BULLETINS

Arrial Exprrintent Agariatian

Bulletin No. III
Issued MONDAY JULY 27, 1908

MR. MeGURDY's COPY.

centeene00 womenewe00

2A3

2. ZA1torial Motera and Goments:

3. Haynuondenort Vorks
 Ietter from Mr. Curtise Julyil.................................2-2 Fighte of the June Bug, June 2i to July 20........23m2. Ietter froct 1tr. Curtise, July 14........................24-24 Phans for Aerodrone Zo. 4 by J.A\&D. Meturdy.........25-2.5 Winning the soientific Anarican frophy, July 4....

Mra. Jairchild's account July 6.......................26-18 Mr. Curtisets meoount, July F..................................
新. Wtoturdy's aceount, July 8.........................20-22

3. Betinn Bhreaph Pexk:

Work of Beinn Bhreagh Leboratory by Vh. Y. Bedwin,
 speciricetion or Rinctirite by wh. Bedwin.230m29 Final 放perfroents with Ringwite July 10 by
 Gyroacopic Aotion of propaliars by A.0. Beli.......37-39 Aerodrone Truseing by F_{8} V. Baldivin. 40-44 Tmproversent in Hethod of calculating Find Veloo1ty by PoF. Baldivin.................................. . $45-45$ The Rudimentary Fings of Mies and Their 3ignificanee by A. $\mathrm{a}_{\text {. Bell. }}$ $46=45$

4. Macellaneona cornunicationg:

Report on French wotors by F . Rupert Turnbull. 46-47
 by A. G. Bell.

The Bulleting of the A. $\mathrm{IN}_{*} A_{\text {. }}$ wre preparod by Br. A* G. BeI1, Chuizman of the Aapooiations and sare type written by his Private feeretary, Mr, Charies F. Con. Mr. Cax makes one origimal and alx earbon copies wioh wre diatributed as foliowas

1. Assceintion Copy (the original)
2. Br. A. a. Boll' a copy.
3. Lieut. F. Selfriageia copy.
4. Mr. F. V. Balduinis Copy.
5. Jr. J.A.D. MoCurdy's Copy.
6. He 0. H. Curtias ${ }^{2}$ Copy.
7. Moinn Mhreagh Laberatory copy.
 IX, Monday July 20; and the prosent Bulletin Ye.III epporare Konday, July 27. Feekly issued ray be expected in future if the mambers of the Association will land their assigtence to the Cheirman by contributing material wo that the wole laber of progaration rainy not fall upon him alone.

The Bualetin material should be oonalasered as con* Pidential by menbers of the Assoelation, exoepting wher it may be thought desirable by the Association to pernit the ree publiontion of apecial corvnunleatione in the teohnieul joure nolag or in the dally gross.

There could be no poasible objection to the reopublie oation of hiatorical matarial like kiout. Belfridge's paper in Bullotin Wo.II, or the Associated Proses Diapatcheo sont by momberis. In faet most of the Bulletin material could be sresly offered to the Public without ingury to the Asseelate ton.

Conmunieations, howevar, ralating to the future work of the Aasociation, or of 1 ta menbers, and atatements of ine
vontions or discoveries by nombers, theuld bo oonaidered as strictiy confidentini uniose othervise tecided upon by Fote of the Aascesation. Mr. Curtiastis plans for an Arovove ed moter, for example, which mppeared in the firgt Bulle etin, may perhosp give rise te antented invention by we. Curtisa. The Interents of Mr. Curtiss, and of the Asmoeice abion, therefore demand that the articie in question thould not be given to the general puble at the present times and 30 blio with other popers ef atualiar character.

Diseretional power hhould be given to the Secretary to parult the reapublieation of raterial from the Bullesins. He should report to the Asaociation froz time to time what pere mits he has iasuad and obtain the formal apyroval of the Asecciation in erter to reliove hint from personal reaponai= b121ty.

Rempublieations should contain a atatement to the ere feet that the articies in question have beon copied from the Bulletins of the A.s.A. Wy peruiasion af the Associ= ation ${ }^{\circ}$.

${ }^{2095}$

Patont Haminationtem Arter making a thorough exsurination of
 Mr. Cumeron reporta that he belleven there are aeveral pate entable fonture about the apparatue. Hesarb. Itauro, Comeron, Lewis A Masaie have therefore been requested to make a prow Iiminary ascomination of oxisting patente to ascertain whethe er the detaila that are believed to be patenteble aro novel A. 0.8 .

Comonerative Tortatem Work upon aeroctrone Fee. 4, and 0 Ia being earried on simuleaneously at fomsondmport and Beinn Bhrongh, and the orficial homdquarters of the A. \% A. romains at lifumendaport for the prosent.

Mosars. Curtias wnd solfridge are at Hawnondaport where thoy will give their permonal aasatanet to yr. How Curdy in developing his plans for serodrone wo. 4. Measme. Bell and Baldwin are at Bainn Bhreagh and thay will give their asaiatance to itr. MoGurdy by eorreapondenee.

Mr. Maldwin at Beinn mhreagh will give his peraonal awaistanee to Br. Bell in earrying out his plans for a tete rahedral aerodrome wich will be 10.5 , and Moask. Curtias and selfridge and HoCurdy will give Dr. Sell their assistance by eorrespondence.A.G.B.

As recorded in telegrawn sont by meme bers of the $A_{*} \mathrm{Z}_{8} \mathrm{~A}_{4}$.

To Charlea 5. Thoweman, Supt. Ansociated Preas, NoX.

 P. U., Mr. Curtisis rade two ohort Rilghts. Owing to a strong aide wind the machine was found to make oonalderable leeewny though with no tondency to tip. The pialds in which the teate are being conducted is ememat restricted by various obsteeles exeept int ons part. In orter to clear these the muohine guat rise to a groater hoight than the experimenters deem prudent at this time, and as the drift oaused by the machine neceasitated riying over instead of around these obstacles, the teata were peatzoned till this morning.

At $6 \mathrm{~A}, \mathrm{M}$ 。 Mr. Curtisa inade a beautiful Plight of 725 fards in 41 seconds at the rate of 30.2 m per hour, running before a wind that varied betweon 6 and 8 milem an hour. The machine tipped wharply to port ahortly after getting in the air, but was righted frunediately by meana of the sip controls, and kops on an evon keel frow then till the ond of the rilght.

The aurfaces had baen rovarniahed and mode completaly alr-tight ainee the last long 521 ght . This increased the efficiency of tise apparatus to auch an extent that the motor doveloped toe much power evon with the opark fully retarded. lir. Curtian finally had io ineve hla wolght formard to ald the front control and keoy the machine from climbing, deapite of thia, ho rosohed a masxirum helght of 40 feet.

Owing to this difficuity, Mr. Curtise deesded to aiscontimue his filght. This he did by shutting off the engine and gilding to the cround. \#o dwaige was suatained and the Aorial Hwo periment Association hope to try out the machine again this afternoon after the necoamary altorations have been completad. This has beon by frar the most auccessful of all the flifhts to cate.
(3igned) \%. 5elfridge.

To Charlea 7. Thompon, Bupt. Aseecistod Preas $\mathrm{H}_{4} \mathrm{Y}_{0}$
 Buge serodrone No. ${ }^{(3,}$ of the Aorial Brperiment Asseciation R10w 1140 yards, 3480 feet in 60 aeconds thla evoning about 7.30 P. H_{H}. The filight was atopped on acoount of the orees and a fence with limit the practice ground. This performance is the meat reaariksble on record, being only the aeventh plight of the sachine and the eighth atterpt by the aviator. The controds morked perfectiy in every respeet, the machine having to travel on the afe of a elrele to be able to make this distance ouing to the ilnita of the field. The height varied froen 3 to 20 feet.

The Aerial Boperiment Assoaiation has just telephoned the Aero club of Aaerica that it in now ready to try for the Scientific American Cup wich is to be given to the machine that officially files the diatance of one kilometor in a gtralght ilne. This diatance wala surpaosed townght by 46 ydrda.
-3-
All eredit is due to the marvellousiy officiont of frt eylinder Curtisa alrmoooled motor fioh has never given the slishteat difficulty and to the wonderful aptitude mown by tho isviator wr. Curtias. There were several hundred apectatora. (3igned) T. Belfridge.

To Chariea 5. Thexzaen. Guyt. Associsted Preas, Y. Y.

 two very auceesaful filghta hers tomay of 400 yards in 84 seconde and 340 yards in 33 aeconds at the rates of 34 and 33 milen par hour reapectively. Thene 211 ghts wor tentinated at the will of the operater at a mooth place in the field in order to avoid runing the machine back through the atande ing erain at the further end of the grounds. Their object wan to teat the erficieney of sorne alterations which had been deelded upon. They proved all that had been axpeeted and the machine in under botter control than over. It is hoped that the cup coranittee of the Aero Club wll be able to come to fammondgyort as won at posaible as the Aerial Rxperiment Assoelation has now been rendy for it for the last three dayk. The Curtiss motor werked very satisfactorily.

$$
\left(s 1_{\mathrm{gned}}\right)_{\text {B }} \text {. Solfridge. }
$$

To Charkes T. Thoryaon,
Suyt. Assoeistod Preas, M.Y.

 filght of $3 / 4$ of a ralle here this ovening in $661 / 3$ seconds at 38 miles an hour. The machine traveled in a sentecirele.

The filight was one of aeverai that were made in prom aration for the ofricial teat of the machinehich te fake place tomerrem bofore the contest connttee ōt the Aore ciub of Anerien fer the Seiontific Averican Trophy. (3igned) T. sotxfridge.

Te Charles 5. Thexajan,
§xyt. Associated Press, M.Y.
 Assoelation*s Aarodrone No. 3, Curkias" mrane Bug tomay earnod the right to have its nase the pirat inseribed on the Beientific Averiean Trophy, by making an official plight of 1 kilaneter in a atraignt line measured fron the point there it left the ground. After pasaing the flag maricing the Einiah, the machine Il 0 w 600 yards further and landed at the extrease edge of the fiold noar the railroad trook, after orosaing three fonces and deacribing the Leter $s_{0} 2000$ yards in all in 2 minute $42 \mathrm{~L} / 2$ seonds at a spoed of 39 miles per hour. Thia rollowed a 900 yard rlight in 56 soconde.

The nohohine never behaved better and the long flight could have beon continued at the will of the operator had he oared te rise over the trees Aheh bounded the field. Though quite possible it was not deemed wise zo attungt it at present stage of the aviatorta developmont. There was hardy a Dreath of air atarting during either flight. This trial is realiy of the utwost inportance al it is the firat official teat of an aeroplane evar made in marion and there are only twe ether machines shich have traveled further in publie;

Parman's and Delagrenge's. The Vrights though have undoubtediy far outilown it in private so that American is net so very far behind France as might be suppesed. The last flight to-day was the 15 th made by the machine, all having occured under far mere adverse conditions than those encounte d by the Prench machines.

It is hoped that there will be several other nemes on the oup before the new year. In order to possess it, this trophy must be won at least once in three separate years. The rules beinc changed and made more severe after each trial.

It is alwa open for sompetition upon due notification being made to the Contest Comittee of the Aero Club of America to whom it was presented by the Scientific American in the Spring of 1907.

There are about 1000 witnesses among them being Messrs. Hawley, Post, Herring, Manley, Guy and Beach of the Aere Club.
(Signed) T. Selfridge.
To Charles T. Thompson,
Supt. Associeted Press, N. Y.
Harmondsport, W. Ye. July 5, 1908 -m-Before the departure of the Judges and Aere Club Committee temight, G. H. Curtiss before a crowd of several thousand people made an ascension in the June Bug and for the first time in the series of trials made a turn and faced directly toword the starting peint. After covering $5 / 8$ of a mile toward the starting point, it was necessary to fiy over a vineyard and fearing disaster owing to the fact that he was flying low he brought the machine down with sight damage to the front control and rigit wing. Mr.

She flight and the manouvorn were consldered a grent aueoess, it being the firit attcopt to seseribe a efrele. The monber: os the Anro Club cormittee oxpressed great sistion faotion athe outcore of this trial. Tho aerodrome will be ropaired townight and experisvents will he oontinued tow morrow. A number of the Fe: Yort and Vanhington parties rew mained for the ovents tomorrow.
(signed) 登. gedfridge.

O2HFA gxatnasayg

To Dre A. (3. Hell. Baddeok, N.
 terday. sade holf mile filght for him lat nieht. Ho finda asveral patentable fatitures.

> (Bigned) 0. H. Ourtias.

Te Dite A. G. BeL1,
Baddeck, Ne .
 few dayse Thinks we have aeverable patentable features. Had 21 ght last night threemquarterm of m nile. Its beoone Ing an old etory now. Fill btsompt complete cirele tomight coning back to atarting peint.

$$
\text { (signed) J. } A_{\bullet} D_{*} \text { MoCurdy. }
$$

To Dr. A. G. Be12, Budceck, $1 \mathrm{Ha}_{4}$.
 $\mathrm{ht} \mathrm{ght}^{-}$- distance one mile. Atempted to turn and land at ptarting point, Dut valley proved too narrow to acompliah this feat as yet.

> (signod) J.A.D. MeCuray.

 of the "June Bug", eapecially its difforences from the winito Winge, and the eight sete of printe - alat the table of The aighteen Pli ghta I heve made mowing the aistence ooverod, time, oause of atoyping, etc.
(\#otefo The deseription of the moun ziug" will appear in a subsequans isaue of the Julletin. The table of eightoen flights is mpanded be10w, A.G.3).
*** Vo have number 4 well under way. Wo have gone good improvenents in socketa for the atruta and turn-bucklea. The running gear aean to be pretty good - wa have not broken 1t, although we have broken the front wheel twiee. These wero ry only twe bad landinga. Hade a nile flight last night, going around the hickory tree in the lower hayfield.

As I wired you, twr. Cameron was hers and found a number of patentable featurea, incluaing the tip controls, three theel running gear, the carbination atearing of the ground wheel and rudder, and the whoulder movement which controls the wing tips. Ha has taken the data back to WawhIngton and will aubealt repert aoone (Eignod) G.K. Curtiase

 for your letter of July 5 th. I an greatly pleased mysolf that we were suecesaful in aceorepliahing that we mot out to de. I suan satiafied that ous machine is equal, if not supese ior, to any of the Poreigners. I note in wr. Parman's ooze treet that ho apoeifies abaczutely mooth Plelda, with ne foncen, or Attohea and with erase oropped hert. We heve beon working at a conaiferable dimadvantege in this reapeot so that if we ean fiy a nile at a tine, picking our why as we de, we oculd aurnly make a good showing over a perfeet oourne where landing could be erfected anywhere.

I am gled that we are to build another nachiae as it will give ub a ohanee to try out the twin ropellers wich we wanted to use on the 1to. 3 , but which wam givon up to avold delay. The twin propeliers are what should be uate on the tetrahedral were the gremtest obtainable thrust will be needed.***
(gigned) 0. ${ }^{H}$. Ourtiss.
(Above letter was addressed to Mrs. Bell, A.G.B.).

by J.A.D. Hecurdy.

Zatract from letter to Br. Bell.
 rachine: It mas dononatrated se clearky in the June fug that nonmporous oleth was so importent that we have deeided to cover our franes with the material ued by Captain Paldwind for his bailoon in the Government contract. He is matm ing up apecial ordor for us wioh will bo absolutely airo proof, and very 11ght.

䞨. Curtias thinke from his rlighte that the tip controle aro not cenaitive onough, and ao we are planing to give the machine greater lateral extenaion than in form ner cases.

The front eontrol will alac be further out, about 15 Poet fren the frons edge of the plane.

Ve are alao coing away with those jack-feinta and using turnmbuckien on every wire so that we can majust each esparately.

We think that pernapa the surfaces ought to have an angle of ineidence of 2 degrees instead of $71 / 2$ degrees or s degrees, as in formor oases. However, tho point is not deesced upen yet.

VINAIMG THE SCIEMTTYIC AMRRICAN TROPHY JUTY 4, 1908: by Mrs. David O. Fairchild. Thetrect from a peraonal letter to Dr. Bell from his daughter Mrs. Pairchild.
**In apite of all I had read and hoard, and all the photographs I had seen, the actual sight of a man flying past me through the air was thrilling to a degree that I oan't express.

We all lost our heads and David shouted, and I cried, and everyone cheered and clapped, and engines tooted. Mr. Pest was there, and Mr. Hawley, Vicempresident of the Aero Club. Mr. Herring and his sister, Mr. and Mrs. Manley, Captain Baldwin, Mr. Lake of Submarine intereste, Mr. Guy, Mr. Mott, Mr. Jones, Mr. IAyon, and Mr. "amamoum a vary nasty, grumpy indiviaual who, however, was not able to interfere with any ones onthusiamm.

The banks were crowded with apectators but the Plights on the 4th for the trophy were not as well attended as the one on the 5 th es the woather was ao uncertain. It ahowered and blew at intervals all day unt11 about seven, when it cleared and ideal flying conditions prevailed. Before that the time was taken up with neaauring off the courae. Yo very pleasant task through wet meadow, ploughed potateo patch and swamps. David atarted off imaneulate in his white olothes and oane baok a sorry sight. All sorts of piatures were taken toe, and the air was full of the cilck elick of shutterg. There were moving picture caneras and kodake of all aizes from David's baby to eight by tens.

At the first fil cht I was at the oorner of the vinee yard noareat the road with Douglas, and David wes at the mbarting line. The machine rose beautiruliy and lfew by us but diants quite make the kilometer. It was riying pretty hist and tre. Curtisg wanted to bring her down a little but she didntt anawer hor sontrol quickly, and won he got her down he oculd not get her up again. Wothing was hurt, however, and all handa towed her baek to the atarting point for the second r2ight. David and tra. Curtias, and I chose our stand on an old log at the far side of the potatoe patch. The firat flight had raised axcitarient to boiling point, and as Mr. Curtigs flew over the red R2ag that mariced the rinish and way on towards the trees, I donts think any of us gut te knew what we were coing. One lmay wos ac ubserbed as not to hear a. oeaing train and was atrucit by the ongine and had twe ribs broken.

Mr. Mason took me right in town to tolograph the giad news to you, and it wes about halp past nine when the last of the party atrageled in.eet
 tetrahedral eonatruction whioh he believea is going to be a great fenture in flying nachines. Ho has proaised to eall us up over the long alatance telephone to invite us to his proe Iininary rilghts at Atlantic eity. It was interesting to hoar the opinions about him. Mr. Curtias asya hets the authority on all kinds of aeroplanes, but thoy all without exeeption (the ones I talked te) were uncertain as to whether he ia a genius or a peod. They are reserving judgaent 1111 after the

On Suntay the bow geve us a boat ride and lunch, and on our arrivil in temn the band turned out to greet tro Curtias and the beye carried him ashore on their ehouldera. About eoven that evening there was another beautiTul rifght, though Mr. Curtias was not able to come beck to the atarting point as he had hoped. He eiroled, but the macho 2ne, as I understand, alid orf on the mir and he landed with a broken tip and Dent heel.

(The above letter was dated July 6, 1908, A.G.B.).

JULY 4, 190eto by G. H. Curtiss.

Batract from 2etter to Dr. Be2l duted Howerond3yort, July 7, 100s.

The arfair of July fourth went off very nlealy. There sorsed to be some question, espeosally with the meme represontatives if we oould fly the kilomoter; and when we Pall athort on the first trial, itr. B-wwemb represented the -as senaed to be pleased rathor than dimappointed.

The sachine was not flying as it chould, and wo dise eovered that the tall, which had been attwehed and detsohed - great many times, had gotten into a slightly nogative angle which made it neeeasary to depreas the forward plune to keep the machine on an even keel. Thia so groatly inoraesed the reaintance, thus when it becone neceasary so slow the ongine to prevent geing too hi th tho apeed was alaekened to such an extent that landing whe necessary. In thia trial, wbout half a mile was covered.

After making the adjustment of the tall, whe riow 11se as real June Bugj and just on secount of Mr. Beaw, whe wea atanaing at the finloh with a ownera to photograph the machine in case I fell mhort on the diatance, I flevt the machine as far as the field would pernit, regardleas of foneen, altehea, to.

We gave the Cormattee and Aare club merdbers a $115 t 10$ outing on the Lake Sunday with the 1000 b band in attendanee.

JUtZ 4, 200ete by J.A.D. MoCurty.

 aport, Juiy 8, 1900.

It was a durk day and the papery prodicted rain, and 10 certainiy did rain shl throuth the morning but tow warda three or rour ofelock thowed algno of olearing up.

The plasaantovino-echar poople kindly threv open their coars to we and our visitors, nnd prepared a ountowous lunch as one means of paseing the arsary hows of mating. Everybody was just as nice ss thay sould be, and the orowd was mont paciont and aymphthetic.

About aix the time aeced propitiaus, and the meohe Int brought out of the tent, and the tall sttached, the notor rum, and everything eareruliy looked over. Hendey moasured the course in a atraighe 21 me rumning righe through the vince yard. 14r. Curtiss sook his mant and the sechine was rolled round to ite gearting point.

After a fow momonta the motor was otarted, wivt the
 of the orowd, the June Jug aped down the brack, and rade a boautiful atart, flov well, but ahort ebout four or five hundred yards. yo damace was cone howover, so ahe was brought baok and eararully looked ovor.

This time we changud the angle of inosdence of the tall slightly, makine it more poaltive, we also rewired the fronteoontrol. This tine everything went serenely and not
only did the June Bug ramoh the slags which marked the
finish, but, and the rush and cheering of the throng 82 ew six hundred yards or nore further, to the limit of the pield and made a beautiful landing on a snooth apot, absolutely unhurt in every respect. Berybody was almost crasy, and even Mr. Hemmememon appreciated the effort of the A. $\mathbb{E} . A$. to , P1y,

The town did all in their power to entertain our guests, and they all wete delighted with their viait, and went baek to Mev York with very happy thogehte of the viait which they will have every cause to remember.

Binee gy report of July is in Guiletan Ho. 1, ve have boen stomeliy ongrged at tho Taborntory on the pollowing *-9ris\%

Barrying adong congtruotion of tho nev oatamaran
 up in plaee with the asakwhtubers on then sun noariy ready for tho deotring. The promont oondition (Juzy gs) is whow In the seeocyanying photogroph.

Have finsthod the one nundrod 50 ons triangles.
Havo put, in the three kises $A_{8} B_{2} C_{0}$ mentioned in laat report, a aet of suy wires on the keel etiot at a point 50 om back frox front edge of kito extenaing to ridge pole. Have alao made attaphrsent points on resi stlet ovary 25 on from the und of the bow, to shat Rying line onn be readily thise ted to any deaired paint from the oxtrome bow te a point 50 an back on rate.

Toperiments heve beon rade at the Eaboratory on the

PoLzowing inteate

100. Jivin 10, Mnal experyinentes with Aingmitite.

IItes $A_{g} B_{\text {, }}$ and f tried. A mumber of anomoneter readinge were taken. 阬ind Veloeitys Fon observabiena.
 tegether; aleo toek readings of anomenoter, inclinometer and Symanometer. What veloesty 11 observationsf angular alsitude 30 obeervatiens pusi 96 observacions; totel 257 observations.

We wae triod the enty Frostelline kite photograph of which appeared in Bulzetin He. 1.

1909, गuty 26, Experivents mede with a groatat. ynew kite A obaerving indications of unemoneter, inclinosetor, and dynanometer. Vind veleaity Pour observationes angular altitude 10 observationa; pull ten ebservations. Fotel 24 observations.
190. Juyy 17 Made four cormlete aerise of experimente with kitea A and 3. 8 eeries altogether. Ananoneter, inolineneter, and dynmorater read aimal taneoushy. Find veloedty 29 observations; angular altitude 80 observations; pull 60 observations; total 1 obaervatione.

We have mon at work raking aluminum osatinge for tete rahodral cells.

Wo have repaired and ready a monll pilet kite of the Frostalling form for general purposes. 12 oella on top, 6 cells high, and 5 cella deep. Total 282 calla full construct10n.

We have moved the dark roen up to the Featarn side of Annes and fitted it up with water aupply, and alse put on a large verands on which to do our printinge

In connoction with our phote departnent we have made a nev dating board with letters and rigures puinted on pieces of tin mioh oan be slipped in and out of a groove in the board. Se far as pesalble the dating board will be photeo eraphed on the awne plate or PI 1 m with the apparatue or experinent illustrated so as to preaerve the date of the photograph on the fizn itwole.

The aae of the dating bound will be obvarvod on the aecorpw
 whow the alate upon which the photogruph was takon.

We have node and filed three oopies of photes of work done to the number of 42 and have almo mace a large number of blue printa for \%uLietins and other purposes. Wo are making a printing-frame large anough to take the plans of the Gygnet, flod Fing, and others of unich we wont blue printa.

In conneetion with work conc last rinter would asy that we asved sbout two hundred dollath worth of allk from the wreck of the Cyignt at a coat of twelve collarm to unt This in m very 10 price for the work involved, and I an me Vised by the eontractors that it could not bo done agnin for the aume meneg.

On July is thero aryived at Buinn Bhreagh the ausclilar: boat mpendute with party of Yole gtudents on boasd, whe are taking boat dom to Dr. Gronfoll mt Yahrador. At Dr. Bel1's request, we wont on board to try and help them with their ongine, wilich thoy could not get to run. We toak ongine parte 1y to ploese and sede several new juinteg and tightened and eleaned things up soneraliy, and suceoeded in getting one gine to run vory aatiaftactorily for thom, The angine is a
 York. Ve gove the ahty a geod aupply of Beirn Jhreach mater, and all the sasiatance we evaldg and thoy salled on the 25 th at noen for Hattio Harber.

Ao used July 9, 1908.

As ahown in sooompanying draminge kite in made of tetrahodral oelle and surfaces are soparated the vertion height that twe as on celle mante.

The outer line of cella is made with regular 25 an collaf and the inner line is of cella 25 cm on all mides, exeopt the orsammatioks that connect inner points of outer line of cellat These atioks are only 22.4 on long.

The upper and lever planes ars swade aeparately and false trianglas are put on to oonnect the free points of esils, and then the planes are conneoted together by tying at Junction pointe with atring, making an X eroasmeection as whown. Around the innor and outer cornors is placed a manll sighe beading making a continuous corner to glue surw face to. The silk gurfaee ia next put on both the upper and Lower planes, and is fastened to the 11/ght beading with give, and is also oaught wo with throad at tho oenter points of cells. A heavy beading is then run round on all four cornexa as ahovin in the X section, and tied woll overy 25 an to the inner mall beading.

A keol atsick is tied on at any point as shown, proe jeeting a short distance both inalde and outalde the lower plane. Four braces placed alagonally running fron upper to Lower aurfaee are then put on at the aection there the keel stick is placed.

$$
\text { - } 2 \text { - }
$$

As used July 10, 1908.

Same specirication as above appliea to the Ringwkite as used Juny 10,1908 with the following changes:-

The diagonal bracing is oarried all the may around the kite on beth the inside and outaide faces; and the heavy beading ia put on the outer upper and lower corners only.

 JUIV 10, 1908: by Alexander Grahom Boll

After the experiment with the Mingoite, July 7 , 1903, noted in Bulletin Fo. 1, the kite wsa atrongthened by boading conneeting the lower and upper aeroplanes. To offaet this additional weight the inner rings of beading on the two aeroplanes were reanved, with the not rosult thet the kite was lighter as well an atronger than before. Por dotaila of conatruetion see $u r$. Bedwint a artiole in this builetin.

The Aingwite in its improved condition was tried July 20, 2003. The wind velocity during the experizent was not noted, but later in the afternoon wen the aind conditions had not materially ohanged ten readings of tho anomometer wore taken yielding a mean result of $\mathbf{1 0 . 7 2}$ nlien por hour.

The Ringakite, with the Plying ine attached to the front eage of the dower ueroplane, rese very ateadily and gracefuliy inte the air. Two photographa of the kite in the air are appended in illuatration. One of these was taken July 7, the othor July 10. Mo meaguremante of angular altitude, or pull were made. Tho flying ine wad held in the hand ine atead. of being attached to a oloat, because it wan found that the puil was alight, inapite of the aise of the kite, and the fact that there was considerable wind. At ita hagneat elovation the kite aeomed to fly vory steadily although a slight awnying motion was observed. Thare was nothing renarice able about this, however, as the wind was conatantly fluetuating in atrength. Upon the whole the bohavior of the kite
in the air was matiafaetory, and it was brought down easily and gently, by over-rumning the z2ying line, althout any injury to the atrueture.

The point of sttachment of the plying line was than changed. It was fastened to a bridie attached to the front and rear edges of the front seroplane so that it eazne practe ioally miAway between them. The kite then roae to a higher elevation than before but ald not ply so atealily. The amavo ing rotion formearly observed whe greatly increased, and the kite moved about from site to site like a bear pacing baok marda and rormara in hiz osge.

During one of these oseillations the kite alid off the wind to ono asde and began to rall edgowaya tomards the ground. The atrain on the flying line was ironediately ree Laxed but the kite mhowed ne aigne of recovering its equie librium. It contimued to slice dovm hili, almost in a atraight IIne, until ti atruck the ground. Its aide was crughed in by the inquot, and the experdment - and the kite - oeme to an end. A photograph of the kite falling through the alr is appended.

Opnoruationg

Inda disaster oniy confirms the inpression left by numerous experiments wh other forns of kite, that horisonm tal mereplenes without vertical eurfacee or their equivalent to ateady them, are esmentialiy unatable in the air, and are 2isble at unexpeeted momente to alido off to one aide and come down edgemays to the ground. The Red Fing and White wing both oame to an ond in this wayt and it should be ree oogniasd that aeroplanes of this character conetitute a

It is acmenat remarienble that the Ring-rite showed no tendeney to right itself whon released from the strain of the Ryying line, Wo knen it would have cone we had there been no apper aeroplane.

With the lower aeroplane alone and the eraty framee work above it, without any upper aoroplane at all, wo would have had conditions earparable to those existing in the gilding models with whose antios in the air we have become faniliar.

From our pant oxporiments aith these modele we know that a aingie aeroplane with its aupporting franework above it almaye steers itself up then thrown edgevays dom hill, ita pathmay gradually forning an aseonding ourves thereas an aeroplane with ita franework below it, slides down hill In a dencending curve. In the ease of the Ringrite the path pursued in falling formed almost a straight line, there being very 21 tile indieation of a ourvilinear path, and there mae eertainly no tendency to a recovery of position. The altitude reached when the aliding movement bogan ad quite murficient to have devrloped a senalble eurve had there been any marked tendency to coviate fren a reetilinenr path, but there was very little indieation of derlection, and certainily nene in the upward direction. The flying line wac 100 motere long, and wen the aliding begna, the kite whe probably at an alestude of about 30 meters in the alr.

It is probable that in this case the tendency of the eapty franowork to ateer the lowor aeroplane up when the
kite dived to one side, waa neutrulised by and oqual tende eney of the fronework so atear the upper aoroplane down. Thia has an important bearing upon the bohsvior of abroarones vith auperpened seroplanea inier alnaifar airaunatances.

A single moroplane, or moneplane", uaunlly conalats of a aurfaee atretched upon aome gort of rraceworic, no that the frusewort appears on one side of the aeroplane onky. Then projeoted eagemay through the asp auch an eeroplane doen not puraue a rectilinear path, for ita motion is cone atankly der2eated to one aide; and the direotion of the dow Rlection is townarde the frocsevortomade of the aeroplane.

It may be that the dericetion is eauesd by the ree aiatenee of the fromewort to the ais, wich woula make it set like a ruider to stear the aeroplant to that asde. Other oauses may alac be present, wuoh tat a difference of atroee pheric preasure on the two midea of the aoroplane. that ever may be the true oaume however, the effert ia there, and in unmistakable form.

It would be well then in aoradranes of the monoplane clase to place the ceroplanea below the frounworkw upon which Shey are atretched, thus Imparting to them a tondoncy to rise whon propolieaf rather than place the aurfaoen above the frameworta, fich would give thea a tendoney to dive. Sonoplanes with their aupporting framea above theas, poasess one important advantage over auperpeaed aeroplanes with the fracsemork betweente Upon alaing down hilk thoy vily
 the If any tendency to recovery in the eage of auperponed aeroplanes under alsilar eiroumetanoes. This at leat is
one of the conclusions muggested by the fate of the Ring-igise and the firnt twe aerodrornes of the Aerial Hogeriment Association.

$$
18
$$

ם

In the courne of a aiccusesion with 1fr. J. A. D. YeCuray Lest May coneerning the nature of the terque preduced in ar aerodreme by the rotatien of its propeliers, Mr. McCurdy refoered to Bronnmés Mone-Rail Car Bysten as an Lllustration of the owerful cyrosceple action of : 1 y Theele. This led te the consiceration of the fyroscopic action of propellers; and we eonsulted the Increlopecia Pritanniea, Vel. XI, p. 352 te see whther we coul? work out, fros the deecroption of the gerescope there given, wht woul be the e fect upen a soredrone of the groseopic sction of 1 ts propelier, and we came to the following theoretioal conelusions.

With a righ handec rotation of the propeller the machine, when stered to the lost or pert side, would tend to rise at the bov until the bov pointed vptically upward. Then stevred to the right, or starbourd side, the mechine would tend te Aive until the bow pintad vortically demmards.

With e left handed rotation of he repeller oppesite effecte weuld be produced; the nachine tondine to dive won turned to port, and tending to rise at the bow when turned to starbeard.

The generel cenclusion raached whe that both the herisental and vertioal steering of an aerodrene with a single propelier wald be nersousl: affectod if the propeller exerted any mansible syroscopic aotion.

This theoretical result has been aryly virled by experifients made here July 26,1808 , with a Eyrestat cene structed after the plans of the late Iord Kelvin.

The eyrostat consiats aimply of a thin metallic case enclesing a heavy wheel which oan be set in rapid rotation by means of a atring coiled round one ond of the acis.

In order to imitate the action of the propeller of the June Bug the concealed wheel was given a left handed rotation (againat the hand of a watoh). I then held the eyrostat in my hand with one axis pointing forward, so that considering this end of the axis as the bow or front ond of an aerodrons the wheel represented the propeller. Then to repreaent the forward flight of the aeroarone I walked form wards with the gyrostat in my hand. I then imitated the action of steering the aerodrome by turning to the right. Instantly the bow end of the gyrostat turned upwards with oonsidere able foree. Upon turning to the left it turned downwards. Then te represent the aet of ateering downwards with an aorom drome, I depressed the bow ond of the gyrostat with the ree sult that the bow tried also to move to the right or starboard side. Upon elevating the bow of the gyrestat to rom present steering upwards with an aeredrome, the bow of the gyrostat was demeeted to the left.

With a right handed rotation of the whoel of the gyroatat opposite effects were produeed.

The effeets were so marked as to indic ate that the eyroscopic action of a rapidly rotating propeller in an aerow drome should be studied andallowed for in the steoring of the apparatus. The following contains a aumary of the obw servations made:-
-qyer oq meq apuen on firfxeong

- W7\%

-qJoT en meq eptom tuop Iursuevas
*解 meqspuee qzet eq Iutseess

(Buetqvaranco ye Ravamg)

A radical difference in function betwoen a bridge and an soroplane truss has apparently been largely is not quite lost alent of by those whe have copied bridge dealgns and applied them without modirication to asroplanes.

In the firat plaee a bridge is not built to be drive on through the air. It is not particularly domigned to offor ae little resistance as poasible to the wind. Lightness and strength, in other words economy of material, is the oriterion of bridge tosign.

Not se with the seroplane truas however, In this, one truas may be heavier than another, of sual atrength, and yet be much more deairable. Prom date well eatablished experimentally, we know that 18 in of prime infortanoe to give What is known as a efalr form" to all parta of an serotrone. It 18 obviousiy an advantage then to lot onoh nember of a truas be deep from fore to aft and narrow sideways.

If a strut of thic crospesection be subjected to oom presalion it is obviounly weak one way, and superfluously etrong the other. Hiaving a greater momont of inertia about a lateral than a fore and aft axis, it will buokle laterally long before its strength is taxed in a fore and aft direete $10 n$.

In bridge deaign econory is obtalned with aymmetrical compreasion members, but in aeroplane work it ahould be ofe tained with membere of un-aynanetrical orose-section, and this alone ealla for an ontirely new ayatem fren that amployed In bridgee.

$$
\text { - } 2=
$$

To secure oompresaion members againat this cofiection is then the problem with which we are confrontod.

Tako for exumple the almple Pratt truas (P1g. 1) which has been very gonerally ueed as an seroplane truse. Thls ufth its long unsupported vertical posta would seem to be a poor form to build, 19 we are to make it of material plaheshaped in exeap-nection.

The yowe truas (Kig. a) ham one great advantage ovor the Pratti- It has no long unsupported ooxpreasionmembers. The diagonalin, which are the eompresuion-nembers, intersect, and thus afford support againat lateral deflection in the planee in which it is needed.

The Howe trues, however, has a greater aggregate length of cerpression-menbers than the Pratt, and this is elearly diandvantagoous.

For this reasen then, is we adogt the general form of truas with upright compreasion-members, the problem ree solves itself into one of securing thase vertical posts sgainat lateral ceriection. This oan be done in a variety of wave.

Firat of all atruts oan be run acrase the trues horisontelly aupporting the vertiena posts at their oenters. These struta eould be themaelves aupported at their eentral pointe by the dimgonale, and a very rigid censtruction obtained (Fige 3).

The introduetion of more corpreasionmmonars is to be avoided, however, as these arfur greater reaiatance than do the eomparatively fine wires that can be aafely used to
take up tension. A nore econeniend braeing whioh weula give the awse aupport at the central points of the vertieal poats can be obtained by a horiaontal ciewnire branohed at the outsice panel to the upper and lewor corde of the trues (Pig. 4).

Another way te obtain excellent lateral mupport for the uprighte could be secured by the diagonale being of the couble interamoetion type (Fig. 5), or oven iriple intere aection might be used to advantege.

The bewnstring nethed by wich laterni aupport was given the verticeis in the Red Fing trues has been described elseuhere (paper read May 17, 1903, Mich will appear in a fortheoning Bualetin), and attention need only be dramm to the faet that it hae proved a wanderfuliy affielent truse of no groat melght and of low head realatanoe (Hig. 6).

The Setrahedral truas affords porheqs the grantest oppertunity of all so eabedy this prineiple of lateral breom ing. If learge celle are ueed thoy onn be eanily braoed to give a very rigid truas wh finh-shaqed matorial a0 thin as te reduce enomsuasy the hosd reasatance of the whele atrueture (Yig. 7).

Fig I

Fig IT

Fig, III

By Y. F. Baldwin.

Sake the reading of the anemonstier in feet for 68 aeconds. Heve the teaimal peint two pinces to the lert, and the reault will be milea per hour correet to one decimal place.

Rxmplet 1007 feet in 60 meconda or $\mathbf{2 0 . 0 7}$ miles per hour. The correct answer to one decimal place is 10.1 miles per hour.

Hy A. 0. BoL1.

Pow people, exoepting ontomologiats, are omare of the fact that fliea, and other twominged inseota, poasess another undeveloped pair of winge behind the firat, known as mbalaneing organs*. The presonce of these rudinentary organa ahows that the two-winged insecta (ciptora) are dosconded from a four-winged form.

Does this indicate that two wings are preforable to four for the purposes of rilght?

 Ing from a trip to Rurope where I ate and hoasd much of intarest in aoronautic matters. In accordanee with my prow mise of last October I will try to give you \& few notes on Fronoh Aeronautic ingines.

I had an Intereating tank with Yamon, and he told me that he ald not use may rudiator with hie water-coeled -Antoinette", but simply ourried a mand quantity of water In the water-jackets ete., and allowed this to boil away, thus his runs wero necessarily short.

He is not finiahing hia "riyingmiatr at present, ainply because there is ne resily antistantory enolne on the Freneh market; apparently all the French motora (partioularly the alrmeooled ones) give thoir rated horae-power only for about ton raimulis, and then tho K.P. rapidiy falls off as the ongine over hoats.

I did not invoatigate the Renault" angine, but I do not think Farman found it as aastiaractory as the "Antoinettep

Yarnean seems to think that the molterie" is the beat of the air-cooled ongines and certainly the principle, as far as cooling goes, is rather pretty, but I viaited the factory and it atruek me that the engine was too compliaatod and dolioste.

The myareot" ongine (frora the astalogua) ia goonething 1ike the Fpenau2t", but I doubt if Furcet hme the oapital or foedlities for making the engine he advertisea and I to net
think it would be safe to order from him.
In ny opinion the best eeronautic ongine I saw was the Duteil and Chalmers (82 Ave dirtalie, Paria). They have patented a system of cooling, wioh seems to mo promising. there copper-jackets aurround the eylinders, and the ganaline vapor (on its way to the eombustion chanber) is passed through those, and thu keeps the cylinder cool onough. They waso take alr-cooled eylinders, but seem more ready to give a Guarantee on the vapor-cooled type. icy only objection to their engines is that they only have two aylindera (opposed), but the makers olaim the engines are perfec liy balaneed and run yi thout vibration.

If you deeide to order any french onginee, of any make I would strongly advise that they be rade on atrict oontract requiring a certain guarinteed brake horsompower deliverod contimuoualy for not leas than half an hour, and at a cortain woight, including all acoessories.
with kind regards to your asseciates, I an sincerely yours, (81gned) w. Pugert Turnbull. Rothesay, N.B.

