Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Communica
addresations relating to the Editorial Department should be Montreal to the Editor, Henry T. Bovey, 31 McTavish Street, The Etreal.
${ }^{\text {by }}$ hitor does not hold himself responsible for opinions expressed No notice vill bendents.
notice will be taken of anonymous communications.
The 4 rt of Ore-Dressing in EUOR BOOKS.
Ore-Dressing in Europe, by Wheaton B. Kunhardt, Now York: John Wiley \& Sons.)
This volume is the second of the Columbia School of Mines
Qharterly Series. It parports to be a general description of
the methods of working pursued in the ore-dressing establish.
mentu of P of working pursued in the ore-dressing establish. from the owrope, and has been compiled from data obtained dincureed arers and managers of the foreign mills. The points ore-dred are the following: The general principles pursued in tion, cleang, under-ground separation, general size classificaCobbing clansing, spalling, rock breaking, sizing, hand-picking, roviong, roll-crushing, jigging, rough hydraulic separation, commingtionse-dressing and introduction to slime treatment, ing and dion, hydraulic classification, slime washing, crushtreand drying of concentrates, losses in wet dressing, special th of mog operations, features of mill construction. The work thoden inch interest, touching, as it does, upon the early memochanical and noting in brief the great development in the therican Engineers and Surveyors' Instruments.-This is the twenty Engineers and Surveyors' Instruments.-This is thated caty.fifth edition of W. \& L. E. Gurley's (N.Y.) illus Varionata ingtrame. Full and lucid descriptions are given of the The coments, with rules for their use and adjustment.
Thibing oontracted Liquid Vein, by R. Streckel,-An essay deWatorg the results of certain experiments upon the flow of the Royal soch orifices, read before the mathematical section of The setrological of Canada.

Bological System of the Areat Pyramid.-By F. A. P. SARNARD, L.L.D., s.t.d. (New York: John Wiley \& In Importan Montreal : Dawson Bros.)
8. Tont Question in Metrology.-By Lieut. Chas. A. Montren, M. A. (New York: John Wiley \& Sons; Themontreal : Dawson Bros.) rualke of the works represent the views of thooe whe swell the
parties engaged in the now famed metric struggle.

President Barnard in the essay before us, which is a reprint of a paper contributed to the Proceedings of the American Metrological Society, accounts for the existence of a large body of believers in a religious mystery surrounding the great Pyramid, as being the result of the natural law, that the faith of fanatics is intense in proportion as its foundations are weak, and that its disciples multiply in proportion as its doctrines are deficient of common sense."
After a brief description of various weights and measures, and a statement of the necessity and advantage of introducing the metric system which would "remove the confusion and remedy the inconvenience to all mankind occasioned by the multiplicity of the forms of expressing the quantities of v. changeable commodities," an introduction which he goes on to say is now only a question of time, he gives an account of the " Theory of the Divine Legation of the Great Pyramid.
The principal propositions advanced in support of the theory are :-
1st. That the external dimensions of the pyramid have been determined by means of a unit of linear measure which is one ten-millionth part of the polar radius of the earth : and that this unit is identical in length with the sacred cabit.
2nd. That the linear measure of one side of the pyramid, at its base, contains this sacred unit of measure as many times as there are days in the year, including the fraction of a day beyond the three handred and sirty-five.
8rd. That the height of the pyramid (in its original and perfect condition) when multiplied by the ninth power of ten, expresses the distance of the sun from the earth with an exactness which pats to shame all determinations from transits of Venus, oppositions of Mars, perturbations of the moon, or any other merely human scientific method.

4th. That the daily motion of the earth in its orbit is expressed "in the round decimal number of $100,000,000,000$ pyramid inches.
Various other propositions are also given relating to the dimensions of the interior passages of the pyramid, the measure of capacity discovered by John Taylor in the Sarcophagus in the king's chamber, the geographical position of the monument, \&c., concluding with the article of the pyramid faith that the date of its creation is defined by the pecenliarities of its conatruction
These propositions Dr. Barnard opposes at length and with very forcible argaments, which must be followed in detail to
be appreciated. In order to shew, as he says, how easily a system such as the above may be built up on the most slight foundations, he himself makes a supposition and thereon erects a new plausible theory of the pyramid, which he styles a human theory.

The subject of this work is one which has attracted much attention and it cannot fail to be of interest to the general reader.

an important question, by totten.

This book originated in an Address to the International Institute for Preserving and Perfecting weights and measures, but its author, being convinced of the national importance of his discoveries, has been induced to lay them before the public, to which, he thinks, and not to scientific men, or even to its tem. porary representatives in the government of the country, belongs the right of deciding questions of metrology.

His principsl theme, as he siys, is the rectified system of metrology, by which is meant a rectification of the older system of measures still used in England and the States, which, without any important changes either in fact or in nomenclature, would thus become, in his opinion, an absolutely perfect system.
He thinks the unit of metrology should be harmonious to nature and beliaves that such a unit has been bequeathed to us by our ancestors and that its slight loss of exactness might be rectified by means of the study of the Great Pyramid. In. dependently of this, however, he shows the great adaptability of the old system, and conceding that the decimal system is very necessary for purposes of rapid calculation, etc., be shows that a new decimal system could be based upon the former, where it would possess all the advantages of the metric svstem without its disadvantages, as for example, the necessity of overturning a system which has been in use for so ling.

The book is much marred as have been so many others of its class by the assumption of propositions which can scarcely be considered as proved, for example that Anglo-Saxons are directly descended fromJoseph and being entitled to all the blessings promised to his race, are born to rule the world, by its sppeal every now and then to a sort of religious sentimentalism, which is much more easily persuaded if it can be persuaded in biblical phraseology, and by its ignoring the + xistence of mon both scientific and otherwise, who while accepting the Bible Bible as a standard of faith and moraly do not regard it as also furnishing a standard for metrology. Apart from these defects the subject is one of great interest and importance, and the treatment is clear and practical.

Telephoning between London and Doyer - An experimental iliustration of telephonic cominunication between distant towns was performed last week by the United Tel phone Company. A numerous party was invited to witnes; the transmission of messages brtween Daver and Lond,n, along the telegraph wires of the London, Chatham, aud Dover Railway, permitted by the chairman of that company, Mr. Forbes. The first +xperiments concisted of messages transuitted Irum the Grosvenor Hotel to Dover along a single wire brought to earth at both ends, and having in its route no less thin nine block signal stations, the single needle instruments in which, and the other apparatins, boing equal to orrr nine miles per station. These constituted a resistance of nearly 100 mi es beyond that of the line wire, which was 78 miles long. The second experiment was the transmission of messages along a metallic circuit, making 153 miles of wire, to which the block instruments a.lded 200 miles revistance, miking the total traversed by the messayer the equivalent of 356 miles. Neverthe. less, the words were clearly and distinctly beard, so much so that one listening in the Grosv. nor could instautly det ct the errors of the operator in mis-quoted words in the nursery rhym $-s$ which he narrated for the edification of his London audience.

AMERICAN PERMANENT WAY.*

BY JOSEPH M. WILSON.
(Continucd from page 261.)
There may be cases where reverse curves come close together and this rule cannot be strictly carried out, but an endeavor is always made in such cases, if possible, to secure at least 50 feet of level track on a tangent. Where two curves in the same direction are connected by a tangent less than 100 feet long, the elevation is carried through from curve to curve without reduction, and if the tangent exceeds 100 feet the regular inclinations are made from each curve until they meet, or until level track is reached. These illustrations will serve to show the variation in practice with different roads. The rules for elevation of course do not apply in yard tracks. All rails for curves should be bent to the proper curvaiture before being laid on the ties.

Several different standards of gauge of track have been used on American roads; 6 feet, 5 feet, 4 feet $8.1 / 2$ inches or 4 feet 9 inches, (a modification a lopted for compromise cars, a also the various narrow gauges, from 2 feet 6 inches to 3 feet 6 inches. There is a consid rable ten ${ }^{2}$ dency towards a uniform gauge of 4 feet $8.1 / 2$ or 9 inches, and there have been several noted changes on long lines from 6 feet gauge to 4 feet $8.1 / 2$ or 9 inches, and there have been several noted changes on long lines from 6 feet gauge to 4 feet $8.1 / 2$ inches, the operation being performed in an almost incredibly short interval of time.

Rails are connected together by joints and the more closely a joint approximates to a contin $\mathrm{n}^{\mathrm{L}^{-}}$ ous rail, the nearer it reaches perfection. Some ycars ago the joints were placed on the supports, but they proved too rigid, the ends of tne rails being hammered or battered down under service, and it was found best to place them between the supports. The use of double fish plates has now become almost universal. These fish plates or splices are made to hug up well between the top and bottom flanges of the rail, and in their best form are generaily about 24 inches in length with a wide angular flange spreading out over the lower flange of the rail. Two splices are used at each joint, one on each side of the rails and they are connected together through the webs of the rails by four bolts which draw them $u p$ tightly together, rigidly binding the rails into line and surface. These bolts have semi-spherical heads allowing as little obstruction as possible and they should be arranged so that they $\mathrm{can}^{\mathrm{n}^{0}}$ turn in the holes, the nuts, which are alway placed on the sutside of the track, being provided with some approved mechanical device to prebe ent turning and consequently the loosening of the

[^0]bolts. A spiral washer employed in the standard track Pennsylvania Railroad answers very Well, and the arrangement used by the Cambria Iron Company, (see Pages 291 and 292), is also good. An allowance must always be made in a The between the ends of the rails, for expansion The maximum amount will vary probably someWhat with the climate, being dependent upon the at differ between the extremes of temperature at different times of the year, and the space actually allowed in the process of the track laying is of course different at different seasons. In latitude 40 degrees it is customary to give 5-16 mer. should Iron shims of the requisite thickness The best used to separate the rails in laying. rails best practice places the joint of one line of line opposite the centre of the rail on the other to break same track. This arrangement tends jumping up any tendency to a regular jolting or an effect of the cars as they pass over the joints, and is vert that increases by the regular repetition joints is very disagreeable on roads laid with the some formsite. On pages 291 and 292, are shown is also inms of rail fastenings, for which the author $\mathrm{Fig}_{\mathrm{i}} \mathrm{A}$ is inded to the Cambria Iron Company. is that is the Cambria Patented rail joint. Fig.B, indicated by the Pennsylvania and other roads Used by the the plate. Fig. C, is an old form is not now Pennsylvania and other roads, but and L, sh standard on the P.R.R. Figs. J,K, now being recent peculiar forms of street rail stringeing adopted, and laid, not on longitudinal on cross as has been usual with tramways, but $W_{\text {estern Res. }}^{\text {cross }}$. On the Chicago \& North West Suspended Railway the joints are laid opposite and Angle spd, the joint ties being 6 inches apart. with $4.3 / 4$ spes are used, 22 inches long, bolted II $\frac{4.3 / 4}{}$ inch bolts $4.1 / 2$ inches to centres. Plate
 Supports for the rails where timber is very
scarce or is Other or is liable to rapid decay, as in India or iron with tropical countries, have been adopted of ever, timber is uss. In temperate climates howing, timber is used almost universally, creosotsometimes ompher preservation process being increase its longeyed, particularly in Europe, to ${ }^{0}$ pinion that longevity. There is a prevalent is essential timber on account of its elasticity road, but this supports in order to make a good $f_{\text {act, }}$ as this does not seem to be borne out in Where its expense been used quite successfully ${ }^{\text {In }}$ A its expense has not been an objection. years may, timber is still abundant and many any extent elapse before other material is used to thing extent, but the time will come when some-
rails else must railroad must take its place, and far seeing $W_{r o u g h t ~ m e n ~ a r e ~ a l r e a d y ~ l o o k i n g ~ f o r w a r d ~ t o ~ t h e ~}^{\text {Wought }}$ N_{0} whith $_{\text {wtand }}$ ir or steel cross-tie of the future. a quithstanding the experience of Europe, it is
question whether preservatives are of much use
for wooden ties in America. On roads where there is heavy service, the material often wears out before decaying ; the harder kinds of wood, which are the best for service, do not absorb a preservative solution as readily as the softer and inferior kinds, which latter wear out very rapidly, and the cost of using a preservative would only be a useless expense.

On roads with very light traffic, operated by horse power, as street railways, longitudinal timbers placed under the rails have been generally used as supports, those for the same track being tied across at intervals to preserve the gauge of track. This arrangement however will not answer for locomotive traffic, and even for street railways, as already intimated by the author, it is being abandoned, a form of rail being adopted that will admit of the use of cross ties. A longitudinal sleeper is very apt to split with the spikes which must be driven into it at frequent intervals in its length to hold the rail, water gets into these cracks softening and decaying the timber, and there is a great tendency in the rail to sink into the wood, the supporting power being lost. Timber will always bear a load best resting across the grain even when in first class condition ; the cross-tie system also offers great advantages in renewals, over the longitudinal stringer system, vastly increasing facilities of replacing material without delay or interruption of traffic. Even on bridges where longitudinal stringers have been used for years, on account of advantages obtained in the detai's of construction of the floor system, they are now being abandoned and a cross-tie system adopted. The rationale of the present almost universal method of timber cross-tie supports is therefore readily seen.

These ties are placed at frequent intervals, sufficient to properly support the rails, the latter being securely spiked to them, and the ties, in addition to giving the proper support, tie the rails together to gauge, and by their hold in the ballast below, keep the whole track in line. Hence the American word "cross-tie," at once descriptive and appropriate. The cross tie should if possible be of what is technically termed "hardwood," and of all woods in America the best for this purpose is white oak. This is the case at least in the temperate zone. There may be some woods in the tropics, unknown to the author, that are better.

The more bearing surface ths rail has on the tie, and the more surface the tie has on the ballasting material below it, the better and more stable the track. Hence the ties should be flattened on the upper and lower sides, and a minimum width of the flat surface should be specified, less than which will not be allowed. The sides of the ties are only barked and left rounding. Sawed ties are sometimes used cut square on all sides, but hewn ties are by far the

AMERICAN PERMANENT WAY.

best, less liable to decay, and giving a better shape with the rounded sides. The length of the tie should be sufficient to give ample allowance outside of each rail and all the requisite bearing surface on the ballast below. Hard-wood ties not only carry the rails better than soft
wood, but they will also hold the spikes two of three times as firmly. In soft wood, the spike bruises and breaks the fibres, while in hard wood, it tends to compress and push the on themselves, increasing the pressure the sides of the spike and holding it

AMERICAN PERMANENT WAY.

tain districts. It is a timber somewhat resembling larch, is higher priced than hemlock but lasts longer. Cedar and locust are both good woods in lasting properties, but are softer than desirable, particularly the former.

Uniformity in the size of cross-ties is important, especially iu cold latttudes, as in the spring of the year large ties hold the frost much longer than the smaller ones, and irregularity in line and surface of road occur under service.

The spikes which are used to secure the rails to the cross-ties should not be less than 5 inches in length, better $51 / 2$ inches, should be square in section 9-16th of an inch each side, and should have a flat head projecting to one side to catch the flange of the rail. The lower end of the spike should be flat or chisel-pointed in a direction to cut across the grain of the tie and not to split it. The spikes should be sound, smooth, well shaped, and of double refined iron, bending cold at least 90 degrees without sign of fracture. The length of spike necessitates the depth of cross-ties being at least 6 to 7 inches, and they should also be of this size to perform their other requirements. They should have not less than 6 inches across their flatted surface and ought to be at least 8 , or better $81 / 2$ feet long for a 4 feet $81 / 2$ inches or 4 feet 9 inches gauge.

Some years ago the regular distance for laying cross-ties was 2 feet 6 inches centre to centre, and this may still be the custom on some of the lighter roads, but those with heavier service are now laying them much closer. They are usually placed 18 inches to centres under joints, and 2 feet to centres at other places, making for a 30 feet rail 2,640 ties to the mile of single track. Circumstances may however justify the Engineer increasing the distance. The question is governed by the width of tie, allowable carrying length of rail, and the space required between the ties to provide for proper tamping of ballast around them.

A true track requires, of course, that the ties should be laid to a uniform top surface. If the tie is twisted it should be made true on top by adzing, to give an even bearing to the rail for the whole width, but under no circumstances should a tie be notched. This only allows water to enter the pores and decay the timber, besides being a disfigurement to the track. The ends of the ties should be lined up parallel with the rail on one side, always the outside for double track, the ties should be well rammed into the bailast or bearing material below them and they must have a solid bearlng for their whole length. The rails must be spiked on the inside and outside at each tie, on straight lines as well as on curves, and the spikes must be driven so as to keep the ties at right angles to the rails. There are therefore 4 spikes to each tie. Those on opposite sides of the same rail should not be placed in line, as it increases the tendency of
the tie to split, and this rule should be carried ont also at splices, the two spike notches in each splice being made unsymmetrical with the centre of splices so as to insure this result. Special ties are required under switches and crossings according to the standard diagrams of the special road for whicn they are intended.

The ordinary life of a tie is from 5 to 10 years, depending upon location, drainage, service, etc. White oak ties only last on the main line of the Pennsylvania Railroad from 5 to 6 years on an average, but they might have nearly double that life on a road with less and lighter traffic. Hemlock and spruce, in favorable locations, will last from 3 to 5 years and cedar 8 to 10 years, but the latter being so soft a wood will only stand light service on easy grades; Timber will last much longer in a severe climate where it is frozen up unifornly for many months in the year, than it will in a temperate climate exposed to alternate freezing and thawing.

The following is the standard specification of the Pennsylvania Railroad for cross-ties as adopted January Ist, 1879 :-

Ist.-."All ties must be made of green or " living timber, of good quality, and freed from " decayed knots or other unsound parts. White
"Oak and Rock Oak will be the only kinds of
" timber admitted.
2nd.-" Ties must be eight and a half feet
" long, seven inches thick, and not less than
" seven inches wide; to be hewn on two sides
" with straight faces, of an even thickness, sawed
" off square at each end, and stripped of the " bark.

3rd.-"No variation will be allowed in the
" LENGTH AND THICKNESS given above.
4th.-" No sawed or split ties will be received.
5 th.-" They must be delivered on the line
" of the railroad, stacked up in neat square stac $\mathrm{ck}^{\mathrm{ks}}$
" of fifty each, with alternate layers crossing $e_{0} a^{c h}$
" other on ground which is as HIGH OR
" HIGHER THAN THE GRADE OF TH
"ROAD, and in such position as to admit ol
" being counted and inspected.
6th.-" Ties delivered at suitable and bill and $^{0^{n-}}$
"venient places, will be inspected, and bith
" made for all received and accepted to the ${ }^{15}$ de
" of each month. The payments will be ${ }^{\mathfrak{m}^{2}}$
"on or about the 15 th of succeeding month."
The number of ties used for each 30 ft . rail are: for main running tracks, 16 ties, for branch $\mathrm{ro}^{\mathrm{a}^{d}}$ and third tracks on main lines used excluivively for freight trains, I4 ties, and for sidings aing tracks used for standing cars only, not exceedint 12 ties.
The Grand Trunk Railway of Canada and ties 8 inches flatted face, by 6 inches thick an is 8 feet long-2,640 to the mile. The material White Oak, Hemlock or Tamarack, the former
now becoming very scarce. White Oak lasts io to 12 years, and the other woods about 6 years. The Atlantic and Pacific Railroad (Western Division) uses ties 8 inches by 6 inches by 8 feet long, mostly native pine, but on heavy grades and curves, oak ties are used, number to the mile 2616.

The Cincinnati Southern Railway specifies ties of "either white, post, burr or chestnut oak, " or other timber approved by the Engineer, cut " from sound live timber, free from rotten or "loose knots, worm holes, dry rot, wind shakes or other imperfections affecting the strength and durability of the wood. All bark must be removed. They must be 8 feet in length, not " less than 6 or more than $61 / 2$ inches in thickness, one-fourth the number must measure not less than 10 inches face for the entire length of "the tie, and the remainder not less than 8 inches; the faces must be parallel, not winding, smooth, free from deep score-marks and "splinters. Ties must be cut square at the ends "and be straight in all directions. Not more "than one inch of sap will be allowed on the face of sawed ties. 2,640 ties are used to the mile of single track."
\& The standard hard wood ties of the Chicago order Nosth Western Railway have the following Cher of value: White Oak, Burr Oak, Red Elm, feet in, Black Ash and Butternut. They are 8 or 6 inchength and 6 by 8 inches section if sawed, soft wood thick with 6 inches face if hewn.. The 7 incheos ties are Cedar and Hemlock, and have used to depth by 7 inches face; 3,000 ties are The the mile.
use Oe Chicago, Burlington \& Quincy Railroad some of thes entirely on main line, but cedar on as for oak. quire all to The specifications for Oak ties reor Post to be hewn from sound live White, Burr, ends. O ak, 8 feet long when squared at the 7 inches noss than 6 inches and not more than 7 inches thick, at least 85 per cent. to have not inches face,-3inches face and none less than 7 main line and 3,000 ties are used to the mile on The cross ties are to 2,640 on the branches.
ballast. cross ties are bedded in what is termed is finished The embankment or cutting of the road question to a certain width depending upon the of road than single or clouble track, and the class Width that is being built. In cuttings sufficient ditches on always be allowed for good drainage enough width each side, and on embankments ties. The width to rightly sustain the ballast and the central road bed should then be sloped from perly. Entral portion to the sides to drain off pro-
fro from 14 to 16 fments on single track are made ${ }^{\circ}{ }^{2}$ double 16 feet wide at top, and 24 to 28 feet from 16 to 21 fece Cuttings on single track are to 32 feet, 21 feet wide, and on double track 26 tings, depending it me necessary in some cutlings, depending upon the nature of the material
and its liability to wash down on the track, to have very wide ditches, and these exceptional cases must be provided for. The road-bed being properly prepared, the ballast is laid upon it. This ballast is either broken stone, gravel, sand, burnt clay, cinders, shells, refuse coal siftings from the mines, etc., or simply earth, the latter being really no ballast at all, but merely the ties bedded in the earth, properly rammed, and surfaced with the right slope for drainage between the tiês. The question of material for ballast depends altogether on what can be obtained at a reasonable price, and if inferior material is used of course so much the less perfect the road is.

The ballast acts as an elastic bed, receiving the load from the moving train and spreading it out over a broad surface, and also serves as a drain to carry off the water from rain or snow to the ditches, and not allow it to freeze around the ties in winter, or to form wet holes in the roadbed, into which the ties and ballast will work and sink. First-class ballast material should be clean, hard and always of such consistency as will allow of the passage through it. The best ballast is a hard durable stone, not liable to decomposition or disintegration under the action of the weather, stones like limestone or trap, broken into angular fragments not larger than will pass through a two and a half inch ring. The amount placed under the ties is very variable, the question, unfortunately, not always being now much is best, but how much can the railroad company afford to use. For the best, or a first-class track, there should not be less than 12 inches, although many roads which are considered as high class, do not use over 9 inches.

On the Cincinnati Southern Railway, portions of the road through clay formation have 12 inches of ballast under the ties, other parts where the grading is light, have only 6 inches and the Engineer's estimates were made for the whoie line on an average of 9 ihches for main track and 6 inches for sidings ('See Report of Dec. 1877, since which there may have been some modification of the standard). The ballast on this line is specified of gravel or broken stone : the gravel to be clean, free from clay, or boulders larger than two and a half inches in any direction, and must not contain more than onethird of sand; the broken stone to be of good durable and hard limestone or sandstone approved by the Engineer and not larger than two and a half inches in any direction.

The Chicago \& North Western Railway Company uses as standard, one foot of ballast under ties, either gravel or broken stone.

The Altantic \& Pacific Railroad Company (Western Division) uses gravel, stone or earth ballast.

The Chicago, Burlington \& Quincy Railroad Co. has been foo some time experimenting with burnt clay for ballast, having had two miles of

AMERICAN PERMANENT WAY.

(See puge 258.)

this in use for two years, and it contemplates putting in about 15 miles additional this season. Where the road is not ballasted, it is surfaced up with the soil, filling in between rails about two inches above the tie, sloping each side so as to clear the bottom of the rail, and running down to the bottom of the tie at the ends. The Company possesses some excellent gravel beds in Illinois, has about 425 miles of its road ballasted with gravel in that state, and about 50 miles with broken stone. In Iowa, however, where the supply is deficient, it has only about 150 miles with gravel ballast and the same amount with broken stone. It is in Iowa that the burnt clay ballast will be used.

The Pennsylvania Railroad Company specifies that there must be a uniform depth of at least 12 inches of clean broken stone or gravel under the ties. The ballast must be filled up evenly between, but not above the top of the ties, and also between the main trarks and sidings where stone ballast is used. In filling up between the tracks, coarse large stones must be placed in the bottom in order to provide for drainage ; but care should be taken to $\mathrm{ke}^{\circ} \mathrm{p}$ the coarse stone away from the ends of the ties. At the outer ends of the ties the ballast must be sloped off evenlv to the sub-grade. When stone is used it must be broken evenly, and not larger than a cube that will pass through a two and one-half inch ring.

The Grand Trunk Railway Company of Canada uses gravel for ballast, from pits, taking the best the country affords, putting about six inches in depth under the ties, and filling in between the latter to their surface.

For good drainage the ditches must be ample, well made, with proper grades, and kept well cleaned out. The Pennsylvania Railroad Company has been sodding a great many of the slopes of its cuttings to prevent the material from washing into tne ditches, and the result has been very successful, saving the cost of maintenance and at the same time improving the appearance of the road. It has also had a number of gutters made with a concrete of Portland cement, two inches thick, laid on stone ballast four inches thick, having a granolithic top of one inch, and cut into flags of six feet long. These have given general satisfaction, and the use of them is being extended at various points. In its instructions to road forem n, the Pennsylvania Railroad Company specifies for ditches, "that the cross section at the highest point must be of the width and depth as shown on the standard drawing, and graded parallel with the track, so as to pass water freely during heavy rains and thoroughy drain the road-bed. The line of the bot+om of the di ch must be made parallel with the rails, and well and neatly defined, a ${ }^{+}$a distance of not less than 7 fect from the outside rail. All necesssry cross drains must be put in
at proper intervals. Earth taken from ditches or elsewhe must be dumped over the banks, a d not left at or near the end of the ties, but distributed over the slope. Earth taken out of the ditches in cuts, must not be thrown on the slope. The channels or streams for a considerable distance above the road should be examined, and brush, drift, and other obstructions removed. Ditches, culverts and box drains should be cleaned of all obstructions, and the outlets and inlets $\cap f$ the same kept open to allow a free flow of water at all times."

All sidings should be kept in as good order as practicable, but it is not necessary that they be kept up to the standard of main tracks, second class rails and ties, or partly worn mat rial from the main tracks being usually used for their construction.

In reference to turnouts and crossings from one track to another, the general arrangement is very well illustrated by the standard third track connections of the Pennsylvania Railroad, see Page 296. The switches shown on these plates are the Wharton and the Point switch. The old-fashioned stub switch is now entirely out of date. It will of course be found on many roads, but new switches of this kind are not being introduced anywhere in first-class work.
(To be continued.)

EXPERIMENTS UPON AUTOMATIC SPRINKLERS."

BY G. J. H. WOODBUBY.
Within the last five years, the protection of the more hazardous portions of textile mills, and other in lustrial estab lishments by means of automatic spriuklers, has become $q^{\text {uite }}$ general in the eastern portion of the United States.

These sprinklers consist of a jet arranged to throw a spray of water, and ordinarily sealed, either by a motal cap which covers them and is secured by soldering with some of the alloys which melt at from $150^{\circ} \mathrm{Fhr}$. and upwards, or the pas. sage of water into the sprinkler is prevented by a valog held to its seat by levers which are sealed with this solder.

Before referring to a sprinkler system and its method of $i n$. stallation, reference will be made to the floor construction of an American mill.
Beams of southern pine, twelve by fourteen inches in sec. tion, run transversely across the mill in spans of about twenty. three feet, and eight to ten feet apart, Upon these berms three inch spruce plank are fastened; upon this is placed the top flooring, which consists of hard wood plank one ands quarter inches thick. This is the present method of floor construction, and on account of its solidity and economy is $e^{0^{\circ}}$ couraged by engineers and underwriters, and forms an impor tant element in what the latter term "slow-burning construc" tion."

There are two methods of installing sprinkler systems de° pendent upon whether the sprinkler is designed to be placed in an upright or a pendent position.

For the upright sprinklers, pipes in commanication with * water supply reach longitudinally with the mill, about sixteen feet from each other, and about fifteen inches below the ceil-

- Canar read er Contitiot Aasoniation at Moptregl
* A paper read before Section G of British Association at Montrest Meeting.
ing; at distances of eight feet branch pipes extend for about four feet in either direction, and sprinklers are attached at the ends of these branch pipes.

In the case of the pendent sprinklers, the pipes are placed against the floor plank forming the ceiling in the middle of each bay, and sprinklers connected directly to these pipes every eight feet.
With both systems of sprinklers the methods of supply are alike. The branch pipes extending along the ceiling of each room are connected to an upright pipe in the mill tower; at the upperend of the pipe is a large tank for furnishing a constant head of water upon the sprinkler system; and the lower end communicates with fire pumps, and a reservoir supply Where it is available.
In order that the system shall have the benefit of the greatest, head of water which communicates to the sprinklers, check ${ }^{\text {Valves are placed in the pipes leading from each of these several }}$ ${ }^{\text {sources of supply, and opening towards the sprinklers. This }}$ arrangement causes the greatest water pressure to close the other check valves. Gate valves which are ordinarily kept open are situated at various places in the system for the purpose of diminishing the water damage after a fire.
The idea of using the heat of a fire to supply means for its extinction is very old; the earliest British patent upon that subject was issued to John Green, July 9, 1763, and consisted of a plan by which the fire should first burn a cord to release a Valve which it held from opening. With slightmodification this ${ }^{\text {sygystem of combutible cords is frequently re-invented, although }}$ the the practical difficulties of insuring the combustion of the cord before the fire is under a dangerous headway, and the mechanical obstacles in the way of opening a valve after years of disuse, have prevented this system from ever reaching any practical value. In 1861, patents were issued for sprinklers soaled with fusible solder, but there does not seem to have been Pargeneral application of this principle, until Henry S. ParParmelee, of New Haven, Conn., made the sprinklers which Were placed upon the market some twelve years later, Aug. 12,
1874.
The commercial progress of the matter was slow, until the resalts of the apparatus in promptly extinguishing fires in ${ }^{\text {some }}$ of the few places where they had been installed developed a great demand for them for protecting hazardous property.
As a result of this success, a large number of automatic
 patterns have been in actual use, but the changes brought about by business combinations and the displacement of the earlier forms by improved devices leave only eleven different ${ }^{8}$ prinklers now in the market.
At the conference of the executive officers of the Factory Matual Insurance Companies of New England, the writer was directed to make an examination of the various antomatic ${ }^{\text {P }}$ Prinklers in respect to their efficiency, for the purposes of mill protection, including their method of distribution and
consumption of water when under various heads; to liability to accident and deterioration to their sensitiveness, and to all Othur matters pertaining to their practical operation. Four hondred sprinklets were purchased from the several manuficturers, and these in turn were exchanged at the mills for ${ }^{8}$ prinklers which had been subjected to time pressure, and in some instances to corrosive vapors. The result of this work $1_{8 t}$:
fast. That time and pressure has not affected the strength and years. point of the solder during an experience of twelve 2nd. Portions of sprinklers where corrosion might interfere
with prompt action should be protected, preferably by heavy mineral oil.
3rd. The distribution of water between three and thirty-six pounds' pressure is such that water is directed upon a smooth ceiling and upon each square foot of floor, with all of the sprinklers used in these experiments.
4 th. The concentration of water at the beginning of a fire is greater than by any other form of inside apparatus.

5th. Where tanks are used for a first supply for spriuklers, the bottom of the tank ought not to be less than ten feet above the sprinklers.
6th. As a matter of practical application, sprinklers have worked at 141 mill fires in seven years without any known instance of their failure.
7th. The result of the experience in respect to automatic sprinklers demonstrate that their efficiency is not liable to become impaired by time, and prove the good judgement of those underwriters who advocated their introduction as a safeguard against loss,

8th. It is essential that valves be so arranged that the proper persons can readily know that a full-water pressure is upon the sprinklers. Valves with travelling stems are preferable on this account. Valves with stationary stems can be fitted to show their position by winding around the valve stem a line with a weighted tag at the end. When the valve is open or shut, the tag will hang in a correspon ling extreme position of the line. Left-hand valves should not be used as sprinklers. It is well to secure the ralves open with a riveted strap; if it is necessarry to shut the valves on account of mishap, anybody can cut it, but do not use a lock and chain, as the key will in the nature of things be lost, and the valve spindle bent in the efforts to sunder the chain.

One building fully equipped with automatic sprinklers has been destroyed. The sprinklers were inoperative because the valves in the feed-pipes were shat. This contingency of a want of water-supply or pressure does not militate against the sprinklers.

The facts upon which these conclusions are based are herewith submitted. No single characteristic defines the merit of a sprinkler ; but, after consideration of all the facts, each one can assign due weight to the various items whith constitute desirable elements in a sprinkler, and forms opinions which are, to a certain extent, applicable in each instance. It is easier to offer a criticism than to make a sprinkler which will resist the shocks of water hamuer, and the broom of the small boy; or to devise a sprinkler whose mechanical operation will not be disabled by corrosion or sediment, and which will be ready for effective work when ever needed after the lapse of many years.

Reports that the Lehigh Valley Railway Company intends using the right of way of the Sea carif and Western Railroid Comp any, from Ashland to Pittsburgh, or building au indupenuent line betwe n these points, is emphatically denied by the Lehinh Valley railroad officiais. They state they are entirely saisisfed with the preseut traffic arrangement in that quarter.

SAFEIY CATCH FOR ELEVATORS.

From opposite sides of the cage fluor rise two standards, whose upper ends are united by a beam. To each standard near its upper end is secured a cruss beam, at the ends of which are vertical rods which have their lower ends attached to the corsers of the floor. The standards have furked clips at the top and bottom, which embrace the two side guide beams in the elevator sliaft. Hung on the ends of the cross beams are stirrup rods, on which rest the free euds of sheet iron tops, which are hinged on rods connecting the upper end 4 of the standards. Resting upon a rubber spring secured to the lower

AMERICAN PERMANENT WAY.

(See page 258.)

end of the hoisting cable is a V-shaped inverted hanger, upon the end of whieh are pivoted the ends of a bar carrying a beam. Between the ends of the beam and the bar are held clips which embrace the guide beams, and which are formed with ontwardly projecting lags. Chains are attached to clips upon the ends of this beam and to the upper ends of the corner rods. Passing through apertures in this beam are rods secured to the beam uniting the tops of the two standards; upon the upper ends of the rods are held elliptic springs. On each end of the floor a lever is pivoted, at each side of the standard, to the outer ends of which are pivoted rods whose upper ends are joined to the clips. To the inner ends of the levers are pivoted rods which

GILES' SAFETY CATGH FOR ELEVATORS.
pases through holes in wedge shaped blocks having transverse Beeth formed in the faces towards the sides of the guide beams. Blocks are secured to the ends of the floor in such a manner blocks. blocks.
It will be seen that the cage is suspended from the spring rods, the springs being compressed. The beam carrying the springs kpeeps the outer end of the levers raised, and the blocks are beld a short distance from the guide beams. When the farcing theaks, the springs exert a downward pressure thereby pressing the beam downward, and through the rods and levers pressing the blocks against the sides of the guide beams, firmly locking the car in place.

RATCHET TOOL HANDLE.-(Ex.)

Pig. 1 is a sectional side elevation, and Fig. 2 a sectional Plan riew of a ratchet tool handle recently patented by Mr. bar of ${ }^{\text {Cian }}$ Hermann, of Bristol, R.I. The handle is a straight bar of suitable length formed with a recess in which is seated the thet sleeve having an angular aperture for passing upon ends, tool shank. The handle is bored length wise through both enderve, and in one held is a sliding pawl that engages the ratchet being. A spiral spring acts to move the pawl, the movement thang limited by a cross pin through the outer end of the dog, turningers a groove in the handle to prevent the pawl from ringing accidentally. The ratchet is held in the recess by a ring plate fitted to the under side of the handle in a manner to Now removal. The hole in the opposite end of the handle

HERMANN'S RATCHET TOOL HANDLE.
permits the insertion of the dog, and can be used to receive a bar and to give greater leverage.
This handle can be readily applied to bits, screw drivers, and other tools, and by drawing back the pawl and giving it a half turn the ratchet mechanism is changed from right to left, so that the handlo can be used to withdraw a boring tool or back out a screw.

AN IMPROVHD CLOCE FRAME.-(Sc. Am.)

The invention herewith illustrated provides for the ready removal of the main spring or springs and main wheels of a clock without disturbing the rest of the movement, or taking it apart in case of breakage, or for necessary repair, and so they may be quickly and easily replaced. The front plate of the frame A, Fig. 1, is made with a pecaliar slotted construction for a screw boss or front bearing for the arbor of the main wheel, as shown at G, the form of these detachable screw bosses being

as represented by F, Fig. 4. One main spring, C, and wheel, D, are shown opposite, fixed in place in a similar bearing. E represents the pillar or bolt of the main frame, to which the main spring is attached, and this pillar has at its rear end a screw thread adapted to screw into the back plate of the movement B, as shown in Fig. 2, although the rear bosses may be permanent attachments, as in Fig. 3.
This invention has been patented by Mr. Hendrik Wykhuysen, of Holland, Mich.

THE CAUSES AND REMEDIES OF CORROSION IN MA-

 RINE BOILERS.*Marine engineers are all striving in various ways to attain increased economy of tuel in steamers. Among other means of doing so, triple.fxpansion engines of high initial pressure are being introduced, which appear to be gaining much favor, and will no doubt in time supersede the ordinary two.cylinder type. The increased pressure of steam evidently renders it necessary to be still nore guarded than hitherto as to the deterioration of boilers. Steel boilers are now in very general use, and there can be no doubt as to their efficiency; but the writer's experience is that they are equally liable with iron boilers to corrosive influences. On careful scrutiny he has found in steel plates severe corrosions concealed by a very slight scale, upon the removal of which the plate bas proved to be covered with a black substance, probably a black oxide of iron. In many cases a casual inspection may fail to detect this. Internal corrosion is well known to be most erratic in its artion; it attacks the metal in different parts of a boiler, in different ways, and from various causes. The principal sources of corrosion, however, may be discussed under the two hfads of defective design and defective management; which is equivalent to saying that an ordinary marine boiler will hardly be subject to corrosion at all, if well designed and well managed.

Design.-The most frequent fault of design which bears upon corrosion is the want of sufficient space for allowing a thorough examination to be made of every part of a boiler. The tubes are often placed so far out in the wings that it is impossible to get down to look at the sides of the furnaces, or so close to the furnace crowns that there is no room to get over these. It would be preferable to allow at least nine inches between each furnace crown and the bottom row of tubes, especially as this row is not useful as heating surface when placed so close down to the crown. The manholes are often inconveniently placed and made too small, which always affords an excuse for a want of proper attention on the part of the men in charge. Manholes should always be fitted in the wings if the size of boiler will allow. There can be no doubt that the best way to prolong the life of a boiler is to watch it carefully and constantly, so as to note the commencement of deterioration and take steps to check it. In any part which cannot be seen, it is impossible to know what is going on. Another fault of design, which tasily escapes notice until too late, is the pitching of the steam-space stays, so that one or pethaps several of them come over a space, instead of over a tube, thus rendering the effective use of the scaling tool very difficult, or even impossible in that particular vertical space. With the ohject of securing the conventional 20 :quare feet of hearing surface per horse-power, the tubes are sometimes too closely pitched, which causes bad circulation, besides rendering the spaces liable to become soon choked with scale. The tubes should never be less than $1 \frac{1}{4}$ inch apart, both vertically and horizontally.

Management. - The first point to be looked to in the management of a boiler is the circulation. In an ordinary multibular marine boiler the circulation takes place by the water ascending from the furnace crowns, and from the sides, backs, and tronts of the combustion chambers, and descending at the wings ; the tubes do of course somewhat obstruct the upward current. There can be no doubt that the coolest places in the boiler are those where the circulation is most delective, as is nalurally the case below the level of the fire-bars. The water in this part of the boiler always contains the greatest percentage of solid matter, and here the greatest deterioration may, therefore, be expected to be found. Double-ended boilers are not only suliject to the same corrosive action as singleended ones, but being longer they are also more prone to suffer from racking strains, due to the difference of temperature between their upper and lower parts. One method of reducing this difference as far as possible, is to fit the internal feed-pipe so that it is led along on a level with the upper tubes, so as first to waim the water inside it, and is thence carried down so as to discharge the warmed water in a horizontal direction at the hottom of the boiler. The scum pipe should be fitted with a pan, shiped like on inverted saucer, and placed just above the level of the water for the scum to collect under it; and it should always be blown off upon raising steam, and also
[A paper read at the Cardiff Meeting of the Institute of Mechanical Engineers, of London, August, 1884, by Mr. J. Harry Hallett, Cardiff.]
ahout once a day when under weigh. The blow-off cock should pither be attnched at the bottom of the hoiler, or else an internal pipe should be fitted to it, reaching down to the very bottom. Salt is not drposit d until the density of the water exceeds $4-32$ onds by the salinometer, that is, until thrre is no mor pounds of salt in 32 pounds of water; beyoni this pro* portion the deposition of salt then begins upon the furnace crowns, etc. It is recommended that the opportunities occurring from time to time by the engines being stopped should be taken advantage of for pumping up the boiler to the top of the gauge glass, and then bluwing it down to the bottom of the glass. This, repeated about twice or thrice on each occasion, will work wonders. The great usefulness of this plan arises from the fact that while the engines are stopped there is little or no steam being made, and therefore no solid matter is being deposited from the water; so that the extra feed-water pumped in at that time does much more to freshen the boiler than it would if the engines were at work. When in charge of the engines of a steamer on a voyage from England to Rangoon, calling at several ports on the way, and thence to Venice, the writer kept water in the boilers continuously during the whole round, that is to say the boilers were never entirely run out and refilled, but were blown down from time to time as above described. They were under steam about seventy-two days and upon being opened out at the end of that time had only ${ }^{2}$ slight scale upon them of uniform thickness, and no indication of pitting or corrosion.

The mode of treatment adopted by the writer for new boilers is to have them well washed out before filling, then to run them up, and when they are filled with water up to the normal height, to throw into each through the top manhole about at bucketful of common soda. When steam is raised to about 30 pounds per square inch, blow out a little through the scum cock. Before adding any more water, start the feed donkey, and let it deliver for some time over the side of the ship, so as to get rid of any dirt, etc., in the pump; this is a very useful precaution to ohserve whenever the feed donkey is employed. After starting the main engines, let them run at first with the feed-water overflowing from the hot-well into the bilges; this will clear the condenser. When under weigh, it is advisable to nse the blow-down cocks sparingly. The appearance of the water in the gange-glass shows at a glance the state of the water in the boiler; if the glass is at all dirty inside, that is proof positive of the water not being clean enough ; and this can be cured by the use of scum cock. In a double-ended boiler a scum pipe should be fitted at each end. The scun pipes are sometimes so fitted that their position can be altered to suit the trim of the ship, which is a point of far more im^{-} portance than is generally imagined. After a ruu, when steam is finished with, the water should be blown out from the bottom, and the boilers then kept thoroughly dry. B fore red filling they should be carefully swept down inside, and washed out.

There is no doubt that one of the most active causes of deterioration in boilers is the want of proper care in their treatment. Casts have come under the author's notice of bollers being blown down as far only as the level of the bottom manholes, and r filled, without care being taken to draw the water out of the bottoms. This process having been frequently repeated, the waters at the bottoms became so impregnated that the heads of the rivets and the lower ha f of the compensating tings round the manholes were corroded away, while the other $\underline{p}^{a r}$ of the boiler were in good condition. Many good boilers aro ruined through careless management and the makers arb wrongly charged with allowing their work to come from the s op not properly finished. Another example, out of numeroul cases met with, is that of a pair of hoilers which were fitted some little time ago with hydro-kineters, or internal steam je nozzles for stimulatiag the circulation of the water in the cooler spaces below the surface fiues. Upon a receut examius tion the valves of these appliances were found to be hard and raising steam too quickly, and blowing out under too grest pressure, which cannot be too strongly condemned. Corrosion in the upper parts of the bonler is principally caused by the ln° troduction of oil, tallow, and other greasy substances from the engines. In all the steamers with which the writer is con nected he has discarded the use of all onl or other lubricant in the cylinders, with the most satisfactory results.

Various remedits have been suggested for preventing corro ${ }_{Z i n c}^{\circ}$ sion : among other, air extractors and circulating tubes. Zin has been tried, both cast aud rolled, and some engineers report favouiably on its use ; but to make it effective, very largo

Abstract

quantities must be u.ed, as it so quickly oxidises, and thus loses its protective qualities. The electrogen of Mr. Hannay's invention, which is rapidly eaining favor, is a vely simple it, is appliance, and, as far as the writer has experimented with it, is very effective. The principle upon which it works is the of a ball "p of a small ualvanic bat'ery in the boiler, hy means to make of zinc cast upon a copper bar, and then hammerel, end of th more impervious to the action of water; ou each end of the copper bar a wire is soldered, and the two wires are metallic metallic contact. Boilers which had shown a tendency to corrosion looked quite healthy in a very short time after these troubled wad been fitted to tnem. Marine boilers are not boobled with much external corrosion, especially modern boilers, because much more care is now taken in fitting them into the perly the ships than was formerly the case. They are now prothe ship coated, and are not fitted too close down the bottom of the ship, plenty of room being allowed for access to the seams. Bat to the that all the mischief to be coutended with is not confined dent. Saterside of the boiler is shown by the following incident. Some four and a half years ago the writer was cilled in gineer and boiler that had exploded and kill-d the chief ongineer and fireman. Upon examination it was found that the Uridges had been chamber had been built up close to the backs of the combustion sompers; the dirt, etc. had been allowed to accumulate for 80 me time, and corrosion had been going on upon both sides of the all had plate without being noticed. After the accident, when so much been cleared away, the iron was found to have oxidised thick much that in some parts it was barely $1 \cdot 16 \mathrm{ih}$ of an inch the expresse the explosion. The backs had been so built for to provess purpose of ecoummizing fuel; but experience goes tioned that this is a fallacy, and many cases could be menmakid where similar bridges have been taken out without making any difference in consumption of fuel, +xcept that, if There is, the econ my has been in favor of thrir abseace. Where is uolhing like cleanliness to prolong the life of a boiler. boiler full upsel is to be laid up, a good plan is to puinp the it is again up to the very top of the dome, and keep it so until not in use required. Another method of preserving a boiler all the use is to empty it and clean it thoroughly, then close Stove full of burning doocept one at the bottom, put in a small ly. The of burning coke, and close up the bottom door quickalr as the orject of both these methods is, of course, to exclude as as thoroughly as possible.-THE London "Iron."

Eugurexing totes.

 Iy rijected at Nantes says that the coal dust, which was tornerin France in worthless, is now consumed in immense quantities natural supe in the form of "patent fuel," or coal bricks. The
being being entirely of dust from the yards of the coal merchants
manufficient for the needs of the brick works, the lan me quacturers, particulanly in the Nantes district, import a Talge quanity of coal dust trom Cardiff, Swansea, and Newport.
The proculanlo in the Nantes district, import a wixrd with of manufacture 18 very simple. The coal dust is to a belt, each pitch, and the mixture poured into cupy attached of the size cup containing just enough material for a brick Material througred. The belt in its movement pasyes this Which fuses thgh a chamber where it is exposed to steam, This is pes the two sulis ances into a homogeueous mass.
it i_{8} suhis poured by the descent of the belt into moulds, where ly machicted to an enormous pressure by a hydraulic press or syuare in form set in motion by a steam engiue. The brick is dimensionsm, its thickness beiug about one-third of its other of the Freuch and it weighs five, ten, or fifteen pounds. Certain leat 10 reuch railway companies refuse to accept fuel unless at It I_{s} stated cent. of pitch has been used for its agglomeration. exportation that briquettes are preferable to ordinary coal for their compaction the colonies and to waim climates on account of of ust, also for storage and freedom from simall fragments and of space aud use on tocomotives, both on account of ecouomy of tuel they because firemen can always dettrinine the amount "rick being are employing in a given time, the weight of each "pateut tuex ", is known. The manufaciurers clam that the coal, cit tuel" is more healthy tor domestic u e than orduary Well, citing in support of this theory the declaration ol certain bricks are physicians. At the present day a large num erer of Th circular or longitu dinal openings.
Trees and Plangts as Purifiers.-The beneficial effects
which plants and trees may produce on dwelling-sites and on the air of habitations have heen made the subject of a paper by Dr. James Evans, before th- South Carolina Medical As ociation. The network of fine fibrous rooty of trees and plant, traversing the soil in every direction, feed on the orsanic mat ter which would otherwise undergo decomposition, polluting the soil, air, and surface water. The vegetation also absorbs excess of moisture and drains the soil. This moisture is afterwards exhaled from the leaves, and there is no doubt that plants also exhale, with the moisture, some of their active and peculiar principles. The scent of mint and thyme is due to menthol and thymol, antiseptics of the highest value, and it is not improbable that their exhalations have the same property. The eucalyptis is remarkable as a prophylactic against malaria. Its leaves immersed in hot water are also said to be an efficient disintectant in the sick room. By virtue of their power to generate ozone and to split up carbonic acid, absorbing the carbon and setting free the oxygen, plants remedy to some extint the evils of bad ventilation. In Pasteur's virusculture experiments he found that, when they were condncted under a diminished supply of oxygen, the germs retained their primitive virulence, but, on the contrarg, when they had access to oxyyen the virus became weaker. It has been known for a long time, that marsh missm is intercepted by a forest, and that persons living in a locality so screened are exempt from attacks of malarial fever. The explanation of this is probably to be found in this discovery of Pasteur. When a cloud of malarial germs are wafted from a marsh to the neighboring forest, they encounter a continuous stream of oxygen pouring forth from every leaf, attenuating the virus and rendering it innocnous.-Sanitary Engineer.

Setting Water Wheels.-In preparing to set wheels first excavate wheal-pits (if there be none, or not of sufficient depth), put down mud-sills and shut then over with two inch plank (unless there be a rock bottom). These pits must be from two to five feet in depth, according to size of water wheel. It should always be borne in mind that too free a discharge can not be made. Wheels should always be set so that the draft tube or cylinder will set at least two inches in tail water when standing. The tail-race as well as the wheel-pit, should be both wide and deep, and, if possible, the level of bottom of wheel pit should be carried on the whole length of the tail race to th, stream, which is easily done when the race is short. When the desired depth can not be given the whole length of the tail race, in should be made up in width, and in this case the bottom of tail race should slope gently to bottom of the wheel pit, in order to avoid an abrupt opposing surface. There should be, if possible, two feet in depth of dead water in the tail race when the wher 1 is not runuing, in order to avoid the raising of the water in the tail race and conseguent loss of head. In placing the wheel, great care must be taken to sue that the wheel sets perfeotly level. No fastening is required to keep the wheel in position, as i ts own weight and the prossure of the water will hold it in water.
Marvellous Engineering -The London Inner Circle Railroad is a marveious fuat of engineering skill. It runs throughout its entire distance under the busiest centre of the large t city in the world, and the operations attending the excavation and construction have proceeled without injury to or interruption of business or traffic. Quicksands havs had to be passed thr sugh, beds of old rivers spinned, lof y warehouses aud massive buildiugs securod while their fouadations have been undermined, and an iutricate network of gas and water pipes sustained until vupports had been applied to them from below. Alded to this the six main sewers had several times to be reconstructed. Diy and night the work has been carried on for 18 months, and now the engineers are able to announce that their tunuel is complet-. Tae laying of the rails and the building of the stations are the only portions of the immense work that remain to be done, and in a very hort time trains wili be passing over the whole of this wonderful subterranean road.

Polish for pine wood. - A wash of one part nitric acid in ten parts of water will impart a stain resembling raahogany to pine wood that does not contain much resin. Wh $\rightarrow \mathrm{n}$ the wood is thoroughly dry shellac rarnish will impart a fine polish to the surtace. A glaze of carmine or lake will produce a rosewood finish. A turpentine extract of alkan-t root produces a beautiful stain which admits of French polishing. Asphaltum thinned with turpentine makes an excellent mahogany colour on new wood.

THE MOVEMENTS OF THE EARTH²

VI.

WE have now to consider some of the results of these Movements of the Earth-first round its own axis, its rotation; then round the sun, its revolution-which we have been considering, resalts to which of course a general interest attaches, and which there will be no difficulty in showing are of very great importance to us. Occasion was taken to point out that the different appearance presented by the sun and the stars was simply due to the fact that the sun was very near to us whilst the stars were very distant, the one, a sun which happens to be near to us, the others, also suns, but happening to be very far removed from us. Now suppose we have a globe in which we have an electric light, to represent the sun, and a little globe to represent the earth, then it will be obvious that that part of the earth which is turned towards the lamp will be bathed in light, while that half which is turned from it will be in darkness, being, so to speak; only under the light of the distant stars. This shows us the reason for that great difference which we call day and night, and we can quite understand how it is that we get the apparent rise of the sun which occurs when the part of the globe on which we live is carried from the darkness into the light, and sunset which of course occurs when the globe is being carried by its rotation from the light into the darkness. This phenomenon of day and night is thus one of the most obwious results of the rotatory movement of the earth, and one which might have been dismissed in two words had we so chosen, but we will dwell
earth and star as it did at 1 , for in consequence of the earth's revolution round the sun we shall get a gradually increasing angle as the earth in its orbital course gets farther and farther from its initial position at I. Now it is obvious if we are going to have our time regulated by the sun instead of by the starsand that is what we must do for the purposes of civil life-we shall have to arrange our clock so that when we pass from 1 to ${ }^{2}$ it must, if it showed 12 o'clock when the sun was due south in the former position, show 12 o'clock also when the sun is due south in the latter position. If this be so, and we have this angle made by the line joining sun and earth and star, we shalit have to make our sun-clock go more slowly than our sidereal clock, for the reason that the sidereal clock will have gone round once in less time than the earth will have got round to the same place with regard to the sun. But if we choose, and we do choose, to say that we will have twenty-four hours from suln southing to sun-southing, then these twenty-four hours and necessarily also their minutes and seconds, will be longer than the hours, minutes, and seconds of sidereal time. Let us take another illustration. Consider the case of the earth in three different positions, represented by three globes round a central lamp. Then suppose that in each of these globes a wire is pul to represent the direction in which the transit instrument points at Greenwich when the same star is observed at three consecutive intervals of twenty-four hours of sidereal time. These three wires should therefore be placed parallel to each other. Now let us take the electric lamp to represent the sun, then we shall find that, when the transit instrument on each of the earths

49.- Aiagram showing how the difference between the lengths of the sidereal and mean day arises.
upon it for a few moments, because this fundamental difference between day and night furnishes us with a reason why we should discard that sidereal time to which up to the present reference has alone been made.
Fig. 49 will show how it is that under the circumstances in which we thus find ourselves, a new kind of time must take the place of sidereal time. In this diagrám we have the earth represented at two positions in its orbit, I and 2. It travels in this orbit in the direction of the arrows, rotating on its axis the while in the direction also indicated by arrows. Now let us consider the start-point 1 , and suppose that when the earth occupies this position-d particular star is on the meridian at midnight. The earth it will be remembered rotates in twenty-four sidereal houvs; it will therefore take twelve hours to turn half round, sathat if we consider the sun to be directly opposite the star which is south at midnight it is obvious that they are twelve hours apart. Now consider the earth at position 2. Then remembering this fundamental fect, that the distance of the stars is so enormous that 2 string. stretched from the observer to the star at one point of the earth's orbit would be practically parallel to a string stretched to the same star from any other part of the orby; it it gbvious that the star will have the same right ascension in both positions of the earth, and the lipe pointing to the star will be practically in the same direction. But the sun will no longer lie along the prolongation of the line joining

[^1]

Fig. go-Diagram showing how the sun's apparent motion along the inclined lines representing the ecliptic in the drrection indicated by the arrorth heads is represented by a soaaller amouat when referred to the and ang equator (the horizontal lines in the figure) at the spring (γ) and $(\bumpeq$) equinoxes.
is brought round to point at the sun, the three wires whirh represent the instruments will not be parallel to each other dily at some angle. At first sight it might seem that we could easin
get a sun-time to replace the star-time, but unfortunately whe get a sun-time to replace the star-time, but unfortunately casesi we go a little deeper into it we find, as we often do in other cad ; that it is not quite so easy-and for two reasons. We found, ${ }^{\text {the }}$ will be remembered, when we came t α consider the form of what earth's orbit, that it was not quite circular, that it was in fact whaty is called an ellipse, and that the radius rector, i.e. the imagroung line joining the centres of the sun and earth did not sweep throthat, equal arcs in equal times but through equal areas, so hours if we want to invent a clock which will show twenty-four huing from the time of sun-southing ope day to the time of sun-soutly for the next, that clock will require to be regulated differently y bit every day in the year, because the greater or less part of its ongh moved over by the earth will cause the greater or less between the lines joining sun, earth, and star.
That I hope is clear. Thus then there is good raason will this arrangement of having a sun-time from noon to noon day not work. We should have to regulate our clocks for ever there in the year, or rather for every two opposite days. But tact that another matter. We are now in full presence of the \bar{e} fact ${ }^{\text {a }}$ 昜 0 the equator of the earth is inclined at an angle of about ${ }^{3}$ us to the plane of the ecliptic. Fig. 50 will perhaps enable lines understand this matter more easily. Let the horizontal the
represent the plane of the equator and the inclined lines
plane of the ecliptic. Now our clock and all measurements of alme must depend upon the earth's rotation, the plane of which always remains parallel to itself, and we have seen that our start-point for geocentric and heliocentric longitude depended passed the fact that at a certain point in its revolution the earth passed through a node, and that the node at which the sun With its apparent motion crossed the equator northward was called the ascending node. In the diagram this is represented by r in the upper figure, and the descending node is indicated interv in the lower figure. It will be seen that if we have equal intervals along the ecliptic the motion along the equator is represented by bases of successive triangles, of which the hypothenuses lie along the ecliptic. Now the hypothenuse must be

Fig. 3I.-Diagram showing how the sun's apparent motion along the ecliptic, now parallel with the earth's equator (the central line of the figure)at the summer ($\$$) and winter (Vo $^{\circ}$) solstices, is represented by equal intervals along the equator.
greater than the base, so that we have at the ascending node be motion of a body along the ecliptic represented only by the hypoth a triangle of which the motion itself represents the hypothenuse; and the same thing happens in the opposite manner shown the descending node; whereas if we take the other positions be wn in Fig. 51, for a short time at all events the motion will an equallel, and motion along the ecliptic will be represented by Thual amount along the equator.
These then are the difficulties we have to face when we come
the sum oun-time, firsty the unequal velocity of the earth cound
he sun ; and secondly, those variations which are brought abou t
by the fact that the two motions of the earth-its axial rotation and yearly revolution-take place in different planes. How are these difficulties got over? They are got over by pretending a sun, as a child would say. Astronomers pretend that there is a sun moving along the equator, or, in other words, they pretend that the earth's movement of revolution takes place in the same plane as its movement of rotation. It is further imagined that this imaginary sun travels at precisely that rate which it would if the average of all its rates along the ecliptic during a year were taken, so that we get something like this (see Fig. 52); first of all we have the curve B B B B, which shows the variation which would take place providing we only had to deal with the obliquity of the ecliptic. Where that curve crosses the horizontal line, we get at those moments (if we disregard the elliptic motion) the same time shown by the mean sun as we should get if the true sun had been taken; it will be seen this occurs four times during the year-on March 20, June 21, September 23, and December 22. Then there is another curve, c c C c, which represents another relation between the mean sun and the true sun Providing that the two planes were coincident, and that the movement of the earth under these conditions were exactly the same as under the present conditions, namely, that she moved in an ellipse and that the radius vector swept over equal areas in equal times, then we should have the true and mean sun coincident on December 3I and July 1 only. Then the algebraic mean of these two curves, B B B B and C C C C, is taken, and we get as a result the lower curve DDD D, which is a compound of the two other curves, and as the result it will be seen that where we got the curve c. giving us a difference of nearly five minutes, and the curve B , giving a difference of about nine minutes in the same direction, we have a very great departure between the motions of the real and mean suns. Above and below the datum line, which is marked zero, we have 5,10 , and 15 , which represent the difference in minutes at which the southings of our real and fictitious suns really take place. Early in the month of February we have a difference of very nearly fifteen minutes between the two suns, and it is at this time of the year of course that the sun dial is most in error. At other points where the effect of curve B is to cause a great difference, the effect of curve C will be to minimise that difference, and so in the compound curve D the difference is very slight. About the middle of June we get them together, then towards the end of July we get another separation, and about November I we come

Fic. 52.—Diagran 20

obliquity of the ocliptic, and curve cccc representing the difference between the mean and true suns.
this wother difference even greater than that in February. In the "way a correction has been introduced, which is known as true sun, equation of time," and this added to the motion of the together, or added to that of our imaginary sun, brings them possible, and by this means the mean sun is kept as nearly as year. Another average position of the true sun throughout the some of the condiagram (Fig. 53) will enable us to understand ${ }^{P}$ represent the thiderations which have brought this about. Let PeA, round the position of the sun in one of the foci of the ellipse,
white when the earth is supposed to while round which the earth is supposed to be travelling Now - We have the real radius vector going from P to e, with its
unequal motion along the orbit, we have a fictitious radius vector going with absolute constancy along the circle. We get what is called the true anomaly in the angle $\mathrm{P} F e$, and the mean anomaly in $\mathbf{P F} e^{\prime}$, and the difference $<\mathbf{F} e^{\prime}$ is called the equation of the centre. This equation helps us to determine those curves to which reference has been made, and the chief objectin calling attention ta this diagram is to explain the meaning of the term anomalistic year, which it will be necessary to introduce presently. It has already been said that it is imperative, if we are to gain any advantage from $i t$, that real sun-time and apparent sun-time should never be widely separated, because if so we might have
contented ourselves simply with sidereal time, which would have at least the ad cantage of being constant, so that it is most necessary if any benefit is to be derived from this mean sun of ours that it should not differ very much from the true sun. The longitude of our mean sun is therefore made equal to the mean longitude of the true sun. This having been premised, the terms "mean time" and "mean noon" will now be clear without any explanation. "Greenwich mean time" of course means time referred to the meridian of Greenwich.

We thus finally discard our sidereal time, and replace it by mean solar time so arranged that the maximum departure of this from true solar time shall be fifieen minutes in the month of February and fifteen minutes at the beginning of November. We have seen that the sidereal day is shorter than a solar day, and that consequently the hours, minates, aud seconds which make up the sidereal day must be shorter than those which form the solar day. The relation between the seconds of solar and sidereal time may be thus shown.

One sidereal second $=\cdot 9973$ of a mean-time second.
One mean-time second $=1 \cdot 0027$ of a sidereal second.
We have now got the results of the earth's revolution combined with its rotation, so far as day and night, considered in their more general aspects, are concerned; but we have not done with day and night yet. When we were considering the question of the inclination of the earth's axis, we went so far as to say that it was inclined $23 \frac{1}{2}^{\circ}$ to the plane of the ecliptic, and that it always remained practically parallel to itself. Now suppose we arrange four globes in a circle, to represent the earth in different parts of its orbit, and we have in the centre an electric lamp to represent the sun. Then, if the earth's axis is thus inclined to its path round the sun, and always remains parallel to itself, it will be seen that at one position the north pole will be all in the light of the electric lamp (which represents the sun) during the entire revolution of the earth on its axis. At the point opposite this the reverse happens, for during the entire rotation of the earth the north pole will be in the dark. At the two remaining points the pole will be just on the boundary of light and darkness. We need not consider the case of the south pole ; there exactly the reverse will hap. pen to what occurs at the north pole-when the north pole is always in the light, the south pole will be always in the dark and vice versa, as may be seen by looking at the globes. Now it should be clear that the fact of the earth's axis being inclin. ed to its path causes different lengths of day and night throughout the year. It is simply that, and nothing else. At the poles, which, as we have seen, are sometimes entirely in the light and sometimes altogether in the dark, there will be six months of this light and six wonths of darkness. At the equator it will be readily understood the days and nights will be of twelve hours' duration at whatever part of her orbit the earth may be. If you take those positions of the earth where the boundary of light and darkness passes through both the poles, it is perfectly clear that the days and nights are of equal length all over the world, and a line drawn from those points through the sun is therefore called the "line of equinoxes." These points are respectively at the ascending and decending nodes of the orbit. The two other points where the North Pole is most in the light or in the dark during the whole of a rotation are known as the solstices, because it is at these times that the sun for some days appears to attain the same height at noon.

To sum up then, it will be seen that the earth's rotation and and the earth's revolution, in conjunction with the important fact of the non-coincidence of the planes in which they take place, give us not only our dags and our nights, but cause the year. We have in this inclination of these plaues to each other, too, the cause of the seasons, because when the northern bemisphere of the earth has been for a long time in that position with the sun longest above the horizon, the temperature will be very different to what it is when the earth is in the other position. In tho former position we have summer in the northern hemisphere, in the latter winter. The cuoditions of life at two such points in the orbit will be vastly different. At the equator, where the days and nights are always of equal length, the course of nature will be very uniform. As the equator is receded from and the poles are approached, this uniformity begins to disappear until, as has been said, at the pole six months of perpetual daylight alternate with six months when there is no sun.

But even now when we have got our day and our year, we have not got all.

It must next be pointed out that, whilst the axis of the earth may be said to remain practically parallel to itself, yet that it does not absolutely remain so.

As a result of this and of the earth's mevementround the sun, we get a very important outcome. Although the consideration of the dimensions of the earth has scarcely come within our subject, yet the earth's rotation may be used to bring in tho dimensions of the body on which we dwell in just the same way as the velocity of light was used to refer to the dimensions of its orbit.

We need not, however, consider the question in detail, hut e may state that the earth is a globe of something like 8000 miles in diameter, the equatorial diameter being longer than miles in diameter, the equatorial diameter being longer so that we have, as it were, round the equator a ring of matter Now thirteen miles thick and eight thousand in diameter this ring of matter, this equatorial protuberance, is presented to the sun at an angle to the line joining the centres of the sul and earth; as shown in Fig. 54, and the sun's attraction upo it can be resolved into two forces, one parallel to the line jointas the centres of the sun and earth, and the other at right angles this direction; and if we consider what will be the effect of thit latter force upon such a ring, we can easily understand that in will result in an alteration of the inclination of the ring. the an arrangement for showing the effect of this attraction, ${ }_{\text {a }}$ ring of matter on which the sun acts may be represented by ron ring attached to a spinning top, and the resolved portinet of the sun's pull may be imitated by the attraction of a mag the held in a nearly vertical position. As the ring rotites, attraction of the magnet draws the ring out of the horizonlace and the poles revolves in a circle. This is what takes plass with the earth's axis ; hence it is not true to say that it al remains parallel to itself. This revolution is always slow of going on, being completed in a period of about 25,000 is our years. In consequence of this motion, what happeld the this : the line of equinoxes which is at right angles to thag line of solstices is constantly changing its position slon the earth's orbit, producing what is called the processi the equinoxes. We have to consider, therefore, not merel ${ }^{\text {ne }}$ the sideral year, the time between which the earth is at and point with reference to the sun and a star, and the time ${ }^{\text {a }} \mathrm{c}^{2} \mathrm{D}$ it is at that same point again; we have not merely to line sider the fact that this line of solstices, with its conjoined ape of equinoxes, varies with regard to what is called the ap line, that is, the line joining the perihelion and aphelion poin from of the orbit, or the axis-major of the ellipe-but we get jik θ this another year which is called the tropical year, which, yest our mean time, is the one most used, because it brings the mesa into relation with our seasons. Now that we have got our pro time and know exactly how and why we have got it, we may ${ }^{\text {mat }}{ }^{0}$ press the sideral year in mean time, and say that it consist 365.256 solar days. The tropical year-the time which elap between two successive passages through the vernal equinos is shorter than the sidureal one, owing to the procession the orbit of the equinoctial points, and consist of 365.242 mand solar days, and the difference between the lengths of this at the sideral year will of course give the annual amond precession which takes place. Anomalistic year is the es iv applied to the period which elapses between two suce obit; passages through the perihelion or aphelion points of the or ${ }^{\text {bis }}$ and as these poiuts have a forward motion along the orbit so year is longer than the sidereal one, being $365 \cdot 259 \mathrm{me}^{\mathrm{an}}$ days.

We may give the exact lengths of these years in days, hours, minutes, and seconds as follows :-

Mean solar time.
d. h. m. s.

Mean sidereal year.$\ldots .365 \quad 6 \quad 9 \quad 9.6$
$\begin{array}{lllllll}\text { Mean tropical year. } & 365 & 5 & 48 & 46.0544^{40}\end{array}$
$\begin{array}{llllll}\text { Mean anomalistic year } & \ldots . & 365 & 6 & 13 & 49.3\end{array}$
The Movements of the Earth are so important to $u s$ interesting in themselves, that it is not possible in six to exhaust all that may be sail about them or lear them. I trust however that I have left no point of mportance untouched. The moral of thess lectures is $\mathrm{th}^{\text {m }}$ id astronomy has appealed to physics, and has not appeal 0^{001} vain, for the demonstration of the physical reality of the m ments in question.-Nature.
J. Norman Locticr.

INFLUENCE OF THE EARTH'S ROTATION ON THE

 FLOW OF RIVERS.Mr. G. K. Gilbert contributes a new element to the discus${ }^{\text {rion }}$ of " the sufficiency of terrestrial rotation for the deflection i_{n} of streams, in a paper read to the National Academy of Science ${ }^{\text {in }}$ April, and recently published in the American Journal of rel's , which is presented by Science as follows: Taking Ferrel's measure of the defl-ctive force that comes from the earth's rotation, Mr. Gilbert shows, by a remarkably simple considera-
tion ${ }^{8}$ ream that its value is not so much in throwing the whole ${ }^{8}$ thream against its right bank, as in selecting the swifter and, furf the current and carrying them against the bank; and, further, that this action will have especially well marked ${ }^{\text {development in meandering streams, where it will aid the cut- }}$ ting ting on the meanders of right-hand convexity, and diminish it on those of left-hand convexity. For the Mississippi, the selective tendency thus determined toward the right bank is stated nine per cent. greater than toward the left ; but it is not Preference the valley form has been noticeably affected by this is clearly. On Long Island, however, the form of the valleys gested by controlled by the earth's turning, as was first sug. firmed by Mr. Elias Lewis some years ago, and recently conTh by Mr. J. C. Russell.
by proprticle by Mr. Gilbert advances the question not only by properly applying the law to rivers flowiog in any direction,
but yet further by giving it a more delicate analysis than it has care the ived, with the conclusion that in a certain favorable bidene form of a valley may be decidedly influenced by this geographersol. While the result is of interest to physical The appers, the method of analysis has a wider importance. often application of mathematics to terrestrial physics has too or idealize fruitless from dealing with problems in a simplified tious of ${ }^{84} 4 \mathrm{p}$ of of natural conditions. This was notably the case with the 8/eculation demonstration obtained by Hopkins in his geological ralue of Vons. It is therefore gratifying to tind that increased tially of Von Baer's law, now found by Gilbert, comes es senideal from a close consideration of the actual rather than of the tinn of mations of river flow. It is an advance in the applica-
The mathematics as well as in the explanation of facts.
the Velateral tendency of rivers was first noticed in the case of bemiaphere, which uudercuts its right bank, as it should in this the chare. Other examples are found in North C.rolina, in Where the of the streams flowing eastward to the coast, Island, and southern banks are the steeper; again on Long Pallegs of southe plains of New Zealand. But the radical ${ }^{2 n} \mathrm{a}_{\mathrm{y}}$ ef of theouth-western France afford better illustrationsthan the great these, inasmuch as their forms are accurately shown on about the map of the army engineers. North of the Pyrenees, deposit sprewns of Tarhes and Auch, there is an old sandy delta ${ }^{\text {rgpion }}$ spread out by the rivers from the mountains while this streams fas still under water; and since its elevation, the like the ribed upon it all follow its gentle slopes, diverging Thargio ribs of a fan from the higher centre toward the lower plain. and cutting down their channels into the old delta ${ }^{\text {dated }}$ sands to is nothing here in the flat layers of unconsoliand sands to determine an unsymmetrical form in the valleys; And at they ail show most di, tinctly a gentle slope on the left, the left, and shope on the right; longer lateral branches on mays, and shorter ones on the right; and many of the high. ${ }^{\text {brolden}}$ unstructed parallel to the streams on the as yet unthan uplands, are clearly closer to the streams on their left $r_{0 \text { tation }}$ on their right. All this is a direct effect of the earth's ${ }^{\mathrm{fr}_{0}} \mathrm{It}_{\mathrm{mo}}$ from is customary, in speaking of the deflective force that arises
Dorthe earth's ret Borthern hearth's rutation, to say that it acts to the right in the reason for this is nore, but to the left in the southern. The
force, but in a change in the direction of the arce, but only in at chand in a change in the direction of the
as if our way of looking at it. It is
bemo should lo theni ${ }^{\text {behere }}$ should look at the face of a watch in the northern the on on going to say that the hands turn to the right, and the watch, and to the southern hemisphere, look at the back of berefore suyg say that the hands turn to the lelt. Let us
phere that tne geographers of the southern hemisIpper sid at their winds and storms and streams from the this $_{\text {is }}$ sid $_{0}$, just as they look at their watches; and, although seeing their headse them in the slight inconvenience of stand${ }^{\text {seeing their heads it would give them the moral satisfaction of }}$ 4g that the deflective forces of the earth's rotation, as well - Lands of their watches, "always make for the right."

HALF-HOUR WITH THE FLOWERS USED IN PERFUMERY.*

BY W. A. WRENN.

Allow me to claim your indulgence to deviate slightly from the literd translation of the titl \rightarrow of this paprr, as, in addition to flowers, I have added a short description of some substances used in the manufacture of perfumes and toilet essences, either for the purpose of fixing the odor, such as ambergris, or as is required in some cases t, develop the scent of certain flowers susceptible to stach influances, and to give them preponderance, such as musk ; or, ggain, to make a distinctness of their own, such as that caused by the addition of acid benzoic.
Doubtless some may think such a paper as this rather out of place among pharmaceutical and chemical data. What right has the pharmacist to engage in the compounding of perfunes -why not leave it to the coiffeur or perfumer proper? is a question which has been asked more than once, and opinions have been much diversified. I myself regard the manufacture of perfnmes as a very suit tble adjunct to the varied duties of the pharmacist. A sensitive nose is a very useful appendage to a chemist's physiognomy; and what can be a more crucial test than the continual intercourse with essential oils and their varied aroma to detect the numerous admixtures and sophistications which are of every-day occurrence?

Again, the peculiar odor of a pharmacy, so attractive to feminine whimsicalities, is due in the main to the excess of the odor of the perfumes and essential oils over the more nau. seous aroma of drugs proper; while in the matter of $\boldsymbol{£} \mathrm{s} . \mathrm{d}$. I think a unanimous opinion exists.

With these preliminary remarks I will ask the attention of those who, perhaps, have passed over in recollection the interesting and varied metamorphoses between the time flowers are seen in the fields and their ultimate deposition as concentrated extracts in a toilet bottle.
A half-hour is such a limited space of time to treat such an interesting subject that I have decided to mention only those flowers, fruits, etc., which are more largely used. These are hergamot, cassie, cloves, heliotrope, jasmin, lavender, lemon, mignonette, narcissus, orange, patchouli, pelargonium, rose, rosemary, thyme, tuberose, verbena, and violet; and briefly note ambergris, gum benzoin, musk, orris, tonquin, and vanilloes.
Bergamot, the essential oil obtained from the fruit of Citrus bergamia. It is very similar to the lemon, being golden yellow in colour externally, smooth peel, and pale yellow pulp. The fiowers, however, resemble those of the bitter orange. The tree Citrus bergamia is cultivated in Sicily, and more especially in the neighborhood of Reggio. The oil is obtained br expression, though formerly by the sponge process, from the fruit in a partly unripe state, gathered in the end of the year -November and Decenber. The quantity of oil ubtained is about 3 oz . from 100 fruits. The oil, when newly prepared, deposits a albuminoid substance, and in a month or so a white fat, called "bergiptene" or "bergamot". camphor. The green tint is due to chlorophyll, which, in a very minute quantity, may be coagulated hy heat and separated by filtration, leaving the oil with a brownish tint.

The sp. gr. is abrot .830 to .890 in genuine samples. Hanbury gives .860 to .880 ; some samples gave sp. gr. .858 and .865 . These were found to be adulterated, probally with turpentine and ess. of lemon, the spr. gr. of the former being as low as .823 , and of the latter .832 to .880 . The quantity of oil used in perfumery is very great, and the shipments, which are made principally from Palermo and Messina, are still on the increase.

By mixing togather-

and allowing this to stand for two months, shaking about twice a week, I obtained a fine crop of crystals (sample of which I place before you this evening). They resemble those of terpin hydrate as obtained by Mr. R. H. Parker from oil of turpentine.

Essence of bergamot is a feature in the perfume Ess. Bouquet, said to be a favorite scent of George IV.
Cloves, the flower-buds from the evergreen Caryophyllus
*A Paper read before the Chemists' Assistants' Association.

MOVEMENTS OF THE EARTH.

Fig. 54. -The attraction of the sun on the earth's equatorial protuberance.
aromaticus, are so well known that I will not dwell upon them. Suffice it to say that the oil to be used in componnding perfumes snould always be the finest English drawn, and re-distilled.

The crude oil, and also that known as oil of clove stems, can be detected by the dark color, and by giving a "paon' blue color when shaken up with three times its volume of aicoholic solation of ferric perchluride, and also a deep violet if shaken up with some reduced metallic iron Oil of pimento might be used instead of oil of cloves, and when the laiter is given in a recipe, using half oil of cloves and half pimen:o, a very good blend is the result. I may also mention that I find an addition of 2 per cent. of ammoniated alcohol to all the spice vils resists their volatilization.

Heliotrope. - This well-known perfuwe is often peepared from the flowers of Heliotio, ius Peruviarum, or from the British variety, as one would suppose, considering the poweiful odor these fowers emit ; a combination of vanilla and violet being the most common subsiitute

JASMIN, obtained from (wo species of Jasminum, J. opfecinale and J. Grandiflorum, of the natural order of Jasminaceæ, which also supplies the lilac (Syminga). The jasmin, or jessamine, is a small bush cultivated in the garden aud flower farms of Grasse, to an extent greater than any other flower, al though it is the most difficult to bring to perfection, being very sensitive to changes of temperature and soil. The perfume is greatly increased by the heat of the suu, and a rainy and dull summer between the months of June and October, when the shrub flowers, is as great a disaster to the ('rasse perfumer as a wet harvest is to the English farmer. The essence obtained from jasmin is used as a basis for almost every compound scent, and I always form an idea of the status of the Grasse manufacturer by the quality of his jasmin pomade and essence, for, sunles very carffully prepared, rancidity will quickly take place.

Lavender. -The natural order Labiata; embraces several shrubs which yield very powerful volatile oils used for perfumery and flavoring, and also possessing medicinal properties in the forms of stimulants, carminatives, aromatics, etc There are three distinct qualities of the oil ; two distilled from Lavandula vera-Mitcham, or English, and French, principally from Les Alpes Maritimes; and that from Lavandula spicata-a very inferior sample, called " oil of spike." The first namedthe Mitcham-at the present time, commands a very high price-about as many shillings an oz, as the French oil is
worth per lb. -and there is every prospect of still higher as yar by year, when passing through Mitcham and th joining villages of Wallington, Carshalton, Beddington, don, Cheam, and Sutton, I have noticed fields once lavender and mint cultivation fallen prey to the ever-in ing inroad of the speculating builder. Ten years ago were about 350 acres of lavender; now, I believe, there a 150 acres. It is also grown at Market Deeping and a few 0 places-to what extent I am not prepared to say; and I should certainly consider it would pay any speculator to direct his tention to lavender cultivation.

In England the flowers are collected in July and Angash whe: in fnll bloom, and are generally distilled with the stal 100 lbs . as gathered, the yield being about 20 oz . for every 100 por Take this for granted, and an average crop of 800 lbs. per cultiv gives 160 oz ., or 10 lbs . Now, suppose the increased cus. por tion should bring down the price of English oils to 100 of 50 13. ; this shows a value of $£ 50$ an arre, and at the rate per cent. for working expenses, stilling, rent, etc., I belie some very good return could be made. A friend of mine who ${ }^{8} 0^{d \theta}$ five years ago laid down about a quarter of an acre of got the ground has been fully satisfied by the amount realized bJ sale of the flowers, even from so small a plantation.

The exotic oil is obtained principally from the son France, also from Northern Italy, Sicily, and Algeria. department of Les Alpes Maritimes produces the finest to the ples. The highest hill-slopes grow the nearest approach to Mitcham.
The different qualities exported by the Grasse manufactur sos are almost as numerous as the letters of the alphabet, andivdes distinguished by such terms as essence de lavande calsand lavande du Piedmont, lavande des fleurs mondéss, ito. If éperle, lavande fine, lavande 1 re qualité, 2^{me} qualité, er $\mathrm{g}^{\text {ro }}$ the neighborhood of Avignon I noticed some lavender gality
 the country being low and flat, and the soil poor. Mont holide toux, in the same vicinity, which I traversed in my is tour, grows lavender of very fair quality ; the altitude is 400 feet above sea level.

Lavender oil is used in perfumery largely as lavender combined with orange and rose water, and in essences combined with oil of cloves and benzoic acid.

Essence d'aspic is the distillate of the wild flowery Laverndula spica, and is rarely found free from adulteratio certain quantity of prepared turpentine being added in
ance with the price wished for. Camphor is also added to in veterinary thition. Oil of spike is used in the arts and also climate being practice. It is not produced in Britain, the To being too cold.
Thymme-Another plant of this natural order Labistre is is imported vulgaris, which yields an oil used in perfumery. It Western Ped into this country from France; it grows also in the the Adern Peninsula, Lombardy, and the mountainous shores of English country Greece, and is to be found in almost every The distintry garden for culinary purposes.
September, andion in Southern France is made from June to Whitember, and the two samples of oil of thyme-red and ing back the obtained from the same plant, the redistilling keep. some of the coloring matter, but at the same time destroying ence to the aroma. I should recommend the red oil in preferb_{y} alkanet) thite, and if the color (which is often intensified conaiderably. Rosemary (Rosmarinus offlcinale) may be now added as belieging to the same natural order, growing in the same locali. ties and under similar circumstances. It is also grown in theain, bnd a small quantity of oil is distilled, but, owing to The last amount used, quite a fancy price is the rule.
are used mostly oils-lavande d'aspice, thyme, and rosemaryclading mostly for soap-scenting, their terebinthinate odor ex. OIL of Patchouli, from the plant Pogostemon patchouli, Which is Patonouli, from the plant Pogostemon patchouli,
used in perfn in the Malayan archipelago. The oil is much such in perfunmery, though, owing to circumstances, not to otto an extent as formerly. Chiefly used in conjunction with only should. Owing to its lasting odor a very small quantity $\mathrm{L}_{\text {ILY }}$ or be used in proportion to other ingredients.
Wily of the Valley Convallaries majalis), with its pure
asence and shaped, and delicately-scented flowers, is made into 8reat ase pomade in the Grasse manufactories, and found of pring, Februserfume compounding. The plant Howers in early
fring, February and March being the best months for manu. $\mathrm{D}_{\text {AFFODIL }}$ essence
Which is found in arcissus pseudonarcissus'-Datfy-down-dilly fittle lat perfume. It flowers in Grasse about April, and a little later in England. Whers in Grasse about April, and a
Field Will soon once planted in a garden the cultivatl soon be found greatly in excess of the wishes of the ${ }^{\text {etc., is }}$ SCE Very is also employon.-This oil, so larisely used in flavoring,
consertain in perfumery. Like oil of orange, it is consequent on in its results, owing to changes in composition bat is prepared in the same manner as essence of bergamot, the prepared a variety termed "essence de citron zeste," which the oil to run simply puncturing the oil vessels and allowing This is the best, collecting it in a receiver, and filtering. ersence of lemont article for use in perfumery, as commercial distillates, or lem is generally contaminated with very inferior detected by or with rectified oil of turpentine, which can be Pring heat. Oill $_{\text {of }}$ Orange (Citrus vulgaris, Citrus aurantium, and
bitter bigaradia). -From the fruits are obtained the oils of loted and sweet orange. This perfume is not very axtensively
from perfumery on the perfumery in the shape of oil. The water obtained ported in larers, distilled during the month of May, is imFrom the f e quantities from the south of France.
thal of neroli." The also obtained an essential oil termed thake up a smali." The best test to ascertain its purity is to Thelphite, when quantity with a saturated solution of sodium to sp . gr . is .890 permanent crimson color will be produced. $d_{0} t_{0}$ tor prieties of and the oil is neutral to test-paper. There Oil of Portugal. abil of petit grain.
bigrementioned varientained from the leaves and shonts of the A mis et Portugal." A mixture of oil of or
(a ceas, makes a
(a seanple makes a very orange and oil of neroli, with other es. Four ing prepared from a substitute for essence of ylang ylang manafpection). Oil of permula by myself is on the table for ture of eau de Cologne. of ean de Cologne.

Mignonette (Reseda odorota) is well known and is much esteemed for its fragrance. Flowering in March and April, it is then prepared for use in perfumery. The cold March winds sometimes spoil the crops for the season. Several imitations are in use, and are very similar to the gennine perfume.

Pela rgonium Roseum.-Rose geranium is grown for perfumery in Provence, and there is an Algerian product known as "essence de geranium d'Afric," inferior to that distilled at Grasse. This oil is used to adulterate otto de rose. Owing to the small yield-viz., 1 lb. from 1000 lbs .-it is expensive, and its characteristic odor is greatly esteemed as an addendum to the numerous items in milliflear essence. Ol. geranii E. I. is not to be confounded with pelargonium, but is obtained from several species of the genus Andropogon, and termed "ginger-grass oil."

Rose.-First, the species Rosa Gallica, cultivated in Southern Europe, Asia Minor, and Britain. The petals of this flower are obtained in their most perfect state for druggists' use from Mitcham. The quantity there obtained is very small, and Mitcham rose petals therefore command a high price ; the same remark applies to all English-cultivated rose leaves. The dried Continental leaves are often dyed with aniline, which may be detected by macerating in spirit to which is added a few drops of ammonia. The true state of the leaves can soon be seen.

Rosa Damascena.-From this is obtained the much-prized otto, or attar, of roses, which now rules at a high price. When first incroduced into this country it was subject to duty about 10 s . per oz. ; this was greatly reduced, and in 1880 was taken off altogether.

Otto of roses is imported from Bulgaria and Turkey, principally from the southern side of the Balkan range-from Kizan. lik and Philippopolis-and from Smyrns (Asia Minor). It is also made in India, in the valley of the Ganges, but is never exported thence. There is also a little manufactured in France, but the quality will not bear comparison with Kizanlik. Otto is largety adulterated, as I mentioned previously, with oil of rose geranium (pelargonium), and also with oil of Andropogon schananthus, a grass grown in India, which is exported to Turkey solely for the purpose of adulterating otto.

The best tests for genuiue orto are the degree at which it congeals, which should be 55° Fahr., and the appearance of the mass The crystals, or laminæ, should be shiny, feathery, and nearly transparent. When thick and milky, and more deposited at the bottom of the bottle than at the top, sperma. ceti is present, and perhaps paraffin wax, which latter is hardly so readily detected as spermaceti。

Rose-water is also prepared from Rosa Damascena, together with the essence and pomade, and imported from Grasse, Cannes, and Nismes.

Tubereusk.-Tuberose grows in the neighberhood of Grasse, and is a bulb which requires to be replanted each spring, not being of sufficient hardiness to stand the winter. It blooms from Jaly to October, and is not very extensively cultivated. Being a very delicate perfume, it is prepared by the cold "enfleurage process."

Violet (Viola odorata) is the most esteomed of all perfumes. It is cultivated over a large expanse of country, extending as far west as Avignon; in fact, wherever the olive is grown, being planted chiefly in olive orchards, which protect the planta from the cold winds, to which they are very susceptible. The flowers are gathered in February and March. The crop is often a failure, the result being a considerable increase in the price of the pomade and essence, in addition to bad quality.

Verbena.-That variety which is used in perfumery il Lippia citriodora-lemon-grass plant-and is prepared at Tras vancore and Singapore, in the Straits Settlementa. The oishould be redistilled before use for compounding.

Ambergris.-A very useful adjunct to a toilet essence. When preparing essence of ambergris macerate in hot water, to which is added the same quantity, by weight, of liquor potassæ as the ambergris ; spirit to be added after a day or two, and maceration contiuued for two months before using

Musk.-The same remarks apply here. Always rub down the grain with sand or pamice-stone before using. The addition of one pint of any aimple essence made from pomadojasmin preferred-inoreases the permanence of must. A fow

drops of acetic acid prevents the accumulation of ammoniacal

 aroma.Orris.-Use only the finest Florentine ; exhaust by macera. tion and percolation.
Tonquin and Vanilloes should be both selected from good samples, and care should be taken to remove the fixed oil, which may be done by adding $\frac{1}{2}$ pint of water to each gallon of the essences, when the oil will float on the surface. If not separated when compounded the essences will require a second filtration.

Acid Benzoic.-This I have found a valuable addition to essences which are made from essential oils, and not from pomades. It is needless to add that only the English resublimed and that prepared from gum benzoin should be used.
The preparation of pomades and essences in the south of France has been so ably and minutely described in Piesse's "Art of Perfumery" that I cannot do better than advise you to study the book, yourselves. I may add that the cold "enfleurage process," which is performed by strewing Jayers of flowers over thin layers of fat, the flowers being renewed daily until a good perfume is obtained, is more used than formerly, and it is the desire of manufacturers to export what are termed extra-saturated pomades in place of the wellknown No. 24 strength.

Methyl Chloride has been suggested as a good menstruum to exhaust flowers of their perfumes, and a manufactory on this principle was established at Cannes. I do not know if it has turned out a success. The chief difficulty at first was to have a pure methyl chloride which was obtained by treating the ordinary methyl chloride with sulphuric acid, which absorbed the greater portion of the impurities. The extract has to be corcentrated in vacuo-another source of difficulty-so I doubt if the old process of fat maceration can be beaten.

SUN-SPOT INEQUALITIES.

ABSTRACT OF RFPORT BY B. STEWART AND W. L. CARPENTER Communicated to royal society by request OF THE SOLAR PHYSICS COMMITTEE.
It has been known for some time that there is a close connexion between the inequalities in the state of the sun's surface as denoted by san-spot areas and those in terrestrial mag. netism as deroted by the diurnal ranges of oscillation of the declination magnet; and moreover the observations of varions meteorologists have induced us to suspect that there may likewise be a connexion between solar Inequalities and those in terrestrial meteorology.
This latter connexion, however (assuming it to exist), is not so well established as the former, at least if we compare together Inequalities of long period. It has been attempted to explain this by imagining that for long periods the state of the atmosphere as regards absorption may change in such a manner as to cloak or diminish the effects of solar variation by increasing absorption when the sun is strongest and diminishing absorption when the sun is weakest.

On this account it seemed desirable to the authors to make a comparison of this kind between short-period Inequalities, since for these the length of period could not so easily be deemed sufficient to produce a great alteration of the above nature in the state of the atmosphere.
The meteorological element selected for comparison with sur-spots was the diurnal range of a+mospheric temperature, an element which presents in its variations a very strong analogy to diurnal declination-ranges.

There are two ways in which a comparisnn may be made between solar and terrestrial Inequalities. We may take each individual oscillation in sun-spot areas, and find the value of the terrestrial element corresponding in time torthe maximum and the minimum of the solar wave. If we were to perform this operation for every individual solar Inequality, and add together the results, we might probably find that the magnetic declination-range was largest when there were most sun-spots. If, however, we were to make a similar comparison between sun-spot daily areas and diurnal temperature-stations, such as Toronto, it is suspected (the verification or disproval of this suspicion being one of the objects of this paper) that there are two maxima and two minima of temperature-range for one of sun-spots. The effect of this might be that in such a com-
parison the temperature-range corresponding to a maximum of sun-spots might be equal in value to that corresponding ${ }^{\text {to }}{ }^{8}$. minimum, or, in other words, we should get no apparent ree sult, while, however, by some other process proofs of a res connexion might be obtained. But it we can get evidencen of apparent periodicity in sun-spots fluctuations whed dealt with in a particular manner, we have at once a met here, which will afford as a definite means of comparison. And here, as Professor Stokes has pointed out, it is not necessary for out present purpose to discuss the question whether these sun. spot Inequalities have a real or only an apparent periodicity. All that is needful is to treat the terrestrial phenomen \downarrow in a similar manner, or in a manner as nearly similar as the observations will allow, and then see whether they also exhibit periodicities (apparent or real) having virtually the same times as those of sun-spots, the phases of the two sets of phenomena being lise ${ }^{-}$ wise allied to one another in a constant manner.
It is such a comparison that the authors have made, their method of analysis being one which enables them to detect the existence of unknowu Inequalties having apparent periodicity in a mass of observations. A description of this metbod ${ }^{\text {bs }}$ already been published in the "Proceedings of the Royal Svciety" for May 15th, 1879. The comparison was made by this method between sun-spot observations extending from 1832 to 1867 inclusive, Toronto temperature-range observatious estending from 1844 to 1879 inclusive, and Kew temperature ${ }^{\text {the }}$ e range observations extending from 1856 to 1879 inclusive. following conclusions were obtained from this comparison.
(1.) Sun-spot Inequalities around 24 and 26 day 4 , whether ${ }^{5}$ apparent or real, seem to have period; very nearly the sarne ${ }^{\text {as }}{ }^{9}$ those of terrestrial meteorological Inequalities as exhibited by the daily temperature-ranges at Toronto and at Kew.
(2.) While the sun-spots and the Kew temperature-rapg ${ }^{8}$ Inequalities present evidence of a single oscillation, the cortrsis ponding Torouto temperature-range Inequalties prese evidence of a double oscillation.
(3.) S :tting the celestial and terrestrial members of each in ${ }^{\mathrm{ip}}$. dividual Inequality, so as to start tog ther from the same sbont solute time, it is found that the solar maximum occurs abo 8 or 9 days after one of the Toronto maxima, and the Kew onto perature range maximum about 7 days after the same Toronto maximum.
(4.) The proportional oscillation exhibited by the temper ${ }^{\text {ar }}{ }^{8}$ ture-range Inequalities is much less than the proportional oscillation exhibited by the corresponding solar Inequa

COST OF THE ELECTRIC LIGHT IN FRANCE.

A paper recently read by M. Ph. Delahaye before the Societ Technique de l'Industrie du Gaz en France, gave an accoul of the progress made by the electric light during 1883. commenced by a brief account of the inventions of the $\mathrm{y}^{\mathrm{g}^{9 \mathrm{a}}} \mathrm{ib}$ and then turned to the question of expense, as compared from that of gas, founding his conclusions upon figures derived fro ${ }^{\text {n }}$ typical installations. He stated that amoug manufaciur was establishments the installation at the Cail workshup ${ }^{3}$ id among the most interesting, as it comprised both arc and is candescence lamps. The total supericial area illuminsted ${ }^{\text {d }}$ ic 251,880 square feet, and the number of lights 177, of with 94 are arc lamps and 88 incandescence lamps. The cost, with out land and buildings, was \mathscr{L}^{4900}, and the mainten $\operatorname{nan}^{\text {an }}$ per hour is 1.07 d , for the ares and 10 d . for the incand ${ }^{2}$ set for lamps, the power required being 1.38 horse-power for the mer, and 10 kilogrammetres for the second. The total work 5.5 expense is 193.2 d ., or .003 d . per carcel hour (one carcel standard candles). The anortisation and interest on and the maintenance, taken together at 15 per cent., repronum £736. Assuming a mean of 500 hours lighting per an ${ }^{\text {num }}$
 which will bring the total cost to .0076 d . The total ex $\mathrm{ff}^{\mathrm{p}^{\mathrm{n}}} \mathrm{g}^{98}$ is $£^{2} .44$ per hour, or equal to the cost of 7167 cubic feet old ${ }^{2} y^{8 \theta}$ at 6 s .9 d . per 1000 ft ., a quantity of gas which M. does not think will even be brought to yield the same amoll of light as is furnished by the electricity. takes the case of the Grand Magasin du Printemps. lights burn five hours per day fur 300 days in the with the exception ef thirty Jablochkoff candles in ment, which are in use nine hours per day. The annu for candles, carbons, and electric lamps is $60,90 \theta$ (£2436) ; the cost of the motive power (490,065 horse- $\mathrm{p}^{\mathrm{p}} \mathrm{ar}^{50}$ hours) is 39,200 francs ($£ 1568$) ; the expenses of the sta

33,000 francs ($£ 1320$) ; the amortisation and interest, at 10 per cent., 68,400 francs ($£ 2736$); and the maintenance, at 5 per cent., $29,200 \mathrm{fr}$ nes ($£ 1168$.) The total expense is thus
230,700 fran parisons betcs ($£ 9228$)- M. Delahaye institutes two comwhat would ween this and gas lighting. First, he estimates would would be the price of a gas installation, and what it corresponds cor year; and secold, what consumprition of gas corresponds to the light furnished by the electricity. In the Riving case, assuming that there would be 3000 gas burners, per thousand, 9.5 candles each, and taking the price of gas at 6 A .9 d . per thousand, and adding thereto 33 per cent. for amortisation (e8865), or survision, \&c, the yearly expense is 221,625 francs latter mode almost the same as electricity. According to the latter mode of investigation, the consumption would be Would be $£ 31$ cuhic feet. At the price given above, the cost city. Of $£ 31,015$ or three and a half times as much as electriit would course such an amount of gas could not be burnt, as ${ }^{n}$ not adduce auder the place uninhabitable. M. Delahaye did he adduce auy precise instance of incandescence lighting, but clusion a detailed estimate of its cost, and came to the con then gas at in an important installation it need not be dearer ral accepat Paris rates, a result that will meet with very geneenough to argun this country, where some have been bold price at whichue that it might compete with gas at half the teresting hich it is supplied in Paris. The paper is chiefly in. is in France, in shing how favourably situated the electric light odd France, and how slow its progress is there even with the
in its favour.-Engineering.
$\mathrm{A}_{\mathrm{NOTh}}$
Cal Notarer electrical raileoad experiment.-A practi-
electric was made at Cleveland, Ohio, on the 20th ult., of an electric Was made at Cleveland, Ohio, on the 20th ult., of an Connection mith for street cars, the Brush Electric Works, in
fitted un
Elast Cleveland Railway Company having car. The about two miles of track and aitachod a motor to the car. The general scheme is much like that of a railroad, the
tlectricity being the center being conducted through rods laid in a trough in of the certer of the tracks. A lever reaches down in the center charged rock into this trough and attaches to the electrically car ged rods. The experiment was considered a success, the to be sonie off at the first swing of the lever. There seemed Will be overconfiess in the machinery, but this, it is claimed, to at overconie. The railroad company state that they expect that the apply the motor to the uhole line. It is claimed cost of working it with operated with electricity at one fourth the $T_{\text {RAN }}$
most remission of power by electricity.-One of the electricity is the instances of the transmission of power by the main is that presented by the electric railway in one of ${ }^{\text {cut }}$ is 2,365 cross cuts of the Oppel colliery, Saxony. This crossVein, the quet long, and is the outlet tor the coal mined in the of 16 the quantity delivered to it bring 600 mine-cars par day of 15 cars, each car weighing, loaded, 1,594 pounds. A train the stears is moved at a speed of from 7 to 10 feet a second,
 half to roolutions during the run, lasting from three and onedoing thour and one.half minutes through the cross-cut. When borbe. poiser ; or, as of work, the stearn-engine delivered 11.2 t_{0} bave 2, or, assuming the friction of the engine's gearing actually occasioned a loss of twenty.five per cent, the power
Was 5.22 transmitted by the electric current to the locomotive 5.22 horse-power, or 46.6 per cent.

THE
J_{o} ur Electrical Transmission of Power -We read in the
the the electrical trat de L'Electricite, that a new application of ${ }^{\text {a go in }}$ in a coal minnission of energy was installed e few mouths and orks regularly the neighboriood of Vienna, Austria, chinges are regularly, and with great success. Both the marent of 15 aramme, dynamos; the generator furnishing a cur-
tempores
amper at 500 volts. nemporary, produces at 500 volts. The receiver, says our con-
ner
Ders, and actuces per ming and actuates a pump which delivera 300 litres of water
800 800 minute at a height of 60 metres, and through a conduit
ginetres gitaf, which long. This was formerly worked by a steam en-
fortably high rendered the temperature of the gallery uncom-
lo loweriy high. Thed the temperature of the gallery uncom-
stang of tempent of the dynamos has caused a ${ }^{8 n} n_{n}$ ption of temperatnre of 14°; it appeass, also, that the con-
return of fuel return claimed fuel is considerably reduced. We fancy that the amount of redued for the receiver would bear a considerable

About ten years ago Mr. Krupp of Essen borrowed $£ 1,500,000$ to be repaid in yearly instalnents extending to 1897 ; arrangements have just been made, however, for repaying within a short time the whole of the sum still remaining undischarged. These great steel-works, employ 19,000 hands.

THE ENTOMOLOGY OF A POND.-(Knowledge.)

(Continued from page 282.)
The Ranatra linearis is a creature of three elements, though, of course, its proper sphere is the water. It can manage to progress on land better than most aquatic insects, carrving its body high up on its stilt-like second and third pairs of legs; still, its movements are, at best, but slow and awkward. It will also, sometimes. take to the air, and on returning to its pond, finds occasionally a little difficulty in re-entering the water, on account of its own slight specific gravity and the dryness of its tail filaments, so that quite a struggle is necessary before it is completely immersed. It is a sluggish insect, and will often remain motionless amongat the pond weeds for a long time together, only rising to the surface to breathe, and this, as one might expect in so inactive an insect, it needs to do very infrequently. It makes its way through the water, either by the help of aquatic plants, or by the movements of its two hind pairs of legs; but these are worked somewhat peculiarly, the third pair being driven backwards at the same time that the second are moved forwards, and vice versa, all the movements being performed in a leisurely manner. But when we come to the front legs, the case is altogether diffrent; all the celerity of which the insect is capable seems to be concentrated here. Ranatra, indeed, is more of a living trap than a hunter, lying in wait for, more frequently than pursuing, its prey, which consists of other aquatic insects, especially the larvx of Mayflies, and even small fishes. With fore-legs extended, it patiently waits till some unwary and unsuqpicious being, on pleasure only bent, approaches within the charmed circle guarded by there long-handled sickles, and then, with a rapid and forcible stroke and with unerring aim, down come the powerful limbs and seize the hapless pleasure-seeker as between a pair of pincers. Dragged to the cruel beak of its thirsty foe, its juices are gradually extracted, and the grasp is not relaxed till the dregs have been drained and nothing but the skin is 1 fft ; the useless pellicle is then rejected and the lanky tyrant brings itself iuto position for another attack. It is said somotimes to regale itself on fish spawn, a proceeding which naturally excites the ire of pisciculturists. It holds its prey with astonishing tenacity, of which the following instance, recorded in the "Entomologist," by Mr. A. G. Laker, may serve as an example. He says: "I placed some sticklebacks in the glass with a Rauatra, when oue of them, about an inch long, was suized (the total lengih of the Ranatra, exclusive of its anal filaments, being only eighteen lines), and, notwithstanding the fish's repeated and vigorous struggles, it was held fast. I then took hold of the stickleback and raised it out of the water; the Ranatra, however, would not let go, and was drawn out of the water with the fish. 1 forcibly separated the two, replaced the insect, and immediately afterwards the fish; but the latter was again srized in a very short time, and the insect continued its meal." Ranatra is an +xceedingly bold and fearless insect, manifesting surprising readiness to attack any foe, let its size be what it may. In fact, under ordinary circumstances, there are probably but few enemies that it has any need to fear. It is the giant of the insect population of the pond, and can hold its own against all comers. The great Dytisci are probably the only insects of which it has any need to stand in awe ; and thesp, if hard pressed by hunger, would probably have no hesitation in attacking it, and protected by the invulnerable nature of their chitinous armature, would soon make nincemeat of the slim and long-legged bug. The hard integument of beetles, however, does not always baffle Ranatra, not even when it seems to offer an insurmountable obstacle. There is a little oval, reddish-brown beetle, Hyphydrus ovatus by name, about the size of a small pea, and not unlike a somewhat flattened one in shape, which is about as unmanageable a morsel as could well fall to the lot of any insect; but even this Ranatra will not refuse, turning and twisting it about with its pincers in vain efforts to find a soft spot in which to plunge its beak, till at last it lights upon the extremity of the abdicmen, as being a little less hard than the rest, and manages to extract even thence at least enough nutriment to whet its appetite and make it long for more.
The Dragon-flies, insects of the family Libellulides, are
stingers, and in Scotland go by the name of "devil's darning-needles," and in America by that of " mosquito hawls," will detain us later on, when ws speak of the fauna of the aierial regions just above the pond. Suffice it here to say, that they have four large glassy-looking winga, reticulated with a multitude of nervures, and usually a long, slender body, which has suggested to our Highland brethren the diabolical connection above mentioned. For brilliancy of coloration they easily take a prominent position in the insect world ; but their beauty pertains wholly to the adult form. In their aquatic stages they are the dingiest of the dingy, and in many cases are hideously ugly. When you have brought yourself to perform the disagreeable task of hauling out of a dirty pond a mass of slimy weeds and fetid mud, and have deposited it on the bank, you see the mass here and there heaving with the struggles of these ugly brutes as they gradually work their way into daylight and drag their grimy bodies out of the tenacious and unsavoury mess. What a contrast between this sordid life and the gay and brilliant existence of the shingwinged adult, as it dashes about, glistening in the sunbeams! There are two principal types of these larvæ; one a broad, thickset, clumsy creature, which fields the larger and stouter-bodied dragon-fies, the other slender and carrying some leaf-like appendages at the tail, the immature condition of the most slender and graceful members of the group. Taking first tise former of these (Fig. 1), we see a creature with six

Fig. 1.-Larva of Dragon Fly.
straggling legs, which, sprawling out at the sides, would, were-it not for their number, be strongly suggentive of affinities to the spider class. The head, when viewed from above, is surprisingly like that of a kitten, the prominent ears of the latter being represented by the equally prominent eyes of the insect ; the two short antennæ, too, are suggestive of the kitten's whiskers. Then comes the thorax, with curious ridges like rough bark, and carrying the six sprawling legs and the rudimentary wings, and then the abdomen, broadest a little behind the middle, and exhibiting, especially in its hinder part, periodical contractions and dilatations, the length being lessened at the expense of the breadth. This motion, as might be expected, is a respiratory one. The breathing is performed in a manner as wonderful as it is unique. It is most marvellous what a variety of contrivances there are to enable aquatic insects to perform this important function; we have already referred to the diving-bell arrangement of the water-beetles, the anal spiracle of some of their larva, and the lateral leaf-like appendages of others, the long tailfilaments of the water scorpions, and the feathery stars and tubes of the gnat larvæ and pupæ, and now we come to an arrangement totally distinct from all of these. At the extremity of the body there are some stout, spine-like
processes, surrounding the terminal orifice of the diggetive tube, which is guarded by a valvular apparatus. By muscular effort these spines, which are movable at their base, can be opened out like the parts of a wire eggwhisk, the capacity of the abdomen being at the same time increased; the valves are thus opened, and water rushes in and fills the terminal part of the intestinal canal, and after remaining there a short time, is forcibly ejected by a reversal of these operations. The lining of the last part of the intestine is produced into six double series of folds, whereby its surface is enormously increased. In the interior of these thin folds, great numbers of minute tracheal tubes are distributed. The water, of course, as usual, contains air dissolved in it; and, as it passes over these tracheal tubes, the fresh air with which it is charged can be exchanged for the contaminated supply contained in the tubes, by simple transfusion of the gases through the thin walls of these. As soon as this has been effected, the now useless water is got rid of in the manner above described, but its expulsion frequently serves the additional purpose of effecting locomotion. When the insect is calm and undisturbed, the water is passed out gently, but should it be disturbed or alarmed, ${ }^{2}$ forcible ejection of the liquid follows, and just as a rocket mounts in the air while the gases into which its contents are being transformed by the process of combustion, rush out in the other direction, so the larval dragon-fly is shot swiftly forward as the jet passes out from behind. The jet can be readily observed: if there are particles of matter in suspension in the water, their movements ${ }^{9 s}$ they are carried along with the stream make the current perceptible; or if the creatures are in a shallow vesser with only just enough water to cover them, the sur face will be seen to be violently disturbed at every expirt tion. The force with which the water can be projected fromis quite surprising ; the most astonishing record comes frowist over the sea. A lady states in the American Naturalist that a larva of a large species, when disturbed, sent out? fine stream of water to the distance of from two to thred feet, and continued doing so indefinitely !

These curious beings then progress by a series of jerks or leaps, though, of course, they can crawl as well. Some kinds while jerking themselves forward, assist their efforts by a sharp backward stroke of the legs (though these are not modified for swimming purposes), and finish the strolso by bringing the legs close alongside the body; an action by no means inelegant.

The more slender kinds have an elongated body, which they can move pretty vigorously from side to side as a fisb does its tail. They have also three external leaflike appendages at the tail, which are thin, and are each sup plied with a tracheal tube and its branches, the exchange of gases taking place here externally in the same way as in the others internally. These caudal leaves, too, are used to assist locomotion.

But we have yet to consider one of the most remarkable peculiarities of these creatures. If we take a front view ond the head, we see the lower part of the face rounded and smooth, with a vertical zigzag line down the centre, and showing no traces of great jaws such as one would expect in so voracious an insect. This is simply because they art concealed by a very curious modification of that part 0 , the mouth which, in insects generally, is called the labin价 or lower lip. To examine this structure it is best to take ${ }^{\text {a }}$ freshly-killed specimen; this is easily obtained by plupgins the creature into boiling water, which produces instantion neous death. By aid of a pin or needle we can now easily open out the "mask," as it is called (Fig. 2), and fully extended, we see that it looks something like broad-handled ladle, attached by the handle undernane the head. It consists of several joints, the basal head of which is attached to the lower part of the b
or, as we might say, under the chin. Succeeding
this is are att another piece, at the outer angles of which are attached two curved triangular jaw-like pieces articulated to it ly oue of their angles, and capable of folding inwards till their saw:like edges exactly meet, when the
front part When part of the apparatus forms the bowl of the ladle. a bluntly-pod, the basal joint is bent backwards, showing as bluntly-pointed projection, reaching to the base of the

Fig. 2.-Mask of Dragon Fly. a. Side View.
b. Viewed from Above. c. The Same, with Jaws Open.
socond pair of legs; the next piece is folded back upon this, and the bowllike part is thus brought close up to the
face, tance, which fits into the hollow. When the mask is exThended, the real jaws are seen beneath in the usual position. Water mask is used somewhat like the raptorial legs of the witer-scorpions-viz., to seize a passing insect at a little darted out To accomplish this, it is very rapidly unfolded, position, thus oun unerring aim, and brought back again into Dragon-fies holding the prey close up to the true jaws.
Dragon-flies do not alter much during their earlier fret moult traces of wings soon appear, even after the the moult or two. When a moult is about to take place, leverage core fixes its claws into some support to obtain cular effort its coming struggle, and then, by strong muscrawls offort, the back of the thorax is split, and the insect seen float of its case. The cast skins may frequently be Poracions, floting about in ponds. The insects are very adopt cannibalism. when other food fails, will not scruple to
(To be continued.)

AN account TMPROVED SAWS
ally deccribed of a new kind of saw for cutting stone, originto hescribed in La Semaine des Constructeurs, which seens appeared in advantages over those now commonly in use, place of the a recent issue of the American Architect. In
 ine presents to grind their way into the stone, the new machsteel preqents only a slender endless cord, composed of three ${ }^{8}$ ch ${ }^{\text {a }}$ wes twisted together, which is stretched over pulleys in 8tone to we as to bring the lower portion horizontally over the ${ }^{80}$ that the cut. The frame carrying the pulleys is movable, lifted away tron can be brought into contact with the stone or motion, while it at pleasure, and the whole is kept in rapid serves, to moile water falling in drops from a reservoir above suw differ moisten the stone. The three wires which form the and by twisting the ordinary kind in being square is section, ${ }^{84}$ cceasion of thotion, in of oblique cutting edges, which act, when set in the rapidity nearly the same way as so many small chisels, while adds to their with which the blows follow each other probably accomplished byect. It is not said what proportion the work expenditured by the new machine bears to that effected by the apparature, and the same amount of energy in the old form of a stage to and the invention is probably in too rudimentary, ${ }^{\text {seemba }}$ to make such comparisons practicable; but the idea form the be a good one, and with wire of suitable temper and every one wing effect should be very considerable; while, as $\mathrm{u}_{s \theta}$ in ane will observe, the wire saw ought to be available for Operated a verticle line, like a hand-saw for cutting wood, and, if
most in this Woort difficult is way, could be made to saw mouldings of the Wood. Again, too much care cannot be taken to give each saw its
proper amount of leud. This, like speeding the saw, must be
done to couform to the adaptability of the same. After once
getting the proper lead there are difficulties, often very troublesome, that have to be overcome in some way. A saw is seldom filed and put in order twice alike. After it is first regulated any deviation or alternation in filing is equivalent to a change in the running of a saw. Of course, a sawyer that is apt at the business will make less deviation than an inexperienced one, and will correct the defect with the guide-pins without any perceptible difference in the running of the saw. Where there is a want of experience in handling the saw, the better way is to correct the lead by throwing the mandrel back or forth as the case may require. In no case should there be an attempt to make a sam run with the guide-pins where it is not inclined to. The attempt will not only be futile, but an everlasting vexation, to say nothing of the loss of time waste of power, and badly cut lumber. It never pays a man to attempt to run unless things are in proper condition. Better shut down and put things in order, and then go head.
To be a successful sawyer it is also necessary to be a good judge of different classes of wood. Some kinds are of very firm hard grain, and require to be cut on a much slower speed than others. Other kinds may not appear so hard, yet there is a tendency to spring, causing the saw to heat, which sometimes leads to the conclusion that the saw is at fault.

There are always new difficulties arising that must be met, understandingly, or otherwise. They are stubborn, everyday facts, that have to be dealt with.

THE ANTHRACFTE BURNING LOCOMOTIVE OF AMERICA.

Anthracite coal, used for locomotive purposes since 1838 with increased success, is now burned exclusively on water grates formed of wrought iron tube, 2 in . external and $1 \frac{1}{2} \mathrm{in}$. internal diameter, spaced so as to give a maximum clearance between water tubes of 1 in . to $1 \frac{1}{8} \mathrm{in}$., set longitudinally with the fire-box, and having a rising inclination backwards, varying from $\frac{3}{4}$ in. to $1_{\frac{1}{2}} \mathrm{in}$. per foot of length. This sloping of grate is chiefly to secure the perfect and rapid circulation of water, thus preventing accumulation of mad and scale in the tube, keeping it cool and lengthening its effective life.

Transversely to fire-box, the water tubes are usually set in a horizontal line, but there is a tendency to lift the side tubes a little higher, giving the cruss section a basket form, removing the fire further above the solid foundation bar and slightly increasing the area of air opening through the grate.

To increase the amount of air opening withont increasing the space between each water tube, the transverse setting of them in corrugated or rigid outline (thus ${ }^{*}$ ** $^{*} *_{*}^{*}{ }^{*}{ }^{*}{ }^{*}$) has been tried, but with partial success, as the fire naturally got then at high points and all the air supply passing through such thin spots, the fire became dead and steam pressure fell too low.
To clear the fire, two (and in case of wide gates three) of the water tubes are replaced by long 2 in . wrought iron bars, carried by ferrule through the water space out and beyond back of fire-box, so that the fireman can withdraw them-in whole or in part-leaving an opening four inches wide through which all foreign matter is raked into hopper ash-pans having a depth of from 2 to $2 \frac{1}{2}$ feet, this depth preventing the accumulation on ash-pan from burning out the grates from underside.

It is ofton found advisable to line these hoppers with scrap plate, the narrow air space left between the plates saving the hopper from being warped or otherwise injured from the hot ashes.

Compared with fire-boxes burning bituminous coal, excessive grate surface is required, and each engine bar-frame (and such frames are found best suited to the condition of our road. bed, \&c.) being from 3 in . to $3 \frac{1}{2} \mathrm{in}$. wide, the available space between them is found too narrow, and it has resulted in fireboxes being stopped off short of the top of the frame and made as wide as will just clear driving wheel flanges ; in fact, fireboxes designed to burn Anthracite "dirt" are stopped off
short of the wheels, and thus being free from side control are made three or four feet wider than rail gauge. The length of grate has in powerful freight (goods) engines reached a maximum of $11 \frac{1}{2}$ feet, necessitating an intermediate support for the water tubes and movable solid bars.

An equal and perfect distribution of the total weights available for adhesion on the coupled driving wheels is possible when the fire-box is made so shallow as not to come within the frames in a manner rarely obtained when deep fire-box is used, as it often outwardly controls the relative position of the coupled axles.

A further constructive peculiarity caused by the width of the fire-box, is that instead of springs being placed directly over or under axle-boxes, and the spring ends connected by compensating or equalizing levers, deep narrow levers are passed over and bear upon the axle boxes, and the lever ends are coupled to the springs, or, in other words, the springs lie horizontally between and about in line with the axles, instead of above or below them. So arranged, the engine rides smoothly and easily.

To sustain the weight at rear end of boiler, the fire-box is carried upou four massive reversed pendulum links from lower part of engine bar-frame, which, without limiting the expansion and freedom of movement longitudinally holds it in designed position firmly.

Shallow depth of fire-box, being, as hereafter explained, a necessity of economic combustion, it is obtained by quickly sloping downwards from tube sheet the crown plate of inside fire-box, so that at the back the effective depth of box is but about 2 feet 8 inches, and not only is the inside crown inclined, but, to avoid excessive weight and keep centre of gravity low, the outer crown is also sloped longitudinally and the two sheets secured together by screwed rod stays; thus anticipating that form of crown sheet known under the name of its Continental patentee " Belpaire." The distance apart of the two crown plates much increases as they come towards the barrel, thus providing freer circulation.

The firing is done from tender, and necessarily the fire hole is of rather more than ordinary width to give freedom of firing over so large a surface, and it is quite close to crown sheet, so as to give with shallow fire-box 14 in . to 16 in . depth of fire on grate without fuel standing above the level of fire hole. The so-called "Combustion Chamber," occasionally provided forward of fire-box, is not to secare more perfect combustion, but is due to the grate being so high that a bridge is necessary to kerp fuel on sloping grate, from travelling bodily into and choking the boiler tubes, and, space being required forward of bridge, so that passage be left for gases to enter the lower tubes, the chamber or partial extension of fire-box into barrel becomes a necessity, although it has the defect of shortening the boiler tubes by its own length.

The shallow fire-box secured in part by sloping grate up, and crown sheet down, and used certainly as early as 18489 , is not only a convenience in constructive design, but for effective combustion a necessity, as this fuel, due to the absence of hydrogen, is only slightly inflammable, when burnt openly and freely, and to secure as much flame and as large a portion of radient heat as possible, an artiftcial current that will lift the fine incandescent particles and keep them in suspended motion and contact with the hot gases is desired. This lifting and suspension, the exhaust blast with shallow fire-box and large grate surface accomplishes, securing a full body of short, light-coloured flame, and therefore securing radient heat : and the crown sheet-the best absorbing surface-being close to the flame, is made the more effective. A close parallel can
here be drawn between the behaviour of Anthracite in a re• heating and in a puddling furnace. In the latter, with the same air pressure and grate surface serviceable flame cannot be obtained; whereas, with no other change than a low roof, the reheating furnace produces a white flame and intense radiant heat, bring the iron up to a welding heat rapidly and economically.

The P. \& R. R.-a large user of this fuel-give me as the recult of their experience with locomotives, that one pound of Anthracite evaporates 6.1 pounds of water, and one μ ound of Bituminous 7 pounds of water, under similar and average con' ditions of railway work-in other words, Anthracite has 8114 evaporative efficiency of .87 per cwt., and Bituminous of 1.14 . per cent.-in each case taking the other fuel as the unit of com parison. With their market prices at tidewater as in June, Anthracite per gross ton at $\$ 350$ (14 shilling.), and Bituminous at $\$ 3.05$ (12 shillings), the cost of evaporating one pound of water is, Anthracite, . 0255 of a cent, and Bituo minous . 0194 ; thus Anthracite has an economy efficiency of .76 per cent., and Bituminous of 1.31 per cent., in each case the other fuel being taken as the unit of comparison.
The Pennsylvania Railway gives me the consumption in pounds of coal per passenger car mile for four months under conditions so similar as to make a reliable comparison. The market value of coal being, Bituminous per net ton $\$ 2.73$ and Anthracite $\$ 3.82$ yer gross ton, or per 100 lbs . Bituminous costs $\$ 13.65$ cts. and Anthracite $\$ 17.05$ cts. Anthracite being per pound fully 25 per cent. the dearer fuel.
On Local passenger runs the consumption per passenger car mile was 10.44 lbs of Bituminous against 13.85 lbs . of Anthrs ${ }^{\circ}$ cite-a difference of 341 lbs , their relative percentage values (comparison as before) being 1.32 per cent. and .76 per cent. or multiplying the amount by the cost, the items stad in cents per car mile 1.425 for Bituminous and 2.363 for Anthrscite, a difference of .938 cts., their relative economy per centages being 1.66 per ct . and .60 per ct .
For the same period on through or continuous passenger train runs the figures in pounds per car mile are $8.64 \mathrm{Bitamin}{ }^{0}$ ous against 11.55 per Anthracite, a difference of 2.91 lbs . their relative evaporative percentages being 1.25 per cent. and .80 per cent., on multiplying thi weight by the cost, the expen ${ }^{\text {nse }}$ per car mile in cents is 1.179 for Bituminous and 1.969 for Anthracite, a difference of .79 cents per car mile; thus their relative economic percentages are 1.67 per cent. and $.59 \mathrm{p}^{\mathrm{et}}$ cent.
The through run with but few stops and making continuons demands on the full uses per car mile, 1.80 lbs . less of Bituminous and 2.30 lbs of Anthracite, but as these diff rences bear to each other the percentage proportions of 1.27 per cent. and .80 per cent., it seems as if Anthrcaite could be used as advantageously where the stops are frequent as in through runs under ordinary eonditions. Although it is Mr. Wooten's opinion, that where stops are frequent, or work intermittent and the maximum power is called immediately after such inter. mission less Bitumiuous coal need be used bezause of its ready ignition.
The reason of Anthracite having a less evaporative efficiency is in part due to its density, the heat of combustion being greater in proportion as molecular condensation of fuel is less advanced-the better control permissible through the air dampers of the combustion of fuel possessing free carbon or volatile gases, and to the large mass of fuel on grates at the end of each trip which cannot be utilized ; also as a depth of 14 in . to 16 in . of live coal is kept on the grate, it is highiy probable (although I have not been able to test and prove it by
the analysis of the escaping gases) that this depth of white hot carbon converts in its upward course through it a large portion of carbonic acid into carbonic oxide, in which form it escapes from the chimney, no provision being made to supply oxygen above the grate except by throwing open the fire-hole door.

The limits of this paper will not permit of any full compari${ }^{8 n n}$ of the chemical constituents of Americal and Welsh Anthracite, but this table shows that the percentage of fixed car-

	Welsh.				Pennsylvania.			
	$\begin{array}{r}94.18 \\ .98 \\ 2.99 \\ 1.26 \\ .59 \\ \hline\end{array}$	$\begin{array}{r}93.27 \\ 1.21 \\ 2.72 \\ 2.65 \\ .15 \\ \hline\end{array}$	$\begin{array}{r} 92.55 \\ 2.42 \\ 2.10 \\ 4.78 \\ .12 \\ .10 \end{array}$	¢ $\left.\begin{array}{c}91.11 \\ 1.51 \\ 3.58 \\ 3.24 \\ .59\end{array}\right\}$	92.30 1.28 6.42	94.10 4.50 1.40	80.57 3.28 7.15	89.90 5.40 5.40
-	100.	100.	100.	100.	100.	100.	100.	100.

$b_{0 n}$ is practically the same, and that the only marked difference is, that American averages 3.61 per cent of ash, or more
than than three times the amount found in Welsh.
The lower evaporative duty of American is probatly explained by its expaporative density. A comparison averaged from the detailed figures given by Crookes and Rohrig shews the
following results:

I do not find that any attempt has yet been made on American locomotives to carry out the neat and apparently effective contrivance described by Mr. C. H. Perkins in his paper on
Anthracite of hollow at the Swansea Meeting,-viz.: the use for grates of hollow perforated tubes, through which the air required for
combuation combustion is forced under pressure of pan or steam jet. It is
probable if
 wise utilisest steam, not then required for producing blast, otherSet obtaised, a more economic result would be achieved than Jet obtained in the use of Anthracite as a locomotive fuel.
mentioned pans not being provided with air dampers it may be
of come the mechanical means for controlling the rate of combusthat the mechanical means for controlling the rate
pipe Pipe nozzlion commonly in use, are, 1st. By variable exhaust
from Irom engineer-men more attention and judgment than can be
ordinarily seat
 plate, and which is not provided with damper or deflecting boz at from 3rd. In same case the admission of air into smoke neatralizing end door through a movable grid plate, thus The life the effect of the blast.
$\mathrm{R}_{\mathrm{y}} \mathrm{Th}_{\mathrm{e}}$ averages a steel fire box burning Anthracite on the P. \& R.
box arerages 200,000 miles or only about 80 per cent of a steel arerages 250 Bituminous, which under similar conditions $i_{8} .60$ ger 250,000 uniles; whereas the P. Ry says the difference $i_{8} .60$ per cent or a life respectively of six and ten years, and
${ }_{8}$ the first a_{8} the first cost of an Anshracite boiler is from 8 to 15 per cent
in ${ }^{\text {in }}$ exceess and ${ }^{3}{ }^{3}$ excess and cost of repairs heavier, rising in extreme cases to ${ }^{\text {being }}$ peent in excess, and the market price of the Anthracite Ous, a very and its evaporative duty being less than BituminOus, a very natural query is-Why should it be used?

The answer is-lst. Its complete freedom from smoke, its small amount of dust and the cleanliness of the dust are strong points in its favor for passenger train service. 2nd. It is but slightly, if at all, used by any railway not owning and working mines, and by them over a very limited geographical area, and, 3rd. As two.thirds of this fuel brought to market, is sold by by three railway companies, the so-called market price (controlled by a pool) is no indication of the actual cost of the fuel.
Ignoring the question of interest in capital invested, and accepted as data for comparison, Bituminous coal at $\$ 3.00$ (12 shillings) per ton with a yearly consumption of 1,250 tons, Anthracite boilers costing 17 per cent in excess, having 40 per cent. less length of life, with 33 per cent. increase in cost of running repairs, and Anthracite having an evaporative efficiency of but .80 per ceut. it would have to cost barely $\$ 2.49$ (10 shillings) per ton to justify its use as a fuel of equal economy. In other words the comparative cost by weight of Anthracite must be not only .80 per cent. less than the cost of Bituminous, but in addition 7.7 cents per ton lower, so as on the average yearly consumption to leave on "fuel-sheet" an unspent balance of at least $\$ 112.00$ to the credit of renewals and repairs of boiler.
My thanks are due to Mr. J. E. Wooten, General Manager of the Pennsylvania and Reading Ry., and Mr. Theo. N. Ely, Supt. Motive Power, Pennsylvania Ry. for information supplied by them embodied in this paper.-Section G British Association, Montreal.

J. Davis Barnett.

A commission of five French medical men have reported on their investigations as to the real nature and action of the cholera poison. The substance of their report as it appears in the Times is as follows:-"The initial lesion of cholera takes place in the blood. It essentially consists in the softening of the hæmoglobin, which makes some globules lose first their clear shape, the fixity of their form, and the faculty of being indented. These globules adhere together, lengthen out-en olive-stick together, and in fulminating cases especially some are are seen which are quite abnormal, while others appear quite healthy. The entire loss of elasticity of the globule (which is shown by the preservation of the elliptic form when it has been stretched out) is, in our view, a certain right of the patient's death. To stretch out a globule you have merely to alter the inclination of a plate on which a sanguineous current has been tstablished in the field of the microscope. The fluid column stops at one point, whereas the rest continues to flow. An elongation of the intermediary globules results, and then a rupture of the column. In the gap thus formed are some ${ }^{8}$ cattered globules. If these revert to their primitive form, the patient may recover. If they keep the elliptic form, we have seen death in every case, even if the patient's symptoms were not serious at the time of the examination of the blood."
A new perfect-combustion stove for domestic use has been invented by Mr. Henry Thompson, of Canonbury, England. Externally it resembles the ordinary register-stove, but in its interual construction it differs widely from it. A recess at the back of the Thompson stove is filled with coal at starting ; and behind the coal is a vertical hinged plate, which is so arranged as always to exert a gentle pressure on the coal and the body of the fire, teuding to push the coal forward toward the bars. A slight stirring of the fire causes it to be loosened, and the fuel to be pressed forward to the front to replenish the fire. When the coal has been consumed, the vertical plate is pushed back, and a fresh charge of coal inserted. It will thus be seen that the coal at the back is undergoing a process of cuking before being pushed forward. The gases evolved from it, in. stead of passing up the chimney and into the air in the form of solid carbon, are carried downwards by the diaught produced by an ingenious but simple arrangenent at the back of the stove, and ure delivered beneath the grate. At this point they are drawn upwards through the incandescent fire, in which every particle of smoke is consumed. 'The waste products of combusion pass up the chinney in the usual way, but without the usual attendant results of swoke and soot.

JAPANESE STUDIES OF NATURAL FORMS-I.

THE ELECTRIC LIGHT IN THE MECHERNICH MINES.

The electric lyght installation at the Mechernich Mines in its once volcanic Eifel district in Rhenish-Prussia, has now had a fair trial for more than three years and has proved a com. plete success. The expectation that it would both facilitate the operations and increase their security, has fully been realised, and an extension of the plant is now being carried out. Messrs. Siemens and Halske, of Berlin, undertook the work, which was superintended on their behalf by Mr. Boed. dinghaus. An open working $2,000 \mathrm{ft}$. long, $1,000 \mathrm{ft}$. wide, and over 300 ft . deep, in which 300 men and 20 horses are continually occupied, was tirst to be supplied with the electric light. This part of the mine is excavated in steps, the borizontal terraces being provided with rails. Ordinary lamps in globes on poles were out of the quastion, as blasting operations continue thronghout the day and the shots would soon have made havoc of the lamps. After several trials two powerfal lamps, of 3,000 candles each, wer erected at the upper margin of the pit where they were fairly out of the reach of the projected stones; and reflectors were fixed to throw the light down upon the steps. To find the proper positions for these powerfill lamps and to avoid too dark shadows caused some difficulty. But the illumination was finally rendered most efficient, and the open pit with the light playing on the whitish grey rock affords a fine spectacle. As any interruptions, even for short periods, such as those occupied in renewing the lamp carbons, would be dangercus, the whole plant is donble ; each lamp re. ctiving its current from a D2 dynamo. No hitch of any kind has occurred, and the safety of the miners has decidedly bern angmented. It was formerly not always possible for the superintendents to see whether the loose mass resulting from the blasting operations had been properly removed, and frequent minor accidents arose from the debris falling down upon the miners engiged on the step next below. The work can now be controlled much better than before when petroleum lamps and hand lamps were in use. The cost shows a saving of about 4d. per hour in favour of the electric illumination. The satisfactory results obtained in the open working induced the company to introduce the electric light down in the sub. terranean galleries. The ore forms little concretions of sand and galena scattered all through the rock; the whole mass has therefore to be brought to day to be disintegrated and sifted, and the mining proceeds in parallel aud cross galleries which are constantly being widrned until they become 90 ft . in width, and 70 ft . in height, by sometimes 300 ft . in length. The operations in themselves would not require much light if there was not always danger threatening from loosened pieces of rock. Pitch torches were formerly employed to examine the bore holes and fissures round them after each explosion. It was a question whether the arc lamp would answer for this purnose in the smoky atmosphere. For the first experiments, arc lamps of 3,000 and 1,000 candles were used, with the positive carbon in the lower holder. The effect was brilliant, yet the light did not penetrate the white smoke cloud which collects at the upper wall immediately after the shot. But as the smoke settles within ten minutes, it was thought advisable to acquiesce in this interruption of a few minutes, and to use smaller lamps of 350 candles, which proved quite efficient. Ot these, there are ten in use, with about $10,000 \mathrm{ft}$. of lead cable, the cable being partially elastic, as the lamps with their wires have to be removed when the blasting is to take place. The lamps were originally supplied with hexagonal lanterns with obscured glass to protect the eyes of the miness. The glasses were of course soon broken, but no 00 m . plaints are said to have been made about the naked electric lights. The proprietors of the mine have decided upon an ex. teusion of the installations.-Engineering.

Thiscellaueous Totes.

Heating effects of electric currents.-An interesting paper on this sul.ject has been communicated to the Royal Society by Mr. W. H. Preece. With bare platinum wires of small diameter, the general law governing the ratio between the currrent strength and the diameter of the wire, when the latter is raised to a definite temperature, and where radiation is free, appears from Joule's law to be that the current should vary as the diameter $\times \sqrt{\text { diameter }}$ or $c=d \sqrt{\bar{d}}$. Both the results of Mr. Preece's experiments tend to show that the current varies as the diameter. Platinum wires are however liable to
flaws which practically reduce their effective diameter. Mr. Preece has also determined the strength of currents which pros duce self-luminosity in wires of different kinds and sizes. These currents were measured by fiading the difference of potential at the ends of a thick German silver wire, whose resistance was .0157 ohms inserted in the circuits. The results with copper, Swedish wrought iron, Grman silver and platinum wires, showed that the law $c=d \overrightarrow{V d}$ held very well for all these wires, except with those of platinum, the point of low red heat being taken as the flducial point. The temperature of a wire which b comes self-luminous has besn given by Draper as 977 deg. Fahr., and by Daniell as 930 deg. Fahr. The exception in the case of platinum may account for its exception to the law in the former experiments. Mr. Preoce infurs from his experiments that electric light wires should be made large enough to avoid the possibility of heating them above normal temperatures, otherwise points of danger are easily reached by increments of currents.
The world's telfgraphs.-The telegraph appears to bave made more progress in the United States than in any other country. The number of American telegraph offic as in 1882 was 12,917 , and the number of telegrams forwarded during the year was $40,531,177$. The number of tolegr 1 ph offices in Great Britain and Ireland in 1882 was 5,747 , the number of telegrams forwarded being 32,965,029. Germany h it 10,803 offices, the number of telegrans forwarded being $18,362,173$. France had 6.319 office, the number of telegrams forwarded being $26,260,124$. Kussia hat 2,819 offises, the numher of telegrams forwarded being 9,800.201. Belgium had 835 offices, the number of telegramy forwarded being $4,066,843$. Spain had 647 offices, the number of telegrams forwarded being $2,830,186$ British India had 1,025 offices, the number of tele. grams forwarded being 2,032,603, Swizzerland had 1,160 offices, Italy 2,590, and Au-tria 2,696. The number of telegrams forwarded in these three last-mentioned countries was $3,046,182,7,026,237$, and $6,626,203$ respectively.
magnetism of thin steel plates. - A curious and instructive experiment has just been made by M. Duter, who took a number of very thin plates or discs of tempered steel, about a millimetre thick, and from five millimetres to forty centimetres wide, and built them into piles, the adjacent plates being sometimes in contact, and sometimes separated by ${ }^{8}$ sheet of paper or cardboard. These piles were then inserted in a very powerful magnetic field, and withdrawn. It wss then found that they hal become powerful permanent mag. nets; but when the individual plates were supirated they seumed to have lost their magnetism. On building up the pile again the original magnetionn was restored to it. It ap pears then that the thin plates have not really lost their polarity on being withdrawn from the exciting field. Some of Professor D. E. Hughes's recent experiments have a grest similarity to M. Duter's.

A new carbon battery. - A new voltaic battery has been brought out by M. Tommasi and M. Ruliguet, in which peroxide of lead surrounds the carbon plate as it lies on the bottom of the cell. The other plate is also of carbon, covered with fragments of retort carbon platinised. The two plates are placed one above the other, but separatod by a sheet of parch. ment paper which divides the containing vessel into two com. partments. A saturated solution of chloride of sodiam or come mon salt is filled into both compartments until the upper carbon fragments are partly immersed in it. The electromo tive force is 0.6 volt. Th \rightarrow negative pole is that carbon plate which is not in contact with the peroside of lead. If other saline solutions, such as sulphate of aminonia, sulphate of soda, chlorhydrate of ammonia, or even dilute sulphuric acid, be used instead of the solution of salt, the electromotive force does $n 0 t$ sensibly vary.

The radiating power of metals. - M. Walter Meunier has, according to the Revue Industrielle, been experimenting on the comparative loss of heat from cast iron, and copper tubes. The experiment were carried out in a room having ${ }^{8}$ uniform temperature, and were made simultaneously with ther three materials in question. The tubes were all 2.5 meter $^{t^{3}}$ long, and 155 mm . in diameter, counceted at one end with in steam supply, and at the other end with a worm condenser in. water. Observations showed that the weight of water con densed, per square meter of beating surface per hour, was, whe naked pipes, $\boldsymbol{3} \cdot 484$ kilos for the cast iron, 3.906 kilos for the

Trought iron, and 2.816 kilos for the conper. The non-radialit is power of coprer, in comparison with iron is thus manifest. thicknot stated, however, whether the pipes were all of equal surfaces. It is similarly polished, or left with their natural ditions. It is to be understood, perhaps, that identical conPure, as far as possible, preserved.
${ }^{\text {Porifying }}$ Zinc.-M. Heôte, the well-known French purifying has recently been occupied with the question of containg zinc fro n the arsenic and antimony which it usually
cone The prose the zinc with process which he finds most effectual is to melt the zinc with chloride of magnesium. All the arsenic then
takes the tases the form of chloride 0 arsenic, and the antimony, when
it is present, is also disengaged with it. $M_{\text {ELTRD }}$ is also disengaged with it.
from a fiagmead in the Eye.-A curious case of accident Thon a fragment of melte Eye.-A curious case of accident
the eye widifying on the surface of Bordeaux Sout injuring it, was recently brought before the Who showed Society of Anatomy and Physiology by Dr. Perrier, really due to that "he immunity of the eye from burning was Way at a higher "temphroidal state." The melted jet of lead alure necessary temperature than 171 deg. Cent., the temperarrived at the surface of the spherodal state, hence when it the latter. When atace of the eye it vaporised the moisture of lachrym. When it had cooled below 171 deg . Cent. the ball. secretion prevented the metal from scorching the
Heat of combustion of wood.-Mr. Ernest Gottlieb, says
 compared the frying them at a temperature of $115^{\circ} \mathrm{C}$., and has would be the figures obtained with the amount of heat that hydrogen developed in their combustion. The carbon and the carbonic acid and vapor of water formed, the by weighing
after after deducting and and vapor of water formed, the remainder, The desulucting the ashes, giving the oxygen and nitrogen.
applying there found to be in excess of those deduced by applying the formula of Dulong. The wood containing 40.03
per cent. of
tiorren per cent. of carmula of Dulong. The wood containing 40.03
tion 6.06 per cent. of hydrogen by combus-
formuduced 4785 calories, which number, according to the formula, should have calories, which number, according to the Th_{H}, should have been only 4139 .
building of thest sky-Light.-The sky.light in the new
in the ofd of Trade in Chicagn, will be the largest In the United States, aud will be cunstructed by a manufacturer
of that $i_{\text {into }} 225$ parts. Its dimensions will be 60 by 68 leet, divided the problem presents inches square. It contains very little color, amount of light combined the artist being the greatest possible The figures are combined with the highest ornamentation. the ground being rich in colouring, but slender and serpentine, Partl|S cathedral nearly white. The glass is partly Venetian, ${ }^{\text {sixtenthen }}$ cathedral, and partly opalescent, one-eight and oneinished by October 15 in thickness. The sky. light will be Silvering iron.-A and will cost about $\$ 5,000$.
following pro iron.-A manufacturer in Vienna employs the
With merocess for silvering iron. He first covers the iron ith mercury, and silvering iron. He first covers the iron $\mathrm{I}_{\mathrm{o}} 3000$ Cury, and silvers by the galvanic process. By heating Ironware is the mercury evparates and the silver layer is fixed. then dipped first heated with diluted hydrochloric acid, and 8ame time in communication with the zinc pole of an electric
battery, anode for the a pee of gas carbon or platinum being used as an layer of the other pole. The metal is soon covered with a ${ }^{\text {8il }}{ }^{\text {Pr }}$ ered in a quilver; is then taken out and well washed and first covtra ailver solution. To save silver the iron can be ${ }^{\text {dissolvered }}$ with a layer of tin; one part of cream of tartar is The es are joinged parts of boiling water and one or more tin The zinc pole commith the carbou pole of a Bunsen element. per, and the communicates with a well-cleaned piece of copposited on battery is made to act till enough tin has been de-
pat in the couper, pure and place. The wire this covered with tin chemically
pater metal l_{8}.
silvered is much cheaper than any other silvered
the $\mathrm{N}_{\text {RW }}$ Process for Preserving Meat.-Mr. Richard Jones' $^{\text {Dew }}$ process for ${ }^{\text {and }}$ process for the preservation of matat, to promote which, Moated, seemit into practice, a limited cooupany has just been n_{0} muech 2 upon their mettle. By means of Mr. Jofrigerating Biallachanical their mettle. By means of Mr. Jones' process
dead ion of refrigeration is necessary, aud the cost of an indead mon of refrigerating on is nechinesyary, and the cost of an in-
Mr. meat from, bound with Mr. Meat from, say, the Antipodes, is avoided. The principle
Jnes has 2 adopted is the injection of a 4 es has adopted is the injection of a fluid preparation of
boracic acid into the bloo 1 of an animal inmediately after it has been stunned, and before the heart has ceased to beat, the whole operation, including the removal of all the blood and chemical fluill from the body of the animal, only taking a fow minutes. The quantity of boracic acid used is very small, and though that littie is almost immediately drawn out ag tin with the blood, the praservation of the ff sh is said to be thoroughly effected. The quantity of the chemical l-ft in the flesh must, therefore, be very small, and can scarcely be injurious to the human system; for, as Professor Barff has proved by experiment, living animals, either of the human or other species, do not seem to be injured in any way by its consumption. This new process, which is a great advance upon Mr. Jones' original vacuum theory, is stated to be perfectly satisfactory in its results. A demonstration of the effects of the process has been given at the Adelphi Hotel, when the joints cut from a sheep, which had bren hanging for more than seven weeks at the House of the Society of Arts, were cooked in various ways, and those present agreed that the meat was equal to ordinary butcher's meat.
Agerm filter for water. -The tendency of research is to show that the germs believed to cuuse s? many diseases are not found in the air except under exceptional circumstances, but exist chiefly in water. This is prohably due to the fact that rain and filtration eventually bring the prolurts of fermentation and decomposition into the watercourses. Water may, therefore, be considred as one of the principal agents in the propagation of su:h diseases; and M. Chamberland has recently turned his attention to the production of a microbe filter, which would purify water not only from its mineral but its animal impurities. M. Pasteur has employed a porous vase of baked porcelain to separate microbes from the medium in which they are generated, and this is the bavis of M. Chamberland's fi ter. The latter has observed that water filtered through one of these vases contains neither microbes nor their germs ; and the proof of it is that such water can be added in any proportion to susceptible liquidy without-causing any change in them. The apparatus of M. Chamberland, which was recently brought before the French Academy of Sciences, can be fitted directly to any water pipe, and acts by the pressure existing in the latter. Under a pressure of about two atmospheres, which is the pressures in M. Pasteur's laboratory, M. Chamberland obtains with a single porous tube or "filtering caudle" (as he calls it) 20 centimetres long, and 25 millimetres in diameter, some 20 litres (about 4 gillons) of pure water per day, that is to say, a sufficient quantity for the uses of an ordinary household. By multiplying the number of candles or filter pipes, so as to form sets or "batteries" of them, a supply of pure water sufficient for a school, hospital, works, or barracks, can be obtained. The filter, therefore, is of a practical kind, and heing simple and inexpensive, will supply a much-felt want. The filter is cleaned by brushing its external surface, and plunging it into boiling water, or by heating it directly in a fire to destroy the organic matter lodged in it ; and properly cleaned, the same tube will last indefinitely. While upon this subject we may mention that electricity has been suggeste I as a means of ridding water of microbes, and a filter which electrifies the water has actually been designed and constructed.-Engineering.
A $\stackrel{1}{\text { fixed }}$ astronomical telescope. - A modification of Lewig's great teleycope has been devised by M. Hermite, and submitted to the French Academy of Sciences. The instrument mounted as an equatorial comprises two parts, one movable the other immovable. The immovable part is a telescope tube directed parallel to the axis of the world. Tue movable part comprises the objective and divers accessories which allow the observation of all parts of the celestial vault by aid of two movements communicated to them at will by toothed wheels; one of these wheels receives the parallactic movement. The objective is placed, not perpendicularly to the axis of the tube as in the ordinary telescope, but parallel to that axis and in a box of triangular section with th tube of the telescope entering one of its walls with gentle friction. The wall perpendicular to the latter carries the oljective, and the third wall in. clined at an angle of 45 deg . carries a plane mirror on it which receives the rays coming from the objective and reflects them up the interior of the telescone tube to the ocular lens. The bux is closed laterally to forbid the introduction of outside rays. It follows from this construction that by turning the box round the tube of the lunettes or telescope tube, the observer can see all points of the sky situated on the celestial equator.

This movement of rotation corresponds, therefore, to that of an equatorial round the axis of right ascension. To obtain the second movement of rotation corresponding to that of an equatorial round the axis of declination, a new box carrying a mirror inclined at 45 deg . to the objective can be moved cir. cularly round the latter. This box is open in front of the mirror ; consequently the first or interior mirror and the objective can move in a plane perpendicular to the tube of the lunette, while the second or external mirror which receives all the rays before they are sent to the observer possesses two movements, one in a plane also perpendicular to the tube of the lunette, the other in a plance at right angles to this latter movement. As in M. Lewig's instrument the observer can be comfortably seated at his work, the tube of the lunette can be constructed in masonry if necessary, and as only the movable part, which is very small, requiring protection, the expense of a dome is saved.-Enginecring.

The age of the earth.- Richard A. Proctor says that the age of the earth is placed by some at $50 \mathrm{C}, 000,000$ years; and still others of later time, among them the Duke of Argyll, place it at $10,000,000$ years. None place it lower than $10,000,000$, knowing what processes have been gone through. The earth must have become old. Newton surmised, although he could give no reason for it, that the earth would at one time lose all its water and become perfectly dry. Since then it has been found that Newton was correct. As the earth keeps cooling it will become porous, and great cavities will be formed in the interior which will take in the water. It is estimated that this process is now progressing so fast that the water diminises at the rate of the thickness of a sheet of writing paper a year. At this rate in $9,000,000$ years the water will have sunk a mile, and in $15,000,000$ years every trace of water will have disappeared from the face of the globe.

The antignity mercury.-A recent writer in the North China Herald discusses the part played by mercury in the alchemy and materia medica of of the Chinese. Cinnabar was known to them in the seventh century before the Christian era, and its occurrence on the surface of the earth was said to indicate gold beneath. Their views on the transformation of metals into ores and ores into metals by heat and other means took the form of chemical doctrine about a century before Christ, and there is now no reasonable doubt that the Arabian Geber and others)as stated by Dr. Gladstone in his inaugural address to the Chemical Society) derived their ideas on the transmutation of metals into gold and the belief iu immunity from death by the use of the philosopher's stone from China. Among all the metals with which the alchemist worked mercury was preminent, and this is stated to be really the philosopher's stone, of which Geber, Kalid, and others spoke in the times of the early Caliphs. In'China it was employed excessively as a medicine. On nights when dew was falling a sufficient amount was collected to mix with the powder of cinnabar, and this was taken habitually till it led to serious disturbance of the bodily fanctions. In the ninth century an emperor, and in the tenth a prime minister, died from overdoses of mercury. Chinese medical books say it takes two hundred years to produce cinnabar ; in three hundred years it becomes lead ; in two hun. dred years more it becomes silver, and then by obtaining a transforming substance called " vapor of harmony" it becomes gold. This doctrine of the transformation of mercury into other metals is 2,000 years old in China. The Chinese hold that it not only prolongs life, but expels bad vapors, poison, and the gloom of an uneasy mind.

Vegetable silk.-A German technical journal gives some details as to a vegetable substance, somewhat resembling silk, to which attention has lately been drawn by its having been exhibited in Greece. It is stated that this subtance is a silky haired portion of a tree-like shrub, which came originally from America, but is found in Syria and the south of Europe (Asclepias Syria), of the family of Asclepiades. It is also known as the Syria silk plant. The substance in question is used for stuffing very soft cushions. When mixed with silk and wool, the Syrian silk is said to be used in different tissues. The milky juice of the plant is poisonous, and the tough stalks can be used in the same manner as the corresponding portions of the hemp plant. An English exchange, which has seen a specimen of this fibre, says: "It is certainly very beautiful, soft to the touch, and very silky in appearance. Whether it is likely to be used
largely for manufactures is quite another matter, and upos which no off-hand opinion would be worth much.
A NEW EXPLANATION OF MENTAL AND NERVOUS DISORDERS. -Dr. B. W. Richardson has offered a new and plansible axd planation for the occurrence of various forms of mental alop. nervous disorders, namely : that they depend for their develop, ment on the presence in the body of certain organic componsers. formed by certain unnatural or abnormal chemical processes caz ried on within the body itself. He has proved that the substance amylene-an organic product that is sometimes formbuin the body-produces phenomena identical with somnambur lism. He believes from his researches upon the action ody lactic acid, that the presence of this substances in the body. will account for certain forms of heart disease and rheumatism. Similarly he advances other suggestions as to the probabich effect of other chemical compounds of poisonous nature who he believes may be developed in the body by abnormal pro cesses, and discusses their possible relation to the causation special forms of disease.

Length of our lives increasing.-At a recent interngtional health exhibition held in London, Sir James Paget de ales livered an address. before the association, the Prince of Whive being present. The learned physician asserted that peoplang ang
longer than formerly, and that less sickness prevails ano the mass of people, and he then gives the following reasons for the decrease of mortality during the last few years: "There less from intemperance, less from immorality; we have bettor, cheaper and more various food, far more and cheaper clothingo far more and healthier recreations. We have, on the whoter better houses and better drains, better water and air, and betick ways of using them. The care and skill with which are treated in hospitals, infirmaries, and even in private honsos are far greater than they were ; the improvement and extension of nursing are more than can be described; the care which tho rich bestow on the poor when they visit them in their owse homes, is every day saving health and life; and even effectual than any of these is the work done by the officers of health and all the sanitary authorities now active" and influential in every part of the kingdom. But wo wht," adds the lecturer in closing, "more ambition for health for personal ambition for renown in health as keen as is that for bravery or for beauty, or for success in our athletic games ap field sports."
Thermal Colotrred Rings.-M. Decharme, whose axfaric ments on the flow of currents in pipes and their hydro-dyn, had analogy to electric currents have attracted much attention, also recently drawn attention to the fact that thermal colourod rings bear a striking resemblance to electro-chemical co rings. When a copper plate is exposed to the flame of a 8 p lamp or a Bunsen burner, an irisated or rainbow coll 0° corona is produced about the heated point. Under good sir. ditions these colours are fixed and unaiterable in the These rings are, accordiug to M. Decharme, quite similar Nobili's electro-chemical rings; like the latter they sucond each other in waves, the colours being in the same namely, that of N 」wton's rings viewed by transmission.

Submarine cables.-The Faraday is now engaged in lajing the second Bennet-Mackay Atlantic cable from Kenmare in Ireland to Canso in America. Dr. Muirhead is at p at the Irish station fitting up his duplex system on th already laid, and we understand that he will shortly to America to complete the work there. cables duplexed, the company will have practically four ceb at their disposal to compete with the existing lines, and wion lieve that arrangements have been made with an amstem telegraph company to give them a land continental stion
lines, as well as a sut-Atlantic system. The combination therefore prove a formidable rival to the Western Union graph Company if it can keep out of the hands of the p powerful monopolies. While upon this subject we tion the singular case of a living whale, 70 ft . long, beind cently caught in one of the West Coast of America Telegrspit Company's cables by Captain Morton, of the company's if ing ship. The whale was hauled up to the ship's bows its cable while being repaired, and the wire cutting in caused the entrails to escape. The whale drifted to dead after the cable parted with the strain. The suppos is that the whale produced the faults in the cable, which was it being repaired, by getting entangled in the latter. must have been caught seven days.

[^0]: * A paper read before Section A at the Meeting of the British $\Delta^{80^{\circ}}$ ciatiou in Montreal.

[^1]: Continued

