The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coioured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with otiber material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causar de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'o. pas étė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ftre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restanrées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of priat varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

\square
Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de tite de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN AGRICULTURAL JOURNAL:

In the Monireal Gazette of the 19th December, we observe an article copied fromithe Albany Cullivitor, on the cutting and suring of beef for the. English.market. With regard to the mode recommended of cutting up the beef into small pieces of eight pounds weight each, we conceive it to be very objectionable, unless it is to be sold when it gets to England for the use of poorhouses only. The Euglish people, generilly, do not like to purchase salt meat cut up into small pieces, they would prefer having it in large pieces, to cut to suit thèir own fancy or convenience. We would recommend that the beef intended for exportation, should bè cut into large and suitable sizes; and we never found any difficulty in curing beef so çut. If the blood-is properly taken from the cattle when slaughtering, it is one of the chief points for preserving the beef subsequently. In Ireland; if the catte are driven from a distance, they are not killed for two days after their arrival; and in the interval are allowived only' water, and are frequently bled freely, in order that all the blood may be drawil out of the body when finally slaughtered, and even after using this preciation, it is nëcessary, when the meat is cut up, to remove the blood very carefully from the pieces. The carcasses are not to be cut up uninil the animals have been dead twenty-four hoursj; and when cut up, all the marrow is carefully removed from the bones. The salt made use of should be perfectly clean, and the fine and hearyy kind from Lisbon, in Portugal, was esteemed the best for curing beefin Ireland. The quantity of salt máde use of, was in weight, one of salt to six of meat.

The mode of salting and packing adopted at some of the best establishmente in. Ireland formerlys: was nearly as follows:--
\therefore When : the beef is cut up, the salters have a leather guard or glove, upon the right hand, with which they rub the salt well into the meat, and press out any blood that may be init. Each piece of meat passess through the hands of a series of ualtars, and when it arrives at theilast, who is
the most experienced and skilful, he exami esiif there be any defect-any vein which requires to be opened, he corrects the defect, opens ithe vein, rubs in more salt, and throws it into the cask of salted pieces; in this it remains in the air eight or ten daye, the salt penetrates into it, and is turned into brine; at the end; of this time, it is taken out and barrelled. After the meat is removed from the cask, the brine is thrown into a trough, and a layer of salt is put at the bottom of the cask, upon this is placed a layer of meat, and this alternately until the cask isfull.. When the meat is allypacked in;- it is' pressed down with a weight of 56 lbs., and the câsk is: closed; there must afterwards be:a hole bored in:one end of the cask, to blow into, in order to be sure; it does not leak; if no air escapes, the hole is closed again. When it is asceitained that the cask is ingood order, the bung is taken out, and brine is turned in :until the meat:is:saturated and: covered; and the less brine required, the better will the meat keep. After having allowed the barrels to romain five days, it is necessary to examine if they are well filled. with brine, and do not leak; if necessary, they are again well filled with brine; and the operation is concluded.
According to Liebig, the saltis only required to extract the water: and moisture out of the meat: He expresses himself thus:
"Fresh fleshosover which salt has been strewed, is found in fwènty four hours swimming in brine, although not a drop of water had been added. The water hatbeen yielded by muscular fibre itself, and having dissolved the salt in immodiate contact with it, and thereby lost the porver: of:penetrating animal substances, it has on this account separated from the flesh. The water still retained by the flesh contains a proportionally. small quantity of:salt, having that degree of dilution of which a saline fluid is capablo of penetrat-: ing animal substancer. The property of animal. tissues is taken advantage of in domestic ermo: my, for the purpose of removing oo much wateri
from the meat, that a sufficient quantity is not left to enable it to enter into putrefaction. In respect to this physical property of animal tissues, alcohol resembles the inorganic salts-it is capable of moistening, that is of penetrating animal tissues, and possesses such an affinity for water as toextract it from moist substances. Thus salt substances introduced into the stomach, extracts water from the organ, and a violent thirst ensues; alcohol, taken into the stomach, produces the same effect, violent thirst, and acts upon it in the same manner as salt."

From these circumstances, $i t$ is obvious that water should not be used in curing beef or any other meat, as the use of salt appears to be, to extract moisture from meat in order to preserve it. The use of saltpetre is also condemned as injurious, and having a tendency to make the beef hard. A portion of sugar, mixed with the salt, when finally packing the beef into the casks or barrels, is better than the use of saltpetre. This is a subject of vast importance to Canadian Agriculture. We believe that a most profitable trade might be established between this country and England, in the articles of salted beef and pork. Canada is perfectly well adapted for producing the means of such a trade, if our lands and stock are properly managed. There is nothing in the climate or soil to prevent the raising and fattening of cattle and hogs for exportation, under juidicious management; to a great extent, indeed, almost unlimited. It should be our object to instruct and encourage our farmers to produce the means for the trade. This sort of speculation would afford more certain benefit to the province generally, than any we are acquainted with. Let us augment the amount and value of our own productions, and we are sure to prosper.

LOUGHBOROUGH AGRICULTURAL ASSOCIATION.

The quarterly meeting of this dsociation was held in the Wellington room, at the Plotgh Inn, on Thursday, the 25 th September. S. B. Wilde, Esq, presided; and Mr. J. N. H. Burrows occupied the viccechair. After the cloth had been drawn; and the nsual loyal toasts were given, as also the health of the President, C. Wm. Packe, Esq., M. P. -
The Chairman read the circular calling the meeting, in which it was announced that the subject for discussion wag, "the fattening of cattle."
Mr. Rawson, surgeon, of Kegworth, introduced the subject. He said, there were lnown to chemists about fify-six elements, of which there wcre only eight or nine in animals; the principal of those were oxygen, hydro. gen, nitrogen, and carbon. Oxygen enters into all animal and vegclable substances, and is an essential ingredient in atmospheric air. Nitroger has no positive pro.
perties, its object is to dilute oxygen. No animal could live on nitrogen ulone. Hydrogen is sixteen times lighter than common air, and is an essential ingredient in water, and very inflammable. After an claborate deseription of the various elements which enter into the animal frume, the speaker proceeded to infurm the meeting what were the varjous unes of each. Nitrogen, he suid, was the principal ingredient in flesh and muscle. Fut is com. posed of carbon and hydrogen. If they wished to makn an animal fat for sule, or for show, they must feed it on carbonaceous fond. Unripe straw is very carbonaccous. As the seed ripens it becomes less so, and not so suitable for fattening. Cows gencrally feed weil on after. math. Hulf-a-pound of Swcde turnijs contains 110 grains of nutriment, while the same weight of white turnips only contains 85 grains. The outer temperature is very important; it should be brought as nearly us porsible to the temperature of the blood. The sume re. gard to temperature is necessary with respect to a nilking cow. Fat is a mere deposit, a secretion; it does not impart strength, rather the contrary. Hence we do not make a horse fat for racing, but make him display muscular power. In fattening horsics for sale, carbonaceous food, young grass, oil.cake, swede turnips, \&c., should be given. - In fceding for use, the carbona. ccous should be mixed with an equal quantity of other kind of food.
The Chairman after eulogizing the able exposition of the subject they had just heard propounded, with thanks for it, proposed Mr. Ilawson's health, which was drunk with applausc, and Mr. R. acknowledged the compliment, and had great pleasure in proposing "the best interents of the Agriculturists of the Midland Counties."
The Chairman next proposed "The health of Mr. Bcr. nays," which was received with applause.
Mr. A. J. Bernnys (analytical chemist, from Derby), then rose and said : Agriculture is a subject of such vital importance to the community at large, that I consider myself bound to attend all such meetings, where 1 may increase my knowledge of it ; and I shall always be glad to be present at your quarterly mectinge as long as I am in the neighbourhood of loughborough. We have just now heard that although 56 elements are at present known, yet only a small portion of them enter into the composition of animal and vegetable life. Of this portion, consisting of from 10 to 12, only four enter extensively into the formation of the organized portion of the vegetuble and the ammal. These elements arrange themselves into two distinct classes; the one cluss, formed by the combination of carbon, hydrogen, and oxygen, in different proportions, includes what Liebig calls the clements of respration. Hereto belong starch, fat, butter, sugar, gum, and alcoholic fluids. These may likewise be termed non. nitrogenised substances. The other class, formed by the combination of all the four elements, includes the elements of nutrition, or the nitrogensed constituents of foud. Hercto belong vegetable and animal fibrine, caseine, albumen, and gluten. The non-nitrogenised con. stituents were provided for sustaining the animal heat of the body; and protecting its parts; and in so doing a provision is laid by, upon which nature draws when the body is diseased. From their very nature they are easily destroyed, by the influence of the oxygen of the air. You all know it to be a common practice to milk cows in the field, if they be at any distance from the homestead: the reason is obvious: when a cow walks a great distanco without food, the oxygen of the air almost immediately begins to act upon thoze substances with which it cart most easily combine. Such a substance is the butter in the milk; when a cow is driven home, the butter is found, in great part, to have disappeared. Again, after parturition, the milk of the cow contains only traces of butter; because, by the increased action of the muscles, a larger proportion of oxygen is taken into the system. This well known fact brings us to the subject of stall-feeding. When a cow is intended for milking, and with a view of yiclding as much butter as possible, we naturally confine her. In this unnatural state, there being no call for exercisc, the food takon by the animal is only in small part
exponded in maintaining its heat. Howover, we all know that confined milch cows never vielded so well.fla. voured butter or checse, as those which are unconfined. Gows living in a natural state eat what they liko; stall.fed cows cat what they get. Owing to this cause, the Dutch checessyatve ncarlgibeenydriven out of our market by the American. In Holland, stall.fecting is the common practice; "hence is the produce less palatable than the Amsrican, in which country, iland being cheaper, the practice is unnecessary. There can be no question about the utility? of atall.fecding, but I very much question whether close confinement is equally beneficial with a con. finement allowing of some genile exarcise. When the weather is warm, cattle may lpasture in the meadows without loss to the agriculturist. The air is then nearer the temperature of their own bodies, berides being more expanded. The animals feel?no call for exertion to keep thensclves; ivarm, and the gentle motion necessary in the sceking of fund, by increasing the healthy state of the body, enables them not only to eat more, but to assimilate betier what they do eat. In winter the case is materially altered. Theftemperature is far lower than that of their own bodies; the air, too, being more condensed, contains a proportionably larger quantity of oxygen. Therefore, more nun-nitrogenized food will be required to combine with the excess of oxygen; indeed, as we all well know, more food will bo required than in warm weather. Here, the peculiar advantages of stall-feeding come to our aid. You will perceive that warmth produces a saving in frod; it 18 indeed an equivalent for food. Fverything that cools the body of an animal, causes a proportionate expenditure of food. In stall-feeding, the temperature of the air of the stalls should be equally maintained, and they should be kept clean. The animals should be regularly fed, have plentiful litter, and be kept clean. If, as we have already said, warmth is an equivalent for ford, it is obvious that the form in which the food is given cannot be immaterial. The more we facilitate the adaptat:on of the food for the organs of digestion, the greater will be the saving to us. The farmer cuts up his hay, straw, and turnips to save some expenditure of furce, hence of food, by the feeding animal. If the frod contain much water of a temperature far lower than that of the animal, it must be raised to that temperature at the expense of a part of the food. This is obviated by the process of steaming. An ox, fed by Earl Spencer, consumed in a winter month (the temperature of the air 32°), 601 bs . of mangold wurzel a day. Now, in order to raise the tem. perature of the water of the mangold murzel to the temperature of the body of the ox, no less than one-twentieth of the food was expended. All feeders of pigs know that they thrive better on dry than on wet fodder, (Mr. B. sat down amidst great applause).

The Chairman then proposed "The healths of Mr. Stokes and of Mr. Allen," who made a few observations on the advantages of giving artificial food to animals in the straw yard. He had himself given oil cake to cattle, and found it to remunerate him.
C. Stokes, Fsq., rose to give his testimony to the principles laid down by Mr. Rawson and Mr. Bernays. He could fully bear out Mr. B.'s remarks on stall. feeding.

Mr. Smith wanted to see science brought forward in connexion with agricnlturc. "We want," he said, "something definite and distinct on the formation of fat and muscle." He wanted defined what would produce most fat, milk, and cheese ; and he hoped to provoke one of the gentlemen present, to rise and define it. He hoped they would give them the kind and quantity of food to produce them.

Mr. C. W. Wood, zurgeon, of Woodhouse Eaves, said he would direct the few remarks he had to make excluaively to the expressed object of the meeting, namely, the feeding of cattle, , and ho viewed that as the most important matter with which the praclical farmer had to do ; in short, his whole life and exertions tended to produce the greatest possible quahtity of beef and mutton-if not in the shape of fat catule, his suipply, of grain only produced the same effects in man. But before we talk of produc-
ing, it is necessary to ancortain correctly! what it is we want to produce. All animals are composed of bonc. muscle, fat, onlluîar tissuo, wool, hair, horns, skin, and nails, and we find theso very substances roady formed in vegetables, the power of nutrition in the animal having nothing to do but select thom from its food, and by means of tho circulation to place them whero they arc wanted. If your object he, as in the young growing animal, to increase as well as to sustain it, you choose those vegétn. bles which contain a large muscular fibre, or nitrogen and phosphate of lime for the bones, such as peas, beans, oats, barley, \&c. If with a full grown anmal, your ob. ject be to slatain its condition with an increase of fut, you give thoso vegetables which contain fat ready formed, as Ientils, Indian corn, oil cake, \&c. But as you have gencrally a mixed object in view, namely, to produce bone, muscle, and fat also, you must necessarily give a mixed food-the operations of which I will now explain. The composition of the animal and vegetable world is identically the same, and the latter, wherever we find it. contains in a greater or less degree all the elements of the former. The vegetable world is sustained entirely from inorganic nature, the carth on which we tread, and the atmosphcre we breathe, occupying a middle spherc, its whole existence being to collect materials to build up the animal, consequently entirely subservient to it. The inorganic world, again, is composed of a few simple el ments, of which hydrogen, oxjgen, nitrogen, carbon, phosphorus, sulphur, and some saline substances, as pottassium, sodium, and calcine, form the chief, the very ele. ments of vegetable and animal life. Gcology, chemistry, physiology, are therefore essential to tho right understand. ing of this subject, bearing cver in mand that the lower are always adminstering to the wants and necessitics of the higher orders of creation. There is no motion in an animal body, or emotion of mind, but what causes a cor. responding absorption of the tissues of the body, and in order to keep up this daily waste, a cortain amount of food is necessary. This is called sustaining the bndy. Thus cattle, working hard, require a larger amount of food than when at rest. This necessity being duly attended to, constitutes health. But fattening, gentlemen, is an unnatural condition, and requires an increase of suth stance. Hence the necessity of unnatural means, as the absence of excreise, light, and the influences of the atmosphere, a mixed diet (to bring out all the materials of the animal body to the greatest perfection) in a dry warm state. Mr. Childer's beautiful experiments proved that warmth alone with an animal would produce onc-third more flesh, and at the expense of one-fourth less food. Mr. Norton also proved that the absence of light with warmth produce still greater results. The reason of this is obvious. Every animal posscsses both a nutritive and respiratory apparatus; the one to sustain the body, the other to support its vitality, by producing health or warmth. This first object is effected by the gluten in tho food principally, the basis of which is nitrogen. The second by the starch, sugar, and gum, contained in the: food, which forms bile, the basis of which is carbon. The bile passes into the intestines, where it meets with oxygen, and thus becomes carbonic acid. In this state it enters the circulation, where it meets with peroxide of iron (which the blood always contains), the carbon unites. with the iron, and forms carbonate of iron. In th.s stafe it passes to the lungs, where it meets with fresh oxygen during inspiration, which reconverts the carbon in the carbonic acid, which passes off during expiration, while the peroxide of iron is reformed, and taken back by means of its carriers to be again transformod into carbonate. The result of this combustion of carbon is heat. The heat of the animal body is nearly 100 degrees; all food, therefore, before it can be assimilated, must be raised to its own temperature, which can ofly be done by the consumption of carbon, or in other ifords, food. Potatocs, linseed-cake, and oleaginous soeds, on account of tho starh, sugar, oil, and gum, they contain, are well adapted to accomplish this end. If we reflect for one mn. ment on the immense importance of the liyer and lunge in the animal cconomy, is it not strange to see the scorcs
of discased ones which our shambles are constantly exhibiting ? alowing the great inattention the farmer pays to the comfort and well being of his cattle, Fat is a reservoir of carbon for the system to draw upon for the purposes of combustion, in the event of the food not contam. ing a sufficient quantity of the proper elements to kecp up animal heat. As manure is an important result attending the feeding of animals, it may be well to remark that its quanlity depends upon the refuse of food, and the amount of absorption going on in an animul's body, or in other words, upon its own destruction, thus returning to inor-- ganic nature, as food for vegetable life, the elements of its own destruction. But the quality depends upon the quantity of nutritious food given to the animal. Tho young growing animal requiring in. crease as well as sustenonce, consumes all tho nitrogen and futty matter in its food. The milking cow the same. But in fullgrown feeding animals a large quantity of these ingredients are not consumed; a rich and valuable manure is the result. In chonsing animals for fecaing purposes, the farmer often exhibits a remarkable knowledge of physiognomy. He li :es a kindly disposed, quiet looking animal, with symmetry of carcass; one built for etrength, broad across the back and loins, and long guarters, where large masses of muscles are placed, a narrow and deep chest, and "a good handler," or where there is a large quantity of fine soft hair, with plenty of fatty matter underncath to nourish it. Thus furnished, he has only to put into operation the suggestions of science, and the result must necessarily be profitable and uscful. When we'see the extensive upplication of capital, industry, and science to the manufactures of this country, and the comfort and wealth they produce to thousands of our fellusv creatures, also the dominant influence of its interests, threatening the downfall of the British farmer, surely it is time, and our bounden duty, to unite these same principles, that the abundance of the soil may satisfy both landlord and tenant, and be the means, under the blessing of Divine Providence, of producing plenty of cheap food to the many thousands of our wanting fellow.ereatures.
Tre Chairman proposed the health of Messre. Smith and Wood.
Mr. Smuth replied, and expressed his gratitude to Mr Wood, for his claborate exposition of the subject, and still huped tos see science and practice combined inuch more thin he had done.
Mr. Woud pronosed the health of the Chairman, which was reveived with loud checrs.
The Chairman rose and expressed his gratitude for the kindly manner in which they had drunk his heaith. He would have gone further into the subject before them, had it not been so ably treated by gentlemen of practical science. It was from practical men they must expect useful information; and when they had practical men for their leaders, it was their own fault if they did not benefit by them. He bore testimony to some of the principles laid down by the previous speakers, and said he should feel pleasure in presiding at their meetings. Again thanking them for the hunour done him; he resumed his seat amidst applause.
Mr. Bernays again rose and said-In order to obtain a fair proportion of fat and lean, it is of the utmost importance that you should be acquainted with the composition of fuod. We should be very much mistaken were we to judge of the value of food by its bulk. Grecntop turmps, mangold wurzel, and red bect, contain 89 per cent of water; Swedes, 85 per cent.; potatoes; 72 per cent. ; oats and wheat strav, 18 per cent.; hay, peas, and lentils, 16 per cent. $;$ and beans, only 14 per cent: Hence the latter food is infinitely superior as to its feeding properties than the former. But we have only spo. ken of the food in relation to water; it is necessary that we should understand cacli other when we make use of ccrtain turms, It is but too indefinite if we include flesh. enug and fattemug in the term fattening; the term rearing would then be mare appropriate. But it would be stul better if ve-disu,nguish between feshening, or tho formation of musole, and fatteniñ zor the foraution of
fat. According to the quantity of non.nitrogonized constituents of food capable of forming fat, in other words, according to the supposed fattening properties of fond, they rank thus:-1, Oats, barloy meal, and hay; 2, beans and pens; 3, lentils; 4, potatoes; 5, turnips and red beet. According to their fesshening propertics, they stand thus;-1, lentils; 2, bcans; 3, peas; 4, ficsh; 5, barley meal ; 6, vats; 7, hay; 8, carrots and potutoes; 9 , red bect; 10, turnips; $100!\mathrm{bs}$. of lentils are supposed to be cnpable of yielding 33 times as nuch muscle ay 100lls. of turnips. Great advantage thercfure results from the admixture of food. An animal which has been fed chicfly on oil cuko, would, on being turned out, in. crease in size much more slowly than the animal which has been fed on bry, or on turnips and hay. The oil cake produces chicfly fat, and little flesh; hènce the movement of the animal will consume much of the ready formed fat, or tallow. It is only when the oil cake in given with ficshening food-such as beans, oats, and hay -that lean is proportionally formed. Warmth, confine. ment, and futtening food are most favourable for the formation of butter, fat, and tallow. Hierbage-which is generally denominated poor, but which, in reality, is rich in nitroge nized constituents, and-which cows have to crop themselves-is favourable to the formation of checse, bui not of bulter.

Mr. Stokes.-Would you recommend the food to be given in a warm state?

Mr. Bernays.-Decidedly; a little lower than the temperature of their own bodies.
Mr. Stokes proposed the health of Mr. Burrows, and the Stewards.
Mr. B. returned thanks, aud suid he had been much pleased with the discussion that afternoon. He was sorry that more practical men had not risen to take part in it. He had found by experience, that cattle kept dry and warm, consumed less, and fattened better.
Mr. Henson rose, and asked what mixture of food Mr. Barnays would recommend. He was at a loss to know how to put these differcnt elements ingether. He hoped to hear at some future discussion how to produce the largest amount of fat, without losing sight of the manure heap. He proposed the health of thic Rev. E. Wilson; who rose and returned thanks; and expressed his gratifi. cation with the discussion. He always found insuruction at their meetinge.

Mr. Stokes suggested that tables of the quantity and quality of food recommended, should be drawn out, and some of the members requested to keep an ox or two, and give the result of their experiment for the benefit of others.
Mr. Henson made another observation or swo ro. lative to the quantitics of food and the manure heap, and

Mr. Bernays rose and said -I cin only say, in answer to Mr. Henson, that I shall be happy to answer his ques. tions as to the necessary qualitics of food for producing ficsh and fat, on some future occasion.

POTATO DISEASE,
To the Editor of the Durham Advertiser.
Sir,-The investigation of the potato disease having been taken up on a large scale, I havo beeni requested to undertake the chemical part of that investigation. I have in conscquence drawn up the following queries: for the purpose of obtaining information. They' have already been widely diffused in the form of a circular, I hope you will have'no objections to give them a still, wider circula. tion:through the oolumns of your journal, and you will oblige, Sir, yours truly,

Jıs. F. W. Jounsrom.
Durham, Oct. 27.
oueries regarding tifs jotato dagease.

1. To,what extent has the potato discawe appeared in your districf, or county, during the present ycar? Is the gencral, crop large 7 and how much of it do you think is affected?
2. Is it more extcasive daring the prosent than during
3. Huw many years is it sinco it first began to be no. tived atnang you?
4. At what time during the present soason did it first appear in your neighbourhood? Husits appuaranco been sudden and unexpected ?
Note.-A letter from n Mr. Gilchrist, of St John's, New Brunswick, dated 27 th Septemler Jast, contains the fillinwing passige:-"I whe nover mere surprised at anything than the change upon tho uppearance of the conn. try from the time I had gono through it two months before. At that time overything looked heautiful, and crops of every kind seemed abundant; but now a biight seems over everything. From Imalifux to St. John's, I did not see a single field of potatoes but what was completely des. trojed ; and it is universal throughout the whole of North America. So bad are they ipons $\$$ t. John's River, that the health officers have forbid them being brought to market; and, from whint the country peoplo say, there will be scarcely enought loft for seed. It is a strange sort of discase. It first attacks the shaw, und so rapid is it, that in the course of tivo or threo nights a whole field will be destroyed, and the stench that arises from them is almost unbearable."
5. What peculiar appearances has it presensed-docs it differ in chatacter from the disease of former years? Does it generally show itself in the louf and stem, before it ap. pears in the bulb?
Nore - The rot in the tuber of the potnto assumes two distinct characters, known thy the names of dry and the wet rot. The former, which hus hitherto prevailed mist in this county, has the appearance of brown or brownish black streaks, spots, or layers in the potato, beginning at the outside, and extending inwards, often to the very core. The affected potatocs often appear sound externally, though upon a cinser inspection the seat of the disease may be traced by a slight wrinkling or discoluration of skim. In many cases the disease appears first at the end of the potato most distant from the root. In others it is the prominent eyes at the side of the potato which are first attacked, presenting a blue or livid uppeurance, and exhibiting, when cut, the brown rungus withill. Potatoes, with this form of discase, aro olten difficult to boil soft. When far gone shey have a disagrecable taste and smell after being boiled, and they not unfrequently decay after bcing pitted.

The wet rot forms an ulecr or distinctly decayed and rotten part in the potato. It sometimes appears es a rotten hole proceeding from the heel of the potute, whero it is attanelicd-to the rontlet : sometimes it forms a soft mass over a large part of the surface, which can easily be pushed off by the thumb; and sometimes it appears sound externally; and yet may be crushed together in the hand.

The rotten portion has frequently the consistence of a paste, "with tenacity sufficient to rope when held up , and the semi.fluid maes strings down like honcy."
6. On what soils is it most prevalent-on light or heavy -on wet or dry-or on all soils equetly ?
7. Has it, to your knowledge, appeared on peaty or on newly broken up grass lands?
8. In whiat varieties of potatocs? Have old or long cultivated varietics failed mure than now ot recently introduced várieties?
9. Are varieties raised from seco', oo your knowledge, liable to failure?
10. Have potatues planted whole shown any difference in the extent of the failures?
11. Has the provious draining of land any effect in preventing the diseases?
12. Has the kind of manure applicd any influence on the appearance or fatality of the disease?
13. Do you think the want of lime in the land is any cause of failure ?
14. Does it, in your district, attack particular fields or farms; and what are the peculiar conditions of these farms 3
15. Does nearness to the sen or thio uro of sca. weod make any dificrence?
16. What is your opinion of the cause of the discasn?
16. Do you think you have in any way contrived to prevent it, during the present or past seasons, and how?
Note.-An American Agriculturist says:-" I havo used slack lime, which I sprinkle on the potatucs as soon as they are cut for seed, and flovel thent over in it, and plant them immediately. Since I have adopted: thas plan. I have not lost a potato, etther in the ground, or after they were put in the cellan; and such of my neighbours as follow my example are alike fortunute, and in no way troubled with tho rot." This was written in 1844.

In Scotland some practical men have supposed that by the use of saline, or chemical manures, they have been able to prevent it.
18. Has the peculiar wetness of the season, in your opinion, had anything to do with its occurrence in your neighbourhand?

Note.-'The American Report for 1844, contains tho following passage:-Notwithstanding the intensty of the dromght, and its long continuance, the potutoes in this section of the country are rotting to such an extent as to destroy nearly the whule crop.
19. What are the first symptoms of decay after storing ?
20. It is said that the rot spreads faster after the pota. toes are put tngether in heaps or pits, than when left in the soil-and late digging or leaving them all winter in the soil is therelore recoinmended, what practuce sould your experience lead you to adopt?
21. How would you recommend that the potatocs should be stored during the winter i Will a spruking of slacked lime, or of salt, or pounded charcoal, or charred pent, or wood ushes, be bencficial? Will washung the potatoes clean, and then picking and drying them before stering, help to preserve them?
22. What precautions would you adopt in preparing the seed in spring?
23. Have any cases occurred in your neighbourhsod in which the use of discased potatues has been mjuntuus to animal life?
24. Arc you able to forward me any striking examples of very healthy or of very discased potatoss from your neighbourhood, or specrmens of insects or of fungi you sup. pose to infest the putalocs, for the purpose of chemical, botanical, or entomological exammation?

James F. W. Johnston.
DR. BUCKLAND ON THE POTATO DISEASE.
At the Annual meeting of the Queen's College, Birmingham, for the distribution of prizes, Dr. Buckland delivered a powerful addres:, in the course of which he alluded in the following terms to the murrain of pota-toes:-"It had been too noturious for some weeks past that a gangrene had scized upon the potato crop, that it was almust universal. It extended all over Eurupe, and it was felt in the United States. It was felt, in the first instance, in Belgimin, and then all over France and in italy. He (Dr. B.) had received, within these few days, the result of an investigation of the potato disease in Scotland, in which Dr. Johnston had tuen summoned to institute a chemical investigation into the nature of the disease, and it was only that morning ho reccived intelligence which confirmed his worst fears of the nature and extent of the malady. He had read that murning before leaving London, in the letter of a geitieman culled the inines commissioner, the most awful statements relative to the condition of the potato crop in Ireland. That gentleman stated that he had just been informed by a priest that the disease of the potato crop was genernl in his parish in the county of Clare, and that out of 68 barrels of pritatoes which had been buried in two pits, not one barrel had cscaped uninjured. Nearly the whule were found to be diseased and decomposed. From these and other awful accounts he (Dr. B.) would say that the plague was began. There was, he believed, yet a rensedy for the disoase if taken in time. They must, how.
ever, loose no time-every day lost in preparing for, an guarding against tho evil might prove fatal to hundred ${ }^{8}$ of thousands of their fellow.creatures. What was to be done when the peatilence-the vegotable gangrene might come and scizo upon man and beast ? Ho used the term "gungrene" advisedly, for they might see in" tho samples of potutoes which he then held in his hand, evident gan. grene, and the term had been applied by the physicians und scientific men of France to the disease. The great question now to be considered was, could they apply any remedy to the ovil which existed. He believed they could; and he would at once say, first of all they must remoye the potatoes from the ground, store them where. cver they might--barns, warehouses, and cvery place that could be made available for holding them, must be used. Infected potatoes must not be allowed to touch the mound ones, for there was contagion in them; and so long as sound potatocs were kept dry, there was no danger of them. The diseased part of the potatoe is innocuous to man or beast if mascerated or steeped 12 hours in clean cold water, and then changed and washed again in other water, before they are boiled. The starch then in the most decayed and putrid portion of the potato was perfectly good. After the first 12 hours' steeping, the find was to be taken off. The diseased part must be pared, and the parings washed iwice in cold water, there being 12 hours, as he had said between each washing; then they were to ${ }^{3 e}$ dried and set by for the use of cattle. He would therefore impress upon all concerned in the care of potatocs the absolute necessity of keeping them dry. Instruments are now being made in Paris and London by means of which the starch could be separated from the potato; but where the vegetable fibre remained, let it be washed and preserved. He would again impress upon those who had buried their potatoes the necessity of removing them at once. They ought to be put into straw, and every means taken to preserve them and keep them dry. He regretted to state that one-thrrd of the potato csup in Ireland was lost, and with them the food of 2,0.50,000 of the people of that country had perished. Not one moment was to be lost. The government must interpese, science must interpose betwcen the dead and the living, and by the goodncss and mercy of God the plague may yet be stayed. At all events he would say, when God's plague was on the carth, let men leave of their unrigh. tcousness."

AGRICULTURAL STATISTICS.

At the monthly meeting of the North Cornwall Experimental Club, held at the Tree Inn, Straton, G. Gurney, Esq., presiding, after the various topics connected with the "operations of the month" had been discussed, Mr. Rowe read a paper on "The Importance of Statistics to Agriculture." He began by observing, that the subject might be thought by some as of too little practicul value to merit attention; and that this opinion had very generally provailed might be inferred, or Great Britain would be the only country in Europe, with the exception of the Netherlands, devoid of correct statistical information relating to the science of agriculture, founded upon official inquiry. If a consciousness of having exceiled incited to exertion, would it not be well, as far as practi. cable, by a compendious system of statistics, to sethle the question, "How far does agriculture progress 3" To each member of the club it should occur that the object of thicir associating together was "the advancement of the art and science of agriculture !" but without correct data, withcout statistics, were they not in a great manner at a loss to say, how far they were aiding in such advance. ment, or whether, in fact, any "advancement" was with them being made? These were questions of deep import, and descrving, if possible, a solution In political economy generally, the science of statistics was now fully recognized, and its importance appreciated. In 1832, a departunent of the Board of Trade was created, for the spe ci.il purpose of collecting and arranging statistical information, with a view to its presentation to Parliament, and muel valuable material had, from time in time, been thus brougint tegether; but the attention of that buard had
been manly occupied in matters relating to our cummerce, manufaotures, and intercourse with foreign countrics. Again, llose engaged in almost every att and manufacture had been strikingly alive to the most trifing minutime bearing upon tho process, result and expense of cach department in tiseir several pursuits, whilst the agricultur. ists as a body had proved themecives -indifferent in such nutlers, and the consequenco was, that it was scarcely passible to obtain from two indirddatis a like opiniun, cither as to the expenfe of preparation for a single crop the average quantity of any given crop in a scrics of years, or the value of such crop when produced. Indecd this vagueness secmed to run throughont the whale operations and results connected with agriculture, and hence the difficultirs which their society had met in arrunging a scale of labour. In proof that British agricultursis had been as inattentive as he had stated, and more so than the other European states, Mr. Rowe adduced the cxample of France, where the quantity of landsown with cach description of grain, the produce, and the quantity of live stock for the whole king dom were annually ascertaincd, and accurately known. In Belgium, similar information had been periodically cullected. In the United States, also, at the decennial census, much intercesting and valuable information was obtained, as to the live stock, the produce of various crope, and the quantity of dairy, orchard, and garden produco, \&e. In England, in 1793, a Board of Agriculture was establixhed, assisted annually by a grant from parliament, and was continued until 1816; but the attention of that hoard he apprehended, was directed to modes of agricultural improvements, rather than simply collecting and arranging information. Our neighbours north of the Tweed possessed statistical accounts of each parish in thekingdom, collected by the ministers of the respective parishes, and lately published with the uuthority of their names. Thesoaccountsgencrally include the extent and boundaries of the several parishes, the topographical appearances, the rivers, the geology, with short historical nolices, the population, the number of acres, the number cultivated as arable or otherwise, the system of cropping, gencral holdinus, and annual value of agricultural produce distinguishing that of grain, green crops, \&c. Within the last fow ycara, he believed, a serics of questions had been issued by government, and addressed to the soveral parishes in England, bit whether returns had been gencrally made was doubtful, as the result had not been publisked, and hence the uverage produce of the kingdom stated to be in years of fair crops, 28 bushels per acre, must be regarded as a matter of conjecture rather than of evidence. This question was now, howciver, forcing itself on the attention of government, and had been brought before parliament for several years past. By a well arranged plan, as in other countrics, the quantuty of grain annually produced might be ascertained, and the important and practical question settled, as to how
 of population 3 a question which must be looked faisly in the face, as one beeoming every day of greater moment; for it should be bnrne in mind that our popalation did not simply augment in an uniform ratio, the increase in the 20 years from 1821 to 1841 being 2,733,669more than the increase of 180 years preceding 1750 (which was but $2,230,000$), and greater than the increase in the 500 years succeeding the conquest. Objections might be urged to the adoption of a plan of statistics : one-" that it would be a prying into the private affairs of individuals," was certainly entitled to much consideration; but after having been inured to the ordeal of the income tax, we might well suffer the inventigation that might be necessary for such a purpose, a restoration to vigour being oft-times secured only by an unpalatable: draught or a painful operation. The lecturer then! urged the grat importance which would have been given to this part of the counly had such a plan existed ; itit capa. bilities and fertility would have been definitely shown, and would have given it a claim to consideration and accommodation in any scheme of local improvement prufes. sing to be directed to the welfare of the ccunty generally; a remark forcibly applicable at the present moment, when
ether parts of tho the county were urging their relative importance in reference to the intended railway communication. After quoting from several ancient authors ont the agriculture of tho county, Mr. Rovo referred to a statistical dotail of the number of acres and the quantity of produce in the soveral parishes of the hundred, compil. ed by the late Sir Jolan Call, in 1795, from which it ap. peared that the wheat crop bore at that period but a small proportion to the spring crops, for while the quanti. ty of barley and oats reaped in the 11 parishes forming the hundred, together with the parishes of Poundstock, amounted to 45013 acres (being 1378 of barley, and 3125 of oats), the number of acres of wheat only announted to 2191 , being less then one-half; they might therefure con. clude, that as green crops were not at that time cultivat. ed to any considerable extent, the system of taking theso crops in succession was, so late even as then, in full ope. satton. The parish of Poughill stood conspicuous in this list, as being the only one in the hundred in which tho extent of the wheat crop was not exceeded by either oats or barley.-Roya! Cornwall Gazette.

QUALITY AND ECONOMICAL USE OF AGRI. CULTURAL PRODUCE.

Corn and Potatocs are direct food for man. Turnips and green herbage are only indirectly convertible to his usc. The manufacture of these into such food as he can consume-into beef, mutton, and pork, or into milk, butter, and checse-gives rise to important branchos of rural economy, to which much rural industry is devoted, and a great breadth of land. In these branches it is as important to convert the raw vegetable material-the turnips and herbuge-into the largest quantity of the manufactured articlo-beef or cheese-as it is, in arable culture, to raise the largest possible amount of grain with the smallest quantity of manure, and with the least injury to the land. Ifence arises many questions as vitally affecting this indirect, as the doctrine of manures affects the direct me. thod of raising human food. Thus it was observed that one kind of herbage, or grain, or root, fattened animals more quickly than another; or aided their growth more; or caused them to yicld more milk; or made their milk richer: in butter or in cheese; that, from certain kiads of land, or after some modes of culture, or when raised by the aid of some kinds of manure, the same kind of produce was more nutritive; and that, when given in some states, or under some known conditions, it went further, and was therefore more valuable in the feeding of animals. How many curious questions are suggested by such observations as the following! Some varieties of wheat are better suited for the pastry cook; others, for the baker of bread. Some samples of barley refuse to malt in the hands of the brewer and distiller; and some yield more brandy; while others lay in more fat. The Scotch ploughman rcfuses bog Oats for his brose meal, or for his Oiten cake, because they make it tough; and the cotter's family prefer Angus oats for their porridge meal because they swell, and become bulky and consistent in the pot, and go farther in feeding the children at the same cout. The pea sometimes refuses to boil soft; the pota. toes, on some soils and with some manures, persist in growing waxy. If Swedish Turnips sell for 30s a tonas in large towns they often do-ycllow turnips will bring only 253 , and white globes, 13 s; while all the vanoties cease to feed well as soon as a second growth commences. What is the ciuse of such differences as this? How do they arise? Can they be controlled? Can we by cultivation remove them? Can we raise produce of this and of that quality at our pleasure.-Pro. gress of Scientific. Agriculture; "Edinburgh Reviev." January 1845.

Honest Industry.--If there is a man that can eat his bread at peace with God and man, it is that man who has brought that bread out of the carth by his own honcst industry. It is cankered by no fraud, it is wetted by no tear, it is stained by no blood.-American Poper.

The Canadian Agritultural Journal.
MONTREAL, JANUARY 1, 1846.
By the last Mail, accounts are received from Ireland, of insportant proceedings on the 19th of November, at the Mansion-House, Dublin, respecting the potato disease in Irelo d. Seventyfive letters were read from all sections of the country, giving a deplorable account of the state of the potato crop. The following are three of the resolutions adopted at the meeting:-
" 2 . Thet we have ascertained beyond the shadow of doubt, that considerably more than one-third. of the entire potato crop in lreland has been already. destroyed by the potato disease, and that such disease has not by any means ceased its razagcs, but on the contrary, it is daily expanding more and more, and that no reasonable conjecture can be formed with respect to the limits of its effects short of the destruction of the entire remaining potato crop.
"3. That our information upon this subject is positive and precise, and is derived from persons living in all the counties in Ireland; from persons also of all political opinions, and from clergymen of all religious persuasions.
"4. We are thus unfortunately able to proclaim to all the inhabitants of the British empire, and in the presence of an all-seeing Providence, that in Ireland famine of a most hideous description must be immediate and pressing, and that pestilence of the most frightful kind is certain, and not remote, unless immediately prevented."

Up to this moment the disease has not been satisfactorily accounted for. It is said that potatoes planted on the sides of high hills in Scotland, have not been much injured. In the best and richest soils, the crops have been the most diseased. In new, and fresh broken up lands, on the contrary, the rot has not done much injury, and this agrees with our own experience this year. It is also reported from Ireland; that the wheat which has been sown this fall, on land which has produced this year a diseased crop of potatoes, has not sprouted, and that the wheat sown is found to have rotted in the soil. This, however, is not generally the case, as the superintendent of one of the Model Farms says, that wheat sown by him after a diseased crop of potatoes has come up as well as he could wish. The prospects for the poor in Ireland, are certainly very deplorable, if matters are auything near so bad as they are represented, but we would hope they are not. The crop of grain has been abundant, but, it appears, a large proportion of it has been already exported to England already.

They have adopted a novel mode of planting potatoes in Eigland lately, which is said to answer extremely well. They put in the seed in the usual way, in the month of October, and in each of the succeeding months, when the land is not greatly frozen, until May. We have seen a report of the produce of an experiment made last winter. Several drills of potatoes were planted in the same field, with equal manure, in the months of October, November, December, March, and April; and, when taken up, it took the following number of yards of a drill, or row of potatoes, of each month's planting, to produce the same quantity:-
Those planted in Oct. 30 yards.
Nov. 32do.
Dec. 32 do.
March 44 do.
April 45 do.
The person who made this experiment had tried a similar one the year previous, with like results, and in both cases the potatoes did not rot. He, very justly, attributes the success of the experiment to the seed not being exhausted by sprouting, or growing in the pits or cellars previous to planting, and hence retaining their full vigour and strangth when planted. This plan could not, perhaps, be tried in Canada, though we are convinced any plan which would prevent potatoes, intended for seed, from sprouting during the winter, and previous to planting, would be advantageous.

In the Colleges for education, in the British Isles, there is now, generally, a professor, of agriculture, who instructs any students who desire it, in the science of Agriculture. This branch of education cannot injure the individual in future life, whatever business or profession he may be engaged in, and we conceive that such an education would be much more useful for a large portion of the students in our Canadian Colleges, than devoting years to learning Hebrew, Greek, and Latin. At all events, it would do no harm were agricultural science to form a part of their education in such a country as this, where nineteen-twentieths of the people depend upon the produce of agriculture. It is a most extraordinary fact, that education is thought necessary for every other profession and business, except for that business whict is of vastly more importance to the people that it should be successfully
carried on, than all others put together. Now that we are adopling means of general education, why is not something done to educate the people in the science and art of agriculture, which is so litde known 3 and when so necessary to be known? We have urged this necessity constantly, for many years, and nothing has yet been done. If it produced no other good, it would show the people that the Government thought it was of some importance to the country that an opportunity should be afforded to the people to be instructed in the art and science of the business which was to furnish them the future means of their subsistence. However we may endeavour to persuade ourselves to the contrary, it is the produce of agriculture that must pay the greater part of our revenue in Canada, and the larger the amount and value of agricultural productions, the greater must be the means of paying revenue. Those, therefore, who wish to see our revenue in a flourishing condition, should do all in their power to augment the productions of the country, from whence alone this revenue can be chiefly paid. The general and judicious education of the people will do much towards this, if they are only instructed in what will be most useful to know. The education of every man should have some reference to his future employment, to make it the most useful to him, particularly to men in the middle, and working classes of society, who cannot devote half a life to education in schoois and colleges.

We have seen a report of sixty tons of carrots obtained to the acre in England, the land being manured the year previous, with liter and salt. This produce would pay the purchase of the land, even in England. We know that large erops of carrots might be produced in Canada, with proper cultivation for them, and they would be a profitable crop for feeding horses, cattle, or sheep. We have seen it recommended to slice one bushel of carrots, and mix them with three bushels of oats, to fced horises, and the horses are said to thrive very'well upon this feed, and be fully equal to hard work." Carrots are a healthy food for horses, and would be a great saving of more expensive food, which we consider hay and oats to be. It is very necessary that farmers should be economical in providing the least expensive food, if it be equally good, for their horses, as they are a stock very expen.
sive to keep, and require a large portion of land to suppart them, when exclusively fed on hay and oats. a working farm horse, fed throughout the gear on hay and oats, the latter at the rate of three gallons per day, will consu'ne the produce of seven acres-three acres for hay, and four for oats, at twenty eight bushels to the acre, which is here railer above a general average. Farmers will find that this estimate is not too high, and hence those whe :esp a large number of horses, only for the work of tict frrm, will consume a large proportion of the produ:e for the support of hurses alone. At any, zonsiderable distance from our cities, it would ie much more profitable to keep oxen for ploughing than horses. Oxen would constantly be increasing in value until a certain age, and then they might be fattened, and replaced by a young set. There is no doubt that a large proportion of the pro. duce of the land of Canada is consumed by horses alone. There is, perhaps, notless than from three to four hundred thousand horses in the Province, and if the latter number only, allowing five acres for each, it requires the produce of two million acres for the support of horses alone. We do not say that this proportion of the land is required for their general mode of keep, but we are convinced that over a million of acres of our land that is arable, is required to keep the horses at present in Canada. This is a serious. drawback to the profits of agriculture.

The Turnpike act provides, thai the Trustees should have it in their power to "commute the tolls on any road or portion thereof, with any person or persons, by taking a certain sum, either monthly or yearly, in lieu of such tolls." Now, we do not see the use or necessity of this provision, if the Trustees are never to act upon it, however unjust they know it to be, that person* should be obliged to pay the same rate of tolls, when making use of only a few perches, a mile or two miles of the road, as those...who use it for nine milg:, and have the turnpike road made to their.dnors. ' The turnpike act has been now a sufficient gemiod on trial, to know that the tolls might be safely andjustly commuted, according to the act, with persons residing on or near the line of roads, in proportion to the distance travelled upon it. The only persons who had ony concession made to them in respect to commutation of tolls, were the farmers residing on the Lower

Lachine road, or the River Side. These farmers, from the Race Course upwards, were allowed to pass for half the tolls paid by others. We conceive this matter requires the attention of the Goverment; the government, it is wot to be presumed, have any desire that equal justice should not be administered to all under the provisions of this or any other act.

The Fench minister of - griculture and commerce has lately addressed a circular to the several departments of France, giving a full report of the prospects of food, for the people, for the ensuing eight or ten months. This report is taken from the statistical relurns, annually supplied to each prefecture, respecting the results of the last crop, and must be very useful and interesting to tie whole community of France. We have often urged the necessity of such statistical returns being annually made in Canada, but without any notice being given to our suggestions. A late number of the Mark-Lane Express says, in reference to this subject:-"The state of ignorance in which the country is placed in reference to that species of statistical information necessary to enable us to es'imate the amount of food available for use, is disgraceful to tie government, and cannot be adverted to too frequently. A matter of such vast importance should not be left to the energy of private individuals." We believe that statistical information might be obtained in Canada, at a trifing expense, now, in particular, through the Municipal Council. The interest that, above all others, is of the greatest importance to the government and people of Canada is neglected, and left to shift for itself. There has been a few thousand pounds given to Agricultural Societies, hut we say without hesitation, that this money has not been generally applied in Lower Canada, to the greatest advantage, for producing the improvement of agricuiture, where improvement is most required.

Werbeg to offer our sincere congratulations to our friends and subscribers on the commencement of a new year, and we hope the coming year may bring them all possible health, prosperity, and happiness. Though our hopes may not have been fully realized during the past year, yet we are convinced, that most of us have, upon the whole, much cause of gratitude to our Creator. We may have anxiously wished for many thinge,
which it would not have been advantageous for us to have obt.ined, and we may have obtained advantages which we did not expect. Health and life are blessings. that should be more highly prized than any o her, because none other can be enjoyed without these. As regards temporal blessings, we have cause of thankfulness that our country produced a crop fully equal to the necessary consumption of food by our population. This is a blessing, in such a year as this, when the crops of other countries have sustained so great an amount of damage, as to threaten the inhabitants with famine, sickness, and death. Some of our crops, it is true, have been partially damaged, but not to such an extent as to make our produce less than is necessary to feed the inhabitants, and leave a surplus also. Ifis the duty or every one to commence the new year with a settled determination to act their part well to the end of it, whatever may be their situation or circumstances. A labourer cannot act the part of a legislatur, but he has duties to perform, nevertheless, which it is better for himself and the whole community should be done well than otherwise. Every individual has, in their own sphere, an opporiunity of acting so as to produce benefit to themselves, and others, or the contraryOur world would be a much more happy one than it is, if all were to do their duty well, and conscientiously; those having the power and opportunity to promote the general good, as well as their own, doing so, by every possible mea ns.

CiEMICAL AGRICULTURE.

> by G. M. burton, esQ., manchester.

Of all the subjects which, at the present period, occupy the attention of the scientific world, there is none, perhaps, so practically important as that department of chemical knowledge which has for its object the improvement of the productive qualities of the soil and the increase of the amount of the edible produce of the land. Surcly a greater patriot or philanthrupist there cannot be than that man who, after years of toil and dangerous experiment, brings all his literary poxers to bear on a question so vitally important; and he who in able be his scientific rescarches to make an acre of land produce one quarter of wheat mare than had been gained hefore, ought rather t bo lauded for his merit, than despised as an underminer of nld-established custonis. Let.us appeal directly to the judgment and common sense, winich every agriculturist of England raust possess, whether custom can always be relied on? If so, why do they 80 assidu. onsly read those publications which profess to describe the greatest improvements of the day? why do thicy so cagerly snatch at suggestions for the amendment of their -mplements of tillage? The answer is uniformly the same:-Wc may improve the works which we have made, but we must not interfere with the operations of Nature." If a man is sick docs he not send for the physician? or deres he passively yield up the dictates of his mind, zoid give way under the adycrec results of na.
tural causca? This is not the cano. Every faculty is strained and every cnergy excrted to renovate the system, to supply the deficiences of nature, and to reatore the body, which is the garden of the mind, to its primithe vigour and beauty. This is the cape with the discased body, and equally applicable to the diseased soil. Sow wheat on the fame land for many consecutive years, and every farmor knows the result. The land at first yiedde plentenusly, but gradually the crop falls off; the suil actually becomes sick, and incapacitated to affird the ingredients necessary to the nutrition of the wheut; the farmer perceiving this, ahandons the idea of sowing mure wheat, so removes his seed to fresh lund, where lie may get an adequate return for his labour and his pecuniary outlay. Were the farmer as well acquainted with the abnormal changes which take place in the economy of soils, as he is with the gencral routine of huebandry, how much labour and how much money would be zaved, for the comforts of his household, which are now expended in the support of his ignorance or his indolence. For, in the present state of our science, we know, for instance, that wheat will not grow for consecutive ycars on the same soll, becausc the stimulus to solution of those portions or ingredients of the soil which are absolutely ewsential to its growth is deficient; or, because theie is a real paucity of such substances in the suil itself. In cither case, or in both combined, chemistry comes directly to our aid. We apply manure, and thus supply at random the neccssarics to the crop. We use electricity, and administer, in unecrtainty, stimulus to the growth of the wheat. Now, it is the part of agricultural and organic chenistry tu substitute definite design in manuring for random fertilizing, and to replace uncertain stimulus by effectual promotion of growth. We propose now to consider briefly the different properties of the chem"cal manures now in use, as evincing their superiority over common farm-yard dung, to which the agriculturists of England appear inseparibly united by the bonds of custom and of long established experience.

Of all the varietics of guano imported into this country, there is none perhaps superior, reasoning from analogy, than that lately brought over from the Patagonian coast. Its nehness in ammonia presents the highest claims to the agrieulturists' attention. Inm inforned by Mr. J. W. Hopkins, of Manchester, who has devoted great time and libour to the study of the fertilizing propertics of suhstances in feneral, that the ammonia is in large masses, and especially adapted for the promotion of vegctable growth on account of its great solubility.

Guano is well adapted for the growth of ecrtain plants, but must not be considered ns a universal fertilizer, for though it abounds in animal matter and anmonia, it ne vertheless is deficient in the prineipal salts which are equally neccssary for the production of a flourishing crop. Guano is not adupted for potatocs, tumips, mangel wnral, \&c.
No manure can be perfect unless it contains every in. gredient that plants may require, nor 18 it absolutely necessary that such ingredients be mixed together in the cxact proportion in which they are found on the analynis of such plants; for plants are endowed with a peculiar vegetable instinct, which enables them, by the spongioles of their radicles, and by means of an intricate process of endowmose and uxasmonc, to abeorb into the system such principles as may contribute to their growth, and to excretc and reject those which would have a contrary tendency.

Numerous nttempts have been made so to combine vegetable cssentiale, if I am allowed the term, as to form a chemic-1 compost, adapted to the adequate supply of the deficiencies of the soil; but in the majority of cases such nttempts have proved fallures. In the first place they have been palmed upon the agricultural world at sach low prices that no chemical compounds of any valuc could possibly have enteicd, in any quantity, into their composition; and, in the sccond "place, the principal ingredicnt has been of such an evancscent character, that a trifing exposure to the influence of the atmosphere has deprixed then allogether of any fertilizing power which
thoy might pessess. I helieve the "Pingucdo" to be a compost the most excmpt from what has just been stated, fur I have sten its virtucs tricd, and know, by analysis, that its intrinsic value nearly equals its price.

I'o return to the objects of this paper, I would urgo all those who call themselves agriculturists to penetrate, by obscrvation and rescarch, into the mysteries of nature, not with the idea of divng into the obscuritics of meta. physical questions, but in ordor to obtein clear views in tracing naturil results to natural causes; for we are as. sured thut agriculture, conducted on scientific principles, will nut. only he more sure in its results, but more economical in its detals.
That furincr whe knows ard properly understands the application of chemisiry to the improvement of soils, will gain credit as a man of science, and save money by the purchase of such articles as can be turned to the be:t account.
Thus, the unscientific farmer might mix together lime and guan (which I have often known to be done), whereas the chemical agriculturist well knows that he would loose, in the anmonia set free, what he had hoped to gain.
I have little doubt that, from the rapid strides by Which chemical knowledre is gaining upon the darkness of old established custom-I have litule douht, I would repart, that, at no very distant period from the present time, England will sec the sons of her soil sowing and reaping under the guidance of those immutable laws which have ever been found to preside over all natural operations.
Litchford Hall, Oct. 22, 1845
MAKING CHEESE,
as practised in one of the most eminent dmaies in new higland.
Ald the night's milk with the morning's, and heat it gently over a fire until well warm, then put in a tub or vat with sufficient prepared annatto to give it a handsome yellow colour. Put rennet sufficient to make it curd in iwenty-fire minutes: when curded take a wooden knife or stword and chequer it all into squares to the bettom; let it stand from fifteen to twenty minutes, or unil the whey appears above the curd; brcak it up carefully with the hands in such a manner as not to bruise or break the preces of curd; next put a clean strainer on top of the curd so as the whey may arise on top, and lade it off with a dish or dipper; then put a checse straincr in a checse basket over a tub, and carcfully remove the curd and remaining whey into it, and cut it into slices with a thin skimmer until the whey has moslly drained out; then bring the comers of the strainer together and twist them, so as to bring the curd in a solid mass, and put the twisted cumers down in the basket, and a clean board about one font square on the top of it, oa which put 2 suf. ficient weight, in order to press out the whey. After remaining about fifteen minutes, the curd is to be cut in picces about one inch square, and put back again with the weight on, and remain from ten to fifteen minutes, and then cut as last stated, and put back ygain, and so repeated from six to ten times, or until the whey has en. tirely done dryping from it; after which take it out and cut in picces of about two inches square, put in a wooden bowl and chop with a chopping kuife until the picecs are the size of Indian corn. The acext is scalding the ecurd, which is done by putting it in the strainer and putting in the kettle of whey heated to blond warmh, for if the whey is 200 hot it will ruin the cheese, and make it dry and hard; while in the whey it must be stirred with the hand until the whole is equally heated; then it is taken out and put in a checse baskel over a tub and clean fine salt thoroughly mixed, to give it a high salt flavour, and Jet it stand until hardly blond. warm, then the corncrs of the strainer are iwisted together as before, and put in the hoop and presed, in this instance, with a weight of one hundred lbs to ercry ten of cheese, to remain about half an hour taken out and tumed and re-placed in the press and add about one-third to the weight-then let it re. snain three hours. Then take it out and jut it in a fune
clean linen eloth perfectly smooth, and no wrinkles in it; put again in the prese and press forty:eight hours, being taken out and turned once during the thane. At thes pressing abmat one third additional weight must be added. It must then be taken out, oiled, and put on the ghelf, where it must be turned, rubbed and oiled at least every iwenty four hours. From long experience, I have found it the best method of making checse.-Teanes. Furmer.

SIZE OF FARMS.

Farming, when it is carried on inerely as a moner making'business, to be nust profitable, requires farms of such size as to furnish regular emplogment to the head farmer and all the hands in such a way as to make the greatent return of their labour at the least expense. This can only be effected on farms of considerable size. The im. mense advantage of a regular division of labour is shown in all extensive manufactories, where extrandimary expedition in the varions operations is attained, by allotting cach department to separate individuals. For division of labour to be effected in farming, farms of considerable size are required, or where severe' hands can be constantly employed to advantag:. Wix farms are vory small, and one man does the whr' natoor, it cannot be execut. ed at so small an expense .s when the work is divided.

The productions of a farn slould not be confined to one or two articles; the farmer should not be principrally a wheat grower, nor a drover, nor a shepherd, but should altend nearly equally to all these different branches. When the business is thus varied, too much work docs not occur at one time, nor tos hille for the employment of the hands at anoher. This variety of business is also necessary to the improvement and enriching of the soilto the production and application of manure, and to maintiining the bencfils of rotation in crops. But it camot be advantageously adupted on yery small farms, as there weuld be a great waste of ground, and a great expense of material, for partition feaces, and a loss of tiate by attention to a great number of small crops.
Another disadvantage of small farms is, that laboursaving machincty, cannot be so profitably used on them; for where these are expensive, and the quantity of work they perform is small, the interest on them is 2 heavy drawback on the profits of the farm.
Notwithstanding all these disadvantages, there is not one farmer in a handred who has not more land than ine can cultivate in the best possible manner; or, to spcale more correctly, there is not one in a hundred who has sufficient additional capital to carry on profitably all the opcratuons of the farm. A farmer must be able to expend a large sum in addution to what he dues in paying for his land, if he expects to make moncy by the business. But instcad of this, the common practuce is, to expend all the ndditional capital whech is realized by farming, in purchasing mare land. Instcad of doing this, it would be much better for the farmer to sell a part of what he first had, if this is the only way for ebtaining additional capital for carrying on his operations.
We will suppose the case of a farmer commencing business with five hhousand dollars; :f, with one half this sum he buys a farm of fify acres, and with the other half ho improves it in a high state of fertility, he will do far better than if ine should parchase a hundred acres, and thave no further means of impruving it or of performing the work upon it in the most advantagcous manner. Must land, by a juducions expenditure to the amonnt of its cost upon it, may have its productivencss increased four fold, and its profits to an almost incalculable amount; if, thercfore, a farmer can raise from fifty acres, twice the amount of produce that he does from a hundred acres, be will not only receive twice as mach for it, but he will be able to raise this amount with even less than one half the labouir that he dous from the hundred acree, because landin good condition is much more easily tilled than that in poor condition. Thus, with only fifty acrein, he would, in fact, experience the advantages of large farms to in far greater extent than if he should purclase ethmdred acres.

AN ENGIISH GEN'TLEMAN'S RESIDENCE.
Killerton Innuse, near Exeter, the scat of Sir Thomas D. Askland, Barl., M.P., has long beca known and cele. brated as one of the most interesting and delightrul residences in Devon's favomred clime. The elevated situation of the mansun commands mannificent vicivs, and is surrounded with some of the noblest trees in Britain, which add grandeur and interest to the place. The ifrx and cedars of Lebanon have attained a great size, so have the Eximnuth mignolias, which flourish most lux. uriantly in this climate and soil. One of the mostimpor. tant features in a gardenng point of view is the shrub. bery near the house, well known as Killerton Hill. This was laid out under Sir Thumas's own eye, and is unquès. tionably one of the finest things of the kind in the kingdom. The planting has been boltly yet consistently carried out, and it is doubtul whether any one thing can be added or varied which would improve it. From the growth which the plants have made we should suppuse that they had been planted twenty.five or thirty years. Occasiorally, however, some new plants have been ad. ded. Some of the rhododendrons have attained an enormous size, as much as thirty.eight paces round ; and one recently transplanted, having ougrown its situation, is beyund these dimensions. A vast variety of trees and shrubs cover the surface of this hiti, wheh includes seve. ral acres of ground. A very beatifitul chapel has recent. ly been erected on the east verge of the park, but the arrangement of the ground around this is not quite so happy as the hill. For example, a square portion of ground is enclosed by a hox hedge surrounding the building, and this space not having been made perfectly level, as it should have been, the hedge presents an awk. ward appearance, and produces an uncasy feeling in the mind by its traversing up and down the hill. The whole area within this hedge ought to have been brought, unquestionably, perfectly level, to have given base and dignity to the building enclosed, and the planting should have been carried out with subjects suitabte to ecelesias tical architecture. As you approach the chaprl from the kitchen garden side, a vast number of rare conifers are plamed, and doing renarkally well. They will, at no distant day, become a very important feature in this part of the plensure-grounds. The kitchen garden is one of the best in Devonshirc. The suil in the locality is excellent, being the sed loam so bighly prized by the agricul. turists. Both tsees and vegetables, however, prove its quality to be gond, as everything under the care of Mr. Craggs, the gardener, was in capital keeping, as has always been the casc. A new range of huthonses is in course of erection by Mr. Clark, the hothouse builder, of Excter, who has introduced all the madern improvernents in construction, as well as in ventilating and heatisg. There was a most important mattes pointed out to us by Mr. Craggs. Where vines are planted outside the house', instead of cutting the sill or bottom rail of the front sashe, to admit the vincs, a false sill is introduced on the top of the main sill, and fastened to the uprights by means of a bolt at cach side. This answers the purpose admirably, and without weakening any part of the buld. ing. Mr. Criggs has adopted a plan of preparing soil that has been recently got in for inmediate use in potting, which deserves to be made known. A fire of wood is kindled under an iron grating, and on this is laid the grasisy furzy turfis. Vegetable life is at once destroved, and all insects are at the same time annihilated. The fire is k epl smouldering; and when the turfs are taken off, they are fit for immediate use when cool. This deserves the attention of plant cultuv tore. We had ailmost forgoten to mention a very large specimen of Cunningthama lanceolata in the slirubbery, measuring fifteen fect is height and eighteen inches in circumferevice in the stcm.-Western Luminery.

NEW CLOVER.
Two new clovers have been attracting attention in France, concerning which we find some information by M. Vilmorin, in the Bon Jardinicr. One in the hrbrid
and the other the clegant. Elegant clover mos for some time considered identical with the Trifolium hybridum, cuhtivated in Sweden; when, however, growing together, the differences are striking; tho latter is larger in all its parts than the former, and the colour of its flowers is a brighter rose, shaded with white in the centre, while the elegant trefoll has rather dull reddish rose blossoms, co-* loured alike in every part of the flower licat. The appearance of the herbage is different; the hybrid clover has bright and dark foilage, and that of the elegant is pale and uncqual; the leaflets of the l.tter are also marked with a brown band like common clover, which is not the case with the hybrid. Another character of the hybrid is thist, in the summer, when it begins to shed its biossom, und during the autumn, the root throws out fresh foliage, arranged like a rosette; but in the elegant trefol this does not oceur; it is the latter branches which rest on the ground that supply the verdure. The lij brid trefoil also fluwers fitteen days carlier than the other, wheh, however, last the longest, and branches more ; lastly, the former is taller, more bualutful, and comes in earlier ; but when the latiter has arrived at perfection, having moro numerous stems, well covered with branches, and moro sulid, it will, when mown, yield as great a produce as the former. The hybrid trefoil has been a great deal used by Mi. de Kruns in the iormation of arificial ficlds at (Orebro, in Sweden, and it has succeeded well; it has grown from three to four fect high, and has yielded, during about twenty years, often m.re than $10,0^{\prime} 10$ pounds per turnland (abnut an acre and a quarter English), and always unwards of 5,000 for the first ten years. It is regarded as a plint equally suit.able to cultivate for mowing and for pasturage; strong mist soms, argillaceous or calcarcons suit it well; it frequently comes spontancously on lands, in Sweden, that have been drained. The elegant trefuil is found in abundance on poor clayey strung soils, where it grows thick and vigorous; it is wild in France in many places, not unfrequently in ferruginous sand. It seems very prubable that the species will one day form vatuable additions to our forage plants, as they appcar as though they would succeed on land unsuitable fur clover, lucerne, and suinfoin.-Transactiuns of the Highland Society.

CULTIVATION OF PARSNIPS.

To the Editor of the ilurk-Lane Express.

Sir,-A corrcspundent of tie Mark-Lane Exprese, who signs himself "Young Farmer" asks after the management necessary for cultivating parsnips. Parsnips will thrive in any decp land, wheller stiff or light. Sume break up old grass land for parsnips in.September: and after tie land is well rotted, twenty tons per acre of stable manure are spread over lhe land. A trench is then opened through the centre of the field, botween two and three fect wide, and where the soil will adenit of it, from a foot to eighteen inches decp; a small two horse plougla then turns the manure and about three inches of soil intas the trench, and this isimmediately followed by a large trench plough with three or four or more horses, which turne a foot or more of clean sonl upon the manure and scurf, when the land has been recently skimploughed. The soil is then harrowed, and, the parsinip-seed, which should le new, is scwn at the ratc of three or four poinds to the acre. The plants, when they are an inch high, are weeded, and are thinned ont to nine inches or more at:uce second hoeing: they are tuken up with a fork or plonghed up in October or Novem. ber. ithe average prodace per extatute acre is nineto eleven tons. Parsnips being a very hardy plant, the,frost docs not injure the seed or yong plant, and, if thought desirable, the formor may be-sown as they are ripe in autumn. Yọurs Mr. Editor,

J S. T.
The Times estimates the capital of serenty-four railways completed, or being completed, at $£ 103,166,220-$ of projected branch sof these at $£ 35,000,000$, and of 707 now companics, either established or projected up to date. ul $£ 464,698,656$-making a total of $£ 602,864,876$!

THE SILK.LOOM WEAVER'S IAMENT. DY Mns. EDWALD thomas.
1 long to stretch me on the verdant grass, And gaze in idnesesss on the summer.sky; To see the huppy clouds careering pass In all their dear, unchartered liberty.
I ling to scent the vinlet of the glade,
The fragrant haw thorn that the air regalen;
To seel creatim by that power was made
Whose seasonal benificence ne'er fails;
To feel away from man-far, fatio away-
With thoughts as free as flowers, as unconfined, With none to question whither 1 may stray,

The world-its artifice-left all belhind.
Oh for one heur of such unshackled ease !
Thought too ecstatic for my toil-wnrn bram!
The chidden wretch alone, himself to please;
The galley slave freed trom the galling chain.
To walk erect, with no one to control,
No hard t.ask-master, brutal, to deride.
O liberty ! still native to the sonl!
O ideerty! still man's ennobling pride!
We are horn free; the beggar is born free-
Frec as the noble-but alas! lull soon
The grim, gaum hand of dire necessity
Enfetters gen'rous nature's rightcous boon.
My brow is burning and my brain's on fire: How fiercely madd'ning is its flame intense !
Still, still I pant with the one fond desire,
'Till disappointment sickens every sense,
To beathe the air of heav'n the country yiclds, Ihe unpoliuted air, that comes direct
From the clear skies, to fan the pleasant fields, In floral loveliness profusely decked.
The tainted air blows nere, but parches still, With aguc-chills, und fever nnught abates.
Oh for the grushing of the rural rill,
To quench the thirst the heated town creates:
I've but ove hope, and that is, when I dic
The lovely green grass, ne'er my own in life,
Will inark the spot where I screncly lic,
With dear, refreshing, spring-tide coolness rife.
Plants Deleterious in Confined Places.-It is not sufficiently known by the adinirers of flowers, that the agrecable perfume they emit, when in full bloom, is decidedly deletcrious when diffused through close apart. ments, producing headache, giddiness and other afiec tions of the brain. But it is only in confined rooms that such effects are produced. In the garden, when mingled with a wholcsome and exhilarating atmosphere, umdst objects that awaken the mosi delightfin sensations of our nature, those sweets are a part of our gratifications, and health is promoted in consequence of our enjoynient. Who has not felt the excitement of spring ? of nature in that delightful scason, rising from lechargy into beanty and vivacity, and spreading the sweets of the primiose and the violet for our gratification? Amidst the beautics of the flower.garden, these pleasures are condensed and refined; and the fragrance there hanging on the wings of the brecze, is not only pleasant but wholesome. Whatever increases our gratifications, so peculiarly unmixed with the bad passions of human nature, must surely tend to the improvement of nankind, and to the excitement of grateful fcelings towards that bencficent Creator who has so bountifully suppled us with these luxaries.- [N.Y.Sun.
Varations in the Value of Railway Phoperty.The fluctuations which take place in the value of railway property are often the subject of remark. In no other doserplion of joint-stock sbares do equally sudden and extensive chauges occur. Most persons who bave paid any aitention to what is passing in the railway world are a sare of the high prices of several of the leading lines, as compared with what thoy were in 1843. In. Lhat your
the Great Western shares of 80 !. were as low as 11 pro. mium ; lately, they were 1.10 . In the same year, the Great Norph of Engtand 10Jl. shares were seartely salcable at 40 discount; a few months ago they were 150 pre. mium The Midhand Countics 1000 . shares were, litto more than two years since, at 35 discount ; they were lately at 90 premiun. But a greater increase than in either of the instances we have mentioned has taken place in the shares of the Dublin and Kingstun R.ulway. Little more than 20 months ago the lowl. shares were selling at 751 ., heng 25 discount. Seven or erght weeks since they brought $250 l$., being 150 premium. But still greater than these have been tho variations, cunsidering the amount paid, which have taken place in the value of some of our new lines. The Gwole, Pontefract, and Wakefield shares, on which a deposit of $2 l .10 \mathrm{~s}$, has been paid, and which remained stanonary for many weeks at a preminm of from 14l. to 161. have recently mounted up to 40!. Even this sudden and extensive rise, however, is surpasscd by that wheh lately took place in a new line which is scarcely knownin this comentry. We allude to a Scurch line, called the Glasgow and Barrhead Railway. The sharcs in thes lume were selling, six ur seven weeks ago, at 6 .., meluding the depost of $2 l$. 10 s.; they rose in a very short tune to 24l., and then as suddenly fell back to 17i. ; but, strange to say, they again took a start, which has, we beleve, no paral!el in any description of juintsiock property. They buunded up in a lew days from 17l. to 40!. Those who were furtunate holders, to any extent, of the serip of this line, must have realized larese firtunes in the brief space of a few weeks. A holder of 250 shares, at par, must have realized little short of 10, Uti0'. by the transacuon.-Railway World.

The Obscene Propenties of the Vuliture. -The above foul bird will devour, with a disgusting trait of greediness, the most putrid offal; and in almast all parts of the East, groups of them, frum twenty to thisty, may be seen assemblei together, fattening upon human and other anmal corpses. So depraved, so vuliated, and so rotten is the constututional sysien of the vulture, that its very feathers may be obscrved to mult from its wings at voluntary intervals, whilst it is in the act of gorging its prey; and there is one fact in relation to this repulsivo bird which is perhaps not generally known; it is this, viz., that no animal whatever will prey upon tho vulture, livung or otherwise-niot even the jack:all or ghatton, which are in the habit of burrowing inte, and ransacking, the repusitorics of the dead, and induiging each a morbid appetite; y et these beasts will not approuch the vulture, but will lurn away from it with total abhorrence. Even the commun fleshifly (musca putris) will not lend its aid towards annihalating the volucrine nuisunce under consideration, by inoculating the carcase of the brd with its cousumind larve, but :avoids coming into contact with this fetid mass; so that the vultare may be louked upon as the most obscene oi all earnivoruus sc:avengers, and can be vicwed only in the light of a solitary outcast, singled out from the wide and varied university of animated naiure.
Prolific Wheat -In the harvest of $1840, \mathrm{Mr}$. C. Spring, of Solman, C:ambridyeshire, grathered frum ono of his fields elghteen very fine ears of wheat (which were five, six, and scyen set), the proceed of which filled a common wiac.glass; the abuve was plamed the following autumn and produced one peck, which was again planted Nov. 3,1841 , and produced seven bushels and one peck; planted the same Nov. 2; 1S42, the produce one hundred and cight bust.els and 1 wo pecks; which was agrain planted in the autumn of 1S43, and produced ono ihousand cight hundred and sixty-cight bushels. Thum the increase, from the eighteen cars in the short space of four ycars was the cnormous quautity of four hundred and sixly-soven coombs.
A single root of potatoes, of the species calied second early, was lately dug up by Mr. James Allen, gare: dener to Mrs. Dykes, of Dovenby Hall, to which no Leed than 110 potatoon wero found attachod.-Gumberland Packet.

AGRICULTURE IN SCHOOLS.

Professor Johnston lately delivered a lecture before a Convention of School Teachers, in Scotland, and as there are many of the facts submitted by the learned lecturer, very interesting and useful to know, we copy a part of the lecture:-
"Gentlemen, there was a time when this hill on which we now stand, was nothing but a naked roek of lava. That old lava gradually decayed as modern lavas do, and crumbled down and fors sd loose matter on the surface, in which seeds of plant : grew, died, and left their remains. Thus by degrees the auil accumulated to such as you now see on the surface of this rock, on which plants now grow. Such is the history of nearly all the suils on the surface of the globe.

Supposc you take a portion of any one soil, and put it upon the end of a piece of metal, such as I am doing just now, and in any way expose it to the action of the firc, you will see that part of the soil will grow blacker at the edges; by and by this blackncess will disappear, and the; soil will assume a culour more or tess dark, according to the nuture of the substances of that which remains con. sists. If you take this portion of the soil before it is heat. ed, and weigh it, you will find that after it is exposed to the fire, it is not so heavy as before. That portion of the soil which has burned away, consixts of the remams of those vegetables of which ithave spoken; of those animals that have died and been deposited in the soil; and of the manurea which have been applied by the farmer.

Thus, veretable mitter forms what is called the organic, and the other portion of the soil, the inorganic matter.

The quantity of organic matter varies very muchin some soils it exists to the extent of 2 per cent. and in jicaty soils, sometimes as high as 70 per cent. If you take a picce of vegetable mater and burn it, such as this wood, you will find, iscre, also, that a large portion will not burn away, but remains, forming woud.ash. It is the eame, then, with regard to the plant, as to the soila part burns awey, and a part remains. Different plants have different proportions of inorganie manter-thus, meadow hay leaves nine or ten per cent. of incombustible matter. Again, as to the animal substances: take a piece of muscle, dry, and hurn it, and you shall find that the greater part of it will burn away, which is the organic matter; the remainder being, as in the soil and in the plant, the inorganic and incombustible matter. Now, one hundred pounds of frexh muscle containe phosphate of lime and other saline substances, to the extent of one per cent. of incombustible mater.
Thus the three diff:rent substances, soil, vegetable, and animal matter, consist of organic and inorganic matter; but there is this difference, that in the soil there is a larger portion of inorganic matter than there is in plants and animals-in the fatter, the greater portion burns away.
By lonking at the tahle, you will observe that the morganic matter consists of different substances, such as silica, which ferms a very large proportion of fint; alamina, a principal ingredient of pipe.clay; oxide of iron, which is the rust of iron; potash, of which the potash you get from the shops may serve to give you an idea; chlorine, which is a sind of air; and then there is manganese, phosphoric acid, and carbonic acid. These substances are found in all soils, but not in equal proportions. You will see in the table before yon the details of the constitution of a soll which would yield good crops for perhaps a hundred years. Were you to possess such a soil as that-and such soils are to be goi in the virgin land at the Cane of Good Hope, on the banks of the Ganges, and the Mississiypi, you would find that it would contain a notable quantity of all these different substances of a soil capable of yielding good crope, but which would require to be.regularly manured.

You will observe that opposite three of the substances
the word "traco" is put, which means, that though the substance was not absent ultogether, yot it existed in so small a quantity that it could not be weighed. In the rich virgin soil stated first, you observe that there is of lime 59 per cent., while in the sccond colmenn there is only nineteen. Of phosphoric acid there is four in the one, and two in the other. In the third column of the table is the constitution of a soil sis barren, that though manured, it could not produce a good crop. You see that there is a great many' gaps in the list; in short, there are only five substances which exist in anything like quantity. So much for the substaners which exist in ell good soils; and you may be sure that if any soil does not produce a gond crop, some one or other of these substances are wanting.
I'lie question arises-how do soils como to have such diffirent compositions as these? 1 stated to you how the crumbling down of rocks formed the soil, alung with the accumulation of organic matter in it, and if I had time, I would have directed you to a keological map, and shown that in every country the rock on which the soil rests, is diffirent; and if it be true that the crumbling down of rocks forms the soil, you learn at once how soils must differ very much in their comp.,sition. In felspar soils, of which rocks principally consist, you will ubserve only silica, alumina, and a few others. A soil formed from this, must therefore contain a large quantity of these suhstances, while it would be defficient in many others.

As soils differ in this, we are led to this practical ques-tion-how can we make this soil to be like that soil, or how can a bad soil be made equal to a good one? The answer is simply, that you must supply those substances, that are wanting in the soil: you must supply as much potash or lime as is wanting in the third or poor soil-and as is wanting in the second, to make up all the constituent clements which exist in the first or rich virgin soil, and which are necessary to enable the soil to produce a good and profitable crop. This shows you the benefit of an analysis of the soil, by which a farmer is enabled to decide what the soil requires, and procecd accordingly.
1 shall next speak of vegetable substances; and first, as to the inorganic part of them. If you take the ash that remains behind, from a plant which has been expesed to the fire, and analyze it in the same way as with the soil, you will come to this result-that the inorganic part of the plant contains precisely the same substances as the inorganic portions of the soil.

In reference to the ash of yegelables, 100 lbs . of wood leave behind not more than a half pound of ash. Perhaps you may be inclined to ask why, seeing that out of 100 lbs . one half pound only is ash, can that half pound be necessary for the existence of the plant, or is it rather aecidental, and in no respect making any difference to the plant ? No such thing, gentlemen. That half pound of ash is just as much an essential part of the plant, as the $99 \frac{1}{2}$ lbs. which bumed away. The plant could not live, or at least fulfil the purposes of jts nature, without this small quantity of inorganic matter.

Let us inquire, whence do plants derive the organic and inorganic parts of which they consist? They darive the organic partly from the air; the inorganic solely from the soil. In the air float certain proportions of all those sub. stances which enter into the organic part of the plant. Now, the different kinds of plants in the soil will materially affect its constitution, and have a remarkable influence upon that constitution. Suppose I grow luceme ujion the very fertile soil detailed in the table; as luecme requires a large quantity of lime and phosphoric acid, it would rob the soil of a large proportion of these, and therefore it would not continue to grow the same crop with the luxuriance that characterized it at first, because it could not supply, in the same abundance, those particular substances upor which lucerne lives more than upon any other.
Take the ash of the different kinds of grain, and analyze it, and you will find that cach in its own way affects the soil. Wheat; oats and rye require a large quantity of phosphoric acid: 80 if you grow wheat a long time in the same soil, it will draw out this phosphoric acid among
other lhings, and therely reduce its quantity. This is should have all these substances, in order to supply then

What is meant by exhausting the soll. If rye.grass is the plant used, it will exhaust the soil gencrally, because it does not take away a great prortion of any one of the sub. stances. In the same way, different crops make the soil poor; but if I take the same crop say fifteen or twenty fimes-a practice which, as is well known to the most of you, existed not many years ago-the soil would by that time produce no crop at all.

The land then may be exhausted in two ways-genc. rally of all the substances, and especially, of particular substances; and from this circumstance ive are enabled again to make two or three practical deductions.

In the first place, insomuch as the soil contains a limi. ted quantity of these substances, and inasmuch as different crops carry of different purtions, you at once see why it is judicions to have a rotation of crops. A soil may produce one crop abundantly when it cannot prodace another.

Let us next inquire why land is manured. It is ob. vious that manure is applied to restore those things which are wholly or comparatively wanting. Chemistry tells practical men how to renew their exhausted sail. Suppose that fifteen crops of outs have been taken off a piece of land, then it will have lost a large guantity of lime, phosplatoric acid, and potash, and in order to restore it, you must supply the suil with these ingredients of which it has been robbed. Manare from catte being composed of the remains of vegetables taken off the land, and containing all these things of which plants consist, the farmer, generally speaking, is enabled by its application, to retain the fertility of the soil. But then, obicrve you, he adds all the things which are required for a ferthe, soil, and may apply ton mueh of one substance, and not cnough of another, which the land requires for a particular crap Now, guided by chemical knowledge, he would be able, hy other means, to provide for his land. If the farmer knuws chemistry, he will, at far less cost, and far more effectually, secure good crops.
I come next to 2 he organic part of the plant. You observe, when 1 take this flour dough, and wash it in water, it diminishes in bulk, and the waterificeomes milky. The portion that remains, for it will not all wash away, is a sticky substince, and this is called gluten. If the water is allowed to stand a short time, hise white will fall to the bottom and form stasch. The flour is thus easily separated into two parts, the stareh and gluten. Wheat contains glaten to the extent of from ten to thirteen per cent; meadow hay, forty per cent. of starch. Of fat, (oil) wheat contains from two to four per cent; oats, six per cent.; Indian corn, nine per cent., and meadow hay, from two to five per cent. Thus the organic part of vegetable matter contains gluten, starch and fat.

I shall now make a few observations on the compositiun of animals. Of what does the ash of animals consist ? The body is composed of various parts-of muscles, fat, and bone, and other elements which I need not detall. If we examine the composition of the muscle, we slaall find that it contains 21.2 per cent. of phosphate of lime, and a third per cent. of other saline matters. In bones you do not have all the substances which exist in wheat, but you have some of them, such as lime, magnesia, \&c. In ten gallons of milk, there is three.fourths of a pound of saline matter; so that if you take the cumposition of the muscle, of the bone, and of the milk together, you will find that animals contain the different substances which are to be found in the soil. Thus it is we loarn the inti. mate connexion betvecen the composition of the inorganic matter of the plant; of the animal, and of the soil.
But where does the animal get this inorganic matter? From the plants on which it feeds- In bone, six-tenths of the whole consists of phosphate of lime and magnesia. Now an animal could not support itself or walk about without some bone or firm substance to uphold it. It feeds upun herbage to obtain the different subetances of which it is made up. But if the plant had no soda or magnesia, the bune could not be built up, no more than the walls of this house could be made without lime, stone and other substances. It is necessary then, that the plant
to the animal. And where dows the plant get these sub. stances? It geta them from the soil ; ane can aphant live without them. And here we have a beantiful exmmple of the provisions of nature, for a phamt camont grow, ualess it can acquire those clements-or, indeed, it it did live. it might deck the carth, hut it wonld be aseless for food for animals, which is the greut purpose of its creation.
Sume animals lay on fitt very abundandy, and some, like myedf, lay it on very spiringly. If you have an rumal inclined th fatten, and you wish to fut'en hilin, feed him with Indian corn.
There is an important diffierence between the compnsition of the vegetable and that of the aminal. In the furmer there is gluten, starch, and fat only. The lungs of the anmal are a sort of carbonic acid manufacturers. The starch which the anmal throws off to the air, the plant sucks in: in thas the leaves are continnally cm-ployed-perpetually sucking in, with their thousand lithe monelhs, the carbome acid. The lungs of animals might suck in the same asplatits do, but sucil is not the order of mature, and it fulls to the plant to supply the deficiency.
You all know that every part of our body is contmually undergoing a change, and tiatit certan quantity of gluten must be eaten every day to suphly it; it is the sime with young animals; they require an extra supply of the eleinents of muscle and bone.
Animals reject in dung and urine Ω great many substances, and as the plants cuntain subst:mees which are suluble in water, it is of great consequence to take care of the liquid excrescences, and to mix it with the solid, so that the whole the animill ate my bo preserved, which being applied to the soil, it is provided with th. same substiners almust for ever. If you allow the liquid to run into the river, or pond, you deprive the land of what the plant gets from the soil, and which the animal gets from the plant. When the aninal dies, all those things which it got is returned to the soil, and thus the same revolution grocs on from the suil to the plant, and from the plant to the animals.
These are some of the points, gentlemen, by relating which I hoped to interest you, and which demenstrate the over-raling presence of One mind, directing practical operations to the same end. If there was not the same Spirit pervading the nature of the soil, the plants, and the animals, there would be some confusion; but there is manifested the presence of One minu and of one principle, directing the whole cycle of animal and vegetable life, as there is to be seen in all the cycles and motions of tho planetary bodics.

Burlington Agricultural Show.-The amnual show of stock and implements befure the members and friends of the Burlington Agricultural Society took place at that town on Wedncsday last, under circumstunces as auspicious as could have been wished. The weather was fine, the exhibition gencrally good, particularly as regards the sheep and shorthorned catle; the attendance of visitors numerous and lighly respectable (including all the influential land-owners and agriculturists of the district), and the after proccedings of the day of that spirited and exhilarating character wheh is alone sufficient to ensure snceess to the Burlington Agricultural Association.Doncasier paper.
Tie Larland Horse.-This animal, according to Berenger, is small, but active and willing -omewhat eager and impatient. but free from vice. Hic is used only in the winter scason, when he is employed in drawing sledges over the snow, and transporting woyd, forage, and other necessaries, which in the summer are all conveyed in boats. Durng the summer these horses are turned into the forests, where they form themselves into distinct troops, and select certain districts from which they rarely wander. They return of their own accord when the seasons begins to change, and the forests no longer supply them with food.- Yuuatt on the Brect of Horses.

Bencraft's Patent Habes.-During a vinit wo Jately made to the Royal Polytechnic Institution, we observed among the numerous models Mr. Bencraft's patent hames; and tur the sake of humanity, we hope it will be adopted everywhere, the object being to prevent galled shoulders. It possesses the power of materially facilitating the horse's draught, and of effectually preventing galled shoulders; and even horses that were at the time in an ex. tremely bad state were put to work, when the wounds rapidly healed, without the aid of medical treatment, or the animal being subjected to one day's rest. A slight acquaintance with the formation of the horse's shoulder will show that the trace, as attached to the barness hitherto in use, has been made to bear upon the most objectionable part-viz., in front of the joint which connects the leg with the shoulder blade, thereby imposing upon it continuous pressure and friction, and at the same time, greatly mpeding the action of the fore limbs. It is evident that, in the horse, the shoulder, and that portion of the front of the spine which furms the withers, shouid be the point of draught ; but it is equally clear both with refirence to the economy of dranght, ind the ease and freedom of the progression of the abimal, that in the application of the draught, the mentions of the shoulder joint should be as little interfered with as possible.-Mining Journal.
Liquid Manuae. - The greatest care should be taken to make the most of thas valuable article. The chanael which is belind the cuns in every well made cow house, may be filled daily, or munting and eveming. Whithog carlh, or earth of suinc houd, which will absaib the flud and then be converted into excellent masnure; or a tank, cither a hygshead or a cistern built of brick and cemented, maty be plact.d where the steepage from cattle and horses, can be conducled by drains; the tank should be covired, and have a pump in it by means of which the fluid can be raised. Pourng it over the compost heaps is perhaps as good a way as any of disposing of tt. To this tank, the urine and suds from the house, water in which vegetables are boiled, \&c., should be conveyed. This is a branch of econorny selcom altended to by farmers, ano the consequence is, as much valuable manure is wasted about most houses as would increase the product of the farm to a grrat amount. According to Liebig, 103 parts of human urine are equal to 30) parts of the fresh dung of horses: and we learn from the same high authority, that the liquid and solid excrements of an individual annuaily, contain nitrogen, necessary for 800 lbs of wheat, rye or oats, or 900 Jb . of barley. We are herchy enabled to appreciate the industry and sagacity of the Chinese in preventing the loss of this valnable article as manare.Ner: Far. Jour.

Improving Coarse Hay.-It often happensthat farmers have certain wat portions of thcir urcaduws occupned with coarse grass and weeds, which are cut atter the rest of their haty is made and secured. It is of cours: only second or ti: rd rate in quaiity, and intended fur the hardiest class of e:etle. lt can be rendered very palatable, however, by a fr - oupplication of salt in frequent and successive layers as th is deposited in the stack or mow; the amount of whini may vary from a perk to a half bushel of sult to a ton of hay. Coarse hay, thus prepared, is frequenlly preferred by cattle to fine hay not so prepared. All hay should reccive an application of salt, when stacked or stored away, as the salt not only preserves it from injury in keeping, but domestic animals, whech are frequently much neglected in salting in winter, thus obtain a constant and regular supply. administered to them in the best possible form,-All. Cult.

Grownsa Crops-A sale of giowing crops took place at Craigentinny Farm in July; wheat sold on an average at 16 l , oats from 101 ., to 11 l ., barley about 132. 13., and beans 13l. per acre.-Dumfrics Herald.

Strood Fair.-Six thousand sheep penned, upwards of four thousand sold. Prices as follows:-Kent Lambs 18 s . to 25 s . ; Down Lambs. 20 s . to 28 s . ; two-tooth sheep, 28s. to 35 s . ; stock ewes, 31s. to 368. A good supply of borecs and cattlo. Trade good for:all.

Ballinaslor Fair.-Ballinasloc, Voo. 6.-This mak the eecond day of the sheep fair. There is an improvement in prices, and the average may be fairly taken from 1s 6 d to 2 s beyond the rates of Suturday. Sume high prices were obtained. One lot of maden ewes sold for ± 35 s. There were a good number of rams, which sold from $\mathbf{E 1 0}$ to $\mathbf{E} 30$. Mr. James Dillon and Dean French, so celebrited for purity of breed, gut highest prices. Tho horses were numerous-mach uore su thin I remenber on show-day; tu-morrow sales will take place. There was a greater number of the foul elass than I remember to have seen here on previous occasions; some sales did take place, and for large ligurcs:-

Captain Bolton, a chesnut horse.

El40

Mr. Iludderificld, a bay marc................... 150
Captam Barry, a bay horse................... 105
Mr. Nugent, chesnut mare.......................... 80
Mr. Dudley Persec............................... 105
The pices on all classes of shecep varied from ts to 5 s above those of 1814 ; and on Monday (sccond day) were so high as from 6s to 7 s above the sales at that fair.
Horned cattle were above the prices of last October, from :5s to 20 s on sture stuck, and from 20s to 30 s on fat stock, which I find, upon reference to the prices in the official returns from which I have made the foresong extracts, are fully as high as those obtained for similar stock within the per od which I have limited myself to, and the number of unsold was small. The official return is in the possession of Admiral Trench, the baron of the fair, and goes back for more than the last half ecntury, showing the prices and numbers of cattle, \&c., sold and unsold in each class within that period.

The town fair takes place to-morrow, and I am inclin. ed to think it will be confined to rather inferior stock, ow. ing to the sales already made. A few horses will be on the green. To.day there were not many horses in town, and thuse were even very inferior, and few sales wero made. There were no sheep whatever for sale, or to be seen is the fair.

Saltpetre for the Cure of Bacon.-The use of this salt fis very strongly condemned by Professor Rufnes. que. His theory is, that the nitric.acid of the salt is a deadly poison, and that the discases common to marincrs are owing to the use of this salt in the brine. He advises its entire disuse, and recommends sugar, which renders the meat more wholesome, sweeter, and equally as durable.

Govennaent of the Thoughts.-Dismiss, as soon as may be, all angry and wrathful thoughts: they canker the mind, and dispose it to the worst temper in the world, that of fixed malice and revenge. Never recall the ideas or ruminate upon past injuries or provocations. This is the amusement of many in their solitary hours. They work themselves up to distraction-to hate every thing and every body. Anger may steal into the heart of a wise man, but it rests only in the bosum of fools.-Dr. Horne.

©The \mathfrak{G} anadian $\mathfrak{A g r i c u l t u r a l}$ Ionrual, published monthiy, AT ONE: DOLLAR PER ANNUM, payadee in advance.

Any Post Master or other individual whoobtaine ais subecflbura, to be entitied to one copy, eratis.

As the n ! ject ofthis Journal is tc improve Canadian. Husbandry by the dissemination of the best and cheapest Agricultural finforgiation, the charge for it will be simply sufficient to cover the nieceessary expense. The subscription price wilt therefore be Five Shling per annum, to single Subscribers. Socicties or clubs will be lure nishod at the follnwiag rates:-

$$
\begin{aligned}
& 50 \text { copies for. } \\
& 20 \text { conies fur. } 5 \\
& 10 \text { copies furt } 8 \\
& \text { Payabte alwa; } \mathrm{B} \text { in advance. }
\end{aligned}
$$

WILLIAM EVANS, EDITOR AND PROPRLERUR

