The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
$x \quad \begin{aligned} & \text { Coloured covers/ } \\ & \text { Couverture de couleur }\end{aligned}$

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

$10 x$	$14 x$

CANADIAN RAND DRILL CO. Sherbrooke, Que.

RUBBER GOODS for MINING PURPOSES

 THE GUTTA PERCHA AND RUbBER MFG. GO. OF TORONTO.Lto Gi: g3 fionts 'west turonto factoriss at parkdale.

INGERSOLL ROCK DRILL CO.

 ROCK DRILLS ${ }^{10}$ mimama

Stane Chamending Hechings, (Vad liring Ilachines,

 AND complete mants of miniog, tunvelimo ano goanman whemimm.

Sold by all large Steam Supply Houses.
Used by all large Traction Engine Builders. Used by every live, wide-iware Steam-user in America. Voxte for Pr-ioert to
Waterous Higine Works Co., Brantford; Garth \& Co., Montreal; A. R. Williams, Toronto ; I. Matheson \& Co., New Glasgow, N.S.; McFelvy \& Birch, Kingaton; Macdomald \& Oo, Halifax; MoKeough \& Trotter, Chatham; Spratt \& Grey, Victoria, B.C.; Rohb Hingineering Co., Amherst, N.S.; or
PENBERTHY INJECTOR GO., Manufacturess, Windsos, Ont.

NOVA SCOTIA STEEL AND FORGE CO. LTD.
 manufacturers of hammered and rolled steel for minimg purposes.

Pit Rails, Tee Rails, Edge Rails, Fish Plates, Bevelled Steel Screen Bars, Forged Steel Stamper Shoes and Dies, Blued Machinery Steel $3 / 8^{\prime \prime}$ to $31 / 4^{\prime \prime}$ Diameter, Steel Tub Axles Cut to Length, Crow Bar Steel, Wedge Steel, Hammer Steel, Pick Steel, Draw Bar Steel, Forgings of all kinds, Bright Compressed Shafting $5 / 8^{\prime}$ to $5^{\prime \prime}$ true to roos 2 part of One Inch.
A FULL STOCK OF MILD FLAT, RIVET-ROUND and ANGLE STEELS ALWAYS ON HAND SPECIAL ATTENTION PAID TO MINERS' REQUIREMENTS. CORRESPONDENCE SOLICITED.

WORKS \& OFFICE: NEW GLASGOW, N.S.

 AUSTEN BROTHERS. RAILWAY, COLLIERYAND GOLD MINERS' SUPPLIES. No. 124 HOLLIS STREET, HALIFAX, N.S. EALL GOODS AT MANUFACTURERS PRICES.
MACDONALD \& CO., LIMITED.

 PUMPING MACHINERY, IRON PPIPES, FITTINGS, \&c., \&c., FOR MINERES USE.

"M" Drill-Hand Power. Capacity-300 ft. depth. Removes $\mathrm{I}^{3} \mathrm{t}$ inches solid core.

DIAMOND DRILLS

 PROSPFCTING MIINERAI LANDS.The Sullivan Diamond Drill is the simplest, most accurate, and most economical prospecting drill for any kind of formation, hard or soft, in deep or shallow holes.

The Diamond Drill brings to the surface a solid core of rock and mineral to any depth, showing with perfect accuracy the nature, quality and extent of the ore-bearing strata, and with great saving in time and expense over any other method.

Complete stock of all sizes, driven by hand or horse power, steam, compressed air or electricity. For sale by

SULLIVAN MACHINERY COMPANY,

Successors to DIAMOND PROSPECTING C0., 54 \& 60 N. Clinton St., CHICAGO, ILL., U.S.A. MANUFACTURERS AND DEALERS IN
Sullivan Diamond Prospecting Drills, Channelling Machines, Rock Drills, Hoists and other Quarrying Machinery.
Hoisting and Hauling Engines, Cages, Tipples, and other Coal Mining Machinery
Contractors for Prospecting Mineral Lands with the Diamond Drill.

"N" Drill-
Capacity-2,000 ft. depth. Removes it inches solid cert

SEND FOR CATALOGUE.

ELECTRIC BLASTING

Superior to all c .hers for exploding any make of dynamite or blasting powder. Each fuse folded separately and packed in neat paper boxes of 50 each. All tested and warranted. Single and double strength, with any length of wires.

The strongest and most powerful machine ever made for Elect ic Blasting. No. 3 fires 30 holes. No. 4 fires 50 holes. No. 5 fires 100 holes. They are especially adapted for submarine blasting, large railroad quarrying, and mining works.

No. I fires 5 to 8 holes; weighs only 15 lbs. Adapted for prospecting, stump blasting, well sınking, etc.
standard Electric Fuse and Blast Tester, Wire Reele, new design. Leading and Connecting Wires. Manufactured only by

Manufacturers of Sporting, Military and Blasting.
GUNPOWDIER, DUALIN, DYNAMITE and ECLIPSE
Dominion Agents for Safety Fuse, Electric Blasting Apparatus, Ete.
OFFICE: 103 ST. FRANCOIS XAVIER STREET, MONTREAL. Branch Offices and Magazines at all Chief Distributing Points in Canada.

REDDAKEX ${ }^{\circ}$ S PTENT

Speoially adapted for Heavy Drives in Damp or Exposed Places, in Mines, Saw Mills, Paper and Pulp Mills, etc.

CHEAPER, LICHTER, MORE PLIABLE \& MORE DURABLE THAN DOUBLE LEATHER.
W. A. FLEMING, oumber. oor

57 St. Francois Xavier St., MONTREAL. - Victoria Chambers, OTTAWA.

ITOTV TRE国DTI！

The Canadian Mining Mannual and Mining Companies Direectory

 ت○R 1894. PRICF＝THRE円 DOI工ARS．A few copies of this useful reference book are still on sale，and may be obtained by addressing：THE PUBLISHER， 17 Victoria Chambers，Ottawa．

MINING AND MILL MACHINERY．

Steam Engines，Rock Crushers，Boilers，Derricks，Steam Pumps， Water Wheels，Brass and Iron Castings of every description．

ALEX．FLECK，VULCAN IRON WORKS，OTTAWA．

OTTAWA POWD円R CO．，IIMITT円D． ESTABLISHED 1891.
MANUFACTURERS OF DYNAMITE AND TRIOLINE．
Dealers in Safety Fuse，Platinum Fuses，Detonators，and all Blasting Supplies． PRINCIPAL OFFICE：BUCKING＇HAM，QUEBEC．
ALL ORDERS PROMPTLY ATTENDED TO UNDER GUARANTEE OF EXCELLENCE．

CARRIER，LAINE \＆CO．， FOUNDERS，MACHINISTS AND BOILER MAKERS， エ円VIS，QU円．
 Engines，Boilers，Steam Pumps，Hoisting Gear and all Machinery for Miners，Contractors and Quarrymen．Also Builders＇Castings，

 Stoves，Stove Fittings，Hollowware，Flour and Saw Mill Machinery，Marine Engines and Boilers，etc．，etc．WRITR छOR OUR PRICES．

MILLER BROS．\＆TOMS，

STEAM ROCK DRILLS AND HOISTING ENGINES，
Mining and Contractors＇Plant，Ete．，Etc．
110－120 KING STREFT，MONTRBAL，QUB．

School of Mining, KINGSTON, ONTRRIO.

ffaculty:
WM. L. GOODWIN, B.Sc. (Lond.) D.Sc. (Edin.) F.R.S.C. Director and Professor of Chemistry.
WILLIAM NICOL, M.A.,
Professor of Mineralogy, Metallurgy and Assaying.
R. CARR HARRIS, C.E.,
Professor of Engineering.
WILLET G. MILLER, B.A., Lecturer on Geology and Petrography. WM. HAMILTON MERRITT, M.E., F.G.S., Associate Royal School of Mines, England,
Lecturer on Mining Engineering, The Economic Geology of Ontario, and The Discovery and Winning of Minerals. WILLIAM MASON, Lecturer on Freehand, Mechanical and Office Drawing, Topography and Surveying. JOSEHH BAWDEN, Lecturer on Mining Laws.
T L. WALKER, M.A., DR. ISAAC WOOD, M.A., Laboratory Demonstrators.

THE SCHOOL PROVIDES THE FOLLOWING COURSES OF STUDY:

1. A Course of four years leading to the Degree of MINING ENGINEER, (M.E.)
2. A Course of three years, for which a Certificate in ANALYTICAL CHEMISTRY and ASSAYING is given.
3. A COURSE OF EIGHT WEEKS, (January and February), for Prospectors, Mine Foremen and others interested in Mines and Minerals.

Lecturers are sent to any mining centre where a sufficient number of students is guaranteed, to conduct SHORT COURSES in Blowpipe Analysis, Chemistry, Mineralogy, Geology, Prospecting and Mining.

The different courses are made thoroughly practical by work in the well-equipped Chemical, Assay, Mineralogical and Petrographical Laboratories. A Mining Laboratory, furnished with Mills, Separators, Concentrators, etc., is in course of construction. It will be open for work in Session 1894-5. Surveying is practised in the field during the warmer months of the Session.

FOR CALENDAR OF THE SCHOOL AND FURTHER INFORMATION APPLY TO

If you want

BAGS

FOR PACKING

ASBESTOS, PHOSPHATES, ORES, \&c., Send to us for Samples and Prices.

Every Quality and size in stock.

Specially strong scwing for heavy materials. Lowest prices compatible with good work.

We now supply most of the Mining Companies, and those who have not bought from us would find it to their advantage to do so.

THE CANADA JUTE COMPANY (Itd.)

17, 19 \& 21 8T. MARTIN STREET, MONTREAL.

THE GATBS ROCK AND ORE BREAKER

THE HICHEST TYPE OF ROCK BREAKING MACHINERY!

The Gates Gyratory Breaker is used on every Continent, having been adopted by the largest Mining Companies in the world. It has supplanted all other forms of breakers.
We Manufacture also, sTAMP MILL8, CORNIBH ROLLS, CONCENTRATOR8 and all clasees of MINING MACHINERY.
Adaress for Catalogues GATES IRON WORKS,
Branch Offices:
${ }_{237} 36$ Liberty St., New York.
${ }_{173}$ Queen Victoria St., London, E
50 P. South Clinton St., CHICAGO, U.S.A.

FOR SALE

NEW AND 8ECOND-HAND

Mining Panc, IMardineri, TOOLS, ETC.

The Property of the British Phosphate Co. Ltd. Clen Almond, Buckingham, Que.
\qquad -

I Bullock Diamond Drill, complete, with bit set with 8 . carbons, core lifter, core barrel, 200 ft . coupled dril rods, wire rope, hose, diamond setter's tools, etc Capable of boring to $\mathbf{1 , 2 0 0} \mathrm{ft}$.
I $80 \mathrm{~h} . \mathrm{p}$. Jenckes Multitublar Boiler and Smoke Stack. $130 \mathrm{~h} . \mathrm{p}$. Waterous Engine Co's Multitubular Boiler.
I Worthington Duplex Steam Pump, $51 / 4 \mathrm{in}$ x $31 / 2 \mathrm{in}$. x 5 in.

1 Ingersoll Steam Hoist.
1 Inclined Shaft Pit Head Framing, complete, with guides 150 ft . long, large diameter sheaves, side stopping levers, safety catches, two cages to carry mine dumping cars, flexible steel winding rope 2/8in., etc., etc.
1 Set Double Beam Wharf Weighing Scales, 230×43, 5 ft . $\times 6 \mathrm{ft}$., weighing up to four tons.
I Set Wharf Hopper Scales, weighing up to 3,600 lbs.
I Hardwicke Steam Pump.
1 Ingersoll Air Compressor, $12 i n . \times 18 \mathrm{in}$.
1 Compressed Air Receiver, 12 ft . x ift. 6 in .
${ }_{1}$ Pile Driver and Fittings complete, (monkey 1,600 lbs weight.
3 3in. Seargeant Drills and Tripods.
I $21 / 2$ inch Eclipse Drill and Tripod.
I Tunnel Column for ditto.
1 No. 4 Sturtevant Blower.
1 No. ∞ do do
I Machine Lathe and Tools, complete.
112 h.p. Horizonal Engine, by Low, of Ottawa.
I Steam Rotary Hoisting Engine, Drum, Brake and Wire Rope.
${ }_{1}$ No. 5 Cameron Sinking Pump.
40 Side-dumping Mine Cars and Carriages, 12 in . guage, constructed of hardwood and iron.
As well as sundry other machinery and plant.
4000 lbs . Drill Steel, Iin., $11 / 8 \mathrm{in}$, $11 / 4 \mathrm{in}$.
1600 ft . Iron Track Rails, 25 lbs to the yard.
103/4 Karats of Carbons for diamond drill, unused.
$2900 f \mathrm{f}$. $5 / 8 \mathrm{in}$. Wire Rope, new.
3700 lbs. Iron, (new) round, square, and flat, assorted sizes.
3 Electric Blasting Batteries.
Also a large quantity of wrought iron piping, 4 in ., 3 in., 2in., I $1 / 2 \mathrm{in} ., 1 / 4 \mathrm{in}$., Iin., pipe fittings, steam hoseminers' tools, fire bricks, building bricks, blacksmith's coal, several end-dumping cars, car wheels and axles, rope sheaves, derrick masts, booms, etc., explosives, screens, machine steel, wire ropes, stoves, etc., etc.

The whole of the above in good condition and working order, conveniently situated at the wharf of the British Phosphate Co. Ltd., on the River du Lievre, nine miles from Buckinghan, Que.

Inspection invited and further information forwarded upon application to
J. B. SMITH, Manager,

British Phosphate Co. Ltd.
Glen Almond, Buckingham, Que.

PULLMAN BUFFET PARLOR CARS.
Olose Connections at MONTREAL with Trains for QUEBEC, - HALIFAX, - PORTLAND

And all Points EAST and sOUTH.
FASt through service between
OTTAWA, NEW YORK and BOSTON,
And all NEW ENGLAND POINTS.
Baggage checked to all points and passed by customs in transit. For tickets time tables and information, apply to nearest ticket
agent of this company or connecting lines. ,

General Manager
Gen. Passenger Agt

BALBACH SMELTING \& REFINING COMPANY,

 EDWARD BALBACH, JR.. - PRES'T. J. LANGELOTH, - - VICE-PRES'T. Newark, New Jepsey.Smelters and Refiners of Gold, Silver, Lead, and Copper Ores.

Bullion and Argentiferous Copper Matte Recoived on Consignment or Purchase.

Smelting and Refining Works:
Electrolytic Copper Works:
NEWARK, N. J.
Buena Pe Sampling Works: Agency, SABINAS COAHULLA, Mexico.

BEETHRTII EN INE WORKS O.
 Successors to Doty Engine Works Co., and John Doty Engine Co., Ltd.
 —MMLANUTEAOHOTRIERES OIE-
 MINING MACHINERY

BERTRAM ENGINE WORKS CO. Bathurst and Niagara Sts., TORONTO, CANADA.

Butterfield’s Hinged Pipe Vise

 MADE IN TWO SIZES.
 No. I Holds from 0 'to $21 / 2$ inch pipe. No. 2 Holds from $1 / 2$ to $41 / 2$ inch pipe.
 SIMPLEST AND BEST IN THE MARKET : :
 Butterfield \& Co. are makers of all Tools for working Water, Gas and Steam Pipe, Stocks and Dies and all kinds of Taps.
 __MANUFACTURED BY___

BUTTERFIELD \& CO., ROCK ISLAND, P.Q.

WIRE ROPES

Crucible Cast Steel Ropes for Hoisting, Inclines, Mining, \&c.

Seimans-Martin for Transmission of Power, Elevators, Hoists, \&c.

Galvanized Ropes for Derrick Stays, Ships' Rigging, \&c. WRITE FOR CATALOGUE ANI) PRICES. MANUFACTURED BY THE
B. GREENING WIRE Co., LTD

John ت. Hardman, S.B. MINING ENGINEER,

Olellhem, ITOTEB EBotize
Can be consulted on all matters pertaining to the profession The development and management of Gold Properties a specialty.

Catalogues supplied which comprise other trust worthy instruments for the Control, Regulation and Economy of Steam.

AGENCY: 7 IICRAIG STREET, MONTREAL, QUE T. \& IEL 5MATIOR.

J. T

Assayer and Mining Geologist. 158 8t. James 8t., Montreal.
Analyses and Assays of Ores, Fuels, Furnace Products, Waters, etc., etc. Mines and Mining Properties Examined and Valued

R. C. CAMPBELL-JOHNSTON

((of Swanseá, India, and the United States.)
METALLURGIST, ASSAYER, AND MINING ENGINEER.
Properties reported on. "All assays undertaken. Furnaces and concentrating plants planned and erected. Treatment for ores given. Ores bought and sold. Box 40, Vancouver, B.C.

T. D. LEDYARD,

DEALER IN MINES, \&c. 57 colboane streit , toonito.

Eppectanticte:
BESSEMER IRON ORES PARTICULARLY LOW IN PHOSPHORUS AEBEBEEETOSS.

F_ CIRK円I,
MINING: ENGINEER.
(Graduate, Academy of Mines, Axchen, Germany.)
Reports on Mica Deposits, Asbestos, Phosphate
78 QUEENSTREET, OHMPATKA.

[^0]
C. V. M. TEMPLE

(Formerly President Megantic Mining Co., P.Q.)
MINES AND MINING LOCATIONS FOR SALE. CORRESPONDENCE SOLICITED.

Office and Residence :
47 ST. GEORGE ST., TORONTO, ONT.
canadian representative
Henry De Q. Sewell, Dommion and Ontario Land Surveyor Mining Engineer, etc., Port Arthur, Ont., A. M. Inst. C.E. london representatives
Lane Gagge \& Andrews, Solicitors, Arundel St. Strand, London. R. C. Campbell-Johnston, (of Swansea, India and the
States), Metallurgist, Mining Engineer, Vancouver, B.C. States), Metallurgist, Mining Engineer, Vancouver, B.C.

LEDOUX \& COMPANY,

 9 Cliff St., New York. Engineers, Metallurgists \& Assayers.Public Ore Sampling and Storage Works
All the principal buyers of furnace materials in the world purchase and pay cash against our certificates of assay, through New York banks.
By special permission of the Secretary of the
Treasury of the United States, cars of ore or Treasury of the United States, cars of ore or or
Coper matte passing through in bond can be opened
and sampled at our works.
Consignments received and sold to highes. bidder. Send for circular giving full particularst
Mines examined and sampled. Assays and Analyses of all kinds.

SPECIALISTS in MICA, MINERS' AGEINTB,
RICHARD BAKER SON \& CO.
6 \& 7 CROSS LANE, LONDON, ENG.
WYATT \& SAARBACH,
Consulting, Analytical and Technical Chemists

12 OLD SLIP, NEW YORK.
(Near Hanover Squaye.)
w. de.I. BENEDICT, 玉.M., Mem. Am. Inst. Min. Eng.
Mining Engineep and Metallupgist, REPORTS ON MINES AND MINERAL LANDS.
Phosphate a specialty.
No. 18 Broadway, Rooms 617 \& 618,
ITevoromin

[^1]WM. HAMILTON MERRITT, F.C.S.
Associate Royal School of Mines, \&c.,
mining engineer and metalludrgist,
Will report on Mines and Mineral Properties. ADDRESS:
15 Toronto St., Toronto; Ont.

F. H. MASON, F.C.S.

First-class Certificates in Chemistry and Metallurgy from the Royal School of Mines, London-Late Chemist and Assayer to the Newbery-Vautin (Patents) Gold Extraction Company, Limited.

Assays \& Complete Analyses of all Minerals
THE ASSAY OFFICE, ARLINGTON PLAOE, - TRURO, N. 8

Irwin, Hopper \& Co.,
MINERS AND SHIPPERS OF MINERALS.

BOARD OF TRADE BUILDING, MIONTHERIEAE, OANT.
Asbestos, crude and manufactured. Phosphate, Mica, Plumbago, Soapstone, \&c.

MICHIGAN MINING SCHOOL

A State School of Mining Engineering, located in the heart of the Lake Superior mining region, giving practical instruction in Drawing, Blue-printing, Mechanics, Mechanism, Properties of Materials, Graphical Statics, Mechanical and Electrical Engineering, Shoppractice, Anaiytical and echnical Chemistry, Assaying, Ore DressMining, Mineralogy, Petrography, General, Economic, and Field Geology, etc. Has Summer Schools in Surveying, Shop-practice, equipped. Tuition free. For Catalogues apply to the Director

ROBIN \& SADLER

SPECIALTIES,
OYNAMO BELTS OATB BELTING MONTREAL

LATEAPA TORONTO
2518 \& 2520 MOTFE DAME ST129 EAY ST

BOOKS OF INTEREST

то
Fnginears, Meohanics, Etc.
Mathematical Instrnments, Squares, Scales, Compasses, and a full line of
Engineers' Drawing Supplies-
W. DRYSDALE \& CO., BODKSELEERS AND STATIONERS. 237 St. Wames St., Montreal.

ORFORD COPPER CO.,

 Copper SmeltersWorks at Constable's Hook, N.J., opposite New Brighton, Staten Island. Copper Ore, Mattes, or Bulion purchased. Advances made on consignments for refining and sale. Specialty made of Silver-bearing Ores and Mattes.

> INGOT AND CAKE COPPER.

Prieeldent, ROBERT M. THOMPSON,
Treasure a. A. LAND.
Office 37 to 39 Wall 8treet, Now York.

H. H. FULLER CO.

4I-45 UPPER WATER STREET, HALIFAX, N.S.

WHOLESALE AND RETAIL DEALERS IN
BJILDERS', BLACKSMITHS' and GENERAL HARDWARE.

MINING

AND MINE SUPPLIES a specialty.

OLE AGENTS FOR NOVA SCOTIA FOR

BOSTON BELTING CO'S RUBBER GOODS, REEVESSWOOD SPLIT PULLEYS.

CORRESPONDENCE SOLICITED.
P. O. Box 178. $\quad \pi$ Shipments promptly and carefully attended to.
M. BEATTY \& SONS,

Horse-Power Holsters,
8tone Derrick Iron,
Centrifugal Pumpe,

$D^{\text {RIEDGES, DRERICKS STEAM SHOVELSS, }}$ SUSPENSION, CABLEWAYS,
AND OTHER CONTRACTORS PLANT.
ANGUS M. THOM CD., MONTREAL.

VAN DUZEN'S STEAM JET PUMP. From 5 to 40 Dollars Each. From 5 to 40 Dollars Nach.
SAVES YOU BUYING A $\$ 500.00$ PUMP.
For the following uses:
For pumping cold water, liquids other than water, and air and vacuum pump. For paper mills, chemical, gas and sugar works, tanneries, mines, quarries, irrigating, draining, etc.
Sood for Catalogne and Prico List GARTH \& CO., MONTRTEAI.
\qquad
VAN DUZENS STEAM JET PUMP:
 $\rightarrow \rightarrow$

FOR MINING, ALL CLASSES
Northey, LD.
Toronio

Official Organ of The Mining Society of Nova Scotia; The General Mining Association of the Province of Quebec; The Asbestos Club; and the Representative Exponent of the Mineral Industries of Canada.

B. T. A. BELL, Editor.

Published Monthly.
OFFICES: Victoria Chambers, Ottawa.
VOI.. NIII., No. 9.

> SEIPTEMBER, : S9\%.

VOI. XIII, No. ,

EN PASSANT.

Mr. Robert Archibald, C.E., M.E., the subject of this month's portrait, suceceded, ahout a year ago, Mr. James Baird, in the management of the Jogsins Colliery; operated by the Canada Coals and Railway Co., Led., in Cumberland Coumty, Nova Scotia. like many of our mining engineers, Mr. Arehibald is a Scotchman, born and educated in Glasgow, where he also served his indenture as appremice to a well known frm of civil and mining engineers. His first professional work was an engagement as surveyor and assistant manager at one of the largest collieries near Motherwell, after which be was employed for some eight years by the Summerlee and Mossend Iron and Steel Co., in the varied capacities of assistant manager, underground manager, and ultimately manager. Then Mr. Archibald received the appointment of assistant general manager to the Carron Company, I.td., where he acquired valuable experience and found full scope for liss energy and ability in the supervision of this important company's Scotch collieries. Prior to his present engagement with the Canada Coals and Railway Co. l.td., he had been promoted to the position of manager of one of the Carron Company's largest districts. Mr. Archibald's intimate acquaintance with Scotch colliery practuce is evdenced by many notable improvements and a rapidly increasing output at the Joggins Colliery.

As we go to press the Autumn meeting of the (ieneral Mining Association of the Province of Quebec is being held at Sherbrooke, the proceedings opening in the Magog House on Wednestay evening, 26 th instant. Among the papers to be presented we note: "The Canadian Slate Industry;" by Mr. Harry Williams, Supt. of the Beaver Asbestos Co. L.td.; "Chromic Iron : its Composition and Uses," having particular reference to the important new discoveries at Black lake, Que., by Mr. J. T. Donald, M A, Montreal : "Repairs to Rock Drills," by Mr. A. Sangster, of the Canadian Rand 1)rill Co., Sherbrooke. Mr. J. Burley Smith, M.E., is also down for a paper, the subject of which, however, is not announced. On Thursday the members will be the guests of President Blue, at the Capelton pyrites mines of the Eustis Mining Co., where they will, after an inspection of the works, be entertained to luncheon. On Friday, party will leave by special train over the Quebec Central Railway; visiting first the large quarries operated at Dudswell by the Dominion Lime and Marble Co. Lid., and then at Black Lake, the new workings of chromic iron which have caused some excitement in that district. By courtesy of the various managers, an oppertunity will also be afforded fo inspecting Quebec's great mining industry, the asbestos mines of Thetford and Black Lake. Luncheon will be served in the Club House at Black Lake. In the evening, the Hon. W. B. Ives, Q.C., M.P., President of H. M. Privy Council, will entertain the members of the Association at his charming residence in Sherbrooke. By arrangement, special rates have been provided, on the certificate plan, with the Canada Atlantic, Grand Trunk, Canadian Pacific and Quebec Central Railways. There is a likelihood of a large attendance and the -success of the gathering is assured.

The Ontario Mining Institute will hold its next meeting in the city of Kingston, some time in lamuary, under the auspices of the staff of the new School of Mining.

In view of the very marked progress in the introduction and application of coal getting machinery in Canada, some statistics from Illinois, where machine mining has passed from the experimental and become fixed and successful, will be of interest. The following comparative table for the last six years shows the record of machine mining:

Year.	Mine	Machinev	Tons car. l. 1 mp coal.	$\begin{gathered} \text { Men } \\ \text { employed. } \end{gathered}$
ISSS.	39	272	2,24S,210	3,05S
1 1S99..	35	235	2,346.713	3,439
1590.	34	260	2,581,983	3,1,4
1591.	34	241	2,423,080	3,005
1892.	41	300	3,002,S93	3,646
15 O.	41	310	3,541,944	4,314

The total number of tons of all grades mined by machines during the year 1593 , was $4,595,130$ tons, or over 25 per cent. of the total product of the State, and giving employment to $\mathbf{4 , 3 1 4}$ men. A record of 288 machines at 37 mines. shows that with an average force of 14 men , operating 250 days, 15,193 tons have been produced on each machine. There are 22 other machines located at four other mines, which have cut 219,504 tons; these are at mines where coal is partly mined by hand.

Some particulars relating to Crabbs patent clip for endless rope haulage in mines, \&c., have reached us. It is described as the latest and most efficient clip in the market, and does not damage the rope. It is claimed to be cheap, simple and substantial in construction and certain in action on rising and falling gradients; automatically attaching and detaching itself at crosses, junctions and terminals: it drags the tub or waggon on the centre line; requires no adjusting, it being always in position to receive the rope; and can be adapted either to the top bottom or side of the tub. The patentee is Mr. ©. H. Crabb, of Bunker Hill, Fence Houses, Durbam, England.

Vancouver lsland, with its rich resources in coal and iron, gives promise at no distant date to become the centre of an important iron smelting mdustry. Mr. I. P. Witherow, of Pittsburg, has been pushing for the establishment of a works at Victoria, with the result that Alderman Ledingham has given notice of the following motion for an early meeting of the City Council of that city :-
"Whercas the raw materials for the manufacture of iron and steel have been shown to exist in abundance and under favorable conditions for protitable manaffacture in Vancouver Island;
"And whereas it would greaty increase the commercial importance of the crty of Victoria and wnutd otherwise benefit the inhalitants thereof if a first-class plant for the manufacture of iron and steel billets were to be established in or near the city;
"And whereas the government of Canada is authorized lyy an Aci passed on the 23rd day of July, 1894, to pay a lounty of $\$ 2$ per ion on all pig iron made in Canala front Canadian ore, a lounty of $\$ 2$ per ton on all iron puddled lars made from such pig iron, and a bounty of $\$ \mathbf{2}$ per con on all stecl billets made in Canada from such pig iron;
"And whereas J. P. Witherow has undertaken to organize a company in London with a capital stock of $\$ 3,000,000$ for the purpose of establishing and operating such a plant at some ronvenient point in British Columbia;
" IBe it therefore resolved that if a company is organized with a capital of $\$ 3,000,000$, and at least half of such capital is subscribed for, and if the company shall have expended to the satisfaction of the mayor and two persons to be nonimated by; the City Council, the sum of $\$ 20,000$ in acquiring a site and commencing to build a plant in or near Victoria for the manufacture of iron and steel billets, with a capacity; of not less than 50,000 tons per amum, that the council will cause a by-law to be submitted to the ratepajers to authorize the city to gunmantee the interest at the rate of 5 per cent. per annaun on the company's bonds to the extent of $\$ 1,000,000$, for a period of twenty years, such guaranteed bonds to be issued from time to time as the work progresses, and to be secured by a charge on the assets of the company and the ixounties available from the Canadian government, or otherwise to the satisfaction of the council."

In the course of the discussion on the paper read by Professor Clowes before the British Association, in which that gentleman describ. his apparatus for detecting the presence of foul air in collieries, Dr. Haldane, Oxford, gave the result of his observations on the effect of the deleterious gases met with in coal mines upon human health. He said that his own experiments, repeated on many different individuals, showed conclusively that air containing as much as 20 per cent. of carbonic acid could not be breathed even for a minute without serious consequences. Even 5 per cent. of carbonic acid caused distress of both body and mind, while any proportion higher than 10 per cent. produced distinctly poisonous effects. He ppinted out that the danger in mines often arises from a deficiency of oxygen, or from the presence of poisonous gases such as sulphuretted hydrogen and carbon monoxide, rather than from the presence of carbonic acid.

A new apparatus for concentrating sulphuric acid, which has been invented by G. Siebert, consists of a flat, closed vessel, in an inclined position, the bottom of which is terraced or stepped, with each step inclined backwards so as to form a shallow trough. The upper part of the vessel has a dome for carrying off steam or vopors and the lower end an outlet for the concentrated acid or liquid. At the upper face of the vessel is an inlet surrounded at the outside with a basin and protected internally by a screen, so that the liguid in the basin forms a hydraulic joint. In one form of the apparatus each step or terrace has a metal ridge or rib, which is shorter than the entire length of the step, so as to leave at one end a gap for the passage of the liquid; and the gaps being on the alternate sides in successive steps, the liquid traversies at each step the whole length to and fro as it flows, step atter step downwards. The vessel is heated underneath.

In his review of the Florida phosphate industry in $1893, \mathrm{Dr}$. David T. Day (Mineral Resmurces of the United States) says: "As is well known reports have made the foreign consumers think of western Florida as a smooth tract of phosphate, of which it was possible to state the available tonnage by the cubic contents of that part of the State obtained from the acreage multiplied by a theoretical depth. The utter recklessness of such a method is realized when it is understood that the floor of the phosphate section is limestone rock, with an extremely irregular surface. At places the limestone outcrops: at others it is covered with still more irregular deposits of phosphate rock, clay and sand. In one place the phosphate rock will be visible at the surface, and a few feet away it is likely to be found covered with many feet of barren sand or clay, or both. The rock must be sought, therefore, above the pitted, often jagged, surface of the limestone, and below the equally irregular piles of sand and clay. And even then the phosphate boulders and pebbles must be separated from the sand and clay with much labour and mechanical ingenuity, which has developed a system of mining that is somewhat novel, and, therefore, requiring comparatively costly supervision to adapt it to the constantly changing details of occurrence, even after expert and costly prospecting has defined the defined the deposit. With the uncertainty as to the persistency of a given deposit, the phosphate is not, as a rule, followed below water level. It
will be understood that the writer is endeavouring to represent the condition of things in what is generally thought of as the Florida phosphate field, i e., the "hard rock" region. The pebble region, which, by the way, is developing more satisfactorily than the rock phosphate, is susceptible of more svstematic treatment; but even here the necessity is recognized for the greatest skill in selecting only here and there a property which may be profitably worked. After the usual primitive and careless methods of effecting sales characteristic of a new mining region ${ }_{r}$ have had time for teaching their costly lessons, it might be expected that the financial results would be as good as the condition of demand and supply could possibly warrant. But there is general doubt as to whether this condition has been realized. It is confidently asserted by producers. in the best position to judge that the price should be nearly double that which is now realized, and further, that the foreign manufacturers, whoare the best customers for high grade phosphate rock, are perfectly willing to pay this high price provided they can be assured that all must pay it, and there is to be no grat deviation in the price. The most evident policy which suggests itself, that of combination, still seems. difficult to effect."

Mr. Titus Ulke, reporting to the United States Geological Survey ${ }_{r}$ on the soapstone mine at Hewitt's, in North Carolina, says: "Themine is located on a hill side, from which the crude tale is lowered in a chute to a grinding mill having a capacity of from S to 10 tons per day of ten and a half hours. Most of the product is ground, but some block and pencil talc cut to order is also shipped. The blocks are usually 6 . by + by 1 inch in size ; the pencil talc is cut to about + by $3 / 4$ by $1 / 4$ inch sizes. During 1893 the mill was running continuously for about three months only. The pencil and block tale is shipped in cases according to the amounts ordered; the ground talc is packed in sacks of 220 pounds each. At the mill the crude talc is first passed through a 'rumble,' i.e., a rotary screen, 6 feet long by 4 feet in diameter, which removes the dirt from the talc, and the dirt thus removed passes through longitutional slits into a water spout which carries it away. The good. talc remaining in the rumble is dumped into a car, from which it is fed into a buhrstone grinding mill. The ground material is then hoisted tothe floor above and emptied into a silk bolting cylinder. The bolted talc is caught in a dust-collecting chamber, into which it is drawn by an interposed centrifugal fan. The fine white ground talc is finally sent to an automatic packer and filled into sacks, each holding 220 pounds.

Gouverneur, Saint lawrence County, New York, continues to furnish the entire product of the fibrous variety of soapstone. This mineral is used almost exclusively as a filler in the manufacture of medium grades of paper, a small amount being used in making dynamite. The product in 1893 was 35,861 short tons, valued at $\$ 403,436$, against 41,025 short tons, worth $\$ 472,485$, in 1892. The year of largest production was in 1891 , when an output of 53,925 short tons, valued at $\$ 493,068$, was reported. At the beginning of 1893 prospects were bright for a good year's business, and until the first of June the production was about cqual to that of the first five months of 1892 . After the first of June, however, the demand fell off, and while prices were fairly well maintained, the amount of business for the rest of the year was. about 75 per cent. of that of the preceding year.

An American inventor has devised a machine for making gas forilluminating purposes out of wood instead of coal. The machinery is said to be very simple, consisting merely of a retort and purifying chamber, with a tank for holding the gas. It is claimed that the machine can be used for domestic purposes, and that by attaching it toan ordinary cooking stove enough gas to last a day can be made by thefire necessary to do the cooking. We would rather not make any remarks about this machine. We have not seen it ourselves and we don't know anybody who has.

Robert Archibald, C. \& I. E.
Canada Coais \& Railway Company.

ONTARIO MININE INSTITL'TE.

Federation Endorsed-The Nationalization of Miues-Ontario's Cement Brick and Building Material Production-Successful Meeting of the new Ontario Institute.

The Untarw Bmog Institute, organmed in April last, held its first meeting for the reading and dicuswion of papers in Toronto, on Wednestay and Thursday, 121 h and ${ }^{1} 3^{\prime \prime}$ Ceptember, and notwithstanting many drawlacks, notably the altractions of "Farr" week aud bad weather, was eminently successful. The sessions were hell in the commokhow I'risate Bill, Commathe Romat the I'arlianent luaildings, kindly placed at the disposal of the Institute by the (iovernmem. The proceedings opened on Wedneslay aiternoon. Mr. lames Commee, of Port Arthur, President, in the chair. There were preent- Mesrs. I. I. Kingsmill, W. C., Coronto: I. Nc.Arec, D. I.S., There "ere preent Messrs. J. J. Kingemill, ! C. Toronto: I. Mc.Aree, D. L.S.,

 Toromti: Dr. Bursanh, school of Science, Toronto: l. A. Mortison, Toromb: Fred W' Gray, Guelph, Ont.: T. W. Gibson, Torontu; B. T. A. Bell, Ouawa, and nthers.

Election of Members.

The following were elected members: K. W. I.cenard, C.L.., Kiughom, F. Hille, M.E., Murt Arhur, \therefore Clinhen, Sudhury. Ja`. McArthur, Sudbury, 1. F. Whitson, Turonto, llens Tottes. Turonto, A. Slaght, Witerford. Fred II. Giras, Uuelph,

James learsons Torunto,
Dr. Burnash, Toronto,
J. H. Chewitt, B.A. Sc., Toromu,
II. L. Hime, Toronto,

Alfred Willsun, Toronto,
(.1 B. Kirkpatrick, Toronto,

Prof. C. Gordon Richardson, Toronto, Aubrey White, Toronto.

Reports of Council.

TuEsl: RETA)" reported that in accordance with resolution passed at last meeting he had issued a circular letter invang all in any way interested in mining in Untario to hecome member, ami that the repuonse had been satusfactory. The membershop at date was almut 70.

THE TREASLRI:R submated a statement of the affars of the Assuctation, showing a balauce on hand of $\$$ wo.ow, wath a large number of subserpptons r nstanding.

Mr. A. BLLEE reported that the Cunnmbee appomed to constider the gueston of a seal had approved of a design, lut as Mr. Merritt, who had $i t$, was out of town, the matter had better stand until neat uleeting.

The Canadian Mining Institute.

Mr B. T. A. BELL. At a meeling held in Sydney, Cape Breton, on $12 \mathrm{~h}_{\mathrm{h}}$ July last, the Vinugg Simety of Nuna scutaa and the General Mining Assuctatuon of the Prosince of Guelece renulved tu federate into an urganisation to be hnown as the Canadian alining Institute. A resilution was abo adupted inviting the Untario Mining lnstitute 1, jwin in the federation, and ashtug that the presidemt and a committee of three members be appointed to act in conjunction with a similar committee of each of the uther urganizations for the purgose of drafting a suitable constitutuon.

MK. A. MLC'F What is the olject of the federation?
MR. A. BLC
MR. B. T. A. BLLL would contain the papers read before all the societies in the organization. Such a federation would absu place the mamg men in a stronger positeon in such maters as Dominion legrolathat. I have therufure much pleasure in now ing that the Untarno Mining Instimute is in favor of a feleration of caisting Canadian moning associations, and that Mesors. I. I. Kingsmill, W. Hamilton Merritt, A. Blue and T. W. Gilson Ix: a comnibtee to confer with the representaties of the Minims buciety of Noua Scotia and the General Mining Asuciation of the l'ronince of Guclec.

IN. I. I. KiNcs.illi. - Is there any asociation in British Columbia?
 made by parteren lancuaver to urgamase.

Mk. B. I. TowNSESN I have just relurned from Briteh Columbia. Before I left there was smic hath of the furmation of an assmatuon. I second the motion.

The Chaiman then put the motion, which was carried unanimously.

Incorporation Postponed.

It J. KiNicisMith. nubmitted the following:
"The committee appointed to report upon the advisability of Incorporation beg leave to report that until after the question of federation is settled it would not be ex. pediemt to incorpurate."

Thiv "av agrecd :\%.
(Sgd)
J. J. Kineswit.

Motion to Amend Constitution.
Mr. J. I. KI NGSMIL.I. gave notice of motion to amend Sections 6 and $\%$ of the Constitution and hy-Laws by providing for the appointment of two auditors and defining their duthe

The meetine then adjourned.

ISENLAC SESSION.

The memhers met at eight o'cluck, the President in the chair.

The Nationalization of the Mineral Domain of Ontario.

Mk. I. B.AWDEA This subject presents itelf to the consideration of the preople of Ontariu divested of much complexity which eloewhere surfounds 11 , such as the dangers of interfercace woth cested interests. of dinturbance to the channels of trade and indurtry, and of burdens w ine umderiatien for the expropriation of provate property.

The Prenince is the muminal, thuybh not the leenefictal, owner of one of the most evensic mineral domans on the face of the glute, has no muning industry or trade that hy any paxibility can be injuriouly affected hy the opectatoon of manes lyy a l'rovincial Depratucnt, and nu wested interes.s lelonging to indlualuals or to classes who may demutr from such standpoint to the assumption hy the Government of new function. It is merely requisile to make the nominal an absolate ownership in order to natiomalize our mining jrmperty.

It is not proposed to discuss the groumds upon which the lrovincial Cinvermment have the right to operate mines. It is assumed that it is clothed with the legal right. The expediency of making this right active for the benctit of the people of today and of the centuries (o) come, will, it is hoped, not be distegariled ly reason of any appearance of socialisun it may' wear, or be condemned withonat investigation because of any preconception as to what s.re the proper functions of government

An adrertisement of the Ontario Bureau of Sines pullidhed in an American periodical calls attention to the faet that the mineral clomain of the province evtends 100 miles in witth and 1,00 miles in length. It is not stated that ninety nine per cent. of this area is mineralogically an unknown country : that from the mines already operaterl little beyonit the mineral contents of an approximate one per cent. (1,000 vinare uibles) of the terntery can be certitied. It is not stated that in proportion to the capital invested, mining has been less remunerative in Ontario than elsewhere in great part due to lack of scientitic knowledge, in part to long winters, magnificent divances, and cortesponding cost of stpplies and transportation. The hivtory of the Dontreal Mining Co. is a record of the folly of selling harge tracts to tand jobbers, who, by a pull on the Land Department oblained a patent right to induce the public th invest in chances-in other worls to run the lottery lusiness unter the ghise of an insestument in mineral property. IApppily this state of things has been closed nut. But it is to be feared that ciovermment may he induced by sectional clamor to do indirectly what it has declined to do directly. There is no reason why a solvent and homest govermment should sell any property without knowledge of its value. It is a stulation of the great public trut committed to it, to offer valuable mines as premimens for the mere chances of discovery. It is cheap literature from the dust heaprs of eaplexted pulitical economy, to say that it is not the hasiness of Government to discover mines. It is the duty of (Government to know the must hat can be practically learned of the resources entruted to us administration, and it should, therefore, know as fully the value of a mineral range as of a timber linait, or of an area of agricultural land. Its knowledge should be intensive as well as extensive. The diference of cost in obtaining this knowledge as against the present sysem is no argument against the principle, that the Covernment of a great Province like ours should not encourage gambling in mining locations.

The operation of mines by the Govermment would seem to bee expedient for the following reasins:-

1. That until it is undertaken there will always be pressure upon the Crown
Lands, Departument to sell more minine had than there is an actual denand for is "actual" as opposed to mere mining land than there is an actual demand for, that land Department to survey sucy spectilatie demalit in in time gone by for the purpuse of emoling yeculaturs to the advan, as it has keen moral cupidity of those who are ever reads to invest in hazarduus chances; or for the purpose of enabling the buycrs of such tracts to hold themagainst the anticipated demand, and thus rob future citizens of the eyual right they should have with cumzens of today. The anount of nunes which has heen turned from the lines of humest emerprise into this profitless chamnel is very great, and the consepuent lons to the cummunty very large.
2. It is obvious that the price of Ontario mineral land, ranging from \$2 to \$3 an acre, bears no relation whatever to its value. Where no mineral in paying quamity exists on the location, the price is gros,ly excesisive, and the purchase is generally abmudoned, with the result that it is tri-ennially, soll for taxes, bought by lawyers and real estate speculaturs to lie again suld, and it thus furmbhes, a fund for taxes whech are never expended on its improvement. The kind of land thus aluenated from the Crown domain has, ly its patent, not any title to noblity conferced upun th, hut on the contrary, each parcel serves the rascally purpose of a lotery ucket, for bronging to the Government or municipalities, money to which these lxadies have no moral right, and out of the pochet of citizens to whom the Government of the country uwes the common duty of protection from fraud. On the other hand, where mmeral exists in paying quantities, the low price fixell hy the Crunn lears no relatoon to the value of the property. The object of the mine owner is to get the greatest possible output with the least prossible expense, and by no method can he adil to the original value of the mine, except by that of inducing the pubise to buald railroads and other factitues for improving the salue of the minerals. Crown timber land is occastonally sold for ten times the price per acre of mineral land, but even this is a small price in comparixon with the value of an iron mine, for example, which within an area of to acres may turn out one million tons of iron ore, the royalty on which, at a minumun charge of to cents a ton, would be $\$ 100,000$.
3. Due regard for the development of the mineral sealth of Untario, regures measures for the education and prosperity of a lody of skilled miners, who should have fair wages, comfortable dwelling, means of olvaimng provisons and clothng at fair prices, and insurance for their familes agamst loss of hife and hmble. There is nothing under the present conditions of mining enterprise which calls for any expenditure on the part of the mine owner likely to lenefit the locality of the mine. The hovels of miners in the vicinity of some Canadian mines are a disgrace to our so- called mining enterprise. Food supplies are generally brought in from a distance, and nearby gardening or farming meets with no encouragement. The poputation simgratory; and cmployment precarious-dependent quite as much, or more, on the thanciai managenent of the concern as upon the supply of ore: As a consequence, mining villages as they now exist in this country, and in the United States, furnish a strong argument for the state ounership of mines, if the welfare of the lahorer is, as it should le, of more intriasic value than the dividends of mining companies. If it eenterprise of this country shall lee so enfranchised by haw and endowed from the public domain that it shall lee able to maintain that the right 10 a maxinumen dividend involves the suljection of the miner to the minimum of comfort, our pulitical life will reguire to be reconstructed at no liate expense, probably of bexed as well as of treasure. The boost dangerous critics of the legishation of to day are the secial forces growing daity in strengh and intelligence.
4. The mineral duman of this Prownce cannot be safely given over to irma barons and silver kings, or great syndirates. The "writing on the wall" condemus all such proprieturship. It the mineral indastry of the United States has manstered to the up. building of great fortunes, to the entichment of men who buy American senators like hirelings-men whose patriotism so nerves them that they turn not a hair while their mills roll out rotten steel for the nation's steel-clad cruisers-all this comes, not from the incortigible corruption of human nature, but from a system of administration of state lands cessentially; corrupt and vicious.

What are a century or two in the life of a nation? If American enterprise has gamed a present emprical success by the disregard of every duty owed from the legislators and admimistrators of to day to the citizens of the future, there are not wanting those among her sums who condenm the gross breaches of trust, the shameless brazen fraud and corruption of state and federal legislatures in dealing with the publie lands. It lecomes those who would see planted in this country the froundations of a higher civhzation and more durable progress than any existing in the linited States, to invesugate the all-important stilject of the best system of administration of the resources of the Crown domain for the benefit of the people of this province.
and Wisconsin, and in snme degree the exploration for minerals in Ontario, which will
assuredly affect, as a growing evil, mining enterprises as now conducted in the western and northern districts in this l'rovince, and that i, the rapid destructon of the forest. The contruction of the Canathan lacilic Kailway was attended with no protection of the forest in the public interest, with the inevitalle ressle of the destruction of an enommons area of timber letween the Ottana Kiver and Rat lortage. The residue within ten miles or more of the road is for the most part of little intrinsic value save as a protection to future growth and the possible re-foresting of portums of the lurnt area. This gives the stuall timber which the prospector and miner will destroy by the spuare league for every camp fire, an extraneous lpat not inconsiderable value. by the syuare greater folly could lie perpetrated than to allow prospecturs a rown over so act of leagues of virgin forest which yet grow like shands in many of the rocky wastes of Thumpler Bay and other districts, - each prompector necesarrily the meane of sprendeng fire far and wide, irresponsible and unwatcled, mepunsinded for commat neghinence aind toleratedn- a necessary, and perlaps, welcome eval, wath a degree of fataism akin to imbecilty, Not protect our forests against wholesale arson? Ilas it come to this, that we say this cannot the done?

Prof. Coleman's tlescription, in recent isutes of the Ghbe newspaper, of his own experiences while on a survey for the ciovernment, the recent extensive forest fires in Wisconsin and Minnesota, and the great destruction of tumber which has followed "prospecting " operations in lEastern Ontario, are warnings which should not be lighly considered. It must be kept in mind that there is no measure to the calamty we ineur by the neglect of safeguards against the destruction of the forest. It is neuther impossible nor inplrobable that the Alinnesola hurtors of this year maje be visted on this l'rovince with tenfold firy as the natural consequence of prospectors' cam? fires.
6. The scientitic and cconomical extraction of ores under Government management will aftord supplies for all metallurgital industries repuired, or capable of treing cases tee profitably sold, and yeuntry, and there is no cloubt the ores can in many cases bee profitably sold, and yet at prices which will offer boumties to the home netal manuiacturer. The extensise use of lead pipe and of other manufactures of lead, afford a good home market which should bee supplied from natue sources, but which is not likely to be so for a long time to come, while pig lead cannot be purchased as cheaply here as in the United States. In view of the widedistribution of lead bearing lodes, some also rich in silver, in sarious part, of the Province, there is ample reasun why an effort shoukd be made to develop and mine them. The growing demand for copper for electric purposes, and the presence of the ore in various forms in the Latke Superior district are facts which, under ordinary citcunstances, would concur to promote mining enterprise. We are confronted by the fact that powerful corporations control the copper market, and that there never was a time whel there existed solittle encouragenent to the pravate mesestor to enter into copper maning enterprise as is the case to-day. The I'rovinctal (iovernment have it in their power to enter into as is the ene case to.das. The crovincial dovernment have it in their power to enter into such ent.
terprises with an entire freelon fron risks and expenses from which no individual investor is safe. The covt of promoting compamess and rasing the capital required is usually one third, or 33 per cemt. The indisidual is never safe against the miseppre. sentation of promolers, whereas the Government can empluy permanently the most careful experts and competent engineers, and in their permanent comploymemt secure a guaramee of fidelity: The Gosernment will have in its domain the most ample choice of losation and the uttermust exemption from the influence of self.interest in its operations, anil may under these favorable conditions put copper, lead and other ores into the markie at proces wheh will ensure the establishment of great metallurgical industries in this l'rounce. Last session, $\$ 25,000$ a year for 5 years was voted to enable the iron smetter to get his ore as cheap as in the United States. This money is as likely to go into into the pockets of speculators as into those of the mine owner or smelter. It^{2} would keep 25 men enployed the gear round at the iron mines in smelter. 11 would keep 25 men employed the year round at the iron mines in
Thunder lay district, and a similar number in Froneenac or Ilasting, whose output should lex 25,000 tons of ore or the entre amount of the bounty. Now if the Govern nent could sell a gexil 50 per cent. ore at $\$ 1$ a ton, no better aid could be offered to these who would engage an smeltang enterprise.
7. The acyuisition of a large jearly revenue hy the development and operation of silver, and especially of gold mmes, becomes a necessity in the presence of the ever recurmg and jusifiable denands upmon the Govermaent fot money for works of permanent atility, and for our rapuly growing edacational requirements. Their opera. tion by individuals or corporations will bring in no such. results. In fact it is quite possible and extremely probable that muning companies will, under the present state of things, be organmeed to work fronter properties whose myalties and other returns will scarce pay the expense of collection together with th. necessary Provincial ex. penses, whose machinery wilt he hrought in duty free, whose agricultural supplies will necessarily lxe hrought in from the United Sitates, whose lalworers will bee chiefly foreigners, whose earnings and savings will bencfit the United States alone, where he enriched mane owners will also spend their dividends. With more or less modification, this is likely to le the case with the greater part of the gotd nining property in the Rainy River and Thunder Bay districts. I am well aware there aredoctrinaires and professors, as well as brokers and commission agents, who will tell us that this state of things will enrich the country and that to hinder it will violate the principles of political economy. By all means then let us have instead another systen of econony, under which this commonwealth of Ontariu shall build the best school houses
and raise the best men on this planet, with the help of the revenue to be won from the pablic mines.

The following draft of a bill for the establishneent of a Department of Mines, and with varions provisions respecting the management of pullic mines, are presented as suggestive merels, and not by any means as comprehensive of all the legislation re-
quired by the policy proposed:quired by the policy proposed :-

BILL.
An Act to cetablish a Department of Mincs for the administration and management of the mineral property of the Province
ller Majesty ly and with the consent of the Legislature of the Province of Ontario cnacts as follows:

1. No lease or sale shall hereafter be made ${ }_{4}{ }^{2}$ any mining location or of the right to sine in the public lanis.
2. Thete shall be a Department of Mines under the control of the Commissioner of Mines, who shall be a member of the Executive Council of Ontario.
3. The Department of Mines shall be composed of the said Commissioner and an Advisur: Board of four mining enginecrs with a Financial Director, whose duty shall le to employ competent survejors, explorers, mining captains and worknen for the public mines; to direct where such mines shall be opened and worked; to p-echase machinery, mining equipment, supplies for mincrs, erect buildings, and engage in
every undertaking requisite for the stlcessful working of any mine ; to operate diamond every undertaking requisite for the stuccessful working of any mine; to operate diamond
drills for exploratory purposes ; to conduct any works for the dressing and concentradrills for exploratory furposes ; to conduct any works for the dressing and concentra-
tion of ores, and for the seduction of cold and silver, and to sell such ores other than tion of ores, and for the reduction of gold and silver, and to sell such ores other than
those of gold and silver at such times and at such prices as may te fixed by the those of gold and silver at suct
Lieutenami-Governor in Council.
4. The sale of gold and silver bullion shall be made diring the session of Parliament upon the report of the Commistioner of Alines as to tue value thereof.
5. The Department shall crect and manage such works for millug, roasting, concentrating, and otherwise treating and smelting gold and silver ores as may be found expedient, having recard in such erection to faciltere for provate munng undertakings on such lerms as may be just.
6. The Mining lingineers who shall with a Financial Director compose the said Advioury lioard, slaill le appointed by the Lieutenant-Covernor in Council after investigation as to ther hetness and apecial expertence, and one such mining engmeer shall tre appwinted to the charge of the following four divisions of niming operations reypectiveiy, viz. : Gold mines, silver and lead mines, copper and nickel mines, iron mines.
7. There shall we borrowed on the credit of the Proviace the sum of one million of dollars, which shall with any premum thercon constitute the Untario Mining Fund, the repayment of whech with merest shall tee a charge upon the profits from the bro. ymenal mines, olo beand in such mamer and at such times as may te ordered by the Licutenamt-Governor in Conncil.
8. The managemem and investment of said fund, payments therefrom for all minug works, salaries and wages, and the dispocal of accrecions from sales and profits shalt be under the chatge of the Financial Director of the Depathent, but sub ect tothe control of the Commessoner and the engineerng members of the Advisory Board. dind the linancial Director shall prepare a yearly statement of the condition of the miming fund and of the receipts and expenditures of the Department for submission to the Legislature with the report of the Commissioner.
9. Rules for the order of bussmess in the Deparment of Mines, for the management of expenditures and for the audir of accounts, shall be submitted for the approval
of the Lieutenant-(jovernor in Council, and on such approval shall have the force of of the Lieutenamt-
statutory enactument.
10. Two per cent. of the mining fund shall be set apart as a reserve for the insurance of miners and workmen while engaged in Provincial mines aganst loss of life, illness or toodily injury, and every miner and workman shall pay out of his wages such weekly per centage as may be found requisite for securing to the family of such muner or workman insurance in case of death, illness or accilent.
11. The Department may accept the surrender to the Crown of any land heretofore sold as muneral land on repayment by the Crown of the purchase money paid therefor with cost of survey, and may purchase any miring locations at tax sale. But the expenditure under this provision shall not exceed the sum of $\$ 50,000$.

Clalises kelating to the managrment of leovinctal mines.
11. No quantity in excess of 50,000 tous of iron ore shall be exported in any year, and iron mining operations shall be so conducted that nut more than two years' consumptifon for the furnaces of Ontario and Quebec sball be kept in stock.
12. No miner who is not a literate person, an adult, a subject of Her Majesty by birth or naturalization, and a resident of Ontario for one year preceding his engage ment shall be employed in any of the public mines, but this shall not apply to Indians belonging to any reservation in the Province. No youth under 16 gears of age shall be employed at any work under or above ground.
13. Miners, while engaged in the pulhiic mines, their wives and families, shall 4 le afforded the means of procuring groceries, provisions and ne, essary clothing at an. advance of $21 / 2$ per cent. on the cost thereof lait down at the miner's dwellings, and no officer or worhmen engaged in any public mine shall sell goods on his own account or for other persons, to any miner or other workmen in the public mines, on pain of dismisal: but nothing herein contained shall prevent the miners from carrying on a co-operative store for the supply of all kinds of commodities except ales, wines and spirituous liguors.
14. No license shall be granted fo: the sale of ales, wines and spitituous liquors in any part of the districts of Thundes Bay, Algoma, Rainy liver and Nippissing,
not under municipal organization, or in any municipality here after to be organized, not under municipal organization, or in any municipality here after
15. Allouments of land not exceeding forty acres shall he leased in perpetuity to miner an. 1 workmen on condition of cultivation and at nominal remtals. Allotments shall tee made with cine regard to the qua ity of land available for the use of the mi: - s and workmen at any mine.

In conclusion, let me emphasizr the following matters for consideration :-

1. The enormous waste of capit:l in the orgauization of mining enterprises under the present system.
2. The losses incurred hy mining enterprises tirough the lack of skill of mining engineers and miners and through financial stringency and mismanagement
3. The wretched condition of miners, owing to the precarions and irregular method of conducting minigk operations in this l'rovince and the hach of insuranc provision for loss of life, or lwdily injury or sickness.
4. The certain destruction of large areas of timber under the present system.
5. The great revenue which may be gained to the l'rovince hy well directed min ing operations in gold and silver mines, and the necessity for this revenue to meet the growing demands of our educational system and other requirements of advancing civilization.
6. The incalculable importance of affording to smelters and manufacturers of metais, a cheap and steady supply of raw naterial, such as, iron, copper, nickel and lead ores, at prices which, while affording a,moderate profit to the Province, will practically extend a bounty to smelters.

Note-The reporters having published that the foregoing paper advocated the operation of publle mines by day lalor, and with the object of providing employment rather than of making a protit out of the industry: it is hardly necessary to say that I hold no such opinion, but the explanation is due that by "a moderate profit to the l'rovince," I mean not less than ten per cent. Mining profits, frequently large, are generally anticipated by the prospector and broker to such a degree thata 25 per cent. dividend-paytng mine would recurn 50 per cent. Int for the price paid for its discovery and the cost of raising working capital. If iron, copper and nickel ores shall be economically mined and offered to smielters at a profit of merely 10 per cent. the result will transcend the influence of tariffs or direct bounties for manufacture. The views of I'resident Cleveland on the value of cheap raw mater ils to manufacturers have no need of advocacy, as they are self.evident truths. To, revent other misconception, let me add that while the acquisition of a net yearly public revenue of ten miilions of dollars from gold, silver and other mines seems to be quite practicable, there will be always less danger of excessive expansion of the mineral industry, and the creation of a too powerful mining interest under the system proposed than under private owner ship. Once the Government enters upon the usurructuary ownership of the public mineral domain there will be less danger of the mining interest owning the legislature
than now. There is no security than now. There is no security given us that the existing legistation relating to min ing land will le permanent. Once the public get a taste of the advantages of a large revenue from mines, it is not likely they will destroy its source by turning it over io private ournership.

The following extract fiom the advertisement above referred to of the Ontario Burean of Mines, is from the advertising pages of Alineval Industry, published by the
New York Enswerrins and Minng' Journal. Although "further information" to be
had frum the Department is also adverised, there is nothing to indicate in the adver tisemant that "sale" and "right of purchase" carry with either only a conditional fee simple:-
"Ontario's areat mineral fiellis; an catent of too,000 syuare miles. Prospectors, miners and capitalists are insited to the great mineral felds of Ontario, in Canada. The mont promising gromad on the comtinemt for exploration and investment. The Province of Ontario has a mineral bearing lelt 100 miles in breadth by 1,000 miles in length, lying north of the great lates from the St. Lawaence and Ottawa rivers to the Inhe of the Winels. Nichel, irun, antimony, apatite, mica, copper, gold, galena, actinulite, talc, cobalt, siler, tiuc, asiestos, plumbingo, etc. Thousanils of squate miles nufte, talc, cobill, sitece, zinc, astestos, phamhago, etc. Thomsants of squate miles reached hy lake or railway than any other mineral district of the continent. Inpportant discoveries made every season. Careful and intelligent exploration anply rewardied. The altention of miners and capitalists in America anel Elurope is invited. Mineral lands ate sold by the Government at $\$ 2$ to $\$ 3.50$ per acre, or leased with right of purchase at from 60 cents to $\$ 1$ per acre first year, and 151025 cents for subsequent gears. The first year's rental allowed as part of the purchase money."

DISCUSSION.

Dr. A. I. COI.EMAN remarked that the paper comaned the most revolution. aty set of ideas he had heard given in a pullic nay for a long time. There were cases in Saxony, Sioway and elsewhere, of mines being worked by the state, the object leing more to eratire emplogment for workmen than to make a profit. He was not aware that any of these mines were now earning a dividend. His own inclinations were towards indivadualism, while the paper certainly looked a goorl deal like communism. Communim, however, might not be a bad thing in itself, and the tendency of modern legistation was certainly in that direction. There were some of the odeas in the paper, such as the prevemion of prisate enterprise, which struck him as leing obljectionalile, and he shoula lihe tume for censideration lefore expressing a full opiniun upon it.

Mk. A. Bl.l'E: said there undonbtedy was an air of communisn alrout the paper, but he was not sure that it was any the worse because of that. He doubted, however, whether any government could get etficient lator out of the large number of tmen who would doubtiess be employed in the future in the mininy industry of Ontario. What government could tuanage 100,000 or 500,000 men so emplojed, with any hope of securing proper service? The existence of so vast a loody of voters dependent on the gexduill of the (iusermmeme would consthtute a serious menace to the hlerthes of the country. U'uder such circumstances a govermment would te able to practically perpetuate atelf in oftice ly reason of the influence at could bring to bear upon the men in its employ. All the evils of centralazatimen on a gigantic scale would be the result upon the adoption of the plan Mr. Bawden proposed. In his opinion the chief, it not the only, method lyy whels a government can properly add an industry, is by guving thone engaged in it itformatum

DK. JANIE (WN.M1.F: thought it was sound doctrane that the less people were governed the better the were sowerned. There were certan evils which the paper just read had only diselosed : wave of energy, mindirectun of eapmal, etc., but he did not agree that Mr. Dauden had propused the only remedy. There were others. Ite was not prepared to vee so much poner phaced in the hands of any set of men, no matter what their politics might be. The; had had Curran bridges-they might have (Curran mines. (lauphter.)

Mk. 3. T. A. Bi:1,1, suggested that as the puper covered a good deal of ground, at would lee lexter if the discussun upon a was adjuurned until next meeung, when members would lee more fully prepared.

Mk. T. W. GilbsON expressed his preference for individualism as opposed to communism. If the ancentive to enterpuse, industry and thrift which enlighteneal self-mterest suppled, were taken away, what were they going to substutue? Men engaged in mang, as in any other uccupaiton, in the hope of profit, and all the manmense development wheh had taken place min the muneral mdinstry of cireat leraman, the Cnuted states and other counines had lxeen the frum of striving for gan. Ife feared that government control and inithative wouk prove far less effectue in securing progress than private effiot had lreen.

It heing agreed to adjourn the discusston, Mr. Bawden brietly replied to the of. jectuons rased to his paper, after which a vote of thanks was passed to han for the same.

The Utility and Value of Some Common Minerals.

Mi. A. BLliE-FFive or six years ago a young man came to this city from one of our tinished country villages to seck an occupation which might afford larger secope for his energiesthan the lithe annex farm at home appeared topromise. He took counsel with one or tho frients, and after the merits of a number of projects were discussed, the general conclusion was reached that no business was as sure or safe as one which undertook conclusion was reached that no business was as sure or sate as one which undertook
to supply the common and everyday wants of the people. Food, clothing, and shelter, are necessaries of life, and whatever else man in a civilizel state maydo without, he cannot, or will not, dispense with these. Our young man had been a producer of foods on a small scale, and natitally he inclined to keep on in that line of business. But his heart was set on a specialty, and so he decided to entablish a dairy farm and supply the city with milk. He reasoned in this way: "Every fanily in the city wants milk, and wants it every day. Being a cheap and nutritive food, and, for children especially, an alnost complete diet; many people will buy as much as they require, and the poorer classes as much as they can aford. I am therefore sure of customers if I can supply a gooxl, wholesome article, and the cash will come in as the milk goes out." This young man was wise enough to learn tis trade in a well man. aged dairy before starting on his own account; but it was only a matter of a few aged dairy before starting on his own account; but it was olly a meatly of a cows, months, and he began right. To day he sels in the city the milk of nearly to cows,
he has one of the cleanest and lest equipped dairies in the province, and he is worth he has on
$\$ 25$,000.

The story illustrates the wisdom of selecting a business that deals with the steady wants of the people, and while intelligence and diligence cannot be dispensed with in any calling, it is worth a good deal to remember that progress is always easiest along the lines of least resistance. Under some circumstances a business runs itself, to use a common phrase; under others it requires a vast expenditure of force and oit, and often then it fails. But many persons are so constituted that they have no pleasure in what are called the meaner pursuits of life. Nothing has a charm for them but to undertake the difficult or the impossible, wherein to succeed is glory and perchance a fortune, and whereir so fail is loss and disappointment without it may be, a conipensating grain of gathered wisdom.

The swo most abundant minerals in this country are clay and lime, and they are likewise annong the most useful. They furnish the raw material too for mineral industries of the first importance, in which a large a mount of capital and many laborers are cmployed. Yet in the vulgar opinion, clay and line are not worthy of being called minerals, and the seekers after gold, silver, copper, nickel and iron would scorn
to recognize the workers in clay and lime as fellow-miners. I think it will not le haris to chow, however, that these very common minerals possess a value not in any degree inferior to the melals, and that they are deserving of nuech greater attention than they have yet received in this country; at the hands of moneyed wen, and men of the best technical training in the mineral indlustries. But let it he premised, that in this paper lime (using the term in its collopuial sense) will te dealt with only as material for the production of cements.

As to the extent and growth of the industries, information is afforded by the and
only to back to 1881 ; no account was taken of cements in the Censuses preceling the one for that year, and the earlier statistics of the brick industry are of no use in showing its growith.

The statistics of the two industries in Canada and the Province of Ontario respectit ely, are given in the following table for the years 1880 and 1890 :-

	Canaba.		Ontanio.	
	1880	1800	1880	1800
Centint: No. estalili,hments.	- 9	19	3	12
Hands employed	115	243	29	128
Wigges paid....	\$38,151	\$85,960	\$7,000	\$39,245
Value of product	91,658	251,175	29,200	153.400
Brick and It.k: No. eitalishments....	560	697	450	463
Iland, employed	4,129	6,737	2,768	3.791
Wagrs paid	\$608,690	\$1,428,489	\$405,311	\$797,257
Value of product	1,541,892	3,584,713	971,158	2,154,152

The nolicealle feature in these statistics is the large share Ontario claims in the progress of the ten years. Ten new cement establishments were added, and alt but une are credited to Ontario. The numter of hands emplayed by the industry increased by 128 , and all but 29 are returned for Ontario works. The amount paid for wages ed by 128, and all but 29 are recurned for Ontario works. The amount paid for wages
was greater in 1890 than in 1850 , by $\$ 47,809$, and two-thirds of it was earned in Was greater in 1890 than in 1850 , by $\$ 47,809$, and two-thirds of it was earned in
Ontario. The increase in the value of product was $\$ 159.517$, and three fourths of it Ontario. The increase in the value of product nan $\$ 159.517$, and three. fourths of it
lrelonged to Ontario. The progress of our Province in the manufacture of brick and lelonged to Ontario. The progress of our Province in the manuacture of brick and
tile was less conspicuous in the decade, although in number of works, employees, wages and value of output, she exceeds all the other provinces combined. In the increase of works from 1880 to 1890, her share was 63 out of 137 ; of workmen employed it was 1,023 out of 2,608; of wages paid for lator it was $\$ 391,946$ out of $\$ 519,799$, and of value of articles produced it was $\$ 1,182,994$ out of $\$ 2,042,821$.

But assuming the absolute accuracy of the figures, there is one aspect of them which arrests attention, siz. the relativity of the cost of halor to the value of product in Ontario and the other provinces. For the whule Dominion, in 1880, the ratio of tabor to proxluct was 1.2 .53 , and in 1890 it was 1:2.50-a proportion which every. labor to pruxluct was 1.2 .53 , and in 1890 it was $1: 2.50-\mathrm{a}$ proportion which every-
one would be di.posed to accept as likely. For Ontario, houever, the ratios of one womher to proxluct were 1.2 .40 and $1: 2.70$ for the former and latter years respectively, white for the other provinces they were $1: 2.95$ and $1: 2.27$. The use of inproved machinery would account for this disparity to some extent, although not wholly. So also would fluctuatiuns in the price or the efficiency of talvor. The latter cause can le dismissed as imprebable, in view of the proximity of the provinces; and while the former might thatter our vanity, it would, in view of all the circumstances, be fatuous, to claim for it more than a very modest share of potency in the radical disturlance of ratios. The real cause will probably be found in the different scales of values adopteed in different parts of the country, and it is to le regretted that in tre Census enumerations acceunt uas not taken of quantity as well as of value.

In the statistics collected by the lureau of Mines last year, the manufacturers of cement in Ontario, gave the value of their product as $\$ 127.415$, while the number of worknen they employed was 224, and the amount of wages paid for lalor $\$ 60,208$. Their proluct included 74,353 barrels of natural rock and 31,924 barrels of Portland cement. In 1890 there was no Portland cement made in our province; yet the value is cenjent manufactured that year according to the census was greater than last year by $\$ 25,985$, while the number of workmen employed was less by 96 , and the wages paid for lator less by $\$ 20,963$. Had we the output for the Census year in quantity, the cause of the discrepancy would more clearly appear. The Bureau's returns of brick and tile for 1893 are also much lower in value than those of the census for $\mathbf{1 8 9 0}$, but this is no doubt due to the fact that the financial stringency of last year caused many works to close down early in the season, while others were idle the whole year. The number of neen enuployed was 2,874 , the anoount pail for wages $\$ 531,686$, and The number of nen eniployet was 2,874 , the anount patid or wages $\$ 531$,
the value of product $\$ 1,339,873$-the ratio of labor to product leing $1: 2.52$.

It has iveen shown that on the basis of values the manufacture of cement in Canada increased from $\$ 91,658$ in 1880 to $\$ 251,175$ in 1890 . The whole of this product was consumed in the country, but it was far from supplying our needs. In the fiscal year 1880. I we inportel hydraulic, Roman and Portland cements to the value of $\$ 53,765$, and in $1890 \cdot 1$ to the value of $\$ 313.690$. But since the fiscal year 1886.7 the Trades Talles give us the quantity as well: e's the value of cements imported, and they show that the demand has been largely on ye increase. The following table gives our im. ports of Portland and Koman cement: for each of the seven fiscal years 1886.93, the great bulk of which was the Portland variety :-

MARRELS.
102,750
122,402
122,273
192,322
183,728
187,233
229,492
$\$$
148,054
177,158
179,06
313,572
394,648
$28 i, 533$
316,179
The total importation in the seven years was $1,140,200$ barrels, valued in the Trade Tables at $\$ 1,720,570$; but to this should be added the $\$ 455,445$ of Customs dues paid to the Government, the costs of freight and insurance and the profits of im-
porters, in reckoning the price paid ly the consumers-an aggregate of not less \quad, ian \$3,250,000. In these seven years the increase in quantity was 123 per cent., nud in value 113 per cent. But a more striking evidence of the growing deniand is aftorded ly a comparison of the imports of Potland and Roman cements for 1880.81 and $\$ 316,179$, being an increase of nearly 600 per cent. in twelve years. This is a rate that perthaps has not lreen equalled in any other anticle of Canadian importation. That perhaps has not been equaled in any other anticle of Canal
What is the secret of it, and is the demanul likely to be maintainetl?

The nnswer to these questions may le summed up in a very significant term of very modern usuage on this continent, viz., good roads. The selting in of the era of geoll roals in this country, as well as in the United Sitates, does not dale lack ten years, but in that short periox much has leeen learned on the sulject, and the street engineer is now as much of a specialist and quite as useful in his way as the military engeneer or the muning engincer. The Koman roats of Europe, which have lasted out the trafic of two thousand years, have taught him the invaluable lesson that the only sure way to make a good road is to lay a good and strong foumdation. lyut instead of using stone material, as the Komans did in constructing their great military roals, ne has adopted the concrete used by them in the construction of temples and other public inildings, some of whose walls have txen standing 2,400 years. The great dome built by Agrippa, the friend of Augustus, "the immortal monument of the Pantheon," as Giblon described it-now the church of Sanla Maria della Rotonda-is an editice in Giblon described it-now the church of Sania Maria della Rotonda-is an edifice in
concrete, and though ravaged by fire and assaulted by the Huns and Goths, it is still concrete, and though rawnged by fire and assaulted by the huns and Goths, it is still tuilding, and his chief reliance in the making of it is not Koman or any other kind of natural cement, but the stronger and more durable l'ortland. In Toronto during the last five years not less than 150,000 bartels of cement have leeen usell in making concrete for street construction, and of this guantity Mr. Kust tells nee that not more than 4,000 liarre's have leen the native hydraulic cement. "Up to the last year or two," he sags. " It was all imported Portland cement from Europe." In other towns and cities of the Dominion cement is also being used in steadily increasing quantities in building sewers and streets, and the results are so uniformly good that the material promises to grow steadily in favor. It is almost certain then that for many years jet
to come the demand for Purtland cemient will continue as experience proves the utility to coune the demand for fortland cement

But why should we remain dependent on foreign sources of supply for Portland cement? We have in Ontario abundance of raw material for producing it. In scores of localities beds of white shell marl of large extent and excellent quallity are found, some of them at the botom or lakes in which myriads of fresh water shells yet survive,
to add to the thickness of the dejosit as one generation follows anuther, others of to add to the thickness of the deposit as one generation fillows ancther, others of them on the sites of lakes lonk ago filled up with peaty mould or slrained by conninual elevations. This naarl, if unnixed with sand, clay, peat, or other matter of miniaral or vegetable origin, is almost pure carlonate of lime, and furnishes the principal
 a malter of experiment, but in alt cases the purer and more unirorm the quality of the marl, the easier it is to get a right nixture.
quired their experience slowly and dearly.

Mr. Rathlun told me that it cost him five years of testing, with the aid of a chemist, before he was convinced that it would be safe to start his works. Mr. Butchatt also told me that it cost his zompany several thousands of dollars, a visit to some of the best I'ortland cement works in England-where he was admitted as a special favor-and the service of two experts in the construction of a suitable plant, before they cnuld produce a commercial article. But the Kathbun Conppany anal the Before they culd promuce a commercial articie. But the hast two years they liave been producing a Portland cement which satisfies every requirement.

Mr. C. H. Kust, Depury City Engineer of Torunto, makes this statement concerning it, in a letter which I have just received from hini:

Since 1892 ue have usell a quantity of Portland cenent made by the Kathhun Co. at Napance mills, and by the Uwen Sound Co. at Shallow lazke Both these
brands are quite equal to the majortty of the imported cements, and no doult, when brands are quite equal to the majonty of the imported cements, and no doubt, when
their facities for manufacturing are increased nearly all the cement used in this city their facilities for manufacturin
will lee of home manufacture."

The Owen Sound Co. has recently hat the misfortune to lose its mall hy fire, but it is understood that a new one is in course of erection. The company has a large
 to meet the growing requirements of the tralle.

The only other Portland cen:ent works in the Province are at Marlbank in the County of Hastings. The site was chosen because of its nearness to a very large deposit of marl ; but although English capital was put into the lusincss, and presumably Finglish experience also, the enterprise had to pass through the usual ordeal of disap. pointment and delay before a successfull leginning was made.

The output of those three mulls last year was 31,924 larrels, but one of them did not start until late in the season, and another worked only half the year. Had their capacity been six times as great they could hardly have supplied the quantity of portLand cement imported by Canada during the.fiscal year 1892:3, and obviously therefore there is ample room for home manufacture to grow. With raw material so aloundore there and accessible, and with capital seeking new channels of investment, and lalor seeking employment, why should we not proxduce in the country all the lorthand cement that our market requires. An article of uniform quality will always be in request by customers, and with care on the part of the manufacturer there is no reason why he should not be successful in supplying a distinct brand. liut as long as we are Why he should not be successiul in supplying ande to be supplied with cennem of uniform quality, for where large orders have to be filled it is the commun practice even of large mill owners to buy lots from other manufacturers and so make a prompt shipment. The result is that there are as many lirands as makers, and with cements of different qualities, some quick setting and some slow sctung, it is hardly possible to make a first-rate concrete. This is a risk wheh may easily be asoided if orders are placed at home, with the hone manufacturer, and the good results obtained from our Ontario cements are no doubt due to the fact that orders are honestly made up, each manufacturer being jealous of his own reputation.

As regards the products of clay, it is not necessary that much should be said. Taking the various articles of common and press dlirichs, terra colta, tile, sewer pipe, and pottery, the number of men employed in heir manufacture in Ontario last year was $\mathbf{3 , 1 0 9}$, with earnings of $\$ 601,680$. The aygregate valuce of their profucts was $\$ 1,684,873$, or more than one-foutth of all the minera! products of the Province in the
same year. This fact alone suffices to prove the importance of or clay industries; same year. This fact alone sufices to proce the obvious that they are capable of greater development. The manufacture of pressed brick and terra cotta began herc only five years ago, and last year, in spite of the collapse in the building tratie, the value of the output of six works was $\$ 217,373$. It gave employment to 224 workmen and paid them wages to the amount of $\$ 80,686$. The improvement already noticealile in the architecture of our cities as a consequence
of the use of pressed lrick and terra cotta is bringing this material fast into favor, and of the use of pressed lrick and terra colta is bringing this material fast into favor, and
it may be said that the carth affords no better building material than a properly burnt it may be said that the carth afords no better buifding material than a properly burnt
irich, and none which so readily lends itself to the production of handsome architec.
tural effecte. In the strong and fine-textured shales of our lludson river and Meclina formations, conveniemly siluated and easily' quarried, Ontario is farored alwove most Provinces and States in America.

The same shales are also found to be suitable for the manufacture of sever pipe, with proper mixtures,
indusiry was $\$ 230,000$.

Another clay industry is now on the eve of cummencement. and if successfully estalished it pronises to be a great loon to our towns and cilies, via : the manufacture of vitrified brick for street paving. In Ohio, Illinois, Iowa and other Anuerican States this has now grown to be a very important industry, and it is supp ing a material for strect construction which on all points of merit is not edpalled by aly other matcriah hitherto employed for the purpose. Many mistakes were commutted by the first mak. ers of paving brick, and there is much yet to be learned as te the clays or clay mixtures which give the best results, as well as to the proper degree and deratuon of heat to produce a hard, tough and impervious hrick. But much is already known, and with careful experiments and cluse observation many works are cnabled to produce with regulatity a high persentage of paving brick ce uniform yuality from every charge of a kiln. A number of experiments have recently teen nade in Toronto, Hamilton and elsewhere in this Province, and although each expert will assure you that he alone knows the secret, and that no one else has the clays for a right mixture but himself, you may rest assured that in a matter of this sort the key and the ward are not so hard to match as assured that in a matier of this sort the key and the ward are not so hard to match as
the trile of experts would have you belicere. In several instances encouraging prexgress the trile of experts would have you belicere. In several instances enco
has been made, especially with the Medina and lludson River shales.

We may, therefore, I think, look with confidence to an early bexginning of the production of paving lrick in Ontario: and when that tine comes we shall te no longer at the mercy of trust concerns like the owners of Pitch Lake asphalt, as illusTrated the other day in the case of a contract for paving in the city of Hamilton. When we are producing Portland cement from our own shell marls and clays to the full extent in which it is required for street concrete, and paving brick from our own shales to cover the concrete, we shall lee as independent as we ought to be in supplying ourselves with the materials of such everyday requirements as are called for in the building of goxd roads. In so doing also, we shall be utilizing our raw materials of clay and lime, otherwise of no value, finding profitable investment for capital lying clale and the banks, and giving employment to hundreds, if not thousands, of men who idor lack of work, and gare finding it hard to win their daily bread.

With one suggestion to the professors and instructors in the School of Practical Science, Toronto, and the School of Nining, Kingston, I close. Reference has been made to the experiments conducted hy the manufacturers of brick and cement, preliminaty to the building of works to commence production on a commercial scale. These experiments deniand patience, exactness and scientific method, as well as the use of costly appliances Why should they not be taken up in our technical schoois,
where there are professors having the necessary expert knowledge and training, and where there are professors having the necessary expert knowledge and training, and the appliances for making tests and ascertaining results with unerring accuracy? The imporlance of the clay industry has been so well recognized by the State Legislature of Ohio, that a course of practical and scientific instruction in the art of clay-making and ceramics has been addrd to the elucational work of the State University, and the
first term of the department opened yesterday. Work of that character is as first term of the department opened yesterday. Work of that character is as
much needed in Ontario as in Ohin, and the professors of our scientitic schools cannot much needed in Ontatio as in Ohis,
too scon prepare to enter upon it.

DISCUSSION.

Mr. K. W. PRITTIE said he had been for a number of years interested in the brick industry, particularly in the naanufacture of paving brick. This article was com. ing largely into use in the States, and he had seen pavements which had been down for 16,18 and 20 years, with but little repairs. It was giving the utmost satisfaction, and made a superior pavement in every respect, being sinowth, lasting, easily cleaned, and afforing a gouxl foothold for horses. He was interested in a large vitritied lrick factory which had been statted at the llumber, near Toronto, last year, and was got partially under way when the financial crash on the other side affectel the enterprise and brought it temporarily to a stop, He hoped, however, that the operations would
yet be begun. It was the company's iniention to put up a plant capoble of yet be begun. It was the company's intention to put up a plant capable of turning out 50 milliuns of brick per annun, and empluying 400 men.

DR. A. P. COLEMAN, in reference to a renark in Mr. Blue's paper, thought it only fair to say on behalf of the School of Practical Science, that they had begun the work of testing cement, brick and similar materials. If provided with proper appliances, the authorities of t!e School were perfectly willing to engage even more extensively in such work.
Mx. I. LATIMER asked if there had been any development in fire clay.

Mr. BELL-There are good deposits of fire clay in Nova Scotia, but they are not made use of

Mr. J. M. CLARKE said it was well known that the manufacture of articles like vitrified brick in Ontario had engaged the attention of outsiders more than of the people of the province. Outsiders were nuw investigating the sulject with the view of leginning the manufacture of paving orick here.

The Rainy River Gold District.

Dr. A. P. COLEMAN-Mr. Chairman, I have been unable to write out a paper as I promised to do, owing to the fact that I returned honie from the trip I took this summer only yesterday at noon. In fact, I have hardly had time to throw my ideas into consecutive shape, and I must therefore ask your indulgence while I give you some rambling talk on the subject of the western gold hields of Ontario. As Mr. for ordinary men, and a brick of gold is looketi on with a good deal more interest than even a brick made of the Don valicy clay. Partly on this account, and partly because the resources of the province are of great interest to all of us, it will be wurth while for me to give you a litile account of the work done this summer, and of the region in which perhaps in the future some important mines will be developerl.

The little expedition that was sent out by the Bureau of Mines, consisting of my friend, Dr. Burwash - who was in many ways well fitted for such work, having been assayer and mineralogist for the province of New Brunswick-myself, and three men, set out about the middle of June. We had to make a tremendous round to get at the scene of our work. Rat Portage, Lake of the Woods, Rainy River-by this circuitous route we were obliged to reach our destination on Rainy Lake. Our object was to examine specially the gold fields of the region, and also incidentally to note anything that appeared to indicate other mineral resources of importance.

The only mije of the district we were able to examine is one made by Lawson and published by the Dominion Geological Survey in connection with his report on the Kainy Lake region. It is an admirable map, and I found it in constant use by prospecturs, steamboat captains and all others. Even the Americans who came there
had to depend upon the Canadian nap, which shows part of the American territory as
well. I found I could steer my course by this map; all the portages, channels, etc. are marked upon it, and I could practically go into an unknown country without a guide, and make my way by the aid of this map alone. The topographical work of the map is admirably done, and the geological work in the lower part of the region is quite as admirable. I found a few places, however, here and there where blunders formations.

This whole region consists of two great groups of rocks - Laurentian and IIuron ian. On the map the Laurentian rocks are colored pink, and the Huronian green The special rock which is of interest to us is the green one, called by Lawson the Keewatin, in reality a member of the Huronian series, so far as one can judge from its general associations. The other rocks are Laurentian granite, gneiss, and rocks of a similar description. For several reasons this region is one of the most interesting in the world from a geological point of view. I shall give you one. We find the gneissoid Lautentian rocks, not generally looked on as eruptive, coming up through the green Huronian schists, which at one time probably formed a great sheet covering all the rocks beneath. These Laurentian bosses have thus enfolded between the schists, and in consequence wherever you go in that region you find the latter nearly perpendicular, a fact of great importance to the district as a mining one. These green rocks-green on the ground as well as on the map-have proved to be the most in teresting from: the mineralogical standpoint. They consist of hornblende schists, chlorite schists, and a mixture of these and a number of associated rocks. In many parts these schists contain veins of quartz, which in the majority of cases are bedrled veins. True fissure veins, i.e, those which cross the strike, are rare. As a rule bed ded veins are not so continuous or so certain as ore bodies as the other kind.

One of our first efforts was to see the only mine working in the region, the Little American. This is situated on a small island, not larger than the site of these Parliament buildings, in the state of Minnesota, three miles south of the international boundary line. They had reached a depth of only 45 feet when I visited it, but there is an admirably equipped 5 -stamp mill at work actually turning out bricks of gold at the present time. The mill, though small, is very well arranged.
should mark the limit of gold bearing rock, and I am convinced boundary should mark the limit of gold bearing rock, and I am convinced that there are as valuable properties, and probably much more valuable ores, north of the line.
At the Little American I was shown a brick At the Little American I was shown a brick consisting of about $\$ 500$ worth of gold, which was the result of about 48 hours' work and the product of about 30 tons of ore. I was told that the yield is about $\$ 20$ of gold per ton, but I think this estimate a little
high, and that $\$ 16$ or $\$ 17$ per ton would high, and that $\$ 16$ or $\$ 17$ per ton would be more nearly the truth. There was also on hand about half a ton of concentrates that would run between $\$ 320$ and $\$ 350$ per ton, which I was informed they intended to ship away for treatment. A large part of the ore is of the free milling kind, notwithstanding that the ulphides come very close to the surface in this region, scoured as it has been by the ice of the glacial period. The decomposed, rotten quartz so common in other districts has been all scraped away. Part of the gold is held in the sulphides and will be refractory. However, $\$ 16$ per ton will pay, even if the concentrates be neglected altogether. I believe the Little American has paid from the start. On the strength of this mine a "city" of 300 inhabitants has sprung up. On the Canadian side there is a mine called the Little Canadian, on a still smaller island, which may prove to be a producer like the other, but we could not examine it to any advantage.
A good deal ot prospecting has been done. We visited Seine river and Seine bay; along part of the latter a large number of iron locations have been laid out. The ore is magnetite. We examined one or two of these locations; whether they will amount to much in the end or not, one cannot say, bnt should a railway pass through the district they may prove of considerable value. A large number of gold properties have been located along Shoal Lake, and one of the most Interesting of them is on a spot, which on Lawson's map, is marked gabbro. I disappointed the gentleman who owns it, Mr. Thomas Wiggins, very deeply by telling him his mine was in granite, for and can be traced for a mile. The largest one is 5 feet wide at are true fissure veins and can be traced for a mile. The largest one is 5 feet wide at some points. A little
development work is being done, and I understand the mine is turning out very well. There is probably a continuous liody of ore and a valuable property here. It is not looked on as an eruptive rock, deriving its gold from, but the granite here must be Our next expedition was into the Pipestone Lake sarrounding schists.
Our next expedition was into the Pipestone Lake region, whence we portaged over to the Manitou district. We went north of the country shown on the map, where we found segregation or bedded veins enclosed in the green schists just as below. No claims have yet been taken up here, but there are a number of veins, and probably something of importance may turn up. In the Manitou section a good deal has been done, and a few claims worked to the depth of 15 or 20 feet. Some extra ordinarily rich specimens come from the upper part of Manitou Lake; whether the deposits will hold out in depth of course one cannot say. There are sone true fissure veins 6 or 8 feet wide at points, so that there is plenty of material, and in places it is very rich. Only one mine was being worked at the time of my visit. It had a con siderable body of quartz, and carried free gold, as I saw with my own eye:-

I visited the famous Atik-okan iron range, where there is certainly a large body of ore. Some of it will probably prove to be of Bessemer quality, but other portions
of it contain sulphur. of it contain sulphur.

The whole trip meant 1,000 miles by canoe, and consumed nearly three months' time. We brought back a large amount of material which we intend to have assayed to ascertain what are the relationships of the gold-bearing veins to the surrounding of the green have samples from veins that occur in granite, in gneiss, in various sorts at which gold is m, and we wish to settle if we can whether or not there are horizon. that over a region 200 milesony found. free gold is found in the rock. I think the majority of the veins will not iree gold is found in the rock. I think the majority of the veins will not
justify large development work. It is my opinion that a custom mill in the Rainy justify large development work. It is my opinion that a custom mill in the Rainy
Lake region and another in the Manitou country might serve a good purpose and open Lake region and another in the Manitou country might serve a good purpose and open
up a very important field. Many of the mines might be small and would
not warrant the erection of a up a very important field. Many of the mines might be small and would cost of taking out the ore, if it could be treated at a custom mill, be-
cause it is rich. Some of might well repay the cause it is rich. Some of the mines will probably prove to be
be large and continuous and will justify expense. The ore in general appears to be large and continuous and will justify expense. The ore in general appears to
be free milling, although a considerable quantity is retained in the sulphides and will have to be treated accordingly. One interesting fact is to be noted, wherever you find galena you find free gold. What the relationship between the two is I have not worked out, but this appears to be the case and is borne out by my own observation as well as by the testimony of explorers. Some better mode of access to the region is required. It is very difficult to get into the Manitou district, though that lake is only 30 miles from the C.P.R. Six portages have to be crossed, one of thent a mile long. You cannot take mining machinery over that, and some improvement will have to be made before the region can be developed at all. There is probably as great an area of the gold bearing formations north of the C.P.R. line as there is south, and prospectors are just beginning to go in there. It is to be borne in mind that Raing prois a large body of water, and has a coast tine almost as long as that of Lake Ontario. This fact very much facilitates travel and exploration. (Applause.)

The Hon. A. S. Hardy Elected an Honorary Member.

Mr. Kingsmill moved, seconded by Mr. J. M. Clarke, that the Commissioner of Crown Lands, the Hon. A. S. Hardy, be elected an honorary member of the Institute. THE CHAIRMAN in putting the motion, remarked that since the present Com missioner of Crown Lands had taken office there had been more interest taken in min ing by the government, and a greater advance on previous legislation had been made than at any previous time. The present mining law. though not incapable of improve liberal in its provisions of elsewhere, perhaps the best worked out law and the mos beral in its provisions of any on the statute book
Hon. Mr. HARDY - Mr. Con
nor would be conferred upon me this evening when I vad no expectation that this honor would be conferred upon me this evening when I ventured to intrude upon you
I can only thank you for the very complimentary I can only thank you for the very complimentary resolution that has been moved, and the very kindly manner in which it has been carried. What I am afraid of is, that I shall hardly be able to bring myself within the terms of the by-law, or the con ditions under which it may be applied. Perhaps, however the position which I hold may act as sponsor for me in the matter, for I fear this is the only way in which I can claim to be a fit and proper candidate for honorary membership in your association. I am pleased to be present at this meeting of your Institute. I know it is not what is called a mining convention, but it is perhaps built on a more solid foundation, and fitted to discuss matters more carefully and satisfactorily. I am pleased, sir, to hear some of the remarks which you yourself made. When you stated that we in Ontario have had more mining legislation during the past five years than for the previous twenty, I accept it as acompliment, not merely to myself but to the officers of the Departinent, and indeed to yourself as well. We have had many pressing invitations from you, sir, to even more active legislation. Perhaps my own connection with mining has been confined too much to legislation. I have been compelled to with the practical and scientific work of the Department to other hands; but in Mr. Blue and his assistants we have a body of men earnest and euthusiastic in pursuit of the duties devolving upon them to whom these interests may very safely in pursuit of the

The Government have put in a consolidated form the entire mining law and regu lations, established a Bureau of Mines, imposed working conditions on those who acquire mining lands from the Crown, introduced the leasing system by which land may be obtained on easier terms and at a lower cost, lowered the minimum area of nining locations, and adopted the plan of s:aking out claims, of which you, Mr. Chairman, were so enthusiastic an advocate. We have endeavored to assist the min ing industry by aiding railways on a considerable scale, and are now attempting to heip on the work of development by means of a government diamond drill. We have adopted all the methods of assistance that were fairly within our power, even to the extent of establishing summer mining classes, and of making a grant of \$125,000 to encourage the opening up of our iron mines. It would be difficult to ask a Legislature in four or five years to do much more or go much faster. With all the advances we have made in this line there is in the mind of anyone perhaps only one drawback -the imposition of a small royalty on ores. This may be claimed by some to stand in the way of mining development, but perhaps the taxpayers will be strongly inclined to support it.

It will afford the Government pleasure to be of any assistance to you as an Institute. The rooms in these buildings will always be open for your meetings, and any
other facilities which we can offer you are at your disposal other facilities which we can offer you are at your disposal. Meetings of this kind are one of the means by which our mining industry will be ultimately developed. That it should be so slow of development seems a marvel to some of us. Our lives are pas-
sing away, but the mining industry is not making the progress sing away, but the mining industry is not making the progress or producing the
wealth as rapidly as we would like. It can hardly be expected that will pour out money to bring about the dovelopment of the industry, but what evet will increase the desire of mining men and capitalists to go into the mining business may be legitimately expected from the Government ; beyond this, and perhaps the opening up of roads and waterways, I do not know that you can expect the Gov ernment to go.

The education of the country in mining matters must cone from bodies such as this. I am glad to know of its existence, and heartily wish it prosperity. I again your Institure the honor you have done me in making me an honorary member of your Institute. (Loud applause.)

Deep Water-Ways Convention.

Alderman J. E. THOMPSON, on behalf of the Committee of Arrangements, extended a cordial invitation to the Institute to send delegates to the Deep Water Ways Convention to be held in Toronto on 17 th September and following days-

Mr. J. I. KINGSMILL, seconcied by the Secretary, proposed the following delegates:-Mr. A. Blue, Director of Mines; Dr. Coleman, School of Practical Science ; J. Bawden, Kingston ; J. J. Kingsmill, T. W. Gibson, R. W. Prittie, J.
M. Clarke and T. D. Ledyard, Toronto.

The Delegates being approved the Secretary was authorized to issue their credentials.

Next Place of Meeting.

Prof. NICHOL, inviting the Institute to Kingston for its next meeting, said he was quite sure the Faculty of the School of Mining would do everything possible make the meeting a success.
Mr. J. BAWDEN havin
Mr. J. BAWDEN having seconded the invitation, the Secretary was authorized to convene the next meeting at Kingston in January, i895, at such time and place as A vote of suitable by the Kingston members of the Institute.

A vote of thanks to the Chairman having been passed the meeting adjourned.

Nickel Steel-In the course of a paper lately read, on "Nickel," before the Society of Arts, London, the author, Mr. A. G. Charleton, A.R.S.A., mentioned that it was not till 1779 that it was recognised as a metal. The growth of production and of consumption have been slow, but of recent years its uses as an alloy have attracted the attention of metallurgists, and as a result of experiments many important adaptations have been discovered. Mr. Charleton states that whilst 1,000 tons of nickel flooded the market in the early years of the century, $10,307,375 \mathrm{lb}$., or, roughly,
five times as much, was produced in 189 I , consequently the large excess of metal profive times as much, was produced in 1891, consequently the large excess of metal produced must have gone into nickel steel, yet this alloy has scarcely begun to be used in the arts of peace. As its price tends steadily downwards, he confidently expects that it will eventually enter into competition with other materials for other purposes poses, has a plates and guns. The ordinary carbon steel used for steel propeller pur whereas the nicile strength varying from $60,000 \mathrm{lb}$. to $65,000 \mathrm{lb}$. per square inch, elongation in both cases being about the same, 20 per cent. Use of this stronger steel will warrant boring ont the shaft, materially lessening the weight whilst preserving its efficiency, and such cored shafting can be hollow forged when the hote islarge enough, to admit a mandril. If it is found possible to apply it to the constructi on of boilers the tensile strength of nickel steel being I $1 / 2$ times that of ordinary steel, it will enable their thickness to be reduced one-third, effecting a saving in weight, which is a great
consideration.

Gold Ore Treatment in South Africa.

(Abstract of maper hy Mr. W. We Mooenthat on "The Treatment of Gohd Ore at the Witwaterarand Gold Fielids" read befure the Chemical Society, Lemdon.)
The Witwatersrand gold fields are situated on one of the highest points of the South Africin plateab, some parts of the main reef being 5,000 feet alpove sea level. It is worthy of mote that on this account air compressors have to be mate some 25 per cent. larger than they would need to be on the const. Johanneshurg, which is only alout six years nht, inw comains some 30,000 white inhabitants, whitst the mines emgold helds that has mate the prescut great developunent of these latter poosible. The cost of transport of fuel is, huvever, stifl high, owing largely to the refusal of the Incal railways to carry coal in bulk. It now costs about 22s. per ton delivered at the gold mines. It only yielts a very inferior coke, so that this article has to be imported for

The ore is different from any English coke being worth about fis per ton.
held together liy a siliceous cement, which contains in the lowest levels cryanals of iron prrites. At the surface the pyrites was oxidised and the ore was more frialile, but the greater the depthattained the higher the percentage of pyrites appears to be. The gold is contained in the cementing material; it is so fine as to lee seareely ever visible to the ege, and much of it is combined with sulphides of the base metals, which latter re known as "sulphurets."

The ore whell mined is heisted up by means of head gears, which are seen dotted The first is .a "mpe head gear, which delivers the ore intold. Thech, whe of two types. into the mill builiting where the ore is dumped on to a " grazaly whate of bars of iron, and then passes into a rock breaker, from which if falls bruhen itite a hopper to go to the stamp mill. As the comatry is sery that, and the mills are ofeen ome distance from the mines, it was fombl mure econumical not to, have the rech-ifeaker m the mill builing, lut rathor the place it on the head gent, and movt modern head gears are so constructed Kıch liveakers are either of the well-known Blake or of the Gates' of Comet type. In these the ure is bruhen dowa to abmat 2 mi cubc.

The mills are of the usual Califurnia battern, with selffeeders. Their weight used to be 85010900 lls., and they used to have a 9 in. drup. The must modern
mills have 1,200 the stamps, and are work mills run as fast as 92 drins pher minute. In consequence of hiving such powerful mills, the best are able to crinth $41 / 2$ to 5 tons pers 24 huours of par heang, through a 900 mesh screen. The averatre for the entire gold fields for the noonth of December hast was 3.7 tons crushed per heal per 24 hours.
Tischerged , copper tables 12 ff . long and 6 ff . wide, these and the crushed ore gamated so as to catch the gold. It is found that most of the teld is bueng amat. the battery, and on the tirst 3 ft . of the ouside copper plates. gold is caught insile caught ont the plates is 55 to 60 per cent., an anuumt which cumpares unfavorably with many other plates where the percentage is said to be 8o to go. The anmalgam is collected, and is cleaned in pans, and then heated in returts, when the mercury is driven off and reenndensed ; the spongy gold so ubtained is then melted. The loss of mercury in the entire treatment is about $\frac{14}{4}$ oz. per ton of ore; at the Robinson mine it is 0.65 oz. The meltel gold is usually 800 to 825 fine. It contains silver, lead, copper, and other base metals.

After the pulp has passed over the plates it is run into concentrators, which ex-
the sulphurets. There are various kinds of conceres tract the sulphurets. There are varinus kinds of concentrators used, but the Frue
vanner is the mast popular. The percentage of concentrates obrained is about 3 and vanner is the mast pmpular. The percentage of concentrates obrained is about 3, and
these sulphurets asmy from 5 va. to 8 oz. of gold to the ton. Must of the mines sell their concentrates to one of the two combination works on these goldfields, the price given leing go per cent. of the assay value, less $£ 4$ per ton. In the chlorination process 95 per cent. of the gold contents of the ore is extracted. This process, is however, only suitalle for rich material; it is not, like the cyanide process, suitable for pror grade stuff, such as are the tailings.
tant part of the whole operation. The roasted stuff is then dannped the it contains 6 per cent. of moisture, and charged into vats furnished with covers fitting gas tight. Chlorine gas is then passed upwards through the roasted ore: this combines with the gold, forming soluble chloride of gold, which is then washed out, the solution being filtered off and the gold precipitated from the solution by means of sulphate of iron, which is made on the spot. The process is costly, owing to the high price of sulphuric acid, which costs $\mathbf{~} 25$ per ton. The consumption of acid is 300 to 400 tons per
annum.

After the pulp leaves the concentrators it is run into dams, where the tailings are ar 40 per sethe. These tailings constitute about 60 per cent. of the ore, the remain tailings contain 4 dwt. to 7 dwt. of which are run to waste and are totally lost. The tailings contain 4 dwt . to 7 dwt. of gold to the ton, and the slines 4 dwt . to 5 dwt.
The tailings are charged by hand into huge vats, the largest holding 400 tons. Then The tailings are charged by hand into huge vats, the largest holding 400 tons. Then
a solution of cyanide of potassium is allowed to flow through them. Some mines a solution of cyanide of potassium is allowed to flow through thent. Some mines
employ a system of repeated percolations of this solution, whilst others olject to it. A strong and a weak solution are employed, the first cantaining from 0.6 to 0.3 per cent., and the second from 0.3 to 0.1 per cent. of cyanide. The whole tendency sesen!ly is to work with very weak solutions. Each solution is allowed to act from between 12 and 18 hours, and is then run off into zinc loxeses, where the gold is thrown down by means of zinc shavings. Theoretically, 100 oz. of gokl should be dissolved by 4.3 lbs. of cyanide, but in practice 300 lhs. of cyanide are required. Some mines consume as much as 2 lbs. of potassic cyanide for each ton of ore treated. The zinc precinitates the gold from the solution, formiog a mass of so-called zine residues, Which contains a very great deal of zinc and sther inpurities. The zinc residues are calcined, and then melled with a mixture of "carbonate of soda, borax, and huorspar, when gold is obtained 720 to 750 fine, the principal impurity being lead. There ap pears to be no difficulty in refining this gold, which is very brittle. The average ex. iraction of gold by the above process in 1893 was 14 dwt . per ton, the assay value being about 15 dwt .8 gr . per ton.

John G. McGuigan, one of the owners of the Noble Five group, in Slocan district, was in Nelson the other day. He says there are $81 / 2$ feet of ore in the breast of No. 2 Tunnel in the World's Fair, and that the mines never looked better than at the present. Three tunnels werestarted on the Bonanza King, two of which are now in the World's Fair. No. It tunnel is in 200, and an uprise made from it to the surface. No. 2 tunnel is in 310 feet, and an uprise connects it with No. I tunnel, near the mouth of the latter. At 98 feet a level was run from the uprise a disance of 102 feet. This level is connected with No. 1 tunnel hy a winze. No. 3 is in 300 feet. On the
World's Fair a tunnel is in 75 feet, There is ore in the breasts of all the tunnels Words Fair 2 tunnel is in 75 feet, There is ore in the breasts of all the tunnels
except No. 1 . A thousand tons will le shipped this season, part of which is now
being sacked. Tribute.

On Cage Conductors in Shat :"

By Mk. T. C. Hatk.
(South Wales Institute of Engineers.)
In introducing this subject it would perhaps not be out of place to tave a brief survey of the commencement of the system of tabs, eages and guides.

The writer is intelted to Mr. Kulnert Simpoun, of Rytun-on.Tyne, for the plans and particulars of the first tubs, c.ages, and gutiles, that were used for coal winding. That pentleman, as an assistant of the late Mtr. T. V. Itall, was immediately con-

To With the introduction of this system.
To Mr. It.ll is due the credit of introducing it. It woult In superthums at the present day for the writer to allempt to describe the great at vantages that have followed upon this change of system.

The following extract from the sfining fournal of September and Octoler, 1858, will place the posit:on of affairs previuls lo Mr. Mall's improvements, clearly lefore he mem.eres of the Institute:-

In the whole history of mining industry there is no chapter more interesting roil system.
"It is impossible to exaggerate the importance of the change which the adoption of that system wrought, not only upun the coal trate generally, lut especially, and in a marker manner, upon those by whose industry that trade has fluurtshed and lecome Great. Fior the first time since the insention of the Davy hamp, semence was brought to hear powerfally and sucecesfully unon the means of preserving life and limb; and that which was considered an unenviable, lecause a must dangervas, vecupation, was renteren more colerable hecause infinitely less hazardous. A bries lescripuon of the state of things which existed priur to the change is necessary to a full comprehension of the leenefits derivel frum its adupiun. Within the recullectiun of the then young est mining eagineer, the produce of the pit was brought to the surface in what was called a corf, or corve. These corves, composed of wickerwork, in the shape of huge baskets, waried considerably in size and appearance in different lucaluies. Urupinally constructed to hold about ten pechs of coal, equal to about three cwts., they had for sonne time previous to their alandomaent attained much larger dumensions, and were generally capable of hudiding siatest or tweaty pecks, equal to five or six cwts, of coal, the size being regulated in a gireat measure by the height of seam and by the strenget and lifting power of the machinery employed to raise then to the surface. . Nuch breakage was occasioned in the journey through the mine, but in the ascent of the shaft, the corf, in swinging to and fro, Ireypently struck so violently against the sule as to shatter its contents until they were sinall and almost useless. (See Fig. I,
llate 26. .

Arrived at the surface, the spring hook by which the corf was altached to the rope had to be removed and an empty corf suthstituted ; and as during this operation the engine did not stop, the rope had sometimes liegun to descend again before the empty corf could be altixed, and there was no alternative but to ling the corf in also, which, accordingly, went crashing anil smashing down the pit to certain destruction of property to a very large amount annually.

In addition to these inconveniences, the ascending and descending corves frequently came into collision, and sometimes the corf which was on its way to the pit's nouth would bring up that which should have descended, occasioning much trouble
and confusion. and confusion
"The means by which the miner descended to and ascended from his labour, was of the most primitive and dangerous description. The rope, with its terminal chain to which the corves were attached, formed the sole vehicle of his transit. To this he must cling, and run the risk of being severely bruised against the sides of the shaft besides endurin\% the pain which the chain produced upon the legs and hands.
"The general practice in proceeding to or leaving the shaft buttom was for two men to sit, each with a leg in a loop of the chain; and frequently five or six loys
would cling to the rope, one above another, trusting their lives to their capability of holding fast while the rope traversed a distance of 1,600 or even 1,800 fect.
"Remedies for all these inconveniences had been the subject of much study aniong professional men, but no very satisfactory plan had been devised. Alsout the year 1825 or 1826, Mr. Thomas Easton, of Ifeblurn Colliery, brought into operation an improved plan of conveying the coals from the workings to the bottom of the shaft by placing the corves upon bogie wheel trams; but the difficulty of keeping the laskets upon the trams, and the objections of the boys employed as putters to conarrangement.
"A little carlier, a very imperfect plan of raising the coals by means of 'skips,' and a kind of conducting rod, was introluced by Mr. Curr, of Sheffield, and partially depth ; and several eminent engineers from the North of where the pits are of little depth; 2nd several eminent engineers from the North of England, accompanied by the Rev. John Hodgson, of Heworth, compiler of the 'History of Northumberland,' visited a few of the mines for the purpose of ascertaining the applicability of the plap to pits in their own locality. Their impression was tavorable, though it could not be satisfacturily adopted in the great northern coal field, where the thinness of the seams required shatts to be of an extraordinary depth, and the large demand for coal for exportation rendered it necessary to raise such enormous supplies.
"From this it may be inferred that the new plan was slow in its operation.
"In 1833, Mr. Hall, when at South Hetton colliery, introduced the tub system of drawing coals, which consisted of a number of tuls of oblong shapee, mounted on wheels. The tulss being made low compared with corves, admitted of being filled with greater ease and quicker despatch. The contents of four of these were emptied at the botton of the shaft into a large round iron tub, constructed to hold $11 / 4$ ton of coal, which was drawn to bank and struck on to a tram to convey it to the screens. A division for each tub, in the shaft was cleaded round slightly larger than the size of the tul, so as to enclose it, thus using the whole surface as a guide, thereby, rendering guides in this case unnecessary, without having any guides fixed to the shaft or shoes
on the tubs. This plan of giding the ingn on the tubs. This plan of guiding the iron tubs was used in the first cages adopted by

The next improvement in Deceniber, 1834 " (See Fig. 2, Plate 26.) ion of conductimprovement by Mr. Hall was of great importance, viz. : the introducopinion and prejudice agrainst the adoption of.such a great change as the ine adverse of cages, which in those days caused considerable delay in changing al bank (keps or fans not then having been invented), that on the nceasion of Mr. Hall leaving South Hetton, the iron tub system was again introduced, and the cage laid aside: but the advantages of the cage and tub system soon became so apparent that they were quickly resumed.' The advantages of this system were so nanifest by what had been done at South Hetton colliery, that Mr. IIall, without delay, next introduced it in a more complete form, viz. : cages fitted up with shoes running on wood conductors fixed in the shaft, as seen in Fig. 3, Plate 27, at Woodside Pit, Townley Main, and. Whitfield, collieries belonging to the Stella Coal Company.

In this case he gave most powerful proofs of the practical utility of his innovations, as some termed them at that day, in more than doubling the quantity of coal drawn from the pit. Here, with an engine of only 20 horse power, he drew from one pit, 65 fathous deep, 100,000 tons of coal per annum, Iring more than double the quantity previously drawn by the old system. This increased quantity was not only due to sapidity in winding through he guide system, but also to the improvement in chang. ing tuls at hank hy the introsluction of keprs or fans.

The advantages of the numerour improvements originated and carried into practice in the aloption of Mr. Hall's new system of winding soon became publicly acknowledged by the atloption of it thy one colliery after another, until it leceane the acknowledged aystem in the coal trade, and in Mr. Hall is due the honour of produeing one of the most leneticial revolutions in the system of winding coals tiant has ever teen introduced into colliery operations, not only in the interests of the employer, but in the interest and safety of the employed.

Having thus referred to the practice and contitions under which the winding of coal was effected up to a comparatively recent time, it will tee realily understoxd that it is leyond clie compass of a single paper to do justice to the various spatems of fixing pit cage puikes. The diagrams will show the progtessive stages that have taken place since sheir aloption in the year 1833 .

Fig. 1, Plate 26, shows the system in use lefore cage guides were adopted.
1.is. 2, liate 26, the sub, used as a cage and guided hy the sides of the shaft, ad at South lletton. lear 1833.

Fig. 3. ilate 27, the first cages fitted up with shoes and wool conductors in the shaf, ai Wooklide Pit, Townley Main, and the Whitfeld collieries, 童elonging to the In the year is54, Mr. lle ille
In the year is54. Mr. He dedtey first used iron rail guides for cage conductors at Kelloe collery, in the County of Durham, and in 1859 wool guides, haced with iron, were tried at Thoriley and Thresiltone collieries, which led Mr. Johnstone, of Seghill, to the idea of trying sail gaides.

After that date rails were used at several collieries, and shorty after came into general use in the Northumberland and Durhan coal tield.

Fig. 4, llate 27, is a fair sanuple of rail guides as adopted with cast iron chair sleepers, at Cowpen, lackworth, ind other collieries.

Fig. 5. Plate 25 , shows the single chair made of wrought iron with rehated rail oint, at Lambion collires, Durham.

Fig. 6, Plate 2S, shows the chair, sleeper made out of rolled wrought iron having (wo) recesses planed out $\frac{1}{6}$ inch deep) to receive the rails. This forms a good and cheap chair, and may le used with advantage where the load is not very heavy. Used at Kumbesworth collicery

Fig. 7. Plate 23, is a forged iron chair sleeper with four recesses planedi out to receive two sets of guide rails, as used at llarris's Navigation colliery. This plan, in the writer's opinion, seems to lee the most complete of any yet adopted that he has treen able to oltain information of, for deep and gutick winding with heavy loads. It provides for a spare set of guides, which, with a proper adaptation of gauges and shoes, can le made to assivt and strengthen those in use.

Fig. S, llate 29, shows a narrow gauge of road of only 15 inches for the rail guices, fixed only on one side of the cage, used at Elswick collieyt, and hy comparison with the other examples it will lee secn how the gauge varies in different places to suit the special circumstances of each case.

Fig. 9, Plate 29, gives the channel iron guide applied to the opposite ends of the cage at kyloppe colliery, and which with a few mollfications has teen introuluced in other places louth in the North of England and South Wales. In one of the pits at Eyhope the channel iron guides sun into sidings at the meetings it foot out of plumb, and in another case run into sidings at mectings a feet out of plumb.

Fig. 10, Plate 30 , shows a section of guide rail and she used at the Avon colliery; Alergwynti, and which, in the writer's opinion, makes a very suitable, secure, and durable conductor.

Fig. 11, Plate $\mathbf{j o g}^{0}$ shows the wire rope guides used in the Clydach Vale colliery, and exhibits a fair sample of this class of guide, and also the practice of using intermediate wire rope gaides teetween the cages.

Fig. 12, Ilate 30 , shows the woond guides at the Wearmouth colliery, 13 pit, which have been in use for wenty years, and are still in good condition ; they also run into sidings at the mectings, 3 feet out of plumb, and at the point where the cages pass each other the space leetween them is 4 inches, and the clearance from the cornce of the eape to the side of the shaft is from 1 to 3 inches.

The A pit shaft st the Wearmonth colliery is fited with wire rope guides, giving a distance al mectings of 14 incher, and the tsarest point at the corners of the cape is only 1 inch from the side of the shaft. As might lee expected, the corners of the cage rulb against the sile of the shaft, notwithstanding that a load of $11 / 2$ tons is raised from a depth of 600 yarts. Although not desiratile to run cages in wire tope guides o near the sides of the shaft, this allords a striking instance of what may le done.

Fig. 13, Plate 31, shows a class of girder which when put in the middle of the shaft makes a strong, secure girder, but it failed to secure the guide rails, which were only fixed un with lonles and side clips. The present tendency is to admpt iron givilers for carging the guides, ban the writer's experience leads him to the conclusion that they are inferior to the recessed chair slecper, as in the iron girder all depeniled on the bolts, but in the chair slecper the solid recess secures the guiles against transverse side strain, as well ae kecping them in correct gauge. Of course the chair slecper could be lolted to an iron girder as well as to an oak hyat. If iron girders could be made of suialile size, and recessed properly to receive the rails, at a reasonalice const, then they would be equal to the recessed chair slecper on oak byats, bat even then the writer fails to see any advantage they would have over the latter.

The system of securing the joints ly a fishplate on the hack of the rail is in sonote cases adopted, aud the juints are made between the hyats and not on the hyat; where this is done, and screw clip lolts or dons similar to raitway fastenings used to secure the rails to the hyats, it is evilent the whole weight of the guite rails rests on the lettom, with the only other holding ascistance of the grip of the dog eliy. This, it will be readily seen, makes it more difficult to renew or change the rails in the shaft. In those systems where the rails are held secure in their position by their own fastenings, they were more casily dealt with for repairs.

It has loeen stated in former discussions (in wher places) on cage conductors, that very little power is requited to retain the case in position when in motion. It may be so, but the exact amount of force necescary for this purpose has not yet been satisfactorily demonstrated by experiment. All practical collices; officials, however, know that if sufficient and secure fastenings are not adopted for the conductors there is a considetable anount of trouble and annoyance in maintaining then in working order.

kail.s.

In the use of iron and stecl rails for pit cage guides one deficiency is very apparent, viz, the section of the ordinary F. 13. rails, which, although suiting the purpwse, might le greatly improved upon ; the drawlack to this being the cost of altering of preparing the rolls for so small a puantity as would le requirel for one shaft, users not
having agreed ona uniform suitable section. This being the case, the sclection has

Io be made from the sections of rails designed for another purpose, and the railway sections are all that can be obtained, cousing a heavier rail to le used than is actually necessary. As an illustration of this see sections of rails Figs. 14, 15 and 16, I'late 31, which have leeen in use. The black or outer lines show the size of rail when new and put to use, and the dotted lines show the section of the rails after having worked (Fig. 14) 6 years, (Fig. 15) 12 years, and (Fig. 16) $6 \frac{1}{2}$ years. It will be seen that the llange at A is the same in toth the new rail and the old worn sail, bet at 13 the amount of wear is shown by the doted lines. The simple deduction from these facts is that more wearing surface is reguired at is to have rails to last longer and do more work, mand this can only be obetaned by having suitable rolls for making the rnits as work, and
répuired.

With regard to the varimas rail sections used as guides, it is interesting to note the weight per yard used for guiding the loads to be raised. In some instances the proportions are as follows:--

кali. dump: sections.

Weipht per Yard of Kail Guide.	Weight of I.axd.	Guide K:itl. Weight per Yard per Ton of load.
Lens.	Tons.	1.ts:
42	3	14.00
46	71:	601
So	12	6.66
72	20	$3 \cdot 60$

Wrakint: sukface.

Wearing Surface.	Weight of load.	Wearin: Surface ser Ton or Doad.
Inches.	Tons.	Inches:
Wool Guides, 11	6	$1 \cdot 53$
Chammel Iron, 10	12	0.333
Rail Guides, S	12	$0 \cdot 666$
9	- 20	0.45
7	5	1.40

nukation of guines.

Some of the wood guides in Killingworth Colliery, Northumberland, were in use for 40 years, especially the guides in the lower prontion of the shaft, where they were wet. The upprer portion of the same shant, where the guides were dry, had to be renewed. At the present titne there are wood guides that have been in use for 35 years at lielside collicry, Northumberland, the depth of the pit leeing 200 yards, and load, 6 tons, and they are still in geod condition.

At Cambis colliery; Nurthumberland, sail guides have heen in use for 26 years, and are still in good condition. The depth of the pit is 220 yards, the load $7 \frac{2}{5}$ tons, and the weight of the sail guite 46 liss. per yard.

At Alsergwynf the rail guides have worked for nine years, and are still in good condition. The depth of the pit is $\mathbf{5 0 2}$ yards, the load $\mathbf{2 2}$ tons, and the weight of rail guide So lbe. per yard.

At Merthyr Vale colliery, in the upcast shaft, the guides wore ont in six years, the depth of the shaft leing 500 yards and the load 11 tuns. Section of rail used is shown in Fig. 16 . 1 llate 31 .

At Harris's Navigation colliery in the upeast shaft, the guides wore out in six years, the depht of the shaft locing 735 yards and the load it tons. The section of rail used is shown at Fig. 14, Hate 31 .

In the downcast shaft, 700 yards deep, with a load of 20 tons, the section of rail guilic. Fig. 15, 1late 31, worked ien ycars.

These facts go to siow that light loads, shallow pits, and duwneast shafts are very much mare favorable for the working life of guides than upeas: shafte in deep gits with heavy loads.

The section of rail for a suitable guide, in the writer's opinion, should give sufticient strength to resist the viloration of the cage and ropes, and have a size of tiange for properly fixing them to the linats, depth of weh to allow ample room for the shoes, and sixe in the heat to allow at thurough grip of the shoe on it, and shonth also have and sixe in the head to allow a thurough gitp of the shoe on it, and shath also hate
an ample sulntance for wear and tear. They are usually made of stect and in 27 font in ample subinance for wear and scar. They are usually made of stec and

In the writer's upinion, the system of puting dowels into the ends of the rails is unnecessary, and does not give additional security to the joint ; the most secure joint and the one that secms to lec tise teast olyjectionalile, is shown in Fig. $=1$, Plate 3 I At the parts marked A it will be noticed that the bolt heads are thoroughly locked in the recess of the chair sleeper, thus preventing them coming loose.

Sleeperts, or chairs, with a recess in them to receive the rails, cither made of cast or wrought iron, seem to le the most secure wayy yet adopted in which to fix the guides. Girders, or hyats, cither of 11 iron or channel iron, are much used, but as in ordinary girders there are no recesses, and the security of the guide depends entirely on the bolts, this is an objectionable feature.

Oak or pitch-pine byats, on which the chair sleeper can le lrolted, give 2 much better fastening. (See Fig. 20, Plate 31.) It may be mentioned here that provision can tre made in the chair sleeper for an extra set of rail guides, which can lie put in when required for renewing the guides. This can be all done and completerl without in any way interfering with or stopping the pit working, and the only hhing necessary is to change the portion of the shocs on the cages to put the new guides in use. These extra guides can le fixed in such a proxition as to assist and sirengthen the guides in use lyy allowing proper space for the back of the shoe to be slightly guided by the

spare guides. (Sec lig. 7, Ilate 2S.) It is important that the sizes of the show and ance fe caresuly minte to get thenlo to work right.
fired arecial conditions will determine in a harge oresure whether the hyats shathe be readidy ere at the side of the shaft or in the midelle of the shaft. Of contse it will be readily seen that a byat in the midalle of the shaft hav adoanagen over the byats on the
side of the shaft, and can more easily be secured.

.aNHINis.

In fixing main girders, buntons, or byats for surface tandinge, it is desirable that they should te a sutficient dintance from the eage to allow the cige, or anvohing that

 side end of the cage th the acatest bart of the fuder in sombe cases workis well. The

 landing's in the shaft it is elesirable to give even more allowance than this: $;$ incles will not be too unch in some canes.

It will tre seen from the table that considerably less gude area is required in the shaft hy wive rope gutules than any other form of guite, and lims they are more lavourable for ventilation.

M.JPANSION.

It would appear that there are mo ack:awtedged rales for allow ing space at the joints for expanvion, as in some cases the tails at pat chave bu cach oblter, and ita ofhers it inch, is inch, and even if inch space i, allowed between the ands of the rails.

The proper allowance to be wade for cymanion witl of course, depend on the vatiation of the temperature in the shaft. Avsumbing that the daterente of tenplata-

 $0 \cdot 0000060$ per loot in length, thas mahim; the expansion for cach rail $2 j$ lect long $=$

IHe vraci
afrecs wilh this.
la upeast shafts where mechanical vemiliation i, ued the same rule will hold good, hiti where the farnace is used it is very doabiful whethea rat gundes are suitable; they have leen tried and had to lee tatien ont on accomm of the displacement of the
sails hy the expmanon which took place.

sllot:

Shoes are made of cant iron, sted, and wronght irna. Steed shoes secm to be the most suitable amd mect the requirenmens hest, and they aloo lasi lunger than the others.

It is necensary to hawe the shose projerly tived to the care and in sucts a manner that they can be readity senewed, for clefects in clumg this will maternally affect hoth the eflicient working and the duralitity of the cage and gutedes. Tu ensure this heing dunc property, the shoes are fitted inona gauge, and all correctly drilled to the samue template, so that any shoe will öo on to day jart of the cage and be a correct fit.
 ion ame straia on ropes, cagecsand gaides, and therefore we or then ont somer.

It will appear from the infomation gleand by experience that the mont suitable
 fluctuce in decidin; on wata is most suitable io eathe case nust have considerable in

Womb guides, aldhough they make an eacellent conductor amd have douhbless
 is one feature in connection with them which is the same in refereace to channel son gnides and wire rope guides, and that is, as a sule, where shey are used is is neceasary to have gulides on the ofymsite sile or ends of the cagre and in the case of nomal and chanmel fundes they reguire logats on opposite side ond the cage ; whercas in the une of rail puides it is only necesmary to we guides and lyats on one sulde of the cage, thas aving the pit mure open and with less material in the chaft.

It wonlid le presunptuous of any one to lay down a sule that any special class of Huide shund only be usey, as it is evident the conditions in each case tequire careful Consideration letore deciding what class of guide should le adophed and is suitable for the requircments. Different circumstances must lee met and dealt with according: to It anathons.
It may bot le out of place to sugsest a few of the salient points worthy of consideration, such as space at mectings twetween the cages, and at whe corner of the cage
and side of shaft ; depth of pit, "ejghts of load, spect of winding, and to avoid scuers. ing guder at pit top and lottum: what effect water and upeast air aill hove seversguifes, also whether there is any aliphacement in the shaft from pressure or otherwise.

When the guides are out of phamh, or necessary it pur them out of plumh for want of space, and the depith is ower 600 yarils, rail guides seem io le preferable. The adrantage of this class of guide under any of these condioions appears to le the Erije of the shoe on the head of the rail to keep the cage lecicer in tie guiles, and in cases of drawing water out of old shafts by cages or water tubs, the rail guibe is superior to any other clacs of guide the writer has seen used for this purpose, the water tult or cage lxing lest retained in its josition while under water, and styps can le put the lrottom enils of the guides bu prevent them going uver the guide ends.
It is evident that where wire rope guides can tex used to ad and
It is ewitent that where wite rope guides can le usedioadvantage, they can le put sary condition of their success is that they must tre put in guites ; but one very necesvibration, which with the wite ropue guides is a very oljectionalile feature; also proper precautions should le taken to prevent the porsilaility of their lecing "sirijused "by the shoe of the cage raking holit of a stray wirc. This occasionall; is a source of danger with this tyice of gidite. So far as the writer can ascertain, their life varies
iwo to ten years or even lunger.
The transverse strain on the clans of rail guikles acts in the direction shown by the arrow on Fig. 20, liate 3t, and the only resistance to this strain is the security of the The
The sanic strain on the fastenings does not take place on cither wood or iron channel guides, where they are fixed on oplusite sides or ends of the cage.

Where the safely catch for cages is used, provision in strengit of guide and fastenings is necessary to provide for any sirain that may occur in case the catch comes
into operation.

t.ultrication.

The lulrication of cage guiles is a mater that deserves some attention. The practice differs very much. In some cases it is tot thought necessanj; and no lulvica. lion is usel ; in others oit, soft soap ami watcr, and water alone are used. The writer has used likjuid grease similar to tram grcase, put into small boxes on top of the caye,

With junt a sufficient oulet to allow of the necessary guantity of grease to run on to the adib, while the cage is in motion. These boace are litted with hinged lids, so that when the low is filled with greave the lid can be closed, and thos prevent dirt or other matter mining with it ; the application of the lid alone has in some cases made the difierence of effective greasing: Jefore the lid was put on the greatime was very the. satisfactory, hut afterwards it was all that conlal he desired. slisan illustration of the necersity of sonte sort of lubrication heing reguired, it can readily be imagined whe would take place if the guide bars or other working parts of an cogine were not fubri. cated. Although the ilhatration may be entreme, it points in the same direction louth in pit cage puides and in engine gulide lars.

How best to olsain a gonel. safe, and durable pit cage combluctor, is worth; of cateful consuleration, this, it will appear, is more easils accomplivhed in shallow pits with light loads than in deep pit; with heavy londs and quick winding; for dephe, Weght of load, and sheed in wibling are all inportant factors to take into considera. lion on this sulject. And as fature mining oprerations will tend to increased depths and weights to lee raised, any adilition to our limited stock of infurmation and experience un these matters cannoi be other than interesting to responsille persons connected with mining.

If woblil appear for dephbs up to 600 yards, with loads not exceeding 13 tons, athl where n, dhephecement in the sides of the shaft takes place, by pressure or other. wise, that wood, channel irom, and wire rope guides can be used to adrantage; but over that depht, and for load. exceeding 13 tons, so far as experience indicated at present, it would seem that rail guidev are the mont suitable, and met the reguitements lent.

It may be adsanced that chandel iron gudes have many adwanages over any other class of guide, such as more weariug surface, ${ }^{\text {urenter strengh, and practically they can }}$
 sulject. The disadvanages aphear to the, as they are fitted up at present, the narrow joint surface and the necevonily suall mumber of countersumk bols fixing them at the joms. But what seems a grteater disalvantage as compared with rail guides under some conditions io, tor inntance, where displacement taties phace in the sides of the shaft, wath the chanmel iton guides at oppusite ende or sides of the cage ; and where his accurs the guides may lof jut ont of position, so that the care will coinc out of the undes altogether: or the dioplacement may tatie the opposite clirection, and thus the hisust tes inar. ticlos in the shaft. Ihis is not an insumary case, for such occurrences therefore rened in the the of channed iron andes. lkut take the same occurrences have hap. lition where rait quiles are used with the chair sleeper same circumstance and con and keeps the gaides in proper ghathe, and in whatever manner the sleeprer maintains and keeps the gudes in proper gatuge, annl in whatever manner they are thrust out of provtion to a certain extent the cane follows. Cases are known where the guides have lesen dieplaced as much as it inches ont of their proper position, and not interfered with the working of the cage Of course it is tesirable and necesary to have them but lack into position as soon as ofportunity afforts. It is an advantage where a yetern of andes will thus allow of the work to he carrical on until this can be done.
'The writer may here be allowed to introduce a quotation from Mr. Heriert iv. Ilughes' work on coal mining. giving a description of a French syonem; but as there is no data of the length of tinue they dast, or the clepth of pit, weight of lond, or speed in winling, it is bon an valuable as it onherwise would hate been fad this addiounal in formation leeen given.
liollers are used on the rail gailes, and a system of fining the guddes to a centre of tiatuls with only one loot tecesses in the tange is adopted, and by a simple pair
 otnerve the different designs used in tixing guides, and, in comparing the Fiench syitem with the practice adopted in lingland and Wales, the sysiem deocribed hy Mr. Hughes seems to be of a govil temporary character, but only a tempurary one. The novel application of the domble ghamiv with one loidt, to mect the diticulty of the zails. leing opporite each other, to a gractical man seems only a temporary expedient.
 firilers. . . . They are notched to seccise the ride series of hantons of 11 steel huntons twas steel glands ate fived, one on cach sals. to secure the ratls to the
 a hlock of cast irun is phaced letucen the rails, and is mormivhed with a slight projection, which lies in a corresponding groove rulled in the fange of the rail. At buntons where joints occur, two sets of these glamels and blocks are fiacd, one alove and one Uxlow, but at intermediate bumtons only one set at the top of the girders is used.

- With a view of reducing resistanje, rolling has locen sulstituted for sliding friction, and at ingin Colliery, France, the guile shose is composed of two whecis, on each side of the raid paide, revoiving on a pin bolted to the side of the cage."
The duty which cage conductors had to perform might now le appropriately coneidered. They nere all aware that mineral products wese brought to lank at a. specd almost unknown a few years ago ; but as this fact has a very important bearins on the care and conductors, the annexed table, giving some of the working patticulars of a few collieries, mat ice of interest. From this table it will te ceen particupreatest maximum speed of the cage in the shaft appears to le atiained in the Ruse57 nite Colliery, where it reaches 5,100 feet per minute-i.e., cpuivalent to a litle over

The average sifeed inulicated in the tabic is to the fastest sailway trains. miles per hour, which is generally admitted to le a safe working spect. In addition to these data, the zable gives the average time occupicel in landing to be only 26 sceonds, and in one case as luw as is seconds; whilst the average number of single cige up and down journeys is represented by 526 in a doulle shift of 24 hours, on the 1876 table. In the 1893 talile this is increased. It is interesting to compare the loads dealt with before and when cage conductors were introluced. . At that time 5 or

Wi. Of coal in onc cotve and the cage with $1 \frac{1}{4}$ ion werc considered very large londs.
At the preseat time loads of coal of 4 and 5 tons or mote, and a total load of from 10 to 20 tuns, ase not unusual. Ilaving; increased the speed and increased the load, it necessarily follows that additional strcingth of coniluctor is requiret to do the extra work.

Take, for instance, a cage on conductors at rest and without any motion; it is evident they wou
ly rusting away.

Again, take a cage on conductors and imagine it poxsible to put it into the highes possibic motion (say lightning speed, as far as our limited ideas can grasp) such alate of motion). Under these cunditions we would expect, from our knowilelge of the component parts of the cage and conductors, that they; woukd be testroyed and rent
asunder. Nder.
Nuw
may be obtaited these two extreme cases it is desirable that some reliable knowledge safe puint of sjeed compatible with the strength of the muate of what is the highest colliery cages and conductors.

The folluwing talbes of squed indicate what was done in sume collieries in the
1876 and $1893:-$

Coal Winding-Tarle of Cabf Speel yrom Nurtil of England Colidery Enginrers' Transactions, year 1876.

COLLIERY.	Weight of Cage.	Weight of load.	Mean Cage Spoal in Shatt.	Maximum Caze Speed in Shall.	Depth of Pit.	Time Occupied in Kumning.	Time Occupied in Landiag.
Year 1886.	Cwt.	Cwn.	Feet per Minute.	Feet per Minute.	Feet.	Seconde.	Seconds.
Silksworth	60	80	2,180	3,560	1,620	44	40
Harton	50 •	-•	1,020	...	1,278	75	30
Buldion	40	.	1,689	2,788	1,548	55	-
Wearmouth	42	110	1,180	1,770	90	20
Usworth	221/3	-•	1,300	1,706	966	45	-
Denaby	48	-•	1,691	3,080	1,351	47	21
Douglas liank	20	.	1,765	3,100	1,530	52	25
Roselridge............ .	22	-•	2,590	5,100	2.918	56	25
Houghton-le-Spring (lupeast shaft)	35	55	1,278	1,750	745	35	35
Cowdenhill, No. 1.	25\%	-	1,320	666	30	30
Hucknall......	30	-•	1,055	-	1,239	45	25
Kiverton Park........................	20	-•	1,624	1,218	45	15
Biddick..............	91/2	-	821	8,500	684	50	-
Ryhope	27	193	1,050	. ${ }^{\text {. }}$	1,524	85	22
Usworth	21	541/2	1,306	1,882	1,002	46	50
Year 893.	Case.	Trums and Coal.					
Harris Navigation, South Wales..........	120	152	2,100	4,600	2,100	60	15
Cage Bridles and Kope from the Pulley to Cage at lit brotom	-•	128	-•
Cage .	-	120	-•	.
Total	-	400	\cdots	.	-•	-•

Tambe-Coal. Wininnt: 1893.

\begin{tabular}{|c|}
\hline Nank or Coiliekv. \&

\hline Nixon's Collicry....... \& Fect.
\ldots \& 2 \& 2 \& \& \& Fect.

9 \& Feet.
\ldots \& Sec α
\ldots \& Inclie,

4%
4% \& Incher \& Incher \& Tons.
It \& Incher
14×5 \& $\left\lvert\, \begin{gathered}\text { Incher } \\ 12 \times 8 . \\ 0.4\end{gathered}\right.$ \& t.b. \& Ench
Caze. \& No.
. \& Tons \& Incher.
. \& Feet.
.

\hline Tredegar. \& -• \& \cdots \& - \& \cdots \& .. \& \cdots \& . \& - \& \cdots \& \& \cdots \& -• \& \cdots \& - \& \cdots \& \cdots \& - \& - \& \cdots \& -•

\hline Dowlais......... \& -• \& - \& . \& -• \& 735 \& \cdots \& \cdots \& -• \& -• \& - \& \cdots \& i_{4} \& \cdots \& \cdots \& . \& - \& - \& \& \cdots \& -

\hline Ilarris Navigation. . . . \& - \& . \& 2 \& 61010 \& 700 \& 9 \& 4600 \& 15. \& 7 \& 6 \& f ${ }^{1}$ \& 20 \& 11×5 \& 11×5 \& 72 \& \cdots \& - \& -• \& - \& \cdots

\hline Ocean Collicries. \& \cdots \& \cdots \& \cdots \& \cdot \& - \& - \& * \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& - \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots \& - \& \cdots

\hline Clydach Valc, No. I... \& 15 \& -• \& \cdots \& \cdots \& 395 \& \cdots \& $\because \cdot$ \& - \& - \& \cdots \& -• \& -• \& -• \& . 1 \& . \cdot \& \cdots \& \cdots \& \cdots \& \cdots \& \cdots

\hline * No. 2... \& 14 \& \cdots \& \cdots \& \& 430 \& -• \& - \& \& -• \& - \& \cdots \& 10 \& \cdots \& \cdots \& \cdots \& - \& \cdots \& - \& - \& \cdots

\hline Compen Cullicry. \& - \& \cdots \& 2 \& Still in usc. \& 220 \& 6 \& -• \& \& 6 \& 3 \& - \& -• \& 9×43 \& -• \& 46 \& - \& -• \& 51/2 \& \cdots \& \cdots

\hline L.swis' Merthys \& - \& -• \& - \& - \& 370 \& -• \& -• \& - \& 10 \& - \& - \& 91/2 \& \cdots \& \cdots \& \cdots \& 4 \& 2 \& 4 \& - \& \cdots

\hline Wearmouth Coal Co. .. \& - \& \cdots \& .. \& $\left\lvert\, \begin{aligned} & \text { 20, still } \\ & \text { in } \\ & \text { use. }\end{aligned}\right.$ \& 600 \& 7 \& - \& - \& 1.7 \& 1 \& -• \& 131/2 \& \& \cdots \& - \& 4 \& -• \& 21/2 \& 6×3 \& 131/2

\hline IIarton Coal Co. \& \cdots \& \cdots \& \& - \& .. \& \& \& \cdots \& - \& \cdots \& - \& \& . \& . \& \cdots \& \& . \& \& .. \& \ldots

\hline Avon Collicry \& \cdots \& - \& \cdots \& Still in usc. \& 502 \& 9 \& \cdots \& - \& 14 \& 6 \& - \& 12 \& \[
\left|$$
\begin{array}{lll}
1 & 4 & x \\
y & 10
\end{array}
$$\right|

\] \& \[

\left\lvert\, $$
\begin{array}{ll}
10 & \times \\
P .48 \\
\hline
\end{array}
$$\right.
\] \& So \& \cdots \& . \& - \& \cdots \& \cdots

\hline 1:1swick Conl Co. \& \cdots \& \cdots \& \cdots \& \& \& \& \cdots \& - \& \& \cdots \& \& \& \& \& - \& -• \& \& \& - \& \cdots

\hline I3clsside Cual Co. \& \cdots \& 2 \& . \& Still in \& 200 \& \& - \& -• \& \cdots \& -• \& - \& 6 \& \& \cdots \& \cdots \& -• \& \cdots \& \cdots \& \cdots \& \cdots

\hline Cadeby Main Colliery. \& 16 \& . \& 2 \& *sc. \& 750 \& 8 \& \& \& iS \& 18 \& -• \& 15 \& S $\times 5$ \& . \& 65 \& . \& \cdots \& \cdots \& -• \& \cdots

\hline Denaly Main Colliery. . \& 14 \& 2 \& . \cdot \& \because \& 450 \& S \& . - \& - \& . 16 \& 16 \& . - \& 11 \& $\left|\begin{array}{c}\text { cose } \\ 6 \times 5 \\ 6 \times 9 \\ 6^{-1} \\ \text { ar }\end{array}\right|$ \& - \& .. \& . \& - \& \cdots \& \cdots \& -

\hline
\end{tabular}

A Portable Gold Miner

The want of a machine that will diminish the labor and lessen the cost of mining, and at the same time increase the earnings of the miner has long lween felt. Our il. lustration this month shows a notel appliance invented by Mests, A. B. Cedin te Co. 197 Water Sitect, New Yurk.

In the first place it is portable, and is made with special reference to its durability and facility of repmir wherever used. It with wash fromi three to five tons of pay dirt per day, and one man can operate two machines by hand with ease. By the use of a small improvised undershot or overshot whed of four feet in diameter, one fout wille, about sixteen buckets, six or ten machines can le driven with perfect regularity, or any desired number can lex operated by any available pouer, reckoning one horse power for every twelve machines. It is claimed that a single machine uill accomplinh the work of ten expert miners with the pan, and yield a greater percentage of gold. It is also claimed that the actual labor is one-fourth less than the ordinary miner's lalom, and, furthermore, that no shilled labor is required in operating it. One important feature of this machine is that it can lex worked without the use of water if necescary, provided the dirt is well dried before being used ; lowever, it will not work up quite as much material. It will concentrate black sand, rich sulphurets or any precious as much material. It will concentrate black sand, rich suphurets or any precious amalgamating process can be used whth the best of results, and that it is as perfect an amalganiator as any now in use. The following 15 a table showing what one man can do with one of these machines as compared with hand latoor. lheginnung wilh 10 c . pay, which is known as poor jay, (meaning loc. per jan):-

ONE MAN HYK JAY.

In this esfmate is given the maxinum capacity of the hand panning and the minimum capacity of the machine, thereby showing what the machine will do in poor diggings herctofore unavailable except by sluicing, with its uncertain results and difficult management. The machines are provided with tubs and other adequate means so as to economize the use of water; the tubs when full will work a whole day, sustaining only a trilling loss.

From figures furnished by the makers we are able to give the cost of a complete ouffit for from one to five men :-

The Colliery Fireman: His Training, Treatment, Position and Duties.*

My Mk. (iforipe Eicte, Atham Collicrits, Accrinpton.
In choosing a sibject for a paper in read lefore such a society as this there are at least two important puints to be decided, viz., its importance to colliery managers, and one's own authority to speak upon the point. Wut in taking the present one, it is seprating an axiom to say that it is one of extreme interest and importance to every colliery manager, anil I can fairly claim that it is a mater in which I have taken a deep interest for many years, and about which I have learned a little from experience. In the working of a colliery, then, the fireman is a very important factor indeed. Upon "the manner of man he is, depends the conduct of most things in the mines underground." His training, then, is a matter of vital importance, and indeed it is not too much to say that he ought to be in some measure "to the manner born," at any rate he should begin to work in the mine at the earliest age at which it is deemed expedient for a loy to enter a mine at all, having first received such an education as will cnable him to perform any ordinary calculation, and to pick up at evening classes and private study, the principle of all the applingec he comes across in following the and private studty, the principle of alt ine apphance he comes across in followis
work of a miner lat, he should the put on every kind of work in the course of his youthwork of a miner lat, he should te put in every kind of work in the course of his youth
ful years, both in connection with datalling and coaling, hy which two terms I mean fol years, both in connection with datalling and conling, hy which two terms oamean
to include all the work done in a mine underground. IIe ought to le taught carly the value of observation in dealing with roof (especially timber drawing and its effects upon adjacent places) ; ventilation, whether bratticing, sheets, doors, stoppings, regulators, crorsings, or what; arching and the securing of rods, roof, and sides generally, hauling, jigging, hooking, and all matters pertaining to the expectitious output of minerals. IIe should lee made an expert in understanding other men and boys, their various grievances (real or imagined), and one matter of vital importance is that he should is alle, in due and reasonable time, to perform any part himself; so that, in the years to come, "None may rise up and make him afraid."

[^2]When a man has hat a course of trainimg in the mine like this evteating over a term of, my, nite or ten yerss, and has acepainted himself with the chementary portion
of the principles involved in what goes on around him, he will not be the wort of man of the principles insolved in what goes on around himp, he will not be the sort of man
(as a rule) who will lie down and tequest somente to jump on hime and be will cer. tainly not expect or dolerate such a thing theing done without his special requect. The fact is he will know that, given the opportumity, he is a more useful man than the asurage miner, he he conler, dataller, ripper, sinker, or what else he mang, and therefore entited to greater consideration and remuneration. I recall the sory of a hookeron, who chaned more money and anthosily from his manager berause he said the per week it wages. but I will give you $5^{\text {b }}$. per week in authority:" The law gives the out his duties as dectined bowers which are presumably sutticient io enable hint to carry out his duties as decined by the special rules, and I helieve it is only proper that these
 to the esigenctes of trade, sickness, or accident. So much for the qualitications of a man who ts to become a fireman, but then he is only in the position of the man who got married ; after the ceremony the minister complimented lium. saying, "Well, you are at the end of all your tronbles now, at any' rate." Seeing the parson some time after, the man surgested that he had more tombere since his wedding than ever before. "Or coult

Thus it is with the goung fireman ; he finds that many of those whom he had previously comated friendly, give him the cold shomber, suggest that be is about the most onlikely, mafair, injubicious pernon ever trice as a firetman: or maybe they confine their observations to que sioning the means by which he atained to that position; hut time, eren tuder the mosi favourable circumentances, and will need all the belp and comfors that hes fellow firemen and superion officials cand wive hem, as well the p and determinatuon we weceed on his cown part, and a firm conviction in his mind that "Botest are they whe to the end condure", Die should (from firs becoming - fireman) so that he can deal tairly as between man and man, when it is bewteen the miner and the owner. It in fuite necessary that he be: a man of temperate and regular habits, as somine ty, antemion, and order are as cosential, if not more so, to direet the work of a called for comremernies are carried to their acute stages under the induence of "Old Joln blarleycorn." He should (generally speating) seet tiis pleasure in the company of men other than miners, eipecially avoiling such as are under his personal supervision. So mach fur his training and treatment up to assuming the position of a fire-
man. At tirat he will te apt to think that his power and authoity man. Al tirst be will be apt to think that his power and authority are too limited to chathe hime to neleguately perform his multifarious duties, and will have to leam the hard leswn that, like ang ordinary inplement, this authority is only cepual to its work in skifful hands, and he will be like a miner I knew, who appreaticed his lad to a joiner, and, at the end of the second year, said to his son, "lyell, had, what hast than", Our friend havely rephied, "Any fool can do that. Keach me axe and saw," which the lad did. The old man cut an fonch from the end of a narrow lxoard with his saw and legan to taper it with his an anch from the end of a narrow loxard with his saw wood and hie his thumb, upon which he desisted. The fad then sharpened the end of a board welge wise and cur an inch of it with the saw, as a joiner shoulit.

Howerer, our fireman should be made to understand from the first that in all right things, and in such only, be will be backed up by his superiors. Ile shoutal be treated with sufficient confidence to know what are the ineal conditions aimed at in the conduct of the divatict under his care: becanse we know there is a litte divergence lietween the actual and ideal build and system of a colliery, and the intelligent fireman should lave a vision in his mind of ine complete picture. In ant cave of radical change in the prouramme the opinion of a tireman shondt be one of the eare of raticat things olatined (whether it lee in the method of timbering, working, or centilation), and if he has, or salppoed to have, or believes himself to have any objection to it, smm care should be taken to afiond him reason tu change or morlify the same, so that when he has to supervine the result he can put his heart into it, and intelligently lead the men
therein. Ifis ordmary duties, as defined by fuecial rule and an therein. Ifis ordanary duties, as defined by special rule and as generalb; known to us,
are as follows: Charge of his mine or district, safele equinations, reports, visiting men and withlrawal durine dact, safeys examinations, dinger signals, propricly of air oloors, and other air appliances, lampe frequent out on rule violation, ply of timber, and its ure when requisite, and generally; enforcing the rules. And as regards these well-defined and primted duties, I content myself with saying that they are delicate, onerous, responcible, omnipresent ones, and for their due fultiment require men of strong calibre and strict conscientious endeavour and integrity.

But there are ofler duties pertaining to an unwatten law, cuch as dealing with the payment of the men and loyss under their suprervision, and of this duty I desire to say that. avoiding fear on the one hand and rashoess on the other, a fireman should seck to fairly balance the value of any service rendered by those under him, and ever seck "To do unto others as he would that they should do to him,", were their rela. tive positions reversed. If any hindrance or inconvenience arises whis workmen, he
should (whether there be any rule in the mater or not so his the sion should (whether here be any rule in the matter or not) to his best to set the matter ployers, he should infuence will earry him. And as regaris his services to his emhis conscience will allow himg one to serve their best interests in every way so far as ask more than an honest scrvice can yield). There is a story current that the Messrs. called before them one of their a mani aliroad on a very inpportant mission, and they called before them one of their senior clerks, and asked him how he would like to go
albroad in their service, he inquired particularly as to the remuncration, and asked if it was not possible for him to have time to consider, \&c. They called the next man, and he was willing to go, but when asked how soon he could be ready, he said he thought in two or three weeks. Gipon his retirement they interviewed a third, who at once intimated his willingness in go anywhere in their service, and when asked how soon he could be ready, he replied, "I am ready now," and he went, and where no principle is involved I conmend his example to a fireman. At the same time, I must say that one of the most evasperating of firemen is the one who, like a looking-glass, If ane's own opinions, and never, never has one of his own.
If any large hody of gas by accident accumulates the firemen are the officers. I think the firemen in a pit should occasionally change districts, so superior officers. It
man is acquainted the firemen in a pith the whould occasionally change districts, so that each
So far as is reasonally practicable a fireman should not le the supervisor of his own relations by blook or marriage, as man "cannot serve Cod and Mammon," and so, whilst it may le impracticable to secure men who have no rehatives as firemen, there should be a gulf fixed to divide the little family parties which are so apt to form. One of the unwritten dities of a fremnan is thiat of
preventing waste, and this can only be done by a continuous active striving- wate of iniler, nails, plates, rails, brattice, tools, or coals, by having ieft in (whit a collier calls) a screen, which is variable from a foot thick to half a dozen yards. In observing what "Ancient Mariner")

Timher. timher, cuerywhere

A very impotam liabit in a fireman is the one of method or order, because a man who is himself unsystematic canmot keep cither omen or work in any sort of regular order. A retentive memory is well worth cultivating hy a tireman. We have losi one very urgent necessity tor a fireman being a keen pas delector since the candle weat out
of general use, and 1 regret to le able to say that of geaeral use, and I regret to be able to say; that 1 amafraid there are still firemen Who "look for what they don't want to find." If a fireman is to examine the effect: for the rentilation he musi be prosided with a gook, I would say the best known, hanp of ecting gas, and he mut hunt for the shehtest indication of it with the pertinacity of a sleuth hound, and not have in his minil the iden that if they bave to miss frime the shots it will be a serions matter. His ilea ought to be, and he would be drilled and redrilled in il from time to time, that if there is gas to be found he will find it, leaving the cconomic results to people who are more aftected by them. The examination of roof and sides and the timbering in his district ought to be a halor of love to hin, and he should never tire or weary of taking pains in these matters. When tinghim, and tee should never tire or weary of taking pains in the ee matters. When tome.
bering or packing is done within his direction he ought (fron the begiming) to form the unalterable resolve never to have poor or slipition work or material jut in: far belter no timbering than poor or mistaken, as he will replise if he bears in mind that more delays to trafic occur and more limbs and lives are lost from such canses than
ans other in our coal mines. An important thine for a fireman to observe in the offet changes in the atmespheric conditions (such as pressure and teruperature) have upon the roof, floor and sides of the particular mine be has charge of. I know many roofs which are very liable to fall un"n a rise of the baroncter, especially in pillaring, and aloo when the weather changes from hot in the day to cold at night, thus favorne the deposition of maistrof from the hot air upon the roof and sitles of the ruads, particnlarly the intakes. The tricks and manners of the rool, tloor, coal and packs under his charge should he his constant care, such as, for instance, where dioves the gas come
 following weighting and hearing, forming outhursts, \&c.? What whape of the face (in my method of work), is most favorable--first, to safety and the workmen : second, to t.e owner and roumit coal? Are they iderncal or not, and if not, why so, sc.? Alt these are problems which he will tind worthy of his consideration, and with which he G.11 protitably concern himself.

One thing which I personally. do not care to have to deal with in a fireman is extra density: he shouh be alert and active, mentally as well as pharically. To one nchaed to be watted on and carried abott, I would commend the sturly of a pathetic little incident in the history of a sout colliery manager of the last seneration. One Saturiay he got a drawer to take him into a district of his pit when it was nearly giving over tine). The youg man rather growled atome it, hat our friend sauced hin well, and so he ran him where he was recpuested. And then, while taking him along a low length of road, the drawer swayed the tub, off the roat, and coll the manage to get out as best he could-he himelf was woing home. On Sunday moraing the manager's friends became uneasy, and a search was made ; be was foun 1 in the tub Where his quondam fricud had left him. A gool quality for a fireman to cultivate is a thoroughly sound judgment, not to decide about a matter upon the tirst plansible tale he comes across, but to learn every possible detail concerning it from all the available evidence, and judge accordingly, and in order to become so he must learn " that great evente from little isstues spring," or, in other words, that there is no detail of his work too t.aignificant for his attention, and that it is only by keen attention to the mall items that the apparently large ones come out correct.
One of the most difticult duties, and quite as important as difticult, is for a lireman on mintain the necessary discipline amungst thoie under his charge, and on that heat I can only say that whenever he has got a fool to deal with he must himself be extremely wise and circumspect and in every case walk in the line of strict haw and equity. Ilis troubles will not often come from competent, sensible ment. At the same tine, malice is a huxury never to be indulged in by him; he should rather adopt the atibule (towards an unruly member), of a wrestler who carefully watches every move of his opponent, and applites just the requisite pressure in the weaked place, in order to prevent his own overthrow. It cannut be tors strongly impresed upon him that it is his duty (eacept in special cases and at certain set times), to see that other men do the actual work, and not to demonatrate to the admiring eyes of all his datallers, ke. that he can dn the work of wo with three watching hing. Mr, Hy, Mop, in his splen-all-the-work-himself" sort of a man, but he naively concludes, "His friends hament all-the-work-himself sort of a man, bu: he maively conclumes, "I is friends hamen story of an owerman, who ,ind to o:le of his men, "Why, man, it lakes me half of my time to watch thee alone." "Aye man," replied the worknan, "it takes me all my time to watch you," and a tireman should olserve the principle cmborlied here. It maye possibly be said-Why, you ask for the gualities of a manager in a fireman; and I Shald remusd the author ol the sentiment that a Mr. Burns, from over the Border, has said:-

The rant is hat the guinea tamp, the tuan: the fow dor a that.

And I would further say that from the ranks of a host of such iileal firemen should come the men who in after ycars are to recewe the guinea stamp of colliery manager's cerificates, both first and second class. liecause, firstly, they are most fit and qualified; secondly, they are most deserving; and thirdly, no other class of nien can le really as fit and as deserving as these should be. And as an anportant argument in
favor of this special and particular training of our subordinate colliery officials I would favor of this special and particular training of our sulordinate colliery officials I would
like to point out that, if all the firemen in all tie pits in this kingdon had this trained intelligence constantly directed upon the daily problems of our mines, the result would be that every detail, every mechanical contrivance used therein, would be continually improved and developed, and the results could hardly be realized lyy anyone. Collieries would lrecome what even the most optimistic dreamer has never seen in his wildest dream-in fact, "what it has never entered into the heart of nan to conceive."

There are many things done, and suffered to be done, in our mines now which are barely fit "or men and loys to do. Anyone who has had a fair trial at bolt and chain drawibg, ventilator turning, pushing coals by hand down a doo flat scuttle, turning at a cral, week in week out, stiff slant waggoning, hooking at a wet pit lottom, or
any such lofty, soul-inspiring pursuit, to earn his daily bread, will be alle to appreciate my meaning when I say that some work is not of itself elevating. There is also the class of useless lator, such as blowing floor to make roads in seams where the roof requires artificial support almost every yard, straight cutting where every practical man must feel the longwall would te more fit, jigging coals down hill to haul them up again, drifting at randont after coals where faults incervene, where following the natural signs would give proper results, etc. Such soul-destroying, delpasing, and usethe ideal tireman be speedily reduced to a minimum went to gaol and was put on the trealmill. Says he to the turnker "Owan who have they allus turn't this wi' their feet?" "Yes," was the reply. "Isy gum, but if they had it i^{\prime} Owdam they'd have a little engine to it i ' quick sticks." It is possible for an argument to be advancel that it would be indiscrect for 2 manager to continue

IMPROVED COAL HANDLING MACHINERY.

The McMyler Coal Car Dumping Machine Tilted to Hatch.

The McMyler Coal Car Dumping Machime - Taking a Car.
ally make men pralified to tahe his phace, but 1 am aftaill it would he a weak prop indeed to sustain a collecry manger if he conld only do il by having a lanis of incomp. petent sulvordinates. And indeed he would he much more likely to lane reasonably well by having a thoroughly competent set of firemen whore cowed all dhey knew to his kindness. He nould he taking the line of che farmer's laye who was left to mind the house and the children whith his master and nustre:, went off fur the day. The master cautioned himen to be quite sure and keep the chilidren anay from the fire Waster cantioned himto be quite sure and keep the chilidren anay from the fire.

There are, I mone 'eme dare gio noar than one"
There are, I helheve, one or fin. thang wheh the law mighe he mate more detin ite about in fator of the hreman: for iniance, il he gives an order to a mann alane his work or place the worhman ought to take sil the revpunthilaty lur non-olnelience. The law wight to detine what percentage of sas, anil low determumel, hould lee contsidered to phohbnt wonkige or paomg m, and nure parneulariy, detane the tane
 duty of a manager to lus direman sani the uoder manager mins place and degree) is
 a true genteman and compretent adoner. Von canan: laoh up from the summers of snowdon and Memat brylge, and a fireman cannon lask up to a man whe summot on all

 sterling human tuture unower us lest and iruest aypech.

Improved Coal Handing Machinery.

Last mombla we gave our reaters particulars of the chemsive impronements in con bandling appliances at present mader convtruction for the bominion (ond Co. I iti, and as the question of rapiod loading and discharging of coal corgees with a minimum amount of breakage is of prime inportance to our coal manters, we have pleasure in publishing a few notes recpecting a new plant recently put on the market ly the McMyler Car Dumping Machine Co.. Cleveland, Ohio. Xeat io the trattic in iron ore
 and Penusylvania, the movement of hitmuinous conl from tate t:rie ports io the Northest is the most imponamt item of lake commerce. For several years past shipments of coal from l'ithsburg, Ilocking Valley and Went Virginia disericts have averaced about $3,000,000$ tons each seasm. This conal is of a high prade, suitable for fuel and stem prirposes and for the manufactuee of gas cohe, and shippers have tried various mellums of loading it into vessels without damage from lireakige.

As far hack as twenty years ago atlemples nete mate to handle conal on the lates by means of chates, and on the Cleveland docks, of what is num the bigi Fourth rail. way, as much an $\$ 65,000$ was expended on a single plant that had to be entirely abandoned som afterward, on accoumt of damage to the coal in handling it. With the adsent of big steel steamer, and wooden buats of harsely increased capacity, rotary derricks, handling, first, huekets of ordinary size, and later on buekets of tive tons capacity; were introduced imb the trade, lyit even with these the largest vessels were delayed ino to four day, in loading and with cight to ten men shovelhng into luckets from a car three feet deep, and no taking probably uture than 20 lbs. to shovelfall, there was still the dicadvantage of sepnaration in the coal and conseguent breakage, The effort, therefore, has been ir cure dispatch for vessels approaching that obthaned in the ore trade, "here shipn of $j, 00$: 3.500 tons are loaded in a few hours, and at the same time avoid loss in the combercial walue of the coal by overcoming as far as pessible the breakage referred to. A machine that, in the cpinion of coal shippers generally, meets these requirements, is illustrated herewith. Firom an engineering standpoint it is a cery novel affair, lut it has been given suficient trial in actual service at Ashtabula, O., to demonstrate its entire practicitility and to warrant the satement at Athabula, O, to demonstrate its entire practicalinity and to warrant the satement that it will within antether seasin revolutionize the husiness of handling coal on the
lakes. Intents on the machine are contrulled by the Me.lyler Car Dumping Machine
 Company, a neu corpurati, in, and the fiss ol them was buitt lay the Mc.1y fer Manufacturing Company for lichands, Mather \& Co., who are the Cleceland representatives
of the tinnesota Iron Company, and uho coniluct a larger hasiness in iron ore, pig iron and coal than any of the several Cleveland firms that are congaged extensively in these associated industries. Instead of the wid wsum of 小errichs and luackets, the machine tahes up a loaded car of alwut 23 tume capracit) and dumps its cuntents intu the hold of a vessel in a manner that avoids practically any fall of the cual, as the car is loaded to the mouth of the hatch, and the entire load alloued to slide vut in a concentratel mass through an ingeniously arranged chute. Of course a car of 50 tuns capacity could be handled in the same was and the efficiency of the machine therely greatly increased. Seceral records as high as fifteen cars of tuenty threes tons each, 345 cons, unloaded in one hour, lase teen nuade with the apparatus, and steamers ranging in capacity from 2,000 to 3,100 tons have been loaded in cight to iwelve humrs. ranging in capacity from 2,000 to 3,100 tons have been loaded in eight to twelve huurs.
The machine is entirely self contained and portable, having the rotable features of a The machine is entirely self-contained and portable, having the rotable features of a
revolving derrick, with the atdition of the givder or bridge, hy means of which the revolving derrick, with the andition of the gidder or bridge, by means of which the
entire car of coal instead of a loaded buchet is taken up and lischarged. All trestle entire car of coal instead of a loaded buch et is taken up and lischarged. All trestle
work is avoided, and there is nothing complicated or expensive alout the apparatus. work is avoiled, and there is nothing complicated or expensive alrout the apparatus.
Aside from the machine itself the onls expense is that connected with the arrangement of the surface nailway tracks.

Viewing the machine from a mechanical stancipoint, its elements may be describ. cd as a bridge of two place girders turning on trunnions near the river or dack end of the bridge. These trunnions are carried on a framework of the house, which is in turn carried on about 10012 inch wheels arranged in a circle after the nlanner of a heavy plate girder framework lyy 16 large car wheels moving on four tracks, the outer ones of which are 24 feet apart. Back of the machine and its docks are six double ones of which are 24 eert apart. Back of the machine and its docks are six double
lines of railway tracks, which are for loaded and unloading cars, and which are spaced allout the same as the hatches of vessels and perpendicular to the line of the dock. The power is furnished by a pair of suitable engines which control the hydraulic power and all operating parts are controlled by friction clutches, requiring but one operato to handle the entize machine and only four men in all engaged in connection with the plant. The other three are a fireman, a man employed on the bridge and a man to rach the cable to the drawhead of the car.
An hydraulic ram of $\mathbf{1 8 3} \mathbf{y}$ inches in diameter, mounted on trunnions, tiles the bridge, which is so balanced that it rights itself, the ram forming an effective brake steam piston an ace the area of the hydraulic piston, is taken the pressure to operate the clutches for pumping, hoisting and driving, laterally, and also the brake controlling the winding drum that pulls the car up the incline.

In operation, the vessels being placed so that the hatches are upposite the tracks, or nearly so, the machine is moved to the hateh which it is desired to load into, the steal calle, size 14 inches. is hooded into the drawhead of the car and the car pulled 17 io the upher or worter end of the bridge, which is so constructed as to forma limper, agaime which the end of the ear rests when tited. The end bar being withdraun anton'atically through the tilting operation, the coal flows out through a discharging chute, and is concentrated in a telescopic troush or spout, which at the first ther of the coal may be lowered to within a few feet of the bottom of the vessel, when the work of Ioating legins at any of the several hatches, or to the surface of the coal Twelf after the lxotiom of the vessel is covered. In douthe deched vessels this chute man) be lowered to the botom deek combins. After the load is discharged the bridge - bilted liach, lise calile out the end hard detached, the car allowed to run doun and off the inctian on to the trach proviled for "empies," a loaded car again taken up, anis st, the uperation continuer, the machine monng from one set of trachs to another and from one hateh to another as may le reymered hy supplies of loaded cars, or in permituing of trimming of cargo. Through this hattet operation a great sas ing in time in gained, as wecanion for shiftiong a vestel while the woth of luading geres on is very rare. Vol unly e n the machine be menell laterally in either durection with a car on the loridge or phatform, hat it mas be sulug at the same time to avoid spars or any

 mbly change required in t^{\prime} fof fitting sliding end thards in the cars at a trifling cost. Immediately upon preparations lacing made for the erection of this tirst machine at Whalubla, the managenent of the lake Shore $\mathbb{N}^{(1)}$ l'itslourg and late litic railways.
 the wor chat hines ruming into that port, had, 000 cars title

The capacity of the wurface track plame shown on the large cagrating, and from which cass are moved on to the phaform: of the machine by a liconotive constanty in allendance, i, 140 cars, or about 3.300 toms. Of comese the number of sets of surface tracks for loaded and unloaded rars depends cantely upon the mumber of cars it is desired the phant shall hamelle, and as the entue tranferring appanates is arranged to move along a dock line it can therefore be made to accommodate any devired number of tracks and length of dock.

Note re Prospectors' Classes.

By Win. Hamhion Merkit, li. (i.S., Asoce k.S.M.

In a goung comotry, whose mineral resources have not esen been well prospected for, such as the Province of Ontario, and a great portuon of the Dommon of Canada the first steps to be tahen loohing tonard maneral development, naturally, is to find the mineral, and then to persuade local capnat to develop the same. If this is correct, it is advisable, in a new comery, to educate men to look for manerals, and the general public to take an intelligent interest in their development. The first country which has adopted this prolicy, so far as the writer is aware, is the Colony of New \%caland, where excellent results are stated to have accompanied prospectors' clasecs. Following the example given by New \%ealand, the Kingston School of Mining recently inauguratell a so-called " Prospectors" Class" in the gold mining district of Marmora, in the Province of Ontario. As this is the first instance of such a class in Canada, it is thought that a few notes on the same may be of interest.
llarmora is a small village, in the vicinity of which gold quartz mining operations have heen from time to time carried on for many years. The class consisted of sone 20 pupils ranging from the ages of say 70 to 17. It was composed of prevent and patt mine foremen, prospectors, hotel beepers, merchants and other investors in mining chaims, thereby leading to an increased and more intelligent interest on the part of business men in mining development, as well as by those who are actual workers. The idea of the course was more w give thoce attending it a start, or lasis from which to start. in the ditection of personal mineral investigation, or an idea of what looks and outfit to olbtain to assict them.

Enough Chemistry was given to enable the student to understand what a mineral is, and to grasp the distimetun letween an ache and basic muneral, and numerous experiments were male to illuntrate. linuugh Mineralogy was fiven to enable the student to use a mineralugical text bouk, and to enable him to disingush the common ores and the minerals enter:ng into the composition of the ordinary rocks. Specimens illantrated this part of the suliect, and rough field tests were made upon the same. Suffictent (ieology (accompaned hy typeil rocks) was given to enable the student to form a general idea of the furmatuon of the ordinary rock familes, and in connection with ore deposits, the typucal classes and their morie of occurrence was touched on Finally, prospecting and the ruchments of mining operations concluded the course.

In practical worh, assaying of gold and siver was given, and a course in blowpiping, which embracel the testing of the common minerals and cupellation; also panning and short trips to geulugical sections and local mines. The course occupied only two weeks, and the students were working for three hours in the morning and wo hours in the afternown of cach day.

This preliminary lrospecturs Class was conducted by the writer, and it had as a result the formation of a local club to carry on geological and mineralogical work, and the collection and preservation of minerals and geological specimens, therely proving in a substa . lial manner the sustained interest of the class.

An Ambulance for Use in Mines. - The difficulty of carrying injured men in mines through narrow and uneven passages has often been recognized. An apparatus invented by Dr. Paul Troisfontaines, is described by the Sempaine Industrielle, of Brussels, and seenss to be simple and convenicnt, as well as cheap. It consists of a sort of hurdle or litter, made of hoops about 8 mun. in diameter, placed parallel and
joined by a fabric of cord or mat, somewhat like a hamnock, thus giving when rejoined hy a fabric of cord or mat, somewhat like a hamnock, thus, giving when re-
quired, rigidity in one direction and flexibility in the other. The injured man is laid in the litter with his legs extended and his arms at the side of his trody; the upper part of the litter is then folded over and secured by three of four straps. The man then forms a package and canibe cyerried without the slipping and jolting of an ordinary litter, no matter how narriow or rough the workings may be. In case of fracture there is leelieved to le less danger in carrying 2 man in this way, holtias him immovable, than in attempting to keep the broken limblin place by rough splints or bandages their cost, in Belgium, is 3 fr ., or about 58 c . only.

Photography in Mines.*

BV Herhert W. Hughts.

In a recent contributiont on the sane subject the uriter dealt with the difticulfies met with in photographing mining operations, and the methoris he had foumd successful in wercoming them; lut as the members he was addressing were familiar with the apparatus cmployed and the manner of usimg it, no zeasons were then supplied, either
for the preference given to certain forms of lenses, etc., or for the manner in which the for the preference given to certain forms of lenses, etc., or for the manner in which the
operations were conducted. Photographs of places jnaccessille to the gencral public are usually interestimg, and minimg pictures do not seem to be an exception, if the writer may judge from the numperous letters he has received on the sulpject. Sany mining engineers have expressed a wish for further particulars in language less techni. cal than that used in the paper slready alluded to, in order that they may take up similar work in their oun collieries. The field is a very targe one, and it is to be hoped that members mas lee induced by this paper to enter into the work, wecause the results are valuable, buth from a scientific and educational standjoint, and indicate clearly hou many operatiuns are performed far better than an ordinary drawing.

The writer took up the work to obtain views showing how the ten-yard coal was worhed, as he found that there was considerable difficulty in doing so with diagrams. To further instance the value of such photographs, he many say that one view olvained by Mr. I. C. Burrou showed the heavy timbering in the 412 fathoms lewel at Dol. coath. This place was sulsequently the scene of a terrible disaster in which seven men, including the fureman timberman, lost their lives owing to the collapse of the limbering as it was being strengehened, while an eighth man was rescued unhurt after 37 hours' entombntem leneath the fallen detoris.

The subject is pabticularly appropriate at the present time, because our President, Mr. Arthur Sopmith, was the first to obtain a complete series of views showing the various operations from the hottom of the shaft to the working place. These were
taken in 1881 and 1882 , but previously; Mr. W. W:. Delenham, in 1864 or 1865 , had taken in $1 S 81$ and 1882 , but previously Mr. W. E. Delvenham, in 1864 or 1865 , had
chltained several phusograph, in the Botallack metal mine in Cornwall. In 1884 chetained seteral photographs in the Botalack metal mine in Cornwall. In 1884
Mlessts. G. M. Bretz and F. D . Dewey, \ddagger photographed several phaces in the anthracite Messts. G. M. Brevz and F. P. Dewey, photographed several places in the anthracite
collieries of lenusplvania; while in t89, a series of tiews by Mr. H. Iserner, illus. trating the methods of worhing the Freikerg metal mines were published in look form The latter are probably fhe lest series from a photegraphic standpoint that have leeen ohtained, and many of the views, such as (17) "Fixing iron settings in the Hobehirke lude," and (18) "Setting contracts at the forebreast in the Seligutost lote," are also excellemt from their technical accuracy. Several, however, have been completely spoilt by the endeavours of the pholographer to produce a good picture, two leing esprecialky mentioned, viz., (3). Inset at the twelfth level in the Abraham shaft," where a miner is depicted breaking a large lump, of loose rock placed at the edge of the shaft, and (5) "Sending down tiniter from an internediate planding in the Abraham shaft, showing a a man engaged in sawing a piece of timber, one end of
which projects over the shaft.

With the exception of several isolated attempts, nuthing seems to have been done in this country since Mr. Sopwith's experiments until almut eighteen months ago, when Mr. Burrow and the writer took up the suljeect and endeavored to ohtain a complete series of siews showing the methoxs of mining where ehe excavations are larger than usual. A selection of the former's results have just leen published in leok form. For mining work it is necessary that the operator should cither be an engineer or have an cugincer associated with him, and in this respect Mr. Burrow was happily
situaited, as he was assisted by Mr. Willian Thomas. Mr. Burrow and the writer have leeen in communication with cach other, and looth hinally used similar apparatus have been in communication with each other, and loth finally used simitar apparatus
and naterials, he only difference being in the appliances used for illuminating purand materias, the only diference being in the appiances used for illuminatugg purposes. The writer has much pleasure in admiting his indebtedness to Mr . Sopputh
for many useful hints and advice which assited him in overcoming several difficulties.

Camerts- For many obvious reasons it is necessary, for underground work, that a cancra should le of hice lightest and nost comphact form as it often has to be erected in auknard and contined situations. The writer's first eajeriments were made with the club, canera of Underwood \& Co., half phate size ($61 / 2$ inches by $4 \frac{3}{4}$ inches), which is of the light tourist pattern possessing the several movements common to that class of camera; its construction is, however. nut rigid enough to stand the rough usage to which it is subjectell underground. Several oifer designs were inspected, and for many reasons the whole plate Acme camera of Watson \& Sons, giving a view and for many reasons the whole plate Ac
$\$ 1 / 2$ inches loy $61 / 2$ iuches was preferred.
like many cameras, the Acume, when closed, has a thichness regulated by the
bined substance of hase loard, bellows front, and focus glass, for the front folds conbined substance of lase hoard, bellows.front, and focus glass, for the front folds into the base and the bellows occupy the space leetween it and the focussing screen,
but unlike the majority of cameras, all the operations of erecting in this one are re. but unlike the majority of cameras, all the operations of erecting in this one are re-
leased and locked lis spring catches. When setting up, the spring on the top of the leased and locked ly spring catches. When seting up, the spring on the top of the
body is first moved aside and the body revolved on ins hinges, when the ste body is first moved aside and the body revolved on ats hinges, when the struts run down in the grooves in the side until they fall into a niche near the boltom; at this point the chanping nuts are tightened and the loody is held at right angles to the base. The front is den lifted up, and two projecting pins at the foot are slipped into grooves in the frunt of the base, and are held there hy spring catches which rise automatically and secure them. The locking of the from is an excecdingl') ingenious and convenient arrangement, for hhile it trmily holds the bottom portion and allows of the fromt swinging in a vertical plane to any practical amount, yot by inclining the front back.
ward to an angle of 45 dego., it draws loosely from its fiting and is reads for ward to
chosing.

The bellows are taper, but not square in section, being deeper than they are wide, thus allowing the rising front to le used with freedom when wide angle lenses are employed. The ordinary' clamping screw for the rising front is dispensed with, he fixing
leing olstained by means of a rack and spring natchet on the side. The back of the camera is made with the usual reversing frame so that horizontal or vertical pictures may be taken, but it is held in each position by a spring, and is also kept in proper register by nother spring.

The dark slides which carry the plates for exposure are fitted with special stops and springs to the shutters; the former dispense with the projecting screws ordinarily employed and leave the slides clear for the reception of carriers for smaller sized plates (if required), white the springs automatically hold in the shutter when closed after exposure. In addition, the dark slide itself is held ty a spring catch as spon as it is pushed into the proper position for exposure, and cannot le withdrawn until the catch is pressed hack, thus preventing any possibility of the slide moving by accident and spoiling the plate. The numerous spring catches alluted to are valualile on the surface, liut are still more so underground, where the various movements have to be gone

-Transactions Focterated Insfitsec of Ifining Engingers.

 ii., juxe 93.: Trans. A imerican Inst. of Min. Einge, vol. xvi., page 307.
Der diercmanm in seinem Kiernfo freibers,

through in semi-charkness. It is a source of considerable satisfaction to know that the different parts are in their proper position when a click is heard.

The usual double motion is supplied for focussing and for the application of wideangle lenses, as the front can be extended by rack work and the back moved up to the front. In order that the back may be set parallel with the front alter it has been moved, marks are cut across the two grooves in which the back slides. The base of the camera may either lee panelled, with a screw socket in the centre to le fitted to a seprate tripoel and held by a T-screw, or preferably may have a curntable. Although the latter is senerally made of brass, yet it is of light construction, and as the hase is cut away for a diameter of 6 ; 4 inches, the metal introduced werglis htile heavier than the woot removed. When aluminium is used in the coustruction the reduction in weight is considerable. For many reasons the turntable in the bace is to le preferred: in the first place it saves one extra part (the tripod head), cannot le left behind, and reluces the time required for erecting, while when the latter is done the cannera is sure to lee rigidly attached to the tripod.'

A tripexil stand with the lengths of the legs adjustable is convenient on the surface, and is necessary underground, as the camera has often to lee erected in confined situations and on very uneven ground. The threefoll stands are lest, but many of these where the joints are supposed to be held rigid by a screw are worse than useless In the new pattern stand, the niddle piece folds down into the sanue plane as the top thitd, and is then pustied upwarls alout an inch, therely locking it leetween two brass str ps, onte on each side. A clamping screw is proviled to hold it in this position, and forms an additional security; but even if this screw becomes loove the leg cannot bend outwards, as before it can do so the middle part must drop away from the upper piece: the weight of the camera effectually prevents this. P'ractically the legs are as free from any chance of collapsing as if they were made in one piece.

Alter the care which has been taken in perfecting small details, it is strprising to find that indicators for deternining whether the back and front are vertical are conspicuous hy their absence. On many occasions it is impossible to set the camera level, and conserpuently the back part carrying the dark slide cannot be set truly vertical unless a plumb bob is improvised from a piece of string and a stone. The hetter plan is to purchase two plumb indicators and attach one to the side of the back and the other to the front of the fromt. There ought not to be any necessity to go to this trouble; such an instrument should be fitted with indicators in the first instance.
leneses-Within the linits of this paper it is impossible either to descrile the various types of lenses which have lieen used underground or even the advantages
possessed by several forms u.der certain circumstances, excep in a general manner. The action of a lens is never fections have been reduced to such an extent as would hardly have been thought possible a few years ago. The chief defects which have to le minimized are : Spherical aluertetion, caused by the rays of light being refracted more at the edges than in the centre of the lens; chromatic alerration, due to the lens bringing light of different colors to focus at difterent distances ; astigmatism, the inability to focti, horizontal and vertical lines at the same time when such are near the edge of the plate; and curvature of field, that is to say the lens brings rays of light to focus on a field more or less. curved. As the plate on which the inage is received is Hat the latter defect is very serious.

Under varying circumstances certain of the above defects may lee admissible, hat others must lee absent. Hence the numerous types of lenses aclaptable to different uses; in one form a certain defect is allowed to exist in order to better correct some other fault, which, if present, would render the lens useless for the purpose it is intended to serve.

Practically speaking, it may bee said that the rapidity of a lens depends on its aperture and local length, and as in underground work speed is of the greatest inportance, a lens possessing such advantages should le secured. The portrait lens is of the greatest intensity possible. and was used by Mr. Sopwith in his experiments, hut it hasnot the power when working at full aperture to either focus the inage sharply at the
edges of the plate, or to represent oljects in the background with the same sharpness edges of the plate, or to represent oljects in the background with the same sharpess
as those in the principal plane on which the focus has been nade. In many cases the as those in the principal plane on which the focus has been made. In many cases the
latter is an advantage from an artistic point of view, as most peuple prefer latter is an alvantage foom an artistic point of view, as most people prefer to see the bach ground sulbordmated to the principal object forming the picture, but in many mining operations objects of importance are situated in several different planes and if the photograph is to le of value for scientific purposes such objects must all ie in focus at the sance time. In order to obtain this advantage the aperture of the lens has to be reduced ly the insertion of what are known as stops into the brass mount carrying the several clements of which most lenses are constructed. These stops are now generally expressed not in actual measurement but as a fractional part of the focal length, thus it is ansocinterl with. Host English equal to one-eighth of the focal length of the lens it is associntel with. Most Eaglish lenses are now marked with the dinphragm apertures recommended by the Photograpthic Society of Great Britain, each of which is half the area of the preceding one. Provided the time for correct expusure is known with any stop, the amount necessary with the others is easily calculated, as when using the next smallest stop double the time must be given. The diaphragms are marked thus : $f .4, f .5 .6, f .8, f .11 .3, f .16, f .22 .6, f .52, f .45 .2, f .64$. The unit aperture is $f .4$, and if an olject required one second exposure with that stop, it would require two seconds with f. 5 , four seconds with $f .8$, cight seconds with f. 11 , and two hundred and fiftesix seconds with , 64 . This at once shows the necessity of using the
largest possible aperture where either the light is poor or the sulject likely to move.
est possible aperture where edther the light is poor or the sulject likely to move.
At one time the stops supplied with each lens were either arranged on a rotatin wheel, or were separame and were pushed into position through a slot cut in the silde of the lens mount. Within the last few years the iris diaphragn has come largely into use, thus allowing the opening to be contracted or enlarged lyy simply nooving a
pointer. Every lens for underground work should have an ifis diaphracm as f e numpointer. Every lens for underground work should have an iris diaphragm as t° e numpstop is made casy and comfortable; the risk of forying the plate is also doue away with. When the lens mount has a slot in it, and plates of extreme semsitiveness are used, sufficient light may pass in through the slot to spoil the plate.

It may be thought that what are known as wide angle lenses which are of short focal length, and include a large angle of view on the plates they are matie to cover, would be best for work in mines, but although they sometimes have to be employed,
yet they do not give satisfactory results. They often exaggerate the perspective to. yet they do not give satisfactory results. They often exaggerate the perspective to.
such an extent as to make the resulting negative lonk very unlike the original, and owing to the principles on which they are constructed have to be used with a comparatively small aperture ; ns a rule the largest stop they are supplied with is f. 16 , but the majority do not work satisfactorily above f. 22 .

Mr. Burrow first tried a portrait Jens, but as the only advantage this form pos.sesses is speed, he abandoned it for others on the introduction of the rapid plates now trical lens having 8 for its first experiments were made with a Ross rapid symmethe lest, for athourh they largest aperture. At that date such types were perhaps the cover the plate belter at the margins, and naturally have more depth of focus, but. they include a narrow angle, and as the elements are rather widely siparated in order to obtain flatness of field, the plate is not so evenly illuminated as is desirable.

The introduction of several new varieties of glass made at the Jena factory has put-
into the hands of opticians a power which they did not previonsly possess. At one time lenses were made nchronatic by cementing croun ard flint glass together to form the separate elements, but as the glass which possessed the higher refractive power alsu had a higher relative dispersive power, a certain amount of astigmatism remained uncorrected, and the lens detined indistinctly in the marginal portions of the field. In the Zeiss lens slesigned by Dr. Kudolph, "achromatism is olstained by enploying two elements, in which the one having the higher inclex of refraction has the smaller relative dispersive power, while the astigmatism of one combination neutralizes that of the other. The fielai is flattened hy the combinations thembelves, and consequently they can be placed near together, thus increasing the angle of view and giving more even illuminalion, Practically, owing to the greater covering power, the lenses are more rapid than those we have been previously accustomed to, is they do not require to be stopped down to such an extent

Both Mir. Burrow and the writer have used the series III. lens, having an aperture of $\mathbf{6}$ 7.2, with much success, hut Ross \& Co. have recenily taken up the manufacture of another type which risomises better results, viz., the (ioerz \dagger lens, which has iwo symultrical combinations. The double anastignat, series III., f.7.7, permits the use of the largest stop without diminishing the slorpmess of the innge at the margins of the plate up to an angle of 70 degs., white defintion and flatness of field are uniform all over the picture.

The writer need only mention amother construction of lens which has leen found invaluable under certain circumstances. The Ross concentric lens is constructed on a different formula from that of all other lenses, as the two exlerior surfaces of each combination are concentric, while the cemented surfaces are flat. Without a special kind of glass made at |ena such construction would tee impossible. The field is quite fat, evenly illuminated, and definition is equal over the whole of it. Unfortunately the largest stop that gives sharp definition is $f .22$, but in situations requiring a wide angle lens none better can be employed. It is claimed that the concentric more nearly yields the theoretical amount of depth of definition than any other lens, and may consequently be said to possess greater depth of focus over the whole field.

As lenses for different purposes vary considerably in dianceter, it is usual, if several are to le used with the same camera, to altach to each an adapter: this is a ing of the latere space betwer the smaller lens and the The writer has lenses of 5 inches, 7 inches $81 /$ th the front luard of the calmera. focus, and the four first named are each fitted with its own allapter, which is kept permanently screwed on to the lens. Underground the calliera call often be erected in manentiy screwed on to the jens. Underground the calliera call often be erected in one spot only, and as soon as this is done, by the assistance of the adapters all the lenses in
lest view.

Plirucs-Photography is based on the sensitiveness of certain silver salts to the action of light, and the motern dry plate consists of a thin film of gelatine in which the censitive silver salts are held in suspension in a fine state of division.

The methol of preparation is to first soak suitable gelatine in water until it becomes soft, and at the same time to add the requisite quantity of an baloici salt, either cither ammonsuna or potassium bromide, or both. A solution of nitrate of silver in water is prepared and adled to the first solution in such quantity as will be completely decomposed by the haloid salts therein. The silver silts thus formed do not posses their niaximum sensitiveness, and for that reason the mixture is subseguently heated or one or two hours to a temperature near that of boiling water

If the gelatine solution on cooling is of the proper consistency, it is thoroughly washed by squeezing it with cold water through canvas, this leing necessory in order to remore the excess of haloid salts which remain in the solution. If such were not done the surface of the hinn, on drying, would be destroyed by' the crystallization of these salts; and in addition, the potassitum or ammunium bromide left in the emulsion would act as a restrainer on development, therely practically diminishing the sensiiveness of the plate.

The preparation of the exceedingly sensitive plates which have been placed on the market within the past eighteen months is a trade secret, and a valuable one. The method of olvaining this extra sensitiveness cannot therefore lee described in this paper. It is, however, known that in ordet to obtain the maximum amount of photopaper. It is, however, known that in order to obtain the maximum amount of photohalogen alsorlsent. ly from the minimurn exposiure, the film must contain some undergesne by the salts of silver contained in the film wheln it is exposed to light and it is generally almitted that one of the results of this decounposition is the liferation of the halogen element previously combined with the silver. Now, gelatine prossesses the power of absorbing with ease large quantities of liberated halogen, but slow gelatine plates are common articles of manufacture, hence the mere presence of gelatine is not sufficient. As may be expected, almost every imaginable salt or material has been tried as an absorbent, even the nitrates, which are extremely powerful, but without obtaining any results of practical value: The writer is informed hy a firm of leading plate manufacturers that as far as their present knouledge goes, no better halogen plate manulaclurers that as far as their present knouledge goes, no better halogen absorbent than gelatine is to be found, and that the on
is the main factor for obtaining extrene sensitiveness,

Since the writer commenced underground photography the sensitiveness of plates
been enormously increased ; indeed the most rapid now on the market are nearly has been enormously increased; indced the most rapid now on the market are nearly
three times as quick as those obtainable two years ago. Mere speed is, howecer, not three times as quick as those obtainable two years ago. Mere speed is, however, not
the only point to which attention has to te paid, as the quality of the film is of equal the only point to which attention has to te paid, as the quality of the film is of equal importance. (ioorl, rapid plates are an essential where artificial illumination has to be employed, more especially in mining, where any figures in the view necessarily occupy somewhat strained positions. The writer's first satisfactory results were ob-
tained on the Mawson plate, which then had a speed of alrout 80 on the Watkins scale, hut the introduction of the Cadett lightning plate proved a perfect buon, as it allowed the exposure to le reduced one half. Alost manufacturers have quickened up their plates during the past year, but from the la'st table published by Mr. Alfred Watkins of the trials which he has made, it appears $: h_{n}$ table publisthed by Mr. Alfred its own as the fastest on the market. The average speed issued is from 160 to 180 on the Walkins scale, and the numbers, which are marred on each box, may run in rare cases to as high as 228. All the writer's latest results, and also those of Mr. Burrow, have bean olbtained on such plates, and both can bear witness, not only to the great speerl but the good quality of the film.

Jhethods of Illumination-The incandescent electric light is practically useless. The writer has exposed a plate for 30 minutes at the bottom of a shaft which seemed brilliantly illuminated, using stop 516 , and only succeeded in obtaining an impression of the incandescent lamps thenselves and of their surroundings to a distance of not more than 6 feet.

The arc electric light gives far different results, and is somewhat largely employed
obtaining portraits on the surface. Underground, the conditions are different in obtaining portraits on the surface. Underground, the conditions are different. Portrait lenses do not give good results, and if the next best lensis employed, it means four tines the exposure necessary on the surface; it is also practically impossible to

[^3]The inconvenience of carrying the electric cables into the working places is left out of nsideration.

Messrs. Dewey \& Hretz ubtained a series of views in the mammoth seam at Kohinoor collicry, Shenandoah, Pennsylvania, with the aid of the arc electric light speci ally erected in the mine for such purposes. They used five lamps, each giving 1,600 candle power, but even with a diaphragm of 16 , exposures of from 10 to 30 minutes had to be given. At the Chicago Exhibition the South Duffrya Colliery company exhibited two underground photographs taken by the Photophane Company of London, at the Abercanaid colliery, which were oblained with the aid of the are electric light. The plates had an exposure of from 15 to 20 minutes, using stop $f .16$. Anyone who is acquainted with the working of mines, neel not be told that this is too long for a person to remain perfectly steady if he is to le shown in the act of performing any operation connected with getting coal, and no man can stand still for such a length of time, even when placed in a lounging attitude and supported. Putting aside the inconvenience, even with noderate lenses and rapid plates, the electric liglit seems quite inapplicable to photography in mines.

When artificial iltumination is employed, the light must not only have a high degree oi intensity, but be rich in rays which are chemically active, viz., green. blue and violet. The metal magnesium, when burnt in air, gives a powerful light rich in actinic rays, ancl as early as 1863 it was used for obtaining photographs by artificial. licht. Messrs. Debenham and Sopwith both employed it in the form of ritbon. The former cut a number of lengths of the ribloon, tied them together at one end, and thrust the other end into a lump of clay stuck against a sheet of lin, which was used as a reflector, and held in the hand. Mr. Sopwith's lighting arrangements consisted of a number of in reflectors, usually from three to five, shaped into parabsolic curves. to concentrate the light, before each of which was burnt from 6 to 10 inches of mav. nesium riblon. The art of lighting consisted in using the lamps at suitable distances and frequently the foreground was made up by seong lamps at suitable distances, lamp had withdrawn from his position. At the time when these photographs were taken the ordinary fiash tainp) was unknown.

The writer first used two regulating magnesium lamps, the riblon being wound out as fast as it was consumed in the burner in front of the reflectors. An exposure of rom 2 to 4 minutes was given, using stop f. 16 and a Mawson plate. It became at once apparent that while similar ilfumination had been successful in Mr. Sopwith's case in the comparatively thin searrs of his district, it was useless in the 30 feet seam and its large working places. Only one of the numerous attempts made in the ten yard coal was successful; but fairly goorl results were obtained in the silutian imestone mines, where the working places are similar in size and arrangenent.

What is required is a very brilliant light for a short period and to produce it a large quantity of magnesium must be rapidly burnt. Flash lamps, in which magnesium in the forms of fine powder is blown through a flame, usually burning alcohol, satisfy these requirements, and provided a sufficient number be used, any desired illuninating power may be obtained, and if these le distributed softer effects in the lighting result. Often, however, the space in which the camera has to be operated is socontined that it is impossible to properly use one lamp; and in some cases it cannot be fixed on that it is impossible to properly use one lamp; and in some cases it cannot be fixed on
a stand, but has to be held in the hands of an assistant. Mir. Burrow found the a stand, but has to be held in the hands of an assistant. Mr. Burrow found the
smaller fiash lanips ordinarily purchasable to be useless for the principal lighting, and smaller fiash lamps ordinarily purchasable to be useless for the principal lighting, and
designed two powerful ones, each having three orifices, and ccasumung 3 ounce of magnesium powder for each flash. The two were supplemented in large areas ly a. ew smaller lamps, and sometimes by one or two oxy-hydrogen limelights.

Anything burrat in oxygen gives a far more brilliant light than when burnt in air, and it is stated that magnesium gives twelve times its ordinary illuminating power when so consunied. All the writer's best results have been nlitained by enploying the lamp designed by the Platinotype Company, in which magnesium powder is burnt in the oxy hydrogen blowpipe.

The impossibility of properly comprosing the picture on the ground glass scree adds a considerable amount of doubt to the uncertainty of oltaining any desired view. What is gensially done is to arrange a serics of lamps or candles about the main ob jects, and sndeavor to get all these on the screen. After this has been done, it is sometimes possible to burn a short length of magnesium riblonn and examine the view thus revealed, but in many cases that procedure is impracticable, as the simoke produced will not clear away in reasonable time. Focussing is equally uncertain. What is done is to place a light somewhere in the middle distance and get that point sharp. Now, if the view could be seen on the screen as it is when working on the surface, is often possible to sacrifice sharpness in an unimportant part, and thereby obtaina a clearer representation of several other points of importance. It cometimes happens lxilow ground that the uninteresting points are in focus while the important points are indistinct.

Dezelopment-Having matie the exposure, the subsequent treatment of the plate may be considered. The action of the light does not produce any visible effect, and the plate has to be treated nith a chemical solution known as a developer to bring out the latent inage. Developers act by reducing those portions of the silver bromide which have been exposed to light in proportion to the anount of light action, leaving unchanged those portions that have nut been altered. In this way a negative is olstained which is the reverse of the original as regards light and shade, for the greatest deposit of sitver is found where the image was brightest, and the smallest deposit where the olject was in shadow.

Some developing agents act by themselves, but the greater number ordinarily quantity of alkali depends on what plate is being worked with; if an excessive quan tily le used, general fog is apt to be protuced, that is to say, a deposit of silver is formed all over the plate, even on those portions which have been unacted upon by light. To prevent either general or chenical fog, a soluble bromide is almost invarsably added to the reducing and accelerating agents, so that the normal developer consists of three solutions.

The writer has ohtained the best results with pyrogallic acid and ammonia in 10 -
cent. solutions as follows :per cent. solutions as follows :-

> Pyrogallic acid..
> Sodium sulphite
> $\begin{aligned} & \text { Citric acid...... } \\ & \text { Distilled water to }\end{aligned}$
> Liquid ammonia $0 \cdot 880$.
> Distilled water to 2
> Potassium bromide
> 3 I

With a correct exposure 1 ounce of developer is best forined by taking 10 minins of each solution Nos. 1,2 and 3 , and diluting to r ounce, but in order that develop-
ment masy he "ell under control, it is better to commence with half the guantity of alkali. Inderel, as the great majority of the writer's plates have lveen considerally under expesed, he bually sakes to minims of No. 1,40 minims of No. 2 , and 20 mimims of No. 3, and dilutes the mivure with from 4 to 6 ounces of water (for the Whole plate size). At intervals of alwout 10 to 15 minutes a further quantity of to minims of the ammonia soletion is added. Development is slow, but usually all the deails can be coased out and sufficient density obrained. Whendevelopment is complete, the plate is fived hy impuersigg it in a solution of hyposulphite of serda, which dissolves nut the maltered silver hromite. Intensilicatien of the image is, however, offen necessary. This is generally done ly lirst bleaching the negative with a solution of bichloride uf mercury, and atter washing fur at least an hour in running water, treating it with a dhlute wolution of ammonia. If all the hyposulphite of soda has been eliminated from the negative ly wanhing hefore placing the negative of soda has been that the image is practically peromangete after beaching, the writer's experience in With vers thin megatives, the writer
place of the ammonian volutiont, as the bleaching to ure the: ferrous oxalate developer
 can le repeated over again, if sulficient deasity lee not obtanated with the firyt applica.
tion. If this process be used it is of the greatest importance that the washimp water tion. If has procese be used it is of the greatest importance that the washing water
shall nut contan a trace uf lime. Indeed woth a valuable negative, it is lecot to voak the phate in ditilled water, after the pretmmary washing and leffore applying the ferroms walate whlution.

Slany persens prefer the pyro-sela developer where sodiun carlmate in its intpure form (commereial "washing soda") is wed as the accelerator. This rarely probdrees green fogh and if the proper proportion of bromide is employed is les, lisble to prosface general fols. The writer has not been on atecesful with this mixture as with prorammomia, probahly becanse of his greater fumiliarity with the use of the hater. There is, however, hitle doubt in his mind that succens in moderground phatography. depends hargely on efficient development, and as Mr. Burrow uses pyro-ambuonia developer and is a photosrapher of fong and varied evperience, his opinions and practice are alike saluable. It is in derelopment and the subsequent treatment of the negative that the profesinial wats the great majority of amateurs.

Gcomad Lewhats-The dificulties to be overcome are not many, hut are hard to surmonnt. In all clases of mines the smoke re ulling frown blasting, hure marsture. laden and misty atmosphere, and the dupping of water from the roof are customary dranbacks supplemented in coal nines by the presence of coal dust, which not only tion of water on the lens and phate is partiches the the lens and plate. The condensa. fon of water on the lens and plate is perhaps the most dificeult matter to avoid. So far as the plate is concerned, one has to trust to luck: but with the lens, the beet preventive is to earry it in the trousurs porket, and so warm it up to the lemperature of the lxody. Even "ilh all precautions, and after an examination has been made to see if the lens is clear inmediately lefore esposure, the operning of some door in one of the airways may momentarily divert the regular current, and cause some cooter air to enter the phace which is being photographed, with the result that the glass is chilled, and as soon as the ordinary warm air again comes into contact with it, the lens fogs and the plate is spoiled.

The difficulties of focussing and composing the pieture have already lieen alluded to. Often on development it is fousd that the figures ate very ladlly situated, or that some desited point is not included, or esen that an important part is out of focus, and consequently the plate is spoited. None of these things should happen if it were pos-
sible to caname the view on the focussing scren. sible to examine the view on the focussing screen.
The smoke produced hy hurning magnesium is very dense, and if it gets in front
the lens it will spoil the plate. For this reason it is leest that the current of air of the lens it will spoil the plate. For this reason it is lwest that the current of air
should be from the object to the lens, or the clearness of the picture will be sadly interfered with, cren if not completely spoith. Mr. Hurrow has found on several oce. interfered with, eren if not completely spoilt. Mr. Murow has found on several oc.
casions that where he could only get dull pictures looking say; from east to west, he casions that where he could unly get dull pictures looking, say;, from east to west, he thee to a change in the direction of the nir current. He cannot exphain the mather but mentions it as a curious and of the aireated experience.

The writer is of opinion that only one half the illum
liferous mine to oltain the same result as compared with a similar view in a coal mine. Iocks in metal mines such as fuorspar, quartr, etc, , have a more or less metallic lustre, espectally when wet, and. reflect a considerable ane a more or less metallic Hack coal has rather a tendency to alisorl, it. Comparisons of the amount of light repuired in the limestone workings, and that necessary for similar views in the thick cual, support the alove view. The only satisfactory instantaneorews view that the writer has ever coltained, was in a gate road passing through a basaltic dyke, an excavation similar in all respects to those made in metal mines.

The invariable practice of the writer has been to burn weighed quantities of magnesium powder, for with the comparisuns thus obtained, some guide can le formed
or future occasions. If two platinotype lamps are enper magnesium in each, supplemented by 20 grains are an omployed, hurnang 60 grains of the lens with stopf. 16, sufficient light should be obtained to illuminate, the largest
areas met with underroound areas inet with underground. The writer does not wish it to le inferred from the remarks made as to the smaller amount of light required, that photographs in metal mines are casier to oltain than they are in coal mipes, indeedi statistics of the Cornish and the writer's exposures seem to show that loth are equally difficult. Mr. Themas
states that the average in the Cornish experiments has been alout states that the average in the Cornish experiments has been alout 87 per cent. of good negatives ; 70 per cent. of the writer's exposures have been complete failures, and out
of the remaining 30 per cent. only alout one of the remaining 30 per cent. only albout one half are groed.

The Sultana Gold Mine.

A corre ppondent writes as follows regarding the opserations at the Sultana mine: "The Main Shaft is down now 150 feet leelow deck. It is well timlered with a
separate ladder-way and a good ventilation shaft. Two drifts have been started fron: separate ladder-way and a grond ventilation shaft. Two drifts have been started frona
this shaft, one at 60 feet level and another at 120 feet. The drifts running north have this shaft, one at 60 feet level and another at 120 feet. The drifts running north have
not been pushed far. The 60 ft. level running sorth had to be stopped nn account of a large open cut along the dutcrop which averages alout 30 ft . deep. The vein in the shaft has varied from 3 f. up to 8 ft. in thickness of solid quarta. The 120 f. level .going south was in 35 ft . when I was there on the soth inst. and they were pushings, it ahead with power drills at the rate of 56 ft . per week. In the breast of this drift the vein was fully 3 ft . 6 in . thick of soldi quarts. In the open cut to the south of the
shaft house the shaft house the quartz has ranged from 3 ft. to 8 feet thick. All the quartz that has
come from these drifts, cuts and shaft has yiclded an average of nearly one ounce bull. come from these drifts, cuts and shaft has yiclded an average of nearly one ounce bull--
ion to the ton of 2000 lbs . Mr. Weir, manager of the Imperial Bank told me that ion to the ton of 2000 lbs . Mr. Weir, manager of the Imperial Bank told me that
the bullion from this mine sells far $\$ 16.00$ per or. Mr. Caldwell, the owner, claims the builion from this mine sells far $\$ 16.00$ per oz. Mr. Cald well, the owner, claims
that all the quartz crushed in his mill has yielded an average of fully fifteen dollars that all the quartz crushed in his mill has yielded an average of fully fifieen dollars
per ton from the battery and plates. But the concentrates do not add very much to per ton from the battery and plates. But the concentrates do not add very much to
this value. They amount to less than one per cent of the ore and are valued at 2han $\$ 1.00$ per ton. Immediately sehind the mill there is are second shaft down only

45 f. so far. It is on another vein, which apparently merges into the main vein somewhere near the Main Shaft. During my visit orders werges given to resume sinking in this shaft with the intention tos crossecut under the mill and connect with the 120 fi. level from the main shaft. This second vein averages aloout 27 inches of quart, in this shaft. All the quartz formerly taken from it yiedded an average of over $\$ 20.00$ per ton in the mill.

When the site for the mill was being graded on the edge of the lake, they uncovered a great lmody of quartz on the edpe of the water, which measured tweary feet across and from a carcfill average sample assayed over $\$$ th.00 per ton. Caldwell is eager to unlercut this great vein of rich guartr just as seron as possible with hisis 120 ft. level. Hut he has still almost 200 ft. to drive. However, be is sinking Nu. 2 shaft now as fast as possible with the intention of crosscutting into this mass of quartz as soon as they reach the same lecel. There is no chance on opening this great mass uf ure from its surface, becanse it ties on the very brinh of the Lake of the Wroxls and is only a few inches above water level. The main vein here is a renticular contat vecin leetween selives and granite. It varies greally in thickness and richacess bioth horizontally and vertically. But every ton of quartz that has ever leeen crushed has yielleal at least four dollars per ton. It ranges from this to upwadds of fify dollars per ten. Sa ples frepuently assay up to $\$ 150.00$ or $\$ 200.00$. The shaft house is a very larige subtantial wooklen building covered with steel shingles. It contains a 60
 honst. Close alongcilelis the forge, which is well stockerl with tools and with steel and
stantial frane building sads alout 235 f , south of this shaft house, It is a solid sulbstantial franne buikling $45 \times 50 \mathrm{ft}$. rovered with steel shingles. In the top story there is a feeding thoor and grizity, with a friction hoist to haul the cars over the tran from the shafi houne (fani aloo to hoist the ore from shaft No. 2). Just undet this tloor is a Bhake crusher set jest alove two strong ore lins. From these birs the ore is fed by antmantic feders to the two batteries of five stamps each. These weigh 850 ll . nul drop 90 per minute. Shoes and dies are chrome steel. Most of the annalgan is ant. lecterl in the hatteries. But there are large amalganated copper phates in fromt (which are kept in fine order). The pulp dows from these plates into two lirue vanners and then sums to wave.

Close alongside of the mill is a very snug frame house used as an office and for Wepping quarters for the staff. $\frac{I}{}$ should mention that the mill is run hy a 60 h . p . Wherous engine and a 75 h . p. Waterous steed tubular beiler. In the engine a, pon there is also a small engine to run a dynamo supplying 52 incandescent lights for the mill, shaft house, assay office, house, etc. Alongside the mill is a large thed covered by steel shingles and heated with a large quantity of steam coils, which was built for a costly cyamule plant. Most of the plant has been torn out and cut up for other things, as this ore is rot at all suited for the cyanide process. Some distance to the north-west of the shafthouse a well defined quarta vein averaging fully ten fect wide crops out in the ridge of some risingground. This vein shows very distinctly . waters edge. I have always been stryprised that tice owner has never texted it in any way. Ife has not even taken samples for assay. I estimate that ten thoucand tons of quartr could te guarried here and delivered to the mill at a covt of one dollar per ton wibluout stoping loelow lake level. I had no upporgun!y to hreak out anj fair sumples of shis quartz, but 1 see no renion why it should he any poorer than the average of the Main Vein where so much work han been done. There are alout 30 hands employed altogether. Mr. Caldwell has a first-class Swedish mine foreman there who has gut some very gool sober Swedish miners under him. The engineer and amalgamator in the mill are very good men. Mr. Bell, the assayer and mill superintendent, is a well educated and conppetent ufficial. tou never hear any noise or rowely conduct of any kind from the neen's quarters. They are charged $\$ 4.00$ per week for board. There is a capinal wharf directly in fros: of the mill, where the largest steaners on the Lake of the Woods can discharge. An excellant steam launch capalile of steaming about 10 miles an hour is part of the outfit.

Mr. Caldwell has been crushing alout 8o tons of quartz per week, yielding an
But during the last few weeks his small force average of $\$ 1,200.00$ worth of bullion. But during the last few weeks his small force of miners has been so busy with the re-limbering of the Main Shaft, putting in the new ladder-ways and the ventilating shaft hat they have nut crushod neatly as much quartz as usual. While not in a position to speak officially I amin informed un good authority that the total amount of gold won to date exceells $\$ 30.000$, the whole oll-
tained from what may faitly le called dead work. tained from what may fairly le called dead work.

NEW COMPANIES.

British Columbia Gold Dredging Co. Ltd., has been incorporated under the laws of British Columbia to take over and work mines in that l'rovince. Capital,
$\$ 1,500,000$, in shares of $\$ 10$. Ifead office, Vancouver, B.C. Directors: W. A. $\$ 1,500,000$, in shares of $\$ 10$. Itead office, Vanco
Shahan, J. E. W. Macfarlane and J. W. Campion.

Anglo-American Gold and Phatinum Hydmalic Mining Company Ltd, is another Bripish Columbia company, incorporated during the month. Capital, $\$ 250$,
oo, in shares of $\$ 5$ each. Head office, Vancouver,
B.C. Directors: $\infty 00$, in shares of $\$ 5$ each. Head office, Vancouver, B.C. Directors: J. Barnet
MacIaren. S. F. Scott, $(i$. D. McKay, and K. Hughes. The secretary of the new company is Mr. A. A. Tregent, New Westminster. Operations are to be carried on in the Smilkameen country.

Slocan Milling Co. Ltd.-Registered 24th August, 1894 . - Authorized capital, $\$ 100,000$ in shares of $\$ 10$ each. The directors are: A. E. Hunpphreys and John
G. Williams, Duluth, Minn.; N. D. Moore, John Vallance and Howard Donnally G. Williams, Duluth, Minn.; N. D. Moore, John Vallance and Howard Donnally,
New Denver, B.C. Head office and works, New Denver, B.c. The powes 20 work mines and to carry on the business of milling ores in the Slocan
District, B.C.

The Alamo Mining Co. Ltd., is the name of a new company registered, with headquarters at New Denver, in the Slocan District, B.C. Authorized capital, \$500, ooo, in shares of $\$ 1$: The directors are the same as those of the Slocan Milling Co.
given above.

The Minuesota Sifver Co. Ltd.--Registered with an authorized capital of \$1,000,000, and headquarters at New Denver, B.C. Directors: G. J. Atkins, Howard Donnally, J. S. Blackaller, and Walter Marshall, of New Denver, B.C., and
A. E. Humphreys, of Duluth, Minn.

Bridyerille Mining and Improverinant Co. Lta. has given notice of application for charter of incorporation under the laws of Nova Scotia, Authorized capital, $\$ 3,000$, in shares of $\$ 30$. The chief phace of business is at Brideville, Picton County,

N.S. The directossiare: C. F. Ross, W. E. Voung, Thos. McMillan, Wm. Mc. Pherson and Thos. Williams, all of Bridgeville.

The Oromocto Coal Mining Co., with headquatters at Fiedericton Junction, New Hrunswick, has been incorporatel with an authorized capital of $\$ 40,000$, in shares of $\$ 10$. The directors are: laarker A. Nason, Gladstone; E. Moore, Fredericton; Luke E. M. Dewitt, Blissville; and Wesley D. Nason, of Gladstone.

British Columbia Stock and Mining Exchange-Messrs. F. C. Innes, J. W. McFathand, and George De Woli, of Vancouver, have applied for charter of incorporation under thix designation, with the olject of haying and selling shares and dealing in mineral claims, leases of mines, and in all kinds of properties that are dealt in by the L.ondon Stock Exchange. The capital is $\$ 5,000$, in slares of $\$ 25$ each. Head office: Vancouver.

The Provincial Mining and Dredging Co., Ltd., is the title of a new come pany seeking incorporation with an ruthorized capital of $\$ 1,000,000$, in $\$ 10$ shares, or the purpese of prospecting, dredging for and mining all kimds of preciouts and base metals in British Columbia. The directors are: Norman MeLean, Hugh Mel.can, and W. F. Core, and the head office is at Vanceuver, B.C.

Horselly Gold Mining Co., Led. - Applicotion ander the Foreign Combanies Act, B.C., is made for incorporation ly this comprany; with headquarters in San Francisco, Cal., with the object of taking over leases and muning claims, anit to carry on the business of hydraulic and other processes of minins, in the l'rovince of British Columbinia. Capiitl $\$ 1,000,000$, in shares of $\$ 10$.

Scott Mining Co. - This company has leeen registered under the Foreign Com. pmies Act, B.C., wilh an authurised capital of $\$ 100,000$, in shares of $\$ 100$, and head. guarters at Seatle, Wash., to rarry on uining in the Province of lbritish Colambia.

Camadian Mica Co., Ltd.-This company with a capital of 690,000 , in fl shares, was registered in I-ondon, Enq., on 24th ult., 10 acquire properties in counties of Froutenar, Ont., and in the counties of Suguenay and Ottawa, in the Province of Quelsec. The following are the sigratures to the articles of association, cach for one share: G. Alkins, West Dulwich; 1. Kolvertson, West Dulwich; R. H. Willats, IIolloorn Vialuct; A. G. Larker, Heine Hi!'• F. Spencer Iiendon, W. Spencer Mendon, F. lage, Victoria l'ark, Londion.

The Marmora Mining and Milling Co., with chief place of husiness at Toronto, is Jeing incorporated witha capital stock of $\$ 24,000$ tu take over and operate the reducseing incorporated with a capital stock of $\$ 24,000$ to take over and operate the reduc-
tion mill plant and machinery of the Hastings Mining and Reduction Company; at Marmora, Ont., and for other similar purposets.

The Baltimore Conal Mining and Railway Co., is seeking incorporation in Nova Scotia. Capital stock $\$ 300,000$. Head office, Hillstorough, N.S. Anoong the incorporators are Charles Archiluld; Blowers Archilald, William F. Wortman, Frederic Steeves, Warren Trylor and Francis Ritchie. Power is asked to construct and operate a railway from near Baltinure mines to sume point of shipment on the l'etitcodiac river. It is asked to exempt the property from taxation for 10 years, and power is asked to issue bonds to the extent of $\$ 10,000$ per mile of the railway. The ulject of the company is to develop the coal mines at Baltimure.

The Otterville, Ont, Brick and Tile Manufacturing Co., has 1 oen incorpurated with a capital stock of $\$ 5,000$, to manufacture bricks, tiles, terra culta ware. stc.

Memramcook Gold Mining Co.-A dispatch, under date of 18 th inst., says: "Another one of the many meetings of Memrancook (iold lining Co. was held at Dorchester to day. The following art the officers elected: J. W:. G. Smith, president ; E. C. Cole, Moncton, vice-president ; H. J. Logan, Aniherst, secretary; C. E. Freeman, Amherst, treasurer; A. C. Vanueter, Moncton, and Dr. Gaulet, St. Juseph's, directors; and M. G.'Teetl, solicitor. It will be seen that Mr. Neily has vacated his seat as president and also retires from the management. The new hoard of dizectors held a meeting this evening; in which they decided to pay. up all the liabil. ities and give the pre-jerty another test."

Bras d'Or Marble Co.-This company was re organized on the 17 th May with following gentemen as directors: R. Macdonald, of Macdonald © Co. Malifax; Geurge EE, Francklyn, Halifax; R. Uniacke, president Halifax Banking Co., James 13. Hatie, of Hattie \& Mylias, Ald. Mosher, Henry Saunders and G. Hol,recker. At a sulbequent meeting of directors the following officers were elected: I'resident, K. Macdonald ; vice-president, George E. Franchlyn; secretary-treasurer, (jeorge Hatie. The capital required to develop the property and carry orr the work of guarrying marble has been subscriled, and work is to be carried on under the supr. vision of D. Marlachlan, manarer an woad is in course of construction which will bring the quarry within tive mites of the railway. Some $\$ 10,000$ have already been expended in testing the quarry. Samples sent to Great Britain have given great expended ins. The property has been examined and approved by Mr. Underhill, of Vermont.

A new Form of Rail.-Mr. William T. Manning, chief engineer of the Baltimore and Ohio railroad, has secently been granted a patere on in improved form of rail. The bead of this rail;" instead of being symmetrical, as is customary, is made one sided. Mr. Manning claims that a large proportion of the rails on curves are thrown'away lefore they are worn out, for the reason that thr inside of the head is worn off, and that by placing this rail in the track with the wider side of the head on the inside, and after it has become pretty well worn either turning the rail end for end or placing it on the other side of the track; it will last twice as long as is rail of the prual form. It is not claimed that this rail will have any great advantage over the common form in straight trick, but its great advantage wili be found on roads where there is a large percentage of curvature. It is stated that on such roads the high rail on the curves is ofien replaced several times without disturbing the inside rail.

COLD MINING Iİ BRITISH COLUMBIA.

"It would seenn," says the Nakusp) Leatyer " that the excitement caused by the discovery of gold on Carilxo creek, would lie the means of a rich quarta region being upened up in that section. On the 15th of Aukist, Chas. Vader acting on a suggestion from Nelson Demers, left his placer ground ant proceeded up Mineral creek to tion from Neison Deners, left his placer ground ant proceeded up Mineral creek to
prospect for quarte. When three miles away from Cariloo creek, nnd alout six miles prospect for quartz. Whien three miles away from Caritou creek, nad about six miles granite, slate and phorphyry formation. Tracing it up he discovered a ledge of quartr: cight feet wide and traceable for 300 feet on the surface. He staked a clainn and called it the Orphenn, an assay fromit giving returns of $\$ 175$ in gold and six ounces in silver.

The L e Roi is rapidly developing into a mine. Forty men are at work and ten tons of ore are exported daily to the Tacoma smelter via Sjookane. dir compreseors. and other machinery are alout to le put in. Col. Jeyton has just trought three carloads of merchandise in Spokane for this mine.

From Forty-nime Creek we learn that I. F. Ritchic has returned from a vist to the works and reports that a want of water alone prevents them from working a good bank of gravel. One sluice box gave $\$ \mathbf{1 8}$ worth of gold from old tailings. The commany intend this winter to increase the size of their flume and sluice boxes so as totake full advantage of the 2,000 inches of water which flow for some ninety days every year. The flumes and boxes will be cuvered with loose rock to hold them in position and prevent their being disturbed by a washout. This will entail an expenditure of some four or tive thousand dollars, but the ground shows up well and fully justifies the further investment of capital.

The Nakusp Mining Co. anil the Cimat Canyon Co. have at last bottomed on bed rock. Their prospects are geocl, the gravel being rich in coarse gold. But there is. no disputing the fact that the loulders are large and numerous and will give a great deal of trouble.

The Cullough Creek Tunnel Co., is opening u_{6} the old works and are drifting to strike the old rim tock. The previous conplany spent $\$ 20,000$ on this claim without striking bed rock Work will be continued all winter.

On Sinith creek, Haskins \& Co. are sinking a shaft on their property, and aredown 20 feet. They expect to reach leed rock at a depth of 50 feet. The top gravel contains pay dirt. A wheel and hoisting gear zre being brought in and th. slain. will work all winter.

SILYER LEAD MINING IN B. C.

[pxom ouk mechasizes]

The Cumberland, which inmeriately adjoins the Idaho and St. John, until thelast few days had only been able to show 18 inches of clean ore at a depth of over 100 feet, can now lay claim to have one ol the finest showings in the slocan. The extensive leike of clean ore recently exposed on the Idaho has nuw been tracel and strip. ped for some distance on the Cumberland ground by Martin Clair, one of the owners, and so far a four fout vein of clean ore has leen uncovered. - Tribinte.

The owners of the Thompson group of claims to the south of Four-mile, haveevery reason so ies satisfied with the result of the development work done hy them on their claims. The ledge appears to le very similar to that on the Fisher Maiden. The surface showings were dry ore mixed with galena, but the greater the depth the less the galena until it can le called an entirely dry ore. With two such promising milling propositions as those referred to. Ixath situate within a short distance frontSilverion, the Alpha gruup shipping ore, and the Read and Kobertson group enploy. ing a large force of men, we may look tor ennsiderable activity in the Four-mile calnp this fall and winter. -The Miner.

Six nien are at work on the Northern Belle No. 2, in Slocan distict, on which the visin is from 8 inches to 2 feet in width. Ore has also been struck in the R. E. Iee tunnel. Hoth these claims are in the neighlorhood of the Washingtom.

In sinking a shaft at the mouth of the tunnel on the Josie, in Trail creek district. a fine vein of ore was struck at a depth of 50 feet. - The Trihune.

Neturns have just been received from the first car of Skylark ore sent out this year by the Spokane and Great Northern Mining Cu. The ore yielled 199.4 ounces in silver per ton, $\$ 26.60$ gold per ton and 5.6 per cent. lead. This ore will net $\$ 10 s$ per ton even after paying for packing and waggon freight to Marcus. A second car load ton even alter paying or packi
goes forward in a day or twio.

Mr. J. A. Mata, M.P., has secured the free entry of the too ton concentrating plant of the Slozan Milling Co., which they intend to build between New Denver and Three Forks.
"The Silver King on Toad mountain has ahout 60 men working," said Mr. LeBau, of Nelson, "and has just let the comtret for the hauling of 50 tons of machinery from Nelson to the mine, 2 part of which is now on the ground. The r nsulting encineer is expected out from England in September, to decide upon the nature of additional zachinery neciled. The mine will soon ship 400 tons of ore to Denver." -Spokane Ricevicu.

The following are the particulars of the Humphreys-Moore concentrating plant, now being constructed hy Fraser ${ }^{[}$Chalmers, Chicaco, at the mouth of Howson. Creck, alouit one mile from Three Forks, Slocan district, 10 handle the output from.
the Idaho and Alamo mines:-

An elevated tramway running straight down the creek will discharge the ores on the upper levels of the concentrator building, and the lower level, where the finished product comes out, is only a few feet from the railroad grade. The building itself is 153 leet long by 53 feet wide with an elevation of 80 feet. It is divided into six compartments at differing elevations, and in the foundation there are four stone and mortar retaining walls. The rest on the structure is of wood. The ore enters the mill on the upper floor at an elevation of 62 feet, and on that level it is crushed. From the rock crusher it drops 18 feet to the first floor through an ore bin, from which a selffeeder passes it to the grand rolls where it is crushed again. The ore is then elevated to the first floor where it passes through a conical screen 36×42 inches by $61 / 2$ feet. From this screen the rock falls to the second floor again where the coarse rock goes through a set of rolls and is elevated again to the first floor, the fine rock going direct to the elevator. The ore then passes through three different screens. From these it goes to different compartment jigs. The coarse rock then goes through a Huntingdon mill and from that into three 4 -compartment jigs, $\mathbf{1 2}$-inch mesh. Everything then goes into a settling tank and from that into four Calumet \& Hecla buddlers where the final separation into waste and concentrates takes place. The plant was manufactured by Fraser \& Chalmers, of Chicago, and cost \$11,715, but with necessary additions will foot up to about $\$ 14,000$. There are 150,000 feet of lumber in the buildings and will foot up to about $\$ 14,000$. There are 150,000 feet of lumber in the buildings and 175 yards of stone and mortar work. The buildings will cost in the neighborhood of $\$ 30,000$. The capacity of the mill will be 100 tons of ore in 24 hours. There will be exensive ore bins placed on the hillside above the mill and the company will put in an elevated tramwar sprong in tion to do custom work unless in lots of 1,000 tons and over. The company however
mean to buy ore as soon as the mill is running. The work is being held back by the mean to buy ore as soon as the
delays in railroad construction.

The Slocan Times gives the following estimate of the shipments of ore from the Slocan district during the coming winter:-

Slocan Star	Tons.
Noble Five	1,500
Other claims on Reucau Mountain	1,000
Wonderful	500
Idaho	1,500
Alamo and other claims in Idaho Basin	500
Grady group	1.000
Fisher Maiden.	500
Mountain Chief.	500
Dardanelles	500
Kuby Silver and Surprise	300
All other claims.	1,000
Total	10,800

The deal has been closed which consigns to the Omaha \& Grant smelter 800 tons of ore from the Alpha mine, and the shipment will begin without delay. A $\$ 3$ rate from Silverton to Nakusp has been secured. This will be the largest individual shipment yet made from the Slocan country, and the largest, but one, made from West Kootenay, the exception being a shipment of 1,000 tons made from the Le Roi, at Trail Creek, last spring.

At the joint tunnel on the Black Diamond and Little Phil mines, work is still going on. It is now in 368 feet. They have cut two veins so far and are now driving galena eight feet wide. Five feet of 75 feet from the mouth. It show silver and 60 to 70 per cent lead. The other three feet is very good concentrating ore, being a three to one proposition. The second vein cut was quite in feet wide, but was virtually barren where they crossed it, only carrying galena in small particles. The third vein that they are now running for shows very well on the surface, the ore being of a good grade in the two shafts sunk on it, 80 ozs. and 68 per cent. lead being the average of some 20 samples taken from these shafts.

Mr. E. D. Carter, lessee of the No. I, is now in Wisconsin getting his company in organization. They are also owners of the Comfort and Highland claims, and as two of the company are here and two in Wisconsin, Mr. Carter has gone there to fix things up. Heretofore all has been in the names of the two owners here. Mr. Carter is expected back this month to start up the mine and mill again. O. their last run the mill proved adapted to the ores, and on a run of 51 days produced 69 tons of concentrates that sampled and sold at the smelter in Great Falls, Montana, 304 ozs. silver and 7 per cent. lead. The mine shows several large bodies of fine ore and as it has been practically untouched they have a great area of virgin ground known to be ore bearing.

Forty tons of Silver King ore, valued at $\$ 4,000$, were, the other day, shipped to Denver, Col., from Nelson. The freight rate was \$14 a ton.

It is reported that a concentrator will be built at the Silver King. The new machinery at the mine is being placed in position.

The latest shipment from the Skylark gave, for the carload lot, 215 ounces of silver and $\$ 26$ gold per ton, and six per cent. lead. Another car goes forward this week that will be of the same grade.

Fifteen tons of ore from the Alpha mine was brought in on Monday and 60 tons the following day. This is the first ore shipped over the Nakusp and Slocan railway, :and will be followed by 700 tons from the same mine. The ore goes out of the district via Revelstoke.

The Mining Journal (London) for August 25th, gives lengthy extracts from the report of the British Columbia Board of Trade on mining matters. In an editorial on the subject, after detailing the wonderful richness of specimens from the Slocan, Toad Mountain and West Kootenay generally, it says: "Taking these samples to be fair average specimens of the products of these districts, as certainly they may be presumed to be, a happy history of successful working would seem to be awaiting British Columbia. Nothing but financial depression is responsible for the fact that the day of great things has not yet arrived."

Hanager Hendryx is reported as saying that the smelter company at Pilot Bay will be ready within two months to purchase all ore offering. If so, and the price is equal to that paid by outside smelters, there is no reason why every ton of ore mined in Kootenay should not be treated at Pilot Bay. The operation of that smelter means employment to quite a number of men, and every man drawing pay regularly in Kootenay is a factor in the development of the mineral resources of the district.

MISCELLANEOUS ITEMS.

On 22nd inst., while a number of men were loading ore on the 7 th level of the Copper Cliff mine, a mass of rock, estimated to weigh seven or eight tons, fell from the roof, crushing two men under it, one being killed almost instantly, and the other living about one hour in an unconscious condition. The names of the unfortunate men were Thos. Lintley and Samuel Mattson, both Finlanders. A companion, who was close beside them, escaped with a slight bruise on one leg. One piece of the rock which fell was six feet long, three feet wide, and over two feet in thickness. An inquest is being held.

From the new chrome iron deposits being worked at Black Lake, Que., we learn that the Lambly-Nadeau Co. has taken out over 180 tons first grade ore, containing over 50 per cent. sesquioxide of chromium. Mr. Joseph Lemelin has mined over 140 tons from the property of Dr. Reed. The other operations are reported to be meeting with encouraging results. Shipments have been made to the Baltimore chrome works, the Tyson's, Baltimore, the Kalvin Chemical Co., Philadelphia, and to the Carnegie Iron and Steel Co., at Pittsburg.

Wellington Coal Co., Nanaimo, B.C., have ordered an electric mining locomotive for their mines, from the Royal Electric Co., Montreal.

The output of coal from the Joggins mines of the Canada Coals and Railway Co. s now close upon 450 tons per day. A correspondent writes: We have three slopes working, but I might state that No. I is presently lying under water, but is being rapidly unwatered with a view to extending our workings in this direction. It is inended to fit up a winding engine and boilers at the slope, and in due course an extensive output of good clean coal is expected. At No. 2, two new double-flued boilers have been placed down, and the output from this slope is in consequence steadily increasing. At No. 3, two new, seven feet diameter, double-flued I ancashire boilers have been put in and one large cnupled horizontal winding engine. This work has just been completed, and in course of time the output from this slope will be more than the other two combined, in fact, within a year from now it is certain the output will exceed 1,000 tons daily. A haulage engine on the tail rope system has also been erected at No. 3 to draw the coal to No. 2, where it is prepared for the market. This work has all along been done by horse. The engine has been built by the Ingersoll Rock Drill Co., Montreal, and has the appearance of being a first-class piece of workmanship. The Lancashire boilers, fitted with Galloway tubes, were built by the the Robb Engineering Co., Amherst, N.S. The winding engine is second hand and was bought from the proprietors of the Chignecto colliery, Maccan. A great , and other improvements are going on, including arrangements for shipping slack etc., by water, and improvements at the wharf, which has been entirely re-modelled.

A flow of natural gas, capable of supplying a town the size of Edmonton has been struck at Athabasca Landing by the petroleum boring party under the supervision of Dr. Selwyn, of Ottawa, and the direction of the Dominion government. Farther down the Athabasca river, natural gas has come up from fissures in the rock for years, and the bubbles that rise to its surface are easily ignited. At low water, these fissures being exposed, can be lit, and the weary traveller is often spared the necessity of cutting wood to boil his kettle, by merely putting a match to them. They are easily put out, but more often they are left until the river rises and extinguishes them. The fact of such a flow of gas being struck at a depth of 400 feet, shows the amount of pressure existing in the overlying strata, and will assist the party in making calculations on the distance yet to go before oil is reached. As sand, suitable for making plate glass can be extracted from the tar sands along the river, this discovery of natural gas may, in future years, prove a boon to glass manufacturing industries.

JEFFREY STEEL CABLE CONVEYORS, sompisill ition

For Handling Coal, Ores, Chemicals, Refuse, Etc.

The JEFFREY MFG. COMPANY, Columbus, 0.
:Also, 163 WABHINGTON BTREET, NEW YORK

MINING

TO GOVERN THE DISPOSAL OF

Dominion Lands Containing Minerals other than Coal.

THESE REGULATIONS shall be applicable to all Dominion Lands containing gold, silver cinnabar, lead, tin, copper, petroleum, iron or other mineral deposits of economic value, with the exception of coal.

Any person may explore vacant Dominion Lands, not appropriated or reserved by Government for other purposes, and may search therein either by surface or subterranean prospecting for mineral deposits, with a view to obtaining under the Regulations a mining location for the same, but no mining location or mining claim shall be granted until the discovery of the vein, lode or deposit of mineral or metal within the limits of the location or claim.

QUARTZ MINING.
A location for mining, except for iron or petroleum, on veins, lodes or ledges of quartz or other rock in place, shall not exceed 1,500 feet in length and 500 feet in breadth. Its surface boundary shall be four straight lines, the opposite sides of which shall be parallel, except where prior locations would prevent, in which case it may be of such a shape as may be approved of by the Superintendent of Mining.

Any person having discovered a mineral deposit may obtain a mining location therefor, in the manner set forth in the Regulations which provides for the character of the survey and the marks necessary to designate the location on the ground.

When the location has been marked conformably to the requirements of the Regulations, the claimant shall within sixty days thereafter, file with the local agent in the Dominion Land Office for the district in which the location is situated, a declaration or oath setting forth the circumstances of his discovery, and describing, as nearly as may be, the locality and dimensions of the claim marked out by him as aforesaid; and shall, along with such declaration, pay to the said agent an entry fee of FIVE DOLLARS. The agent's receipt for such fee will be the claimant's authority to enter into possession of the location applied for.

At any time before the expiration of FIVE years from the date of his obtaining the agent's receipt it shall be open to the claimant to purchase the location on filing with the local agent proof that he has expended not less than FIVE HUNDRED DOLLARS in actual mining operations on the same; but the claimant is required, before the expiration of each of the five years, to prove that he has performed not less than ONE HUNDRED DOLLARS' worth of labour during the year in the actual development of his claim, and at the same time oblain a renewal of his location receipt, for which he is required to pay a fee of FIVE DOLLARS.

The price to be paid for a mining location shall be at the rate of FIVE DOLLARS PER ACRE, cash, and the sum of FIFTY DOLLARS extra for the survey of the same.

No more than one mining location shall be granted to any individual claimant upon the same lode or vein.

IRON AND PETROLEUM.
The Minister of the Interior may grant a location for the mining of iron or
petroleum, not exceeding 160 acres in area which shall be bounded by north and south and east and west lines astronomically, and its breadth shall equal it in length. Provided that should any person making an application purporting to be for the purpose of mining iron or petrcleum thus obtain, whether in good faith or fradulently, possession of a valuable mineral deposit other than iron or petroleum, his right in such deposit shall be restricted to the area prescribed by the Regulations for other minerals, and the rest of the location shall revert to the Crown for such disposition as the Minister may direct.

The Regulations also provide for the manner in which stone quarries may be acquired.

PLACER MINING.

The Regulations laid down in respect to quartz mining shall be applicable to placer mining as far as they relate to entries, entry fees, assignments, marking of localities, agents' receipts, and generally where they can be applied.

The nature and size of placer mining claims are provided for in the Regulations, including bar, dry, bench creek or hill diggings, and the rights and duties of miners are fully set forth.

The Regulations apply also to
bed-rock flumes, drainage of mines and ditches.
The genfrai, provisions of the Regulations include the interpretation of ex pressions used therein; how disputes shall be heard and adjudicated upon; under what circumstances miners shall be entitled to absent themselves from their locations or diggings, etc., etc.

THE SChedule of mining regulations
Contains the forms to be observed in the drawing up of all documents such as: "Application and affidavit of discoverer of quartz mine." "Receipt for fee paid by applicant for mining location." "Receipt for fee on extension of time for purchase of a mining location." "Patent of a mining location." "Certificate of the assignment of a mining location.' "Application for grant for placer mining and affidavit of applicant." "Grant for placer mining." "Certificate of the assignment of a placer mining claim." "Grant to a bed rock flume contpany." "Grant for drainage." "Grant of right to divert water and construct ditches."

Since the publication, in $\mathbf{1 8 8 4}$, of the Mining Regulations to govern the disposal of Dominion Mineral Lands the same have been carefully and thoroughly revised with a view to ensure ample protection to the public interests, and at the same time to encourage the prospector and miner in order that the mineral resources may be nade valuable by development.

Copigs or thy Rngulations MAY be obtankd ypgn applicatigy to the Department of Interior.

PROVINCE OF NOVA SCOTIA.

Leases Sop Mines of Gold, Silver, Coal, I Pon, Coppere, Lead, Tin

PRECIOUS STONES.

S GIVEN DIRECT FROM THE CROWN, ROYALTIES aND RENTALS MODEBATE.

GOLD AND SILVER.

Under the provisions of chap. 1, Acts of 1892, of Mines and Minerals, Licenses are issued for prospecting Gold and Silver for a term of twelve months. Mines of Gold and Silver are laid off in areas of 150 by 250 feet, any number of which up to one hundred can be included in one License, provided that the length of the block does not exceed twice its width. The cost is 50 cents per area. Leases of any number of areas are granted for a term of 40 years at $\$ 2.00$ per area. These leases are forfeitable if not worked, but advantage can be taken of a recent Act by which on payment of 50 cents annually for each area contained in the lease it becomes non-forfeitable if the labor be not performed.

Licenses are issued to owners of quartz crushing mills who are required to pay

Royalty on all the Gold they extract at the rate of two per cent. ou smelted liurd valued at $\$ 19$ an ounce, and on smelted gold valued at $\$ 18$ an ounce.

Applications for Licenses or Leases are receivable at the office of the Commissionet of Public Works and Mines each week day from 10 a.m. to 4 p.m., except Saturday, when the hours are from 10 to t . Licenses are issued in the order of application according to priority. If a person discovers Gold in any part of the Province, he may stake out the boundaries of the areas he desires to obtain, and this gives him one week and twenty-four hours for every 15 miles from Halifax in which to make application at the Department for his ground.

MINES OTHER THAN GOLD AND SILVER.

Licenses to search for eighteen months are issued, at a cost of thirty dollars, for minerals other than Gold and Silver, out of which areas can be selected for mining under lease. These leases are for four renewable terms of twenty years each. The cost for the first year is fifty dollars, and an annual rental of thirty dollars secures each lease from liability to forfeiture for non-working.

All rentals are refurded if afterwards the areas are worked and pay royalties. All titles, transfers, etc., of minerals are registered by the Mines Department for a nominal fee, and provision is made for lessees and licensees whereby they can acquire promptly either by arrangement with the owner or by arbitration all land required for their mining works.

The Government as a security for the payment of royalties, makes the royalties firet lien on the plant and fixtures of the mine.

The unusually generous conditions under which the Government of Nova Scotis grants its minerals have introduced many outside capitalists, who have always stated that the Mining laws of the Province were the best they had had experience of.

The royalties on the remaining minerals are: Copper, four cents on every unit; Lead, two cents upon every unit; Iron, five cents on every ton; Tin and l'recious Stones ; five per cent.; Coal, 10 cents on every ton sold.

The Gold district of the Province extends along its entire Atlantic const, and varies in width from to to 40 miles, and embraces an area of over three thousand miles, and is traversed by good roads and accessible at all points by water. Coal is known in the Counties of Cumberland, Colchester, Pictou and Antigrnish, and at numerous points in the Island of Cape Breton. The ores of Iron, Copper, etc., are met at numerous points, and are being rapidly secured by miners and investors.
on: Copies of the Mining Law and any information can be had on application to

The Hon. C. E. CHURCH,

Commissioner Public Works and Mines,

ONTARIO MINING INSTITUTE.

The First Quarterly General Meeting of the Institute, for the Transaction of Business, and Reading Discussion of Papers

WILL be held in the

PRIVATE BILLS COMMITTEE ROOM

PARLIAMENT BUILDINGS, TORONTO,

Chair to be taken at two o'clock in the afternoon and at eight o'clock in the evening of both days.
All interested in Mining and the development of Ontario Mineral resources, are cordially invited to be present.

JAMES CONMEE,
B. T. A. BELL,

President.
Secretary.

- of the -

PROVINCE OF QUEBEC.

T]HE AUTUMN MEETING of this Association will be held at Sherbrooke, Que., on WEDNESDA and THURSDAY, 26th and 27th September, next.

JOHN BLUE,
B. T. A. BELL,

President. Secretary.

W. PELLEW-HARVEY, F.C.S. Mining, Analytical \& Assay Work undertaken
Information concerning the Mining Industry and Mines of British Columbia given.
ASSAY AND MINING OFFICES: VANGOUVER, B.C.

COPPER ORE!!!

Wanted at Good Shipping Points

Write with copy of analysis and state what quantities you can deliver this season.

ALFRED BOYD,

I WELLINGTON ST. EAST, TORONTO.

The CANADIAN MINFRAI WOOL CO. Ltd.
 122 BAY STREET, TORONTO

Pipe and Boiler COVERINGS.

STEAM
PACKINGS.

ASBESTOS GOODS OF EVERY DESCRIPTION.

MINING LAWS OF ONTARIO.

A NY person may explore Crown I ands for minerals. A Mining lands may be taken up as surveyed loca tions or staked claims.
Locations range from 40 to 320 acres.
Claims range from 10 to 20 acres on vein or lode.
Locations may be acquired in fee or under leasehold.
Price of locations north of French River, $\$ 2$ to $\$ 3$ per acre, and south of it, $\$ 2$ to $\$ 1.50$, according to distance from railway.

Rent of locations first year 600 . to $\$ 1$ per acre, and
subsequent years $15 c$. to 25 c . per acre.
Rent of claims, \$1 per acre each year.
Claims must be worked continuously.
Royalty on ores specified in the Act, 2 per cent. of value at pit's mouth less cost of labor and explosives.

Royalty not charged until seven years from date of patent or lease, nor (as provided in s. 4 (3) of the Mines' Act, 1892), until fifteen years in the case of an original discovery of ore or mineral.
Original discoverer of ore mineral on claim entitled stake out a second claim
Crown Lands sold under provisions of mining laws in force prior to $4^{\text {th }}$ May, 1891 , exempt from royalty.
Copies of the Mines Act, 1892, Amendment Act, 1894, may be had on application to

AROHIBALD BLUE,
Director Bureau of Mines.
Toronto, May 25th, 1894

HOW IS THIS?

Something unique even in these days of mammotb premium offers, is the latest effort of Stafford's Magazine, a New York monthly of home and general reading.
New York monthly of home and general reading. one dollar, the regular subscriptiou price, and in addition to send each sulscriber fifty-two complete novels during the twelve months; one each week.
Think of it. You receive a new and complete novel, by mail, post paid, every week for fifty-two weeks, and in addition you get the nagazine once a month for twelve months, all for one dollar. It is an offer which the publishers can only afford to make in the confident expectation of getting a hundred thousand new subscribers. Among the authors in the coming series are, Wilkie Collins, Walter Besant, Mrs. Oliphant, Mary Cecil Hay, Florence Marryat, Anthony Trollope, A. Conan Doyle, Miss Brad on, Captain Marryatt, Miss Thackery and Jules Verne. If you wish to take advantage of this unusual opportunity, send one dollar for Stafford's Magazine, one year. Your first copy of the magazine, and your first number of the fifty-two novels (one each week) which you are to receive during the year will be sent you by re turn mail. Remit by P. O. Order, registered letter or express.
Address :
STAFFORD PUBLISHING CO.
Publishers of
Stafford's Magazine,
P. O. Box 2264

Plea mention this paper.

New York, N.Y.

KEEP YOUR BOILER TUBES CLEAN AND SAVE YOUR FUEL.

DARIING BROTFHRS, Reliance Works, 112 Queen Street,

MONTREAL, QUEBEC.

CHEMICAL AND ASSAY APPARATUS \rightarrow

AGENTS FOR THE DOMINION FOR THE
MORGAN CRUCIBLE CO., BATTERSEA, ENG.
AND FOR THE
ANALYTICAL and ASSAY BALANCES and WEIGHTS of BECKERS SONS, ROTTERDAM.

Baker \& Adamson's C. P. Acids and Chemicals, Brown's Portable Assay Furnace, Hoskin's Gasoline Blowpipes and Furnaces, Dangler Laboratory Lamp, Microscopes of E. Leitz, Wetzlar, Kavalier's Bohem-
ian Glassware ; Royal Betlin and Meissen Porcelain
Platinum wire, Foil, Crucibles and Dishes, Swedish and Rhenish Filter Paper.

IYMAAIN, SOINS \& CO.
380, 382, 384, and 388 8t Paul 8treet, MONTREAL

5th ANNUAL NUMBER . . .

FIFTH YEAR.

FOR 1895.

Mining, Engineering .

Ipon and Steel Tpades

Gompanies Manual

edited and published by

B. T. A. BELL, Editor of the Canadian Mining Review,

Secretary General Mining Association of the Province of Quebec, Honorary Secretary the Mining Society of Nova Scotia, Secretary Ontario Mining Institute.

This, the Fifth Edition of the Manual, will contain a careful digest of information, compiled up to date, respecting the history, organization and operations of all Canadian Mining and Quarrying Companies, Blast Furnaces, Rolling Mills, Iron and Steel Works, also of all the Rod Mills, Wire Mills, Cut Nail and Horse Nail Works, Car Axle Works, Car Wheel Works, Car Builders, Locomotive Works, Cast and Wrot Iron Pipe Works and Bridge Engineering Establishments.

> In one trame-600 Pages; Cloth; Royal Octavo.

PRICH: FOUR DOIIARS PHR COPY.

DRUMMOND, MCCALL \& COMPANY.

IRONJ, STHEL \& GENTRAL MPTAL MGROEANTS.

Officer New York Life Building, - MONTREAL, QUE CANADA IRON FURNACE COMPANY, Limited,

Offices: NEW YORK LIFE BUILDING, MONTREAL, QUE. GEORGE E. DRUMMOND, - Managing Director.

 RAIIROAD CAR WHHEISSTREET CAR \& LUMBER TRUCK WHEELS A SPECIALTY

Works: LACHINE, qUE, Offices: NEW YORK LIFE BULDDMG, MOMTREA.
THOMAS J. DRUMMOND, - GENERAL MANAGER.
DRUMMOND, MCCALL PIPE FOUNDRY CO. Ltd. manuracturers or..

WORES : T,AOFIINH QUEBHO.
OFFICES: NEW YORK LIFE BUILDING, MONTREAL. - U. 2 LUDLOW HYDRANTS, VALVES \&c., aLWAYS on HAND.

ROBB-ARMSTRONG ENGINES SIMPLE And COMPOUND. AUTOMATIC or THROTTLIMG COVERMOR.

BULIT ON THE AMERICAM INTERCHAMGEABLE SYSTEM.

THE MONARCH ECONOMIC BOILER
-combines all the-
ADVANTAGTS

Light Portable Forms
-WITH THE-

HIGHEST POSSIBLE ECONOMT.

AMHERST, NOVA SCOTIA.

Dominion Coal Company, Limited:

Owners of the Victoria, International, Caledonia Reserve, Gowrie, Little
Glace Bay, Bridgeport and Gardner Collieries.
\qquad

STRAII, GAS and DOURSTIC COALS of HGHESTM OOALITY

Carefully prepared formarket by improved appliances, either F.O.B. or Delivered.

It is also prepared to enter into Contracts with Consumers covering a term of years. Its facilities for supplying Bunker Coals with promptness is unequalled.
-APPLICATHON FOR PRICES, ETC, TO BE MADE TO-
J. S. McLENNAN, Treasurer, 95 Milk Str, Boston, MASS.

DAVID McKEEN, Resident Manager,

- Clace Bay, Cape Breton.
M. R. MORROW,
so Bedford Row, Halifax. KImeman Brown \& CO., Custom House Square, Montreal.

[^0]: E. E. BURLINGAME'S ISSAY FFIPCA Wount ofrlit "Lubabatoror Established in Colorado, 1866. Samplea by mall or
 express will receive pronipt and careful attention. Gold \& Silver Bullion Renined, Merined dand A: Address, 1736 \& 1738 Lawrence St., Deaver, Colo.

[^1]: EBENE.OLCOTT,
 Consulting Mining Engineer \& Metallurgist. 18 Broadway, Now York City.
 Cable Address: - - "Kramolena."
 Mines examined and reported on. Will act as perman nt or pecial advising engineer of mining companies.
 Special facilities for making working tests on ores

[^2]: 8894.
[^3]: "English Patent No. 6,028, 1890. . Goere. Jour: I'hnt. Sac. Great Britain, vol. xvii., page 253 .

