to lands not cultivated or moved :-

Mr. Bland says-
"The best remedy, when in the process of fallowing it is necessary to plough lands too wet, is to plough the furrows upon edge as much as possible, that the water may drain away the easier, with a greater suface being thus left for the action of the frosts, sun, air, \&e., to operate upon."
17. It is the custom with many farmers when they plough their summer fallows, to have them harrowed down as smooth as may be, between the times of ploughing. This practice is wrong; as the ground should be left in that manner that gives the largest surface to the air. The harrowing, therefore, alter the first breaking up, should precede the plough, until by their combined operation the soil is mate fine enough tor the reception of the seal.
18. There can be no doubt that the ecration, and consequent fertilization of suils, ghes on more rapidly when the temperature is the highest, or during the smmaer months, or when vegetation is most rigorons, as the chemical changes dependent on fermentation an! combination are then the most ative; and ono plonghing at that scason, for beneficial purposes, may be considered almost cumal to wo at anoher ; yet ploughing at other times, when the soil is fit for it, cannot be neglected without injury.

## Suction T.

1. As decomposition gocs on more rapidly and beneficially in most substances when covered, but cxposed to moisture and warmth, there is a docided atvantage ganed by fall phoughing, in covering the weat, stable, exce, that may be on the surface, so that a longer period for their decomposition will be secured for the benefit of the next crop, and their mechanical influence will be favorably exerted in keeping the land light, and preventing that compactness in lexture so undavorable to drainage.
2. On lants where injurious weods are found, such as the thistle, Johnswort, daisy, de., the roots of which survive the winter, fall ploughing to be tollowed by a summer fallow has a good eflect, as exposing to destruction by freczing many of their roots, and thus facilitating the cleaning of the soil.
3. In commencing the spring tillage, it is indispensable that the earth, whether it was ploughed in the fall, or is now moved for the first time, should be so dry as to remain friable, and show no symp-
toms of 'hneading, and if the fallow is to be manured, perhaps no time is better for that purpose than the spring.
4. 'This is certainly the case, where barn-yard manure, containing, as it unfortunately does, foul seeds in abundance. is to be used, as by this early application, the seeds have time to vegetate, and by the repeated plonghings be destroyed before the seed of the grain crop is put in. If the land is clean, and the manure compost, or finlly rotted, the application of it may be delayed till the last plough. ing, so as to be turned under with the seed sown, merely covering being all that is required of manure.
5. The Canada thistle is the great enemy that the wheat grower in a largo part of our country has to contend against, and this post can be met no other way sucecsefully than by thorongh fallowing.
6. Where the thistle, or other pernicions weeds, tenacious of life, exist in lands hathow, going over them after rach plonghing and picking of gathoring all that appear, may be atwinable, as greatly fiding in freeing soils from their presence; but in any erent the ground should be moved as oftenas any shouts make their appearance, as this is fomd to check or destroy them more surely than any ether method of treatment.
7. To derive the full bencfit which soils are intended to receive from the processot hatlowing, aslong intervalsshouldoceur between the ploughings as is consistent wih the nmmer required to bring it into the proper state for the seed, or the cuadication ot the weeds with which it may bo intester.
8. Many of ou: famers allow so little time to intervene between their ploughings, that the changes produred on soils by the action of light, air, moisture, \&ce, have no time for their accomphishment, and nothing is gated by the process but the simple phliocrization of the soil. This, it is true, on lands as fertile as most of those in nowly cultivated countries are, may be sufliciont ; but experience proves that all lands are cxhasted by cropping, and henco every reasonable precation should be usel, not only to arrest the progress of deteriotation, but prevent its commencement.
9. It has been found in England on most of theirlong cultivated lands, in which clay forms a prominent ingredient of the soil, that immediately bolow the earth usually moved by the plough, a hard strata of some two or three inches in thickness is found to exist, almost impermeable to roots or to water, and has a pernicious effect on the cultivation of crops.
10. This artificial hard-pan, or moorband-pan, as it is called, is attributed to the pressure of the plough on the earth below, and ospecially to the pressing, smoothing effect of repeated ploughings,
at times when the earth was in that state of wetness that disposed it to knead. The fact of the formation of such a body, to break up, which requires the application of the deep subsoil plough, should prevent farmers from always ploughing at the same depth, and elfectually banish shallow ploughing from thorough fallowing.
11. After the carths have been converted into soil by deep ploughing, exposure to atmospheric agents, and combination with vegetable matter to the depth of eighteen or twenty inches, the formation of such an obstacle to cultivation can scarcely take place ; and that such a depth can bo obtained is evident from the experience of Marshall in England, and Powell in the United States. By graduadly deepening his ploughing, the latter convortad his soils from shallow ones to fine friable carths, of the depth of sixteen inches. and the excellenco of his crops bear testimony to the propriety of the method pursued by him.
12. The change produced on soils by their exposure to atmospheric agents in the process of fallowing is denoted ly their change of colour; and the effects are an increase of the power of absorption; a strengthening of its affinities for vegetable and animal mattor ; a greater friability or lightacss of the particles, so far as their adhesion is concerned; a greater permeability to the roots of the cultivatod plants; and a general restoration of the fertilizing and productive properties of the soil.
13. 'Tull, the restorer of good farming in England, considerert pulverization alone, all that was necessary to preserve or restore fertility to a soil ; but though he doubtless erred in excluding from his system the necessity of returning to the earth in the form of manures, the vegetation that has been taken from it in the form of crops; still it must be admitted that the pulverization effected by summer or thorough fallowing is one of the most efficient preparations the earth can receive, to fit it for the reception of sced, and the accomplishment of the great end of good husbandry, the production of crops.

## Section VI.

1. Deep and Siflifow Ploughing.-In the autumn of 1843 , my field was ploughed by the teams that contested for the premiums of the Canada Agricultural Society. It was laid out in lots of one quarter of an acre each. The land is level, and free from rocks. The soil is gravelly and shallow, and only of middling quality.
2. It had been in grass four years previous, and never had been highly manured. The common burden of grass produced upon it was not more than one ton to the acre. The whole field ploughed ould and genat and nce gra. rom hes. y ot
contained two acres and a half, ono acre of which was ploughed in the spring of the present year ; and on this part was the best crop.
3. That which was ploughed in the preceding autumn at the ploughing match was well harrowed in the spring, and turrowel, eight rows to the lot, two rods wide. 'Twelve ox loads of manure were put to the acre, in the holes. The manure was a mixture of the droppings of horses and neat cattle, in about equal quantities, taken from the harn yard.
4. The ground was planted with Indinn com, from the 10ih to the 12th of May. The eight rowed corn, and that which is commonly cultivated in this vicinity, was the kind plantel. It was hoed three times in the nsual mamer. Every part was managed as nearly simitar as possible.
5. Each lot was grathered and accurately measured by itself: Lons No. 2 and 3, were the most gravolit, ind most ceposed to the trought ; and the whole fiold suffered considerably for went of moisture. I an of the opinion that it womld have been highy heneticial to have cross-ploughed the land in the spring. -The finlowing is the product of cacin of the lots:
(i. No. 1, ploughed by iss murons: 43 inches deep, situate on the western side, vielded twenty and a lath bushels of ears.
6. No. 2, ploughed ly $¥ 3$ furrows, 6 inches decp, vieided nineteen bashels of ears.
7. No. 3 , ploughed by 22 furrows, 8 or 9 inches decp, yiches twenty-three bushels of ears. This ploughing was apprently decper than the soil ; but in the latier part of the season the crop suffered much less by the drought than either of the lots; and had the soil been as good, the crop would have been mach superior.
8. No. 4. ploughed by 28 furrows, $6 \frac{1}{2}$ inches deep, viclled iwenty-two and a half bushels of cars.
9. No. 5, phoughed by 28 furrows, 6 inches deep, vielded twenty-one bushels of ears.
10. No. ( 6 , ploughed by 36 furrows, $6 \frac{1}{2}$ inches decp, yielded twenty-two and a hall bushels of cars. The soil of this lot wat rather better than the other parts of the field.
11. From the result of this experiment, my opinion is decidedly In favor of ploughing our lands much deeper than is unally practised by our farmers. Espocially is it beneficial on lands liable to be injured by the drougit.

Section VII.
i. The Rollfr.- -Is constructed of wood, stone or cast iron,
according to convenience or the purposes for which it is used. In : Canadian husbandry, we have yet no reason to expect, or perhaps desire, any but those made of wood, and such as any farmer, who has a moderate degree of mechanical skill, and the carpenter's tools which every furmer ought to keep, may readily construct himself.
$\because$. A good sound oak log, with the frame and shafts appended, makes a goold roller. They are made of different lengths, and sizes varying from 15 to 30 inches in diameter. The lighter kinds are mate in one piece, but the larger and heavier kinds are advantageously mado in two picces, with in iron rod passing through the centre of both, asi' upon which they revolve.
3. English farmers construct the frome so as to rise alove the roller, upun which a box is fixed, either to contain stones to add to the pressure of the roller, or to receive small stones and rubbish, collected on the tieh while at work, which are to be carried off.
4. Their shatts, when at work, are generally horizontal. We think the roller is more casily drawn when the drait is on a right line from the collar or yoke of the team to the point of resistance. Thismay be done and the advantages of the box retained.
5. The nses and advantages of the roller are nany and imporant, and no farmer should be without one. They are particularly important in the seeding process, to break down the clods, pulverize and smonth the surface, and to press the earth to the smaller seerls, which otherwise oiten fail to germinate lor lack of moisture.
6. This is paricularly the case with oats, barley, and the grass seeds. In autumn the roller is sometimes passed over winter grain with a view to counteract the effects of frost the following winter. In spring it is advantaceously passed over winter grain, as soon as the ground is so solici and dry that the feet of the cattle will not poach the surfice.
7. Jt ronders light çround more compact ; presses the soil to the roots of the grain and thus promotes their growth; and upon all soils closes the imumerable cracks and fissures which abound on the appearance of dry weather in spring, and by partially burying the crown, causes grain to tiller better, that is, send up more seed stalks.
8. Finally, the roller is of great advantage to grass grounds in the spring, by reducing inequalities of surface, and pressing down the plants or carth which have been thrown up by the frost.
9. There are also rollers for other purposes, viz: the spiked roller, which is used for pulverizing stiff soils, proparatory for wheat. This is formed by inserting several rows of spices, or: sast.ar wrught iron darts, in a cominen hard wood roller.- Thou
concave or scalloped roller is adapted to the form of ridges, and is olten attached to the turnip roller.
10. In sowing or planting on turf land, the roller is indispensable, as by pressing down the turned sward it promotes decomposition, and causes the crop to feel at an early period of its growth the invigorating effect of the mar". - so produced.
11. A farmer in the New-England Farmer, describing his method of cultivating corn, ascribes much of his success to the use of the roller. Last year, in planting a field of 14 acres, one hali was rolled and the other half harrowed. Tho soil of tho harrowed part was the best, the manure the same in both.
12. "On the first day of July the cern whero the land was rolled was one quarter heavier than on the harrewed part, and so it contimued through the season until the harvest."
13. Numberless instances, where the superiority of rolled erops; has been maniiested, might be adduced, but the retisons of the benefit are so obvious, that they need only to be mentioned, to commend themselves to the attention of every grod farmer, and indues hin to provile himself at once with this mplement, if it is not atrealy mumbered among his tools required for successful firming.

## Section Vil.

1. On the effegts of hthring the sidface of the farth as a relef abanst provght.-'This is a trite subject, and one which we are aware has been Iong sinco settled by intelligent cultivators, in all countrics. It is very familiar to gardiners, and the cause of the very superior production of gardens over field culture miry be attributed in part to the more irequent application of the hoe and spade.
2. Yet it is true, that a very great number of farmers deny the propositom, and disupprove tho practicc. They think it dangerous to plough and hoe in the time of extreme drought and heat, while our own exporience of twenty ycars has convinced us, that it is much superior as a remedy against drought, than watering in the limited manner in which that must always be applied.
3. There has never been a season in our memory in which there was a greater necessity for the application of all remedies againsi drought than the present. The drought was not only of longer duration, lut it took place, when plants were the least able: to resist it, not having sent their roots in quest of nourishment far, wide and deep.
4. The early foliage, also, is more tender, and more liable to wailt under a scorching sun and a drying wind.
5. In this extraordinary season, l had a small patch of early potatoes planted ina warin and sandy soil purposely to procure an early crop; the soil was, at least three quarters pure sand, mixod with some food for plants among the sind.
6. The severe drought threatened a total loss of the crop The potato stalks were fecble, drawn up, searcely larger than goose yuills, andl expected every day to see them wither; all hopes of a crop were abandoned.
7. I thought that they were the fair subjects of a desperate experiment. Un one of the hottest and driest days I gave them a thorough ploughing, passing the piough four times through each row ; first ploughing two lierrows from the hills, its near the roots as possible, without throwing out the sed potatoes and then returning the loom, or earth, instantly back by two other furrows.
$\therefore$. No min intervened for ten days. ha threo ditys after, the potatoes changed their color, they started afresh, is it they hat received the benefit of ample showers, while not a drop of rain had tallen.
!. The dews, which were abmatant, settled upon the new turned earth, while, before the ploughing, no moisture had beon apparent.
8. The last fact, thongh it camot have escaped the notice of the most careiess cultivator, has not as yet been explained. Wcan easily see, that a soil. rendered porous, would more readily and easily convey its moisture to the roots.
9. It becomes like is sponge, and is readily permeable, or rather readily peraits the moistare to pass between its particles. lut it as not yot understood why it attracts the moisture. Perhaps, however, it maty be owing to its presenting a much greater surface to the moist air of the night. 'ihe fact, however, which is what most concerns us, is settled.

1:. Verhatss some of the experiments of our distinguished couniryman, Dr. Wells, a physician of London, who rendered himself distinguished by his remarks on dew, may tend to explain this fact, though it is not my purpose now to examine the theory.
13. Every man who foels an interost in the question, can satisfy himself at once, by stirring a small piece of earth in a time of severe drought, and if he doessot find it in the morning more filled with moisture than the undistabed ground in its vicinity, let him continue a disbeliever.
14. But there is another mond and is one which I have never seen suggested, by which I itprinend tho stirring of the surfice, and making it light and pows, is heneficial in great droughts. It is this : light porous bodies are bid c utucerrs of heat; perhaps

## CHAPTER III.

## Section J.

1. Wheat Culture.-Of all the crops cultivated in our country, the crop, par excellence, is unquestionably wheat. Its intrinsie value as an article of food, its importance as an item of export, its influence on trade, and its vast sway in regulating the exchanges and commerce of the world, render it every where a crop of the greatest consequence, and particularly so in this country.
2. To raise good wheat many things must be kept in view ; the nature and texture of the soil-its quality, so far as richness or poverty is concerned-the kind of wheat most suitable for cultiva.
thon under the circumstances of the caso-tho cleanness and pre. fration of the seed-the time and methot of sowing-and in short all the things that go to amelionate the soil and socure a crop, must he attembed to, reudering the growing of wheat one of the most ardums as well as profitatbo occupations of the farmer.
is. A gool wheat soil alvays contams considemblo chy, but it ia s balanod and corrected by other ingredients as nover to be cold
 be experteil. Predom from superlhous moisturo of staghant wa-
 was "ampution does not naturally exist, it must be produced by danining.
3. I moist cool climate is fomd not to be untivorable to wheat, i aho ponts aro proservel from stagnant water, and aro allowad tu ango in a pervons soil ; but in athe climate whent will lat where the soil is stumated with water that does not circulate.
4. 'ín give the requisite dryness and depth where they do not exbut haining and deep ploughing may be relid umon, and whero there genersother, with proper manuring, a soil can scarcoly fal to inapose, on to be prontuctive.
(3. Jreep ploughing, on most lands as thoy nathally are, and on all lands is they shomld be made, is essential to good wheat crops. Tho roots of this plant penetrate in a permeable soil to a great demb, and spread to a considerable distance. 'Tho simgle fact of its being provided with two sets of roots, one of which sireads near thocurbeo, and the other strikes deeply, is a sunficient proof of the necossity which exists for deep ploughing in its culture.
5. In a few instances subseils may be found which will not admit oideep ploughing, being composed of materials injurions to the wheat crop; but great crops ol wheat are not to be expected on such soils.
6. The application of manures is a very essential point in growing the wheat crop. Land can be too rich, as well as too poor for wheat, or rather the manuro in the soil may be in that condition which renders it unsuitable for wheat. There are some crops on which fresh or unfermonted manure exercises a good effect, and to which it can scarcely be applied in too largo quantities, corn fo: instance; while on others they produce the most unfavorable kinti.
7. Nenrly all the corealix are injured by fresh manures, the stalk growing too vigorous, while the berry is usually imperfect. Compost manures, or such as are made by layers of turf, stable manure, vegetable mould, lime, \&c., in which the decomposition is
already effected, can searcely be applied too abundant!y to land atherwise well eonstituted.
8. 'the great crops obtained around old bans, or other decayed or removal buildings, is a proot that large quantities of decomphed manuremay be sately used, while a mach fors ghantity of shesh or undecomposed womb he fintal. One of the groatest evils of direct manamg tor the wheat erop areses from the lathate of the graill so mammed to lotge.
9. 'The inping erowth ot the stom renelers it unable so suprote its own woight, it is solt and tlesible, contains muchless silex than Hoso grown in a poorer suil ; the whent does but ushally perfece its berry, and at all times, from the himess and wealdioss of its sisin or cuthele, is meme liable to bildow or rast. 'Ithen thines
 reducen, to alple mbermented manme to when.

1 $\because$. 'The rotation of erops has lurnished the merns of ajplying

 roots in alterman with grain erops, eloser, de gives the mane the means of erpeatly inversing his erops, and athe same tinm constantly improwitg his sioh. It may be considered as it sottled maxim in agriculture, that leme insproves little or nome while nuthing is growing upen it.
13. It is the gencral aeknowledment of this truth, that has sut) stiuted hoed or green erops tion maked lallows, in the peparation of hams bow wheat. Peas and clover and among the best green corps to precede whent, and the latter may be considered insipuable from the suceess'ul cultre of this grain. Corn womld be wo of the very best crops to precede whoat, could it in all cuses be removed from the land in seasm to get in the wheat propendy.
14. 'The thorough manuring and tilling required for com, pus the ground in good condition for whent ; and should expericne prove that very late sown wheat is more safe from danger in winter, and more protuctive than that sown a little earlior, a result said to be established in some of the best wheat commers ai Europe, the crop of con would cease to be objectionable, and might bo considered as nearly clear gain.
15. 'I'here is a practice which has prevailed to a considerabio extent in our wheat producing districts, of growing wheat after wheat several times in succession. Such a system of farming deserves the soverest reprehension, and will never be adopted, except by those who are in a haste to be rich, and in defiance of areknowledged consequences.
16. Farmers may have succeeded in raising good crops in this way, where the soil was of the fine quality and excellent adaptation to wheat of much of our western land, but nothing short of the most imperious necessity can justily this procedure, or tolerate such a departure fion the correct principles of cropping. Land, which has once produced good crops of any kind of grain, may again be made to procluce them ; and under skilful treatment lands never cease to yield good crops, where their first cultivation proved the adaptation of the soil to that particular one.
17. It is unhappily too true, that on a large portion of our best cultivated wheat lands, the soil has become so infested with a variety of foul and noxious piants, that a course of naked summer fallow, thoroughly performed, has become necessary to counteract them, and prevent their increase and spread. On clean soils this would not be required, but some valuable crop might take its place, ind thus add essentially to the profits, while it lessens the labor of the husbandman, so far as the operation of summer ploughing was concerned.
18. The only alternative of such fallows is hoed crops, and these must of necessity for the reasons before given, be too limited to serionsly affect the propriety of fallows on weedy land. Spring crops, such as barley, oats, spring wheat, or even peas, do not allow of sulficient cultivation to check the spread of weeds. Tho sowing of such crops on land where the Canada thistle for instance abounds, is precisely the treatment to make it spread and flourish. The thistle, stein krout, charlock, isc. will succumb only to ploughings and hoeings so oft repented that the mutilated plant has no time to recover from one blow before anothor is given.
19. The preparation of seed, and the quality of that sown, are objects of the greatest cousequence. In the most favored sections of our country there are but few fields of wheat in which smut cannot be detected, and in a country so favorable to the perlection and purity of this grain, as the best wheat districts in Canada are, none at all should be suffered.
20. In Europe, continual care is requisite to keep their wheat free, and in the best whot countries the crop is almost wholly exempt from smut; here but a trifling attention is requisite, and the consequence is, it is found almost every where, and in some places to the serious injury of the crop.
21. Now it is well understood, that soaking or washing wheat in brine, and drying it with caustic slaked lime, will effectually prevent smut, as well as benefit the crop in other respects; to sow wheat therefore, without such preparation, is voluntarily to incur
the risk of smutted wheat, and the inevitable consequent loses.
22. There are some other substances that used as a wash for wheat appear to possess the power of destroying smut, such as copperas, vitriol, arsenic, \&c., but as none are more certain in their operation, or can be used with less trouble or danger than lime, the application of that suistance is undoubtedly to be prelerred to any other.

## Section IT.

1. The kind of seed used, and its equality, are things of ton much consequence in the culture of wheat to be left to chance. There are many varicties of whent cultivated, some very productive, ant some rers hardy ; some ripening later and smo earlicr; and these kines in sowing shond be chosen with relerence to the soil and location.
2. Varictics which ripen at the some perion, may sometimes be advantageously mixat, for sowing in the same field; but those that ripen uncpually shoud becurcluliy kept enparate. Some varicties of wheat may stand in the field !ouger than others belore enting, without danger of the sced sholling or wasting.
3. Thus the two kines of flint wheat, the white am the Can:dian (the hatter a comparatively new varicty), if the last shond be allowed on atim ation at maturity as lonig as the first can be permittad with impunty to do, the has by shelling would amant to nu amall porion oit the crop. The first may stiond ahmot to suit the convenimee of the husbendman, while the last must be cut as soon an. its maturity will admit, or cortain lass will be incurred ; and nealy the same remarks will apply to some other kinds.
4. There are some formers who scen to think that any thing that is in the chane of whent, howerer imperfect or tiefective the berry, if it will only grow, may be usnd as sced. 'This is very mistaken policy. It is impossible that the young phant should be as vigorous and as peffect, when springing from delective :and shrumken sed, ws whengrowing from that in which the peculiar principles os the plant are fully developed, and the germination commences without check or hindrance. 'The seal that ripens first in the ear, and is separated with the greatest ease, is the most proper for seed, as these circumstances show it is the most mature.
5. A farmer in one of our Districts, a few years since, was in the habit of selling large quantities of seed wheat annually and at high prices, as his wheat was of a superior quality, very heavy and productive, and supposed to be a new variety. It appeared, however, that he had brought his wheat to that degree of perfection, by selecting some of the finest ears from a field in the first place, and
then instead of threshing the whole crop grown and using the seed promischously, he gently beat the sheaves over a barrel, by which whly the best and most perfect grains were separated, and by rejeated sowings had rendered the qualities so desirable pemment.
6. The quantity of seed sown diflers much in different parts of this country and in Europe. Derhaps the English use a greater anemnt of sed than any other perple, and their cerps are certainly not ofien cxcelled. From two and ithall to mour bushels per acre are there used; while here the quantity varies from one to two and a half hushels per acre. The gencral quatity is about a bushel and a lalf.
7. Where wheat is sown bate, more scell is recuited, as the whent roces not tillor or spread as much as when sown eariy ; and when the lerer is musually phone and full, move is required than when ine kemel is lighter. As on soils, too, that are not rich, a single Mant will not throw out as many stalks as where the land is very bich and fertile, it would scem that on such lands more seeds would lie necessary to seed it properly ; as it is clear that where but one or two stalks shoot from a root, these must be more numerous than when a root prodaces hall it dozen.
8. Opinions among farmers hare been somewhat varicd on the subject of changing seed ; but we think unless more pains are taken io originate and proserve good sced on a farm, than now usually ire, there is essential benefit derived from such changes. Whent is certain to succeed better on lands not naturally adapted to its production, when the seed is brought from a grood wheat soil or district.
9. F'or many years the fermers of large sections of the western district of New-York, where the wheat crop it that time was apt to fili or smut, found a profit in sending some twenty or forty miles to procure seed from the best grain districts, and the crop from such wheat rarely failed in producing grain of good quality.
10. There is also a decided admantage secured in bringing seed from lower land and a milder climate, to elevated lands, or a cold moist climate. Such a change of seed renders the momatain cron carlier and better than it would be if seed from the same neighbo:hood was used.
11. Professor Brown has on this suliject the following remarks, which are undoubtedly correct, as they are founded on the experience o! husbandmen in the high and low lands of Scotland :-
12. "We are convinced that the cultivator of a mountainous district, if he always used seed from his own crops, would reap later and later harrests, so that at last they would with difficulty
be brought to maturity ; a circumstance easily explained by the comparative shortness of summers in mountain districts. If, on the other hand, the cultivator of a flat country, the climate of whilh is mild, and the soil dry and light, continually male use of his awn sced, it would head every year sooner, the stalls would i.ee me shorter, anit the heads and grain smaller and smatler, and in tine there would result but a poor produce. In this last ense, the cutivator hrings his seed with advantage from a conntry or districtuore cold, the soil of which is good and substantial."
13. She mistances in which benefit has been derived, on what are calbd beech and mate lands, by using seet trom nak lanis, are so momeros that almost every one must be familiar with then. 'ilne adratages in this case, however we may choose to explain them, camo with propriety be disputed.
14. Asto the time of sowing wheat, it may be remarked, that very early eown wheat gets more firmly rooteh, than leter sown, and in casequence is less liable to injury foom froxing one. Wheat mave sown solate as not to germinate until the severity of the winter i past, or the sreatest danger from frost is gone by ; fut such late som what is lin more liable to the attacks of bhght on rust t! an ho whin ripens early, or such is so far advened before the close showery weather, that marks the adrent of blight, commennen, ato be safe from injury.
15. On the ther hend, hate sown what is very certain to esceype the Hessinn fly which in some parts of the country is the grentert beny wheat his to encomter. It would seem, then, hat where wheat is liable to winter-kill or blight, early sowing is to be pecerred; and that whe the fly is prevalont, suwing should be celeyed as long as possiblu
16. It may be aica, that some experiments would seem to prove. that in districts; whee the wheat worm has been so fatel in spring wheat, very late swing, by delaying the earing of the wheat until the period of de worm fiy was passer, would preserve the crop.
17. There is more heat lost to the husbamiman from the single cause of winter-killingor freezag out of the ground in the winter or spring, than there in this country from ath other canses fut t"gether. 'The worst prod is in the months of February or March, when the ground is buref snow, and thawing mild days are succoeded by sharp freezingights.
18. 'I'his freezing expeds the surface water, lifts the roots from their place a little at eaclime, and by successive freezing and thawing, leaves the plant ithout any hold upon the soil, and con-
sequently to perish. Heavy soils are more apt to winterkill grain, than gravelly, or light ones, as these can retain little water.
19. It would seem to be a necessary inference, then, that thorough draining such soils as are apt to winterkill wheat, would prove a remedy, and theory and fact in this case are found to agrec.
20. We have lately had the pleasure of seeing beautiful fidds of grain growing on lands, from which, a few years since, the production of wheat would have been impossible. 'Thorongh dnining hatd removed the water that formerly saturated the soil, and by freczing the surface, prevented the lifting out process thatalways acempanies the frec\%ing of wet grounds.
21. It is usually the case that such wet grounds contait a large supply of regctable matter, and draining renders them sp productive, that the protit of a single erop not unfrequently repas all the expense incurred in the improvement, leaving the land which in its former state was neariy worthless, in clear gain to the husbandmon.

2:. If on ermmon farms the means of trench or thoough draining are not at hamb, surface drains made in such a nanner as to carry oll the water that falls on the lands, should $1:$ constructed inmedintely aiter sowing is completed. By preveptigs such water romaining in, and consolidating the land, grain is los liable to be thrown out; and though far less benefical, or prmanent in its effects, than thorough draining, surface drains shoul not be omitted where there is the least danger from excess of wer.

## Section III.

1. Spring Wheat.-Ono of the earliest objets which demam the attention and labor of the husbandman in he spring of the year, in those sections of the country in whic'the cultivation of spring wheat has become a matter of importare, is the preparation of the ground tor the seed; which shoul be got in as early as the nature of the soil and the weather wiladmit. It is but it fow years since the cultivation of spring weat began to attract notice.
$\because$. Though a valuable grain, we do not dvise our farmers to attempt making it a substitute for winter what, unless in situations where the latter is liable to fail from beig winter killed, or in cases where a crop of this wheat as a sprig grain, would bo better than oats or barley.
2. Spring wheat requires a rich soilput one not made so by heary dressings of manure applied tothat crop. Pastures on
which sheep have been fed or folded, fields that have been heavily manured for corn or roots, and from which such crops have been taken, are found to be the best for wheat; as manure applied fresh to the wheat crop, is apt to produce too great a growth of straw, and by lodging the grain endanger the filling of the berry.
3. We have known excellent crops of spring wheat raised on sheep pastures, the ground being carefully and completely turned over in the fill, and in the spring the surtice earth is loosened by repeated harrowings fir the reception of the seed, without disturbing the turl in the least.

5 . One of the greatest difliculties attending the caltiration of spring wheat, (and the sanse remark will apply to barley, which should also be pat into the earth in good season) is foum in the general wetness of lands suitable for this whent, carly in the spring, and which too frequently caluses the rotting of the seed, or if suceeded by dry weather, bling the surface to such a degreo that the young plant is unable to force its way through the obstruction, and of courso perishes. 'Thorough draining is the cilectual remedy lin this evil, and whore this is not done, every prectutionshould be taken to conduct the water from the fich and prevent all ascumulation on the strlace.
6. The kinds of whent most in estimution at the present time appear to be the Italian, Siberian, and 'Ica wheats: but there are numberless other varieties, either orginal in this comntry or im. ported from abrond, which have their advocates, and which probably possess their peculiar good qualities.
7. The fact that winter wheats can readily be converted into spring wheats, leads to the hope, that new and superior varictics may thus be introduced to the farming public; kinds which shall combine the excellencies of winter wheat for louring, with the certainty of giowth which belongs to spring wheat, in a greater degree than any kind now known.
8. In those districts of our country in which the worm has proved destractive to the crops, it has been found that late sowing, by retarding the appearance of the ear until the scason of the fly, which fortunately seems short, is over, has exempted the crop from attack.
9. Experiments in the central and northern parts of Canada prove that spring wheat sown from the first of April to the first of May, was almost wholly destroyed; that sown from the first of May to the 20th, escaped with little injury ; and that sown after, or at this time, was free from worms. In districts, therefore, where the worm is feared, it would seem to be advisable to delay
os late as may be consistent with the safety of the crop, and its arrival at maturity.
10. Spris:g wheat may be considered more liable to smut than winter whe: $t$, and it should always be brined and limed previous to sowing. 'ine advantages of this course will be found not only in freedom from smut, but in a more heary and vigorous growth of the plant, than without such preparation.

## Section IV.

1. Rest on Wheat.-The great bane to suceessful wheatgrowing is rust; and although it is now pretiy genorally admitted that the disoaso is caused by the bursting of the sap-ressels of the phonts, whic the satp is in a stato of rapiu circulation, being producal from a closo, wam, or humid shate of the atmosphere ; or by showers of rain, follow od in chase succession by hot sunshiny weather; still the mole of cultivating the land, to prevent the ravagos of this cuemy to the farmer, is not so gencrally well undierstood as it cught to bo.
2. In treating upon this, as upon all other Agricultural topics, it is quito impracticablo to lay down any set of rules that could be applicably carried out in every instance; but we wonld wish to tre undorstood to assert, that, in the great majority of casies whero rust is most frequent upon the wheat plant, it might almost, if not sololy be prevented, by a judicious system of management.
3. 'Tho best wheat land in the world is that description of soil where calcarcous matter constitutes tho principal proportion. On a farm in one of the sonthern counties of Eingland, where seventyfive per cent. of the soil was composed of carbonate of lime or marl and only a small proportion of the remaining 25 yegetable matter, an average crop of wheat equalling forty bushels per acre has beon harvested for the past twenty ycars, on the four-shift systen, without any perceptible deterioration of the fertilizing quality of the soil.
4. It does not necessarily follow, because a soil containing such a large proportion of lime sarcely ever fails of yielding a good return of wheat crops, that a soil containing a less quantity, with skilful and scientific management, might not be equally productive. The exact amount of lime in the soil, to constitute it good wheat land, depends greatly upon circumstances.
5. A soil containing equal parts of carbonate of lime, clay, sand and vegetable mattér is probably, when all things are considered, the most productive and profitable land cultivated.
6. Any farmer, when once acquainted with the true science and
practice of husbandry may, in a few vears, change the texture of his soil, be its original qualities what they may ; and thus, in process of time, comvert the most barren into the most productive soils.
7. A soil naturally deep with regetabie matter, to produce a erop of winter wheat, of a superior quality, should be ploughed deep, in order to give a proper consistency to the soil ; and, unless the land is previnusly inade very sterile indeed by constant cropping, a dressing oc barnyard manure would be likely to be prejudicial to the erop.
*. Asevidence of this of inion, the circunstance is worthy of notice, that. on all soils where there is the least regetable substance, the crops, ilthongh con."a". dy short in the s...."; are soldom, if ever injured by must. 't is on notorious tach, mat, on all deep hack soils, winter wheat seldom comes to pertection: the rust is almost sure to catch it; and the owner of such a crep is almost sure to calculate largely upon the yield, if only it cecapo the rust.
8. Anch of the lan that is sown with tutumn wheat is not at all alaptent to this crup, inasmeh as it contains tongreat anamunt of vegetable or putrescent, and too small an anount of mineral matters.
9. A soil of the quality just mentioned, averaging the tiopth of six inches, womld, if sown with fall wheat, in nime casrs ont of ten prove to be a failure, if plonghed only to the drpth of the staface mould ; bnt if it were practicatle to mix about six inches of the sub-soil with the surface soil, the two would become so closely blended together, that it would be most easily managed, and become a part of the most profitalike land under cultivation.
10. On soils composed of nearly pure clay, or sand, the apphication of a liberal dressing of raw unfermented harn-yard manure wouid be of great advontage to the wheat crop; but when vegets. be matter is the principal ingredient, in order to insure a good return, the addition of barn yard manure is not only unnecessary, but the sub-soil should be littemlly mixed with the surface soil, as a means of imparting the proper food to the plant, to produce a hard outer coat to the straw, and also to lessen the chance of being removed and destroyed by the freezing and thawing which takes place at the opening of spring.
11. As the bursting of the sap-vessels of the plant is clearly the cause of the rust, any operation that would have for its object the effect of hardening the straw would lessen the chance of the wheat crop boing attacked with this direful enemy to the successful and profitable cultivation of wheat.
12. Depositing the seed in rows, either by a drill or ribbing plough,
would have a tendency to impart this result inasmuch as the air would have a free circulation among the plants.
13. Doep ploughing, where the sub-soil contains any considerable amount oi lime and potash, would also have a favorable influence upon the crop, as both lime and alkali will dissolve and separate the sand and the soil, even so minutely that the small particles may be conveyed to the stem of the plant, and thus form a harder outer surface to the straw than if putrescent manures alone were used.
14. The sum up the mater, in conclusion, we would say, plough deep; apply the mannere to the crop which immediately precedes the wheat cere; ; drain the land, either by the plough or spade, in sueh an efficient inaner that the phants would not be apt to receive injury from excessively hot weather ; sow carly, and let it be done (icep; and in rows. when practicable, and top dress the crop, with ashes or salt, in the spring, to celuse the plants to ripen early.

## Sherson V.

1. Cuess on Whest.-It is wrong to form hasty conclusions upon matters that have either dond or mystery involvel in their solation ; and, from this conviction, we made the following experiment, five summers since. which resulted in a clear demonstration, that the laws of nature, in this instance, as in all other, were uniform and stable :-
2. We selected two acres of the best wheat on the form, from which, aiter bestowing much time and trouble, we carefully separated every plant other than wheat, at the period whilst the wheat plants were in flower.
3. The protuce from these two ncres was thoroughly cleaned with a fanning machine, and afterwards passed through a hand sieve, and steeped in brine sulficiently strong to buoy up an egg, the whole of which process thoroughly cleaned the seed, which resulted in a crop the following year equally free from discase and impurity.
4. About three bushels of seed, which had undergone no preparation, were sown, however, for experiment, the produce from which had an abundance of both chess and smut.
5. To repeat what has been elsewnere stated, we have every confidenes that both smut and chess may become comparatively unknown, unless it be as a matter of history; and that rust, in a majority of cases, may be obviated by the introduction of a rational system of cultivation. Such a system of culivation will be found to consist in sowing good and properly prepared seed, so far
as the two former are concerned ; and as it regards the latter, the following will be found to have a considerable influence in lessening the chance of its banelul effects:-
6. Manuring for the crop which immediately precedes the wheat crop; deep ploughing; early sowing ; liberal seeding, and depositing the seed in rows; and horse hoeing, are, according to our judgment, necessary steps to insure a good wheat crop, upon much of the worn-out wheat lands of the country.
7. The confidence which we express upon these disputed points may, in some instances, beget ridicule from those of our readers who may have been more regardless in examining into causes and etlects than we have been ; but to such we would saty, try for yourselves, and travel no longer the blind road of tradition, but recollect that only slovenly and improvident farmers are above adopting the improved methods that men of science and deep research have pointed out.

## Section VI.

1. Smer on Wheat. - Various opinions are entertained regariing this disease, so common to the wheat crop. Some suppose it to be a fungous production; others, that it is the work of an insect: others, that it is propagated by inoculation, in a similar memner that infcctious diseases are communicated to tho animal creation; but the real nature, origin, and habits of the disorder lave hitherto eluded the researches of the most scientific inguirers of all netions; and, therefore, it would be presumptuous in us to be positive upon a matter in which there appears so much mystery involved.
$\therefore$ On one point, however, we feel certatn, namely, that the remedy is most easy, and if it were generally adopted, a single smut-ball would not be raised where there are bushels grown under the old slovenly system of preparing the seed
2. In every neighborhood there are more or less careful firmers, who soldom, if ever, have their wheat crops infected with this disease ; from such farmers seed should be procured; and independent of its being good, and free from disease, it should be steeped in a solution of salt and water, sufficiently strong to buoy up an egg.
3. The liquid in the tub should be a few inches higher than the grain, so as to allow it to be stirred, in order to bring all the light grains to the surface, from thence they are to be skimmed off, oolong as they continue to rise. If baskets with handles were used, to immerse the wheat in the tubs, it could be conveniently takep out and drained.
4. 'The seed should bo left in the steep about two hours, after which it should be drained, and spread thinly on the floor of tho granary, which should bo well sprinkled with sitted quick-lime, fresh from the kiln, and which had been recently slaked with is small portion of tho liquor.
(6. About hali a peck of lime is sufficient for a bushel of whont and it should bo carofilly mised, in order that every grain may be completely coated. It maty semetimes happen that seculentirely free from shat camot be procured, but when instances of this kind accur, at solution of one pound of blate vitriol to eight giants of water should be applied, whon quite hot, to three bushols of wheat, and the whole should be frequently stirred, and dried with lime,
5. Sulphate of copper, in the propestion of tive puands to thref hashels of wheat, is frequently usal with good success ; it should be dissolved in a suflicient quantity of water to cover the seed.Ater beingr repeatedly stirred, and cleared of light grains, it shouki bo suffered to remain in the liquid about four hours, and thon driod in lime, as mentioned above.
6. Virious other preparations of vitriol, nitre, sulphur, arsenic, \&c., may bo used, with a probable certainty of success; but, instead of trying needess proparations, it woml be decidedly better to procure seed free from the disease, and steep it in stale urine or brine, and apply lime, as previously directed.
7. By carclilly preparing the seed, and by practising almost absolute cleanliness in the operation, the disease of smut, so detrimental to the farmer's profits, may be wholly avoided.

## Shetion VII.

1. Winter Killed.-This is a term made use of to denote the destruction of plants by the effects of winter; whether they are not sufficiontly hardy to withstand the severity of the climate, or whothe they are thrown out of the ground by the mechanical action of the frost and are dryed up, or covered so deep and long with snow that they mould or rot, the same term is applied-" they are winter killed."
2. So fir as our observations have extended, we find that by far the greatest proportion of agricultural plants are killed by the mechanical operation of the frost in the spring, such as Whent, Kye, Clover and most kinds of guasses, whilo they are young.
3. It frequently happens in this latitude that many plants which have remained perfectly green and fresh undor the snow, are dostroyed by the frosts after snow has disappeared. To provent this
s, after of tho k-lime, with is
f whoat
may be ely free sind ocof water at, and
to threa: thould seed.it shouki cad driod
arsenic, but, in• $y$ better urine or
almost
so de-
bote the are not or wheI action ig with hey are
that by lled by uch as ney aro
s which
are deent this
with field crops, as young grasses, ©c., wo would recommend the use of the roller, which is an instrument altogether undervalued by many good farmers.
4. Perhaps the reasons why this instrument has not been moro generally introduced, is because it cannot be used io so great ad. vantage on new lands where there are stumps and roots; but as soon as these disippear, the roller should be comsidered as importent in instrmment as the plough or harow and should always be an accompaniment.
5. Many grass lands are materially benefited by being rolled as som as the frost is ont of the gromed, while they are yet wet and soft. By this operation, the surfico is malo mare cren and smonththan it would otherwise be, amb the ronts of grosses ate more closely pressed in the earth, which lacilitates their early growth. In somo cases, when the grounds have been long in grase, the uso of the harow betore the roller will be found very advantageous. Many garden plante require attention as soon as the show leaves them.
(i. Lettuco plants which were sown in the fall, generally appear first when tho snow tirst leaves them, but many of them perish afterwards by night frosts ; such plants should be covered $\mu$ ) with straw or mats. Strawberry plants which were set in the fall, are often thrown out of ground in the spring.
6. The ground abont such plants should be trodken down as son as thated, and if some straw or litter is thrown over them, the better. liy a little attention to protecting plants in the spring, cabbage plants may be sown in the fall, and allowed to stand out, and will be found equally as good as those raised in a hot bed.
7. Other plants may be preserved from "winter killing," such as tenter shrubs, by wrapping them up in straw, whereby they will be prevented from so liequently freezing and thawing as they would otherwise do.
8. We have seen a thick shelled Almond this spring, which stroul in a shaded situation, which was perfectly frest, while some othersi n a sunny situation, in the same girden, were "winter killed,' from which it might be inferred that it was not the severe cold which caused their death, but the too frequent freezing and thawing. We have noticed also that European grape vines, which lay upon the ground without being covered with any thing but snow, were in better condition than those which were left upon trellises.

## Section Vili.

1. Barlex. - The soil for barley should be such as will grow good turnips, or other green crops, incluling clover, and which embrace the varicties of loams and sinds that are not wet, or ver! diry and poor. Indeed, I have taken my crops, and they have been pretty goos, from my lightest turnip soils. Biarley cannot be cultivated to advantage mon stili, heavy, and wet grounds, or on such as are of a cold temacious quality.
$\because$. This crop occupies the ground but about three months ; and it is only in a dry, light, mellow soil, that its roots can extend with facility, and supply the food necessary to bring the grain to rapiad and perlect maturity.
2. Previous Crop,-Crops that precede this grain should be such as leave the ground mellow, and free from weeds; and for this renson hoed crops are to be preferred, such as turnips, potatoes, peas, beans, \&c.
3. Small grains should not precede it. They imporerish the soil, leave it foul, and hesides, it is contravening one of the most salutary maxims of husbandry, to grow two dry crops in su:cession. It may follow clover; but if the soil is heavy, the ley should be ploughed in autu: 11.
4. Barley is successfully sown upon the fallows in England, (not summer, but autumn fallows,) and is sown sometimes after whoat; but in tho latter cose turaips are pullel, and proviously fed upon the stubble; a practice which I think is not likely to obtain here. I have gencrally sown barley alier ruta baga, or potatoes, these crops laving received a good dressing of long yatel, or stable manure.
(0. Manure shonld not be applied to the barley, but the preceding crop. 'The short period that this grain occupies the ground, does not afford time for the manure to decompose and yield its food to the plants; and if applied to excess, it causes at too rank vegetation, and the straw lodges before the grain is matured.Where a fallow or clover-ley is employed and ploughed in autum, dung may be previously employed and ploughed under.
5. Preparation of the ground. - Where barley follows a ront or hoed crop, one ploughing will generally suffice; but in all cases, a complete pulverization of the soil is necessary; and to effect this a roller is of material benefit. If sown upon grass leys, ploughed in autumn, the spring ploughing should be shallow, so as to leave the sod reversed. But the preferable way may be to harrow the fallow, plough in the seed with a light furrow, and smpoth off with the harrow. nd with to rapid
be such for this otatoes, ish the 20st salsion. I: ould be
ngland, es alter viously to obor por yate,
ceding pround, ield its o rank
6. The sced and sowing.-Loudon enumerates six species and sub-specicis of the barley. The kinds uniformly cultivated hero are the two, fiour, and six rowed spring, (hordeum vulgare and $h$. distichom). Thin-skinned, pate, plump seed, should be solected. I sow as som as the ground is sufficiently dry in spring.
7. 'The young grain is wot hur by the ordinary frosts of the latter part of Ajmand May. I sow from six to eight pecks per acre, andarding to the richness of the soil, and the forwarmess of the season; the poorest ground and the latest sowing requiring the most seed. In limgland, the remmon quantity of seed is from eight to sisteen pecks.
8. Our elimate being much warmee than that of Great Britain, barley and oiher grains thl bioter whth us, and conselpuaty wo requme lowsed. Wo milimmly sow brondenat, generally on tho trost furcow and hamow in boit ways ; and thmo who have a roblop ase it in the fumbing operation. It gie es atmonth surdien, breks di wh the lmans, brings the earh in contimt with the

9. Isice ; my sectis twenty-fim hours in a beak scimitu :" nitre, the crube kind of which costs me anly eight econts prepor
 wate, there is reason to believe that this salt is pecnlia. ' $:$ bencticial to the burlcy crop, the grminyidding it on amatys.

1\%. I have made no comparative experiments, but I hank this step servicabie. I have applated to this gatio, ns: a tup dressinge, with singular sucecos, the pordened dung of pigeons and duaghil fowls, at the mate of twonty or thity bushels to the acre.
13. 'The crop atmits of no diter culture when sown irond-cast. Yet the application of the roller, when the plants are two or three inches high, is no donbt salutary, especially if there lins ben no considermble rams. Kolling gives a stlutary compression in the soil, which in the spring is apt to be loose and porons, and lallo cracks, by the altermatim of freening and thaning, or of wet and dry wather ; it destroys many insects ; ano unve all, it partially buries the crowns of the plants, and introduces a muliplication of the seod stillks.
14. I can recommend the practice from experience. When grass seeds are sown with harieg. the juxuriance of the young grass sometimes chokns the grain, robs it of nuriment, amb sensibly diminishes the prod ect.
15. To obviate this evil, it has been recommended to sow the grass seed after the barley has come up, and to cover them with a light harrow and a roller; and it is said, and I thiuk with truth,
that this operation will not materially injure the grain. In dry seasons, the crop is sometimes attacked by worms, while young.In this case, the roller should be apphed, and sufficient weight added to require the draught of two or three cattle.
16. Time and method of harvesting.- When the soil is richand the season propitious, this grain is very liable to lodge. If this happens after it has blossomed, no material injury is sustained in the product. If hefore, the erop is greatly diminished. This shows the danger to be apprehended from making the soil too rich, and of applying firesh manure.
17. Barley is known to be ripe by the disappearance of the redcast on the ear, or what the Einglish farmers term red roan; by the ears begining to droop, and bend themselves round against the stems; and hy the stalks becoming brittle, and of yellowifh color. This is the particular period for cuting, as, if sulfered to stand Jonger, the heads break of and the grain wastes with the slightest touch.
13. And it may be cut with the crade, sickle, or seythe, aecording to the circumstences. If it stands straight and is not too hea$\mathbf{v}$, the cradle is to be preferred; il heavy, or lodgen, the sicklo or scythe. Rut, as the grain is yet soft, and the straw entains mach moisture, when it ought to be cut, it should bo nutured to become well dried in the swath before it is bound in showes, of carried to the barn or stack.
19. Ii cut with the cratle or sickle, it is bound in sheaves; but the more emmmon practice is to cut the crop with the seyiho, rake the ground, and load it with the barley fork.
20. Barley improwes fir malting by lying till October before it is threshed; though it is often threshed inmediately from the fiell. The great difliculty in prepuring it for manden, is to rid it of the awns. This may bodme with flails, atiter it has passed once through the famiug mill. And where it is in grent quantitee, it may be spread from four tosix inches, , a the barn floor, and trodden with horsos.
21. Produce and profits.--The average proluct in England is statel by Donaldsm at thirty-two bushels per ace. The product in this province varios from filteen to seventy bushow, acerding to samon and soil; and I think the average is somewh hort of that in Great Britain. Compared with whent, its pronuct is as two or two and a half to one; compared with oats, aloout equal, provided the soil is adapted to this grain.
23. It is, however, to be remembered, that neither wheat nor aats are adapted to a barley soil: the first requiring a more stiff
and tenacious, and the latter a more cold and moist location. The average price of barley is at least two-thirds that of wheat-supposing wheat then, to be 5 s. $7 \frac{1}{2} \%$. the bushel, and the product fifteen bushels per acere, and barley to bo $3 s$. $9 d$. and the product of an acre thirty bushels, and the expense of cultivation equal, the profits of the barley will be nearly as threo to two, compared with the wheat. Barloy, besides, is a less precarious cro, , is subject to fewer diseases, and has tewer insect encmics to encounter than wheat.
23. A correspmond of the Bath Agricultural Saninty writes"The last sumg being remarkably dry, I sonke. my see burley in the black water, twen than a resernir, which eonstanty ro ceives the hraining of my diang heap ant stables. As the light grains thatod on tho hio, I skimned thom onl; and lei the roat stund twonty-four homs. On taking it from the water, 1 mised the grain with a sufficient quatity of sithel wod ashe-, to make it spread regulariy, and sowel three holds with it. Tha produce was sixty misheis per acere.

21 . I sowed some other findis with the same seed dry, but the crub, like those of my aeighbor, wns wey por, not more than twenty mashols jer acre, and mixed with yeen com and weeds when hovestal. I abon sown wme of my sod dry on one ridge in eath of the fields, but the protuce was very por, in comparison of wher parts of the field."

Shemionix.

1. Smang caops-Onts-Onts aro ambly considered ant troated ats if of seendery inportoneo on the form, and ist liks




 erop he consoies himsoti woth the thourht the it with the ants ;

 comp hat be prison ons; ant it ho is harin! witu his wow in


B. Is it a w ontor then that some shoud thats oats are not profitable! It mus in grapel bo convidered as cearan that land in goot howe ensugh th yioil twanty-tive bushols of whent to the acre, would give surany oloats if properly and seasomably pat in';
and as oats will in the course of the winter or spring command from $2 s .3 d$. to $2 s .6 d$. a bushel, the farmer may make his own calculations on the comparative profits.
2. Oats are less delicato in their choice of soils than either wheat or barlcy, and in many cases will grow where either of these would be a failure, yet oats require a good soil, and perhaps nocrop more abmantly repays early and carcful getting in.
3. There are several varicties of onts entivated, such as the white or common oat, the black, the horsemane oat, the potatoo cat, and the skinless oat. All of these do well, and have produced large crops with the exception of the skinless kin!, of which we have many doubts whether they will be found adipied to our country and climate.
4. With oats ats with most other crops change of seed has proved benclicial, and new varieties are usually heavier than those that have been longer cultivated in any place. Care, however, in the selection of seed, and early sowing, must prevent the deterioration of any plant which has been found as well alapted to our country as the out ; and if farmers wish the best and heaviest qualities they can easily produce them.
5. There was last year a difference in weight and consequently in value, in many cases, of fifteen or twenty per cent, between early and lato sown onts; a decisive proof that care will benefit this croj as woll as others. Oats require two and a heli or three bushets of sced to the acre; and it may in general be remarked that the man who is covetous ol his seed when putting in his spring crops, be they wheat, barloy, or cats, will find a verification of the scripture declaration, that he who soweth sparingly shall reap also sparingly.

## Suction X.

1. Prase.--Whe Pea crop is of great importance to the Canadian farmer-the climate of the country being remarkably well sdapted for the growth of pease. 'The soils to which pease are the most appropriate, are sandy loam mixed with calcarcous particles, and these soils are abundant throughout all British North America.
2. It is a subject worthy of remark, that some varieties of peaso require one description of soil, and others require a soil of a very different character,-for instance, the grey species are best adapted to the strong soils, and the white to the drier and lighter ones. Wherever calcareous earths abound, large crops of the best qualities of pease are grown.
3. A light dressing of shell marl or lime, is ever found to formare a crup. The best preparation forland for this crop, on those
sotls suitable for their culture, is thorough deep ploughing in autumn, and without any further labour, the seed should be sown the latter part of April, or first of May, at the rate of three bushels per acre, then harrowed in and rolled.
4. No seed is more difficult to cover than pease ; in all cases where it is doubtul that the seed cannot be completely covered with the harrow and roller alone, we would recommend that they should be ploughed in lightly, and afterwards harrowed singly, and rolled. In most cases, where the land has been ploughed in the autumn, to a much greater depth than usual, that is to say, when two or three inches of the subsoil have been brought up to the surface and exposed to the action of the winter frosts and snows, the ploughing in of the seed will be found to pay 100 per cent. for the labour expended in the operation. On the land we cultivate, we would expect, in an arerage of cases, from the foregoing management, not less than 40 bushels of pease per acre.
5. If barn yard momure be applied to the soil in the spring of the year, it will occasion the crop to run a hauh, and proportionably lessen the product of grain. We have much confidence in recommending the cultivation of pease on an extensive scale, as it is the best possible food for stock, and is likely to be a proftable article for export. It is almost needloss for us to state that pease, like clover, draw their sustenance very largely from the atmos phere, and comparatively: even to a much greater extent, than from the soil.
6. In preparmg ground for fall wheat, a much less objectionable plan thin making naked summer-fillows, would be found to consist of sowing wheat ifter pease. This system has been practised fiom time immemorial, hut the maner in which it has been generally performed, is equally as objectionable as the nakal fallows.
7. When wheat is intended to be sown after pease, the mamure which is usually applied to nolied summer-hallows, should be reserved for the pea crop, and shonid be spreation the ground in autumn, at the rate of about ten tons per acre, and should be plonghed in to the depth of, at least, nine inches, - the land should be made into six yard ridges, and completely cross-firrowed, so that the ground would be dry in the spring, at the earliest possible period.
8. The seed of some short-vined variety should be sown at the rate of three bushels per acre, ploughed in very lightly, harrowed and rolled, as recommended in the foregoing remarks. "If the crop be large, say to the extent that the cultivator has been in the habit of making his naked summer-fallow, it might be haryested
with a horse and rake, similar to the plan usually practised in collecting hay with a horse.
9. One man will pull four acresper day with all ease ; although a portion of the crop might be thus left on the ground, still a provident cultivator would sulfer no loss by this means, as his stock of fattening and store swine woud gather them ofl the ground in time for sowing wheat.
10. In ploughing the ground for wheat, it should be done to the fill depth that it was previously ploughed in the autumn, and the manure which had been ploughed to such a groat depth, will be in a proper state for imparting strength and vigour to the young wheat plants, without entailing the discase of rust, which is generally brought about by the plan usmally practis d in this country, of heavily dressing naked fallows with unfomented barn-yard manure.
11. If the furrow for wheat be ploughed to the full depth recommended, say nine inches, and the ground immediately harrowcd and ribbed, and the seed of an aproved variety be sown broadcast, at the rate of two bushels per acre, and harrowed in lengthwise singly, and the furrows and cross-furows be cleaned out with a plough to the full depth, -we would expect form such management amach greater crop, than from a maked lallow. Those of our renders who desire to grow an average crop of forly bushels per acre, throughout their cntire wheat crop, wothe do well to try the phan we have recommended, or some other equally as good, and in the spring of the year, top-dress the young plants with fresh house ashes, at the rate ofedght or ten bushels per acre, and wheh should be harrowed in with a pair of light seed larrows.
12. If the harrow teeth be very long, or are likely to injure the plants, fine bremehes of trees, or brush may be interwovel in the harrow. The object to be gatined by harrowing is, the pulverization of the crust that is formed on the surface, and this crast maty be as readily broken by harrowing the ground to the depth of two inches as four.
13. We do not wish it to be understood that we would prefer the culture of pease to that of clover, as a preparative crop for wheat, but at the same time we are persuaded, that it requires less care than the latter in the management, and may be on strong clay lands much more efficacious, especially as the clover ley system requires the greatest nicety in the laying down the land with seeds, and also, in the ploughing of the sward, and depositing the seed wheat.
14. It might, however, be observed, that so soon as the ridicu.
lois notion of naked fallows can be exploded, both the sowing of theat alter pease, and on clover ley, may be introduced on the same furm, without interfering with a judicious system of rotation, or a well grounded method of farm management.
15. For fear that it might be thought by some, that we were opposed to the plan of making naked summer-fallows in every instance, we would observe, that there are cases where the practice is absolutely necessary, -those cases, however, are rare.

## Section XI.

1. Celture of the Potatoe.-liy common consent the potato has been phaced at the head of all the edible roots, wherever it has been introduced, and the climate would admit of its cultivation. Originating from an obscure and worthless root among the Coriiileras ol' South America, in spite oi prejudice and opposition, it has spread with a rapidity unknown to any other vegetable, and is donbless destined to make the circuit of the globe, adding in an incalculable degree to the means of subsistence.
$\therefore$. There are few, if ayy, vegetables grown in the temperate zone that yield so great an amount of food per acere as the poato. Wheat, according to Sir H. Dayy, contains 550 parts ol mutritious matter in 1000 ; and the potato 950 ; but when it is romemberal that the yield of the potato, on an average, is from ten to lifteen times as muth per acre as whent, the advantage in fivor of the potato is manilest. Besides, such is the human organization that pure nutritive matter is injurious to its healthy functions, and the stomath requires to be more or less distendel with other matter before the excitement necessury to nutrition takes place.
2. We are, therclore, justifed in supposing that good potatocs used exclusively as an article of food, would be less injurious than pure wheat flour. Be this as it may, the potato in most civilized countries now ranks next as ath artiele of tood to the rice of the tropics; and the wheat and maize of the more temperate regions. To Europe is America indebted for the Gramine, and had we returned them nothing more than the potato and maize, the delt must have been considered as cancelled.
3. The potato is usually propagated by the tubers or roots, but new varicties are obtained or old ones that have partially degenerated restored, by cultivating them from seed. There are fow plants that show more decisively the improvement that may be made by cultivation than the potato.
4. In 1838, a quantity of the original roots were taken from South America to England, and carefully planted. The result
was a sinall inferior root, more resembling the ground nut than the potato, and not widely differing in appearance from those of the first year's growth from seeds.
5. There is an idea prevalent among many farmers that potatwes are mixed, or what by the breeder of animals would be called crossed, by having several kinds planted in the vicinity of each other. This is an erroneous opinion. The crossing takes place in the flowers or seeds and not in the roots; and hence there is the same uncertainty that the seeds of any given variety of this root will produce potatoes of the parent kind, that there is that the apple seeds will give apples like those from which they are taken, a thing of very rare ofcurrence.
6. Every firmer who has paid attention to the manner of growth in the potato, is aware that the tubers are not produced from the roots proper, these being, as in other plants, used solely for the purpose of nutrition, but on shoots thrown out above these, and nearer the sarface of the earth.
s. It was the opinion of Decandolle that by repeated coverings of the ston such shoots, and of courso potatoes. could be produced the whole length of the stalk, and some experiments that he made seemed to favor such a supposition ; still we must be permitted to say, that having in part repeated his experimonts, we have found nothing to justify the opinion that such a result would be effected by this treatinent of the stem.
7. The propricty of cutting the tubers or planting thom whole has been much discussed, and the multiture of experiments on record would seem to show by thoir conflicting results, that at least as much is depending on other circunstances, as on the root beirg phanted in a whole or cut state.
8. If an acre of ground be planted in hill or drills with whole potatoes, and another acre be plunted with sets or cuttings at equal distances with the other, the exporiments made by the London Horticultural Soc:ety would go to prove that tho acre planted with whole potatoes would yield the most, but not much, if any, more than the additional quantity of seed required in planting.
9. If whole potatoes are used, from twenty-live to thirty bushols will be needed ; if cut, not more than half that quantity will be required. In both cases, however, much will be depending on the size of the whole potatoes, and the number of eyes in those cut. The distance between the rows must be determined by the length of stem produced by the potato, and the several varieties vary much In this respect.
10. In cultivating the potato a climate rather cool and moist is
found most preferable to any other. Of course the root succeeds much better in the northern states and in these Provinces than in the southern parts of the United States. The potato will succeed well on almost any kind of land provided it is rich, and is not wet and clayey; but for this, as for most other crops, a friable loam of sufficient consistence to prevent drought will be found supe.ior to any other.
11. Swamps containing large quanties of vegetable matter, when sufficiontly drained, have produced great crops, and what in new countries is termed muck land, is also favomble to their growth. 'l'wo things in a potato soil seem to be indispensable ; it must be rich, or a crop cannot be expected ; and it must be sulficiently loose to allow the shoots that form the tubers to spreadand calarge frecly.
12. In Europe the British jslands are justly famed for their root culture, and the introduction of the potato into Ireland has enabled that country to double its population ; it it has not banished want and distress, these evils are not of as frequent recurrence now as formerir, notwithstading the increase of consumers. Cobbett, indeed, charged upon the potato all the evils of Ireland and Dr. Tissot has demonstrated to his own satisfaction, that no potato eating nation has ever produced a great man.
13. 'The greatest crop of potatoes on record are those grown by Gencral Barnum of Vermont, which reached from 1,500 to 1.800 bushels per acre; and he gives it as his obinion, that in it good soil, and with his mode of culture, from 800 to 1000 bushels per acre may be safely calculated upon.
14. 'The reports of the agricultural socicties of the Unitet States show that from 500 to 200 bushels per acer are not uncommon. Mr. Bache, of Wellsborough, Pa, in 18:39, raised 600 bushels to the nere, and the crop of Mr. Morris, of Cattarangus, N. Y.. iell but litlle short. 'Ihe average crop in this comntry cannot, we think. be estimated at more than from 175"to 250 bishels, the influence of the seasons being more felt on this crop tham many others.

1\%. The methots of planting are varions. General Barnum's mode, after a carcfil and thorough preparation of his land, is to plant in drills 22 inches apart, and the sets in the drills 10 inches from each other. 'The drills are kept clean, but the carth is hilled around the plants only once in the season; as he considers there is much danger of disturbing the young tubers by removing the arth, or causing the formation of new shoots for tubers by repeated hoeings or hillings.
18. The secret of his great crops appears to consist, in his bring.
ing rich fresh earths, the scraping of the ditches or streets, or earth from the barn-yard, or the mould deposited in swamps, and giving each hill a shovel full, as a top dressing. He does this with the aid of a horse and cart, the horse and the wheels passing between the rows.
19. We have seen very good potatocs grown by simply dropping the seed on a clean turf, and spreading over them a covering of straw six or cight inches in thickness. The straw must be ovenly phaced, and if moved by tho wind before it gets settled together, which it will soon do, it must be carefully replaced.
20. 'This covering of straw keops the surface moist, the grass cannot spring up, through it, and in the fall the potatoes are found on the surface of the turf, and perfectly clean when the straw is removed. The danger in this mode of planting would seem to lie in a dry season which is frequently fital to the crop; and a heavy crop is rarely in this way produced.
21. In the Montily Visitor, for February, 1840, is an account of an experiment with potatoes, which was eminenty successful, and descrving of notice. In the sprmg of 1839, Mr. Whitney, of Craftsfury, Vi., "broke up a piece of green sward, harrowed it thoroughly, carted upon it manure from the yard at the rate of 33 loads to the acre, cross ploughed it, harrowed it again, and planted it in the usual manner in hills.

22 . "At the proper plonghing between the rows, the piece was well hoed, and at the proper time was repeated. In the fall he dug from this piece at the rate of 300 bushels to the acre, which for this yoar, on account of the rust, was considered a good yield.
23. "By the side of this piece, on precisely the same quality of soil, manure was carted and spread at the rate of 32 loads to the acre ; the sward was then carefully furned over, and the furrows laid fiat with a roller. lietween every other furrow, where they came tingether, (that is between the first and second, and between the third and fourth, and so on) holes two fect apart were made with a sharpened stick, about three inches deep, large enough to receive the sced.
24. "Into each hole one piece of potatoe was put, and the holes filled up with mellow soil, even with the general surface of the field. There was no further labour bestowed upon the crop till the digging, when the quantity produced was a little over 400 bushels per acre. Although never hoed not a weed was seen in it. Before digging, the field had the appearance of having been well hoed, the potatoes having raised up the ground above them."
25. In all cases the value of the early potatoes is great; and
particularly so in the vicinity of citios, where a constant demand and ready market for such vegetables always exist. Experience has taught the growers of potatoes for the London market that ripe potatoos can be found from ten to tourteen days earlier in hills :und drills planted with sets from the top end (the one that has the most eyes) than in those planted from the root end of the tuber.
26. The Lancashire garteners therefore assort their sets, so as to have them ripen at the same time, and thus obtain roots for market soonce than they otherwise could do. It is probable that quite an mprovement might in this country be eflected in the same way.

## Seetion XIL.

1. Cemphe of Indan Coms.-Com requires a rich soil ; of good iepth, is the roots penetrate to consitiemble distances; ; dry, or at least free from all standing moisture; and kept clean and free from wechis hy freguent stirring with the hoe, or still better with the cultivather. Corn will not grow on wet land, or on suils where the sub-soil is so retentive as to retain stagnant water within reach of the roots.
$\therefore$. Such soils are of nocessity cold, and corn, the mative of a warm climate, is more retarded by cold and moisture in our country than by all other causes combined. In England com cannot be grown ; the low temperature of their summers compared with ours, thongh excellent for the wheat crop, is fatal to corn, which, thongh sometumes attempted there, rarely or never eaches perfect maturity.
2. Land, on which corn is to be grown, must be drained if too wet, and without this preparatory process, in ordinary seasons, corn nust prove a failure. Sume of the best crops of corn we have ever known, were grown on turi' or clover leys, well manured in the spring with stable manure, and then carefully and completely turned under a few days previons to planting.
3. If' coarse common barn-yardmanure is used, we have known it advantageously applied in the fall, the turf turned over and allowed to remain through the winter. In the spring it is rolled down, a light harrow applied, and a loose surface of earth is readily prepared for the corn, while the decomposed manure below is ready to afford the nourishment required by the young plant.
4. Whe efine manure is at hand, manuring in the hill may be advantageously adopted, and some of the great crops of the few past years have been produced in this way. For this purpose we have found the manure from the piggery fa- superior to any other,
the difference in a hot dry season in favor of this manure being equal to 20 or 30 per cent. Sheep manure is the next best, and for wheat crops, particularly spring wheats, we think it unrivalled.
5. Several kinds of corn have been introduced to the notice of the public within a few years, some of which are doubtless grent acquisitions to the farming public, while others require to be more fully tested before their adaptation to our latitude can be decided. As a general mule it may be remarked that corn is always improved by bringing the sead from the north, and that it deteriorates by introducing southern varieties.
6. The reason of this is perfectly obvious, nud exists in the nature of the plant itself. Nospecies of the Dent, or gourd seed corn, will be found to succeed well, north of the 40th degree of latitule. unless in some favored situation, while in a suitable climate those varieties are indispensable. Thus the Baden corn, though an excellent variety in a proper elimate, must in all the northern, and most of the middle states, give place to the earlier kinds, stuch as the Dution, red blaze, white flint, or early Canada corn.
7. In selecting a corn for seed in a district where it is sometimes liable to failure from early or late frosts, several things should be taken into consideration as desirable requisites. The first is, it should bo early, have a rapid growth, and arrive at metmrity with the least delay. Another requisite is that the cob should bo small, and the ear of good length; since if the cob is too large, it does not becomes an completely driad as not to endangor the corn by moulding when cribbed, and if tho cob is small and not long enough, there will not be a good crop, however mature it may be.
8. The Dutton corn is somewhat liable to the first objection, the small early varicties, some of them at least, to the last. 'To have a corn yield woll, the kernels should be large, close set, and the cob smatl. Some ears of corn have been noticed, from which the com shelled and poured into a paper envelope of the ear, would precisoly fill it. Such corn, when grown, cannot be otherwise than productive.
9. It is a giood plan to submit seed corn to some peparation that will give it vigor and quickness of growth at the outset, and aid as far as possible, in preventing the attacks of those insect enemies beneath, and the winged enemies above the surface, tw which experience shows it is exposed. A solution of saltpetre is good, and some propose that the solution be made inchamber lye, this producing, it is contended, as favorable an elfect on corn, as it is well known to lo on wheat.
10. Where there is any danger that the corn will be assailed by crows, tarring it is necessary, and it is perhaps productive of injury in no case. It is effected by wetting the corn in warm water and letting it drain, then turning a smatl quantity of corn, and stirring it until every kernel is conted with the tar. It is then dried with plaster for planting, and the addition of this latter article canms but be bendicial.
$1 \%$ ' 'here shombldways be as many as five or sis kemels of corn put in a hill, and hey should not be thrown in a cluster, but spread so as to allow room for growth without the stems crowding each other. When the corn is three or four melhes high, it sloonld be hoed, and all the stalks over four in mamber pulled ont, leaving of comse those having the hest and most vigorous growth.
11. Some prefer only thre stalks in a hill, and whrere the soil is not of the best puality. that number is sutheient. 'lhero is not sedel enough goncmally used in phanting and it is beiter to pull two or thece trom each hill, than to have a defeciency of stems in the field.
12. Corn shonld always receive two thorough dressings; tho ground well loosened and pulveri\%ed shomb be monterately rased armond the hills, and io the cultivator is athim time run throngh the rows before the corn is so large as to endager its breaking down, it would bo well.
13. In ordinary cases, whare the soil is oqual, the erop of com will always be in proportion to the completases of the alter culture. livery slight that it recoves in the spring. every wed that is allowed to remain to chose the com, will be folt in the fall when the corn isplaced in the halt bunct.
14. Well conducted experimems have shown beyond contradiction, that the common practice of topping com has a dircet tendency to decrease the grantity of the crop. Nllowing the ear to ripen without molestation produced as might be expected from the well understood law of nature in this respect, the best ard heaviest grain.
15. Cutting up by the bottom, and allowing the ears to ripen in stocks gives the next best grain for quality and quantity, ind bosides gives the best fodder, which, where corn is grown, is of no sraall consequence. If topped very enrly, the weight of the corn, and of comse the quantity, is greatly diminished ; if left till a later period the injury is less, but in all cases where experiments have been tried, the loss is sensible, and good policy demands that the practice should be abandoned.

## Section XIII.

1. Broomcors.-Of the genus sorghum (broom grass) there are fouror five species. Sorghum saccharatum is the broomeorn, abundantly cultivated in this country, both for the seed and for its large panicles, which are made into the brooms. The whole plant is sacelarine. Attempts have been made in France to extract sug:ar from it, but with little success.
2. The other species the the following : Sorghum dira, (or holeus dora, common Indian millet, a native of the Enst Indies, but cultivated in the sonth of Enrope, s. bicolor, or two colored Indimu millet, s. calffrorum, catfres Indian millet, and s. nigrum, conl-black Indian mithet.
3. Werhew of Planting-The broomeorn is planted in rows, about $2 \frac{1}{2}$ or 3 feet apart, so that a horso may pasi betwoen them with a phorgh, or cullivator, or harrow. The hills in each row are from 18 inches to: leet apmert, or farther, aceording to the quality of the soil. 'The quantity of sead to be planted is cstimated very diflerently by dilliment fermers-some say that hall a poek is enough per acre, while others plant half' abobel, and some a bushel, in order to anako it anre that the land shall be well stocked. The rulo with some is to cast a tea spoontin, or 30 or 40 seeds, in a hill ; the manure at the tume of planting should be put into the hill, and ofd manure or compost is proferred, its being most free from woms.
4. Cuitization-The broomeorn should be plonghed and hoed three times-the last timo when about three feet high, thourg seme hoe it when it is six leet high, and when they are concented by it as they are toiling in the fodd. The mamber of staths in a hill should be from seven in ten. If there are only five or six stalks, they will he larger and coaser; if there ne about eight, tho brush will be finer and more valuable. In the first looing, tho supernumerary stalks should be pmlled up.
5. Hatresting.-As the irost kifls the sead, the bromenorn is harvested at the semmencoment of the first frost. The fongstalks are bent down at two or two and a hall feet from the eround ; and by laying those oitwo rows across each other ohliquely, a kind of tablo is made by every two rows, with a passago ietween each table, for the convenience of harvesting.
6. After drying for a few days, the brush is cut, learing of the stalks from six to twelve inches. Tho longer it is cut, of course, the more it will weigh ; and, if the purchaser doos not olject, the benefit will accrue to the farmer. However, the dry stalks weigh
but little; if its weight is excessive, the purchnser sometimes roquires a deduction from the weight.
7. As it is cut, it is spread on the tables, still farther to dry. As it is carried inte the barn, some bind it in shenves: and this is a great convenience for the limther operation of extracting the seed. Uthers throw the brush int the cart or waggon. unbond.
8. Scraping.-The process of extracting the seed is called "seraping the brish." 'Two ironiorizontal serapersare prepar-ed-one moveable, to be elevated a little, so that a handial of brush may be introducal between them. 'The upper semper is then pressed down with one hand, and the brukh drawn through with the other, the seed being seraped ofi:
9. This is the old methinh. A newly invented seraper is super. soding tho old one. It is an upright instrument, of clatic wool or stecl, inserted in a hench of a convenient height for the opermtor. It is compmed of a midedle piece, immoveable, with two side pieces of the stme hoight, with tho ends turningout a litile, and made chaser or furthe: from the middle one hy wedges.
10. A pumtity of brosh is taken in the hand, and brought down upon the top of this instrument. As it is liseced down, and drawn towatd the body, it seprazites the elastie sticks from the contral piece, hut their elisticity presses suficienily on the brush, so that the seed is seraped of:
11. 'ihe adranage of this scraper is, that hoth hants may be applieal to the brush, instend of only one hand, as in the wher kind, and the elastic power of aitare is substituted bor the prosure of one of the hamis. The instrument also seems to double the seratping surface. It was invented it Hartiord.
12. Product.-A common crop is $\mathbf{3 0 0}$ to 200 pound par acre. There have been raised 1,000 and 1,100 pounds per ture, with 80 to 100 bughols of sed. 'The harge kimb grows cieven fee high.
13. Manufactire of broms.-Individuals tie up hroons with wire of twine. 'The expense is greate: for materats and labor when wire is used.
14. Wiscelluneous.--If the stalls are cat bothe the sed is ripe, they are better, stronger, nud moredurable, ihm if cat ather the seed is ripe. In this cese, the farmer wombld lise the vilum on the sead. He of course will not subnit to this losa, muless it is mado up to him be the incrensed price ol the brush.
15. The seot is used for feeling horses, cattio, and swino. It is gromed and mixed with Indian meal, and is regarded as excellent food-it weighs forty pounds a bushel.
16. The brush, when it is put in the barn, should be placed on
a scaffold, so as to be exposed to a circulation of the air, that it may dry, and not mould. For all the purposes of use, a brown made with twine is equal to ono made with wire ; and a man can make several more of them in a day.

## Secrion XIV.

1. Sflemtion and Chavge of Shem.-It is in opinion hed by mans, hat in calivating tarm crops, every thing depends on a change of seed; and that seed continually risen on the some firm or in the same resion of country, will constanty deteriorate, and thet it is this which readers a change necessary.
2. Others, on the convary, considor a change ats of no adamtage whatever, and maimain that by always selecting the best sectis trom among the bat erons, the seci, instent of deterimating, will acturaly beoumo jamovel in quality, even though thesecrups be ahbays faised on the sume farm. both of these opinions, Withont qualifiations, aro erroneons ; lat meder proper limitathons, they are broth to a certain ricgree strictly corroct.
3. A change ot scul, howerer, as it is mast comamoly prontived, is of lithe atventage and liopmently of nome whiteve:. I!hen the place fre wheln the sed is mocureh, resembln very notiry in suil and cimate then where it is sown, little bencht is derived from the ehange. Imace rlanges of short distances aro ummportiant. Thay shoula therofore on the contresy be mate from difionent comatrics, of from places so remote that tho divierence in dimate and scasion is considerable.
4. But a change morely, oven from differont conntries, is as likely foprove pegatal is otherwise, unless it is pertormed with judgrant and diseratmo. Hence, in obtaining sed from other phaces, the bmane slombl andentand the rativate of the effect prodnced by such at change, in order that he may be able to jucge whether he is likely to gain or lose by it. This we shall endeavor to explain.
5. As it genemal rule, when plants are removed from one chimate to another, they maturally tond to admpt themselves to the elimate to which they are romoved. Thus when plantsare removed from a cos climate to a warm one, they become larger and more luxuriant in growth; they do not so quickly advance to maturity, but contime growing longer through the season, as the seasons there are longer ; they produce a greater amount of leaves and stalks and less of seed.
6. On the other hand, when plants are removed from a warm elimate to a cool one, the reverse takes place ; they diminish in

Inxiriance of growth, their season of growing becomes shorter, and they produce a greater amount of seed. Hence, generally. when sed is the principal objeet of a crop, it is more adrantigeous to ohain the variety from a cooler climate. Indian corn, although suppred th he a tropical plant, produces the heaviest crops in the northern status.
7. Farmers, herefore, in the middle and sombarn states would probably find a groat advantane in procaring oceasiomally theio sead corn from the north. There mast however be a limit th this, as varioties fom cond commers may beso diminished in the grow th of sialk. as mot to produce even so grata quantity u"seod as might rewht fon the cultivation of larger phants.
$\because$ But when the growit of leares and stanes is the principal where, as in buder, it will wien be of use to menome the seed from warmer clamate, proviled the phatis are subirionly hand, and advane to proper maturty betore the senson is wer.
9. 'Lhe edo of climate is strikingly exemplifed in the case of Indath corn. In the West ladies the stalk semetines rises to the height os therty feat, but it produces only $n$ few grains at the bot ton of a spongy cob, and is eousidered as rough promender. In the southern paris of the United states, it rises fiffech fert hign, and produces about thirly bushels to the acere In the rich lams of lientucky and the midele stittes, it produces fifty or sivily busheis to the were.
10. Lint it is on!y in New Fork nad New England, where the staiks are but seven jeet high, that we humdred and fifty bushii; to the acre hare been obtained. Wheat does better in the northern and middle states, and in the Baltic regions of Eurne, than in ether the southern puats of Lurope or of America.
11. Wherecrops will unt deteriorate in dowable qualities by becoming adapted to the climate where they : growing, a contimued selection of the best seed will alway froduce certain improment. Even this deterioration may be tropuenty prevented by judicious selection. Thus, if we wish to preserve the quality of eaty maturity in corn, the seed of which has been ottainaf from the morth, we should always select for sced those ears which ripen first ; or if we would preserve the produriteness of the variety, we should sclect from those stalks which bear the greatest number of ears.
12. A want of selection of seed, has often led to the supposition that changes of seed from short distances, even in the same neigh. borhood, are of great use. Thus, a farmer who never takes any pains to get his sced wheat from the best part of the field, and who
never frees it from chess and cockle, finds a great advantage in obtaining fresh seed every year from a farmer five miles distint, who always keeps good and clean seed. He ascribes tho advantage to change, while in reality it is only to be attributed to selection. Many farmers always soll their best potatoes and plant the worst, and from this practice has arisen the opinion that the varieties degencrate and run out. Anopposito conrse would lead to a different conclusion.

## Section XV.

 ent s,eccies of mots for the support aml kistemanen of stock, the sugan beet secms destinal to become the most extmaively cultivabed thronghont Noth America. It is hiner grainal, sweter, more delieate and agreahle to tho tate than mangel wamen, at the same time it is mane mutritions, and gives as harge a yond, and is equatly thrity, hardy, and as susceprible of an extended cultivation in the varions latitudes.
$\therefore$. Fed raw, it is ireferen alke by the horse, the on, the cow. the sheep, and the hog, to creny other poot, with prophap the exeptionoftho paranp; and cooked, it is only inferion to the most farmacems kinds of the potato. It inakes the fincest of wool, the most juiey and delicate of ment, the largest yuntities and richest of milk and butier in winter, not interior to that produced from the sweetest pastures in summer.
:3. When not grown too harge, it also ranks high ansong the table edibles; and is permaps the most luscious and palatable of roots to the tiste of man. leing then the largest of yidhers, tho most certain of crops, the easicst handled. sncured, and fed, ond, above all, a great anclionar of the soil on whinh it is grown, we think we are not over sampune when we assert, that in a very few years its cultivation will become so extended, as to make it the largest and most valuable of our root productions, and that it will work out for Canadta even greater wealth and indepentence to the agriculturist than the growing of turnips has to Englanl.
4. Woil and its Preparations. - The best soil for the production of the sugar beet, is a decp, light, and moderately rich ham, resting on a clay subsoil, but very large crops have been taken from thin gravels and sands, and the hardest clay, but in these cases they had undergone a potato cropping, thereby manuring the preceding vear, and a slight covering of compost, ashes, plaster or lime, the spring they were planted in beets. A very rich soil, such as the deep alluvial bottoms of the west, is not so proper : the roots grow too large and rank in it, and are consequently coamer and

Less nutritious, and do not abound with near the saccharine matter that is found with those on poorer ground.
5. Plongh deop and roll and harrow tine, and have the ground in land, of ahont ane rod wide, with the limons between thom well hoce whe so as to deain the balline water all papecially ia the sub-

6. 'The isored and ofs Prepuration. -The white sillesimn sugne










 pant in this batitue: limether north or sonth, wis sourse later or carlior. *erarding to climate.
5. I'lantias-it can be sown hromleast like the turnip, but as weds are likity to spring up in most suik in l prevent its growth, and the labor if exterminang than mach grater in this way, it is preterable to sow in dribls. For this purpose, the driblbormw may he wed the same as in planting the ruta bagt, but the beet seed is man more diticult to deliver ernmly throngh a small aperturet han tho turnip is, and though I havo need a great varicty of barrows fir this purpose, thase bever ant hat sue that worked woll and romb be depended upon, capecially in terorins or heayy loamy sils.
 square, or a roum stick of the same dimmetre mation just its long as the lands are wide, fill this with ifon on wruken tecth in wodere shape, ass fir apret as you wish to have the rows, put a patir of this to this, and hitch on it stout man or stedy horse, ind once or twice going thronsh the land completely drills it from one to two inches deep. 'lhen bollow immediately with the seed, Arophing it by hand, or from a long necked botte, or tin cup with a hole in tha bottom, and a stick handle attached to it, shaking the cup or bottlo as you walk along, and following sharp with the eye to seu that the seetls are eveniy dropped.
10. Faithful children of ten years old can do this with more ease and facility than grown persons. As fast as dropped cover
with the hoe; in heavy soils nbout half to threc-fourths of an inch deep, in sand or light gravel twice this depth. The rows may be from one to three feet apart for a fied crop-two ani a half to three feet is the best. This distance enables one to we the cultivator for weeding, withuat danger of cutting or covering the plants by the dirt being thrown up as it passes through the row:. The product is not so great per ace from wide rows, but land being cheap and labor dear in Cimada, we must study to farilnate manual operations, at the sime time that we have some calculation for a good yield.
11. Four imuncis of seed per acre is generally consideredenough, but it is better to have a dozen extra phants to thin out, than to he obliged to trausphat one. 'Those transplanted do mot thrive hali as well as those that remain where they regetate ; besides, the labor of so doing is more expensive than extrat seed and time of thimning. I theretiore mem in sowing to have a good soed dropped as near as every two or three inches in the drills
12. Afler Ciulture-As soon as the weeds begin to apear, run the cultivator through the row and follow with the hoe. It is very essential that the ground be kept clear of weeds, especially tor the two first momithe, and three hoeings with the use of the cultivator is generally sulficient for the season. As the plants atiain a height of ahout three inches shey should be thimned to a distane of about four inches, leaving the strongest and heolthiest; then, during the season as they grow, gradually thin out the remainder, leaving the roots in the rows at bist about nine or ten inches apart.
13. If left too th ck, they shade and choke each other in growth, and the product is mot su great as when well thinned. 'These thinnings are valuable to foed to stock during the summer, and are frequently considered equal to lialf the expense of cultivation of the whole crop.
14. Harresting.-Chaptal decides that when the leaves begin to decay and turn yellow, it is the best time to gather the beets, for if longer than this in the ground the roots grow hard and strong, and do not yield so great a per cent ot sacchanine. This of comrse will take place earlier or later in different climates, and is undoubtedly as good a rule as can be given, it being adopted after a strict chemical analysis of the beet in its growth by that eminent agriculturist.
15. If the soil be light, as the roots generally grow so much out of the ground, they can be pulled up by taking hold of the tops wit' hand-but if more tenacious, the dung-fork is the best instrument that I know of for digging them up. Let part of the hands be at this operation and the other part follow with large knives or bill
an inch may be half to a cultiplants 'Ihe d being Io mathtion for (nough, in to be ive hali Irs, the time of dropped
ear, run It is very $y$ tor the tivator is a height of about II ing the aving the
growth, icse thin1 are freon of the
begin to ets, for if ong, and mirse will loubtedly ict chemculturist. out of the wit'
strument nds be at es or bill
hooks; taking up the root wich one hand, top off the lenves with the other, and toss the roots into smoll heaps to dry through the day, and if left out over night and there be danger of frost, let them be lightly covered over with leaves or straw ; a hard frost injures whe roots and makes them more liable to decay. They may then e etaken to a well ventilated cellar, or be pitted in henps of 100 to 200 bushets.
16. The beet is rather apt to heat and commence sprouting if ahrown into large heaps, or packed away in the cellar. If put in the latter pace, any other roots except the tarnip may be placed at the lottom, and the beets on the top, and if in pits the same roots or straw in the centre. Al! the beets then have a grod ventilation, and an opmortmity of throwing of the impure air ; and to faciliate this, atiter covering the heops with dirt, holes should be made avery few feet on the top of them, and wisps of straw be placed in ,uch holes.
17. Feeding.-'Throw them on to the ground floor, and take a hay knife or spade, and a man will slice up a buskel a minute suffisiently ine to prevent cattle choaking on them. The best way to sook them fir stuck is by steaming, but they cannot be kept so over two days in warm weather and a week in cold, without undergoing a fermentation, and losing the siccharine matter so grateful to the taste and so essential to nutriment.
18. Either raw or cooked, cattle frequently prefer them to meal or corn. Raw, I think them as nutritious as any root whatever, and as far as my limited experience extends, three bushels of beets with neat steck is equal to one of Indian meal. Hogs demand less bulk to fiat themselves than cattle, and perhaps their value to finem would be about as four to one.
19. :3rodect - Four hundred bushels is a fair yield in field culure, but sis and eight hundred per oere is about as common. The writer grew at the rate of 1,150 bushels to the acre the past year on a hard chy soil, and his average field product was about 600 bushels on the same soil. He has, hearid of 3,000 bashels being produced to the acre ou rich loams. Several of his roots the past season weiched 16 lbs each, and 10 lbs . is not unfrequent ; now admitting this last weight to each root, and that seven rows stood in the width of a rod, which would make them about two feet apart and the rorts one foot apart in the rows, and allow 60 lbs to the bushel, wo should have the enormous product of 3,000 bushels to the acre.
20. But roots so large are coarse, stringy and not unfrequently hollow and have much less saccharine in proportion to their bulk,
than smaller ones. Those of about 5 lbs weight are far superior; and these standing one foot apart in the rows and five rows in the width of a rod, making them about three feet apart, gives the large yield of 1,100 bushels per acre, which is quite as great as it is desirable to strive for, and upon the whole perhaps the most profitable.
21. I sce by most writers on beet cultivation, that the leaves are considered highly nutritious, and are recommended to be cut and fed to stock. I suspect that persons this writing had more theory than experience upon the subject, when they made such reconmendations. I have miversally fomm that they hadly scoured all kinds of anmanls, even when tiken up from green pasture to feed on thom, and if persisted in, ereated dimane. I have tried all sorts of wass to pervent their sconving, by salting the leaves and mixing thom with other fout, but the tenalt was the sume.
 chewing the botore, that the eflect on math wat the sums as on beasts. I kiw, fin better ase for them thom to be lent an tho ground to mptio ? ant assist in giving it lame for abober copp.
 crop, fas an so then com, on my of the smaller grains. 'I be estimatuld cu: : moducing it. ranges hom three of eight cents per

 roots lim this pupese, ats in selecting ammats to breed ionn, and
 and line true fom. Rosus weighing fond te six pemats and of
 long, anl s mothly and even!y tapering to a pelid without struggling bremehes, and of a creathy white color and smooth grain, are the mast ensmble.
24. "Like protuces lke," and with snch selections billowed up, the crop will som run evenly of the same shape and size is the roots lrom which the eect wats grown. Plant the seed lown, and in this laturde about the 1st of May, three berit apmet, and as the stalks grow, stake mumb them in a cires at tie a satl cord from stake to stake, for their support. Wien the seed biells easily, which, il planted in May, will be in September, is the fine togather it.
25. 'Two or three dozen roots will grow seed enough for acres, and at one-tenth the cost usually asked for it at the seed stores. When grown at home one knows what he gets, and as it comes te him abundantly and cheap, he can without grudging givo to his
neighbours, and thereby greatly promote the culture of this most valuable of roots.

## Section XVI.

1. Reta Baga, on Swedisi 'Turnip. - Bushel for bushel, we do not think the turnip is as valuable as the carrot, and it is hesides liable to the objection of giving an unpleasant flavour to the milk and butter of cows led upon it extensively, or mostly to the exelusion of other things: but the comparative case with which it can be cultivated; the certonty with which it is grown, when ordinary steps to ensure suceses are taken; the great product perisere ; and the undoulited value the root possesses as a food for almost athy, or indeed every kind of stock, give it it vilue, which entitles it the contidence and the cultivation of evers tamer.
2. The beat soil fin tho thrap is a rich deop loam inclining to
 routed plants, and in whels sals the turnip should never be sown. A clover by is agned propamaion for the zata baga, mat it rich,





B. Whane the land is mot in turi, and requives momping bion such a crop, ito bee way is to lay it out in tumons of the praper dise
 the mantice intenation the erob, Fis rpliting the ridges betwenn these timent: with the phogh, now one; wit! be limmet wer the manure, , m the this of whid, rhen slignty smonthet and levellet,

3. I imill is contain! y the mat rapmations and best way of sowing immip, amdrills ane to te had at most oi the eced stores for the rilling sum of three dallers, which will sore them in the best marner. But wiere a drill is not to bo hal, an active man will sma amd eave hadism acre in a day, by ham omly. Hore seed is used by the haml than thedrill ; and as it is not edmally distributer. Hephants aro notaluays foma at precisely the distances wanten, ith evk that may be remedied by transplating.
4. 'Iloey shombl be hoed and thimed as semen the their size will admit, and this hoeing shonld be repeated once, if not twiee, before the leaves spread so as to be injured by the operation. Like other crops, the turnip requires the soil to be kept loose and clean, and the size ol the roots is in a great measure determined by the treat. ment of the plant.
5. The ruta baga may be sown from the first of June to the middle of July ; but in our latitude, and with our climate, we are convinced by experience, that early is better than late sowing, and from the first to the fifteenth of June is better than a later period. Our summers, unlike those of England, are hot and dry, and the young plant, if sown here as late as here, is dried and parched before it gets root sufficient to enable it to withstand the heat. Besides, the turnip continues its growth longer than most plants, and hence a lengthened period is rather favorable to the crup than otherwise.
6. There is no cultivated root that can be gathered with as much rapidity, or preserved with more ease and certainty, than the ruta baga. Cellars are the best for keeping them, but they may be pitted in heaps of from twenty to filty bushels each, as potatoes frequently are, and they are less liable to injury when so stored, than that root. For a number of years, we have annually pitted more or less, sometimes to the amount of several hundred bushels, and have never experienced any loss worth mentooning.
7. Though adding a little to the labour, at the time of gathering, it is better to strike off the tap root as well as the top, since its hard fibrous texture renders it of little value, and the turnips pack more closely when freed from it. If pitted early, we have found it necessary to make a smnll opening at the crown of the heap, that the warm air generated may escape readily.
8. When the severe frosts ensue, the opening may be closed, though if neglected, the turnips are rarely injured in consequence. When taken out in the spring, as wanted, they are fresh and solid, and like the potato so kept, better than if deposited uncovered in the cellar.
9. All animals are fond of the turnip, or if disposed to reject it when first ofiered, soun learn to feed on it readily. Horses, cattle, sheep and swinc, have been fed on them; and so far as our own experience has gone, they have been equally acceptable and beneficial to each. We have repeatedly seen pigs accustomed to them, reject good sound corn for the turnip, when both were given at a time, and horses scem as much pleased with them as with oats.
10. No better apparatus for cutting them is required than a smooth floor, a good shovel, and a willing arm ; but for cattle, there is little necessity for cutting at all, as they will find their way into the interior of a plump ruta baga with as much certainty and as little difficulty as a Kentucky horse into a pumpkin. When fed to animals, it is a good plan to sprinkle salt over the pieces occasionally, or otherwise see that a supply is provided for the stock;
and for horses, cattle, or sheep, a small quantity of dry food, such as hay or cut straw, should be given with them, or placed within reach of the animals.
11. Last summer the drought was unfavorable to root crops generally; not more perhaps to the turnip thas tine potato, und we hope those who attempted the culture and failed then, will not be discounaged from a renewal of the effire this seasur. Considerable experience has convinced us that we have lew cops, as a whole, more certain or more valunble.
12. Since writing the above, we have had a lether from a gontleman in l'emsylvania, a most successful fanmer, and whe hay grown larger crops of turnips than almost any other person in this country, in which he says-" l have kept through this winter fiftysix head of grown cattle on the turnips I raised last season, with the addition of about twenty tons of has."
13. 'The tmrips alluded to were grown on than abes; and thongh a most extraordinary crop, (maty 1200 bashels to the acre, y yet the fact of so mant cattic bun....., and well fed from so smill a quantity of land, is masi chara mo eriduce of the ability to greatly increase the number of cand kap by our formers, by the introduction of the root culture. An os or cow will consume in five months not less than two tons of common hay, fed upon it exclusively. But allowing that the twenty tons would have kept fifteen head, there remains forty-one head of grown cattle, kept through the winter, on the product of three acres of land.
14. Fivery firmer can calculate for himself the number of acros of grass he must have mown, to have furnished hay for this forty head; not lessthan thirty or thirty-five certainly; as we think there are noro acres mown that do not come up to two tons per acre than there is that exceed that amount. Our wheat growers, who would like to keop more stock, without lessening their main crop, should consider this subject well.

## Section XVII.

1. Carrot.-Daucus.-This plant is said to be a native of Great Britain, whore it is still found growing wild. There are many varieties of the carrot; and the following are the finest sorts:-

Altingham, (a superior sort,)
Early horn,
Ciemer, (fine for the table,) Blood rel.
2. Soil.--The carrot requires a light, mollow soil, mixed with sand, and should be dug or trenched one or two spades deep, break. ing well all the lumpy parts, so as to form a porous bed, and an
even surface. The orange and red sorts, on account of their longer roots, require a soil proportionably deeper than the horn.
3. Secd estimate and Sowing.-The seeds have numerous forked hairs on their berders, by which they adhere together, and therefore should, previnusly to sowing, be rubbed between the hands, and mixed with dry sand, in order to seprarate them as mach as pussible. They are alson sery light, and therefore a calm lay must be chosen for sowing; mind ine seeds should be disseminated equally, and trod den in bunpo mking.
4. Prowim-dy manwing, if conveniont, the sed shmaldio proven,
 as it is mon linquemly bad than mot seede. Finfaba! ! Pect by


 drills, distan finn cend ahom froms to 10 inclu seand whin them to 3 incha liman man in the rews.









 On any y





 to an acer, 1 han the sech with the sand or memb, cheth or ten pounds than iwo i, intirls, and this in done abomt a formight or threes weri.n in on the time I intend sowing ; taking caro to have the heaps famerocy day, spriwking the outwide of thom with water each immontuming over, that every part of the sand heaps may be equally moist, and that vegetation may take place alike throughout.
8. I have great advantage in preparing the seed so long before hand; it is by this means in a state of forward vegetation, there-
fore lies but $n$ short time in the ground, and by quickly appearing above ground, is more able to contend with those numerous tribes of weeds in the soil, whose seeds are of quicker vegetation.
9. The quantity of seed when carrots raresown in rews, is two pounds per acre; and, for broat-cast sowing, ive pounds. The rows for the larger or proper field carmes, should be from 14 to 16 or 15 inches apart ; and the carms thinned in haring, to 3 or 4 inches aprat in the mons. 'The seed will he best when sown by hand, as thrif ampe does not well admit of their heing sown by machines.


















 cottle: if




 the land mulse. Emend ani hermw it tine; than, wim a horseplough, strike it into iwo-mat ridges, as near tognther ir iom back furrows will make them, mit if the wo lirst back limen, are nar. row, the nther two being dep, the ridge will be nealy to a point, and should be cighteen or twenty inches from the botom of the furrow, if it be well cleared omt.
13. To do which, make another bout in the furrow, if necessary. Then, with the head of a rake, strike off the crown of the ridge,

$$
\longrightarrow
$$

## IMAGE EVALUATION TEST TARGET (MT-3)



Photographic
Corporation

till it is three or four inches wide, e.nd with it or a hoe, open a drill in the usual manner. Sow the seed pretty thick, cover and press down a lit!le with a hoe or shovel. When the weeds appear, run a small plougn through the furrows. Hand weed the crop, and hoe the weeds from the sides of the ridge. The orange carrot is best.
14. In harvesting, a plough should be run near the side of the range of carrots, and as doep os posible. This loosens the dirt, and clears one side of the carrots zilmost entirely from the earth. The labowers them, whingreat facility, take them by their bops out of the bolls. and throw them into carts, with only an occasiumal use of the in..es whants which the plough has not lonsened.
15. I have no question that, conducted in this mode, a carrot crop may be inade more productive, and less expensive than the potato crop asually is. In sowing, I use a small hand-drill, which lays the seed with great regularity-a circumstance very important both to facilitate weeding and harvesting ; since, if the carrote stand straggling, and not in a line, the plough, wheu harvesting, leaves the more to be loosened by the hoe or fork.
16. Hores are remarkably fond of carrots, and it is even said, that when oats and carrots are given together, the horses leave the oats, and eat the carrots. The ordinary allowance is about forty or fifty pounds a day to each horse. Carrots, when mixed with chaff, that is, cut straw, and a little hay, without corn, keep horses in excelleat condition for performing all kinds of ordinary labour.
17. In comparing the carrot with the potato, an additional circumstance greatly in favor of the former is, that it does not require to be steamed or boiled, and it is not more difficult to wash than the potato. These and other circumstances considered, it appears to be the most valuable of all roots for working horses.
18. The use of the carrot in domestic economy is well known. Their prodnce of nutritive matter, as ascertained by Sir H. Davy, is ninety-eight parts in one thousand, of which three are starch, and ninety-five sugar. They are used in the dairy in winter and spring to give colour :and faviur to batter. In the distillery, owing to the great proportion of sugar in their composition, they yield more spirit than the potato; the usual quantity is twelve gallons per ton.They are excellent in soups, stews, and haricots, and boiled whole with sall i,eef.
19. The diseases of carrots are only such as are common to most plauts, such as mildew, insects, \&c. The mildew and worms at the root frequently injure crops, and are to be guarded against, as far as practicable, by proper choice, soil, season of sowing, and afterculture.

## Section XVIII.

1. Hemps.-The best soil for Hemp is a rich vegemble mond with a clay substratum, either fresh, or which his been long in pasture. Any stable or ordinary manure is goon, if it lee necessary to use any, which depends upon the degree of the terthy of th:e soil. Hemp exhaust very little, and I have known it cultivated for successive years in the same field without any diminution of the crop
2. The ground should be prepared exactly as you would make the best preparation for what. A bushel and a perk of seed, or, it the land $s$ uncommonly rich, a bushel and a hall; to the acre, should be sowed, broad cast, from the first to the with of hiy. All the plants, male and female, are gathered, by pulling or cutting close to the ground by a cuting knite resembling a rap howk, but shorter. 'I he plants intended to produce seed are sowed by themselves in drills, and cultivated with the plough and hoe, so ats to keep them clean.
3. The Crop Ilemp is pulled or cut (for there is not much difference between the two methods, although I prefer enting) about the 20th or 25 th of August ; and the proper time is indicated by the Hemp leaves turuing a little yellow, and the farina escaping when the stalks are agitated. When cut or pulled, the stalks are suffiered to remain on the ground a few days until they are cured, and it a rain falls on them so much the better, as it will render the separation of the leaves from the stalks easier.
4. After being cured, the hemp is tied up with a hemp stalk in small bundles, convenient to handle, and shocked in the fich. 'The best farmers, in a week or two afterwards, stack them on the field, throwing the tops inside and the roots outside. Late in November or in December the stacks are broken, and the Hemp, sproad down on the field, or on the sod, to ret. The length of time it should remain depends upon whether the season is wet or dry, but it will not be less than seven or eight weeks, and may be longer. It is spread as you would spread flax regularly, and avoiding its being tangled.
5. You cannot judge whether it is sufficiently retted or not but by taking up a handiul and ascertaining if the lint will separate easily. When sufficiently thus retted it is taken up, and again shocked, and broken out, in the months of February, March, April, \&c., as convenient, by a large hand brake. I task my hands 80 lbs. per day, and allow them a cent per lb. for every pound beyond that. I have known, in some instances, as much as 250 pounds per day broken out. As each handful is broken out, the shoes,
that is the little particles of the stalk which adhere to the lint, are carefully beaten off, so as to mako it clean, and the hemp is laid away, and at night tied up in a bale or balos, and carried to the Hemp house. All attempts to substitute horse, water or steam power for the hand brake, and there have been many, have hitherto failed.
6. The abwe method is what we call new retting. I have never tricd water retting. 'I his is effected by immarsing the homp stalks in bundes, in water, and keoping them under with weights. September is the best period, and standing betior than ranning water. The length of time may be a few days or more, acourding to the temperature oi the water. You judere, is in the ather mode, when it is sufficienty retted. The liomp monded to protuce soed is suffered to remain in the groumd matil the first light irost, is then cut, and alter a fow hays the sced ure throshed oat.
7. Flax. ... W'e hope our farmers will not negicet to sow flax, although conom is chetp, for there are many usen to which bax is applied where coton will not answer as a substitute. In the division of labor in thes comatry, there should always be provision made for omploying the temale part of overy tamily. If wo abadon household maniffactures, we phace our females in a dangerous situation. Every person out of tiseful employment is strictly dangerous to the communty.
8. Many of the follies and most of the crimes of the present day are the oflispring o jaloness, evon the monster, intemperance, is generally supposed to be a branch of that funily. Aslong as the present custom of our comntry prevails with regard to the division of labor, or so long as the males do all the out-ioor work, the task of the females cannot be considered over-budensome, if they continue the good old custom of household manufactures. We always believed the music of a spiming-wheel to be better adapted to a farmer's hou-- 'pin a piano, and the sound of a loom indicates more economy th, hat of a guitar.

## Sbetion MiX.

1. Cultivation of Grasses.-In the modern and improved system of husbandry, the cultivation of a farm may be considered under two heads; the grass and the arable land. The convertible system of husbandry, is where land is converted from tillage to grass, and then again from grass to tillage, and so on, alternately. The advantages to be derived from this practice, says a writer of authority (Sinclair,) cannot be too much dwelt on. By the grain crops, a sufficient quantity of straw is provided, partly to be used
as food, but principally to be employed as litter for cattle, while at the same time, a fair profit is to be derived from the grain.
2. By the grass and green crops, a number of domesticated animals are mantaind both in summer and winter; and when they are abundanty littered, as well as fed, a regular and sulif dent supply of valuarde manure is secored. Hence it is that alternate crops for the food of man, and of the inferior thimals, is in genernd indispensable ior the profitable production of both corn, and of animal tonal, on all suils susceptible of cultivation
3. Un the sulfect of cultivating the grasses, we stall take for our guide an anthority we have before acknowledged. Juige Puol has given a chissifiowtion of the grasses, the seers of which "an to procured in this comery, and pointel ont the snils on whin they respectively thrive. He divides them atollows:--1. Girasses best suited to arablo lands, and designed to alterate with grain and roots. 2 . 'lhose best adapted for hay nimadows; and 3. Grasses which are most profitably sown for peremiat pastures.
4. There are several descriptions of land, which are much more profitably employed in tillage than in grass, particularly those that are dry or light, and which have little tendency to produce good herbage. Yet constant eropping with grain would som exheust them of fertility, without an expense for manure which few can aflord. The system of introducng artificial or sown grasses after two, three, or four years tillage is happily calculated to avert the evil, and constitute the hasis of most of the late improvements in arable hustradry, as well as firm stock.
5. The grasses best calculated for this purpose, are red and white clovers, hacern, santoin and the orcharid, tall oat, timothe, and rye grasses. Clover is the primary dependence on all soils which will grow it, and particularly where gypsum can exercise its ןowers. As vegetables are said to exhaust the soil, 10 proportion to the smallness of their leavos, clovers are entitled to the high commendation they have obtained among Canadian firmers. But as these plants are liable to premature destruction by the frosts of winter, it is prudent and wise to intermix with their seeds, those of some other guass more to be depended on.
6. On sunds, light loams, and gravels, (and these constitute the soils usually employed in convertible husbandry, ) the orchard grass, or tall meadow oat grass, appear best calculated for this purpose. They grow early, delight in a clover soil, and are fit for the scytho when clover is in bloom, the period at which it ought to be made into hay. The hay from this mixture, may be made before the
harvest comonences ; and if the soil is good, a second crop may be cut alruses, equal to the first.
7. Wi intended for pasture the second or third year, either of theso grasses will afford more abundant herbage than timothy. Iucern may be sown on deep sand loams ; and sanfoim on dry soils, naturally calcareons, or on those which have been renderet soby marl or lime. On cluzs, and heany loams, timothy may be sown alone, or those grasses named in the preceding paragraph, sepatateor mixod.
8. On wet soi/s, and rechained swamps, as the only olject of tillage ought to be to prepare the ground to be laid down in grass, the kinds indicated in the proceding rematks as sutable for such soils, and intended for meadow grasses, should be selected; yet su scanty is our assortment that we can only name timothy and herdsgrass.
9. Meainus. -These may be classed under three heads, viz :low, or alluvial lands, on the banks of rivers, creeks, and brooks; upland, naturally moist, or of clay, or heavy loam ; and reclamed bogs and swamps. 'These soils, to adopt a common term, are ratural to grasses, while the expense of tillage, and the uncertainty of a crop, render it most proper to appropriate them to grass. The objects in stocking meadows, are, to select those grasses which yield the greatest burthen of hay, and afford the most mutziment for callle.
10. When mixed seeds are employed, care should be taken to select those which can be most profitably cut at the same time ; the impropriety of mixing timothy and orchard grass, for instance, will be apparent, from observing that the last should be cut in the latter end of June, while the former continues to improve till the last of July. Timothy is undoubtedly the best grass which can be employed for meidows on moist or tenacious soils. Herdsgrass an rough stalked meadow grass, often come in spontaneously. Andi if the timothy is left standing until it is ripe, seeds enough fall to supply new plants.
11. For light loams, sands and gravels, the tall oat and orchard grasses are probably the best, and to these may be added, red and white clover. 'The great dficulty is, to provent the detenioration of meadows. This takes place from the better grasses running out, and giving place to coarser kinds, to moss, and to useless and noxious plants, aided often by a neglect to keep them well drained. The finer and most nutritious kinds thrive well in moist, though but few will live in wet soils.
12. It is therefore of the first importance, to keep the surface soil free from standing water, by good and sufficient drains; and
aten becomes nccessary to lay the land in narrow ringes, at right angles with the ditches. Another grecaution to be observorl is, not to depasture them with heavy cattle when the groum is wet turl pachy.

1:\%. Harrowing in the Eall, has been foum beneficial to mondows. in Eurone, top dresings of lime, merl, compost, anhes, and yardmoner, are repenten at intervals of two or :hrees years With ns, the ammal appijcation of a bushel of phester of Paris, is found bencticial on mot lams not abshlueg wet. Stable manme should be aphted ondy when it can he spared from tho more prom fitable uses of tillage, and is far more benchem mixed with the wht than sprenturn ins sambe.

1t. .ts most cenomical application is in the form of eomposth made by mixines it with beg earth, river send, the wash from the highmiss, or wher rich enth, at the me of one load of dang to fise or six of enath. If turned and mixed woll, this constithes a valuathe top-dressine lor grass grounds, and is best applied in the nutum. When these means fail to insure a geod crop of hay, it is time to resort to the plough, a colarse of crops, and reseeding.
15. The mmber of grasses is very great. It is said that 215 properly sochatare capable of being cultivated in (ireat litiain. Judge Buel has given an account ol twenty-five, foreign and domestic, and eslubited in a tabular vew their comparative value, as indicated by their produce, and the quantity of matritive matter which they severally ationd, together with the time of their flowering and secding.
16. Another paper in the Memoirs, by S. DeWitt, Esq, sqys : In laying down grounds for pasture lands, the English seieet the seeds of such grasses as will come to maturity in succession ; tut I think they cary this scheme to excess, and that there is no necessity for a mixture of such a variety of seeds to be used for there purjoses. Lis our country, the most estcemed grasies are, white and red elover, timothy, or herdsgrass, the red top, and foul meadow.
17. With these some other indigenous grusses intermix, the merits of which deserve to be investigited. Uur best grissas for meadows, are unquestionably the timothy, the red top, and the foul meadow. The merits of this last are not generally known. 'There can be no better hay than that which is made from it. On a rich moist soil, it will grow uncommonly dense, and I should thint, would yield as much from an acre, as any other of tho beat entivatod grassas.

## Section XIX.

1. Sowing of Graps Sfeds.--Such Farmers and planters as may not put in their grass seeds in auturm should do so as soon as tho frost is out of the ground. For clover, there is but one opinion tus to the superiority of spring sowing, ant although many give the preference to sowing timothy soed in August, still there are thoso whome opinions are worthy of consideration, that adrocate the practice of setting it in spring on the growing wheat or rye: so also, indoed, with respect to almost every other of the artificial grasses.
:2. If you intend to sow chover sced alone on your grain fields, you should not think of seeding less than from twelvo to sisteen pounds to the acre. I'mothy, if sown alone, should be in the pror portion of from two to two and a half gallons of seed to the ners Bye Grass, alone, two bushels to tho acre. If C'lover and 'imothy bo sown togrother, from ten to twolve pounds of the former seed and a peck of the lattor would not be found too much.
B. It you purpose carrying your misture still further, sow ten pounds of clover sed, six quarts of timothy, and haif a bushel of liords grass to the atere,-or, of clover cight pomens, orchard grass one bushel, tall medow oat one bishel, and herdsgrass half a bushel. In Europe the following is in many districts a popular misture, two lowsiols of rige grass ieed, and from twelve to twenty pounds of clover seed to the acre. It is usual to sow the orchard and tall moadow oat in early autumn, but there is no question that ther would succeed in spring. 'The orchard grass should be moistened with water and permitted to remain so for a day before sowing.
2. Whatever grass seeds you sow on your winter grain, be sure to pass a light harrow, and roller over them. You need not approhend any injury to your grain, for although some roots may be drugged out, you will be more than remunerated by the addition you will receive from the tillering of the branches of the plants which will be imbedded in the soil during the process. That the grass seed will derive advantage from being thus securcly placed bencath the soil, common sense and reason both concur in affirming.
3. They will be much more likely to escapo destruction from birds than if lelt upon tho surface; they will vegetate with greater certainty, and with being well fixed in the earth, their roots will bo much better able to withstand the droughts of summer and the frosts of winter. Wo need not say that the operations of harrowing and rolling should be performed when the ground is in a state to bear the treading of the horses without injury, as it will strike the intelligent reader that it done when the ground is wet, much injury will result to the grain.
4. Lsterne--Those who may feel dispoci io try their fortune with this valuable grass, can do so as sumb in the ernumd is reliovedfrom tho frostand dampess. It shund be oown on a dry rich soil, which had been previonsly well cleanol. from six:ucen to twanty quarts of sead should bo sown. It my bopmi in with the spring
 times of a season.
5. He who sows scantily must eapect to reap in a proportion ato degree, or to gather hore weats than hay. In every soll there are amplesupples ol the seed of every variety of wihl and novious horbage, and if these are not supplantod by a wholesome covering of artiticinl gresses, thay will incertably germinate, and show their postilent fronts io the anmogance of peoprotors, and the diseomfort of their stock : for the earth will be busy in despite of all the matwounent it receives at human hands.

## Section XXI.

1. Mowing.-They who have not beon in their youth necustomed to do this work, aro seldon found to bo able to do it with ease or expedition. But when the art is once learnt, it will not be lost. As this is one of the most laborions purts of tho husbundman's calling, und the more fatiguing as it must be performed in the hottest season of the year, every precaution ought to bo used which tends to lighten the labor.
2. To this it will conduce not a little, for tho mower to rise very early, and be at his work before the rising of the sun. He may easily perform half the usual day's wori before nine in the morning. His work will not only be made easier by the coolness of the morning air, witalso by the dew on the grass, which is cut the more easily for being wet.
3. By this ineans he may lio still and rest himself during all the hottest of the day, while others who began late are swnuing thenselves excessively, and harting their hoalth, probably, by taking down large draughts of cold arink to slake their ragiver thirst. 'The other half of his work may be performed after threz or four o'clock, and at night he will find himself free from fatigue. If the mower would husband his strength to advantage, he should take care to have his scythe, and all the apparatus for mowing, in the best order.
4. His seythe ought to be adapted to the surface on which he mows. If the surface be level and free from obstacles, the seythos may bo long and almost straight and he will perform his work with lese labor, and greatior expodition. But if the surlace be uarver,
cradley, or chequered with stones, or stumps of trees, his serthe must he siort and crooked. Otherwise he will be obligat to lése much of the grass uncut, or uso moro lator in cutiner ti.
5. A teng and straight seythe will only cut oll tho tops of the grass in hollows. A nower shombt not have a sho:ad that is ton slender ; for this will koep the seytho in at continnat trenar, fand do much to hinder its conting. Ho mutsere that it kepp pereevily
 to nise the man villanco at every stroke. Hany worry thensolvan neadessly by matemang to this circunstance.
(6. Nowing whith a company onght to bo avoided liy those who are not very miong, with we litle usd to the bainess, or who bave not their tom in the best order. Yount buls, who are anditions to be thonghingod mowers, often fimi thensistes much hant by mowng in compary. Rowers should not follow too clowely ater cond uther. the this has beon the acerasion on batal wond Ant when tho danderons tool is carrich from phace to place, it should he hound up with a rope of grass, or otherwiso carefilly secured.
6. Hey-whimg.-The first thing to bo considered thbout haymaking is the time of cutting tho grass. It should not be cut tio asely, or before it has got its growth, for this will ceuse it to shrink ton mush in drying On the contrary, it should not stand too late, or till the sen be quite ripo. It is not only harder to cut, but the rpeness of the sced will cause it to shater out whiledrying, which will be a considerable lose, as tho seed is the most rich and nourishing patt ; and the soll will be the more oxhausted by nourishing the socd ifll it cumos to maturity, and the next succeeding crop will be the poorer.
7. There never can be any advantage in mowing lato unless it be thickening the grass roots by scattering sone of the seed where they were botior too thin. He that mows early has the advantage of longer days fur drying his hay ; and of shorter nights, when the dews are less detrimental to hay-making. But the famer wlo has many acres of the same kind of grass, cannot always expect to cut the wholo of it in exactly the right season. That he may approach as near to right as possible, he should cut the thickest grass Grst of all ; especially if it be in danger of lodging, or so thick that the lowest leaves perish, or the bottoms of the stalks turn yebluw.
8. The thinnest of his grass should be cut next, which is apt to we ripe soonest ; and last of all, the middling sized grass, or that which is on a medium between thick and thin. Where a second
crop is expected the same year, thick grass should be cut a little earlier, that the roots may not be injured so much as to prever.t their spedy recovery, by being covered too long by the first crop. Some regard should be had to the weather, when the time of cutting is in contemplation. 'lhose, especinlly, should regard it, who aro able to call in as mach assistume as theypleaso in hay-making.
9. (irans, which has not heen washed by main for scremaldays, has a kime of cum on it, which isknown to be a benefit to the hay ;
 pathe, rather than just after tho grass hats be n washed by min. As to the drying of hay, or themmer ot making it, I know theo we a variety of opinions. Tho right way is to do it in suchat manner that as much of the sap as possiblo may bo retained, and in the bost state that in possible. In this I stomat think all would nicree.
10. All persons will allow that too much drying is hurflul. It iscortainly a los to ruke it, or stir it at all, when it is sodry that the leaves will ermmble. And, doubless, as much of tho sap should bo rotained ass is consistent with its boing kept in frod order lire tovder, and for long koping. Some grases will ken, woll with less drying than is noedfal for others. The thometotand bent, as it is calleal, or red-thp grass, will do with less arying than some other grasses. It hat been mach practiced to put it up with so litthe drying that it heats in the mow to so greatia degrer, as to make it tum brown like nomeco ; and it is kown that cathe will cat it well, and thrivo on it.
11. But the mow will cortainiy sond out part of the virtue of the hay in stomas. I cannut but think that all grasses should be so much dried, that the mows and stacks, though they have a degree of hert, should int emit any sonsible stemn ; and I would not wish to have hay made brown by mow buming. It surely does not appear to so good arimatrge at market. Were it not for the labor and cost, a goot way of hay-making would be, for the haymakers to follow at tho heels of themowers, at least as soon as the dew is oli, and spread the swa ths evonly.
12. 'Turn the grass about the middle of the same day, make it up into coeks bedore night ; neen the hay and tarn it tho noxt day ; and so on till it be sufficionuly dried, doubling the cocks if signs of rain appear. It will not commonly take more than two or three days to dry it unless it be very groen, or uncommonly thick and rank. A person who has but little hay to mako, neod not bo much blamed, if he do it in this way; especially if the weather do not appear to be settled.
13. Tho practico of tho best English, Flemish, and French farmors, is to exposo the hay as litule as possible to the sun. It is earried in dry, but it preserves its green color; and you see hay two or three years ohl in their market, of so bright a green color, Ont we should scarcely conceive it to be cured,-yet they aro in the practico of presorving it fir years and value it more for its ago. If such a courso be best in climates so cool and elondy, how much more important would it te under our seorehing Summer suns.
14. But if tho weather bo misettled, of if showers be frequent, it may be better to aproad grass woll, as soon as it is mowed, stir at often, cock it the same day it is mowd, open it in the next hiir day when the dew is ofl; let it sweat a litte in cock, and house it as som as it is dry enongh. It will bear to be laid grecner on a scaffold, than in a ground mow ; and in a nurrow mow greoner than in a broad one. And that which is the least of all made, should be put on a scaffold.

## Section XXI.

1. Pasture.-It is an injury to pastures to turn in cattlo too early in the spring ; and most lurtiul to those lots in which the grass springs earlicst, as in those which tre low and wet, in which the grass comes forward soonest. The feet of the catte early in the spring destroy the young grass, and cut up the sward in such a mamer ns to produce a great amount of injury, without any benefit to the cattle, as the little food they can obtain from the grass just sprouting, sorves scarcely any other puipose than to cause them to scour.
2. The grass in pastures should be so far grown before cattle are admitted, that they can fill themselves without rambling over the whole ground. The 20th of May is quite early enough in common seasons to turn cattle into almost any of the Canadian pastures. Out of some, they should be kept still later. The driest pastures should bo used first, though in them the grass is shortest, that the breaking of the sward by the cattle's feet may not take placo to any great extent.
3. It is recommended not to turn all sorts of cattle into pastures at once. Milch cows, working oxen and latting beasts should be indulged with tho first feeding of a pasture; afterwards, sheep and horses may take their turn. When a lot is thus fed off, it should be shut up, and the dung which has been dropped sbould be beaten to pieces and well scattered. Afterwards a second lot may be opened and treated in the same manner, and so on ia rotation, from one inclosure to another, giving each inclosure some time
to rocruit ; taking carc, so fur as possible, to foed the driest pastures first, so that the sward may bo the less injured by the treading of the cattle.
4. Something consicierable is saved by letting different sorts of grazing animals tako their turn in a pasture. By this means nearly all the herbage will be eaten, much of which would o:herwise bo lost. Llorses will eat the leavings of horned cattle ; and sheop will eat some things which both the others leave.
5. If swine are turned into a pasture, they should have rings on their noses, untess it is anobject to employ those animals in rooting out brekes and other weeds which they consume for food. If they are allowed the first of the feed, they will defile the grass, no that the horses and cattle will reject it.
6. Let the stock of a farmer be greater or less, he should have at least four inclosures of pasturo land. One inclosure may feed two weeks, and being then shut up to grow, opon another. Jiach one will recruit well in six weeks, and each will have that time to recruit. But in the latter pat of October, the cattle may range through all the lots, maless somo one may become too wet and solt. In this case it ought to be shut up, and kept till leeding time the next year.
7. So diflerent is the appetite of difforent animals, that there is scarcely any plant which is not eaten by some, and rejected liy others. The following are said to be facts, which lave been ascertained in Holland :-When cight cows have been in a pasture and can no longer obtain nourishment, two horses will do very well there for some days, and when nothing is left for the horses, four shoep will live upon it ; this not only proceeds from their differing in the choice of plants, but from the formation of their mouths, which are not equally adapted to lay hold of the grass.
8. Although small pastures are recommended for pasturing noat cattle and horses, yet Mr. Loudon observes that "Large inclosures are in general best adapted for sheep. These animals are not only impatient of heat, and liable to be much injured by flies, in small pastures, often surrounded by trees and high hedges, but they are naturally, with the exception, perhaps, of the Leicester variety, much more restless and easily disturbed, than any other species of live stock."
9. 'Sheep,' says Lord Kaimes, 'love a wider range, and ought to have it, because they delight in short grass ; give them eighty or ninety acres, and any fence will keep them in ; confine them to a field of seven or eight acres, and it must be a very strong fence that keeps them in.' Though fields so large as 80 or 90 acres, can
be advisable only in hilly districts, yot the general rule is nevertheless consistent with experience.

## Section XXII.

1. Raising Serds.-Acting on the principle, that every farm should produce as far as possible all that is required for use upon it, we adviso farmers to pay more attention to raising seeds. There will always be some which it will be necessary perthaps to purchase, and there are many of which exchanges will produce a good eflect, but fir the greater part of the seeds wanted by the common farmer may be as well produced by himself, as by another. Some little care and attention is, however, necessary ; else, however good the sceds may be, so far as germination is concemed, the plants produced may not be of the kind desired or expected.
2. Nearly all are aware that when plants are so situated, that the pollen or fecundating dust of the blosson of one variety is conreyed to the flower of another varicty of the samo species, a cross will be the result, and the new vegetable or plant will bo a hybrid, having a misture of the qualities of both, perhaps, but unlike either. It is owing to this casily understool cause, that the secds of the npple, peach, cherry, potato, and other fruits and plants so rarely produce trees or plants like the original ones.
3. It is this disposition to mix which is to be guarded against, and a few simple rules will enable any farmer to do so ellectually. Beets are a plant frequently injured by planting difierent kinds for seed near each other. Thus, the red and white will produce plants neither red nor white, and frequently of an inferior quality. Radishes of different kinds should nover be phanted near each othor, when intended for seed. Nothing shows the effeet of ' amalgmation' quicker, than the planting of squashos and pumpkins near each other.
4. The squashes will be mis-shapen and watery, and the pumpkins warty and hard-skimed, and destitute of the swectness belonging to the pure article. Nearly the same deteriorating results ensuc from planting gourds in the vicinity of squashes. The shell of tho gourd is injured, and the squashes; are rendered bitter and unpalatable. Corn of the several kinds cannot be preserved in purity, if planted where the dust of the blossums of one kind come in contact readily with the silks of another.
5. Cabbages of different varieties are very sure to cros.s with each other when planted together, producing plants like neither of the original kinds. One of the most serious injuries resulting from this tendency, is found to arise when cabbages and turnips intended
for seed are planted near each other. The cabbnges produced from suc! seed will not head well ; and the turnips, instead of fine round bulbs with small tults of leaves, will be surmounted with a cabbage-like stem, an immense quantity of leaves, and the roots themsclves will be more or less tough and woody in their structure.
6. Potatoes of several kinds may be planted withimpunity near each other, as they are not usually grown from the seeds, but almost always from the tubers, and these are not aflected by the fecundating process. We not unfrequently hear complaints from farmers and others ahout their seed changing into a different and a worse kind. By a litto atention to the above suggestions, this dilliculty might be aroided, and good seeds grown by every one. The most periect plants should always be eclected for planting out for sead ; and where this is done, and a mixture with other kinds is avoided, a change for the worse need not be licared.

## CHAPTER IV.

## Siction I.

1. Honses.-By the general consent of mankind it seems to be agreed that the horse is the most noble, usefil, and beautiful of animals. Kind docile, and even affectionste in their dispositions, there is no animal, the dog perhaps excepted, that is so closely attached to his master, and appears so well to understand even his wishes, as the horse. We never felt disposed to blame or ridicule the expressions of fondness an Arab will bestow upon his favorite mare ; one that has been an inmate of histent, as it were, for perhaps twenty or thirty years ; one that has carricd him safe through all his exploits of thie ving and robbing without faltering or stumbling; che that knows his voice among a thousand, and in any sithation will coms at his bidding, always moeting gracefully his caresses, or bearing him of in flight proudy and safely.
2. A man who loves a good liorse, and who docs not? has his feelingssadly trie iby the droves of "rillainous., spavinet, foundered, narraganset pacers" or trotters, that he is compelled to mect, let him go where he will ; animals utterly worthless, except perhaps to drag a plough or a waggon about the farm for a few days in a year, and the remainder of the time a dead weight upon the hands of tieowner. A good horse will always sell well. Perhaps there is, no species of property less liable to fluctuation or depreciation in value, than a good horse.
3. But what in this respect are horses in general? Take one hundred of the first horses you meet on our farms, old and young
and what think you they would bring a head, if sold under the hammar for cash ? and they will bring cash in no other way. Ten, fifteen, or twenty dollars on an average, perhaps ; and yet those scape-goats have cost their owners, in rearing, nearly as much as borses that would average one hundred dollars each.
4. The plain truth is, we have too many horses by one-third, and those we have aro too poor by one-half ; and when we undertake to make sales of them we find such to be the fact. Such horses run the farmer in debt; they do not pay the expense of raising, or any thing near it, and the sooner this truth is realized, the better for all. Now let no farmer who is burdened with old or worthless horses say to himself on reading this-" It is true 1 have more horses than I want, or than is profitable to keep over the winter, and I must get rid of two or three of the oldest.
5. 'There are neighbors $A$ and $B$, they have no horses, and they sometimes come to me for one; to prevent lending then one fit for service I will give old Spitfre to $\Lambda$ and Herod to B." If a man has a particle of honor in his constitution, or carries such a thing as a conscience in his bosom, he will go to his neighbor and steal from him his last ten dollars, his only bushel of whent, or his children's loaf of bread, before he will inflict upon him such a curse as the gift of an old horse.
6. We know there are multitudes of poor men, who can with great difficulty provide bread, who have a great penchant for a horse, and will accept of one as old and helpless as their grand father, to keep the breath of life in it through the winter, when they should be better employed, and finally before spring comes be obliged to consign the animal to the crows. If you have an old horse who is past service, the good he has done you deserves a better recompense than the tender mercies of a drunken raggamuffin, or the starvation of a man's lot.
7. Kill him, but do not give him away to be abused or starved. Kill him and make a mound over him of lime, vegetable matter and earth, which will prevent all offensive smell, and furnish a few loads of the very best manure ; or cut him into small pieces and bury him in the ground where most wanted, certain that his flesh will produce an immediate, and his bones a lasting benefit to the soil. A pig is worth more to a poor man than a horse ; and a good cow is worth a dozen. Let every man who is tempted to obtain or keep superannuated horse flesh, remember this.

## Section II. <br> 1. Treatment of the Horse.-Horses in their natural stato

are by no means ferocious; they are only wild and fiery ; and it may be added with equal truth, that they are not naturally vicious; for their ill tempers, as well as manners, originate generally from defective eductition, and rough handling. Harsh usage and punishment are of no avail as corrections; for, under cruel discipline the horse becomes more obstinate, morose, and irritable, and is very soon rendered dangerous of approach.
2. If, on the contrary, you uso him kindy, and he finds that instead of a tyrant, he has a friend about him, he will be under your hands as tractabic as a lanb; in fact so subservient that you may do any thing with him-for it is woll known to tho-e acquainted with the nature of the horse, that no animal is more susceptible of soothing, nor more docile and grateful for gentle usage, as he invariably evinces cheerluiness on the approach of the person from Whom he receives kind treatment.
3. An occupation for which I have always felt a peculiar partiality, has been, the study of the temper and disposition of the horse ; and, from the observations I have in consequence made, am convinced, that a mutiplicity of errors are committed from ignorance of his true character in the rearing and tuition of that noble animal, which afterwards fall heavily and very unjustly on him.
4. Many horses have been intrusted to my care for correction, under the supposition that they were bad tempered, or viciously dig posed, which, in other hands, would, without doubt, have been acted upon accordingly, i. e. rendered more faulty by harsh procceding. On acquaintance with them, I generally found the poor animals to be only nervous and irritable from ill treatment, rather than vicious by nature ; in short, 'more sinned against than sinning ;' for ao sooner had I gained their confidence, than the tremulous awe and timidity they evinced on being approached disappeared.
5. After a short trial, I have returned them to their owners, divested of the alledged complaints, with this simple injunction, or something tantamount to it, 'Use him kindly, for vicious conduct makes vicious horses;' at the same time urging them to bear in mind, 'that the horse is naturally of a gentle disposition, and much disposed to associate with man.'
6. This may be exemplified by any gentleman recollecting the pleasure a horse seems to feel when noticed and caressed by himgelf; yet, on scrutiny, the same demonstrations of joy will not cake place on the approach of theattendant. Education generally emparts humanity and feeling to its possessor ; and a gentleman enjoying these qualities more eminently than his domestics, the

## mimal's discrimination causes him to recognize a difference in the behavior of each towards him.

7. Grooms are too prone to be harsh and hasty towards the horse ; whereas, if they would only study to make a pleasure of their duty, they would considerably abbreviate the routine oi their labor. In consequence of crroneous conduct, horses will oc ansionolly acquire a character for viciousness among stable men, which cannot be sulstantiated on reasomable grounds, the presence "f the awner being frequently a complete refutation of the assertion.
8. Horses usually evince attachment towards thase who use them kindly. His late majesty, Gcorge Ill., had a favorite charger namod Adonis. Whenever the king, on visiting his stables, chanced to pass near conogh for Adonis to hear his voice, the animal would commence whining with joy, and his recognition of his master was always accompanied with so much noise, that, to quiet him, his majcsty would invariably command him to bo saddled and led forth. Having rodo him for a fow tninutes round tho premises the gratified animal would return to his quarters; but had the king not humored his wish, the animel would have become uproarious.
9. 'Till within a very short period, I was not aware any person had publicly treated on the subject of hamanity to horses with the same views entertained by myself; but I perceive with pleasure, in a review of a work printed on the continent, that the nuthor justifies my opinion, and corroboratcs the truth of my remarks. One extract I have preserved, which I cannot do better than quote.
10. It is justly asserted, in the best works of rural economy and the veterinary art, that no horses are nalurally vicious. When they become vicious, the reason is, because wo pay too litile attention to the horse. In a word, we know how to make ourselves intelligible to the hosse. It seems truly astonishing, that horses in general are not more obstmate ; and that, in the consciousness of their strength, they do not strive more to rid themselves of their shavery, when we consider how severely, cruclly, and barbarously these gencrous bensts are treated.
11. How often are they beaten and ill used, frequently withont any cause! and how seldom, on the other hand, are they addressed in terms of commendation and encouragement, and still less rewarded! and yet attentive observers have ascertained, that tho horse, like the clephant and dog, possessess a sensibility of nerves which might be termed a sense of honor, and which is equally susceptible of praise and blame.
12. Vicious habits may likewise be ascribed to innerfect traibs ing. For instance ; a horse is entrusted for that purpose to a pes
son totally unacquainted with the manner of treating lim, consequently incapable of judging whether the horse be qualified by nature to fulil the intentions of the owner. The age and strength uf the aminal have not been taken into consideration ; and his incapacity to undergo the fatigue allotted to him, although proceeding from weatness, has very incorrectly beon aseribed to stubbornness and oustinacy. 'i'o resistance, as maty be expected, harsher usage has followed; the temper of the animal has become soured; and he has reatly imbibed a vicious character, which at the outset, was only imaginary.
13. The result has heon open warfare botween him and his rider, in which the latter seldom gained the asemtancy; and the former has never been duly trained for the pirpose for which he was deatincd ; inded he has frequently been rendered quite unserviceable and become afterwards a drug in the market, though nature hod intended him to be useful in many capacities ; which under judicious management, would doubtless have been reakized.
14. For a long series of years 1 have been in the habit of marking observations on the errors commitied in the usual treatment and training of horses ; and I an convinced, from expernence deduced by long study of the nature of horses, and contintal intercourse with them, that mild discipline is the sine qua non of stable management, and it is the interest of every proprictor to see it euforced. Horses have very retentive memories, and seldom forget the unruly tricks or habits acquired from improper and hasty management.

## Section III.

1. Colour of the Morse.-As almost every man has some farorite colour fir his horses, and tastes are various as individuals, the colour of this animal would be of comparatively little consoquence, were it not indicative of the breeding and blood, and of course, in a great measure, of constitution and temper. It has been suid that a good horse could not be of a bad colour ; and in many respects the position is true; still, for the reasons given, there are some colours which experience shows should be preferred.
2. Fashions, however, are mutable, and in no respect are they loss permanent than in the colour of horses. The colour of his hair, and that of the skin, is depending on the mucous tissue or network immediately beneath the cuticle, the outer or scarfskin being colour less, and only serving to protect the true skin and its appendages from friction or injury. The pure white horse is a very rare and mal, the majority of those that appear so having once been grey, and growing white after reaching the age of four or five years
3. Among the Arabians, a pure white mare is considered almost priceless ; as in that case the purity of her blood, and her direat descent from the colebrated steed of the prophet cannot be cioubted 'Those of the best blood, are not large, but benutiful in the extrome, and as gentle and docile as lambs. Introduced into Europe, they have proved of grood constitutions, littlo subject to discase, not of the flectest kind or the greatest endurance, but excellent for light carriages or the sadde.
4. Girey horses can be fuund of every shade from the lightest mixture, or silver groy, to the dark aron grey. The lightest groys show the most clearly their blood of the Arab or barb; are mrety beavy horses, thit well built, rount bodied, and like those from which they orignated, better for thesaddle than the haruess. The mixture of blood does not, however, appear to have improved their temper, though it certainly has rendered them more hardy. The iron greys have still more endurance than light greys, and more than thoir genernl appearance would indicate, as there is in their build usually quite a departure from the round carcass and close knit frame of the procoding ones.
5. The most common defect in tho iron grey is found in the linbility of the feet to contraction, which sometimes, though not aways, renders them subject to lameness. The dappled grey is usually one of the grey horses, being better huilt than the iron grey, and capable of more endurance than the lighter kinds. For any purpose ; for the saddle or the carriage, the farm or the road, there are few bettor horses than can be found anong the dappled greya, and much pains have been taken to improve their blood. A dark dappled grey usually retains his colour in old age ; the lighter ones grow lighter as they become older.
6. The grey roquires to be thoroughly broken, and will bear less trifling with than most other horses; appearing to have a tinge of viciousness in his disposition, which, unless checked when young, is apt to become troublesome withage. Roan horses are such as have their hair composed of the white, bay or red, and the black; and it, of course, admits of a great variety of shades. In some roas horses the mixture appears to be a natural one, the hairs of the dif. ferent colours intermixed, while in other cases the bay or the blaok appears to havo been sprinkled over the others.
7. In such roans the individual hairs are frequently of more than one colour. Roans are generally pretty horses, good temper. ed, but are not remarkable for endurance. The strawberry roan is a mixture of sorrel with white, sometimes handsome, but not cersculated for hard labour or severe futigue. Pied borses are not 80
well liked as greys or roans, but when well matched, they sometimes appear woll as carriage horses.
8. Their value, of course, depends on their breed. The creamcoloured, or Hanoverian horse, is remarkable for the iris and red pupil of his oye, and is appropriated to the use of the royal family in England. Ho has a heavy, yet perfectly formed body, and is a superb awimal; but there is no experionce to show whether he would be valuable for any other than the light service assigned him.
9. The dun horse, especially of the larger size, is much esteemord in Eingland as a good farm or miller's horse, constitution ard temper good, lecding well, somewhat of adrone in his movements, of tolerable strength, and on the whole a useful horse. Some duns are shated or dappled with spots of a darker colour ; and these having better blood, and more action and life, are much sought atter as ladies' horses, being both beautiful and manageable. 'The chesnut horses are divided into three varicties; the lightest, or the sorrel, usually having more or less white on their faces or lego, and generally slenderly made.
10. They have, as a whole, little brecding, and are deficient in hardihood. The next varicty has less red and more bay or brown, and is preferred to the former ; but though pleasant to ride, is in the harness inclined to be fretful, and of slight endurance, compared with some other horses. The dark chesnut, is as different from the foregoing as possible; fine in the leg, round built, powerful in the harness, of an excellent constitution and endurance, little troubled with disease, uniess about the feet, but sometimes having a very fiery and intractable temper. 'This kind of horse is much esteemed as a carriage horse, and when woll broken, is one of the bast of horses on the furm.
11. Of all colours, however, the bay horse is the most generally and deservedly esteemed, and in their several varietics they include our best horses of every kind, carriage, road, farm, or turf. OP bays, the lightest coloured are considered the least valuable, show ing less breeding, and being loss hardy. The propor bay horsa, with no white about him, black from tho knoo and the hocks to the feet, the hoofs of a shining black, is the favorite colour, has generally a good constitution, rarely is affected with bad or tender hoofo, and if not faulty in other respects, will turn out a valuable horse for almost every purpose.
12. As the bay approaches the brown, there is usually less show and action, but increased strength and hardiness ; and for hard farm work, perhaps more usefulness. This class has usually more
s:bstanco than the lighter bays, and were the same pains taken in breeding, might be mate as handsome a horse, and fine ordinary purposes, more vainable. Brown is nota fashionable colour, and no horses, as a baly, have so thtle breeting ats these.
13. Uwing to the, they are compartively enarsanimals; and though there ato somb exceliont horses anong tho browns, as it whole, they are only coldented for slow work. Tha hack brown has beon more negiectet that the common brown, and in making chace of thom they requiro to ber examed elosely. some oi them have the constitution and grod quatities of the bay brown, and where this blood is fomm, fow hores are to be preterent.
14. The bhat horse has always been a great favorito, and with him nore pans hrve bea taken in breeding than with many others. The heay band Lincolnshine horse, principally used in London as a dray horse, is a moble animal in the hamess, and could he be rendered hore active, would be invaluable, where power and endir rance are required. With the exception of the best shade of bays, the biack honses, bext in size to tho Lincolnshire bred, constiute the best horses for the furmer, or the ordinary uses of the carriage or road.
15. The good qualities of these horses have been established by breeking; but of the other varieties of the black horse, there are multitudes of worthiess ones all over tha country. Owing to the conmon black horse being so often a poor creature, some have asserted that animals of this colour were more vicious, and more subject to disease and blindness than other horses.
16. Every worker, or breeder of horses, must be, howevor, aware, that all conclusions derived from the colour of a horse, are liable to bo overthrown by fact, so far as individuals are concernel; good horses boing found in all the classes enumorated; still, as a whole, there can be no doubt that colour forms no inconsiderable criterion by which to judge of the capabilities and value of the horse. With the exception of the pure white, the lighter shades of each variety appear to have less breeding, and be more liable to disoase, than the dirker ones.
17. 'They are also more tender, and not so capable of enduring fatigue, or hard labor, or usage. It may be remarked, that whito legs and white hoofs are always a suspicious sign, usually indicating a poor constitution, animals that aro tender-footed, or very liable to become so. Horses with white feet suffer more scratches or chapped skin, than horses with darker coloured feet or legs ; and a white nose will frequently have the white part a mere scab, from foeding among plants having acrid or irritating juices, such as tho

Johnswort, while the other parts remain perfectly smooth and boalthy.

## Section IV.

1. The Hacrney Horse is the horse of all-work, but in England is principally used for the saddle, and is much more difficult to meet with in porfection than even the hunter or courser. There are many faults can be overlooked in the hunter, which the road horse must not have. The hunter may start, may be awkward in his walk, or even in his trot; he may have thrushes or corns, and yet we may prize him; but the laickiney, if he be worth having, must have four good legs ; he must be sound on his feet, even tompered, no starter, quiet in whtever situation he may be placed, not hoavy in hand, and never disposed to sny his prayers.
2. The hackney should be : hunter in miniature, with these exceptions: His height should rarely exceed fifteen hamb and tom inch. Ho will be sumberntly strong and more pleasant for general work below that standard. He should be of a more compact form than the hunter, and more bulk according to height. It is of essential consequence that the bones beneath the knee should be deep and flat, aud the tendon not tied in. The pastern should to short, and obliquity enougi to give pleasant action, but not onough to render the horse incapable of hard work.
3. The foot is a matter of the ुㅏㅇatest consequence. It should be of a size corresponding with the bulk of the animal-neither too hollow nor too flat-open at the heels, and free from corns nad thrushes. 'The fore legs should be perfectly straight. The back bone should be straight and short, yet sufficiently long to leave comfortable room for the saddle bstween the shoulders and the huc: without pressing either. Some persons prefer a hollow backod horse. It is generally an easy one to ride. It will canter well with a lady, but it will not carry a heavy weight, or stand hard work.
4. The road-horse should be high in the fore-hend, round in the barrel, and deep in the chest ; the saddle will not then press tos) forward, but the girths will remain without crupper in their place. A hackney is far more valuable for the plensantness of his paces and his safety, good temper and endurance, than for his speed. We raroly want to go more than eight or ten miles in an hour, and on a journey not more than six or seven. The fast borses and especially the fast trotters, are not often easy in thoir paces, and although they may perform great feato, are disabled and .werthless when the siower horse is in liis prime.
5. If there is ono thing more than any other in which the poemessor, and, in his own estimntion at least, the tolerable judge of the horse, is in error, it is the action of the horse. Let him lift his legs well, it is snid, and he will never come down. In proportion, however, as he lifis his legs well, will bs the force with which the puts them down again-the jar and concussion to the rider, and the battering and wear and tear of the feet. A horse with too greas knee action will not always be spoedy; he will rarely bo pleasant, and he will not in the long run be safer than others.
6. It is a rule not ofins understood, and sometimes disputed, but which experience will iully confirm, that the salicty of the horwe depends a great deal more on the mannor in which he puts his feet down than on that in which ho lifts them up; more on the finot being placed at once flat on the ground or perhaps the heel coming first in contact with it, than on the highest and most splendid action.
7. When the toe touches tho ground first, it may be easily supposed that the horse will occasionally topple over. An unexpected dostacle will throw the centre of gravity forward, and down he will come. If the toe dig into the ground before the foot is firmly phaced, a little thing will cause a trip and a fell. Let the fromer who has a stumbler, look at the shoes of his horse. The toe of thes stioe will become rond before the hecl is scaredy touched.
8. Every horse is liable to tall, however, and theretore comes the goiden rule of riding. "never trust to your horse"-always feed his mouth lighty. Ha alen noes wrong wno constantly pulls might and main ; he wil' grain spoil his horse's mouth and givo himself tho arm-iche. Always fee'? the nonth lightly; you will thus be aide to give the animal immediate assistance, and will aloo induce him to carry his head well, than which, few things are more conducive to the beutilul, sala and easy going of the horse.

## Section V.

1. Tarf Farmer's Horse.--'The farmer's horse is also a horse ni all worl:; to be riden occasionally to market for pleasure, but ii) be principally employed for draught. He should be higher than the road-horse; about fifteen hands and two inches, may be taken. ne the best stindard. . A horse with a shoulder thicker, lower, ami less slauting than would be chosen in a hackney, will better suit the collar, and collar-work will be chiefly required of him.
2. A stout compact horse is preterable, yet not cloddy. Some blood will be desirable, but the half bred horse will generally suit the farmer's purpose bost. He shou.d have weight enough to throw
into the collar, and sufficient activity to get over the ground. Is bas often been said, that a horse used much for draught is neithor pleasant nor safo for the saddle. The common farmer does not want for his own use a showy, complete hackney.
3. He must, however, bo carofil that he is well carried : and if he has taken a little care in the choice of his horse; has selectod one with sound feet, shoulders not too thick, and legs not too much under him; and if he keeps him in good condition, and does not overwork him, the five days carting or ploughing will not unfit hira for the sadde, especially if the rider bear in mond the golden rule of horsemanship, "always to feel the mouth of the horse."
4. Since the introduction of the small one horse waggon, riding on horseback has been almost abantonod by our conntry people, and indeed by all classes, unless for pleasure a short distance. The gat of a larmer's horse is, therefore, not of so much importance as formerly. As so much of the farmer's work is waggoning, it Will be no disadvantage to him to keep the most improved.
5. Coazle ar Carriage Horse.-'There is a great. deal ot deception, bowever, even in the best of these. Many of them will pranee nobly through the strects and present a showy appearanco, but have not much ondurance. The knee action, and high lifing of the leot in the carriagehorse is deemed an excellonce, because it adds to the grandeur of his appearance; but, as already stated in a former soction, it is necessarily accompaniod by much wear and tear of the logs nud feet.
6. The principal points in the coach-horse are, substance well placel, a deep and well proportioned body, bone under the knee, and sound, open, tough feet. As the conelo or carritgz-horse is the one principally in use in this country, it is very dosirable that speerb should be with every breeder an espocial quality. 'The rage for mpid travelling is quite ay extensive in this country as in Europe, and it is therefore of muchimportance that our coach-horses should have as much natural speed as possible.
7. The following extract will bring to mind the cruel exactions which are made upon the power of coach-horsos as woll in this country as in England :-"There is no truth so easily proved or so painfully felt by the stage proprietors, as that it is the pace that kills. A borse at a dead pull, or at the beginning of his pull, is anabled by the forco of his museles, to thraw acertain weight inte the collar.
8. "If he walks four miles in the hour, some part of that masonlar energy must be expended in the act of walling, and consequently the power of drawing mast be proportionally diminished. If ba
trot eight miles in the hour, more power is expended in the troc, and less remains for the draught ; but the draught continues the same, and to enable him to accomplish his work, he must tax hie energies to a degree that is cruel in itself, and that must speedily wear him out.
9. "Let it be supposed, what every horse cannot accomplish, he shall be able, by fair exertion and without distress, to throw, at a dead pull, a weight into his collar, or exert a force equal to two hundred and sixteen pounds; or in other words, let him be able to draw a load which requires a force of two hundred and sixteen pounds to move. Let him next walk at the rate of four miles in an hour, what force will he then the able to employ?
10. "We have taken away some to assist in walking, and we have left him ouly ninety-six pounds, being not balf of that which to could exert when he began his pull. He shall quicken his pace six miles an hour ; more energy must be exerted to carry him over this additional ground. How much has he remaining to apply to the weight behind him? Only filty-four pounds. We will make the six miles an hour ten; for it seems now to be the fashion for tho fast coach to attempt this pace. How stands the account with tho poor beast? We have left himonly a force equal to thirty-tuo pounds to be employed for draught.
11. "The load which a horse can draw is alout fifteen timee greater than the power exerted, supposing the rond to be hard and level, and tho carriage to run with little friction ; and the horso which at starting can throw into the collar a weight or force equal to two hundred and sixteen pounds, will draw a load of three thotsand two hundred.
12. "Let him, however, be urged on at the rate of ten miles in the hour-deduct the power used in swiftness of paco from the stinn total of that which he possesses, and what remains? Not a sixth part-not that which is equal to a quarter of a ton; or if it be a stage coach, the energy exerted in draught by four horses will not be equal to $a$ ton.
13. "The coach and its passengers and its luggage weigh mose than this, and the whole is still drawn on, and must be so. Whence comes the power? From the overstrained exertion, the injury, the torture, the destruction of the horse. That which is true of the coach-horse is equally true of every other. Let each reader apply it to his own animal, and act as humanity and interest dictates.
14. "Many a horse used on our public roads is unable to throw ell his natural power or weight into the collar. He is tender footed
tame; but he is bought at a little price, and he is worked on the
brutal and abominable principle, that he may be 'whipped souncl.' At lirst, he sadly halts; but urged by torture of the lash, he nequires a peculiar hatite of going. The faulty limb appears to keep paco with tho others, but no stress or labor is thrown upon it, and he gradually contrives to make the sound limbs pertorm among them all the duties of the unsound one; and thus he is barbarously 'whipped solund.'
15. "Alier all, what has been done? Three legs are made to do that which was almost too hard for four. 'Thus they mast bo most injurionsly strained, and soon worn out, and tho gencral power of tho animal mast be rapidly oxhausted, and at bo great distance of tune, exhaustion and death releaso him from his merciless perнocuturs."

## Section VI.

1. Tur Drabari Horse. - It will readily be percojved that tho qualifications, structure and movements of a dranght-torse, must necossurily diller essentially from those of a race-horse, and indeed from every other. And y ${ }^{+}$the dranghthorse, for some purpose or other, is more constanty in demand than ail others, especially in our larger cities and along all our canals and rail-roads. It is thereiore of the greatest importance that an improved breed of large draught, as well as dray-horses, should be reared in our country.
2. To cxhibit fully the requisites of a furst rate dratighthorse, would require a more particular examination of the subject of "draught," and of the "anatomy" of the horse, than would be practicable at the present time. I will therefore, barely remark, that a " dray-horse should have n broad breast and thick upright shoulders, (the more upright the collar stands the better,) a low forehead, deep and round barrel, loins broad and high, ample quartors, thick fore arms and thighs, short legs, round hoofs, broad at the heels, and soles not too flat."
3. The horse which can throw the greatest weight into the collar, with sufficient activity to do it effectually, and with hardihood in proportion, will doubtless constitute the best draught-horse. But these are qualities difficult to combinc. An approximation to this standard can only be obtained by a judicious selection in the out-sei, and then by crossing with the best of such breeds as exhibit the requisite qualities. Generally, the greatest fault with large horses is their slowness, and in such cases it would be essential to cross with the strongest, the largest and most compact blood horses.
4. Or if you have a mare with some blood, and with decided marks of strength and pcwer, let her be covered by a superio:
dray-horse, and the result will probably be the animal you want. It is very necessary that dray-horses should be large as well as compact, that weight may be opposed to weight. Otherwise the immense loads they have often behind them, and the shaking amd battering of the thills, will so throw them from side to side as :o audanger their burdens or injure themselves.
5. And this is the only advantage in size and weight, for doubtless much of his firee must be expended in transporting his overgrown mass. In England they have crossed some of their best mative breeds with the heavy Flanders horso, and have thereby much improved their drught. These heavy horses are bred in the highest perfection as to size, in the fens of Lincolnshire, and few of there are less thanseventeen hands at two and a half years.
6. Neither the soil hor the produce of the soil is better than in other countios ; on the contrary, much of the lower part of Lincolnshire is a cold, hungry chay. The true explanation of the matter is, that there are certain situations better suited than others to different kinds of farming, and the breeding of difictent animals, and that not depending on richess of soil or pasture. 'ihe principal art of the farmer is, to find out what will best suit his soil and the proluce of $i t$.
7. Comnectod with the subject of draught horses is rail-roacs, and I will just relate a fact, showing the inmense power gained by the use of rails. The Surrey iron railway being completed, a wager was laid by wo gontlemen, that a common horse could draw thiriy-siz tons for six miles along the road, -that he should draw his weiglit from a dead pull, as wcll as turn it round the cecasional windings of the road. A numerous party of gentlemen assembled near Merstham to sco this extrandinary triumph of art.
8. Twelve waggous loaded with stunes, each waggon weighing above three tons, were chained together, and a horse taken promiscuously from a timber cart was yoked to the train. He started from Fox public house, near Mcistham, and drew the immense chain of waggons, with apparent ease, almost to Crogdon, a distance of six miles, in one hour and forty-one minutes, which is nearly at the rate of four miles and hour. In the course of the journey he stopped four times, to show that it was not by any advantage of descent that this power was acquired, and after such stoppage he again drew off the chain of waggons with great ease.
9. A gentleman, who had wagered on the power of the horso; then desired that four more loaded waggons should be added to the cavalcade, with which the same horse set off again with undiminished pace. Still further to show the effect of the rail-way in fap-
eilitating motion, he directed the attending workmen, to the number of fifty, to mount on the waggons, and the horse proceeded without the least distress ; and in truth, there appeared to be scarcely any limitation to the power of his draught. After this trial the wag. gons were weighed, and it appeared the whole weight was as follows :

| toms. | cwt. | $q r$. |
| :---: | :---: | ---: |
| 38 | 4 | 2 |
| 13 | 2 | 0 |
| 4 | 0 | 0 |
| 55 | 6 | 2 |

Section VIl.

1. Points of a Good Horse.-1 preier a lightish head, neatly set to the neck; the neck rising promptly and strong from the shoulders and withers, and somewhat crowing or curving nt the top, tapering to the head with a strong crest. Shoulders well laid in, spreading well back, somothing liko a shoulder of mutton. Chest deep and a little projecting. Wi hers rising moderately high and inclining well into the back. If the withers are low and flat on the top, the horse will be inclined to plange to the ground, and when fatigued will stumble or fall.
2. Neither must the withers rise too high, as he will then appear as though on stilts ; both eatremes are serious impedimet.ts to fine and sate action. Ribs should be well rounded out. Back straight and short, well erppled, that is, the hips well thrown forward, forming a strong loin, and giving a long lever from the point of the hip to the hock-joint of the hind leg. The horse should be a good length frem the point of shoulder to the extreme point of buttock. lock strong, and well covered with hair. Close and snug immediately under the dock.
3. The muscles on the inner part of the thighs should be full and well shut together. If there is a large cavity under the dock, the horse will be inclined to scour, and is probably only a door-yard horse. The neck, head and body form a lever, resting on the fore legs as a filcrum, the head being at the end of the lever. If the neck be very long and the head heavy, or if the neck be quite short and the head short and light, either of these extremes very much affects the regular clips and action. The whole machine should be of good proportion.
4. The fore arm is a very important lever, as regards the safety of a roadster. 'The legs should be clean and free from blemish, and when in motion movetrue, and free from cutting or wabbling. The foet should be round and steep ; heels broad; coronet and
pasterns of medium length. Shank or cannon, broad and flat; showing the tendons or sinews. The knee large and well dropped down ; the arm alove the knee long, and the muscles large and full. The top of the shoulder when matched, to the withera, should not be so heavy loaded with musele as to impede their action.
$\overline{5}$. No objections to the fore feet moving pretty close, but not so nis to cut. Much depends on the form of the hind leg and the powor of that lever, as regards strength and speed. The shank, hock and thigh should be broad and flat, something like that of an ox ; nud if so when in motion will operate like a plank sprung edgewise and then lot fly. If the hind legs when at good speed open and spread a little, no objoction, providing there is a good free astion in the hock joint.
5. Feeding Honses. - In feeding horses wilh grain, the proper quantity of the respective kinds is regulated by weight, for in this proportion are the different kinds considered nutritious. We give of a lorse per day hall a bushel of oat:, the weight of which is seventeen pounds, and il we wish to charge to other grain, as barley, rye, or Indian corn, the same weight will suffice; and as these grains are much heavier than oats, a proportionate less quantity, by measure, will suffice. Another rule, deemed important, is his, that whenever heavier grain is substituted for oats, a quantity of fine cut straw should be added, as a substitute for the husk of the oats. 'This induces a more perfect digestion of the grain.
6. The practice ol giving dry grain to horses when pastured, or fed with green cut grass, is condemned ; for tho grain thus given is never perlectly digested on account of the effect of the watery juicess of the grasses upon digestion. When dry grain and green food are given, as much interval should be allowed between the dry and green food as circumstances will permit.
7. Von 'Thaer considers eight pounds of meadow hay equal in nourishment to three pounds of oats ; that hay improves by age if weil kept, and is most nutritious for horses when a year old; that the second growth is not equally nourishing ; and that hay should not be unnecessarily exposed in making, the freshness of its scent being peculiarly gratifying to horses and cattle.
8. In Holland and Flanders, farm-horses are uniformly soiled during summer. A horse is supposed to consume from eighty-four to one hundred pounds of green food per day with occasional grain. An acre of clover, at two cuttings, will give twelve tons of green food ; and hence half an acre of clover, fed green, will suffice for a horse four months.
9. It is also a general practice in Flanders, and is extensively
adopted in Great Britain, to convert the entire food into mangermeat, that is, to mix the cut straw and hay, the grain and the roots, or whatever is to constitute the provender for the day, and to feed altogether in the manger, in regular messes. 'I'he value of this mode of feeding is alleged to consist-
10. "1. In its requiring a more thorough mastication of the food than when it is given in the common way, thereby assisting digess tion, and consequently promoting the nutrition of the animal; for it is not only true that old horses lose much of the power of mastication, and that young and greely cattle are apt to devour a considerable part of their corn entire, when it is given alone, which passing through them in the same state aliards no kind of nourishment, but all unimals are known to derive nourishment from their solid food, in a certan degree, in proportion to the care with which it is chewed.
11. "D. It is consumed in less time. 3. By the mixture of the materials, some porions of which, as damaged hay, or struw, might be refused if given separately, an equal consumption of tho whole is secured.
12. "4. By its admitting of being more readily weighed, or measured, than when given separately, it can be more accurately distributed to each horse ; on which it may be observed, that more injury is often done to horses by allowing them an unlimited quantity of rack-meat [uncut hay in the rack,] than even by stanting them to a scanty allowance ; for thoy will not only pass whole nights in eating, when rest would do them more service, but, by this extraordinary distention of the stomach, its powers are weakened and their general health is injured. 5. It prevents wasto and consequently goes further."
13. Mr. Wiggins, whose daily business extends to the feeding of three hundred horses, estimates the saving by the feeding entirely in this way, in the manger, at one sixth. Rye is considerably employed as horse leed in America, particularly in Pennsylvania. It is generally coarsely ground and mixed with cut straw or chaff, and moistened, by which the mass is incorporated
14. Barley is extensively used in the South of Europe, in Asia Minor and in Persia, for feeding horses, for the reason, probably, that oats, being indigenous to colder climates, do not grow well in these countries. In the first of these countries it is uniformly fed with straw. Six bushels have been found on trial, to be equal to eight bushels of oats. Barley contains twenty per cent more starch than oats, five per cent more saccharine matter, and twenty aeven per cent less husk.
15. British writers have furnished us with estimates of the annual expense of keeping farm horses. One of these before us gives the aggregate expense of a two horse team and driver at about $£ 90$ ( $\% 4(0$.$) ) This includes the interest on the cost of the$ team and implements, (E:T0) and 10 per cent for repairs and deterioration. We state this fact for the purpose of calling the reader's attention to it.
16. It imports, that allowing for the days when the team cannot labor, and assuming 260 working days in a year, that a team and driver should earn more than $7 s$. $6 d$. a day for 260 days in a year to pay cost ; and that all they fall short in dong this is absolute loss to the owner. The keep, in Britain, is probably higher however than it is with us. Yet we are persuaded that few among us duly reflect upon the cost of maintaining a horse team in a plight roquisite for dursg good service. In Britain a team of good horses is considered adequate to the cultivation of forty to sixty acres in tillage crops.

## Section Vlil.

1. Diseases of Horses.-'Lo preserve a IIorse from the Botts.T'ake of bees' wax, mutton tallow, and sugar, each 8 ounces, put it into one quart of warm milk, and heat it until it all melts and mixes; then put the whole into a bottle, and just before the wax, \&c., begins to harden, give it to the horse. 'Iwo or three hours alterwards give him physic.
2. Another method.-Give a horse occasionally a half pint of hard wood ashes muxed in his grain and sprinkled, or given in his drink. 'This is an excellent remedy.
3. Another.-Give your horse salt freely-as that will, in nine cases out of ten, preserve him from the botts. If he is attacked by them, give him a quart of warm fish brine : and if the case be a bad one, repeat the dose once an hour. For this purpose, save your fish brine.
4. Physic for a Horse. - A decoction of the herb called thorowort, which is very common. Let it be mixed with Indian meal, or given through i bottle, if the horse refuse the meal when mixed with this decoction. This is an excellent remedy against worms.
5. Cure for the spavin.-Take one pound of angle worms, fry them well in a pound of butter, and after it is cool, add one gill of spirits of turpentine. Take one ounce Origanum Oil, (sold at the druggists', which mix in one gill of spirits of turpentine. Every morning, rub the spavin with the angle worm mixture, heated in a shovel over the fire.
6. Every evening rub the spavin with. Origanum Oil mixtupe

Iny the the time these are used, you will begin to see the hor improve. During the operation, it will often appear to make him worse ; but this must not be regarded as injurious. It does not ronove the lump, but the discase will be extirpated.
7. 'Io prevent IIorses being teased with flies.-Take two or threo small handfuls of walnut leaves, upon which pour two or threo pints of soit and cold water-let it infuse one night, und let it boil a quarter of on hour-when cold it will be fit for use. No moro is required than to moiston a sponge, and before the horse goes out of the stable, let those parts which are most irritable be smeared over with the liquor, viz: between and upon the ears, the flank, de.
8. To cure the Thrush in Horses' feet.-Simmer over the fire, ull it turns brown, equal parts of hotey, vinegar, and verdigris, and apply it with a feather or brush occasionally to the feet. 'The horse at the sme time should stand hard, and all soft dung and straw be removed.
9. Shoeing Horses in winter.--The smith fixes a smnll piece of meel on the fure part of each shoe, not tempered too hard, which turns up about a th of an inch, in the shape of a horses lanect; the same to the hinder part of the shoe, turned up a litile higher than the forc-part, tempered in the swe manner. In going up a hili, the fore part gives a purchase that assists the horse, and in going down prevents him sliding forwards.
10. To prevent the feet of Horses from batling with snov.-II the frog in the hoof of the horses and the fetlock be cleaned, and well rubbed with soit soap, previously to their going out in snowy weather, it will effectually prevent their falling, from what is termad balling with snow. A number of accidents might be prevented by this simple precaution.
11. Paste to stop bleeding.-'Take of fresh netlles, one handful, bruise them in a mortar ; add blue vitriol, in powder, 4 oz., wheaten four, 2 oz ., wine vinegar, $\frac{1}{2} \mathrm{oz}$., oil of vitriol, $\frac{1}{2} \mathrm{oz}$. Beat them all together into a paste, and a proper pledget of tow laid over the mouth, in order to prevent it from falling out, and then bandage it on with a strong roller. This dressing must remain in the wound 10 or 12 hours.
12. Ointment for scratched heels.-Take of hogs' lard, 1 pound, White lead, 4 ounces, alum in fine powder, 2 ounces, white vitriol, 1 ounce, sugar of lead, $\frac{1}{2}$ ounce, olive-oil, 3 ounces. Grind all the powders in a marble mortar with the oil, or on a marble slab; then add the lard, and work the whole together till united.
18. This is a neat composition, and very proper to keep in a
meble during the winter; it will not only be found useful for greacy and scratched heels, but also for stubs and treads of every descripdon. A small quantity must be rubbed on the part affected every night and morning in slight cases; but in treads, or wounds upon the heols, it will be best to spread the ointment on pledgets of tow and secure them with bandages.
14. Ointment for Greasy Heols.-Take of white ointment, 1 pound, white vitriol, blue vitriol, and sugar of lead, in powder, each $\$$ ounce. Mix well together. 'Ihis ointment, when used, must bo apread on strong brown paper; and applied over the part that greoses, and bandaged on with listing. He may, after dressing, bo turned into a dry straw yard, and a few diuretic balls given to him; one may be given every third day. Once dressing is, in general, sufficient to perform a cure; if not, it may be repeated in a week aiter.
15. Astringent Embrocation for Sirains in different parts.Take of camphor 2 drachims, dissolved in $\frac{1}{2}$ an ounce of strong rectified spirits of wine, nitre, 1 ounce, dissolved in half a pint of wine vinegar, spirits of turpentine, 4 ounces, white lead, or bole asmenic, in powder, $\frac{1}{2}$ ounce, aqua fortis, 1 ounce. Mix and shako them all together in a bottle for use.
16. Mixture for Canker in the Mouth.-TTake of wine vinegar, half a pint, burnt alum, and common salt, each 1 ounce, bolo asmenic, $\frac{1}{d}$ ounce. Mix and shake them together in a bottle for use.
17. To cure Wind Galls.-On the first appearance of wind galls, their cure should be attempted by restringents and bandage, for which purpose let the swelling be bathed twice a day with vine gar, or verjuice alone, or let the part be fomented with a decoction of oak bark, pomegranate, and alum boiled in verjuice, binding over it, with a roller, a woollen cloth soaked in the same. Some for this purpose use red wine lees, others currier's shavings wetted with the same, bracing them up with a firm bandage.
18. Spring Hali.-This is a kind of lameness peculiar to the hind quarters of a horse, which occasions a sudden jerking of the legs upwards in his going. When it seizes the outside muscle the horse straddles and throws his legs octwods. But when the inside muscles are affected his legs are twitched up to his belly. Sometimes it is only one leg, sometimes in both. The cure is difficult and rarely accomplished. Rubbing and fomentations are recommended, with daily moderate exercise: by which the blood and spirits may be equally derived into its disordered muscle and its carresponding one.
10. Malanders.-It consists of chops, or cracks, on the inside of the foreleg against the knee, discharging a red sharp humor. To *ure this disease, wash the crack with warm soap suds or old urine ; then rub them twice a day with an ointment of hogs' lard mixed with two drachms of sublimate of mercury. Or apply a poultice of the roots of marsh mallows flax-seed, softened with linseed oil, tying it on with a roller. Continue that till the seeds fall off and the sores become clean. Alterwards a mixture of turpentine aod quicksilver will be a proper application.

Section IX.
THE WAGGONER. 1

I've often thought, if I were asked,
What lot I envied most-
What one I thougit most lightly tasked
Of man's nunumbered host,-
I'd say l'd be a mountain boy ;
And drive a noble team-wo hoy !
Wo hoy! l'd cry ;
And lightly fly
Into my sadide seat ;
My roign I'd slack,
My whip I'd crack-
What music is so sweet?

## 2

Six blacks I'd drive of ample chest,
All carrying high the head-
All harness'd tight, and gaily drest,
In winkers tipped with red,
O yes, I'd be a mountain boy,
And such a team l'd drive-wo hoy!
Wo hoy! I'd cry-
The lint would fly-
Wo hoy! Dobbin-Ball ?
Their feet should ring-
And I would sing-
l'd sing my fal-de-ral!
3
My bells would tinkle, tingle-ling

Beneath each bear-skin capAnd as I saw them swing and swing,

I'd be the merriest chap ;
Yes, then I'd be a mountain boy, And drive a gingling team-wo hoy ! Wo hoy, I'd cry-
My words should fly-
Each horse should prick his ear !
With tightened chain,
My lumbering wain
W ould move in its career.

## 4.

The golden sparks-you'd see them spring Beneath my horse's tread;
Each tail-l'd braid it up with string Ot'blue or flaunting red ;
So does, you know, the mountain boy,
Who drives a dashing team-wo hoy!
Wo hoy! I'd cry-
Each horse's eye
With fire would seem to burn,
With lifted head,
And nostrils spread,
They'd seem the earth to spurn.

## 5.

They'd champ the bit and fling the foam,
As they dragged on my load-
And I would think of that distant home,
And whistle on the road,
Oh, would I were a mountain boy,-
l'd drive a six horse team wo hoy ;
Wo hoy! I'd cry,
Now, by yon sky,
I'd sooner drive those steeds,
Than win renown,
Or wear a crown
Won by victorious deeds :
For crowns oft press the languid head,
And health the wearer shuns-
And victory, trampling on the dead,
May do for Goths and Huns !

Seek them who will-they have no joys For mounta;". lads and waggon boys.

## Sifction X.

1. Farm Stock.-lt is a pitiable sight to go about the country and see the multitudes of poor cattle, which fill almost every farrner's yards in the spring of the year. Farmers ulmost universally, in this wheat growing district, keep too much stock. Many ate the farmers whose whole stock of cattle and young horses would not pay for the hay they have eaten during the last winter. Of thi fact very many are now sensible, and are determined to diminish their stock at all hazards, and some are even now selling their cows, the only part which will avail them any thing tho coming season, to drovers for $\$ 1 \%$ to $\$ 16$, a less sum than the cost of their keeping during the winter.
2. let many of these farmers who have been so pinched this spring, will most likely, as soon as grass comes, forget their trow bles and their resolves, and as their calves are dropped will say, "Well, it is a pity to knock in the head such a pretty calf as that ; I can't spare the milk to fat him, but I can bring him up on skim milk,"-and thus he is suffered to live, a skim-milk calf sure onongh-and the next, and next, and so on to the last, are sufferod $\omega$ live in the same way.
3. They pass the summer very well, but the first snow squall in November, fetches them up under the windward side of the fence, bleating and moaning most piteously. Thes the wants, the trials, and privations of the last winter come up before our farmers in full view. He remembers his determination of reducing his stock; but what is to be done?-it is too late now to sell. His three years old steers might have been sold perhaps two months ago, but no drovers are seen this time of the year.
4. 'Well, I have got a plenty of straw, and I guess they'll do ;' and on he goes the same round, annually feeding out nore worth of hay, than his whole stock will amount to, and if he sells any it is in the spring, in the very last pinch; when sure enough, twelwa dollars is a fair price for the best he has in his yard. This is indeed a sad picture, but is it not a true one of at least half of all the farmers in this wheat growing section? Hay is high, always high, and so are corn and oats.
5. Good cattle too are high : a prime yoke of oxen, or a first rate cow, that has been stabled through the winter, and fed on ruta baga, mangle wurtzel and meal, morning and night, will fetch a good price. So does young caltle of the improved breed. But
who among us farmers is willing to pay five dollars for the servioe of an imported improved Durham bull ? Scarcely one in fifty will do $i$.
6. They had rather breed in.and-in, as the English breedere term it, that is, from a bull of their own raising, whose only recommendation may be, that he was forgotten at the time he ought to have been castrated, and was too wid and unmanagenble to submit to it afterwards. Our firms are many of them overstocked with young horses, very many of us keep more than we keep well. Many farmers have an old mare, and four or five colts, which endure the severity of the winter with no other shelter than the leeward side of a hay-stack, and which in the spring bear a strong resemblance to the Fiorida cattle, of which it takes three to make a shadow.
7. These of course no one expects to dispose of until they are broken and fit for service. It might seem that the severe lesson of tho last winter would have some abiding effect upon farmers, but probably tew will profit by it. Those farmers who are too poor to take an agricultural paper, who won't even take a Monthly, because forsooih they know moro about farming than they can put in practice-these men will probably do as they have always done-complain of our hard winters, and say they mest sell out and go farther south, where the winters will not eat up the summers ; whereas, if they would orly buy tie Brilish North American Cultivator, and read attentively the many excellent articles on cattle, they would give up the raising of catile at all, and raise only sheep, or they would raise such cattle as would sell at any time, and at a fair price.

## Section XI.

1. On Stocking a Farm with Cattle.-The first object of attention, is to consider the propurtion between the stock and the quantity of feed which will be necessary to support them. The nature, situation, and fertility of the soil that compose his farm are worthy of notice; also the purpose for which he designs more particularly to rear or feed his cattle, whether for the pail, or for beef. In fuct, it will be expedient to observe the greatest exact ness in this proportion, because, if he should overstock his land, the Farmer will be compelled to resell before the cattle are in a fit state for the market, and, consequently, at certain loss.
2. While, on the other hand, he will incur a loss in his profit, If he should not stock his land with ns many cattle as it will bear. Formerly, a great prejudice prevailed in favor of big-boned, large bearts, but it has been ascertained, that this breed is, in poim of
profit, much inforior to the middle-sized hil Bys carelul attention th the selection of stock, great progre may be ustde towards the improvement of the different specses Amotig the various prolessional breeders of modern times, lew have athanod greater celebrity than the late Mr. Bakewell, of England, to whom we are indebted for many new and important improvenents in the science of rearing cattle.
3. 'The principle which he invariably adopted was, to select the hest beast, that would weigh most in the vahuble joints ; so, $t$ at, while be gained in prom of shape, he also acquired a more hardy bred. Ly attendang th the kindliness of their skin, he becamo bessessed ni a race which was more erasily iod and hatend than any oher. Ror mang rears, the practice was to judge by deepeonly, without regarding the other qualities of the ammal. liat, in the present improven age, a more rational mode ol fimming the judg. ment has been adoped. 'I'he sense of touch is now brought in aid of the sight.
4. Liy repented practice, the art of judging of tho kindiness to fraton has been brought to such perfection, that any well intormed breeder will tell almost instantaneously, in what points or parts they will or will hot fetten. In the selection. therelore, of lives:ork in general, the young larmer will tind it necessary athentively th consider tise ollowing particulars ; Brauti, or symmerty of shape : in winch the forms is so compact, that cury partof thataimad bears an exact consistency, whie tho carcass shanat bo deep and broad, athd the less valuable patts (such is the head, bonce, \&c. ) ought to be as small is possible.
5. Further, the shoulders ought not only to bo light of bone, and rounded off at the lower point, but also broad and woll eovered with fiesh. 'The back also ought to bo wide and levol thoughout. In rear:ng liee stodie ol any deseription, it should bo ah invariable rule to have the increase from small-boneal, straight-uacked, healliy', clean, kindly-skimed, round bodied, and barrel-shaped animals. In the purchasing of catle, whether in a lean or fat sate, the farmor should on no areumt buy beasts ont of richer o. better grounda then those into which he intonds to turn them.
6. For, in this case, be must inevitably sust:in a very material Joss, by the cattle not thriving, particularly ifthey be add. It will, uncrefore, be advisable to select them, either from stock feeding in the neighborhood, or from such breeds as are best adapted to the mature and situation of the soil. Docili'y of disposition, without being deficient in spirit, is of equal moment. Independent of the dunage committod by cattle of wild tempers on fences, fields, we.,
it is a fact, that tame beasts require less food to rear, support, and fatten them ; consequently every attention ought to be paid early to nccustom them to be docile and familiar.
7. Hardiness of constitution, particularly in bleak and exposed districts, is indeed a most important requisite. In every case it is highly essential to a farmer's interest to have a breed that is linble neither to disense nor to any hereditary distemper. Comectod with hardiness of constitution is early maturity. This, however, con only be attained by feeding cattle in such a manner as to keep them constantly in a growing state. By an observance of this principle, it has been fomd that beasts and sheep thrive more in three vears, than they usually do in five when they have not suffrcient food during tho winter. In the common mode of rearing, their growth is checked.
8. Working, or an aptitude for labor. Whether kine be purchased for the plough, or for the purpose of fittening, it will be necessary to see that they are young, in perfect healith, fill-mouth ed, and not broken in any part ; that the hair stare not, and that they are not hide-bound, or they will not feed kindily. The same romark is true in application to cows intended for the pail.Their horns should be finir and smooth, the forchead broad, udders white, yet not fleshy, but thin and loose when empty, (to hold the greatest quantity of milk, but large when full.
9. Besides the rulcs above stated, there are some particulars with regard to the age of cattle and sheep, which merit the farm en's consideration. Neat cattle cast no tee:h until turned two years old, when they get two new teeth; at three they get two more ; and in every succeering year get two until five years old, when they are called full-mouthed. Though they are not properly fill-mouthed until six years old, becnuse the two corner teeth, which are last in renewing, are not porfectly up until they are six.
10. 'The horns ol neat cattle also supp:y another criterion by which the judgment may be assisted, after the signs aflioded by the teeth become uncertain. When three years old, their horns are smooth and handsome ; after which period there appears a circle, or wrinkle, which is annually increased as long as the horn remains; so that, according to the number of these circles or rings, the age of $a$ beast may be ascertained with tolerable precision.
11. Sometimes the wrinkles are defaced, or artificially removed, by scraping or filing. This is a fraudulent practice, too frequently adopted, in order to deceive the ignorant or inexperienced purchaser, as to the real age of the animal. These circles, however, munt not be confounded with those ringlets which are sometimes
found at the root of the horn, and which are $n$ pretty sure indication that the animal had been ill-fed during its growth.

Sretion XII.

1. Essay on Cattle.- The domestic or, is not, ns is well known, indigenous to Amorica; but was introduced liy the first colonists in the boginning of the 17th contury. An attempt has beon made to trice tha origin of the common cattle, ant oupecially those of the northern states, exchasively the the Linglish Devon ; and it is probable that it did mingle lurgely in the eatly jmpretations, from the fuec that a largo protion of the colonists were from the south of England, or embarked from ports in the di hero the Devon at that period was the prevailing bree.
2. The characteristics of this variety also, at . nolor, etc., have always beea the favorite ones among a the United States. But at the time of the settement on amersa, litho autention, comparatively speaking, was paid b hreeds, ot purity of blood, and it is altogoher incredible that the cmigronts. to whoss number almost every port in Engliand and probably in the United Kilugdom, furnished its quota, should havo been at the pains w procure the Devons.
3. 'To say nothing of the preferences which each would naturally have felt for the cathe of his own distriet, it would argue a degroe of care andsolicitade on a subject, then deemed of little importance, altogether incompatible with the character and motives of the men who colonize the new word. Many of them probably were scarecIy aware that there was such a broed in existence! Bessdes, the Dutch in New York, and the Swedes on the Delaware, introduced the eattle of their respective countries, wheh were subse quently incorporated with the common stock.
4. Although, as we have before remurked, the Devon characteristics proval, tho practised eye will reanly detect taces of this varied lineage. Fow or none of our eommon stock equal the North Devon in the finish and beauty of their proportions, more generally perhaps resembling the coarser Sussex ox ; ant our cows aro bettormilkers Oar black polled cattle give indications of ther Welsh and Galloway extraction, and it is but a few years since, on the Mohawk and iludson rivers, there existed undoated remanats of the stock imported by the Dutch setulers from Holland.
5. 'To speak of the morits of a race so varied, would ovidently be proposterous. Seloctions may be readily made from our common cattle, combining very considerable excellence for the dairy, the yota, and the shambles; while another and a largar portion are
destitute in a part or the whole of these cualifications. Their ralue to cross with the improved breeds, will be hereafter adverted to.
6. We shall proceed now to consider the brceds of later introduction, imported with the view of improving the common stock. These are the llevons, Herefords, New Leicesters, Ayrshires, Alderneys, and the Short Horn fanily, consisting of the "Improved Short Horn," or Durham, the 'Teeswater, Holderness, and a thick, heavy buttocked varity of Yorkshire cattle, which have provincially obtained the name of "Deronshires."
7. The Deron.-In symmetry and proportion, the high brod Devon scarcely acknowledges an equal. His delicate limbs, deep red colour, beatififul tapering horns, high and spiritedaction, united with docility in the yoke, and a st ow of blood, falling little short of that of the thorongh bred horse, have always rendered hima favorite with breeders ol taste, in his native country. Favorable specimens of them were introduced into the United Sitates in 1817, from the herd of the Earl of Leicester (then Mr. Coke).
8. Notwithstanding his many excellencies, it cilunot be said that the introduction of the Devon was attended with any striking benofits. Singularly suited, by his rapid gait, for the plough on the light lands of Norlolk, and some outher parts of England, his peculiar excellence, his activity, has been found to avail hin little on the more gencrally tenacious soils of this country. In strength the Devon ranks only in the tourth or filth class of Dritish oxen. The cross with our common cattle produced an animal sonewhat improved from the latter in the poims, but with no great additional value for the yoke, and decidedly inferior for the dairy.
9. Yet the slight admixture of Devon blood, has been thought advantagrous in modifying the coarseness of heavy, bony breeds, like the Holderness, and it has ever been strenousiy advocated as a cross with the linproved Short Horn, by distinguished English breedors. But others object that the Durham gains nothing by the admixture in his propensity to take on flesh end fat ; while size and malking properties are sensibly diminished.
10. This was decidedly the opinion of Col. Powell, who institut ed numerous experiments. The variety thus produced would doubtless be capable of enduring a shortness of keep, incompatible with the superior size of the pure Short Horn, and thus be better adapted to high and less fertile lands; but there are other breeds which as a cross with the Short Horn, would be as well calculated to attain this end, without so great a sacrifice as milking properties.
11. The Hereford.-The Hereford ox is supposed to be descended from the same stock with the Devon, but is larger, heavier in
the bone, usually of a darker red or brown color, with a white face, throat and belly. They are shorter legged than the Devon, hardier, and kindlier feeders, but less docile in temper, and even worse milkers. Indeed, a Hereford cow is rarely seen in an English dairy. Their hardihood and great muscular power give them the first rank among working cattle. This, together with their suporior grazing qualities, has led to their introduction intu the United States, by the Hon. Mr. Clay, of Kenucky, and several other individuals. But it is probable that their deficiency in milking proporties will always prevent their very general adoption, either as a cross, or in a pure state.
12. The New Lcicester.-This l,reed, spoke into existence as it were, by the commanding genius of Bakewell, were derived from the original Long Herns, of the middand and north-western countios. The Lancashire or Craven, as this original variety is genorally denominated, were characterized, at least the better portion of thom, by their length and roundness of carcass, and by giving peculiarly rich milk, though in moderate quantities. They were large, coarse board, but possessing a considerable, and sometimes a marked tendency to fatten. A smaller variety of the same breed, generally inhabiting mountain and noor lants, atcording to Mr. Youatt, gave milk as superior in quantity as quality.
13. Out of these materials Bakewel! formed the Now Leicosters, which for aptitude to acquire external fat and early maturity, bocame ahnost unrivalled. He reduced the size, and especially the bone of the old Long Horns, and under his moulding hand, the new variety reached a finish and beauty unknown in any other breed of the day. Unfortunately, however, milking properties were to a considerable extent sacrificed by lim. The Leicesters, or 'Shakspeares,' as they are more usually styled in the United States, were of different colors, more generally reil, with finch or 'lined' backs, as they are termed in this country.
14. Long, slim, tapering horns, projecting forward and downward, and turuing up at the points-sometimes falling down the sides of the head in a curve, the points nearly meeting in front, is also characteristic of the race. The New Leicesters, owing to thas cardinal delect in Bakewell's system, breeding from too close affinities, and to the appearanco of a rival in the improved Short Horns, destined to sweep away all opposition, have nearly disappeared; but grades between them and the old Long Horns are still cherished by many of tho mid-land dairies of England.
15. A cross between them and the Short Horns are still mone common, and answer excellently for the purposes of the butter
dairy. The milk of the Short Horn is improved in quality, though diminished considerably in amount, and the cross bred animals aro supposed to be peculiarly hardy and unsubject to disease. Long Horms of various grades between the old Lancashire and the in proved Leicester, have at various periods been introduced into tho United States, and specimens of them crossed with the Durham, (with no almixture of other blood,) exist in this and one or two other countics.
16. They are a benutiful breed, possessing much of the substance of the Short Horn, with the peculiar fincness in the forend, characteristic of the New Lecicester: Some of them are exceed ingly delicate handlers, with thick, silky coats, and are rich though not uncommonly deep milkers.
17. Whe Ayrshire.-It is but a little more than fify years since, according to Mr. Aiton, (the best authority on the subject,) the A yrshire cows were "ol diminutive size, ill-fed, 1l-shay ed, and they yielded but a scanty return of milk; the chine of their backs steod up high and narow, their sides were hank and short, their hides thick and adhering to their bones, and their pite coarse and open." In short there can be but litle doubt that they would gain nothing by comparison with the most ordinary Canadian cows.
18. We have adverted particularly to their then condition, be cause in following them up to their jresent high cegree of excollence, we dind a lesson fraught with pecuhiar value to the Canadian farmer. Our brecders have certainly as good, or a boiter breed on which to commence their improvements, and the ameliorating crosses which made tho Ayrshire cow what she is, are equally within our reach.
19. Though from the length of time which has elapsed, and the imperfect record, or rather the absence of all record, which is too gencrally kept of such transactions, little is known of the progres sive steps attending the cross, and there are some who seem disposed to call in question the fact whether it cver took place, it is generally conceded that the present celebrated race were produced by a judicious admixture between the criginal cow of Cumingham, Kyle, and Ayrshire, (Mr. Aiton's description of which we have already quoted, and some of the earlicr Short Horns, from the banks of the 'l'ces.
20. The benefits attending the cross wore accelerated, and no doubt much heightened by the moist, mild climate, and rich herbage of that district ot Scotland where the Ayrshires principally prevail; pronounced by Mr. Youalt, 'the finest dairy county in Scotland, and equal perhaps to any in Great Britain." 'This improved race
is of red and white colour, beautifully mottled, short in the leg, the horns small and fine, the head and ncek delicate, the latter thickening properly towards the shoulders, the carcass deep but inclining to be fat, and the loin and hunch, compared with the Short Horn, narrow.
21. Five gallons of milk daily, for two or three months, after calving, three gallons for the next three months, and one gallon and a halt tor the remaining four months, in which she is milked, is stated as the average amount given by the Ayrshire cow. As a milker, she of course yields to the larger Short Horn, nor will she take on an equal amount of tlesh and fat, on the richer soils of Eng. land; and on the bleak and heathery hills of Scolland, the various breeds of black cattle would thrive and fatten where the Ayrshire would scarcely obtain a subsistence.

2i. But on medium soils, there is perhaps no breed, size and the consumption of tood being considered, which presents a much better combination of mulking and grazing qualities. Of their value as working oxen, oar authorities are silent, and we do not know that any experiments have been instituted anong the few imported into Canada. It they are good in this repect, such a breed would be a disiteratum in many porions of our country. But as before binted, we believe this desideratum cau be supplied more casily and cheaply by materials within reach. This point will be discussed in its proper place.

Section XLIL.

1. 'The Alderney.-This small breed of Prench cattle, is fashionable in the parks and pleasure grounds of Enerlish gentlomen, on account of their duninutive size, and the peculiar richness of their milk. Col. Puwoll, alter fifieen years experience with them, pronounces them, in his somewhat summary way, "an unthrifty, dwarfish, savage breed ;" and Parkinson remarks, "thoy are ol as bad a form as can possibly be described." Ther appetite is voracious ; an Alderney cow consuming nearly as much as a Short Horn, which is threc timos her size.
2. The IIolderness. - Sometime during the 1 sth century Short Horned Cattle were introduced into the north-eastern counties of England, from the adjacent continent. They are indiscriminately termed Yorlishire or Holderness cattle, by the earlier writers; the former name is derived from that of the county where they first began extensively to prevail; the latter from a town in the same county, where either they werc originally introduced, or where, as tradition runs, certain improvements in the breed were first attempted.
3. They subsequently, as we shall see, attained the name of 'Teeswater, and finally of Durham, or "Improved Short Horn." Marshall describes the original Holderness as " thin quartered, too light behind and too coarse betore, large shoulders, coarse necks and doep dowlajs." Lawrence, after passing a high encomium rn a selection which might be made from them, describes the remainder as " long, gaunt, deep carcasses, without adequate substance, placed on high stilts, of the coarsest timber, slow fecders," \&c. 'Ihey were also, by the consent of all the English writers on the subject, thin skinned, melined to be tender constitutioned, bad provers, their flesh coarse and often dark or "liery."
4. In one particular, however, they were from the first pre-eninont, namely. in the amount of milk given by them, though it was not of so rich a quaiity as that yielded by some other breeds. In York, Durhom, and the adjacent countios, over which this broad rapidly spread itself, early attempts were made in improve the form, without sacrificing their milking properties. Marshall gives a singular account of one of these efforts.
5. After describing the IJolderness, as we have already quoted, he says :-"This, from being found disadvanta geous to the butchor, * * * the brceder attempted to enlarge the hind quarters; and had he stopped when he got to the happy medium, he would have wrought a good work; but the fashion was set-cloddy bullocks were in estimation. The first varicty of this species of cattie, which I can recollect, was a thick, large boned, coarse, clumsy animal ; remarkably large behind, with thick, gummy thighs; always fleshy, but never fat, and the flesh being of a bad quality. This, however, was not the worst ; the monstrous size of the buttocks of the cali frequently proved fatal to the cow. ** * They were probably the worst breed the vale ever knew."
6. We havo here an exact description of a variety existing in many parts of our own country, known popularly in this, and somo of the adjacent counties, as "Devonshires," though their horns, to say nothing of their posterial deformity, prove this to be an entire misnomer.
7. I'he T'ceswater.-In more judicious hanás the Short Horns rapidly improved. Among the spirited breeders, on the banks of the Tees, (which divides York and Durham, they rapidly assumed a distinctive character ; shorter legged, more compact, the milk but slightly diminished, and this more than counterbalanced by its increased good quality,-better feeders, hardier, carrying more fat, and their flesh more marbled and finer in grain.
8. This signal improvement was effected, it is generally suppo-
sed, by a system of judicious crosses. An importation of cows from Holland, is usually relerred to as one of these, and Mr. Rerry conjectures the wild white breed of England to have furnished another. Hence the strong admixiure of white in the 'leeswater and tho Durham. The improved variety, denominated indiseriminately, 'T'ceswater or Holderness, immediately became the grencral favorito in the large metropolitan dairies and milk establinhments. For milking properties, and when no lenger used for that purpose, aptitude to take on flcosh, England had never possessed so valuable a breed.
9. The Durham, or Improved Short Horn.-At this epoch, and with such matorials, Mr. Charles Colling commenced his career as a breeder. !is wonderful success has been aseritited by some, to chance ; but the Rev. Henry Berry, the best pissithe nuthority on this subject, thinks otherwise. De pronomens it the result of "a deliberate and well considered plan." Mr. Colling fiund the Tees. water yet possessing some of the faults of the old short Itorns.
10. From their overgrown size, they were too frequently coarsely and loosely formed, and they were yet entirely inferior to what the Durhnus became, in aptitude to fatten and carly maturity Mr. Colling was remarkably favored in his effiots to counteract these defects, by the possession of the bull "Hlubback," the great ancestor of the improved race. He was smaller than the Teeswater, while " his tlesh, hide and hair," Mr. Berry remarks, "wero seldom equalled."
11. On account of his remarkable disposition to take on flesh, he soon became useless. The same qualities marked his dam. It is unnecessary for us to follow the progressive steps which marked the onward carcer oit the Improved Short Horns. While it is admitted that in the hands of some breeders wb>se attention has been turned exclusively to the carcass, their milki.g properties have deteriorated, it is well known that in other hands, they have fully maintained their equality with the Teeswaters as milkers, while in oarly maturity, kindly feeding, proof and quality of flesh, they decidedly surpass then.
12. In early maturity they have, confessedly, no rivals, being ready for the butcher from two to four years earlier than the other English breeas. It is not wonderful that a race, presenting such a rare combination of excellencies, should soon become the favorite of the English breeders. The Long Horns have disappeared before them, or been merged in them by repeated crosses in the northern and midland counties, while in the south they are rapidly superseding the Hereford and the Devon. They have been engraf-
ed on the Holderness Short Horns of the city milk establishments almost universally, and with manifest advantage.
13. Tho produce, with milk very slightly diminished, but of increased richness, yield as profitable return in the dairy, while the value of the carcass for the grazier is nearly double in amouns. Short Horns, of every variety, from the gaunt, unsightly animals described by Lawrence, to the most finished specimens of the inr proved fanily, have been repeatedly imported into the Province. The miserable, heavy buttocked variety, known here provincially, us "Devonshires," we have already adverted to.
14. There are also among us, large and not unsightly Short Horns, probably a modification of the above, poor millers and bad provers, whichare popularly known as "English catile,"-though they sometimes borrow the name of 'Tecswater or Durham, to suit the purposes of the soller. They are usually red or brown, with dark muzzles, their homs short, fine and tipped with back. A Holderness bull from North Allerton, on the Arve, was imported from Lengland a few years since, and finally was driven to Oneida county in the State of Now York, where he remained umith he died.
15. Though a monster in size, and maked with the characieristic dotecis of the earlice Short Horns in his form, his get, with the bost common cows, were valuable as mikers, and not deficient in symmetry. Animais of various dogens of merit, bearing the name of Durhme, bit not of pure blood, have also been introduced at various tin os, on speculation. And finally, pure Improved Short Horns, in considerable numbers, have been imported by spirite:l breeders in difierent districts of the Provinco.
16. 'The Mest Profituble. Breed.- Having thus given a hasty summary of the priticipal facts which tend to throw light on the main question beiore us, viz : what breed of cattle is mast profilabls, we proceed to state our convictions on tho subject. That the common cattle of the country do not possess the groatest attainable combination of excellencies, will readily be admitted. A seleotion of them present very desirable qualities for the dairy and the yoke; but in foeding properties, and especially in carly maturity, they are deficient.
17. A full blooded Durham bullock will go profitably to the butcher, at least two years earlier than the American, a decisive consideration to the grazier ; and although the former is the greater consumer, the extra food required by him, will weigh but little against the two or' even one year's additional keep of the latter. But notwithstanding all that may be said for or against them, it is to the best cross with selected animals of the common race, feasi
bility and expense being taken into consideration, that the common Canadian farmer must look for the most profitible breod of cattle
18. In this proposition we wish to be distinctly understood. We do not intend to assert that the produce of any cross wo might thus make, wou'd surpass in value breeds already in existence ; but the entire substitution of a foreign variety for our own, presupposed an axpenditure of time and finds utterly out of the question. The question then is, with what breed is this amclionating change to bo affected?
19. On a careful comparison of the characteristic merits and defocts of our own cattle, with the corresponding ones of other varieties, we arrive unhesitatingly at the conclusion, that to the pure improved Durham, we must look for the basis of the desired improvement. A cross with the Devon or llereford, would sacrifice milking propertics; the dwarfish and ill-shami Alderney, is not to be thotight of: the Ayrshire or the Long Itorn, possesses no axcellencies that the Durham does not possess in a greater degreo: and the Holderness, and the 'I'eeswater Short Horns, compared with the improved race, are as the crude ore to the manulactured and polished metal.

20 . The first cross between choice native cows and the improved Short Hom, bas genemily rosulted equally favorally; indeed, the vory beauty of the produse has tended to prevent further attempts at inprovenent, by encouraging farmors to breed dire itly from half and three-quarter bred bulls. 'They frequenty lack little of the beauty of their sires, and their scrvices are to be more cheaply procured.
21. But the characteristics of a variety thus obtained, are not sufficiently stamped upon them in the first, second, or even third or fourth cross, to be perpotuated with any great degree of certainty in their offspring. lin the language of the Rev. Henry Berry, "to breed from tho produce of a cross directly among themselves, will lead to the results which have induced many persons, without due consideration, to believe conclusive against crossing ; but to take one cross, and then return and adhere to one brecit, will, in the course of a few generations, be found to stamp a variety with sufficient certainty."
22. Repeated experiments have amply demonstrated, that interbreeding between the Durham and our common race, if conducted on the principles advocated by Mr. Berry, viz: by a constant resort to the pure blooded bull, is attended with a decided and manifest tmprovement of the produce in every successive generation. The bull selected, should be small of his kind ; fine in the bone; un-
usunlly full in the crops and bosom, and wide in the loin and haunch -points in which the common breed are defective. He should bo chosen too, from a family of decidedly good milkers.
23. If the bull is large of his kind, the produce are generally coarse, and marked with the defects which attend great disparity in the size of the sire and dam. The dam should be as good in tho points indicated in the bull, as our means of selection admit of; short legged, compact, decp in the girth, and a plentiful and steady milker. Wo have already alluded to the change effected by the farmors of Ayrshire on a poorcr breed, by a Shurt Horn cross; and there can be no good reason why the Canadian farmer, with the same skill and perseverance, may not be equally successful.
24. Indeed there are grade Durhams already tunong us, which, there can be no donbt, equal or excel the Ayrshire in every desiraable point. The Durham, as we have before remarked, requires moro feed than our small native catle. This, his superior size, would lead to expect. But though a greater, he is a more promis cuous consumer, tho coarsest quality of hay or straw being readily devoured by him. In England, straw, witi a very small allowanco of turnips, constitues his exclusive store keep in winter.
25. But to bring this matter to its true test, will tho Durham yield as great a return in flesh, fat, or milk, for the amount of food consumed, as any given breed? That he will, repeated experiment, as well as his daily advancing popularity, in a country where there are varicties greatly excelling our own in aptitude to fatten, and at lenst equalling them in milking properties, fully attost.The amount of food required by him, thercfore, forms no objection to the improved Short Horn, on good soils, either in his pure state, or as a cross with others.
26. The only question now to be considered is, will the recommonded cross supply us with working cattle! It is asserted on the best authority, that the pure blooded Durhamox, will "work admirably ;" and the reason assigned for his not being oftener used for that purpose in his native country, is, that his early maturity renders him too valuable for the butcher, to be retained with profit until four or five, for the yoke.
27. There can be but little doubt, that united with our smaller, but vigorous and active race, a heavy and powerful variety of working cattle will be produced. Those especially fed on upland and less nutritious pastures. whose labour ought to compensate for their tardier maturity, wisn size, feeding properties, and docility, increased by the cross, will lose little, and probably nothing of the activity and hardihood of the common race. To what precise ex-
tont interbreeding should be carried, to produce the most valuable breed of working cattle, experience can alone determine.

## Section XIV.

1. Training Oxfn.-The frequent abuse of our laboring animals by those who receive the benefits of their labors, and who ought in return to treat them mercifully, has often given me great pain. Lndeed, it is a matter to me perlectly surprising, how any intelligent being can so wantonly and unthinkingly abuse dumb animals as many are in the daily habit of doing. I venture to say from my own observation, and that has not Leen limited in this particutar, that nine-tenths of the perverseness of laboring animals arises from the mismanagement, at some period or cther, of those who train or use them.
2. It appears to me the rules of management, in all these cases, are extremely simple. You have only to study the natural disposition and history of the anmals to know how to manage them. liy your own feelings, you can easily perceive that they can have litte heart or disposition to laber if scantily fed ; of cousse good fereding is the first step in obtaining giod labor.
3. 'ihe next is to have your teams properly traned so as to know you, and also to be fond of you, and to love the sound of your voice, for animals are capable of much affection. I have known rumer. ous instances of the kind, and in all cases with which l havo been familiar, those who treated their cattle or horses whth kindneso, always obtained from them the most work, and that too in the easiest way.
4. Breaking of Sieers.-Yoke them carefully, and let them renain quiet until they will eat their food, which generally takss place in the course ol one day. Yoke them agam the next day, and put them behind a pair of old steady cattle, and let them stand till they become familiar with them. This generally takes but one day. The day following yoke them again, and put them behind the oxen as before, upon the tongue of a cart or sled. 'They being now accustomed to tho oxen before, will readiiy follow without whipping or beating. They will soon become kind atad gentlc.
5. I have employed, in the course of my business, a great many men with teams, buth of oxen and horses, and I never yet knew a bawling, noisy, whipping teamster who did a great day's work ; nor have I scarcely known such an one who kept a fat team. 'Itre best man who ever did me any labor was a good substantial farmer. Hie oxen were always fat, and spry as colts. He would never
hitch them to any thing which he knew they could not draw ;of course they were not discouraged ; and he hardly ever spoke bouder to his oxen than in a low tone of common conversation.
6. Ho would frequently speak to them soothingly, and encourage them when he had a hard job on hand, which was often the caso Alter making a henvy pull he would sometimes pat them on the back; but I rarely ever knew him strike or worry his team. He carried a slender goad with a short lash to guide them with, and a memo swing of the whip was sufficient for his purpose.
7. I have known several such persons in my life, and I do not besitate to say, that any person who so mannges his teams, will get more labor at less expense, and with more easo to himself than by the ordinury bawling, whipping method so much practised in our country. All the difference with these people is, that the one undorstands and studies the nature and disposition of his animats, and the other does not. "An even temper and a steady hand," ought to be the teumster's motto, the world over.

## Section XV.

1. Treatment of Mileil Cows. - There is, perhaps, no part of the husbandry of our country so much neglected as that which relates to the providing of provender for milch cows on our farms. On many estates, even those of magnitude, the chicl part of the lood, if not the entire, which they get, are the blades, the tops and the husks of the corn, with an occasional gratuity of nubbins by way of a holiday feast.

2 . 'Ihe consequence is, that if the winter bosevere and protracted, there is nine chances out of ten, that every cow long before spring arrives, is either dry, or so near it, that the milk she will give is not worth the trouble and cost of stripping, so that many farmers with half a dozen or more cows have neither milk nor butter suffcient for the domestic uses of their tables, during the latter part of each winter, and by the time that the cold and bleak winds of March arrive, many of the cattle are on the lift. How is it possible it can be otherwise?
3. There is little or no succulent in the food we have described in its dry state, and consequently cows fed upon it, must, for the want of matter convertible into inilk, cease to yield it. In every other country save our own. it forms a part of the business of every furmer or planter, to provide full supplies of nutritious food for his stock of every kind, and for those which comprise the dairy cows, especial pains and care are taken to provide a sufficient quantity of st ib roots as are heartening and succulent, so that by thus pro-
viding a substitute for the grasses of the pasture, or the soiling stalls or yards, his dairy, even through the dreary and inclement period of the winter, may continue to contribute largely to the comfors of his fimily, and to the increase of his lortune.
4. No good farmer, then, will keep more cows than he can well keep, and in so keeping them he finds his trouble rewarded, and has besides the satisfaction of knowing, that in thus acting he has fub tilled an obligation imposed on him by every humane consideration, and discharged a duty required by Him, who, in placing the beasts of the field 111 sabjection to man, enjoined that he should extend towards them his kindest protection and care. We trequently hear gentlemen complaining of the dificulty of procuring such cows as will make prolitable returns, and of the impossibility of keeping them to ther milk during the winter. 'I'he renson is obvious.
5. No cows and we care not what her breed may be, whether she be of improved Durham short horm, tho Devon, the Alderney, the common cow of the country, or any other - we say no cow can be kept in the pail, unless you give her something which will both noursh her system and replenish her ulder. 'lo make a cow yield a liberal supply of milk through the winter, she should have in addition to full supplies of food, wholesome hay or fodder, at least half a bushel of roots of some kind, or an equivalent of cabbage or kale per day.
6. And it the hay should be fed long, each cow should have, at least two days in tho weck, messes of choppea rye and cut straw, to be either stermed or mised up with boiling water, and permitted to remain until it be fermented before leeding. 'The ambition of procuring line breeds of animals of all! kinds, is one worthy of every praise ; but that of taking good care ol what wo have, is equally if not more laudable.
7. Besides these considerations, the interest of every farmer is always promoted by feeding his cows well. If fed in the niggard manner we have described, their keeping, such as it is, is a dead loss to their owners; they make no manure worth speaking about, and the animals themselves are comparatively valueless; and if kept generously through the winter, and sheltered from the weather, each cow will give her two gallons of milk per day, and make from four to seven pounds of butter per week, which latter should be sot down as the profit, as the milk and cream consumed by the family will more than compensate for the feed.
8. In addition to this, animals thus fed make three times the quantity of manure, and are always in condition to command good prices. We have engaged in no sfeculative theories in what we
have said, but have addressed ourselves to the common sense of the agricultural community in tho hope that they will see the propriety of adopting some plan by which our object can be obtainod.

## Suction XVI.

1. Butter Making.-Every deater in the article knows that the most decisive test which can be ollired of the skill and neatness of the housewise, or the dairy woman, is firnished by the quality of the butter offered by her in the market. If it is firm, rich, marrowy, and of proper consistence throughout ; free from all specks and impuritics; perfectly divested of the milk, and giving out that peculiar fragranco bolong ng to sweet and well made buttor-the vender may be set down as ono that understands her busines.s, and the produce of whose dairy will always commud the first price in the market.
2. On tho contrary, if the butter should be white, light and porous ; full of particles of dirt, flies' legs, cows' hairs, and other namoless abominations; without boing freed from tho milk, and abounding in particles of the curded milk from which the crean was taken-then the character of the dairy for no.tness maty be marked as suspicions, and prices mast be arranged aceordingly.
3. 'The color of butter is no infallible test of grodiess, although that which is monately yellow will, other thing; being equal, bo gonerally preferred; but where the qualties above namod are prosent, be the butter white or yellow, its excellence may be relied upon. 'The quality of butter is not however entirely depending on the ski'l or neathess of themaker---much must bo allowed for the kind of pasture or other food allotted the cows.
4. Foi pasture, clean turf which is mostly composed of white cover, and has been laid down for a number of years, will be found sweoter and beiter than any other; and of tha rost, carrots will make the best colored and flavored butter. No cow, however, lopt catirely on roots, will produce as ond mik and butter, as if tod partly on these, and partly on fresh glass or hay. Every darry woman is sensible that to produce the greatest quantity and best quality of cream, milk should bo kept at a modorate temporio ture, and that the crean should be taken from the milk before the latter sours, as, if it is allowed to become thick, it is almost impoosible to separate the curdled particles thus skimmed off from the pure cream, and these remaining in the butter, seriousiy detract from its appearance, and render it unfit to koep.
5. After the cream has been taken from the milk, much of the goodness of the butter isdepenaing on the temperature of the cream
whilo charning. 'Jhis point in ordinary dairies is not sufficiently attended to, wif noticed at all, only with retimence to the sperdy Gomation wh the tuther. Cream grows warm lron rharning, the rise being irmu finm to six degrecs, aceonding to tho time employed, and thon to wh the cenom; consequenty, if be trmperature of the

 on the purdia! witanturecr.
6. A tw ban:s:ara, by the request of tho 【lightend Agrinul-














 (1) tho cramat at in: intaduction into the chuma.
7. We, num chmming at this degre of hert. gave buter of the
 tive butim: \#hath when mohed and mado up inturnis kept for a

 watolly othered fom the milk with tho hand, and the mills spuczed ost of it. It should then bo put into cohd spring water, and atier benig licil washod, it should be made up into rills with wooden flypors, end pat into cold wator to fim, the shoud not he
 whll han bria is colome :midnos."
8. Tho promice at vershing buter, asperang the newly churnesi article intu clew coll water is called, has we believe n-wor prevaled to any considmable extent in the daties of this commery, whereas in Englam the practice is amost univeral. The the it should lie in the water most be determined by the season of tho your and the state of the butter, an hour being generally consideres sulficient ; and ifter being thus by washing and working completely
freed from the particles of milk and of water, it is salted according to the notion of the dairy woman, and carefully put away for uso or the market.
9. Judge buel coudemns the use of water in the menufacture of butter, believing that it dissipates much of the fine flavor that gives to goud butter its high value; yet in Orange comnt, which farnishes the best buter dairies in the state, and prombliy in the United States, it is a common remark anong the dairy women, "give uscold hard water, and we will not fail in making good buttor."
10. We do not think the washing of butter has been properly tested in this country, or at least the result has not been reported; and that duirymen who should institute a series of experiments with regard to the making of butter in this and other methods, and the effiect on its qualities for table use and kecping, and should faithiully record and report the same for some of our agriculturat journals, would confer a great favour on a large portion of the community. Some experiments made on a small scale by Judge Buel cortainly go far to prove the excellence of unwashed butter for kecping; and had he at the same time put down one or two pots of washed buter in the sane way, it would have gone far towards determining the course to be preferred in its preservation.
11. For salting butter, experience has slown that in butter intended to be kept any time, one ounce of good fine silt to a pound of butter is the proper proportion; where it is not intended to be kept, less may be used, according to the taste of the maiser. Some persons have recommended that to a pound of salt sloould be added four ounces of pulverized loaf sugar. We have tried this method, and found the botter admirable.
12. Dr. Anderson says-"In Ireland, (and fow countries equal some parts of Iteland in the fine qualities of the lonter, ) the use of salt and salipetre is recommended in the proportion of one ounce of fine rock salt, and one-fifh of an ounce of saltpetre, to twentyeight omees of butter." None but the fincst and parest salt should be used for butter, as every extrancous matter found in the salt injures its quality, and produces a corresponding effect on the butter.
13. For preserving butter nothing more seems to be necessary than that tho butter should be put down perfectly swoet and solid, in some vessel that is air tight, and then kept at a temperature between fifty-five and sixty or sixty-five degrees. 'The great secret consists in a low temperature, and the entire exclusion of air. Where considerable quantities of butter are to be put down, or parked, casks containing from 60 to 100 pounds may be used.
14. "ihese should be made of white oak or ash, the wood to be

Doiled for three or four hous b hefore working, and thomughly soaked in cold hard water bomo fillige with batter. lno this tho buter in good orier should bo well pommicu, and if presible the cark or firkinshombe filled at a single operaton. Litang mate buter of dificent quatios or colours shond ant be mixed togrther; in ose anse the bud will cortanly ingure the good, and in the other the mising of difierent coloms prondecs that motled appotranco so abomimable the lover of gow butor.
16. Th there is mot buber plongh to fill the firkin at once. make a strong irine, clear and pure. and covering the buter with this, let it stand until you hoys more to put chow, when the beine may be turnot ofi and the adition made. There shoud be a smatl space left betwen the herdof the cask, when fillod, and the butter ; this space bimuld be filled with strong well boiled brine, introduced through a hole in the head, stoped with a peg, which may be taken out oceasiontly for a few days, as somntimes the shrinkigo ol the butter trom the cask will reguire tho addition of more brine.
17. When observation shows no more is required, the cask should be placed where the tomperature will remain low, and the butter will he fount wi good quality. But where the butter is intended for funily use, the best way we know of keoping it swoet, is to put it down in stone crocks or jars which will hold from thity to forty pounts. The butter shonid be preked close and solid as directed for fikins, leaving a space wione or two inches at the moutl untilled. Then make a streng brine, carefully boiling and scumming it, and fill the jar with it.
18. Place the jars in a eool sweet cellar ; cover them carofully and securely to provent any dirt getting in ; examine thom ocear sionally to see that the bater is covered with brine, aid that the brine rematas sweet and good. It a scum rises on the brine, turn it of and boll it, pating in salt if necossary, and scumming it until pericetly pure, whon it mive again bo turned on the butce. Burter the way hat been kept neanly two years perfectly swont and good ; moed. where coomess is desirable, nothing is bottor addapted to promne it than stome.
19. A for years simen a friond of ours, as an exporimont, filled a small firkin with butter in Jme, heated it up solid, and throw it into hiswhl, whore it renamed till Nowember, and when taken out wis as swet and fresh in taste as whon put in. Perhips whero the means: existed of forming a vat in the dairy-house, and throwing int.) it a stram of eald spring water, this method of keoping butter in water might beadvantageonsly adopted, as the water could not touch the butter, while it would keep it cool, and exclude the
air at the same time. The making of butter is daily becoming a matter of more interest in this country ; any methods which shatl add to the quantity without impairing its quality, or which shall ensure unilorm excellence, will be hailed with satistaction by those who are turning their uttention to this branch of domestic economy.

## Section XVII.

1. Chefse Making.-The greatly increased demand for the products ot the dairy, and the consequent rapidadance in pricethe comparatively stall anount of capital required for a beginning by the sinall furmers of the country, and the avoiding the expenditure necossary whero several haborers are employon-and the spreadiag conviction that the profits of the duryman, if not as great this the profits of the wheat grower, are far more sure, has mduced many oi our bamers to turn their attention to this subjoct, where with proper managenent they are certain of an abondant reward :or their thor.
2. There surely can be no reason why cheese may not be man ufactured in Canda cqual to ally in the world ; yot as a whose there can be no dondt that American checses are far inferior to those protheed in Linghad, and soms partis of Wohnd, Germany and hialy. 'The calluses of this inferiority musi be sought in the different and nefective modes of making practised in our country. We somoimes mect with a checse equal in quality to any thatcan be promect in uny quarter of the globe, but that perhaps is the only one the whey that furnisied it can show oi asimitar quality.
3. such wond at the the resilh, if the basiness of the dairy was carried on upon hised and correct principles; as entre miniormity in the havor and quaty of the cheese, is a marked characteristic of the beat fore:gn dairies. As the result of some observation and expenence, we give it as our opinion, that the reason why there is so much orlmary cheose made in this comiry is, that little or no aticurion is paid to the quality of the remet ; and the temperature oi the mill: being left to chance, is colisiantly varying from day to day, necossarily affecting the qualitios of the curds.
4. It is ovident the remet must have a great effect in determining the gond or bad qualitics of a cheese, yet in many :S not the most of our diapies, it is prepared in the most carelese, not to say slovenly manier imaginable. Eivery thing relating to checse should be kept perloctly ctoan, yet remnet is sometimes used, the odor of which is any thing but ambrosial, and it is well if a close examination does not show licing proof, that the invitation sent abroad on the samted air has not been in vain.
5. Some of our dairy women maintain, that the quality or flavor of the rennet is of no consequence, as it passes off in the whey; but this is a great mistake, as is well understood by those who have paid the necessary attention to the preparation of remet. At the celebrated dairy ferm of Hoyward in England, the rennet is prepared by putting two gallons of brine to six calves' stomblis, at least onc year olil, to which is added two or three sliced lomons, and atier standing a few weeks the liquor is bottled for use. It is not used till wo months old, and the wlder it is, the betier it is considered.
6. In somedaries, cloves, snge, and other aromatice, are added to the remot with the lemon. A stone jug that will ent: tight is the best fur the preservation of rennet, as the air shom be care ially exchuded alfer it is once prepared. 'Po probue mifomity in the quality of the chnese of a dairy, the milk at the aplication of the remet should be of a uniform tomperature. 'This in most cases is let to chance, the hand of the deiry woman being the only guide, whereas a thermometer ought ahways to be used, ond whatever tate be monted as the standard, the milk of each dity should be made to conform to the rule.
7. At the lheyward farm, and in others where double (flucester is promecel, the standard is 850 . From that it rimossio $93^{\circ}$. which is the highest admissible in the manufacture oi" cheose, as a greater degree of heat renders the curd too hert and bim.Should the milk when brought from the cows and pliacd in a tub or vat for beine comerted into curd, be found to have stak below the proper temporature, a quantity must be warmod switicient to raise the wholo to the desired point.
8. 'i'o a negloet of these two things, quality of remnet and proper temperathre of the mills, we believe most of the defects in our cheese are oring ; and if these difficulties were obvintal, we have no doult that many of our dairies would prodnce choese of mitorm grod quality. Now, in purchasing a lot of cheese, the buyer is pretty ceatain of geting some that will be first mate. some that are midding, and some that would chokeadog, so hard and toughare they.
9. We read not long since, in some of the scientific jumrals, that the Commons had succeeded in converting a pine burud into very palatable six penny loaves ; and had they asserted that the same persons hat converted a white oak plank into cheese, wo should have been equally ready to credit them, as we have ourselves seen some that approximated marvellously noar to that same wood in outward appearance and inward quality, so far as hardnass and toughness were concerned.
10. There are but two kinds of English checse, the manufacture of' which could be introduced into our dairies with nuch prosbeet ol sucecss or remuneration ; these are the Gilouceter and the Btilon, and in some of our daibes at present checso neaty approaching these in quality is produed. In making both theso kinds of checse, there are some peculiarities which must have a decided ehect on the quality, yet which hise been introduced in full in very fuw if any datries in this country.
11. 'The double (iloucester is made from the night and morning milk, the crean taken from the lormer. Single (idoncester is made ontirely from the skimned milk. In making filoncoster, the milk is set it the temperature of $8 ; \sigma^{\circ}$. Alter the remact is applied and the curi is had enough to break up, it is very slowly and gentiy cut $u_{i}$ with a three bladed knie, the blades reaching to the bothem of the tui and one inch apart, both ways, thet the whey may come out as clear or greenish as possible.
12. As the curd settles, some of the whey is dipped off; and the curd is agan cut up. This operation is repeated until the whey is ontirely separated, and no lumps remain in the card. The curd is now pit into the vats or hoops, and pressed down with the hand. The hoops covered with the cloth are put in the press for half an hour ; when the curd is taken out, cut into thin sliees, and put into a wooden mill, which tears it into pieces nut larger than small peas.
13. 'This process of grinding is preferable to breaking up by hanc, as the butter is not foreed out, and the curd unites better than when made fine by chopping as is generally practised in this country. In some instances a second similar breaking up or grinding of the curd is performed, and alter being made as line as possible, the curd is again put into the cloths and hoops, a little hot whey or water being thrown on the cloths, to harden the outside of the cheese and prevent it from cracking.
14. Aiter being in the press two hours, the cheeses are taken out and dry cloths applied, and the same operation ol turning and dry eloths is repeated during the day. A striking peculiarity in the Gloucester cheese is the manner of salting. None is used until the cheese has been made and in the press twenty-four hours; and even then is not begun unless the cheese is all closed, since if there be any crack in the cheese at the time of sulting it will never close afterwards. The salting is performed by rubbing the cheess over with tinely powdered salt. The cheese is then returned to the press.
15. The salting is repeated three times with the single, and four
limes with the double Gloucester, twenty-four hours heing allowad to intervene between each salting. The double Gloneester remains in the presses five days, the single four, when they are put on a sheffor floor of the dairy, and turnel twice in twentr-four hours. Cilencester cheese is distinguished for its smooth, close, and waxhke texture, and its very rich and mild flavor. If the curd is salted before being put into the hoops, the salt has the effect of giving a skin to each of the particles of the curd it comes in contact with, which prevents them from intimately uniting.
16. It may be pressed together and become good cheese, yet it never becomes a smooth close mass, like that which is salted atier it is made, being alwars liable to crmmble when cut, a provailing fault with Amorican cheose. 'The cheeso called stilton cheose, is principally made in Leicestershire, near Melton Mowbriy, int tha adjacent villages. It is a very rich cheose, rarely wed for the table until wo years old, when by becoming partially decayed, blue and moist, it acquires the particular flavor which canses it to be so highly prized by the dealers.
17. Tho following is the most simple process of maning it. To the new milk of the cheese-making morning, ado the crean of the milk of the preceding evening together with the remet; the separation of the cura must be carefully watched, and when conplete, it must be removed from the whey with as little breaking as possible, and placed in a sieve, until of such consistence as to bear being lifted up and placed in a hoop without much pressure.
18. The cheese as it dries will shrink up, and must therefore be placed from time to time in a tighter hoop, and turnod daily, until by gradual drying it acquires the proper consistence for making. By this process none of the crean is lost, and the curd not being broken remins more entire and uniborm in its texture. It may not be aniss to romark, that notwithstanding the high price of the real Stilton, and the estimation in which it is held, the preference is rather acquired than nataral, few preferring it at first to the Gloucester, or any other first mate cheese.
19. Formerly various coloring matters were used to give colop to cheese, some of which were decidedly deleterious; but all these have been superseded by arnotta, which is not only perfectly imo. cent in itself, but produces a better color thom any thing else. It is used in various ways; in some dairies it is dissolved in weak lye, and kopt bottled for use; in others it is rubbed on a plate in the milk until sufficient is introduced ; of courso the quantity used will depend on the judgment or taste of the cheese maker.
20. If cheese cracks, the common red pepper added to the butter
used for rubling them, until it is very strongly impregnated, and applied to the defective places, will have a tendenc: to prevent flies and bugs from becoming mischievous, and producing injury. Many dairics within a few years have introduced the practice of putting into their cherse a small quantity of saltpetro, which it is imagined renders the cheese moretender, while it dues mon intract from its flavor. We have doubts, however, whether the addition of any such ingredionts has a real tendency to improve the proments of the diary, and in somo instances they have proved pasitively injurious.

## Section XVIII.

1. Rearma Calve- It is a very genemal pmetice in many phaces, to permit calves to run with, or at lenst to such ti.e cows during the first scason, and a prevalent opinion is that this is the best way of raising them. 'ithe former practue, -that of allowing the calif to ron constantly with the cow--is nhays ingurinus to a milker, for unles a cow has the whole of her mill regulaty drawn from her, which mely happens where it is left entirely to the will of the calf, maless the udder is completely emptied, the lactic secretions are constantly diminished, and the cow wold consequently become evantailly diy.

2 . But where the enll is turned to the cow only at stated inter. vals,-at morning and evening.-and pains are thken that all the milik is withurawn, : though this does not injure the cow, yet it is found to be a very expensive practice; for a calculation will readiIy show that the milk of a cow during the season, ii appropriated to dairy use, would bring more than the whole value of the calf in s.utimn.
3. Giving the calf but a part of the milk of the cow, and wean. ing it early in summer and tuming it to pasture, is no improve. ment ; for unless it has a gond supply of nutritions food, and unless this is continuad through the season, there can te no hope of rasing a valuable ramal. The fequent raw-boned, stunted, ill slaped ones, which we sec, are a sufficient comment on the truth of this.
4. Bxperience has shown, both in England and in this comntry, that the finest animals may be raised in great numbers, without allowing them to suck the cow after the first three or four diys.One of the best practices is the following. The calf is allowed to suck a few days, till it has increased in strongth and appetite sufficient to enable it to swallow readily, during which time care should be taken to milk the cow while it is sucking, in order to draw off
the whole of the milk ; it shonld then be separated from the cow. Some recommend even to remove it when it is not more than twelve hours old.
5. It may be learned to drink by allowing it to suck the finger placed in the vessel. It should at first be fed entirely on new milk. In two or three days, a very small quantity of water, of the same tomperature with the milk, is added, and increanol very grachally day afier day ; at the same time a small quanty of med is to be addeal with it, and this also is to lo gradurlly inerensen, and at the
 sioned by the aduition of the water.
(j. At the sune time, skinmed milk may be mendally suistituted for now milk. 'This shend at first be builed. nod aterwards cooled to the proper temperature, as ollerwise it would be liable to cause purging. The tomperature mav then he gre thally diminished till it in given cold. Thus in a few werks the eate will have learned gramally, but ahnst imperceptibly, to subsint contirely on water or ohd milk mixad with meal.
7. 'The meal at first should be line, but conser may subsequontly be substituted ; and fingly shorts or bran mey br given if necessary. by thus graturlly accomplishing any change, it may be dune withont the least difficulty, at the sme time there will be no danger of ingury to the calf, which wond be the rese if suden changes were omployed. Suddon changes indent, shombl never in any case be adopted, for they are always detrimemal and sometimes fatal.
8. Calves for killing may bo fattened in this wry, and with proper a tention be in as erod condition at an age or five or six weeks, as when fed ovclusively on now milk; and it may in many instances be mimportance to adopt it for fintening calres, especially during the season of the year when milk is mamble. Calves should have at all times plenty of clean litier amal ex end supply of fresh aif. Calves tor the buther sometimes infue themelves by sportiveness ; this may be prevented dy keaping them norly in the datk, as they evince less of a playtul disposition than when exposed to fill light.
9. But they should never on any acenum be confined by tring, for this do s mot abate the restlessness of their disposition, ind they are constumty spending themseives in excrtions to get lonse. It is a very improper but not unirequent practice to give little atention to calvos after the early part of the season, and to sulfe: them to feed on pasture alone, without any other food. In this way they very commonly become poor, and but little prepared to with.
stand the coming winter. Their future value greatly depends on their treatment daring the first your, consequemly they shombld be kept in grod condition throughout the somson ; and thromgh atatumn they should be gradually accustomed w the food on which they are to be wintered.

## Sertion XIX.

1. Appuss-as Food for Stoch-From twenty-five years exporience 1 am more and more convinced of the value of apples as food for hogs and other farm stock. When I hegin to feed my hogs on apples, in 1815, it was gencrally said there was no tourishment in an appic at length it was admitted that there might be somo in $n$ sucel apple. Now there are some that go to the opposite extreme, and ritmbute too much to them, and expect too much from them.
2. 'i'he object of these remarks is to set the business in its true light. There is scarcoly any food, of which hogs are more fond, than apples; but it is obvious that they are not rich food, and it is in vain to think of shutting up a land sharl, and in six or eight weeks making grod pork of him; you must do as prou would do in futting an ox on grass; take a longer time for it, than if you fat him on grain and prosender.
3. I have never failed of making my hogs very fit, and my pork of the first quality on apples. I will state how I manage. I lay up in the fall two or three hundred bushels of apples. I store them in a room in my barn with eight or ten inches of chat under them, and a loot or more of chatio over them. 'Thus secured, they freezo vory little. I feed them to my hogs and milch cows very frecly; 1 give my hogs all they will eat, and keep ther. in good flesh till spring. 'Through the summer I feed them so .s not to lose flesh.
4. After harrest they are turned into my wheat stubhle, where thoy live very well for a few wecks till the apples begin to fall ; by this time I design to have them half fatted. From the first of September to December they run in my orchard, or are full led with apples in the pen. I prefer their running at large in the orchard unless the apples are so abundant that they will waste and destroy them, for they will then never go hungry ; they will hie very quiet and never run so as to waste their flesh.
5. I am aware that most of those who have written upon the subject, lecommend picking up the apples and boiling them; but this costs tou much in labor and fuel, and I have doubts whether there is much benefit derived from it. 'Ihe stomach of the hog was made to digest the raw material, and no doubt is adequate to that purpose.
6. I see no more need of boiling the apples for the hog, than the
grass for the ox ; I havo in a lew cases boiled them, but found the animals prefored them uncoveal, and I suppose they were the most suitable jugeses of what was best for them; itt any rate, in the way I have decommendal, I have made very good prot, with very little trouble; and 1 an certain that w pheh the fruit and hoid it for 15 or 20 hogs, fir thre months, would be a very serious deduction from the protits of the eoncern.
7. On the mantgement of hivo Stock-—h order to gual !against the evils resulting fom having more stock than the meatis of koeping are sullicient to smitall, much good jubment and prodent formo casi shouk be exereised in apportioning the amonnt of stock to tho means provided tor keeping the inmate. In the spring, the husmadman who keeps stock should consider and inquire how many actes of gidaing ground he has at his disposal, and what number of such anmats as he intends to koep that will be likely to supply with pasture.
8. In the fall, he shonld makesimilar inquiries matave to the quantity of has and other tedace which ho has provided lor wintering his stock. Ilow many tons of hay he hats in siore, It roots, straw, stallis, and ofiner articles ol coarse lodder are to be used, then let him inguire how great is the quantity of these articies, and to what quantity of haty may they be suppred to be equivaleut. These should be the first inguiries, and then another should lillow: What amount of stuck is it likely these provisuas will be sufticient to koep through the winter !
9. When these questions are settled, the rule always should be, to keep is smaher number of anmals thon it is supposed the means of keeping might, under favorable circunstances, be sufincient to sustain. 'He remaik which 1 am now about to make is, in my view, of mere than ordinary importanee, and 1 cesire you to regard it accordingly. 'The remark is, that trom being under-stocked injuries rarely result ; and il they do, they are generally small and trifling; but to bo over-stocked is always disarorous.
10. It is liar better to be able to sell hall a dozen tons of hay in the spring ihn to starve your stock through the winter, ant after all, be obliged to buy even the smallest quanaty. It should be congidered too, that close grazing in the summer injures pasture, and scanty fee ag, either in summer or winter, ruins the stock.
11. In order to be able to make judicious apportionments, according to the preceding suggestions, it is very necessary io know, as nearly as practicable, how much pasture, and what quantity of hay ard other keeping, will be required to keep any given amount of stack throug! a year. Should it be inquired how much pasture,
and what quantity of hay are usually required to keop a horso, or an ox, or a cow, through a year, it is bolieved very fow farmors would be ahle to answer the question.
12. It would be well for farmers to acconstom thmenes, much more than they do, to make aceurato onservations, in rese in to these and many other things. I do not cham tw inemaser nithe subject
 the iden of infllibility shoulia be attacined to the cutimuts, which I am about to sumbit.
13. Frow the best lights that hwo ken spred haforo the I am led to conchue, that whon hay alono is depantion on, it matally roquires two toms of hay to wimer a horsio-for onmos: whon as much - for at cow ono mat a half tons - for iwn!momep tho -ane as bor a cow. It is believed, that lior summering nither in tmpor on ox, at least threo acres of goal mature, or on muivilat thento, will be requirel. Fon sammeng a cow, two min a hati weres may suflice-the same for sumering twolve sheep.

## Smotioy XX .



 ed as at vessel open at both ends, in whin thosmphy and the waste boing nearly comal, it can mever bo filical; fitwnang the animal may he comsidered as an attempt to bithe westan, and this can only be the by an excess of supply. The wast hag the same as before, the excess must be great; if it is um, w, the bssel may be filled to a greater height than before, withot ever becoming fall.
2. An improme hint may be tiken from this simile, by many farmers, who know litto of the differenco batwon fioding and fattening. Cathle, sheop ant swine, may be kept for months, and fed with the view to battoning them, withont hait geming a pound of meat. The age at which catlo are fittemed bopmat; upon the manner in whict they have been rated; upa tho paperties, of the breed in regad to tho propensty to daten eation of later in life, and on the circumstances of their being omphet in breoding, in laber, for the dairy, or reared solely fir the butches.
3. In the later case the most improved becols are fit for the market when about three yoars old, and very fow of ny large breed should be kept more than a year longor. As to the cows and working oxen, the age of fattening must necessarily be very indofinite ; in most instances the latter should be put up to feed
atter working three years, or in the seventh or eighth year of their age. The tow on wheh cattle are littened in summer is grass, commonly on prostures, but in some instances cut and consumed in the yard. In winter, hay and roots, and perhaps hadian com, meal, de., iucused.
4. What carbe are fittenel on grass, the best way is to taka young catlle, pariculary hree or lour year ohd steers, in NovenLer, okee, lham in the yad all winter, fod partly whith straw and party with has, hat su asto hate hem in goovorter in the spring: and these cutho shmald me be the larger sizes, but rather middling, such its wif come to about bow weight the bur flatrers when tatiened. 'Bireg must have good patsture lor lome months. But as we cathme common tho coanolts. in case a sevore dronght takes phace, the wit! mandy is a little grain, or mother meal, given daily.
5. I'row wine ase that lad, they will be reatiy for sale by the


 and judachas: a mbeted, probably the most rligible mathod; but
 demmed, becom e it is the mast expensive method on sustaning mimals.
6. Whatover, mermums grain is raised above the quantities

 foeding up the ar in, and purchasing oil cake ant sutt mothe bargain, hen : on timgency which is altogother spectative, is, we think, vers and burnis ; lin the average price of bed in the spring of the year they wirmatis such in expensive method of keeping it up.
7. With respect to feeding, the first rule is, atitlo at a time ard
 short thae, (6) hothaten so well as those which cat leiss, but more frequenty. Itho two great points in ledng animals to profit are, regulatity, am a particular care of the waker individuais. On the litter accenit, how onght always to be plenty of trough or rack room, the twomy may not teed together, in which very common cat e the waker are not only trampled down by the stronger, but thoy are worved and becomo cuwed and spiritless, than which tha comot be a more unfarorable state tor thriving; besides, these are ever compelled to shilt with the worst part of the food.
8. This domineering spirit is so remarkably prevalent among
hormed cattle, that the master beasts may olion be observed running about and absolutely neglecting their own provender, for tho saka of driving the inferior from theirs. 'This is much witener than is suspected, the chief reasen of that ditlerencoso visible in $n$ lot of cattle alter a wimter's kecp. 'Ilse werker amimats should he withdrawn and fed apret ; of the master beasts s!mond be tied up during their ments. With respect to teeting, it is recommended, from good anthority, to begin the course with cabberge and turnips, then to employ carrots and potatoes, and lastly, ladian, out or barley meal.
9. Cabbages are said to possess the property of fattening cattle, not only more expeditiously, but in less proprotion than turnips; an nere of the former having been lom to litten one in four more than the same extent of the latter crop. A cow wall cat from 1 lu to 150 lbs. of cabberge per daty.
10. Carrots. - 'Jhis root is said to have the advantage of turnios not only in its being a ficher and more nourishing fiod, and in yielding ${ }^{\prime}$ larger iroduce, but also in neverboing amoyed by insects and therefore an untailing erop. Carms, when fed with mangel wartel, in the proportion of one-third of the Pormer to two thirds of the latter, with it little clover or other hay, were found to be as ono to five in tittening cattle, when compared with Indian corn, and a proportional quantity of hay.
11. 'I'urnizs. $\cdots$ Catule are fed with turnips, either by being tiod to upright posts within doors, or they are suflered to go at large in the straw yard 'lhis last is greatly the better mode of feeding, the turnips being supplica liom troughs or otherwise, and a shed for sheiter being always at hand, and open to the cattle to repose in. It is well, however, that too many animals of strength and size be not put together, Inst they disturb each other's leeding
12. When cattlo are of value and put up for quick lattening, it is common to cut of the leaves and tails of the turnips, giving the leaves to tho younger and less viluable stock, and tho bultis only to those which are to be fed. Young cattle not intended to be immediately littened, reccive only a limited portion of turnips, their principal provender being samw. By receiving n portion of turnips with their drier provender, these mimals are kept in a much moro healthy condition than if confined to the latter food, and continue to grow throughout the whole seasm, instead of pining away at the time when green herbage can no longer be found for them.
13. Cattle fatten much fister with clean turnips than with such as are dirty, and therefore thoy should never be given without being previously washed. Dirty turuips are also apt to scour them.

As turnips are generally toppod when laid np, these tops may be fed as long is they last. Cattle fed on turnips me said to make better beet than when fed on oil cake, it being usually rather rancid when made up into this article.
14. Calves nre easily bught to eat them, by temping them with small pieces at first, and soon become fond of them; and if fod abundantly with them will hold their condition and eominue to grow the whole winter, which insures the desirable point of enrly maturity. Animals who have plenty of turnips scarcely ever wish to drink. Cows have been kept a whole winter within doors, on turnins, and never wanted water.
15. The :asult of feoding two stoers twenty-fivo weeks upon turnips and straw, the tumips hald Swedes or ruth baga, is given in the (Quarterly Journal of Agriculture. The steers were half and two thirds short broned blowd. One ganed 406 pomels and the other $3: 36$. 'The conse aption of turnips was about 200 pounds per day to each. Fuy fullocks fed seventy days upon ruta baga, at the rate of two busiels per iny cach, eating searecly any thing elve, and rofusiag oil eake, produced for the turnips thus fed कin. They requiren no drink.
16. Fotutoes.-In the application of potatoes as food for live stock, they aro often joined with hay, straw, chall; and oher sime ilar matters, and have been found usefinl in many casess in the intter winter month. They are muci more nutritive when boiled than in their raw state. They were formerly cooked in this way, hat are now very generally steamed. Whathing was formeriy a tedious disagrecable business, but it is now remfered an easy matter, whether on a largo or small seale, by the use of tho washing machine. Every creature appears to relish potatocs, particularly :un a they are steaned or carefully boiled.
17. It is asserted that a cow may safely eat them when in a raw state, to the extent of perhaps filty pounds per day, provided the eyeshave broken and begin to shoot. Whenever they are given raw, however, they should be clopped into pieces to provent necidents. The mility of mw potatoes is, however, doubed by mony. Perhips straw, hay, and chall, might be emploved as a very proper adjunct, with a few ounces of salt added to each feec.

## Suction XXI.

1. Mangel IVurtzel. -"'Two oxen were fed abundantly on Swedish turnips and mangel wurtzel, and the result was that they increased in weight, each of them, when upon mangel wartel, much more rapidly than when upon Swedish turnips, in proportion to the weighs
which they consumed. I next year," says the writer, "tried the same sort of experiment on a single beast, and the result was simflar, but rather mone lavorable to mangel wurtzel.
2. "It is stid that giving large quantitics of mangol wartzal to beasts in a low emmition, has beent tound very dingerous, but I have never found any bad diects from it, either in cattie ur shecp. It sometimes happens that when oxen are tirst put to mangel wurteel, afier coning from the patures, it disagres with one or two individuals; in this :ase I cerse giving it to thess for one or two days, and when put io a agom, it his ahways agreed with then very well."
3. Intiait Curn, Fulian, Oat, and Barley Meat, are all employed in fattening entio. lumitn corn is sometimes sown to be used as fodder in its greenstuic. In this case it is cutand ied out when the ears are in the milk. An acre of ground pertectly managad will, in this way, yicht twatue tons of grean fodter, probably a richer and more murshing form thenany yet known.
4. Some perwens are in the habit oi taking the tops from the corn at a proper season. These should be immediately conveyed to a suitable piace, on tho dys' sun will convert them into the best fodder the fermpruswes. The min body of the stalks, too, with the blates, aider the cans itre harverted, shonid be cut ciose to the ground ware and then th the sheds. Thay should be cator chaffed with the straw-culer, and when given alone or with other foxd, will be a much mote maristug athont.
5. Besides the omanmy mode of toeding Indian meal, it has been suggested, on the mantry of a practice which provails in France, whether they might som be concieniby fed in a dermented stane. $\boldsymbol{\Lambda}$ writer asserls thit usen mado hall iat, or in goon plight, on grass or tump, ate thon dimishet in remeo upon a son tood prepared as follows:
6. Rey: mexil, (for which Indion or buckwhen may be subetituted) with water, is mate min phete, which in a few days terments and becomessur; ;his is then dibuted with water and thickened with hay, cut in:o cl:all, whieh the oxen sometimes refise the first day ; Wut when dry, they dink and preker it. All the husbandmen are decidenly of opinion hat the fatem mach bater because of the acidity. They give it throe times a day, and a largo ox eass 22 lbs. a day.
7. The practice oi grinding Indian corn and eohs together, has been successtilly adopted in some places, as furnishing a superior provender. This is stated to be the case in the west ; and a gentloman in Shrewsbury, Mass., has for sevon or eight years used corn
and cobs cracked and ground together, and says it is the best food he has eser used for fattening cathe.
8. A hitk; town near Frankfort in Germany, is noted for its remarkably fine cattic. They are fed in the following mamer:Straw is cut short by means of a straw-cutter ; it is then pat into a cauldron, with the addition of potatoes and carrots, and boiled till it fomms atha oi jelly ; this, mixed with a sulficient quantity of whter, is sorved to the beasts.
9. 'iho animats sen require no water, andso well dothey ihrive on this mese that they are, nowithstanding the summer labor, ready for the fucher at he end of the year. All sots of grain, which is intended whe diven to cattle or horses, is best ground. In order woban the squathst benetil from it, boil it in water, and while hot add cut stan, stimbing it well, and when cool it will be fit to fecdout.
10. Wr. Lonan, of litchfield, Conn., found that by boiling two guturs of hat sem, which was sprimkled on cut staw that had been previonsly :octhed atad soasoned with salt, together with od eake and oatmonl, and these materials worked together in a tub, with a short prongel firis, he produced a mash on which he tithened a heiter and ox, which netted him more than he had cleared before in fatening oxen and cows lor fiteen years; and he aseribed it chietly to the use of the thax seed.
11. A $\begin{aligned} \\ y\end{aligned}$ Massachuseits (Lot Jecques), recommends from actaid expericuce the tohowing: - Tane two bushels of liuta baga cut tine; one bushel of wheat bran; half a bushel of powdered ail cake; Lagtish hay, bariey staw, and salt hay cut, of each seven bushels; water, ten gallons. Let these be perfectly mixed. (ive a bu'shel of this mixture to a eow of the common size every night and morning, and proproionably to greater or smaller anmals.
12. Hay, staw, corn tops or blades, and even the stalks, afford abondantiy ume nourishment whencut or chafled withastraw-cuter. One bushel of chaned hay at a mess, given in a trough three times in twenty-liur hours, is sufficient lor a horse, ox, or cow, and is equal nearly to a third moro of that quantity given in the ordinary way.
13. Salt your clover and other succulent as well as coarse hay. But over salting diminishes the nutriment. More than a peek to a mon is stiperfluous. Half that quantity is often sufficient. Feeding your stock by weight and measure of food, will not only save pris vender by its orderly distribution, but frequently saves the lives of auimals, too eften starved by neglect, or gorgad and destroyed by profusion.
14. Ruw and prepared Food.-Unless food be thoroughly doprived of its vegetative powers before it enters into the stomach, the whole nourishment which it is capabie of atiording cemnot be derived from it. In the case of the leaves and stalks of vegetables, this is generally chected by mastication ; but it requires some care to accomplish it in case of grain.
15. Hence the atvantage of mixing corn given to horme or cattle, with chation chopped straw, and hence it is supheel by some, that the instinct which fowls have to swallow small stones. is intended by nature for the same object. But the mest efiedual morie of deatroying the living principle, is by the application of hat ; and if rerctable bood of overy kind could be stemed or boited bofore it is given to animals (at least in Winter, and in fattening for the maket or feeding for milk, it is rendered probatle, by antlogy and experiment, that much more nourishment would be derived from it.
16. An apparatus for steaming food for cattle shouid be considered as a necessary appendage to every arable and diary farm, of a moderate size. It has been long known that many sorts of root, and particulaty the potate, become much more valuable ar undergoing this sort of operation. And it is cqually well known that when thus prepared they have been employed atone as a subs:itute for haty, and with cut straw both for hay and corn, in the feeding of horses as well as other animals.
17. To a farmer who keeps many horses or cattle, or cyen swino or poultry, the practice of boiling their food in stam is ro great a saving and adrantage, that it deserves the most part cularationtion. Though protatoes have often been given raw to beth horses and cattle, they wre found to be infinity prelemble, whon conked by stean, as they are thereby rendered nuch orier and monn muritive. 'Turnipsand other roots are also mach improved, as lioud lor cattle, by a similar process.
18. A steam boiler is gencrally made by soting at ketio, holding twelve gallons or more, in a furnace of brich or stone; and over this a bogshead with one head out and the other borer full of holes, is set so close that tho steam of the kettic, when boiling, can only rise through the holes, and thence ascend among the articles to be boiled in the hogshend, and pass off the top. In this way a hogshead, full of potatoes, will be nearly as soon boiled ns a small part of them only could have been, if placed in the kettle underneath.
19. As the kettle must be so closed as to prevent any steam passing off, but through the bottom of the hogshead or vat, a pipe or
tube must be set in one side, through which, with the aid af a tunnel, the water is poured into the kettle, as often as occasion may require. When poured in, the tube is to be stopped with a plug for the purpose. Grain ol all kinds may bo stem-boiled to great advantage, for feeding and fitiening cattlo; but in that case, it is requisite to have the butom ot the hoghead rovered with a cloth to preveat the grain ruming down through the holos.
20. Dy experiments which have been iccurately anade upon Indian emp int pratoes, used lor thtioning swine, it was found that they increased in weight one-thind faster on the boiled than on the unmited food; or inower words, they g timed three ;ounds when fed on tho former, where they only geinct two pounds when fed on the hatier. We are tully of opiaion that steam boiling food, for feoding or tattening ali sorts of catlo, generally inereases the value of the doud as much as forly or hity pier eent.

## CHAPTER V.

## Skction I.

1. Mules for Selectivg Catthe and Bhepp-Mr. A. Young, in a tour through some of the agrientural counties, visited Mr. Hakewell, and oxplains the general prirejples whioh guided Mr. Bahewell in breding beasts or shoeg for the butelor, and at the simo time explains has own stock, which is in the lighest perfection, when examined with an eye to these principles. In all his exertions, his nim was toobtain thatbreed, which with a civenanount of bood will give the most profitable moat, that in whei the proportion of the useft meat to the quantity ofotal is the greatest.
2. I'oints of the beast. - On this plan the points are those where the valuable joints lic, the rump, the hip, the back, the ribs, and after thos the thak ; but the belly, shouders, neck, logs and head should be light, for if a beast has a disposition $t$, latten, and be heary in these, if will be fund a deduction from the more valuable poins. A boast's back should be square, fat and straight, or it there is an rising it shou'd bo from a dioposition to futton, and swell chout the ram; and hip bones, and the belly should be quito straight, lor if it swells it shows weight in a bud point.
3. Ho prefers to have the carcass wellmole, aut shoming a dis. position to latten in the valueble paints. So lar on Sectins. Mr. Bakcwell, to judge whether a beast has tho right disposition to fatten, exmmines by feeling. His friend, Mr. Culiey, who has had an infinite number of beasts go through his hands, agrees enirely with Mr. Bakewcll in this circumstance, and when with him
in Norfolk and Suffolk, was surprised to find lean bullocks and shecp were always bought there by the eye only. So alisolutely necessary is the humd in choosing either, that they both agreed that if they must trmst the cye in tie leght, or to the hand in the dark, they would not hesitato a moment in proferring the latter.
4. 'The form of tho bone in shecp is quite hividen; it is the hand alone that cenn tell whether the back is fat and broad, and free from ridge in the hack bone ; or can examine correctly, if the other foints aro as they should be. The disposition oo jatlen is discocered outy by feeling. Speaking of shecp paricubarly, the points to examine aro the same as in the ox. Flathess, breadh of back, a spreading barrel carcass, with flat belly, and by no means curved and hanging. 'The cosential is the carcass, and a disposition to fatten in the carcass, and perhops to have the least allow on the sides.
5. Suclier for Shep --Thongh it is not best to confine sheep to a close shinter cuen in very cold weather, yet they should, during the cold senson, hatie a shelicr where they cango in very severe wation, amd where they can find a protection irum storms. When sheep lio out in coli storms, their fleeces iecome wet, cold, and often trozen, and they sulfer greatly by such expesare, as lioquently taking eold either destroys them or reduces them to a very feeble state, so that they are of little or no profit to the owner ; he loses the advantage of an increaso in his flock, and frequently bowes the flecee.
6. A leeble sheep soldom raises lamb, for whi'e the mother is in poor lie ht, she can bare! get support for herseli, and of course she camot sustain her oftepring. A poor sheep has a poor fleace, and much of it is oiten lost off before shearing time. Some furmers pay but litte attention to protecting their sheep from storms, supposing that os they have a warm fleece they may be satiely exposed to all kinds of weather. And they can endure a great degree of cold while dry, but when wet their fleeces aflord but litile protection; on the contrary they are frequently an annoyance, being a cold wet mass in contact with their tender skins.
7. It even causes a shudder as wo think how much the poor innocent immals sufier frem cold storms. Clothe a man in good thick garments, and while dry they will enable him to endure severe cold, but wet them thoroughly and then let him feel the rigorous cold of a northern winter and he will shrink from a touch of these garments which instead of protecting him, produce a deadly chill, and this course would soon destroy the strongest constitution.
8. Every one should consider that poor "Nanny," with a wet
jacket in cold weather, is like a man with wet garments, in a sufforing condition, and should be protected. Even when sheep have a sheler to which they can repair in stormy woather, it is necessary that they should be driven under their shetter, and confined there during rimin storms or snow storms that will be likely to produee wetness in the fleece.
9. Thas subject is far more important than it is generally supposed. There is danger of keeping sheep too wam in winter by having a large number sheltered in a small space. They should have a plonty of room and fresh air. Shoep and lambs are much better for roing out and taking exercise in the open air.

## Section II.

1. Samov and Merta Simep. - We can well remmber that a strong prejudice obtained against the Simash merims on their first introduction, and it was not until within a lew years that their reputation for usefulness became well established anmengs. This prejudico was in some measure owing to a want of lanowiedge of the proper mole of treating them, and to their change of climate, which caused the loss of many, and the deleriontion of ohers.
2. The samo projudice has had to be combated in ohore countries, on the in'mation of merino shecp, as in Prussia, :iblesia, Ihungary and Frame, and it has reguiret the perserectiageacrions of distinguished individnals, and the patronage of the geverments, to overcome it. But it has been overeme, and the morinos have obtaned a fonting and a repmation in most of the comatres of Europe; and be circfulationtion in improvement. in several hey have been mato in excel, in intrinsic value, the parent thats of spain.
3. Fremon nerime, at tan phblic sales at hambonillot, in 1834 ,
 solect animats. The writer onsheap in the Former's wrinz, which has just eneme to homd, speaking of the relative merits at the saxon and Spanshmerinos. sqys in strong hargage, "the wamy sheep are decial thy suporion to thase brometh immediately form spain, wot only in thoir moso, But their general form and propensi y to faten."
4. Withent a particle of interest to influence one apinion, we do not hesifte to say, that we consider the intrestucion of the Snxon merino as a valmole acpuisition to our ims, mad. but bey no means to the exclusimothe Spanish merinos. And werondsopersunded, that by adojting the Savon mode of improvernent. thaspanish merino may ho made to yield as fine a flecee here as thry have in Saxony. The Spanish merino has not degencrated in any country, that we have heard of, where he has received proper attention.
5. It is not climote so much as care, that causes the shades of differenco. There are grod and bad Spanish, and bad saxon merinos; and the bad opinion of the later, we mistrust, has arisen from the lact, that in the fever of speculation, many inferior Sasons were imported, amb brought up by men who were not competent judges, and that these incrior animals have tended to bring into disuepute the where family.
6. The Electur ol saxony ranks among the first who patriotica!ly and wionly ievoted himedf to the improvement of tha interior breal of shop which pastured on tho neglected phins or femmen. The indigenmes saxin lireed resembed that of the mighboring states: it consiated of two distinct varietics, one bearing woml of sonse whan, wht the other vielding a flece applicable only to the coasen mannature.
7. In 175. at tho close of the seven years' war, the Electur imporgi (ho bundred rans and two handred ewes from tha most iapurel Spuith herks, and phaced a pate of them on ono or his own fums in the nerghborhood of Dresten ; his purtion he bept mmanat. Ho emieavored to ascertain how tar the purs Spanish breal eand be naturalized in Saxony. The other prit of the fiock were "istithited on other farms, and devoted to the improvement of the Saxm shep.
8. It was soon cuflicienty evident to the onlightencalagriculturist that the merins did not irgenerate in Samen many parels of their won were not inferior to the choicest lleeces of LeonThe best breed of the native Saxons was also materially improved. The prefulice aganst cerery imovation, on the practice of their ancestrus, was, however, as strong in Saxony as clowhere, and the majority of shecp-masters were still a arers to the improvement, but the Electur was determined to accomplish his obiget ; ho imported an alditional namber of the Spanish sheep, and then, adopting a measure unworthy of stach a cause, he conpelled those who oceupied land under himı, to buy a cortain number st the merino sheep.
9. It was not necessary long to pursue this comphlsory system: the most prejudiced were soon brought to perceive their true interest. The pure merino breed rapidly increased in Eaxony : it became perfectly naturalized; nay, after a considerable lapse of years, the flecee of the Saxon sheep began not only to equal the Spanish, but to exceed it in fineness and manufacturing value. A sample of picklock merino wool is 1,750 th of an inch in diameter and exhibits 2,560 serrations in the space of an inch ; while the Saxon wool is only 1,840 ths of an inch in diameter, and presens 2,720 sorrations in an inch.
10. Corresponding with this, and most satisfactorily illustrative of tie account which has beon given of the structure of the fibre of wool and its felting property, and manufacturing value as a dependant on that structure, the price-the true test of value-of the Leonese epraish wool in 1834, varied from 2s. Gd. wh., while that ol the Saxon was from 4s. 9d. to Es Bal. per prounl.
11. 'ho govermment of Saxony very materially contributed to this result by the establishment of an agriculamial school and other minor chouls tor shepherds, and by distritnting certath whelications what plamly and intelligibly explat ned the value and proper mangement of the merino sheep. The government boty fail we necmphish many capricious or tymamisal onjex, but is will
 When it thas identiles ite eff with the best meterests of its shtoccis.
12. In soxum, as in Silesia, ahhough the shop are inms dat the hegiming ve winter, yet they are turned out amb rompelled to seek, pormp mader the stow, a portion of ther bod whnower the weatherwill prail ; and the season must be mansmolly inctoment in which illey are not driven into the courts at heat motwo threo hours during the midfle of the day. 'The tums aml wimbens aro ulso hequently openot, that the sheep houses may be shlitiontly ventilated.
13. Low sheep masters, whose convenience is promotod ly such a systen, kep their lluck in a house or yard during the whole of the yeur, and it is not believed that the sheep sulior from this, either in their heakh, or in the tineness of their flence. A grest quantity of sall is ustally given to the Eason sheen, ant principally during the summer, either in their drink or sprinkled among the fodider.
14. Very gront care is taken by the Sixon sheep mestors in the selection of the lambs which are destined to be saved in order to keep up the flock; there is no pirt of the globe in which such umremiting attention is paid to the flock. Mr. Charles How. ard, in a letter with which he favored the athor, says, that, "when the lambs are weaned, each in his turn is phaced upon a table hatt his wool and form may be minutely observed. The finest are selocted for breoding and receive a first mark.
15. When they are one year old, and prior to shearing them, another cluse examination of those previously marked, takes place; those in which no deiect can be found, receive a second mark, and the rest are condemned. A few months afterwards, a third and last scrutiny is made, the prime rams and ewes receive a third and final mark, but the slightest blemish is sufficient to cause the re-


#### Abstract

jection of the animal. Each breeder of note has a seal or mark secured to the neck of his shoep, to detach or forge which is considered a high crime, and punished severely."


## Section III.

1. Laficestrer Sufer. - 'Tho Leicester and South Down sheep are at the prosent time deservedly exeiting considerable interest among shoepgrowers in this country, and promise, by crossing with the merino, to give the common farmer a race of animats yolding more woll than the Saxon or Merino, sulficiently fine lor ordinary dimestic purposes, and yew more hardy, and requiring less attontion than the finc wooled sheepin demand in our climate. Neither the Pakewell nor the South lown can ever supersede the Saxon or tho Nicrino for wool required for the finer fabrics, and if erosses with these are found better for the common furmer, the fine wool grower need not foar that the procoeds of his llocks will ever cease to be in demand.
$\therefore$ We may hero remark in passing that the manufacturers of this country do not make the diference in prices between the full blood and grade wools that they should do to encourago its growth, or as we fmagine the dilterence in the price of fine and ordinary rotse would warrat ; cortainly not as much as is made in Pranco and England, where the qualities and rolative value of the article must bo understond, at loastas well ashere. Repeated examinations of wool from healthy sheop, and of good quality, show the fineness of several variotios to be as follows in parts of 1000.

Sumon, . . . . . $840 \mid$ South Down, . . . 660
3. Tho principal recommondations of the Leiecster breci, accord. ing to Culley on Live Stock, are "the beauty and fullnest oif form, (\%)mprising in the samo dimensions greater weight than any other whop ; an catly maturity, and a disposition to fatten. equalled by no other bread; a diminution in the proportion of ollal, and the return of the most money for the food consumed."
4. "As a lowland sheep, and destined to live on good pasture," says Mr. Youatt, "the New Leicester is withont a rival-in fact, ho bas improved, if he has mot given the principal value to, all we wher long wooled shoep." 'The same accumte obsorver gives the following as the charactoristic of a true Loicester-a shoep that has precisely the form for an animal requring plenty of good pasture, without any great distance to travel, or exertion to make in guthering it:-
5. "The head should be hornless, long, small, tapering towards
the muzzle, and projecting horizontally forwards. The eyes prominent, but with a quiet expression. The ears thin, rather long, and directed backwarls. The neck full and broal at tho base, where it proceeds from the ches, but ganlunlly tapering owards the head, and being protticulaty no at the junction with the head; the neck seeming to projet strught from the chast. so that there is, with the slightost possibio deviaun, one continued horizontal line from the rump to the pmil.
6. "The breastbroat and full; the shomiders also heomand romd, and no meven or angula formtion where the shmaders juin either the neek or the back, particulaty no rising af the withers, wh hollow bohind the situation of these bomes. 'The amm flow through its whole extent, and even down to the linee. The bones of the legs small, stmong whe apart, no looseness of skin ahout thom, and companatively bare of wonl.
7. "The chest and harel at one decprand romen; the ribs forming a considerable arch from the spine, sha in : ane cases, especially when the numal is in geod condition io in wo the appurent width of the chest even groater then its da, ith. 'Ihe barrel well ribbed home; no :rregularity of lime on tho bank we the belly, but on the sides the carcass very manally dmindinh towards the rump. The guarters long aid hinl, and a with the forelegs, tho muscles extenting down to the heck; the thighas alon wito and finll. The legsof a moderate length, the pelt ab modmenty thin, but sot and clastic, and covered with a grond quanity of whito wool, not so long is in smme breeds, but considombly hace:"
8. This description will be rechgnizel at once es just by any ona who has bad an oprortmity of examining the mas thantilul sheep of that breed that havo within a few yous been introned into Canath. They mark an animal calculaty to nitain grout weight, with tho flesh where it will bo of the :mone valus, and if, ass somo of his rivals asserted, Bir. Bakewn!! smerituen the wh! to the carcass, he certainly brought the hast the himpas sum of periection.
9. This is evident from the many proanms the impared Leecosters have recoived in Binglant, whero man atonam is given to weight of carcnss than it has as remoinet in hais contry. The object of Mh. Culley's improvencons was th do akay the ibjection raised the courseness of the Leicester of at, heft hy Mr. Bakowell, white the sizo and tenteney to fitton thould bo retained, and he has in a mersure succeded, thongh stili not su har as to proluce wool fit for the finest fabrics.
10. Onc of the carlicst and most successful growers of the Lemcester or Bakewell Sheep in America is Mr. Dum of Albany. Ho
has at present, however, but few pure Leicesters, having given his flock a cross of the Cotswold, us he thinks to the improvement of the flecee and the constitution. According to a statemelt in the Cullivator, Mr. Dam's yearling rams produced wool as fithows:-

|  | 2 yearlings, | - | - | - | - | 2 the. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 " | - | - | - | - | $4{ }^{\circ} 6$ |
| 4 | 4 " | - | - | - |  | 34616 |

averaging 10 pounds each. Mr. Wikinson, of Duanesturgh, has a flock of loicosters which averaged on the whole six panals per head.

## sectan IV.

1. Soum Down Smme - Next to the Loicesier sheep the attention of sheep.growers in this comentry heen tirered the the routh Down, a whety highy impred lay Sh. Lithan, who has done for then what Mr. Batisew did be the Lei eners-browh thom to a high standad of perfection. Is athill shemp, on that can
 arrives at maturity, prodnces :Hesh on thmo qudity. and yidhes a
 our farmers. Which of tho croses will eventally be preterable, tho Leicester or the South Down, can only bedetemmed 'y actuad experiment.
2. Mr. lount, in the work before alluled to, gives in substance the following characteristics of the Souh Down :-H'He hean smail and homiess ; the face speckled or grey; the lips thin, and the space beween the eyes and mose narmo. 'Ino ears woll ceserel with wool and the forchead also, and he spare betwen the ears woll protected by it, as a delence against the hy. The ceyo full and bright but not prominent. The neck of a medium length; the breast wide, deep, and projecting innwadbencen the inselegs, indicating a good constitntion, and disposition to thrive. 'ithe shoulders on a level with the brek, but no too wide above. The ribs coming out horizontally from the spine, and extending far back ward.
3. The hips wide; the space between them and the last rib as narrow as possible, and the ribs generally presenting a circular form like a barrel. The back and belly straight. The legs neithther too long nor too short; the bones tine, yet giving no appearance of weakness, and the legs having a speckled grey or dark color. The belly well covered with wool, the the wol coming down before and behind the knee, curled, and free from spiry projecting fibres, or coarser hairs.
4. In reply to a number of queries, on the qualities oi the sev-
oral varieties of sheep, made to Mr. Rotch of Otsego, one of the best breeders and skilful judges in America, was the following:"What breed is most harily and best adapted to our climate?" 'To this query that genteman roplied, "South Down, cermmly." Mr. R. says they are a medimmsize, fine in the flece, which averages 4 lise in the ewes, the bucks rench to 7 liss.
5. In quality tho wod i., equall to hatf bood merino. They are excollent masens and quick fociers.' Owing th sume conse the South bawn homeme yet income so woll know in this conntry
 from the isary moture of its comathation and the quality wits worl.
6. 'Phis wise mey fore fom in the fact, that the hat blood





 agrembmrises har Smen thereded to the improsment of their best worbel attive inecris, inong which the smath bown stands pioominent.
F. Admitting, of whish we think there can be no reasonabio doubt, hat lice Exuth Down is a sheep omoro hiady constitution, is a hetap matse, yoids as much wool, and that of as guod quality as tioh haliblod momo, it is clear an alvantage would be derived be mintituting the first for the last on om lamms. The weight oi the semih ] ow and the hat bloods womb prohably not vary bery esentialls, but the matton of the bimor is suill to be of a quality liar superime to the lattor ; and as the use of maton is yearly becoming more common, among all classes in this country, it of iswelf linulishes a sufficiont reason why more attention should be pard th the subject.
7. The introtnetion ot improved animals from abroad, by crosses or otherwise, camot be tou highly commended. 'The result camot be wherwiso than boneficial to the country; as by it the kinds best suitol to the climate, and the wants of the inhabitants, will most spedily be obtained. All experience shows that thero are so many circunstances of soil, pasture, climate, and attention to breeding, to be taken into consideration in estimatiag the value of any particularbreed of animals, whon that breed is to be transplanted to another region, that success must of necesity be uncertain ; and the adaptation of the animal to its now abode can only be decided by actual experiments, fairly conducted and continued for some time.
8. In estimating the value of imported animels when compared with the common breeds of the country, it shoubl wot be forgoten that they are usmally, nad always ought to be, packed and choreo ones; that they are in thohamds of men whe are athle to give them good kegping and ni the kind best suitel th thei:" wats; ; and that in the hands of ordinary famers they wobld mot rewh the standard of excellenco they now do. It these things are overlonhat, an exaggernted citime of their valuo is apt to ho entortained, and disappointmont will be the lot of the pureinaser.

## Secrion V.

 oxercises :0 prowerlal an inflacne on the shope nis tim winter and spring, and ho ane wheh so clearly determines the protit or loss which sheil atse to tho wool romwer. Shecp may be kept fat through ato stmmen, ant there is a dosidal atmomarge in having any inmal in fine odder at the eommoncemment of winer feoding, but if the proper eare, fond, and attemton be mot pait wh the flock
 ous lass will enstro.
 depending the increase, dur if wo attention is, paid w tho ewes, if they are sulfered to take heir chancewitheoltsand mathe, if no extra food is given them, or sheiter movilat, the probulth!y of raising lambs is very smoll iadeed. 'The grand soncot of mising lambs is, if carly in the scasm, providing the cwes with a wan sheter, nod nt any seasm, providing food that will eathe a sublicient and timely supply of mills.
3. It will but do to depent on dey hoy and smon, is food and drink tor the ewe, ind a fow pronthes olfallow ew's mitk bor tho lamb, if wo wish to find the flock in gont hem it s'mutigg, or seo lambe phyine in tho green lichs on Hay day. All stoerp requiro shelter, and 1n the ewe, it is indisponatio. All shopp shond be supplied with drink or rather the water shond bo so sitmated that they can dumk when thoy plonse, but on supase hat milk to any
 prepostenas, and in tho end will prove ruinuts th the man who bopes in such a way to rear his lambs.
4. Swos previnis to yerning should be semandet from the allock; they shondi receive an extra supply of low, ant if possible some of it should be greon food, such as cent turnips or potatees, with occasionaly a litte salt sprinkled over then, and still better if a little tar is put to bothom of the troughs from which they re-
eeive this food. Where turnips are not to be had, hran, chopped onts, or coarsely gromid com, wet, may be given them. 'They should have water, and if at yeming they still sem dudicient in ailk for the lannes, somo of the nowve kints of fient may bo mixed in warm watm and given thom, eare being taken to give a small quantity often minher thath were great a supply at once.
5. 'There is a penceal impersion among famers, that early Iambs canmot be raised. 'This is a mistuken opinum, an shand not
 required in danary or Fedruary, than in April or diny, but it is also true that shelh hembs ane worh much more than bato ones, that they wimer better, and if rased for the mumet as many hombs now nre, the price, ty taking advantage of tho matket, wit be nearly doubled.
6. There can ho no doubt that a general improvement in the management of sticep has taken phace in this comntry, but when one sees in the spring neep with the wool dropping from them; the skeletons lying abrut the burns, piched by dugs, hogs, and crows; and the apple trecs decomted with dead lambs, he is compelled to admit that there is still rom for improwement and relina, and that this mast viluable of drmestic animals cees not at abl times receive the care and attention it deserves.
7. Wushings iherep. la orter to have wool command a goced price in the mindet, or be in the best state for manmincure in the family of the bamer, it is indespensable that it be well wanhed; and we have reasom to doliove that this process is but very impericetly performed in propurnon th its importance. In the first pace, sheep are usually washed ton carly' in the season. The weather showld be warm, and the water shond have thene to to freed from its winter chill, before the washing of sheop is amdertakenSheep now rarely lose their wool in the spring ; a reason that onee was the most suteresthlly wed for early washing, and no kos from this callse rises from waiting.
8. The health of the sherp, and the comfor of the washer, both demand that regard should be had to the temperature of the weather and water, betore the process is undertaken. Sufficient attention is not paid to tagging the sheep, or freeing then from hardened and accumulated dirt, belore warhing. Neglect here will always cause a serious loss, by injuring the quality as well as lessiening the quartity fit for market.
4. There is great deficiency in enother repect which should be corrected. Sheep are frequently washed or rather wet, as if the process was one intended for a frolic, nut for use. Only get them
into the water, and in the opinion of many, the grand ebject is nocomplished. Now sheep should be washed clean; if they are not, they may as well be let alone, and the time and tronble of wetting them satred.
11. Soap shouldbe used when necessary, and the whole business should be combucted with care ind attention. No more should be pennod at once than can be washed well and thoronghly within a reasonable time; to shut them up and keep them eight of ten hours without liod is aneedless piece of erueliy. It is the prartice of many to drive their sheep some two or three miles to a lake or river for washing, bat the practice is a bad one and generally entirely neodless.
11. Hy driving them so far they frequently tiro out, and always get more or lass dust and dirt fastened to their wet wool. There are but few lames, certainly but few neighbobnoods, in which clear running brooks cannot be found, and with those, places for washing ore casily made. A tub four or five feet in dephtand as many in diamete:, such as is frequently used by the fumor for holaing rain water, a trongh or spout large enough to consoy a suitable quantity of water to the tub, and a pen for farding tho shoop are all that is required; and these can in most cases be provided in a tew hours.

1: At such a tub two men can wash easily, without being seriously wei :hemselves, and with an entire command of the sheep at all times. Gome preter vats of a suitable depth; but the fict that rats are as expensive as tubs, that they can be used for nothing else while tubs when not wanted here are aliva: uscful elsewhere, would srem to render tubs preferable.
13. This is, however, of little consequence compared with the benefits of washing sheep at home; atystou which when once adopted by the famer will be rarely rachanged for the latorious one of driving abroad. This method of wewhing requires i ut little water ; just enough to flow off freely, washing away be nift and other impuritios, enher over a depressed part of the marran of the tub, or through a suitable sized opening near the botwn. We are also convinced that a mojority ol our kemers shear their sheep too soon after washing.
14. If sheop are washed as they should be to render the wool clean, much of the natural yolk or oil of the wool, a substance that contributes much to its smoothness and ease of working, is taken away. If sheared too soon after washing, the wool is destitute of this principle, and is apt to be harsh or tender, an evil that the greasing given by the manufacturer, but imperfectly remedies. Sheep should be allowed to run several days after their wool is dry,
alwnys being careful to confine them to clean pastures, and the benefit of the delny will be folt not only in the superior softness and quality of the floece, but in the greater weight and consequent profits of salc.

## Sketion VI.

1. Essay ox Swive.-Othe hog tribe, (S'us) \%onlogists describe no less than six spectes, some of which are so entirely distinct in their gencral habits matapearace as to have prevented their ever breeding, or cyen assaciating together. Five of these species, however, can mily be ergatded as matters of curiosity to us at prosent ; we shall thereline pass them over, and cone at once to that known as S'as serofa ferus, the common wild hog of the Eastern Continont, and from which has directly descended the domestic among us, in all its countess varieties.
D. Lixespt with those nations where its flesh was forbidden by their hagivers. the widd boar has ever been considered a great delicacy, and eagrly sought fion, not only to gratity the appetito of the epiente, but as afloplys in avorite amusement in the chase, that was convidered equelly moibe, dingerous and nxciting to those who followed it. Among the emblest feats that Kenophon hinks worthy to record of his favorite hero, Cyrus, is that of hunting and slaying the wild boar with his own !and ; and the greatest of modom heroes, Napoleon, thought a chase of the same kind highly indispensable to royat habits, and to assist in qualifying him to assume the imperial purphe with the greater dignity and grace.
2. The time of the domestication of the hog. like that of most other mimals, is hast in remote antiquity, bit that it must have been very euls, we inter from the bact, that the Greaks and Romans offered it as a graterul sacrifise to Ceres, the godiess of agriculture, in ordor to propitiate her smiles upon their lator:, previously to comanacing their harvents. 'That distinguished philosopher, Aristole, als, gave himts on the raising and breeding of swine, which are worthy of regud at the present day; and Varro and Columella, if we could substitute sat, thin hair, for "thick, strong and erect bristlos," have described the main points of what we may now consider, with ail our modorn improvements, a very perfect hog.
3. The reasons that were supposed to influence the forbilding of eating swines' fiesh, as well is that of several other creatures, under the Lovitical law, are, thet the children of Israel, at the time of their exodus oat of Ligyt, were a very dehased and gross people; but feen grains and vogetabies were then cultivated to vary the food oi man, and as they wore destined to inhabit where a generally
hot and dry climate provailed, a great indulgence in theso meate would tend to thisken the blow, check perspitation, and consequently, especially engender serolulous, scorbutic and cutamoms discases.
4. We find among the begrptians, that some of the same prohibitions of hoses were made sered by their priests th that singular people, with the intention, undoubtediy, of more ceramly perenting their being usod as food, and mainly for the reasens spoken of above. Pork, however, as now usurly made, and above all eaten in the moderate qumtions that it generally in, and acompmiod by so great a variety of grain and vegutable food, can no ionger be considered ohfectionalse, esperially in a cool chmate.
5. As it is one of the must palatable and suburatial of meats, the cheapest and easiest reared, the longest and most certain to keep, it has at longth beonne the most necessury item of the stronger food of civilized man, and whithout donbt the most important of the stoek groner's products in the candian Provinces. of all the known varicties of the dumesticated hog, the Chinese haw long been celehrated as decidedy the most perioct in shape and general comtomation.
6. How this brect was furst producel, it is impossible now to siny ; there is no dulit, however, in my mind, but that, like the Arabian horse, it was origialal, and that the best specimens to be frund on the bitstern Contincmi, are the identical counterparts of the pair that descended with Nouh from tho ark, after tho subsiding of the delago, ant that all other varicties have deteriorated ly ranning will, or from carelessness in feeding, and neglect add inattention in property breednor,-the goodness of the Deity nover forming in the begiming tho detestable brute that we see romming in every dirction the country round, like a veritable camndat, soeking whon ind what he miy dovour.
7. But be this as it may, the Chinese, as we find them seattered along the consts ot the Celestial Empire, and on the afiacent islands, vary preatly in size, and somewhat in shape, and are of every shade of color, liom pure white up to jet black. Tho most approved varieties, howover, may be thus described:- $\Lambda$ fine head and snout, with the face somewhat dished, small upright ears, a somewhat short and very thick deep carcase, large limms and shoulders, short legs, delicate feet, soft thin hair and skin, a tendency to grow and fatten almost upon air alone, and to give when slaughtered very little offal, and the sweetest and most delicate of pork.
8. As now bred by the writer, their live weights full grown, ave
generally from 200 to 300 pounds ; occasionally they have gione as high as 400 pounds, but this is extremely rare. They a:3 equally hardy, ciduring heat and cold as well as any of the natiso swine; are fair breeders, usually having from six to nine pigs 4 . a litter; mature casily, and can be fattened at any age. Whet ${ }_{1}$ er in field or pen, they are ever quiet ; the loosest boards kere, them up, ind the porest fence secures them whith thein bounds; and like lingenes in his tub, they seem never so haply as whe.. left alone to slepp, and dream, and cogitate on deep philenophy.
9. Their moat is excedingly delicate and sweet. In England t bears the highest proge, and is called par excellowe the "gentleman". pork." The improved Chinese will yiold a grenter amount 1, pork on their food than any other breed in existance: and it is an allusion to this ci cunssance that the able editor of the Mang Farmer, with no losi !ath than juitice, calls them the "poor man's hog." Buave of this bred are highly recommonel torross w.... the common the of the esuntry, as they most rap ifly inprove tin? quality of tho meat of their progny, fine their luins. give breado ound depth th the carcase, quirt their divpositions, and add a greas.. tondency to mature quickig, and faten kindy, and at the sume tim: increase their sizes.
10. Many athents have been made in Comper to improve tia
 as the writer has beenatho to kollow them up, inare has hom fith!
 resort hats been had immediately to the Chinese bar. 'Thes.
 her, in this ipminem, as fir bevond hor neightums as in that as the imprownat of hase, catle and sheep.

 form a cooss more on lass deep with the large vante Chiman byen
 Coshire. But the most decided improvenont, ani which to tho care and skill of recent breders hats now near!y attanom ; criber tion, was that of the black Siameso hour up,n the off stuck of Rerlshinre county.
11. 'this, I understand, began about forty years sibee. The Derkshires were then mostly a long, large, charse, hop eared home of a sandy or reddish brown, or white, with back sunte, and cou. ang up, not unfrequanty, to the high weights of 306, and wen 1003 pounds. But it was a slow feeder, long attaining to maturity, is enormous consumer, and in common with most of lingland's other
variotios, an unprofitnble beast. Yet possessing rather thickor hams and shoulders than the other kinds, a longer, fuller body, and its meat abouding grealy in lean, the little, short, fat, black, mouse-eared Nimmese told well in the cross ; and thas protuced the dark, splendid Berkshire, that at present occupies the same rank among hings that the Jmbams do among catte.
12. 'they motare quickly, and like the Chinese, can be fattened ot any nge, ond still may be selected, when desirahin, for great sizes; are prolitic breedersand the best of turses ; thrily, hardy, and of most excellent eonstitntions. They are fine in their points, bassessing remarkinle thickness in the ham and sthonder, and show a romm, smonth bared of goot longth, that gives a lare proportion of sido pork. 'ihey have lithe ath!, thin rind and hair, and fow or no britles. The mont abmonds still giontly in musele, and the bams particularly are highly prizal, commandieg an extris price in molict. bemer vers tomder fuicy and lean.
13. As now bred, the Pertshimes vary somewhat in son, appearance and imturity. 'llomo with the finest houde, at diacd face,
 ham, and shorter bolv, mot resomblo thorimnese anenstor, and
 Gate mat, and io we satisfol with moderate size, are urdoubtedly io ben prelemet.
14. Bawors afthsrieseription, if well led till 18 monthe old, cosily
 most eacerly souch for at the smithtield matiot, and are prothably an the wholo the most protiono for both cossumer and producer. Whers, generally of a straigh nose, whit a enarsor head, and ears
 a. Inawth of body, imelno more to the ommind Berkshes, attain Asher woights, abl roguirn : longer then to mature. There are whuldis, howner, oceasionally posseswing all the fine requisites wi the limmer select ons, tognthor with the large size of the latter.
15. We now come to a pair of fatting barows of the iminproved breets of swine. They abound throughout the commer, under a variety of most euphonions $r$, but we may suppose those of Abigrator and Land,ike about as ippropriate to them as any others 'rat conld woll be applied. They are not, however, introuced here for derision, of for the purpose of getting up a caricature. as tho ariginals can casily be found ; but to show that there is something ite breed, and to illustrate the difference between a good animal and a foor one of the same variety.
16. They have long, penked soouts, coarse neads, thin chest
and narrow shoulders, sharp backs, slab sides, steep rumps, and mengre diminutive hans, big legs, clumped feet, with the hide of a thinoceros, and the hair and bristles of a penmpine, and as thick and shagey as a herrs. How ean such anmahs harime and above all ever be fithned ? To attempt to make thom do rither, as tho writer fombd his onst in his first cfforts at liming, were time,
 at digestion, whencoming thene foxd in the comech the worishment ; and it aney has, whe tommand of what wombit all go? 1uati?
17. So, ininem- hat otbl, hones, rind, briotes mud hair, with a

















 bushel, than io put it into sheld dotall! wombles bato.

## GBorton VII.

 possible in choosing at boar, reterneo sthombthen ho hat to at strong, masenline ippewance in him, even at the risk of gettug
 Boh sexes of the improved breets on swino ae, if altowat, precocious in breating. Th prowent this, tho boar mig mos ho sopareted from the sows, as suon at least as he has attin f four months of age and it is bater thenceforw ard to keophimentirch by himself.
2. For this purpose, a close coveret, roony pen, with a plank floor, and plenty of liter is provided for him to foed and sloep in, and retire to whenever ha heases, and mate comfortably warm in
winter and cool in summer. This communicates, by a door that can be opened and shut at pleasure, with a yard lor him to root and exercise in, and a strong upright post or two to ruh and seratch against, and a slough hole to cool and refresh himseld by wallow. ing at his pleasure during hot woather. If his yad could be extended to a grod grass pasture, wih cloar, sweet water passing through, it would be still better for the boar to have a run there, and morn conducive to his health, vigor and longevity.
3. The Sow. -When growing pigs or shoits, and kept up in pens, mot more than half a doza sows ought to ned together, yet in large pastures any reasonable manber may be sutfered to associate. liut when full grown, and enpecialiy if of a large size, two at most is suflicient togothe : in commencnt, and it wruld be still better that each one had an apatment to itself in the piggery. UnIess the pig was lean, and the ohect was to smewh tine her, it ought not to bo alowed to bredd, if o Chinese, thllwede, and if a J'erkshe, till eighten monto ohd; and it somoting extra large

4. 'Where is then ha check in :math, nat the fint hiter of pigs
 riou of their gration is site weme, and the han that they are stintefte the bar sh whid be ne fown, and ono manth at east pre-
 phace atone, cither in mastane or in pan, simitar th that described for the boar, be kopt in gounder, and strictig' wathed whon expectedthbring !ath.
5. As $\mathrm{s}^{\circ} \mathrm{m}$ an wropped, seo that the pirs are cleaned and take the teat, and the dam rif of the phatenta, and that er rried ofi" and turied. Whe should then besopplid with shot chtiluer in a modcate quanity, so that hea vomig will not g't haged in it and be smothered. The watching shond comtimu severel ditys, till the pore atrong and lively, especially the sow be inll grown and latoy, otherwise they are in danger of boing hia and trod upom, and killed. One pig more saved than leaving tho sow therself, amply repays al! this extra attention.
6. The sows being -omewhat feverish at farowing, should have what water they please to drink abont bhod wam, but very little foud, and that of a light kind, the first twenty-four hours. Ather this their feed may be gradually strongthenel, and when the ligs get a weck old, the dan should be led all it will eat three times a day without cloying. All the whey and milk that can be epared, with a mixture of oat and barley witn pea or Indian meal, ui ane part of either of the latter to three parts of the fornacr, is
highly recommended for nursery, tegether with an equal quantity of boiled or stemat vegetabl's.
7. As s. m as the pigs will ent, a small open box frame should be phacel in the pmo, wader which they conld mand be separate from the suwe, a trough set there, and milk with a light minare of mest and co wow regetilide ronts prured out for them. 'This greatly relieves ine s.w, am onds :much to the growth of the pigs ; they wan then withou seouring, lasing comblition in the least, or being caecked in the ir prowsh.
 six weoks and as: later, fin tha lithe milk hat ench then gets is ob-
 bexides it is a ernet eneminemation tu get then oft the som as som

 cromsto hertors. la weming al int one shatd bo taken off, put the dan on chat allowame and in two days take the remain. ing pis away. alom ing it at fire endraw tho benst wise in day,







 tomber. Framando later and ondion will answe.



 for a few days; they will timp boy rarnly seour, and hi they bave a dry wom plane th slegi in movered from the weather, will not take cold or be aillicted with swollen liend and throat, that $t(x)$ often destroys them, Nicht nir is wery pernicions to young pigs, and is the direct ennse of mase ills that affert them.
11. In orver to give them a harlsome shope and good growth, some attention must be had to their food and necommodation. To their snug slreping apartment in the winter, a large dry yard that the sun will shine in when out, should be appended for exercise, and in summen they ought to have the run of a gond grass or clover lot, with pure water if possible passing through it. The best food that can then be given them, is as much millt, whey and house swill
as can be had, and a mixture of oat andi Indian meal about half and hall, with flax-sced ground with it, at the rate of a pint or so to the bushel, or for want of this a quart or two of oat meal may be substithted.
12. All this, and more especially if it can bo conkediseforehand, mixed with un equal quantity of steamed ronts of any kind, such as potancos, beet., 心e, makes the most palatable herhthful and thriving fiond tor young pigs or ohl, that 1 know on. There is a vory great sating in sooking food for hoga, tat making it pretty thin with water; the liquid atone, in this case, snemsth go father with them than the who on the food mesord. Ropented experiments have atablished the fict, that water, candar ithese circums. stances, becomes sery nutritious.
13. sum, is and bran, so mach given th piǧ, is mast misorablo food almen, and copecially ii usen whant being condent. It almost invariany semm; thm, and muder the most inv nathe cercunstances 1 couk nimes: o math thrif from the foeling Chol swill, and above all iatall ironn, is verypernicions ; it is tio e woof several


 with puro watze bo drink at all seasens once of thice a day.

 ehort time rin the puppose of rooting and cating dat. They may not iut, of rather blout ap, quite se fust for this, but hecir flesh will bo mach suprior, and the por animal will be hent fre from the fover that wherwioso much torments it ; ind indiced, it is believed, axcept in rare cases, fom all other diseases.

## Stection Vill.

1. Manesa Pork.-The business of butening pork for sale in practised to suno extent by most of our firmers, and whon performad eonominally, or when the most is mute of the materials given them, is madoutediv a source oi hands.me prohit. Yet all will admit, that when curried on in the samo menter it sometimes is, the peomss of p ork making drains, instend of repleninhing the farmer's pocket. To make lattening hogs proftible, it is necessary, first of all, that the breed selected for feeding shatd be a good one.
2. There is a vast difference in hogs in the respoct of easy fattenins, proper proportion of bone, weight, \&c., and the farmer who thinks to make money by feeding the long snouted, hump-backed siab-sided animals, that are too frequently found among farmers
and disgrace the very name of swine, will find in the end that he has reckoned without his host, and has thrown away both time and money.
3. There are several good breeds of pigs now in the country, mostly protuced by crossings of other kinds with the chinese, and of course having difforent degrees of aptitude to fitten; and these breeds havo Leen so disseminated over the country, that any farmer who is willing to make the efiort, may have some improved animate in his puns. 'l'ino time hits gone by when a hog shomd be kepi four yea"s to weigh lour handred; the business of lattening slithe understool whore hogs of a year :had a half donot reach that momet, and some pigs hure even cxceeded that weight.
4. Nest to selecting gomb brecds, it is requsite that the! shenkd be kept emstantly growing. Jhere must to some tomadation fire fattening when the process commences, or much the with be las: in repationg erpors. and much ford consumed in makibes catatar that should be enghoy in covering it win tit. Ihess should be
 sive use, su fage in proprotion to their mombers that the dea may always be iren, yet not so mach so as to run up to sed, or grew cearse or mati.
5. They whom have the slofs of the kitel:en, the whey or battermilk of the diry, unloss this is required lor young pigs, and is
 mote then giwish. 'The maner in which the matmpats intended for tattening bat is prepared and led, has a decided intheneo on the rapn iny wi the process, and of consequence on the rerregrate profits. It given ont raw mu hof the value of the itrice, is lost:
 of feed is maty hangh out by cooking.
6. Cons is: whont a peradenture the best article ever produced for makinge gond pork; and though other subetances may occasionally be ned $\begin{gathered}\text { ith advantage, and may prodice pork of tair and good }\end{gathered}$ quality, yot oxperienco has proven hat the real com fed meat is on the wholesuperm to all others. Llogs will iation on corn given to them in any state, yet it is he preterabie when soaked, grounc, steamed ur boiled.
7. A farmer ofour acquaintance, and who as celebrated for the weight of his hogs, and the excellence of his pork, is in the habit of mixing oats with his corn betore grinding in the proportion of about one fourth, and thinks that if he had not the oats of his own, he shouid be a gainer in exchanging corn, bushel for bushel, for outs, rather than not have them to mix with his swine feed. He

Thinks they eat the mixture bettor than clear coin monl, aro less 'bable to a surbeir, and of course will tatten much tister with the oats than withont the:n.
3. Peas have mamemilly been ramed mast to corn as an nuticie for making grint pork, and thry are probably the brat substitute fiat has fet hern fombl, hogs feeding woll on them, filtening rapHis, and the pork heingue good purlity. It is almost indisponsabla that peas lambli, ganand or santied presions to feoding. Pota.
 thon cuativated routs, alld are prombly the lorat of the whole tom this pupase. Unhess they are briled, hemesme they areot little value, compratively, hat when eooked they will eive the hags a tine stant
 per...
(9. Who intiming of hogs on apples my ho considerel as om? "i the stmersim innovitions of tho agn, it heing ce:tain that this

 giben a new vilue to owehards, and will probaly cherd their destmetion, wheh in stme sections of the commer has alrenty com-
 mon of intrligeme of the practical results on "pple fenting aro hast embiging, and we have no doubt the systen will be fully ap. proved.
16. Where converient let the hags lis in the orchard from the fime the fant begins to foll. till it is time to gather the mplos for wintor oreider, and they will in most cases he sumt respecinthle pork. Whan it is necessary to put them in the pen, builed apples mixed with a small quantity ol corn, oat, pease, or buckwheat mal, will Hillien up radidy, make them lard well, and fill the famers barlols whis sumd sweet pork of the first qualty. If any, however, are doubtin, they can easily finish off their opple fod pork, as is generally done with potatoe fed, with corn or peas, and with similar results.

Section 1X.

1. Profitable Hens.-On the first of Jonurry, 1836, I had ten hons and one good crower. In the spring I suffered three of them to go through tho process of incubation, which left me seven to make my experiment upon. The three which raised chickens, gave me twenty-four in number, which I sold for $11 d$. each when they were the size of quails. The sooner you sell your chickens the bottor, for they will bring but a penny or twopence more when full grown than when half grown.
2. When tho year was out on the first of last January, I looked wer my account and fimad that my hens had given me ninetys.s. dozon of egge, whish were sold for $\boldsymbol{E} 3 \mathbf{1 9} \mathbf{1 9}$. 6\%.. What we hat used in the tamily mate the whrlo quantity one humdred and ten deven. 'The hosest prico I seld any for was ed. per dazen-tho highest 1s. $3 a^{\prime}$. I Inve asked many famers to guess the number, but they allas: rame thorede it.
3. 'they ank mo whet 1 give them to make them so protifice. I


 1. romat the hane mal bum. 'lbey thonk warm dough wial i: the or ans and kill bem in coll weather.






 What cotions will hill ithor. For the remather ol the time, I give them wits matom wi ram.


 warm water for thron of fan hours, till thoy got well sweilend, and
 and it hallo of ce an thatin using oats instead of corn I saved ss. 9a. to cuery bushol ennsmet.
4. Hens will $\begin{aligned} & \text { at themselves every day when they ean get dry dirt. }\end{aligned}$ In the wiater, when they connot, a place a large box of cond-pit dust in their house and lirep it dry so hat it cannot freeze ; this answers every purpose. Hens should never be kept near cattle, for their vermin will escape to the cattle and prevent them from growing fat.
5. I preserve all the pieces of white earthenware that I can find, and when the gromen is covere $\begin{gathered}\text { with snow, I pulverize it and give }\end{gathered}$ it to them. I tind by experience they will eat it in preference to corn. Water is alwaysplaced within their reach. Last year, according to the best of my calculation, the cost of keeping my ten
 chickens to that of $\mathcal{L}$-leaving a nett profit in one season of £2 14s. 6d. Besides this, eleven dozen of eggs, worth ten pence a dozen, were used in the family.


## IMAGE EVALUATION TEST TARGET (MT-3)



Photographic Sciences Corporation
 (716) 872.4503

## Section X.

1. my Cottage home.

I've been whore pleasure unbedimm'd, Hath intho my heart with joy-
Wher fancy weaves her fairy dreams
Ummingled with alloy;-
Where sorrow's bosom lieaves no sigh, Nor angry passions form, -
Yet-find in plensure half so sweet, As in iny Cottage Home.
2.

I've been where wealth, her flowing robes O'is hd, buth spread around,-
Where smon, tons litre, and sparkling wine, In phentousness abound;-
Where Doves-and Love-and Irapiness, Lits sister-spirits roam, -
Yet-inud no place, so dear to me, As my uwa Cuitago llome.

## 3.

I've been whero Lingland's glory spread
Her Liom-hanner wide-
And with hor blaching canvass hid
'The Gan of occan-tide;-
Whoro from her rocky wave-girt base,
Ilor sky ward towers uprise, -
Yet-yet, my Cottage Home appears
Most luvely in my eyes.

## 4.

I've beon where France, all crown'd with joy, Laugh:; through each vine clad field, -
Whare Olive groves and Myrtle-bowers 'Thoir rich profusion yield;--
Where Ceylon's sivect perfumes arise, And spicy breezes sigh,-
Yet-with my Cottage Home, I find No palace that will vie.

## 5.

I've been where Appenines ascendAnd where the frowning $A \mid p s$, Above the rushing, tempest blast, Up-rear their snowy scalps;Where high Himmaleh's icy peak Stands tow'ring, and alone, -Yet-find no phace in all the world,心o lovely as my own.

## 6.

I love my Cottage Liome! - I love The howers that round it grow-
The rutid smathwer-blushig RosoThe hollyhock of suow :-
The gracel: L Lily-hooming PinkWhe harigod so giy, -
The ibneysuckle-lessomineWhat sweuter flower han they !

## 7.

Oh! dearly-rlearly do l love Ny ginvermviond llome, Ant oh ny lieat its smiles shall bean, Whereer I hance to rom;-
Its woodb:a'd roul-its hibite wahed wall-
Its shill wought, carpet floor,-
On! mucp-hever will I leave
My luvely Cuttage more.

## Sberan XI.

1. Plastim, avd its Bode of Actio:- Lime is one of tho fow primitive carths, the one which by is mion with suphurio acid, forms gypemm or sulphate of lime, and has been proved by Dir Clumplatey bave to consist of a metallic bane combined with oxygen, thongh like the bise of potiwh, such is its affinity for the oxygen of the atmosphere, that a complete separation of the two for any lengils of time was found almost impossible. Lime is solu. ble in about 450 parts of water. Lime assumes a great varicty of appearances, and forms many combinations.
2. With carbonic acid it forms common limestone, the marbles, \&c., but all the other combinations are to the farmer of secondary importance, compared with the one which forms the suiphate of
lime, or as it is most genorally called "Plaster of Paris." This substance, from the astonishing effect it produces on the grasses, and indeed on most plants, when used under circumstances favorable to its application, has becone connected with successfin agriculture in such a monner as to justify all the chlorts which can be made to explain its mede of action, and more thoroughly investigate its principles.
3. Suphate of !ime, or plaster, is composed, in $\mathbf{i 0 0}$ parts, of lima 8:0, sulphuri ard! 1!, and water $21 . \%$. When crsstallized in a puro state, it is comed selonico is partially transparest, and is the
 temel athatater ; hat it is generally fand impure, or mixed moro or hess with foregan shatmen, which renders it, when pulverized or groun, dalder in promention the extraneous mator it contains.
4. In its matural state, when honted, it parts wihh its water of crystalliation ensily, and is then casily redued to powder, a modo of prepartion catomody used whon it first canc into aso is a dressing lor soils, hat which is now entirely supersed dy mills constructat so as to pulverize it without burning. Fortinateiy, platur-al wo de this term in preference to the more sciontiticapoll a m, beconse it is one whichevery buly understands -is one al the most abumat minerals in nature.
5. The use of phater as dresing for prats commenced in (rexmany, whore its valuo was accitentally discovered by noticing tha superior growt and vigor of clover, ne ar a foot-poth daly thodden by some peasuts; who were quarying this mineral, and from whose elothes it had been dusted ovor the grass near their pathimay. From this legiming its uso rapidly spread over Germany and France, and thenco iato the United States and Canala.
6. It is singular, and shows the cautiousness, if nothing more, of firmers in adopting any innovation on estublished res, that notwithstanding the lenerth of time it has been used. the constantly increasing fertility of those soils where it has been appliod the lungest, we lind there is a lurking prejudice still lingerng in the minds of many of our farmers, not to say a serious doubt, as to the propricty of its use.
7. Theso objectors reason thus-"We do not deny that plaster enables a farmer to procure greater crops of hay or grain than he could otherwise obtain from a given pioce ol land in the same time; but as the growth is not natural, but forced, and as no additional ingrediont of tertility is furnished to the soil by the plaster, it is evi dent the farm will be exhaused the sooner in exact proportion to the addition made to the crop."
8. The stimulus given to land by plaster it is said, "is precisely analagous in its results to the excitement produced by ardent spirits upon man: while under its influence he is as much above par in his spirits and powers, as he is below when the excithg cause has passed away." We have sated those objections in their strongest form, and in the manmer in which, so far as om hawledge extends, they usually exert their infiuence ; as, independent of the lact that such has never yet been the efiect of plaster, we hope to be abie to show satisiactorily from the nature ol the substance itself, and its mode of action on plants, that no such result can talie place as is apprehended.
9. We do not maintain that constant cropping of land, without rest, rotation of crops, or returning anything to the soil in the state of manure, would not exhaust it essentially in spite of the application of plaster, but we do maintain, that where plaster is used, even in such an injudicious course of treatment, the exhaustion will not be more rapid, and the profits of cropping will be lar greater, than without it.
10. In the first place, these objections to the use of $p$ lister are wholly foutded on the mistiaken assutpiom that all the nourishment of plants is lurnished by the soil in which they are phated, and of curse the exhaustion will be in propotion to the magnituce and the vigor of their growth. 'ilhir supposition it will not be difficult to show, is a great and limbmental error. 'the sap or circulating fluid of plants enters the roots by their spongioies or mintite tibres, and holding in somution saline, extractive, muchaginous, saccharine, and other matters, rises upwards through tho woot, and is distributed through the fine pores of the stem, and the devicateramifications of the leaves.
11. 'i'hese substances are readily soluble, and plants therefore find no dificulty in obtaining their supply from the earth, but the most mportant ingrediont us their growh, ana' we which enters into their formation in lar greater propurtion than any other, has not yot been mentioned, and this is carbon or chatcoal. Now altiough carbon or coal exists in the earth in immense quantiaes, yet as it is periectly insoluble in waser, it cannot, like most ol the salts, earths, alkalies, dic., be furnished to plats as they are, that is, by solution and absorption in its nutural state. How then is the carson obtained, the presence of which in abundance is proved whenever wood or the stalks of plants is burned ! We answer from the air, and that by two methods.
12. Carbonic gas furnishes the medium through which plants seceive their carbon-a substance which in somo linds of wood
and plants, such as box and the straw of wheat, amounts to nearly $\mathbf{5 0}$ per cent. of the whole--and is composed of $\mathbf{2 7 . 4}$, parts of carbon, and 72.6, of oxygen. Carbonic gas is the air which so frequently proves fatal in wells, old eisterns, and in close chambers where charcoal is incautiously burned.
13. 'This gas is by plants absomed dirertly from the air, in which it is always found more or less, and under cert in circumstances this absorption gres on with rapidity. Experiments conducted by P'riestly, Lavasier, Dary, Chaptal, Ber:elius, all emineut chemists, prove beyond controversy, that during the day carbonic gas is abburbed, the carbon aproperated to the growth of the plent and the oxygen set free, while during the nig't directly the reverse of this process is going on, oxygen being absorbed, and carbonic gus evolved.
14. Carbon thus aboobed directly from the eir, is no of the methods by which this essential article in their formation is obtain. ed by plants; !nt it is by anothor mothod in which far the greater quanity is prownel, and in efloctug which phater becomes so importantanmailame. Corbonic gas is rapidly absometby water at all times, aml wion recontly boilen, watep will absorb its own weight of eaponic gas at the common temprature and pressure of the atmosilare.
15. When thus combined with wher, and furachel in proper quantities, it is reaty for being taken up by tho spongioles of the roots, and thus converted into food, or tho wood of treos and plants. We say in proper quautilies, fo: though indispensablo to the growth of phants, too large a proportion of carbonic gas is fital to thom, aud when combined with water in its groatest possible quantity, as in the prat bogrs of lachat or soland, it is of all substances tho lenst adpoted tu promote vegration.
16. We now see how that any substance which will by its chemjeal action faraish moisture darig the heat of summer, and especially on dry san ly or gravelly soils, will, by providiag a medium for the supply of carbon at the time it is most required, materially aid the growih of phats ; and the supplying the mointure, and thus of course the carbon, is precisely what plater does when applied to vegoiables on such soils as above mentioned. We have shown that plaster is composed of lime and sulphuric acid. Sulphurie acid nttracts "water, which it takes from the atmosphere so very rapidly, as to imbibe one third of its own weight in twenty-four bours.
17. When plaster is exposed to the air in small quantities, as it is when sown, it slowly undergoes decomposition, or separates into
its constituent parts more or less perfectiy. 'The sulphuric acid thus set free seizes with avidity on the water of the atmosphere, which water is deposited on the leaves of plants, and is thus conducted to the roots of the plants, or on the carth itself, where it is speedily impregnated with the carbonic gas already in the air, or which is ritidiy poured from the leaves of plans, during that part of the twenty-four homes which forms their period of expiration.
18. Sulphurie acid produces another cfiect which has a direct tendency to adid the production of moisture. During its development and combination with the air, it has in tendeney to slighty dopress the temperature, as ali acequinted with ho antifial formation of ice will maderstand, an action directly calculated to efficet a greator deposition ondew, and thus ade materially to the absorption of carbon. Lever one must have renarked, that on those parts of a field where paster has been sown, the dow i: moro plentiful, and lis longer, than on the wher parts, and that the clover will be more fresh and vigorous. Plaster, operating in the way wo have described, mantues precisely these eflects, and hatee on suitable soils the great valam of the mineral.
19. Phaster then, if our theory of its action is correct, cannot mapoverish lam. It i: true, that hittle, if eny, of the phaster geres directly to the tormation of phats; atie: the sulphuric acid is separated, a liuto lime is lef, and int, smali a may be its quantity, i.s always oi name in a son by assisting the decomposition of vegotatide mattor; it is by its chernical action in giving the means of separating from tho air a subtance necossary to their existence, and offoring it rony propared for the uto of phants, that its value is derived.
20. The simple facts of the case soem to be these: Plane monst have carbon, whey cramot be healthy and vigmus-ans carbon in its pure state is insoluble, it can only be furnished hem in the state of carbonic acid or $g$ as - this can only bo made arailable to any considerathe exton by enmbination with water. During the heats or summer, and on sunty gruand, this is extromely scarce, and here we find plasicr sicus in to our aid-the suphuric acid of the plaster attracts this from the atmosibere, and by deposiaing it in the form of dew, phacesis in a situation in which this combination with carbonic gas can bo diected in the best manner.
21. Thus the chain of cause and effect is complete, and the whole operation bears the marks of most consummate wisdom and design. If this carbon was one of the original earths, and could in its natural state be taken from the soil by plants, instead of being derived from the air, there might be some plausibility in the objections made
against the use of plaster ; as it is, they must go for nothing, even were not our view of the subject supported, as it fully is, by long experience of its beneficial elfects. We trust, the relore, that no hesitation will be felt by any in purchasing plaster for the purpose of sowing on clover or ineuduw, or for a top thessing on wheat.

## Section XIL.

1. Marl.-In reading a very elaborato report from the pen of a celebrated Geologisi, who has been employed in one of the souihern States for the past few years, we wea astonished to notice that tracts of country equalling some hunhreds of square miles, had been increased in value within the past cight years wan extent of upwards of one hundred per cent., and this great advance in the valuo ol property was attributed amost solcly to the use of marl.
2. From the moment we read this report, we embraced every opportunity of discovering the location of valuable beas, and have in many cases tested the qualities of the siecinens which have come uader our oiservation. 'The only kind wach can be profiably brought into gencral use in this countre, is that which is generally demominated shelly murt, which is erhembly a doposit oi
 taining both stimulating and ioptiking porerins, whith make it so hignly proed in bratain that io is chased nasug tho animal manures in point of value.
3. It exists at the bottom of most ings and imonses, or other pieces of stagmant water, and is uarlly mater layons of a dee; black peatly eartl. The specinens which wo lested were tiken from bons covered with about threo feet of blach vegotablownad, and the ti:nber which grew upon the lad was mincinaly a duariisn growh of black ash. They contamol about bib per cent. oi pure lime, and in one instance oven a much greater quantity
4. If a substance contrining from 40 to 50 pfi cent. ol lime can be had withont any cost futher than the more dmwing, such tarmers as have this substance within their reach wode intid to their advantage to apily it to their cultivated lani, at the ruto of about five tons per acre. We would recommend experiments with marl on a small scate, and by this means its adaptation to the soil on which it is applied may bo fairly proved, und the most untutore! cultivator would soon be able to form a correct estimate of its value.
5. 'The principal ingredient in marl that is found to be valuable to the farmers, is the carbonate of lime which it contains, and it is owing to the presence of this earth that marls effervosee on the ad-
dition of aciks. The most common tost is, to add a small portion afdried mill io $a$ wine glass thll of vinegar. A species of violent formentation will take place if the marl bo rich with limo, which will quite atsomish a person inexperienced in such matters. Thin tost is so simple and chfient, that it is scancoly necossatry for 11 : wamention nthers.
6. W'emight, howorer, mention another: Let the marl bs put into a dras, parly lilled with water, which will expel a por. aon of acel contained mechanically in the marl. When the mat is thoroughly penctrated by the water, add a little muriatic aceid, on spinit af salt. It'a discharge of air should ensue, tho maly nature otho enth will be sulicicuty established.
7. If it fanmer, whoso soil is deficient in lime of calcareous corth, cau procure, ata convenient distance, a quality of marl, boing rich with lane, he will tind by such application effects equally as monencial, ats th moh he had used pure lime from the kiln. When the marl is usuit, at romse the quantity would be required to tw EDenter, hut ondy to an extent equal to the amomat of silex and other substances mot heing eabonate of line, it conteind. The action of mat on the suil will be nore sluw and lasting than iresh hurnt bine, but the benelits in the end will be fomed to be ofually asgrear.

## Shetion XILI.

1. Ponne, avo Posid Mud.-Pastures that are destitute of woter should have artilicial ponds made in them, for watering placera. Goverve where mashes, weeds, flags, and othor arritic phents grow sporatoously : or where frogs are observed $\cdot$ is squatted down close to the ground, in order to receive its minture. (). observe where a vapour is frequently seen to rise from the sme spot. Some syy whorever litule swams of thes are seen constantly dying in the same phaco and now the ground, in the moming aftor sum. rise, there is watem watementin.
2. If a well is made in atoping ground, and the declivity is emagh to sivo it a horizontal vent, it will be worth the husbund man's whilo to dig such a passage, and by means of pipes or any ather conveyance, to carry the water across the light soil, through which it mightotherwise sink. 'Ine greatest quantity of water will be obtained in thismanner, because there will be a contmual strenu. There is no difienty in making a durable pond in a clayey soil.-. Lei a large hollow basin be made in such earth, and it will pre. serve the water that falls in rain. But it is apt to be thick and dirty, if some prins be not taken to prevent it.
3. The declivity by which the cottle enter, should be pared, and
gravel should bo spreat on the bottom. Or it might bo better if the whole, ware pared. 'Ihere are many large matural poads which have outcos in one part, and are supplied by brooks and rivers on the other parts ; but a groater number of smaller ponds, which are perfectly atagrant, unless when they are agitated by winds. Such ponds as the latter, in hot seasons, are apt to become putrid, and contaminate the air about them. For this reason, they should, if possible, be drained.
4. And when the water isnot deep, and an outlet can be mado without too much cost, they should be drained for the sake of reclaiming the soil. This will be of great value, as it is commonly found to be extremely rich, being made up of the finest particles of soil, wafted into them by winds, and of decayed vegetablo substances, besides the mould washed into them by rains.
5. Many farms contain little sunken spots, which are most of the year covered with water, and produce some aquatic bushes and weeds. These are notorious harbors for frogs, and are therofore called frog ponds. They should be drained if it ise practicable. It is commonly the case however, that draining them in the common waty, by making an outlet, would cost more than they would be worth when drained, because of the beight of the land on every side. But in this case, if the banks be not clay, they may be drain. ed in the following manner :
6. Take notice on which side land that is lower than the pond is nearest. On that side, in the bank near the pond, dig a kind of rellar, two or three feet deeper than the surface of the pond; do it in a dry season. If a hard stratum appear, dig through it; and leave digging when the bottom is loose gravel or sand. Then make an open or covered drain from the pond to the cellar. The water will be discharged from the pond, and soak into the earth through the botiom of the cellar, till a scurf is formed on the bottom, that will stop the water from soaking into the earth.
7. This scurf should be broken from time to time, and taken away with a long thandled hoe. Or the cellar may be filled up with the refuse stones, and I think it preferable to the oiher method. If the pond should become sufficiently dry, a small ditch should bo drawn around it and discharge itself into the cellar. The land that is thus gained will be rich muck, much of which may be carted away for manure; and common earth or sand may replace it withwut detriment to the oril.
8. The mud from ponds, when they are cleaned out, has always been ala object of attention to farmers, so far as regards its collecsion; but it mast be presumed that its different properties, and con
sequently the mast judicions modes of its applieaton to the land, we either bu: litile understood or neglected; for some catt it directly ugon the ground mil plough it in, either ber turnips or corn erops ; othersspread itupon old leys ; and mony lay it out in thin heaps to diry, after which thoy mix it with lime or dung.
9.- Upon this it hus been remarked, be an eminont agriculturist, that in reasoning with the farmers upon the cinse or principle by which they are guided in those different proceedings, the reply is generally 'that it has been then' practice to do so-that it has answered very well-and that they know of no better mode of treating it.' It may he observed, that ponds, being usually placed at the bothom of the field, receive, after very hard rain, a part of the soil, as well as of the substances with which they have been manured.

1U. If the ponts bo large and deep, they may also acquire much decayed vegetable mitter, arising from the aquatic plants with which such pools usually abound ; and it near the yards at which cattle are commonly wintered, they must likewise receive a portion of their dung ; such mud is, therefore, particularly applicable tolight soils, both as containing nutritive mutter, and adding the stiplo and consistency of the land. The most common time of mudding ponds, is during the summer months, when it is usual to let the slime lie near the edfere of the pond, until the water is druined from $1 t$.
11. A spot is then marked, either upon a head land of the fiold upon which it is to be laid, or as near it as possible, of a size to rase a compost with alternate layers of eithor lime or dung. If dung can be had, the best mote of preparing this monure, is to lay a foundation of mut, of about a foot and a half in depth, of an oblong form, and not more than eight feet in width, uph which the freshest yard dung is laid to about dounle that depth; then a thin layer of mud ; niter which alternate layers of mud and dung, until the heap be raised about five or six leet in height-keeping the, sides and end square, and coating the whole with mud, ut least twice at different periods.
12. If quick lime be used, and there remains any moisture in the pond scourings, it will be sufficiently fallen for turning, in a few days; but it the compost be made with farm-yard dung, it may require to remain six or eight weeks to fernent and decompose before it is in a proper state for turning. 'Tu orm them, in the first instance, with both quick lime and manure, is injudicious; the former ought never to be brought in contact with the latter-though manures may be advantageously incorporated with an old compost, in which a little lime has been used. It appears the botter mode to
apply it in the latter ond of autum, or carly part of winter, and 10 brushoherow it well atier it has bern hardened by fost.
13. Weat mind or sleceh, has also been used in some places in large quamitirs, and has been fond of so vory enviching a nature, as to amply rammerate for carying it to a consinemble distance. It is genmatly had upon grass in autum, and plonghoo in wiblohs any abdition: in the following spring. It is also found that its eifects remain loweron the land than man ; and ahbugh that which is over-malch is spoiled for grass, yet that never hamens to sem muu.

## Section XIV.

1. Cingey Crop as Manure---An illiternte firmer asked, "Why dows mot ay ton acro fied sink down, as I and my ancostors have tiken more than a hundred crops from it, without ever adding a particlo of manure !". Ho was not aware that the subbstance of his armb, instad of being derived from the eath, was principally obtaned !rom air, and trom the moisture of the soil, so that tho guantity of soil itself was litho affected.
2. 'To prose that plants may be produced from no other sulstances that an and water, let the bolowing experiment bo performed: Procure a ghantiny uf pounded glass, wash it clean, put it in a clean glass vesed, ath plant in it grass seed or grain; let it te olevated from the grand and kep remate from any thing that can trop into it or cume in comtach with it. Mosisten it frequentiy with perfocily puro water, so that not a particle of any thing elso can come near it.
3. The sends will vegetutend grow to a height of several inches; and the ghas will mithe diminished in the least. If the experimont, instead beieg made of pounded glass were made with silex, alumine, and carbontto of lime, in those proportions in which they exist when they him tho most fertile soils, the resslt would be the same. It is tria, that in all good soils there exists anmal mater, the quantity of which is affected by the growth of phats; but these substances kom but a small proportion of the whole, and vegetable matter in soils is as hliely to be increased as diminished uy the growth of plants.
4. It will tims be perceived, that the practice of enriching lind by green crops, is in fact nothing else than obtaining manure from the air and rain:---that phants form a channel through which fertilizing sabstances are conveyed to the soil, which are taken in by the leaves and pass through the stems to the roots.
5. 'i'he roots of grass in good sward ground make a formidable suoterranean forest in miniature, and it is asserted on respectable

 und stoms is well os the roma, oro alse thas :fylt it tho wholn








 sons, onght to be hold in high eatimatom. have alrende liren made in ome nithe preceding seretinas. IVe will smen now whin luse can be mate of it in refation to the calame of whent.
6. If son have a chever pasture, and dexiro to anyly it to tho growth of wheat, it will need bo nther peppration bise that crop, than to betmen overe just at the time of a lime before thotime of sowing. Or if you hase n clower amolow, and drespe wiply it to the sman use, it mey bo allownd to poothe its dirs', find it you plames. its secomet crop of ciower and alter that, be probared for Wheat by simply tuming over its fomberesere lay. 'lhe roots of clover do not form stiff swath, is do those of oher grosens. Where clover crows, the ground is always lonin, friable, and mol?ow. It needs only to be moned over, and sighty harowed, to the put in periectly grond order for any cmp.
7. Not only cen clover bo made to supnesade bibulines and expensive tillage, but it can be renderablaghy bencficitil both to the soil and to the crop. It is supposed that the rootsof chover, as they rot and undergo decomposition, make the very bect of manure.It is supped too, that the roms of ciover ant meciomirelly tipon the soil in loosening its toxture, and the remdering it aceessible to many known and monown contributinns from the atmosplere.
8. But it is $n$ ot by its roots atone that riover is capable of being rendered widutay to the soil. 'Posinguler atrantage its tops can be applied to the same use. If your clanor lichd, which is intended to be prepared fior a whent crop, is supposed to be deficient in the strength of its soil, and to need recruiting. then, it a preture, let no stock graze upon it for several weeks next preceding the time when it is to be plonghed. Let the clover grow ind have time to produce a good green crop. Then, at the proper time, turn this crop under, and, as an improver boih of the soil and of the crop, it will be an equivalent to a good dressing of manure.

## CHAPTERVI.

## Section I.

1. Farming Capital.--The success and profits of farming depend very much upon the command of farming capital, and upon its judicious application. We have not now reference to that syatem of exhausting husbandry,-which has so seriously impoverished the old cultivated districts of our country, and which is fast impoverishing those more recently brought under culture-but to the neto system, which not only aims at the largest profits upon the outlay, but keeps in view the augmentation, or at least the preservation of the natural fertility of the soil.
2. It is easier to preserve fertility, than to restore it to a soil which has become exhausted by injudicious cropping There are two prominent faults in Canadian farming-we cultivate too much land, for the capital employed-and in the second place, we do not take the right method of preserving fertility, by alternating crops, and by blending cattle with tillage husbandry. The consequence of the first is, that none of the land is so well or profitably cultivated as it ought to be.
3. By keeping a portion of our land under the plough, and almost wholly in grain crops-and another portion in 'natural' mendow, the profits of culture are constantly diminishing, and the land is ultimately 'worn out,' while the deterioration is accelerated sy the want of farm stock to convert the forage into manure, and the want of economy and judgment in saving and applying the little manure that is made.
4. To keep land in good heart, or to augment fertility, it is essential, among other things, to consume the main products upon the farm, in order that the dung, which the farm stock makes, shall keep the land rich; that the land be well drained, that it may develope all its resources, which it can never do if water reposes either upon, or within sighteen inches of the surface;-and that it be kept clean. All these matters, as farm stock, draining, and clear tillage, require labour and capital.
5. Instead, however, of laying out the profits of a farm to keep it good, or improve i:s condition, these profits are generally applied to the enlargement of its size, to speculation, or to some purpose foreign to the preservation of fertility, or to the improvement of the soil. The capital required for the profitable management of a farm, depends much upon the quality of the soil, the nature of the husbandry which is adopted upon it, and the state of the market.
6. It is a well established fact, that farm stock can be purchased
cheaper, and labour and every thing else had upon better termsfor cash, than on credit. And it is equally a self evident proposition, that he who is obliged to sell the products of his farm, to meet current expenses, seldom obtains so fair a price, as he who can choose his time and his market for the sale of his produce. The farmer, therefore, who keeps the ready means in reserve, that he may buy and sell when it best suits his interest, has a manifest advantage over him who buys upon a c:edit, and sells from necessity.
7. But it is principally in reference to the improvement of the farm, and the consequent increase of the profits of the labour which is bestowed upon it, that farming capital is particularly desirable. If, by a moderate expenditure in making land rich, and dry, and clean, we can double its products, we effect a saving of one-half of our labour ; or, in other words, we obtain as much from the fifty improved acres, as we do from one hundred acres in the old way, and with half the labour.
8. As pertinent to this subject, we subjoin some extracts from British Husbandry, persuaded that the remarks they contain apply to Canadian with almost as great force as they do to British Clusbandry. 'There is no mistake more common,' says our authority, 'than that of supposing that the more land a man holds, the greater must be his profits ; for the profit does not arise from the land itself, but from the manner of using it ; the best soil may be made unproductive by bad management, while the worst may be rendered protitable by the op, site course; but without sufficient capita? no land can be properly cultivated.
9. 'There is nothing to which capital can be applied with greater certainty of a fair return for its liberal expenditure, when correctly employed, than land; but on the other hand, there is nothing more ruinous when the capital is either insufficient, or injudiciously laid out. In fact-assuming always that the expenditure be directed with judgment-it will be found that the profit upon the outlay increases in more than a proportionate degree to its amount; thus, supposing five pounds to be the lowest, and ten the highest sum that can be employed in the common culture of the same acre of land, it is more than probable that, it the five pounds return at the rate of ten per cent, the ten will yield twenty, or any intermediate sum, at the same progressive ratio.
10. 'Now, admitting that to be true,-and it is presumed that no experienced agriculturist will doubt it-it follows that 10007. expended in !he cullivation of $\mathbf{2 0 0}$ acres, will only yield a profit of 100l. while, if applied to no more than 100 acres, it would produce 2001. ; wherefore, although a farmer of limited capital may not be
driven to the extremity we have supposed, (distress, dums and finat ruin consequent upon deficiency of stock, imperfect tilhge and scanty crops, ) and althugh he may be able to carry on his business with a cerain degree of adrantage, it is yet evident that his prajt trould le increased ly diminishing the quantily of land.
11. 'Wany tone has been ruind by a large larm, who might have acquired a competercy with one of hald the size. It theretore behoves a man to weigh well tho charges with his means, amo not allow himself to be seduced by any jdeal prospect of gain into the imprudence of entering upon a larger farm than his property will enable him to manage with the apirit necessary to ensure success.

1\%. 'Auch larger capiad than was formerly requisite has become indigpensable since the general adoption of the altemate systera of husbandry; for the foundation of that system, and of all good firming, is the support of more live stock than was porsiblo when the land was brought rome to the reproduction of gitin by means of repeated fillows, instad of green crops. The dhatecs being thus confined to thuse incidental to mere tillage, were companatively ligit; wherens, now, there are arable furms without an nere of pusture except perhaps a paddock for cows, on which live stock is kept to an amount fir bevond the sum required for cultivation.
13. 'But the produce is proportionably large ; and more corn and meat are obtained from interior soils in Norfoik, and other counties where the same plan is pursued, than from some of the best land in the kingiom under less spirited nanagement. It is quite manifest that the more cathle and sheep are well mantaned upona any given space of ground, the better it will be manued; and therefore, oltwo farmers, each possessing the stime quantity of ladd, and devoting the same portion of it to grain, he who can support the most live stock, will not only realize the customary profits of that sock, but will also grow the most corn.
14. Execpt in situations where extraneous manure can be procuref, it is only by the union of feeding and tillage, that land can be retimed in a high degree of fertility. Were the system, therefore, more generally adopted--especially on poor soils-of laying down a considerble part to grass, there can bo no doubt that, if again broken up, its productive powers would be found inproved, through the meliorating effects of pasturage and rest ; and while the gross produce would be thereby ultimately increased, it would so fir diminish the expenses of labor, ns in many cases to counterbaiance the cost of the stock.
15. 'The farmer who has the means, as well as the discernment, to make some of the various branches of grazing, or the dairy, an
essential part of : business, and thus nurses a portion of his land, presorves the tilloge in constant hourt with the additional manure; and although the gross anount of corn produced way be less than if more ground were under the plough, yot the acreable produce will certandy greater, and the deficioney will mre than be made up by the supply of cheese and butier, amid of forsh.
10. 'He also divides his risk, so that, in the event of an mfavorable harest, the loss upon his crops will paterthy be reinbursed by the profiton his cattle. It is a common observaton that graziers and darymen are the mast regular rent payers: to which it may be added, that the bane of all necessitusisformers and the ruin of land, aro under-stocking and over-eroping.
17. 'The mulitude of circumstances to the combriered,--each in some degree varying upon every iam, and with every inmer,preclude the possibility of forming any catculation that would be precsely applictible to cery case; but aresuning the land to be of modium quality, and under an ordinary course of cativation, the live sock to be of a good description, wha the inploments now, the requisite amount cannot be computed at less than icsm $7 l$. to $10 l$. per acre
18. 'Less perhaps might do, and in momy cases no doubt is made to do. An active, intelligent man who watehes opportunities for pieking up bargans of stock and implements, who is an tolerable credit, and is ingenions in devising expedients to suphly the wint of cash, may contrive to get through , whore one oi less acuteness would fail.?

## Section II.

1. Fat Anmals and Larie Crops.-The profits of erops, as well as of cattle, depend mainly upon the return they make for the food and labor bestowed upon them. The man who grows a hundreat bushels of corn, or makes a hundred pouds of meat, with the same means and habor that his neighiber expenils to obtain fifty bablols, or fify pomeds, has a maniest atbentage ; and whils the latter morely lives, the former, if prudent, mus grow rich. Ho gains the entire value of the extra fifty bushols, or fity pounds.

2 . This disparity in the profits of agricultural lab ir and expenditure is not a visomary speculation--it is matier of ant, which is seen verified in a'most every town. We seo one fancer raise 80 bushels of com on an acre of land, with the same labor, but with more foresight in keeping his land in good tilh, and leeding bettor his crop, that his neighbor employs upon an acre, ard who does not get 40 or even 30 bushols. This difierence results from the manner of leeding and tending the crop.
3. If the farmer for the convenience of transportation to market wishes to convert his grain, and his forage, and his roots, and his apples into beef and pork, what is his judicious course of proceed. ing? Does he dole these out to his cattle and his hogs in stinted parcels, just sufficient to sustain life or to keep them in ordinary plight? No. He knows that a given quantity of food is necessary to keep them as they are, and that the more, beyond this given quantity, which they can transform into meat, and the sooner they do i , the greater the profit.
4. To illustrate our remark : suppose a hog requires twenty bushels of grain to keep him in plight for two years, and that he can manufacture fifteen bushels of this grain into pork in six months, if duly prepared and fed to him. In the one case, the owner has his lean hog at the end of the two years, for his twenty bushels of grain ; in the other, he has converted fifteen bushels of this grain into pork - into meney - at the end of six months, saved the keep of the hog for eighteen months, and twice or thrice turned his capital to profit. Time is money, in these as in all other things appertaining to the farm.
5. The proposition may be thus stated-that which will barely keep a hog two years, will fatten him well in six months. Therefore, the sooner we can convert our grain and forage into meat, with due regard to the health of the animal, and the true economy of food, the greater will be the profits which accrins. The remark applies to mik as well as to meat. These facts teach us, to keep no more stock than we can keep well; and that one animal, kept well is more profit than two animats that are but halffed.
6. If we apply these rules to our crops, they instruct us to till no more land than we can till well and to plant and sow no more than we can feed well; for the fact must not be lost sight of, that our crops, like our cattle, live and fatten upon vegetable matters. One hundred bushels of corn, or four hundred bushels of potatoes, may be grown upon four acres of land badly tended; and this is probably about a fair average of these crops; while the same amount of corn or potatoes may be grown on one acre, if the crop is well fed and tended.
7. The product being the same from the one acre as from the four acres, and the expense but a trifle, if any, more than one quarter as much, it results, that if the crop on the four acres pays for labor and charges, three-fourths of the crop on the one acre is nett gain to the cultivator. Estimating the charges at $\$ 25$ the acre, the price of corn at $\$ 1$, and potatoes at 35 cts . the well cultivated acre affords a profit, over and above the charges, of $\$ 75$ -
while the crop on the four acres gives not a cent of profit, but merely pays the charges upon it.
8. Though not in this degree, the same disparity exists in all the operations of husbandry; and the primary cause of difference consists in feeding well, or feeding ill, the crops, as well as the cattle which are the source of the farmer's profit. Let us continue the analogy a little farther. Every one knows, that to lane good cattlo it is necessary not onlv to have an abundance of food, but that much, in the economy of the futtening process, depends upon having it of suitable quality, and properly fed out. 'I'he grasses should be sweet and nutritious, the hay well sured, and the grain and roots broken or cooked.
9. The man who should leave his cattle food exposed to waste till it had lost half of its value, would hardly merit the name of farmer. Every one would say, that man is going down hill. Cattle way they, must ent, and if we dont feed them, they will give us neither meat, milk nor wool. And so must plants eat-they have mouths, and elaborating processes, and transform dung into grain, roots and herbage, with as much certainty and profit, as cattlo convert grain into meat, milk, \&c. Hence the farmer who disregards dung, or suffers it to waste in his yards, is as reckless of him true interest as he would be to neglect or waste his grain, hay and roots.
10. Dung is the basis of all good husbandry. Dung feeds the crops ; crop. feed the catıle; cattle make dung. This is truly the farmer's endless chain. Not a link of it should be broken, or be suffered to corrode, by indolence or want of use. Once broken and the power itimparts is lost. Preserved, and kept bright by use, it becomes changed into gold. It is to the farmer the true philosopher's stone. The man who wastes the means of perpetuating fertility in his soil, may be likened to the unfortunate sons of opulence who waste, in habits of indolence and dissipation, the hard-earned patrimony of their fathers.

Section III.

1. Arrangement of Agricultural Labor.-To conduct an extensive farm well, is not a matter of trivial moment, or to the management of which every one is competent. Much may be effected by capital, skill, and industry; but even these will not always insure success, without judicious management. With it, a farm furnishes an uninterrupted succession of useful labor, during all the seasons of the year ; and the most is made that circumstances will admit of, by regularly employing the laboring persons and
cattle at such kinds of work as are likely to bo most profitable. Under such a system, it is hardly to be croditel how little time is lost either of the men or horses, in the course of it whole year. This is a great object.
2. As the foundation of a proper arrangemant. it is necessary to have a plan of a farm, or at least a list of the fiothor parcels of land into whish it is dividod, deseribing thair prometive extent, the quality of the soil, the preceding crops, the cullivatios given to each, and the species and quantity of mone ther have severally received. The future treatment of each fied far atsiccession of years may thon be resolved on, with mora probatility of success.
3. With the assistance of such a statement evory intumn, an arrangemont of crops for the onsuing year ought in he made out, classing the fields or pieces of land aceording to tho purposes for which they are respectively intonded. The mamerofucres alloted for arable land, meadow, or pasture, will then be nsentained. It will not theu be difficult to anticipate, what nambor of horses and laborers will be required during the season for the fiolts in colture, nor the live stock that will be necessiny for the prature land. The works of summer and harvest will likewise be foresean, and proper hands engaged in due time to periorm them.
4. As nothing contributes more to ficility and snisfliaction in business, than to preparo for what must bo done, in larmer should have constantly in view a judicious rotation of crons, eceording to the nature and quality of his soil, and should arrang the quantity and succession of labor accordingly. Team labor, whon frost and bad weather io not intervene, should be arranged for some months, and hand labor for some weeks, according to the season of the year. "A general memorandum list of business to be done," is therefore essential, that nothing may escape the memory, and the most requisite work may be brought forward first, if suitable to the state of the weather.
5. The following rules, connected with the arrangement and successful management of a fam, are particularly to lio recommended: - Firstly, The farmer ought to rise early, and see that others do so. In the winter sonson, breakfast should be taken by cande light, for by this means an hour is ganed, which many farmers indolently lose, though six hours in a week is nrarly equal to the working part of a winter day. 'Ihis is a material olject, where a number of persons are employed. It is also particularly necessnry for farmers to insist on the punctual performance of their orders.
6. Secondly, The whole farm should be regalarly inspected; and not only every field examinөd, but every beast seen, at least
once a day, either by the occupier or some intelligent person.Thirdly, In a considerable farm, it is of the utinost consequence to have laborers specially appropriated for each of the most important departments of lator ; lor there is often a great loss of time whero persons are frepuently changing their employments. Besides, where the division of labor is introduced, work is executed not only more expeditionsly, but also much better, in consequence of the same hands being constantly employed in one particular department. For that purpose, the ploughmen ought never to be cmployed in manual labor, but regularly lept at work with horses, when the weather will admit or it.
7. Fourthly, 'io arrange the operation of ploughing according to the soils cultivated, is in object of essential importance. (n many farms there are fiolds which are soon rendered untit to be ploughed, either by much rain or by severe drought. The season between seed time and winter, may be well occupied in ploughing heavy soils, jntended to be !aid down with oats, barley, and other spring crops, by means of the scarifier. On firens where this rule is attended to, thero is always some land in a proper condition to be ploughed; and there is never any necessity, either for delaying the work, or perimming it improperly.
8. Fifthy, Livery mans should be thought of to diminish labor, or to increase its power. For instance: by proper arrangement, five horses may do as much labor as six perform according to the usual moto ol employing them. When driving dung from the farm yard, three cats may be used, one always filling in the yard, another going to the yard, and ithird returning ; the leading horse of the empty cant ought then to bo unyoked, and put to the full one. In the same mantier, while one pair of horses are preparing the land for sowing turnips, the other three horscs may be employed in carrying dung to the lind, either with two or threc carts, as the situation of the ground may happen to requiro. By extending the same management to other farm operations, a considerable saving of labor may be offeeted.
9. Sixthiy, A liumer ought never to engage in a work, whether of ordinary practice or iritended improvenent. without previonsly giving it the best consideration of which he is capaible, and being satisfied that it is adivisible ior him to attempt it ; but when begun, he ought to proceed with it with much attention and perseverance, until he has given it a fair trial. Seventhly, It is a nain object in carrying on improvements, not to attempt too much at once ; and never to begin a work without a probability of being able to finish it in due season.
10. Lastly, Every farmer should have a book for inserting all those useful hints which are so frequently occurring in conversation, in books, or in the practical manigement of a farm. Loose pieces ol paper are apt to be mislaid or lost ; and when a man wishes to avail himself ol these for examining a subject previously investiga. ted and discussed, he loses more time in searching for the memorandum, than would be sufficient for making half a dozen new ones. But il such matters are entered in a book, and if that book has a table of contents, or un index, he can always find what he wants, and his knowledge will be in a progressive stato of improvement, and he will thus be enabled to derive advantage from his furmer idens and experience.
11. By the adoption of these rules, any farmer will be master of his time, so that every thing required to be done will be pertormed at the proper moment, and not delayed till the season and opportunity have been lost. The impediments arising from bad weather, sick men, or occasional or necessary absence, will in that case be of little consequence, nor embarrass the operations to be carried on ; and the occasion will not prevent due attention to even the smallest concerns connected with his business, on the aggregate of which his prosperity depends.

## Section lV.

1. Farm Implements and Labor-saving Machines.-As farmers generally have more leisure at the present season (February) than at any oher time of the year, we would recommend to their attention procuring and repairing such farming implements as they may need for use during the ensuing season. Ploughs, harrows, rakes, hoes, shovels, forks, carts, hay racks, scythes, cradles, and many other things, should be examined and put in order ; and if there is a probability of there not being a sufficient number for performing conveniently the required work, it will be proper to procure additional ones to supply the deficiency.
2. We do not wish to advocate a lavish waste of money in buying what would be unnecessary, but to direct the attention of fariners to the importance of always having at hand a sufficient number of tools. It is no evidence of economy to save a few shillings by refraining from the purchase of a rake or a hoe, and afterwards lose a day's work or more, in a hurrying season, in consequence of the deficiency thus occasioned. Neither is it a proof of economy to purchase the cheapest implements only.
3. The cheapest are generally the worst made, and are either weak or clumsy. We have known active men to waste nearly half their sirengh in using such-in performing, day after day, nut
more than two-thirds of the labor they might have done, hal they used sirong, neat, and well made tools. As it is impossible to work without tuols, so it is impossible to do work well and expeditiously, without good torl:s.
4. Another important subject, is that of labor-saving implements and machines. There is one great advantage in these, which is generally overiooked. By enabling the farmer to despatch his business, his work is more completely under his control ; and he is enabled to guard against loss or damage which might be the consequence of more protracted operations.
5. Thus, for instance, in using the horse rake, he is not only enabled to accomplish the same work with one quarter of the expense he would otherwise have to employ ; but by enabling him to perform it so much more expeditiously, he can take advantage of the weather, and have many acres of hay upon the ground without the danger of having it spoiled by rain ; as the speed with which he may collect it with a horse rake, enables him to anticipate wet weather.
6. Thus, independently of the immediate amount of labor it saves, it prevents the troublesome operation of drying wet hay, after it has once before become fit for the mow or stack. Again, by the use of the planting or drilling machine, one man is enabled to do the work of several ; this is one iten of saving ; but in addition to this, it very often happens that a crop may be planted with it during a favorable season, and while the ground is in the best possible condition; while, without it, the work might be protracted till the ground is rendered unfit by heavy rains ; and a loss of many bushels to the acre sometimes arises from crops being plantec: out of season.
7. A vast amount of labor might be saved by employing a morerate share of thought and contrivance in constructing or procuring, and arranging, soine of the simpler and more common kinds of labor-saving machinery. Thrashing machines have become very common, and many are connected with a portable horse power, which may be" separatedfifrom the machine and applied to other purposes This may be easily, and it sometimes is, attached to a circular saw, (the cost of which is comparatively small,) and the expensive and laborious operation of sawing wood by hand, is rerdered expeditious and easy.
8. It may also with a little contrivance, be made to work a strawcutting machine, a turnip and potato slicer, a cora sheller and other similar machines, which are commonly worked by hand; and this may be frequently done while it is driving a thrashing machine, or
performing other work. We have known a funning mill to be connected with it, mad worked ly it, the thasting machime being situatted on a floor chave, so that the wheat fell drectly irom it into the hopper of the kmaing mil!, and passer! out ready for market.
9. Wo have atho hatd of a pair of buhbestones placed in a barn, which could be driven by the horse power of a thrashing machine, and used for grinding foral for domestic animals. By a little attention and thinking, numberless similar conveniences may be devisel. Improvements of this kind should not however be adopted, until calculation hats proved that from the amount of labour they will be required to pertorm, the ultimate saving will more than countrer balanco the immediate colt.

## Section V.

1. Impolicy of Burning Green Wood. -Few things show the tenacity with which we cling, even atier the clearest demonstration that such is the truh, to antiquated error, than the fact that there are many indivituats at the present day wio religiously believe, and what is worse, so fur as regards the comfort of themsolves and families, practise the dectrine, that green wood for liel is betie:, and of course more economical then dry.
2. We think the present season one most admirably adapted to cure such an error a.s we conceive tins opinion to be ; and mow while the furmer is sulioring with cold fingers from his green wood fire, and he is in goot earnest lannenting the leanness of his wond yard, wo would roquest himcandidly to review the whole suljoct, and ask himsolf whether he had not better desert a position which both somd theory and daily experience show is no longer tenatle.
3. The direct experiments of Dr. Black on fuel, and the latere ones of Count Rumiori on the best mode of producing and cconsmising heat, have, in conjunction with the labors of others demonstrated the very great loss thoso sustain who use unseasoned wood for the purpose of inel. Making an estimate of the varions kinds of green wood, hard and soft together, and of the same wood when thoroughly seasoned by exposure to the air, the difference is found to be equal to at least one third of the whole; and it dried at a temperature of 100 , the difference will exceed this pros. portion.
4. Green wood, therefore, contains at least one third its weight of water, and allowing a cord of such wood to weigh three thousaad pounds, there will be one ton of wood and a half a ton of water in every cord. That the wood will not burn so long as this water in
present in the wood, all will admit ; it must therefore be evnporafed or driven ofl in the form of steam ; or in other words caloric or heat enough from other sources must be combined with the water to boil away half a ton, or about $1: 0$ gallons; and as this heat mos pasies ull in it latent state, no possible benefit is derivo c. 1 fum :ogrent a waste.
5. 'The :umbnt of dry fucl necessary to per'orm this operation of bohling atway hall a ton of water, every famer can extmate for himseft; and wo think no one ban abod socing that whatever this mot be, it is at lotal loss to himsoli. It is true, as many argue that thamamation of a green stick of woot is less repphthan that of a diy amo ; but sheh biget, it sumb, that at much larger quantily must be constanty kept on the live to produce the sano dexpoulbat: and that hatil the groen wout has absorbed from other surpes suftionthoat to expei the werter with which it is charget, the fiec is dull am the heat lecble ; there is abundance of smoley, bint combanion goes on shawly or mot at all.
6. Since tho faci of the ditierence betwo $n$ the weight of dry and green wood is stated above is indizutable, we think that those who have comsiderabie tgantities of wod to move would do woll to bear it in minh, as by ahonding to this circumstance, a very great diminamon in the aboun of lahor required may be made ; and the striking witho transportation of thirty-three tons in one hunored, all will agree is notrifling altar. 'io labor is honorable; but it is thme our lamers should learn that to expend it needlessly is not profitable.

## Section VI.

1. Canada Turstles. - Silit will destroy Canada thisues. It will dothis by it: own direet agener, and also by an agency that is indirect. It $i s$, I believe, generally known, that salt applied in considerabl: quantities to the routs of vegetables will destroy their life. I hwe nevor known it to fail in doing this except in a case of horse radish in my garden, when I attompted, but without success, to kill it, by the application of strong bine.
2. When Cariada thistles exist only in smail patches, this will be an easy and expeditious way of getting rid of them. The process is vory simple ; first to cut off the thistles a little below the surface of the ground and then apply to the stem of each rort $n$ small quantity of salt. A quantity less than a table spoon full will, I think, be sufficient. Strong brine will answer the snme purpose. No matter by what philosophical principles of action it is done, the fact is ascertained that salt applied in the manner here suggested, will infict upon the root a mortal distemper.
3. I have frequently destroyed thistles by salt and by brine, appliod in this way, the results in both cases being the same. Care, however, must bo taken when snit is used for this purpose, that no stock of any kind run in the field at the timo. I salted in one day, and with entire uniformity, three patches of Canadn thistles, two of which were in one field, the other in a field adjacent. The exporiment, as to the two first montioned pateches, was completely successful, as to the other, it was an entire failure.
4. At first this seemed to involvo something of mystery ; but the mystery was som solved, by the consideration that sheep were ruming in the field where the experiment failed, while there was no stock in the other. 'The sheep had found the salt and licked it up before there had been time for it in perform its intented functiuns.
5. Salt, when used to destroy thistles by its indirect a gency, is applied to them in small quantities, to induce shesp, cattle and other stock to feed upon thom. It may be used to advantage on a scale much larger than when its direct agency is relied upon. In matry cases, this is on ensy and expeditions method of conquening thistles, there being no difficulty in achioving the conquest in the course of a season. The process is as follows, viz: it the thistles have acquired a considerable growth, they should be cut close with a seytho some ders belose the sulting process is to commence.
6. 'The object of this is to give ath opportunity of seming out young shots, and clothing theinselves with tender or fresh boliage. Salt is then to be strewedion, in quantities sufficient onty to render the thistles pulatable to the animals that are to feed upon them.'The process of salting is to be frequently repeated, special care being taken not to apply salt so freely as to glut with that article the appetites of the animals. Whatever stock may be put to this use, it must be kept all the while in a condition to be hankoring for salt.
7. This being the case, the animals will feed upon the thistles daily, and suticiently to keep them entirely deprived of their foliage. The thistles, pressed in this manner, will in a littlo time be under the necessity of capitulating. It is, I believe, generally known, that but few vegetables if any can retain life for any considerable time, if, during the season of vegetation, they are kept continually deprived of their foliage.
8. Several experiments tried by myself to destroy Ctanada thistles by the means now suggested, have produced the most satisfactory results. In no case have I experienced failure. Here, then, is presented to the farmer, who may have the misfortune to possess
parcels of the Canadn thistles, a cheap and expoditious method of gotting rid of them. This process need not, us when the direct agency of sult is relied upon, be confined to small patches; but it may be applied to considerable estublishments.
9. The litmor who keeps a large strick, say two or three hunAred sheep, and oher stock in proportion, might by the method now proposed, destroy in one scason the thisiles of an extensive tield, although it wero ovor-run with them. The liell to bo thus operaed upon, might fir the smasm be set apart as the salting phace bor all the stesch on the firm. and the whole stock from tinu to time he gathere! into it to receive their portion of salt, anal th grate in the field.
10. 'This is the vision of my own mind. I have not dome it, nor seen it done, neither have I heard of its hatwig been done, yet, thave madobt that by the use of such mons, havock might to made atmeng C'mata thistles. Fron the ligits of my own experionee, 1 jugke that from the middio of dune to Seturer is ihe test time to aporato for the destrustion of histles. In the manimer last preceribed, I bave commenced operations against them on mowing ground, sono wecks mior tho grass had hoon takon wil, the results of whish were Heir entire congrest the sumo conson.
11. It has beon repeatedly annomed that than!es, may to des. troyed by cuting them at the time when they are in ilossom, just betore a shawer. I have never availed masedr of an oppommity to test this hy experment. In I thak considerable onnidence may be placed in the utility of such a process. In one instince, having a sma! proth of Comman thistles near a etrem of water, I cut them when they were in blessom, and then gave them an artificial shower by serinkling water upon then from a water pot. It killed the most of them, and the fow that remained oxhilited a sickly aspect.
12. In genemal, Cannda thistles, if deteciad while they are young, ena readily be destroyed by the simple ace of pilling them up. I have destroyed many in this way. 1 choose a time for the purpose, when the ground is wet and loose, and havo in my hand a pointed stick which, il necessary, I run down, to assist in extracting the root.
13. In July last, I commenced on a putch of Canada thistles which had recently appeared on my premises, an experiment not before tried by mysolf, nor by others within my knowledge. It was cutting then off with a long bladed grubling hoe several inches below the surlace of the ground, and then setling the ground in a compact form about them, by giving a few blows with
the heel of the hoe. But few, perhaps none, that were so treated have re-appeared. The prospect is that the experiment will result favorably. I think it quite likely that, when Canada thistles grow on stifl ground, or ground that is clayey, they may be destroyed in this way very expeditiously.

## Section Vil.

1. Farmer A. who works tw wrong. -The worh is a world of contrasts, and in no part of it are more striking ones exhibited than exist anong farmers. Some seem to be mere cumberers of the earth, and impart their dull, half anmated aspect to every thing aromed them ; there are others who secm to impat gladiess and freshers wherever they move. One bolonging to the first class lately fell under my notice, and his portmit may bo given as the represchative of much too large a class of nem mang las. I shall call him famer A. Travelling is to me akiad of penatace; but it frequonty places one in situations, atid ameng pople, fovorable for observation; and a farmer myself, and teeply interested in every tang that relates to their prosperity, thu business and their prosperit mataraly ongross my first atiention.
2. I had been directed to Mr. A. as an indivitual who wished to dispose of his farm, and circumstaness rendered it nevensary to remain with him through the night. The first aspect of tho promises was glonny and forbiding enough. The "shingled patace," as foreigners delight to cail our extravagent two-stiey wooden houses, had been pat up three years before, yet it exhibited few indications that it would ever be finished. 'The windows were "glazed with bourds," one or two excepted, in which a single sash contained a few panes, ol glass.
3. There were in the rear of the house a few scattering, sorry looking, scrubby trees standing, the remains of an orchard planted by a former proprietor; and lobserved somedozen or so of conrse woolled, wild looking shecp, gently browsing on a row of currant bushes, that from thair diminutive size and stunted appenrance, looked as though they were accustomed to a similar eperation, while a straggler or two had commenced pruniag the only plum trec visible on the premises.
4. There was what was called a barn and sheds on the farm, but a horse was standing with his head poked through an opening made by a fallen ofl brard, and which board lay half covered and rotting in the dung, the sharp nails sticking up ready to pierce the foot of man or beast; and half the roof of one of the sheds had inllen in from sheer neglect in securing the rafters properly. Not an orna.
mental tree of any kind was near the house; not a fence was discernible except the ghosts of some rail fences; and a dreary community of desolation seemed equally to pervade every part.
5. Far:ner A. came originally from "down east," but his long absence from that part of the country, added to the circumstances in whica he had placed himself, and his acquired habits, had left in him but few traces of the character that ussally marks the provident and intelligent New-Einglander. Five times since his marriage had he moved, and though he had lived longer where he then was than in ally other place, it being nently ten years, he was then ansions and preparing to pull up stakes and depart to Michigan or llinois. Mis farm was maturally an excellent one, woll watered and timbered, and precisely that kind of soil that mokes the heart of the wheat grower rejoice, but its whole surface bore sad morks of aeglect and improvident husbandry.
6. Farmor $A$, was not at home when I arrived, but his wife was present. She was undoubtedy once a good looking, amiable woman, but care and nogleet had mado serious inoads upon her constitution, and, as is too ofion the case, somewhat tried and deranged the equanimity of hor temper. Livery one knows, however, that there are men with whom no woman, unless possessed of more than the patience of Job, could live with any dergree of peace or comfort ; and it is no more than bir to infer that Nr. A. was precisely ono of these men. 'Town or three large awkward girls, and some half a dozen boys, none af them looking remarkibly neat or intelligent, mude up tho family.
7. Soon after the family had taken supper, farmer A. came home, and a single glance at him showed, what indeod his farm had sufficiently indicated before, that he was a devout and not unfrequent worshipper at the shrine of Bacchas, and that great as the triumphs of temporance have been, they had not as yet reached him. Mr. A. hat hardly finished his supuer, when be hegan to complain of the hardness of the times, and the great difficulty he found in supporting his numerous fumily ; adding, he believed he must sell out and go to the west, where he could get more land, and live without so much hard work ; a reason, by the by, very frequently used, yet but little understood.
8. Wishing to draw him into a little det:il of his farming man. ngement, I inquired how much land he then owned. He replied, "a little more than two hundred acres." "And how much have you cleared ?" "Perhaps two-thirds of the whole," he said. "Your land has every indication of fine wheat land, and with so much in cultivation, your wheat crop this year must have been
heavy, and with such prices as wheat commands, farmers should not complain of hard times."
9. "My land is good enough," he answered, "but this yoar I was unlucky in my wheat. I did not sow it till quite late ; my seed had some chess in it ; the fence around the ficlds was rather low ; my catule and horses would get into them in spite of me; where they mbbled it cff the whent turned to chess, and at harvest I had but litile more than enough to supply my lamily." "But part of your farm is first rate corn land ; perhips your loss in wheat was made up in your corn, and that you know is worth seventy-five cents a bushel."
10. "No, there again my dish was bottom upwards,"-" I think it always is," said his wife in a sollo voce tone, culedated to reach me however distinctly, but he did not notice the intermption,-" I had a dozen pigs, and after my corn had been up a weok and looked well, that lazy lout," pointing to his eldest son, "whom I had ordered to watch the field, let the pigs lie in it a week, and they destroyed it, root and branch. It was too late to replant, and if I had done that, the frost would have prevented my having more than half a crop; so you see I have not a bushel of corn this year."
11. "But your potatoes?" "My potatoes, with the exception of a few that were injured by the pigs, were passable ; but after they were dug and pliced in heaps, and while 1 was waing to get time to cover them, the boys let the cows get to them, whore they eat till one of them was choked to death, and she must stroll off and dio where we did not find her till the hogs had tom her, skin and all, to pieces."
12. "Do you have much of a dairy ?" I inquired. "No—there is but little profit in making tutter and cheese, though some of my neighbors think aiflerently. My boys and girls dou't love to milk, so you see the cows, if thad them, would quickly dry up, and the whole concern be good for nothing. I am convinced, as I told you before, that this is no place for me ; I must go to the west."
13. While I was conversing with their father, the girls sat staring at us, and doing nothing, while I perceived that two or three of the boys had got into a corner, and were amusing themselves with a greasy and evidontly much used pack of cards. As the evening was quite cool, one of the boys was ordered by the fither to get some wood. "There aint a single stick," answered the bov, without turning his head from his play. "Where's that load of rails you got yesterday morning ?" "Every stick is burnt, and mother picked up wood this afternoon for a fire," responded the urchin.
"Well, you young dog, give us none of your jaw ; but go and back a rail, nnd cut it up quick, and let us have some fire."
14. The rail was brought, cut up, and betore ten o'clock we had seen the last of it ; nor was it longer a mystery how the house came to stand in an unenclosed common. He had burnt the rails, because he had rather be at the tavern than getting wond, and because he was going to Michigan. The want of rails had made his crentures unruly, and caused the destruction of his wheat and corn, while his children, kept from school to watch his fields, had become as idle and worthless as their parent.
15. While he should have been attending to affairs at home, covering his potatoes and saving his cow, he was swallowing "wei damman," and his property was in the predicament of a car die lighted at both ends. Farmer A will go to the wost, hut unless he effects a prompt and thorough reformation, he will carry with him habits which will ever prevent the accumulation of property ; and a family in which idleness and ignorance have alreaiy sown the seeds of a plentiful harvest of misery, crime and wretehedness.

## Section VIll.

1. Fanmer B. who works it Right. - It was during the same tour in which I met with farmer A. whose system and its resulis 1 have given in the precoding section, that I made an acquatintance with another individual whom I shall call farmer B., and if I could convey to my readers but a small degree of tho pheasure, which a sight of what industry and good order can accomplish has afforded me in the remembrance of the incidents, I should feel myself amply rewarded.
2. Mr. B. took care to secure a farm containing as many matural ndvantages as possible, though in this respect I this:k his farm was inferior to that oi farmer A. When he had made his choice, however, he considered it as made for life, and immediate $y$ set himself at work to effect a thorough and permanent arrangement of his premises, previous to the course of improvement he intended to adopt. A large farm and great wealth formed no part of his phans-a farm of ordinary size, contentment and competence, were the extent of his ambition, and these things he speedily accomplished.
3. Furmer D.'s hous. is one of the most perlect specimens of that picture of rural neatness, elegance and comfort, an English cottage, that I have seen in this country. Standing at a little distance from the public highway, unassuming in its altitude and dimensions, embowered in trees, and half hidden in vines and shrubbery, it seems as you approach it the chosen recreat of farming taste
and comfort. The neatly painted pickets of the different enclosures were as firm and perfect as if put on but yesterdny.
4. The gates to the different avenues were ready for use without creaking or grating. The avenues themselves were well gravelled, hard and clean-the grass was cut close, and free Srom all dirt or rubbish, and it was evident the work done here had not been injuriously subtracted from labor required e'sewhere ; every thing had been done in order and in time, and a ghance showd that the whole secret consisted in these two words-good manngement. On entering the house, as might have been expected, the same order and neatness was found pervading every spot.
5. Mrs. B. was a middle aged, sensible woman, a good farmer's wife, without the least effort at display or ostentation, lut greeting the stranger with a welcome and frankness that give adidional value to whatever obligation she conferred. T'wo daughters, the one eight, and the other perhaps fifteen, with their notlier, constituted the female part of the family. l know of no sight on carth to me more pleasing, or so conducive of delightiul emotions, as a beautifinl little girl, such as the phayful Mary lb.
6. They are the rose buds of human natire, -p pure themselves, and ignorant of wrong in others, they only delight in seeing others happy,--overflowing with affection which they have not yet learned to hoard for a single favored individual, and unacquainted with those deeper and mysterious influences which startle the young girl, and mantle her cheek with blushes, when she first acknowledges their existence and power ; there is a fearlcssness and frankness about the innocent creatures, difficult to retain in after life, but which, when combined with purity of henrt, form the great charm of female character.
7. Farmer B. was at home when I arrived, and ns wo walked over his woll managed farm, he scemed to feel a ratiomal pleasure in recounting the steps by which he had brought it to such a state of fertility and productiveness, and of which ample proof was found in the fact, that he had that dny received six hundrod dollars for a crop of wheat grown on twenty acres. Two of his eldest sons were at work in the field, the youngest being at school ; Mr. B. remarking, that as he intended his children for farmers, or the wives of farmers, they were kept at school until they were able to aid in the business of the farm, the girls by assisting their mother, and the boys in the field, when the summer schooling wasdiscontinued, but resumed in the winter, or at an academy, as long as was desira-ble-it being hisopinion, that a due regard to health, and an ample acquaintance with the operations of husbandry, demanded that course.
8. Mr. B. said he was a strict utilitarian, and while he submitted as useful to his children, and required in their course of studies, much that others would consider as unnecessary, he would not allow them to consume their time upon courses purely ornamental, and for which in all probability they would find little or no use in their after sphere of active life. Farmer B. was not a visionary or enthusiast in farming; but he loved experiment, and never rejected a proposition becnuse it was new-it was onough that it commended itself to his reason, and was able to lear the close and rigid scrutiny to which he was accustoned to submit all farming speculations.
9. There are few passages in life more delightitul than an evening spent in such a fumily. Intelligent, amiable, and unaflected in their maners, their checrful courtesy makes one foel at home, and places him at once on one oi those green islands that are here and there found in the needlessly broad dosert of humen life. In the room to which wo were introdaced for the evening, were a fire, lamps, sofa, carpet, clairs, and what I particularly noticed, a table on which lay one or two of the latest newspapers, it magazine or review, and an agriculural journal of established celebrity.
10. There was an assortment of books, not large, but well selected, consisting of yoyages, traveis, history, and a number of theological volumes, with one of the popular commentators on the Bible. The family was soon grouped around, and all even to little Mary, were busy, the boys with their books, the girls with their sewing.
11. "You will excuse us," said Mr. B. to me, "but wo have in our family long since adopted a practice which we do not like to relinquish : for one hour in the evening, after the usual labors of the day are closed, some one of us, and we intend to do it in rota. tion, reads aloud for the benefit of the others, and as we have just received a work more than usually interesting, my children would feel deprived of a privilege were this custom omitted this evening."
12. I of course begged I might not be a hindrance to their happiness, and young Mellen, the second son, a lad of sisteon, was called upon to read. The number is but few who enter into the spirit of an author, and understond giving his words and sentiments their proper value and effect. Mollen, however, far exceeded iny expectations, and when he named Lamartine's Pilgrimage to the Holy Land, as the work they were reading, I was not surprised they were anxious for its continuation ; and when the hour had expired so deeply interested had we all become in the narration of the elo-
quent Frenchman, that by an unanimous vote the book was handed to the eldest daughter, and another hour ghlied quickly away in listening to her sweet toned voice, and the glowing thoughts of the poetic writer.
13. After what I had seen and heard, I was not surpriscd to find Mr. B. a man of deep religious feeling, or disposed to wonder at the profound feeling of humility and chankfuhess with which he closed the evening by commending us all to the carc of a beneficent Creator. After the children had retired, I coold not help congratulating Mr. B. on the excellent course he had adopted in his family of accumulating knowledge, and the betutilul olfect its influence already exercised.
14. "It is said," he remarked in reply, "that farmers, or their children, do not have as much tume to read as the chithren of professional menor mechanics, and it may be partly true, yet I am convinced the plea which farmors so often urge as an c.scuse for their ignorance, that they have no time to read, arises more frequently from disinclination to read, than from any other cause. Few men are sensible how many valuable books are gone through in a year by the reading of one hour a day; and by having them read aloud in the family, all are intorested, and all instructed.
15. "As I iave accustomed my children to ask questions on what is read and to the correction of errors in the rearing, the attention even of the youngost rarely flags during the hour." I went to bed reflecting on the contrast between firmers $A$. and B., and the difierent probable results their influence and that of their families would have on their own happiness, and that of the socisty around them.
16. With farmer A. every thing was at seveus and sixes; nothing in doors or out, in the house or on the farm, as it should be. or as it ought to have been; and this state of things evidently hadits effect on the minds of the family, rendering thein morose, ill-tompered, I may also say, immoral ; as well as continually restless and dissatisfied with every thing around them, without inducing the necessary steps to cure the evils oi which they were so ready to complain.
17. On the contrary, at farmer B.'s every thing moved like clock-work, and it was evident his success as a farmer arose from having his work done in season, and from "having a place for every thing, and every thing in its place." Its efficets on the family we have seen, and one thing is certain-Mr. B. will not go to the west in search of competence or happiness.

## Section IX.

1. The Story of Uncle Tim and his Son.-Mr. Timothy Treadmill was about the tightest man that ever came from "down enst," but although penurious in the last degree he neve! became very rich. He was a firm believer in the doctrine of "following in the footsteps of his predecessors," and practised it to an iota. The way his tither planted corn, he planted it- the same time in the moon that his father sowed peas, he sowed hem. The last pair of cart whecls that were seen wearing a streak tire, were Uncle 'Tim's-and the last of the old wooden ploughs was seen mouldering into its original elements at the back of his wood-house. In short, with the exception of adopting sone few improvements in the way of implements, he was precisely as good a farmer the day he left his fether's roof, as he was forty years afterwards.
2. That there was any better way of farming than that practised by his father and the rest of the good people down in old Connecticut for so long a time, nothing short of actual demonstration could make him believe. The idea of improvement ia farming seemed to be as absurd in his mind, as that the bees should set about making an improvement in the construction of their cells, or the birds in building their nests; book farming and new intentions were his utter abomination. What! such men as Judge Bucl, who never pretended to be a farmer till he was fortv years old, undertake to teach lim how to raise com and potatocs, who had been a farmer all his days, and his father before him?
3. He take a nevespaper to learn how to farm? no-he knew better than to pay his money for sach foolery as that. If any body wanted to read the big storics ci them new fangled firmers about Albany, about their great cro, is and their new fashioned kinds of cattle and hogs, he was willi ; they should, but Cor his part, he believed he could farm about nis well as those that printed newspapers, and raised spotted hog. to soll.
4. Llis firm was "suitably divided into mowing, pasturing, tillage, and wood-land,"-what was in pasture when he bought the farm remained in pasture still, and what was mowing at that time the ploughshare never disturbed, and what was ploughland then remained still the same. His manure always laid at the barn till fall, because it was so much better for corn after it was nicely rotted, and his barnyard was so situated that the water would run from it in all directions-of course it was always nice and dry.
5. When he happened to have a little manure left after planting, be had been known to put a little sprinkling on some spot in his meadow, where he thought daisies and June grass were likely to
run out-but as long as the daisies flourished well he was not alarmed, for he said the farmers down in Connecticut thought they made about the best hay of any thing. In hoeing he was not over anxious about the weeds, for he said they kept the ground light and moist, and that where the quack grass was thichest, he always had the best corn. But as Uncle 'rim was not deoply reat in natural philosophy, it did not occur to him that the corn and quack both would grow most luxuriantly on the richest spot of gromed.
6. But as I said before, Unclo Tim never grew very rich—for, although he saved every thing, the fact was ho had nut much to save. His cattlo and his fields boing lightly fed, fed lightly in return. It seemed to him that all he gave his cattle boron what was barely sufficient to keop skin and bone together, was about the same as thrown away, and every hundred of hay he could save to sell in spring, was so much clear gain. And as for laying ont any expense to increase his quantity of manure, it was a thing he never dreamed of.
7. But as I said before, starving his cattle and his crops proved to be a bad businoss, for there seemed to be a fair prospect that it would end in starving himself. He could perceive that the products of his farin gradually diminished from year to year, still he never seemed to suspect that the cause was to be attributed t, bad management.
8. There were, however, good things about Uncle Tim. And although errors and prejudices of this lind seemed to be, in a great measure inexcusable, his were ontitled to as large a share of charity as those of most other men. 'Thero was one thing about which he evinced quite a commendable degree of liberality. He had a son growing $u_{j}$ to manhood, and his better foelings induced him to go so far as to say he thought young people now a days ught to have a better education than they had 40 or 50 years ago, when he was a young mon.
9. In fact, ho afforded his son a very tolerable opportunity for acquiring a good common education. And finally young Timothy was becoming quite a reading, and consequently, intelligent young man. 'This, however, led to consequences entirely unforeseen by the father, and which for a while gave him a good deal of uneasiness.
10. In his intercourse with the more intelligent of thoir neighbours the young man had occasionally met with agricultural papers, and perused them as far as opportunity permitted, with a good deal of interest. He saw that many of his father's notions about farming were erroneous. The evidences that great and important im-
provements were taking place, were to his mind altogether irresistible. And although he well knew that his father would jose any innovations, ho began occasionally to make known the result of his reading and reflection on the subject, by proposing some little changes in their mode of management, and finally intimated that he should like very well to tike the Cultivator.
11. But it was a deaperate case, lor whatever faith Uncle Tim might have had in more disiant things, it was clear that in the matter of Agriculturat improrcment, he had neither faith, nor works. The old gentleman, while he felt disposed to gratify his son in all prudent desires, could man hou foel vexed to find him inclined to depart so far from what he considered "tho good old paths." 'lhings went on, however, mach atice this fashion for a considerable time.
12. 'Thmuthy wond occasionally quote Judge linel, and speak of the increased protits of the intproved methods of husbandry. liut to all these rime:cintimens the old genteman had always a ready answer. Aif thes, ho aid, might do very well for rich mon who lived near it buthet where all the productions of the farm would sell for read; money, and plenty of manure could be had near by, and for litile or mothing. Bution small farms, simated as they were awny back in the cointivy, to attempt to take those big men for a guide, woult be minusi extravaganee. One of 'limothy's suggestions, howerer, rather staggered him.
13. "Weal, hither," said he one day, as they went out towards the barn, jut alier a shower, and the streams of water, as bluck as your hut, were raming out of the yard, "I think there is one thing we small latmers in the country might do as well as the large ones that live near the eities. If we cannot buy manure, we might take care of what wo have ; you see that if your barn-yard was turned bottom "p, it would be just in the shape recommended by Judge Buel, and would hold all this liquid manure that we see rus. ning ofir into tive road."

## Siction X.

1. Somewhere about these days it came into the heart of Uncle Tim to visit his old friends and relations down in the land of wooden nutmegs, and as his son had never seen nuch of the world he thought it might bo well enough for him to go along too ; so after mature doliberation, it was decided that it would be most economical on the whole to go with their own conveyance. Old grey, to be sure, had been worked hard aud not very high fed, and was a little thinnish, but Uncle 'Tim guessed he would do to go well enough-he would have a good rest and good keeping down there, and plenty of time
to recruit after he came back. Well, after preparing their box of provisons and their bag of oats, they set off.
2. But Uncle 'T'in had never foundered a horso in all his life, by giving him too many oats, and he did not mean to begin then-so the bag was not a very big one, and tho journey was somewhat longer than thoy calculated: old grey was a pretty slow horse the latter part of the journey, and if he could have told his mind, would probably have sard he was very glad when tie reached the end of it. He had then a week or two to rest, but in semed as if hard times had got to Comectient before they dia!, for the granties were very poorly supplica with oats. 'The time, however, soon arrivod, when they were to set their faces homowards, and the poor old horse, although somewhat rested, was not very much improved in his capacity tu perform a journey.
3. Even their small beg was but seantily filled, and to buy oats on the road seemed to Uncle 'Tim a very improvident way of travelling. So they jugged on with such speed as the circumstancespermitted; but bebre they were within filty miles of hoine, old grey gave out, and they were obliged to haul up. The fact was, old grey was a good horsc, but he was used up. Alhough he had been a geod horsa a great while, it was not old age that ;rostrated him. He bad skin ami bone and masclo and wind, and sour sound legs. 'The machine was in order, but the moving power had been withheld. The poor old horse was as useless as the steam engine without the steam.
4. Well, Uncle 'lim and his son were in a bad fix. Their passage home in the stage would cost considerable money, and then to leave old grey there to recruit, and the expense of sending for 'him, would increase the sum to a pretty important amount-ind they could hardly think of selling the old horse for the small sum of ten dollars, which was the most they could get offered for him. The result of their deliberation was, that old grey was lefi with a farmer near by at a moderate expense, and the father and son took paissage home in the stage. It so happened they were the only passengers, so they had plenty of time to think, and occasionally as the spirit moved, tw talk a little.
5. "Well, father," said the young man, nfter a pretty considerable long silence, "I do not know that you think as I do, but it nppears to me that our farm and old grey are very nearly in the same situation." "I do not know." said his fither, "what thero can be about a farm and a horse, that can make them resemble each other so very much.". "Timothy then undertook to explain.
6. "'Ihere is," said he, " what was once a good farm, and the
foundation on which to make a good farm now. So there is what was once a good horse, and a good frame to make a horse of now. But both have been so overworked and poorly fed that they have become exhausted, and are of but little value. The farm, you know, produces little, il'any thing, more than enough to pay for the labor we bestow upon it, and the value of old grey we have had a pretty good opportunity of testing.
7. "Now, it appears to the that I can convince you that under a different course of management, both the firm and the horse would have much more than repaid the extra expense bestowed upon them, aud been worth at this day more then double what they are. I am very certain I can as respects the horse, and it is equally clear to my mind with respect to the firan Suppose, then, we hid given the horse oze peck of oats per day, for the last two months, in addition to what he has had-would na that have enabled him oo work considerab!y harder than ho has done, and kept him in grod condition !" Tho old genteman could not but admit that he thought it would.
8. "Well, now," saild Timothy, "do you not think that if old grey was in groad working order, ho would sell for torty dollars?" "Yes, and urore too," was his father's prompt reply. "Now," said the youg man, "lot us ealculate the cost of oats; one peck a day tor two months would be nearly sixteen bushels, which, at twenly-five cents por bushe!, would anount to four dollars; and as things have turned out, I am sure you will be willing to admit that sixteen brishels of oats disposed of in that way would have been a very judicious oxpenditure, as, according to our calmation, it would have probluced a difference of thirty dollats in the valuo of the horse." "But," said his lather, "old grey is actually worth more than ten dullars, as it will not cost thirty dollars to recruit him up."
9. "Perhaps not," said Timothy; "but whatever it does cost, added to the extra expense of our getting home, and the loss of the work of the old horse after that, would at any rate have been saved by the four dollars worth of oats. And now," said ho, "with regard to the fum, you have always told me that it was originally rich and produced great crops ; and if it were as good now as it was then, could we not make one huindred dollars more easily than wo can fifty now ?" "Yes," said his father, "I suppose we could."
10. " Well, now," resumed the young man, "the only question is, whether or not it could have been kept up in its original state of fertility till this day, with the ordinary available means, by a different course of management. I think that it could, and will try to explain as well as I can with my small knowledge of improved
husbandry, what course of management would have been required to effect so desirable a result.
11. "The first great object would have been to increase, by all prudent moans, the quantity of manure, and either to use it in a fresh state, or prevent waste by washing or evaporation; and one means of accomplishing this would have been, to sell to hay, unless a corresponding amount of manure could have been purchasedbut to kepp more stack, or, perhaps, to leed what was kept better, so as to consum: all the fiedder at home.
12. "'the next change would have been to divide the farm into smaller lots, so tis to pursiso what is called a rotation of crops, that is, that the whole may be in turn manured and appropinted to the different kinds of erops; other changes would have been to cultivate the bad better-to procure moro and better implements, and to pay mre statotion to the breeding of animals of all kinds.
13. "Those are the important ciranges required by what is called "improved husbindry." There are of course many small matters bolonging to each that I have not mentioned. And now, although the lam is, is wo say, run out, a resort to the sane measures will raise it to the desired state ol fertility ; but the improvement must of cormse he very gralual, unless considerable expense is laid out at the commencement lor manure, lencing, \&c.
14. "I ana aware that this may not appear so plain a caso as that of the horie, but 1 an not ablo to see how any one can, upon reflection, avoid coming to the conclusion that the two cases are precisely siupilar. The fate is thoy have both been starved, and for all usefin parposes, in their present state. are of very little salue. By good liond and proper managoment both may be restored."
15. Uncle 'lim kopt cool ill this time, but it was ovident from the way he used up the cuds of tobacco, that he felt a leetle uncomfortablo. "Woil," said he, "I do not think that I shall ever bocome much of a hool-furmer myself; but as I am gotting old, and as I expect the farm to be eventually yours, and as yon are so confident that these new ways are the best, I am willing that you should tuke the manngement, and try, and satisfy yourself and me too.
16. "I will try and look at your management without prejudice, and at the ent of three years, should we both live till that time, if I feel satisfied that the new way is the better way, you shall have a deed at that time." We will only add, that sone time before the three years expired, Uncle Tim's deed was made out, "signed and sealed ;" and what was still a greater wonder, he had become a constant reader of the Cultivator, and said he really did think that Judge Buel had done some good in the world.

## Sbetion XI.

THE FARMERS' FAIR.
Ye husibanduen, both far and near, $U_{p}$, up, stir round, prepare,
With sons, and wives, and dnughters too, 'Io attend the F'armers' Fair.

Bring wheat and corn of various kinds, Bring all that's new and rare,
And bitrley, oats, rye, buckwhoat, millet, All to the Farmers' Fair.

Bring pumpkins, squashes, carrots, beots, Quince, apple, peach, and pear, Potatoe, turnip, cabbage, peas, And beans to the Farmers' Fair.

Bring "shoop and oxen," large and tine, And cows, and horse and mare,
And puirs of horses, asses, mulesBring all to the Farmers' Fair.

Bring heifers, steers, and stately calvos, Let "bulls and goats" be there,
Bring natives, short horns, long horns, no horras, All to the Farmers' Fair.

Bring porkers spotted, porkers white, Suit overy connoissour-
Let Berkshire, Byfield, (hina, Leicester, Meet at the Farmers' Fair.

Ye wives and daughters bring your best, And hest with good compare;
Bring something that your hands have wrought, And come to the Farmers' Fair.

Bring golden butter, melting cheese, Bring nick-nacks rich and rare;
Let woollens, cottons, linens, silksBring praises on the Fair.

Mechanics, too, and artists come, liring samples of your ware;
Display the products of your skill, And crowd the Farmers' Fair.

Bring cultivators, harrows, ploughs, All made for wear and tear ;
Corn planters, drills, yokes, shovels, hoes, And rakes to the Farmers' Fair.

Machines for thrashing, fanning mills, Horse-power and smaller ware,
Straw-cuttor, corn-mill, cheese-press, churnBring all to the Farmers' Fair.

One word to him of generous soul, Who loves thus to prepare-
Oh, let that "Farmers' coat of arms," Le here at the Furmers' Fair.

Ye clergy, teachors, students, come, Come taste the bright blue air;
Pale, sallow, sickly, "feeble folk," 'I'urn out to the Farmers' Fair.

Ye Lawyers, Ioctors, Merchants too, Come gather round-for where
Shall non-producers learn their place! Save at the Farmers' Fair.

Come men and women, old and youngLet boys and girls be there;
Come rich, come poor, come mute and blindComeall to the Farmers' Fair.

Bring smiling faces, cheerful heartsAt home leave gloom and care-
Let a right good hearty shake of the hand, Go round at the Farmers' Fair.
'Tho Farmers' Fair-that glorious dayMay U and I Le there;
And friendship, joy, and peace unite, 'To bless the Farmors' Fair.

# The Fnrmers' Fair-oh glorious day, Lov'd here and everywhere ; <br> Now all in chorus join and raiso 'Three cheers for the Farmerb' Fasr. 

## CHAPTER VII.

## Section I.

1. Good Maxims for Farmers in the Management of theib Barn-Yabds-Having submitted to our readers all that occurs to us of importance on the subject of farm-yard manure, wo shall here recapitulate a summary of the chief points which we deem particularly worthy of their consideration. Firstly, to bottom the brurn-yard with furze: fern, dry haulin, or any other loose refuse that takes the longest time to dissolve, and over that to bed it deep with straw. Secondly, to occasionally remove the cribs of store cattle to different parts of the straw-yard, in order that their dung may be dropped, and their litter trodden equally.
2. Thirdly, to spread the dung of other animals, when thrown into the yards, in equal layers on every part. Fourthly, to remove the dung from the yard at least once, or oftener, during the winter, to the inixen. Fifthly, to turn and mix all dunghills until the woody or fibroustexture of the matter contained in them, and the roots and seeds of weeds, be completely decomposed, and until they cmit a foul and putrid smell, by which time they reach their greatest degree of strength, and arrive at the state of spit-dung. Sixthly, to keep the dung in an equal state of moisture, so as to prevent any portion of the heap from becoming fire-fanged. If the fermentation be too rapid, heavy watering will abate the heat; but it will afterwards rovive with increased force, unless the heap be eithor trodden firmly down or covered with mould to exclude the air.
3. Seventhly, to ferment the dung, if to be laid on arable land during the autumn, in a much less degree than that to be applied befure a spring sowing. Eighthly, to lay a largerquantity on cold and wet lands than on those of a lighter nature, because the loriner require to be corrected by the warmth of the dung; while on dry, sandy, und gravelly soils, the application of too much dung is apt to burn up the plants. Stiff land will also be loosened by the undecayed fibres of long dung, which, although its putrefaction will be thus retarded, and its fertilizing power delayed, will yet ultimately afford nourishment.
4. Ninthly, to form composts with dung, or other animal and vegetable substances, and carth, for application to light soils.-
'fenthly, to spread the manure upon the land, when carried to the field, with the least possible delay; and if the land bo arable, to turn it inmediately into the soil. Eleventhly, to preserve the drainage from stables, und dunghills in every possible way ; and, if not applicable in a liquid state, to throw it again upon the mixen. Twelfithly, to iry experiments, during a serics ol years upon the same suils and crops, with equal quantities of dung, laid on fresh, and afterwards rotted, in order to ascertain the results of their applim cation to the land. 'The whole quantity to be first weighed or measured, and then divided.
5. The fermentation of farm-yard manure is, in fact, a subject of far greater importance than is generally imagined; for on a due estimation of its value mainly depends the individual success as well as the national prosperity of our agriculture. The experiments to which we point canot fail therefore to come home to the intereste of every man: they may be made without expense, and without any other trouble than the mere exercise of common observation and intelligence.
6. Leaving aside, however, the discussion concerning the dibputed worth of fresh or fermented-of long or short dung-let the farmer sedulously bend his attention to the accumulation of the utmost quantity that it may be in his power to procure. The manner and the time of using it, in either state, must, however, be govarned by circumstances which may not always be within his control ; and every judicious husbandman will rather accommodate himself tu the exigency of the case, than athere strictly to his own notions of what he conceives to be the best practice. In fine, whether favoring the one or the other side of the question, let him collect all hecan, and apply it carefully to his crops, and then, trusting to events, "let the land and the muck settle it."

## Section 11.

1. The Simple Elements in Chemietry.-If it be our desire to obtain the utmost possible benefit which the exercise of our control over the operations of nature is capable of producing, it is indispensable that we should first know the character of the matrials which she employs, and the laws to which they are subject. Without such information all practice must be merely experimertal, and experiments can afford no certain guide to their real effects unless we are acquainted with all the conditions under which they have been made. To understand, therefore, the best method of managing and applying farm-yard manure, it is needful to coln mence with obtaming some knowledge of the elements or materiale of which it is tormod.
2. The mass of matter of which the whole surface of the earth is composed, consists of about fifty-five simple substances termed Elements, each of which has its distinct character and disposition to combine with other elements, which is called its affinity for those alements, and which it manifests in a much stronger degree towards some than towards others. When one element, by virtue of this affinity, unites with another, it is always in a certain fixed and known proportion or weight, and the number expressing that weight is called its proportional or equivalent number.
3. To exemplify this, if eight pounds of the gas called oxygen be mixed in a close vessel with one pound of the gas called hydrogen, or inflinmmable air, and fire be then applied to them, they will unite and form nine pounds of water: therefore, one is called the proportional, or equivalent number of hydrogen, and eight that of axygen; because they unite in those proportions and form a neutral compound. The later is called neutral, because it resembles neither of the substances from which it has been formed. lf, instead of reight pounds of oxygen, twelve pounds had been used, the extra four pounds would have been left in its original state; that is, would not have been neutralized, and only nine pounds of water would have boen produced, as in the former instance.
4. But in some instances, an element will unite in two or more proportions with one, or with two or more proportions of another eloment, producing substances of very different qualities from each other. The equivalent number of carbon (charcoal) is 6 , and 6 prounds of that substance will unite with 8 of oxygen, forming a gas called carbonic oxide; but if 6 pounds of carbon be burned in a close vessel with 16 pounds, or two equivalents of oxygen, they will form carbonic acid gas. It therefore appears that carbon is capable of uniting either with one, or with two, equivalents of oxygen.
5. These resulting compounds have their equivalent numbers also, in which proportions they unite with other elements, or compounds, and the numbers which express their equivalents are the suins of their elements. Thus the equivalent of water is 9 , the sum of oxygen 8, and hydrogen 1. That of carbonic oxide is 14, the sum of carbon 6 , and oxygen 8 , and that of carbonic acid 22 ; the sum of carbon 6 , and two equivalents of oxygen 16. Now quick-lime is a compound (as will hereafter be shown) whose equivalent number is 28 .
6. If, therefore, 28 grains of lime be dissolved in water, and the solution be agitated in a jar containing 22 grains of carbonic acid gas, the whole of the latter will unite with the former; the lime will lose its .burning quality, and subside to the bottom of the jar,
as an insoluble compound called carbonate of lime, mild lime, or lime-stone. The equivalent number of this substance is 50 -being the sum of $\mathbf{2} 8$ and 22 ; which are the respective equivalents of lime and carbonic acid.
7. It matters not whether we use grains, or pounds, as the equivalent proportions are the same in both cases. Such are the simple and beautiful laws which regulate the combination of elements and their compounds; from a due consideration of which, it will be easy to comprehend how, from a very small number of elements, such an infinite variety of substances as nature presents to our view may be produced.
8. It has been noticed that one element has a stronger affinity for, or disposition to unite with, some other particular element than with the rest ; so that, if it were placed among many others, it would select that for which it had the strongest affinity. Il, when thus united, another element were presented for which it had a stronger affinity or attraction, it would leave its former comparion and unite with the last. This is what is called elective attraction, from the element choosing, as it were, its companion; and the same action takes place among compounds.
9. For instance, when carbonate of potash-which is a compound of potash with carbonic acid-is dissolved in water, if a solution of quick-lime be added, the carbonic acid will leave the potash, and unite with the lime to form carbonate of lime, which will sink to the bottom ; leaving the pure potash dissolved in water. If this solution be now poured off, and the carbonate of lime washed, dried, and then thrown into vinegar, or any other stronger acid, the lime will unite with the stronger acid, and the carbonic acid will escape as gas.
10. In this case the lime had a stronger affinity for carbonic acid than the potash had, but had a still stronger affinity for the vinegar, or last acid which was applied to it. It is this action of elements, or their compounds, upon each other, which is the cause of those changes which are called decay, or decomposition, fermentation, and putrefaction, in vegetable and animal substances.
11. In living plants and animals, the elective attractions of their elements are controlled by the vital principle, and they are thereby combined under a different arrangement than that which they would otherwise have assumed. But when, life ceases, the several ele ments exert their original affinities; each selects that for which it has the strongest attraction, a general dissolution of the animal or plant ensues, and, as the new combinations are mostly volatile, consisting of water and various gases, the bulk rapidly diminishes, and in a short time only a small mass of black mould remains.
12. This is precisely what takes place when dung is allowed to rot, as it is called; and such is the waste to which its valuable eloments are subjected, all of which are the proper food of plants, and capable of being taken up by the roots at the moment they leave the original mass from which they were separated. The fact of the elements and the compounds they form uniting in certain proportions, has long received such numerous prools that it is called the law of their combination.
13. It has been thought necessary to say thus much of the general nature of elements, in order to enable readers who are not acquainted with chemistry, to understand what is meant by certain terms which must be used in speaking of those changes which are continually going on in the works of nature; and over some of which we are daily exercising a control in the management of vegetable and animal substances, of which the farmer's operations in the management of manure present an important instance.
14. Let it be here observed, that as it is not pretended in the following sections to treat of the chemical nature of substances farther than may be conducive to a more judicious management of farm-yard manure, the curious roader must have recourse to professed chemical works for more exact and particular information. He will find the inquiry full of interest, and well deserving of some portion of his hours of leisure.
15. It has been already observed that there are about fifty-five simple substances or elements; of these, however, only fourteen usually enter into the composition of plants, and are therefore all that immediately concern our present subject. They are the following :-oxygen ; hydrngen; carbon ; nitrogen; chlorine ; sulphur; phosphorus ; iron; alumina or clay; silica or flint; potash; soda; lime; and magnesia.
16. The four last are not, strictly speaking, simple substances, or elements, as they consist of certain bases united with oxygen; but as they are never found in their elementary condition, it will be convenient to oonsider them as simple bodios. The four first are often called organic substances, because of them are formed the organs of plants and animals. The others are called mineral substances, merely because they are derived from the earth; they are, however, no less essential to the existence both of plants and animals than the former.

## Section III.

1. Oxygen constitutes one-fifth of the air we breathe, and without its presence in the air animals could not exist a moment; plants
would also soon perish; and it has, on this account, been called vital air. Its combining proportion, or equivalent number, is 8 , and it exists in water in the proportion of eight parts in nine, hydrogen forming the other part, as has already been shown. It combines with all the other elerients, forming in some proportions those substances called oxides, and, in other proportions, acids. Some of these oxides and acids exist in a gaseous form ; but, for the most part, tbey are either in a fluid or solid condition, and, in the latter state, it constitutes nearly half the solid crust of the earth.
2. When common air is drawn into the lungs, the oxygen which it contains is converted, by its union with carbon, into carbonic acid gas ; with hydrogen into water; and, in these states, is expired in the act of breathing, along with the nitrogen, or azote, of the air. The gas, thus expired, being deprived of oxygen in a pure uncombined state, is no longer capable of sustaining life; and it is owing to the consumption of oxygen-that is, its conversion into carbonic acid gas, and water-that animals soon die when confined in close places.
3. The distressing sensation experienced in crowded assemblies, when free access of air cannot be obtaided, is owing to the same cause. Oxygen is equally necessary to plants as to animals, as its presence is indispensable to thr germination of the seed, and to the subsequent growth of the plarit; for if seed be trodden down in wet clay it will not sprout, but will perish for want of the supply of this vital principle. Thus plants often languish for want of a due supply of air to their roots; and, on the contrary, flourish most when it is plentifully admitted by the operation of hoeing, and other modes of opening the soil.
4. It is not only essential to the immediate support of the life of animals and plants, but also the most active agent in producing the decomposition or decay of dead bodies, and their destruction by firo -by uniting slowly in the first instance, and rapidly in the last, with the substances or elements of which they are composed. The action of decay commences as soon as life ceases; and the action of combustion, or burning, as soon as the substance issufficiently heated.
5. It has been briefly noticed before, that by the union of oxygen with metals and other combustible substances, is formed that numerous class of compounds called oxides. These derive their distinctive names from the substance with which the oxygen unites. Thus we have carbonic oxide, oxide of iron, oxide of lead, \&c. It is a curious fact, that notwithstanding the perpetual waste in consumption of oxygen by fire, and by the breathing of animals, the quanvity in the atmosphere continues the same.
6. The oxygen which is removed from the atmosphore by being united to carbon and hydrogen-in the manner just described to form carbonic acid gas and water-is, by a most beautiful economy of nature, again restored to it by the action of the leaves of plants. These curious little workshops imbibe the carbonic acid from the air, separating the carbon from it, and also a portion of the hydrogen from the water of its own sap. These elements are retained to form the plant, while the oxygen with which they were united by the action of burning and breathing, as explained before, is ngain restored to the atmosphere.
7. Hydrogen, or inflammable air, is, as before mentioned, the other element of water, and is the lightest of all gases. Its combiuing proportion, or equivalent, is one, and it exists in most vegetable substances, combined with oxygen, in that proportion; that is, in the proportion of 1 atom whose equivalent is 1 of hydrogen, and 1 atom of oxygen whose equivalent is 8 , as before stated. It must be understood that we now speak of the dry plant as distinguished from the sap.
8. The oil expressed from the seeds of plants, as well as the oil and fat of animals, owe their greater inflammability to the excess of hydrogen in those substances, above what is necessary to form water with their oxygen. When coal or oil is distilled, the hydrogen which those substances contain dissolves a portion of their carbon, and thus forms the gas of our street lamps. During the putrefaction of animal substances, hydrogen dissolves n portion of their phosphorus, and sulphur, and produces those stinking gases called phosphuretted and sulpluretled hydrogen.
9. Carbon constitutes about 50 per cont. both of vegetable and animal matter. Its equivalent number, as before noticed, is $\mathbf{6}$. We are most familiar with it in the state of charcoal and lamp-black. If a piece of charcoal be heated to a certain degree in the open air, oxygen unites with it, and forms carbonic acid gas; and if this action be continued, nothing remains but a few ashes. If it be heated to the same degree in a close vessel containing pure oxygen, the whole of the oxygen will be converted into an equal bulk or volume of carbonic acid gas, by its union with the carbon of the charcoal.
10. Carbonic acid gas is constantly found in the atmosphere, and constitutes about one-thousandth part of its weight. It is from this source that plants, either directly or indirectly, dorive all their carbon-directly, by means of their leaves, and indirectly, from the decay of vegetable matter in the soil which owed its carbon to the atmosphere.
11. Carbon is a powerful antiseptic ; for if meat be kept in powdered charcoal, or in water containing that powder, it will be preserved a very considerable time from putrefaction. It is also a great promoter of vegetation. Plants placed in powdered charcoad, if well supplied with water, grow with groat rapidity, and the smallest cuttings, or even portions of leaves, take root. The effect of soot, as a manure, is partly owing to the carbon it contains in a state of minute division. It is dissipated in vast quantities by the formontation of fair - yard dung, from whoch it escapes, combined with oxygen as carbonic oxide, carbonic acid, and with hydrogen as carburetted hydrogen.
12. Nithogen is a gaseous element, indispensable to the existence both of plants and animals. It is fiund, however, ouly in small quantities in some of the substances, which compose the former, but abounds very much in the latter; and it is this abundanco which forms the principal and most striking distinction between them. Its combining proportion, or equivalent number, is 14 . When animal substances undergo putrefaction, their nitrogen unites with three equivalents of hydrogen to form ammonia.
13. In this state it is capable of forming nitric acid by the aid of an earthy or alkaline base, and in this change five cquivalents of oxygen take the place of three equivalents of hydrogen. The acid thus formed unites with the base and produces a sult called a nitrate. If the base be potash, it is called a nitrate of potash (nitre); if soda, nitrate of soda; and if lime, nitrate of lime. 'lhis change takes place most abundantly in warm climates, from whence such salts are commonly obtained. It must, however, occur in all soils under cultivation, which contain animal matter; and the transformation is promoted in the operation of fallowing, by exposing such putrefying substances to the action of the air.
14. Most persons must have observed, that in stables, the mortar between the stones or bricks becomes soft and falls out. This is owing to the putrefaction of the urine first producing ammonia, and then nitric acid; which, uniting with the lime of the mortar, forms nitrate of lime, which is so soluble a salt that it easily washes out. It is the presence of nitrogen, in the form of ammonia, which is the principal cause of the powerful effect of manures of animal origin, and particularly of urine, from which it is abundantly produced.
15. The decay and putrefaction of vegetable and animal substarses are continually supplying ammonia to the atmosphere which is brought down again in every shower of rain, and in this way is supplied both to the leaves and roots of plants. Green crops thus fix and accumulate ammonia in the soil ; which, together with the occasional sup-
ply in farm-yard dung, enables it to yield the great quantity of this cubstance required for the growth of grain.
16. Note-It has beon o",...ved, that oxygen constitutes about onofift of the atmosphere, tho other four-fifths is nitrogen, sometimes callod azote: but tho nitrogen of plants and animal substances is said not to ho derived from this source, tho latter being always found in a state of combination with other substances. Liebig nientions that there is no natural process or artificial means which can be proved to cause tho nitrogen of the atmosphere to enter into combination to form either ammona or nitric acid. That profound and accurate chemist was the first to detect the presence of nitric acid in rain water, the production of which he attributes to ammonia, which is always contained in the atmesphere.

## Section IV.

1. Tho above described four elements-oxygen, hydrogen, carbon, and nitrogen-constitute upon an average about 94 per cent. of plants in a dry state. When plants are burnt in the open air, they undergo a new arrangement, and, with the addition of the oxygen of the air, the three firs: are resolved into water and carbonic acid gas, leaving behind the remaining 6 per cent. in the form of ashes, consisting of earthy and alkaline salts; which substances act a very important part in the nutrition of plants when they are again returned to the soil. 'Ihese will be more particularly noticed hereafter.
2. Chlohine is an elastic fluid, or gas, of a very disagreeable smell, and is not respirable, being excecdingly ottensive to the lungs. Its equivalent number is 36 , and with one equivalent of hydrogen it forms muriatic acid.
3. Sulphur is that well known inflammable substance used for making gunpowder and other combustibles. Its equivalent number is 16 . United with 3 equivalents of oxygen it forms sulphuric acid or oil of vitriol.
4. Phospnords is a pale red substance highly inflammable, so much so that it takes fire at the ordinary temperature of the air. Its equivalent number is 12 , and it unites with two equivalents of oxygen to form phosphoric acid. This acid united with lime and magnesia forms the earth of bones.
5. Iron is too well known to need a description. Its equivalent number is 28 . It unites with one equivalent to form black oxide of iron, that substance which flies off under the smith's hammer in the operation of forging ; with another equivalent of oxygen, red oxide, or rust of iron, is produced. This substance is indispensable to the existence of almost all plants, and acts a most important part in the functions of animal life, as it is contained in the blood; and life every moment is dependent upon its presence in the act of res-
piration or breathing. It is tha means by which the oxygen, or vital air, when drawn into the lungs, is separated and conveyod by the circulation to every part of the body; and if this action of the iron in the blood be prevented, as it sometimes is by breathing other gases which are therefore called poisonous, life instantly ceases.*
6. Potash, soda, lime, magnesia, silica or flint, and alumina, are all oxides; that is, they consist of bases which have the nature of metals united with oxygen, and are never found separated from it in a natural state. It is indeed only by the most powerful chemical agencies that they are proved to be so compounded-that is, that they can be separated; they may, therefore, be considered as simple substances. They are commonly called bases from their tendency to unite with acids.
7. Potash and Soda are called alkalies. The former is always found, and the latter very commonly, in the ashes of plants, united wih acids. Besides other important purposes which potash serves in the nourishment of plants, it forms, with silica or flint, that hard external covering of all the grasses.
8. Lime and Magesia are called alkaline earths, and are the bases of the earth of bones, as before noticed.
9. Silica and Alumina are termed earths, though the former in sometimes called an acid, from its tendency to unite with the bases. When a stiff soil is mixed with a considerable portion of water, well stirred, and then allowed to rest, the grosser part, consisting of sand and stones, will quickly subside; if the turbid water be then poured off, the fine particles suspended in it will in a short time settle, or might be more reanily separater by passing the water through a filter of paper. The earthy matter thus separated is what is called clay, though, in reality, it consists of about equal quantities of silica, or pure flint, and alumina, or pure clay.
10. We have thus briefly described the composition of five different acids : namely-the carbonic, nitric, muriatic, sulphuric, and phosphoric. These are called mineral acids, because they are commonly found united with mineral substances. When these are chemically united with the oxides, or bases, subsequently mentioned, they form what are called mineral salts; which have received names signifying at once the particular acid and base of which they are composed. Thus a salt composed of carbonic acid united with a base, is called a carbonate of that base; as carbonate of lime, carbonate of potash, carbonate of soda, \&c.
11. If a base is urited with nitric acid, the salt is called a nir

[^0]trato ; with muriatic acid, a muriate ; with salphuric acid, a sulphate ; and with phosphoric acid, a phopphate of that base ; making carbonates, nitrates, muriates, salphites, and phosphates of tho sovoral bases, according to the acid with which each is respectively united. Silica, as before noticed, is sometimes called an acid, because it unites with certain bases in the manner of an acid. United with potash it forms a silicato of that base, and is a very important ingredient in manure for corn and grass crous.

Sfection V.

1. Tue General Composition of Barn-yard Manure.- In a general view, Barn-yard Manure consists of refuse straw, hay, chaff, and grass, and of the dung and urino of animals which aw fed in the sheds and stables of the yard.
2. Straw consists of carbon, oxygen, and hydrogen ; the two latter in the proportions which constitute water, with some portion of nitrogen, and of earthy and alkaline salts. It hats been beforo stated, that the three first elcments are abundantly supplied to the growing plants by the atmosphere, and that, therefore, ammonia and the earthy and alkaline salts are the most valuablo parts as manure. The value, however, of the combustible part of straw is by no means inconsiderable, as it serves, in the undecayed state, to receive and retain the urine of animals; and, when placed on the ground, attracts moisture from the air, which it supplies to the roots of plants.
3. By its decomposition, it incraases the temperature of the soil; and, at the same time, yields carbonic acid gas to the roots of plants, before their leaves are sufficiently expanded to enable them to derive that substance from the atmosphere. Dry straw, when burnt, yields about 5 per cent. of ashes. Professor Johnson gives the follow. ing analysis of 100 parts of the ashes of straw of different kinds:-

4. The alkalies and earths are united with the carbonic and mb neral acids as salts, the former of which tho Professor has not stated. Some of these salts are soluble, but the larger part are insoluble. The soluble part of the ashes of wheat straw is about $y$ per cent. The ashes ol the corn of the soveral kinds consists of the samo salts, except that they contain a much larger portion of potash and sola. The Prolessor observes, that "plants may lenve the same weight of ashes when burned, and yet the nature of tho ashes be very different : the ash of ono may contain much lime; of another much potash; of a third much soda ; whilo in a fourth much silica may bo present."
5. Thus 100 pounds weight of the ashes of bean straw contains 531 pounds of potash, while that of barley straw contains only 34 pounds in the 100 . On the other hand, the same weight of the ashes of the later contains "3y pounds of silica, while those of the bean straw produce only 7 if pounds. 'The different kinds of chatf produce similar ashes to tho straw, but always contain a greater portion of silici. It should, however, have been observed, that straw of different kinds yiolds only a very small quantity of nourish ing mnter to cattle.
6. Grass and haty contain in their combustiblo substances a very considerable portion of nourishing matter in the shape of sugar, starch, and compounds containing nitrogen, to the presence of which, and particularly the latter, hay owes its suporior otiect as fodder. The saline and earthy portions correspond nearly with those of straw, but are much more abundant, and produce similar effects ns manure.
7. The following analysis of hay is given by Professor Liebig: - 116 parts of hay dried in the nir produced 100 parts whon driod at the heat of boiling water. The 100 parts so dried consisted of

| Carbon | - . | 45.8 |
| :---: | :---: | :---: |
| Hydrogen | - | - 5.0 |
| Oxygen | - - | 38.7 |
| Nitrogen | - | 1.5 |
| Ashes | - - | 9.0 |

8. The salls which are constantly found in the ashes of planta must be essential to their growth ; and it may be easily conceived that as they abound in a soil, it will become more lertile. From the different proportions in which we have seen they abound in plants, it may also be readily understood how a soil may be more favourable to the growth of one plant than to another; and also

Why a soil which may bo favourable to tho growth of straw will not produco much grain-owing to tho deficiency of potash to supply the demand of the intter. Such is the efficacy of ashes as a manure for moadow-land, that in Germany, necording to Professop Liebig, no other kind of drossing is applied, and by their means alone, tho most abundant crops of grass tre obtained.
9. The oxtensive folinge of the grasses, and particularly of the trefoils, obtains from the air all the carbon and nitrogon to form, with the eloments of water, the nourishing substances thoy yield The importanes of the carthy parts of plants will be the better appreciated when it is known as a tict, reported by the highest chomical authority, that in certain situations tho bones of cattlo and horsos aro vory delective in solidity and strength, owing to the do ficiency of bons earth, one of the principal constituents of ashes. It is highly poomble that a similar deficioncy in our dairy pasturey might, in muny sifutions, have an effect in affecting the quality, if not the quantity, of milk, which ilways contains phosphate of limo and magnesia in considarable quantit.

> Seurion VI.

1. Comioston and Deciy of Plants. - We havo already said that plants in a dry state, such as straw, hay, \&ce, consist of carbon, hydrogen, and oxygen; a very small portion of nitrogen, and of about six puts in 100 of alkalino and earthy salts ; and that the former elements are placed, by the operation of the vital principle, under a different arrangement with regard to each other from that which their chemical affinities give them a tendency to nssume.
2. The combustion'or burning of vegetable substrnces is nothing more than a rapid and violentaction of those afinities or attractions, in which oxygen plays n principal part. When they are hented to n certain degrec, both the oxygen of the nir and that already contained in the substance are brought into action, and the result will be easily understond from what has been proviously stated of the nature of the ciements concerned.
3. The oxygen unitos with the carbon to form carbonic acid gas, and with the hydregen to form water, whilo a small portion of the hydrogen unites with nitrogon to form ammonin, or (though subject to some dontit) passes off uncombined. Carbonic acid gas is the most abundant of these proilucts, water the next in quantity, and ammonia by far the least. These all escape ns gases, and tho ashes that remain consist of some or all of the oxides, or bases, bofore described, united with some or other of the mineral acids-ns alkaline and earthy salts, which differ very much, both in kind and quantity, according to the plants from which they are derived.
4. As these salts, or mineral substances, constitute an essenticil part of all plants, they are themselves capable of acting powerfully as manure. The most valuable, and generally the most plentiful of them, are the salts of potash, and the phosphates of lime and magnesia; not that the other salts contained in ashes are less essential ; as, for instance, muriate of soda (common salt) and sulphate of lime (gypsum), but because the latter are more liberally supplied to the soil by the hand of nature.
5. If, instoad of being burnt, plarits are accuinulated in heaps exposed to the weather-as in a dung-yard-a similar action to burning, though of slower operation, takes place; which indced may be called a tardy combustion, in which the clernents of the water present take an active part. The greater portion of the car. bon, hydrogen, and oxygen, with nitrogen, are thus dissipated; the sulphates and phosphates are decomposed, producing stinking gases; and if in the meantime water be allowed to soak through the mass and drain away, it carries with it the soluble salts, ultimately leaving a black mass, consisting chiefly of carbon, with a small quaatity of hydrogen and oxygen, and some insoluble earthy salts.
6. If, therefore, decay be allowed to proceed to its greatest extent, it produces a much worse effect than absolute fire ; inasmuch as almost all the soluble salts are lost. Vegetable matter reduced to this state is humus, or that black vegetable matter contained in all rich soils, and those of old pasture land. The only difference is in the mode of their production, the one having been produced by the decay of plants on the surface, and the other from the decny of the roots and leaves of plants both above and beneath the soil. They operate in the same way in the nourishment they yield to plants, namely, by the salts they yet retain, by attracting moisture and ammonia fron the atmosphere, and by slowly yielding carbonic acid gas to the roots of the growing crop.
7. If the quantity of water which mixes with the heap be limited, it is often evaporated by the heat produced by the fermentation; the chemical action in a great measure ceases; and the heap, when opened, exhibits that appearance which is commonly called "firefunged." When in that state, it. will be found to have lost more than one-half of its value; but, if due care be taken to regularly mix the layers of dung, without too much intermixture of horse litter, there will be no danger of the dung made by the cattle in the yards being overheated by fermentation, even in the warmest weathey. Should that danger, however, be apprehended, an addition of roadserapings, or earth of any kind, will prevent it ; and, in the winsar
tisil
the ceanings of the cow honse, as being of a cold nature, will answer the parpose.
8. When plat'sand their seedsare consumed by animals, nearly half their weigh in a dry state is given ont from the lungs and by porspiatano from the sfiu in a gaseons form, chicfly as carbonic acid grs and water, with some ammonia; the remander of their substance, together with the effote, or dead muter, of the animal organs, aro remand, as dung ant urme, exce; that portion retained as nourishonent by growing and fattening anmals. The solidexcrement contans the wome fibre, the insolublonimal matior and salts, and the ar ne tho more soluble salts and sulstances, rich in nitrogen.
9. If no cars be taken f the urins. and it be allowed to run about tho yarl, it so nit per refies-jis nitrogen flies ofle in the shape of ammonia; its suta aro carried away by every shower of rain; and, althongh a portion of it may he saved by its mixture with the dung of the cath, yet the gereter part of its valuabe contents is
 drain into a tank or other receptacle, it there also rapiily undergres putichomon: an!, it this be not checked, a considorable part of the ammon promed will escape with the sulphur and phosphorus, resalang irm the decerposition of the salts comtaining those substances: ocensiouing the intolerable stench observed in such cases
10. Now the amoniz. and the alkaline and orthy salts, arn by mach the mas. valusible part of form yard or stablo dung, and the fomer is always ado whandot when catle aro fel witio corn, oil cake, and other rich fool. It ithout ammonia mo seen could be protuced; and withont akaline and ourthy sult, neither seed nor plants could exist.

## Section VII.

1. Causes of Stennawr. - It is the deficeney of some of these sulstances. where mosrure is not wanting, which is the cause of the land proviucing poes crops: and it is the almost total absence of some, or all of then, which is the cause of complete sterility. Instancos miy almost cureywhere bo found of land which, though ob moding in hunu--ssoch as heathy and peaty snils-are, notwithstanding, inceppl- otbaring grain. If the valuable sub tances above mentimet be wated in the munner deseriber-which is too often the case, to an enormons extm: - the crops will be wery deficient; and it is this wisto bo added tho carrying away of largo portions of tho produce-as when hay and straw are sold, and no manure raturned -the land will soon cease to bear crops.
2. To increase the quantity of manure raised on the land should, therefore, be the constant aim of every farmer : hay should never be sold, unless two tons of stable litter are returned for every load sent off the furm ; and, unless the farm contains a large purtion of rough pasture, the horse-tearns should be kept in the stable, and soiled during the summer and autumn on green fiod; every portion of apparently roluse vegetable and animal matter should also be carefully collected and added to the ding-heap; and, in this manner, it is inconceivable what additional quantities of muck may be produced.
3. 'The manure thus made, and not lermented, is generally applied, either in its fresh state, or only partially turned, to clay land fallows which are to be sown with wheat ; as, being of a colder nature than winter-made dung, it will not occasion the crop to be so hastily pushed forward as to occasion straw instead of corn. If attempits be made to supply the place of farm yard dung by any one sult, or, in other words, by two or three only of the elements of plants - nitrate of soda, or nitrate of potash, or sulphate of lime (gypsum) for instance-it will succeed only where all the others happen to be present on the soil, by the effect of previous manuring; and will inevitably fail where those other neddiul substancts are either ab-ent or very deficien:.
4. Now, it is extremely difficult to ascertain in what salt the soil is really deficient ; care must, therefore, be taken in tho application of artificial manures, that they contain all the elements included in the muck for which they are substituted. These are alt usually found, more or less, in the dung. heap : how needitul, therefore, is it that the firmer should take good care of that manure produced upon his own land, which certainly contains all the elements oi plants, and upon which he knows he can safely rely!

5 . It has been stated beforo, that the most efficient part of farmyard dung is that small portion invisible in the mass, which consists of earthy and alkaline salts and ammonia. The other ingredients which constitute the bulk of manure, consisting of carbon and the elements of water, are abundantly supplied by the atmosphere to the growing plants, and therefore a loss of these by needless fermentaion or neglect is of little importance, were it not that their loss is tuavoidably accompanied with the waste of the more essential substances in the manner described.
6. It should be the cbject of the farmer not only to prevent the waste of such precious substances by every means that knowledge and ingenuity can devise, but also to make every addition to then that nature or local circumstances have placed within his reach.

These desirable purposes he will bo the better able to carry into effect when he fully understands the nature of the manure he has ander his management, and by that means he can exercise a sound discretion in adding to its quantity and effect.
7. Let it not be allcged against any inquiry by the farmer into the constituent nature and chemical properties of his manure, that he has no ideas atlached to the several terms used to designate the substunces of which it is said to consist. He is obliged to learn tho names and uses of the several implements he cmploys in the cultivation ; and, upon what princip'e, we may ask him, should he rofise to make himself acquainted with the names and general properties of the produce he raises? But littie eflort is required to obtain a precise knowledge of tho several elements, or substances at least, by the employment of which he is enabled to raise and increase his crops, and is it not pleasant to learn, as well as most usefil to uuderstand, the reason of their value to hin !
8. Nor is this limited degree of chemical knowledge of difficult attainment. Livery farmer has seen wood-ashes, and also seen water pot ed upon them for the purpose of extracting a something: that $s$ in. a cee is chiefly potash, which may be seen by raporating the choci water, which leaves the alkali behind, and the dregs which remain at the bottom consist for the most part of eartly phosphates-a similar substance to the earth of bones.
9. Soda is now so commonly used as to be known at sight to most persons; lime and magnesia are still more Cumiliar ; ammonia is the common pungentsalt of smelling bottles; sulphuı ic, muriatic, and nitric acids, are extensive articles of commerce, and, with phosphoric acid, may be lound at any chemist's shop, and these acida, as well as their bases-potash, suda, lime, and magnesia-may bo had for a trifle, either separately or combined as salls.
10. When, therefore, the appeazance and more obvious qualities of these several substances have become familiar, their eflicacy as manure may be proved, by mixing them thoroughly with two or three hundred times their weight of mould, and appiying the compost to garden plants. The farmer might in this ensy way soon become acquainted with the name, characier, and properties of the invaluable substance contained invisibly in the muck of his yards; and would be the better able, and more desirous, to prevent their steiling away from bim.

Section VIII.

1. Excrements of Horses, Hornfo Cittlef, and Pigs.The soli l excrements of callte used in agriculture differ considen-
ably in value according to the age and uses of the animals. Young catlue retain the phosphates contained in their fond for the increase of their bones; whit dairy cows yeld the phosplintes in their milk: the dinig of both those is consequently defieiont in such substinens, and pooducnu fron this conse a less effert as manure. The valuc. or vitue, of bath the solid and liquid exercments, is most meterially aticcted by the fiod given to catte.
2. (Grain and oilcome contain a largo quantity of phesphates, ns well as sturch and substuners contnining nitromen, oud when theas are given as ford to caille, they rot only thrive repidly, but their dung becons proportionably rich in phrsphates and substanes producing ammonia. The flesh or musel sor anmals, is incrensed by thuse parts of plauts and sceds; which consist of compoundy containing nitromen; and their fat is derived from such as yield starch and sugar.
3. In the case of fattening anima?s with any given quantity of food, they produce much more both of flesh and fit whon kept in a state of repose, and at a moderate temporature, than when expmed to cold and allowed to take excreise. "It is, indeed, kmown that the vita! forees decrease whon the body is exposed to a certain degree of cold; and when this is suliciently interse, that they are either suspended, or alngether annibilated" *
4. Although mather besude our present purpose, wn yet canmet refrain iom rematking in this phace upon that beautifal economy of nature which connects the nuteition and growth of plants with that of anmons; whe whe inorganic substances essential to the later aree equally so to the formery. Thus the phasphates of lime and $m$ ghnein, aid the sulphate and muriate of soda (commn salt), patash, and iron-as required by plants-equally subserve the nomeribmat of animals.
5. Withont the forner, the bones of animals could not be formed; while phophorie, stphuric, and muriatic acids, soda, pontosh ard iron, are unt only necessary to form the sulstance of amimals, but are indisumsable to the dischatge of the functions ollite. In this way, prants mav he said to be the caterers of animals. ns they collect and wa coct the iood upon which they sulsist. Tho caseine (or chrose) ablumen, and fibrine. whirh have hitherto been considered the production of animal life, are nows ascertained to be previously formed by plants, as well as starch and sugar ; and are

[^1]only assimilated and modified by the animal functions. The three first substances have been by the chomist extracted from plants, and their analysis is precisely similar to those yoldd by animals.
0. One thousind parts of the soliu exrrement of a cow, or ox, consists of 750 parts of water, and the rematinter of the rejected vegetable matise, and some amimal substances gerivel from the waste which the orgons of animals are contimally undergoing. When 1000 of the dried excrement is burnt, it yields 60 parts of the following substances:-

| Silica | - | - | - | - | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Carbonate and phosphate of lime | - | - | - | 12 |  |
| Carbonate, sulphite, and mu liate of soda | - | - | 2 |  |  |
| Magnesia, alumina, and potash | - | - | - | $\mathbf{2}$ |  |
|  |  |  |  |  | $\mathbf{6 0}$ |

7. 'The solid excrement of cows and oxen is by itself very little prone to undergo putrefaction or fermintation, which is owing to the very small quantity of nitrogen the\% comin ; it, therefore, gives out b:it litle ammonia; but when mind with turine-which abounds whin nitrogen rapid fermentation fusues, and very pur.gent fumes of ammonia and other offousive gasos escape.
8. The urine of horned cat'le consists of a harge protion of water, holding in solution a substances called urea, which readily changes by fermentation into ammonia; it also contaita; seveal salts formed from the various eloments already dew...nd. The following is an abstract of the analysis of 100,000 pi : ac : the urine of cattle by Professor Sprengel : -
Water - - . . . 92.624

Urea, with resinous matter - - 4.000
Albumen and mucus, subs ${ }^{+}$ances con ${ }^{+}$nining nitrogen 200
Salts of potash, soda, and ammonia, with organic acids
Sulphates, phosphates, and muriates of soda, lime, and

9. It is owing to the presence of so much nitrogen in urine that it so rap. Ily undergoes putrefaction, nud promotes that action in vegetable substances in contact with it : as, for instance, in tho straw anid refuse of the farm-yard. The urea-which abounds in nitrogen-takes an active part in this process, and yields a large quantity of ammonia.
10. The solid excrement of horses-as they generally consume a considerable quantity of corn-contains more nitrogen than that of horned catte; which accounts for the circumstance of its fermenting much faster than the latter. 100 parts of this excrement consist of 70 water, 20 vegetable fibre, and the remaining 10 parts are composed of animalized matter, earthy and alkaline salts. 1000 parts of the dried solid excrement contain, according to Professor Sprengel. 60 parts, by weight, of ashes, of the following composition :
$\begin{array}{llr}\text { Carbonate, sulphate, and muriate of soda } & - & 5 \\ \text { Carbonate and phosphate of lime } & - & 9 \\ \text { Silica } & - & -\end{array}$

## 60

Besides these there must be some other earthy substances.
11. The urine of horses is composed of 94 parts in 100 of water ; the remaining 6 parts consisting of urea and salts of soda, lime, and potash. Nitrogen is much less abundant in this urine than in that of cows and oxen; which renders the former much loss fertilizing than the latter, when applied in a liquid state. Stable dung, however, yields a large quantity of ammonia, most of which is lost to the farmer-as is evident from the strong ammoniacal smell which is constantly emitted in stables; and, more especially, from the heaps generally placed near the door. This escape of ammonia has beern alluded to before, in speaking of its principal elementnitrogen ; and the injury done to stable walls by the conversion of the mortar into nitrate of lime.
12. The waste of this precious material might be easily prevented by means of strewing the floor of the stable with gypsum powder, by which a sulphate of anmonia would be formed, $\pi$ substance or salt that is not volatile. The gypsum should be in fine powder, or it will fail of producing the desired effect ; as some recent experiments have tended to prove. Sulphuric, or muriatic acid, diluted with a large quantity of water, will, however, be much more rapid and effectual.
13. The dung of pigs is generally considered to be a "cold manure ;" but this can only be said of that of store pigs, for it must form a powerful manure when pigs are fed upon corn and other
food containing much nitrogen. The urine contains a large quantity of nitrogen, and becomes exceedingly offensive when allowed to putrefy by itself.
14. The excrements of the pig should, therefore, be constantly carried =way along with the litter, and mixed with the other dung of the farm-yard ; for if applied by itself to potatoes, or other esculent roots, it is apt to impart to them a most disngreeable flavor; occnsioned, probably, by the large quantity of liquid flood which they consume, and to some peculiar volatile substance contained in the urine; which, according to an analysis by Professor Sprengel, contains, in $100,00^{\wedge}$ parts, -

$$
\text { Water } \quad \therefore \quad-\quad 92.600
$$

Urea, with a very ittle mucus, albumen, and colouring matter - $\quad-\quad 5.640$
Salts; as common salt, muriate of potash, gypsum, carbonate of lime, and sulphate of soda - - - 1.760
100.000
15. From which analysis, it appears, that the urine of the pig contains rather a smaller proportion of water than the urine of horued cattle, and $1 \frac{1}{2}$ per cent. more of urea; and this explains the reason of its being more caustic in its fresh state, than that of cattle.

## Section IX.

1. Excrements of Fowls. - The droppings of birds form one of the most powerful of known manures. This arises in part from the circumstance that in the economy of birds there is no final separation between the liquid and solid excretions. Both escape mixed together from the same aperture. Pigeons' dung is much prized as a manure wherever it can be obtained in any considerable quantity. In Belgium it is esteemed as a top dressing for the young flax, and the yearly produce of one hundred pigeons is sold for about 20 s .
2. Its immediate effect depends upon the quantity of soluble matter it contains, and this varies much according to its age and the circumstances under which it has been preserved. Thus Davy* and Sprengel obtained respectively of

Recent. Six months' old. After fermentation.
(Davy.) (Sprengel.)
Soluble matter in pigeons' dung $\}$

[^2]3. The soluble matter consists of uric acid in small quantity, of urate, sulphate, and especially of carbonate anmonia, common salt, and sulphate of potash ; - the insoluble chicely of pousphate of lime with a litt'e phosphate of magnesia, and a variable admixture of sand and other earthy matters. When expenal to moisture, the pigeons' dung, especially if recent, uaderges fermentation, loses a portion of its ammoniacal salts, and thus beemes less valuable. When it is inten ed to be kept it should be mixed wiht a dry vegetable sul, or made into a eompost with eath and saw dust, with a portion ol pulverized or charred peat, or with such a disinfecting charconl as that which is employed in the mandacture of the animalized carbon above described.
4. Hens' dung often accumulates, decomposes, and runs to wasto in poultry yards, when, with a litule care, it migit be collected in considerable quantitics. Goose dumg is less rich han that of hens or pigeons, because this bird feeds loss upon gram, and derives a considerahle portion of its nourishment from the grass which it crops, when allowed to go at liberty over the firlis. Its known inju"inus effects upon the grass upon which it lills arise from its being in too concentmed a staic. In moist wother, or when rain soon succeeds, it dnes no injury, and even when in dry weather it kills the blades on which it drops, it brings up the succeeding shoots with increased luxuriance.

5 Rooks' dung unites with the leaves of the trees among which they live. in onriching the pasture beneath them. In old rookeries the soil is observed also to be slowly clevated rbore the surrourding land. This surface soil I have found to be especially rich in phosphate of lime, which has gradually accumulated ant remained in it while the volatile and soluble parts of the droppings of the bird have slowly disappeared. Guann is the name given to the accumulated dung chiefly of sea birds, which is liund upon the rocky promontories, and on the islands that skirt the co st of South America from the 13 th to the 2 Ist degree of south lutitude.
6. In that part of $\Lambda$ merica, the climatelming very dry, droppings of the birds have decomposed with exceerling slowness, and upon some spots have accumulated for many coniluies, forming layers, more or less extensive of 10,20 , and at certain places it is said even 60 (?) feet in thickness. In some places the more ancient of these deposites are covered by layers of difft sand, which tend further to preserve them from decay. In our moist climate the dung of the sea fowl is readily washed away by the rains, so that even where sea birds most abound no considerable quantity of guano can over be expected to collect.
7. The solid part of the droppings of birds in general, when recent, consists chiefly of uric aceid, witi a litule urate of ammonin, and a variable per-centage of phosphate of lime and other saline compounds. The liquid part, like the urine of other abimals, contains much ure', with some phrsphates, sulphates, ond chlorides. The uric acid and urea, however, gradually undergo decomposition and are changed into carbonate and other aits of ammonia.
6. If applied to the land when this stnge of decomposition is attained, they form an active, powerful, and immeriately operating manure ; but ifallowed to romain exposed to the air for $n$ length. ened period of time, the salts of ammonia gradually volatilize, and the efficacy of what remains becomes greatly diminished. Hence, the guano which is imported into this county is very variable in quality, some samples being capable of yielding only 7 per cent. of ammonia, while others are said to give so much as 25 per cent.

## Section X.

1. Dung of Shemp.-Sheep abstract somewhat more nourish. ment from their food than neat cattle; for if we first weigh the dry food given them, and afterwards the dry excrements, we shall find that these wei; ;h rather less in proportion with sheep than with cattie. It may, indeed, be supposed, that in the digestion of sheep, a greater amount of oxygen and hydrogen unite to form water, which accordingly evaporates with drying.
2. Still the stomach, and othor digestive organs of sheep, must have the prover of ubstracting from the b od a larger quantity of nourishment than those of catte; as shee:s in eating, chew their food mure minutely. This is the reason why the same food-especialiy when consisting of hay, straw, or "ther dried plantsgoes furtle with sheep than with neat cattle; and this is by no means an mimportant circumstance.
3. The indigestive organs of sheep would seem even in some degree to reduce vegetable fibre; which substance passes undigested througl the bodies of most other animals, not excepting the human body. Of what incalculably important consequence would it be, if fiod could be prepared in some chenp manner, so as to render the whole of the vegetable fibre digestitle! And that it is capable by chemical menns of being brought into such a state, we know by the fact that sugar may be obtained out of paper, which is very pure vegetable fibre.
4. It is mat:er of experience that green clover is better food than the hay made from it ; the simple reason of which is-that in the process of drying, many of its vegatable particles are so much hard-
ened that the digestive organs have no longer any power to reduce them. By stenming the hay the hardened particles are agnin softened, and consequently there is always a less portion of such food required than dry.
5. According to Block, the following quantities of excrement arise from different species of fodder given to sheep :-

From 100 Ibs. of rye-straw, fluid and solid, . . . 40 lls .
" hay, . . . . . . . . . . 42
" potatoes, . . . . . . . . . 13
" green clover, . . . . . . $8 \frac{1}{2}$
" oats, dry excrement, . . . . . 49
6. In this case, therefore, the same thing happens as with cattle; upwards of one-half of the solid food being lost, whether from straw or any other kind of food-for 100 pounds of green clover give 20 pounds of hay, and 100 pounds of potatoes leave 24 or 25 pounds of solid substance. This loss occurs partly in the formation of water ; partly in the carbonic acid of respiration; partiy in the production of wool and the formation of flesh and fat ; and partly also, in the last place. in the evolution of aminonia and other perspirable matter through the skin.
7. The solid excrements of shesp has been chemically investigated by Zierl, and this appears to be the only chemical investigation we possess on the subject. 1000 parts, by weight, of the solid excrements of sheep, fed on hay, contained :-

$$
\text { Water, . . . . . . . } 679
$$

Sugar of gall and soluble salts, . . . 34
Bilious, with extractive matter, . . . 19
Humus, with coagulated albumen, and mucus of the intestines 128
Woody fibre and vegetable remains, . . 140
1,000
1000 parts, by weight, of the dry excrement, give on being burnt, 96 parts of ashes, consisting of-
Carbonate, murinte, and sulphate of soda, . . 16
Carbonate and phosphate of lime, . . . 20
Silica, . . . . . . 60
8. He has undoubtedly overlooked magnesia, potash, alumina, oxide of iron, and oxide of manganese, as all these substances occur in the hay which thesheep had eaten; but we might take for granted that the whole of the potash of the hay would pass off in the urine. The chemical component parts of the solid excrements of
shoep, ns well as of all other excrements of animals, depend naturally on the food the animals eat; and they are so much the better or worse, in their effect as manure, as the food itself is stronger or poorer.
9. Solid sheep.llung contains somewhat less water than the solid excrement of cattle; a circumstance which the appearance alone of the sheep dung, being less soft and pulpy, woula have led us to expect. It possesses, on the other hand, more of the easily decomposable substances containing nitrogen; for while the solid excreinents of catte in 1000 parts ly weight contains only 105 and 112 of this and other substances that are quickly decomposed, that of the sheep contains no less than 180 parts. If, also, we consider that shefp-dung consists of finely divided parts, we shall casily understand how it happens that it comes sooner into action than that of cattle, and whence it arises that on further putrefaction, when lying in heaps, they gencrate so much heat.
10. The keeping of sheefin in pens will probably sound strangely in the ears of some. In the north of Germany, however, the severity of the clinate during winter requires such protection. In that country the practice is not only necessary for the health of the sheep, but is attended with great eronomy of food. The views lately developed by that illustrous chemist and physiologist, Professor Liebig, throw great light upon this as well as upon almost every otiser bianch of rural economy, in which he seems, with a master-hand, to "unfoid all nature's law ;" and has been ably supported by the recent publications of Professor Playfair on the same subject.
11. According to these views the craving for food is much increased by cold ; and the increase of food required by animals when exposed to cold, does not go to form fat and increase the growth of the animal, but is expended in keeping up the proper temperature. It is important to be fully aware that clothing and shelter supply, to a great extent, the place of food; at all events, that food will go very much further when aided by rensonable shelter.
12. A very valuable proof of this has been recently given to the agricultural world by Walbanke Childers, Esq., M. P., which is recorded in the second part of the first volume of the Royal English Agricultural Journal. By this experiment it appears that forty sheep, of equal size and weight, were selected : twenty of these were fed in the usual way in the open field, and the other twenty in a rough shed; yet the latter-although they received nearly a fifth less food than those of the open field-showed an increase of twenty stone more in the short space of four months.
13. At Lard Ducie's experimontal farm, also $\rightarrow f 100$ sheep, kept in the qpen fiens fro" the 10th ()ctober w the IOth March, each oat $:+4$ lhas daily of sivodes; whilo another homdred, having a covered shod ant i yarl than into at plessare, only ate $\mathbf{2 0}$ lbs. each of the sume thrapss : thas cloarly proving this siving of food to have boen as :manot selely liy protection from the weather; and that, for futconing sheep, thrs plan is exsellent.

## Spertoon XI.

1. Woon-Asues avo Soor-Wom-ithes contain, in a greater or less deg:ce, all tho more essontial elemonts, or substances, which form tho liod of plants, ex ept ammonia; or rather all those which are not abundanily supplied by the atmosphere. 'The most abun. dant of the o are potash and earlhly phaspha'es. 'The quantity of these, howover, is vory variable in the ashes ol dillirent plants. Those prot reat by beech-wood contain about one fith part of phosphates, while those of the wik yield seare ly atiy phos; hates.
2. 'Ithe p iwert' effect of wood-avies in promoning the growth of clover of overy kind is woll known. In Germany, no other manure is used lor grass lands, and by theso the we kept in the highes: state of productivencos. Considering how indispensable they are to konp up the lertility of the soil, it might bo well worth trying whether their more extensive use in Canada wold not materially advance the interests of agriculture: wherever inade they should be taken as much care of as money, for they are certainly most vnlumble.
3. The following table contains $n$ statement of tho quantity of potash contrined in some of the common trees and plants:-

| 10,000 parts of O'ik, | - | - | - | 15 |  |
| ---: | :---: | :---: | :---: | :---: | ---: |
| " | Elin, | - | - | - | 39 |
| " | Beech, | - | - | - | 12 |
| " | Vine, | - | - | - | 55 |
| " | Poplar, | - | - | - | 7 |
| " | Thistle, | - | - | - | 55 |
| " | Fern, | - | - | - | 62 |
| " | Cow-thistle, | - | - | 196 |  |
| " | Wormwood, | - | - | 730 |  |
| " | Vetches, | - | - | 275 |  |
| " | Beans, | - | - | - | 200 |
| " | Fumitory. | - | - | 790 |  |

4. The ashes produced from the leaves of trees contain much more potash than those of the twigs and branches. and those of the datter more than those of the trunk of the tree; while the ashes of
the two latter contain the most phosplate and carbonate of lime. The quantity of potash in the lenves varies very much with the sonson of the geer, brin: preatest in spriag and lenst in nutumn.
 for the sake of the benefin aftioned! to the : wee eeding erop by the nohes and it is any cormmonactionMon the combent. Considering the value orthaw for liter, his mast be a patice of very doubtial tenelit ; and whero the stuble is not eat for litter, it must, when pu:hed (anm, whm: tely atord to the land all that he ashes contain ind sr nocthing more.
5. Coul-ush sare not gencem anaiblde fome farmers, but there are few situations in wheh whey are mindenchinh, especinlly as ap-
 they contain will radily acemut for tho edeet they pronace. Be. sudes the earthy and impertectly burnt condy maten of which they prineipally consist, they alsis contain suphate of lime with some potashand sodta, all a" which are known when semarately ajodied to produce a gand diad wh chomeros, and to favour tho production of whine clover praticulaty.
6. Sont mast have a puwertinl cifoct is a mantare, from the large quantity of munia it comains in the shape of carbonate and sulphate of ammenia : thongh its quality must difer considerably, aceording to wo matter from which it is tireised. The sont produced from Nosucastio conis is of the best patity, as the coal contans; a larger gramity of hitumen than that which is found in stafmershire and oher pert: o" Enel nd ; but it is notorious that London sont is very much atule ented by the sweeps or tradmes betme it rons intw the memer's hends; and, when found to bo in that stato, the flamity :houd, of course, le increased. *
7. It is oxtomalely used as a thp 'reassen, spmend hy hand, at the rate, on secestand pasure, of twe ty th hirty; and on wheat, barley, and turms frmm furte forty-fis bustich poracre. It is, however, more grampally cmployed ar whan, mid is considered one of the in st poserthl topdres ing for that crop with which we are acquainted: and experinents have shown its power to be ma.

[^3]terially increased by an admixture of one-fourth of common salt; more particularly when laid upon pasture land, the grass of which soon after assumes a growth of increased luxuriance.
9. Though it has almost always been used as a top dressing, it is probable that it would have a greater effect if used as a compost with other substances by moans of tho drill ; and has, in that manner, been successfuily employed in the cultivation of potatuen by an eminent farmer in Gloucestershire. We perceive also, that, in a recent comparative experiment of different manures for the growth of carrots, 54 bushels of soot, and 6 of salt, produced larger crops of both the Alteringham and white Belgian species than 24 tons of stable manure, and 24 bushels of bones; though at onehalf the cost.

## Section XII.

1. Knowledge of Farming.-It may be truly said that every farmer is a practical chemist. It may, indeed, wi h equal truth be asserted, that no practitioner would derive more benefit $f$ om understanding the principles of his art, and that there is no other art in which the most eulightened practice is of half so much importaneo to mankind ; for (to puote the language of Liebig)" there is no profession which can be compared in importance with that of agriculture : as to it belongs the production of food for man and animals; on it depends the welfare of the whole hunan species; the riches of states, and all commerce."
$\%$. It is presumed that the preceding explanations of the naturo of the several substances which, as manure, fall under the farmer's inanagement, wili enable him to form, and to appreciate, more precise notions as to the proper mode of treating them; and that he. will the more readily understand the force and meaning of the suggestions offered.
2. When we know that in all good farm-yard dung there is a volatile substance called nitrogen, which, by fermentation, is rapidly converted into ammonia, and in that state escapes into the air and is entirely lost ; and when we also know that this substance is the most powerful fortilizer of any in the dung; that neither seede nor plants can be produced without it ; and that certain substances attract this ammonia and prevent its escape, wo have made a very profitable discovery.
3. When we have learnt that-besides this invisible but important substance-there are others equally invisible in the mass of dung, and no less necessary to the growth of plants, most of which substances are readily soluble in water, and in that state are easily
carried away (such are the salts of which potash, sodn, andaminonia are the bases)-and know how their escape may be effectually provented; we are then placed in a very advantageous position, from which the greatest benefit might be derived; and it is certain that the farmer's prosperity must be materially influenced by the use he makes of such krowledge in the management of his manure.
4. Most farmers are aware how much more powerfil, as a manure, the droppings of sheep are when corn is given them; and the superiority of stable-dung to ordinary firm yard manure is merely owing to the more nourishing food given to horses. Corn consists entirely of the most essential elements of nutrition, both of plants and animals, principally of carbon, nitrogen, potash, sodn, lime, and magnesia, with sulphuric, phosphoric, and muriatic acids.
5. These, when taken as food in the corn, are again restored to the land in dung and urine, except such portion as is retained in the bones, flesh, and fat of the animals. By giving crushed corn, theretore, to the sheep and cattle, for the purpose of fattening them, it may be more advantageously disposed of in remote situations than by selling it; and while the stock, so fed, rapilly improve in substance and value, a large portion of the most efficient principles of manure is retained to increase the productive power of the land.
6. Such a practice would, in many instances, form a more profitable method of dispusing of a portion of the produce, than by carrying away the utmost quantity of corn that could by possibility be spared, particularly when it would in a great measure remove the neccssity, or supply the deficiency of the application of artificial manures.
7. When the true principles of the nutrition of plants and animals become more generally known and appreciated by ngriculturists, there can bo no doubt that more economical methods of managing and controlling the productive powers of nature will bo adopted, and all the various resources which she presents will be eagerly sought and appropriated. Such knowledge is indeed power, and is more precious than fine gold. And though many excellent practical farmers are apt to regard such knowledge as superfluous, the time cannot be far remote when it will be considered a reproach to be ignorant of the leading and more important principles, at least of agricultural chemistry.
8. The knowledge and application of mechanical and chemical principles have raised the manufacturing power of Great Britain above that of all other nations, has extanded her commerce and empire to the remotest parts of the earth, and given her the produce of
every clime. In agriculture she is yet in some respects inferior to the Chinese, and in s me instances to the lielgians, and it is only by the more general diflision of knowledge, and the appliention of principles, that sle com homo to take a corrosponding leading position in the march of imprevement.
9. The light that has boon lately thrown upon the operations of agriculture hy the profmud and Deborious ressanches of Liebig, which has been diflisent rather than increasod by numgrous subsequent writors, the importent discoveries of Sprengel, together with the diflusion of heth semptifie and practicai knmwerige by han exertions of the Raval Agricultural Sociely, bid fair to place the agriculture of Eagland on a level with her manufactories.

## Siection XIII.

1. Quality of Mindie. -'The quality of the droppings of animals considered as manures is affect by a great variety of cir-cumstances--sucn ats: firstly, By the kind of foorl upon which the animal is fed.-'t hus night soil i : nore valuable in those coun-
 where vegetablo foru torms the prince, al diet o' the poople. It is even said by ep reng, , hat in the neig bourhond of Hithesheim the farmers give a hager price ior the hata manare of the Lutheran than for that on the fl -mun Cathole families, becouse of the numerous tasts wath the fis ier are required to observe. Every keener of stock alou knows thit the mmure in his firm.yard is richer when he is tevalig tho culle upon oil-cake, than when he gives themonly the ordan : pance of his firm.
2. Secondy, by ? ?nurity of wrine roided by the animal. Upon the unne ghantics ane they produce appears manly to depend the unhay chsteso of the dung of the horse and of the cow. The latter amum, whon:4. sown and not in milk, wids nearly 13 times as muw arm is itw former, and thongh an equal bulis of this urine is parere in shlin ther, yet the whole quatity contains several thees ats much as is prosent in that or the horse. But
 excretions. Lache, supposig the food of a full-grown horse ant of a cow to be very newty the same, the dung of the former-the less urine giveng , mmal-imist be the richer, the warmer, and the more valua.fo-..s it is ron!ly known to be.
3. 'Ihardy, by the un witiof rxereise or labour to which the aninal is subjecter. … he grvater the fatigue $t$ which an animal is suljected the risier the urme is found to be in those eompound (urea chisfly) withe yiold ammonia by their decomposition.
4. The fuod of two animals, therefore, being the same-other things also being equal - the solid excretions will be richer and more fertilizing in that which is kept in the stall or fold yard, the urine in that which is worked in the open air or pastured in the ficld.
5. F'ourthly, By the state of grouth to which the animal has ar-rived.-A full grown animal has only to keep $u$, its weight and condition by the mod it eats. Rivery thang which is not nevessury for this purprse, there'ure, it rejects either in its shid or in its liquid excretions. A young animai on the other hand adds to, and incieases its bone and rasele at the expense oi' 1 is fork. It rejects, therefore, a smaller propurtion of whit it cats lionce the manure in fold-yard, where young eatic are kept, is always less rich than where bull.grown aminals are icu.
6. Fifilid, By he hurpose for which the animal is fod. -Is it to be improset ia condition! 'Then the foul mist stipty it wits the materials fur increasing the sizo and strength of its museles-with aboman, or fibsit, yr viher sumances containhg nitrogn. In such subsances, thombore, or is nitrogen derivea from them, the droppings man be poner, and as a manure, loss valuable.
7. Is the manati:? Le litioned? 'Then i's ford must supply fatty maters, or their el ments, of which mitrogen fans no part. All the matrogon of the fod, therefore, will pass ofi in the excretions, and hance the riehost mantire yiddeat any tine by the same spocies of anmal is that whech is obsand when it is lull-grown, and, boing lagely le.!, iss mpidly fattening.
o. Is the con beyt for its mik? 'Ilwe the mill it gideds is a daily drain $u_{i}$, n the ford i: eats Whatever passes into the udder in los: in the ding, and henee, oker things being tqual, the dung of a milk cow will he les; vatable to the tarmer than that of a fullgrown animat rom which no milk is expecied, or than that of the sathe animal show it is only lating on fat.
8. Sathiy, By the leng't of thme ditring whith the manuae hes been keph.- in in haurs, as we have sea, we ding of the hore begins to ferment and to lossen in weight. All richmanors in lihe manner-t! dung of all animals equecially-docompene mere or loss apiall, undput with their volatile constituents. The value we ussign w them sumy, herefise, will not aphly when tomorrow, and tence the doppings of the same animid at the same age, and fed in the samoway, will be more or less valuabie to the farmer according to the lengh of time during which they have been permitted to io ment.
9. Lasily, Ily the way in whith the manure has be n preserted.The mixed cung of the farm-yard masi necessarily bo less valuabio
where the liquid manure is allowed to run off-or where it is permitted to stand in pools and ferment. 'Twenty cart-loads of such dung may hasten the growth of the turnip crop in a less degree than hall the weight will do, where the liquid manure has been carefully collected and returned upon the heaps-to hasten and complete their fermentation, and to saturate them with enriching matter.

## Section XIV.

1. Management of Manure.-In the Management of farm yard manure two primary objects present thomselves: first to prevent waste of erery kind; and secondly, to increase the quantity of dung by every means in the farmer's power. The waste is effected in the manner before alluded to, by unnecessary and excessive fermentation, by which the organic parts are dissipated in a gaseous form, and by suffering water to run through the dung by which the inorganic substances, the salts, are carried away in solution. No dung should be allowed to ferment until a few wecks before it is put into the soil, and then only in that slight degree as to render it manageable, and to facilitate its decomposition when in the soil.
2. As the from-yard is the general depat for dung in the raw state, care should be takeis to give it such a form as may best preserve it, as well as bring it to perfection ; and on this there is a little difference of opinion : some theorists recommending them to be made so concave as almost to amount to a $w \because l l$ shape, giving as a reason in support of their opinion,-" that the virtues of dung can only be preserved by its being saturated with urine or some other moisture;" while othersassert that dung-yards should be formed convex, and assign as their reason, "that farm-yard dung should be kept dry." "Practical experience, however, points out," as Blaikie says, "that a medium between these two extremes is best."
3. In this we concur ; and the form which we recommend is to slope the sides towards the centre : making either at the centre or the lower end, as may be found most convenient, a tank (which may be made at much less expense than farmers generally imagine) to receive the soakings of the dung, towards which the entire surface of the yard should have a gentlo inclination for discharge. The bottom should be made of concrete powdered brown lime and gravel, in the proportion of 1 of the former to 6 of the latter, mixed wet, and deposited immedintely, or Macadamised stone : or, should the yard be concave, an under-drain should be carried from its centre to communicate with the tank, which should, in that case, be made outside the buildings.
4. The water from surrounding roofs should be conveved away by shoots, or spouts, from under the eaves, and no water from any source should to allowed to pass through the dang, except the rainwater which falls directly upon it. Indeed, independently of the injury which the manure will sustain by being saturnted with water, there is also the very material consideration of keeping the store cattle which are kept in the yards as warm and as free from wet as pussible. The dry litter from the horse-stables, shaken from the dung, should, therefore be spread constantly and regularly over it, as it will add much to their comfort.
5. In order to keep the cattle dry and comfortable. the dung from the stall-fed enttle and pig-sties, and every kind of rough vegetable stuff or animal retuse, together with all the sweepings, soap-suds, and slops from the house, should be carried from the sheds to a compost formed ontside the yard, and added in regular layers to the heap, intermixed with the dung of the horse ; for, if this the not done, the manure will be of unequal gunlity, and the crop, even in the sane field, will often display great disparity.
6. We are well aware, that according to the mast approved modes of laying out farm-yards, they ought to be surrounded with buildings, which should be raised above the level of the yard, which should also be divided into compartments for catile of different sorts and age, and every arrangement made in their construction for the saving of labour, and increase of convenience.
7. It is a common custom in England to lay a quantity of lonso earth of some kind over the yard, as a foundation for the bedding of the cattle when they are taken for the winter, for the purpose of absorbing their urine, and thus creating, or at least retaining, a valuable portion of manure, which might otherwise be lost ; and this we admit to be a consideration of material importance, though counteracted in some degree by the cold atid damp which it occasions to the stock.
8. If peat can be procured within any reasonabledistance during the summer time, it should be carted to the neighborhond of tho yard, and after laying sprend to get tolerably dry, should be thrown up into heaps for occasional use during the winter, the yard being first covered with it as soon as tho dung of the previous winter has benn removed.

9 The peat so laid up should ocensionally be sprend upon the surface of the dung ; but in case it cannot be procured, a few hundred woight of gypsum should always be at hand toscatter over the dung from time to time, and also a simall quantity of rough san salt and if that cannot be had, common salt. A little of the gyrsuan
should be also cprinkled every day upon the floors of the stables where tho uritur runs, which will be swept out and conveyed with the later to the general depo in tho yard.
10. Somn erm fumers improve upon this system, by placirg the dificreat s, ceies of manure in separate heaps, according to their different giantios and speed of fermentation: thens, for instance, the dung a horse-stables, as boing of the richest and hottrst nature except that of panitry, that of fatting pigs and sall lea e tike us well an that wisep, whon kept in foldyards, and has ly, the
 vantage ul umbling the husbandman not only to employ tiuse mathures at his with der retion, for the use of particuler ands at various scasums. but idso to cither retard or acceleraic tiver fermentiotion, by ath momisture with carh other at the season or purpose for which idez are wated.
11. Un sha! fimms, it is, however, inconvenient; bu tif the plan proscribed ainna bo adopted, the eficet of the mantie ol a firm would her mery twace as great as when all sur", mons are lefg-

 upon it, intil: firmer be desirous of placing his jirst of eirls upon en cqual fe, wes with whers.
 order to than and business of the season. previns to the commencen कnt a.tar work, a qumaty of peat, mari, soil, or road earth shan the comocied on the spot intmed to tecoive the dung. The foumath of of the heap should be laid widh such material about six tonine insim thick, focending to the noture of the rung to be lad $\mathrm{u}_{\mathrm{i}}$ on it, at it should be mather incinod to the centre; so as to retain :s mitu as possithe of the soaknge of the heap; the sices should to to : bprem, and de top level.

1:3 At anchaton of the cating the two onds shoud te brought $u_{j}$, whe theneral lovel of the hemp, and ha whole soriace, inchutimethe top, sims, and ends, should be well cuath with the
 weelis of a mo ith before the manare is roquired upon the hand, the heap shand tomaci, the enmh thomofly mixed with the dung, nond another boow onating of earth phed agnimet the sides and over the top of the herp, ty whien the whole will be kept moist, and the gascs, produced by fermentation, prevented from escaping.

## Siection XV.

1. Impaovement of Manure, - That so little care and welt-
directed skill has hitherto been manifested in the mangement of farm-yard dung in this country, can be no rason for continuing noglece. The success of a father or gran where is fir from being a proof hat their practico in many paspots uan bo im. proved uprn, thwigh that kind of argument i. sham.... ad. vaticed. 'Jheir suceess should rather be atribulent an their industry and skill, in tho exereise of which they availed thmeswes of tho best lights their time allorded them, than to blind!y trewhing in tho foutsters of himir pradecessors.
2. If warefocting preseription had been the mis, what wold agriculture in at this day? In the grent maj wity of instances tho vast loss that las hithern occurred in neglecturg ti.. management of monure, mat be attributed to the farmer not lanang tho naturo of the esembin sustanens of which it is compert, and the most
 solved in water. When his liability to loss in has way comes to bo fully apmectaced, and he becomes awate of the crath in which it is incurred in tho ordenary and negligent madide of treating dang, a betier systom will be adopter, and no anes will be spared to preserve such valuable interiats.
3. 'That eren le most enlightened and intelliget of practical farmers have yet very much to learn on the suljou of manres, is abundanty testitica ly the confusion ofopinien: int geserally prevails on the apthation of certain individual salta, ant the wonder oiten expersed of their success in one instanco and their failure in another, in cases where the soil appeared to bo tho same. Noture is our great guide and instructor in these maters, and if wo inquire of her, she will give us treme and most raluahle answers.
4. Liebig, has beatinilly observed, "that expertments are ques. tions put to nature, and the results of those experiments are her answers." The chemist has put such questions th mature respecting the composition of phats and their seeds, and sho las answered hime, "that they are formed of certnin bases called by him earths and alkalis, unitad with certain ncids, and of cenam greous substances, the nature of which earths, alkalis, acias, and gaseous matters, she hed previously explained to hitn"
5. The same question has been put respecting the composition of the dung and urine of the animals which have been fed upon plants and their seeds, and the answer has been, what might have been expected, "that they consist of precisely the same suistances, only in an altered form." The chemist naturally inferred that these substances are the food of plants, and that they car :ot exist without them; nay more-that if all of them are not present the plant
cannot be formed, any more than a house can bo formed without timber, though all the other materials are at hand in abundance. But the farmer has not listened to his lore, and would none of his counsel.
6. Without knowing of what his plants are formed-that many different sulstances are required for thoir nourishment, and that the presence of all those substances is requisite to the fulfilment of the conditions of their growth-he applies one substance only, an individual salt; and if it happens to be the very substance that was wanted to fulfil the conditions of fertility, he gets a crop.
7. Encouraged by this success the same salt is applied to another field, with the full confidence that it will produce a similar effect. In this instance, however, to the great surprise and disappointment of the farmer, it proves an entire lailure. Induced by the success of the first application, other persons try the same salt, some with entire success, others with partial benefit ; but the greater number generally without any perceptible advantage. Further experience of the kind plainly proves that there is nodependence to be placed upon this particular salt, and it is ultimately abandoned.
8. Such has been the fate of several dillerent salts, in succession, and thus common salt, gypsum, carbonate of soda, nitrate of soda and nitrate of potash have each had their periods of tavor and disrepute. A few such successful exporiments with a particular salt have led to an extensive application of it, and to consequent great loss and disappointment.
9. Neither plants nor animals can live unless their food contain all the clements oi which their substance consists. If a dog be fed upon flesh it will enjoy vigorous health, but if the jelly alone be given it for food, which constitutes only a part of the flesh, it soon dies with all the appearance of starvation. Again, it will live and do woll when fed with undressed whoat flour, but rapidly declines ii kept upon fine flour, from which all the bran has been taken.
10. When the farmer applies farm-yard dung to his plants, it is like giving flesh to a dog; he administers all the plants want to insure their growth; but when he applies a single salt, it is like giving only jelly or fine flour to the dog: at all events he throws himself upon the chance and uncertainty of all the other salts or substances which plants require fur their food being already in the soil. No wonder, therefore, that such empirical practice should so frequently fail.
11. When the farmer stands in need of a substitute for his own proper manure-farmyard dung-as he cannot with certainty tell
what is in the land, he should obtain one that contains, if not all the substances contained in that dung, at least those which are most likely to be deficient ; and these in ninety-nine cases in a hundred will to nitrogen, in the form of salts of ammonia, phosphate of lime, and magnesia (bone earth), and patush.

## Section XVl.

1. Quantity of Barn-yard Manure produced by Cropa and Composts. - It has been calculated by an eminent Scotch agriculturist, that the Burn-yard Munure, produced per acre by the several crops, is in quantity nearly as follows, from land producing 98 bushels of wheat :
lBy turnips, cabbages, and fallow crops, when applied to the Tons.
feeding of cattle - - - 6
" Clover, grass, or herbage, hay, \&c., first year - 6
" Ditto, if mowed, second vear - . - id
"Pulse crops, as beans, \&ic., part of their seed being used on the farm
"Pulse crops, when the seed is sold - - 5
"White or corn crops-wheat, barley, \&c., on an average of the whole - - . . 4
2. It is no wonder, therefore, observes this writer, " that green crops should be recommended as sources of fertility, producing proportionally much more manure, besides the other advantages wherewith they are attended." 'This quantity might, however: be very mucis increased by supplying the cattle-yaros with peat and other rough vegetable substances, which, by care and industry, can be collected.
3. Another method of increasing the quantity of effectual monure in a very great degree is that of forming Compost ; by which the firm-vard dung is preserved, and a most valuable addition made to its fertilizing principle : particularly where peat is easily obtainable. 'The following method of making peat compost is given by Mr. Aiton, in his treatise on peat earth; us inserted in Sir John sinclair's Scotch Husbandry :
4. The peat and dung must be thrown up, in alternate strata, into a heap about four feet and a half high, and in the following proportions: peat, six inches ; dung, ten inches--pent, six inches ; dung, fuur inches-peat, six inches, and then a thin bed of dung, and cover the whole with peat. Tho heap should be put loosely together, and then made smooth on the outside. The compost, after it is made up, gets into a general heat, sooner or later, according to the weather and the condition of the dung : in summer,
in ten days or sooner ; in winter, not perhaps for many weeks if the cold is severe.
5. It always, however, has been found to come on at last ; and in summer it sometimes rises so high as to be mischievons, by producing whot is called fire-fanging. In that sonson a stick should bo kept in it in different parts, to pull out and toen mow and then; for if it anmochos to blow heat, it shoull bo cillep watered or turned over; and on such occasions advantare may to taker. to mis it wilh a lithe tresh pert.
(6. Tho heat subsidics afiter a time, and with grent variety, ace. cording to the weather, the dung, and the pericction on making up the compost, which then may bo athewed to remain untonched till within thre week; of using, when it shond be turned over, upsido down and insice ou, and all the lums broken: then at comes into a second heat, but som cools and is tiken olt fin use. In this stato the whole, owept bits of decalyed wore, npmats a black fren mass, and sy rourds like garden mould. Use if weight for weight, like from yad bong, ant it will be fimad to stand he comparison.
6. Let it be obsorvel, that the object of making up the compost is to form as large a hotbed as the quantity of dung empleyed admits of, and then to suromit it on all sides, so as to ave the wholn benefit of the heat and etihuvia. Peat, rendy is ciry as garden mould, in sect-time, may bo mixed up with the dura, sis as to double the volume ant more, and nearly triple the weight, and instead oi horting the hent, prolorg it. - A correspentent of Sir John Sinchar's, states that he has used this compost for seven years, and considers it to be of immenso inportance. He would rather bring peat for two or three miles than want it for his compost h:lls.
7. In this process of making compost, a large quatity of almost inert humus is broken down, and rendered fit to yield abundant nourshment to plants, both in the shape of earbonic acid gas and also saline matter; while the ammonia, produced by the fermentation of the dung, is absorbed and retained by the humus. In all cases where peat can be had for the purpose of making compost, experience has shown there can be no question abrut the propriety and advantage of using it for that purpose. Tho effects of pentashes are well known; and in this case the saline and earthy substances, of which they are composed, are made available ns well as the humus, which is retained instead of being dissipated, ns in the case of burning.
8. It ofien happens that all the dung upon a farm cannot be used at the most fi ing season, and must be kept for a future oceasion ; much care is therefore required to prevent its being wasted, either
by fermentation or from the effect of water. 'The method abovo noticed of mixing tho dung with peat cint bo practised only in par. ticular situations, but overy situation ammita of the formation of compost hatas by means of miains earila of sman lind or other. It is usual to form compust by misums the den ig with any kind of soil that happens whe mose convenim: ; but : is by no means an unimportant question as to what kita ol material is tho best fur the purpose.

 careons roadserughes, mal, and cory la watitur an earthy compost with dume there is a therecent fore otwered: first, to
 earthy substance to the shole dreasing matue shich is capalite nt
 some addition of sotine mater, which met amthe contam.
9. The most linely divided eaths are, whemesn, the best adapted for these purposes, ath perhops a tich mons emoh should be proforred to any wher, from its kwwn fertilain ef catairs, while the ro is considerable uncertainty is that of thenmeramorialsmentioned. It is seldom, howerer, that much elmier en' lo exercised. In forming a compost heap, a bed ol the cimh stmeld bo fust laid down, abont six inclics drep, and then a lyeer of ding about a foot deep, lightly and regularly laid upur ti:o eneth. Let the aiternation bo repeated umt the heap isabout five athioh; a hhin covering of the carth, boils on tho tep and shit . cmpp cting the whole. In about ten weeks the heaps should lie an in well mixed, and again covered with a slight coathe o , , w.
10. Whonever both pent and lione a. as ithble, they form a very good com, ost for manuring paiture 1 wi. The mode of proparing this compost may be performed if la nual way of alternate layers, the peat boing used in a dul. ar triple proportion to the lime. The herp should be suliered to remain three or four months, during which time it should be thrned and well mixed. The lime aets very powerfully upon the inert fibre of the peat, and renders a largo potion of it solable in water, and in a fit state for becoming the food of plants.
11. Any refuse animal matter can of course be employed in a similar manner. The carcase of a doad horse, wheh is often suffered to pollute the air with its noxicus eflluvia, has been happily employed in decomposing 20 tons of peat earth, and transforming it into the most enriching manure. Night-soil may be composted with peat with great advantage.
12. Many volumes have been writon on the subject of composis, as substitutes for farm-yard dung, and yet the true principle upon which they should be furmed does not appear to have been clenrly inculcated and insisted upon. Farm-yard dung is certain in its effects because it contains all the elements or substances which plants require for their food ; and those composite manures which contain the greatest number of the more essential substances are the most likoly to act with corresponding unibormity.

## CHAPTER VIII.

## Section 1 .

1. The waste of the differfint constituent Elements of Plants. - If the entire produce of a farm were to be carried avoiy from it, and no manure returned to it, the land would, in the great majority of instances, speedily become incapable of berring crops; or, in the common phrase of farmers, it would be "worn out," owing to the deficiency of ammonia, or of alkalime and earthy salts.
2. If, on the other hand, the uhole of the produce were consumed upon the land, it would continue to increase in productiveness, until more could not be grown for want of space. 'This decrense in the former case, and increase in the latter, would be accelerated or retarded by the original nature of the soil, and the maximum quantity would of courso bo influenced by the same caluse.
3. These extreme cases are not merely hypothetical ; they may be seen in acmal operation in many newly-peopled corntries, and particularly in the United States. 'Ihe forests in that country, which had been growing for many centuries, when cut down and burnt by the settlers, lelt the land so rich as to be considered inex. haustible; most of the produce was carried away, and the dung left was regarded as an incumbrance.
4. By the repeated cultivation of exhnusting crops, howeverwheat and tobaceo for instance-much of that land in the maritime states, which have been the longest settled, is now reduced to a state of poverty, and requires heavy dressings of manure. Although we mention these as cxtreme cases, yet the consideration of them is useful, as exhibiting a broad indication of the means by which poor land may become fertile, or very rich land reduced to beg. gary.
5. The mediuin case is that of land, in older countries, under a regular course of cultivation, and where corn and green crops succeed each other in due order and proportion, and from whence nothing is carried away but corn, cattle, sheep, and wool. Land,
under these circumstances, is the proper subject for our more particular consideration.
6. If a farm, under such a course of husbandry as that mentioned above, and generally approved as a good and lasting system, be cultivated for a series of years withous being supplied with any manure from foreign source", the land must lose, in a course of years, a considerable portion of thoso irorgraic or mineral substances which we have stated above to be indispensable to the growth of plants and which is yearly withdrawn, as wo have aliondy stated, in the shape of corn, cattle, sheep, or wool, and the time will necessurily arrive when the crops will become deficient. 'Ihis will ultimately take place in alinost all soils, though upon certain rich spots it may not be perceptible for many years ; and, on many, it will of course be felt much sooner than on the generality.
7. It is well known, that land which has "grown sick," ns it is called, of clover, will often bear plontitul crops upon being dressed with a seemingly insignificant quantity of gypsum; and winen that substance fails, the addition of wocd, or even peat-nshes, will produce the desired effect. In the first case gypsum only was wanted in the second both that and potash were deficient. Substances containing much ammonia will generally improve the quality and quantity of wheat ; but if phosphates are wanting at the same time in the soil, the ear will still be defective; and if potash, the straw will be weak, and more liable to fall carly, and to sulfer blight.
s. From the foregoing considerations, and what we have previously said upen this important subject, it inust be evident that it is trifling with land, and calculated to produce frequent disappointment and loss, to apply any one salt as a substitute for manure. When tho perlect manures (pertect, because they contain all the substances which planis require), such as farm-yard dung, preparations of night-soil, glanio, or the dung of other fowls, cannot be obtained, recourse must be had to artificial mixtures. Now the substances the most likely to be exhausted from soils, from the cause above mentioned, are ammonia, phosphate of leme and magnesia, potash and gypsum.
8. The most generally available sources of these salts are soot, bone-dust, and kelp-ashes (the better if only charred), or the two former with wood or peat-ashes, gypsum or sea salt. If peat-ashes are used, gypsum may be dispensed with. By the application ot such partial substances for manure, we do not fulfil all the conditions of fertility, and disappointment consequently ensues.
9. The silent expression of nature has not been rightly understood, because, her interpreter-the chemist-has not been con-
sulted, or has been troated with contempl-as a mere "book learned theorist"-when he has offerced his scrviees to explain her meaning.
10. Though mature provides us with ammonia, as well as carbon through tho modium of green erop, yot to mintring high degree of fert ity in corn crops, and especially in the promection of wheat, ammonia mast be comsidered as oico of the most immortant ingredients of an elliciont composite namme; and i! ader to form a manure of mfailing efficacy upm evory kind of liont, substances containing satts of ammonia must be adadotione morganic or minersl substmens that constitute ho arace of tho phants and seeds which the land is required to poodace.
11. None of thase must be omitied excont such es we are quite cortain alrealy exist in the soil in inexhatshe pmatity. Thero cansehton be any want of silica, and more sh an axido of iron. Muriate of suna (common salt) and suiphate of lime (gypsum) aro the next suibitheos which are less likely to be delicient in the soil; but very few macer constant cultianton coman enmgh ammonia, phosphates, ami posish, and consonmoty upon wheh a mixture of soot, wood nshis and bone-cust, or rape dust, wond not produce a most powe:maliect.
12. We trast that the above obecrutions together with what has been proviousty sad, will wartu oxplan the mparently mysterious nature of manures of this kind and throw lisht upon a subjert which has hithento been incolved in donbt and umeertainty, and the want of which has oecasioned mach perplexity, as well as frequent disappointment and heavy losses.

## Srction II.

1. Rotation of Crops and Dashadie. - The rotation of crors is necessarily connected with tho subget of monures, and a consideration of the fond of plants explains the nature of the advantage which is derived from a varied suceession. (ireon crops a cplenish the soil with organic elements, which they derivo from the atmosphere, and somo of then-such as sainfoin and lweerne - with inorganic matter, which their deop roots extract from the substratum ; these they return again to tho soil, either in the state of the dung of animals whach have fed upon them, or as humis, resulting from the decay of their roots, which entitles them to be called fertiliz. ing crops.
2. Unripe weeds of every description, and green crops if ploughed into the ground, have a powerful efiect not only on the succeeding crop, but, if repeated, during every regular rotation,
will be found to materially enrich the staple of poor land. Furmers do indeed sometimes plough in a crop of buckwheat, as a species of smmer-filow, and it is a good preparat on for a crop of wheat ; bat the tmptation of feeding it off, or cutting it for fodder, mure frequrmbe iaduces them to rob the land of it.
3. The com or raturustiog crips, ibstract foom the soil both the organic and how of ne snbstanes, much of which, and partice ularly nitrogen, ind the inorganic, or mineral, constituents, are annutily sarried, tiby catte, sheep, and the production of grain ; and hence the :hpabition they hate received. 'I hese substances are, however, duwn trom the aril in very difierent proportions by catierent crops ; chir, is potatore, requiring more hmmas; another, as wheat, moremphates, an lnitrogen; and a third, as outs, moro silicate of potasil ; white beans, peas, and vetches require little or no phosphates, aby bring a I are emabution of cart mic matter in thear straw, abl iatrn; ob ia their leaves.
4. In this wn $\because$ one tima of phant tinds in the suil enough of its appropriate fosa which the precoling phant dianot require, and leaves that wiach its sueceserf uans. Thus, by a suitable and fudicious rotation, ach extmathogerp receives in its turn due support, whie, west stphe of mates, and the haty interchange of geren rip; atl the subtances are restored th the soil, which would ohbewivele a hatsted.
 of erops bebhes he calamation whe promer food of ghats; for it





 exumene resuls.






 eration of fallowing, and the action of lime and allals.
5. Whis is one ol ject answered ber repeated eressinps of lime in particular localities where the whent crop is too otten repeated. We will here suggest another cause of the advantage of change. -

Each plant is observed to have its peculiar tribe of predatory insects, which would accumulate in a succession of the same crops, but are periodically checked or destroyed by $n$ succession.
8. In conchasion it shouid be observed that every care and attertion which can be paid to the preparation and application of manures will be ineffectual in rendering soils fertile, unless due regard be given to the removal of excess of moisture by draining when needfui. When a soil is saturated with water, the air is excluded from the roots of the plants, and prevented from acting upon the manure; while the low temperature produced by continual evaporation from the surface, has an additional powerful effect in retarding the progress of vegetation.
9. 'I'o lay manure upon wet solls is, in truth, to throw money avay; but were draining universally effected, the whole of the now comparatively unproductive soil of the country would, to a vast extent, be renderod capable of receiving the benefit of the numerous modes of fertilizing. Its returns are immediate as well as compensative ; and to hesitate to drain the land, is to liesitate to confer a benefit upon one's self, of which a strong proof has been lately brought forward in a statement of tho profit resulting from the drainage of 467 neres, and the employment of the drain water over 89 acres of land, on the ostate of Lord Hatherton, in Staffordshire, England-affordin: a clear annual interest on the oullay of fulb thirty-seven per cent.!

## Section lII.

## HARVEST HYMN.

## 1

God of the year ! -with songs of praise, And hearts of love, we come to bless; Thy bounteous hand, for thou hast shod
'Ilyy manna o'er our wilderness;In early spring time thou didst fling O'er earth its robe o: blossomingAnd its sweet treasures, day by day, Rose quick'ning in thy blessed ray.

And now they whiten hill and vale, And hang from every vine and tree, Whose pensile branches bending low Seem bowed in thankfulness to Thee,-

The earth with all its purple isles, Is answering to thy genial smiles, And gales of pertume breathe along And lift to 'Thee their voiceless song.


#### Abstract

3 God of the sensons! Thou hast blest 'The land with sunlight and with showers, And plenty o'er its bosom smiles

To crown the sweet autumal hours ; Praise, praise to Thee! Our hearts expand 'To view these blessings of thy hand, And on the incense-breath of love, Go off to their bright home above.


## Section IV.

1. The physical qualities and chemical constitution of a bofl may be changed by art.- Each soil establishes uponitselfso to speak-a vegetation suited to its own nature, one that requires most abundantly those substances which actually abound in the soil -and the art of man cannot long change this natural connection between the living plant and the kind of land in which it delights to grow.
2. But he can change the character of the land itself. He can alter both its physical qualities and its chemical constitution, and thus can fit it for growing other races of plants than those it naturally bears-or, if he choose, the same ruces is greater abundance, and with increased luxuriance. It is, in fact, in the production of such changes, that nearly all the labour and practical skill of the husbandman- apart from local peculiarities of climate, \&c.-is constantly expended For the attainment of this end he drains, ploughs, subsoil-ploughs, and otherwise works his land. For this end he clays, sands, marls, and manures it.
3. By theso and similar operations, the land is so changed as to becono both able and willing to nourish and sipen those peculiar plants which the agriculturist wishes to raise. On this practical department of the art of culture, the principles explained and illus. trated in preceding Sections throw much light. 'They not only explain the reason why certain practuces always succeod in the hands of the intelligent farmer-but why others tiso occasionally and inevitably fial-they tell him which practices of his neighbors he ought to adopt, and which of thon he had better modify or wholly
reject, - and they direct him to such now modes of imp "oving his land us are likely to add tho :most to its permanent productive value.
4. 'The operations of the hustandman in producing changes upon the land, are eithor mechanical or chemicel. When he drains, ploughs, and subsoils, he athero chiefly the phesical chatacters of his soil-when he limes : and manures it, he atters its chemical constitution. 'These two chases of opemthons, therelore, are periectly distinct. Where a soil contans all that the erop we desire to grow aro likely to requite, more modhmical operatons may sutise to render it berile -but whate one on more of the inorgatic constituonts of phants are wia ing, draning may preptre the land ot benefit by futhor o, eratims, but it wall not ije alone sulicient io remove jts comparative somity.
5. 1 shall, theresion consder in succession these two classes of practical operathms: -- Fires, biectanicul methods of inaproving the

 application of vegcinun, anmm!, ath mineral manures. 'io satisly luty, however, in $F$ gide to the ebsoluto nocessity for euch changes, il we wald rentor he had fit to produce any givencoop,
 - beored in natare vetween the kind ol suil and the kind of phants that grow uposit.
6. 'Lta cuabertion bethern the lind if suil amd the kind of glank that grab olm io-bhat a general connection exista botween the him we an! and he himb of phats that grow unon it, is Pmiliar to all par that men. 'I hus chay suils ato genemally





 sute whero the phath ato onat to glow. 'i'han-
F. J'irst, Un tho subti, euts of the seathores, and on the sali sicppes of Hhngray and wusin, the sand-worts, salt worts, glassworts, mat uher shit lowing famts aboud. When these sands are chelosed ind drainet, the excess ol the satt is grodualy washed on. by the rains, or ins . 10 count is is removed by rennigg the stline pants anmally, and bumbe thom for soda (barilla), when wholeA.me and notritive grasses tate their place; but the white cluver rind the daisy, and the duntelion, minst first appear, before, as a general rule, it cen be profitably ploughed up and sown with corn.
E. Secondly, The dry drifted sands, more or less remote from the sen, produce no such plants. They are distinguished by their own coarse grasses, among which the elymus arenarius (upright sea lyme-grass; often, in our latitudes, occupies a conspicuous place. On the downs of North Jutland, it was formerly almos: the only plant which the tra voller could meet with over anarea of enany miles.
7. Thirdly, on ordinary sandy soils leguminous plants are rare, and the herbage often scanty and void of nourishment. With the presence of marl in such seils, the natural growth of leguminous plants increases. The colt's-foot also, and the butter bur, not only grow naturaily where the subsoil is marly, but inlest it sometimes v) such a degree as to be with great difficulty extirpated. So true is this indication of the nature of the soil, that in the lower valliex of Switzerland these plants are said to indicate to the natives where they may successfully dig for marl.
8. On calcareous soils, again, or such as abound io lime, the quicken or ernch.grass is seldom seen as a weed, while the poppy; the vetch and the darnel abound. Fourlhly, So peaty soils, when laid down to grass, slowly select for themselves a peculiar tribe of grasses, espectally suited to their own nature, anong which the holcus linnturs (uneadow soft grass) is ranarkably abundant. Alter their constitution by heavy lineing, and they produce luxuriant green crops and a great bulk of straw, but give a coarse thick-skinned graia, more or less imperfectly filled. Alter them further by a dressing of clay or keep them in arable culture, and stiffen them with cunposts, and they will be converted into rich and sound cornbearing lands.
9. Fifihly, in the waters that gush from the sides of lime-stone tills-on the bottoms of ditches that are formed of lime stones or marls-and in the springs that have their rise in mary trop rocks, the water-cress appears and accompanies the running waters, sometimes for miles on their course. The mare's-tail (equisetum), on the other hand, attains is largest size by the marshy banks of rivulots in which not lime but silica is more abundantly present. So the Cornish heath (erica vagans) is found only over the serpentine noils of Cornwall, and the red broom rape (orobanche rubra) only on decayed traps in Scotland and Ireland.
10. These facts all point to the same natural law, that where other circuinstances of climate, moistare, \&c., are equal, the natural vegelation-that which grows besi on a given spot-is entirely drpendent upon the chemical constitution of the soil. But both the aoil, and the vegetation it willingly nourishes, are seen to underge slow but natural changes.
11. Lay down a piece of land to grass, and, after a lapse of years, the surface soil-originally, perhaps, of the stiffest clay-is found to have become a rich, light, vegetable mould, bearing a thick sward of nourishing grasses, almost totally different from those which naturally grew upon it when first converted into pasture. So in a wider field, and on a larger scale, the same slow changes are exhibited in the vast natural forests that are known to have long covered extensive tracts in various countries of Europe.
12. Thus it is a matter of history that Charlemagne hunted in the forest of Gerardmer, then consisting of oak and beech-though now the same forest contains only pines of various species. On the Rhine, between Landau and Kaiserlautern, oak forests, of several centuries old, are seen to be gradually giving way to the beech, while others of oak and beech are yielding to the encroachments of the pine.
13. In the Palatinate, the Scotch fir (pinus sylvestris) is also succerding to the oak. In the Jura, and in the Tyrol, the beech and the pin are seen mutually to replace each other-and the same is $s, 00$, in many other districts. When the time for a change of crop antions, the existing trees begin to languish one after another, their wanches die, and finally their dry and naked tops are seen surrounded by the luxuriant foliage of other races.
14. These facts not only show how much the vegetable tribes are dependent upon the chemical nature of the soil-they indicate, likewise, the existence of slow, natural changes in the constitution oi the soil, which lead necessarily to a change of vegetation also. $\mathrm{W}_{e}$ can ourselves, in the case of ancient forests, effect such changes. When in this country a forest of oak or maple is cut down, one of pine springs up in its place; while on the site of a pine forest, oak and other broad-leaved trees speedily appear.
15. But if the full time for such changes has not yat come, the new vegetation may be overtaken, and smothered by the original tribes. Thus when the pine forests of Sweden are burned down, a young growth of birch succeeds, bat alor a time the pines again appear and usurp their former dominion. The soil remains, still, more propitious to the growth of the hater than of the former kind of tree. We may, therefore, take a practical lesson from the book of nature. If we wish to have a luxuriant vegetation upon a given spot, we must sither select such kinds of seed to sow upon it as are fitted to the kind of soil, or we must change the nature of the land so as to adapt it to our crop.
16. And, even when we have once prepared it to yield abundant returns of a particular kind, the changes we have produced can

## tribes

 dicate, titution also. ranges. one of st, oak 1e, the riginal own, a 3 again 3, still, kind of book of n spot, e fitted so asonly be more or less of a temporary nature. Our care and attention must still be bestowed upon it, that it may be enabled to resist the slow natural causes of alteration, by which it is gradually unfitted to nourish those vegetable tribes which it appears now to delight in maintaining.

## Section V.

1. Improvement of the Soll by Mixing - There are some soils so obviously delective in constitution, that the most common observer can at once pronounce them likely to be improved by mechanicul adinixtures of various kinds. Thus peaty soils abound too much in vegetable matter; a mixture of earthy substances, therefore, of alnost any common kind, is readily indicated as a means of improvement. In like manner we naturally impart cemsistence to a sandy suil by an admixture of clay, and openness and purosity to stiff clay by the adidion of sand.
2. The tirst and obvious effect of such additions is to alter the physical qualities of the soil-to consolidate the perts and sands, and to loosen the clays. But we have already seen that the fertility of the soil, or its power of producing a profitable return of this or that crop, depends in the tirst place on its chemical constitution. It must contain in sufficient abundance all the inorganic substances which that crop requires for its daily food.
3. Where this is already the case, as in a rich stiff clay, a decided inprovement may be produced by an admixture with siliceous sand, which merely separates the particles mechanically, and renders the whole more porous. But let the clay be deficient in some necessary constifuent of a fertile soil, and such an addition of siliceous sand would not produce by any means an equal henefit. It may be proper to add this sand with the view of producing the mere physical alteration, but we must add some other substance also for the purpose of producing the necessiary chenical change.
4. The good effects which almost invariably follow from the addition of clay to peaty or sandy soils are due to the production at one and the same time of a physical and of a chemical change. They are not only rendered firmer or more solid by the admixture of clay, but they derive from this clay at the sume time some of those mineral substances which they previously contained in less abundance.
5. The addition of marl to the land acts often in a similar twofold capacity. It renders clay lands more open and friable, and to all soils brings an addition of carbonate, and generally of phosphate of lime, both of which are proved by experience to be not
only very influential, but to be absolutely necessary to healthy vegetation.
6. That much benefit to the land would in many instances accrun fmm such simple admixtures as those above adverted to, where the means are available, will be seadily granted. The only question on the subject that ought to arise in the mind of a prudent man, is that which is connected with the economy of the case. Is this the most profitable way in which I can spend my money? Can I employ the spare labour of $m y$ men and horses in any other way which will y:eld me a larger return? It is obvious that the answers to these questions will be modified by the circunstances of the district in which he lives.
7. It may be more profitable to drain,-or labour may be in great request and at a high premium, -or a larger return may be obrained by the invextment of money in purchasing new than in improving old lands. It is quite true that the country at large is no gainer by themere transler of land from the hands of A to those of B , and that he is undoubteily the most merit, rious citizen who, by expending his money in improving the soil, virtunlly adds to the breadth of the land, in causing it to yield a larger produce.
8. Yet it is no less true that the employment of individual capital in such improvement is not to be expected generally to take place, unless it he mado to appear that such an investment is likeIy to be na profitable as any other within the rench of its poot messor. It seems to be estrblished beyond a doubt that in very many districts no money is more profitably invested, or yrelds a quicker return, than that which is expended in draining and sub-suiling-and yet in reality one raain obstacle to a more rapid increase of the general produce of the British soil is the practical difficulty which exists in convincing the owners and occupiers of the soil that such is the case, or would be the case, in regard to their own holdings.
9. The more widely a kncwledge of the entire subject, in all its bearings, becomes diffused, the less it is to be hoped will this diffculty become-for the economist, who regards the question of improvement as a mere matter of profit and loss, cannot strike a fair balance unless he knows the several items he may prudently introduce into each side of his account.

## Section VI.

1. Lime.-Lime is never met with in nature except in a state of chemical combination with some other substance. That which is usually employed in agriculture is met with in the state of carbo-
nate. Carbonate of lime, or common lime-stone, consists of lime and carbonic acid, and when perfectly pure and dry, in the follow. ing proportions:-

Per cent.
$\left.\begin{array}{ll}\text { Carbonic acid, } \\ \text { Lime, }\end{array} \quad \begin{array}{l}\frac{43.7}{56.3}\end{array}\right\} \begin{array}{r}100\end{array} \begin{gathered}\text { one ton of pure carbonate of lime } \\ \text { contains } 111 \mathrm{cw}^{\prime} \text { ts. of lime. }\end{gathered}$
2. Limestones, however, are seldom pure. They always contain a sensible quantity of other earthy matter, chiefly silich alumina, and oxide of iron, with a trace of phosphate of lime, sometimes of potash and soda, and often of animal and other organic matter. In lime-stones of the best quality the foreign earthy matter or impurity does not exceed 5 per cent of the whole-while it is often very much less.
3. The chalks and mountain lime-stones are generally of this kind. In those of inferior quality it may amount to 12 or 20 per cent., while many calcareous beds are met with in which the proportion of lime is so small that they will not burn into agricultural or ordinary building lime-refusing to s'ake or to fall to powder when moistened with water. Of this kind is the It ish calp and the lime-stone nodules which are burned for the manufacture of hydraulic limes or cements.
4. It is easy to ascertain the quantity of earthy matter contained in lime stone, by simply introducing a known weight of it into cold diluted muriatic acid and observing or weighing the part which, after 12 hours, refuses to dissolve or to exhibit any effervescence. It is to the presence of these insoluble impurities that lime-stones in general owe their colour, pure carbonate of lime being perlectly white.
5. Of the quantity of lime which ought to be used.-The quantity of lime which ought to be added to the soil is dependent upon so many circumstances, that it is impossible to state any general rule by which, in all cnses, the practical-man can saíely regulate his procedure. Firstly, to soils which contain no lime, or to which it is added for the first time, a larger dose must be given.
6. We have seen that a certain minimum portion of lime is indispensable to a productive soil. If we suppose this smullest quantity to be no greater than 0.2 per cent. in the surface, then with a soil six inches in depth-which contains no lime, we ought to mix a ton and a half, say 40 bushels of slaked lime, and by successive yearly additions to supply the annual waste.
7. But to mix this feeble dnse of lime intimately with the soil to
a depth of six inches would obviously require an expenditure of labour which the practical farmer could rarely afford. It would be greater economy, therefore, in most cases to add a dose several times larger, and this not only because the same amount of labour would diffluse it more generally through the whole soil, but because this large liming would render less necessary the immediate addi. tion of new supplies to repair the unavoidable waste.
8. But there is reason to believe that the proportion of lime which the soil ought to contain, if it is to be successtully subjectel to arable culture, ought to be much larger thin is above assumed as the smallest or minimum quantity. If we suppose one per cem. to be necessary, then eiglit tons of lime-shells, or upwards of 34 bushels of slaked lime, must be mixed with a soil six inches in depth, to impart to it in proportion-or half the quantity af it be kept within three inches of the surface. Even a very large dise of lime, therefore, does not, if it be well mixed, materially alter the constitution of the soil.
9. Secondly, but experiencehas proved that the quantity of lime which a skilfiul farmer will add to his land will vary with many other circumstances besides the depth of his soil, and the proportion of lime it already contains. Thus-on clay lands more lime is necessary than on light and snndy soils. This may be partly ascribed to the physical effect at the lime in opening and loosening the stiff clay-but independent of this action the particles of lime are liable to be coated over and enveloped by the fine clay, and thus shut out from the access of the air. These particles, therefore, must be more numerous in such a soil if as many of them are , be exposed to the air as in lighier land, through which the caspheric air continually permeates.
9. On wet and marshy soils, a larger application still may be a.ade with safety, and partly for the same reason. The moisture surrounding the lime cannot perform its important functions. The same moisture tends to carry down the lime and lodge it more speedily in the subsoil. The continued evaporation also keeps such soils too cold to allow the chemical changes, which lime in favorable circumstances produces, to proceed with the requisite degree of rapidity.
11. The soluble compounds which are formed as the consequence of these changes are, in wet and marshy soils, dissolved by the moisture, and so diluted as to enter in smaller quantity into the roots of plants. And lastly, in certain coses, new compounds of the lime with the earthy and stony matters of the soil are formed, which may either harden into visible lumps of mortar and cement,
or into smaller particles of indurated matter, in which the lime is no longer in such a state as to be able to act in an equal degree as an inprover of the soil.
12. In cold and wet clays, in which all these evil conditions occasionally meet, it is not surprising, therefore, that large doses of lime should sometimes have been added without producing any sensible benefit whatever. Again, when the soil is also rich in vegetable matter, lime may be still more abundantly applied.Thus, when a field is at once wet and marshy, and full of vegetable matter, as our peat bogs are, lime may ve laid on more unsparingly than under any other circumsiancon.
13. For in this case, besides the acti.... the access of water, ay above explained, the vegetable matter co with and masks the ordinary action of a considerable quantity of the lime. By this combination, no part of the ultimate influence of the whole lime upon the soils is necessarily lost ; in most cases the immediate ef. feet only is lessened, which the same quantity applied to other soils would have been seen to produce. In favourable circumstances its action is retarded and prolonged, the compounds it forms with vegetable matter decomposing slowly, and, therefore, remaining long in the soil.
14. To the exact chemical constitution of the compounds thus formed, as soon as line is mixed up with a soil rich in vegetable matter, and to the chemical changos which these compounds gradually undergo, it will be necessary to dirfct our atention when we come to study the theory of the action of lime, as an improver of the soil. Not only the natural depth of the soil, as already stated, but also the depth to which it is usually ploughed, and to which it is customary i" bury the lime, will materially affect the quantity which can be safely applied.
15. A dose of lime which would materially injure a soil into which the plough rarely descends beyond two or three inches, might be too small an application where six or eight inches are usually turned over by the plough. When new soil, also, is to be brought up, which may be supposed to contain no lime, or in which noxious substances are present, a heavier dose of lime must necessarily be laid upon the land.
16. Thirdly, such are the circumstances in which large applications of lime may be usefully applied to the land. In soils of an opposite character not only will smaller quantitios of lime produce an equally beneficial effect, but serious injury would often be inflicted by spreading it too lavishly upon the fields.
17. The more dry and shallow the soil, the more light and



IMAGE EVALUATION

## TEST TARGET (MT-3)





Photographic Sciences Corporation

sandy, the less abundant in vegetable matter, the more naturally mild its locality, and the drier and warmer the climate in which it is situated- the less the quantity of lime which the prudent farmer will venture to mix with it. It is to the neglect of these natural indications that the exhaustion and barrenness that have occasionally followed the application of lime are to be ascribed. It is only in rare cases, such as the presence of much noxious mineral matter in the soil, that these indications can be safely neglected.

## Section VIl.

1. Whether Lime ought to be used in larger dobes at fireater intervale, or in smaller doses at shorter intek-vals?-The quantity of lime which ought to be applied to the land must, as we have seen, vary with its quality, and with the conditions in which it is placed. Hence the practice in this respect necessarily varios in every country and in almost every district.
2. But a difference of opinion also prevails among practical men, as to whether that quantity of lime which land of a given kind may require ought to be applied in large doses at long intervals, or in small quantities frequently repeated. The indications of theory in reference to this point are clear and simple.
3. A certain proportion of lime is indispensable in our climate to the production of the greatest possible fertility. Let us suppose a woil to be wholly destitute of lime- the first step of the improver would be to add to this indispensable proportion. This would neceasarily be a large quantity, and, therefore, to land limed for the first time theory indicates the propriety of adding a large dose.
4. We may consider it, as a principle recognised or involved in the agricultural practice both of our own and of foreign countries, that nearly the same annual addition of lime ought to be made to the land, whether it be applied at long intervals or at the recurrence of each rotation. There is, therefore, on the whole, no saving in the cost of lime, whichever method you adopt. A slight consideration of the subject, however, may satisfy us that there is a real difference in the comparative economy or profit of the two methods.
5. Let us suppose two acres of the same clay land to be limed respectively with 200 bushe's each, and that the one is cropped for twenty years afterwards without further liming, while the other at the end of every five years is dressed with an additional dose of 40 to 50 bushels. In both cases the land would have attained the most productive condition in five or six years.
6. Let us suppose that in this condition it produced annually a
crop of (or equivalent in nutritive value to) 30 bushols of when', and that on neither acre did a sensible diminution appear before the end of ten jears. Then during the second ten the crops would gradually lessen in the one acre, while in consequence of the readdition of the lime as it disappears, the amount of produce would remain sensibly the same in the other acre.
7. Suppose the produce of the iormer gradually to diminish from 30 to 20 bushels during these ten yeurs,-or that while the one has continued to yield 30 bushels during the whole period, the other has on an average yielded only 25 bushels during the latter ten years. If now the second large dose of 200 bushels be added to this latter acre, the cost of liming both will have become sensibly the same, but the amount of produce or of profit from the two acres during the second ten years will stand thus-

10 crops, of 30 bushels each, amount to 300 bushels.
10 crops , of 25 buchels each, amount to 250 bushels. difference in favour of frequent liming, 50 bushels per acre, or nearly two whole crops every lease of twenty years.
8. Thus it appears, firstly, That according to the practice of different countries the quantity of lime which ought to be added, and consequently the cost of adding it, is very nearly the same, whether it be applied in larger doses at longer intervals, or in smaller doses more frequently repeated. Secondly, that, after the first heavy liming, the frequent application of small doses is the more natural method-and thirdly, that it is also the most econornical or profitable method.
9. One thing, however, must be borne in mind by those who, in adopting the best system of liming, do not wish both to injure their land and to meet with ultimate disappointment. Organic matter, in the form of farm-yard manure, of bone or rape dust, of green crops ploughed in, or of peat, and other composts-must be abundantly and systematically added, if at the end of 20 or 40 years the land in which the full supply of lime is kept up is to retain itsoriginal fertility.
10. High farming is the most profitable-for the soil is ever grateful for skilful trentment-but he who farmis high in the sense of keeping up the supply of lime, must also farm high in the sense of keeping up the supply of organic and other manures in the soil -otherwise present fertility and gain will be followed by future barrenness and loss. If this is not to be done, it were better to add lime at long intervals, since as the quantity of lime diminishes, the land begins to enjoy a little respite, and has had time in some measure to recover itself-the crop in both instances being the ramobefore the new dose is laid upon its surface.


#### Abstract

Section VIII. 1. Formand state of combination in which Lime ought to be applied to the Land, and of the use and advantages of the compost form. -The form and state of combination in which lime ought to be applied to the land depend upon the nature of the soil, on the cropping to which it is subjected, and on the special purpose which the lime is intended to effect. The soil may be heavy or light, in arable culture, or laid down to grass, and each of these conditions indicates a different mode of procedure in the application of lime.


2. So the lime itself may be intended either to act more immediately or to be more permanent in itsaction-or it may be applied for the purpose of destroying unwholesome herbage, of quickening inert vegotable matter, of generally sweetening the soil, or'simply of adding to the land a substance which is indispensable to its fertility. The skilful agriculturist will modify the form and mode of application according as it is intended to serve one or other of these purposes.
3. From considerations already presented in regard to the changes which quick-lime undergoes in the air, it appears to be expedient, firstly, to slake lime quickly, and to apply it immediately upon clay, boggy, marshy, or peaty lands-upon such also as contain much inert or generally which abound in other forms of vegetable matter.
4. Secondly, to bents and heaths which it is desirable to extirpate, it should be applied in the same caustic state, or to unwholesome subsoils which contain much iron (sulphate of iron), as soon as they are turned up by the plough. In both these cases the unslaked lime-dust from the kilns might be laid on with advantage. Thirdly, where it is to be spread over grass lands without destroying the herbage, it is in most cases safer to allow the lime to slake spontaneously, and in the open air rai' shan in a covered pit.
5. It is thus obtained in an exceedic. $y$ fine powder, which can be easily spread, and, while it is suificiently mild to leave the tender grasses unharmed, it contains a sufficient quantity of caustic lime to produce those chemical changes in the soil on which the efficacy of quick-lime depends.
6. Fourthly, where lime is applied to the fallow, is ploughed in, well harrowed or otherwise mixed with the soil, it is generally of little consequence in which of the above states it is laid on. The chief condition is, that it be in the state of a fine powder, and that it be well spread and intimately mixed with the soil. Before these operations are concluded the lime will be very nearly in the state of
combination in which it exists in spontaneously slaked lime, whatever may have been the state of causticity in which it has been applied.
7. As there are many cases in which lime ought to be applied unmixed and in the caustic state, so there are others in which it is best and most beneficially laid upon the land in a mild sate and in the form of compost. Firstly, when lime is required only in small quantities, it can be more evenly spread when previously well mixed with from 3 to 8 tines its bulk of soil.
8. Secondly, on light, sandy, and gravelly soils, when of a dry character, unmixed lime will bring up mucli cow-wheat (melampyrum) and red poppy. If they are moist soils, or if rainy weather ensue, the lime is apt to run into mortar, and thus to form either an impervious subsoil, or lumps of a hard conglomerate, which are brought up by the plough, but do not readily yield their lime to the soil. These bad consequences are all avoided by adding the lime in the form of compost.
9. Thirdly, applied to grass lands-unless the soil be stiff clay -or much coarse grass is to be extirpated,-it is generally better and safer to apply it in the compost form. The action of the lime on the tender herbage is by this means moderated, and its exhausting effect lessened upon soils which contain little vegetable matter.
10. Fourthly, in the compost form the same quantity of lime acts more immediately. While lying in a state of mixture, those chemical changes which lime etther induces or promotes have already to a certain extent taken place, and thus the sensible effect of the lime becomes apparent in a shorter time after it has been laid upon the land.
11. Fifthly, this is still more distinctly the case when, besides earthy matter, decayed vegetable substances, ditch scourings, and other refuse, are mixed with the lime. The experience ot every practical man has long proved how very much more enriching such composts are, and more obvious in their effects upon the soil, than the simple application of lime alone.
12. Sixthly, it is stated as the result of extended trial in Flanders and in parts of France, that a much smaller quantity of lime laid on in this form will produce an equal effect. For this one cause may be, that the rains are prevented from acting upon the mass ot compost as they would do upon the open soil- in washing out either the lime itself or the saline substances which are produced during its contact with the earthy and vegetable matter with which it is mixed.
13. Seventhly, the older the compost the more fertilizing is its action. This fact is of the same kind with that generally admitted in
respect to the action of marls and unmixed lime-that it is more sensible in the secoud yoar, or in the second rotation, than in the first. In conclusion, it may be stated that this form of application is especinlly adapted to the lightest and driest soils, and to such as are poorest in vegetable manner. In this form, lime has imparted an unexpected fertility even to the white and bneren sands of the Landes (Puvis), and upon the dry hills oi Derbyshire it has produced an almost equal benefit.

## Section IX.

1. When ought Lime to be Applied.-In regard to the pe. riod of the year and of the rotation, there are three principles by which the procedure of the practical man ought chiefly to bo directed. Firstly, that lime takes some time to produce its known effects upon the soil. -It ought, therefore, to be applied as long as possible before the crop is sown. That is, in the early autumn, where either winter or spring corn is about to be sown, -on the naked fallow where the land is allowed to be at rest for a year,-or on the grass fields before breaking up, where the pasture is to be immediately succeeded by corn.
2. Secondly, that quick-lime expels ammonia from decomposed and fermenting manure. When such manure, therefore, is applied to the land, as it is in all our well.farmed districts, quick-lime should $n o t$ be so laid upon the land as to come into immediate contact with it. If both must be applied in the same year, they should be laid ca at periods as distant from each other as may be convenient, or if this necessity does not exist, the lime should be spread either a year before or a year after the period in the rotation at which the manure is usually applied.
3. It is for this reason, as well ns for the other already stated, that lime is applied to the naked fallow, to the grass before break. ing up, or along with the winter wheat after a green crop which has been aided by fermented manure. When ploughed into the fallow, or spread upon the grass, it has had time to be alinost completely converted into the mild state (that of carbonate) before the manure is laid on.
4. In this mild state it has no sensible effect in expelling the ammonia of decomposing manure. Again, when it is applied in autumn along with, or immediately before the seed, the volatile or ammoniacal part of the manure has been expended in nourishing the green crop, so that loss can rarely accrue from the admixture of the two at this period of the rotation.
5. The excellent elementary work of Professor Lowe contains the following remark :-"It is not opposed to theory that lime should
be applied to the soil at the same time with dung and other vegetable subslances, as is frequent in the practice of farmers." 'This is strictly correct only in regard to marls, lime-sand \&c., or to perfectly mild lime, any of which may be mixed, without loss, with manure in any state. Of quick or caustic lime it is correct only when the animal or vegetable matter has not yet begun to ferment. With recent animal or vegetable matter quick-lime nay be mixed op along with earth into a compost, not only without the risk of much loss, but with the prospect of manifest advantuge.
6. Thirdly, that quick-lime hastens or revives tie decomposition of inert organic maller. - This fact also indicates the propriety of allowing the lime as much time as possible to operate betoro a crop is taken from land in which organic matter already abounds. Or where fermenting manure is added, it advises the farmer to wgit till spontaneous decomposition becomes languid, when the addition of lime will bring it again into action and thus maintain a more equable fertility.
7. The above remarks, in regard to the best time fur applying lime, refer chiefly to quick-lime, the state in which, in England, it is s extensively used. Marls and shell-studs can cause no loss when mixed with the manure, and therefore may with safoty be laid on at any period of the rotation. The same remark applies with greater force to the lime composts. These inay be used precisely in the same way as, and even instend of, the richer manures-may be laid, without risk, upon grass lands of ans quality, and at any po-riod-or as a top dressing on the young corn in spring, when the grass and clover s?eds are sown by which the curn crop is to be succeeded.
8. And as the compost acts moro speedily than lime in any other form, it is especielly adapted for immediate application to the crop it is intended to benefit. To wet lunds also, it is well suited, and to such as are subject to much rain, by which, while the surface is naked, the soluble mators produced in the soil are likely to be very much washed away.

## Section X.

1. Effectof Limk on the phoductions of the Sohl.-Fitilly, it alters the natural produce of the land, by killing some kinds of plants and favouring the growth of others, the seeds of which had before lain dormant Thus it destroys the plants which are natural to silicious soils and to moist and marshy places. From the grain-field it extirpates the corn-marigold (chrysunthemum segetum), while, If added in excess, it encourages the poppy, the yellow cow-wheat
(melampyrum pratense), and the yellow rattle (rhinanthus crista galli), and when it has sunk, favours the growth of the troublesome and deep-rooted coltsfool.
2. Similar effects are produced upon the natural grasses. It kills heath, moss, and sour and benty (agrostis) grasses, and brings up a sweet and tender herbage, mixed with white and red clovers, more greedily eaten and more nourishing to the cattle. Indeed, all fudder whether natural or astificial, is said to be sounder and more nourishing when grown upon land to which lime has been abundantly applied. On benty grass the richest animal manurs often produces little improvement until a dressing of lime has been laid on.
3. It is partly in consequence of the change winich it thus produces in the nature of the herbage, that the application of quicislime to old grass lands, some time before breaking up, is found to be so useful a practice. The course grasses being destroyed, tough grass land is opened and softened, and is afterwards more easily worked, while, when turned over by the plough, the sod sooner decays and enriches the soil. It is annther advantage of this practice, however, that the lime has time to diffuse itself through the soil, and to induce some of thuse chemical changes by which the succeeding crups of corn are so greatly benefitted.
4. It inproves the quality of almost every cultivated crop. Thus, upon limed land, the grain of the corn crops has a thinner skin, is heavier, and yields more flour, while this flour is said also to be richer in gluten. (In the other hand, these crops, after lime, run less to straw, and are more seldom laid. In wet seasons wheat preserves its healthy appearance, while on unlimed land, of equal quality, it is yellow and sickly. A nore marked improvement is said also to be produced both in the quantity and in the quality of the spring sown than of the winter-sown crops.
5. Putatoes grown upon all soils are more agreeable to the taste and more menly alter lime has been applied, and this is especially the case on heavy and wet lands, which lie still undrained. Turnips are often improved both in quantity and in quality when it is laid on in preparing the ground for the seed. It is most efficient, and causes the greatest saving of farm-yard manure where it is applied in the compost form, and where the land is already rich in organic matter of various kinds.
6. Peas are grown more pleasant to the taste, and are said to be more easily boiled soft. Both beans and peas also yield more grain. Rape, after a half-liming and manuring, gives extraordinary crops, and the same is the case with the colsa, the seed of
which is largely raised in France for the oil which it yields. On flax alone it is said to be injurious, diminishing the strength of the fibre of the stem. Hence, in Belgium, flax is not grown on limed land till seven years after it has been applied.
7. It hastens the maturity of the crop.-It is true of nearly all our cultivated crops, but especially of those of corn, that their full growth is attained more speedily when the land is limed, and that they are ready for the harvest from 10 to 14 days earlier. This is the case even with buck-whent, which becomes sooner ripe, though it yields no larger a return, when lime is applied to the land on which it is grown.
8. The liming of the land is the harbinger of health as well as of abundance. It salubrifies no less than it enriches the well cultivated district. I have already drawn your attention to this as one of the incidental results which follow the skilful introduction of the drain over large tracts of country. Where the use of lime and of the drain go together, it is difficult to say how much of the increased healthiness of the district is due to the one improvement, and how much to the other. The lime arrests the noxious effluvia which tend to rise more or less from every soil at certain seasons of the year, and decomposes them or causes their elements to assume new forms of chemical combination, in which they no longer exert the same injurious influence upon animal life.
9. How beautiful a consequence of skilful agriculture, that the health of the community should be promoted by the same methods which most largely increase the produce of the land! Can you doubt that the All-benevolent maces this consequence so plainly before you, as a stimulus to furife: and more general improvement -to the application of other knowledge still to the amelioration of the soil.

## Section XI.

1. Circumbtances by which the effects of lime are modipied. -These effects of lime are modified by various circumstances. We have already seen that the quantity which must be applied to produce a given effect, and the form in which it will prove most ad. vantageous, are, in a great measure, dependent upon the dryness of the soil, upon the quantity of vegetable matter it contains, and on its stiff or open texture. There are several other circumstances, however, to which it is proper still to advert. Thus: lts effects are greatest when well mixed with the soil, and kept near the sur. face within easy reach of the atmosphere. The reason of this will hereafter appear.
2. On arable soils of the same kind and quality, the effects are
greatest upon such as are newly ploughed out, or upon subsoils just brought to day. In the case of subsoils, this is owing partly to their containing naturally very little lime, and partly to the presence of noxious ingredients, which lime has the power of neutrolizing. In the case of surface soils newly ploughed out, the greater effect, in addition to these two causes, is due also o o the large amount of vegetable and other organic matter which has gradually accumulated within them. It is the presence of this organic matter which has led to the establisbment of the excellent practical rule"that li:ae ought atways to precede putrescent manures when old leys are broken for cultivation."
3. Lime produces a greater proportional imprnvement upon poor soiis than on such as are richer (Dr. Anderson) This is also ensily understood. It is of poor soils in their natural state of which Dr. Anderson speaks.* In this state they contain a greater or less quantity of organic matter, but are nearly destitute of lime, and hence are in the most favorable condition for being benefitted isy a copious liming. Experience has proved that by this one operation such land may be'raised in money value eight times, or from bs. to 40s. per acre ; but no practical man would expect that arable land already worth $\mathrm{E}: 2$ per acre could, by liming or any other single operation, become worth $£ 16$ per acre of ammal rent.
4. The greater proportional improvement produced upon poor liands by lime is only an illastration, therefore, of the general truath -that on poor soils the efforts of the skilful improver are always crowned with the earliest and most apparent success. In certuin cases, the addition of lime, even to land in good cultivation, and according to the ordinary and approved practice of the district, produces no effect whatever. This is sumetimes observed where the custom prevails, as in some parts of Ayrshire and elsewhere, to apply lime along with every wheat crop, and on such farms especially where the land is of a lighter quility. Where from 40 to 60 bushels of lime are added at the end of each rotation of 4 or 5 yonrs, the land may soon become so saturated with lime that a fresh addition will produce no sensible effect.
5. Thus Mr. Campbell, of Craigie, spenks of a trinl made by an intelligent farmer in his neighbourhood, where alternate ridges only were limed without any sensible difference being observed.
[^4]No result could show more clearly than this-that for one rotation at least the exponse of lime might be saved, while at the same time the land would run the less risk of exhaustion. Another fact mentioned by Mr. Campbell proves the soundacss of this conclusion. The lime never fitils to produce obvious bencfit where the land is allowed to be four or five years in grass-where it is applied, that is, only once in eight or thine years.
6. The fair inference is, therefore, that in this district, ths well as in others where similar etfects are observod, too much lime is habitunlly added to the land, whereby not only is a needless ox. pense incurred, but a speedier exhaustion of the soil is insure!. Good hustandry, therefore, indicates either the application of a smaller dose at the recurrence of the wheat crop-or the occasional omission of lime altogether for an entire rotation. Tho practical farmer canmen have a better mode of ascortaining when his lard is thus fully supplied with lime-than by making the trial upon alternate ridges, and marking the effect.
7. Gn poor arable lands, which are not naturally so, but which are worn out or exhausted by repeated liming and cropping, limo produces no good whatever.* Such soils, if they do not alrendy abound in lime, are, at lenst, equally destitute of numerons other kinds of food, orgnnic or inorganic, by which heallhy plants are nourished, -and they are only to be restored to a fertile condition by a judicious admixture of all. This truth is confirmed by the practical observation, that on soils so exhausted firm-yard manure along with the lime does not produce the same good results as in other cases. All that the soil requires is not supplied in sufficient abundance by these two substances laid on alone.
8. On lands of this kind, and on all in which vegetable matter is wanting, lime may even do harm to the immediate crop. It is apt to singe or burn the grain sown upon them-an effect which is probably chemical, but which may in part be owing to its rendering more open and friable soils already by long arable culture too open.
9. A consideration of the circumstances above adverted to explains why. in some districts, and even in some whole provinces, the use of lime in any form should be condemned and even entirely given up. The soil has been impoverished through its unskilful

[^5]application-or. by large admixtures of lime or mand for a series of yenrs, the soil has been so changed as to yield no adequate return. for now aditions. 'Thus for a generation or two the practices of liming and morling aro abndoncd, to be slowly and relactants resumed ngitn, when natural causes have moved the lime from the soil, nul produced an acesmmation of those othor substances which, when itssociated with it, contribut, to the productiveness oi the land.

## Section XII.

l. Eefects of an overdobe of hini: and of time binking of fine into the soll.- There are several eflects which are familiar to the practical man as more or less observable when lime in any form is laid too lavishly upon the land. Thus, firstly, it is rendered se loose by an overdose as to be capable of holding no water. Upon stiflclays a very lergo quantity indeed will be roquired to produce this effect.
2. Secondly, by an overdose of quick lime the land is hardened to such a degree as to be impervious to whter or to the roots of plats. Several parts of the Carse of Gowrie are thus rendered so bard tas to be unfit for vegetation. This effect will be observed only in soils which are maturaliy wet and undrained, or whero much rain has fallon and lingered on the land after the lime has been applied.
3. I'hirdly, but the most injurious effect of an over-liming, whether it be laid on at one or at successive periods, is the exd haustion by which it is succeeded. "An overdose of shell-marl," says Lord Kames, "laid perhaps on inch thick, produces for a time large crops, but at last renders the soil capable of bearing neither corn nor grass, of which there are many examples int Bcotland." The same is true of lime in any form. The increased fertility continues as long as there remains an adequate supply of organic (animal and vegetable) matter in the soil, but as that disappears the crops every year diminish both in quantity and in quality.
4. An interesting illustration of this exhausting power of lime is afforded by the observed effects of long-continued marling upon certain poor soils in the province of Isere, in France. The marl there employed is a sandy marl, containing from 39 to $\mathbf{6 0}$ per cent. of carbonate of lime-very much like the lime-sand of Ireland, or the shell-sand of the Western Islands. A layer of this marl one-third of an inch thick, applied at intervals to a soil producing in its natural state only a three-fold return of rye every other year, causes it to yield for the first 10 or 12 years an eight. fold relurn of wheat.
B. Liut after 40 yens' marling, the fanmes now enmploin that
 of this reduction is to bo limm in the enstant ernpuine with corn, in the grownig of no green crops, min in the athition if no mamure. Yet even with this tre tment the land is still more forductive thm bevere the morling wha commencod. It montuces bur rempen instead of three, and it grows wheat where buide only re would thrive and ripen.
6. From the possession of this exhmoting property has arisen the almest universally dithed proverb, that lime eariches the fiethers bu impoucrishes the sons. 'Ibn thalt, however, is not in the lime, but in the improvident hatimers, who in this case, ass in so many others, exhanst and inconsiderately squander the inheritance oi their sons. It care be taken to keep up the supply of organic matter in the soil-by copious additions of manure or otherwise-lime may be added freely and a system of high friming kept up, hy which both the present holder of the land and his successor will be equally benefitted.
7. The opinion expressed by some of the highest nuthorities among practical men, that too much lime cannot be iudded, provided the soil abound sufficiently in vegetable matter, may perhaps be rather overstated ; but it undoubtedly embodies the result of long. continued observation-that the exhausting effect of lime may be postponed indefinitely by a liberal management of the land.*
8. Une of the causes of this gradual diminution of the netion of lime is to be found in the singular property it possesses of slowly sinking into the land, until it almost entirely disappears from the surface soil. It has been long lamiliar to practical men that when grass lands, which have been limed on the sward, are atter a time broken up, a white layer or band of lime is seen at a greater or less depth beneath the surface, but lodging, generally, where it has attnined its greatest depth, between the upper, louse and fertile, and the lower, more or less impervious and unproductive snil.
9. In arable lands the action of the plough counteracts this tendency in some measure, bringing up the lime again from beneath, and keeping it mixed with the surface mould. Yet, through ploughms land it sinks at length, especially where the ploughing is shallow, and even the industry of tha gardener can scarcely prevent it from desconding beyond the reach of his spade.

[^6]10. The chicf cause of this sinking is to be found in the extreme minuteness of the particles into which slaked lime naturally falls. If a portion of slaked lime be mixed with water it forms a milky mixture, in which some hme is dissolved, but much more is held in suspension in an extremely divided state. When this milk is allowed to stand undisturbed, the fine particles subside very slowly, and are easily again disturbed, but if thrown upon a filter they are arrested immediately, and the lime-water passes through clear. Suppose these fine particles to be mixed with the soil, and the rain to fall upon them, it will carry them downwards through the pores of the soil till the close subsoil acts the part of a filter, and arrests them.
11. This tendency to be washed down is common not only to lime but to all minutely divided earthy matter of a suffiriently incoherent nature. Hence the formation of that more or less impervious layer of finely divided matter which so often forms the subsoil beneath free and open surface soils. And that lime should appear alone or chiefly to sink on any cultivated field, may arise from this circumstance-that the continued action of the rains had long before carried downwards the finer incoherent particles of other linds which existed naturally in the soil, and therefore could find little else but the lime on which this action could be exercised.
12. 'Ihis explanation is satisfactory enough in the case of light and open soils, which are full of pores, but it appears less so in regard to stiff clays and to loamy soils, which are not only close and apparently void of pores. but seem themselves to consist of particles in a sufficiently minute state of division to admit of their being carried down by the rains in an equal degree with lime itsell: This difficulty induced Lord Dundonald to suspect the agency of some chemical principle in producing the above effect.
13. As the lime, howevor, is unchanged after it has descended, is still in a powdery state, and exhibits no appearance of having been dissolved, it is difficult to imagine any chemical action by which such a sinking could have been brought about. It is possible that in grass lands the earth-worms, which contribute so much to the gradual production of a fine mould, may, by bringing up the other earthy matters only, contribute to the apparent sinking of the lime, as well as of certain other top-dressings.
14. Ihe effects of this sinking are to remove the lime from the surface soil, and to form a layer of calcareous matter which in wet or impervious bottoms will harden and form a more or less solid bed or pan, through which the rains and roots refuse to penetrate, and which the subsoil plough in some districts can tear up with
dificulty. On our stifier soils it enconmges the growth of the troublesome coltsfoot, and in the open ditches of the wholesume water-cress.
15. The practical remedies for this simking are of two kinds :1 st, the ploughing of a deeper furrow, and hence one of the benefits which in many localities follow the use of the trench plough ; : 2 dly, the sowing of deep rooted and lime-loving crops, such as lacerne and sainfoi:, which in such soils not only thrive, bit bring up in their stems, and restore to the surface, a portion of the lime which had previously descended, and thus make it available to the attercrops.

## Section XIil.

1. Theory of the Acrion of Lime.-Line acts in two ways uprn the soil. It produces a mechanical alteration which is simple und easily understood, and is the cause of a series of chemical changes, which are really obscure, and are as yet susceptible of maly partial explanation. In the finely divided state of quick-lime, on slaked lime or of soft and crumbling chalk, it stiffens very loose soiis, and opens the stiffer clays, -while in the form of limestone gravel or of shell sand, it may be emploved either for opening a clay soil or for giving body and firmness to boggy land. These effects, and their explanation, are so obvious to all, that it is unnecessary to dwell upon them.
2. The purposes served by lime as a chemical constituent of the soril are at least of four distinct kinds: It supplies a kind of organic tood which appears to be necessary to the healthy growth of all our cultivated plants. It nemralizes acid substances which are naturally formed in the soil, and decomposes or renders harmless other noxious compounds which are not unfrequently within reach of the roots of plants. It changes the inert vegetable matter in the soil, so as gradually to render it useful to vegetation.
3. It causes, facilitates, or enables other useful compounds, both organic and inorganic, to be produced in the soil, -or so promotes the decomposition of existing compounds as to prepare them more speedily for entering into the circulation of plants. 'These several modes of action it will be necessary to illustrate in some delail.
4. Of Lime as the food of Plants. - In considering the chemical mature of the ash of plants, we have seen that lime in all casee forms a considerable proportion of its whole weight. Hence the reason why lime is regarded as a necessary food of plants, and hence also one cause of its beneficial influence in general agriculs tural practice.
5. The quantity of the pure lime contained in the crops pros duced upon one acre during the years' rotation amounts, on an average, to 242 lhss . which are equal to about 430 libs. (say 4 cwt .) of carbonate of lime, in the state of marl, shell saud, or lime-stone gravel. It is obvious, therefore, that one of the most intelligiblo purposes served by lime, as a chemical constituent of the soil, is to nupply this comparatively large quantity of lime, which in some form or other mast enter into the roots of plants.
6. But the different crops which we grow contain lime in unlike proportions. Thus the average produce of an acre of land under the following crops contains of lime-

|  | Grain or Rvots. | Straw or Tops. | Total. |
| :---: | :---: | :---: | :---: |
| Wheat, 25 bushels, | 1.5 | 7.2 | 8.7 lts |
| Barley, 38 | 2.1 | 129 | 1.5 |
| Oats, 50 | 2.5 | 5.7 | $8 . \%$ - |
| 'Turnips 25 tons, | 45.8 | 93.0 | 138.8 " |
| Potatoes, 9 " | 6.6 | 259.4 | 266.0 " |
| Red clover, 2 tons, |  | 126.0 | $126.0{ }^{\circ}$ |
| Rye grass, 2 " | - | 33.0 | 33.0 |

7. These quantities are not constant, and wheat especially contains much more lime than is above stated, when it is grown upon land to which lime has been copiously applied. But the very different quantities contained in the several crops, as above exhibited, ahew that one reason why lime favours the growth of some crops more than others is, that some actually take up a larger quantuy of lime as food. These crops, therefore, require the presence of lime in greater proportion in the soil, in order that they may be able to obtain it so readily that no delay moy occur in the performance of those functions or in the growth of those parts to which lime is indispensable.
8. The chemical action of Lime is exerted chiefly upon the organic matter of the soil.-'There are four circumstances of great prootical importance in regard to the action of lime, which cannot be too carefully considered in reference also to the theory of its operation. These are, that lime has little or no effect upon the woils in which organic matter is deficient. That its apparenteffect is inconsiderable during the first year after its application, compared with that which it produces in the second and third years.
9. That its effect is more sensible when it is kept near the surface of the soil, and gradually becomes less as it sinks towards the cubsoil. And, that under the influence of lime the organic matter of the soil disappears more rapidly than it otherwise would do, and that after it has thus disappeared fresh additions of lime produce no
ther good effect. It is obvious from these facts, that in general e main beneficial purpose served by lime is to be sought for in the nature of its chemical action upon the organic matter of the soil-an action which takes place slowly, which is hastened by the access of air, and which causes the organic matter itself ultimately to disappear.
10. Of the forms in which organic malter usually exists in the soil, and the circumstances under which its decomposition may theie place. -The organic matter which lime thus causes to disappear is presented to it in one or other of five different forms: In that of recent, often green, moist, and undecomposed roots, leaves, aud stems of plants In that of dry, and still undecomposed, vegetable matter, such as straw. In a more or less decayed or decaying state, generally black or brown in colour-and often in some degree oluble in water.
11. In what is called the inert state, when spontaneous docay ceases to be sensibly observed. And, in the state of chemical combination with the earthy substances-with the alumina for example, and with the lime or magnesia-already existing in the soil.Upon these several varieties of organic matter lime acts with different degrees of rapidity.
12. The final rosult of the decomposition of these several forms of organic matter, when they contain no nitrogen, is their conversion into carbonic acid and water only. They pass, however, through several intermediate stages before they reach this pointthe number and rapidity of which, and the kind of changes thry undergo at ench stage, depend upon the circumstances under which the decomposition is effected. Thus the substance may decompose alone, in which case the changes that occur proceed slowly, and arise solely from a new arrangement of its own particles. This kind of decomposition rarely occurs to any extent in soil.
13. In the presence of water only -This also seldom takes place in the soil. Trees long buried in moist clays impervious to air, exhibit the kind of slow alteration which rosults from the presence of water alone. In the bottoms of lakes, ditches, and boggy places also, from which inflammable gases arise, water is the principal cause of the more rapid decomposition.
14. In the presence of air only.-In nature organic matter is never placed in this condition, the air of our atmosphere being always largely mixed with moisture. In dry air decomposition is ereedingly slow and the changes which dry organic substances andergo in it are often scarcely perceptible.
15. In the presence of both water and air.--'This is the almost
universal condition of the organic matter in our fieds and farmyards. 'The joint action of air and water, and the tendency of the elements of the organic matter to enter into now combinations, cause now chemical changes to succeed each other with much rupidity. It will of course bo understood that moderate warmth is necessary to the production of these eflects.
16. In the presence of lime, or of some other alkaline substances (potash, soda, or magnesia).-Organic matter is often fomd in the soil in such a state that the congoined action of both air and water are unable to hasten on its decomposition. A new chemical agency must then be introduced, by which the elments of the organic matter may again beset in motion. Lime is the agent which for this purpose is most largely employed in practical agriculture.

## Section XIV.

1. Laying down to grass.- One of the most common methoda of improving the soil is that of laying down to grass. This may be done for two three, or four years only, or for an indefinite period of time. In the latter case, the land is said to be liad down permanently, or to permanent pasture.
2. I'emporary pasture or meadow. - If the land be sown with grass and clover-seeds, only as an alternate crop between two sowings of corn, the roots which are left in the soil enrich the surfare with both organic and inorganic matter, and thus fit it for bearing a better after-crop of corn. If, again, it be left to grass for three or tive yeurs, the same effect is produced more fully, and therefore this longer rest from corn is better fitted for soils which are poor in vegetable matter.
3. The quantity of organic matter which has accumulated beconnes greater every year, in consequence of the ammual death of stems and roots, and of the soil being more closely covered, but this increase is probably never in any one after-year cqual to that which takes place during the first. The quantity of roots which is produced during the first year of the young plants' growth must, we may reasonably suppose, be greater than can ever afterwards be necessary in an equal space of time. Hence, one guod year of grass or clover will enrich the soil more in proportion to the time experibed, than a rest of two or three years in grass, if annually mowed.
4. Or, if instead of being mown, the produce in each case be eaten off by stock, the result will be the same. That which lies longest will be the richest when broken up, but not in an equal pro portion to the time it has lain. The produce of green parts, as
well as of roots, in the artifind grasses, is genemilly greatest during the first year aner they are sown, and tharefire the manuring derwed from the droppings of the stock, as well as from the roots, will be greatest in proportion huring the first year. 'Phat farming, therebre, is most economical - where the land will admit of itwhich permits the clover or grass sceds to oceupy the land for one yoar only.
5. But if, after the first yea!'s hay is removed, the land be pastured for two or three years more, it is possible that eacin succeeting year may entich the surface soil as much as the roots and stubble of the first year's hay had done ; so that if it lay three years it might obtain three times the amount of improvement. 'This is owing to the circumstance that the whole produce of the field remains upon it, except what is carried ofl by the stock when re-moved-but very much, it is obvious, will depend upon the nature of the soil, and upon the selection of the seeds being such os to socure a tolerable produce of green food during the second and third years.
6. Permanent pasture or meadow. - But when land is laid down to permanent grass it undergoes a serics of further changes, which have frequently arrested attention, and which, though not difficult to be understood, have often appeared mysterious and perplexing to practical men. Let us consider these changes. When grass seeds are sown for the purpose of forming a permanent sward, a rich crop of grass is obtained during the first, and perhaps also the second year, but the produce after three or four years lessens, and the value of the pasture diminishes.
T. The plants generally die and leave blank spaces, and theso again are slowly filied up by the sprouting of seeds of other species, which have either lain long buried in the soil or have been brought thither by the winds. This first change, which is almost universally observed in fields of artificial grass. arises in part from the change which the soil itself has undergone during the few years that have elapsed since the grass seeds were scwn, and in part from the species of grass selected not being such as the soil, at any time, could permanently sustain.
7. When this deterioration, arising from the dying out of the sown giasses, has reached its utmost point, the sward begins gradually to improve, natural grasses suited to the soil spring up in the blank places, and from year to year the produce becomes greater and greater, and the land yields a more valuable pasture. Practical men often say that to this improvement there are no bounds, and that the oider the pasture the more valuable it becomos. But this
is true only within certain limits. It may prove true for the entire currency of a lease, or even for the lifetime of a single observer, but it is not generally true. Even if pastured by stock only and never mown, the improvement will at length reach its limit or highest point, and from this time the value of the sward will begin to diminish
8. This, again, is owing to a new cirange which has come over the soil. It has become, in some degree, exhausted of those substances which are necossary to the growth of the more valuable grasses-less nutritivo species, therefore, and such as are less willingly eaten by cattle, take their place. Such is the almost universal process of change which old grass fields undergn, whether they be regularly mown or constantly pastured only-provided they are left entirely to themselves.
9. If mown they begin to fail the sooner, but even when pastured they can be kept in a state of full productiveness only by repeated top dressings, especially of saline manure-that is, by adding to the soil those substances which are necessary to the growth of the valuable grasses, and of which it suffers a yearly and unavoidable loss. Hence, the rich grass lands of our fathers are found now in wo many cases to yield a herbage of little value. Hence, also, in nearly all countrics, one of the first steps of an improving agricuiture is to plough out the old and failing pastures, and either to convert them permanently into arable fields, or, after a few years' cropping and manuring, again to lay them down to grass.
10. But when thus ploughed out, the surface soil upon old grase land is found to have undergone a remarkable alteration. When sown with grass seeds, it may have been a stiff, more or less grey, blue, or yellow clay-when ploughed out it is a rich brown, generally light and friable vegetable mould. Or when laid down it may have been a pale-coloured, red, or yellow sand or loam. In thim case the surface soil is still, when turned up, of a rich brown co. lour-it is lighter only and more sandy than in the former case, and rests upon a subsoil of sand or loam instead of one of clay. It is from the production of this change that the improvement caused by laying duwn land to grass principally results. In what does this change consist ? and how is it effected?
11. It the surface soil upon stiff clay lands, which have lain long in grass, be chemically examined, it will be found to be not only much richer in organic matter, but often also poorer in alumina than the soil which formed the surface when the grass seeds were first sown upon it. The brown mould which forms on lighter lande will exbibit similar differences when compared with the soil on
which it rests; but the proportion of alumina in the latter being ariginally small, the difference in respect to this constituent will not be so perceptible.
12. 'The elleet of this change on the surface soil is in all casea to make it more rich in those substances whach cultivated plants require, and therefore more fertile in grain. But strong chay lands derive ihe lurther important benefit of being rendered more looso and friable, and thus more easily and more economically cultivated. The mode in which this change is brought about is us follows:-
13. The roots, in penetrating, open and loosen the adjacent stiff ciay. Diffusing themselves every where, they gradually raise, by increasing the bulk of, the surlace soil. 'The latter is thus converted into a misture of clay and decayed roots, which is of a dark culour, and is necessarily more loose and friable than the original or subjacent unmixed clay.
14. But this admixture oi roots affects the chemical composition as well as the state of aggregation of tho soil. The roots and stems of the grasses contan much inorganic-carthy and salinematter, which is gathered from bencath, wherever the roots penetuate, and is by them sent upwards to the surlice. A ton of hay contains about 170 lbs . of this inorganic matter.
15. Suppose the roots to contain as much, and that the total anmal produce of grass and roots together amounts to four tons, then about 680 lbs of saline and earthy matters are every year worked up by the living plants, and in a great measure permanently mixed with the surface soil. Some ofitis, no doubt, is carried off by the cattle that feed, and by the rains that fall, upon the land-soma remains in the deeper roots, and some is again, year after year, omployed in feeding the new growth of gras-still a sufficient quantity is every season brought up from beneath, gradually to enrich the surface with valuable inorganic matter at the expense of the soil below.
16. Nor are mechanical agencies wanting to incrense this natorad difference between the surtuce and the under soils. The loosen. ing and opening of the clay lands by the roots of the grasses allow the rains more easy access. The rains gratualiy wash out the fine paricles of clay that are mixed with the roots, and carry them downwards, as they sink towards the subsoil.
17. Hence the brown mould, as it forms, is slowly robbed of a portion of its alumina, and is rendered more open, while the under soil becomeseven stiffer than before. This sinking of the alumina \& in a great measure arrested when the soil bccomes covered with
so thick a sward of grass as to break the force of the raindrops or of the streams of water by which the land is periodically visited.Hence the soil of some rich pastures contains as much as $\mathbf{1 0}$ or 12, of others as litle as 2 or 3 per cent. of alumina.
18. The wiuds also here lend their aid. From the naked arablo lands, when the weather is dry, every blast of wind carries off a portion of the dust. This it sulfors to fall agam ats it sweeps along the surface of the grass fields--the thick sward arresting the particles and silting the air as it passes through them. Everywhere, even to remote districts, and to great elevations, the winds bear a constant small burthen of enthy matter; but there are few practical agriculturists who, during our high wideds, have not occasionally seen the soil carried off in large quantitics from their naked fields. Upon the neighbouring grass lands this soil falls as a natural top dressing, by which the texture of the surfice is gradually changed and its chemical constitution altered.
19. Another important agency also must not be overlooked. In grass lands insects, and especially earth-worms, abound. These almost nightly ascend to the surface, and throw out portions of finoly divided earthy matter. On a close shaven lawn the quantity thus spread over the surface in a single night often appears surprising. In the lapse of years the accumulation of the soil from this cause must, on old pasture ficlds, be very greut. It has often attracted the attention of practical men, and so striking has it apfeared to some, that they have been inclined to attribute to the slow but constant labour of these insects, the entire formation of the fertile surface soils over large tracts of country.

## CONTENTS.

CIIAPTER I.
Page.
Sis. 1. Brief Hints for January, ..... 5
$\begin{array}{llll}2 . & \text { " } \\ \text { 3. } & \text { February, }\end{array}$ ..... 7 ..... 8
4. " " April,
5. " " May, ..... 11
6. " " June, ..... 14
7. " " July, ..... 15
8. sugust, ..... 20
0. September, ..... 2.2
10. October, ..... 24
11. November, ..... 25
12. December, ..... 27
CHAPTER II.
Sce. 1. The Plough and its use, ..... 29
2. Ploughing, ..... 34
8. Fall Ploughing, ..... 38
4 \& 5. Fallows, ..... 39
6. Deep and shallow Ploughing, ..... 44
7. The Roller, ..... 45
8. On the Effects of stirring the Earth as a relief against Drought, ..... 47
CHAPTER III.
Scs. 1\&2. Wheat Culture, ..... 49
8. Spring Wheat, ..... 56
4. Rust on Wheat, ..... 58
b. Chess on Wheat, ..... 60
6. Smut on Wheat, ..... el
7. Winter Killed, ..... 62
8. Barley, ..... 64
9. Spring Crops,-Oats, ..... 67
10. Pease, ..... 08
11. Culturo of the Potatoe, ..... 71
12. Culture of Indien Corn, ..... 75
13. Broom-corn, ..... 78
14 Selection and change of Seed, ..... 80
Pagn.
Sec. 15 On the cultivation of the Sugar Beet, ..... 82
16. Ruta Baga, or Swedish'Turnip, ..... 87
17. Carrot,-Daucus, ..... 89
18. Hemps, ..... 4:3
19. Caltivation of Grasses, ..... 94
20. Mowing, ..... 99
21. Pasture, ..... 11.2
22. Raising Seeds, ..... 104
CIIAPTER IV.
Sise. 1. Horses, ..... 105
2. Ireatment of the Horse, ..... 108
3. Colour of the Horse, ..... 109
4. The Hackney Horse, ..... 113
5. The Farmer's Horse, ..... 114
6. The Draught Horse, ..... 117
7. Points of a Good Horse, ..... 119
8. Discuses of Horses, ..... 122
9. The Waggoner, ..... 125
10. Farm Stock, ..... 127
11. On Stocking a Farin wit! Cattle, ..... 128
$1: \& 13$. Essay on Cattle, ..... $1: 1$
14. Training Oxef, ..... 141
15. Ireatment of Miich Cows, ..... 142
16. Butter Making, ..... 144
17. Cheese Making, ..... 1.48
18. Kearing Calves, ..... 152
19. Apples, as Food for Stock, ..... 154
20. Fattening Cattle, ..... 156
〔1. Mangel Wurtzel, ..... 159
CHAPTER V.
Swa 1. Rules for selecting Cattle and Sheep, ..... 103
2. Saxon and Merino Sheep, ..... 1 (is)
3. Leicester Sheep, ..... 168

1. South lown Sheep, ..... 170
2. Wintering Sheep, ..... 172
3. Essay on Swine, ..... 175
4. The Boar, ..... 178
5. Making Pork, ..... 19\%
6. Profitable Hens, ..... 18.1
7. My Cottage Homa ..... 18
Page.
Sec. 11. Plaster, and its mode of action, ..... 187
8. Marl, ..... 1 (r)
9. Ponds, and Pond Mur, ..... 1193
10. Green Crops as Manure, ..... 196
CHAPTER VI.
Stac. 1. Farming Capital, ..... 108
$\because . \quad$ Fat Animals and Large Crops, ..... 201
11. Arrangement of Agricultural Labor. ..... 203
12. Farm Implementsand Labor-soving Machines, ..... 206
13. Impolicy of burning Gieen Wood, ..... 215
14. Canada Thistles, ..... 209
15. Farmer A, who works it wrong, ..... 212
Q. Farmer B, who works it right, ..... 215
0 d 10. The Story of Uncle 'lim and his Son, ..... 219
16. 'The Farmers' Fair, ..... 225
CHAPTER VIL.
Ssce. 1. Good Maxims for Farmers in the manage- ment of their Barn-yards, ..... 297
$2,3 \& 4$. The Simple Elements in Chemistry, ..... 288
17. The general composition of Barn-yard Manure, ..... 2.37
18. Combustion and Decay of Plants, ..... 234
19. Causes of Sterility, ..... 241
20. Lxcrements of Horses, Horned Cattle, and Pigs, ..... 243
21. Excrements of Fowls, ..... 2.17
22. Jlung of Sheep, ..... 2.49
23. Wioud Ashes and Sont, ..... 25
24. Knowledge of Farming, ..... 2.54
25. Quality of Manure, ..... 258
26. Management of Manure, ..... 258
1031 (is)168
Pane.
Se. 4. The physical qualities and chemical con. stitution of a soil may be changed by art, - - - . . .271
27. Improvement of the soil by mixing. ..... 275
f. Lime, ..... $2: 6$
28. Whother Line ought to be used in largerdoses at greater intervals, or in smallerdoses at shorter intervals,290
29. Form and state of combination in which Lime ought to be applied to the land, and of the use and advantages of the compost form, ..... 252
30. When ought lime to be applied, ..... 204
31. Effect of lime on the productions of the soil, ..... $28:$
32. Circumstances by which the effects of Litue are modified, ..... 287
33. Effects of an over-dose of Lime, and of the sinking of Lime into the soil, ..... $2!9$
13 Theory of the action of Lime, ..... 293
34. Laying down to Grnes, ..... 295



[^0]:    * Professor Liebig, On the Theory of Respiration.

[^1]:    * Profersor Play'ar un the Application of Physionogy to the Rearing and Feeding of Cathlo. Jourral of the Royal Agricultural Soc:ely of Lugland, vul, iv. p. 231.

[^2]:    - Davy's Agricultural Chemistry, Lecture TI.

[^3]:    * If a sponffil of adnltorated soot he stired into a tumbler of water andallowel lomotime, a quantity, f grilte matter will be found at the bottom of Hor giass: hat, if the soot he in the same state as when swept fom the ehmores, the demosil will contain ouly mimute partides of nearly impercoptible carliy smbstance, which, if rubbed belween the fingers, will be noft to the touch.

[^4]:    * "I nover met," he sayn, "with a poor soil in its natura state, which Was not benefitted in a very great degree by calcareous matter when adminintered in proper quantities. Buti h ve met with several rich sciln, which are fully impreguated with dung, oll which lime applied in auy guactity produced nut the smallest scusible effect."

[^5]:    * "It is acarcely practicable to reatore fertility to land, even of tho bent patural quality, which has been thus abused; nnd thin moorish solls, after beang exhausted by lime, are not to be restored," (Brown.).

[^6]:    * In Germany the necensary union of manure and marl is in the mouth of evory peasaise -
    $\qquad$

