CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers óamaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculee
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showhrough / Transparence
Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image. possible.

[^0]

The copy filmed here has been reproduced thanks to the generosity of:

Hamilton Public Library

The images appearing here are the best quality possible considering the condition end legibillty of the original copy and in keeping with the filming contract specificetiors.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printad or illustrated impression, or the back cover when appropriete. All other originel copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last pege with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow Imeaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit gràce à la générosité de:

Hamilton Public Library

Les images suivantes ont dté reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé. et en conformitb avec les conditions du contrat de filmage.

Les exemplaires originaux cont la couverture en pepier est imprimbe sont filmes en commencant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration. soit par le second plet, selon le ces. Tous les autres exemplaires origineux sont filmés en commençant par le premiére pege qui comporte une empreinte d'impression ou d'illustration et en terminant par le derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la derniére image de chaque microfiche. selon le cas: le symbole signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche. de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

THE

NATURE S'TUDY COURSE
 With

 SUGGESTIONS FOR TEACIIIN(I'T

 SUGGESTIONS FOR TEACIIIN(I'T}

HANFI IO:

NoTL心 いF LECTTINS

TO TKAUHEHN•IN•TIAINING

Pr

Assuciate A uthor of " Giuide to Nufure' Nt ul!," ant of "I'ublie sichoul
Nuture Stuly."

TORONTO :
THE COPI', 'LALK (OMPANY, LIMITED).

Entered acrording to Act of the Parliament of Canala, in the year one thousand nime limilreal amil five, by Tink ('in', Clakk company, Liyited, Turonto, Untario, in the office of the Sinister of Agriculture.

アREFオイ：

When the teachers beggan tor tuanh the pant of dur new Course of sindy relating to nature＂ork，julleine by tho questions asked hy Nomal Nithol stmbents and mumerom correspondents，many of them wre ronfontod by dithonltion ower which the books awailable dial Hol help them．An engagement to answer such quentions，and tw ohlire hints and suggestions on the Nature study pate of the Comre hats drawn forth the following pares．

Direct the chikdren how and where to collont the muthriat． guide their observations and rensominy mpon what has bing． and teach them the arts of e．pprossing the strps and resuls of their investigation．This general direction surpus ats simpla as it is comprehensive：lint in its application almust as many different problems arise as there are difformt lemons．No one can anticipate all these prohems，hut solutions of many of them are herein proposed．

The Nature Study teacher well knows the value if ．omb－ parison．Any one using the course of stuly prowilued for his own province will derive much benefit from compariag it in detail and in entirety with the course alophel in another province．This little book may，therefore，prow ：は holpfill to teachers outside of the Prosinces whose morulations are quoted as to those serving within their bomblaries．
"Unfolidel is the world mily on the observing mind."-F. "urbeteh.

 tombtully, miju heratily.

 othe: lioll|."

"Nay what in Nature"w sidf. lust all chlllaw
Strif0 tewarth minvir,
Euphomy, rhyme?
Traw in llwir homming,
Tidted in their ithwis.
stary in their "irelhes.
Tremble with scme."

- Wielliam Wiatas,
 Biaroungho.

 Teuthers.
"Niature is the incarmation of thonght, aml thms to thought again as ier herommes wallor alld gits. The world is mind promitithed, and the volatite ensence is furever exaping again inte the state of thought."-E'mersom.
"Hapry is he who has learned to search out the seeret of things, - . The ageless arder lie sees of nature that cammit die, And the ('anse whence it springs and the How and the Why. Never have thanghts like these to a deed of dishomme been turned."
- Eincipuidro.

(ONTENTS.

 Pa1s
1*
 $\times 18$
 Stuly a place on the 'Timle tath. $18: 3$
 $2: 33: 3$
 i. 36
 3639
 $3!1-4!$
 Nhif) - Inamimatr Nature $42-5!$
 in : $\overline{0}$
 5i5-9
 767
Scgestions: How the Nitue Will Animals Should beStudied-Birds-Vishes spidors - Plants - WindowBuds Markings on a Beroll Twig - Phọiolomy, Coms-prarison of Stractures.Ventilation
 114-118
Sratesmoss: Nature Sthle, Intensive and Extensive - Where It Marges intoscioner: Biral Life: Helpfal Bookn, Bird Phemolories-Topies for the Stuly of Bi: Js. .
Inserts: Reasons for stmplyg, Time ami Method, Living Sample Lesson in the C:i of Printed haformation- imassAppletree Tront Cotcopillar swallon-tail bintertly:Cecropia-TomatolVom Nilk-weed limtertly BampleSumimers, suakes
Free Hnw Platut Work-.. Nitriont sohtions - I'antLife-histories

$$
1+1-15 s
$$

 Gardens

\square164-166
 $166-170$
 dioxide Experiments
 Lessons in Plywiral simemro 176179
 Four simisuls 17:1-18s
 Chomial bixprinents - Appatatus $18!11: 9$
 Answor $19: 319$
 197
 $1951!9$
Alphambtica, Inibex $201-206$

 TIIE L.HTN: ANIM.A. Proutiviorer.
 $11 i$
 41
 TLANSiN: 41
 II
 II
 $1.5!$
 11.4

THE

NATURE STUIIV COURSE.

Object Lessons. - Nature study is the direct surcessor of what for a half-century has passed under the mame of Object Lessoms. The Object Lesson, except when misunderstood to mean information about objects, exercised the senses, but stopped slont of elucative ohsorvation. Sense traning is not very important as an end in itself; it takes on importance as a means to the training of the mind and borly. The Olject Lesson was usually little more than a merely perceptual exercise. It consisted mainly of looking and maming ; it began anywhere and led to no particular plare. It failed to train the child to become a self-active, reasoming investigator.

Comenius, in the " Didfaction Matmi" arsued that "people must be taught to get their kmowledge, as fir as possible, not from books but from earth and sky." A century and-a-half later Rousseau took "Emile" to mature but left him there. His discipie, Pestalozzi, realized and taught that the teacher's art was needed to suide "Eimile" to see and understand nature. Then it was that the Object Lesson, as a subject and means of instruction, found its wity into schoob curricula. Froebel followed and tansht the child how to act upon nature and through observation, action and reaction, to obtain developmont, freedom, posimesion of his powers and enjoyment. The Froeloelian spirit breathed into the object Lesson vitalized it, and stanted it to grow as though a hush heap had been transmoned into a inamiful, living tree. The change was so great that the lesson received a new name. It was called Nature Study.

What Nature Study Is. -The new name has the advantage of being easily, as it is frequently, misumders to be the learning of a mass of facts about natural objo Nature study is muturol study, that is, studying by mate methods. It is inteflectual, physial and monal developmin by and through purposen ; intom and reaction upon envin ment, guided, so far as need be, by the twacher: Momoriz facts about seeds and flowers, birts and inserts, chonds rivers, from spoken or printel worls, or aven from piatun has no elain to be called Nature situly. Juformation con from Nature Situdy, and that or conjoyment. nsually heth, m be what the child sereks; but firon the thacher's point of wi the vitally impertant part of the lexson is the series activities put forth by the child. The werbal or pictori descriptions, sommetimes served tu children as Nature Stue lessons, are only the expressions of some othor persin nature studies. In many lessoms, pen in grod lessons, it na be unavoidable. or for valid rasons adrisable, to give son information. but to the extent that second-hand knowhedge used to that extent the levion falls short of being real Natur Study.

The following is quoted with permissinu: "I hat a dozeno fifteen cardward boxpe, earh containing a sroup of relater ohjects. One held a ripe stem of wheat and a stem of each of the other cereals; a second had a sample of each of eisht kinds of nuts; a third containol a number of pretty comal. fiom the South Pacifie; the fourth held a cotton bath, a silk xomn. a hit of sheepskin and plants of tlax and hemp, Each box servet! for a serice of theer lessoms. I heis articles up or passed them armen l held the them and had is when aromis, sibe infomation about made dawinge whine to me in answer to ghevtions. I
 there componitions. We all onjoyed these lesoms and they won us a reputation for gool Nature study work
2.s the disauderstound al ohjerts. by natural velopment 11 elliouncomorizing ouls and pictures, ion comes whth, m:y tof viow series of pictorial re Situdy persims' s. it nray ve some lerdse is Niture
lozen or related each of f eishlt comals a silk

Id the about they

I see now that it was only information and composition. There was no investigation by the pupils. What little investigating was done I did myself. The lessons, however, were good of their kind, and I continue them under the name of object lessons, but I do not now call them Nature Study."

Nature Study versus Elementary Science. - The difference between edncation by nature and information abont nature is easily understond ; it is more diffienlt to draw the line between Nature Study and Elementary Science.* Nature Sindy is simpler, indeed someone has misconceived it as "science in words of one syllable." But the difference is not, in simplicity or in the subject matter of study. Science is the ordering and organizing of related facts into a system; it deals with facts that are selected for their fitness in one or another schme of generalization. When the learner's interest centres on a particular dog or flower or toy, and especially "pon the phases.s of the individual that serm to touch his own life, he has the Nature Study attitude ; but when his interest is concerned with the class of object of which his Fido or geramimn or pump is a type then his attitude is scientific. Of the teacher's attitude, Prof. Bailey says, in effect, that when the teacher is thinking chiefly of the subject or subject matter of instruction he is probably teaching science, but When he is concerned dhiefly with the effects of the lesson upn the development of the child he is probably teaching Nature situdy.

In Nature Study the teacher's attention is focused on the learner; in science, upon the subject matter of the lesson. In seifucer the lesson is selected on account of its relation to a bonly of facts already tanght; in Nature Study the chilil's interest dominates the choice. Appetite is in sone respects

[^1]analogons to interest. Appetite for a particular food is an indicution that the healthy benly is prepared to assimitate it. Natural intorest is an equally reliable indicator of the appropriateness of a partiontar kind of memtal nourislment. In Ir. (iomsly's introfuction to 1)r. Bigelow's book - "How Nature Suly should be Taught" -he says that the author never tires of insisting upon the difference between elementary scien eand Nature Stuly, that the concentration of the attomion upon the universal aspects (the class relations) of objeets is an entirely different thing from the concentration of the attention upon an olject as a whole, upon those characteristics which make it an individual. "We lave been sturlying deat things so long, dissecting and analyzing telreforms, that we have well-nigh gone blind to the living side of Nature."-Morlye. "Nature Study is the creating and the increasing of a loving acquaintance with nature"- Birghore. "The educational value of Nature Sturly lies in its power to add to our capacity of appreciation--our love and enjoyment of all open-air ohjects."--John Burroughs. "All other efforts in education are futile till you have taught your perple to love fiehs. hirds and flowers."-.Johu Ruskin. "To put the pupil in a sympathetic attitude toward nature for the purpose of increasing the joy of living." - L. II. Bailey.

The writers quoted emplasize Nature Study as a means of d. orloping the emotional nature, and it would be worth while franing it ewn if that view exhausted the ground. The sorontific interest in nature and the esthetie interest are distinctly diffrent, hat fortunately they are not ineompatible. Nature Sully, rightly taught, is as good for the intellect as for the emotions, and it touclies the volitional and physical powers at more points than most other school studies do. Interest is the touchstome that determines whether or not a particular topic: or subject shall be introluced. Rut children's interests, though real and widely varied are fickle. It is com-
paratively casy to humer a child's interest in a familiar subject or to cxcite a fiash of interest in a new one; but it is quite another thing, and that the truly educative, to maintain the interest. Prof. James in his "Talks to Teachers" has shown how interest in one portion may be shed over to another part natively uninteresting. Here is the chane for exercising the volitional direction of attention which a high authority derlares should be the first ohject of montal discipline. Interest starts the investigator on the path; Will assists him to complete the journey. "The man," says Dr. Hinsilate, " who camot do anything but what interests him is only half a man." But remenber it is the exercise of the child's own will, not the " you must" of the teacher, that is ellucative.

Preparation of the Teacher.-In teaching seiencebotany or chemistry, for example-it is indispensable that the teacher should know the science, botany or chemistry as the case may be. In teaching Nature Study it is helpful to know something of all the sciences, but the essential thing is to know the child, to know how to guide the child into and througin the profitable activity of all its powers, in short, to know childnature and nature's methorl of training the child. No matter how much knowledge of science the teacher possesses, if he lacks shill in discovering or arousing the child's interests, if he lacks skill and energy to sustain these interests and to guide the activities which they call forth to educative issues, he will not be a successful teacher of Nature Study.

The need to emphasize the last statement is not out, of date. A writer in a nature periodical rerently stated that in a certain treining school the teachers maintain that knowledse of "other nature" must have precednace ower knowledge of child-nature, and that for thome whose yan's at sohool are limited the knowledge of the menates to asricultural success is more valuable than the development of the sensc-activity
throngh stimuli that appeal to the esthetic side of the child's nature. How dones this diffor from the comduct of a physician who, instiend of stadying his pationt and clomsing the hest available treatment and remedies under the circumstances of the case, were to sily to the sufferer: "I have hrought you a full stock of medicines; I have studied them and know that they are goof. Take as many of them as you can; all, if prasible"? The physician ought to stmly his medicines, it is true; hat he is useleys if he dores not know how to study his patients. If he knows how to make a right diagnosis his books can assist him with his materia medica. Even then, he must further stndy his patient to know whether he is administering the medicines in the most effective way. And so, in Nature Study, the matter of first importance and greater difficulty is learning the nature and needs of the child and the sojeme of suiting the instruction to such nature and need. 'Jlure are books in plenty to help him with the "other nature."

Chiddren humting a lost ball in a meadow adjoining the play-vand dixeorer at ground-bird's nest with four blotehed pgis. Their interest is aroused. They tescribe the nest to the teacher and inguire to what kind of bird it belongs. Unfortmate for them if he is scientist enough and unpedagogrial enough to saty at once: "It is a boh-o-link's nest." Better wore ho a grow teacher and no ornithologist, for then he would use thair interest to lead to some educational activity which would he far mome usful to them than the mere information they serk. Fint best of all if the teacher knows well both childean and livels. In that case he can guide them tor disorer the answer to their question in an educative way, and in doing sole excite them to ask and answer by research many other related questions. He engages their interest at the fawable moment to train them to ohserve, think, investigate and enjoy. 'Ihis is Niture Ntudy.

Definite Aim in Nature Study.-It is of thr highest importance that a teacher should be comscons. of a drlinite aim or purpose in the teaching of any suljent, since the aims determines the means to be employen, the choire of matemials, and the tests of the success of the tra-hing. This is resperially true of Nature Study, and mone the less sol Incoutuse the stuly. "my legitimately have several aims. Prof. Hoderes bonk, "Nature Study and Life," is bised onl "the things hest worth knowing." This view admits lessons on hacteria, sealeinsects, the economic value of the fond of touds and mohins. Dr. Bigelow's book, "How Nature situly should be 'Taught," is true throughout to its keymote 'lowe of mature.' He would relergate bacteria and seale-insects to the class in science. Prof. Mcriovern's "Nature Study and Romated Literature" very emphatically, if mot professedly. teaches Nature Study that the leamer may be trained to appreciate the beautiful literature that nature has inspired.

But in Nature Study neither increment of knowledge, even of economic knowledye. wor courichment of sympathy, should be given dominance over the training of the child in the moans of dincovering truth by the proper exercise of his self-activities. "The first work of edncation," says Presitent Blion, "and the last is to train men to think never tin thinking come by any compulsion from withont, it must always and inevitably be developed from within." Of lessons that pass the test of interest, preference should be given to those that promise the best results for olservation and reasoning. Of two lessons deemed nearly equal for thainius in investigation, give the preference to the one that offers the richer lameroulture or the more useful knowledge. When the aim ursed here is judiciously sought the others will be duly valized and that in their proper relations. The education of the head and hand is not here placed higher than that of the heart, but it is recognized that the heart camot be properly educated without
 it is drainable that a loy shomld feel any compunetion in the act of pressing a writhing earth-worm on a fish hook, what better way can that end be reached than ly lealing him through a proper incestigation of the hathits and general armoture of that amimal. The pupil who learned to admire the lemity and grace of a garter-simake, its harmlessness to mankinl ame its value to the farmer, will neither flee from it in dread nor pursue it with a fell bludgeon. Make the dominant aim tole training in the investigration of those things in which the child feels inn interest; the teacher's sympathetic treatment and thre trith itself will combass the heart-culture. The teacher who recomizes the unity in the trinity of intellect, fereling inul will, in short, who knows the child, will not gou far astray in the selection or treatment of the material of his Nature Situdy lessons.

Observation and Experiment.-Granted that the aim of Niture Ntuly is traiming the mind through the senses-or observation ant reasoning-it may be well to define observation at the outset of a brief consideration of method. Compayre defines it as that prolonged perception which the attention directs toward a determined olject. Three inseparable factors stand out prominently in any act of observing: 1st, arcurately noting what is presented to the senses; Ond, attending with some measure of interest and exercise of the will ; 3rd, correctly interpreting the perceptual elements. To observe accurately is to put aside prepossession, tw restrain the imagination and to direct the mind with singleness of purpose to what is actually presented to the senses. Siace perception and attention are factors in ohservation, it follows that training in olservation includes the taining of the powers of perception and attention. This kind of tratining is the antithesis of bowk-lourning. Book-learning as distimguishat fom thing-learning hats probably something
to do with the distasto for mamal balme. ('nltavation of the pewers of ohservation dowe moth to inembate a low of nature and to give joy to life in the comitry, and posibly a preformen for it. (See I)exter and Garlik's "Psychology in the Sichoolromm.") Dr. Bigelow tells of a phihathropial who wont aome New Fork temement women to the combtry for a summer holiday. Bufore a week hat ehpied they had all retmoned to their sweltering dity comps. On ingmining the reitom he receised the answer that they hat rome back lavime the time was up because "there was nothin' doin'." Noithor bonkkarning nor no-learning yualifies peophe to me ay the delights of comitry life.

The purpose of ohsmeration is not simply to tain the senses but to train the imlividual thromsh the semasis. Its value is not determined by the oljoget but by the mental attitude induced. In the first stage i - is the development of an image. "Until an image is fon. I in the mind it is worse than useless to take the next stop. 'lo ower-rmphasize. the importance of external presentation and to under-emphasize the importance of the resulting montal proluct is the: mark of much poor teaching."-Jackmen. The common exercise, writing lists of the names of things olserved in a given time, may have value for spelling hut it is not much use fon Nature Stuty.

The facts gained from obser ation are relatively of secomblary importance. "It is the power to ohserve which is the thing: it is the habit of observation which is to bre cultivated." It is a commen mistake for the teacher to state the result of an ofservation, or to permit the pupil to real it from a book. and then turn to the ohject to sumstantiate the statement. Pictures should not be allowed to usnep the plate of ajpect. A picture appeats to only one sense. and that in a symbolis: and more or less imperfect waty. (iuide the observations of
 their inferemees from what they olserve.

Ther term abservation is used in it fextricterl sernse, fas attention to experience in which we are ahle to mote canres Huld eflects, or in some edses efliefts only, but are unable th control either. The experiences in which wo control eanties
 In the formor case cirommanames are the mastor of the observer, in tho lattor thry are his servant. A stalent, for exmmple, olsserves that eloudiness is associated with alsionere of dew. In reasoming on the relation he remehes an hypothesi: We may tost lis hypothexis ley eomtimmed olservation, or mone promptly and usanlly more satisficetuily by an experiment.

From the Nature Study point of view the time to introluce an experiment is when the pupil's conscions mord of it arises either with or withont the tencher's suggestion ; and he shoula feel at least a partnership in devising the means of carrying it out. The performance of an experinment inmediately from the teachor's dictation or the specifications in a text-book, with the pupil's intrrest centered rather on the mechanies of the experiment than on its ontcome, is a math of poor teaching in either elementary seience or naturestudy. Prosiment Elion, of Hanvard, in a recent mldress as reported in the N. Y. Schon Journal, said in effecet that in spite of his former very different opinion he had come to see " that most laboratory opeations are ns frnitless in cult ating thinking as leaming by lowart words from a dictionary." Engigement in experiments for the mere purpose of making them has some value for manual training but vory little for thought training, whether it be called science or Nature Study. Experiments are "questions put to nature," but questions are, or should le, prompted by the desire to know the answers.

Stages of a Nature Study Lesson. 'Fhe hane. if a comphoted Nature situly lensom will nsually shew the following seypurnes:-

 matherial' of llomght. "It is gaxel to nese several senses in the moderstanding of one thing."-Cimernims.

Secomb,-Rumoming. Apprecoiving, comparing, mbating, secking canses and effecta, exprerimenting, Working ower ths 'raw material' gatherod thromgh olservation and "xperieno e. Making judsmonts, inferences, indnctions. Where practicable applying these inductions to new situations, i.f., making deductions.
'I'm. - Expression. Expressing earafully by the most suitable or the most available monle, or ly diffirent moden, the steps in the ohserving, reasoning and applying processes. "We cannot properly observe unless we can describe: what we olserve."-Mill.
"The education should be of the perceptions first, then of the menmory, then of the understamding, then of the jmigment. Things and words should be studied together, but things especially:"-comenius.
"The first essential is positive, direct, diseriminating, accurate observation; the secomd is to mukerntand why the thing is so or what it means; the thind essential is the dexire to know more, this comes of itself; and the final result is the devehpment of keen personal interest in natural phrnomana.." -L. II. Bailey.
Expression.-Authors' opinions vary as to the valt. of expression to Nature study and the nature of the relation of one to the other. Prof. Horge found that in one school the children's written records of their growing plants were of
little value, and were even thonght to ath as at thill to the pontancous interests of the chikren. Dr. Digsolow arges that the drawing and writing may le carried to the extent of amihilation of the Nature Stuly. But the majowity will agree with Pref. Jackman that "appropriate ant adequate "xpression is indispensahle" to the best resnhts in Nature study, and further that "it is of the greatest impertance that the expression shall be preservel," if it be of a kind that can be preserved.

Exhanstive expression involve several arts. A learmer's enthusiasm maty be chilled if he is compelled to express himself by a morle that he uses with difficulty. But the child whe has seen or done something in which he is interested naturally desires to give expression to his experience, and just here the competent tracher will see and use his opportmity to teach now one and now amother of the arts of realing, writing, pelling, eomposition, eolon-work, or mentelling in clay, card or wood, according to the suitability of all the circumstances.

For example, the children interested in the ground-bird's nest, referred to on page 6, will take pleasure in deseriloing the nest and the bird by speech, in writing a composition relating the circumstances under which the nest was found and how the bird's name was learned, modelli, of the nest and esers in elay, coloring the dhatwings of the ages and of the biol, initating the bid's smes, writing a pretion th the farmer to spare the nest when maping day ampes if the fledglings have mot left it, making a diary of the events in the life of the birtfamily, reating gowl perse or pootical literature relating to
 drawings, color-wonk and conclusitns into a buat systematie recend wenthy of preservation in their "Niature Starly lenoks." Imarine the zest with which they would then stuly Bryant's "Rolnert of Linteln" in thoir reatling-homis! In all therse
morelations. they would take pleasure and moke progress if their trachere kinws how to hath the subjects. His shill and diligence would be taxed chiefly in sustaining their interest to the lant so that the observing would be dome chaerfully if not rairerly, aml the expressive work witn comstant ain at truth aml beaty:

Correlations.--Not only do the expression and form studies-realing, writing, spelling, compmition, momelling, drawing, and color-work-naturally and easily correlate with Nature Study hut such sulpeets as gergraphy, physiology and even arithmetic may be taught in considerable part as Nature Stuty or by the Nature stmely methon. Gengraphy of the lome and its surroundines cimmot be tanght well in any other way. In Physologer, what children may learn from the observation of their own bolies, and of articles obtainathe at the meat market, and by simple chemical and physical experiments leaves less than half to be taught hy the lecture or text-book methot. For teaching the tech and mouth cavity, for example, mirrors are better than charts; for teaching the joints, the pupils' hands, and legs of fuwl, are better than the pictures in their looks.

In the Nature Study lessons many opportunities occur to introduce number work. The concepts of numbers and of the stimulard units, e.y., inch, foot, ounce, quint, etc:, should be developed from the comparison and quantifitation of real objects. Something of the Niture Sturly guality would be given to problems assigned thus:--l. Ol,aerve that load of hay passing on the roal; estimate its weight. By comsulting the newspaper this evening or hy ingury find the current price of hay so that we may extimate the money value of the land to-morrow. 2. Of what kind of wool is this flem mate? Xinte the widtli of the batrds. On Saturiay make inguiries of ally one who can toll you the prices of such flomings of the nails needen, of the cost of laying it dwon. 3. Eatinate the
distance from the seloollomere to yom home ley meanming low far you walk at, yome walal rato in one minutr. t. Compare the cost per llo, of bakiens heod with what it conts per llo. mande at lome. 5. Find the weight of water which fome ounces of beans will soak up. Compare the weight of the water abombed with that of the dry beans. Jhaths will ahsonth what per cent. of their own wright of water! Whenever you make the child an investigatom and maintain the inventigating spirit or activity to a dofinite result, then you are putting an impurtant Nature Sturly quality into his work.

Agriculture. Of the conrese in Igrienture, little else iv suited to touchling in publies selonels than what can and shon 1
 caparity ant claswification of snils, the unes of water and air in soil, and the means of cilenlating them, values and methods of dhainase, fertilization and plant-food, development and proparsation of plants, can each and all be made practical, introsting and edurative nature studies, mot only i:n children who live on the farm, but also for dwellers in the city. In adlition to these topies the farmers' chiddren can be grided throush a varioty of useful studies pertaining to domestic amimels, creps, amb orchard, to tillage and other farm oprations, the oborving being done mostly at home and reasomed about and expressed at seloob. Phenological records of wather, himbuspations, insert appearances, and farm operations maty lo systematically tabulated in appored
 unful knowherse, and afforl excellent practice in observation and classification.

Manual Training and Domestic Science.--From the point of viow that Niture stuly is solf-ativity exerted upon embiomment, Mamal Traming and homestic somence are specializerl suldelivisims of that, sulyject. White to the calsual
dherver their purpose seems to he to endow the student with certain kinds of mamal dexterity, to the true towher they culminate in the education of heal ami heart. When these subjects are properly understond and tanght they fain the learnens to observe, reason and express, and to sympathes with manual lather.

Most of the larser graded schools will prolahly be equipped in the near futme with manal training and domextic wernene departments. but the rumal selowh will fare litule wome if the teathers make full use of the oprertunitios offered by the farm, playgromul, farm-home and villag-home, and garten. Where the teachor gives the pupits the guidance and sympathy needed in the comstruction of phay-houses, swings and bars, the replacing of boken pan of oflass and wornout fromeboards, in showt, the maintainng of the phayeromm, buildings and enclosures in as neat and commoto a stite of repair as it is possible for a resumeral teath. and pupits to keep them, the chithen's delight in thoese activitios is exceeded only by the value to them of the eduation therehy gamed.

Farmers' chitdren usually ${ }^{3}$ o, and they all should. participate in the varied operations that make up the indon and ont life on the farm. The sehome may do murl towarts making these participations momer ellucation than they ustally are. The majority of parents eam be sut to sere the bearing of such losomss from the tandoris print of vic... and this will always secure their interest and aboperation.

Noedines, harvesting and thoshing takre place on every farm. These and other complex oprations may be. whemed if not participated in more artively. Eath step hats its methot and reasons, which, after ohbervation in the field, may be stmelied, discussed and expreserd in the seltatren,m. On one farm it tile-train is in comse of making, on another a sith is in construction, on a third a suake fence is giving place to a
wire one, ete. These may affind -ubigects of special studies to le repurnd at arhool by childem miding on sum farms, or if conveniont to the sthmothouse, the wheets of visits by the clas.

Then there are the indone oprations. How murh cam be mate of a chatdes paricipation in a brambaking if it involves obrerving the gualitios, quantities and treatment of the ingredients, ghentioning as tor the whys and wherefores of ewey step in the proses, roweding everthing in detail, experting to discuss it in shome and to compare it with the experimess and reports of others. If such "pportunity canmet come on a Satnaliy!, it is worth any beres or girl's time, provider that it will be expertly turned to Nithre Study acomot, ta stay home a half-lay th help wita the baking. Further it is paratiable to encomase ocmasional exhihits of buns and tarts, artirles mate of woml, carlboand and chay, samples of patehing, butwoholing and lomming, of plating, knitting and darnins, done partly wholly at home under parental instruction lint with the teachers kinwledge and
 and rasishs and, in somb easer, with illustrative dratwing Where there is a will there is a way: it is certanly wot

The School Garden.-Kiery whon, whether rumal in
 proviles for a :perial grant for erery well-engipped and

 twentieth of that arra. What the latumatery is to the teachere

 aged to cultisate a little phe at his or her an h hime on to

Laying olt the liakinen.
participate in the planting and enltivation of the family garden. An autumn exhibit held at the selooblhouse showing the flower, fruit, and vegetable prohects of the children's homegardens stimmates gencral interest in this phase of eflucation. In the City of Chathim, Ont., such an exhihit is one of the most important sedool events of the yoar. Group photographis of sehool chidren exhihiting their potted and hoxed plants are given on pp. 90 and 98 of Honlge's "Nature Stuly and Life." Showing these and similar pietures to pupils will suggest lines of ation. Directions for making schoul-gardens will be found in "Public School Nature Study" (The Ciplp, (lark Co.. Limited), and H. D. Hemenway's "How to make Schoul (biardens: " (Doubleday dt Page).

Literature and Art.-The term correlation as techically understond is hardly applicable to the relation that exists between Nature Study and the formaing subjects from Geograplyy to Domestic Science. They are part of it or it is part of them. But there may be a real correlation betwern Nature Study and Literature and Art. Much of the finent prose and poetry camot be fully enjoyed or understond by one who has not timethand knowledes of the related nature, and many things in nature are not appreciated to the fullest extent by one whose sympathetic vision has not been deepened by the poet and artist.
"The chilu" says John Burroughs, "does not conscionsly love nature ; it is curions alout things, abont everything; its instincts lead it forth into the fields and woods; it lorowses armund; it gathers thowers -they are pretty ; it stores up impressions. Boys go forth into nature more as savages ; they are predaceons, gathering roots, nuts, wild fruits, etc. At least this was my case. I buntel, I tishem, I browsell, I wandered with a vagne longing in the wools, I made ponds in the little streams, I slept under the trees, "te. I was but conseions of any love for :acture, as snci, thll my mimi was bromght inte, ontact with literature. 'Them I diseovered that I, tom, loved nature, and ham a whole work of impressinns storel up in my sulconscions self to draw
upon . . Anything like areurate or sciontitic knuwledge of nature which I may possens is of later date: but my hoyhool on the farm seems to have givell me the forling and to hase pint me in right relation with these things. Uf conrse writing abont these smbjects also derpens one's love for them."

The propro orler is nature first and then litroature and art. Cluarly ome of the trachers datios is to intronher, at the: apropriatretimr, the most heantifnl and the most spiritual roforences that he rant find in limature to the nitame-lessoms stmelied. A part then of the tombers repuipurnent should he a well-storeked repronioe of the mastropieces in litrature, and of the masterpieces in art, that relate to natmre.

Choice of Topics.--Pedagergically Natme Study stands for a mether of ceathing rather than a quantum of sulperet matter. A usctill coume may be made out of the geography, physulogs, arithmetic and agrioulare tanglat in the sohools. The facorite lesoms, howerer, particalarly for the yarager classos, will be based on animate matme and these are the lessons that may simultanemsly exprese the sympthies and train the observing and reasoning powers. Study of the effects of physual forese, and of experiments upon inamimate matter, will receive increaning attention as the classes berome mome advancol. Buta smides of topies camot he grated on the basis of afe or experionce. There are some trmothe alout a kittron of a star, fur example, that can be discomered with pleame by the youngest pupils while there are others that will eluche the seard of the oldest. The chnice of subipect will be detamined fhicfly he the interest the pupils have or call be led to take in it, and the atralahility of the material. Mr. C. B. Sobtt, thacher of Nature Simly in the Owwerg Nomal Fichen, says hat he has always fomm the interest of the childem the lext wide it the selection of material at loast for the yomger chassers. The mothed of treatment, ind luding the suiting of it to the ponditions, is under the teacher's control
and discretion. Sheek here and not in the: number of sciences the Warlure knows for the highest test of his efticiency.

The whole conviroment of the chald is the field of Nature staly. It may for remenience be divided and subdivided aml the sulnlivisions arranged with tegand to the order of the usual development of the dhildren's interest in them.

- I. Inivite Nithore:

Man: (1) Fanily and social relations.-. foud, recreations, etc.
(:) Wrometions in homs, farm, factory, fincol. atc:
(i) Ilumat physiohos:

Animals: (1) Honsiohoh peris and farm inimats.
(ㅡ) lifrls and heal widd ammals.
(3) Inarets.
(4) Cold-hlowaled amimals: turtles, snakes, froges, fishes, crustauraths, ote.
(:) Animal physulogy
Plant:- (1) Cuhtivathel athl with thowers.
(只) House plants ant surien plant.s.
(3) Fiurn crops, seeds, fruits, buds.
(4) Forrot. shade and orchard trees and lirnbs.
(5) Wreeds and immocent wild plants.
(6) Thadstools and othre inferiom plants.
(8) Platt sucieties.
(8) Vegratable physiology.

13. INANMATt: Nimure:

(1) 1 'immom whjects: sugar. Hatmol, leather, hatir, finl, chairs, houmes, elle, etre, ete.
(: -1)
(i) Wimls, rlomd;, ritin, smow, frost.
(1) Fimms of land and water.

(i) Itmosphere, water, soil, rocks.
(7) Solntion, evipumation, complensation, temprrathro.
(א) Climate. Wrather-recorth.
(9) Ainvity, rapillarity, cohesion, adhesion, heat. light, olectricity.
(10) Merhaniarl puwist, machimes.

The Number of Lessons. - How many lessons will it take twexhanst the work outlined? Jmmberls? Yes: thousambs. Ame some of them, if tatught ley the in stigatiom mothorl, with mosage attrution mow and agrain throughout at -inomit of the womans. Is theme time in the publice schonds to

A groom was hiow tor tain a horse be a rertain date to trot a milo in it given time. He did not look with romstorHation at, thr quantity of fornd placed at his disposal and sily : "*hall I havo to make the harse cat all that hay and grain hy the date mentimmel?" Not at all ; he had a cloar idea of the afferet to loe prolncerd, and his eoncern was it make such selece-
 emoditions whirh wonld praduer the deximed results. In like manmer, the skilful Nature Sumly tracher, from the sulgect
maitere available, seleets steh topies, and nses them in such manner as will proture the desired effect remen the chith. His eyer is on the chilat rather that on the eirele of scidenese. His aim is mot to make the mind fat with kmowlerlere hut to make it, and the lexly tow, strons and efticient for usetuluess

Graded Courses of Study. - (inallend commes of Niture Numly are mow alopted in many of the Provineres and states. Framers of the two Comeses printed in this lowe hawe had the bendit of the experience of several premeressors. Nome counses go further than those of Ontario and Manitoba, inasmach as they inticate mot only the work alloised in carls grade, but alse in carlh month of the gear. Tranhers who think that such conrses would help, them will fitm onte in Crawfort's "diuide to Nature study:" 164.179. It is comstructed in five vertical whmms, one for carh reading clase, and subtivided for antum, winter and spring stuly. The topises are arranged in sewen serios: platit, animals, rath, matural phomomena, celestial bention, the wild himsilf, and farm and street processes. In r. B. Senttis "Nature study and the Child" is given a detailed conrow whel has been used in somur American
 montho, and vertieally into colmmes healed:-plant study, amimal study, earth study, physies, sky and weather study, -

 natme work and its relations in a series of steps eowerin! the first mine geats of selhose life.

The teacher who tries to follow any of thene connes int tlexibly, even the lowt, ome, will take the life out of the subject.

 achool, and dre a vailatility of material shomble detomime the choice.

 puilted

 athl form work

 rat! |at! !

 *hilhern elo ilt hionil.

 thern suhyonts.

Daily Preparation of Lessons by Teacher. - Dr.

 Armold is siail th have exresed his withdrawing from a pleasiant emplang to prepare the mext aysis lesoms on the plea that he dovired his beys to drink from a rumings stream rather tham atasnamt pool. The remark has given form to one of the mont familiar perlacomical maxims. Daily preparation bey the teachor combibutes much to the eflicient reathing of amy and every subject in ans srade, hou it is of vital importance io - Hinconey in Natme Stuly teathing. It should be impressed. lowever, that a mere book-preparation is of companatively little bencfit. Referring to the illustration in the preceming paratraph it is obsinge that men prepation conlal be complete withont the field study of the roots and thowers weformed to, ahervations of the mom on the evenings named, and examination of the hores pump. Remember the rule: Do rourself what you imtend waide gour pupils in dwing. Bonks in the teather's hamb may play an important and ussful part when they guide the teacher's doing hut mon when they are substituted for the whervance of the rule just stated.
Aids to Teaching Nature Study.-If thoy are kept in

 their proper phace, useful assistance may be derived from ium, terrarimm, collections and raty made appatatus.

Books.- The teacher should have acees to, aml know how to use, such sciemtific mamals as (iray's "Botany," Jordan's "Vertehratres." Chapman's "Birts," C'msteck's " Insect." ant Crosby's "Minerals." He will be benefted by reading and rerealing treatime on Nature siduty teaching. The best of these

[^2]A bow consulted by the pupils which by statement or picture tells them in alvance what the fowlore has phanmed that they shall learn by imsosigations. defeats the phapre of -íe !

 will assist the teacher ingiving directions anl anking ymelions: but it te!ls mothing that the pupil shomhd find out for himalt. A pamphate briofly treating thirty-six tophos on a similar phan was prepared for the Nature Surly sturlonts at the Ontanio Agricultural College, ${ }^{2}$

McGowern's "Nature Study and lielated Litrmature" : $11 d$ Mrs. Wilson's "Nature Realers" give prose aml puetical passages of literaly merit which may he ured in fonmection with the various Nature Study lessoms. F. (). Palynes "one Humbed Lessons in Nature Sudy," Mre. Wilsonis "Nature
 Science-Teaching" are books of Nature Simly lessons.

Reatings from Thoreau and Burroushs, Ruskin and Richard
 increasing number of other writers of hature litorature haty affind good examples of literaly treatment and sympathetic insight.

Pictures.-After pupits hate attemped to express their ohservations in drawing and color, it will bemetit them to bee shown how professional artists have treated similar subjur. soveral of the boks named abowe are illostrated. Atany mature pirtures in batek and white and mon are oflerem at ome or two cents each by the Porry and whom doalers in piotnes

[^3]Models. -Mondels in clay or other maturial mate hy the pupils may be compared with the phaster omes ohtained from the deakers in such goods. 'The pupils' montels should alwates be mafle from nature, never from the parchased ones.

Magnifying Glasses.-One or more magnifying lenses will be found very usciul ; they cost from twenty live cents 10 a dollar, aceorling to quality. An opera-wlase aits greaty in the study of birds. A compround miconerpe, like the unabridged dictionary, would be used bere ley the teanher than any one else and that chiefly in the prepanation of lessoms. Occasionally it would be fomed useful in domomstrating some point to the chitdren or in exciting womler in their minds. A satisfactory microseope, fittel with one orular, two objectives, and revolving nosepiece, can now be purchased for from se: to $\$ 30$.

Aquarium.-"No one piece of Nature siudy apparatus," says Prof. Horde in "Nature Study and Life," .. is capable of serving (${ }^{\prime}$ many purposes as an angarim. It may be used wet or dry ; filled with water it hoomes the means of pranetical acquaintance with all kimeds of aquatic life, both plant and animal : managed as a vivarimm or terarimm, it makes a fine insect-breeding case, or fermery, or pare for a collection of living mosses, or home for frogs, tree-froms, turtles, satamanders, smakes, slugs, lamd-mails." Even this list dues not. exhaust its uses.

Suall aguria may be improvised lop cutting the shoulders off lawge bottles; 'sem jars' with wide meks and tish-ghohes serve the sime purpose. The unalal form of an agarime is an oblong box with thetallic angles and glase sides and botom. A convenient gemeral purpere size is 8 to 10 inches wide, 14 to 16 inches bomes. and 10 to 13 inches deep. They may be purchased ready made from dealers or male to order by any tinsmith. The materials required are strips of hoay angle-

 with purr raw limserel nil，to comsintonly af stiff futty．Niar
 the inside eombers：these protect the coment athel hatore the ghase sides．

In stocking thr aluariman start with two or three inelas of Washerd same into which plare somer water platuts suth
 ronts．Cise care in filling up tho box with watrer so ats to aroid displacing thr plants．Ablat tandes，watror dats．
 aljustment of animal and groen plat life the wator will
 to supply the neres of the amimals athl the catmon dioxiole
 is temptation to pht in too many perimenc of butherase but patioulatly ton mamy amimals．Eirll full－sizal mammw or shimer，for example，shoulal hase a haticallon bit watere

 put ia mone water－smails．

Frogs．small shakes，tree－froess and salamanders ram he hept
 dises of suitable size．There shomlal alwares le summ wallor in

 usually take aliws Whert furl atritiolitly with hits of firesh

Apparatus. The time tw make an experiment is when the now for it arime. Whether true or mot of siteme, it is true
 mere sake of makines thom. The pupits should participate, if ponible. in looth the 小evising and the emstruction of the apmatus. If there arixes the durstion, for exampe, whether datamed soils warm more quidkly than undmaned ones, the temether intcad of telling the pripis how to find the alswer axperimentally will lowl them by sulh it way that they will feel to be discoverers of the mand of making mat ure decide the puint. It it be desired to le:m whether yomig plants
 mined to suspent tine stroms of grass on thin sphaters of wod at an inch from the end attached to the leases while the free eme acts as aswinging pointer, the comstruction and setting up of the appanatus should be dome liy the pmpils meler the tramers supervision. The that value of the lesson at the Nature Stuly stage will then be greater that if an expensive amxammeter had bern used. I'mler the stimulus of interest begotem of the desire w find out or prose something the exercise of devining an exproment and constructing the appatus is often mome ahnative or mere valuable than the komaledge sai d. Vorey little factory-made apparatus is neroded in Nature Sturly wowk.

Collections.--The children might well nigh convert their schoohomm inte a matural history musemm without doing much real Xatme Nitudy. Mominted skeletons, stuffed skins, embahed corpose, pinned insects and dried plants may be very uraful to pripits at the stare of seimentifer classification ;
 and living animats. 'To there puits the work of conlleating is Wetter than the colleetion mathe. 'lhere objects shombed mot

 minerals, weends and injurions inserts. The antistic momenting
 education that ain be deriver from them. Onr prety wild flowers are not mentioned in the list bremase it is better to twall the gouth hessons on protecting then than onn divines them. The killing of ingurions incerts ofloms opportunity to thatel hmmanems in the meersatry ore permissible taking of life. The writer heard of a lparon on the grasshuplore to which the pupits had bought the sperimens. Sompal of them helli their haphese captiose alive tamsinad with pins.
 quality of Nature simly. The argment is mot imtemded th diwemage collentine on the patit of the pirpits; on the contrany, the practice of havins the pemits din the weressary collerting camot le tow strmaly commentod. Thay hould be talught how to colloce proproly:

Collections mate by a disw are not supposed to be for the
 chidren in the tidels ur words in pursuit of a detinite ednat. tomal ohject. Some of the rewats ate sellicetraining, mental amd plavical exhilatatim, adyuintion of ta-tes that will contribute to life-big anjoments, and experienoes that will
 dics should enjor the phemane and benefits derived from donge its own collorting.

 promerallion

 whers in loms lacemsm. whilr tho milky whit alome wats

 were intervol, and the valaes of the differoul sinds fon shate or shsiar making wore eomsidered.

 homks. Libformores to the majle in soms. story on int wore

 ate, dome hy the ownere of the lowk. The the sucalled prate-

Imestigation stadies sul difficult as theme could bot be dome
 study are tow dillienlt hat. Breatuse the tratmont in beromat
 Perlaps it is moneresiary to whernd lorer that while the
 the scientific attitude of the adult stadent was unamodable.

Examinations. - If these rerords are strictly imiliful aecounts of what the pupil has dontr himself, the? maty he used as. the basis of a partial examination. Compmaition, writing. drawing and other atts maty be jutged from the Nature study rerord-hooks but Niture Study itself wry imperfectly. Still less can the efficieney of a elase in this sulgeret le tested hy aral of written rexaminations. These maty tont knowleden but Nature Studys ains are to ereate and fostor intorest. Lo
 sympatly and happiness. These results ramot be measured by written exaninations, and only in a very limited way ly the term records. It is rasiop to show how examinations and prizes may work injury to Nature Stuly than lo show how they may benefit it. a contention that may be eramted withont denying then the slightest use mador any circumstances.

 the pripils, summarized hy the wachers, and forwitaded to the Education Jopartment for compilation. He tontifies to the
 and indidnatly for the use of finture stumbors of the biohergy and metcornhey of the Province.

"Natre: Stios.-The buting, mamination aml stmly of the

 for English emperition or hawing exercises in all grates.
" In selonoly with pupils of surbral grades muler one teacher (as in must rumal sihmol, many of thes lasums mave protitably engage the
 divisions of the selhol rial take patt. A skilful teacher wath thes give

 whipet lawen given th the highest rlase call than, to a certaill extent, Ine mould at gomel ahiout lossom fore all the lowser elisses. The older pupils "ill sare mone allill think mone.
"It must be remombered that the momorizing of notes and facts morry stated to phimits is strictly forbidden muler this head. Sileh momorizing is purve crant, alll is injurions instead of heing nsefnl. The tracher may mot have time to take up in elass evory objeet indiated in the Nature lessons of the connse. In sureh eases the pupils slomald be givell two or three objects nearly related to the typical spereinen "saminel in sehom, with directions to seareh for and examine then at home, as illatmaterl in the specimen elase lesson. Withont much remondinure of time the tomelher ean note that this work has heen homestly attompted to be done ly earh pimpil. The lossons munt be direct from Natime itself, Int maler thr ghidance of the teather, who "all save tille' in bringing the pupils to the point desired by his more matmed exprovence. They are intomed to trath the observing and
 the nature of the worlh whirh immerliately smonnols us and which is
 This knowlerler is so men power wror Niture, from whith we have to "in omr matorial existemere. It is also resential as an element in any ther and uswful system of philosophy.

- More at ress has beron latid here on the mat mal history of each seetion than on elementaly physirs and rhemistry. Not beeanse physical phemomena are less important ; bint bratuse the elements of these
 "heap and wroll ilhst mated gnides to practieal work in them which will Well suit a sedtom in Nova footia as well as one in Eingland or in the
 tan: wetion, wor in maty whem of itw seientatio eharaters. The teanher, then, mut berome a stuldot and master hionself ; for sumels earreises have secial power in develnping the habit of acourate

 1901-the Minimha Progromme of Stmelios underwent revision, or at last rephbliention, when but slight change was marle in it: Niature Nituly comese, in fart, the changes were arnfinel to the sulalivinion of physiolugy, hene it may be asommed that, the conrse has given grond satisfaction in the Prairio Irowince. It is supposed that a parallel statement of the: twa commes, with shegrestions for teaching them, will he helptal to Nithme simly trachers. The work of the five Forme in the: Ontarin comme is co-extemsive with that of the rightignder in the Manitobin onfe. The terme !rorle is used whh the same menning as yerer in several of the Anmrican cmricula.

riENERAL

Ontario. Fiom the chaterer of the shbert the surse must be mone
 hesu-sentior rather than preseriptive. It may be that, owiur to hat

 Books for referonce and applementary reating humber, Hetteve: the

 tu the viryitur romblitions lolv will.
 followinis:

2. Jephrsion:-

 be the following: -

 lillef.
 exprexion wit it.

Obsemation work of this gralle shomblererive the following moti-

 pateon the erhool programme. Tapirs not dirally within the range

 he read hy ן ן

The work of diates Thare ant lione slomblereive the following extensions:- -There shombld be greator emphasis plated upon the pratical site of the work. Consibemble attention may be given to
 tical application of komwlentere. While retaning the spirit of Natnre
 arrangement, a more syt ematio tratment and a simple classitioation.

The work shomble similar in thametre to that of firathe Five and
 systematic heatment amb classitioation.

The relation to the practical affains of exory day life shomblat mate mone prominent and as mell oppotanity as praible shomld be given to mamal work ly the pupils, e!t, makinif simple appatatus, ferfoming suitable expertiments. rete.

The: interests in these wrales arre direrted more towadi reomomic valurs-towatel the romtomlins of the furne of mature, wwam the moleostamline of wherome firte, and towame the making of new aplioationcof phesical painiplas.

Freedom is the key-note of these gembal directions. The range of the particulats will be fomm tol be so extemsive that teachew will sehtom tind it desimble to go ontwide of them. The chidrens interest and emvirmment rather than the preseriptions of the romere are to be the detomining agents in the selnetion of tupice. There is mo danger of the teather
who studies and yichle for the rhildren's interests being carried into a gronve by his own favorite science. If any teather feels such fatvoritism drawing him strongly he camot do hetter than to keep his eye on the list of topies. It is a question whether he can make his best mature stuly lessoms on topics coming within a serience he knows well. The answer is "Yes" only when he knows the child and perlagogies well.
 appearance and labits of pet animals, their cane and fome ; domestic animals on the farm, their catre, hathits aml uses; birls, their ursting, song, form, migrations in the atuman; metanorphosis of a few comspic:nous hatertlics on moths.

 plants in pots; buls, their prepuration for winter, their development ; antumin leares, colleccions, forms, tints: aromomic fruits, collertion, forms, how stomerl for winter, froit as serd hohere, dissemination of seeds; roots illul strms, mise, compurison of tleshy forms, how stored for winter.

 the farm during winter ; winter surts and som ial life on the farm; the variel operations of :pring time; ruming time as awakroning to new life; efferets of smand moistmer on the soil.
 tional work in Natme Stuly.

Ohservation of partionlar forms of lame and water, as hills, valleys,

 antivities of lome amblionity, the fiam, the shops, the filetories, things brought to markit, foml, milk, water shlplly, fholtor ium

 progeres of the smin from smmise to smase ; whemation of pesition
 motion-; rith, smow, hath, ete. storise of child-life in other limds with illustrations:

 drinking, weathing, sleeping, and reanlines, for the furpone of forming woul hathits.

In the preseriptions muder Composition, Arithmetie, Art. Constructive Work, and Clay Monklling the correlations of eath with Nature Study are emphasized.

 attomend.

3. 1 stmer of a fow commom trees of the locality, sumber the ashleavel mapla, ehm, ash, the bawhom, the withew and the poplate.
 ete. Their value as to beituty, shame, protection and woml.
4. The plantins, hy earh papil, of a few sumblower and bean-seeds fur the purpor of beromines acematuterl with the bergining of plathe life. Reforenee blaty be male to soil, moist me, temperature and soitont.
 the light, ret.

 the foeling of ontermhif and persemen interest.

Avimat, Lafe:

 pupils with particular birds.
2. Storites of hirels.
3. The ponltry-yad. Fombing and rating for the hols, mathering the eggs, whemving the mother-heon and hor finmily.
4. Birds in winter.
 etc.
6. Stuly of simple life-history of huthetly memh.
7. Comsersat ioms alumt Jomestir pels of pirpils.

9. Stories of amimats.

 distaluce.
2. Observation of the weather 'The winh, their dirertion and what

3. The sull and the moon.

Pdantu Life.

 ()ne.
 1. the planting and cance of his and of her own.

 time of latianf, Howeritig, etr.
4. Acrpatintanme with at few of the more commen plant. of the

5. Collenting, arranging, monnting, skelthing aml annpating of typual leares.

Animal Life.

1. Ohservation of a frew of the common bime of the baitity, partians. larly the pigem, wild duck, wild wome, and the paitire chicken.
2. Incidental ohservation of the binds of the district, is in frade (one.
3. Ohserving the hathits of the atht, here, wasp ant gratsohoppres.
4. The stndy of the dog. Findelity, commare, maselti-h devotion,
 The dog as a companion ame playfellow. Gianes and tribks of the olog. Stories of dogs. 'Treatment. The wolf and the rogote.
Inanimate Natide.-(This work ment lie takin.)
5. Hew. Whare fomme Where not fomme: Whenfomme:
6. Frost. The erystaks. The frost pietures on the selhent wintow. The winlows of a deserted homse. Frest and dew. Firns illul mon

7. Snow. Where show romes fiom. Apmanatue of the diakes. How snow beantifies the earth. The enjorment smow hings.

Snow in relation to bived, animal and plant life. The children of the Northland.
5. Learning to read the thermometer.

The work in Drawing in all the grades is sulxtic I into Pictorial, Constructive and Decorative. The Pictorial part is further subdivided into "Thought of Nature" and "Appearance of Form." The finst sulnlivision is hased elosoly on the Nature situdy thronghout.

All the work in Geography up th the Fifth Grade and the work in Physiology, Physices and L!fric.nthire thronghout i included in Nature study which, in the higher grates, is called Elementar: Science.

Animal Life.-Comparative Method.-- Whemever the comparative methend can be empheyed its use is stromsly. reommemded. Comparion includes comtrast, that is. the ahservation of differences as woll as of similatites. In object: that are alike interest is excited by the points of differenees

 they are dillemont, hut the rhilil to whom he manle the remark could think of only onc particulan in which they aro alike, viz., that they both moml water.

The artivitios of per imel domestio animats appeal woy strongly to the interests of the youmser pipils. In one of

 It is usually litale trouhle to havo a dog homeht to the sehoolroom for one on two lessoms of dieret olsomeatom: an athlt cat is less obliging. althomgh somb trathers hatre shereenled in having both at the selhot at the same time. It is mot hard
 cat is manmed in the prexerphions of animal life for (itatle Fomr,
 given here.

 foblowing. Fixamplas: exmane the rombine of the doges bolly alld eompare it with that of a all. Whath is soffer,
 whiskers? Whenthis is satti-fletority di-jomed of the pulpils

 whiskers. The ronghome of the ome mas le obverver hy

 her pury in dank holos atul womes.

Compare the tombuse of the dorg and cat as formetherss and moisturs. It will heremerted that the eat has a mough tongue ant the dow a simuth wet one. Comtinue questions to bring out the ans of the roughores in seraping fored off lenes
 their foxk and numburs of eating and drinking, and low they use their feret to set or hald foral.

Reypire a comparison of wes and claws ading to a diseovery of the number on the fore and himd a..nls of each, the hatrluess and rongheses of the wkill of the dugis tores, the shampers of the eats clats. the sheathe of the latere Follow the observation up with reatoming wherever pussibik. What is the use of the shamh! Of the thickness of skin umper the dogis tore! Why dones the cat nerd sharper chaws than the dog? (Fool-hmang and escalpe from pursuit.) Require these diffirmeses to be related to the habits of the amimals. Discuss methols of proventins eats from preving upon robins and other some-hith; sugest, for example, the experiment of putting: a lu.ll on a ribinen to be died around the eat's neck. Compare doges with cats as climbers. What are the differences betwern the ways that boys and cats climb trees?

Question as th the eyes. Direct hat a eat be taken into a dark rom for a time and that hore eves be obserwed when she is homght to har light: that the same be done with a dog. The experimentor will mote that the large, round pupit of the cat chanses tha namow vertioal opening while the dug's changes anmewhat in size but mot in slape. It this stace you may have 1 wive information as the thelation loetween the area of the pupil and the amount of light admituen : then the class maly proerel to reason out why the cat can see better at might than ther dog.
 are ploas.al, and when they and atory on frishtromb, by thes somuls that they make, hy their hatir, hy the mosimments of thoir tails. I'ell how they try to defend themselves when they are attacked.

Compare their mothorls of phat. Ibore ome cat play with another? Durdorsplay with earla wher? Are they smilanly fond of the homse and its inmates?

Compare kittoms with puppies. Are both sperios blime at first J Does the puplos' monlary raty them in lare month as the kittens' mother domes when sle wishes to hide them?

Infommation may he givan that can hre used as a starting
 tell the pupils that the wild mations of the dege surlh as wolves and jackals, live and hunt in moivy parks while these of the eat, such as the tiger and wild eat, lise quiot, seceret, solitary liver, and then set them to disconer how these trats come out in the domentic dorg anm cat reperetively.*

Comparisoms as to form of ears, epes, hostrils, hearls, and limbs may be mate ; questions maty be mased ats to which can see, or heat or smell better. ('omplation of the orsans, senses and structure of both amimals may lee mate with those of children. The companison of the patt- of the cat's or doc's fore legend foot with the patis of the ame and himel of a child alwits revoals ervat sumpises to phe childrens. As a rule, studios of structure and of structural diffiremes, except the most ubsious amd impentint ones, shonkd be deforved for consideration in higher dasses than this ente. In ungralled schools all the clawiss may simultameonsly sturly the samme animal ; note the exerplent sugrestion on this print in the general directions for Niature Study in Novit sionia, plase 35. The vounger pupils maty he sturlying how thr ratu

[^4]climbs a trere, whild the dilest omes are trying to diseovel
 the rad of the oh-orving and compating bing in storics and literat ure and piotmere relating lorlose atme cats. Take first the childrens origimal storias of dess athl ats, then stories from bonks, stomes of Fistimm dug-tams in the Klomblike, St.
 Newfonmdinuls resening drowning chidhern, Wordsworth's

 "To F'lush." Jiallie's "Thur littru," rte.

Aftor these olsmations and comparisoms the children whos are allvancer? enoush will read these starios to their selomelmates with an interest anl expressiveness that seldom marked their ordinary rearling-losins lafore the intronnetion of the Nature Sindies. The stmies, omigimal or secomd-hand, which they write or relate will aflorl imporing pratetice in composition. 'Therir taste, if mot their skill, will be cultivaterl by showing them pietures of degs and cats by Jandseer and otlary Erox allints.

Rabbit and Guinea-Pig.-In similar manner other domestic animals such as the horse and con, the sherp and pig, mathit and gumerapg may be compared. Lessoms on the cow and rablit arr given in "Public Schowl Nature Stmly," pp ㄹ.2-33, alon in "(iuide to Nature Stuly." An exhaustive study of the rablui, elemmentay and adsanced, is given in (1.13 . Scot's "Niture Smly and the ('hill," pp. 38-88. The guinea-pig is easily kept at the schoollouse. It is sure to be a fatorite with the gomerer pupils who will take great
 othw limus of watable forl, and olsmering its hathits. While like the mathit in many reperets it differs comspicuonsly in the terth, upper lip, "hishers amd ears; further, it has only three

toes on each of its hime foret and mine mome on earlo of the front ones，und it lacks a tail．A rall it lan：five tensom it．s fore feret； the two hindmont ones，its＂thmmin．＂arr apt to le：werlewied．

 out so that it call sere as fill lobhinel it as the malhit withont turning its lowal？lone it mose its mose like the rablit？ Why cammet it jump，se fir？What sommels dones melt make and what flo they sisnify！Wittel the hathits of the amimals to olsserve and compare the uses they make of bats，ryes， whiskers，nose，teeth，fert．

The remark may be mate in this eomection，althomin it bears upon the work of a highor groule，that childien in examining a rabloit＇s teeth are liable to sulbune that the two uppergroved incisons are fome torelh and tornolend two thin incisors in the immediate war of the growned fome ones．The rabhit has four incisors in the up，faw and two in the lower， and six upper molats and five lower oblus on eath sille，making
 above and two bolnw，and twe promolars and si mulats on each side，twemty in all．The information may be given that rodent incisers are coworml with antanel on the formt site only and that the softor dontine at the lanck weals away mome easily than the commel．＇The：pupils ram then haten how thess treth argnire their ehisel shape．Chilhern in the tiont．grade take more interest in the halits ant antions of amimals，the sounds they make and the atliections they show，tham in their structure．

Birds．－Bird－life is attractive but ditticult．for hohl under that kind of comtinums and commedent whemation that is most elucative．Bucmalge inlivelaal whervations of birds
 tion to bird－life，movernent and sang，whon out with children

 of timid onms : kmown a callaty th be frightumal to death by the exnberant intorest of at het of arhel childem.

Insect Life - No other insert in rasier to rear in the

 diet of lolluce ; ame of them dia of stamation rather than

 formations take plate in the halimays.

If yom hein of :mer trather who has recently mised silk-

 more than will he roprated fon the tollowing sping's supply.
 objective tanching of the silh－worm．

 rest it in a taspent commanin！s some swertented water．She
 sureress of the exproinment as she wimmosed the liguind

 at this stare is the creation athl fimbering of interent in phant－ life．Sume promoms miatilio the impul－e to phrek prelty flowers for the intermat rofared to．＂Jhe lone of a llower in the herat of a chiled is the highort thiner that Notme Nimly
 can take its plare nor ronnpare with it in lite value．＂－／lonlge．

Ma－t thon mamed all the hiats withont at emm？
I．owed the woml towe alul lift it on it－xalk？

> - L'umer:som.

 the best way to serome this inlomest is to give the chill it sense of propritership in a phat，ant ly presenting him with
 showing him how to murse it into vighous growth．Phrane plants may be kipt in puts or planted in the lame garthon if there be whe．If in puts thry maty be lorousht to silnoll on
 Is it tow much $\because=H^{\prime}$ the teacher（1）promise to mate it tenr
of visitation th the childron's lwome gardens? WindowGandrains in the sidhal-romm may be mamaged so as to give eanh a proprietary intorest in a plant. If there be a scheol garden the whiget advomatel may he masily manded there. But ly some means or other thy to hate coery child in the primary stalles cultisate me or mome plants of his very own. Note the methents reformed to in the parigraph on The fichood (amalon, pare 17. Thene who are ohd emonsh to write may knep a diary of the growli; fommer pupils may report imputank eronts, sumh as the showing of hums, the opening of blemomis, etce, to be reconded by the teather or a monitor.

Recosnition of the common trees of the lecality by their most compricums: featnes is eflailly interesting and usefnl to pupils in the junion and intermediate srarles. It is enonght for the juniors to dist inguish maples from oaks and oaks from elms, etr: ; the oler oncs will find suitable problems in recognizing the different kinds of maples, and oaks and elms.

Arpuining a superficial acpuaintance with a few common d organd and romeside plants will also prove interesting and unful observational exercies. A selumi-inspectm satid to a Part II class one day: "I will give you ten mimutes to go out into the yand th collect and bring in to me one laif of every differme kind of plant you can find." When the time was up eimel of the mine children had a handful of leaves. They stowd berwen a lons bends and the plationm, and laid therir specimmins on the later. One child was called upon to laid up a le:af while the others sonted ower their lots to find one like it. All of that kimb wore laid on the bench behind the ehild that hild up the eprecimen. Then another chikd wats called on to luhl up a loaf, which action wits followed by amother asemtment. Whan the exmerise was thithed the long beneh hold leaves of wentyone different kinds of plants
 looking school yaul. Tlrey kinew the name of only one kind

- What was catnip. Two other names were tanght them in the course of the lesson. This exercise, with variations, might be repeated several times with the use of a constantly increasing list of names. The chillren would, in a few lessons of this kind, atepuire an interest in a dozen or more common plants.

Both the Courses of study properly rmphasize the cultivation of plants. Conduct this part of the wowk with considerable thoroughoss and so that intorest, skill, and knowledge will keep pace. Make it the contral part of the plant study in the junion arules. Devise some method of working in the principle of individual ownervip. Krep an eye on the other suggestions of the programme. In the romen of the seasons 'pportunities will likely oceur to ohserse in conspicuous examples most of the phenomena mentioned. Pussy-willows in the spring, dandelions in the summer, and crimsom leases in antmm will athract the chidern's notice whether the teacher speaks of them or mot. Why not be generous with your sympathy, participate with the children in the enjorment of these heautiful natural objects, and turn every pessible necasion to eflucational aceount.

Inanimate Nature.-N'tudies on direction, weather, dew, smow, thermometor, viver, valley, sky, should in these grades be ahmost purely observational. Percepts, images, experiences are in order here. These prepare the way for generalizing and experimenting in the higher srades. The high-school pupil will not exhanst the dew-htop and the chom, athough the youngest scholar maty associate looth with refreshment of the thiraty plant. Distimet perepption of particular facts and phenomena, rather than di cussion of any but the most apparent relations, is the appropriate treatment here Of coursi in deahilis with cansis athid effects the tandier need not stop shont of the leanmer's imurest and understanding, nor should he go any further.
"This worls mat le taken." The quoted preseription is probather 1un incembed to imply that this part is more impertans on edneative that the hiologieal work of which it may be as-mural that a portion mont alsu be taken. The Hyic* in the inamimatergion are few and definite, and they are sure to (rne within the range of exprime of every wol al, and hone they may be prescribed imperatively.

 Mi: ivation of , !lants in pets with , whervation of the development of
 frim and of finit to surit : functions of the parts of flowers ; the forms and us-e of thes ; attivities commeded with forestry and lumbering, with athly of pionere life and present combitions on the prairie.

Ohervattin of farm, sarlon, and houselohld operations.
(ifocainuy (inght) Contimued obervations of local land and water

 bive, tose origin, diretiom, size, work of draining, eroling, carrying, plant and anmill life along banks, ete. Repreventation by drawing and

 "roulher recols; general notions of climate : reord of moons phases, "ith drawinso of thoir inplearance. Ponple of the lowality, nationalitios,
 "ithy plates of historial interest in the neighborhoorl.

 the wams of the bolly, that can be tanght by the Nature Study

Alit. - Frer dhawing of phants and other common objerts. Water-

Manitoba. Grade Three (3rel Year). Plant Lafe:-I. The germination of eorn and searlet-rmuner seeds, as in provime grades. Ohservations shonld be followed by oral description and drawing.
2. Onservation of the marsh marighld, wht: fow, arwow leaf, wat. tail, or other water-hoving plants.
3. Ohservation of such flowering shrubs as the hawthm, whery, pham, spinea, honcysuckle and lilac. A ready recegnition of these.
4. The autmmentlowers-gentian, pansy, petumia, aster and goldenrod. Reference to seasom, appearane, etc.
5. Colleetion by pupils of leaves and dry fruits.

Animal Lafe:-1. The stndy of such birds as live nar the water or frequent the meadows. Special reference to the red-winged batkbird, mololink and meadow-lavk.
2. Ineidental observation of the birds of the district.
3. The life history of the toad or the frog.

5. Familiar conversations ahout the wild animals of the district,
 Reference made to the tea-kethe, wash diag, sprinkling flowis and streets, the diving of roide, pands and chothes. A gook drying diny. Practical experiments at home and at selowl.
2. A hail-storm. Chanater of the weather preating the stom. Appearance of chmis, wime Ohservation of the hatiotomes; damage done. The chanacter of the ressulting weather.
3. Making weather records during the monthe of Jimmaty, April, June and U.toher:
4. A study of the common forms of land and of water as and intro. duetion "." a sulserguent widd stuls. Such furms should inchule: Hill, valles, slone, browk, or creck, pond or slough, lake, mationw, upland, plain, cape, bay, istlumes, peninsula, etc.

Grade Four (:fth yeur). Past Lafe:-1. (iermination. Structure of the dry-seed. Neal of water. l'ats of the cmbreo. Finnetion of tha. seed-leaves, behamin of stud-leaves, as show in the rase of weels studied in previous grades.
 vation of growth from wedk th work. Kieplug is recond if this.
3. Sthly of moseseretiont of twigs, limathes and stems. The me:ming of the ringe ant the story they tell.
4. (omparative stuly of (11) marsh matrighld, andmonse amd hatter(1) showing whatomship. Simple techmical terms may be introluced when required by the pupils.
. 'The what-fich. Planting, growing, ('ntting, theshing, manketing, grinding, baking.
f. Making rolleretors of leares, flowers werds, in such other speciments as the pupils are interested in.

Anmal Lafe. I. Sperial stmely of the meadow-hat, ron-hind, cow, robin, wiole or other birels.

ㄴ. Comparative stmly to show how wings, bills, feet, coloi and nests are suited to the lives of the difierent hids.
3. Incidental ohservation of the birds of the district.
4. A sturly of the spider as a homsebrihler and hunter ; his hathits, mamer of moving, foorl, perseverance and other quatities. Stories of spiders.
5. The honse-moth. The eygs, the larve, the coermon and the pupa, the imalgo, the egig ; or a stmly of the wasp-a pipermaker, makink the nest, ferrling the yomng, guarting the yomg, the wasp in the winter-seavon.
6. Incidental ohservation of the gopher and other wild animals of the district.
7. The daingeow. Fool, drink, lathits, valne to the homese gentlenes, lowe for her vomg, her home instinets, ete. Treatment of the cow: Stories of the cow.
8. The domestice cat. Eating, drinking, shemping, mowements, senses. Adapted to monte of life. Relation to mice and birts. Sitories of riats, tigers, lioms, ete.
9. Sudly of the human boly: -(a) Comparivon with budies of ammals ; adaptatiom. (h) Main divisions of head, trmak, limbs, hamds and fret. (c) Hygicne pertaining to the alnowe. (This mast he fakern.)

Inanimate Natiok - (This must be leliph), - 1. Comtimed study of the ph:ysial-featmre of the neighbriowol. A special stmby of any foral water-course, reference being male to source, course, slopes, channel,
 wimling, hathing aml waring bamks, dellat. Wonk of stratms.

 disecowered.
3. The stuly of the "e earth ats at whate ${ }^{\prime}$-ant immernse batl rotating

 continemt. The value of rach comthent the the wethers (it simple introndedion th the meaning of expmets and imperts). The priat and eqnatomial winds. (Frem use whomld lie mete of the sehool globe cemel the stelul-mall.)

Life Activities and Adaptations.-The movements of animals, their food and means of ohtaining it, their homes, the care of their young, their play, the sounds they make, their expressions of fear, anger and affection, their familiar uses to man-in short, all the activities that suggest interpretation in terms of human experience-appoal much vore strongly to children in Forms I and II (1.st to 4th years) than do considerations of structure and elassification. In Form II, however, observation of apparent adaptations of organ to function, as the treth of the cat to tearing and thase of the squirel to ghawing, and of gemeral structure to monle of life, for example, the rubin to tlight and the rabbit to burrowing, should receive comsiderable attention. One would maturally supurse that lessoms based on the life-side of plants and animals would be preferrol by teachers, therefore, surprise is sometimes expressed that they seem willing or alhe to use only dead or dismetred orgatisms. The deal form is observed and the function informel or remembered ar learned as so much information; thus reversing the natural order. Jr. C. F. Honge
aceounts for this comdition on the thery that the analytieal stuly of things dead and disoceted has so long monopolized the higher selowi and mionsity comsess that the tomblers know nothing else to tomelh. If this theory le true it may bring some encomagrment to teachers of N:ature Sindy who did not take seinere in thrir matrmic course. I have seren very porr Nature stmbly lessons tanght in elomentary clansers in the publie schools ber persons who knew enough srinnce to trach that sulyect in high sehools. It is a gend thing to have studied scionce, but profound scientific kmowlodge is not indispensable to teaching Nature Study in public sehools.

Domestic Farm Animals.-In rural schools, alnost

 without exception, observations on the horse and cow or on the sheep and pig may be directed to be made at the homes. Continue the emmparative method wherwar practicable. Observing the differences between the ways in which the horse and the cow eat grass in the pasture means more than twice as murli training to the child as observing how either one eats withont reference to the other. One reason of this is that paying attention to the differences is pretty sure to cause the observer to wonder about their causes.In the assigmment of the olscrvations to be made it is advisable to suggest points to be noted. Oliserve the differences in the ways in which the cow and the horse eat grass in the pasture ; notice the movements of the head, the tongue, the neck. When the child ohserves that the cow pushes her head forward when she crops the grass and that the horse's movement in tiae corresponding act is different he will desire to know the cause of the difference, or he will anticipate that when he reports the olservation the teacher will inquire whether he found out why it oceurs. Contimed ohservation, stimulated by some new suggestion, will reward him with the discovery that the difference is comected with the absence of upper teeth in the front part of the cow's mouth. It will
likely prowe atsier for him tor dinemer why the hom longer werk than the eow.

What differences exist in the ways in which roms and horses defend themselves when they atreathend, ats ber ather or when thry tight with other amimale of their own kiml! The use of the horse's long leges and long nork, and the com's short, strong nerk and her bulging eyes at thr combers of hor head will be thought of here. In lhis rommertion it will bu. legitimate for the teacher to give some information menertins the habits of the wild relatims of the conv anm the low-r. on of these species in an umbonesticated modition. Thma!" his enemies the lorse depended on his fleethersion the forre and reatiness with which he could use his heels: the cow could not run very fast, neither could she difend herolf likn the horse by kiching, so she turned her hatud to lore fore and used her horus with all her strengeth, backed by the wrisht of her heasy body. The habit, or allaptation, of chewing the end permitted her to eat a quantity of grass hastily and then retire to a secure place to chew it at her leisure.

Compare their modes of lying down and rising. Why dons the cow, in getting up, raise her man part first! Dans the cow always rise in the same mamer? Da the con anl lam hold their heads in the same way when they are lyins down! Do they fold their lens alike? Do ther ever lis with their legs unhent? Do they ever lie on their hark or whll on'

What sounds or cries do they make? Try wimitate them. What does each sound signify?

Compare a young foral with a young calf. in resped to size, height, color, actions, imeluding play. Masime, if gom can.
 ing pats. Repeat the measumements and compare with tiss ones to judge the growth. Make a recond of pants and mote the dates so that, at the end of six on eight momhis, you can
 motherss show their atlection for theme

 which should we miss mone? What substiture ate there fond the services that these animals remeler mankind?
 or the questions in "Puhlice Nehon Naturestuly," on Pl. シー. 33, will therely dorive halp in preparing to comblact a Niture Study lesson on the con on the honse, or on a eomplatison of thent, but there is a hetter phace to prepare the lessont and a better source of assistance. With notr-lonok and jelnil go back to the pasture where these amimals are living : olarive them at first-hand. The pates refomed to will help youl mone effectively there than in the school-remm. Vorl will that whioh comparisons are casy to make and which ate ditheruh, and lemere be criabled to assign the expreises with the apprymithe almount of suggestion. Even though you hatd bern lnought up on the farm, and hatl assisted in the are and handling of the livestock, you will quite probably diseover while prepuring to t.ath an observation lesson on horses and cows several interesting things that you had nut noticed hetore.

Mr. J. B. Wallis, Supervisor of Nature Nituly, Winnipeg, found that a ditliculy arose whon pupils wern assigned what, seemed to them commom-phace lessoms, is for example, "Ther Cat." Some of them fanciod that having lived an long with it cat in the homse that they must know all almut it. The danger, I have found, is but an imbinaty one that some temehers will assume that they blow emouch about certain commen-place subjects to teach hoonso on them without the preparation that comes from a re-examination of them.

Do not fear to be asked fluestions that fon ammot answer. Expect them; welome thom. N:y "I dmil kow lat 1 am

A Caution.--'Thr following stomly of tho toad and frog is not givall for athor information of servibe intation, but for

 will acerpt twostatement in it atinal whtil yon hane motiod

 commeivable that it comble le to exen the lorightest of your pupils, as if it hal emmisted of a caterong or questions without answers. In one of the lanks, juntly recommemede on pare 24, it is stated in reffect that frogs lave feetls in their lowno jaw. While I lome that there is mostatemem in the follow ing
 tion and urnory atre fallille. So, for the purpose of Nature Starly teaching, spare bu pian to verify the statements foumal in this or ang other book of its kind lefine you use them in the clens.

Toads and Frogs. - Amphibians on batrinchians, incluting

 Well marked and as wormlerfol as that of the higher insects. The stage of all thon chasses of animals corresponding the the linval one of irsects is cathed tho tatpole, which, like the fish, is adipterl to life in the witere the mature form has situlan lungs aflajeted to life in the ant. Nialantanters and nowts are

 have scales on their lex!y and do mot pasx through a tadpele staige.
 whose? red, lmoly gilly provist thrombut life. Salamanderes und uewtererefo are lizarl-like in buly and limb; lant they have smouth, visod and usually rpetted skin. In the atult state they live chicely upen shails, slugs, illsects and worms, atul are quite harmless to man. Troestomls low like sumall tomals, hat they can easily be distinguished by the dises on suckers on their toses. It is ly these dises that they cling so well to perpendienlar smefaces. They, and to a hese extent the common froge change the color of their skin. 'The inner skin contains numeroms color-cells or spots, which by eontraction or expansion chamge the general color of the bexly. It is a question whether these edar changes can be controlled by the mimal ; probahly they arise antomatically under the influence of the color of the enviromment through the eye upme the sympathetic nerves and those of the skin. All these amimals have a tadpole stage, which differs from the higher fishes in no other important way than in the absence of fin mys. This stage is quite us :nteresting to the younger children as the whilt one. Intelligent ohservation of the segmentation of the egg, the transformatiomal stops, and the details of structure is gand exercise for the advamed classes. Chuose from the following outline the parts suited to the pmpils whose observations you mat be directing.

The Ey!n:- - Nearch ditches and shallow ponds in early spring for masses or strings of jolly containing small eqger resembling, except for the black spot in each, so many
 grains of swollen tapiocat. Firgs emberded in jelly found in the sitnations mamed will probably prove to be either those of the toall or the frog. Should they turn out to be salamander's or tree-teal's, they will be none the less interesting. Frog's egges are found in jelly masses, toad's eggs in strings of jelly.

 hasin plate whue sumd or arrapinge from a prad, mingling therewith stomes haid in such mamer that at one side of the havin they come to the top of the water and at the opposite
 that wome of the stomes lano green algaremewing ont thero, but
 that, \quad and live muler water and kerp green in it in the

 swells up (1) Gre size of hatge prats or small mathles. The jellyg keeps them athat, while their slipperimess probably protects them from seizare by fish and birks. 'Ilarember is on the dark side ; the white part is a store of fome. The cobler the water the bunde slowly the embryoderolope; wather that is toe wa'm would guickly kill them. Tha tinlpules may begin to appear in two or three diys after you stonk the basin, or youmay have to wait two woeks for them tu hatch. Eifm riments.(1) Try to prick up a froges exig out of watur with π pair of forceps. Infer the ditliculty a hiod wonlal experience in attempting to feed unen si h_{1} "gegs. (2) Put eymal weights of sumw or ice on hotting-p re, covering: वnce with a piecer of white choth and the oflore with black elont of rimblar stuft. Expose the prepanation to direct sunight, and , binere how much more fuichly the subtathe formal by the biblek cinh meltes than the wher. Infer the use of the black later wer the embryo in facilitating hateding.
 remowed from the jelly amd plared in water in small sameers or watel-ghasos, the intial chateres mat be ohserved with a pecket-lens. The whare pupils will finl these olsemations

Fgkinlat slagn of divisiont. extromely intoming. 'Two moriflemal gromem ant a ciremmprat ome mark off the little ghene

 oper and althoush will monathless it has a pair of suckers umber
 the watcrewed. Witth it chonly in this attitude fonserve its external sills develop. Theser ate there paiso of themblike extemsions at whene bises are opronings that lean into the
 these defts ats it den's hetwerth she gills of a fish. Therextermal
 served be internal gills. As this chather is taking plater, exes, mestrils and ear patches come into view. It fimts the use of
 aperture with "hich it suck off its fond from weeds and stones.

Up ta the time it detacherl itself from the water-weed, where it has twell hatimeg since it was hatednet, here forl for its

principal diet is the watable matter that grows on the stones or werds in its promb. Tatpolis are not alowe cammibatism if driven to it by humger. In pmols with meagre foncl supply the ragered and frayed tails show whre they had hesun to eat each other, and some individuals may entirely disappear.
 not only supplies the tatpoles with fond hut, if it be green, with oxygen alse. The liviny gern phates in daylight are constantly giving off wxeren, which is almomed hy the water and taken up by the gilts of the young tads to purify their blood.

The waste given off hy their bodies is taken up as momishment by the plants; fach uses the other's wantr, sub beween them the house is knpt quite cloan. A tatpule seems to be litter else than hoal and tail, hut it mally hat. as befits a vergetable feeder, a long intestine coiled up like a watth spring.

Legs and Tail.-The mext change that the pmpils will be able to observe will be a pair of litte stmmps near the junction of the tail with the huly. These will elmgate and reveal their chatacter as hind legs. In the ease of the froge, at, the ager of two menthe, the thes ratm be mate out. The smatler fromt legs are growing at the same time. hat they are hidhen under the fold of skin that cowers the gills and are mot seron
 the fromt legs have grown smdionly: As the hass hergethen the
 are in proseress, the momth is flathomus and lonstheming ; in some kinds teeth are developing in the roof of the mouth and in the upper jaw.

The Tromsfinmation. When the well developed tadpole rushes to the surface of the water and dischateres little air bubbers you will know that its lumge are devoloping and that it is hegiming to use them. A quick inspiration surcereds the little toubble and the tad rapidly desembls as if frightemed. Its proferener for vergtable fond is yielding to one for a diet of insects, expecially flies : a comemitant change

is taking place in the lonsth of the intestine-ramivorms animals having as a rule murh shorter intestimal camals than vegetable feeders. The young frog, or tome as the case may be, is transforming from a 'four-loged fill' to a land quadruped from an herhivorons atpatic to a carnivorons terrestrial crature. Powihly as womberful changes take place in the lifehistory of many ohlow ammals, but in no wher gromp than this can they be so eavily oberomed. There is murli for the ohldestas well as the vomugest to think ahout. For example, the frog will mot meen that swimming tail but yet it is not wasted; it aswists in mourishing the amimal while it is allapting itwle to the change fom water-life to laml life. How is the substanere or the tail saried into the lenly?
 ditticult.
 critical ome for inatrachian life. Vomp puple maty well les proml

 netting disc in its serewerap. Put water and mone small stenes: with veretable growth on them in the jar ; introdure a few house-flies: in short, matintian the conditions suited tolnoth tadpole and frog until you see it capture a fly. From that tine supply it with insect diet.

The Suererlupss of Life. - After taking out the few individuals that you will try to carly through the metatomphosis semed the rest of the stork to the nemerent pond on diteh to tearh the children a lesson ournard for life. It may be probalile that none of the tmpoles thas roturomed will alatin to firoflomel. Then why, it may be asken, take the trouble to carry them to the diteh? A fumlamental primeiple of Naturesiuly teaching
 and then leaving it to proish with i!pinent unconcern.
A. Mi.red ("ollorfone. - Tt will frequently happell that instead of the grelations span the rhildren will bring in the hateled tadpoles. For the younger pupils the ounssion of the intial stages is unimportant. You are liahlo in the case sup. posed to get a mixerl colleretion but that rather adis w the interest and value of thre stmoly. Most kinds of tadpoles are brownish; those that are as black ats ink are foimer toals. The developurent of the latter is very rapied as compaterd with that of the frog: they will he reaty toleave thr water in two.
 -is satial to remain in the tarpole stage about two bar-

The Adult Temed.-Of all the bathetchians the twat is or
 favorite. It hats been alsised hy sume writers that every
gavdencr should make an artificial fond where a goxd supply of toads can l_{x} raised. If a toad bre confined in a lax comtaining t.wo or thre inches of soil, kept moist but nut wot, and cowed with a wire-screen, its value to the gialener ean be approximately estimated. Cut-worms, cablage-worms, and other hinds of destructive insects may be collecterd and put in the box. The spereies and numbers of the ese that the toad will devour maty the observerl. Amost everything that aratwh or flies, if not tow large, will be filliped into its mouth ahmost tor) quickly for the eye to follow. It has been estimatiol by an ohsorver, who kapt count of the mominer of insects that a tomb ate during at fow days, that it reguires about 10,000 grubs and insects to smprort a toad during at seasom.

Fipeling diel Iliding. -The tuad can bee studied in the homegarden and in confinement at the shom-lomses. Its methent of cat chinst a tly bererting its tomgue, which is at tached at the fromt ind is free behimb, never fails to interest yomg on old. Its conceatment liy partally burying itself in the soil in the day time gives the opportunity of sturlying its method of digging. It huries itself to a comsidemable depth to hibrmate during the winter. Judigs with its hind legs and pushes its bexly backwath into the loble. All these operations may be observed in the tomblhox at the sehool-house.

Castimy its skin.-There is : mother interesting operation that may take place in the bux where the well-fed toad is confined, but which may le missed even bey the most assiduous wherver, that is 'the casting of the skin.' Human skin is "ontinnally coming off in little flakes; suakes shed their skin all in a piere, and insert larvas similarly shed their skin when it gets tow small for them. What about the toad? When its outsideskin gets tow tight and dre, a mow skin grows maker neath it. When the new irewh is complete the ohe skin eracks along the back while the wanl kecps twisting and
wriggling to homen it all the way romol, and thus it gets it off its sides. It pulls its hoal out like a boy taking off a shirt. But the skin is still hansing to its legs. By the help of its frent leess it pulls its hind legs out and then it holds the skin with its meuth while it pults its front legs out. Have you ever fomm a toad-skin on the patlo? Probahly not. becanase the next thing the tomed dow after getting its fromt fort out is to use them in bumbling up the ohd stin into a bunch that it can swallow. Now, if threre is any mistake in this account $l_{\text {e }}$ sure to correct it the first time you observe a toad through this prowess of domming a new suit. You may miss serong the ant hot you will not, fatil wobserve the result in the brightuess and deamess of the new dress.

Itoue the Tord lieforeds Itself.-One day when carrying a toml in my himel f wertook is couple of boys, one of whom addressed this romak to me: "Sity, Mister, will a tond give a fellow warts!" Turning th the wher I asked him what he thought of the sulionert. Lferphiced at once: "If yon haven't wats they give gon them, lint if you have warts they'll cure them." "What makes you think sio?" "Bocanse that's what all the luns saty." Probahly the warty appatame of its own back suscrestod the common but dentining prejurdice assimet the toad as a wart producer. The dherg that has teased one and then takes it in his mouth knows the disagreeable tasite of the seremtions of thene warts. Siace for that exudation it would beremirely defencoloss and evon that is no
 very effective. Its defencelesthess may explain why the toal,
 broad daylight. Stak for other womens that may account for its exepusculan and nucturnal hahits.
 makis a pilarimis.
how they know the waty or whether they try to go to the pond where they buran life as tatpolas or to the nearest suitable sitnation? liathaps depmoling on their hearing they move in tho diwnion of the moiny sarengerfest. It is only the males that, juin the clarins. Their lonel and hong contimed trill divtinguishes them from the other musicians of the swanp bantl. Than that they find their way to the pond it is still mome atomithing that they return, as it is clamed. to their reymerine lonum. If you bring a toad from a neighlurs Sallin! to gur own will it stay with you or return to your
 expriment 'londs can be tamed and petted. Pemant tells of one that lived as a pret in a british gardell for forty years.

The A duit From.--The allult frog is a more attractive and livel amimal than the tome . It does mot shoght and swallow its ohin like the than, lont shoels it in flakes and patches, which ern, ofll in the water. Its skin, when wet, takes part in repination, homee a frug's hatah som suffers if it camot get a hath. Lik: the thad it is carnivorous, feeting upon woms and insers, fline and mompuitoes boing its fatorite deliary, and alwa!s rofn-ing the capture its prey until mowement intiratm the prome of life. Bither of these animals would Have lux wibe a babin of deat tlice. The freg is easily kept in "aptisity, and its habits obsomol. I have kept one in

 "alp. The jan wonally lay on its side and comtaned about a laiduptal of wathe which was changed every day or two, or
 lime: thote "as pliared in the jar a bit of brick or wond or Whne fin tha frog tor rest on. Wecasiomally it was allowed a heprammel the flen fon exmerise. It was feal on thies, insects, and earth-woms, and when these wre not rasily ohtained, it was given a bit of firmh moat, which of combe had to
be put in its month. When a prersom handled its jar or ohjects nearly, it showed that it experecod fored by tho way it leaped against the end and sides of the jar. To show its method of seizing in fly a stmblut wombl place a tmbler over a housefly on the window pane. slip in $九$ hit of stiff paper large euongh to cover the month of the tumbler, ant, carrying the covered lly to the germ jar, whose base was placerd towards the light, hold the mouth of the tumbler matinst the month of the jar and pull out the paper, thas permitting the fly to enter the jar, as it inmediately does to go towards the light.

A glass jar, such as has beron just described, is a snitable and ennceniont means of holding many kinds of small unimals for ohservation. The extermal movements of respiration in the frog as thus exhilited is intrexting to arem a young child. Latking the diaphragn and rits to make a cavity for the air to rinsh in the freg fill its month with air drawn thromgh its: mostrik, and then closing its mesphagns swathows

How the frog iaptures a fly. the air into its lunse. This fanti exphans the incensant slight movement of its motrits and the conspicmons up and down mowement of its chin and thoat.

Questions ahout the frog. - Th what sitmations ate frese found? Why are they weldomserol far foom wathe? What is their food? Jow do thry oltain it? How dow they mow from place to plate on diy land? Wh, there cerer walk on rim? How far cam thry jump? Ninice low the sherthess of the
body and the length and strength of the hind legs are alapted to jumping or hopping. Put a frog in water and observe how it swims.

Ifs Struflure. - Notice the color, dampurss and smoothess of the skin. Ohtain two similar froge, one of which kep in a jar laid in the shade ower, ow wriphed in, a black cloth, and lay the other in a brisht phace wer a white choth or paper. Ster a time ohserve the difference in the color of their skin. What advantare may a change of color be to a frog?

Measure the lengthes of its lomly and those of its front and hind legs. Compare thom. Ohserve its pasition when resting. Notice its four sparate fingers and its five webled toes. What use is the woll?

How wille can it operl its mouth? What is the use of the wide gane! Can it hrathe when its mouth is open? What is the shape of its tomgre? What advantage is it that the tongue is free behimb!

Has it a hright eye! Dexcribe the eye. Touch the eye. Stuly the eye-lids. Infer whether the eye is surrounded by a lomy orbit. 'Tomeh the eve when the mouth is opron. Notice its eardrum hrow and hark of the eye. Ohserve the nost mils.

Feel whether it has rihs. Name the benes that yon can lokate by fereling withont hurtiog the animal. Compare the lames of it: limul log with those of a human leg or a cat's lang. Where is its knew? Where its ankle?
 ahle it is casy to show the pmpils one of the mont beatuifulatal
 in the woh of a froses hind font on in the nealy thamejarent magio of a tadpulas tail. One who has siren this womernfut
 simplent way to mhibit the phommenm is to hate one child
take at peition at the wherwers hift to holl on kepp the froges Inaly still on the foreg lanall. Amelher child stanting on the right uses lugh hand in kupping the web expmeded unter the oljeective of the mi moserpe: ly holling the tows against the board. The frog's lexty, leaving out the left hind herg, shomld lse wheped int cherese eloth which should be kept wet. The
 inches by mine inches piomed with a firerighths-inch auger alnont two inches from the midhlle of ome embl. The hole should be conered with a thin plate of gerent miea cemented to the lenate 'Ther wer is extombed on the mica wer the hole.
 or bowk the thick!ass of the heisht of the talle of the miceroserpe.

Usis of the Froy. - Thfer from foeling experiments that frogs realuce the number of troublesmane thies and mosiguitoes. Some penphe make somp of the theshy pat of fienge' hind hersis. Criticize the emelty of frog-texs collerturs, who rut off the leges withont timst killing the prom animals.

Comprerison of the Frog and Toul. - In gnidinges children through a comparative stody of the forg amb twat ask questions that will lead them to discover that the fres's skin lacks warts, and that it has lomer himblegs than the toad. The tomel is quite conthless while the fires has tereth in its upper jaw and in patches in the ponf of the mouth. It is meredlese to say that no ham cam happen to the soflest finger fom fieming the frog's teeth. Thein tomgurs are similar in front but the toats is not forked at the free romd. Their fond and mothond of feeding are simitar. Compare thrir lwalies, hind leger and toes to see why the frog is the better swimmer. Compare their lecomotion on diy gromul.

Treetoads, newts, rift amb salamambers may emsily loe kept

 mase or a saturatiod spomene tor kerp the atmosphere in the jar moist. There is III oxpeption th the neressity of keepring all amimal cages swort and doma. The interest in living anmals is so wril nigh unimpal ammerg chiditron that wholl a teacher spacks of its law it is manly certain that the sulijects have been appromehed firmon the strmetural insteme of the functional side. The mimal that the child has helped to feed and care fine will call furth his intcrest and sympathy. To sirve is more educative intellectually and spiritually thath to receive sorvice. Preaching aud telling and reading avail little for the athical tratining of children if not foilowed up by sloing with definite ethical purpose.

Ontario. Form III (ith \quad will purt if gith years).-(ionren of Form II comtinmed.

Aximal. Tifr:--Ahluptation of different kinds of amimals to their respuction habits aml surromulings: birds, life-history of tepees, habits of wild fowl in diflerent seamoms ; fish, furms anl uses of diflicent pairts of the lenty, fersl and how ohtainul: life-histories of mothes, buttirthes,
 hatrmful inserets; Nature's insisticides.
 in the schuobl garden and window hoxes: operning of houls; sturly of the forms and functions of the paris of plans, and comparisom of these: furms and fmetions in diflerent plants; whersation of the culture of farm and gathen crops and of orehard and shate trees; the ohserving and the diatinguishing of the common forest trees.

Different kinds of suil. as salud, gravel, loam, leaf-mould and clay; experiments to aterptain how soils arre compuned, whet her of mineral or
 phemmenta of spring in the viemity of the sehoul, eamse of sinw molting, i.e floatius, etc. : huw nature prepares the soil for growth of plants. Distinction In-IWewn hand and soft, pure and impure water; tests aml methorls of purifi, ation of water.

 routes of travel, mills, villagex, towns and ritios.
 of the lexply. Eitlents of naronion allul simulants.
 drawing of simple landscapes.

 breaks, shade trees, blitlis, forents.

 etco? Reorordingy mults.
 OH: aty small area?
(c) Ohservaltion of the vegetation that will aryupl it hation

 of roots innl strins.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

7. Making a flower ealomat for April aml May, Noptomber and U.tobrir.

Arinal. Lafe:-I. The vahe of hirds. 'Their protertion.
2. How hiveds conceal and disismise thoir mots.
 diserimination, cmming, ete.
4. The st mly of some of cour winter birts.

6. Insect life in relation th shath trees aphis-tly, raterpillar, athl leaf-gall of the matule smbsestert.
 life-historics.
8. Renognition of the lalyhirl-herthe with a virw tw protcotime it. Finding the larvie on trens infesterl ly aphicher.
 hill, etc.
10. Incidental olsemvation of inseret life.
11. A study of some of onr mammals, as the Inery, lurar, wolf, mbint, badger, gophler, tte.
12. A stuly of the common toml contimed. Ranin! the waid fion the egg, the life of the foung toad, the -hange from Wiatr whanl, the life on the land. Dome sication of the toad.

Heman Pirysiolens-(This must he (aken).-1. Gur fonl : thil drink.

 candy, piekles, grme, whater and alcohol.
2. Digestion. Chewing the foot, swallowing, tho stomach. Hygiene pertaining to the above.
3. Breathing. Measuring the chest when the Imes and compuresed
 The importance of breathing good air:
4. The bood. (a) The pulse: mamber of beate of fulse fer mimute, when seated, when stanthing, when rested. when platim!e. (h) The veins and the arteries. (c) The heart.
5. The hones and ther muscles.
 Moprotic.
\because. Heat - courees, effects on solids, liquide and gases.
 ments and whemations to show the relations of water to phants, reference lacing mate to the following: -
(a) The greater pertion of the weight of plants is watere.
(i,) Vegetation is more luxmbiat in damp grounds and in raing

(c) The phants must iave water.
(d) This watter is taken in by the roots.
(e) The leates and branches of phats are arranged to form a syatroll of water-troughs.
(f) The Waier passes through the stem and the leares in detinite chammels.
(9) The surplus water is evaporaterl.
2. An examination of the plant-societies fommlin some of the following situations:-
(a) By the roadside.
(b) Along a water-rourse.
(c) On alkaline gromuls.
(d) On marshy grounds.
(e) In vacant luts.
(f) On the eit? houle vards.
(g) Along a portion of a mailway track, etc.

In this stud!! note should lie made of the plants comprising earh societ!! the phants predominuting amel thus giving charurter to the gromp. What coultitions of sum, shade and soil seem to be most fatorable to the wellbeing of each socirty?
3. Seed dispersal. By winds, by animals, by water, bey speial contrivances.
4. Comparing and drawing :-
(a) Cross-section of a young maple and a corn-stalk.
(b) The veining of the leates of the alowhe plants.
(c) The seed-leaves of a maple on an oak, and the seed-leaves of a grain of corn.
 fumges, a puff-hall, a loms-tail, and a fern, for the purpore of extembing the meaning of "phant life."
6. The comparative sturly of the stank-wed and the shepherds purse : the chover and the pan ; moting reswhbaners and deepening the meaning of relotionship among plants.

Avimai. Strme:-l. Spuial stuly of the mighthawk, wrom, bhejay, and rowe-breastad grasbeak.

2 Comparison of typieal suratehors, climbers, walers, swimmers and perchers, moting common amb distimetive characteristios.
3. Observation of the interdependence of insects and flowers.
4. Sperial study of the grasshopper. Finting the eggs, observing the young hoppers and the growth of their wings, the ahtult, the most favorable weather, food and how eaten, hehavior in wet or in windy weather, atc.
5. Speeial stady of the rabhit. Home and home life, halits, structure, enemies. A type of the "gnawers." Nomies of rabhits.
6. What are our native wild animats? In what way are these animals adapted to the eonntry?
7. What are the wild inmals that formerly inhabited this province? Are their remains to be found? What led to their extinction?

Pirsics :-1. Wiater, its use. Hard and soft water. The character of the wells and springs of the district.
2. Water as a solvent. The boiling of water.
3. Convection of heat. Reference to water and to air.
4. The heating and the vontation of the school-room.

5 The lever in its three simple forms.
Pirssolociy: - (This must he faken). - I Fonds and food materials.
2. Digestion.
3. Food habits and rooking.
4. Circulation.
a. Respiration.
6. The framework and motion of the boly.

Familiar Wild Mammals.-The observational study of the widd mammals and birds must be largely incidental. Trips; a-tield and excursions to the wools will seldom fail to afford
ohservations that cath le utilizerl as subjerts for weflection and occasions to extend or depen the sympathines. Some of these mammals can be taued quite eavily; frequanty living specimens are kept for a slort time cased or on at dain. But a squirel, for example, on a revolving wherel, exerept for the opportunity of sering it at close range, is a poor subatitute, from the Nature Study point of view, for a squirel in a beech tree. However, if opportunity offers to liave a raceoon or fox, squirrel or gopher, lerought to the school-house for a half day it can be turned to grod use. Some kints of squirrels overcome their fear of mankind if they are grently treated. A teacher in Alcaster Township told me an interesting story of a squirrel which her pupils studied. It made its home in the wookshed, and evinced nof fear of entering the school-house at any time when the door was open. Silew and Stevenson's "Nature Study," pp. $1-27$, gives a brief systematic account of the common species of Canadian wild mammals.

Birds. -The robin and crow, particularly the former, may be made the subject of special study by mearly every school. Sometimes the opportunity for the continued study of some other species may he afforded hy a bird-family's taking up its residence in the school ground. Individual pupils may be encouraged to make special studies of linds that nest near their own homes in places easily accessible for observation. In the educational exhibit at the Pan- ${ }^{\text {ammican, Buffalo, the }}$ most interesting of a series of lessons reproluced by cinematograph and phonograph was a Nature situdy one on the hen. She was brought into the school-room in a crate, through whose latticed sides she could be easily studien. In the parts of the lesson where it was urcessary to hamde her, her remomstrances were heard high above the children's wices, but they did not interrupt or disconcert the lessom. The outlines for a study of the hen in Forms I to IV will be found in "Public School Nature Study," 111. $31-38$.

(From " ('ul/i, S. heot Sithore-Sturly.")

Fish. - Fish engs can be hat ched in the school-room if kept in a gell jar in clear eohl wallor changed frequently. The writew has nsed arges of twut which were packed in moss and receivel by mail. When the eqgy yotk is abombed the young fish maty la fed daily on broiled liver grated fine. After ewh feeding the water must he changed to keep it elear anf coml.

Mimmes may he put in the sanme agnarium with talpoles and smaik, but it is usually better to keep tish for stuty in aluarria or jars by themselses ats cleanliness is absolutely necessary. (iohl-fish and proparal tish-fool can be bought cheaply from the dealem

bla,kas ur a fixh

A-lbark Fin (torsal).
B-(antal Fin (tail).
C-Anal Fin.

It l.ey linn (pelvic).
F. Irm Fin (pectoral).

L- Lateral line.

Locomotion. - Buy or borow at gold fish, or have the boys bing in a tish from the strean. Siluly its moments in the largest glass vessel that you call get. Ohserwe that it propels itself with its tail and balances itself with the wher fins. By putting a rubker bant wom its paired fins in turn and so holthing them flat against the berly leam the patt joulat use of pach pair.
 live. Note the rhyomical movemment of monthand wills by
means of which the fish bathes ite gills with currents of water. This is its breahing. Explain that the ref fringes of the gills do the same work for the fi-h that our hungs do for us. Infer the neersity for the frequent change of water in the fish jar. When a fish is keft tow lomg in unchanged water it pants for breath by moving its gill. wery fast.

The tishos semar of smell is herated in its nostrils. With a bristle try to reach the mouth cavity of a dead fish through the nostril. Infer that this organ takes no part in breathing.

In studying the fish it is well to have a dead one for comparison. Has the fish cyr-lids? Can it wink or shat its eyes? Can it roll its eyes armand and look downwarl or upwarl or haek? Can it turn its heal? Aecount for the zigrag manner in which at fish swims.

Feed the fish and watch it take the food. Examine the teeth in the dearl fish's mouth.

Notice the scales, their arrangement, their elges, their shapes. Do they give the color to the fish's boty? Where is the color darker? Being darker abowe they are less easily seen. Some fishes, as the catfish, like the frog, can change their color to suit their surremending.

What advantage 60 the fish is its pointed wedge-shaped borly? Ohwerve the forking of the tail and the muscular part of the fish that controhs it.

Spiders.-The stmly of the spiter is preseribed in the Manitoha comse. Foolish, although not inexplicable, prejucticer exists against spicters, toals, garter-smakes and bats. It is worth while conthuting studios on these interesting and useful amimals if for no other reason than th remove the hatred and fear wish which somany people regart them.

Some spiders atre attractive on aceome of the remarkable beanty of their bodies, others for the womberful wels whieh
they spin. Some of them show much solioitude for their eggs and young ; some of them brush their finess with thoir hairy palps, thus reminding one of the similar action of at cat. (iloves and stockings as curiosities have heen wowen out of the

silk of their wehs. In olserving the adaptation to circumstances of their snaring operations one will hardly dispute them the credit of being the most cuming of all the articulates. After snaring their prey they pierce it with a pair of pincers (mandibles or jaws) each of which terminates in a minute, hollow tube that comvers an atom of pison into the wound to paralyze the victim. A large spider might be able to puncture the skin of a soft finger and inject pough poison torause some inflammation. hence chibhen should he cautioned against handling large spiders carelossly. Alyy may lift them and hold them in a fold of cloth or they may be dropped into a glass bottle for examination.

Why do they pin wels? What difirent kinds of wehs have you observed and in what sitnations? How do they spin webs!

Some spin circular wols, whers shere wehs, others funnelshaped wels, and some do mot make wothe of any kind. Some: kinds spint their sinares, then lie int wat fer hackless inseets to be tapporl: whers wateh for pasills inserts and then

 hairs. When they -pin they exulle throngh therehains minute streams of a thind which hardoles and comparts inno a very fine thread. Fome kimls of opilhers rian high in the air and Hoat or are blown alomg with the wind as far as they wish to go. How can they perform this feitt To find ont, tix ot hong broomstraw by a cork illo a small buttle filled with water. Immerse the bottle up tor abowe the cork in a cup of water. Set the cup in an open wimdow, release a capture 1 spider, preforathy of the smatler specios, on the straw, amblerve it, aftor making repeated unsmeeresful cfforts to escape from the base, ascome the the and thow out a floater to carry it off through the air. Infer how the epider can stretch his web, from tree-top to trer-top. If a spider is held by a hind log with a pair of forceps it will commence to spin a thread which can be caught on a twig or straw and drawn out under olservation.

Spiders' pges are found in litte silkell sacs, a fuarter to a half inch in diameter, hidden under loose bark or among stomes, or hanging up in datk rorners. Thess may be collerted in the fall and kept in a dry phace in a shed or cool garret matil the spring. 'Then the capule maty lo broken up and the hat ching prowes ohserved. Not su mathy spilers will leare the box as there wore regs put in it because the survivors make their start in life by rating the late comers.

Compare the spiter with the tly or hee as to means of
 has fwo main divisions of its buty mphatethomex allol ablenmen: the thy has there heal, thoma and abomen.
 hats six of feme divivioms. Ther apileri eves are small, bright, separate, simple sperk-, two, fomp, six or right in mumber; the flys rese are two laner ampumal massex mate up of s"ores of simple exore Emertonis "('mmmon spiders" (bian is (0 .) in an andmilie and athaction treatise.

Plant Life. - Individual and improtative rultivation of
 combinme tol leal aflints in this sulnlivision. Buth Comrses of
 panation mellowl. Fin the alsoumed danses strong and

 plots plants shomble the selen with a view the miness of culture, erommic value at a beally of flower. Raclishes, catrots and tomathes-iatore, satpighosis and calliopsis-
 can be recemmended for the watens of pupils in this grate. select at sulicion sarioly for compariom and maintain interest loy the expectation of fature rewarl of lleme: - or fruit.
 alsemep platso may he cultivated in the seluot-r bither on
 repoits snceess and sallisfaction with the fallowime
 whole sthent wh the way th till a flower-p." in mider:

 pot. 'Thr latror. untres virmiahorl, is su provos as to promit excosoive drying from Foblaty until Monday. It is : Eroml

 sill thin! on the wimlow sill it - olf loceatuse the pots are mot so
 leon with the light and with the movement.s of the windowsitsh allul liliml.

Continne alanevition of emmonth mative plants at towering time :und of thombing slouhs and trees. It is wortlo while to learia the names of the ene if for mothing elae than that in future
 of the plant. Thr altemtion of pupils in this grate maty very well he: drawn to sa much of the ecolugy of plants which they

 the theony.

 and in dry ment, or salldol.
 not? Inter that erroninating serels reguire latisture athl atir.

FAgneriment with serels phated at, diflionent deplls ter all attention to the relation of leat, to gemanations.
 Combeniont sereltosters may lof mate as follows:-In a derp plater spreal at thomaghy wet piere of flamel atol on it place

 add wallor tront time to time to kerep the tlanmel maist. Comspare the time the: difforant kinls of serels tatio tor grominate. By retual count determine the perceltatge of grond sereds.

 them in the can.

 formths or morr of the sille of a lux. Sulstitutr for the

 sil that rotains willor wrll. Ther rons in their flownwaml growh spread themorbore wor the datitine getas and may ine easily olserviol.

 out the upper rommlod and of a dozen !rains of corn and plant them. Plan' an eqnal momher of mmmotilated wrains. Compare the serding plants prolumed. Infer the use of the stored starelt or wil ar allumen in the sereds.

 embryo. Vse peas, beams, momins glory, pumplin, astor-oil beans, oats, ote. There is ath immestinss stmly of the mornins-
 17t-1NO. Comsult any lowk on brituy for the functions and names of the parts of the sembl. Fin forther help see

Buds. Finds of tores ant shonls in winter amd early

 may be ent aff in Fobrlatry or Marl, pht in botles of water

 show theore if they rall he hatrl, alol mads others to illastate curions fi:itures of holl.

atod latw distinct markings loy whith the ammal extomions of the batmohet tath lor reat whh certainty. 'Twise afforl

Felerting lange buth of diferent kinds, as of bedh and elm,

 onter ant immer seath, whether hard ofe soft, thick or thin, smmoth or hairy, elc., ell. In the lowk has named there are

 physinhegy and hygiene to hate the ehideren compare theirewn benties with thase of well-known :mimals as suggested in the Matatoba Course. The comparisom maty profitahly he bewom

From Knight's "Introductory Physiology and Hyjiene." Hand, or front font of various mammals. The first to the left is that of the horne, which walks on one toe (the middle) only; the next that of the elephant; the next, the ourangoutang; the next, the sloth; and last, the ox.
even earlier than there indicated. It not only teaches human mophology and misimic function but also heightens intereat in the animal stmbies. The child's ams correspond to the fone legs of quadrupeds and the wings of hinds. The chikd easily infers that fact. but it does not surprise or please him nearly so muth as when he discomers the joint that may be called the dogis or the cow sollow on ankle as the catse may be.

In this comection, either here or in the next class, the teacher may wive some information if he proceds to comparisen of the hmman hand with the animal foot. Even in the highent public whond clas it will not likely be learned hy the Nature Stuty methonl that the arse or cow hat now collar-home, that the homse's foot is the micille tinger and his hoof is the finger mail of that digit. Surd facts as these may be told in
their right time. I sity "will not likely be leatoma." luramse

 ness and definiteness of the knowlerlige of a homors skolofon possessed by a famer's loy. His interest in the home hatel led hinn to ask his father the names and useore the piats when the skeleton had offered the oppmotumity on hatl ratherl lime to pay clense attention when it was dreariherl aml diarosacd los others in his presence. Dexired prats of the akeleton of tho horse, the sheep or other domestic amimal c:m ushally ln wor in most of the rumal selmol seretions by inquirins illom,g the boys. Some one among them usually knows whore it skeleton is lying in the woods.

The practical study and hygiene of the stome organs as prescribed in the Manitola conve may hetaken to mean the morpholegy of the parts visible without disseretion and their proper care, testing and exereise. Dust perple get little mome sense-training than nature gives them not beramse at is helpless to increase the acutemess of the semses but beramere it is not known how to use it, or not thought worth while to take the trouble. The tratined blind distinguish objemts leg tometh, trained musicians, soumbs,-trained artists, colnors,-amongs which most people diseem ne differemere. Traininis to inmerate the acuteness and usefuherss of the senses mon- be done in youth if at all. Little if anvthing ran be gatued in this lime after adolescence. Appereeiving may comtione improsing with experience, but it is dombtal that the ponar of peneming does so after youth is passed. It is gelmally hedf, altholyh the ground is debatahle, that what semsertaining call l_{n} dome in the public scherls is mot very important and not worth the time it would take. If it le done at all it slumblar dome in this grade. But whether or mot semerefets anm exwincine taken for the purpose of sense-training exarllent Natmorimly lessons for the training of the mind throngh the semest and
teaching low to take rame of the nemate orgatm maty taken up in this and the higher dassus. Pages 1 to l:3 of "Public Scluol Nature Stuly" (The Cipp, (lark ('o., Limited) sive an exceltent series of Nature Nomly lemons on the somas amb seuse actats. There are wat lessoms on the hegione of the sense o. gi. is in Kinight's " Introductory Phyiology and Hygiene."

Inanimate Nature and Geography.-The preseriptinns under these healings are quite sperifice and wequire the teaching of stamdard lessoms in phrsical gengraphy by the observational and eomparatior methent. Comerpts sof fir as possible are to be originated from out-foom ohsorvations and experiences, and to be reviewed and expmond in the schowlroom. "Topies not directly within the rathse of the pupil's observation may be studied whenever the relatimship is clone to actual experience." As a monde of expresion the Manitoha Course emphasizes motelling on the samel-hame. Nuhatimess for sand are clay, putty and paper-pulp. A matemal calleci "plasticene" can be bought from dealer's in s.heml supplies. This substance remains plastic, and henee ann be: usal ondo and over asain; it is easy to mould, cloan work with, ame cam be spread on slate, wencl, on carthomet. A little of it wins a long way, so that in the and it is but expensive Objection is mate to the reperated uste of the same plasiar material on the gramel that direaned hamds may mouler it liathe to inoculate the hands of suberphent wers. Itandacturems
 result. ('lay may be got at the nearest tile or hrick yatal.

Systematic Weather Records. - Fio the makins of these

 board. In some schowls a fomm is mod on the hlakhoamd, and pupits ir turn under the criticiom of the , lats fill the
 it involves of comsitherable harkhonal sparee lupils in this grate are very woll able to malir and fill our forms ruled for a werk as follows:

As a sample methorl of procedure. suppesise that the reroord is to be made in a fatm similar to the above ruled on the blatkonad. The observatoms may ler mate duriner the mon hour and immediately lofore mombing schonl in the atiternom. The teacher, or pupils in their turn, may enter the report which is agreed upon bey the class.
('lomeliness.-If the sty le clater the word " nome" is apporopriate. It it lee chomly the nature ame degree of clourlinesis will be deseribod in phases or sentencers her the pupils: the
 duce the suitable techmical terme. In this way the pupils will learn the appropriate words to apply to the difloront linals of cloutls.

Thin, whitish, high, half trancparent chombe bually drifting easterly at ath altitute of fome or tive miles ane rireme rlouls. Whon banded and liyered thoy ate known as cirrostombes. The whole sky may he thinly orercast on veiled with this kind of cloud. Th such comelitions, latos ame coronias around sum of monn maty wrom: Sometinmes the cirrus in brotion upintolitte

 romsist chiefly of iere spicules.
(ireat romaded clout-herips, like immense flerees, vith that bases are called commlus clouts. 'Tor extensive doud areas, seeming to be made up of masses of bambed cumuli, the name strath: is applied. Vimbus is tha cloud stratum from which main or s.mow is falling.

It is not much trouble to colleret a set of gonel pictures showing typical eloud-effects. The continued, intelligent observation of clouds, not to speik of its practical value, affords a constantly increasing sentee of pleasure.

Wind.-Only the suggestion is needed to gret some boy in the chass to make a wind-vane. It may be mailed to a suitable part of the selowe fence or set up on the woond-shed. It should be distant enough from the whool-house, if not on it, to awoid the eddies cansed hy the wind's sweeping around eorners. To determine the direction of the wind, besides observing the vane, pupits should be encouraged to notice the smoke as it issues from house or factory chimmers. The angle of ascent as well as direction of the smoke is important.

In the absence of an anemmeter, the velocity of the wind may be approxinated aud dromibed as calm, faint, gentle, morlerate, strong, violent. The torms-air, breare, gale and storm--with degrees indicaten by aljoctives, are used by seamen to describe twelve grades of wind-velocity ranging from caln to hurricane.

Temperature.-A themometer should be hung outside on a shaded side of the building where the pupils who expect to be asked to report the temperature may asily consult it. If the school is possessed of only one the mometer, a monitor may be appointed whose duty it is to hang the thermometer out during the nown hour and bring it in when sehool is called.

 (19) untisnal phenomenat.

Excellout pardiee in romparing. relating and jutging will
 usually followorl in atay or two by rain, cold weather: or rearing skies.
 ohservers duringe own werk; those in the 'lhied Clase the following werk, illul worm.

Soil.-Have a lwhe, with vertimal simber, thy in the ground to the depth of a font of two. 'llas maty nsuatly be dome in
 of it. The diessing of the hole will he fine to the herse of this grake while the other pupils are observing. Chatures in the color and texture of the mil will manally he evident. Problably the surface layer is quite dank in color, behw it a liyer, somewhat paler will appar, and below that a yellowinh or palegrey or dink-red suil kown ats the subatil. In come plates grawel or harl pan, or shate or ran row will lee reateled within a font or two of the surface ${ }^{1}$ The pupits will mote the
 The series will prohathy lne feaf moult, ham, submil. Something of the origin of soil may be leamed he ohempation, math more in some lacalitirs than in others, but in all mom on less information will have to be wiven if the origin is atutlind in this grate.: Pupils ousht to lean in sollur way that the sultsoib and a large part of the surfine soil are derived from the disimtargation of rocks afformb by such agendes ats calbon dioxild, bain anl watm cureptc, wimb and chmatic chante. frost and ire. Three important mil-forming rocks an quartz, feldspar and limestome. Simples of these and other soil-

[^5]

 it lat-liat ! ! divernt.

 daly.

 to rimulation of :air.

 endur, and othre quallitios, and hombly refored to its class. By the time that a dozan ore mere molikie samplas have bern

 of the sallue size. illyy is this the "ane? 'Tlue pupils may offer

 to timl out whether some suils hance move pewne tor retain

 fill the cant make four mailholes in the bottom of it.

 applances fin the school when they hem how mull you neel them.)

 on each of sereral subserguent days and the percentage of losis
of wright calculated. Thare experiments will party nerount for the high value of ails compumen of hmme, sand and clay in right propnetion.
 same elay suil of empal weight and with erpal quantities of water alded, one lwing mellow the othere preswel. This will show the greater retaining power of mellow wer packel or sum-bakerd clay.
 important platume s.at of water rapacity of sails.

Other wity of detwmining the aril's rapacity for retaining meisture may be properod. Finmourge pmpils to shegest experiments; intoral it may smetimes lo advisable to atopt an inferion methon devised lye pmpis than a superior one that "t had thousht of gomisilf. Propose yours and have ooth compated; try hat orphois. Here are a half-dozen samplos of swil. After i. re drioel and crumbled weigh ont a half pmunt of earla to bue put in similat funnels, of lamp chimury, or interted ink luttlos on tumbler

 dratiage the grater the retaining powor of the soil. If lamp chimmeys of tmmbers ate unel the rmbl on months must have chese clonh tion wer them; if ink bethes, the inttoms maty be erateked off with a reelluot irom. all shomld have a fine wire serem or choese cloth helow the suil to hold it from coming out.

Capillarity of Soil. In sume siluations the suis, in serves like a flowe to hold watur, aml the tillell still draws it up to feed the roots of plants. This power of drawing up water is
called capillarity. Illustrabe it by hamping a danp eloth over

the mface of two tumblers, into one of which a quantity of
 be set on emd in a salucer of water to exhibit the same phenomenom.

Take one of those tin cans with the hohes in the bettom used in the last experiment. Sill it with quite dhy soil and set it in a sulucer of water, inding water from time to time if necessary. Lay a pane of glasis over the tup of the can and observe when moisture appears. The ean of soil may be weighed brione and after to determine the weight of water abombed hy eapillarity.

If lamp chimurys are used and different kinds of soil put in them the pupils may observe the different desrees of rapidity with which the wather aseends in mach. 'They ean infer that the faster the water comes to the top the morre rapilly it will evaporate at the surface, and hence why samely. soils dry so much more guirk!y thatn diay omes. The pupils have alrealy wron how muly fatior water drains downwald through it.

Why can sambly wils la tilloul andier in the spring than May onw? Why do the former suffer more in sensoms of prolomged drought?

 maly haw athaveril attention to the relation betwern warmoth and the growth of plants. 'Jo stmely the part the soil plays
 filloll th the same height with dey samb, wet smme, and water mespertively. Why denes the semblin hoth cases hent mere furickly than the water, and wh y dees the ary satul heat more quickly than the wet?

Set on a hot stwe cans comtaning similar quantities of different kinds of suil, ill empally dried, to determine the comburting power of bach kind. As a test, tablets of lard or soft wax may be laid on the surface of cach sample, or thermmetors if yon have them, or call borrow them, be covered near the surface. Another way is to heat the different samples th the sime temperature, then remove them from the tire to learn, with the aid of thermometers planged in them, which kints cond the more ripidly. Make further interences as the the ropertion atimutiges and disadvantages of samty and clay suiks, and the value of dramage.

Icidity ame .thertinily of soits. - Vinegar is arid. Jip hlue limus paper in it and ohsorve how quickly the paper redtens.
 botom, with hardwom ashes. Pour water on the ashes and
 and let it hath through an an. Notice how this lyo, in the

some of the lye and rinegar and test the mixture with the litmos paper. Sin may sucered in making a neutral hiquid.

Patys suil in which water has been standing does not yield a vishons spowth of coltivated plants. Sometimes it seems to smell semir. Lay a hit of blue litmus paper between two moist lumpor of it. If the paper rembens acidity is proved. Such soil shamble be swertomed, in other words, remdered neutrat or slighty alkalline. Iufer from the experiment the effect of seathring ablus or lime wer sour soils. Soils that in some pats of the comme have borne may cops of vegetable mattur, and that hime had little min to leach off the ash eguivalent:, have berome wery alkaline. The hest soils are rither mentral on slightly alkalime.

If, wry cull Lieght sioils.--The farmers call sandy soils light and clay soils hotery. Wrish a fruit-cin full of dry sand, rmpty and :afill it with dried elity. Winch weighs heavier? This experiment shows us that it is mot the weight of the soils that gives them thene names. lioll some wet sand into a marlle; roll a lit of wet clay into a marble. When the atarbles ane dry or nearly so which breaks up more easily? Which is pasior to dis or hoe in-sand or clay? These experiences show us why the farmers call sandy soils light and elay ails lomay. Stulyine the marble of clay may teach us that we shomhl mot work clay suils whein they are wet.

Rub summ clay intu a well jar of water ; shake it well, then all $]$ unn lime and obserwe the result. Recover the clay by serlimentation and after it has drided to the proper consistency make anmether mathe. Infor the effect that lime has upon the st ickiness of wet clay mils.

Drementr. Thevirw experiments, or make new ones to sulplement, ohartations, to detmmine the value of deanage.
 and warm atir till inte the steil alul innert their heat to it.

Packing is prevented; mellow soil retains moisture better than packed soil. The circulation of air in the soil returns ammonia to it, stimulates chamical changes that contribute to plant growth and nourishes mitro-bacteria, but these important facts camot be taught experimentally at this stage.

Encourage obscration of thain-making. Have pupils learn how the digerer determines the slant in the bottom of the drain to make a proper fall for the water: The chamels may he made of tiles or stones or wool. If convenient, visit a drain-maker at work. A teacher, assisted by his pupils, in lambton County tile-drainel the schoel yard into a road-side ditch.

Correlate Olservation urith E.pperimurut.-As has heen ahrealy stated experiments should not be mate morely for the sake of making them. The need for an experiment on soil should arise naturally in some stuly or dise ussion of plant life. It shouhd seek to answer a question and, when successful, should be applied in as many ways as can be concerived. The need for an experiment may create the neal for, and may maintain interest in, a series of which it may be noar the hegimning, midelle or emb. A need does mot usually arise by acciflent ; the skilful teacher anticipating it, selects a path that leads his pupils, unwittingly it may he, to the isue he desiren. Experiment and observation shouk mutually reinforee cath other. While the experiments with suils in fruit-cans are in progress their comelatives, taking plate on it large seale on the adjoining farms, shouhd be obsorved and discussed.

Water.—The Volume of Lignal Weights of Wrater aml lie. A gross bottle filled with water has beron hurst by the frome, hence the opportunity to introkluce the lesson.
 to hard frost? In amother lessom it was sefol that suil may be proklucel hy such ation.

Try to borow a stone-rhisel and hammer to drill a hole, widening downwad into a lump of limestone or other kind of rock. Fill the hole with water and set it out to fieere solid. Ohserve the result.

What kinds of water containers are sometimes burst by frost? Lead-pipes, pails and ion pots may be mentioned.

Float a coble or other (asily measmed bleck of ice in cold water. Ohtain the ratio of the height of the cmerged part to the height of the whole block.

Measure the cubic contents of the block of ice and weigh it. Melt it and weigh the resulting ' puic. One culnic foot of water weighs 1,000 ounces; calculate from this fact the volume of water oltained from the ice.

The experiments, if carefully male, should show that there is noloss of waight due to melting, but the volume is rediced oncoleventh. Compare this ratio with that of the height measinrements.

Now have pupils infer why ice floats in water, how it can make soil out of rocks and lurst vessels of glass, wood, lead and iron.

The Weitht of Equel Volumes of Wrater and Ire. - Apply your experiments to detemine the weight of eleven culnic feet of ice.

What volume of ice will tem culbice feet oi water make?
What weight of water will be ohtained from melting a

If you have the means of wrighing it piscre of iee, both in air and in water, detemine its specific gracity by dividing its weight in air by ita loss of weight when weighed in water. The ice has to be loadold to catuse it to sink. Or, thate the ice

that will ocene when the ier is pushed memer the water. Add the weight of the owerfow to the weight of the ice to get the weight of water displaced.

A lump of ice weighed 342 ounces; the overflow of water weighed 3 ounces. The specific gravity of the ice was $34 \frac{1}{2}$ divided hy $34!+3$, which gives 69 sewonty-tiftheor 92 . Using the specific gravity, fimd the weight in ounces of a cubic foot of ice.

What if Water Shrumb in Frersing? Wiater expands in volume as it freeres, hence ire floats.

If water continued contracting son that its bulk in ice were less than in the liguid form would it float?

If the ice in the ponds and rivers and lakes kept sinking as ; formed what would hippen to the fish! If the pould or lake were frozen from the botom to the top how would its thaw is be affected.

Convection.-Water at or above $39^{\circ} \mathrm{F}$. is expanded by the application of heat. Expansion makes it lighter, and hence the water touching the bottom of a pot on a hot stove ascends as it wams and thus allows coller wator to take its place. Apply this to warming an upstairs romm with water heated in the basement and to loiling the water in a tank by means of a pipe passing throngh the stove.

Heat E.rpands Solids amd Liifmids.--Tusert a small-hore glass tube through a perforated eork. Push the cork into a bottle filled with water colnord with dye or potasium permanganate. The watar will rise in the tube as the cork enters the bottle. Wiam the bottle and ohserve the comserguent rising of the liquid in the tube ; cond it and ohserve it desceme. Compare with the movement of mercury or pirit in a themometer.

Make a ring on the end of a wire that will almost let a mathle drop through. Hobl the marble supported in the ring

 heat calmes expatision of boolas whether solid on liguid. Dedure pracical appliations, such as lomenting the metallic top of gem jars, setting buggy-tires, starting sfonmel-glass stoppers, ete.

I" Wienter the Coldest Wrater is wot at the liollom of the Lethe.-Chersing a day when the thermometer stambs abont $32^{2} F$., set the bottle of coloned water, refermed to ow the precerling page, with the liguid standing high in the tube, on the outside window-sill. The pupils may ohserve the liguid desernd witil the thermometer falls to $39^{\circ} \mathrm{F}$. : then, if the adjustments are all anenl, the water will hegin to rise:

Lead the pupils to see that water contracts as it eools to $39^{\circ} \mathrm{F}$. When it gets colder than that it expands innl, like ice, will come to on stay at the surface. The surface layer is comverted into ice but the layer at the bothom does nont get any colder than $39^{\circ} \mathrm{F}$. How does this affect the life of the fish? Why can mo ice form on the lake until all the water in it has conled down to $39^{\circ} \mathrm{F}$? Lead the class to see that the great Lakes givo off enomous quantities of heat and thus temper the winter climate of arljoining regions of eomery.

Freesing amb Boiling Points:-Tmmerse the thermonoter bull, in a mixture of show or broken ice and cold water. Note its rading.

Put the bull, in boiling water and note its realing.
What is the trmpratme of sater when it is passing from the liguid to the solid form? When passing from the boiling, liquid to caper?

A stuly of the thermometer may be mak here. ond if Fahrenheit and Centigrand seales are both to be hand they may be compared.

 then we rall it ste：im．

 Can water exaporate without hoing leatoml

The more quickly it asipmates the driow the air i－．When Water ebaporates very slowly outdons rain is probable．

As a rainindicatore，experiment will a wro watrent mit－ doors in a calm place，moting low lomer il talion lo diy wif．

Snow and ide may reapmeate withomt patoing intullo liynid form．Let at layor of forst form on at wht slatro allll loalo it outside during a winter nioht in a dry patre，we lat a sprinkling of smow fall on it，and then or it asitle in the work－shed for a day．The iee or smow will ratpmalle witaut liquefyins．

Comensution．－Breathe on a cold slate Baplain the oliserved result．

 vapor of the breath comelenses into steann in the and ain：
 coated with tew．Whencer comes the dew？

What part doxes comdensation play in tha workine of a steam ehgine？

Commect studies of evapnation and［onnlonsalionl with studies of rlouls，rain，dew，fッg，いr．

 will until the water evaporates．Dow the wi or fore rolit as it is evapomating？Water alwity lakre up ho：l whon 11 心 passing into tha state of van⿻上丨．

Pat smme humps of ier in watw and ant the diah ont the stove. Trest the hat with it themmmerer. Trat it asain whon half the ier is melterl. Why does the themometror show the satme rading as berome? Becanse all the heat that the water meceised has berel usch to combert the ine into water.

Water in going from ice to lignid and from liguid to viper takes up heat, and when it is coming lank from vapur in liguirl and from higuid to iere it gives out just ats much heat as it took up.

Commect this with the finct that when chouls ane forming for rail, tomproature riwes: when water is pasing off inno vam, temproture falls.

Why dues it cool the sehool-romin to spinkle the flom with water? Wiould sprinkling it with hon wator cond the air in the room! Is a fermioh bow conlerl by bathing it with warm water and allowing the water to mannate?

Get the adranced clasises to see that the water in the atmophere is the great equalizer of heat. When the air grits cold its intensity is ampod by comblensation ; when it gets hot the intensity of the heat is checked by eanmatation. Were it not for this equalizat ion the extrentes of temperature would render the slobe uninhabitable.
 the great distriluter of water?

What are the sombers of wells, springre ribers and laties!
Hard "riel Suft Wiater:-Where do we fret woft water! Where, hard water?

But we satw that rain was the original source of well-water. What has mate it hatrl?

Here is a basin of water. How ean you trll whether it is soft or hatd? By testing it with soap. If it will mot make a
frothy amd on lather with amall phantity of wap, the lime or matgosiat whiola has mathe the water hatel has used up-i.e, has wisted -the suap or part of it.
 extromely small pereentiare of lime to it.

How can hatd wator be mate soft? By boiling it. This can le prowed loy the somp tost. The reason is tur diticentt to lee tanght experinentally in this grade. 'The lime in hatrl water is held in solntion liy free earbonic diosiele; the heat drives this gise off amel the lime settles to the lottom of the kettle. Wiator can he softemed chemically and strangely "hominh one mothod is to ald nome lime, enough to use np the free ('O. and then all the lime is precipitated.

Why is water in the lakes and rivers softer than what is in the wells? (Wellwator "here there is no limestone is mot usually hame.)

How comes the well-water to be so clear? Try to construct a fillor of samd and eath and crushed dhamenal. Put in turbid or chalk-whitomod water and catch the clear filtrate.
lses of Wrator. - What are the uses of water in the houseloold, wh the firm, and in the fictory !

I Iow is mankime somed by water in the ocean, in the lake, in the river ; ly falling water, rmming water, still water?

For what purposes is the solid form particularly lasoful? The wiseous form?

Shy ramont plants aml anmals live without water?
What is meant by the old saving that water and fire aro mancs gool friomis but bite enemies.

Poteble 'raters.-Why shoulal drimhing water be pure and - lean!

Waters that are "riley," diseolored or prosemsed of taste or smell, are not always me moresarily mowholesme. Waters

 micorserpe will revald living forms in atry athl every drop of water. In most samples of ordinary drinking wator, when tatioll form the wroll or river or lakr, the bent equipperl examinure might suarell a longe timbe without findiner a single living organiom. Some open springs and formot rivulets abound in mioronenpic life, and yot perple dorive mo hatm by drinking watre from them. Grompally, howrver, waters that contain life that can be seen with the micoovenpe are not safe to drink.

Reservoirs of drinking water are lakes, streams, springs, dhes wells, artesian wells, rain cietorns, surface-water cisterns, cisterns for hated-water. (Tor many people, chan apating, have water is moner palatable than clean vain water, but it is natt more wholesome.)

What causes may make water taken from ach of these sources of supply unwholesome or of suspeeted purity?

Trats of Purity. Wrater may contain mi aral impurities, vegetable impurities, animal impurities.

Dissolved minerals remain and may be seen when water is evaporated in a clean slass vessel.

Organic imporities--vegetable or animal-are probably present if any ofor develops in a somplo of water kept in a want place for a day or two in a clean, tightly-corked loottlo Such impurities are present if a two or thre hours' exposure to light bleacles out the purplish-pink color imparted to the sample by a few dopps of solution of potassium permanganate. In a teaspomful f the water disonse a few crestals of the sala just named. Hiare a sample of the water to be tested in a clean bottle or clean cup. Aldd the solution, drop by drop, until the simple: lereomes pink. Set it in the light, protected

A certain farmer of the writrors arguatutaller hatl always Waterod his hores athl latere herts of dairy cons at at [whel
 the fromd fialod, and he hat to drive his storls at mite or more
 water he observed at matked munowemont in the milk amb buther. 'This fiat comvinerl hime of the valle of gond witho for the fialu animals. Ho draimed wif the prorl, dher atn
 for liis stock.

Pages 171 to 1 心㇒ of "Puble Nidmol Niaure Sumly" give a series of gend lomoms on Combettom, livaperation, Condensation, ('lourls,]lew, ete.
 it series of lessoms on common wherts he the Suture sinuly methere.

Observation athd experiment, investigition athl experionce,
 at every stan. Tuformation outsiole of the pupils' matas of acpuring it hy invostigation mat: he given to propare the way

 the points of interest to the child and thone apathle of pratical applications in the hommelife. Xot aill thenr lemans

[^6]

 Evon as a list it latis compuetomes. Thas same teachor, wwing

Study of Glass. - Is :

 and compneition of the expressive parts; they flo mot show the chaomological omener of the sturlies.

We maty assumbe that tho oreasion to study glass arises out
 will see that the replating of the pathe is mate the opportunity
 the sish maty have to be 1. . 1 but out. Fortume favors if the new fatme is too large alnd has to be redureal in size. The broken glass will du to practise on. It will he masafe to risk operation on the now patme lafore success in manipulating the broken pieros gives eontidenme in the methot. "The seloblass," Writes al toacher, " are proud of their athiownomt. We used hat water to lomen the whl putsy, enllobed it ind hammored it into puwder and put some oil in it ; we fot an eighth of an incle off he end of the new prane to get it to slip in, ant temporamay seromed it with the meverld pulty. They are rem promer of their puttying than of their whiss-entting."

This is a stati. The teachor may resolve to make further educative use of ghass amb, throfore, kerp on the outhook for opportu:itites on go (unt of the way to matie them. An oht.
 wimbow pane at the time they are whtaturl, wr they may bor
 practioal kmowlotge of ghass.

Wor can some abjects themgh it, therefore we saty it is tronspureme, lance it is unotul for windows, lanterns, speriacles, ete.

We ferel it and say that it is smonth and haml: we tand it
 it is arful for drinking ressels and the tups of cortain kinds of tables.

Submitting it to comparation trsts along with iron, tin and wond it is seren to resist, better than they the comenting adion of acids, lanee its value for lattles and prenere jats.

If hat be carefully applied, it stames a sreat deal of it before yelding, but when white bot it ann be beont, and whon
 hellow rods, and many kinds of merontifie aplamatus.

Why is grlass difficult to ent and lore? Why is it used to cap the sulports for the wires on Megroth poles! Why deres it sink when dropped in wator?
 file, kerping the print of contate wet with water or torpentine, or turpentine and eamphor.

To suind the surface or alge of alass-- rul one pione of

To etrla glans-enat it with wax or paratlin, write or draw
 acid wer the engraving Sianse the acold off with water and then remone the wive

To silure glass, lay the fuil smonilly wer it, polle some
 pressime. Diatin of the sumplas mereres

 smap, sug:tr, de.

 for pratioal applations of the towh infermal. Express in suitable morler.

Heating ind Ventilation of Living Rooms.-- Hiffre to

 fireplare like that from the sman conme in mas, ranliaters, of is

 perphe in the rowne are heaterl mene thata the suromuling air.

Hhat is mestly ralliat but parly romperd where stores,

 iatw a batin of watre. Fapire a breatl thomst a rublere

 minute and multinly that ly the mmoner of pupils in the romon to find tha tontal ritiations. Air r9mers to bre fit to

 maker space for the pure air to del in.

 the ratro of 10 f fert in lis meromils will it how ont? Compare
 the whtilator and thas simbate the rate of ementr. The area of the ventilator ant the tate of emernt mathle gon to tell the ghantity of air prosing. The Ontarin ablowl law premeribue that it shall be at leant ometwoutieth of the caparity of the selond rown per miante.

Bring a ten-mume lattle fillerl with water intw the remm. Emply it theresw as to fill it with the atir you wi-h to tost. Put in a half omer of lime watere amb shater thoroughly. If there is mourg! arthon dioxide in the botlo of air to makn the limewator milky the air in the romen is tow foul for the health of the pupils. Olserve the efliont on limewater of passing the breath into it through a shaw or tube.

Close the ventilatom, and chage the air in the room with smoke. Open the vontilators ; if the romen takre lowerem than
 ventilation is below requiremouts.

The best test is one that rompares the qualmtity of air circulated with the quantity of impurity put intw it. This admits suiting the ambat of watiation to the manher of

romen than in an mentilated ones. The author of a thatise
 pure air as in a crowded momemilated remm.

 -

 uses, elle.

 follist turtion.

 attorophore: ingurition in all.

Manitoba. Grade Seven. (ith yfar.) Bee yrnernl mote.

1. How platts ohtain forml from the suil. -

(1.) The form is left in the plath: when the water has evaprotited.
\therefore Cow of truts.
(1) They tis the plants in the stil.
(i, Thery ohtain usmishment from the soil.
(r) They int in some canes as itureforses.
2. Learer-
(u) (liawified) :a persistem and deridums.
(h) Clasiticel as foliageleates, sealteleaver, hat leaters, and thatil-leares.
(c) Part-Mande, petiolc, stipulde.
(1) Stuly of form and renation.
3. The arrasement of hates as represelted hy the hedstraw, anemone, shepherd's purse allel the mint.
-. 'The meaning of pines, temblris, prickles aml hairs.
4. The distrilution of plant-life as follows:-
(a) Where is plat life most vigurons? Why?
(b) Where is phant-life least vighons: Why?
(c) What lunations have the greatest variety of plant foms?
(o) What lomations have the leant sariety of plant forms?
(a) What platits: are fomer in the workls?
(f) What platutsare fomen in the alkaline gromuls?
(a) What platis are fouml in the cultivated tields?
(h) What plams detight in a merthern expensure? Why?
(i) What plants delight in at southern exposare? Why?
5. 'The simple clasificeation of fruits, the pupils to determine the hasis of clasititimation.
6. Ohservation of the ordere in which flowers open, reference being mate to the shopherlis: purse, the three-flowered avens, the buttercup ane the damdelion.

\because. A smainh almly of the cat-hind, the downy womlperker, the flicker :an! the tame we the wikl pizeon.
7. What limets tomatht the nearest erroves?
8. 'Thr relation? of the Eaglish sparow to on native somg hirds.
\therefore Stul? witwe ankroath and the tield erieket.
ti. Simple rlissitiontion of instats aterombing to the chatanter of the
 aphis, potato-horlle, moth, homse-fly imblamt.
9. The inseet prot- of the ash-lailved maple and other shade trees.
s. 'The apmamare, habits, funl, home, who, of the earthworm. The vallo of the cathuomm torm. Diflimone between ant earthworm amb at catcrpillar ; leetween a spider and a grasshopper.
10. The gopher ath the gatin fieds. 'The hadger amt the grain tields.
11. A (omparison of the gopher and the red sipuirrel.

INMIMITE: Nitire: -

1. Stuly of the mil (sief pages 93 tu 101). Testing the prometiveness of the followine heranting the same kiml of seral in each:--
(11) (1).!.
(li) Sillil.
(•) Cliity and saml.
(1) Hımmi:.
(.) 'l:ly : aml hamme mixad.
(i) Sillul dmal humos mixed.
(:1) ('lay, s:anl and homms mixal. Ipplications.
\because. sim-drying a pound of eath of the alowe. Finding lye weighing the dry remmants the alloment of wator last in rath rase. Fexprimental

 Applications.

 spring of of atalls:

Pussics.

 story of a rain-llool.

 growth of platits, naminy and clitswifyinifytuts.
 improvinig tar - mil.
3. Wie
4. Insecte of the tiedry.
5. The rotation of arons.
i. Tlter giddell.
 from lianle sevorn.
s. Forestry.
!. Roarls.
11. Thar eonntry-fome.
 heat, and at simple amalysis of the air.

 m:
 Applications.

- T. Tlu armets.

6. Me:illh aml disaが.

Nature Study should be both Intensive and Exten-

 sive.-- Vhucation thoush Natmestuly takes place alome two quite differont lime. the chose ahmost exhanstivesturly of one topie or a few topies farrial on embenrmently with open eyed

 tary values of rath. M. C. Wirkeronh, the tratelere of Nature Stuly in the lihole hatal Nomat Selmol, writes that :"Nature kituly will werer aromphish what it is capahle of aceomphelings . . . until the mmmbre of topices stmelierl is strpificel somewhat tornoughmes and inthetive methorl.
 trate attention for a comsiterable lengeth of timo." In tho
 stulents, the writer formel it extremely alviable to promese

 of the wip was kiph in the ferrotont of attention. If this

 of public selnomb pupils This maintaining of prominent.

 which inexpert triuhing of Niturestuly is liahle. (lage 165).

 exprosed and sympathies excited in at geat mathe diredtoms By this time, hownor, the pupils ane hewimine toremsuize threats of ordor and st-min rmming here amb there throngh the multitule of plọical mits that mairon them. 'floy begin to feel pheasure in the serintitic attitule whid. in high
 systemes of "lansitiation.

Although senemaizing ant rlasifyins may herome pleasurable and protitable there will new conne : time whell the
 ecological sturlies of plant and amimal werietion. In the literature of science there is ine other chas of boks which

 Marshall Warl's "The Gak:"

Elementary Science and Nature Study.- Rrad the genemal tirections umber (amber Fion to Bicht of the Manitoba Coume (page 3s). Cirade Eisht canmomils to the Fifth Form of the Outaniosystem. Simbios of sulyeets such as the Covering of Anmals, Bills amel Foet af Birls, the Distribu-
 sections of Plant Sitems, Formation of Wifferent ㄷ, iit, Mothenk
 from Nature Stuly 10 Elementary sifonce.

 this time in commertion with a companative sudy of the

 mame with wh.joet. Froml this steme it is but a short strp, if the trateher elromse that they take it, to elementiay classifiration.

Disenworine athl emmatizing the ehatacteristios of hatir, fur,

 of fur to the cat aum latir to the dons wats to those in the First Form. The chillil int he First Form is interested in the retaratile clan of the cat from the points of view of the child's relation to the cat or the matiantise of the struet ture to the cat itvelf. In this class the pupil is probally more interested in low thre cat retracts her claws and why the dong is unalble to dos so. Hence the shaletom of a familiar anmimal that las been ohrownd in life mis mow be more interesting and edmoative that the livinar animat.
 emphasize the stury of hird and incert life in there armates. Chidren whe lise on the fam may protiath comanne the study of the domestic amimats,--a line of imwtimatom that they camen exhaust. Holpful asistanee will lne fomm in
 a weekly ilhstrated joumal, will alsu be foumd valnahbe. The respective Agricultural Departments of the Jronimes publish reperts that may be ohtained of regmast.

Birls.-There is something very fascinating ahnot thestmty of bird-life. This fascination probally explaine the fiel lhat there is a greater weath of goml nature litorature downol to liveds than to ally other group of matmat ohjeetr. ('hapman's "Bird-Life" (190t) is a hedpul hook: it han an alp"min of 80 pages for teachers. McMarry"s "special Mathon- in Natural Science" devotes 38 pages to lessoms on the chicken. mhin, red-headed wotlpecker, crow and awl. Comsult dianforlis
 study and notes on ten species. Nileos and stubnoms "Modern Nature Stuty" gives desieriptioms of the bird fanilies, pp. 47-67, and at stuly of the kinshiod. Hontere's "Nature Study and Life" treats dommicatinn of wild bials and taming and ferding birds, pl. 3:7.36:3. If powihls, visit fields and woods with seme enthusiastir bird-hower.

Encourage the children to make phemochroms of the arrival and departure of the migrants. In Novathentia, simere 1903, at list of eighteen hirds is printed in the ammal rencin! amb every school in the Province is experted to mont ammally to the inspector a talbe of the dates of the first obermed arival of each kind of bird in the spring and the date of the late observed departure in the fall. This exemine is dembita, simple and valuable. 'Temehers' assuciations in wher partio of Canada might adopt and cary out the Nova Nontion plan. The athantages of et-operative observation wor a abllity or a

 items are listed, mily righteen of whinh mitte whirls.

 migration table for 1904 of the lirik of Wiellingtom Comms
 the following hradings:

Nasr.	Filun skes.	L.ant Sme.		Remakim.
Killdeer, ete	Mar: 17	10.4. 0	Cinnum.	

The same number of the Bulletin gives . Nr. Klugh's list of 197 birds of Wrellington Connty. Repmest like these are useful to teachers for comparison with their own records.

It may be assmmed that birds have been observed incidentally and sympathetically (pp. 12,77), and that later there have bern syotematic stndies of the horn, duck, pigeom, or other fowl that ean be lonoght the show wom in an observation crate, as well as of the robin, sparmo, or other half-tame hirds, and prisilly pot care-binds. Pupils atre nuw prepared for comparative sturlies of structure, based on the forms and adaptations of bills, fert, neste, colons and wing. A bird's skin or a stuffed bird is nerded for reference and to le:um the names of the chiof regions of the birds benly. Birds are nof to be killem to furnish Nature study subjects. "If thou hast named all the bieds without a gun then be my frienl." But whomeror opportunity supplies the material, observations slould be made amb romedent. (Thildren frequently time monnty killed hiots; these they may be:

 （1）threrhoul for almly．

Topios for sturly of Bir，s．1．Migratioms：Migrative

2．Nosts and Erati－Lanation，material，form，method of

 should have for erge and mevts．
 notes，calls，alamis．

4．Golne：Relation to smis．tw six，th protertion， 16 lecation of newt batiation with samond
 low the fornt is ohtaimed. Whis is an eromomically important topice Some insert rators will take tent-materpillars, for exilluple, lat will not tullel cut-womms. Disonvering what insects any partionlar biol will aat is goom pratice in both
 sivere weather.
6. Relation of Birfls to Man:-Checking insects and weeds; seaverging; value for plamage, for somg, for forml as thesh alld egis.
7. Different kints of Birds:-Distinctions lonsed on externals, as bills, foret, winges, size, coloms; based on labits of life and adaptations, as divors, swinmers, waters, slorehaunters, seratchers, hirds of prey, per"leess, ete.
8. Deseription of Externals:-Size, color, narkings and peculiarities, shitue of bill, feet, borly, wing, tail, tlight; techanal terms are applied to the different ragions of the birl's borly and the feathers are correspondingly named.

Insects.-In individuals and species insects outnumber every other sublivision of the ammal kinglom. They inhabit all cliness and live in all kinds of situations-in air, on the earth and in the water. As flyers, crawlers and swimmers, they mark the highest degree of anmal evolution. 'Tlory inclurle the most heautiful objects in creation, and exhibit the most momarkable adaptations to monles of hife. Some of these specks of animation so skilfully adapt means to emls that one harelly knows whether to ascribe their actions to instinct or intelligence. Mankind is indebted to them dirertly for important articles of forel and chothing, for drass and dyestuffe, and indirectly for his most beatiful thowers, felicious fruits and seets, fon his clover and other important crops; per contria, he must charge thom with incaleulable destruction

 the attention of the stmbent of nature.

A litule child stmdying a stamge amimal thinks first how the mamal's artions may affert himself. He anks-will it bite! ! can it home me? then how he mity affiert it -a:m I eateln it? how ean I play with it? thid, how it ean do things that hes cand do-how does it eat? what fond dows it like? how dows it rest and play! In short, the ehild is interested in it wer as a manhine but in the work that it cando. Later he will inguire low it denes the work. His interest will carry him alomer the steps of the vital atetivities, functions of orgams and strocture, particularly if grided in compraing these feratures of one animal with similar features of amother amimal. The attitule of a Fourth Form pupil to an ordinary insect is that of the First Grale pupil to a larger animal, such as the log or the cat. Here, as elsewhere, a hatd and fast line cammet be laid down ; knowing the child is necessiny to determining the material and method to use.

There are events in the lives of some insects that pxcite the wonder and maty profitably engare tha atemtion of young chidhen. Examples of these haw been referred to, ($p .49$). If a house-lly or a chothes-moth wre is large as a kitten it wonld be in objert of absorbing interest to every onte, but its minuteness unsuits it for Nature Stuly work in jmin chasses. In gemeral, public school pupils will reath the higher forms before they ean profitably enter on the serions staly of insects. One way me to begin, even there is upm deal specimens, whether firoh, or botted in ill-smelling preservatives. A teacher of a Second Reader class, who hat taken seience in her semior-leaving course, describing her Nature stuly work, said "The high swhol teather spared me enough pickled grasshoppers to go round the class. The ehidhrom male drawings of

 some way if they are twhe smedied in the shlewt roms. The

 sulstituted therefur. Ther "riber hes -merestully wed at

 $1810 \geq 2$ ind

 olmoratory, where they will engey beal comblitum of light alld air.

Ther "I'mlde" limllirlly. - ' What's the matlor with !ome

 arery litile purdilo alone the roatl.

That wat the morning for the teacher to say " I wi=h you wonld "atch is fow of thene sulphur buttertlies without hurtines them topur in our incertiny."

MALt

FどMII.E.
 it cud into pers. When the willing bese bring in their ratives some of the lather will show a martow dark batul aromed hath paiss of wins Thme are malos, and they may be allowel to watis. The others, having a wiler, gerlower,
 are the frmales. P'ut these in the insintary along wibl the living chover plants and anmonere the expertalion that in two or three days bight yillow esse, starling on their ends on the
clover leaves, may h_{n} sought forg. It would be a mistake to ammonce the "gess in andame of their apparance if they were likely th he ahereme withont sperial efforet.

1. Sturle onu of these "ges mulder the lens and make: an matared, morerel dratwing of it.

2. On the third day what color are they?

万. On the fourth of tifth diey wateh for a pair of hack jatws. What are they duins?
is. How long dees it take a Chomed sulphem to cat its way our of the shell?
3. What doese it do with its cmpty shell?
4. Measme a newly hatched limta.
5. Wescrihe its wolore.

6. Wher on the laif dowe it begin to fend?
7. What path doen it make?
8. Dowe it ahways remain out at the culse of the keaf?
9. What color is its hunly now?
10. For thre days it has heow fueding ant growing. Why has it

11. It sermes to lue getting two howle. What dhes that math?
12. What change has the memht mank in its whor?
13. Measure it mew. Duw n :ah hatere is it ?

 placting it among the leaves on another phant.

14. Again they hatre wawd ferming and have heginn wamering as thongh in seareh of something.
15. Wateh the performane going on mow leneath that branch. The larva is changing into a pupa. Describe the process.
16. This kime of pupa is called a chrysalis. Describe and draw it.

2x. Make daily ohservations to note when any change oecurs. When and what is the first one?
29. At last some child exclaims " O Teacher: see the luttertly. coming out :"

These questions are based on a sketch of the life-history of the familiar ('louded Sulphur, hy Dr. Fletcher, in the "()ttawa Naturalist," and are intended to show how a teacher may use such excellent helps to the knowledge of insects or any other class of oljects. Ist, earefully study, read and re-read, the writer's account ; 2 nd , work out a cloar idea of the material required; 3 rd , devise the means of having the pupils collect or provide the material, if possible ; this part is usually one of the most olucative; 4 th, give directions and questions to stimulate investigation, but give no infomation that you can get the children to discover ; 5th, investigate every point yourself; take nothing on trust ; you will find ont now and again, maybe often, that the phenomenon is quite differont from what you smpposed from the book acount, but when you go back and read the book agrain you may find that it was right, but you had misunderstood it ; 6th, as opportunity offers, judiciously excite the sympathies of the pupils and warmly express your admiration of heatuty in their hoaring ; 7 th, require a full and independent expression of the sturly by each pupil, calling into exereise as many modes of expression as are applicable.

Besides the dates and drawings the fullowing, if reid with the questions, maty be thre substance of a pupil's expres. ion of the study of the "puddlor": -
(1) Shows a yellow, brantifully markerl, fusiform ohjo.t. ($\because=$) liok (3) Crimson. (4) Larahen. (i) Fatiner a hole in the (ent of the shell.
(6) An hour:
(1) Eats it for its tirst meal
(\mathbf{N}) $\because \mathrm{mm}$. lonis.
(!1) Borly
olive-green; head hack. (I0) It is mossod with dotted ridges hearing chbloshaped hairs. (II) At the edge. (12) It mowns along a silken strip. (13) It returns along its silk to the mindle threst. (1t) Noarly the same color as the leaf, making it ham to find. (1.5) The toacher saly that it has grown ton large for its atin and that it is groing to get ont of its old skin; also that it has a now skin realy. This rhange is eallenl monlting. (16) The front one is its heal-cane: it rubhed it off. The ohl skin opened down the middle of the bark and the lava twisted itsolf ont. (17) Brighter, and the new heal-ease is greom. (1s) 3 or 4 mm. now. (19) 3 or 4 days. (20) bubles its length, eolor is darker and shows a stripe. (23) 1.5 mm . long, striped on sites. (24) More beantiful than ever: a crimson line on the side stripes : $: 1$ ind long. (26) It has mande a mat of sitk; himd feet are tiol into a little pad of pink silk; it is holling to the mat with its fromt fert. It is spiming a hammock to lie in. It is getting a shell wor its bulls. The teaher says it is a chr!gelis mow. (27) The enhor sketch slows an elongited angular ohject, coloned green with vellow stripers. (2x) Nisth day it is getting yellow. (29) The eave is split opron and a hamthal sellow
 motterfy, and that its Latin name is Colias or Eursmms lhilonliee. After making this water-color of it we let it fly away to le a pmoder with the other yellow butterflies.

Were the class stulying this insect from the point of view of science the imago would very properly he put into the cyanide bottle and later be duly pinned, spreal and latoblletl. From the Nature Study view the sympathy called forth ly the imagined enjoyment of its liberty is worth more than the manual exercise of spreading and mounting it.

White the above treatment of the Chonded Sulphur shows how the book or printed help may be used, there i better way for the teacher to prepare the lesoon than from, e berk, that is, be sturying the insect on animal or phant at firet hamd in his own original way and moting every peint that he thinks he can turn into direstion on question to guide his prupits in their inventigation. In view of this face a hint tostat with is siven on the grasshoper, moseguito, and a few other commen insects.
(iowsishompro or Lornst.-Put green gats or grass stems in a hotien water and set them in the insertary. Capture a few grasshoppers or locusts and put them in with the oats. Their

method of feeding and mowing can be well observed there. The tran shan

7 ho, $1 /$ ms if, itu. -The mosquito although so minute is a very interesting incr. and on limp summer evenings is sure to

pay us attention whether we weterme it or not. A pocket
 satisfaction. ('alert the wiegleme and lithe that ing boats of "rise in at min will or havel. Put these with some of the water
in a cumbler and tif a aber of fine motting over it to retain the mosinutores as they elmore．Then on the window－sill Where maly be when wed the hatehing of the eggs，the beathing and wimming of the larrar，the changed and shortened form of the pulat，and the emberone of the perfere musquito．The brathing orgatus of the lave are attached near the tail end： thome of the pupa are like donkers mass，near the head ent． Buth fintur come to the surface to breathe．
 （1）the＂indow－sill ontsite of the winthw－sish，or better still．to the sill inside of the windew with an opening under the sash to promit egress and return of the bees，but so proterombat the sides that a bee a mot enter the room．In
 to asiat the teanher in directing the children＇s observations． A Lathgothoth ohemation hise，stocked with one frame and ＂und．us hiw．＂can be sucurly screwed to the wimlow－sill as sumphond．Ewn if arrything has to be bought the cost need now exerent there dollats．Fere photograture，opposite page 46， No．6．If the wacher has ．．had experience with bees he shombl stmely them at somme．．l apiarist＇s，or at least get the latters aswitalace in setting up the ohservation hive．Any of thre buks on ： 4 pichlture will be helpful．Benton＇s Bulletin on
 ment Depmitury of the じ．心．Dept．of Agric．，Washington．

 work．Mis Fiodses ant－neste，deseribed in the current volume of the＂Xinmee situly lieviow，＂1905，PP．37－40，can be

 sulallor，is latid on at shere of hotting paper and on it，near the mane as wall is haile th the herisht of a platare inch with
cement and strips of oflass a half ind wite. If there Tomed, two cros-walls an inch wide a:r built in the same way, leaving a passage at, ome rend which is brifged with mica.

For entilation, a strip oi Turkish towrhing is cemented along all the walls and partitions. Three panes of glass, one for each romm, are used for rowfing. Two of the patmes are cowered momake them dark :met the walls are hatekenod

 wet surnge.
outside to shat the light out there. Finul is wism, a little at a time. in the light remm. A thake of fine ymene. ome eishth

 of -w er.

 twire a work. In romblly with a stmly of allis, read

 ente of .lus.

 :

 lessoll.

Latris and maris in levelophent of the Chrysalis of the Milkweed Buttertly, (Litey. (1) First Stare ; (1) Si.quml Sitage : (.) Thirl Stage.

 or Almasin merime"es,

 nover be forgotten by ally one who hat onco olserved it. ('ellect the banded liuvar ond milk-weed leawe. Plare them in any lonx, kerp them supplied with freoh milk worl leaves, and wholl reatly they will suspernd themetues to the rowi of their aige. If they are kept in all insertary, with ghas sides and grame rosor, altach a piree of paste-luatel th the gataze for a ronf to whirl the chrysalis may attach themsilues.

('hrs:alis of Iho Milk wo..al lint " ilts l:\%."
 tomate is perfectly hambess to hamlla. Plane it in dhe insectary and feed it on tomato leaves. It erne it:to ithe ground to prpate, that is to form its chryalis, which is a smoeth, brown, segmented objent, two infor loms, la:uting : jug handled tomgue-case. In the following smmer a hame some moth, often ealled the humming hird molh, emmors. The "ricergrain" bonlies often seen on the gron law: : w cocoons of parasites that hate fed in it- berly. Thane patariters
 worm" is known in seionere as the tomatesplanx, ($1 /$ mornsi/e quinguemaculata or I'hlege thoutias cremes.).
 or spimming its silken eocom is a mon intmonting :mal instructive experience.
 hate bern observed refer to these for amparisoms. If. fine example, the grashopper is known anm the mikiroll am observing the dragen-lly, lead them twone that her hathetut of the first is ameng grass white that of the eremit is the air. genemally near on over watro, that of its m! mph is in wathe in

Nymph seizing its prey by its extended lower lip.

Jhatins Fis

Imityo atherying from the pinjul lame

 grasa ferder : the ditheremes in their leges strikingly weflere ther ditferences in their hahits hat mot mune than the wings do.

 exchanging wings and then how the exchange wonld hatodicap each in its ferding halits.

Topics for Study of Insects. - A ppenrance, form, motions:
 line. Trome insect have sis, jointed legs, spiders hate eight legs, worms lack jointod legs.

Metamorphosis:-('omplete-egg, larsa, pupa, imago-as in buttertlies, imoth:, hertles, flies, bees, ints, etc. ; inmompete
 Molting of larver and nymphs. Pupa as drysalis, cocoron.

Modes of life:-intividnal, commmistir-iss ilhestrated by house thes, tent-caterpillars, cabbage-woms, plant-lice, hive hees. ants, etc.

Modes of feeding:-Many insects, :4 putato-beetle, tentcaterpillar amd tomato-worm, hite their form : others, as the

 sturlying methorls of comblatiner injurions inserets.

Rolations to man:- Didaty of collor and notion ; honey : silk: seavengione pellinatiog flowers; fostrosers of other injurions insorets; fonel fer ponltry ; destruction of fruit trees, ghrelen ant farm erops, forents; romsoyors of disease ; injuries to large animals amd ammoyance to man.

Relations to flowers as fullen carriers.
Relations to animals, as finel of hirds, hate, fishes, tomds and smakes.

Predacous and parasitic species:-The larva, and to some extent, the alults of lady-hugs, lace-wings, syrphus and dragon-flies prey upen thair fellows; ichneumon tlies deposit their eges in the lartae of other insects; ant-hons and spiders make traps to catch insects.

Study the rolations of injurious insects to the plants upon which they feed, as the potato-hetle, the squash-hug, cahbage-huttortly, tomato-worm, grape-sphinx, etc. Olserve the different kinds of insects that ferd upon particular phants, as the rose, the apple, the maple.

Books from which assistanee may he obtained :-" (iuide to Nature Siudy;" pp. $27 t-30 \mathrm{~s}$; "Publie School Nature Stuly," pp. 60.81, 10x; Silcox and Stevenson's "Moxler" Niture Sturly," pp. 1卫9-187 ; S. J. Hunter's "Elementary Studies in Insect Life"; C. M. Weel's "Nature Biographies": W. H. Gilson's "!3lossom Hosts and Insed Guests"; and Comstock's "Insect Life." Mary C. Dickopoon's " Moths and lhutter!lies," with 200 photographs, is a Nature Sturly treatment of these two groups.

Other Animals. Wther mimat, higher aml hewer than

 the first three monthe in the life of a gray squirme, and "Our Monse, Jill," Py, 207-2N.

Consult "Pbhlie School Nature Study," Pp. 42-4t, for assistance in dimeting a stody of the garter suctio. This harmbess, beautifal and useful animal omght to he better kown and less abhurred. If yom feod a captive specinnen will carthwoms or can tman it to lake hits of raw meat, you can easily stoly it. The writur has kept one in mparent. gond hoalth and comfort in the school-romin forer five years. most of the time in a jar such as is desimbed on pare 68. Dhring that periond it has shomghed its skin on, a donall timess but has increased mily slightly in size and wright. In Bhatchlays "ribamings fom Nallme," pp. 27-74, there is an interesting acomat of the hambess smakes and of the rattler. Abott's "Naturalist at Home," pp. $982-307$, hats alsor a goorl chapter on smakes.

Horlge's "Nalme Study and Life," Pp. 40--f, will assist yon in stmblying inothor misumberstond and cmroms amimalthe common but.

A helpful treatment of the earlharerm, whith Darwin
 "Public Schom Naturostuly," Pe 56-59.

Plant Ecology.-Plants maly ho regarded ats machines consinting of pats such at roots, stems, bates, flowers, de., Which in life entry un two kimds of work, one-it ent of intemal activilips such iss cimulating satp, making stamele, etce,

 is called erolorg!, moinimis litumally the stmly of living plants "at lomm" whuller in forest, fiell, or aramen.

It will be motierel that. the plant sturlies in Cimale seren of
 common plats of a lowality ran be reasmizen and the functions of the members of the plant borly have been stuthed objectively in in clementary way, the most interesting and protitable subsequent plant st udies in the public selool will be chiofly ecologric.

Plant Socirtirs amr Zomes.-Tf the pupils can be taken to a heiglit of land rising mot ton almonty from a beg or weedy pond which is partly enclosed hy worls they: a on the ground where in small space the riohest lessons in p. at eenlogy can be studied. First, there is the zonal distribution of punts. Centring in the derpest part of the pond, circle aftre circle of plant communities will be dispesed hefore thom. Nearest the centre will lo found the submerged milfoils, himhler-worts and eelgrasses, neroding little light and gretting their graserous fools ly direct osmosis, and requiring for apparent reasons little or moront.

In the zone of comparatively shallow water the water-lily group trail their stout rootstorks aloner the murlily lootom,
 ample laves upon the surface of the water. A witure circle still growing in the water but with marrower leares lord abowe it enntains the piekerelowerls and lizard-tails, the arrow-leafs and bur-reeds. Fintlor ont, sometines in water, sometimes in mut, stand the bulrushes and cat-tails, the sedges and swamp-rpasses in a complot and irregular zone, each strusgling with the ohlor, 'one graing and adntage here,
another there areorling to sume areadrat of emviromment. On the firm gromml, lint within ront rearli of the water, grow the lomesets and rerains. From the font of the hill right up to its cros, on slope amd terracre, eommmaity after commmmity HII! lor distinguinlord.

Th onte shth delightful sitnation that the writor afton visits
 shmbs, atme a thind of herbs. Tomatate amd willow reflected in the water are hatcked hy hasiwoml and soft maple, athl these in tum are smmonnterl hy ati, hickory ame hawthorn. The shoubhery besins with heaths amb prisim sumate, high cranbery and dogwords; it coasiss in the close slamle but reaplears at the smmat in gowsebery and witch-hazel. The low plants, leximming with the halt athoat sphatgum, in whose bosom nesile cranbrory and smmbews, pitelnerplatuts and orrehils, leal on to a splemtid emmpany of shatr-lowing forms ant water parsmip, turth-leads and labiates up to golden-rods itmel asters.

What qualitios in these plants aml what elements in the enviromment combine to heing thene different stureios su frequently toserher? These questions rhallenge our attention witl erer inereasing interest.

Pelations to Moisture.-Th sumb athation as the whe just reformed to olle mity sere platt- in at ereat varicty of relations to moistare, light, air and fond. Amolom viow is ohtained be stmlying them in extomden arras of particnlar kimls. Those that, fator dry sambly thats possess the moams of retaming the watro they absorb from the scanty sulply. Some of them corl their labes batekwards to elome their

 pores derp sumk and proterterl her males and hairs that roatrol
their transpiration. When pluckend such plants wither slowly. Technically they are called derophytes.

Plants that love damp soil and moist air and are hence called meserpl?ytes or hygrophytes, usually have large or very many thin leaves with momerous pores that transpire freely.

Treess and other plants with deciduous leaves are called tropmingtes becalase they turn from a condition in summer when they regnirs and transpire moch water to one in winter when they use little. Plants that flourish on salty or alkaline lands are called hulophytes. They also have their peeculiar characteristics; they strongly retain their hard-earned water in ways similar to desert plants.

Where the Roots Drink.--Plants with wide branches and ample flat leaves shed the rain like an umbrella and carry it away from the central axis. Some plants have semi-erect leaves and channeled petioles and direct the rain towards the stem. Infer the differences in the root-spread of these kinds of plants. In this respect compare the beet and Indian corn with the potato and sunflower.

Rolations to Light.-Observe the struggle of plants to reach the light. The dandelion and plantain press their leaves close to the ground to prevent other plants from growing up aromed them and shatting off their view of the sun. Contrant two trees of the same species-one growing in the open ficld, with another in the thick forest. Note how the laves and flowers of some plants follow the sun from morn till eve, akoo how leaves that mre bunched or rosetted vary the lengths of their petiokes to loring every leaf-blade into the light. A pumpin vine partly in the open ground and partly antong lents grass afforts ath instructive study. The leaves of house plants not regnlarly tamed beome st mongly "dratwo" to the hight.

Propagation of Plants.-Plants are propagated in various ways but chiefly by spores, seeds and separation of parts.

Spores. -Spores are merely particles of the plant's protoplasin protected by a special covering. They lack an embyro, are extremely minute and very nmmerons. Fungi, alga. mosses, ferns and horsetails reproduce by spores. Some kinds may be gemminated on a porous brick resting in water so as to keep the surface damp. A microscope is needed to study them.

Seerls.-Seeds are like eggs in that they contain an embryo and a certain amount of food stored to serve the plantlet until it can work for itself. Were the seeds to fall and remain under the branches that bore them, the young plants would crowd each other and their parent so hard as to starve them all out of existence ; consequently plants have developed a great variety of means of distributing their sfeeds.

It pleases the fancy of the children to represent the different kinds of seeds from the point of view of their distribution as flyers, skaters, sailors, balloonists, riders, walkers, crecpers, etc.

Flyers. - What are wings for but to fly? Many seeds or fruits have wings, among which are those of the maples, ashes, tulip-tree, blue beech, pines, spruces, and catalpa. The wings are differently adjusted and shaped in the different kinds, and each kind of seed named has its own way of tying or whirling. They detach not in calm weather, but when the wind is high, so that they may fly far from home hefore they reach the ground.

Skaters ated Sailors.-Althongh it is midwinter still some of the porks are hanging on the locusts. A smooth crust is on the snow, the high winter wind snaps or twists ofif a number of the peds, and carried by the gate they skate a mile or more
from where they grew. Olservant eyes will see several kinds of seeds that, remaining on their parent stalks until winter, are moved far and widl ly the wind that drifts them over the snow-crusts. Many plants, such as the sodges and grasses that grow near water or on lam that is flowded, hear their seeds in water-tight capsules. When these fall into ditehes, water-coumes or flowds they are carried to their distant homes. To other seeds or fruits are attached life preservers, bits of spongy or pithy or corky substancess sutficient to float the seed. Examine it seed of the narrow-leafed dock for three little spongy floats, or a fruit of the lur-reed for its lining of cork that keeps it up in the water.

Ballomists.-The basswond places cach little cluster of nuts on a banct which may serve for a toboggan, or a sail or a wing. The dandelion, the poplar, and the thistle have a host of imitators that in dry weather spreal their downy parachutes to be caught loy the wind, carried aloft and floated until a shower wets their sails and brings them to the earth, rain-softened to receive them

Ridrers and Creepers.-Some of the riders pay their way like the cherry, hawthorn and iny, whose fruits the rohin or crow may eat for the pulp but whose seels are protected from digestion hy their stony walls; or like the euphorliat whose caruncies reward the busy ants fior their share in the distrilution of such seeds. Others like the hurdocks and pitchforks and stickseeds steal their rides. With sharp hooks they catch the wool of the pasing sherp or the hair of the shagey dog. The looks on barls of such kinds of seeds or fruits are as curins as they are effective for their purpose hat many of them require a good lens or mieroscope for their examination.

Some of the grases seds like those of porcupine grass and wihd oats hate twisted awns which staighten or curland twist according as they are wet or dry. Wach ate of straightening
and contracting moves the seed a short distance, enough to suggest walking or creeping.

Shooters aud Rollors.-Tourh-me-not gets its name from the irritability it exhibits when its seed-pods are touched. The gas-plant (Dictemmes) has a mechanism in its pod which forcibly discharges the ripe seed. I have known such a seed to be shot out a distance of thirteen feet. Balsams, sages, and violets are shooters but the witch-hazel is the prince of vegetable catapultists.

The Russian thistle, the tumbling pigweed and the old witch-grass cannot project their seeds but they have another means of scattering them far beyond the range of their shooting companions. When these plants ripen and dry they break off at the ground and before the high winds they roll and tumble and drift across fields and along highways, shedding a seed or two here and a few more there and so on for weeks or even months.

A good way to study the dispersion of seeds in the higher classes is to take the seeds as they are captured on their travels. In rural districts a collection may be mate of those that are found on one's clothing after a trip to the woods, or on the covering of animals that pasture in thickets or weedy fields. A large variety of seeds more difficult to identify will be found in coves or bays off water-courses and ditches. An instructive study may be centred on the distribution of the seeds of plants: that are particularly troublesome to the farmers, such as mustard, thistle, rag-weed, ox-eye daisy and wild oats.

Expression.-The expression of a study of seed dispersion should give : lst, a brief description of each proslucing plant, accompanied by a dried and neatly attached specimen of the same, or of some important part of it; 2ud, a statement of the time, place and circumstances of the collection ; and 3rd, specimens and drawings, enlarged if necessary, of the fruits or
seeds, or buth. and of the mechanisms that specially promote dixpersiom.

Pats or wholes of in irom plants shouk be fried under bai. 'and presime betwen firquently-changed, warm, dry, dreins: iapers, and attallofl to the page with very narrow striju of tough grommed prepe.

Simall specimens, such as seeds or detached parts, are usually
 placed in prockets, to be pinned or gummet to the page. The standard specimen-pocket is made of an oblong : of paper of suitable size - say, for ex:unple, $5 \times 3{ }_{2}^{1}$ inches. Fold it lengthwise 2 inches from the upper The doted lines represent the foll. eflge, and turn the top half-inch down to make a flap. The emd-folls, an inch in length, are turned back. This gives an envelope or specimen pocket $3 \times 1!$ inches. It is attached by the middle of the back to the record page, and the end-flaps are tumed below, to kerp them

The pucket ready for flowed. The pocker can be opened and closed easily without removing it from the page.

Collorfinns of siorls.-There is danger of mistaking the mere making of arollections for real Nature Study. (See p. 28). Collecting specimens has, lowever, certain incidental values. It expreises discrimination, loads to classification, and takes peophe atiom. Mamal dexterity and artistic taste are required in the proper arrangement and mounting of some kinds of wherets.' All these are desirable results, but from the Nature Stuly point of view they are more than counterbalanced if the collecting hecomes an end in itsplf or involves destruction

[^7]of life, happiness and beauty, such as thr puisoning and pinning of hat?aless and beautiful insects, the rohbing of lirds' nosits - not to speak of the killing of the hirds themselves, - and the tearing up, root and branch, of rate and rapilly disapparing wild flowers. Kept in time and plare there is nothing to be said against making properly labolled and woaty momited colleotions of such oljects as seeds and woods, weeds and minerals.

Common methods of monnting seets are beyting them in small lomeopathic vials or in numbred pockets like those described on the preceeting page arranged in loxes. Less expensive than hottles, more convenient to examine, more artistic and requiring more manual ingenuity to pit up are the methods illustrated in "Correlation of Nature Stuly and Manual Training," Nos. 12 and 13 , opposite page 46. The engrawing shows plaster plaques glazed over the seeds and rubber washers glazed back and front. A wooden plapue may. be used instead of plaster, but it is ditticult to make the pane of glass fit close enough to the wood to keep minute seeds in their respective places.

Propagation of Plants by Separation of Paris.-

 This section sublivides into matural and wrificial separations. Many of the sulmerged water-plants multiply frerly ly detachment of buds and branches. Several shore plant... while. relying on other means, are distributed to some extent ly tho rooting of detached parts. Bullhets in the axils of the leawes of the tiger-lily, among the flowers of the cimamon vine, wild onion and water-hembeck and beneath the pemar of the babler-forn are the chief means of multiplying these phats. Strawherries send out maners, hamkerries root at the tips, potatoes and Canada thistles send wut undergromad huil-bribing brandmes, the silver-puplar lmats from its roots and spuimel-omen atul lilies hate other pronliar ways of increasing thoir mombers umbergrommd. Refire to any wollknown plant, of a type aml ask for obsorvations of other plants employing similau mo:nы of multiplication.

Arfificial Sopremfion.-LLeaving the fichl for ohservation we rntor one for experiment-for macation by doing. In the sehoul-anden, or the home-garden on window garden,--in soed plot of samblon on thower-pot, experiment with different ways of raising the same plant. Geraniums may be grown from seerls on slips ; potatoes from seeds or tuber-enttings or stemcuttings.

Cultings.-In moist sand, at the proper season try cuttings or slips of geranimms, can'mations, chrysinthommms, oleanders, wanlering-jew, tomato, etr. Fixpmiment with cuttings of wild plants aml yoming-worl cuttings of willows, spirata, currants, gonseberries, etc.

To not leave much leaf surface on geranium and other leafy slips, as the leaves may transpire water faster thath the rootless cuttings can supply it. Partial shading checks too rapid tramspiation.

Bugronias and other plants having thick leaves may be propagrated by cutting the leaf into triangles and planting or piming the points into moist sand.

- Itritctive ats the foregoing exercises are they yichl in fascination of the oller pupils to practising the arts of budding and grafting.
 best time of the veare for dmoling, allhometh sulcoessfinl results maty he ubtaned in eally september. 'The art may be
tanght in the rably summer aml prantiond hẹ the pripils in

A shirlel hud anll wig with slit on sitle prepitrell to receive the shiclll.
 wayside shrmbs. A slit, an ind or moro in leneth, is cut with a sharp knife in a clean, smonth, haithy part of a brabela. Near the top of the slit make a corss 'ut as shown in the illatration, "and open 川1 the latek to promit the almission of the "shichl" of the bul. Sreak a healthy hat of the same spereios: besin to cat at about an inch below the laml and extend the cont to it quartor inch or more : almon it. ('nt deep emough mot to injure the lanl and shallow emongh to avoid menth worel. Insert the shield into the oprened slit ; chase the opened bark of the storek ower the shield :und tio in position with ratfia or soft cord. In two or three weeks thore omsht to be maion of the parts; but the bul will not grow until the next spring, and then the part of the branch above it should be cut off.

Grating.-The att of grafting may he practised in the sehool-room upon detached bamehes and twigs. When the pupils have loarned how to cut ant fit the seion and stock they may use their komwledere in the home orchard of upar rombeside mitples or poplars or hasswools.

The common forms of grafting are known as cleft or wedge, splice or whip, sadille and side. The first is the kinfl most pactisel in the oreharel. A branch, an inch or more in thickness, is sawn across ant split towarels the trunk for an inch or twe.
 the scion, is carefully inserted. The seton shomld be intio left. a bit of healthy twig hraring two on threr buds and cut at
its lower "ull to a werge shatur, hinting the nuter side of

A. tongue splice-graft. the werlen somewhat thicker than the inners. Where insertal the ban' of the onter side of the wedge of the sioun must aljoin the lark of the stack. It is betweren the soft lank of the seion and the soft berk of ther sterek that unitin starts. 'lop peremt the parts from drying out bufore they mite all the woumbed parts must be protected form the air. For this purpoe gratting wax is generally used.

Whon the stock is little, if any, harger than the seion they are usually splieed by apposing long slanting cuts and tying. Eath slanting surface may hawe a tomgue cut in it, and one tomgue slippeal behind the other to kerp the parts in place. These

A variation of the whip or splice-graft is manle ly rutling the stock to a long wedge, splitting or cutting is corresponding werlge out of the sevon and fitting the saion were the werlge of the stock. This variety is aptly called it suddle-graft, and is frequently dome upur roots.

Full instructions on all kiads of grafting, bulding, etc., may be fomed in L. H. Bailey's "Nurery binos." A chapter on the details of grafting and budding the peach is given in Hoxlar.s "Nature Study and Life."
 of mosin. five of beswas and threr of tallow. Whon melted and mixed pur out slowly into a pailful of cold water. Smear the hands with softened tallow on land and kueal on pull the mixture until it hectmes like pate yellow tally. Make it into rolls and wrap with
 The proportions of insirelionts maty be variol. Adiling tallow softens wax, aldine woin harlous it. liafore aplying it rul) the hands with tallow. A gomel way to softert it for working is liy putting it in wiull witors.

Regions of a Woody Nem. - In combertion with grattinn teach the nature and nse of the reginns in at wanly limanchpith, wond and bark. Pith comsists of emply rells that were once full of living protoplasm like the colls anomig the bitrk fibres. The wond shows anmual mblitions pronlucod in the cambium layer. It is in the goung word that the raw fluids from the root ascend to the leaves, see exproinucil with willow twigs, page 157. Outside of the cambinm layre are the bundles of fibres and vessels, making apath for thr ciroulatinn of the digested liquids, and the thin-walled cells filled with living protoplasm protectad externally hy the ellticle or soaly bark. The union in grafting bergins in the thin layrr from the canluinm to the cuticle.

For further study of the rings and grain of worl sep "Public School Nature Study," pp. 113-116, with platr.

Exodenoun Stem. -An apple stem, showing pith, ninetren ammal rinks of wimal. caulbini Hlm, soft lark and haril hark. If this were gratted the wift unimjured
 bark of the stock.
 pupil's selemeterm thant the olle on which her or sher is wrell taghit hew tos transplant \boldsymbol{a} trees.
 we are digging up the tree?
2. Why cover the ronta while rarrying the there fiom the wernts:
3. Why dig that hole int the latal rlay wo withe anel derp athe then half.fill it again lefore platting?
4. Why dig that moroml hole ne:ar the tivet one allul leave it *illit!?
5. Why prome all the broised rome:
6. Why prune off nearly all the hrameloes?
7. Why put in more black earth in the hole wate the tree onl:
8. Why use earth su fine and diy that it ran le whaken in allom : " ronts?
9. "My father," said one pupil at this stage, "scattors a diplu'ful of oats over the small romes. How does that help thre tree?""
10. Why jar the tree and trearl the soil when the lumbe is tilleel just alowe the ronts?
11. Why put ehips and stomes arombl the tree?
12. 1)oesn't it need a pailful of water aromul the romes to tinish the planting?

The pupils may not ask all these and other questions of their own accord but the skilful teacher will try to get them to investigate and discover the answern whether they or he or no one asks the questions. The children shoulil ilu the work - the pruning and the planting, the digging if they aro alolo and ull the rest-they like to do it: the teacher shomld sere that they niso du the thinking. By questioning and suggesting, and perhaps experimenting, he (anl leat thon to answer the above questions.
(1) The large roots support the tree and ronduct the lipuini mourishment; the small rontlets ahsobls it. (2) 'The tine thrandike roots

 humma to muminh them. (4) In this hatel umbratued suil water would 'stand' aromal the remis, precoriting their getting air aml wamth. The secoml lule dratins the one the treve atanle in. (i) 'low prevent Ancty. (b) Mont of the romethets were left in the womp. 'lhe fow ons the tree ramot aboorb water fant elough for all the leanes that womhl hawe grown. The leates trampire faster in the ofrell fiold that they
 surfite as they were lafore trimiphating. (s) To get it in "mong the atles. (9) 'lhe geminating mats canse warmoth; their ruts help to I She roots of the tree; their subariment dorompunition fertilizes 14., soil. (10) 'To bring rextlets and soil into clace comtant. (11) 'i's k excessive exapmation in dry weather. (l:3) Tlee watering may * beneficial if there is olranage.

Propagation Reviewed from the Point of View of

 Science. -The writer's class after a season's nature stuily of propagation of plants made the following table inductively, that is by generalizing the examples experimented upon or observed.Plants proparate by :-
-spores as horsetail
-seeds brail
—root-sprouts poplar
-divisions of the plant :-
(A) nat um:al arpanation of parts:-
(a) billos glatiolus
(li) hullineales li!
(c) bubletes I'linese yitu
(d) tubers of corms . . . spuirvel corn
(e) layers hawk rasplevery
(i) detarlhed tips of hanwher - water milfoil
(B) artificial sepatation of piati:
(a) layevs tomato
(b) ellting :
(i) stellis Wantering.jew
(ii) tulnels jriato
(iii) roots Inense-matish
(iv) leaves luegolia
(c) bulding jreach
(l) grafting:
(i) eleft apple
(ii) spline willow
(iii) inturh . . . heliotrope (iv) root dahlia

How Plants Work.-To show low plants drink, take a pickle-bottle nearly filled with water to the cornfield. With a sharp knife cut off two or three feet of a green cornstalk and at once set the cut end in the bottle of water. When brought to the school-room the pupils will observe the rapidity with which the stalk takes up the water. Iufer that its transpiration through its minute stomates must keep pace with its alsorption, also that a growing crop of corn takes from the suil a great quantity of water. ${ }^{1}$ Infor the need of making and keeping the cornfield mellow. Apply conclusions to other plinits.

The roots of a willow tree have ineen known to penetrate a fire-lwick soil-pipe cemented at the joints and to choke the pipe. Two willows standing at the east side of a farm-house kept a well over twenty feet deep situated on the west side dry during the summer. After the willows wre cut down the

[^8]well's former usefulness was restured. Sel pupils intpiring alomet and observing the work done by plant rents.

The growth of potato stems in a rellar illustrates how the plant striwes to reach the light.

Setting a freshly-cut stem in water enlored with red ink or aniline blue for a few hours will emable one to trace the paths taken by the raw fluids that enter a plant. Balsam or nasturtimn stems are suited the this expriment. Cout off at thin willow branch; two on thee inches from the lower and carefully givelle a ring a half inch wide without cutther the word. Set it in water that does not reach the giralling. Note how long the leaves remain fresh. Nimitarly girdle another willow twig and keep it, the girdling being inmersed, with a third ungirdled twig in water. Note where rowts begin to grow in each case. Infer that the raw fluids traverse the wood and the digested fluids the bark.

Nutrient Solution for Plants.-All solid plant fined must be dissolved before it cam be absombet. Byamalysis, the alements of the substances that green plants refuire for forel have been discowered. The experiments made by sadhe lod to his diseovering that if the following guantities of the subatincess named are dissolved in a gatlon of water, the solution will romish plants from germination to flower, or in some abses to fruit: One-twelfth of an ource of rach of -tabla salt. NaC' :

 chloride of inom abont the size of a small peat. If \because or haw mot the means of werghing a smaller ghantity than a guatere of ath onnere, either divide it ly inspertion inter there erpual parts, or make up there galloms of the solution. Plants may he grown in this solution, changed occasionally as it weakens, supputcol on a piece of maslin tied wer a tmablar or in sitwdur, on elean samb, wremge regularly watomed with the
 with broken glass or sand, or in a small botte, always taking care to rancw the solution orrasionally, or frequently if the vessel he smatl.

Plant Life-Histories. -The heginner, who desires to teath the life-history of phants, bat lacks confidence in his own eyes and judgment, can find a large and inereasing literature to help him. If he uses such helps in a few examples, after the mamer that the suphme liuttertly was treated, page 128. he may hope soon to le alde to deal with any emmon plant from original inwstigation. M. W. Morley's "A Few Familiar Flowere" will lirect yon in the study of the morning glory,
 B. Scott's "Nature Situdy aud the (hild" devotes 37 pages to the Dandelion. Wrodis "How to Study Plants" and nearly all the books mentioned on pages 24 and 25 give lessons on plants or histories of them. In "Public School Niture Study" there are catechetical lessoms on closer, trillium, dandelion, horse-chesthut, maple, apple, potato, grass aud plantain.

School Gardens.-In Ontario and New Brunswick government grams are given lo lwards of trustees making provision for school-gardens that come up to a presceribed standard of area and equipment. Through the munificence of Nir William C. Machonald. administered under the energetic initiative and wise direction of Dr. Jas. W. Robertson, a group of fise sehool-gardens has been established as examples in each of the Provinces named above and in Nova Socotia, Quebere, and Prince Edward Island. In the Quernis Quarterly, 190i, pp, 390419, Thspector Fowley has given an acount of the worls acomplished in these I wenty-five schools, dwelling particularly on the results in the Ontario groip in Carleton Comity. Besides the Madonald sedoel Gadens, Nova Seotia has

$$
c \cdot h
$$

 spectial grant of help, and comblucted mole to ure Supt.
 mener usioful." dult this is the aill with which esery selhome garden shomat be mantised. I- Inepector Cowleg, writing of

I mion combertion of the thachers of six of the matern rommties of Gutatio, atter visiting and insoretine the
 the intrenturtion of such gardens inte lwoth urlan and rural districts.

The Palues of the Right sidherl trareden.-There dains are
 "hatation for which the whol-sarelen may give opportunty.

Phesical romblitios are favorable-exrecine. freh air, sumshille.

Intellectual pencers are exercised in the plaming of the
 Fomb therery of the different arts mentionel under "Exereises for
 of inguiry-tor the sefentitie attitule of mint. Latomins (1) becomize species and varioty of plants, and divilugnishin! wrols from mommic: serellines, exereve the selans and

[^9]The exerntive powers are ralled ont in dovising, chowsing and exeruting moins to comls that the rhild deems worthy.

On the moral side, the ideal fitrabin inculeates system and order, develops a senve of personal responsibility and apprecinlion of property proxhead by onoss own effort, disposes to manmal exercise and lainds to respect for honest toil and toilors. A leatutiful garilen lias a strong intluenter in the right cultivation of the esthetic nature.

In resperet to nanual still and knowlorlge that will prove usofinl in an argicultural conntry, it is worth something to aequire the floft use of gialen tools, and much to sturly tho sedonee, as well as to learn tha art, of the following exrrcises:-
 digring. dramins if mecessary, fortilizing. matings it mellow.
 detromininis the use to be made of each part. Salying out the plan on the ground.

Procuring the serols; testing the vitalit! of the serels in seedtestros; grominating the tember linds in fots or hoxes.

Plantinis seeds in the open gromal and tansplanting from the seed-luxis.
 watroingr. pruning.

Studying the kinds and nature of wort and metherls of proulicatimer them.
 controlling the lattore.

Fxperimentiner with the offorts of raltivation "pern will plants.

Stulying the methods and advantages of rotating repos.
Artificial pollination. This can lue dome by the ofder pupils.

Budding, grafting and otherwise expromenting with the prohlems of phant propagation.

Correlutions.- "The children were most interesterl,". said an art tember, "in the moklellings, drawings, ant color work upon oljeets brought from their owit garilen plets." Another teacher writes: - "The keeping of a diary hy each child (of his own home garden) prowed the best kind of compmisition. They wrote and dated their accoments of seeding, appearances of seedlings, thiming, weeding, cultivation, etr., on separate sheets first, and convertent them hefore they put them in their 'garrlen-huoks.'" An example of correlation to arithmetic and book-keeping is givell on page 162.

Your sehool need not he deprived of the advantages and opportunities afforded by a garem, thomgh it camot get government aid or even a small grant from the loard of trustes. It is possible to aceomplish a good deal with ouly a conple of suate roxls of gromud and lomrowed implements. As in other things, where theress a will there's a way. But have a definite purpose for its mathlishment. Wo not undertake a garden simply beraume another sehool has one. From the Iwgimilig hate your eye on the end. Do not oworlonk the dangers to the garrlen attendant on the long summer holiday. Better have no school-garifen that an abmantord and masighly weredplet from vacation to the end of the smasom. Einlist the sympathy of trustes athe paremis if possihle.

School-gardening may be combluctol along one on mine of
 the conperative giarlen, and individual phots on the common
gromal．This last is the methen emphyarl in the brombiew Institute，deserikel and illustrated on lp．liag－1ie of＂Public Schend Nature Stuly．＂The best selumblaten consists of a commom coroperative amd experimental part and individual plots．In the Miadomald gardens earla pupil is given a plat of his own，varying acoorling to age and strength，from 72 square fert to 120 square feret．Insteme of a single plot for flowers and vegetables two half－plotes may be given to promit all the thower gardens to be phaced together and separated from all the wogetahle garderis．The following， from the（emen＇s Quarterly，is the finamial statement of a plot， 10 by 20 feet，at the Bowesville school．Time is charged at ten conts per hour．Early erops of ralish and lettuce were succeeded by beans and tumips．

Cost．

$$
\text { Tou preparing gromul . . . } 10
$$

＂wabes and laturk． ． 10
10 planting， 2 homers 20
＂werling，＂tte．， 5 homrs ． 50
4 harvesting， 5 hours ．in
＂sued：peas：me，heans： 2 ？． ． 7
＂carrous le．，brets ion， onions Ir． +
 leltile $1 \cdot$ ． ． 3
＂flower seial． ． 8
s． 102
Net protit ． $\bar{\pi}$
$\$.17$8.17
 60
＂$\quad 3$ quarts peas． $\therefore 0$
＂iblunches carots 1.5
＂ 5 quarts herilis ． 1.
（1 10 bunches ratish． ：20
＂ 8 biluches of huris． 16
＂ 3 hוmelhes of onions． ． 1.5
＂ 5 hunches of parsinijs ． 31
＂ 12 heads of lettuce 36

The plan wiven oll page 163 was laid on a plot 42 ft . by ex ft . (ft . I incli). I was a plot of whent; B, glaws serelonl the premeting gear when in whent; C, grass to be broken in the fall ; and 1), root crop to the sown in the fatl with willer whent. E, F, (i were fiehles showing a different kind of winion-ome sitiol wa stork farm. E was oats and
 the fall ; and (i, rye turaed down in the spring and followed ly, wom. 'lhis is an example of a small eotoperative garelen
 with the individual hombegarlens. Comblitions vary so much with howality that the garten successful in one place may be quite un-uilo.il to amother.

Aint to hate as fite a gatulen as the Boweswille ome. Failing that. youlall smoly, if you try, have one at least ass ghenl as that dowithed almes. 'lhis year, 1905, the stulents at the lamblon Nomal Silamol hail out on a plot, 8 s by 26 feet, one central, wireulan thwer hell 12 feret in dianeter, four triangular, sis splate, ant twonty-four whong plots, and phated therein a gent valiey of thowers, grasises, fonge plants, swet herhs, and garalon wargetables mot generally rultivated. See illus trations, יpposite pages $16,50,159,164$.

If there is rut rown to spare on the playground, a few spluare ports c:un be rented in the corner of a field mitoining the selenil-yartl.

Field Excursions.- Most of the outdeor studies suggented in this lame are supposid to be done by the pupils at home on. ont thoir way to and from school. Many school-honses, lowner, are so favombly situated for co-operative outdoor work that it woull serm meglect not to untertake it. Circumstances are so various that particular rules cammet bee given. for the sake of suggestion, what is being done in the Ottawa

1'prosster fieder 1ri\%.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

Model School is printed below. Reference has been made (p. 23) to the objection of parents who do not understand the educational valne of properly conducted fieh excursion.s. In the example under notice, to inform the parents of the uses to which it is proposed to turn these excursions, Principal Putman addressed the following circular to them:-

In order that pupils may have opportunity for aermate observation of Nature, each class of Forms I, II, ami III will devote ten aftermoms from April to O-tober to fied work. The regular teacher will divide the class into fomr gromps and give eath in charge of a student teacher. The regular teacher will then be free to exertise genemal supervision.

It is hoped that the field excursions will furnish a hasis for language lessons buth oral and written, and also for drawing and rolor work. While avery field day will furaish opportunity for a variety of work and for observation of many phases of nature, yet it is expeeted that when a elass goes out for stuly the pupils and teachers go with welldefined plans, and with one or more dafinite objects in view. Where possible, teachers shond make a visit to the locality to be studied before they take their classes.

1. Study of Trees, - Buds, how developed and how mfohled ; leaf forms ; bark of tores; arrangements of branches, inclination of bamehes to trunks; eommon names of trees. Are certain trees always found in eertain places? Are all trees of the same species of the same general shape? If not, why not?
2. Son. - By using a strong trowel or spade ther will study soil to the depth of a foot or more, Pupils will get an acromate knowlodge of such things as humus or vegretable mould, samel, gravel, clay, harel-pan loam, and evidences of animal life in soil.
3. Phants. - As the wild plants appear the pnpils will study them in their natural surroumlings. The parts, root, stem, leaf amblower will be carcfully examined, habit of phant earofully woted, rfleet of sill om time of hoom. Specimens may be earried home for use in the mext drawing lesson.
4. Animal Lafe - Fivery wild or domestic ammal men ley the pupils will reeoive some attention. If domestir, its use to mon will be woted:
 receives special attention, and the time letwren April I to May 10,
before tren atre in loaf. is best for ohservation. Tearhers will have opportmitios to ansere with their chasses such birls as robin, crow, swallow, hawk, herehid and tlicker. Inserets will be found in abmodance, and prove a sembere of great interest. One or two mets shombl be provided for eath clas.
 ail pupils will receive in feosraphy. They will get elementary motions
 natmal ohjerts as soil in all its forms, buk, granite, limestome, homblers, books, swamps, sprimes, rivers, watorfalls, hills, valleys, shore, biverbed, brach. buff, ishand, cape, peninsula, bay, watorshed, river-mouth, tributary lake, outlet and bog-all these are within reach and may he studied at first hamel.

The mont nurempromising "anti-faddist," self-styled, would find diflirolty in framing an objection to using ten aftermons in the your in the manner proposed above, especially by children brought up in a largre city. Kimal school chikhen have less urgent need of this inportant kind of education at first-hand and by dibert contact, hat even they wonld be greatly stimulated and quickened by the competitive obsenvation called ont in a properly conducted fichl excursion. The importolle of plaming an excursion for a definite object camot be too strongly emphasized, (p. 118).

Phenochrons and Phenology.- Weather records have bern decerihed (p. 91). The most advanced chasses, pardiculaty if the school is supplied with a barometer, may extend the schedule there proposed. Besides the kind of cloud, the extrut may be added, by writing in a circle the intimated number of temths of the sky that is clonded at the time of obervation. If thee-tenths be the estimated clonded area, it is "ritten thus: (3). A column way be headed "Fstimated Hows of Sunshine per lay." The difference between the mading of a dry thermoneter and cue whose bulb is covered with entton hatting comvering water to it
hy capillatity, and then rallent the wer bulb, samim in the moisture in the air. 'Ilhis differe are may la daily remeded. If weather he stadied indurtively. the barometric realings of pressure are wey important. After the reord hat bern kept for two weeks or a month hy the same dass of in pan making when put together a comtinuous reenol, be diffirent classes, summaries may be madr ard investigated. A graphic way of showing a summary is by a metborl cathed "photting a curve." To mark the curve of tempratme, for example, the range of temperature in degrees would be written in a vertioal colum on the left, and the days of the month in a morizental line as the beadings of the wertia colums, one for barl day. A zigrog line acooss the table wonld iblicate the upsambldowns of temperature as they occurred umler the respective they-headings.

Phenochrons.- An admirable means of maintaining the observant attitude is by requiring pupils to repret and recorb phenochrons of wild and cultivaten plants, faming oprations, meteorohgical events and bind migrations. Nova scotia's experience, extending wow over several years, has prowod this statement, and demonstrated the practicalility of the methorl. The forms sent out from the Chisf Superintendent's Oftice mention a hundred events to be observed at each school, and suggest the adding of others according to opportunity. As was suggested on page 121 , associations of teachers in the other provinces of C'amada might dow well to take this subject up, with a view to securing co-operative work throughout an inspectorate or group of comities.

The Norne scotice Scherdule. - The following are the heatings and a few of the events noterl in the Nova Sootia whednle:

The extimated lengtu and lorealh of the lowality within whim the following obserations were marle.milas. Etimathed
 the sara level. fert.

Slope or gental ex ansare of the resiont Gemeral datanter of the suil ant surface.
Proportion of forest and its dhatater
Dhes the region inehade lowlands or intervales. . and if so name the main river on stream Or is it all substantially highlauls ?.
Any other proubanity tembing to atleret regetation?.

The most central l'ost othiee of the hocality or region

(W'h.i Plants, etc. -Nonenclatiore an i/l "אpotton" of "(inay’s Mantual.")
12. Damletion (Tamxacem officinale), flowering. 13. Ahders Tongue Lily (Eivthroninum Ant.), flowerings.
14. Gohd Thead (Coptis trifohia), flowering
15. Hprias Beanty (('laytonia Caroliniana), flowering ete., cte.

Farming: Operations.
66. Plowing legou.
tis. Plating potatoes
69. Sheatring of sheep
retr., cte.

Meteorolotical.

73. Oproling of (a) Rivers, (h) Lakes withont curconts
74. Lats show to whiten the gromed

7s. First show to whiten the grouml.
sto. Dattes of thumberstome
etr., cte.

(Migikation of liokins, fitc.)

81. Wild Wurk migrating
82. Wild firese migrating
83. Song Sparrow (Melospiza fasiata).
84. American Rohin ('Turlus mighatorins)

85. Piping of Frogs.

1KN. Appearance of Sinkes
[Inay of year comrejonding to the last daty of earlt month.]

Fel. i9. May 151. Ang. ©43. Now. :3i4.

(For Ltial years increase each mumber except that for Jinnary ly l.)

In reporting the dates, the day of the year is profermed to the day of the month.

To the forms, Dr. Mckay, Superintondent, prefixed the following notes:--
" What is desired is to have reended in these forms, the dates of the first leating, Howering and fruiting of plants and twers ; the tir-t apmare ance in the locality of birds migrating moth in spring or somth in antumn, ete. While the objects specitied bere are given so ats to thahlu. comparison to be made between the ditierent sactions of the lroniner, it is very desimale that all other local phemomena of a similar hime la.
 distinctly its own ; and the more common tress, shouls. plants. ©pps. ete, are thoee whieh will the most valuahle form at lowal print of virw in comparing the ehatrateres of a series of seasoms.
"Teadhers will find it onn of the mest ronvenient mpalls for the
 and from the sohool, some of the pilpils radiating an far as two miles from the sehoxal-rem. 'Ihe Nature situly under these combitions womld le mainly undertaken at the most convenient time, thus not enerarhing on selhol tillo: while on the other hanl it will teme to break up the monotony of selool travel, fill an ille and wearisome homb with interest. and le one of the most valmable forma of ehorational diveipline. The eyes of a whole sehonl daily pissing over a whole sihonl nertion will let very little eseape notice, especially if the first ohserver of cach ammally recorring phenomenon receive eredit as the first olsorver of it for the rear. The observations will the neemate, as the fats will have to be demonstrated by the most midonbted evidence, such as the binging of the specimens to the sehool when possible or neeessaly. To all observers the following most important, most essential pine iples of recording are emphasized: Better no date, no rocord, thatl a wrong one or a doubtful one."

For the purpose of dealing with these reports the Province is divided into ten regions. A specialist in each region receives the reports from the sclools of his region and makes a summary for the Education Department at Halifax. One hundred phenomena are mentioned in the printed form, but in the general summary for 1904 several schools reported over 200-the one at French River, Miss McLaren's, led with 272. Think what it means to a group of children that they have in a year observed, discussed and named or expressed over 200 noteworthy matural phenomena. British Columbia and Demmark, it is said, have adopted this feature of Nova Seotia's Nature Study work.

Minerals and Rocks.-The uses, physical properties and natural history of some of the common minemals may be studied in an elementary way with much profit and interest by the higher grades. In some school sections the materials are varied and alsundant, and may he studied in their native situations as well as in the school-room. So far as practicable
 to start, merin may lee foumel in owry sertion, and fortumately it is not diflirult to whtain from ontside somrces specimens enough of af fow kinds to go round the class.

IWhere to !et. Mirmerals. - Minerals are to be had hy searching in the fiolfs, river banks, gratel pilte, quarries, stoneynds and mable cutters' yards. Certain dealers keep them for sale. Bituminous coal, anthracite, rock salt, gypsum, asibestos, sulphur, graphite, soapstome, and mica are generally procurable. Variety may bo increased by exclanging specimens that you can spare. A small collection of minerals, properly boxed, is ornamental as well as usiful. Sice the engraving of sumbla box in "Correlation of Nature Study and Mathaal Training," opposite pare 46.

Mineral Situly and Physiography.-The study of that part of physical gergraplyy called physiography, the part that is concerned with the dynamic and chemical effects of water, atmosphore, and change of temperature upon the solid substances that form the earth's surface-is interesting, usefnl and educative. Tt cannot be prosecuted very successfully without some stuly of the nature and properties of these substances ; and just as the sciences of lontany and zoology should be fonnded upon the nature stuly of plants and animals so should physics and inorganic chemistry and geology grow out of the similar study of the forces and materials of the inamimate world within the circle of the learner's olservation. Physical and chemical experiments made to discover or establish truths related to objects the pupils are stulying are more educative, at least to beginners, than if performed apart from their applications like so many imaginary problems in mathematics. (Page 10.)

Elementary Lessons on Minerals. - In "Public School Nature Study," pp. 157-165, there are given intronlactory
lessons on iore and micab, limestome and quarty, and a topical seheme for the iloplur staly of any mimeral. At the start, dhense from the schome the topies that present the henst difficulty in investigation and expression ; gralually incerase the number and ditficnlty of theobservations and experinents. The pupil's vocabulary of technical terms will enlarge and clarify with exprience. Terms and detinitions either here or elsewhere slamald not be tanght in alvance of their use. Paddock's "Mineral Schedules" 1 hear the following headings: harluess, form, structure, cleavage, fracture, tenacity, color, streak, lustre, diaphaneity, tomch, magnetism. electricity, specific gravity (or weight), chemical properties, composition, formula, classification, tests, variety, uses, how extracted, natnral history. The series of minerals which that teacher recommends, arranged in the ordor of harduess, is: 1 , steatite, graphite ; 2, gypsum, rock salt, mica; 3, limestone, coal, cryolite, galena; t, fluorite, a\%urite, zincite; 5, apatite, lrematite : i , feldspar, magnetite, pyrite ; $\mathbf{7}$, quart\%

Somple Lessom me Coal.--The expression of a study of anthrorite, for example, along these lines would read something like this:

Harduess.-It can be scratched with the puint of a pin; it camot be scrateloed at all with the finger mail, therefore it is betweell 2 and 3 ,

Scolle.-1, tale or steatite, sermatches easily with the finger mail ; ㅇ, gypmin, seratches harilly with the finger nail: 2!, mica, scrat ches with eopper wire: 3, calcite, seratches with puint of pin; 4, flumite, sirrathers easily with point of a well-tompered knife harle; \boldsymbol{i}, apatite, seratches hardly with point of kuife or harl glass ; 6, fellspar, scrat ches with a file; 7, qualtz, hardly with comer of hard file ; 8, topaz; 9, sapphite or cormulum ; lio, diammel.

[^10]Form. -The extrion form is irweglan, therefore it is messime. (Hanl it, hamp phane marfaces set at definite angles it would have been a crigetal.)

Structure. -The brokell -mface is irregular, hence dumphinous. (Rock salt shows corystallime and mable erystralized st moture.)

Cheacage. - Tabring, althongh some specimens chave along the natmon lines of fomation and therefore simulate erystalline structure and hasal cloavage.

Fractme.-It hreaks something like ghass with hell-like surfacers, therefore comchoidal.

Tenarity.-It camont he hammered inno thin plates like copper, therefore it is not mallenher ; it camot be shaved into plates, henre it is not serctile ; such operations would hereak it into little bits, therefore it is brittle. (Why is it not plostir or fle..ible?)

Color.-Black.
Stroak:-The powiler when obtnined ly scratching on filiag shows black on a white surface, therefore the streak is bluck.

Instre.-Metrallic, shininy.
Diephaneity.-Light does not penetrate it, hence it is оркчие.

T'ouch.-It feels smonth.
Maymetism. - A magnet has no effer i.. ther the ratument. of coal or on its powder avell when the i: heat d.

Electricity. When a piete of coal i- un a woollen cloth it does not move a hit of paper or held.

Weight.-Light when ro:npared with flat: : :me linm.
 weighed in water 3_{4}^{3} ounces; hence its s.g , - 9, mol
by divinting x ? onnces hy the lows of weight in whter, 17 ounces.

Chmairal Propertios. - Not atioctenl hy hydrochloric on othere acids. Burns giving off gases.

Composition.-
Formenla.-
C'hosificution as a Mineral. -These three topics can hardly be sturlied by the Nature Stuly mothent. Items contered in the record that ure mot discovered by investigntion should be credited to the teacher or other source of information.

Tests.-Color; it burns without melting. Asphaltum resembles coal but it fuses with hat.

Vrarieties. - There are many grades letween bituminons conl and the brightest, harlest anthracite. Shake, pyites or other impurities are mixed with coal in some specimens.

Uses.-The uses that are stated upon the authority of observation or experience should be distinguished from those that are learned second-hand.

Vethral History.--What most pupils will say about the mining and formation of coal will he derived from their realing. The sources should be acknowledged. Pupils shonld be shown where and how to ohtain information in which they are interestall but which they cammot discover for themselves.

Ronks. - The recognition and nature of the commoner rocks shomld be taught in this comnection. Quart\%, feldspar mud mica can be recognized in many specimens of grante. Gneiss is usually coarser and layeded mal is of smilar composition. Schists, slates and shales are layered rocks. Simdstones and limestones, explaned by their hante, were laid down in water; specimens of these rocks can often be picked up around buildings in course of construction where stme is used.

Examine a bit of granite or gheiss with a lens. How many kinds of minerals con you sere? Break it up with a hammer. Pick out hits of miea; of fellspar. 'Ther fellispme is ther some of elay. What becomes of the disintegrated guart\%?

Powder a bit of limestome and place in a lootle or tast mive. Add some dilate hydromboric arid. Note the affiovesceme. Use dilute sulphoric avid, aloo stomg vinegar, and compare the results ohtatined in the three casies. Aply heat and note effects if any. Experiment similarly with slate, Kypsmm, egg-shells, quart\%, clay, marble. Solect the substances containing lime.

If the schon! is equipped with the means of using a Bunsen burner, or even a blowpipe with a grease-lamp, the number of interesting experiments upon and tests of minerals and rocks may he much enlarged. Croshy's "Determination of Minerals," 106 pages, will he found a helpful book.

The Atmosphere.-In most public sthools the means of teaching the compesition of air hy the Nature Study methed will not be available. Latvisier's experiment of separating the gases and investigating each separately can be repeated in a small latomatory, but the steps would harilly be understood by pupils at this stage. It may be shown by burning a candle in an inverted gem jar over water, still better hy supporting a picee of phosphorus in a similarly inverted jar for a few hours, that almot one-fifth of the air in the jar has been displaced hy water. The pupils may be told that the fifth that combinel with the phosphorus is called oxveren and that it is the lifergiving, flame-supporting element of the atmosphere, and that the remainder is mostly nitrogen. A fraction, fomr ten-thonsandelis, is canlom dioxide, which though shtall is very important lecallose it is necessary for plant foml. There is always some water-vapur in the air. It has important uses, tow, whe of them leing to rinalize and distribute heat.

Combustion and Candle Flame.-The growing tree fed upon the curbon dioxide in the air aud out of the elements of that gas and water made its worl. 'The part that remains as ash when the wood is burned came from the soil. When yon burn a match you set in operation a partial reversal of the operations that proluced the wool. This process restores the carbon dioxide to the air and is called combustion.

Light a candle and observe three zones, a dark central zone where there is little or no combustion, a radiant zone where there is partial combustion and a mantle where the combustion is perfect. Place the tip of slow-lighting matches successively in t ieve three zones and observe the differences in the times of lighting. Place a matchstick across the flame and observe where it burns most. Place a piece of white cardboard owr the flame almost touching the top of the wick; remove carefully and observe the differences in the soot, rings.

Carbon Dinxide.-Burn a candle for a few minutes in a gem jar: Remove the candle, put in an ounce of limewater and shake the jar. Observe the milkiness in the limewater. With a tube or straw breathe into a bottle containing an ounce of limewater. Account for the similia effects upon the limewater in each case. The milkiness is due to the formation of fine particles of limestone ly the carbon thoxide and the lime dissolved in water.

Five needs Air.-Light a short cundle, set it on a smooth surface and invert a tumbler over it. The flame soon goes out. Infer what should be done when clothing catches fire. Wiater puts out fire by cutting the air supply fff from the coal that it surrounds and by cooling the carlom. Carbon dows but harn when the temperature is reduced below a certain degree.

Mechanics of Implements and Tools.--The Ontario

 Course suggests the sturly of the applications of mechanical principles in the construction of farm and household implementsand tools. Some pupils are very strongly attracted to this kind of investigation. "'f reformed him." said the teacher of a mather incorigible boy, "hy the awoldent of asking him to show to the class and explain a telephone he had mate." Making tops, kitos, pumps (p. 23), motors. ete, athl studying the primeiples of their action is exerllent erlucation. Important facts in physical science are taught very effectively if there home-made or purchased toys are subjected to diselussion and explanation in the clasistomb. Ferp eye and ear open for opportunities to introduce such lessoms.All the tools and machinery used on the farm and in the householed and shop can be analyed into six simple formsthe lever, the whed and axle, the pulley, the inclined plane, the wedse and the screw. By the Nature Study method the teacher would not start out by describing the lever, flefining weight and fulcmm and thon seeking applications, but would begin with the list and leath to the discorery of the primeiple and recognition amd defintion of the parts. How is power applied with a spale, with a pick, with a crowhar? When enough examples have been compared to diseover the principle it may be sought in less explicit cases-in seissors, piners, steclyards, balances. pump-handle, daw-hammer, etc. Another type of lever is used in nut-crakers, lemon-s!uepers, whelbarmow, hoat-oar, turnip-sutter, and a thind type-the power betwen the fulcrum and the weight-in ladder-mising, shating a dow ly pushing wear the hinge, pitching has, lifting a weight in the hand, holdings a f ont off the gromul. A type lessom on the lever is given in "Public Sohow Natmre Study:" pe. 191-191.

The wheel and axte is seen in many of the fammarhimes, usually in combined wheelwork, as in a faming mill or watper,
and in a watel:. Simple examples ate the windlass of the welldigger and the capstan of the house-mover or anchor-miser.

Fvery farmer's boy is familiar with the plllo!g in the "block and tackling" of the horse-fork. City pupils often see crames and derricks in use to move heave merehandise on huilding material.

Coading-phanks, hillside roads and stairways are inclined phones. When the inclined plane moves against the weight it is called a merlge. The wedge used in cleaving wowl eomsists. of two inclined planes back to batck. Axes, knives, chisels, jack-plimest, and needles apply the principle of the wedge. If the inclined plane wimls spiraliy around a cylinder the machine is called a screw. The serew-mail, boring auger, latterpress and cider-press are examples.

Now and again the teacher will witness or hear of some ciremmstance that may opert the way to teach a lesson in physical science as for example, whon it was reported that one of the girls had dropped her brooch in a cistern, the loss was made the opportmity to give an elementary lessom on reftectod light. A hammer that fell in a well while a man was repairing the cover was brought to the surface by a maynot. The circmmstance was related during the Nature Study periond and the interest it excited was utilized in the teaching of a lessom.

A pieture fell because a pupil tied a "gramy" linot on the hanging cord. The accident started a series of short lessoms and exercises that ended after a weak or two in a knotting competition 'The honow of being most expert was awarted to the one who could make the lomgest cord out of ten picees, carla four inches long, strong enough to hodd up a fruit baskit filled with bricks, and at the same time have the greatest variet y of knots in it. It is worth while to know low to tie a shoelace properly, a do tie a horse safe to a post by a rope that is to go around his neck. It takes some thinking to tell Why one kent holds while anohber mealy similar one slips.

make groul hesoons out of such commonplaces even as tying knots. This is not an argument in favor of teaching Nature Study lessons on subjects that are not "worth while." When threre is so much to choose from, there is no need to give a single worthless lesson. But the tithe of a lesson does not tell its merit; a topic that may be valuable in one teacher's hands may be worth little in another's.

Sun and Moon.-That the Sun is our chief source of light and heat, and that it remains above the horizon longer and shines more nearly vertically in summer than in winter is about all that can be taught of it in the public school by direct observation. Its disc may be looked at through dark brown or smoked glass; sometimes there are spots on its surface large enough to be thus made visible to the eye. A good deal may be done with the shadow cast by a fixed or definitely placed object as the angle of a window frame ${ }^{1}$; even the imaging of the ecliptic can be taught to an advanced class by reasoning from the observed westerly progress of the stars. For a lesson on the use of a "shadowstick" see pp. 182-4 of "Public Schoot Nature Study."

In the study of the Moon there are a few facts that must be given by the information method, such as that the moon shines ly reflected hight and that its path passes monthly between us and the sun. Working from these facts excellent lessons may be taught by observation, including the period of time and direction of the moon's circuit, and its monthly swing from tropic to tropic. Evening after evening the changes of its position relative to observed stars may be noted and interpreted as its easterly motion by children even as young as those in the Second Form. In the book hast named there are dicctions for observing the lunar motions and phases.

[^11]Constellations and Planets.- No child in the school is tor yomur to herin to observe the beanty and motions of the mome complemons ohjerts in the erening sky with some degree of intwliwnore and a greater degree of pleasime and nost andent in any whon is so far alvanced that in the same field there s mothing left to exerte his womder and engage his most serions intelliwnt reflims. The reply of the ancient philosopher, An:asuanas, 1 , the ghestion, "what makes life worth living?" was " the comtemplation of the heavens and of the miversal comir orthe." The anthor ${ }^{1}$ of a boek going threngh the press as this is writen says: "I was happy in having parents that watelned ower minfancy in suld an intelligent manor that I hardly felt their supervision. A great deal of time was given for looking ant listening rombl about in garden ant firlis. Nos sureol in the shape of a prematurely given bak s:ime between me and the living book of the miverse. I walked through matmo like the ancients through sacerd womels. Enpecially at nightfall the stars impressed me excredingly: They spoke to me and 1 to them. I still remember the little gsillery where I used to kneel and worship the monn. . . . So parents . . . if you can, put them som, oftom, amel for as long a time as possible, in contact with nature. with mountains, wools, fields, and with that shorions firmanent on high which is the marvel of marvels."

Several teachers have told me of the delight with which the pupils have returned to the sehool-homse mappointed eveninis to obsere and talk abont the stars, and of the evoninss at homes where the chithen of the respective immerliate localities had grathered for the same propose.

Hon tw Ol, r in Assistruce firme Sto, r-Maps. - In using astronomical malis the taicher is at first rmbarrassed by the fact that the mast is towarls the left hand sitle of the map and the west towards the risht. The Nowth-star, when it appears on a malp, should be regarided as the top: when it is turned - Kev. Charles Wagner.
away from the observer the part of the map towards him has its east to the left and its west to the right. The reason may appear if the map is leoked at while held overhead in such a position that Poluris is in a line from the eye to the North Star. Oliserve then that the name-nmmbers of the meridians decrease towards the left, the west, and increase towards the right, the east.

About the elst March, the Sum is (i. line 0 which is throfore overhond at mid-day: line log is overhead at midnight. Nhant the Olst of April, line 14 is overhearl at miluight. Alout the ?lat of May, line 16 is overhead at midnight. And thus throughout the year, every 30 days the Sum and the midnight zomith mowe anose two meridimal spaces towards the east.

Latitude in the sky, called declination, is counted from the equator north and south. The parallel overhead in the sky
has the same designation as that of the observer, e.g., the zenith-parallel at Lemdom is 43^{3}, at Toronto $43^{\circ} 40^{\prime}$, at Halifax $44^{\circ} 3 y^{\prime}$, at Wimipes $49^{\circ} 53^{\prime}$.

Longitude, called right assension, is measared either in degress or circular homs, from the meridian drawn from the Forth star through the point on the eguator where the sun crosses at the vernal equinox, on or near the 21st of March. Twent y-four equidistint meridiams, numbered from the initial one as they pass overhead from the cast, mark the sky off into that many meridional regions. The initial one, No. 0 or 24, passes near the outer star of the sharp V of the Big W ; No. 12 passes near the middle star of the Big Dipper. The meridians at right angles to these, No. 6 and No. 18, can easily be imagined, and these four mark the sky off into forr quarters, which call be learned by pupils in the higher grades.

Begin Olswretion with Irswe Major, Jolaris and Cassiopeine. The best group of stars to begin with is the Big Dipper.

On any chear night it is visible in any part of Canalia, Olserve it at an early hour and again at a hater hour in the same cerening, and, if practicable, on the following moming, to hann the circuit that it appears to make. The two outer stars of the bowl always point to the North Star. The Big IV, Cassiopreia's Chair, is on the opposite side of the North Star and about the same distance from it as the Big Dipper, as shown in the following diagrams:-

The Winter Erening Sky.-Capella is overhead betwern 10 p.m. and 11 p.m. in early dianuary, between s p.m. and 9 p.m. in early Felnuary, and between $6 \mathrm{p} . \mathrm{m}$. and $7 \mathrm{p} . \mathrm{m}$. alout the beginning of March. At 9 p.m. about the lst of January the sky shows the following arrangement of conspicuous stars:-

The 0 to 6 Quartur. Line 0 is overhearl at 8 pm . about the 2 ind of November. Line 6 is overhead at 8 p.m. ahout the $\boldsymbol{\theta}$ lst of Janary.

The No!! in the broniu!g of Symin!g. The Bing Hippre is overhead at 11 p.m. in early April, at 9 p.m. in early May, and at 7 p.m. in early June. The eomspicuous stars and groups then are the Lion, containing Regulns and Deneboha, the Virgin containing Spica, the Raven (Corvos), and Boites containing Arcturus. Ihe following map shows the arrangement at 9 p.m. alnout the list of April:-

The 6 to 1:2 Quarter. Line 6 is overheal at 9 p.m. on the 1st of February. Line 12 is overhead at 9 p . m. on the Gth of May.

The Sky in the Summer Evenings.-Vega is overhead at 11 p.m. in the first half of July, at 9 p.m. in the middle of

August, and at 7 p.me in the middle of September. The star features of this guarter are the seorpion in the solltherest. containing Antares, and an immense isomenes trianghe maty overhead made by Deneb in the Swan, Vega in the Harp, amd Altair in the Eagle. The following diagram shom- the sky at 9 p.in. about the 1 st of July, and at 6 a.m. about the middle of February :-

The 12 to 18 Quarter. Line 12 is werheal at $9.30 \mathrm{p} . \mathrm{m}$. on the 2sth of April. Line 18 is overhead at 9.30 p m. on the 2 sth of July.
 zenith meridian at 11 pm. in middotoher, at 9 pm . in mid November, and at 7 p.m. in mid heecomber. Fomathant is in the sonth-west. The great square of Pegasus is werhead and the Pleiades and the Bull's Head are well up in the cast. At $9 \mathrm{p} . \mathrm{m}$. about the lat of October the sky appeats ans in this map: -

The 18 to 24 Quarter. Line 18 is overhead at $8 \mathrm{p} . \mathrm{m}$. on the 2 ? ml of Angust. Line 0 or 24 is overhead at $8 p$ m. on the 2 ind of November.

At 9 p.m. (solar time) in the middle of September, the line drawn from the North Star; due seuth - the zenith meridian
passong through Demel, in the siwn, sumetimes called the Northern ('ross, and through Jolis Cothin (the Dolphin). 'Tho great triangle of I enel), blueeyed Vega and Altair, is compicmons in the Milky Wiag. Areturus and red Antares we prasing out of sight in the west. The Northern or Ariahe's Crown, with its brilliant Gemma, is in the northwest. Between the Northern Crwon and Vega, a leantifn] constellation called Hemulas, contaning the Flower-pot, can Ine studiad. The lorilliant star in the somethernst is Foma'" Alsont two hours east of Deneb and the Dolphin you a the west side of the great square of Pegasins. (See map, l'

At 8 p.m. on. the 1 st of January the zenith meridian through Perscus, containing Algol, the Demon Star. Groat Symare is passing to the west, and the Nom: Crown, Job's Coffin anl Fomalhaut are setting. A gimans mbination is coming upin the east. The six Pleialem, alled
comeously hy some people the Little Dipper and the Bullis Lead, also known as the ' las or the Big A, cuntaining Aldebaran the Bull's Eje art "ly overhead, ansl closp following then comes Orion, the giant, the most bailiant comstellation in the sky. Nortle-ast of the Pleind "bierw. Capella atteuded by a little triangle known as the T ee K_{1}. Further to the east may be seen the Heavenly Twas, callen! ('astor and Pollux, the Little Dog Star (Procyon), and ti. Great Dog Stall (Sirius), by far the most brilhiant fixed stier in the firmament. Aldibaran, ?etelgeuse, Sirius and Rigel form the outline of a beautiful le ange. (See map, p. 183).

At 8 p.m. on the l.st of April the senith meridian passes throtigh the front of the Great Bear whose hind-quarter and tail make the Big Dipper and also through Cancer, the Crab. Two of the stans called the Asses in Cancer are eanily identified ; they are in line just south of the zenith. Betwern them is a fitint cluster called the Berehive or Prasepe that may
be need as a trat. for eversight. In the western hatf of the sky make nut the 'Twins, the Little and Cirat Jhens, Capella, Oriom anel Tauris. On the east the lion is well up, in the sontheast notice the Virgin and Corvus, and in the north-east Areturus and the Northern Crown. Areturus is easily indiented hy following the curve of the handle of the Big Dipper aromad to the 'Tropic of Cancer. Arcturus, Spica sud Denelonla make a great equilateral triangle. (See map, p. 184).

With a little assistance these gronps can be easily identified by a Socomel Reader class, and if the teacher has access to any of the numerous elementary books on stellar astronomy he will be able to maintain an educative interest in the subject all the year round and in all the classes.

The planets cannot be located on permi ent maps because they are always changing their relative positions among the stars; one or more of them is seldom absent from the evening sky. They vary in brightness according to their relative position in respect to the earth and the sun. They are easily itlentified from the table of latitude and the meridian passage, that is the time of day when they are directly south or on the zenith meridian, published annually in the "Canarlian Almanac." This table gives the position of Mercury, Venus, Mars, Jupiter and Saturn, every tenth day in the year.

An astronomical almanac, or the "Canadian Almanac," is ahnost indispensable to a teacher who is directing Nature Stuly ohservations on the phenomena of the celestial luminaries. There are three good chapters in "Public School Nature Study." Among elementary books, Steele's "New Astronomy," Todd's "New Astronomy," Bowen's "Astronomy by Observation," and Ball's "Starland," may be recommended. Mary Proctor"s "Stomics of Starland" is suited to readers in the Serond and Third Forms.

Physiology. The best mumprin text hatis int physiology for publie sehools makre liberal use of tho Natame Situly methosl ; the latest Cumalim work - Knight's "Introsluctory Physiolagy and Hygiene "—may lae cited as an example. Oljective instruction a this subjert should not be limited to the amount indicated in even the best of boks. Simme moms may be found in mearly every lesson torpeal to ohservation or experience. The tencher who canses his pupils to ken'n as much of this subject as practicable by the investigation methorl is doing two good things for them-namely, giving them excellent training, and loading them to the ucpuivition of highly useful knowledge, learned in a way to he remembered ant applied.

Objective Aids.-Means of objective illustration may be grouped as follows:-The children's own hodies; articles obtainable at the meat market or from the butcher; the living and dead bothes of the amaller vertebrates: physical and chemical experiments; molels and experimental apparatus.

The Children's Own Bodies.-From the beginning to the end of the subject, opportunities to refer to the children's own bodies will come very frequently. A number of gool hessoms may be taught by the observation of the hand alone. 'The movements of the different kinds of joints can be discovered by experiment and comparison. As the bones and other parts are learned and named, their positions may be pointed out on the body just as rivers and mountains are pointed out on a map. As was stated on page 13 , it is better to teach lessons on the teeth, tonsils, and other parts of the mouth cavity, by the aid of in rors than from descriptions and definitions in a text-book. Ghen studying breathing, the pupits may time and count their respirations, measure with a tape-line the chest, expanded and depressed, and test to some extent the impurities in expired air.

Aids from the Ruther.-Tloe beot pratical way to eonvey concepts of the internal organs is from specimens which may be ohtained from the butcher. The hangs and trachea, the liver and pancras of a sheep, the heart of the same animal with its surrounding sac and two or three inches of the large ressels left attached are far more effective aids in teaching the amalogons human organs than the best pictures ever made. On request, a loutcher will satw a shope's skull and carefully remove the batin with a few ineles of the spinal cord ; and he will think it litele trouble to cut ont its shin bone, saw it aeross, and satw the upprer half lengthwise through the eavity and joint. He can casily supply you with specimens of joints and tendons and museles. With the aid of a good hens you can show the openings of the little glands that secrete the gastric juice in a lit of the wall of a pig's stomach. Using a hicyele pump you can illustrate the expansibility of the lungs. Ohtain ejecimens of the different kiads of teeth from the butcher or from the dentist or both. Break one of them with a hammer to show the nerve paths in the roots and the pulpcavity; reduce anothor on the grindstone lengthwise to slow cement, enamel, dentine and pulp-cavity, and grind a third transversely to show a cross-section of these layers and parts.

The Smaller Avimals.-In teaching lessons on the cat and dog, rabbit and guinea-pis, frog and bird, make numerous. comparative references to the human body. The child's lower jaw, for example, almits of movement in three directions; the dog's mowes up and down omly; the spuirrel's or rat's moves vertically and forward and backward; white the shoep's has a vertical and a wide sideways movement. With specimens of the proper parts of these different typess to study, the pupils will dissover that the molars of the dog and other earnivores aet like seiswors, and the lower jaw is attanmed to the stall by a simple hinge-joint; the molass of the gnawers are grooved from fromt to bark, and the jaw slides in a groove in the base
of the skull; while the sheepis molars are cross-groved, and the jaw has a sliding articulation that permits the molars to act opposite each other with a sort of millstone movement. The human jaw is articulated so as to have all three movements. What is the inference? It is said that a groat natmalist modelled from a simgle tooth a kind of animal that he had never seen.

The lungs of a small animal, a frog's for example, may be inflated and dried; they will retain the inflated form. The viscera, brain and sense organs of small animals may be well preserved, if kept from freezing, in sealed gem jars of water containing three or four per cent. of formalin. Each time before handling, the formalin should be well rinsed off as it is injurious to living skin.

Skeletons, or desirable parts thereof, may he prepared by removing the skin, viscera, and most of the flesh and boiling the remainder in water to which a small quantity of borax or ammonia has been added. If necessary repeat the boiling intil in cold water all the bones may be cleaned off. Bones of animals as small as a frog or mouse are glued or sewed in proper position on cardboard. Wilder and Gage's soap may be used for larger animals. To make this soap dissolve 5 oz . ammonia, $\frac{1}{4}$ to $\frac{1}{2} \mathrm{oz}$. saltpetre, and 30% white hard soap in 4 lbs . of water. Boil the half-cleaned rat's or rabbit's skeleton for a half hour or longer in one part of this soap to four of water and then for 20 to 30 min . in equal parts of the soap and water. Clean by picking or brnshing in repeated changes of clear, cold water; rinse and dry. The half-cleaned skeletoms may, instead of loiling, be buried for a few weeks in summer near the surface of the earth, when decomposition, ahsorption, and the action of worms will remove all the soft tissues.

Physical and Chomical birpmiments--To illust mate digestion prepare an artificial stomach ly dropping seven drops of
hydrochloric acid into a bottle containing two ounces of water and adding as much pepsin as will lie on the point of a penknife. Put in this mixture, and observe the digestion of, a little lit of minced lean meat, or a bit of leoiled white of egg sliced, or better than either the flaky white of egg coagulated by stirring it as it falls drop by drop into slightly acidulated boiling water. Set the bottle in water at blood heat.

The cooling of the borly by perspiration may be explained or illustrated by laying wet muslin or wet batting on a thermometer bulb and observing the descent of the mercury. This descent will take place er mif the muslin or batting had been wet in warm water.

Carlon dioxide in expired air may be demonstrated by passing the breath through a tube or straw into limewater. (Limewater may be made by putting a cupful of freshly slaked-lime into a quart of water; stirring it well three or four thines in a: hour and then settling it. Siphon off and bottle the clear limewater below the seum on the surface.) It is estimated that a person exhales ahout a half-pound of carbon per day. Weigh out that quantity of charcoal to show the pupils that its conversion into gas by burning would be the equivalent of the CO_{2} exhaled by each one in t.wenty-four hours.

Iodine in a water solution gives a blue color to any substance containing starch. Fehling's solution boiled with any sulnstance containing grape-sugar gives a reddish-orange re-action. These reagents may be used to show that complete digestion by saliva converts starch into grape-sugar.

The coagulating effect of alcohol on allumen is slown by putting some white of egg into brandy or whiskey.

Apmaratus and Mondels.--The demonstration of the rirculation of blood in the capillaries of a tadpole's tail or a frog's
foot has lieen referred to on page 70 . A considerable number of the illnstrations in all the text-hooks are made from microscopic sections. The technical skill required to make instructive preparations of animal tissues is not yet possessed by many teachers.

The fllids of the boly pass through membranes by an obscure process called osmosis. It may be demonstrated by dissolving off the shell of an egg in dihte acetic acid or vinegar, and then immersing it for a day or two in water or dextrose solution. Mrasurements taken before and after treatment show a marked inerease in the dimensions of the egg, and if dextrose has been used its presence in the egg may be testel with Fehling's solution. A simpler method is to remove a half-ineh circle of the shell from the wide end; also the inembrane over the eavity, without wounding the inner membrane. Rest the narrow end of the egg on a napkin ring in a glass of water. By and by the inner membrane will protrude through the opening, and stretch until it finally bursts.

Refleeting sunlight upon the wall from a half-ineh square of mirror pressed ly its lower edge against the pulsing artery in the wrist, will show that the artery fills suddenly and contraets comparatively slowly.

Starting Investigations.-It cannot be emphasized too strongly that the teacher should seek in the children's interests for the lines along which he shonld pursue nature studiesfor the topics of Nature Study lessons. Even when the study starts under the impetus of native interest it may often tax the teacher to maintain the interest until a substantial edueational end is gained.

Besides watehing the ehildren's actions and conversations to discover points of interest the thacher may a waken it by
proposing questions. Ont of every three or four questions or insestigations proposed one or morr may prove frnitful. A loxful of miscellaneous objects, picked up frim time to time, will be found helpful. It may contain a smail's shell, a horse's tondt, a lichi nut, a duck's and a chicken's foot, a feather, a martyia perl, a bottle of pehbles in water, a pranm, a bit of ambrer, an acorn, a lougle fungus, a flint arrowheal, etc. If it should happen some day that you run short of subject matter to fill the twenty minntes or half-hour devoted to Nature Study take out one of these objects, make remarks, ask questions, and offor suggestions about it in the hope of exciting an interest that you can seize and maintain.
V^{\prime} a , Erhibitions.-Once a month the Nature Study halfhour may be given over to an exhibition of interesting or curious oljects. Every child brings something, either his own or a borrowed ohject, and writes a brief account of it or at least a label for it. Among the articles shown at one such exhibition in a certain sehool were five kinds of seeds with hooks for dispersion glued on a card, a piece of nickel ore from Sudbury, a bootjack that the child's grandfather had made from a sapling's crutch, a book printed more than two hundred years ago, a rubber hottle, a skate's egg, a watch chain plaited from horse-hair, an ear of corn with purple grains mixed with white grains, a large shell that " echoed the ocean's roar," a photographic picture of high diving, a dandelion that seemed to be two stems and flowers grown together, a weaver's shuttle. On that occasion each child came forward, held up his exhibit and made a little speech about it. After the spetches the articles were laid on their labels on the desks and the children were given liberty to pass around and inspect them. Out of an exercise of this kind the teacher should be able to get a few studies worth pursning to educative ends.

Discover the Answer.-Another method of starting of discovering interests is by proposing questions the answers of
which arr to he learned by investigation or reflection upon experience. I few are suggested here.

What adrantage i- it to animals to have the rose situated so near the mouth?

Why have pigs very muscular necks?
Why is there so much bleating among sheep and lambs just after shearing!

How is it that sheep can crop grass closer or shorter than cattle?

The bill-scale drops off soon after the young bird or chick is hatcheci. What is its use?

What are the ricr-like bodies seen quite frequently on the back and silles of the " tomato-worm" and other similar insect larva?

Which opens farther apart-the toes of the cow or of the sheep? How is the difference related to the wild life of each?

Draw the tracks made in light snow by cat, dog, pigeon, hen, mouse, etc.

How are the handles of tea-pots and some stove-pokers prevented from burning the hand?

Why are glass tips put on telegraph poles?
Why does a silver spoon blacken when used with egg, cabbage, or horse-radish ?

A certain Woman's Association in Maryland sent out a series of questions to all the schools in that State. They asked :-

Why does a cat have whiskers?
1 Do robins and clickens walk alike?
How many more legs has a spider than a fly?
Why does a rablit woblle its nose?
Why is a fish dark above and; ale beneath?

- ILow many times does a crow fold its wings after it alights?
-When shecp are getting up do they rise on their fore-legs first?

16. rabhits aver run?
Why do homes then their ears?
With which enfl does a wasp sting? a mosquito?
Do little pigs show any signs of affection?

The subjects and wpics listed in the Courses of Study have monly all hoon rewiowed in these pages. Limitations of space and lack of knowledge on the writer's part are not the only reatoms why the treatment of the topics has been suggestive wather than exhaustive. Two of the photogravures in the brok have been introluced to emphasize the important fact that whe best part of the teacher's preparation to conduct any particular Nature Study lesson is his own first-land investigation of the olject or phenomenon, and not the browsing he may do in a libary. But that the libary may furnish, if not the most important, at least a very useful supplementary aid is recognized in the references to nature literature with which the parimbhs abound. The looks named under the respective topics are the most helpful. inexpensire ones known to the writer.

Nature Situdy is more method than sulject-matter. It should be judged by quality, not by quantity. The highest criterion of success in teaching it is increase of power rather thin of knowlenge, - of power to observe, judge, act, sympathize and enjoy. You shombld not be expected to hurry your class over the whole course; a life as long as Methuselah's would be too brief to study it thoroughly ly the discovery method. Detromine how much time should be given each day to this kiml of work, ind select from what is availahle that which serme to promise the best results. Aim to train the children for useful and hapy lives by exercises that seem to them to be "worth while" wow, and that bring them happiness in the doing. Study the tastes, interests, and environments of the pupils to suide you in choosing the work. This book is put forlh in the hope that if the exercise or ohject you select is named in its index you will there be referred to pages that maty rembur you assistanee in realizing the right ideal.

CORLFEATION OF NATURE STI'IV ANH M.INUAL, TRAINING:

(See phute opposite pagr 4i.)

1. Soil-hox with glass front, showing tive strata of soil-clay loam, brown sand, fine white sand, coanse gravel, bhe clay-ohtanom in an excavation near the School. A sealc-babel attached to the side of the lox gives the thickness of each stratum.
2. Insectary. - The sides of glase, 12×32 inches, almse worl 5×32 inches. Four inches of soil in the bottom. The eover a movalite lid framed on fine wire gatize.
3. A lox containing sixteen samples of soil.
4. A box with slanting glass front, showing the elevelopment of seedling roots against the glass.
5. A mineval box eontaning 42 small boxes bedided on excelsior, wach containing a different labelled mineral and covered with glass, so tha, the latter makes a lid for the sperimen boxes. Each mineral is bedde below, so that the specimen is held up against the glass.
6. An observation leehive with vontilation, suitel to receiving one Langstroth frame. In use, this is set against a lorked window-sash, with an opening for the admission and exit of the bees. The bees eannot enter the romm, although the live is set inside on the window sill. Side-flaps of wool or cardhoarl, or a draping of cloth, may le nsed to keep the hive in darkness when not under observation.
7. An aquarimm containing two mul-puppies, a crab, and some water-weeds. The mud-pmppies conld not be kept still, hence their forms are not defined in the photograph.
8. A slat plant-press, 12×18 inches, with straps for pressure.
9. An insect spreading-hoard.
10. A lox containing the stages of an inseet from egge toimago. This box rests upme exhihit No 3. The one heside which 10 is plated is a weed-seed plaque similar to No $1 ?$.
11. The prepared skin of a "hog-nose" snake, which a famer talaing to be a venomons species, spared with a fork. It lived a fow months at the sehool, but finally suceumbed to the injmies received at "re time of its eapture.
12. Weed-seed playue for thirty kinds of seecls, made of plastor of Paris, the : eeptates being shatluw boles bored with an ineh ather. The plaque is covored with the glass upon which the phater was poured to set. The secels can be studied with a lems thomgh the ghase cower.
13. Weet-seed holder, mate by attaching rublor washers to a pane of glass, covering them with anotber pine, and "passe partonting" the panes tugether.

soldraik of Assistonet.

In using laoks remember the cantions and directions given on pages 25, 34,58 and $1 \geqslant 9$. Acoording as they are righty or wronsly used will thry prove a help or a hindrance to Nature study teaching.

The thoks maned at the font of page 24, except Nos. 4 and 7 , contain a mumber of lessons many of which have teen referved to in their appropriate places in these pages. "Public Sichool Nature Study," see page ${ }^{2.7}$, presents fifty-nine lessons on the most common topics ly the cater hetical methon, the only method for the pupil and usually the lest one for the tearlire. References to lessme (for which see Index) in these and other Inoks have been made thronghont the pages.

On the following topirs, which are either specifieally mentionel in the Comeses of stmply or which are wry likely to engage attention, assistance along Nature Stuly lines may be obtained as indicated:-

Hepatica, spring-henty, ahder's tongue, jack-in-the-pmipit, in Mrs. Comstock's "My Own Beok of Thee Ftowers in Apritand May" (pp. (60, illus. ; 2.te. Am. Pk. Co.)

Tewel-weed, in Morley's "Few Familiar Flowers" (see p. liss ; pp. :itt, illus. ; 60c. (iimn \& Co.)
Anemone, crowfoots, shepherl's purse, violets, oak, grasses, ind ahout sixty other plants. The treatment is systematic and morphologie: mot suited to the lower grailes. In Womis' "How to Study Piants," for Teachers' Realing Circles (pp. 30x, 53, 30, illus; $\$ \mathbf{\$ 1 . 0 0}$. Am. lik. Cor.)
Thmoor Stulies of the pea, oniom, apple, potato, ete, in Carter "Nathre stulies with Common Things" (pp. 150, itlus.; firk. Am. bik. ('o.)

Mushroms, folden-rod, pine, and thirty other lewsons in Overton anl Hifrs "Nature Study" (pp. 142, ilhs.; 4le. Am. Bk. Co.)

Fool, nests, urstlings, cte, of eat-bird, flicker, and nineteen other birck, ill Wialker's "Our Birds and Their Nestlings" (pp. 208, illus.; 60c. Am. Bk. Cu.)

The downy and all the other wowlperkers in Kikstorm's "Wood-

T'inth, Im,

"Intordepmilene of Inserts and Flowers." Iow the mints, romb.
 Hosts and Insert Ciuests" (pp. 197, illine, sthe. Ni.wsom de Co.)

A lint and brief description of injurions inserts mulde the plants

 ilhs.; sl.:.). (ralle \& Co.)
(iodden-ral visitors, gall-makirs, dragon-flies, wipmonks, etc., in

 othur Imoss, cicalat, ete, in Morley"s" Insent Folk" (plp. 1! ti, illus., 4.)c. (iimı \& Co.)

The monareh, promethea, polyphemms, the sphinxes, amb about twenty shorter sturlies in Dickersoris "Motis anl lintertlies" (pp. 34t, illns: ; \$2.05. (iim \& Co.)

The craytish, earthworm, perch, ere, in Cohton's "\%owhos, Desuriptive and Iractical" (pp. 375 and 204 , illıs. ; 玉ll.io. Heath \& (o.)

Annmal Reports of the Entomological Society, and Mr. Nashis Bulfetin on the Birds of Ontario, free to sibhools on application to the Minister of Agrienlture, Toronto.

Minerals, rocks, soils, Pp. It-ti3, in Brittain's "'rachers' Manmal of Nature Lessons" (pp. 118 ; ille. J. 太 A. McMillan, Nit. John, N. B.)

Logs and lumber, suails and slugs, suow-storm, farm operations, scarlet-rumer, etc., are eatechetical lessons in lawhheatis "Out lines of Nature studies." Bultetin No. 142, U.A.C. (pp. 48; free on applieation to the Ont. Agrie. Coll, (iuelph).

Weeds of Ontario. Bulletin No. İS, U.A.C., (iuelph (pp. 98, freec).
Sturies of a cabbage butterly, wî a pemme of buttor, of an apple, of a grain of wheat, of bees, etc., in "Stories in Agricnlture." Bulletin No. 124, O.A.C., (iuelph (plo. 79, fiew).

INHEN.

C $1!4$Cablage hutartly (a) . . . 145
Capillarity.
Carlmon dioxide: 17ti, $1!2$
 1!
Cat and dog 13
Cat's claw $1: 31$
Cat-hird (r) 19\%
Cercopia, empriour inotis 13.5
Child stacly herowaity is
Chipmanks (r), wow Syintrls. 199
Clorysulide and Con'mons $4!$
Cicula (r) 196
Cluthes motlı (r) 199
Clouls $!1$
Clower (r), las; clowir-hutter. Hy. $1:-7$
Coal, lesson on $1: 2$
Cockroarhes (r) $1!9$
Collections, making of
" of mornls, plants,ete. 1HN
as of minurials 17
Combuntion and candle- lliane 1:t
Commius, quoted 1. 11
Comparative methorl in N. N.,$42,45,56,71,137,194$
Composition related to N. is,$11,12,13,33,44$Concentration of attellion,11s, 16.i
Coulensation of vapor. 10.5
Comenction of heat 9,1
Constellations, see stars 180
Constructive art 10, 2
Correlations of N. S. 12 1s
Courses of stuly, Crawford's.Siott's, Howe's 21 (s: Waniteba, Nova Scotia, Ontario)
Cow, comparative study of 56
(imbley, Juxprotor, puoterl 150pane
Cruytivh (r) $1!9$
('riokets (•) $10!1$
Crow (r)I'rowfonts, Ranninculus (r)1:N
D
bandelion 51, (i) los
Digentiont, attitirial. 1!2
long and cat, rompanative stuly of 43
bomestic soinure rolileal to
N. N. 1t, 16
 $13!$
lyaintige 100
り"てwing in rlatum tu N. s.$1 \because, 3: 3,: 3,42$
E
 199
Eicolory of platis 142
 65
"froges, 63; !!usert's $1: x$
lifiot, l'res., efated - 16
 $4!$
livapmation 10.7, 1!!2
Fixaminations in relationto N. S. 33
Whubitions-
of olijects. 194
of selool-garden promets, Chathiam 17
of selool-garden problucts, Widilleton $o_{1} p$. 50
Evogromes strim, regions of 153
Experiment distinguished fromolservation S, 101Expression of N.S. Fxerrises,$11,12,147$
${ }^{2}$

-ロ106

$\because(6,4!1, \quad$ ‥7
Honse. compmative athery in
Hanve Chaxtint (1) lis
 finn! $\because 1$
Illomins 0.5
Fionelelerantrimutionto N. N. I
Frog $5!$
"1 relations of (i0)
" hatt ching of rigg 4 60
" anlult (is
"a aldexim unt T1
 1
G
Gall-makere (r) $1!x$
Giarderl, werselhool-gardendicin jars as animal cages,$27,2 \times, 65,69,-7$
(icogritply, related to N. S.,$13,15,34,42,51,52,5$
(ieranill! lis (r), $4: 3$
filass, lecord of lesson ont 32
" as all dijexet-lexsoll 110
Goldell-rod and its insort visitors (r). $1!n$
Grafting, different kimds of 1.1
"W: Wa, recipe for 1i:
Graisses (1) $11!, 15 \mathrm{x}$, $1!\times$
(intiswhopper 131, 138, (r) 1!s
"(iround-hind's" nest 6,12
(inineat pig and rahbit, conn-patative stuly $4 i$
H
F eating and rentilation 112
Setl 70, (r) 121, (r) 1!s
Kinghind (r) 1:1
Kinots, lisson oul tying 178
L Pank
Le：lves，it lesson in rompaning io L．・ルs，miknif！i•：g 26
lever，as a simple mathime： 177
Life，saterelness of $1: 2$
Limestone $1: 2(\cdot)$ ， ．
Limewater，to make 102
Literature，related to N．ホ． 7 ， 17，2．7，3s
use of 18， $4 i$
Lizard 。 59
Lochat，sef grasshopper
Lave of thowers： $4!$
Lumliov（r） 198
M
MacKiay，Supt．，quoted $34,1.59,169$
Mammals，faniliar will ． 76
Manitobat N．K．（omme 37，40，
53，73， 11.5
Manual training related to
N．к． 14
Maples，recomd of lesson on 31
＂huds 8in，（ 1．5
May－flies（י） 199
Mechanics of implements ． 17
Mice（ r ）． $1+1$
Mieroscope 26
Mill，J．S．，on expression ． 11
Minerals 171，（r） 199
＂sehednles，l＇iuldock＇s 17：2
＂lesson on 1：․－174
Models and morlelling 12，： 6 ， 90
Monarelt or milkwed butter－
fly 136，（r） 199
Moon． 23， 179
Morning－glory 86，（r）158
M．sequito 131
alushrooms（ \cdot ） ：98

Sense-trailining p, мик $8!$
slupherd's purse (r) $1!\times$
Silkworm 48
Skeletons $89,1 \cdot 2$
" chicken's 7
"s how to prepare . . 191Slourhing the skin66, $68,128,1+1$
Snails and slugs ($1 \cdot$) 19 s
suake 8, $1+1$
Snow (r). $1!!$
Soils $198(r), 93-111$
" avidity aud alkalinity 99
" elasmes of 94
" water capacity of 96
Specimens, pockets for 148
Spiders $80-83$
Spring-beauty (r) 19世
Squirrels (r) 77, 141
Stages of a N. S. lesson 11, 37
Stars, values of the study 151
" miaps. 181-180
" helpful books 1s
Sulphur butterfly 1271311
Sun 179
Swallow 123
Swallow-tail butterfly 13.)
Sympathy, how exereiserl. $4,8,29,48,49,65,71,7: 12,12$
T
Tadpole, development of 63
'Trachers' preparation for N. N. 5
T'eeth . . 13, 189, 190, (r) 198
Trimperature pagr
" reflects on water. 104
Tent-caterpillar 134
'Thermometer' 105
Time-tal)le, N.S. on, 를, 34, 35, 45
Toard 39, © 66-68
" comparison with frog 71
l'omato-worm 137
'lopics of lessons-
how to choose 18
classification of 19
Trees 50
" a lesson on planting 154
Trilliun (r) 1.8
'Twiss, markings on s7
V
Ventilation of sehool-rooms 112
W
Wiallis, J. B., quoted 58
Witsp (\cdot) 3
Water capacity of soil. 96
Water, an olject-lessom, 101-109
" volnme and weight 102
"، harl and soft 107
" tests of purity 108
Weather recorts 으, $\quad 11, \ldots$, 91
Weeds (r) 199
Wheat (r) 199
Wheel and axle 177
Window gardening 50, 83
Winds 92
Woorlpeckers (r) 121, 199

[^0]: This item is filmed at the reduction ratio checked below / Ce document est filmé au taux de réduction indiqué ci-dessous.

[^1]: "In "(intide to Nature Stardy" (The ('npl, ('lark Co. Limiterd), pp. 10.15, three lessons on The Wasp illustrate the differences in the information, science, and nature stury methols of treatment.

[^2]:

 The Nature sumdy Idea. I. H. Baikes.
 ${ }^{5}$ Nathre Staly for the common siono
 *Nature Kudy and life, Hodere, Illus. oblatay. dage dio. it. S. lackuan, Jolt de ('o.

 - How Natherstuh dablal h. T:ught.
 igulli Hinds, Nohle \& Fitremtere.

[^3]:

[^4]: 17.22, for a groml lexson on the (: $: 4$.

[^5]:

[^6]:

[^7]: 1 Inlletin No. 1:34; of the Cutarin Agricultural College, Guelph, on the Making of Collections of insents, plants, womls, ette, by the late Dr. Muldrew may be had on applieation to the I'resident of the C'ollege.

[^8]: The average of a mumber of expriments fetermined the fact that it requires 270 lis. of water to mature one pound of dry corn-stuff.

[^9]: from chtawa exght miles lo mepect the garderl.

[^10]: 1" Minerals in the Puthic Schooly," No. 1, a Pupil's Mamal with Outline Blanke, by

[^11]: "Powing a drain tile or a sulare los, withont eluls, phallel to the smis rays on a liorizontal sheret of piper, and draming the inside shandow line at different times of the day, and al the sime timu ol day in different seasous of the jear, will show the ecattoring of light aud heat due to obliquity of the raye.

