

M

. 6191022X

ATMOSPHERIC MODELLING2INTERIM REPORT2FEBRUARY 1981

2 hap Ma

doc CA1

EA 81053

ENG

vol. 2

This is an Interim Report prepared by a U.S./Canada Work Group in accordance with the Memorandum of Intent on Transboundary Air Pollution concluded between Canada and the United States on August 5, 1980.

E

3-236-1

This is one of a set of four reports which represent an initial effort to draw together currently available information on transboundary air pollution, with particular emphasis on acid deposition, and to develop a consensus on the nature of the problem and the measures available to deal with it. While these reports contain some information and analyses that should be considered preliminary in nature, they accurately reflect the current state of knowledge on the issues considered. Any portion of these reports is subject to modification and refinement as peer review, further advances in scientific understanding, or the results of ongoing assessment studies become available.

More complete reports on acid deposition are expected in mid 1981 and early 1982. Other transboundary air pollution issues will also be included in these reports.

> Dept. of External Affairs Min. des Affaires extérieures

RETURN TO DEFARIMENTAL LISRARY RETOURNER A LA BIBLIOTHEQUE DU MINISTERE

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration ENVIRONMENTAL RESEARCH LABORATORIES

JAN 1 4 1961

D. L. Hawkins
Assistant Administrator
for Air, Noise and Radiation
U.S. Environmental Protection Agency
Washington, DC 20460

R. M. Robinson Assistant Deputy Minister Environmental Protection Service Environment Canada Ottawa, Ontario Canada KIA 1C8

Dear Messrs. Hawkins and Robinson:

We are pleased to transmit under cover of this letter the final interim report of Work Group 2 (Atmospheric Modeling) as required by our terms of reference and work plan. We believe that this report satisfies, in a scientifically responsible manner, our Phase I objectives.

Sincerely,

Lowell Smith for

Lester Machta, U.S. Chairman, Work Group 2

KANDON

Howard (Férguson Canadian Chairman Work Group 2

cc: S.E. Ahmad E.G. Lee

10TH ANNIVERSARY

1970-1980

National Oceanic and Atmospheric Administration

A young agency with a historic tradition of service to the Nation

WORK GROUP 2 ATMOSPHERIC MODELLING INTERIM REPORT

SUMMARY

As outlined in the Memorandum of Intent, the Atmospheric Modeling Work Group was charged with describing the transport of air pollutants from their sources to final deposition, especially deposition in sensitive ecological areas. The first phase of the work has been completed with the submission of this report. The overall purpose of the report is to describe the development of state-of-the-art, source-receptor relationships based on available model results and measured deposition values from monitoring networks. Though this exercise is in a preliminary stage, it is believed that the activities of the Group have produced the best available information to guide transboundary air pollution control strategies in both countries.

Several models have been developed in both Canada and the U.S. which could be used for long-range transport studies. The Group decided to use only models that met certain criteria. In general, the models had to be fully operational, numerically practical, flexible enough to include new data and other such factors. Features of the individual models are reviewed in this report.

The long-range transport models selected for intercomparison in this report have several important features. These models use emission and meteorological data, and meteorological, chemical and empirical parameters to calculate the transport of a given pollutant to a sensitive area. To date the models have been successful in describing sulfur deposition on an annual basis. Hydrogen and nitrate ion deposition, two important factors in acid rain, have not yet been successfully incorporated in the models. Initial source-receptor relationships for sulfur have been determined using model calculations.

If the models are to be useful to satisfy the requirements of the Memorandum of Intent, a quantitative relationship between pollution emissions and deposition in sensitive areas must be established. To do this, a transfer matrix approach has been adopted. Theoretically, by using this method, a change in a source strength can be tied to a change in the deposition amount of the given pollutant in a sensitive area. Preliminary transfer matrix results are discussed in this report, but these results are subject to future changes, possibly significant, as modeling techniques are refined. Though preliminary in nature, the report sets up the needed framework to produce a more accurate transfer matrix during Phase II.

In order to check the accuracy of the models, field measurements of the deposition from the existing monitoring networks in both countries are required. At present, wet deposition/acid rain is being measured reasonably well.

- 2 -

Dry deposition, an important factor in ecological effects, can not yet be measured on a routine basis. Existing deposition data will be used to evaluate the selected models utilized by the Group throughout its Phase II effort.

11-

Though the long-range transport models do have restrictions on their usefulness, they are an important and possibly the only guide to establishing source receptor relationships. Their further development and intercomparison will be an ongoing activity of the Group in Phase II.

- 3 -

LIST OF CONTRIBUTORS

A PARA

Collectory A 1/1 This Phase I report was prepared by members of Work Group 2 as listed below. Authors carried the primary responsibility for chapters and monitors provided writing and reviewing assistance. Reviewers provided comment on final draft sections. In all cases Canadian and U.S. Work Group members worked closely on the preparation of individual chapters and on the final construction of the complete report. Drs. L. Smith and D. M. Whelpdale were responsible for coordinating the preparation of the report.

Chapter	Title	Author(s)	Monitor(s)	Reviewer(s)
1	Introduction	D. Whelpdale L. Smith		P. Choquette J. Blanchard
2	The Role of Modeling in the Development of Emission Control Strategies	A. Venkatram	B. Niemann	P. Choquette R. Morris
3	Summary of Selected Models	B. Niemann J. Young	M. Olson J. Miller	G. Paulin K. Demerjian K. W. Yeh
4	Source Region and Sensitive Area Development and Transfer Matrix Operation	L. Smith B. Niemann	D. Whelpdale	G. Paulin B. Silverman K.W. Yeh
5	Source-Receptor Relationships	P. Altshuller P. Summers		P. Choquette R. Kane
6	Monitoring	J. Miller	D. Whelpdale	G. Paulin F. Burmann
7	Conclusions, Recommendations and Phase II Work	G. Van Volkenbu J. Miller	irgh	

TABLE OF CONTENTS

	Page No
SUMMARY	1
LIST OF CONTRIBUTORS	4
LIST OF FIGURES	7
LIST OF TABLES	8
INTRODUCTION	1-1
THE ROLE OF MODELING IN THE DEVELOPMENT OF EMISSION CONTROL STRATEGIES	2-1
Goals	2-1
What is a Long Range Transport Model	2-1
Present Limitations of LRT Models	2-4
Phase I Transfer Matrices	2-6
SUMMARY OF SELECTED MODELS	3-1
Types of Models Available	3-1
Discussion of Models Selected	3-2
AES-LRT Model	3-3
OME-LRT Model	3-3
ENAMAP-1 Model	3-4
ASTRAP Model	3-5
RCDM Model	3-6
Discussion of Input Parameters Used	3-7
SOURCE REGION AND SENSITIVE AREA DEVELOPMENT AND TRANSFER MATRIX OPERATION	4-1
SOURCE-RECEPTOR RELATIONSHIPS	5-1
Introduction	5-1

- 5 -

1

The	source-receptor relationships	5-2
	parison of matrix outputs with each other and ervations	5-6
MON	ITORING	6-1
CON	CLUSIONS, RECOMMENDATIONS, AND PHASE II WORK	7-1
Con	clusions	7-1
Reco	ommendations	7-2
REFI	ERENCES	8-1
APPI	ENDICES	
1.	Work Group 2 Terms of Reference and Additional Guidance	A.1
2.	Membership of Work Group 2	A.2
3.	Glossary of Terms	A.3
4.	Inventory of Available Models	A.4
5.	Descriptions of Selected Models	A.5
6.	Source Region and Inventory Description	A.6
7.	Matrix Operations	A.7
8.	Transfer Matrices	A.8
9.	Workshop Summary Reports: Atmospheric and Science Reviews Modeling Evaluation and Intercomparison	A.9

- 6 -

Í

LIST OF FIGURES

Figure 4.1 :

Map of eastern North America showing the two sets of geographical regions used in Work Group 2 modeling. Light and heavy (solid in Canada; slashed in U.S.) lines outline regions used by U.S. and Canadian models, respectively. U.S. aggregate SURE grid regions are identified by 2 or 3 character alpha-numeric labels (light), with sensitive areas having 'SA' as the first 2 characters. Canadian-model source regions are identified by large numbers, in boxes in the U.S. and in circles in Canada, and sensitive areas are identified by small numbers in circles. (See Appendix 6.)

Figure 6.1 :

Mean annual hydrogen ion (H⁺) deposition in precipitation for period 1976-1979 (mg m⁻² y⁻¹). Deposition values are derived from mean pH and mean annual precipitation. Adapted from Wisniewski and Keitz (1980).

Figure 6.2 :

: Wet deposition of sulfate (SO₄) in precipitation 6-5 in eastern North America for 1977 (g S m⁻² y⁻¹). Adapted from Galloway and Whelpdale (1980).

Page

4-3

LIST OF TABLES

Table 3.1 :	Regional model parameter values for eastern	3-8
	North America transport simulations.	,
Table 5.1 :	Total annual sulfur deposition as computed from	5-3
	the ASTRAP model.	
Table 5.2:	Example of Transfer Matrix from Appendix 8.	5-5
	Total Annual Sulfur Deposition in kg ha-lyr-l	
	(Table A8-10).	
Table 5.3 :	Comparison of the predicted annual wet deposition	5-7
- 	of sulfur (kgS $ha^{-1}yr^{-1}$) from selected LRT models	
	compared to the measured values.	
Table 6.1	Estimated annual wet deposition of hydrogen	6-7
	and sulfate ion to specified sensitive areas.	
Table 7.1	Work Group 2 Activity Schedule (revised	7-6
	12/19/80)	

Page

Chapter 1

INTRODUCTION

The Atmospheric Modeling Work Group was established under the Memorandum of Intent in order to provide information, based on cooperative atmospheric modeling and analysis of monitoring network and other data, which would lead to a further understanding of the transport of air pollutants between source regions and sensitive areas. In addition, the Group was to prepare proposals for the "Research, Modeling and Monitoring" element of an agreement. The Terms of Reference of the Group and Work Group membership are contained in Appendices 1 and 2, respectively.

The purpose of this Phase I report is to provide as complete a response as possible to all the scientific and technical areas identified in the Terms of Reference and as specified in its approved work plan. During Phase I the Work Group has devoted its efforts to:

- (1) Preparing a work plan for the first two phases;
- (2) Identifying required inputs from and outputs to other Work Goups;
- (3) Developing data bases and analytical methods which will be required in subsequent work;
- (4) Developing preliminary source-receptor relationships based on available modeling results which can be utilized in Phase II by other Work Groups; and

(5) Developing a glossary of terms which all Work Groups can use (see Appendix 3).

During Phase II, the Work Group will:

- Endeavor to evaluate several selected models against available monitoring data sets and to intercompare further these models and their results with one another;
- (2) Review the science of atmospheric transport and deposition of pollution in order to understand better the applicability and limitation of available models to predict the response in ambient pollutant concentrations and deposition rates to changes in emission rates; and
- (3) Review and improve the source-receptor relationships to be used in the Phase III Work Group effort.

In this regard it is expected that some revision of designated sensitive areas and source areas to be used following Phase II will be accomplished by the appropriate Work Groups during Phase II.

Many advances in understanding the regional and long-range transport of air pollutants have been gained in recent years, in large part due to an expansion of basic research efforts coupled with the development and use of large mathematical models to integrate available scientific information. Even so, it is not possible to describe fully all aspects of air pollution transport on a regional or continental scale. Consequently, many simplifications have been made in the analyses of results presented in this report. A major effort will be made during Phase II to review available research results, both published and unpublished, in order to specify more precisely the validity and range of uncertainty that characterize the methodologies utilized and results presented in this and subsequent reports.

Although many substances may undergo transboundary atmospheric transport and have harmful effects upon either the atmosphere or surface receptors, acid deposition is the phenomenon of primary concern for the first two phases of our Work Group activities. As a consequence, highest priority has been given to the study of oxides of sulfur and nitrogen, the main precursors of acid precipitation. During this first phase, emphasis has also been placed on the development of the "transfer matrix" concept. It is this application of establishing quantitative relationships between sources and sensitive receptors for which mathematical models are uniquely suited, and the development of useful, comprehensible display of this information is of great importance.

This first report is structured to follow closely the terms of reference for the Group. The following two chapters describe the role of models in the particular application at hand, and those models which have been selected for use in Canada and the United States. In Chapter 4 source region and sensitive area development and the source-receptor matrix concept are presented. The fifth chapter, perhaps the most important of this Phase I

report, presents source-receptor matrices from the five models for a variety of concentration and deposition parameters. Although these results are of a preliminary nature, they provide a good indication of the values and limitations of the approach, as well as some first estimates of the relative importance of various source regions. Chapter 5 will form the basis for refinements in Phase II, and for the work of Work Groups 3A and 3B. Chapter 6 is a brief survey of available field data, which provide valuable comparisons for the modeling results. The final chapter of this report, "Conclusions, Recommendations, and Work Plan", is of a preliminary nature, but does chart the future course of action of the Work Group. It is intended that the Phase II report will primarily be an elaboration upon this Phase I report; for this reason the report structure will remain the same; with upgrading of information and additions being made as necessary.

A large amount of reference material is available for the modeling work described in this report. This work draws heavily upon what was accomplished in the Canada-United States Research Consultation Group on the Long Range Transport of Air Pollutants as described in their recent reports.* Complete documentation of the models used herein is available, as are references to much other modeling work underway at the present time.

Altshuller, A.P. and McBean, G.A., 1980. Second report of the United States-Canada Research Consultation Group on the Long-Range Transport of Air Pollutants. U.S. State Department, Canada Department of External Affairs, November 1980, 40 pp.

Smith. L.F. and Whelpdale, D.M., 1980. Atmospheric Transport and Deposition Modeling Inventory, Analysis and Recommendations. Report to the United States - Canada Research Consultation Group on LRTAP. December 1980, 123 pp.

These two reports can be obtained from:

LPO Office, Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario, Canada M3H5T4

Program Integration and Policy Staff, RD-681 U. S. Environmental Protection Agency Washington, D. C. 20460

Chapter 2

THE ROLE OF MODELING IN THE DEVELOPMENT OF EMISSION CONTROL

STRATEGIES

Goals

Work Group 2 will provide several major output products to Groups 3A and 3B. One of these, a review of experimentally observed atmospheric loadings for hydrogen and sulfate ion, is discussed in Chapter 6 of this report. These loadings will be used by Group 3B as the starting point for planning strategies to reduce loadings in sensitive areas. A second major output is the transfer matrices (i.e., source-receptor relationships) for acid-deposition-related species. These matrices will be the major tool which Groups 3A and 3B will employ to develop strategies for the control of acid deposition species and precursors. Chapters 2 through 5 of this report discuss the development of these matrices in some detail in order that the present and future utility of this tool is well understood.

What is a Long Range Transport Model

Before introducing the concept of a transfer matrix, the concept of modeling in general will be reviewed.

A model is essentially a description of physical or chemical processes in the language of mathematics. Relationships between the variables of the system being modeled are replaced by logical connections or equations in the mathematical model. The model can be used to study the complex cause-effect relationships by well defined rules of mathematics. The longrange transport (LRT) model is a combination of submodels of the physical and chemical processes involved in long-range transport of various species under consideration. In order to keep the computing effort manageable, the submodels of a LRT model are often simplified by parameterization. This means that the LRT model may not reflect the degree of understanding we actually have of long-range transport. However, it is generally believed that the errors introduced by parameterization are not significant when the model outputs are averaged over time scales of the order of several months.

The basic components of a LRT model are

- (1) A submodel for the transport of pollutants;
- (2) A submodel for the chemical transformations of the pollutants to other (secondary) pollutants; and
- (3) A submodel for the wet and dry removal of primary and secondary pollutants as they are transported.

The main inputs to an LRT model are

- (1) Emission inventory of pollutants;
- (2) Meteorological data such as wind speed, precipitation,boundary layer height and solar radiation;
- (3) Ground cover data on the region of interest. This data might include variables such as surface roughness,

vegetative cover, type of surface (land, water), etc.; and

(4) Parameter values.

The precise nature of the input data requirements is a function of the complexity of the long-range transport model and its application.

The main uses and advantages of LRT models include the following:

- A model is a vital component of data interpretation.
 For example, parameters such as the oxidation rate of SO₂ to particulate-sulfate material can be inferred by fitting model results to measurements.
- (2) A model can be used to interpolate between monitored observation points. This application is important in the computation of deposition over an area covered by a limited number of monitors.
- (3) A model is an invaluable tool in the planning of large scale field experiments and in the design of monitoring networks. Sensitivity studies can be done to determine the relative importance of physical variables to be measured. Also, simulations can be used to estimate the optimal location of monitors.
- (4) The computer simulation is the only way to estimate the relative contribution of many different source areas to the deposition at a receptor of interest.

For this last application, the contributions to the depositions or ambient concentrations at a series of receptor areas of interest from a series of specified source regions can be displayed conveniently in matrix form. This format of presentation is called a "transfer matrix" because each element of the matrix expresses, quantitatively, the physical relationship between a specified receptor area and a specified source area for the species and variable of interest. One can thus relate source to receptor, or "transfer" the effect of a change at source to the receptor. The matrix elements can be made independent of source strength, but they are functions of the chemical species, the variable chosen, and the averaging time used.

A transfer matrix is a convenient format in which to display changes in concentration or deposition patterns, corresponding to various emission reduction scenarios. Details of the use of the transfer matrix are given in Chapter 4. The impacts of emission reduction scenarios depend upon the formulation of the matrix, and the matrix in turn is only valid within the limitations of the LRT model used in its construction.

Present Limitations of LRT Models

Our incomplete understanding of the physical and chemical process involved in long-range transport as well as limitations on computing resources prevent us from constructing a "perfect"

model. The necessary simplifications introduced into most available models will lead to errors in model outputs. Those areas in which simplifications are most likely to affect model results and which are currently being improved are

- The relationship between the H⁺ ion and precursor sulfur compounds, especially SO₂;
- (2) The characterization of the nitrogen-oxidants cycle in connection with H⁺ ion; and
- (3) The representation of the wet removal of pollutants via scavenging processes during rain or snow events.

The availability, accuracy and resolution of field measurements also limit both our ability to make reliable model predictions (when the data are used as model inputs) and our ability to assess the degree of uncertainty in model outputs (when the data are used for comparison purposes). In addition, the evaluation of model simulations of total and dry deposition are difficult because dry deposition cannot yet be measured reliably.

Typically, on an annual basis, model estimates and reliable field observations are expected to agree to within a factor of two. It is expected that this range of uncertainty will be narrowed in the future. The above discussion points out the need for caution when using small differences in model results as a basis for choosing between alternate emission reduction scenarios. For example, a small percentage difference in the deposition contribution from two source regions could not be considered significant; similarly, a small percentage difference at the same receptor using different emission scenarios could not be considered significant.

Phase I Transfer Matrices

In Phases II and III, LRT model limitations will be critically analyzed in terms of current research, and it is expected that some limitations will be removed, and others quantitatively defined. While the "transfer matrices" given in this report must not be used as "final" in the strategy development exercise, it is the opinion of this Work Group that the present matrices can be used by Groups 3A and 3B to begin to consider the major elements of strategies which will alleviate excessive acid deposition. The present matrices can be considered to be qualitatively correct, based on evaluation work done to date by the various modeling groups. Only by having information (albeit qualitative) begin to flow among all the parties concerned in strategy development, can the entire process begin to function in an integrated fashion.

Chapter 3

SUMMARY OF SELECTED MODELS

Types of Models Available

There are two basic types of LRT Models: Lagrangian (trajectory) and Eulerian (grid).

A Lagrangian Model solves the conservation equations in a coordinate system fixed to each moving air parcel.

An Eulerian Model solves the conservation equations in a fixed coordinate system through which air masses are advected and diffused. The computation points are usually arranged in a fixed grid.

All models are then variations of these two basic approaches. One can have, for example, a statistical Lagrangian model or an analytical Eulerian model, the choice being made by the modeler to allow a certain form of output or to use a given form of input data.

The basic types of LRT models can be applied to both short-term (multi-day episodes) and long-term (monthly, seasonal, and annual) simulation periods, and outputs of both can be displayed as point values, areal values, or gridded values.

Work Group II decided that the annual time period should be the primary focus for modeling source-receptor relationships and fluxes for Phases I and II due to the large amount of preparatory work required to provide adequate shorter time period modeling results. A survey of modeling groups (see Appendix 4) revealed that there are about fifteen active modeling efforts in the U.S. and Canada and that the majority of the models are of the Lagrangian type and have been applied to monthly-to-annual time periods. The effort on Eulerian and episode type models has increased during the past year, providing more balance in the overall modeling effort.

Discussion of Models Selected

The models selected for this exercise fulfilled several important criteria, namely:

- (1) They are fully operational;
- (2) They are numerically practical;
- (3) They can be expanded as the knowledge base increases;
- (4) They can be used over the geographical and temporal time scales of interest; and
- (5) They have each been at least partially evaluated through comparison with measurements.

Two regional air quality simulation models developed in Canada and three developed in the United States were selected for Phase I. It is conceivable that additional Canadian and/or U.S. developed models could be added to or replace this initial group of models as a result of the Phase II work effort. Appendices 4 and 5 summarize current North American modeling efforts and describe more fully those models used in Phase I analysis.

AES-LRT Model

The Atmospheric Environment Service of Canada (AES) has developed and applied a Lagrangian box model to simulate ambient concentrations and deposition patterns of sulfur throughout eastern North America (Olson et al., 1979). The AES-LRT model is based on trajectories, at approximately 600 meters above the surface, which are calculated from each designated receptor four times a day using analyzed winds on the standard numerical weather predicton grid covering North America. As the air parcels follow the trajectories towards the receptor points, sulfur dioxide emissions (1976-1980), mixing heights and precipitation amounts along the path are determined from gridded arrays. The transformation and deposition processes are parameterized linearly. The concentrations at each receptor are combined to form daily, monthly, and annual average concentrations and depositions. An evaluation of the model is being conducted using measured data from several American and Canadian networks for 1978. OME-LRT Model

The Ontario Ministry of the Environment (OME) has developed and applied a simple statistical model to simulate long term ambient concentration and wet deposition patterns on a regional scale for eastern North America (Venkatram et al., 1980). The dispersion and removal of pollutants and the required meteorological parameters in the OME model are specified in terms

of the statistics of these physical processes from wind and precipitation data. The source emission inventory corresponds to the year 1977. The OME model estimates compare quite favorably to measurements of annual wet deposition taken from Canadian and U.S. networks for 1977. The OME model also has been used to calculate the relative contribution from U.S. and Canadian SO₂ emission sources to the sulfur concentrations and wet deposition over eastern North America.

ENAMAP-1 Model

SRI International has developed a trajectory-type regional air quality simulation model (Bhumralkar et al., 1980). This model calculates monthly and annual average concentrations and dry and wet depositions of SO_2 and SO_4 . The basic element of the ENAMAP-1 model is the emission of puffs of SO_2 at equal time intervals from all source areas. The puffs are assumed to be well mixed in the horizontal and vertical and to be transported by the mixed layer wind field.

The wind field is determined by objective analysis of available upper-air observations approximately 1500 m above mean sea level. Removal and transformation of the pollutant mass is treated linearly.

SO₂ emissions from the SURE program were used in ENAMAP-1 model simulations. The months of January, April, August, and October 1977 were chosen for model evaluation.

ASTRAP Model

The Argonne National Laboratory has developed the Advanced Statistical Trajectory Regional Air Pollution Model (ASTRAP) under the MAP3S Program for simulating regional sulfur concentrations and depositions on a monthly and annual basis (Shannon, 1980).

The ASTRAP model takes a statistical approach to long-term regional modeling rather than a day-by-day simulation technique. The ASTRAP model is based on the assumption that for long-period averages, i.e., one month or longer, horizontal and vertical dispersion processes can be separated.

The long term horizontal dispersion of individual puffs is represented by dispersion statistics. Vertical dispersion is simulated by numerically integrating the standard onedimensional diffusion equation to a height of 2100 m.

The transformation and dry deposition processes are linearly parameterized. The wet deposition is a one-half power relationship of precipitation rate. In the ASTRAP Model, seasonal and daily variations in all parameters are taken into account. A wind field is developed from National Weather Service (NWS) data at 1000 metres in the winter and 1800 metres in the summer.

Preliminary model runs have been made in the eastern United States and Canada using 1974 and 1975 meteorological data. The emission inventory (MAP3S) consisted of both point

and area sources emissions in the eastern United States and Canada. The model results were then compared with measurements from the SURE data network for 1977 and 1978.

RCDM Model

The Regional Climatological Dispersion Model (RCDM) of Teknekron Research, Inc., (TRI) is an application of the basic model developed by Fay and Rosenzweig (1980). Analytical solutions to the coupled diffusion equations for sulfur dioxide and sulfate concentrations are found through the use of simplifying assumptions. The horizontal eddy diffusivity and conversion and removal rates are uniform in space.

The TRI formulation of RCDM attempted to apply temporal and spatial averaging of the wind data sufficient to eliminate most of the detailed fluctuations while preserving the mean transport field that results from a large number of trajectories. The compromise utilized was to create a seasonal and annual resultant wind vector for each emission cell (state, province or subunit thereof) by averaging available upper air wind data for the eastern U.S. and southeastern Canada (Niemann, et al., 1980).

The conversion and removal parameters used in the RCDM are the same as those used by Fay and Rosenzweig from the literature with an annual mixing height of 1000 metres. The RCDM uses a simple deposition velocity technique to calculate dry and wet depositions of sulfur dioxide, sulfate and total

sulfur. The RCDM has been evaluated against historical ambient data and current sulfur dioxide and ambient sulfate and wet sulfur deposition data.

Discussion of Input Parameters Used

s era

1

Table 3-1 outlines the parameter values for the meteorological and chemical processes used in these models.

The sulfur dioxide transformation rate to sulfate is set at 1%/hour in most models with some seasonal variability allowed.

The sulfur dioxide dry deposition velocity for the Canadian models and ASTRAP is set near 0.5 cm/s and double that for RCDM and ENAMAP. The sulfate dry deposition velocity used varies from 0.05 cm/s (OME-LRT) to 0.4 cm/s (ASTRAP) with most models using 0.1 cm/s.

The parameterization of wet removal shows the greatest variability. Some models use percentage removal as a function of rainfall rate (with 100% removal occurring at rates ranging from 0.67 to 14 mm/h), while others use a constant removal rate during precipitation (with 100% removal occurring in 27.6 to 2.8 hours).

PARAMETER	RCDM	ENAMAP - 1	ASTRAP	OME	AES
50 ₂ transformation rate	$2.4 \times 10^5 f$	1.0	Diurnal Cycle Summer 1.1	1.0	1.0
(%/hour)			Winter 0.55		
50 ₂ dry deposition	0.83 h (1.7 x 10 ⁵)9	1.0	Summer 0.4 (avg.)	0.5	0.5
velocity (cm/s)	·		Winter 0.25 (avg.)		
■ SO ₄ dry deposition velocity	0.63 ^h	0.2	Summer 0.4 (avg.)	0.05	0.1
(cm/s)	·····		Winter 0.25 (avg.)		
SO ₂ wet removal rate (%/hour)	(1.2 x 10 ⁵) ^g	28P(t) ^a	$100(h/4)^{1/2}$; h $\leq 4^{b}$	10.8 e	30,000 C
= SO ₄ wet removal rate (%/hour)	(1.6 x 10 ⁵) ^g	7P(t) ^a	100 sh>4 ^b	36 ^e	850,000 C
Mixing depth (m)	1000	Winter 1150	up to 2100 (10 levels)	1000	Climatological (by month
		Spring 1300 Summer 1450		х. -	(mean = 1200m)
Wind Data	resultant	80 x 80 km grid;	191 x 191 km grid,	long term	objectively
	average	representative	Í/R ²	wind	analyzed at
	vector wind	grid square		statistics	4 levels on
	field,	average	analyzed to grid	$\sigma_{\rm x} = u_{\rm m} T$	381 x 381 km
	Ū = 3.2π/s	ū = 0.75 U _{850mb}	points	$\sigma_{\rm X} = \sigma_{\rm m} r$	grid
	$\overline{\Theta} = 265^{\circ}$ True	· · · · · · · · · · · · · · · · · · ·	Form	ɗy = v _m ⊤	
		9 = 9850mb -15		u _m = 10 m∕s	
				V _m = 6 m√s	
		(1977)	(1975)		(1978)
a Precipitation rate,	P(t) in mm/hr.		e Function of average ler		dry periods
^b Precipitation rate, ^c Scavanging ratio ^d Basel on Portelli ((10/7)	(applies durir f Chemical conversion tim 9 Total wet and dry deple h Dry and wet combined		kls)

TABLE 3-1. REGIONAL MODEL PARAMETER VALUES FOR EASTERN NORTH AMERICA TRANSPORT SIMULATIONS

LL)

The wind data varies from long-term statistical to 6hourly, objectively analyzed fields* on grids ranging in size from 80 km x 80 km to 381 km x 381 km. Mixing depth varies from climatological arrays through actual calculated values (from upper air ascents) to fixed values between 1000-1500 metres.

3 - 9

1 1 1

10 A

÷.....

Appendix 5 gives a more detailed description of each of the five selected models and a summary of some preliminary comparisons with measured data.

 * Objective analysis routines variously use inverse-square averaging, arithmetic averaging within a grid square, and a 3-dimensional data assimilation scheme that incorporates hydrostatic and height-wind balance routines.

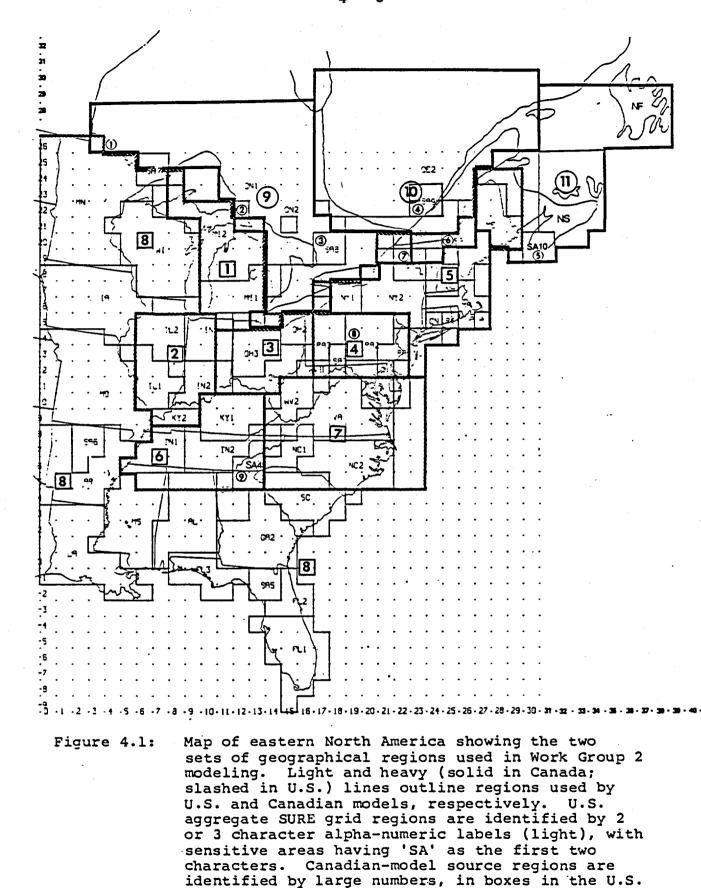
Chapter 4

alina Alina

1

SOURCE REGION AND SENSITIVE AREA DEVELOPMENT AND TRANSFER

MATRIX OPERATION


The application of LRT models to the development of quantitative relationships between pollution source areas and sensitive receptor areas in the form of transfer matrices requires the identification of appropriate geographical groupings of sources and the identification of sensitive receptor areas.

The transfer matrix application is immediately amenable to control strategy development in that manipulation of source contributions to sensitive areas is easily carried out. Because control strategies (i.e., emission limitations or reductions) would most likely be implemented on a state or sub-state basis in the U.S., and on a province or sub-province basis in Canada, a thoughtful geographical aggregation of sources or grid elements on such a basis is required for model calculations.

This need was recognized early in the EPA/DOE Acid Rain Mitigation Study (ARMS) when areas from the 80 km x 80 km SURE emission grid were aggregated into 60 larger areas which approximated state and provincial areas or represented selected areas thought to be sensitive to acid deposition. These 60 areas were constructed to reproduce total state SO₂ emissions and boundaries as closely as possible. A table that compares the state and grid-aggregate SO₂ emission totals along with percentage differences is presented in Appendix 6. In most cases differences were less than + 15% and the largest was 32%.

For the present application the SURE grid has been expanded (from 30 x 36 to 40 x 42 elements) to the north and east to include more of southeastern Canada. The expanded grid is now includes 63 aggregated SURE areas (see Figure 4.1), ten of which have been selected to represent major sensitive areas. The total SO_2 emissions in the SURE inventory for the eastern U. S. are thought by EPA to be too high and this situation is presently being reviewed by comparing the SURE SO_2 emissions for the utility sector with those computed using the EPA AIR-TEST program. As a result of this review, revisions in the U.S. emissions inventory are likely to occur during Phase II.

In Phase I and planned Phase II activities, U.S. and Canadian modeling efforts have used different grid systems and areas to generate source-receptor (transfer) matrices. Canadian efforts, similarly based upon the aggregation of sources, have resulted in the delineation of 11 regions. Because of this difference, the 11 Canadian regions, which are based on an aggregation of sources on a 127 km x127 km polar stereographic grid, were projected onto the 63 U.S.

and in circles in Canada, and sensitive areas are

(See

identified by small numbers in circles.

Appendix 6.)

4 - 3

areas, which are based on the 80 km x 80 km Transverse Mercator grid. This projection was necessarily done in an approximate way and some mechanical difficulties and uncertainties still exist in relating the 11 Canadian regions to the 63 U.S. areas.

SO₂ emissions in the 11 Canadian regions and in the 63 U.S. areas are given for comparative purposes in Appendix 6. In addition, a comparison was made between SO₂ emissions used in the Ontario Ministry of the Environment (OME) and the Atmospheric Environment Service (AES) models. Basically, the OME model used emissions that were about 80% of the total emissions used in the AES model for the 8 regions in the U.S., while the emissions used for the 3 regions in Canada were approximately equivalent.

It is expected that early in Phase II, Work Group 2 will be provided with an "agreed" and "unified" Canada/U.S. emissions data base which will be made available to all participating modeling groups. Such a common inventory could be expected to lead to improved agreement in model results.

The Work Group will develop a common basis for specification of source and sensitive areas during Phase II for use in the development of refined transfer matrices for application in Phase III and beyond. This effort will be coordinated with other Work Groups as appropriate for their particular areas of responsibility.

The specification of sensitive areas is primarily the responsibility of Work Group 1, in coordination with Work Group 2. However, in order to commence modeling work, Work Group 2 chose sensitive areas that had been previously identified in the work of ARMS and of the RCG.

 ${\cal U} =$

The Canadian sensitive receptor areas, which are actually specified as points by latitude and longitude coordinates, and the ARMS sensitive areas are listed in Appendix 6. Six of the 9 Canadian receptor areas fall within the 10 ARMS sensitive areas; two of the Canadian receptor areas are close to ARMS sensitive areas; and two of the ARMS sensitive areas are not included in the Canadian list (Arkansas and Florida). The ARMS sensitive areas were purposely selected to include at least several SURE grid squares (usually 4) and to include areas in which adverse ecological impacts from acid deposition had been detected or were considered probable. (The principal reason for selection of each of the 10 ARMS sensitive areas is provided in Appendix 6).

For future work during Phases II and III Work Group 2 expects that Work Group 1 will provide a list of candidate sensitive areas together with their sensitivities and target sulfur deposition objectives. It is expected that many of these sensitive areas will coincide with those already selected for initial analysis.

The development of quantitative relationships between the sources and receptors identified above is an application for which LRT models are uniquely suited. Specifically, this entails computing how much pollution, in terms of concentration or deposition, arrives at a specified receptor area from a variety of source regions. This information can be presented in matrix form for all parameters of interest, as absolute values, percentages, or normalized values.

Mathematically, the transfer matrix concept may be expressed as

$D_{i} = f_{ij} Q_{i}$

where D_j is the deposition (or concentration) of the parameter of interest at receptor 'j'; Q_i is the strength of source 'i'; and f_{ij} is an element of the transfer matrix which describes the relationship between the two. The LRT models are used to determine the transfer matrix, examples of which are presented in Chapter 5.

An important future application would involve the estimation of the reduction in D_j (concentration or deposition) due to a reduction in emissions Q_i . Examples of the manipulations which can be undertaken with the relationship include:

- The maximization of the reduction in deposition with given constraints on emission reductions.
- (2) The minimization of the cost of emission reduction given constraints on the deposition reduction.

These applications are described in more detail in Appendix 7.

2 2 2 1 1 1 1

1995. 1991 -

្លំ៖

280

1990 1990

Because of the large amount of data to be handled in transfer matrix operations and due to the complexity of the operations themselves, an integrated transfer matrix processing system is under development. This system will be accessed by Work Groups 3A and 3B during Phase II and beyond in order to provide the rapid-response analyses required to support the negotiations following Phase II. The integrated matrix processing system has been designed to handle a variety of inputs and to provide the specific outputs needed by Work Groups 2, 3A, and 3B. At present the integrated processing system consists of five computer programs which format, intercompare, plot, and manipulate the matrices. It is expected that the integrated matrix processing system will be refined and that the operations in program five (least-cost, source-receptor optimization) will be specified by Work Group 3B in Phase II. This system is described in more detail in Appendix 7.

Chapter 5

SOURCE-RECEPTOR RELATIONSHIPS

Introduction

1. a

144

in the second

194 C

S. 3.

Several long-range transport models are currently available for predicting sulfur deposition and for developing sourcerepector relationships; these we're described in Chapter 3. No models are currently available for predicting either acidity or nitrate deposition.

Eastern North America can be divided up in a variety of ways for purposes of source-receptor modeling as described in Chapter 4. In the United States many modelers have used a basic 80 km grid with the cells aggregated into 63 geographical areas. The ASTRAP and ENAMAP models have been run using the original ARMS 60 areas to produce a 60 by 60 transfer matrix. Of particular interest in the present context is the impact of individual or combined source areas on the ten areas designated as sensitive receptor areas. At a later date when other potential effects (e.g. on agriculture or buildings) are being considered, different sets of receptor areas may be considered.

The Canadian approach has been to aggregate into 11 large source regions, 8 U.S. and 3 Canadian, and 9 receptor areas. Most of the receptor areas selected are the same as those used by the U.S.

The source-receptor relationships

a) United States Models

The results of running the three U.S. models are contained in separate computer print-out files on a 60 by 60 matrix. The matrices are to be consolidated into the eleven source areas used for the Canadian models. These matrices also can be reduced in size by selecting out the columns representing the sensitive receptor areas from the set of all 60 areas. The values are to be presented in the same three ways discussed below for the Canadian models.

For the purpose of illustrating their use, a selected portion of one of the U.S. 60 x 60 matrices is shown in Table 5.1. The three largest U.S. emission source regions (Southern Ohio, Southern Michigan and Southern Indiana) and the largest Canadian emission source region (Sudbury) were chosen, and 10 of the 60 regions were selected as receptors because of their known sensitivity to acid deposition.

This resulted in the 4x10 matrix shown in Table 5.1, and its use can be illustrated as follows. If one is interested in the impact of a given source, for example S Ohio, one reads down the column headed "46 S. Ohio" and the annual deposition of sulfur at each receptor is given. Conversely, if one is interested in the contribution to a given receptor area, for example Adirondack, one reads across the row headed "8 Adirondack".

1. 74 g

Table 5.1

đ

ļ

Total Annual Sulfur Deposition as Computed from the ASTRAP Model (KgSha⁻¹ yr⁻¹)

Selected Major Source Areas

	45 S. Ind.	46 S. C. 40	49 S. Mich.	55 Sudbury
Sensitive Receptor Areas	AST ^D	AST	AST	AST
2. New Hampshire	0.63	1.3	1.6	1.0
8. Adirondack	0.91	2.0	2.5	1.3
15. Pennsylvania	2.3	9.0	2.8	0.15
25. S. Appalachia	2.2	2.2	0.17	0.01
33. Florida	0.08	0.06	0.01	0.0
39. Arkansas	0.38	0.15	0.06	0.0
53. Boundary Waters	0.11	0.11	0.20	0.01
56. Ontario	1.1	2.0	5.1	6.4
58. Quebec	0.61	1.1	2.2	3.5
1. S.N.S. ^a	0.43	0.88	1.1	0.83
		1		1

^a Sulfur deposition in Southern Nova Scotia sensitive area assumed same as for Maine.

b Annual average: computed from winter and summer months.

5 - 3

1

b) Canadian models

The results from the Canadian models are presented in Appendix 8 in 11 x 9 transfer matrices; for each model annual values of each of the following five variables are given:

- (1) ambient SO₂ concentrations
- (2) ambient SO₄ concentrations
- (3) dry deposition of sulfur
- (4) wet deposition of sulfur
- (5) total deposition of sulfur

In each case information on the variable is presented in three ways:

- (1) normalized to a unit emission from each source
- (2) as a percentage contribution from each source
- (3) as an absolute value

This gives a total of 15 tables so that there is maximum flexibility in how the results can be used. To provide an example, and to illustrate the use of source-receptor matrices for the Canadian models, Table A8-10 from Appendix 8 is reproduced below as Table 5-2. While the sensitive receptor areas match fairly closely those used by the U.S. modelers, the source regions differ and are much larger. Thus, a direct comparison cannot be made between the results presented in Tables 5-1 and 5-2.

Table 5-2 is used in exactly the same way as Table 5-1. For example, if one is interested in the impact of a given source region such as Ohio, one reads across the row headed "3. Ohio".

					(Ta	Ы	le	A	8	-1	0)													í	_		1	<u> </u>							
	Smokies	(6)	0.19	0.30		2.8	4.3	1.0	2.2	0.24	0.20		11.0	2		5.0	15.2		0.62	1.5		2.9	18.7		0.09	01.0	0.03	0		0	0		0		113.0	142.0
	Penn.	(8)	3.4	4.7		4.5	4.2	10.2	28.9	11.8	26.0		0.93	1.1		1.3	3.6	1	3.7	7.3		1.1	3.4		1.2	3.1	0.17	0.20		0.02	0		0		138.3 107 E	C.201
	Adir.	(2)	1.6	2.2		1.7	1.4	2.2	5.9	1.4	4.3		2.3	. T•9		0.44	0.00		1.1	2.0		0.68	0.00		2.6	5.4	0.86	2.5		0.04	0		0.20		14.9 21.0	0.10
	VE. NH.	(9)	1.0	1.6		1.2	06.0	1.4	3.9	06.0	2.8		1.6	4.1		0.33	0.40	-	0.83	1.5		0.51	0.50		2.4	3.8	3.6	7.2		0.07	0.10	. :	c		113.8	4.17
tor Areas	ue. S. N.Sc.	(2)	0.66	0.60		0.93	0.40	1.2	1.2	0.91	0.70		2.8	C. 0		0.31	0.20		1.0	0.50	•	0.36	0.30		1.2	1.3	1.0	1.5		0.35	3.2		0	 	10.8	C.01
Recep	Que.	(4)	0.58	1.7		0.78	0.80	0.77	1.8	0.46	1.2		0.66	C.2	:	0.21	0.10		0.46	0.60		0.37	0.40		5.6	3.1	2.3	4.3		0.07	0.10		0		6.8	10.1
	Musk.	(E)	1.8	6.7		1.8	3.4	1.4	6.7	0.65	1.9		0.52	1.2		0.35	1.3		0.57	0.50		0.94	1.8		7.7	13.2	0.46	1.2		0.02	0	_	0.20	4	12.2	1.02
	Alg.	(3)	0.75	4.5		1.3	3.5	0.65	0.00	0.26	0.40		0.18	0.40		0.23	0.30		0.27	0.10		1.1	4.2	_	1.5	6. E	0.25	0.50		0.01	0	•	0.20		6.2	10.01
	B.Waters	(1)	0.10	0.30		0.28	0.30	0.16	0	0.06	0		0.05	0	•	0.07	0		0.08	0		0.22	2.5		0.14	0.10	0.06	0.10		0	0		0.60		1.2	2.0
		Models	MOE	AES		MOE	AES	MOE	AES	MOE	AES		MOE	AES	-	MOE	AES		MOE	AES		MOE	AES		MOR	AES	MOE	AES		MOE	AES		NES		MOE	
		Source Regions		Mich.	2	111. I	Ind.	3	Ohio	4	Penn.	5	N. York	to Maine	9	Kent.	Tenn.	1	W.Virg.	to N.C.	8	Rest of	124	to Mo. to Minn	6	Ontario	10	Quebec	11	Atlantic	Provinces	Western	Canada	Total.	Concen-	LTALION I

Table 5.2: Example of transfer matrix from Appendix 8. Total annual sulfur deposition in kg ha⁻¹ yr⁻¹ (Table A8-10)

5 **- 5**

Ì

In order to calculate the total deposition at each site, the deposition resulting from hackground in the amount of 0.2 g.m-2.yr-1 (or 2.0 kg.ha-1.yr-1) should be added to this

row.

*Note:

Conversely, the contributions at a given receptor such as Muskoka can be seen by reading down the column headed "Muskoka".

A comparison of the predictions of the two Canadian models shows that, whilst they agree reasonably well with each other, the AES model generally predicts larger values than the OME model for the absolute values and the emissionnormalized values in Tables A8-1 through A8-10.

Comparison of matrix outputs with each other and observations

Each of the models discussed in this Chapter has been compared with observations as described in Appendix 5. But, since the observations consist only of the deposition or ambient concentration at a monitoring station due to all sources, there is no way that each of the contributions in the matrices can be directly verified. However, the total contribution of all sources at each receptor predicted by the models can be compared with the observations. If these do not agree, then clearly there is no justification for using the models further. If the predicted and observed depositions do agree reasonably well, then in the absence of any evidence to the contrary, it can be assumed that the individual contributions in the matrices will probably also be realistic.

5 - 6

and and

(U)

ta de

们感

of sulfur (kgSha-'yr-') from selected LRT models compared to the measured values										
	M	odel p	redictio							
· · ·	-	dian		d Statest	Observed					
Sensitive Areas	MOE	AES	ASTRAP	RCDM	Values**					
Boundary Waters	2.6	1.1.5	< 5+	5	6					
Algoma	4.7	10.4	1 10	17	10					

7.1 17.6

6.8 5.9

7.9 13.1

8.3 115.7

7.4 116.7

17.2 33.5

5.9

I

1 9.0

22

15

15

19

9

>25

< 5

< 5

5

20

13

13

18

26

18

10

8

6

18

20

12

9

12

19

12

9

9

Table 5.3 - Comparison of the predicted annual wet deposition

Modeled values include wet deposition of SO_2 and SO_4 expressed as S.

** See Table 6.1

Quebec - Montmorency

Southern Nova Scotia

Adirondack - Whiteface

Southern Appalachians

Pennsylvania - Penn State

14. 19

10.15

digit.

(internal second

174 174 174

1999 1

1940

ર પ્રકાર

1.000

1 2

3

4

5

6

7

8

9

10

Muskoka

Florida

11 Arkansas

New Hampshire

Uncertainty due to limited number of isopleths of model predictions.

Final ENAMAP and ASTRAP results were not available when the report was finalized.

In Table 5.3, the variations among the model predictions are immediately obvious and are due to many diffences such as: the variations in emission inputs; the differing meteorology in the years chosen to run the models; the differences in the values chosen for SO_2 to SO_4 conversion rates and wet and dry deposition. Resolution of these differences will be the subject of a detailed model intercomparison by Work Group 2 as part of Phase II.

The most detailed and reliable deposition observations are for the wet component. The results presented in Chapter 6 for the estimated wet deposition rate at the sensitive sites are compared in Table 5.3 with the predictions of the models obtained from Appendix 8, Table A8-9, and from the U.S. model outputs.

For many of the sensitive areas, the predictions of the two Canadian models agree with the observations reasonably well, with the AES model tending to overpredict and the MOE model tending to underpredict.

We recognize the importance of advising the reader about the confidence with which one can make use of the transfer matrices in this chapter and Appendix 8. These matrices have not yet been thoroughly verified or intercompared, so that it is difficult to assign a quantitative measure of uncertainty to the matrix elements. The differences among model estimates for individual matrix elements are perhaps the best indication of the uncertainty in these values at the present time. On the whole, the matrix elements representing transport between major source areas and those receptor areas within reasonable transport range of the source areas are in relatively good agreement across the models. Where obvious differences exist, efforts have been initiated to determine the cause for disagreement. These efforts are expected to help us understand the reasons for most of the major differences before the end of Phase II.

In the meantime all the model results must be regarded as preliminary. The results are presented here primarly to indicate the type of information and the format that can be provided for use by others. The results also give some useful indications, or trends, regarding the <u>relative</u> importance of various source regions on the sensitive receptor areas presently of interest. But at this time the absolute values of the numbers in the matrices should not be given too much importance and certainly the results of any one model should not be taken in preference to the others. It is expected that Work Group 2 in Phase II and beyond will provide "best estimates" of the values in matrices based on the results of all models, and that other Work Groups will still be advised not to use results of individual models as definitive.

5 - 9

7

1. A. 1.

Chapter 6

10

. . .

10.620

64 C (

34**2**59

A.1.4

ŝ

MONITORING

Whether needed for the study of atmospheric transport or ecological and other effects, the measurement of atmospheric pollutants and precipitation composition and deposition is a vital aspect of understanding long-range transport and acid rain. Modeling research and applications require ground truth measurements with which calculations can be compared. Ecological and other impact studies require the amount of atmospheric input to relate quantitatively loadings to effects. A multistage monitoring program is a necessity to understand both the transport and chemistry in air and their trends as well as the ecological consequences of atmospheric deposition.

In addition, during future Phases, two potential applications of monitoring networks will require evaluation. These are the possible use of monitoring networks to assess the efficacy of control strategies, and the possible use of meteorological and air quality networks as a supplemental part of control strategies.

Monitoring, at least of the chemistry of precipitation, has not been consistently maintained in North America. European scientists began a large international network in the mid-1950's which has been continued more or less intact to the present. Only in recent years have limited commitments been made to long-term monitoring in Canada and the United States. Precipitation chemistry monitoring networks in Canada and the United States are of three types: global background, national trends and research support. The small number of global background sites are located in remote areas where there is little or no local or even regional pollution. Such sites include American Samoa, Barrow, Alaska, and others. These stations identify long-term trends in the global spread of pollution.

Currently the national trends networks measure the composition of precipitation and wet deposition using wetonly collectors for both atmospheric and ecological purposes. They are long-term, country-wide, national networks: the Canadian Network for Sampling Precipitation (CANSAP), and the National Atmospheric Deposition Program (NADP), a cooperative program involving several U.S. agencies. Several other networks with similar objectives, including those of the Tennessee Valley Authority, EPA Region V, the Ontario Ministry of the Environment and the Great Lakes Precipitation Chemistry Network, are more regionally oriented.

Other networks, such as those of the Electric Power Research Institute (ERPI), of the Multi-State Atmospheric Power Production Pollution Study (MAP3S), Ontario Hydro and the Air and Precipitation Monitoring Network (APN), fall into the third category - research support networks. They are designed primarily to support studies in atmospheric transport, chemistry, and modeling.

6 - 2

no 1995 1995 1995 1995 1995 1995

As a result of the increased activity in monitoring during the last five years, a combined set of data for North America is now emerging from the Canadian and U.S. networks. Combining several network data sets from 1976 to 1979, Figure 6.1 shows a map of hydrogen ion (H⁺) deposition over the North American continent (Wisniewski and Keitz, 1980). The 50 and 10 mg m⁻² lines represent approximately 4.3 and 5.0 pH lines, respectively. The map shows large acidic deposition in the northeastern part of the United States and southeastern part of Canada. It has been postulated that the geographic extent of increasing rain acidity is spreading toward the southeast and midwest with all states east of the Mississippi River now receiving some degree of rain acidity. Some west-coast sites in both countries also show relatively large hydrogen ion deposition based on recent measurements.

6 - 3

tanı, Marina Marina

San Ita

<u>ः</u>

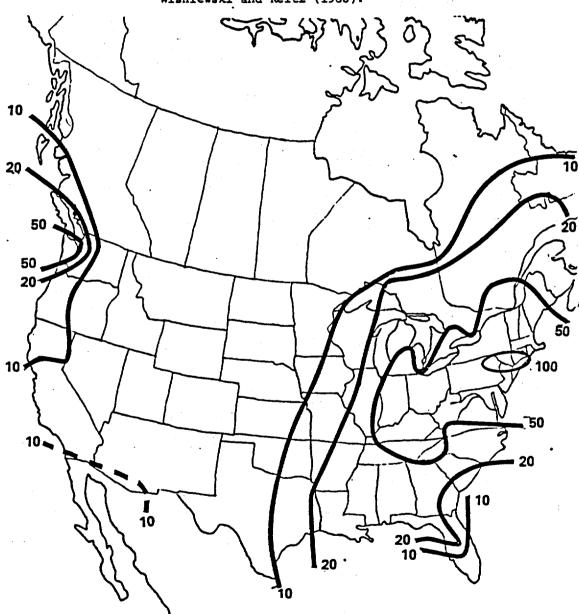
24

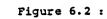
ř.

Since it will be some time before models will be able to calculate hydrogen ion deposition, the sulfur deposition values in precipitation may be the best data for comparison with model results. A map of the wet deposition values of sulfur for 1977 in eastern North America is given in Figure 6.2. (Galloway and Whelpdale, 1980). The problem of comparing model results with such data is obvious in view of the complexity of the deposition field. Deposition fields of other substances (e.g., nitrate and ammonium ion) are also necessary for a more complete description of the acid deposition phenomenon. In Figure 6.1 :

Mean annual hydrogen ion (H⁺) deposition in precipitation for period 1976-1979 (mg m⁻² y⁻¹). Deposition values are derived from mean pH and mean annual precipitation. Adapted from Wisniewski and Keitz (1980). 相關

he)


自自主


自國

日朝

Del

D

17.8

Ĩ

Í

Í

I

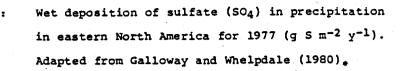
ij

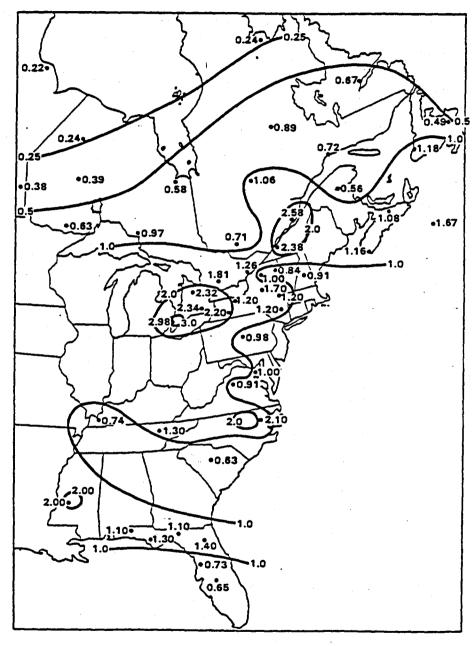
I

Ì

ļ

a para


0.958


1.45.00

おおぼう

10.0

- Ander

any given year deposition patterns could be quite different from a long-term average due to variations in meteorological parameters, such as the wind and precipitation fields.

Besides the natural variability of precipitation chemistry, the methods used to collect, transport, store, and analyze samples contribute to possible errors in the final data. The isopleths shown in Figures 6.1 and 6.2 were based on data from networks with different measurement techniques. Also, the level of quality assurance varied from network to network. With these considerations in mind, a rough estimate of error for individual data points used in the figures and for values in Table 6.1 can be made of hydrogen deposition to be as high as +50% and of sulfur deposition to be as high as ±25%. As better quality assurance techniques are applied and a large statistical base established, error estimates can be refined.

100

One of the goals of this Canada - U.S. study is the quantitative evaluation of transport of material through the atmosphere and deposition on sensitive areas. The amount of wet deposition to sensitive areas can be estimated from recent monitoring data collected since 1977. Some such estimates of annual wet deposition of hydrogen and sulfate ion to specified sensitive areas are given in Table 6.1. As a more extensive record of measurements is compiled, both our confidence in average annual deposition values and our awareness of possible deviations of individual yearly values will increase.

and sulfate ion to These data must be in H^{+} and SO_{A} value	Estimated annual wet deposition of hydrogen and sulfate ion to specified sensitive areas. These data must be considered preliminary. Errors in H ⁺ and SO ₄ values are estimated to be as high as \pm 50% and \pm 25%, respectively.								
	Annual Wet	Deposition							
Sensitive Area*	H ⁺ (my 'H m ⁻² y ⁻¹)	SO ₄ (g S m ⁻² y ⁻¹)**							
Boundary Waters	10	0.6							
Algoma	30	1							
Muskoka	70	1.8							
Quebec - Montmorency	40	2.0							
Southern Nova Scotia	30	1.2							
New Hampshire	50	0.9							
Adirondack - Whiteface	50	1.2							
Pennsylvania - Penn State U.	90	1.9							
Southern Appalachians	60	1.2							
Florida	30	0.9							
Arkansas	30	0.9							

7

6

* See Figure 4.1 and Appendix 6 for sensitive area locations.

** To convert sulfate loading expressed in terms of S (as shown in table) to loading in terms of SO₄, multiply by 3.

ļ

14.2

Seasonal and monthly deposition values may vary widely because the amounts deposited depend not only on the varying composition of the rain but also on the highly variable amount of rain that falls.

The measurement of the dry deposition component is at present not possible because there exists no generally accepted method for routine monitoring of dry deposited material.

6 - 8

- **1**

) I

an an an

IJ

ATE

Chapter 7

CONCLUSIONS, RECOMMENDATIONS, AND PHASE II WORK

Conclusions

100 C

Aplant.

te Mar

a faire

"Males

Work Group 2 has reviewed the modeling, monitoring and research aspects of the atmospheric behavior of acid-forming pollutants, particularly sulfur, between their source regions and deposition areas. The role, capabilities and applications of selected transport models from both Canada and the U.S. have been described. As a part of the Phase I work, "first cut" transfer matrices to describe source-receptor relationships have been constructed by the Group. Comparisons of model results were made with deposition data collected by networks in both countries.

The following are the major conclusions of the Group

- (1) The source-receptor matrices obtained to date are of an interim nature, and must be viewed as only a first attempt to quantify relationships. Revisions and refinements will be made in the transfer matrices during future Phases.
- (2) Monitoring data of high quality are crucial for the evaluation of models, and, at present, significant uncertainties exist in these data. The continuation of existing monitoring networks, and of strong quality assurance programs are essential to ensure that valid monitoring data will be available for future in-depth comparisons with model calculations.

(3) The above uncertainties notwithstanding, the results from the models and the monitoring networks which have been presented can serve for the initial development of pollution control stratagies. **The**

(4) A strong research and development effort is essential for the continuing upgrading of routine modeling and monitoring activities, and for the further development of a sound base of scientific knowldge for the agreement.

Recommendations

The first set of recommendations pertains to matters requiring consultation or clarification among the various Work Groups. Work Group 2 recommends that:

- there be continuing consultation with Work Group 2 regarding the uses, results, and significance of the Phase I transfer matrices;
- a common glossary of terms be developed to insure uniformity of technical language in all Groups (see Appendix 3 to this report);
- common units of measurement be used, preferably the
 SI (International System) units;
- field, analysis, and interpretive activities of Work Groups 1 and 2 be coordinated, as far as possible, in order to gain maximum benefit from the efforts invested.

The second set of recommendations is directed to clarifying aspects of Phase II (and beyond) work. We recommend that:

7 - 3

Ì

- the relative importance of hydrogen and sulfate ion deposition, as a measure of damage, be examined and resolved, as far as possible at this time;
- key atmospheric parameters, from an effects point of view, be identified;
- the urgency/importance of investigating nitrogen
 oxide deposition be discussed and resolved, as far
 as possible at this time;
- the need for investigating the various time scales
 of adverse effects from acid deposition, and
 associated Work Group 1 priorities, be established;
- the priority of considering the long-range transport
 of other materials (e.g., metals, synthetic organics,
 particulates) be established;
- the need to model past emissions and deposition of sulfur and other species be reviewed, in view of the paucity and uncertainty of past data, and the likelihood of a poor return for our efforts;
- the number and type of emission scenarios to be run
 in future Phases be clarified;
- the name of Work Group 2 be changed to "Atmospheric
 Sciences and Analysis Work Group" to reflect more
 accurately our charge;

the following be added to our terms of reference:
 " - evaluate and employ available field measurements,
 monitoring data and other information;";

1000 1000 1000

4

a critical path analysis of tasks and information
 needs be completed by the Coordinating Committee or
 Work Group 3A and distributed to ensure a coordinated
 effort;

The third set of recommendations are more general in nature and concern the broader aspects of the acid deposition problem. We recommend that:

- a long-term commitment be made by governments to the operation of national and regional precipitation chemistry networks, specifically CANSAP and NADP, with increased effort and resources being allocated to quality assurance/control and data analysis/ interpretation aspects;
- efforts be made to develop more comprehensive deposition information, including that on nitrate and ammonium ion, alkaline constituents, and dry deposition;
- communications within and coordination of scientific programs in the two countries continue and be enhanced. (The structure for this exists: MOI Work Groups provide the near-term reporting function; the RCG is structured to provide a longer-term coordination function; and the NAS-RSC panel can be expected to provide the important review function.)

Phase II Work

a stran

-

i sa

and a sec

dineces.

(Section of

and the

耄

1 1 1

1.0

The work plan of Work Group 2, prepared during Phase I, outlined the major tasks of the Group and their timing. Table 7.1 shows, as a bar graph, a slightly revised set of tasks and timing for Phase II and beyond.

In order to proceed in Phase II with a number of its tasks, Work Group 2 requires, in addition to those items identified as recommendations, several specific inputs from other Work Groups. These are needed before further revision of the transfer matrices is undertaken. They are

a current, agreed, 'unified' sulfur emissions inventory for North America, on an annual and seasonal basis by February 1, 1981 (from WG 3B);
agreement on the number and delineation of source regions in the two countries for use in transfer matrix calculations (input from WG's 3A and 3B);
agreement on sensitive receptor areas in both countries (from WG 1).

TABLE 7.1

Nov 15 | Jan 15 | Mar 30 | May 15 | Oct. 81 | Jan 82 ACTIVITY 1 Receive unified U.S./Canada present S inventory (annual) from 3B----2 Receive unified U.S./Canada present S inventory (seasonal) from 3B---|----3 Receive past/future S inventories (annual and seasonal) from Group 3B ------? 4 Receive unified U.S./Canada N and HC inventories from Group 3B-5 Final choice of source and receptor areas from Group I, 3A, and 3B---------? 6 Settle meteorological period for verification----complete 7 Settle meteorological period for general use-----8 Choose selected models--complete 9 Review and document model parameters-----complete 10 Demonstrate model output-----complete 11 Demonstrate model use-complete 12 Evaluate and intercompare selected models-----complete 13 Glossary---14 Assess and use measured data-----15 Develop and demonstrate transfer matrix-----. 16 Run reference scenarios-17 Review of selected atmospheric science topics------18 Formulate proposals for agreement---Phase III Timing of Phases Phase I Phase II

WORK GROUP 2 ACTIVITY SCHEDULE (REVISED 80/12/19)

Comments on the status of each of the tasks listed in Figure 7.1 is given below. Tasks 1-5: Inputs required from other Work Groups The year 1978 was chosen. See Appendix 9. Task 6: Task 7: To be completed early in Phase II. Completed. See Chapter 3. Task 8: Task 9: Completed. See Appendix 5. Task 10: Completed. See Chapter 5 and Appendices 5 and 8. Task 11: Completed. See Chapter 5 and Appendices 5 and 8. A major Phase II activity. This will be the Task 12: subject of a series of workshops. See Appendix 9 for a report of the first workshop. Task 13: Completed, but can be ammended. See Appendix 3. Task 14: Completed for Phase I. See Chapter 6. This is a continuing activity throughout all phases. Task 15: Completed as an interim step. See Chapter 5 and Appendix 8. Refinements will occur during Phase II. Task 16: To be done in Phases II and III as determined in consultation with Work Groups 3A and 3B. Task 17: Initial reviews to be done during Phase II for four topics: (i) the parameterization of chemical processes in LRT models; (ii) historical trends in precipitation composition and deposition data; (iii) wintertime deposition and chemical processes; and (iv) global and western North America rain pH. Task 18: Ongoing.

7 - 7

ena des

Sugar

Sec. 27

4.00.58

Sec. 34

enfortes

dia to

1.000

14.4

white .

Sec.

REFERENCES

a la ma

1979 - A.

and a second

And and a second

BASS, A., 1980: Modeling long-range transport and diffusion. Preprint, Procedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, 1980, New Orleans, LA.

BHUMRALKAR, C.M.. W.B. JOHNSON, R.L. MANCUSCO, R.H. THUILLIER, and D.E. WOLF, 1980: Interregional exchanges of airborne sulfur pollution and deposition in Eastern North America, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology March 24-27, New Orleans, LA.

CHOQUETTE, P.J. and VENA, F., 1980: Canadian SO₂ Emissions Information Package. Environment Canada.

ELIASSEN, A., 1980. A Review of Long-range Transport Modeling. J. Applied Meteorology, vol. 19, 231-240.

FAY, J.A. and ROSENZWEIG, J.J., 1980: An Analytical Diffusion Model for Long Distance Transport of Air Pollutants. <u>Atmospheric</u> Environment, vol. 14, 355-365.

GALLOWAY, J.N. and WHELPDALE, D.M., 1980: An atmospheric sulfur budget for Eastern North America. <u>Atmospheric Environment</u>, vol. 14, 409-417.

HOLZWORTH, A.C., 1967: Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J. Appl. Met., vol. 6, 1039-1044.

NIEMANN, B.L., A.A. HIRATA, B.R. HALL, M.T. MILLS, P.M. MAYERHOFER and L.F. SMITH, 1980: Initial Evaluation of regional transport and subregional dispersion models for sulfur dioxide and fine particulates, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

OLSON, M.P., VOLDNER, E.C., OIKAWA, K.K. and MACAFEE, A.W., (1979): A Concentration/Deposition Model Applied to the Canadian Long Range Transport of Air Pollutants Project: A Technical Description, LRTAP-79-5, <u>Atmospheric Environment</u> Service. PORTELI, R.V., 1977: Mixing Heights, Wind Speeds and Ventilation Coefficients for Canada. Atmospheric Environment Service, Downsview, Ontario, Canada. Climatological Studies No. 31, 87 pages.

SHANNON, J., 1980: Examination of surface removal and horizontal transport of atmospheric sulfur on a regional side, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

VENKATRAM, A., B.E. LEY, and S.Y. WONG, 1980: A statistical model to estimate long-term concentrations of pollutants associated with long range transport, to appear in Atmospheric Environment.

VOLDNER, E.C., M.P. OLSON, K. OIKAWA, and M. LOISELLE, 1980: Comparison between measured and computed concentrations of sulfur compounds in Eastern North America, to appear in Journal of Geophysical Research Proceedings of CACGP Symposium on Trace Gases and Aerosols, August 1979.

WISNIEWSKI, J. and KEITZ, L., 1980: The magnitude of the acid rain problem from a monitoring viewpoint within the continental U.S. (submitted to <u>Science</u>).

Appendix 1

- shere

l

Work Group 2 Terms of Reference and Additional Guidance

Terms of Reference from the MOI

14

n-spinister

(MARANC

5474 P

and the

an the second

44.64

ka en

建建造

att the

他的

16.00

19 A.

ALC: N

Sector Sector

The Group will provide information based on cooperative atmospheric modeling activities leading to an understanding of the transport of air pollutants between source regions and sensitive areas, and prepare proposals for the "Research, Modeling and Monitoring" element of an agreement. As a first priority the Group will by October 1, 1980 provide initial guidance on suitable atmospheric transport models to be used in preliminary assessment activities.

In carrying out its work, the Group will:*

- identify source regions and applicable emission
 data bases;
- evaluate and select atmospheric transport models and data bases to be used.
- relate emissions from the source regions to loadings in each identified sensitive area;
- calculate emission reductions required from source regions to achieve proposed reductions in air pollutant concentration and deposition rates which would be necessary in order to protect sensitive areas;

* proposed additional term of reference:
 " - evaluate and employ available field measurements,
 monitoring data and other information;"

A.1 - 1

- assess historic trends of emissions, ambient concentrations and atmospheric deposition to gain further insights into source-receptor relationships for air quality, including deposition; and
- prepare proposals for the "Research, Modeling and Monitoring" element of an agreement.

Additional Guidance from the Chairman of WG 3B Each Work Group will be responsible individually for the following.

- a. Develop data needs and analysis methods for their Work
 Group; identify required inputs from other Work Groups;
 (due to the size of the Work Groups, the Chairmen will
 have to very carefully orchestrate the Group's activities
 in order to accomplish their tasks).
- b. The technical review (including peer review as necessary) of their work products.
- c. Maintaining agreed upon work schedules with prompt notification to 3A Chairman in the event of any significant deviation from Work Plan.
- d. Responsible for coordination with their counterparts from the other country in conducting full cooperative analyses in order to fulfill the terms of reference.
- e. Responsible for fulfilling requests for information from other work groups in a timely fashion.

A.1 - 2

and a

ares. Santa Calence de

H

f. Be prepared to draft language for portion of agreement that pertains to their tasks as directed by Coordinating Committee.

a service a

No.

and a

ageneration and

Aughous a

 $T_{\rm eff} = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^$

1. J. . . .

POST SAMP

Name of

* 10.5 F

1.0

Appendix 2

rate. L

in the second

section .

street k

and services.

And And And

and the second s

A second

1.000 A.

S MARCE

ce substances

attivida

Membership of Work Group 2

1. United States

1.200

And the State of t

×1.04m

Chairman:

Lester Machta, Director Air Resources Laboratory NOAA Room 613 8060 13th Street Silver Spring, MD 20910

Vice Chairman:

: Lowell Smith, Director Program Integration and Policy Staff U.S. EPA RD-681 Washington, D. C. 20460

Members:

Paul Altshuller Environmental Sciences Research Laboratory Environmental Protection Agency Research Triangle Park, NC 27711

Franz Burmann Environmental Monitoring Systems Laboratory Environmental Protection Agency Research Triangle Park, NC 27711

Robert Kane Department of Energy Office of Regulatory Affairs EV-21 1000 Independence Avenue, S. W. Washington, D. C. 20585

Roger Morris Department of Energy Office of Policy and Evaluation PE-83 1000 Independence Avenue, S.W. Washington, D. C. 20585

Bernard Silverman Water and Power Resources Services E & R Center P. O. Box 25007 Department of Interior Bldg. 67 - Denver Federal Center Denver, CO 80225

Alternate for Siverman

Richard Ives Department of Interior, Code 124 Washington, D.C. 20240 Yeh Kung-Wei Council of Environmental Quality 722 Jackson Place, N. W. Washington, D. C. 20006

Ken Demerjian Environmental Sciences Research Laboratory Environmental Protection Agency Research Triange Park, NC 27711

Dan Golomb Office of Environmental Processes and Effects Research RD-682 Environmental Protection Agency Washington, DC 20460

Brand Niemann Program Integration and Policy Staff Environmental Protection Agency Washington, DC 20460

Joe Tikvart Office of Quality Planning and Standards Environmental Protection Agency Research Triangle Park, NC 27711

John Miller Air Resources Laboratories National Oceanic and Atmospheric Administration 8060 13th Street Silver Spring, MD. 20910

Jack Blanchard OES/ENH Room 7820 State Department 2101 C Street, N. W. Washington, DC 20520

Liaison:

Robin Porter Department of State EUR/CAN, Room 5227 2101 C Street, N.W. Washington, DC 20520

Conrad Kleveno Office of International Activities Environmental Protection Agency Washington, DC 20460

A.2 - 2

15,7% c

-

1.1

an la suite de la suite de

1997. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

and Salara Salara a state

de sur

A. Salak

2. Canada

Chairman:

Howard Ferguson, Director Air Quality and Inter-environmental Research Branch Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario M3H5T4

Vice Chairman:

Greg Van Volkenburgh, Supervisor Technology Development and Appraisal Section Air Resources Branch Ontario Ministry of the Environment 880 Bay Street, 4th Floor Toronto, Ontario, M55128

Members:

- (Horan

- Alexandre

Alectrica

and day.

Douglas M. Whelpdale Air Quality and Inter-environmental Research Branch Atmospheric Environment Service Environment Canada 4905 Dufferin Street Downsview, Ontario, M3H5T4

James W.S. Young Air Quality and Inter-environmental Research Branch Atmospheric Environment Service Environment Canada 4905 Dufferin Street Downsview, Ontario, M3H5T4

Marvin P. Olson Air Quality and Inter-environmental Research Branch Atmospheric Environment Service Environment Canada 4905 Dufferin Street Downsview, Ontario M3H5T4

Peter W. Summers Air Quality and Inter-environmental Research Branch Atmospheric Environment Service Environment Canada 4905 Dufferin Street Downsview, Ontario, M3H5T4 Paul Choquette, Chief Pollution Data Analysis Division Environmental Protection Service Environment Canada Place Vincent Massey Ottawa, Ontario, KlAlC8

B. Power Environmental Management and Control Division Newfoundland Department of Provincial Affairs and Environment Elizabeth Towers St. John's, Newfoundland

G. Paulin Director de la Recherche Environnement Quebec 194 ave St-Sacrement Quebec, P.Q. GlN4J5

A. Venkatram Air Quality and Meteorology Section Air Resources Branch Ontario Ministry of Environment 880 Bay Street, 4th Floor Toronto, Ontario, M55128

Liaison:

R. Beaulieu
United States Transboundary Relations Division
Department of External Affairs
125 Sussex Drive
Ottawa, Ontario, KLAOG2

Hans Martin LRTAP Liaison Office Atmospheric Environment Service 4905 Dufferin Street Downsview, Ontario, M3H5T4 1. 1.

Appendix 3

10.00

Glossary of Terms

Introductory Comments

144 P. 14

áriki, hi

4 Set 16.

and the grade

a dition.

During the preparation of this glossary, use has been made of terminology and definitions found in, <u>inter alia</u>, the first two annual reports of the United States-Canada Research Consultation Group on the Long Range Transport of Air Pollutants, and the draft Federal Acid Rain Assessment Plan. An obvious need exists for uniformity in terminology amongst all Work Groups and others involved in activities related to the Memorandum of Intent and subsequent developments. It is anticipated that this glossary will grow and be refined as further contributions from specialists in various disciplines are received. <u>Acid Deposition</u>: Collectively, the processes by which acidic and acidifying materials are removed from the atmosphere and deposited at the surface of the earth. Also, the amount of material so deposited. (Units: $ML^{-2}T^{-1}$.)

<u>Acid Precipitation</u>: A more precise term than acid rain, it usually refers to all types of precipitation with pH less than 5.6.

<u>Acid Rain</u>: A popular term used to describe precipitation that is more acidic than "clean" rain (pH \sim 5.6). It is also used more generally to describe other atmospheric deposition phenomena involving acidity.

<u>Analytical Model</u>: A mathematical model in which the solution to the system of governing equations is expressed in terms of analytical functions. As such, these models are simplifications of Lagrangian, Eulerian or statistical models.

Anthropogenic: Produced by man's activity.

 $\lambda_{i} = 1 + 1$

ARCHER R.

1987: 1295

雪滑炉炉

320 C

Sec.

241420

and the second

Bulk Deposition: The term applied to atmospheric deposition collected in a collector which is open at all times. Bulk deposition consists of wet deposition, plus an unknown fraction of the dry particulate deposition, plus an unknown and probably very small fraction of the dry gaseous deposition.

<u>Dry Deposition:</u> Collectively, the processes, excluding precipitation processes, by which materials are removed from the atmosphere and deposited at the surface of the earth. Processes include sedimentation of large particles, the turbulent transfer to the surface of small particles and gases, followed, respectively, by impaction and sorption or reaction. Also, the amount of material so deposited. (Units: $ML^{-2}T^{-1}$.) <u>Ensemble Mean</u>: The average over a number of individual model runs in which only one or a few adjustable parameters are allowed to change.

<u>Eulerian Model</u>: A mathematical model in which computations are made successively at fixed points in space (as opposed to Lagrangian models where computations are made following an air parcel). Computation points are usually arranged in a fixed grid, and the model is also known as a grid model.

Flux: A physical quantity, the amount (mass) of material passing through a unit area in a unit of time. (Units: $ML^{-2}T^{-1}$.)

<u>Individual Realization</u>: The result from a single model run with a given set of input parameters.

<u>Inventory</u>: A listing of emission source strengths of a particular pollutant for a specified time period. Inventories and parameters are normally organized on a point-source basis, an area-source basis, or a combination of the two. Area sources may be represented on a grid, urban-area, county, state, province, or national basis. <u>Isopleth</u>: A line drawn on a field of values which joins points of equal value in time or space.

Lagrangian Model: A mathematical model in which computations are made successively in the same air parcel(s) as it moves along a trajectory. Because this type of model is based on following an air parcel, it is also known as a trajectory model. Loading (atmospheric): The amount of a pollutant in the atmosphere expressed in mass or concentration units. (May also be expressed on a per unit time and/or area basis.)

A.3 - 3

146144

and the second

1.1644.4

20

構成で

C. B. B.

ting of

an in

Sec.

Loading Surface: A term used interchangeably with deposition. LRTAP: The long-range transport of air pollutants refers to the processes, collectively, by which pollutants are transported, transformed and deposited, on a regional scale (of the order of hundreds to thousands of km).

<u>Mb (Millibar) Level</u>: A surface of constant pressure in the atmosphere, identified by the pressure expressed in mb. (Common pressure levels used in air quality modeling are 925 and 850 mb levels.)

<u>Mixing Height:</u> The height above the earth's surface of a boundary layer inversion which is usually the upper limit of turbulent mixing activity, and which inhibits upward flux of pollutant.

<u>Model</u>: A quantitative simulation of the behaviour of a portion of the environment. <u>Model Evaluation</u>: A procedure by which the validity and sensitivity of a model is assessed. Usually the validity is ascertained by comparing model outputs with measurements, and the sensitivity assessed through a series of model runs in which input parameter values are altered in sequence, and the results intercompared.

A.3 - 4

<u>Model Intercomparison</u>: A procedure of comparing the results of several models which have been run on specified data bases and with (usually) specified values of model parameters. <u>Model Resolution</u>: The ability of a model to distinguish (utilize) small spatial or temporal changes in input variables. <u>Model Sensitivity</u>: A model characteristic which is described by the response of an output parameter to a unit change in an input variable or a model parameter.

<u>Model Validation</u>: The part of model evaluation in which modeled results are compared with measured values.

<u>Oxides of Nitrogen</u>: This term usually denotes the sum of nitric oxide (NO) and nitrogen dioxide (NO₂). Other forms are nitrate (NO₃), nitrous oxide (N₂O), and dinitrogen pentoxide (N₂O₅).

<u>Oxides of Sulfur</u>: This term usually denotes sulfur dioxide (SO_2) . Other forms are sulfur trioxide (SO_3) which is uncommon, and sulfate (SO_4) .

<u>Parameterization:</u> The representation of a physical, chemical or other process by a convenient mathematical expression containing quantities (parameters) for which measurements or estimates are usually available. <u>Receptor</u>: An organism, ecosystem or object which is the direct or indirect recipient of atmospheric deposition. <u>Scavenging</u>: The processes by which materials are incorporated into precipitation elements and (usually) brought to the earth's surface.

11 🖷 1000 - 11

a shirt a

Carlinson I.

<u>Scenario</u>: In the modeling context, a set of specified conditions (usually emissions inventory) for input to the model which usually reflect some anticipated future situation (e.g., energy use or pollution emissions).

<u>Sensitive Area</u>: A geographical area in which a receptor (or receptors) exhibit damage in response to a (pollution-imposed) stress.

<u>Sensitivity Receptor</u>: The degree to which a receptor exhibits an adverse effect from a (pollution-imposed) stress. <u>Source-Receptor Relationship</u>: An expression of how a pollutionsource area and a receptor region are quantitatively linked. <u>Spatial Resolution</u>: The minimum distance in space over which meaningful differences in results can be determined (using a particular model.) (For example, a model based on a 381-km grid will provide no significantly different information for two receptor points separated by less than approximately 381 km.) <u>Statistical Model</u>: A mathematical model which uses statistical values of parameters as inputs for the computations.

A.3 - 5

A.3 - 6

<u>Surrogate</u>: The term applied to a parameter which is used to represent another. (For example, modeling hydrogen ion behavior in the atmosphere is difficult, so that sulfate ion is used as a substitute.)

<u>Susceptibility</u>: A receptor or receptor area is said to be susceptible if it is both sensitive, and receiving a pollutant loading or stress.

<u>Temporal Resolution</u>: The minimum time during which meaningful differences in results can be determined (using a particular model). (For example, models using upper air data which, are only available every six hours are limited in their temporal resolution to about 6 hours.)

<u>Trajectory:</u> The path or track of an air parcel through the atmosphere. It can be calculated from observed or gridded wind data either forward or backward from a point (source or receptor, respectively).

Transfer Matrix: A presentation of source-receptor relationships in a matrix form. Matrix elements can be expressed as percentage values, as absolute values, or as values normalized by source strength.) Such a presentation provides a means of easy comparison of the impact of a variety of sources on a variety of receptors.

<u>Transformation (chemical):</u> The processes by which chemical species are converted into other chemical species (in the atmosphere).

<u>Variance:</u> A measure of variability. It is denoted by σ^2 and defined as the mean-square deviation from the mean, that is, the mean of the squares of the differences between individual values of x and the mean value \overline{x} .

 $\sigma^2 = E[(x-\overline{x})^2]$, where E denotes the expected value. <u>Wet Deposition</u>: Collectively, the processes by which materials are removed from the atmosphere and deposited at the surface of the earth by precipitation elements. The processes include in-cloud and below-cloud scavenging of both gaseous and particulate materials. Also, the amount of material so deposited. (Units: $ML^{-2}T^{-1}$.)

A.3 - 7

Appendix 4

Inventory of Available Models

Table 🛛	L.	Summary	of Pr:	incipal	Regi	ional	Air	Quality	Simulation	Models
		in the U	Inited	States	and	Canad	la .			

A.4 - 1

Name of Organization	Model Acronym	Type ¹ of Model	Time Period	Principal References
Batelle-Pacific Northwest <u>La</u> bs	RAPT	Lagrangian	monthly to annual	McNaughton (1980)
Brookhaven National Labs	AIRSOX	Lagrangian	monthly to annual	Kleinman et al (1980)
Argonne National Labs	ASTRAP*	Lagrangian	monthly to annual	Shannon (1980)
ERT, Inc.	SURAD	Eulerian	episodes	Lavery et al (1980)
ERT, Inc.	MESOPUFF	Lagrangian	episodes	Bass (1980)
Teknekron Research, Inc.	RCDM*	Analytical Eulerian	annual	Fay and Rosenzweig (1980) Niemann et al (1980)
Teknekron Research, Inc.	REGMOD	Eulerian	episodes	Prahm and Christensen (1977) Niemann et al (1980)
Washington University	CAPITA- Monte Carlo	Statistical Lagrangian	monthly to annual	Patterson et al (1980)
SRI International	ENAMAP-1*	Lagrangian	monthly to annual	Bhumralkar et al - (1980)
EPA Meterology Lab	RPAQSM	Eulerian	episodes	Lamb (1980)
Atmospheric Environ. Service	AES-LRT*	Lagrangian	monthly to annual	Voldner et al (1980)
Ministry of the Environment	OME-LRT*	Statistical Lagrangian	annual	Venkatram et al (1980)
NOAA/ARL	ATAD	Lagrangian	monthly	Heffter (1980)
Colorado State University	RADM	Lagrangian	monthly	Henmi (1980)
University of Wisconsin	ATM- SOX	Statistical Eulerian	monthly	Wilkening and Ragland (1980)
MEP, Ltd.	LRT	Lagrangian	seasonal	Weisman (1980)
Environnement Québec	TGD-EQ	Statistical Lagrangian	seasonal to annual	Lelièvre (1981)

* Models selected for use by Work Group 2 as of January 15, 1981.

1 7 5

BASS, A., 1980: Modeling long-range transport and diffusion. Preprint, Proceedings of the Second Joint AMS/APAC Conference on Applications of Air Pollution Meteorology, March 24-27, 1980, New Orleans, LA.

BHUMRALKAR, C.M., W.B. JOHNSON, R.L. MANCUSCO, R.H. THUILLIER, and D.E. WOLF, 1980: Interregional exchanges of airborne sulfur pollution and deposition in Eastern North America, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

FAY, J.A. and ROSENZWEIG, J.J., 1980: An Analytical Diffusion Model for Long Distance Transport of Air Pollutants. <u>Atmospheric</u> <u>Environment</u>, vol. 14, 355-365.

HEFFTER, J.L., 1980: Transport layer depth calculations, paper in Proceedings of the Second Joint AMS/APCA Conference on Air Pollution Meterology, March 24-27, New Orleans, LA.

HENMI, J., 1980: Long-Range Transport Model of SO2 and Sulfate and its Application to the Eastern United States, <u>Journal of Geophysical</u> <u>Research</u>, <u>85</u>, <u>C8</u>, 4436 - 4442, August 20.

KLEINMAN, L.J., J.G. CARNEY, and R.E. MEYERS, 1980: Time Dependence on Averge Regional Sulfur Oxide Concentrations, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

LAMB, R.G., 1980: A Regional Scale (1000 km) Model of Photochemical Air Pollution - Part I: Theoretical Formulation, draft report from the Meteorology and Assessment Division, EPA Environmental Sciences Laboratory, Research Triangle Park, N.C.

LAVERY, T.L., et al, 1980: Development and validation of a regional model to simulate atmospheric concentrations of sulfur dioxide and sulfate, paper in Proceedings of the Second Joint AMS/APCA Conference on Air Pollution Meteorology, March 24-27, New Orleans, LA, 236-247.

LELIEVRE, C., 1981: Modèle simple de transformation chimique du soufre lors de son transport dans l'atmosphère, Rapport Interne, Service de la Metéorologie, Ministère de l'Environnement du Québec.

McNAUGHTON, D.J., 1980: Time series comparisons of regional model predictions with sulfur oxide observations from the SURE program, Paper 80-54.5 presented at the 73rd Annual Meeting of the Air Pollution Control Association, Montreal, Quebec, June 22-27, 1980. NIEMANN, B.L., AA. HIRATA, B.R. HALL, M.T. MILLS, P.M. MAYERHOFER and L.F. SMITH, 1980: Initial Evaluation of regional transport and subregional dispersion models for sulfur dioxide and fine particulates, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

PATTERSON, D.E., HUSAR, R.B., WILSON, JR., W.E. and SMITH, L.F., 1980: Monte Carlo Simulation of a daily regional sulfur distribution: Comparision with SURE sulfate data and visibility observations during August 1977, Paper submitted to J. Appl. Meteor., June.

PRAHM, L.V. and O. CHRISTENSEN, 1977: Long-range Transmission of Pollutants Simulated by a Two-Dimensional Pseudo-Spectral Dispersion Model, J. Appl. Meteor., 16,9, 896-910.

SHANNON, J., 1980: Examination of surface removal and horizontal transport of atmospheric sulfur on a regional scale, Proceedings of the Second Joint AMS/APCA Conference on Applications of Air Pollution Meteorology, March 24-27, New Orleans, LA.

VENKATRAM, A., B.E. LEY, and S.Y. WONG, 1980: A statistical model to estimate long-term concentrations of pollutants associated with long range transport, to appear in Atmospheric Environment.

VOLDNER, E.C., M.P. OLSON, K. OIKAWA, and M. LOISELLE, 1980: Comparision between measured and computed concentrations of sulfur compounds in Eastern North America, to appear in Journal of Geophysical Research Proceedings of CACGP Symposium on Trace Gases and Aerosols, August 1979.

WEISMAN, B., 1980: Long-range transport model for sulfur, Paper 80-54.6 presented at the 73rd Annual Meeting of the Air Pollution Control Association, Montreal, Quebec, June 22-27, 1980.

WILKENING, K.E. and K.W. RAGLAND, 1980: Users Guide for the University of Wisconsin Atmospheric Sulfur Computer Model (UWATM-SOX), draft report prepared for the EPA Environmental Research Laboratory -Duluth, MN, November 12.

Appendix 5

Descriptions of Selected Models

29. EN

TABLE OF CONTENTS

		PAGE
ASTRAP	 Parameterizations Comparisons with Data 	A.5-2 A.5-4
ENAMAP-1	 Parameterizations Comparisons with Data 	A.5-9 A.5-11
AES-LRT	 Parameterizations Comparisons with Data 	A.5-23 A.5-24
OME-LRT	- Parameterizations Comparisons with Data	A.5-29 A.5-31
RCDM	 Parameterizations Comparisons with Data 	A.5-34 A.5-35

A.5-1b

I

FIGURE AND TABLE DESCRIPTIONS

			Page
Figure	A5-1	Comparison of cumulative sulfate in rain, expressed as total sulfur for 1977 with ASTRAP simulations (isopleths) (Galloway and Whelpdale).	A.5-6
Figure	A5-2	Comparison of Jan-Feb 1978 SURE average sulfate measurements (number) with ASTRAP simulations (isopleths) using Jan-Feb 1975 meteorology. (Shannon)	A.5-7
Figure	A5-3	Comparison of August 1977 SURE average sulfate measurements (numbers) with ASTRAP simulations (isopleths) using July-August 1975 meteoroglogy. (Shannon)	A.5-8
Figure	A5-4	SO ₂ concentrations (ug/m ³) for January 1977 from ENAMAP-1	A.5-12
Figure	A5 . 5	SO ₄ concentrations (ug/m ³) for January 1977 from ENAMAP-1	A.5-13
Figure	A5-6	SO ₂ concentrations (ug/m ³) for April 1977 from ENAMAP-1	A.5-14
Figure	A5-7	SO ₄ concentrations (ug/m ³) for April 1977 from ENAMAP-1	A.5-15
Figure	A5-8	SO ₂ concentrations (ug/m ³) for August 1977 from ENAMAP-1	A.5-16
Figure	A5-9	SO ₄ concentrations (ug/m ³) for August 1977 from ENAMAP-1	A.5-17
Figure	A5-10	SO ₂ concentrations (ug/m ³) for October 1977 from ENAMAP-1	A.5-18
Figure	A5-11	SO ₄ concentrations (ug/m ³) for October 1977 from ENAMAP-1	A.5-19
Figure	A5-12	Calculated annual concentrations of SO_2 and SO_4 (ug/m ³) for 1977 from ENAMAP-1	A.5-20
Figure	A5-13	Calculated annual dry and wet deposi- tions of SO ₂ (10 mg/m ²) for 1977 from ENAMAP-1	A.5-21

D - - - -

A.5-1c

Figure	A5-14	Calculated annual dry and wet depositions of SO_4 (10 mg/m ²) for 1977 from ENAMAP-1	A.5-22
Figure	A5-15	AES-LRT computed and measured daily mean SO ₂ concentrations during October 1977 at Albany, N.Y. (measured-solid, computed- dashed)	A.5-25
Figure	A5-16	AES-LRT computed and measured daily mean sulfate concentrations during October 1977 at Port Huron, Mich. (measured-solid, computed-dashed)	A.5-26
Figure	A5-17	Ratios of AES-LRT computed to measured monthly precipitation weighted sulfate concentrations in the rain and percent contribution from direct sulfate scaveng- ing (in parentheses) for October 1977.	A.5-27
Figure	A5-18	Ratios of AES-LRT computed to measured monthly mean sulfate concentrations in the air for October 1977	A.5-28
Figure	A5-19	OME-LRT model predictions of annual wet deposition of sulfur in $gm/m^2/year$. Stars in figure correspond to monitors in the CANSAP and U.S. networks. Numbers next to stars are station codes referred to in Table A5-1	A.5-32
Table	A5-1	Comparison of OME-LRT model predictions with observations of wet deposition of sulfur for 1977 (Galloway and Whelpdale, 1980).	A.5-33
Figure	A5-20	Isopleths of annual SO ₂ concentrations (ug/m ³) simulated by the RCDM	A. 5-38
Figure	A5-21	Isopleths of annual sulfate concentrations (ug/m ³) simulated by the RCDM	A.5-39
Figure	A5-22	Three-year average (1975-1977) of AQCR average sulfate concentrations (ug/m ³)	A.5-40
Figure	A5-23	Annual average sulfate concentrations (ug/m ³) at Ontario Hydro monitors in 1978	A.5-41
Figure	A5-24	"Annual average" sulfate concentrations (ug/m ³) at the SURE monitors	A.5-42

14.275.25

1.1000004313

an - Carata - Ca

100000

8 . e. V. L.

1.9.1.1027

The Revenue

A. 2. 6610

A.5-1d

had

i

IRI

200

A.

Figure A5-25 Isopleths of wet sulfur deposition (g/m²yr) simulated by the RCDM A.5-43

Figure A5-26 Wet sulfur deposition (g/m²yr) at event monitoring sites in the northeastern U.S. (1976-1979) A.5-44 <u>Model</u>: ASTRAP (<u>Advanced Statistical Trajectory Regional Air</u> Pollution Control Model)

Modeling Group: Argonne National Laboratory, Jack Shannon Model Type: Statistical Lagrangian

Emission Data: Point Sources or gridded virtual sources for a normalized 60 x 60 transition matrix (emission height can be variable)

Wind Data: uses 1/2 NMC* (191 km). Calculate mean transport speed and direction from surface to 1800 metres summer (1000 m. winter) for each Rawinsonde Station. Use inverse distance squared to get value at grid point (starting at radius = 381 km and increase until at least two observing stations).

Precipitation Data: 6 hour amount within 1/4 NMC grid square

(95 km). Used average precipitation from those reporting precipitation, within a 1/4 square, and those reporting zero to assign percentage removed (i.e. 3 of 5 reporting precipitation means up to 60% removal is allowed).

<u>Mixing Height</u>: not used directly - numerical integration to 2100 metres using a diurnal pattern of growth of a nocturnal stable layer followed by breakup during the day to a maximum afternoon value and repeating on an actual rawinsonde ascent. Chemistry: first order SO₂/SO₄, with diurnal variation.

* National Meteorological Center

vertical by one-dimensional numerical integration
 (11 layers)

<u>Removal Processes</u>: Wet and dry deposition of SO₂ and SO₄, diurnal and seasonal variations.

> - wet removal rate proportional to 1/2 power of 6-hourly precipitation amount (4 mm in 6 hours removes everything whereas 1 mm/hour removes 50%).

Model Outputs: Long term regional patterns of SO₂ and SO₄ surface concentration and cumulative wet and dry deposition of total S.

Resolution: Monthly and 1/4 of an NMC grid (95 km).

Area of Application: Eastern North America

Parameter Values: Wind/Precipitation - 1975 Summer (July, August)

Winter (Jan., Feb.)

Average VD_{SO2} and $SO_4 = 0.4$ cm/sec. (summer)

= 0.25 cm/sec. (winter)

Conversion $SO_2/SO_4 = 1.1$ %/hour (summer)

= 0.55%/hour (winter)

* calculation done on ensemble parameters only.

1231

Descriptive Material:

Seasonal and diurnal cycles in the deposition velocities of SO_2 and SO_4 produced by vertical mixing and plant stomatal activity are also provided for in the model. Sulfate deposition velocities used are the same order of magnitude as SO_2 velocities rather than an order of magnitude less as in other modeling studies.

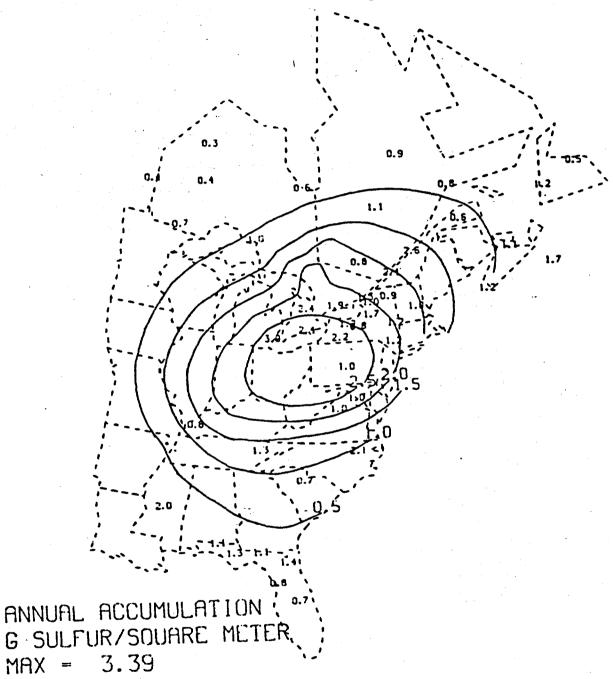
Wet removal is taken into account using the scavenging ratio approach. This method relates wet deposition to the ratio of field measurements of concentration of pollutant measured in the air to that measured in rainfall at the same time. Argonne National Laboratory has found that scavenging rates are relatively constant, and sulfur deposition by wet processes is a function of the half power of the amount of precipitation.

The mixed layer is divided into 11 layers for the vertical numerical integration. A wind field is developed at a specified level in the atmosphere based on NWS data. Winds are interpolated between data points using a radius of influence inverse square relationship.

Comparisons With Data:

The model results were compared with measurements from the SURE data network for 1977 and 1978. The average two-month summer and winter sulfate fields show there are major discrepencies, particularly in the western part of the eastern U.S. It must be kept in mind, however, that meteorology for a different year was used in the model. The ASTRAP simulations of wet deposition of total sulfur were scaled to a one-year period and compared with observations during 1977 of annual accumulations of sulfate in precipitation, expressed as total sulfur. There is some general agreement, but the data shows a more complex distribution than that indicated by the ASTRAP model results. On an annual basis, an estimated 5.4 million metric tons were deposited on the eastern United States. Wet and dry removal were approximately equally important. By season, dry deposition was equal to wet deposition in the summer, but wet removal was approximately twice dry removal in the winter.

Figures A5-1 through A5-3 show output from the ASTRAP Model.


A.5-5

100

and a second

Comparison of cumulative sulfate in rain, expressed as total sulfur for 1977 with ASTRAP simulations (isopleths) (Galloway and Whelpdale).

A5-2 Comparison of Jan-Feb 1978 SURE average sulfate measurements (number) with ASTRAP simulations (isopleths) using Jan-Feb 1975 meteorology. (Shannon) i parti

IN

A.5-7

2-MONTH AVG. CONC. µG/CUBIC METER MAX = 9.95

10

A5-3 Comparison of August 1977 SURE average sulfate measurements (numbers) with ASTRAP simulations (isopleths) using July-August 1975 meteoroglogy. (Shannon)

> 10 10

10

2-MONTH AVG. CONC. µG/CUBIC METER MAX - 19.6 <u>Model</u>: ENAMAP-1 (<u>Eastern North America Model of Air Pollution</u>) <u>Modeling Group</u>: SRI International, Chandrakant Bhumralker and EPA/ESRL, Ken Demerjian 1000

100

A.5-9

Model Type: Lagrangian Puff

Emission Data: - 80 km x 80 km UTM SURE grid extended

- SURE and NEDS

- average (annual and seasonal)

- 12 hour puff

<u>Wind Data</u>: historical (retaining original temporal and spatial detail) (1977)

3 hour time steps using objectively* analyzed wind fields from surface (6 hour intervals) & upper air data (12 hr. intervals) on 80 x 80 grid.

 \overline{U} = 0.75 U (850mb); $\overline{\Theta}$ = Θ (850mb) - 15°

Precipitation Data: - objectively* analyzed onto 80 x 80 grid using observed data.

Mixing Height: seasonal dependence varying from 1.15 km in winter

to 1.45 km in summer.

Chemistry: SO₂/SO₄ first order

Dispersion: - Fickian $(t^{1/2})$

- horizontal - uniform

 vertical - mixing (instantaneous) to top of the boundary layer

 least squares polynomial fit using at least 3 data points within a radius of influence. Removal Processes: first order Model Outputs: (1) SO₂, SO₄ Concentrations (2) dry and wet deposition (3) interregional exchanges <u>Resolution</u>: monthly, 70 x 70 km grid square <u>Area of Application</u>: Eastern North America <u>Parameter Values</u>: SO₂/SO₄ 1%/hour L = 1.3 - 0.15 km where = + 1 in winter; -1 in summer and

> SO₂: dry deposition = 0.037 hr ⁻¹ SO₂: wet deposition = 0.28R hr ⁻¹ where R = mm/hr. of precipitation SO₄ : dry deposition = 0.007 hr ⁻¹ SO₄ : wet deposition = 0.07R hr ⁻¹

0 in spring & fall

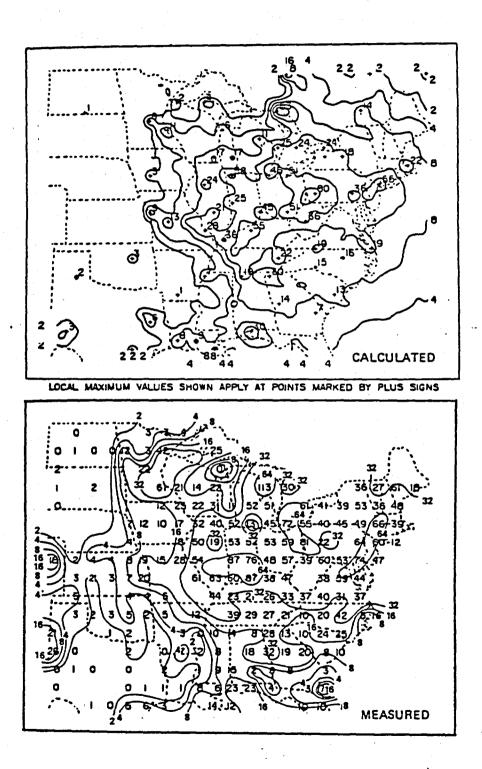
Descriptive Material:

ENAMAP-1 was originally developed for the Federal Republic of Germany (as EURMAP-1) and has been adapted to the Eastern North America region and renamed ENAMAP-1.

The wind field is determined by objective analysis of available upper-air observations at the 850-mb level (approximately 1500 m above mean sea level). The resulting field wind speeds are decreased by 1/4, and the wind directions are rotated 15° counterclockwise to account for surface layer friction effects. The wind fields are then interpolated every 3 hours between 12-hour data intervals.

A.5-10

The SO_2 transformation rate, the SO_2 and SO_4 dry deposition velocities and the mixing heights used in the ENAMAP-1 are generally similar to those used in other regional models. The SO_2 and SO_4 wet removal rates are different than those used in other regional models.


Comparisons with Data:

SO₂ emissions from the SURE program and NEDS were used in ENAMAP-1 model simulations. The months of January and August 1977 were chosen for model evaluation, and the results were compared with SURE and SAROAD air quality data. ENAMAP-1 predicted high sulfate in the northeastern states and relatively low values elsewhere in January 1977. The observed concentration field was similar in the East but measured values were higher than predicted in the Midwest. The model results for August 1977 were in better agreement with observations.

Figures A5-4 through A5-14 are seasonal and annual verification outputs from the ENAMAP-1 Model. Comparisons of modeled SO₄ against observed SURE data show very good agreement.

A.5-11

A5-4 SO₂ concentrations (ug/m³) for January 1977 from ENAMAP-1

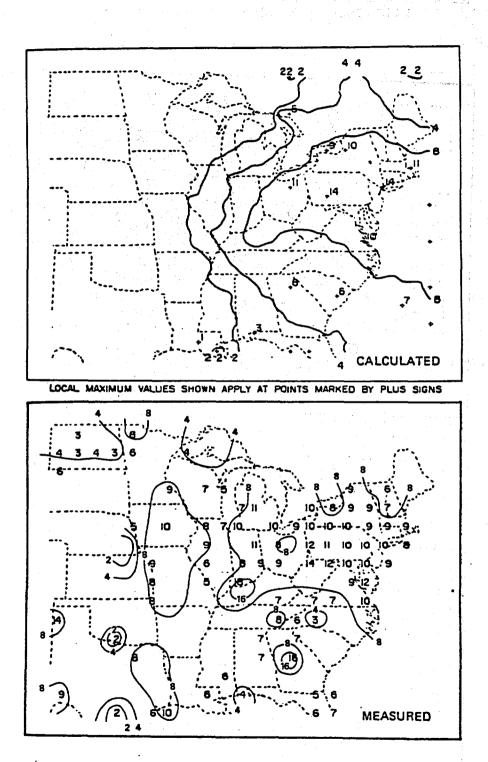
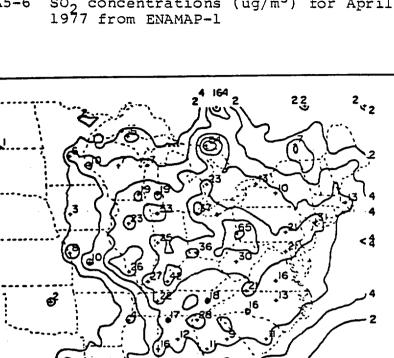


Figure A5-5 SO₄ concentrations (ug/m³) for January 1977 from ENAMAP-1

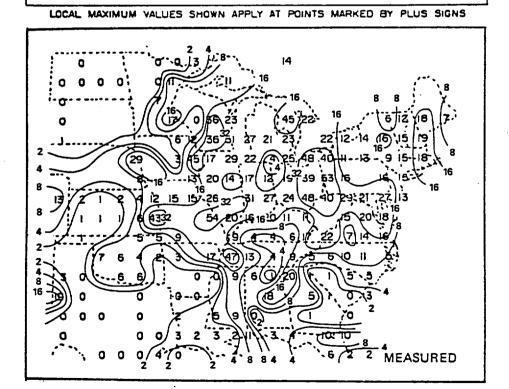

A.5-13

810233

<u>i</u>

Ī

þ



2

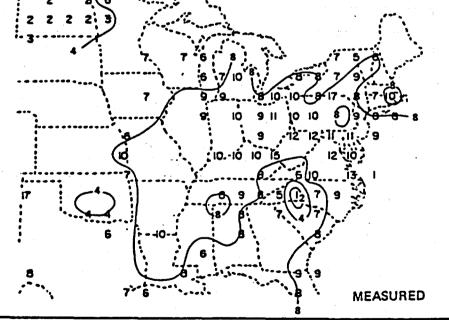
2 Ž CALCULATED

A5-6 SO₂ concentrations (ug/m³) for April 1977 from ENAMAP-1 Figure

.

2 2

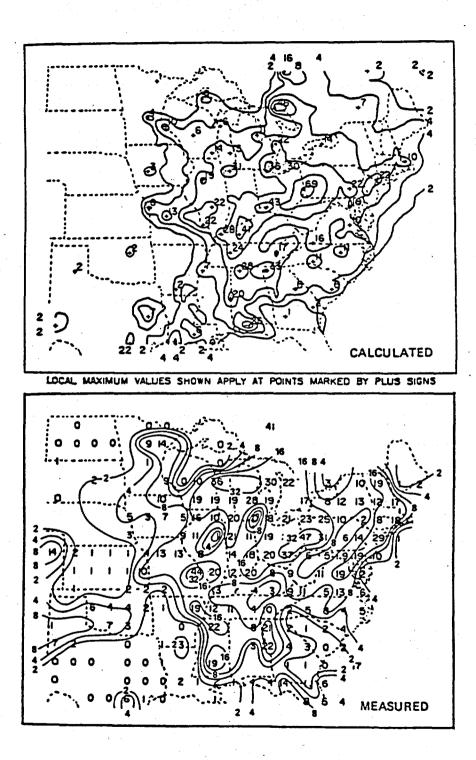
2

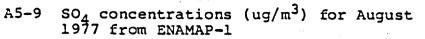

۵ ۵ ۵

۵

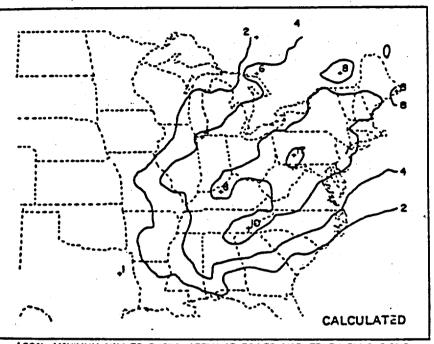
A.5-14

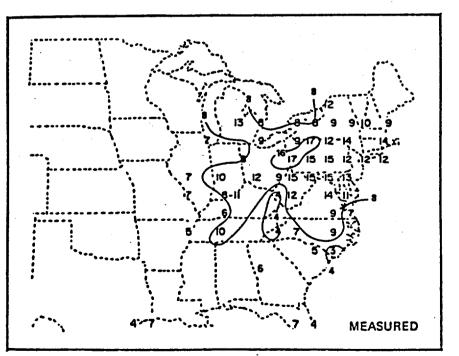
A5-7 SO₄ concentrations (ug/m^3) for April 1977 from ENAMAP-1

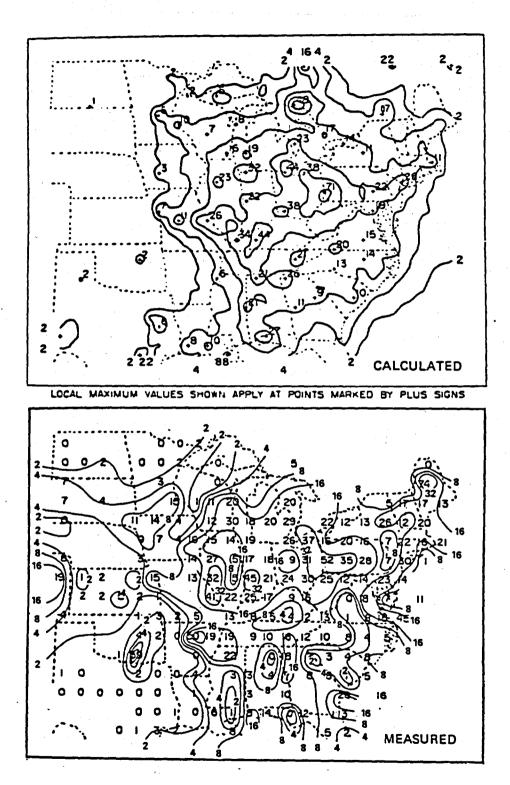

A.5-15


「國

I


[[章]


A5-8 SO₂ concentrations (ug/m³) for August 1977 from ENAMAP-1

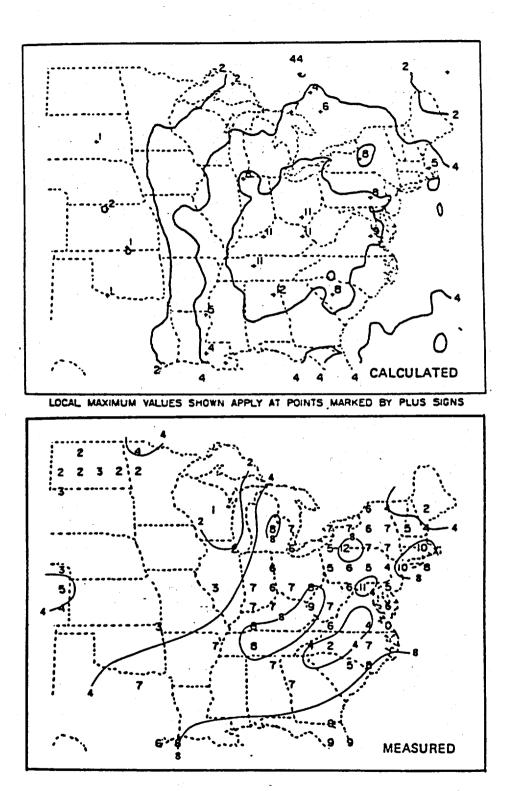

LOCAL MAXIMUM VALUES SHOWN APPLY AT POINTS MARKED BY PLUS SIGNS

A.5-17

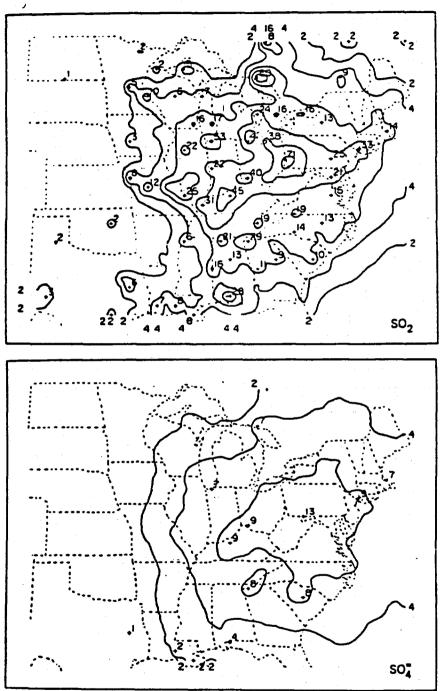
物國國

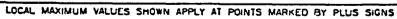
A.5-18

Figure A5-10 SO₂ concentrations (ug/m³) for October 1977 from ENAMAP-1

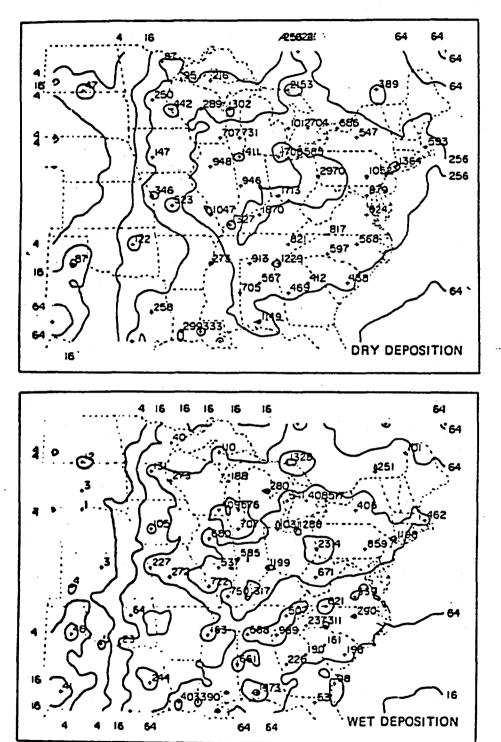


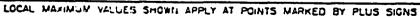
A.5-19


Test

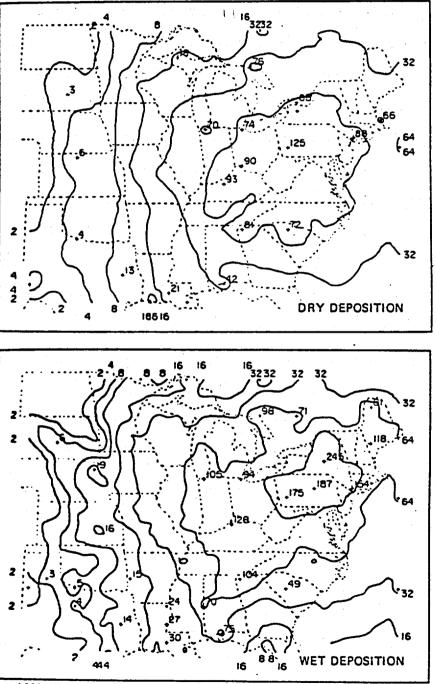

Figure

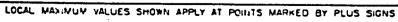
A5-11 SO₄ concentrations (ug/m^3) for October 1977 from ENAMAP-1


A5-12 Calculated annual concentrations of SO₂ and SO₄ (ug/m³) for 1977 from ENAMAP-1



A.5-21


A5-13 Calculated annual dry and wet depositions of SO₂ (10 mg/m²) for 1977 from ENAMAP-1



Figure

Figure A5-14 Calculated annual dry and wet depositions of SO_4 (10 mg/m²) for 1977 from ENAMAP-1

Model: AES-LRT

Modeling Group: Atmospheric Environment Service, Marvin Olson and Eva Voldner

Model Type: Lagrangian

Emission Data: 127 km 127 km - polar stereographic CMC* grid Wind Data: upper air observations, objectively** analyzed

at 6 hourly intervals at 4 levels on 381 x 381 km CMC grid (1978)

Precipitation Data: 24 hour amount, objectively analyzed on 127 x 127 km CMC grid

Mixing Height: climatological (Portelli, Holzworth) as a function
 of month averaged onto 127 x 127 km CMC grid
 (mean daily = (morn. min. + aft. max.) /2)

Chemistry: first order SO₂/SO₄

Dispersion: - instantaneously in a grid box (127 x 127 km)

- individual trajectories (96-hour backward)
 <u>Removal Processes</u>: wet and dry deposition of SO₂ and SO₄
 <u>Model Outputs</u>: (1) concentration and deposition fields for SO₂, SO₄

(2) source receptor matrix (11 x 9)

Resolution: 1 month, 127 km square.

Area of Application: Eastern North America

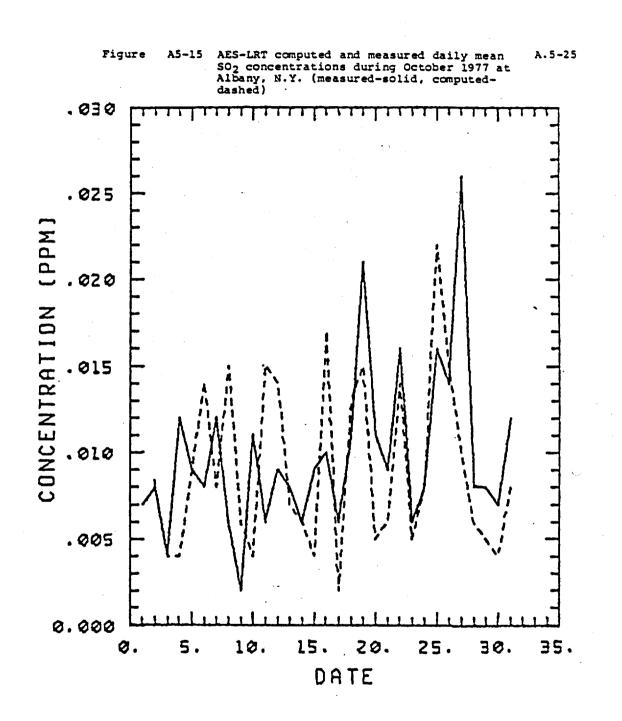
* Canadian Meteorological Centre

** 3-D data assimilation scheme that incorporated hydrostatic and height-wind balance routines anana A See A See A A See

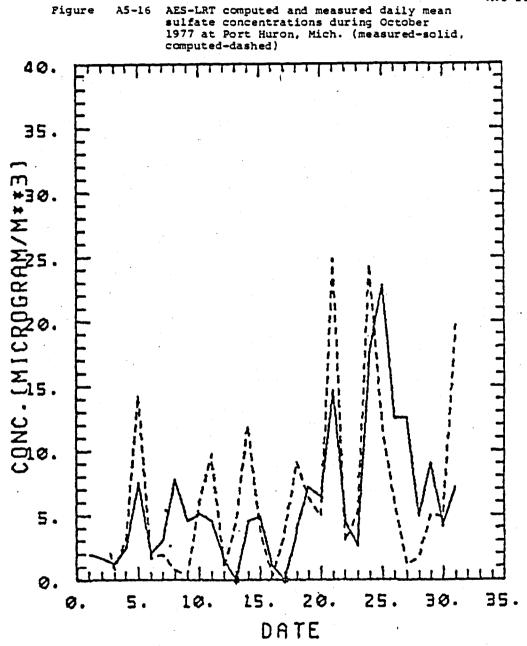
Parameter Values: $SO_2/SO_4 = 1$ %/hour

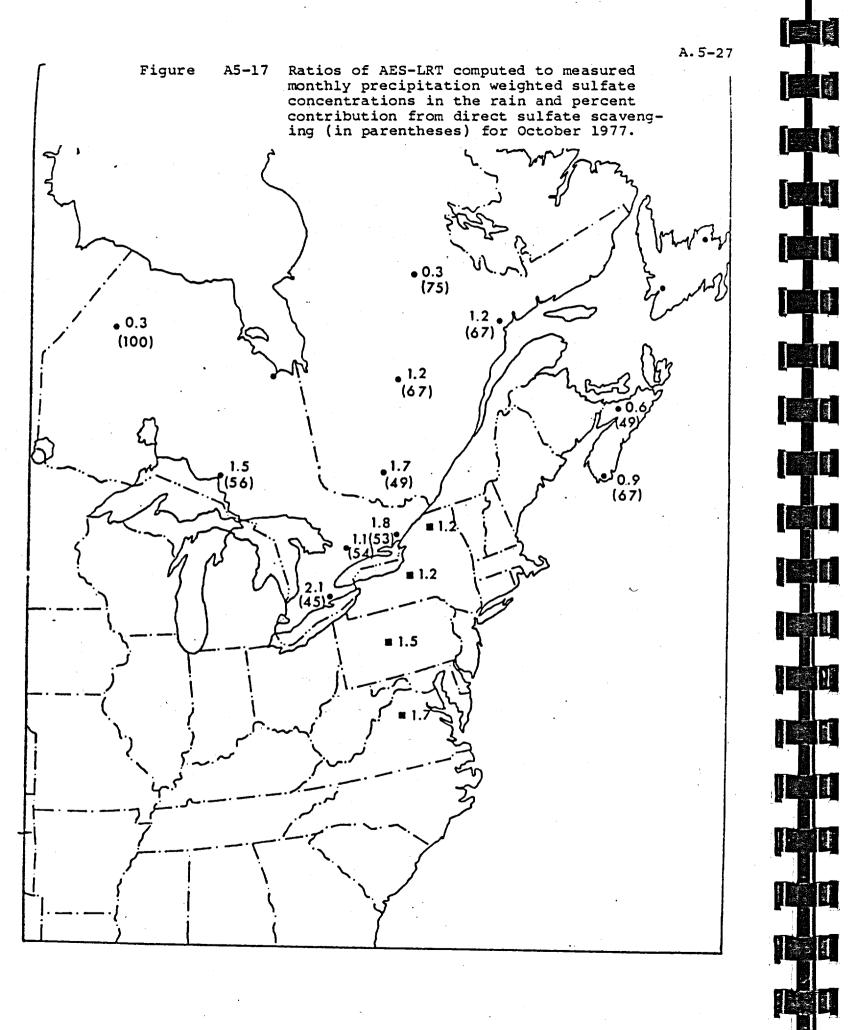
 $VDSO_2 = 0.5 \text{ cm/sec.}$ $VDSO_4 = 0.1 \text{ cm/sec.}$ Scavenging ratio: SO₂ = 30,000 (.3 x 10⁵) SO₄ = 850,000 (8.5 x 10⁵)

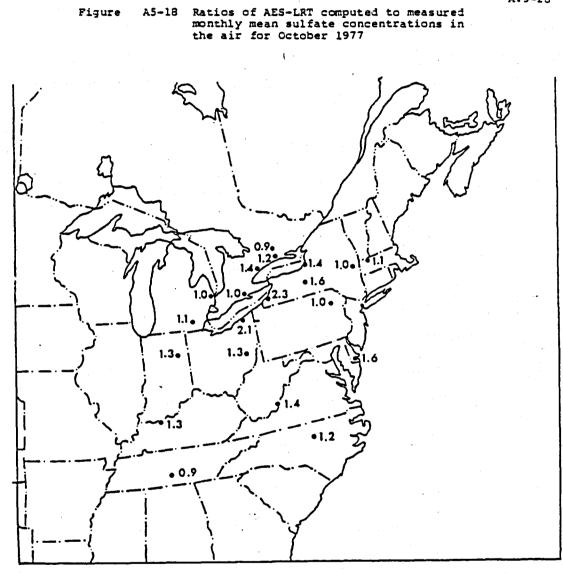
Descriptive Material:


Wet deposition is parameterized by using the scavenging ratio approach and the 24-hour precipitation amount.

Dry deposition is parameterized through the use of fixed deposition velocities.


Trajectories are calculated using winds interpolated to the 925 mb level and using computed vertical motions. <u>Comparisons with Data</u>:


Preliminary results indicate some overprediction of sulfur dioxide concentrations and some underprediction of wet deposition, but generally the overall concentration patterns and episode occurrences agree quite well with measurements (correlations between 0.4 and 0.9).


Figures A5-15 through A5-18 compare daily average measured and computed concentrations and ratios of computed to measured monthly concentrations.

Aver 2

ter a

and the second

A.5-29

Model: OME-LRT

Modeling Group: Ontario Ministry of the Environment,

Akula Venkatram

Model Type: Statistical Trajectory

Emission Data: - point source: a function of height

 area sources: in the form of effective point source at emission weighted geometric mean co-ordinates.

<u>Wind Data</u>: statistics of σ_u and σ_v from Tennekes (long term average only)

Precipitation Data: duration and frequency of wet and dry

periods (Slinn, 1979)

Mixing Height: constant value of 1000 metres

Chemistry: first order SO2/SO4

Dispersion: - instantaneous mixing

- solution of the Lagrangian dispersion equation

- function of trajectory spread

Removal Processes: Stochastic scavenging - wet and dry removal

of $SO_2 \& SO_4$

<u>Model Outputs</u>: (1) concentration and deposition fields for SO₂ & SO₄

(2) source receptor matrix (11 regions)

Resolution: Annual, 100 km.

Area of Application: North America Parameter Values: $\sigma_x = U_m T$

 $\sigma_{y} = v_{m}T$

where $U_m = 10 \text{ m/s}$

 $V_m = 6 m/s$

 $SO_2/SO_4 = 1$ %/hour (dry & wet)

Effective washout rate for $SO_2 = 3 \times 10^{-5}$ l/sec. Precipitation scavenging of $SO_4 = 1 \times 10^{-4}$ l/sec.

> $VDSO_2 = 0.5 \text{ cm/s}$ $VDSO_4 = 0.05 \text{ cm/s}$

 $T_d = 46$ hours - Langrangian dry period $T_w = 7$ hours - Lagrangian wet period

 $\overline{L} = 1000 \text{ m}$

April (Adda (Adda)

California -

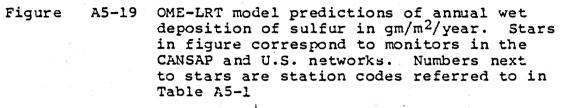
- 20 for 20 -

· 2000040

tation in

Ratio of SO₂ to SO₄ at the Source = 0.98/0.02 Descriptive Material:

The horizontal dispersion of pollutants is based on a Gaussian puff whose mean motion follows that of large scale synoptic flows. The standard deviations of the Gaussian puff are related to the statistics of trajectories from the source of interest. Scavenging of pollutants is treated with a stochastic model which accounts for the distinctly different probabilities of rain in synoptically dry and wet


regions. The model also allows for different SO_2 to SO_4 conversion rates in wet and dry periods. The statistical LRT model is a "convolution" of the dispersion and scavenging sub-models.

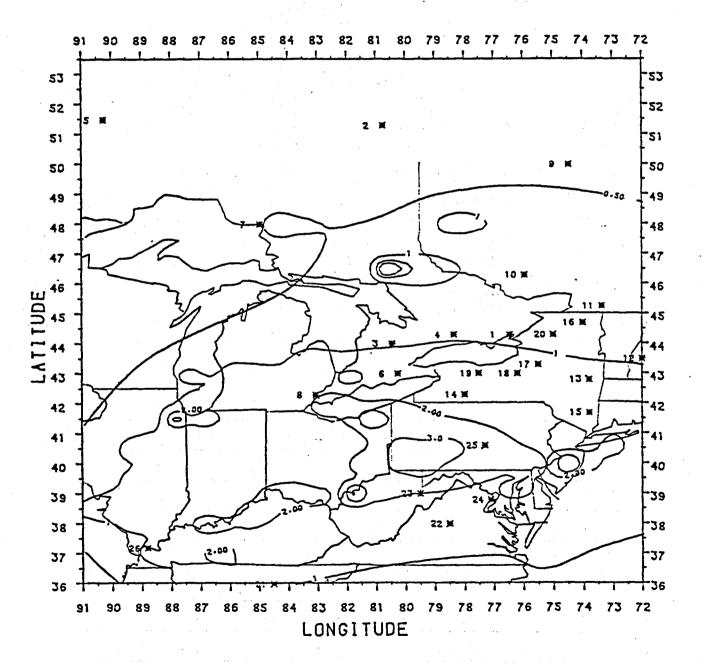

Comparisons with Data:

Figure A5-19 shows modeled total wet deposition of sulphur for 1977.

Table A5-1 details the verification data and correlation coefficients for various agglomerations of sources from the OME-LRT Model.

A.5-31

A.5-33

			We	t sulfur deposition
Station No	Receptor Name	OBS	PRED	OBS/PRED
_		 (g/m ²	-/v-1	
		(9)	7 7 1 7	
1	Kingston, Ont	1.26	0.93	1.35
2	Moosonee, Ont	0.58	0.33	1.76
3	Mount Forest, Ont	2.32		2.42
2 3 4 5	Peterbough, Ont	1.81	0.94	1.93
5	Pickel Lake, Ont	0.39	0.28	1.39
6	Simcoe, Ont	2.34	1.49	1.57
7	Wawa, Ont	0.91	0.52	1.75
8	Windsor, Ont		2.00	1.49
6 7 8 9	Chibougamau, Que	1.06	0.42	2.52
10	Maniwaki, Que	0.71	0.75	0.95
11	Montreal, Que	2.35	0.88	2.67
12	Merrimach Cnty, N.Y.	0.91	0.93	0.98
13	Albany Cnty, N.Y.	1.20		0.99
14	Allegany Cnty, N.Y.	2.20	1.58	1.39
15	Dutchess Cnty, N.Y.	1.20	1.48	0.81
16	Essex Cnty, N.Y.	0.84	0.84	1.00
17	Oneida Cnty, N.Y.	1.70	1.08	1.57
18	Onondaga Cnty, N.Y.	0.79	1.19	0.66
19	Ontario Cnty, N.Y.	1.20	1.34	0.90
20	St. Law. Cnty, N.Y.	1.00	0.89	1.12
21.	Oak Ridge, Tenn	1.30	1.04	1.25
22	Charlottesville Vir	0.91	1.31	0.69
23	Tucker Cnty, W.V.	2.00	1.94	1.03
24	Washington, D.C.	1.00	1.83	0.55
25	Lewistown, Penn	0.98	2.21	0.44
26	Paducah, Kentucky	0.57	1.29	0.44

OBSERVED DEPOSITION = a + b* PREDICTED DEPOSITION LINEAR ANALYSIS:

Receptor Location	r ²	a(g/m²/yr)	ь	Receptor Excluded
Canada	0.76	0.24	1.49	
Canada	0.84	0.16	1.48	11
U.S.	0.09	0.73	0.34	
U.S.	0.47	0.05	0.98	24, 25, 26
All PT	0.19	0.67	0.58	
All PT	0.51	0.24	1.04	11, 24, 25, 26
All PT Can Obs Reduced 30%	0.70	0.12	0.97	11, 24, 25, 26

۰ ۱

Table

A5-1 Comparison of OME-LRT model predictions with observations of wet deposition of sulfur for 1977 (Galloway and Whelpdale, 1980).

A STATE

<u>Model</u>: RCDM (<u>Regional Climatological Dispersion Model</u>) Fay and Rosenzweig

Modeling Group: Teknekron Research Inc., Brand Niemann and

Carl Benkeley

Model Type: Analytical Eulerian

Emission Data: - single or multiple point and area sources

- SURE inventory

<u>Wind Data: - resultant average vector wind field</u>

Precipitation Data: seasonal, regional average

Mixing Height: use seasonal value at receptor point

Chemistry: slow and irreversible (eg. SO_2/SO_4)

or fast and reversible (e.g. NO/NO₂)

- linear decay or equilibrium mass coefficient

Dispersion: - steady state diffusion equation (two-dimensional)

- regional scale diffusivity

<u>Removal Processes:</u> - uniform in space

- wet and dry

- first order rate constant

Model Outputs: (1) Long term average pollutant concentrations

and deposition patterns

(2) Gridded field

(3) Transfer matrix (arbitrary number of areas)<u>Resolution</u>: >50 km from sources, regional scale.

Area of Application: Eastern North America

Parameter Values: $\overline{L} = 1000 \text{ m}$ $\overline{u} = 3.2 \text{ m/s}$ $\theta = 265^{\circ} \text{ True}$ $VD_{SO_2} = .01 \text{ m/s}$ $Tw = 3 \times 10^5 \text{ seconds}$ $= \text{ net depletion time} = 10^5 \text{ seconds}$ $D_H = \text{Diffusivity} = 6.4 \times 10^5 \text{ m}^2/\text{sec.}$

Descriptive Material:

Fay and Rosenzweig assumed that the longer period sulfur dioxide and sulfate concentrations from a point source can be described by the 2-dimensional steady state advectiondiffusion equation in which the horizontal eddy diffusivity and conversion and removal rates are uniform in space.

The RCDM is an appropriate compromise between the original Fay and Rosenzweig application which used only one wind speed and direction for the entire eastern U.S. and the NOAA/ARL and ASTRAP models which use the highest temporal and spatial resolution available in upper air data.

The compromise decided upon was to use the seasonal and annual resultant wind vectors at all the upper air stations in the eastern U.S. and southeastern Canada.

Comparisons with Data:

Fay and Rosenzweig found generally good agreement between sulfur dioxide predictions from their analytical model and numerical predictions from the NOAA/ATDL trajectory model.

A.5-35

and a

The sulfate predictions from the steady state model are in general agreement with those from the ASTRAP model which uses high resolution meteorological data to compute an ensemble average of trajectory statistics.

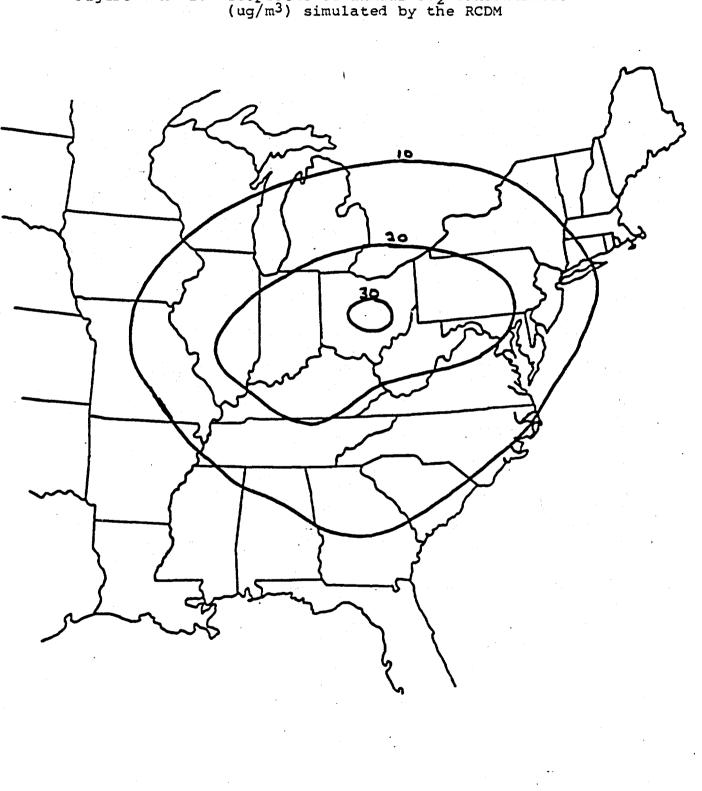
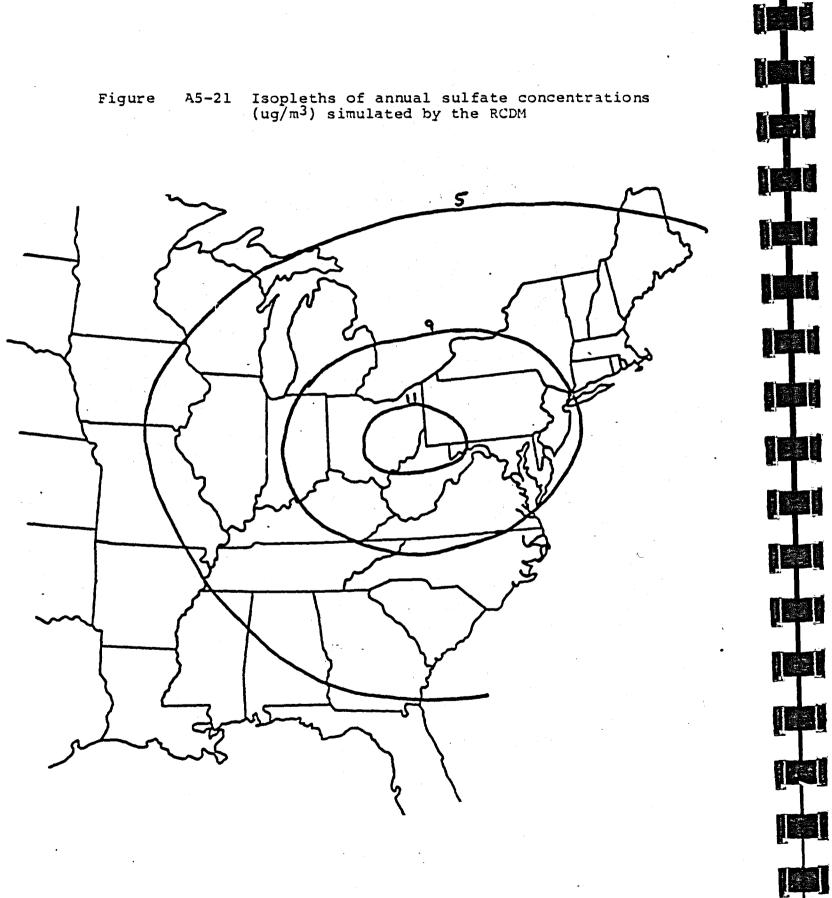
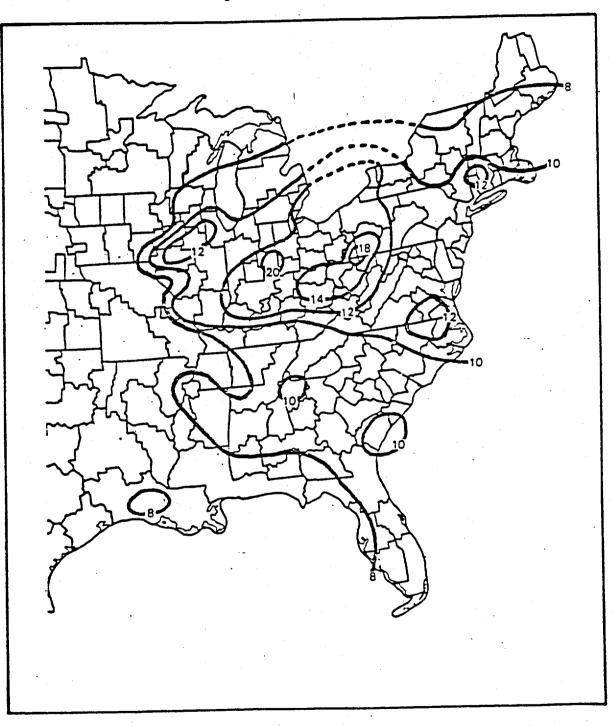
Sensitivity analysis of the RCDM show in general that SO₂ concentrations are most sensitive to the mixing height and the inverse total depletion rate while the sulfate concentrations are most sensitive to mixing height and the inverse chemical conversion rate. The RCDM has been evaluated against historical sulfate data and current sulfur dioxide and sulfate data. The RCDM predictions were found to be in generally good agreement with regional sulfate concentrations during 1960-1974 and with current sulfur dioxide and sulfate concentrations. Both the historical and current regional sulfate concentrations show a regional pattern of elevated sulfate concentrations which are roughly symmetrical about the ll contiguous states with the highest sulfur dioxide emissions.

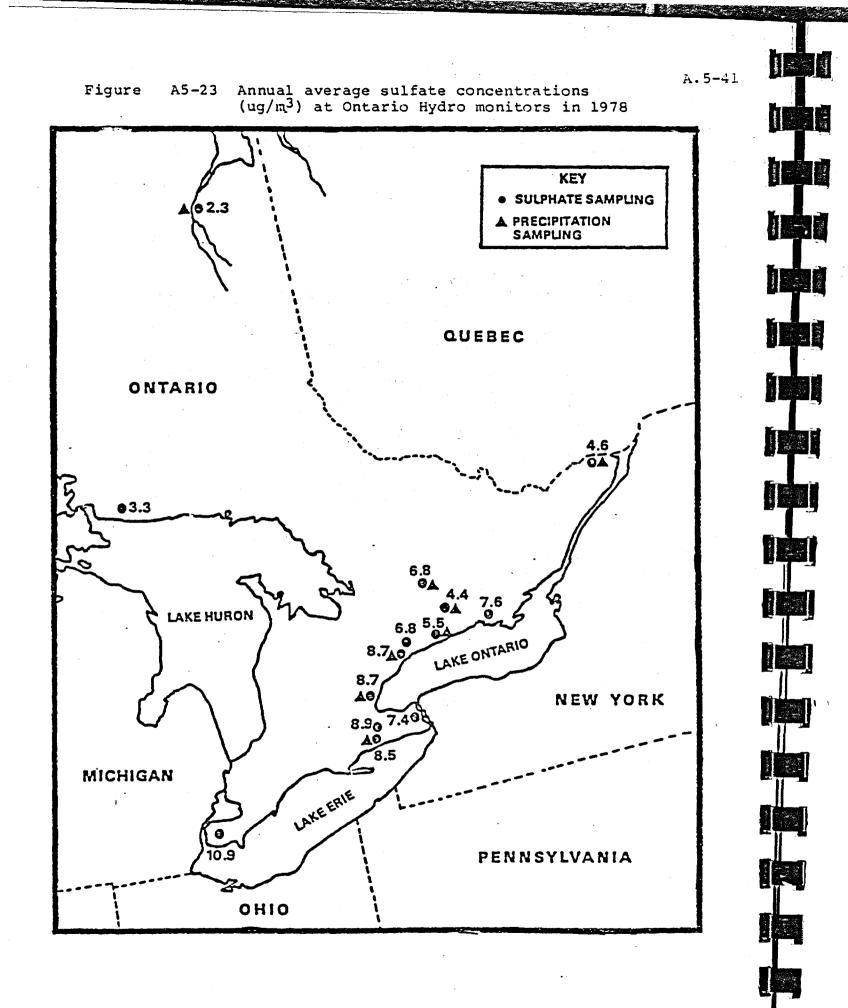
The RCDM also gives generally good agreement with winter and summer season regional sulfur dioxide and sulfate concentrations when the seasonal mixing heights from climatological data are used and the inverse chemical conversion rate (i.e., SO₂ residence time) is decreased slightly for the summer and increased slightly for the winter over the annual value. The predicted wet sulfur deposition values are in general agreement with those computed from the MAP3S and EPRI precipitation chemistry networks in the region of highest SO₂ emissions. However, the RCDM does not predict the observed maxima in wet sulfur deposition in regions like southeastern Canada beyond the region of highest SO₂ emissions in the eastern U.S.

Figures A5-20 through A5-26 illustrate the verification data available for this model.

A.5-37

e (ut en e


Figure A5-20 Isopleths of annual SO_2 concentrations (ug/m^3) simulated by the RCDM

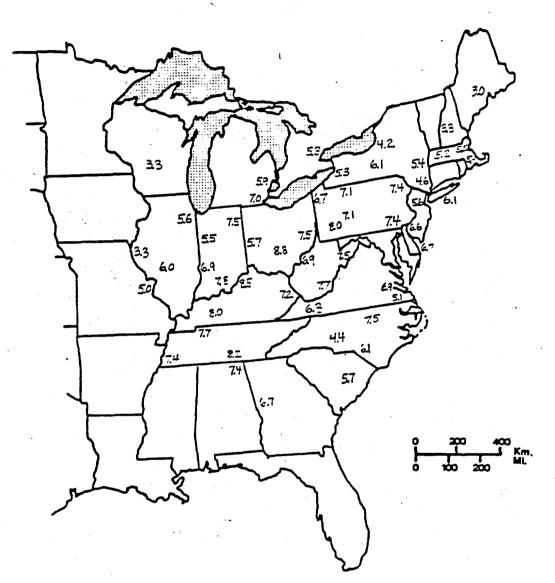


Figure A5-22 Three-year average (1975-1977) of AQCR average sulfate concentrations (ug/m³)

í.

Figure A5-24 "Annual average" sulfate concentrations (ug/m^3) at the SURE monitors

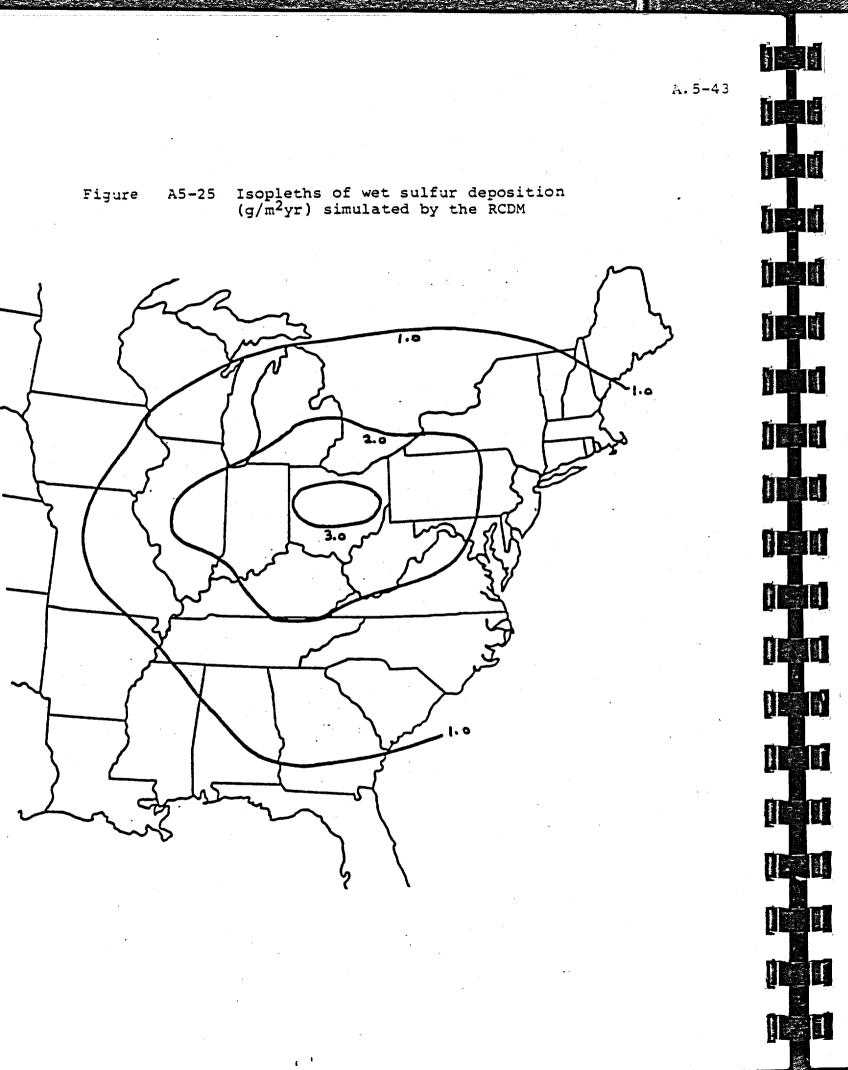


Figure A5-26 Wet sulfur deposition (g/m²yr) at event monitoring sites in the northeastern U.S. (1976-1979)

Appendix 6

Source Region and Inventory Description

NOTE: An addendum to this appendix containing more detailed information has been produced and will be updated periodically.

LIST OF FIGURES AND TABLES

		PAGE
TABLE A6-1	Comparison of State Emissions Totals and Aggregate - Grid Totals (based on SURE Phase II Inventory)	A.6-2
TABLE A6-2	SURE II SO ₂ Emissions Allocated to Grid Aggregate Areas.	A.6-4 A.6-5
TABLE A6-3	SURE II SO ₂ Emissions Allocated to Grid Aggregate Areas Subdivided by by Stack Height	A.6-6, A.6-7
FIGURE A6-1	SO ₂ Emission Rate with Height (SURE II Inventory)	A.6-8
TABLE A6-4	Principal Reason for Selection of Sensitive Areas	A.6-9
TABLE A6-5	Relationship Between Area Numbers and Abbreviations on Large Map	A.6-10
TABLE A6-6	Relationship Between Canadian Regions and the 63 Aggregated SURE Grid Areas	A.6-11
TABLE A6-7	Relationship Between Canadian Receptor Areas and ARMS Sensitive Areas	A.6-12

A6.1 <u>A Description of the SURE II Extended Grid: Source</u> Regions and Sensitive Receptor Areas

The 80km grid cells in the Sulfate Regional Experiment (SURE) Phase II emission inventory have been aggregated to define 63 distinct areas. These 63 areas have been selected to include logical source regions or sensitive receptor areas. Each entire SURE II grid cell (undivided) has been assigned to one of the 63 areas with attention being paid to matching state emission totals and state boundaries as closely as possible.

TABLE A6-1

Comparison of State Emissions Totals and Aggregate - Grid Totals (based on SURE Phase II Inventory)

....

			Difference			
	Emissions (1000s tons/year)	Aggregate of	(Grid Aggregate -	Data Base)		
State	SURE Data Files	Grid Squares	1000 tons/year	Percent		
Alabama	1290	1209	-81	-6		
Arkansas	79	90	+11	+14		
Connecticut	66	45	-21	-32		
Delaware	129	131	+2	+2		
Florida	1788	1798	+10	+1		
Georgia	916*	942*	+25	+3 ′		
Illinois	2344	1994	-350	-15		
Indiana	2189	2545	+356	+16		
Iowa	535	557	+22	+4		
Kentucky	1824	1809	-15	-1		
Louisiana	636	614	-22	-3		
Maine	337	339	+2	+1		
Maryland & D.C	. 352	455	+103	+29		
Massachusetts	666	670	+4	+1		
Michigan	2292	2627	+355	+13		
Minnesota	521	508	-13	-2		
Mississippi	447	501	+54	+12		
Missouri	1288	1291	+3	0		
New Hampshire	169	173	+4	+8		
New Jersey	555 -	692	+137	+25		
New York	974	698	-276	-28		
N. Carolina	984*	1004*	+20	+2		
Ohio	4533	4759	+225	+5		
Pennsylvania	2480	2150	-330	-15		
Rhode Island	43	33	-10	-23		
S. Carolina	459	429	-30	-7		
Tennessee	1332*	1360*	+28	+2		
Vermont	7	6	-1	-14		
Virginia	695	644	-51	-7		
West Virginia	1349	1355	+6	0		
Wisconsin	937	935	-2	0		
Ontario (part)	2228	2088	-140	-6		
Quebec (part)	1017	1020	+3	0		
•	35509	35519	+10	0.03%		

* Emissions in S. Appalachain sensititve area excluded

A.6-2

The SURE-II Extended Grid

The grid has an 80-km mesh, with 41 cells east-west and 42 north-south; because it is an extension of an earlier version, the cells are numbered 0 to 40 and -9 to 32 in the X and Y, or east and north, directions respectively.

If the 0 to 30 E-W index is denoted I, and the -9 to 32 N-S index denoted J, the one-dimensional index used is IDX = I+41* (J-1).

The grid is "centered" around 81° west longitude, 39° 38' latitude, which corresponds to x=500.0km, and y=4407.02 km in the transverse mercator (TM) system used for the grid. This corresponds to the following TM coordinates for the grid lines:

43 E-W lines at 2687.02, 2767.02,..... 5967.02, 6047.02 km

A.6-4

B

Partition

New York

-

TABLE A6-2

SURE II SO₂ Emissions Allocated to Grid Aggregate Areas.

	SO ₂ Emissions	AREA (ENTROID	EMISSION	CENTROID
Area	1000s tons per year	X	ž.	X	Y
a da successione de la constante de					
1. Maine	332.0	27.36	20.79	26.92	19.45
2. New Hampshire SA*	41.7	25.50	20.00	25.16	19.40
3. Vermont	5.8	24.00	18.50	24.00	18.29
4. Southern New Hampshire	138.4	24.67	17.33	24.90	17.28
5. Massachusetts	670.1	25.67	16.00	25.80	15.98
6. Rhode Island	33.2	25.00	15.00	25.00	15.00
	45.1	24.00	15.00	24.00	15.00
7. Connecticut	42.07	24.00	2.00	24.00	24.00
8. Adirondack SA*	12.0	22.50	18.50	22.75	18.54
	307.1	18.20	16.40	· 18.54	16.88
9. Western New York	378.9	21.46	16.69	21.83	16.08
10. Southeastern New York	691.7	23.00	13.00	22.85	13.64
11. New Jersey	071./	23.00	13.00	42.03	20.04
12. Southeastern Pennsylvania	569.0	21.67	13.33	21.83	13.35
13. Central Pennsylvania	476.9	19.88	14.13	20.00	13.46
14. Western Pennsylvania	1075.8	17.40	14.20	17.09	13.42
	55.2	18.00	12.50	18.00	12.51
15. Pennsylvania SA*	428.2	20.17	11.50	19.98	11.11.
16. Maryland & DC	130.5	21.67	11.00	21.34	11.66
17. Delaware	643.8		9.06	19.13	8.91
18. Virginia				16.26	11.89
19. Northeastern West Virginia	1086.3	16.67	11.67	15.01	10.11
20. Southwestern West Virginia	268.3	15.17	10.00	10.01	10.11
11 Trates Verturing	753.9	11.58	9.17	10.58	9.87
21. Eastern Kentucky	1054.6	8.00	9.00	8.11	9.00
22. Western Kentucky	726.2	6.89	6.78	7.52	7.17
23. Western Tennessee	633.2	10.80	7.00	11.32	7.42
24. Eastern Tennessee			6.00	13.14	6.35
25. Southern Appalachain SA*	72.8	12.83		15.34	7.12
26. Central North Carolina	512.4	15.20	6.80	18.20	6.25
27. Eastern North Carolina	473.2	18.94	5.94		3.96
28. South Carolina	423.0	16.07	3.86	15.97	
29. Northwestern Georgia	620.8	11.40	3.80	11.08	4.40
30. Southeastern Georgia	321.4	13.21	1.42	13.66	1.74
31. Southern Floridz	647.7	15.33	-5.89	14.75	-4.59
32. Northern Florida	179.8	15.17	-2.33	14.81	-2.57
33. Florida SA*	59.6	13.50		13.61	-
34. Western Florida	911.8	9.80	-0.90	8.38	-0.31
35. Alabama	1208.5	8.67	2.67	8.59	3.64
36. Mississippi	500.6	5.30	2.65	6.24	2.28
	<i>c</i>] <i>i</i> ,]	• ••	~ * *	2 01	-0.20
37. Iouisiana	614.1	2.20	0.44	3.01	-0.20
38. Arkansas	67.4	1.95	5.85	2.63	5.24
39. Arkansas SA*	10.6	2.40	7.20	2.40	6.66
	1290.5	2.58	11.06	3.38	11.00
40. Missouri	524.8	2.58	16.30	3.56	16.10
41. Iowa	324.5	2.75	T0.30	ەدەب	10.10

			11			
42.	Southern Illinois	1065.6	6.44	11.44	6.31	11.15
43.	Northern Illinois	959.9	7.42	14.42	6.97	14.43
44.	Northern Indiana	751.4	10.00	14.00	9.37	14.55
45.	Southern Indiana	1793.2	9.63	11.13	9.69	11.06
46.	Southern Ohio	3014.2	14.14	11.86	14.58	12.07
47.	Northeastern Ohio	1108.8	15.50	14.50	15.32	14.54
48.	Northwestern Ohio	635.9	12.78	13.33	13.06	13.07
49.	Southern Michigan	2310.5	12.17	16.67	12.71	16.16
50.	Northern Michigan	316.4	10.50	20.54	10.20	20.27
51.	Wisconsin	935.5	6.84	19.36	7.36	18.34
52.	Minnesota	487.3	2.15	20.51	3.54	20.91
53.	Boundary Waters SA*	20.2	6.20	24.60	6.00	24.00
54.	Central Ontario	433.5	12.52	23.57	16.00	20.99
55.	Sudbury	1060.8	15.00	21.00	15.00	21.00
56.	Ontario SA*	8.2	17.50	19.50	17.34	19.12
57.	Southern Ontario	585.4	17.12	17.76	16.25	17.27
58.	Quebec SA*	14.5	23.50	22.50	23.50	22.50
59.	Southern Quebec	273.0	22.69	21.00	23.10	20.66
60.	Central Quebec	732.9	23.66	24.33	19.12	24.23
61.	Southern Nova					
	Scotia*	2.9	30.50	19.50	30.50	19.50
62.	Nova Scotia	· •••	32.00	21.50	32.00	21.50
63.	Newfoundland		37.00	28.00	37.00	28.00

٤.

*SA = Sensitive Area

NOTE: Canadian emissions in areas 54-60 are also from the SURE inventory.

A.6-5

.

A.6-6

124.

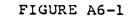
Service and

al-ger sector

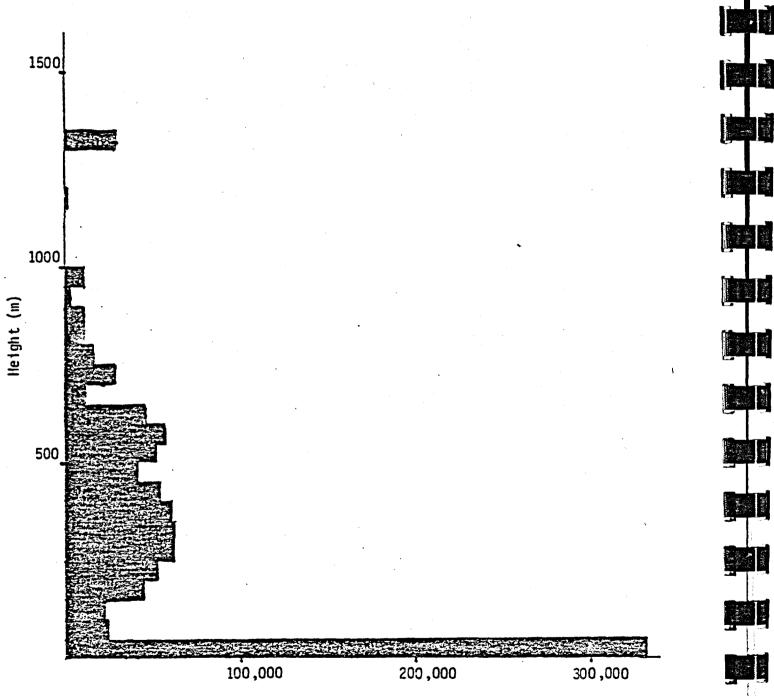
New Constraints

TABLE A6-3

SURE II SO₂ Emissions Allocated to Grid Aggregate Areas Subdivided by by Stack Height


Area Number	<100m	STACK HEIGHT 100m - 300m	>300m	TOTAL (10 ³ tons)
1	45	4	0	49
2	0	0	0	0
3	0	0	0	0
3 4	34	17	0	51
5	74	233	0	307
6	6	8	0	14
7	18	13	0	31
8	· 0	0	0	0
9	94	60	0	154
10	141	25	0	166
11	169	60	0	229
12	193	97	. 0	290
13	131	202	0	333
14	279	424	170	873
15	30	0	0	30
16	81	173	0	254
17	43	22	0	65
18	192	38	0	230
19	40	536	443	1019
20	45	109	• 0	154
21	170	413	0	583
22	217	561	248	1026
23	200	198	231	629
24	54	281	125	460
25	16	0	0	16
26	110	271	0	381
27	165	96	0	261
28	186	60	0	246
29	0	260	277 41	537 116
30	. 63	12		434
31	196	238 64	0	
32	62		0	126 14
33	14	0	0	42
34	36	6 542	0 69	897
35	286	57		326
36	269	126	0	389
37	263 11	2	. 0	13
38 39	0	0	0	13 0 ·
39 40 ·	139	856	0	995
40 - 41	193	19	0	212
41.	123	17	v	416

Area Number	<100m	STACK HEIGHT 100m - 300m	>300m	TOTAL (10 ³ tons)
42	204	713	0	917
43	138	325	0	463
44	240	176	0	416
45	233	1254	0	1487
46	211	2048	403	2662
47	519	123	0	642
48	94	170	0	264
49	534	1253	0	1787
50	96	78	0	174
51	170	355	. 0	525
52	38	285	0	323
53	20	0	0	20
54`	162	264	1059	1485
55	0	0	0	· 0
56	0	. 0	0	0
57	27	345	0	372
58	0	0	0	0
59	89	0	0	89
60	36	650	0	686
				
·	7,076	14,122	3,066	24,264


HARAN AND COL

I

14.4

SO₂ Emission Rate with Height (SURE II Inventory)

Emission Rate (g/s)

TABLE A6-4

1993 1997

171

anglas fas Sanglas fas Sanglas fas

and a second

63.34.45 299723

S. Perkey

972

NAL OF

1

Sec.

Meril

Varies

Alternation of the

Sec. 1

. .

(A, below

Principal Reason for Selection of Sensitive Areas

AREA NUMBER	PRINCIPAL REASON
AREA NUMBER	PRINCIPAL READON
2	Hubbard Brook Studies by Likens et al
8	Lake Studies by Scofield, EPRI, etc.
15	River and Stream Studies by Arnold et al
25	Great Smoky Mountain National Park
33	Lake and Swamp Studies by Brezonik et al
39	Ozark Mountain Soils and Forests and Hot Springs National Park
53	Lake Studies by Gary Glass et al
56	Lake Studies by Canadians
58	Lake Studies by Canadians
61	Lake Studies by Canadians

1000

認識

İnd

le f

1000

1000

10,000

A Contraction

TABLE A6-5

Relationship Between Area Numbers and Abbreviations on Large Map

24 TN2 54 25 SA4 55 26 NC1 56 27 NC2 57 28 SC 58 29 GA1 59 30 GA2 60	AR SA6 M0 IA IL1 IL2 IN1 IN2 OH1 OH2 OH3 MI1 MI2 WI MN SA7 ON1 ON2 SA8 ON3 SA9 QE1 QE2
29 GA1 59	QEL

Sec. 1

	uin	che ob Aggi	egatea bonb	diid Mieda	
Canadian Region ‡		Canadian SO2 Dmissions(1) (kT/yr)	Canadian SO ₂ Emissions(2) _(kT/yr)	SURE SO2 Emissions(3) _(kt/yr)	Principal SURE Areas
1	Michigan (South Michigan)	1946 (1762)	1566	2627 (2311)	49–50 (49)
2	Illinois, Indiana (Southern Illínois)	3874 (1050)	5072	4570 (1066)	42–45 (42)
3	Chio (Southern Chio) (Northeast Chio)	4762 (3092) (1286)	3961	4759 (3014) (1109)	<mark>46-4</mark> 8 (46) (47)
4	Pennsylvania (Western Pennsylvania	2056 a) (1067)	2039	2177 (1076)	12-15 (14)
5	New York, New Jersey to Maine	2408	2281	2656	1-11
6	Kentucky, Tennessee (Western Kentucky)	2835 (740)	2400	3241 (1055)	21-25 (22)
7	West Virginia, Virginia, N. Carolina Delaware, Maryland, and D.C. (Northern W. Virginia	-	3400	2557 985 (1086)	16-20 26-27 (19)
8	Rest of Eastern United States (Missouri) (Alabama)	7485 (1316) (1525)	2387	8803 (1291) (1209)	28-41, 51, 52 (40) (35)
	TOTAL EASTERN U.S.	27,812	23,106	32,375	
9	Ontario (Sudbury)	1970 (1001)	1809	2108 (1061)	53 - 57 (55)
10	Quebec	1037	1186	1021	58-60
11	Atlantic Provinces	469	368		
	TOTAL EASTERN CANADA	3,476	3,363	3129	

TABLE A6-6 Relationship Between Canadian Regions and the 63 Aggregated SURE Grid Areas

1 kT = 1.1 kt

Ì

States -

(Accels)

And a

No.44

100

1994 1994 1997

Suma .

Terrar

1 Used in AES-LRT Model 2 Used in OME-LRT Model 3 Used in ENAMAP, ASTRAP, and RCDM Models

圓

TABLE A6-7

Relationship Between Canadian Receptor Areas and ARMS Sensitive Areas

ARMS Sensitive Area	Name	Canadian Receptor Point	Area Represented	Comments
1	New Hampshire	6	New Hampshire	
2	Adirondacks	7	Adirondack (Whiteface)	
3	Pennsylvania	.8	Pennsylvania (Penn State)	in PA 2
4. 4 .	Southern Appalachia	9	Southern Appalachia (Smokies)	
5	Florida			
6	Arkansas	•	•	
7	Boundary Waters.	l	Boundary Waters	Northwest of SA 7
8	Ontario	3	Muskoka	
9	Quebec	.4	Quebec City (Montmorency)	
10	Nova Scotia	5	Southern Nova Scotia	
	1 × 1	2	Algoma	

c 1

A6.2 <u>Canadian Emissions - Current Data Base</u>

17. T

tre) - A

rational

And a line

a di a ta Alta da a

Annual Annual

2812.

ALC LAND

202

1.20

34254

- Shife's

244.00

1. A. M.

1986

The data base for current emission rates in Canada represents a mixture of information covering the period 1976 through 1980. For sulphur dioxide, all area source data represent 1976 annual emission rates (1). Major point sources are at their 1979 annual emission rate and the most important copper-nickel smelter complex, representing about twenty percent of eastern Canada emissions, is shown at its 1980 emission rate (2). On a weighted emissions basis the aggregated SO₂ data base closely represents actual emissions for the year 1979.

A.6-13

In the case of nitrogen oxides all area source type emissions are from the 1976 base year (1) and major point sources are at their 1979 annual emission rate (2). On a weighted emissions basis the aggregated Canadian NO_x data base probably represents actual emission rates in 1977.

The eastern Canada (including Manitoba) data is further prorated on a grid array of 127 km x 127 km squares which is the basic dimension for the emissions and meteorological data used in the AES long-range transport model.

On a national basis the overall accuracy of the current Canadian SO₂ emissions inventory is estimated to be + 30% at a 75% confidence level (2). The accuracy varies widely for each sector of emissions and within each sector, and is far greater for the major point sources (e.g. Cu-Ni smelters), which together represent more than half of total Canadian emissions, than for sources of lesser significance. An uncertainty analysis has not been carried out for NO_x emissions.

Seasonal variations data for use in detailed air quality analysis have been developed for both SO_2 and NO_x emissions for all contributing sectors (2). Nationwide inventories of the natural emissions of sulphur and nitrogen compounds have also been prepared (3,4) A.6-14

1.1

1053 c

References

1. A. M.

100

and the

Section .

- Aller

4. Carlo

and a second

in diale

See .

- Environment Canada, Air Pollution Control Directorate, <u>A</u> <u>Nationwide</u> Inventory of Emissions of Air Contaminants (1976), Report EPS-3-AP-80-1 (December 1980).
- Environment Canada, Air Pollution Control Directorate,
 Data Analysis Division (Unpublished information)
 (December 1980)
- 3. Environment Canada, Air Pollution Control Directorate, <u>National Inventory of Natural Sources and Emissions of</u> <u>Sulphur Compounds</u>, Report EPS 3-APA-79-2 (February 1980)
- Environment Canada, Air Pollution Control Directorate, <u>National Inventory of Natural Sources and Emissions of</u> <u>Nitrogen Compounds</u>, Report EPS 3-AP-80-4 (January 1981)

Appendix 7

ALC: N

and a second

(terreter -

and and a

And the second s

And the second se

The state

No.

a de la composition de la comp

Sec. 1

first for

Matrix Operations

A. MATRIX MANIPULATION PROGRAMS

- decisionse Charles

કે. મુખ્યું કે. તે છે ગયે છે

Long L

ALC: N

The integrated analysis framework outlined in Table A7.1 has three major characteristics:

- The ability to selectively combine information from various sources such as emission inventories and transport model transfer matrices to provide estimates of resulting concentrations and depositions.
- The ability to support comparison and evaluation of different data bases and models by converting their results to common units and output formats.
- 3. The ability to combine emission projections with cost implications data in order to identify costeffective answers to questions concerning how to reduce atmospheric loadings and/or deposition.

With regard to the first characteristic, the integrating framework could be used to combine utility, industrial, combustion, and area source emission estimates from different models in order to produce integrated emission estimates from all sectors. The emissions can then be combined with transfer matrices in order to estimate deposition.

With regard to the second characteristic, the integrating framework can be used in converting data from different sources to common units. For example, ENAMAP and ASTRAP results have been converted to common units and comparison tables and scatter diagrams prepared. Table A.7-1

Integrated ARMS/RCG/MOI

External - prepare inputs	Work Group 2 - analyze and intercompare	Work Groups 3A and 3B - develop least cost control strategy
Emissions and control costs Utility - USM, ICF, EPA		 Program 4 - Format Emissions(4) and Costs
Industrial - ICF, IFCAM	Run models with emissions to meet specified target loadings in sensitive areas.	 Program 5 - Least-Cost Source- Receptor Optimization (5)
Other - EPA Mobile, SEAS - DOE Canada - Work Group 3B	Re-run models to confirm efficacy of emission reduction scenarios to meet specified target loadings in sensitive areas.	
LRTAP model matrices Canadian - AES, OME (11x9x5) U.S ENAMAP, ASTRAP*	Program 1 - Format Matrices (1) Program 2 - Intercompare Matrices (2)	Program 3 - Compute Concentrations and Depositions (3)
RCDM* (63x63x VAR)	2A Convert: U.S. to Canada	
Other - CAPITA*, REGMOD (episode), BWA, PNL, BNL	2B Plot Scatter Figures	
	Program 3 - Same as for Work Group 3A and 3B	

 SO_X Source - Receptor Matrix Processing System

* NO_x in progress

Status: (1)

on-line
 in-process
 on-line
 to be developed
 modify existing program

A.7-2

The final characteristic permits the combined assessment of emissions, costs of controling emissions, and resulting deposition. The development of cost-effective control strategies is done using a nonlinear optimization model which is being extended to consider regional scale problems. The optimization model identifies a least-cost solution which meets a combined set of emission quantity, ambient air quality, and/or deposition constraints.

B. <u>TECHNIQUE FOR IDENTIFYING CANDIDATE AREAS FOR EMISSION</u> REDUCTION

The deposition of sulphur D_j (or acid) at a receptor due to a source can be expressed as

$$D_{j} = Q_{j}f_{j}$$
 (1)

where Q_i is the strength of source 'i', and 'j' refers to the receptor. The transfer function f_{ij} establishes the physical relationship between the locations of the source and receptor. It is essentially the deposition at 'j' due to unit emissions at 'i' and is dependent on the scavenging and dispersion processes which affect the pollutants transported from 'i' to 'j'. f_{ij} is the most important model result from the point of view of emission control strategy.

The reduction in deposition Δ D_j due to a source reduction Δ Q_i follows from (1)

 $\widehat{\Delta} D_{j} = \Delta Q_{i} f_{ij}$

(2)

١

versioner Stationer

And a second

Provinsional States

A. SARA

A STATE

The deposition reduction associated with a number of sources can be written as

$$\Delta_{i} D_{j} = \sum_{i} \Delta_{Q_{i}f_{ij}}$$
(3)

16.41

10.000

警打

d and

1.10

Equation (3) can be conveniently written for several receptors in matrix notation

$$\Delta D = F^{T} \Delta Q \tag{4}$$

where ΔD and ΔQ are column vectors and F is the so-called transfer matrix and F^T is its transpose.

APPLICATIONS OF EQUATION (4)

There are any number of ways of looking at emission reduction scenarios. Some possible methods are 1) Maximize the reduction in deposition given constraints on emission reduction. This is a problem in linear programming and can be stated as:

Maximize
$$\Delta D = \sum_{j} \sum_{i} \Delta Q_{i} f_{ij}a_{j}$$
 (5a)
Given $\sum_{a,j} \Delta Q_{i} \leq Q_{Tj}; j = 1, 2...N$ (5b)

where Q_{Tj} is the specified emission constraint and N is the number of constraints. The number a_j reflects the importance assigned by the decision maker to the receptor j. For example, the Ontario Ministry of the Environment might want to give Ontario receptors three times more importance than the other receptors of interest. Then we take $a_j = 3$ for Ontario receptors and $a_j = 1$ for the others.

2) Minimize cost of emission reduction given constraints on deposition reduction. This is also a problem in linear programming which can be stated as

Minimize
$$\Delta C = \sum_{i}^{j} b_{i} \Delta Q_{i}$$
 (6a)

Given
$$\sum_{i} a_{ij} \Delta D_i > \Delta D_{Tj}; j = 1, 2....N$$
 (6b)

(7)

where b_i relates cost to emission reduction. A possible constraint corresponding to (6b) is

 $\Delta D_{i} \geq \Delta D_{Ti}$

Equation (7) states that the deposition reduction at each receptor should be greater than or equal to a specified value. Note that Δ D_i in (6b) is related to Δ Q_i through (2).

This discussion illustrates the importance of the transfer matrix F in any emission reduction strategy.

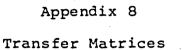
19.61

THE R

1000

Same -

1


14

載計

Another important "effect" variable is the frequency with which a concentration or deposition is exceeded at a receptor of interest. If we denote this frequency by $F_{ij}(c)$ we can write

$$F(c) = \Psi(Q, D)$$
(8)

Note that F_{ij} is not expected to be a linear function of Q_i . D_{ij} is the physical relationship between 'i' and 'j' which can derived from Lagrangian model results for time scales for which the concentration is important. Clearly the use of (8) in emission control strategy requires non-linear optimization techniques.

1 -

1. N. N.

Starting and

* 6203

1.11

化

NOTE: An addendum to this appendix containing the ASTRAP, ENAMAP, and RCDM model matrices is in process.

Table A8-1 Transfer Matrix of:

Annual Sulfur Diox	ide Concentration	(ug/m ⁻³)
per unit emission	(Tg.S.yr ⁻¹)	

			Receptor Areas									
i,		ri	B.Waters	Alq.	Musk.	Que.	S. N.Sc.	VE. MI.	Adlr.	Penn.	Smokies	
Source		Emiss.	Dinacers	l nuge		Que.				l reinie	ouories	
Regions	Models	(Tg.S)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
1	MOE	0.784	0.08	0.70	1.7	0.50	0.57	0.91	1.5	3.3	0.16	
Mich.	AES	0.973	0.16	2.9	4.4	0.80	0.38	1.0	1.4	3.8	0.16	
2										† The second sec		
111.	MOE	2.538	0.07	0.34	0.49	0.19	0.22	0.31	0.46	1.3	0.80	
Ind.	AES	1.937	0.07	0.72	0.77	0.15	0.11	0.26	0.42	1.2	1.6	
3	MOE	1.983	0.04	0.22	0.51	0.25	0.40	0.48	0.78	4.0	0.37	
Chio	AES	2.381	0	0.14	1.2	0.40	0.32	0.71	1.3	9.0	0.80	
4	MOE	1.021	0.03	0.17	0.46	0.30	0.62	0.63	0.99	9.2	0.16	
Penn.	AES	1.028	10	.06	0.71	0.47	0.44	1.3	2.2	21.7	0.12	
5		<u> </u>					l	[T			
N.York	MOE	1.143	0.02	0.10	0.33	0.40	1.9	1.0	1.6	0.62	0.06	
to Maine	AES	1.204	0.01	0.12	0,56	0.91	4.2	2.0	3.2	0.58	0.04	
6 1					1	[1	1	T	1	l	
Kent.	MOE	1.202	0.03	0.12	0.19	0.10	0.15	0.17	0.23	0.74	3.2	
Tenn.	AES	1.418	0	0.07	0.27	0.04	0.04	0.12	0.22	1.3	9.3	
7			1				l	[1	
W.Virg.	MOE	1.703	0.02	0.10	0.22	0.17	0.40	0.33	0.46	11.7	0.26	
to N.C.	. AES	1.223	l· 0	0.02	0.16	0.16	0.18	0.38	0.64	3.0	0.90	
8								1		-		
Rest of	MOE	1.196	0.12	0.68	0.55	0.20	0.18	0.28	0.38	0.62	1.9	
(USA) Fld		3.743	0.53	0.61	0.27	0.05	0.03	0.07	0.13	0.45	3.0	
to Mo. tol		1 1	1		1	• • •	1 · · · ·	l .	1	1	l	
Minn.		lI	1		<u> </u>		<u> </u>	ļ	1		1	
9	MOE	0.906	0.10	1.0	3.2	1.9	0.91	2.0	2.2	0.96	0.06	
Ontario	AES	0.985	0.11		12.4	1.7	0.78	2.6	4.2	2.4	0.08	
10	MOE	0.595	0.06	0.30	0.57	3.0	1.3	4.7	11.1	0.18	0.03	
Quebec	AES	0.519	0.08	0.91	1.9	6.7	2.3	13.1	3.9	0.29	0.02	
11			1			[
Atlantic	MOE	0.187	0.01	0.03	0.07	0.26	1.5	0.26	0.15	0.05	0.01	
Provinces	AES	0.235	0	0	0.04	0.26	13.6	0.13	0.09	0	1 0	

.0

Table A8-2 Transfer Matrix of;

Annual Sulfate Concentration (ug/m⁻³) per unit emission (TgS.yr⁻¹)

			Receptor Areas										
· - · - ·			B.Waters								Smokies		
Source		Emiss.	I					1	1	Penn.	i		
Regions	Models	(Tg.S)	i (1)	(2)	(3)	i (4)	i (5)	İ (6)	i (7)	i (8)	İ (9)		
1	MOE	0.784	0.08	0.27		10.32	0.38	0.46	0.61	0.86	0.13		
Mich.	AES	0.973	0.10	0.45	1.8	10.55	0.46	0.80	0.94	1.5	0.25		
2						i		1	<u> </u>	1	1		
nī. j	MOE	i 2.538 i	1 0.08	0.22	0.29	0.18	0.22	0.25	0.31	0.57	0.36		
Ind.	AES	1.937	0.02	0.37	0.41	10.12	0.11	0.22	0.34	0.72	1.3		
3	MOE	1.983	0.06	0.15	0.26	0.20	0.30	0.30	0.38	0.88	0.19		
Chio I	AES	2.381	0	0.04	0.59	10.16	0.31	0.41	0.63	2.3	0.63		
4	MOE	1.021	0.05	0.12	0.23	0.21	0.37	0.33	0.41	1.1	0.12		
Penn.	AES	1.028	0	0.03	0.29	10.20	0.34	0.50	0.91	2.5	0.11		
5			1			1		1	T	[1		
N.York	MOE	1.143	0.04	0.08	0.15	0.22	0.61	0.35	0.38	0.19	0.06		
to Maine	AES	1.204	0.01	0.08	0.22	0.31	1.2	0.55	0.70	0.18	0.02		
6		[]		[1					1		
Kent.	MOE	1.202	1 0.05	0.12	0.16	10.12	0.17	0.17	0.20	0.38	0.07		
Tenn.	AES	1.418	1 · 0	0.04	0.12	0.01	0.04	0.06	0.11	0.56	2.6		
7						1	l	1					
W.Virg.	MOE	1.703	0.04	0.09	•	0.15	0.28	0.22	0.26	0.42	0.13		
to N.C.	AES	1.223	0	0	0.07	0.05	0.13	0.17	0.27	0.90	0.70		
8			1		,						!		
Rest of	MOE	1.196	0.09	0.27	0.29	0.17	0.19	0.22	0.26	0.35	0.44		
(USA) Fld	AES	3.743	0.12	0.27	0.20	0.05	0.05	0.08	0.13	0.29	1.2		
to Mo. to	È	1 1	t i se se se se se se se se se se se se se	1	1 · · ·		1		ļ		1		
Minn.			1			<u> </u>							
9	MOE	0.906	0.08	0.23	0.67	0.66	0.49	0.69	0.69	0.34	0.07		
Ontario	AES	0.985	0.05	0.67	2.3	1.0	0.79	1.4	11.9	1 1.0	0.11		
10	MOE	0.595	0.06	0.14	0.22	10.72	0.51	.75	0.34	0.14	0.04		
Quebec	AES	0.519	0.14	0.42	0.85	11.3	1.2	1.9	1.4	0.17	0.04		
11			1					1					
Atlantic	MOE	0.187	0.02	0.04	0.06	10.13	0.33	0.13	0.10	0.06	0.03		
Provinces	AES	0.235	0	0	0	0.13	0.55	0.04	0.04	0	0		

Table A8-3 Transfer Matrix of:

.

Annual Dry Deposition of Sulfur (kg.ha⁻¹.yr⁻¹) per unit emission (Tg.S.yr⁻¹)

	<u> </u>		Receptor Areas									
1		ii	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. MI.	Adir.	Penn.	Smokies	
Source		Emiss.	1	1	1	1	1	İ	İ.	1	Ì	
Regions	Models	(Tg.S)	1 (1)	(2)	(3)	(4)	1 (5)	(6)	1 (7)	(8)	(9)	
1 1	MOE	0.784	0.07	0.56	1.4	10.41	0.46	0.73	1.2	2.6	0.13	
Mich.	AES	0.973	0.10	2.3	3.7	0.72	0.31	1 0.92	1.2	3.1	0.10	
2		l l	<u> </u>			1		1	1		[
111.	MOE	2.538	0.05	0.28	0.39	0.16	0.18	0.25	0.37	1.0	0.64	
Ind.	AES	1.937	0.10	0.62	0.62	0.16	0.10	0.21	0.36	1.0	1.4	
3	MOE	1.983	0.04	0.18	0.41	10.20	0.32	0.39	0.62	3.1	0.30	
Chio	AES	2.381	10	0.13	0.97	0.29	0.29	0.63	1.1	7.4	0.67	
4	MOE	1.021	0.03	0.14	0.36	0.24	0.49	0.50	0.79	7.2	0.13	
Penn.	AES	1.028	0	0.10	0.58	10.39	0.39	1.1	1.8	17.4	0.10	
5			1			1	l	1		1	1	
N.York	MOE	1.143	0.02	0.08	0.26	10.32	1.5	0.82	1.2	0.49	0.05	
to Maine	AES	1.204	0	0.08	0.50	10.75	3.4	1.7	2.7	0.50	0	
6		· · ·	1					1			[
Kent.	MOE	1.202	1 0.03	0.10	0.15	80.01	0.13	0.14	0.19	0.59 -	2.5	
Tenn.	, AES	1.418	0	0.07	0.21	0	0.07	0.07	0.21	11.1	7.6	
7			1			1	1				1	
W.Virg.	MOE	1.703	0.02	0.08	0.18	10.14	0.32	0.26	0.37	1.3	0.21	
to N.C.	AES	1.223	1 0	0	0.16	0.16	0.16	0.33	0.48	2.5	0.74	
8	•		1				1.	1			[
Rest of	MOE	1.196	0.10	0.54		0.16	0.15	0.22	0.31	0.50	1 1.5	
(USA) Fld	AES	3.743	0.43	0.51	0.24	10.05	1 0.03	0.05	0.11	0.37	2.5	
to Mo. to		1 1	1	1	1	1	1	1	1	1	1	
Minn.		l1	1	1	l	<u> </u>	<u> </u>	1	1	<u> </u>	1	
9	MOE	0.906	0.08	0.79	2.5	11.5	0.73	1.5	1.7	0.76	0.05	
Ontario	AES	0.985	0.10	2.0	9.9	11.4	0.71	2.2	3.4	2.0	0.10	
10	MOE	0.595	0.05	0.24	0.45	2.3	1.0	3.7	0.86	0.15	0.02	
Quebec	AES	0.519	0	0.77	11.7	15.4	1.9	110.6	3.3	0.19	0	
11			1	1								
Atlantic	MOE	0.187	0.01	0.03	0.05	0.21	1 1.2	0.21	0.12	0.04	0.01	
Provinces	AES	0.235	1 0	1 0	0	10.43	110.6	1 0	0	0	1 0	

Table A8-4 Transfer Matrix of:

. 3

Annual Wet Deposition of Sulfur (kg.ha⁻¹.yr⁻¹) per unit emission (Tg.S.yr⁻¹)

			l .		Receptor Areas									
1		[]	B.Waters	Aig.	Musk.	Que.	S. N.Sc.	Vt. MI.	Adir.	Penn.	Smokles			
Source		Emiss.	1		1	1	ł	1	ł	1	1			
Regions	Models	(Tg.S)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)			
	MOE	0.784	0.07	0.40	0.93	0.34	0.39	0.56	0.86	1.7	0.12			
Mich.	AES	0.973	0.21	2.4	3.2	1,0	0.31	0.72	1.1	1.7	0.21			
2			1								I			
111.	MOE	2.538 .	0.06	0.23	0.32	0.15	0.18	0.23	0.31	0.76	0.47			
Ind.	AES	1.937	0.05	1.2	1.1	0.31	0.10	0.30	0.36	1.1	0.77			
3	MOE	1.983	0.04	0.15	0.32	0.19	0.28	0.32	0.47	2.0	0.23			
Ohio	AES	2.381	0	0.25	1.8	0.46	0.21	1 3.0	1.3	4.7	0.25			
4	MOE	1.021	0.03	0.12	0.28	0.21	0.40	1 6.39	0.57	4.4	0.11			
Penn.	AES	1.028	1 0	0.29	1.3	0.68	0.29	1.8	2.2	7.9	0.10			
5			1			l	[Γ	[I			
N.York	MOE	1.143	0.02	0.07	0.19	0.25	1.0	0.56	0.80	0.33	0.05			
to Maine	AES	1.204	1 0	0.17	0.50	1.3	2.0	2.2	2.4	0.42	0			
6			1	Г <u> </u>	[[1	I			
Kent.	MOE	1.202	0.03	0.10	0.14	0.09	0.13	0.14	0.18	0.46	1.6			
Tenn.	AES	1.418	0	0.14	0.71	0.07	0.07	0.21	0.42	1.5	3.1			
7			1	1	[[[1					
W.Virg.	MOE	1.703	0.03	0.08	0.15	0.13	0.28	0.22	0.29	0.85	0.16			
to N.C.	AES	1.223	0	0	0.33	0.33	0.25	0.90	1.1	3.5	0.49			
8			·/					1	 					
Rest of	MOE	1.196	0.09	0.39	0.34	0.15	0.15	0.20	0.26	0.40	1.0			
(USA) Fld	AES	3.743	0.24	0.61	0.24	0.05	0.03	0.08	0.13	0.53	2.5			
to Mo. to		i i	1	l I	j ·)	ł	t i se se se se se se se se se se se se se	1	1	l .			
Minn.		i I	1 I	1	1 ·	l	l	l	1	<u>ا</u>				
9	MOE	0.906	0.08	0.51	1.6	1.0	0.57	1.1	1.2	0.53	0.05			
Ontario	AES		0.10	1.8	3.3	1.7	0.61	1.6	2.0	1.2	0			
10	MOE	0.595	0.06	0.18	0.32	1.5	0.73	2.3	0.59	0.13	0.03			
Quebec	AES	0.519	0	0.19	0.58	2.9	0.96	3.3	1.5	0.19	0			
11		11	1	<u> </u>	[Г	1	1						
Atlantic	MOE	0.187	0.01	0.03	0.05	0.16	0.74 ,	0.16	0.10	0.05	0.01			
Provinces	AES	0.235	0	0	0	0.43	2.6	0	0	0	0			

Table A8-5 Transfer Matrix of:

Annual Total Deposition of Sulfur (kg.ha⁻¹.yr⁻¹) per unit emission (Tg.S.yr⁻¹)

		ļ		Desertor Armag										
							otor Areas							
			B.Waters	Alg.	Musk.	Que.	S. N.Sc.	VE. NH.	Adir.	Penn.	Smokies			
Source		Emiss.	ļ			1		1	1	1	!			
Regions	Models	(Tg.S)	(1)	(2)	(3)	1 (4)	(5)	(6)	(7)	(8)	(9)			
1	MOE	0.784	0.13	0.96	2.3	0.74	0.84	1.3	2.0	4.3	0.25			
Mich.	AES	0.973	0.31	4.6	6.9	1.7	0.62	1.6	2.3	4.8	0.31			
2			1							1				
111.	MOE	2.538	0.11	0.50	0.71	0.31	0.37	0.48	0.68	1.8	1 1.1			
Ind.	AES	1.937	0.16	1.8	1.8	0.41	0.21	0.47	0.72	2.2	2.2			
3	MOE	1.983	0.08	0.33	0.72	0.39	0.61	0.71	1.1	5.2	0.52			
Chio	AES	2.381	0	0.38	2.8	0.76	0.50	1.6	2.5	12.1	0.92			
4	MOE	1.021	0.06	0.26	0.64	0.45	0.89	0.88	1.4	111.6	0.24			
Penn.	AES	1.028	1 0	0.39	1.8	1.2	0.68	2.7	4.2	25.3	0.20			
5			1	· · · · ·			1	1	1	1	1			
N.York	MOE	1.143	1 0.04	0.16	0.46	i 0.57	2.5	1.4	2.0	0.82	0.10			
to Maine	AES	1.204	i 0	0.33	1.0	2.1	5.4	3.9	5.1	0.91	0			
6		<u> </u>	· · · · · · · · · · · · · · · · · · ·		i	<u></u>			1	1	1			
Kent.	MOE	1.202	0.06	0.19	0.30	0.17	0.26	0.27	i 0.37	i 1.0	1 4.2			
Tenn.	AES	1.418	0	0.21	0.92	0.07	0.14	0.28	0.64	2.5	110.7			
7			<u> </u>			1			<u> </u>					
W.Virg.	MOE	1.703	0.04	0.16	0.33	0.27	0.60	0.49	0.66	2.2	0.37			
to N.C.	AES	1.223		0.08	0.41	0.49	0.41	1.2	1.6	6.0	1.2			
B	<u> </u>	1.223		0.00	0.44	1 0.47	1 0.11		1	1	<u></u>			
Restof	MOE	1.196	0.19	0.93	1 0.78	0.31	0.30	0.43	0.57	0.90	2.4			
		3.743	0.19	1.1	0.48	0.11	0.08	0.13	0.24	0.91	5.0			
(USA) FId		3.743	1 0.07	1+1 	1 0.40	1 0.11	1 0.00	1 0.13	1 0.24	1 0. 71	1 3.0			
to Mo. to		!				1		1		1	i			
Minn.								2.6	2.9	1.3	0.10			
9	MOE	0.906	0.16	1.3	4.1	2.5		•		3.1	0.10			
Ontario	AES	0.985	0.10	4.0	113.4	13.1	1.3	3.8	5.5					
10 ·	MOE	0.595	0.11	0.42	0.77	3.8	11.7	6.1	1.5	0.28	0.05			
Quebec	AES	0.519	0.19	0.96	2.3	8.3	2.9	13.9	4.8	0.39	0			
11	1					1	1	!	1					
Atlantic	MOE	0.187	0.02	0.06	0.11	0.36	1.9	0.37	0.23	0.09	0.02			
Provinces	AES	0.235	0	0	0	0.43	113.6	0.43	0	0	0			

Table A8-6 Transfer Matrix of:

Annual Sulfur Dioxide Concentration (ug.m⁻³)

		T								
	i	I			Rece	otor Areas				
		B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. MI.	Adir.	Penn.	Smokles
Source				1			1		1	
Regions	Models	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	MOE	0.06	0.55	1.4	0.39	0.44	0.71	1.2	2.6	0.12
Mich.	AES	0.16	2.8	4.3	0.78	0.37	1.0	1.4	3.7	0.16
2				1.2	0.48	0.57	1 0 70	1.2	1 3.3	2.0
Ill. Ind. 1	MOE AES	0.18	0.87	1.2	0.48	0.21	0.78 0.50	0.81	2.3	3.2
3	MOE	0.14	0.43	1.0	0.50	0.79	0.95	1.5	7.9	0.73
Ohio I	AES	1 0	0.33	2.8	0.88	0.77	1.7	1 3.2	21.5	1.9
4	MOE	0.03	0.17	0.46	0.30	0.63	0.63	1.0	9.4	0.16
Penn.	AES	0	0.06	0.73	0.48	0.45	1 1.3	2.3	22.3	0.12
5		1		<u> </u>	,	1	l	†	1	İ
N.York	MOE	0.02	0.11	0.37	0.46	2.1	1.2	1.8	0.71	0.07
to Maine	AES	0.01	0.15	0.68	1.1	5.1	2.4	1 3.9	0.70	0.05
6				1	1					1
Kent.	MOE	0.04	0.14	0.22	0.12	0.18	0.20	0.28	0.89	3.9
Tenn.	AES	0	0.10	0.38	0.06	0.06	0.17	0.31	1.8	13.2
7										
W.Virg.	MOE	0.04	0.17	0.38	0.29	0.68	0.56	0.78	2.8	0.44
to N.C.	AES	0	0.02	0.20	0.19	0.22	0.46	0.78	3.7	1.1
8 Rest of	MOE	0.15	0.81	0.66	0.24	0.22	0.33	0.45	0.75	2.2
(USA) Fld		1 2.0	2.3	1.0	0.17	0.13	0.26	0.47	1.7	11.4
to Mo. to				1 +••	1 0117	1	1	1		1
Minn.			1	i	i	1	i :	i	i	i
9	MOE	0.09	0.91	2.9	1.7	0.82	1.8	2.0	0.87	0.05
Ontario	AES	0.11	2.5	12.2	1.7	0.77	2.6	4.1	2.4	0.08
10	MOE	0.04	0.18	0.34	1.8	0.76	2.8	0.65	10.11	0.02
Quebec	AES	0.04	0.47	1.0	3.5	1.2	6.8	2.0	0.15	0.01
11		11				1			!	
Atlantic	MOE	0	0.01	0.01	0.05	0.27	0.05	0.03	0.01	1 0
Provinces	AES	0	0	0.01	0.06	3.2	1 0.03	0.02	0	0
Western					1		10.02 1	1 0 01		
Canada	AES	1 0.48	0.14	0.06	0.01	0.01	0.02	0.01	0	0
Total				1 0 0	1 6 3	7.5	10.0	10.9	29.4	9.7
Concen-	MOE	0.73 2.9	4.4 10.3	8.9 24.9	6.3 9.2	112.5	117.3	119.3	160.3	31.2
tration	AES	2.9	110.2	144.7	1 2.4	11447	1+1+2	117.3	100.3	1 3747

A.8-6

Table A8-7 Transfer Matrix of:

Annual Sulfate Concentration (ug m-3)

	T	r								
	i	•. 1			Recep	otor Areas				
	i	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. MI.	Adir.	Penn.	Smokles
Source	i	1	i 1							
Regions	Models	(1)	(2)	(3)	(4)	(5)	(6)	1 (7)	(8)	(9)
1	MOE	0.06	0.21	0.44	0.25	0.30	1 0.36	0.48	0.67	0.10
Mich.	AES	0.10	0.44	1.8	0.54	0.45	0.78	0.91	1.5	0.24
2		1								
111.	MOE	0.20	0.54	0.75	0.46	0.56	0.63	0.79	1.4	0.91
Ind.	AES	1 0.04	0.71	0.79	0.24	0.21	0.42	0.65	1.4	2.5
3	MOE	0.11	0.30	0.52	0.40	0.59	0.60	0.76	1.7	0.38
Chio	AES	0	0.10	1.4	0.39	0.74	1 0.97	1.5	1 5.5	1.5
4	MOE	0.05	0.13	0.23	0.22	0.38	0.34	0.42	1.2	0.12
Penn.	AES	0	0.03	0.30	0.20	0.35	0.51	0.93	2.6	0.11
5		1								
N.York	MOE	0.04	0.09	0.17	0.25	0.70	0.40	0.44	0.21	0.07
to Maine	AES	0.01	0.09	0.26	0.37	1.5	0.66	0.84	0.22	0.02
6										
Kent.	MOE	0.06	0.14	0.20	0.15	0.20	0.20	0.24	0.46	0.84 -
Tenn.	AES	0	0.05	0.17	0.01	0.06	0.08	0.16	0.80	3.7
7	[]		1							
W.Virg.	MOE	0.06	0.16	0.26	0.26	0.47	0.38	0.44	0.72	0.23
to N.C.	AES	0	0	0.09	0.06	0.16	0.21	0.33	11.1	0.86
8			1	1	 		· .			1
Rest of	MOE	0.11	0.32	0.34	0.21	0.22	0.26	0.31	0.42	0.52
(USA) Fld		0.44	1.0	0.74	0.18	0.17	0.28	0.48	1.1	4.3
to Mo. to			1	1.1	I	1			!	ļ
Minn.		1	1	1	1	I	<u> </u>			1
9	MOE	0.07	0.21	0.60	0.60	0.45	0.63	0.62	0.31	0.06
Ontario		0.05	0.66	2.3	0.98	0.78	1.4	1.9	1.0	0.11
10	MOE	0.04	0.08	0.13	0.43	0.31	0.44	0.20	0.08	0.03
Quebec	AES	0.07	0.22	0.44	0.66	0.63	0.98	0.75	0.09	0.02
11		11	1	[1		1			
Atlantic	MOE	0	0.01	0.01	0.02	0.06	0.02	0.02	0.01	0
Provinces		ii 0	0	0	0.03	0.13	0.01	0.01	0	1.0
Western		[]	T		1	1	1			
Canada	AES	0.40	0.20	0.09	0.07	0.06	0.06	0.04	0.03	0
Total	1	TT		T	1	T		!	!	
Concen-	MOE	1 0.80	2.2	3.7	3.3	4.3	4.3	4.7	7.2	3.3
tration	AES	1 1.1	3.5	8.4	3.7	5.2	6.4	8.5	115.3	13.3

Table A8-8 Transfer Matrix of:

Annual	Dry	Deposition	of	Sulfur	(kg.ha ⁻⁾	'.yr~l)
--------	-----	------------	----	--------	----------------------	--------	---

	İ	<u> </u>			Rece	ptor Areas				
1	1	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. NII.	Adir.	Penn.	Smokles
Source	!				<u> </u>			I	· · ·	1
Regions	Models	(1)	(2)	(3)	1 (4)	1 (5)	(6)	1 (7)	(8)	(9)
1	MOE	0.05	0.44	1.1	0.32	0.36	0.57	0.93	2.0	0.10
Mich.	AES	0.10	2.2	3.6	10.70	0.30	0.90	1.2	3.0	0.10
2										1
111.	MOE	0.13	0.70	0.99	10.40	0.47	0.63	0.94	2.6	1.6
Ind.	AES	0.20	1.2	1.2	10.30	0.20	0.40	0.70	2.0	2.8
3 1	MOE	0.08	0.35	0.81	10.41	0.64	0.77	1.2	6.2	0.58
Chio	AES	0	0.30	2.3	10.70	0.70	1.5		17.6	1.6
4	MOE	0.03	0.14	0.37	0.24	0.50	0.51	0.80	7.3	1 0.13
Penn.	AES	0	0.10	0.60	0.40	0.40	1.1	1.9	17.9	0.10
5 1					1			1		
N.York	MOE	0.02	0.09	0.30	10.37	1.7	0.94	1.4	0.56	0.05
to Maine	AES	0	0.10	0.60	10.90	4.1	2.0	3.2	0.60	0
6 1	•	1		,	1	· · · · · · · · · · · · · · · · · · ·	l		1	
Kent.	MOE	0.03	0.12	0.18	0.10	0.15	0.16	0.23	0.71	3.1
Tenn.	AES	0	0.10	0.30	0	0.10	0.10	0.30	1.5	110.8
7 1	1	1	l		1		{	[1
W.Virg.	MOE	0.03	0.14	0.31	0.24	0.55	0.45	0.63	2.2	0.35
to N.C.	AES	0	0	0.20	10.20	0.20	0.40	0.60	3.0	0.90
8	. 1	1								1
Rest of	MOE	0.12	0.65	0.53	0.19	l .0.18	0.27	0.37	0.60	1.8
(USA) Fld	AES	1.6	1.9	0.9	0.20	0.10	0.20	0.40	1.4	9.5
to Mo. to!	· · · · · · · · · · · · · · · · · · ·	1		1	1	1	1	1	1	La serence
Minn.	· · · · •	1		l -	1	1			1	1
9	MOE	0.08	0.71	2.2	1.3	0.66	1.4	1.6	0.69	0.04
Ontario	AES	0.10	2.0	9.8	11.4	0.70	2.2	3.4	2.0	0.10
10 1	MOE	0.03	0.14	0.27	1.4	0.60	2.2	0.51	0.09	0.01
Quebec	AES	1 0	0.40	0.90	2.8	1.0	5.5	1.7	0.10	1 0
11		T				1				
Atlantic	MOE I	0	0	0.01	0.04	0.22	0.04	0.02	0.01	1 0
Provinces	AES	i o	1 0	0	10.10	2.5	0	0	0	0
Western	- I	1	l		1	l		· ·	1	1
Canada	AES	0.40	0.10	0.10	0	0	0	0	0	0
Total	I	1	1	[T	1	1	Τ	1	1
Concen-	MOE	0.60	3.5	7.1	5.0	6.0	7.9	8.6	23.0	17.7
tration	AES	2.4	8.4	20.5	17.7	10.3	14.3	116.1	149.1	25.9

Table A8-9 Transfer Matrix of:

Annual Wet Deposition of Sulfur (kg.ha-	'.yr")
---	-------	---

r	r	1				·				
	i	i			Recer	otor Areas				
	i	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. NH.	Adir.	Penn.	Smokles
Source	1	1	1	1			1	1	l	1
Regions	Models	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	1 (9)
1	MOE	0.05	0.31	0.73	0.26	0.30	0.44	0.67	1.3	0.09
Mich.	AES	0.20	2.3	3.1	1.0	0.30	0.70	1 1.1	1.7	0.20
2						• •	÷	[I
111.	MOE	0.15	0.58	0.81	0.39	0.46	0.58	0.79	1.9	1.2
Ind.	AES	0.10	2.4	2.2	0.60	0.20	0.50	0.70	2.2	1.5
3	MOE	0.08	0.30	0.63	0.37	0.56	0.63	0.93	4.0	0.45
<u>Chio</u>	AES	1 0	0.60	4.4	1.1	0.50	2.4	3.2	11.3	1 0.60
4	MOE	0.03	0.12	0.28	0.21	0.41	0.40	0.58	4.5	0.11
Penn.	AES	0	0.20	1.3	0.70	0.30	1.8	2.3	8.1	0.10
5									1 0 00	
N.York	MOE	0.03	0.09	0.22	0.29	1.2	0.64	0.91	0.38	0.06
to Maine	AES	0	0.20	0.60	1.6	2.4	2.7	2.9	0.50	0
6								1 0 01		1
Kent.	MOE	1 0.04	0.12	0.17	0.11	0.16	0.16	0.21	1 0.55	2.0
Tenn.	AES		0.20	1.0	0.10	0.10	0.30	0.60	2.1	4.4
W.Virg.	MOE	0.04	0.13	0.26	0.22	0.47	0.38	0.50	1.5	0.27
to N.C.	AES	1 0.04		0.20	0.40	0.30	1.1	1 1.4	4.3	0.60
8	- ALS			0.10	0.10	0.30	· · · · ·	1 119		1 0.00
Restof	MOE	0.10	0.46	0.41	0.18	0.18	0.24	0.31	0.47	1.1
(USA) Fld		0.90	2.3	0.90	0.20	0.10	0.30	0.50	2.0	19.2
to Mo. to	•	1 0.30	1 2. 5	1 01 30	1 0120	1 0.10	1 0.50	1 0.30		1
Minn.		1	1		i		1	i	i	i i
9	MOE	0.07	0.46	1.4	0.94	0.52	0.97	<u>i 1.1</u>	0.48	0.05
Ontario	AES	0.10	1.8	3.3	1.7	0.60	1.6	2.0	1.2	1 0
10	MOE	0.03	0.11	0.19	0,90	0.43	1.4	0.35	0.08	0.02
Quebec	AES	0	0.10	0.30	1.5	0.50	1.7	0.80	0.10	1 0
11			<u> </u>						<u> </u>	i
Atlantic	MOE	1 0	0.01	0.01	0.03	i 0.14	0.03	0.02	0.01	1 0
Provinces	AES	i õ	0	0	0.10	0.60	0	0	0	İ Ö
Western	i i i i i i i i i i i i i i i i i i i	1	<u> </u>	· · · ·	·	[1	T	1	1
Canada	AES	0.20	0.20	0.10	0	0	0	0.20	1 0	1 0
Total	i i i i i i i i i i i i i i i i i i i	1				[r	T	1	1
Concen-	MOE*	0.62	2.7	5.1	3.9	4.8	5.9	6.3	15.2	5.4
tration	AES	1.5	10.4	17.6	9.0	5.9	13.1	15.7	33.5	116.7

A.8-9

*Note: In order to calculate the total deposition at each site, the deposition resulting from background in the amount of $0.2 \text{ g.m}^{-2}.\text{yr}^{-1}$ (or $2.0 \text{ kg.ha}^{-1}.\text{yr}^{-1}$) should be added to this row.

Table A8-10 Transfer Matrix of:

Total Annual Sulfur Deposition (kg.ha⁻¹.yr⁻¹)

	1	1			Reco	otor Areas				
		B.Waters	Alg.	Musk.	Que.	S. N.Sc.	TVL. MI.	Adir.	Penn.	Smokies
Source	i	1	1		1	1	1	1	1	1
Regions	Models	(1)	i (2)	i (3)	(4)	(5)	(6)	İ (7)	į (8)	İ (9)
1 1	MOE	0.10	0.75	1.8	0.58	0.66	11.0	11.6	13.4	0.19
Mich.	AES	1 0.30	4.5	6.7	1.7	0.60	1.6	2.2	4.7	1 0.30
2		1			<u> </u>	• •	1	Γ	T	1
111.	MOE	0.28	1.3	1.8	0.78	0.93	1.2	1 1.7	1 4.5	2.8
Ind.	AES	0.30	3.5	3.4	0.80	0.40	0.90	1.4	4.2	1 4.3
3	MOE	1 0.16	0.65	1.4	0.77	1.2	11.4	2.2	110.2	11.0
Chio	AES	0	0.90	6.7	1.8	1.2	3.9	5.9	28.9	2.2
4	MOE	0.06	0.26	0.65	0.46	0.91	0.90	11.4	111.8	0.24
Penn.	AES	0	0.40	1.9	1.2	0.70	2.8	4.3	26.0	1 0.20
5	r				l		1	1	1	1
N.York	MOE	0.05	0.18	0.52	0.66	2.8	1.6	2.3	0.93	0.11
to Maine	AES	0	0.40	1.2	2.5	6.5	1 4.7	6.1	1.1	1 0
6		1					1			1
Kent.	MOE	0.07	0.23	0.35	0.21	0.31	0.33	0.44	1.3	5.0
Tenn.	AES	0	0.30	1.3	0.10	0.20	0.40	0.90	3.6	15.2
7					[I				
W.Virg.	MOE	0.08	0.27	0.57	0.46	1.0	0.83	1.1	3.7	0.62
to N.C.	AES	0	0.10	0.50	0.60	0,50	1.5	2.0	17.3	1.5
8 1	-	1								1
Rest of	MOE	0.22	1.1	0.94	0.37	0.36	0.51	0.68	1.1	2.9
(USA) Fld		2.5	4.2	1.8	0.40	0.30	0.50	0.90	3.4	118.7
to Mo. to		1				1	1	1	ļ	1
Minn.		<u> </u>			1		[1
9	MOE	1 0.14	1.2	3.7	2.3	1.2	2.4	2.6	1.2	0.09
Ontario	AES	0.10	3.9	13.2	1 3.1	1.3	3.8	5.4	3.1	0.10
10	MOE	0.06	0.25	0.46	2.3	1.0	3.6	0.86	0.17	0.03
Quebec	AES	0.10	0.50	1.2	4.3	1.5	7.2	2.5	0.20	0
11						1				!
Atlantic	MOE	1 0	0.01	0.02	0.07	0.35	1 0.07	0.04	1 0.02	0
Provinces	AES	1 0	0	0	0.10	3.2	0.10	0	0	0
Western						!			1	
Canada	AES	0.60	0.20	0.20	0	1 0	10	0.20	0	0
Total			1				1	1	1	
Concen-	MOE*	1.2	6.2	12.2	8.9	10.8	113.8	114.9	138.3	113.0
tration	AES	3.9	18.8	38.1	16.7	16.3	27.4	31.8	82.5	42.6

A.8-10

*Note: In order to calculate the total deposition at each site, the deposition resulting from background in the amount of $0.2 \text{ g.m}^{-2}.\text{yr}^{-1}$ (or $2.0 \text{ kg.ha}^{-1}.\text{yr}^{-1}$) should be added to this mw.

Table A8-11 Transfer Matrix of:

	ł	1			Recei	otor Areas		,		
	i	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	VE. NH.	Adir.	Penn.	Smokles
Source		1			1		1			
Regions	Models	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(10)
1	MOE	8.2	12.6	15.7	6.2	5.9	7.1	11.0	8.8	1.2
Mich.	AES	5.4	27.2	17.3	8.5	3.0	5.8	7.2	6.1	0.5
2							!			
<u>111.</u>	MOE	24.7	19.8	13.4	7.6	7.6	1 7.8	11.0	11.2	20.6
Ind.	AES	4.8	13.6	6.0	3.2	1.7	1 2.9	4.2	3.8	10.3
3	MOE		9.8	11.2	7.9	10.6	9.5	13.8	26.9	7.5
Ohio 4	AES MOE	4.1	3.2	11.2	9.6	6.2 8.4	9.8	16.6	35.7	6.1
		· · · · · · · · · · · · · · · · · · ·	0.6	2.9	5.2	3.6	7.5	11.9	37.0	0.4
Penn.	ALO	0	0+0	2.9	3.2	<u> </u>	1 1.5	1 11.9	37.0	
N.York	MOE	2.7	2.5	4.2	7.3	28.0	12.0	16.5	2.4	0.7
to Maine	AES	0.3	1.5		11.9	40.8	13.9	20.2	1.2	0.1
6		1 0.3		<u> </u>	<u> </u>	1 10.0	1			
Kent.	MOE	5.5	3.2	2.4	1.9	2.4	2.0	2.6	3.0	40.2
Tenn.	1 1 1 1 1	1 0	1.0	1.5	0.7	0.4	1 1.0	1.6	3.0	42.3
7		<u> </u>			<u>+</u>	<u> </u>				
w.virg.	MOE	5.5	3.9	4.3	4.6	9.1	5.6	i 7.2	9.5	4.5
to N.C.	AES		0.2	0.8	2.1	1.7	2.7	4.0	6.1	3.5
8		·			<u> </u>		1	i		i
Rest of	MOE	20.5	18.5	7.4	3.8	i • 2.9	3.3	4.1	2.6	22.7
(USA) Fld		68.0	22.3	4.0	1.9		1.5	2.4	2.8	36.5
to Mo. to	•			1	1		1	i		1
Minn.		i	i i	i	i	i	i -	i	i	İ
9	MOE	12.3	20.7	32.5	26.9	11.0	1 18.0	18.3	3.0	0.5
Ontario		3.7	24.3	49.0		6.2	1 15.0	21.2	4.0	3.0
10	MOE	5.5	4.1		28.5	10.1	28.0	6.0	0.4	0.2
Quebec		1.4	4.6		38.0	9.6	39.3	10.4	0.3	0
11	i i i i i i i i i i i i i i i i i i i	1		· · · · · ·	1	1	1	<u>,</u>	<u>, </u>	J
Atlantic	MOE	i o	0.2	0.1	0.8	3.6	0.5	0.3	0	i 0
Provinces	AES	0	0	0	0.7	25.6	0.2	0.1	0	0
Western	1	1	1		1	1	1	1	1	
Canada	AES	16.3	1.4	0.3	0.1	0.1	0.1	0.1	0	0
Eastern	i i			1	1	1	1	1	l	
U.S.A.	MOE	82.2	74.2	63.8		74.9	53.6	75.4	96.4	99.1
Contri.	AES	78.5	69.6	46.4		58.4	45.1	68.1	95.7	99.7
bution	i i	1	1	1	1.	1	1	I		l
Total		1		l	1	1	1	1	1	
Canadian	MOE	17.8	25.0	36.4	56.2	24.7	46.5	24.6	3.4	0.7
Contri.	AES	21.4	30.3		57.2	41.5	54.6	31.8	4.3	0.3
bution	i i	1		1 . · ·	1	1	1	1	I	1

Percent Contribution to Annual Sulphur Dioxide Concentration

Table A8-12 Transfer Matrix of:

Percent Contribution to Annual Sulfate Concentration

		Ţ								
		B.Waters	Alg.	Musk.	Rece	ptor Areas	VE. NH.	Adir.	Penn.	Smokles
Source		B.waters	I AIG.	I MUSK.	I Que.	S. N.Sc.	I VC. NH.	Adir.	i Penn.	1 Smokles
Regions	Models	(1)	(2)	(3)	(4)	(5)	(6)	(7)	1 (8)	(10)
1	MOE	7.5	9.6	12.0	17.7	7.1	8.5	110.2	<u>(8)</u> 9.3	13.1
Mich.	AES	9.0	12.6	21.5	14.5	8.6	112.2	10.7	10.0	1 1.8
2	1	1	1	1	T	1	1	4.1	1	1
m. i	MOE	25.0	24.6	20.6	14.2	1 13.2	114.8	16.7	19.5	27.9
Ind.	AES		20.3	9.4	6.4	4.0	6.6	7.7	9.0	18.6
3 1	MOE	13.8	113.6	14.3	12.3	13.9	114.1	116.1	23.7	111.7
<u>Ohio </u>	AES	0	2.9		110.5	14.1	15.2	17.9	35.8	111.0
4	MOE	6.2	15.9	6.3	6.8	9.0	8.0	8.9	16.7	3.7
Penn.	AES	0	0.9	3.6	5.4	6.7	8.0	111.0	16.9	0.8
5	NOT		1			1				1 2 2
N.York .	MOE	5.0	4.1	4.7	7.7	16.5	9.4	9.3	2.9	2.2
to Maine 6	AES	0.9	2.6	1 3.1	9.9	28.6	10.3	9.9	1.4	1.0.1
Kent.	MOE	7.5	6.4	5.5	4.6	4.7	4.7	5.1	6.4	25.8
Tenn.	AES		1.4	2.0	0.3	1.2	1.3	1.9	1 5.2	27.7
7		· · · · · · · · · · · · · · · · · · ·	1.4	2.0		1.2		1.7	J .2	2/0/
W.Virg.	MOE	7.5	7.3	7.1	8.0	11.1	8.9	9.3	10.0	7.1
to N.C.	AES	0	1 0	1.1	1.6	3.1	3.3	3.9	7.1	6.5
8			<u> </u>		<u> </u>		<u>† – – – – – – – – – – – – – – – – – – –</u>	1	<u></u>	
Rest of	MOE	13.7	114.6	9.3	6.5	5.2	j 6.1	6.6	5.9	116.0
(USA) FId		39.6	28.6	8.8	4.8	3.2	4.4	1 5.7	6.9	32.3
to Mo. to			i	Ì	1	i	1	i s	İ	1
Minn.		i i	i	İ	i	· ·	İ	1	1 ''	1
9	MOE	8.8	9.6	16.4	18.5	10.6	14.8	113.1	4.3	11.8
Ontario			18.9		26.3	14.9	21.9	21.9	6.8	0.8
10	MOE	1 5.0	3.6		113.2	7.3	110.3	4.2	1.1	0.9
Quebec	AES	6.3	6.3	5.3	117.7	12.0	15.4	8.8	0.6	0.2
11				1		!				
Atlantic	MOE	0	0.5	0.3	0.6	1.4	0.5	10.4	0.1	
Provinces	AES	0	0	0	0.8	2.5	0.2	0.1	<u> </u>	·
Western Canada	AES	36.0	5.7	1.0	1.8	1.1	1.0	0.5	0.2	0.0
Eastern	ACO	1 30.0	1 3.1		1 1.0	<u> </u>		1 0.5	1 0.2	+
U.S.A.	MOE	86.2	86.1	79.8	67.8	80.7	74.5	82.2	94.4	97.5
Contri.	AES	53.1	69.3	66.2	53.4	69.5	61.3	68.7	92.3	98.8
bution	1767 I	1 33.1	10245	1 00.2	19944	1 0 0 0 0		1	1	
Total		· · · · · · · · · · · · · · · · · · ·	<u>†</u>	'	·	 	- <u> </u>	;	i	· • • • • • • • • • • • • • • • • • • •
Canadian	MOE	13.8	13.7	20.2	32.3	19.3	25.6	17.7	5.5	2.7
Contri.		46.8	30.9	33.8	46.7	30.5	38.5	31.3	7.6	11.0
bution		1	1	1	i	1	1	1	1	1

A.8-12

2-12-14 1

ł,

201 1

27.8

Table A8-13 Transfer Matrix of:

Percent Contribution to Annual Sulfur Dry Deposition

		1								
					Recep	otor Areas		/		
	i	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	Vt. MI.	Adir.	Penn.	Smokles
Source		1	1	i	1	1	1	l	1	
Regions	Models	(1)	(2)	(3)	(4)	(5)	<u> (6)</u>	(7)	(8)	(10)
1	MOE	8.3	12.6	15.5	6.4	6.0	7.2	10.8	8.7	1.3
Mich.	AES	1 4.2	26.2	17.6	9.2	2.9	6.3	7.5	6.1	0.4
2		1								20.7
111.		21.7	20.0	14.0	8.0	7.8	8.0	10.9	111.3	10.8
Ind.		8.3	114.3	5.9	4.0	1.9	1 2.8	13.9	27.0	7.5
3	MOE	13.3	110.0	11.4	8.2	10.6	10.5	16.8	35.8	6.2
Ohio	AES	1 0	3.6	11.2	9.2	6.8	6.4	9.3	131.7	1.6
4	MOE	5.0	4.0	5.2	5.3	3.9	7.7	11.8	36.4	0.4
Penn.	AES	0	1.2	2.9	1 3.3	1 3.9	<u></u>	11.0	1	<u> </u>
5		3.3	2.6	4.2	7.4	28.3	111.9	16.3	2.4	0.6
N.York	MOE AES	1 0	1.2		111.8	39.8	114.0	19.9	1.2	0
to Maine 6	ALS		1 1.2		1		1	1		T
o Kent.	MOE	5.0	3.5	2.6	2.0	2.5	i 2.0	2.6	3.1	40.2
Tenn.	AES		1.2	1.5	i õ	1.0	0.7	1.9	3.1	41.5
<u>1emi.</u>			1	<u> </u>	<u> </u>	1	T	1	1	1
W.Virg.	MOE	5.0	4.0	4.4	4.8	1 9.1	5.7	7.3	9.6	4.5 -
to N.C.	AES	0	iõ	1 1.0	2.6	į 1.9	2.8	3.7	6.1	3.5
8	112.00	· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>†</u>	İ.	1		1	1	
Rest of	MOE	20.0	118.6	1 7.5	3.8	3.0	3.4	4.3	2.6	23.3
(USA) Fld		66.7	22.6	4.4	2.6	1.0	1.4	2.5	2.9	36.5
to Mo. to			1 -	1.	1	1	1		1	1 · · · ·
Minn.	i l	Í Í	1	1	1	1	<u> </u>		<u></u>	
9	MOE	13.3	20.4		26.0	1 11.0	117.7	18.6	3.0	0.5
Ontario	AES	1 3.8	23.8		118.4	1 6.8	15.4	21.1	4.1	0.4
10	MOE	5.0	4.1	3.8	28.0	10.0	27.8	5.9	0.4	
Quebec	AES	11 0	4.8	4.4	36.8	9.7	38.5	1 10.6	0.2	1 0
	1			!				0.2	0	0
Atlantic	MOE	0	1 0	0.1	1 0.8	3.6	0.5	0.2		
Provinces	AES	11 0	0	0	11.3	24.3	0	· · · · ·	+	+
Western						0	0	0	i o	i o
Canada	AES	16.7	1.1	0.4	0	<u> </u>		<u> </u>	- <u> </u>	- <u> </u>
Eastern	1		175 2	I I 64.8	45.4	75.6	154.3	75.4	96.4	99.7
U.S.A.	MOE	81.6	75.3	47.4	44.7	59.2	46.2	68.5	95.7	99.3
Contri	AES	1 79.2	1/0+3	1 4/+4	1994./	1 3714			1	1
bution	<u> </u>	<u> </u>						- <u> </u>	- <u>j</u>	1
Total		 18.3	24.5	1 34.9	154.8	24.6	46.0	24.7	3.4	i 0.6
Canadian	MOE			1 52.6		40.8	153.9	31.7	4.3	0.4
Contri	AES	20.5	29.7	1 32.0	10010		1	1	1	i
Ibution	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>					

A.8-13

ω

Table A8-14 Transfer Matrix of:

Percent Contribution to Annual Sulfur Wet Deposition

	 	Receptor Areas										
7	i	B.Waters	Alg.	Musk.	Que.	S. N.Sc.	VE. MI.	Adir.	Penn.	Smokies		
Source				 (3)	(4)	(5)	(6)	(7)	(8)	(10)		
Regions	Models	1 (1)	(2) 11.5	14.3	16.7	6.2	7.5	10.6	1 8.6	1.7		
1 1	MOE AES	13.3	22.1	17.6	111.1	5.1	5.3	7.0	5.1	1.2		
Mich. 2	ALS	1 13.3	122+1	1 1/10	1				<u> </u>			
111.	MOE	24.2	21.5	15.9	110.0	9.6	9.9	12.5	112.5	22.3		
Ind.	AES	6.7	23.1	12.5	6.7	3.4	1 3.8	4.5	6.6	9.0		
3	MOE	12.9	11.1	12.3	9.5	111.6	110.7	14.8	26.3	8.3		
Ohio I		0	5.8	25.0	12.2	8.5	118.3	20.4	133.7	3.6		
4	MOE	4.8	4.5	5.5	5.4	8.5	6.8	9.2	29.6	2.1		
Penn.		0	2.9	7.4	1 7.8	5.1	113.7	14.7	24.2	0.6		
5		r 	T T	i	1	1	1	1	T	1		
N.York	MOE	4.8	j 3.3	4.3	17.4	25.0	110.9	14.4	2.5	1.1		
to Maine	AES	i õ	1 1.9	3.4	17.8	40.7	20.6	18.5	1.5	0		
6		i	1			1	1					
Kent.	MOE	6.5	4.5	3.3	2.8	3.3	2.7	2.3	3.6	37.1		
Tenn.	AES	i o	1.9	5.7	1.1	1.7	2.3	3.8	6.3	26.4		
7			1		T	1				!		
W.Virg.	MOE	6.5	4.8	5.1	5.6	9.8	6.5	7.9	9.9	5.0		
to N.C.	AES	11 0	1 0	2.3	4.4	5.1	1 8.4	8.9	12.8	3.6		
8									!			
Rest of		16.1	17.1	8.0	4.6	3.7	4.1	4.9	3.1	20.4		
(USA) Fld	- AES	60.0	22.1	5.1	2.2	1.7	2.3	3.2	6.0	55.1		
to Mo. to	1 .	11	ļ		1 1	1	1.	!	1			
Minn.	l ·		1		<u> </u>	<u> </u>			3.2	0.9		
9	MOE	1 11.3	117.0	27.4	24.1	10.8	116.5	17.5		1 0.9		
Ontario		6.7	17.3	18.8	118.9	10.0	12.2	12.7	1 3.6	0.4		
10	MOE	4.8	4.1	3.7	23.1	8.9	23.7	5.6	0.3	0.4		
Quebec	AES	<u> 0</u>	1.0	1 1.7	116.7	8.5	113.0	5.1	1 0.3	·		
11	1						105	0.3	0.1	0		
Atlantic	MOE	11 0	1 0.4	1 0.2	0.8	2.9	0.5		1 0	iŏ		
Provinces	AES	11 0	0	1 0	1.1	10.2	<u> </u>	+		- <u> </u>		
Western		II	1	1	1 0		0	1.2	i o	0		
Canada	AES	13.3	1.9	1 0.5				1 + + 2	 	<u>+</u>		
Eastern	1			1 00 7	100 0	77.7	59.1	76.6	96.1	98.0		
U.S.A.	MOE	83.9	178.3	68.7	152.0	71.3	174.7	81.0	196.2	99.5		
Contri	AES	11 80.0	79.8	79.0	163.3	1 11+2	174.7	1 01.0	1	1		
bution	<u> </u>	<u> </u>		·					+	i		
Total		11		1	140.0	1	40.7	23.4	3.8	1.3		
Canadian	MOE	16.1	21.5	31.3	148.0	22.6	25.2	19.0	3.9	1 0		
Contri	AES	11 20.0	20.2	21.0	136.7	28.7	143,4	1 12.0	1 367	i č		
bution.	1	11	1	1	I	· I						

Table A8-15 Transfer Matrix of:

Receptor Areas 11 Adir. Smokles Penn. B.Waters Alg. Musk. Que, S. N.Sc. Vt. NH. Source (7) (8) (10)Regions Models || (1) (2) (3) (4) (5) (6) 7.2 8.9 1.5 112.2 14.7 6.5 **6.**T 10.7 MOE 8.2 1 11 6.9 5.7 0.7 23.9 17.6 110.2 3.7 5.8 Mich. AES 11 7.7 2 11.4 111.8 21.5 14.8 8.7 8.7 8.7 1111. MOE 11 23.0 21.1 118.6 8.9 2.4 | 3.3 4.4 | 5.1 10.1 AES 11 7.7 4.8 Ind. 14.8 26.6 7.7 110.1 3 MOE 1 13.1 10.5 11.5 8.6 11.1 4.8 17.6 110.8 7.3 114.2 18.6 135.0 5.2 AES Ohio 0 9.4 30.8 1.8 4.9 4.2 5.1 8.5 6.5 5.3 4 MOE 131.4 0.5 2.1 5.0 7.2 4.3 110.2 13.5 Penn. AES 0 5 0.8 7.4 26.0 111.6 15.4 2,4 N.York MOE 11 4.1 2.9 4.2 117.1 0 19.2 1.2 to Maine AES 0 2.1 3.2 115.0 39.9 - 6 2.9 2.9 3.4 38.5 3.7 2.3 2.9 2.4 MOE 5.7 Kent. 11 2.8 35.6 0.6 1.2 4.4 Tenn. AES 0 | 1.6 3.4 1.5 11 7 4.8 7.4 9.7 4.4 4.6 5.1 9.3 6.0 W.Virg. MOE 11 6.6 6.3 3.5 0.5 1.3 3.6 3.0 5.5 | 8.8 AES 0 Ito N.C. 11 8 2.9 22.3 18.0 17.8 7.7 4.1 3.4 3.7 4.5 Rest of MOE 11 4.1 43.8 2.8 22.3 4.7 2.4 1.8 | 1.8 (USA) F1d AES 11 64.1 1 to Mo. to 11 Minn. 0.7 17.4 3.1 MOE 11.5 119.5 30.3 25.8 71.1 117.4 - 9 17.0 3.8 0.2 120.7 34.7 118.6 8.0 113.9 AES 1 2.6 Ontario 0.2 5.8 0.4 9.3 126.1 1 10 MOE 4.9 4.0 3.8 25.8 ТГ 3.2 25.8 7.9 | 0.2 0 2.6 9.2 126.3 Quebec AES 2.6 T110.8 0.5 0.3 0 0 0.1 0.1 3,3 Atlantic MOE 0 11 0 | 19.6 0.4 0 0 0 0.6 Provinces AES 11. 0 0 Western 0 0 0 0.6 0 0.5 0 AES || 15.3 1.0 Canada Eastern 76.5 |96.5 98.9 156.2 176.8 65.7 47.8 76.0 MOE || 83.6 U.S.A. 99.4 74.5 195.7 1 79.5 175.9 61.7 154.6 63.6 159.4 [Contri AES bution 11 Total 23.5 | 3.5 0.9 23.7 144.0 11 16.4 23.6 34.2 152.4 MOE Canadian 25.5 4.0 0.2 140.6 AFS 11 20.5 24.3 38.4 145.0 | 36.8 **|**Contri 1 bution

Percent Contribution to Total Annual Sulfur Deposition

Appendix 9

like person

1

Workshop Summary Reports: Atmospheric and Science Reviews Modeling Evaluation and Intercomparison (16-17 December 1980, Washington, D.C.)

Atmospheric Science Review

10.00

1.0.5 (d. --16,000 (d. --

Section of the sectio

States -

Sec.

22 au

10.27

A Participation of the

44 a. 20

12:20

At a Work Group 2 workshop meeting held in Washington, DC on December 16, 1980, a wide-ranging discussion occurred regarding the most important areas in the atmospheric sciences which were closely connected with the use of long range transport models. From that discussion emerged several topics on which Work Group 2 would prepare reviews for their May 15, 1981, Phase II report. The purpose of these reviews would be to highlight the state of knowledge in the particular topic areas, and to indicate how that knowledge is reflected in various models being used by this Work Group. The reviews are to be brief, comprehensive, reflect recent literature and work in progress, and written in a manner which is comprehensible to the educated layman.

The initial topics chosen are described briefly below, and the lead authors are identified. First drafts of the write-ups will be distributed to all Work Group 2 members for discussion in the last half of February, 1981.

1) Sulfur and Nitrogen Chemistry in LRT Models

(A.P. Altshuller) Homogeneous and heterogeneous reaction mechanisms will be reviewed. The degree to which models can treat sulphur chemistry as being first-order and independent of other atmospheric cycles (e.g., oxidants, nitrogen, particulates, visibility) will be discussed. Seasonal differences will be mentioned. The ways in which SO₂ is converted into sulphuric acid, as opposed to other sulfate products, will be emphasized in all parts of the report.

A.9-1

It is known that nitrogen chemistry is more complex than sulphur chemistry, and that in many situations it is not first-order. Additionally, other key species involved in nitrogen chemistry are often not being measured. This discussion will review the above issues, as well as the aspects mentioned above for sulfur. Finally, the possibility of crudely modeling nitrogen reactions in a pseudo-first order way in existing Lagrangian models will be discussed.

2) <u>Trends in precipitation composition and deposition</u> (J. Miller) What data sets are available which have not been discussed to date? Are the data sets reliable? Is there any way to relate trends, which these and newer sets of data may show, to estimates of past and present emissions of SO₂; should the comparison even be made in view of the different spatial distribution of the sources, the different release heights of the SO₂, etc.

4

3) <u>Deposition processes for sulphur and nitrogen compounds</u> (G. Van Volkenburg) Once atmospheric reactions have occurred, how does one measure and model the various pathways of deposition, both wet and dry? Are the mechanisms and amounts of deposition radically different because of seasonal changes? What is the role of changing

A.9-2

meteorological conditions (e.g., mixing height, temperature, type of storm, amount of precipitation) and surface conditions (wet, snow-covered, vegetation-covered, etc.)? How valid are the parameterigation of deposition being used in models currently?

A.9-3

1.00

States.

199

100 - 54 C

122

And Contraction

1025

1000

ALL DA

Sector 1

4) <u>Global and western North American measurements of</u> <u>precipitation pH</u> (P. Summers) The strength of the assumption of "unpolluted" rain having a pH of 5.6 will be compared to recent global background measurements, and these measurements will be interpreted in light of current assumptions about residence times of acid precursor compounds and scavenging mechanisms for these compounds over oceans, coastal regions, and over land. Recent measurements from western North America will be examined thoroughly.

A.9-4

2. Evaluation and Intercomparison of Selected Models

On December 17, 1980, the first workshop of Group 2 was convened to plan a comprehensive model evaluation and intercomparison program for the five-month period up to May 1981. The follwing items wre agreed upon:

1) <u>Management</u>: J.W.S. Young and B. Niemann were appointed as the Canadian and U.S. "whips", respectively, to insure that, to the maximum extent possible, data, manpower, and funding would be made available for this exercise by the various agencies involved.

Agreement was reached among EPA (US), and AES and OME (Canada) that if required, support for a contractor to assist in assembling data sets would be made available. 2) <u>Task scheduling</u>: Once tasks had been outlined and agreed to, it was agreed that the sponsoring agencies would hold workshops to discuss progress on the tasks, at approximately monthly intervals. The second workshop was scheduled for January 13-14, 1981 in Washington, and the third for the last half of February in Toronto.

3) <u>Provision of an "Agreed", "Unified" North American</u> <u>Sulfur Inventory</u>: The crucial need for a current, unified sulfur inventory for North America was raised again. It is understood that Work Group 3B is responsible for the provision of this inventory. It is to be published as a

124

1

tabulation, identifying for each point and area source: location, most recent annual and seasonal emissions, and other stack paramenters (where appropriate). Using the inventory breakouts of emissions totals for point and area sources will be undertaken for various georgraphical regions, including continental, country, the 11 Canadian source regions, the SURE approximations to states and provinces, and the 63 SURE source regions.

4) <u>Meteorological Year for Test Use</u>: 1978 was chosen.
Annual, winter (Jan.-March), summer (July-September), and monthly slices from seasons (January and July) will be used.
5) <u>Meteorological Year for Greneral Use</u>: To be decided at second workshop. P. Summers will produce notes for discussion.

6) <u>Input data sets for testing</u>: The 1978 data sets from CANSAP, MAP3S, SURE, Ontario Hydro, and SAROAD archives will be employed.

A State

C. S. C. String

ないので

ALCONTRACTOR OF

Activity of the

1343

1.111.1

of the state and the state

1947 av

7) <u>Parameters to be modeled for sulphur</u>: Wet deposition, and SO_2 and SO_4 concentrations will be the three primary outputs. Estimates of dry and total deposition are of lower priority because they can not be validated against field observations and they are, therefore, more uncertain.

A.9-5

A.9-6

8) <u>Methods of Parameterization</u>: A. Venkatram and J. Shannon will write a position paper for the January 13-14 workshop to stimulate discussion on which, and how, parameters should be "tuned" to data sets. Can statistics be generated from this exercise which say anything about the confidence of the models?

9) <u>Methods of Validation</u>: A. Venkatram will prepare, for the January workshop, a position paper for discussion which indicates how the models can be validated in a uniform manner, and how the measure of validity can be expressed from model to model in a uniform manner.

10) <u>Amount of Model "Production, Usage"</u>: The chairman of Work Group 2 will extract from the chairmen of Work Group 3B the number of "full scenarios" to be run in Phase II. This number, along with estimates of model usage for validation and intercomparison, will identify the level of effort required by each modeler. Addendum to Appendix 6

Address of

" giftenin it

States Sec.

· Martin

Ī

ATT.

t suit

Source Region and Inventory Description

of the

Phase I Report on

Atmospheric Modeling

by

Work Group 2

Preface

The purpose of this addendum is to provide more detailed documentation of the emissions and their geographical assignments than was possible in Appendix 6 of the Phase I report. The information in this addendum is being used by the atmospheric transport modelers in Phase II for model intercomparisons, evaluations, and production runs. It is expected that the material in this addendum will be updated and supplemented from time to time.

a summer of

. Same

i

а. 1. 1. 2

1. A. A.

A large (30" x 40") map of the SURE grid system, 63 SURE aggregate areas, and 11 Canadian regions, superimposed on State and provincial boundaries is available for use with this appendix. Inquiries should be directed to:

> Program Integration and Policy Staff U. S. Environmental Protection Agency RD-681 Room 641 West Tower 401 M Street, S. W. Washington, D. C. 20460 202 426-9434

Table of Contents

(4.4)

-1-1-

in the second

1.1

1 2 1

1. Relationships Between U.S. Counties, SURE Grids, Aggregated SURE Grid Areas, and the 11 Canadian Regions

- 1.1 Counties and Sources in SURE Grids
- 1.2 Grids in 63 Aggregated Grid Areas
- 1.3 Aggregated Grid Areas in 11 Canadian Regions
- 2. Comparison of U.S. SURE, Canadian SURE, and NEDS 1976 on a State Basis
- 3. New U. S. Total and Utility SOx Emissions for the Aggregated Grid Areas in the United States
- 4. New Canadian SOx Emissions for the Aggregated Grid Areas in Canada
- 5. Primary SO₄ Emissions for the Aggregated Grid Areas
- 6. NOx and TEP Emissions for the Aggregated Grid Areas
- 7. Listing of Historical and Current Emissions by State and County

1. Relationships Between U. S. Counties, SURE Grids, 63 Aggregated SURE Grid Areas, and the 11 Canadian Regions

1.1 Counties and Sources in SURE Grids

The second

-

denorm .

· Printer FE

1.000

AND A

		_					ARMS
			JPS			NIMBED	
STATE	CRUNTY	ST	CITY	SURE II	GRID	NUMBER	REGIUN
	A 11 T A 11 C A		1	9	2	351	35
AL	AUTAUGA Ráldwin	1	3	. 7	0	287	35
AL.	BARBOUR		5	10	1	321	35
AL	RIABOUR	4	7	8	3	381	35
AL AL	ALUNAL	•	.	9	a a	413	35
AL	BULLOCK	•	11	10	Ž	352	35
	BUTLER	•	13	9	1	320	35
AL AL	CALHOUN	1	15	10	<u>u</u> -	414	35
AL AL	CHAMBERS	4	17	11	3	384	29
AL	CHEROKEE	1	19	10	5	445	35
AL	CHILTON	· •	21	9	ĩ	382	35
	CHOCTAN		23	7	5	349	35
AL	CLARKE	1	25	7	- 1	318	35
	CLAY	•	27	10	1. t	383	35
AL	CLEBURNE		29 . 1	10	4	414	35
AL AL	COFFEE	4	31	10	ĩ	321	35
AL	COLBERT	i	33		Ę	443	35
AL.	CONECUH	i	35	8	ĩ	319	35
AL	CDDSA	•	37	, 9	i i	382	35
AL	COVINGTON	4	39	· • •	1	× 320	35
AL	CRENSHAW	4	41	9	i	320	35
AL	CULLMAN		43	9	5 .	444	35
AL	DALE	4	45	10	1	321	35
	DALLAS	1	47	8	ż	350	35
AL AL	DEKALB	1	49	10	5	445	35
AL	ELHORE		51	ġ	2	351	35
AL	FSCAMBIA	ŝ	53	8	0	288	34
AL	ETOWAH	i	55	10	, ŭ	414	35
AL	FAYETTE	i	57	8	. 4	412	35
	FRANKLIN	•	59	8	5	443	35
AL	GENEVA	i	61	10	ō	290	34
AL	GREENE	i	63	7	3	380	36
AL :	HALE	1	65	8	3	381	35
AL	HENRY	i	67	10	ī	321	35
AL	HOUSTON	1	69	10	Ō	290	34
AL	JACKSON	1	71	10	5	445	35
AL	JEFFERSON	1	73	9	<u> </u>	413	35
AL	LAMAR	•	75	7	- 4	411	36`
AL	LAUDERDALE	1	77	8	6	474	23
AL	LAWRENCE	i	79	· 8	5	443	35
AL	LEE	+	81	10	5	352	35
AL	LIMESTONE	1	83	9		475	24
		4	85	9	6 2. 2	351	35
AL	LOWNDES Macon	4	-87	10	2	352	35
AL	MACUN	+		+ V	-		

Grid Square SO₂ Emission Data in the SURE II Inventory - Utility Sector in the Major Point Source file

Sample Output

Individual Source Parameters

1 methodates

a strategy from

Services

College and

SUHE +2	5 02	AND I	EMISSIC	INS
BY GRID	NU MB	6R (1 N	GR AMS/	SEC)

06 5	GRIDX	GR IDY	STATE	COUNTY	PLNTCDE	PNTCDE	SOURCE	UTMX	UTMY	S TA CK HG T	SOZENIS
626	13	16	0H10	54 0	5002	5	UT	520.5	4417.5	259.1	145.95
627	13	16	0410	540	5002	6	UT	620.5	4417.5	254.1	185.12
628	iš	16	ÖHIÖ	540	50 02	7	UT	520.5	4417.5	259.1	186.77
629	15	16	0410	540	5002		UT	52 0+ 5	4417.5	259.1	176.71
630	K	iš	OHIO	540	50.02	õ	ŪŤ	520.5	4417.5	259.1	276.27
631	13	iš	0110	540	50 02	ja –	ŪŤ	. 520.5	4417.5	259.1	298.7
635	15		0410	54 0	50 02	ii	ŪŤ	520.5	4417.5	25 9.1	773.5
	13	16	OHIO	540	5002	iż	ŬŤ	520.6	4417.5	259.1	792.5
633		16	0410	3160	5002	i ⁻	ŬŤ	530.0	4455.8	251.0	2065.1
634	13	16	DHID	3160	5002	i i	ŭi	529.9	4455.6	251.5	1629.2
635	13		0410	3160	5002	Ň	ŬŤ	529.9	445 5.6	274.3	433.6
636	13	16	0410	3160	5010	,	ŬŤ	531.7	4485.5	153.0	531.9
637	13	16		3160	5010	<u> </u>	ŬŤ	631.7	4485.5	153.6	760.8
638	13	16	0110	3160	5010		ŬŤ	531.7	4485.5	153.0	1001.8
639	13	16 '	0110		5010	T.	ŬŤ	531.7	4485.5	153.0	1001.8
640	13	16	DHIO	3160	5010	19	UT	531.7	4485+5	25 9.1	1634.9
641	13	16	0410	31 60			ŬŤ	631.7	4485.5	259.1	3493.7
642	13	16	0+10	3160	5010	12	UT UT	\$31.7	4485.5	304.8	3346.7
643	13	16	0110	3160	5010	1.1	UT		4481.8	198.1	345.0
644	13	16	0410	3160	6012			533.5 533.5	4481.6	198.1	501.6
64 5	13	16	0110	3160	2015	2	ut	533.5	4481.8	198.1	501.0
646	13	16	0H10	3160	5012	3	UT				
647	13 .	16 .	PENNSYLVANIA	92 00	7		UT	568.3	4452.8	58.0	30.4
648	13	16	PENNS YLVANIA	9200	7	- Z	UT	588.3	4452+8	58.8	30.0
649	13	16	PENNSYLVANIA	9200	7	3	UT	558.3	4452.8	58.8	30.6
650	13	16	PENNSYLVANIA	92 00	7	•	UT	508.3	4452+8	70-1	1284-5
651	13	16	PENNSYLVANIA	9200	15	•	UŢ	592.1	4456.1	82.9	330. 5
652	13	16	PENNSYLVANIA	9200	12.	2	UT	592.1	4456-1	82.9	350.1
653	ij	16	PENNS YL VANIA	9200	12	Э	UT	592.1	4456.8	82.9	380.7
654	ij	16	PENNS YLVANJA	92.00	12	4	UT	592.1	4456.1	89.0	567.7

1.2.1

Delation &

S.M.

176 T.

1993

N.

17-14-12-1

24182

1418-12 1999-1993年1

ang kapa

S ALL SOL

9451./(\$1) antimations 4.0 () 1995-1995-1

a por site. Properties 4-5.41.5 1910-1922-4

astariji. Riziostati ₽ _'

and the star

dojanoj 1998-1998 s CREWSEL

1.2 Grids in Aggregated Grid Areas

Explanation of Format

Column	Definition	Range	Format
1	X index (west-east)	1:31	15
2	Y index (south-north)	1:36	15
3	Grid Scalor Index	1:1116(1)	15
4	X* index (west-east)	0:30	15
5	Y* index (south-north)	- 9:26	15
6	ARMS area	0:60(2)	15
7	Sum of major point sources SO2	•	F10.1
8	Sum of all sources SO ₂		F10.1

- (1) 1 is in the southwest corner of the entire grid system
- (2) O is the ocean
 - * Original SURE Grid Numbering System

				·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
1	1	1	Q	-9	đ	0.0	0.0	
, Ž	1	ź.	1 .	- <u>j</u>	3	0.0	0.0	
Ŧ			2			<u> </u>		
4 1	1	4	3	-3	Ĵ	* • G	0.0	
5	1	5	4	-9		0.0	0.0	
<u>_</u>		<u> </u>	5				<u>_</u>	
7	1	7	- 6	-3	3 ' '	9.0	G. 0	
8	ī	8	7	-3	Ō	3.0	0.0	
	i			_ <u>.</u>			0_0	
10	1	10	à		ġ	0.0	0.0	
11	1	11	12		3	5.2	C.C	
<u>12</u>								
13	1	13	12	-÷	Ĵ.	2.0	0.0	
14	i	14	13	- ,	a	0.0	C . C	
<u>1</u>		45-				<u>9_</u>	0.0	
16	-	16	15		31	3.0	1.6	
15	1		15		ů –	3.0	C • 0	
17	1	17 	-17			0_0		
			18	- 3	3.	0.0	r.c	
19	1	19		-7	0	G.C	0.0	
20	1	20	19		n	9.C	G.g	
21	<u>1</u>	-21	-26			0.3	G.3	and the second second second second second second second second second second second second second second second
?2	· 1	22	21	-3	3		C . C	
23	1	23	22		3	7.0	CC	
24	1	_24_	23					······································
25	1	25	24	-9	5	0.0	ũ.Ĵ	
25	1	26	25	-3	0	0.0	0.0	
27	1	27						
25	1	58	27	- 7	Ċ	0.0	C • C	¢
29	1	29	28	-3	3	0.0	C.0	
	1	30	29					
31	1	31	38	- 3	0	0.0	0.0	
1	2	32	G	- 5	C	0.0	ů.ů	
2		33	1		_			
7	?	34	2	- 5	3.	3.0	C+3	
4	2	35	3	-5	r	0.0	3 • C	
5		36	4		i		C . Q	
6	2	37	5	-3	. <u>0</u>	0.0	6.6	
7	2	38	6	-5	3	3.0	2.0	
8		29	7	8	<u> </u>			
9	ž	4.4	8	-5	Ĺ	0.0		
10	Ē	41	ġ	-5	Ĉ	0.0	G . J	
1			_16_					·
12	2	43	11	-3	Q I	0.0	C.C	
13	Ž	44	12		ō	0.6	0.0	
	<u> </u>		13		a		G • Q	
15	2	 5	14	-3	0	J.C	0.3	
15	2	47	15	-3	31	3.0		
16 17	2́		<u>16</u>	-9_		0.0		
	-		17		j	9.0	0.0	······································
15 19	2			-5	3	0.0	0.0	
4 0	2	5C	18 19				C.O.	
2C	2							

22	2	53	21	-3 -4	- 0	0.0	C.C	
<u> </u>	- <u>2</u>	مجل <i>مہ</i> ۔ 55	22 23	-5	0	0.n	0.0	
25	2	56	24	-5	3	0.0	0.0	•
	2	<u>-57</u> 58	<u>-25</u> 26			<u> </u>	0.0	•
27 28	. ?	⁵⁰	27	-5	Ō	0.0	C.D	
29	2	60	_28			0.0	<u> </u>	
30 31	2 2	61 62	29 30	-3 . -3	0 9	8.0 3.0	6.0	
1	_7	<u>67</u>	0				0.0	
2	3	64	1	-7	ů .	2.0	0.C	
3	3 -	65 66	2	-7 7	0	9.0		· · · · · · · · · · · · · · · · · · ·
5	3	67	ĥ.	-7	0	0.0	0.0	
.6	3	68	5	-7	<u> </u>	0.j	0.0 0.0	
7 8	_3	- <u>59</u> 70	7	-7	0	0.0	0.0	
9	ار	71	5	-7	ņ	0.0	6.0	
1u		_72		7		0.0	0.0	
11 12	1 5	73 74	10 11	-7 -7	0	0.0	0.0	
		-15-	-12	7			0_0	· · · · · · · · · · · · · · · · · · ·
14	7	76	13	-7	n c	0.0 0.0	C.C C.C	•
15 	3 3	77 78	14 15	-7 7	; ;	C		
17	ষ	79	15	-7	31	7.0	19.3	
18	3	8 C	17	-7	31	22.8	51.5 0,0	
<u> </u>	_ <u>7</u> 3	81 82	-19- 19	-7	y	3.3	C.9	
21	3	53	20	-7	3	3.9	C.3	
	3		-21 -	7	<u>_</u>	<u></u>	C.Q C.Q	
23	2 3	85 86	22 23	-7 -7	. 3	0.0	0.0	
2°		-87			<u> </u>	Qn		
26	7	*8	25 . 25	-7 -7	5	3.C 0.0	û.J C.O	
27 28	: خ	#9 96	_27_	_=?		0.0		
29	3	91	28	-7	0	0.0	6.0	
30 31	3	<u>92</u> 93	29 30	_7 7	. 0 	0.0	0.0	
11	 	7 3 34		-5	3	3.0	6.0	
2	4	95	1	-5	5	0.0		
3	ls 4	96 97	<u>2</u> 3	<u>5</u> -5	 	<u> </u>	U • ¥ 0 • J	
4 5	4	98	54	-6	ŭ	. 0. 0	5.0	
6	łę	99	5				6+0 5+4	
7	Ц р 1.	100	6 7)	-5 -5	i û i O	3.0	5.0	
8 9	4 ls	1]1 -1;?	8	 	<u> </u>			
10	4	103	9,	-5	Ó	0.0	5. 0	
11	4	104	10	-6 -5-	. j 0	0.0 	0.0	
<u> </u>	4 14	-105- 106	<u>11</u> 12	-6	<u> </u>	0.0	C•3	
14	4	167	13	-5	0	u. 0	C.0	
	łą 6ę	-138 109	<u>14-</u> 15		<u>31</u> 31	0.0 0.0	<u> </u>	······································
15 17	4 4	110	15	-5	31	0.0	7.9	
18	4	-111-	17		31	11.7		
19	4	112	18 19	-5 -5	6 0	0.0 0.0	C.0 G.0	• •
20	4 4	113 114_	2 <u>\$</u>					· · ·
22	4	115	21	-5	0	0.0	C.O	
23	44	116	22 23	-5 5	3 3	0.J 0.C		
25		118	24	-6	3	3.9	£.0	•
					···· -·			

上國自

國國

國的

Ísti

25	4	119	25	-5	0	0.0	û.C	-
27		-120						
28	4	121	27	-5	0	0.0	0.0	
29	4	122	28	-6	g	0.0	0.0	
		-123-		<u>\$</u>		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
31	4	124	30	- <u>5</u>	0	0.0	0.0	
1	5	125	C		<u> </u>	3.0	6.0	
	<u> </u>	126		<u>ē</u>		0_0		
.3	5	127	2	-5	0	1 0.0	C.Q	· ·
.4	5	128	3	-5	0	0.0	0.0	
		-129-				<u>0.0</u>	<u> </u>	
6	5	130	5	-5	0	9.0	0.0	· · ·
•	5.	131	6	-5	3	7.0	0.0	
	\$	-132-	7	<u> </u>		<u>0.</u> C	<u></u>	
.9	5	137	. 8	-3	0	7.0	0.0	
10	5	134	9	-5	3 .	0.0	6.0	
		1.35	-13-					
12	5	136	11	-5	0	0.0	0.0	
× 13	5	137	12	-5	ũ	0.0	C.J	
14	5	-138	13				0.0	
15	5	139	14	-5	31	0 - 0	6.3	
16	5	140	15	-5	. 31	2.8	3.8	
17	5	141_	16			1.0	15.2	
18	5	142	17	-5	31	0.ŭ.	0.0	
19	5	143	18	-5	ð	0.0	0.0	
2c	5	_144_	19	5		2.0		
21	5	-145	20	-5	ũ	2.0	0.0	
2?	5	146	21	-5	0	0.0	g.C	
?3	5_	_147_		<u> </u>		<u> </u>	C+C	
24	5	148	23	-5	1	0.n	6.0	
25	5	149	24	-5	Э	5.0	0.0	
26		-150-	25		C	Ĵ.ù	<u>C+0</u>	
27	5	151	26	-5	Ċ	3.0	C.0	
28	5	152	27	-5	ņ	0.0	0.5	· · · · ·
29	ś	-153-	23		ū	0_0	0.0	
30	5	154	29	-5	3	3.0	0.0	
.71	5	155	36	-5	ā	J.C	C.C	
1	<u> </u>	<u>156</u>	0			0.0	6.0	
2	6	157	1.	-4	3	9.0	0.0	
3	6	158	Ž	-4	· .	0.0	0.0	· · · ·
L	<u> </u>	-159-		h		0.0	6.9	
5	<u>к</u>	150	4	-4	5.	0.0	C.0	
5	6	161	. 5	-4	0	3.0	0.0	• ·
7	6	-162	6		- 1			
8	0 6	163	7	-4	0	0.0	0.0	
.9	5	164	8	-4	8	0.0	0.ŭ	
		154 -165-	 	- 4 	0	0.0		
	6 6				0	0.0 0.C	0.0 0.0	
11		156	10	-4				
. 12	6	157	11		Ū.	9.0 5.0	0.0	
13	6	-168-		- b		<u>C+0</u>	<u>\$,0</u>	· · · ·
14	E.	159	17	-4	31	44.0	47.3	
. 15	6.		14	=4	31	298.9	342.8	
<u> </u>		- 171		=i		1.6_	42.8	
17	6	172	16	-+	31	55.1	61.1	
18	6	173	17		0	0.0	0.0	
19	6	_174_			_			
20	5	175	19	-4	0.	0.0	6.0	
21	6	176	. 23	-4	3	3.0	0.0	
22		- 177	21	= [4	<u>_</u>	0 •_0		· · · · · · · · · · · · · · · · · · ·
23	5	178	22	-+	0	0.0	0.0	•
24	5	179	23	-+	ů ů	0.0	G • G	•
25			24	-4_]	i • Ç	Q • J	
26	6	181	25	-4	G	0.0	6.0	
27	6	182	26	- 4	a	0.0		
28	<u>6</u>	_183_	27		0			
29		184	28	-4	3	0.0	0.0	

30 	ج 6	185 <u>-186</u> -	29 	-4 4		9.C 	0.0 0	
1	7	187	0	-3	ā	0.0	0.0	•
2	7	188	1	-3	0	0.0	C.O	
	7-	-180-		-3-		<u>0_</u> n	<u> </u>	
lą.	7	190	3	-3	G	0.0	C . C	
5 ·	7	191	4	-3	Q	0.0	0.0	
6	. 7		5	3		<u> </u>	<u>C.C</u>	
.,7	7	193	6	-3	0	0.0	C.O	
	7	194	7	-3	0	0.0	0.0	
9			8					
10	7	196	9	-3	a	7.0	Q.C	
11	7	197	10	-3	a	9.0	C.J	
	7_	-1.98-					<u>6.6</u>	
13	7	199	12	-3	3	n.3	0.0	
14	7	203	13	-3	0	0.0	0.0	
				<u>_</u>	35		34 • 4	
15	-	202	15	-3	32	76.8	97.4	
17	7	263	16	-3	32	0.0	•4	
	7		-17-	3-			0_f	
19	~	205	18	-3	J.	0.0	0.0	
20	2	206	19	-3	3	0.0	0.0	•
	7					<u> </u>	<u>0+0</u>	
22	7	208	21	-3	0	0.0	Ç.C	
23	7	209	22	-3	0	0.0	J.C	
24		-210-	23	3		<u> </u>	0-0-	
25	777	211	24	-3	3	6-0	0.0	
26 27	ź_	212 <u>-2</u> 13	25	-3_	0 0	0.0	0.0	
28	7	<u></u> 13 214				0.0 J.J	0.0	
29	7	214	28	-3 -3	3 3	n • •	C.C	
		216	29			<u>1_</u>	0.0 	
31	7	217	30	-3	2	0.3		
1	8	218	0 0	-2	3	0.0	0.0	
	\$	213-	<u>1</u>	2		Q	C•0	
3	8	223	2	-2	<u> </u>		0.0	
4	6	2?1	3	-2	ņ	0.0	0.0	
5 -			4					
6	8	223	5	-2	. 37	5.1	27.7	
7	8	224	6	-2	37	7.0	4.1	
R			7		î			
9	R	226		-2	ū	0.0	C.O	
10	8	227	9	-2	ũ	0.0	J.J	
	8		10	-2	34			
12	8	2?9	11	-2	34	0.0	0.0	
13	8	230	12	-2	Ĵ0	0.0	C.0	
			13_			3.0	5.4	
15	8	232	14	-2	37	0.0	25.3	
15	8	233	15	-2	32	5.5	17.6	
17		234_		-2		G_G		
18	8	235	17	-2	3	0.0	C.O	
19	8	236	18	-2	3	0.0	0.0	
20		237	_13_	2	3	3.0		
21	3	238	2(j		3.0	
22		279	21	-2	Ĵ	0.0	0.0	
- 23		240_		=2		0.0		
24	3	241	23	=¢ -2	<u>a</u>	C.Q	0.u 0.0	
25	8	241	24	-2	3			
26- <u>-</u> -		243		- <u>-</u> 2	J Q]+0 0+6	0.0 0-0	
20- <u>-</u> 27		24.		-2				
	3		26			0.0	0.0	
28	8	245	27	-2	3	0. 0	0.0	
29	8	245		=2	¥			
30	月	247	29	-2	0	0.0	0.0	
31	8	248	30	-2	9	5.0	0.0	
1	9	-249	Ç			<u></u>	C.Q	
2	9	25 P	1	-1	37	0.0	.1	

.

Production of the second

3	9 9		2	-1	37	1.5	3.1	
	-							
5	9		4	-1	37	53.8	125.1	
5	9		5	-1	37	25.4	70.5	
7 -	_				3			
8	9	255	7	-1	0	0.0	0.0	
9	9	257	8	-1	34	5.4	186.0	
		25-8	<u>_</u>				6	
11	9	259	12	-1	34	34.9	55.5	
-				-	-			
12	9	250	11	-1	34	0.0	16.1	
	- 9-		<u> </u>		_ 			
14	9	26 Z	13	-1	33	14.4	18.0	
15	9	263	14	-1	33	3.0	10.9	
	9	264-	15			11.5	3.4	
17	9	255	16	-1	ť	0.0	0.0	
	9			-				
18		266	17	-1	0	0.0	0.0	
	9	-257				0.0		
20	9	268	19	-1	3	0.0	0.0	
21	9	269	20	-1	3	0.0	2.0	
2							£_£	
23	9	271	22	-i	0	0.0	0.0	
	-			_				
24	9	277	23	-1	3	0.0	0.0	
	9 -	278-	24		j		0.9	
26	9	274	25	-i	n	0.0	C.a	
27	9	275	25	-1	9	0.3	6.0	
		-276-	27-				6.3	
	9	277			0	0.0	ú. C	
29	-	-	28	-1				
<u> 1</u> 2	9	27 *	29	-1	Ĵ	J•"	E.O	
	9-	<u>_27a</u> _		_ 1	0		———	
1	10	28 C	G	0	37	0.0	G.ū	
2	16	231	1)	37	109.4	122.4	
			2				4,7	
4	10	293	3	Ĵ	37	94.4	134.0	
				-				
5		- 284	4	0	37	G . O	7.5	
<u>5</u>	<u>1</u> Л	285	5	ŧ			153	
7	10	285	5	G	36	10.0	73.4	
8	10	257	7	3	75	78.1	127.7	
q		-288-	8	<u> </u>				
10	10		0	0	34		53.5	
_		299	-			0.0		
11	10	290	10	3	34	0.0	5.9	
	1ú -	-291-	11	9			16 • 2	
17	١n	292	12	Ċ	33	0.0	1.8	
14	10	293	13	0	31	2.0	5.Č	
		-294-	14					
			-	•				
16	17	275	15	0	30	20.9	42.2	
17	10	296	16	1	3	0.0	0.3	
		-237	17		. <u>.</u> .		C.0	
19	17	298	18	a	3	6.0	C.0	
21	10	299	19	Ō	ē	0.0	C . C	
21		-356	20	ī				
						• • •		
22	10	371	21	0	3	0.0	L . D	
23	10	302	22	a	0	0.0	0.0	
24	<u>1</u> n _	703 -	23					
25	10	364	24	9	0	0.0	r.ŋ	
26	15	305	25	Ō	Ĵ	2.2	C.J	
27		_326_	26	0	- 1		0.0	
28		307						
	10		27	1	3	9.0	0.0	
29	10	368	28	C	ŋ	0.0	0.0	
30 -	1r		-29	¢		Q	C • ú	
31	10	310	30	ð	9	3.0	0.0	
1	11	311	Ċ	i	37	0.0	č.0	
		312	1		_37	<u> </u>		
	-			<u> </u>		••••	1 • C	
3	11	513	2	1	37	62.3	63.3	
	11	314	3	1	36	0.0	13.4	
٤,	-							
5 6	- 11	-315_	L		36			

And the second se

f

Â.

Ĩ

								•
7	11	317	6	1	35	11.0	43.2	
	-11-	318		<u> </u>			35.4	
· 9	11	319	8 .	1	35	0.0	12.2	
10	11	350	9	1	35	9.9	10.5	
	-11-	321	<u> </u>				8-1	
12 13	11	322 323	11	1	30	7.3	3.0	•
			12	1	31	0.C	30.4	
15	11	325	14	1	30	0.0	.8	
15	11	326	15	1	31	24.1	38.3	
17	-11-	-327-	-16-					
18	11	328	17	1	ũ	0.0	C.O	
19	. 11	- 329	18	1	0,	0.0	C . C	
20	-11-	_330_	-19					
21	11	331.	20	1	<u> </u>	0.0	3.0	
22	11 	33? 333_	21 2	.1	0	0.0	ů.Ů	
24	11	334	23	1.	0	0.6	0.0 6.3	
25	11	335	24	1	Ū.	0.0	0.J	
26	_11		_25	<u> </u>				
27	11	337	26	1	<u> </u>	3.0	0.0	
28	11	338	27	.1	0	0.0	0.0	
		379			A	\$,e		
30	11	364	29	1	3	0.0	0.0	•
31	11	341	30	1	_ 3	0.0	6.0	·
	-12- 1?	342 343	<u>C</u>	<u>-</u> 2- 2	 37		<u> </u>	
.3	12	343	1 2	Ž	37	0.C 0.0	1.4	
	-12-	345		<u></u>			<u>_</u>	· · · · · · · · · · · · · · · · · · ·
5	12	346	ŭ	Z	35	14.5	22.4	
6	12	347	5	z	*6	3.0	16.7	
	-12-		<u> </u>	2		<u> </u>	9.2	
6	12	349	7	2	35	11.1	20.0	
.9	12	350	8	Z	35	ũ.0	6.5	
	12-	-	a	<u>-2</u> _		0+0		
11 12	12 12	352 353	10 11	2	さう	0.0 6.0	8.1	
					3	7	4.6	
14	12	355	13	2	30	0.0	1.7	
15	12	356	14	2	30	0.0	5.1	
16	- 12 -				<u>3i</u>			
17,	12	358	16	2	23	3.0	2.7	
18	12	359	17	2	29	1.0	2.5	
	-12-	_360_	-18	<u></u>			<u>-</u>	
20 21	12	361 362	19 20	2	. 5	0.0 0.0	U.O C.C	
		_363				0.0	ū_0	
23	12	364	22	Z	0	0.0	0.0	· · · · · · · · · · · · · · · · · · ·
24	12	365	· 23	2	ī	0.0	C.0	
	-12-	366				3 . 2	6 • 6	
26	12	367	25	2	Э	0.0	Ū•6	
- 27	12	368	26	2	. 0	0.0	ŭ.Ū	
		369-	27	<u>?</u>	a			······································
29 30	12 12	370 371	28 29	2	0	3.C C.G	C.C G.G	
31	12			~~~~				
1	13	373	C	3	37 5	19.0	0.0	
. 2	13	374	1	3	37	0.0	1.0	
3	-13-		2		37			
4	13	376	3	3	37	0.0	18.6	
5	13	177	4	. 3	36	• 1	4.6	
,6		_378_	5			<u>] • C</u>		
7	13	379 380	6 7	3 3	36 35	0.ú 291.0	.7 291.9	
· <u> </u>	_13_	_381_	á	3	35].0	11.C	
10	13	382	<u> </u>	3	35	159.7	161.7	
			•	-				

國

I中
1

.

					1			
1!	13	353	10	5 3		12.3	27.1	
	-43.	-384-		2	3	13.6		
13	13	385	12	3 2		13.6	25.6	
14	13	386	13	3 3	ia (63.8	71.6	
	<u>1</u> .	-387-			·			
16	13	788	15	5 2	3	0.0	2.9	
17	1 1 1	389	16	32	9	19."	29.4	• • • • • • • •
	-17-	-305-		-32	8	00.5	115-8-	
19	13	391	18	3 2	8	0.0	.4	
20	13	392	- 19	3		12.0	0.0	والمتحديق أناسي أتحدث والمحادث
	-13-	-397			1		G_Q	
22	13	394	21	3	J	0.0	0 . ŭ	
23	13	395	22	3.0.00	0	0.0	0.0	
24	_13_	-336.		₹	<u>.</u>			
25	13	397	24	3	0	0.0	C.0	
26	13	398	25	3	š	0.0	2.0	
27			26		a	-0-0-		
28	13	400	27	3	3	J.C	C.7 3	
29	17	401	78	3	0	0.0	3.0	
	13	-422-	29		<u>a</u>	<u> </u>	C_Ū	
31	13	433	30		0	0.0	0.5	
1		4]4	6	3		0.0	C.0	
?	-	-485-			4	4.4	<u> </u>	· · · · · · · · · · · · · · · · · · ·
3	14	+06	2		A :	0.0	11.5	
L	14	477	3		3	0.0	1.5	
5	14	-438-	<u> </u>	· · · · · ·	£			······································
6	14	409	5	4 3	5	3.0	• 8	
. 7 .	14	410	6	.4 3	5	0.0	• 5	
		+1-1	7		5	-0.0-		
. 9	14	412	8	4 3	5 11	15.3	121.7	
10	14	417	9	¥ 3	5	7.4	76.7	and the second second second second second second second second second second second second second second second
	- 14 -	414-		-43	ş	2.9-		
12	14	415	11	4 2		25.8	39.6	· · · · ·
17	14	+16	12	¥ 2		3.0	24.3	
		+17-			ā	-0-0	2.3	
15	14	418	14	+ 2	A .	0.3	17.4	
16	14	419	15	÷ 2		6.3	52.5	
		-426-		2		37.2	49.6	
15	14	\$21	17	+ 2		C.C	12.7	
19	14	422	18	4 2		7.8	9.4	
		-423-			, 7	-3.8	6.9	
21	14	424	2P		j	0.0	C.C	
22	14	425	21		0		L.P	
23	_14_	-426-			J	-3.3	C.B	
24	14	427	23		•			
25	14	428	24		0	0.0	0.0	
26	14	460 -429-	25		0 0	ŭ • 0	C•C	•
27	_					- 14 - 44	0 • 6	······································
	14	430	26) (1)	J.ŭ	6.0	
28	14		27]	5.0	5 • C	•
	-	-432		•	Q	·· · ····		
30	14.	433	29		2	6.0	C . C	
31	14	434	30			0.3	C . O	
		-435 -	Ç	-53	-	C • G		
2	15	436	1	53	5	0.0	• 5	
. 3	15	437	2 '	5 3	8	9.5	12.9	
4		- 438			8	-0.0		
· 5	15	439	4	53		3.9	5.8	
- 6	15	440	F .	53	6 🧓 🍾	0.0	3.8	
7		- 4+ <u>1</u>	6	-53				
5	15	442	i 7 ° -	53	5	3.0	1.1	
9	15	443	5		5 . ? 5	52.6	259.0	· .
10	-15 -	_ 444_	9			3.2-		
11	15	445	10			9.0	215.4	· · · · ·
12	15	446	11 :			12.1	403.7	
		- 447_	12					-
14	15	448	13	5 2		0.0	6.2	
·					-			

15	15	449	14	5	28	14.8	35.6		
		455-	<u> </u>			7_			
. 17	- 15	451	16	5	28	0.0	17.6		
15	15	452	17	5	25	5.9	.35.8	,	
		-+57-		<u> </u>			17_3		
20	15	4=4.	19	5	27	20.5	59.5		
21	15	455	20	5	27	0.0	2.1		•
	-15								
23	15	457	22	5	0	0.0	G. 0		
24	15	458	23	5	. ŭ	0.0	0.0		
	15		2.4		d				
25	15	460	25	. 5	0	0.3			
27	15	461	ŽÓ	5			in the second second second second second second second second second second second second second second second		
	-15	-+62-	-27-	2	C	0.0	C.O		8
29	15	463	28	. 5			•••		
30	15	+64	29	. 7	1 1				
			. 29 36		0	. 0.0	C.0		
-	16	466		-	•		0.0		
1			G	5	35	0 . 0	ü+ü		
2	15	457	1	5	35	3.3	• 5		
	15	-468-		<u> </u>	- 79	0_0	<u>4 • 7</u> _		
4	16	469	3	5	35	0.0	8.1		
5	16	470	4	. 6	38	0.0	6.0	~ ·	1.1
	-15	-471-	5	÷	23		99+1		
. 7	16	472	6	5	23	0.0	6.4	· •	
8	15	473	7	5	23		19.3		
9	16-	<u>-474</u> -		<u> </u>	23	0.0	1.7		-
10	16	475	9	5	24	. 0.0	4.4		
11	15	476	10	5	24	0.0	4.7		•
		477		á	_24_		45.6		······································
17	16	478	12	6	25	0.0	9.4		
14	16	479	13	5	25	3.4	21.0		
		-48ú-	-14		26	20_9_	69.5-		
16	16	431	15	5.	25	100.7	136.6		
17	15	482	16	6	27	23.0	51.9		
	-15-	-483-	_17_		27		3.3		
19	16	4.84	10	5	27	3.0	16.9		
20	15	6.85	19	`ő	27	44.4	55.7		
				ő		29.9_			
22	16	487	21.	5	27	0.0	.7	يوديده مستعبينية المتعادة واختلاطهم	
23	16	488	22	5	0	0.0	G.0		
		_489	23	ā					
25	15	490	24	5	3	3.0	C.J		· · · ·
26	15	491	25	5	ō	3.0	0.0		
27	-16-	-492-	26	ā					
28	16	493	27					· · ·	
29	15	494	28	5	0 1	· 0.0	0.0		
36		495	29	<u> </u>		0.0 <u>0.0</u>	0.0		
	15		29 30						
	-	495 607	•••	6	0	C.S			
1	17		ü . 1	7	38	. 0.0	. 0.0		
<u> </u>		498 -		7	39		1.4.4-		
3	17	499	2	7	39	0.0	1.2		
4	17	500	3	7	39	0.0	3.5		
5		501			3.9	Q	2.9.		
5	17	502	5	7	33	3.0	4,5		
7	17	503	6	7	23	0.0	2.6		
8		564	7	7	-2-3				
9	17	565	8	7,	23	316.1	346.3		ger an state of
10	17	506	9	7	24	1.5	25.5		
11		51:7		7	24		1.0	····-	
12	17	508	11	7	24	0.0	7.0		
13		. 519	12	7	24	158.1	223.6		
14		510	13	·7	25				
15	17	511	14	7	25	3.0	21.8	•	
16	17	512	15	7	26	3.0	15.4		
17	- 17 -	- 513-	16		-26		23.4_		
- 18	17	514	17	7	27	15.9	43.3		
		-	-:	-	<u> </u>				

Test

间间

h

19	17	515	18	1	27	115.2	128.2	
		-516-	-19-					
21	17	517	25	7	27	19.3	16.0	
22	17	518	21	7	27	. 	2.2	
		-519-						
24	17	520	23	7	3	3.1	C.1	
25	17	521	24	. 7.		0.0	6.0	
	-17-	522-	25		<u> </u>		î	
27	17	523	25	7	3	0.0	0.0	
	-		27			-		
28	17	524		7	3	0.0	0.0	
29 ~-		525					Q+Q	
39	17	526	29	7	ů i	0.0	6.3	
- 31	17	527	30	. 7.	0	0.0	0.0	1 A
		-528-					<u>C.</u>	······································
.2	18	529	· 1	5	38	0.0	1.4	
.3	18	530 .	2	8	39	0.9	•5	
	18-	531 -				0.0		
Ś	18	532	· 4	. 5	38	3.6	• 3	
6	18	533	5	5		0.0	1.3	
-					- 4 8 -			
7	-18-	534	6			0		
. 8	18	535	7	8	23	0.9	11.5	· ·
.9	18	536	8	5	23	239.5	236.3	
<u> 10 </u>	-18-	-537-	<u> </u>		24			
11	18	53.4	16	5	21	C.ú	•7	
12	18	539	11	. 5	21	0.0	.7	
<u> </u>	-18-	-546-						
14	18	-940- 541	13	- 5	24	61.7	66.1	
-			-					· · · · · · · · · · · · · · · · · · ·
15	18		14	5	.24	55.9	84.9	•
	1-	563-						
17 . 1	18	544	16 .	- 5	25	255.8	257.5	
- 18	18.	545	17	8	15	J.	° 4₽.5.	
	1 <u>\$</u>	-5+6-					4+3	
Ζđ	18	547	19	5	15	3.3	37.8	
21	18	548	2.	· 5	15 -	8.0	13.5	
22	_	-5+9-		8		23.5		
23	18	550	22		-			
		-		- 3	Ç -	0.0	C.ŭ	
24	18	551	23	. 5	. 3	0.0	0.0	•
25	-	-552-		8				
26	18	553	25	8	3	0.0	C.0	
27 -	18	554		- 5	ů.	0.0	0.0	
2*	-18-	- 555	27		Q	}.		·
29	18	556	28	5	0	0.0	C.C	
30	18	557	29	8.	n -		6.0	
31	18	-558-	<u> </u>			3.0		
				-				
1	19	559	Q	9	40	9.0	0.0	
2	19	560	- 1	9	40	0.0	•6	
	-	551	2		6 fl		1• 3	
4	19	562	3	.9.	43.	ũ.ũ	.3	
- 5	. 19	563	4	9	40	0.0	.5	
<u>_</u>		-564-	5		-43-			
.7	19	565	6	9	40	7.0	4.1	
	19	566		- ý	22	422.1	445.2	
9								
		-567				43.8		
10	19	568	. 9	9	22	553+8	563.3	•
	- 19	569	10	3	21		1.7	
	-17-	- 579-			21			
13	19	571	12	9	21	3.0	2.7	
14	19	572	13	9	21	0.0	6.8	
		573	_14		<u>2i</u>	C.C		
16	19	574	15	9	23	0.0	3.9	· · · · · · · · · · · · · · · · · · ·
	_						25.5	
17		575	16	<u></u>	18	23.4		
		576	17	3				
		577	18	Э	18	0.0	14.2	
19	19							
19 20	19 19	578	19	9	15	34.1	104+0	
19 20	19		19 20	9 9	13 <u>13</u>	34.1 15.9		

23	19	581	22	9	0	0.0	0.3	
26	<u> </u>	- 582-	-23	<u> </u>		0		······
25	19	583	24	Э	8	0.8	0.3.	
24	19	554	25	9	3	0.7	0.0	
		-585 -	-26-					
25	19	536	27	9	 •ù 	0.0	0.0	
29	19	587	28	Э	0	0.0	0.0	•
	-19-	-588-	-29-					······································
31	19	589	36	9	Û	ٿ . 10	0.0	
1	20	590	0	13	43	54.9	54.9	
2		<u> </u>		_1] _	<u> </u>			
3	20	202	2	10	49	. 0.0	8.7	· · · · · · · · · · · · · · · · · · ·
· • • •	22	593	3	13	40	0.0	2.9	
<u> </u>				-13-	- 4 :			
5	20	595	5	13	43	75.1	95.9	
.7	20	596	6	10	- 42	340.0	350.5	
	<u>2n_</u>	<u> </u>	7		-42		7,7	
9	20	598	8	10	45 ·		76.7	
10	20	539	9	10	45 .	352.2	378.6	
	24-		-10-	-10-	21		497-9	
12	2*	601	11	10	21	75.7	79.ü	
13	23	602	12	10	21	5.8	12.9	
	20.	643		<u>19</u>	-21	<u> </u>		· · · · · · · · · · · · · · · · ·
15	22	614	14	10	21	71.2	89.1	
16	23	605	15	10	25	153.6	212.1	
	-24-	-645-	<u>15</u>		-23			
18	23	637	17	10	15	3.0	7.6	
19	20	608	18	13	15.	13.0	22.8	
	29-	940		-16-	<u></u> \$		22.8	
21	20	610	20	10	16	59.3	52.C	
22	20	611	21	13	16	. D.P	3.0	
23	2÷-			1.¢	_17_		9	
24	20	613	23	10	ũ	C - C	0.0	
25	20	614	24	13	3	0.0	G.J	
?6	-29-	615	25	<u>_1</u>	G	<u> </u>		
27	23	516	26	10	ú	0.0	· C • C ·	
28	20	517	27	16	Û -	9.6	· C.S	
29	23	618	28	_13	;	Q+Ç	C • C	
30	27	619	29	10	· 3	6.0	0.0	
· 31	23	621	3 C	10	3	0.0	°C • 8	
		-521-	Ę	-11	<u>k</u> ÿ		Ç.0	
2	21	622	1	11	40	° 0.0	.9	
3	21	623	2	11	47	185.7	136.1	
	21-	-624-	3		+ü	ù•0		
.5	21	625	4	11	43.	272.4	290.9	
ĸ	21	626	5	11	43	236+1	352+4	
7	21 -				42			······································
8	21	628	7	11	42	0.0	11.9	
. 9	21	629	8	11 -	42	23.3	44.6	÷
		63Q	9	-11-	45	232+4		
11	21	631	10	11	45	0.0	9.1	
12	21	632	11	11	45	485.6	495.3	
	21	673-	12		- 45-	451 +5	510.3	
14	21	674	13	. 11	45	. 7.8	36.2	
15	21	635	16	11	45	555.8	576.1	
	21-	-636-	15	_11_	20	<u> </u>	34+2	
17	21	637	16	11	25	0.0	7.6	•
18	21	678	17	11	19	176.0	115.2	
	-	-639-					13.4	······································
20	21	640	19	11	15	37.3	42.3	
21	21	641	20	11	16	125.6	194.6	
	-	- 642		-11-	16		26.4	
23	21	643	22	11	17	29.6	42.9	
24	21	644	23	11	0	2.0	G.O	
25	21-		24	-11-		3.0	0.0	
· 26	21	546	25	11	0	G • O	0 - C	

四回

E

27	21	647	25	. 11 .	3	0.0	0.5	
	21	-548-	27	- 11-				
29	21	649	28	11	3 -	1.0	0.0	
20	21	650	29	11	. 3		G.C	
<u>71</u>		-651	£	<u>-11</u>		<u>i^i</u>		
1	22	652	0	12	4]	0.0	5.0	
2	22	653	1	12	40	133.8	172.7	
3	2?	654						· · · · · · · · · · · · · · · · · · ·
.4	- 22	655	3	12	40	0.0	6.3	1 A.
. 5	22	656	- 4	12	40	1. 0. C	5.0	
6	22_	_657_	5	-12-			<u>6.</u>	
· .7 ·	22	658	6	12	42	51.7	90.7	1 A A
5	22	659	7	12	42	232.7	235.6	· · · ·
	-22-	_650_			43	15.7	17.5_	· · · · · · · · · · · · · · · · · · ·
10	22	661	9	12	45	222.7	254.2	and the second second second second second second second second second second second second second second second
11	22	652	10	12	45	150.8	243.6	•
12	_22	_663_	-11-	_12_			32.1	
13	2?	654	12	12	45	2?.7	127.3	
14	22	665	13	12	45	+3.8	115.7	
		_666		12	-45	33_5	52.2	
.16	22	667	15	12	46	451.3	504.6	
17	22	668	16	12	19	751.1	- 802.0	
18		-669-		_		162+C		· · · · · · · · · · · · · · · · · · ·
19	27	670	18	12	15	19.3	26.8	
20	22	671	19	12	15		36.0	
21	-22-	-672-				55+8	96.2	
22	22	673	21	12	17	35.7	\$5.7	
23	22	674	22	12	11	61.9	112.1	
24		675-		_12_				······································
25	27	676	24	12	Û	0.0	C.O	· · · · · ·
26	22	677	25	12	n.	5.5	0.ŭ	
27		-678-	26					· · · · · · · · · · · · · · · · · · ·
28	22	679	27	12	· 0	0.0	9.6	
29	22	680	28	12	g	0 • P	G • C	
7a	2^_	641		12	A	B	<u></u> r . <u>0</u>	······································
31	22	687	30	12	5	C.J	C.S	
. 1	24	653	٥	13	4]	. Q.+G	5.3	
2	23				+7-	0 • 6		······································
3	23	685	2	13	4.7	0.0	6.2	 A second sec second sec
.4	23	556	3	13	43	0.0	• 5	
	2-3		4	-13-				
6	23	688	5	13	42	4.5	12.4	
7	23	689	6	13	42	80.9	86.1	
8	-23-	696	7			33.7		
- 9	23	691	8	13	43	29.4	65.7	
10	23	692	. 9	13	44	0.0	48.6	
	23-			1.3	4 k	5.2_	46 • 8	
12	23	534	11	13	44	0.0	50.0	
13	- 23	695	12	13	43	3.1	43.8	
14	23-	696	13_	13_	48-		51.6-	
15	23	697	14	13	43	0.0	18.0	
15	23	698	15	13	46	315.1	3+3-8	
17	-23.	-699-		17	-46-		981.7 -	a and a second second second second second second second second second second second second second second second
18	23	730	17	13	14	578.9	674.5	
19	23	701	18	13	15	11.1	28.4	
ZQ	-	-792-			13-			
21	23	703	20	13	13	226.0	263.0	
22	23	704	21	13	12	43.4	99.0	
	-	-705-		13		111.1-		· · · · · · · · · · · · · · · · · · ·
24	23	716	23	13	11	0.0	23.9	
25	23	7:7	26	13	- ē	. J.O	5.0	
26		7.38		-13	<u>.</u>			· · · · · · · · · · · · · · · · · · ·
27	23	739	26	13	j	0.6	C.3	
28	23	710	27	13	Ĵ	0.0	0.0	
	-		28	13_	ġ.	0.0_		
							0.0	

31	23	713	30	13	a	0.0	0.0	
	-24	714	C			<u> </u>		· · · · · · · · · · · · · · · · · · ·
2	24	715	1	14	40	· · 0.6	• 5	
	24	716	2	14	40	0.0	.5	
	-24-	-717						
5	24	718	4	-14	41	• 7	7.9	
6	24	719	- 5	1+	41	22.6	44.6	
7		-726		-14-		237.6-		•
.8	24	721	7	14	43	0.0	22.7	
. 9	24	722	8	14	43.	0.0	22.7	
<u> </u>		-723-	<u></u>	-14-	<u> </u>	0_0		
11	24	724	10	15	44	0.0	23.8	· · · · · ·
12	24	725	11	14	44	7.0	22.8	
13		726	12	-14-	<u></u>			······································
14	24	727	17	14	48	11.0	34.9	
15	24	728	14	14	43	175.1	217.1	
		-729-	_15_	-14	- 47		297,5_	· · · · · · · · · · · · · · · · · · ·
17	24	730	16	14	47	59.2	210.6	
16	24	731	17	1+	14	237.3	272.1	
	-24				<u></u>	77.0	<u>82.8</u>	
20	24	733	19	14	17	13.3	39+4	
21	24	734	20	14	13	94.2	110.3	
		-735-		14	-13			······································
23	24	735	22	14	12	135.9	236.8	
24	24	737	23	1+	11	159.7	542.3	•
25		738	24				11+8	
26	24	739	25	1+	0	0.0	0.0	
27	24	740	2F	1+	Û	0.0	0.0	
_		_741_	27	4		0_0	C • B	
29	24	742	28	14	÷ C	0.0	r.:	
30	24	743	29	14	3	0.0	0.ŭ	
	24-	744		14		0.0	C+ù -	
1	25	745	0 '	15	41	3.0	C.C	
Z	25	746	1	15	41	0.0	2.6	
	25-	747			41	3.5		
4	25	748	3	15	L1	14.4	16.0	•
5	25	769	4	15	41	0.0	3.1	
6	- 25	- 736 -		1.5			57•1 -	·····
. 🕶	25	751	6	15	43	21.4	32.0	
8	25	752	7	15	43	6.0	57.8	
9		- 7.53			4\$	50 • 8	188.9	
10	25	754	9	15	44	412.3	516.0	•
11	25	755	10	15 -	i n in	•9	33.9	
	25-	-756-			k	0.0		······································
17	25	7=7	12	15	48	9.0	8.0	
14	25	758	13	15	49 -		671.0	
	25	759			57		15+2 -	
15	25	760	15	15	- 47	346.7	451.1	
17	25	7F1	16	15	47 "	102.*	1+0.6	
	25	762		15	14	15+1		· · · · · · · · · · · · · · · · · · ·
19	25	763	18	15	1+	0.0	11.7	
23	25	764	19	15	13	3.0	2.0	
21	25	-765-		15	13			
22	25	766	21	15	13	2.3	8.8	
23	25	767	22	15	10	0.0	6.2	
		-768-	-23-					
25	25	769	24	15	7	31.4	45.1	
26	25	77 9	25	15	5	13.?	33.2	·
		77 1	26		5		138.2	
28	25	772	27	15	0	0.0	0.0	
29	25	773	28	15	ŭ	0.ŭ	2.0	
	-	-774-						
31	25	775	30	15	3	0.0	C.Q	
1	26	776	Ö	15	41	5.0	5.0	
				16				
3	25	778	z	15	41	31.9	69.4	
-		-	-		-			

.

· · ·	26	779	3	15	41	5.4	21.2	
5		· 780			+1			
6	26	781	5	15	41	0.0	24.0	
7	25	752	6	15	P. 1	50.1	52.6	
		787	7_	-15-				
9	25	796	8	15	43	7.6	63.9	
10	26	785	9	15	43	0.0	11.5	
		786		-15-	-43		7.8	
12	26	787	11	15	49	0.0	55.7	
13	26	788	12	15	4 9	97.4	127.3	
	25-							
15	25	79C	14	15	57	99 . 7	112.6	
16	26	791	15	16	57	3.0	2.7	
		-792	-16-	-16-	57	···		
18	26	793	17	15	· 9	0.0	.8	
19	25	794	18	15	Э	0.0	24.4	
	24	_795			<u> </u>	11-0		
21	25	796	20	15	10	44.8	51.3	
22	25	737	21	15	13	11.5	14.2	
23	-26-	-798-	-22		-13			
24	25	799	23	16	19	0.0	70.2	*
25	26	800	24	15	5	27.4	68.7	
				15		9_6		· · · · · · · · · · · · · · · · · · ·
27	26	802	26	15	5	55.6	154.4	
28	26	303	27	15	5	78.5	79.4	
29	-26-	894	28	-15-	<u> </u>			· · · · · · · · · · · · · · · · · · ·
. 30	26	875	29	15	3 -	0.0	8.0	
31	25	536	τĊ	15	ō	6.0	0.0	
<u>1</u>			<u> </u>		<u></u>			
2	27	80.5	1	17	41	0.0	.5	
.3	27	819	ź	17	41	0.0	13.4	
			<u> </u>	7				
5	27	511		17	41	0.0	17.2	
5	27	812	4 5	17		0.0	9.3	
7	-	-813			+1 51	36.5		
	27	514	7	17	51	31.0	52.3	
· · ·	27	815		17	51	217.6	242.4	
<u>1</u> 0	-		8			0.0	2.9	
	27_		9					· · · · · · · · · · · · · · · · · · ·
11	27	817	. 16	17	43	219.5	247.0	
12	27	818	11	17	49	0.0	9.6	
	27			17	49	<u>1.6</u>	2].1	
14	27	820	17	17	19	-4	43.ŭ	
15	27	821	14	17	49	335.9	358.3	
		-822-					10 -9	
17	27	823	15	. 17	57	145.5	160.6	•
18	27	824	17	17	57	11.2	43.8	
		825	-					
20	27	826	19	17	9	1+2+7	154.8	
21	27		20	17	17	30.3	56.5	
			21				5.6	· · · · · · · · · · · · · · · · · · ·
23	27	. 829	22	17	10	0.0	1.5	
. 24	27	870	23	17	13	25+1	36.6	
		-831-		-17	ł		13.6	
26	27	832	25	-	+	17.7	35.4	
27	27		26	17	5	45+1	121.8	
28		_834_		-17-			0.0	
29	27		28	17	0	0.0	G .O	
1 30	27		29	17	0	0.0	6.0	
				_ 17_	0	<u>0</u> _0	C•ß,	
1	28	838	C	15	41	0.0	0.0	•
2	28	839	1	15	41	C.O	0.8	
3			2	<u></u>			22.4	
4	28	841		13	41	5.2	25.1	
5	29	842	4	15	41	9.0	2.7	
	28		5	18:-	41		23.8	
7	28	344	6	15	51	50.5	54.9	
							•	

8	24	845	7	13	51	u . C	.9	•
		-846-		18				
10	28	847	9	13	51	64.4	68.1	
11	28	848	10-	15	50 .	0.0	3.6	
	-24-		-11-	-15-	<u> </u>		9,±	
13	28	851	12	13	51	52.1	70.7	
14	28	851	13	15	49	148.9	157.0	· ·
	28	- 452- 853		-15-				
16 17	28	854	15	18	57	9.0 0.0	1.4	
	29-			<u></u>			<u>193</u> .3 _	
19	ZR	856	18	13	57	J.C	6.6	
20	28	557	19	15	57	0.3	2.5	
		858	<u> </u>	<u></u>		<u> </u>	9	
22	23	859	21	15	10	0.0	4.8	
23	28	. 560	. ?2	15	- 5	0.0	1.5	
	<u>2</u> A.	-851-	23					
25	28	862	24	15	3	0.**	4.1	-
26	- 28	863	25	15	4	33.8	39.4	•
27		-854-	26	-13-		23.3		
28	28	865	27	15	3	9.0	0.0	
29	2*	866	28	15	Ċ.	0.0	ũ.C	· · · ·
	2-8	- 467-						
31	28	858	30	15	ũ	0.0	0.0	
1	29	869	7	13	52	C.ŭ	6.0	•
	<u>-2a</u> -	-870-		-13-				· · · · · · · · · · · · · · · · · · ·
	29 29	571 572	2 3	19	52 52	0.0	14.8	
5_		_873	<u>k</u>	13 <u>1</u> 3-	52	C.J	2.9 17 .3	
5	29	874	5	19	51	24.5	26.8	
7	29	875	6	13	51	2.00	41.7	-
	-29-	-876-	7	<u> </u>		15.6		
.9	29	577	. 8	19	51	7.4	44.2	
10	29	57 B	9	19	51	70.2	83.7	
		-879-		-13-			7.9	
12	29	586	11	19	5 J	0.3	10.2	· · · · · · · · · · · · · · · · · · ·
17	29	581	12	13	52	0.0	5.8	
		-482-		13	5	G • S	7.9	···· ··· ···
15	29	883	14	13.	54	0.0	0.0	•
15	29	884	15	13	54 -	0 • C	• 4	
	29	-885-	1 <u>0</u>	-17-			2.1	
15	29	886	17	13	56	C.C	4.5	
19	29	587	18 -	19	56	0.0	2.7)
	29-			-13-	57		17.2	
21	29	859	20	19	. 57	0.0	3.3	
22	29 29-	890 	21 22	19 - <u>1-</u>	10	. 0.0 0.0	2.7 1.5	
24	29	892	23	13	5	0.0	5.0	
25	29	893	24	19	. 3	0.0	1.7	
26			25	-13-	Ž		25+2	
27	29	895	26	13	1		35.8	
28	29	376	27	ĩś	ī	15.4	73.5	
29		897	2×	-19-			G.Q	
30	29	598	29	13	S	0.0	G . C	
31	29	899	30	13	Û	5.0	L.0	
		-976	0	_23_	52			
- 2	30	971 -		23	52	0.0	• 6	
. 3	30	902	2	20	52	•5	4.3	
	30	-313-	3	20	52			
. 5	30	904	4	20	52	154.4	182.7	
6 7	30	905	5	20	51	C.0	13.7	
••••	- 30	-906-	ĥ	23			-	
.8	30 30	917	7	2] 2]	51 51	13.1].0	87.7	
10		_97.8 _97.8	. <u> </u>		51 51	4_9	11.0 	
11	30		10	23	53	0.0		· · · ·
14	30	744	7.6	Υ W	ق ب	u a Li		

12	3u	911	11	25	53	0 • Û	14.4	· .	
13							18.5	· · · · · · · · · · · · · · · · · · ·	
14	30	913	. 13	20	51	19+0	21.4		
15	30	914	14	23	54	0.0	0.0		
		-915-	15-	23	54				· · ·
17	30	916	16	20	5+	0.0	• 4		
18	30	917	17	23	55	0.0	•9		
		-918-							
20	30	919	19	20	57	0.0	.2		
21	30	126	20	20	57	0.0	. 1.9		
	3.4_	<u>_921</u> _	21-		57				
23	30	922	22	23	59	2.5	6.3		
24	30	923	23	20	59	31.2	109.4		
		-924-	-24-	- 24	-53-		4.7		
25	30	925	25	23	2	0.0	10.0		
27	30	326	26	20	- 2	0.0	6.2		
28	-30	927 -				<u>0.0_</u>			*
29	30		28	20					
		-			1	10.6	56.4		
36	30	929	Şa	20	1	3.0	9	÷	1
		-934-	-36-				<u> </u>		
1	31	931	0	21	52	0.0	0.0		
. 2	31	932	1	21	52	3.0	3.8	•	
3			2		52	Q_Q	5.9-		
4	31	934	3	21	52	105.5	118.3		
5	31	975	4	21	51	0.0	5.1		
		-936-	<u> </u>						
Ť	31	937	6	21	51	0.0	• 5		
. 8	31	978	7	21	51	0.0	3.0		
ĝ	31-			21	51		<u></u>		
			-				• =		
10	31	940	9	21	50	0.0	6.1		
11	31	941	16	21	53	7.0	7.7		•
		942		21-			:+1		
13	31	943	12	21	50	0.0	2.5		•
14	31	944	13	21	50	2.0	.1.		
			14 -	21					
15	. 31	946	15	21	55	1253.4	1060.8		
17	31	947	16	21	54	425.7	427.2		
18	- 31-	948		-21-		0.3			
19	31	949	18	21	54	0.0	.2		
20	31	950	19	21	59	0.0	1.2		
	-	951-	2¢	21			1 • C		
22	31	952	21	21		0.0	0.0	****	
23	31								•
	_	953	22	21	59	0.0	4.5		
24	31	954_	23	21_	53	45+2			· · · · · · · · · · · · · · · · · · ·
25	31	955	24	21	59	0.0	5.5	· · · · ·	
25	31	956	25	21	59 -	0.3	1.3		
27	71			21	2				
28	31	958	27	21	1	3.0	21.7		
29	31	959	28	21	1	0.0	12.6		
		- 966-	29						
31	31	951	30	21	60	3.0	0.t		
1	32	962	0	22	52	0.0	6.0		
2	_			22			U • U • C		
		953	1		52				
. 3	32	364	2	22	52	u.0.	1.7		
·	32	965	. 3	22	52	3.0	1.5	;	
5	_	-966-			52		4.7		
6	32	967	5	22	51	0.0	10.7		
7	32	968	6	23	51	0.0	21.1		
	- 32	969-	7				2.9-		
	12	970	8	22	50	67.7	75.1	· · · · · · · · · · · · · · · · · · ·	
Q	32	971	. 9	22 /		24.6	45.5		
9 10		372	_12_	22-				and the second sec	
10	32					•••		· · · · · · · · · · · · · · · · · · ·	
10 11				22	E A				
10 11 12	32	973	11	22	50	0.0	•5	Charles and the	
10 11 12 13	32 32	973 974	12	?2	50	9.0	•2	Constanting and a second secon	
10 11 12	32 32	973						Сэ. — В. 	

IJ

IJ

16	32	977 978_	15 16	22	54	3.0	0.0		
19	32	979 980	17	22 22	54	0.0 0.0	0.0	· · · · · · · · · · · · · · · · · · ·	:
	32 32		<u>10</u> 20	<u>22</u>	<u>54</u> 58	U.0	G 0.0	<u></u>	
22	32	987	21	22	6] 	0.3		·	
24 25	32	985 986	23	22 22	59 59	0.0 4.6	2.8 10.9		
		-987- 988	<u>25</u> 26	<u>-22</u> 22	<u>-53</u>	5.8 0.0	9.3		
28	. 32	989	27	22	1	0.0 0	.8		·
30 31	32 32	991 992	29 30	22 22	60 60	0.0	C.0 0.3		
<u>1</u> 2	<u>33</u> 33	993 974	<u> </u>	<u>-23</u> 23	<u> </u>		0_0 1.8	· · · · · · · · · · · · · · · · · · ·	
3	33 33	995	2	23	52 52	0.0	1.2		
5 6	33 33	997 998	- 4	23 23	52 52	0.G 9.Q	7.7	·	
7 8	33	<u> 999 </u> 1000	<u>6</u> 7	-2 3 - 23	<u>-52</u> 5ú	0.0 0.0	0.0		
	33	1001 	8	23	50 54	0.0	2.5 <u>5.0</u>		
11 12	33	1003	13	23 23	54 54	0.0	C.0 J.C		
	33	1005-	<u> 12 </u> 13	<u>-23</u> 23	<u>5</u> 4 54				
15 		-1038-	14 <u>1</u> 5	23	54 	0.0	0.5		
17		1009	16 17 18	23 23 23	54 63 <u>61</u>	0.0 7.0 	0.G .1 0.G		
19 20 21		1311- 1012 1013	19 20	23 23 23	55	0.0 J.7	0.0 0.0 0.0		
23		1914-			65 63	3.C 3.0	Q.C G.Q		
23 24 25 -	33	1316	23	23	60 	0.0	.8 9_0		
26 27	33	1018 1319	25 26	23 23	61 61	ŋ.p g.g	26.2		
28 29		1020- 1321	27 28	23 23	<u>1</u> 1	Q.Q 0.0			
30	33	1122	29 30	23 	61 	0.0 9.0	Ú.0		
1 2	34	1724	C 1	24 24	52 52	0.0	0 • 0 2 • 2		
	34	1026 - 1027	2 3	? 4 2.4	52 52	0.0 3.0	4 • 2	<u>.</u>	
. 5 	34	1028 1929-	4 5	24 24	52 5?	31.0 	34.1		. <u></u>
7		103" 1031	6 7	24 24	53 53	19.9 0.0	2C.2 0.0		•
- <u>9</u> 10		-103 <u>2-</u> 1033	8 9	-2+- 24	54 54	0.0	0.0 C.0		
11 12	34	1034 1035-		24 24	54 54	0.0 0.0	0.3	•	
13 14	34	1735	12 13	24	54 54	0 • 0 0 • 0	G • C C • C		
15 16	34	1038 1039	<u>14</u> 15	26 24	54 54	0.0 0.0	C.3 0.0		
17 18	34	1040	16 17	24 24	54 60	J.C 	0.0 583.0		
19	34	1042	18	2+	60	0.0	• 3		

interest
Streams
Lastingen Lastingen
ARM CAR
I

IJ

B

20	34 10 -34 11		19	2+ 	6J 	3.0	1.3	
22	34 10		21	21	60	9.0	0.0	
23	34 10		zż	24	61	3.0	0.0	
	3418		23	2+				
25	34 13		24	24	- 60	0.0	0.0	
26	34 1"		25	24	67	0.r	0.0	
27	-34-18	56-	-26	-24-	-6			
28	34 19	51	27	24	61	0.0	. 0.5	
29	34 10	52	28.	24	6 J	0.0	0.0	
	-34-18	-53		-24	-6}			·
31	34 17	54	30	24	60	0.0	6.0	
1	3° 13	55	٤.	25	52	3.0	G • 0	
2	-35 10			25	-52			
. 3	35 10	57	2	25	52	9.0	• 3	
4	35 10		3	25	52	0.0	1.0	
	-75 19						1.2	
. 6	35 10	50	. 5	25	53	0.0	C • C	
. 7	35 10	51	6	25	53	6.3	· ŭ • 🗘	
	-35-10	62-		25	-53			
. 9	35 13	-	8	25	54	0.0	0.0	
10	35 17	64	9	25	54	0.0		· · · ·
	-35 -16	65-	-1 ú	-25-				
12	35 10	66	11	25	54	G . J	6.0	
.15	35 10	67	12	25	54	0.0	C.C	
	-35-1.	68	13		-5+		<u> </u>	
15	35 10	69	14	25	54	0.0	C.C	
16	35 10		15	25	54	0.0	0.0	
<u> </u>	-35-10	71	<u> 16 </u>		_54	<u>9,9</u>	C . O	
18	35 13	72	17	25	63 .	0.0	3	
19	35 10	<u>7</u> 7	18	25	60	C • C •		
20	-35-16	74_		25	-63	<u> </u>	<u> </u>	•• •••••••••••••••••••••••••••••••••••
?1	35 10	75	24	25	63	0.0	0.0	
22	35 11	76	Z1	25	61	0.0		
23	-35-10	77	- 22	-25-	- 60	Q.ŭ		· · · · · · · · · · · · · · · · · · ·
24	35 1.		23	25	6n °	0.0	3	
25	35 10		24	25	63	5.1	10.2	
26	-35 10	×0	25	25	61	22.0	24+6	<u></u> ********************************
27	35 1]	81	26	25	60	0.0	+5	
28	35 17	82	27	25	6)	3.0	2.2	
?9	-35-13	A3_	2*	25				
30	35 10	R4	29	25	63	0.0	G.3	
31	35.10	85	30	25	6:	0.0	3.0	
<u> </u>	36-13	86		25	52		6.6-	
. 2	36 17	87 -	1	25	52	2.0	.2	
3	36 19	88	2	Zó	52	0.0	-1	
	-36-11	89-	₹	25				
5	36 10		4	26	54	0.0	ú.0	
6	36 11	91	5	25	54	0.0	C.0	
	-36-13	32-	6	_26_	54	0.0		
8	36 10		7	25	54	0.0	C . 3	ς.
	36 1.		8	25	54	0.0	C.0	
	-35-10			-26-	-		C.C	
11	36 10		10	25	 54	0.0	C.0	
12	36 10		11	26	54	0.0	C.2	
<u> </u>	-35-13			25	5+		£.C	
14	36 10		13	25	54	0.0	G.C	
14	36 11			26	54	0.0	0.0	
	-36-11				54		C.O	······································
10 17	-36-11		15 16	25			C.C	
18	36 11		10	25	54 60	0.0	Ú.Ű.	
							G. O.	
					69			
20	35 11		19	26 26	6ů 60	0.0	. C.U G.O	
21	35 11		20	25	60 61 -		U.U	
_	36 11							
23	36 11		22	26	67	3.0	C.0	
24	36 11		23	25	6.	0.0	C.0	
26	36 11		25	26	6]	0.0	C. 0	
27	36 11			25	60		G.G	
-		-						
29	36 11		28	25	63	7.6	.9	
30	36 11	.15		26	60	ü.∎ 0	C • C	
						53.6		

.

AREA 1 ME MAINE	,			
	······	AZEA CENTROLD (Y.Y)		
GRID CELLS INCLUD	50.0	ENISSION SENTROID =	16.92	19.45
			027 (27. 284	024/28 201
929 (29,23)			963 (29,21)	
989 (27.22)	991(23,22)	1020 (27.23)	1021(28,23)	
APFA 2 SAL NEW H	INDENTOF CEN	STTTVE ADEA	•	
	411F - 3 18 	AREA CENTROID (X.F)	= 25.51.	25.00
		EMISSION CENTROID =		
GRID CELLS INCLUD	F0 1	THESTON STAROID -	69.14	1240
894 (25, 19)	925(25+20)	926(26,20)	957 (26,21)	
	··	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
-		and the second second second second second second second second second second second second second second second		
AREA 3 VT VERMO				
		AREA CENTROID IX.YI		
		EMTSSION CENTROID =	24.00	18. 27
GRID CELLS INCLUD 862(24,18)				· · · · · · · · · · · · · · · · · · ·
		•	· 46	
AREA 4 NH SOUTH	LKA ALA HAMP			47 77
		AREA CENTROID (X.Y) <u>Emission centroid =</u>		
GPID CELLS INCLUD	5D.	EUTRATION - SEUTRALINA		
831(24.17)	832(25,17)	863(25.18)		
0.7/244711	9251679111	00316701		
· · · · ·				
•				· •
AREA _ 5 _ MA _ MASSA			· · · · · · · · · · · · · · · · · · ·	
		AREA CENTROID (X.Y)	= 25.57.	-16.0C 2
		EMISSION CENTROID =		15.71
GRID GELLS INCLUD	ED1		·····	•
		881(25,16)	862(25,15)	803(27,16)
			······	
AREA - 6 - RI RHODE-	TSIAND			
	136410	AREA CENTROID (X.Y)	= 25.11.	15.00
	ED	EMISSION SENTROID =	-	15.00

國明

				-4724-CENTROID-(X+*)-	24.88.	-15.00
		1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		EMISSION GENTROID =	24.00	15.00
GPID CE	LLS	INCLUD	ED1			•
7694	124-1	.51	······			
				- N		
· · · · · · · · · · · ·			······································			
AREA B	SA2	ADIRO	NDACKS SENSI	TIVE AREA .		
· · ·			•	AREA CENTROID (X.Y)	= 22.50.	18.50
				-EXISSION CENTROID =-		-++54
GRID CE					:	
8601	22.1	.81	861(23,18)	891(22,19)	892 (23+19)	
			······			
				· · · · · · · · · · · · · · · · · · ·		
		HECTE	RN-NEH-YORK-			•
a « C # 7	HALL TO -		~N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AREA CENTROID (X.Y)	- 11 20	16 40
				ENISSION CENTROID =		
		THEI IN	504	ENISSION CENTROLD -	12.47	16. 22
**************************************	47.4	-1-ve-00 61	791/14.161	795(19,16)	825118-171	826119-17
1951		.07	1341704701	* 32(13)101	0231104111	020123411
·		·	·			
AREA 10	NY2	SOUTH	EASTERN NEW	TORK	· · · · · · ·	
				AZEA CENTROID IX.YI		15.69
				ENISSION CENTROID =		
					21.72	- IL. 01
GRID CE	LLS	INCLUD	EDI		21.83	
		51	-763(23-15)			
	22+1	51	-763(23-15)			
7671 7991	22+1	51 61		795120 ,163 825121,173		
7671 7991	22+1	51 61	-753(23+15) 827(20+17)	795420 ,163 825(21,17)		
7671 7991	22+1	51 61	-753(23+15) 827(20+17)	795420 ,163 825(21,17)		
7671 7991 858	22, 1 23, 1 20, 1	51 57 81		795420 ,163 825(21,17)		
7671 7991	22, 1 23, 1 20, 1	51 57 81		795(20,16) 829(21,17) 890(21,19)	7971 21,15) 829(22,17)	798122+16 833123+17
7671 7991 858	22, 1 23, 1 20, 1	51 57 81		795(20,16) 829(21,17) 890(21,19) 87EA CENTROID (X.Y)	7971 21,15) 829(22,17) = 23.00,	798122+16 833123+17
767(7990 858(AREA-11	22.1 23.1 20.1	.5) 67 .81 NEWJ		795(20,16) 829(21,17) 890(21,19)	7971 21,15) 829(22,17) = 23.00,	798(22,16 83)(23,17 13.00
7671 7990 8580 AREA-11 	122+1 123+1 120+1 NJ	51 61 .81 NEWJ		795(20,169 825(21,17) 890(21,19) 87EA CENTROID (X.Y) ENISSION CENTROID =		798(22,16 833(23,17 13.00 13.64
7671 7990 8580 AREA-11 	22.1 23.1 20.1	51 61 .81 NEWJ		795(20,169 825(21,17) 890(21,19) 87EA CENTROID (X.Y) ENISSION CENTROID =		798(22,16 83)(23,17 13.00
7671 7990 8580 AREA-11 	122+1 123+1 120+1 NJ	51 61 .81 NEWJ		795(20,169 825(21,17) 890(21,19) 87EA CENTROID (X.Y) ENISSION CENTROID =		798(22,16 833(23,17 13.00 13.64
7671 7990 8580 AREA-11 	122+1 123+1 120+1 NJ	51 61 .81 NEWJ		795(20,169 825(21,17) 890(21,19) 87EA CENTROID (X.Y) ENISSION CENTROID =		798(22,16 833(23,17 13.00 13.64
	NJ	51 61 .81 NEWJ INCLUD 21	ERSEY 675 (23,15) 859 (21,16) ERSEY 675 (23,12)	795(20,16) 825(21,17) 890(21,19) AREA CENTROID (X.Y) ENISSION CENTROID = 706(23,13)		798(22,16 833(23,17 13.00 13.64
	NJ	51 61 .81 NEWJ INCLUD 21	ERSEY 675 (23, 15) 859 (21, 16) ERSEY ED: 675 (23, 12) EASTERN PENN	795(20,16) 829(21,17) 890(21,19) AREA CENTROID (X.Y) EVISSION CENTROID = 706123,13)	- 797 (21, 15) 829 (22, 17) = 23.00, 21.85 737 (23, 14)	798(22+16 83)(23+17 13.00 13.64 739(24+14
	NJ	51 61 .81 NEWJ INCLUD 21	ERSEY 675 (23, 15) 859 (21, 16) ERSEY ED: 675 (23, 12) EASTERN PENN	795(20,16) 829(21,17) 890(21,19) AREA CENTROID (X.Y) EVISSION CENTROID = 706123,13) SYLVANIA AREA_CENTROID_(X.Y)		798(22,16 83)(23,17 13.00 13.64 739(24,14
	NJ	51	ERSEY 673 (23, 15) 859 (21, 17) 859 (21, 18) ERSEY ED: 673 (23, 12) EASTERN PENN	795(20,16) 829(21,17) 890(21,19) AREA CENTROID (X.Y) EVISSION CENTROID = 706123,13)		798(22,16 83)(23,17 13.00 13.64 739(24,14
	NJ	51	ERSEY 675 (23,15) 859 (21,16) ERSEY ED: 675 (23,12) EASIERN PENN ED:	795(20,169 825(21,17) 890(21,19) AREA CENTROID (X.Y) ENISSION CENTROID = 706123,13) SYLVANIA AREA CENTROIO_(X.Y) ENTSSION CENTROID =		798(22,16 83)(23,17 13.00 13.64 739(24,14
	NJ	51	ERSEY 675 (23,15) 859 (21,16) ERSEY ED: 675 (23,12) EASIERN PENN ED:	795(20,16) 829(21,17) 890(21,19) AREA CENTROID (X.Y) EVISSION CENTROID = 706123,13) SYLVANIA AREA_CENTROID_(X.Y)		798(22,16 83)(23,17 13.00 13.64 739(24,14
	NJ	51	ERSEY 675 (23,15) 859 (21,16) ERSEY ED: 675 (23,12) EASIERN PENN ED:	795(20,169 825(21,17) 890(21,19) AREA CENTROID (X.Y) ENISSION CENTROID = 706123,13) SYLVANIA AREA CENTROIO_(X.Y) ENTSSION CENTROID =		798(22,16 83)(23,17 13.00 13.64 739(24,14

there are the second

KIR:

a de la constante de la consta

and the second

1 T

1. S. S.

Same and

ALC: NO

14. 16

100

· · · ·	•	AREA CENTROID (X.Y) - EMISSION - CENTROID	= 19.83,	14.13
GRID CELLS IN	100501			
702(19,13)	703(20+13) 765729+15)	733 (19, 14) 	735(28,14)	735(21,14)
· · · · · · · · · · · · · · · · · · ·				
	STERN PENNSVLVA		·	
		AREA CENTROID (X++)		
GRID CELLS INC				19:
-780(17,13)	.731(17,14)	732[18,14]	762(17,15)	763(18,15)
	······································	•		
AREA-15-SAJ-PE	NNSYLVANIA-SENS	LILVE AREA		<u> </u>
		AREA CENTROID (X.F)	= 15.00.	12.50
		EMISSION CENTROID =	12.00	12.51
GRID-CELLS-INC	701(18.13)			<u> </u>
0/01200123	8 U L U L D 9 L D F	•		
		······································		
AREA 16 HT HI		AREA CENTROID (X.Y)	= 28.17.	11.00
		EMISSION CENTROID =		
GRID CELLS THO	LUDEOT		•	. •
•		641(20+11)	642 (21+11)	
672(20,12)	•		· ·	
<u> </u>		······································	· · · · · · · · · · · · · · · · · · ·	· · · · <u>· · · · · · · · · · · · · · · </u>
AREA 17 DE DE		AREA CENTROID (X.Y)	- 21.67.	11.00
		EMISSION CENTROID =		
GRID CELLS INC	LUDEDI		-	2
		673(21,12)		
		•		
AREA 18 VA VI	RGINIA			· · · · · · · · · · · · · · · · · · ·
• · · · · · · · · · · · · · · · · · · ·	, 	AREA CENTROID (X.V) EXISSION CENTROID =	= 15.35,	9.06
GRID CELLS INC	LUDEDI	•		
543(15, 8)	545(17, 8)	546(18, 8)		
549(21,_81_		· · · · · · · · · · · · · · · · · · ·		578(19,9)
579(27, 9)		607(17,19)	635 (15+10)	603(19,10)
639(18,11)	640(19,11)			

			-TOCTNEL		•
REA 19 HV1	<u>NORTHEASTE</u>	UN_NEST	VIRGINIA	= 16.57.	44 67
			AREA CENTROID "X+V) SHISSION CENTROID =		
			AISSING CENTROID +	16.26	N
GEID_CELLS_		146 491	669317,129		,
638(1/+)	,13 003	104 161	0034114161		
•	· · · · · · · · · · · · · · · · · · ·	•			
			- 		
REA 20 HV2	SOUTHWESTE	RN WEST	VIRGINIA		
<u> </u>		· · · · · · · · · · · · · · · · · · ·	AREA CENTROID IX. FI EMISSION CENTROID =		
	INCLUDED				-
GRIU GELLS 578/16.	1NJLUULU4 01 571	115. 91	605(15,10)	685115-182	636115+11
637 (16.)					
	•				•
				<u> </u>	
REA 21 471	EASTERN KE	ALACKA			9.17
			<u>AREA-CENTROID (X.T)</u> E4ISSION CENTROID =		9,87
COTR 05110	THOU HOED.				
GRIM GELLS	INCLUDED:		<u></u>	-569(10-9)	
571/12.	ai 572	113. 91	500(10-10)	601(11.10)	502(12.10
603(13.	LO) 60¥	(14.10)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			•	•	
4			•		
REA-22KY2	WESTERNKE	NIUCKY-			0.00
1	-		AREA CENTROID (X.Y) EMISSION CENTROID =		
			HISSION CENTROID	Tell	7.00
		1 8. 91	568 (9, 91		
2001 / 4	31		Job ()•);	·	
		<u></u>			<u> </u>
REA 23 TH1	WESTEDN TE	NNEGGEE		• .	
NNCH EG 1941	4201 CAN 1E		_AREA_CENTROID_{X+X}-	_=5+89+	5.78
					7.17
· · ·			EMISSION CENTROID =	7.52	
GRID CELLS	INCLUDED				
GRID CTLLS 471(5,	.61	{ 6 • 6 }-	<u> </u>	47 + (8 + -61	
GRID CELLS 	.61	(-6 , 6) (8, 7)		47 + (8 + -61	
471(5,	.61	(6+5) (-8+ 7)	<u> </u>	47 + (8 + -61	
471(5,	.61	(- 6, 5) (8, 7)	<u> </u>	47 + (8 + -61	
471(5,	6) <u>472</u> 7) 505	(8. 7)	<u>473(7,6)</u> 535(7,8)		
471(5, 504(7, AREA 24 TH2	6) 472 7) 505 EASTERN TE	(8+ 7)	<u>473(7,6)</u> 535(7,8)	47. (8, 5) 535 (8, 8)	503(6,7
471(5, 504(7, AREA 24 TH2	6) 472 7) 505 EASTERN TE	(8+ 7)	<u>473(7,6)</u> 535(7,8)	47. (8, 5) 535 (8, 8)	503(6,7
471(5, 504(7,	6) 472 7) 505 EASTERN TE	(8+ 7) NNESSEE	<u>473(7,6)</u> 535(7,8) <u>A254 CENTROID (X.Y)</u> EMISSION GENTROID =	-47+(-8+ 5) 535(5, 8) 	503(6,7 7.60 7.4%
471(5, 504(7, AREA 24 TN2	6) 472 7) 505 EASTERN TE	(8+ 7) NNESSEE	<u>473(7,6)</u> 535(7,8)	-47+(-8+ 5) 535(5, 8) 	503(6,7 7.60 7.4%

A second 100

Section 5.

11001

Sec.

ALL R

.

and the second

No. of Street,

Alexandra Solution

満

and the second se

and the second

Sector Sector

No.

			ана (1996) 1977 - Салан Салан (1997) 1977 - Салан (1997)	· · · · ·
				1
	· ·			
				Ĭø
	-			
				I
·	and the second sec	· · ·	n ganda an di an a	
SOUTHERN APPAL	ACHAIN SENS AREA		•	
	AREA_CENTROID_{X++}_		-6-00	
	EMISSION JENTROID #	18.17	6.15	· 👘
	-51	-477(13+-61-		
		· · · ·		;
<u> </u>			· ·	Ter
CENTRAL NORTH		· · · · · ·	1. 	
	AREA_CENTROID_(X+¥1_		_6.83	
	EMISSION CENTROID =	(5,41	7.12	·
	51 <u>512115. 7)</u>	518116-71-	544(16+ 8)	
· · · ·				1
EASTERN NJRIN I	GARJLINA ARFA CENTROID (X.V)	= 18.94.	5.94	
•	ENTSSION CENTROID -			
				·
4) 453(18+	53 454(13, 5)			
•			517(21.7)	
•••••••••	() 2131703	3734774	**1 *** *	-
····				15 mm
· · ·				
CONTH CASALINA	4 <u></u>			-
	AREA CENTROID (X.Y)	= 16.37.	3.86	!
	EXISSION CENTROID =			
INCLUGED:				
	31 383(16, 3)	390(17, J)		- 1
		461111 + ++	4661101	-
5} 4761178	-31			
•				
			<u></u>	-
		- 11.60.	3.80	
	FMISSION_CENTROID		4,40	
TNCLUDEDI				· ·
3) 385(12,	38 415(11, 4)	415(12, 4)	445(11, 5)	
<u> </u>			•	
•	•			4
SOUTHEASTERN-G	EORTIA			● •
	AREA CENTROID (X.Y)			
	EMISSION CENTROIU =	13. 66	トマダ	
INCLUDEDI	41 203/13, 11	291114. 01	295(15, 1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		325 (14, 1)	325(15, 1)	•
71 00047704			357(15+_2)-	
2)				
2) 385(13,	3) 387(14, 3)	46/(1)+ 4/		
2)	3) 387(14, 3)	427(13) 40		
2) 305(13,	, 3) 387(14, 3)	467(13) 47	······································	ť
	INCLUDED: 53 441613, 73 CENTRAL NORTH INCLUDED: 63 451615, EASTERN NORTH INCLUDED: 4) 453618, 63 453618, 63 514617, 70 -SOUTH-GAFOLINA INCLUDED: 1000001 10000000 10000000 100000000	EMISSION SEMFROID = INCLUDED: 53 441111, 53 478(12, 63 73 CENFRAL NORTH CARDLINA AREA CENTROID (X, 71) EMISSION CEMTROID = INCLUDED: 43 451(15, 63 512(15, 73) EASTERN NORTH CARDLINA AREA CENTROID (X, 71) CATSSION CEMTROID = 1NCLUDED: 43 453(15, 53 454(13, 63) 63 514(17, 73 515(18, 73) 73 -SOUTH-CAFDLINA AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: 43 453(15, 31 383(16, 33) 44 413(15, 44 42)(16, 43) 53 453(15, 53 451(16, 53) AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: 33 3A5(12, 30 415(11, 4)) SOUTHEASTERN GEORGIA AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = INCLUDED: AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) EMISSION CENTROID = AREA CENTROID (X, 71) AREA CENT	LEEA_CENTROID (X,Y) = 12.43, EMISSION DEMTROID = 18.14 INCLUDED: F) 441413, 51 478412, 61 573413, 61 F) 441413, 51 478412, 61 573413, 61 F) 441413, 51 478412, 61 573413, 61 F) 441413, 51 478412, 61 573413, 61 F) F 515412, 61 512415, 71 51545, 71 F) F 515415, 61 512415, 71 51545, 71 F) F 515413, 51 455422, 51 61 F) F 515413, 51 455422, 51 61 F) F 515413, 51 455422, 51 61 F) F 515413, 51 455422, 51 61 F) F 515413, 51 455422, 51 61 G1 S15413, 51 455422, 51 455422, 51 61 G1 S15417, 51 S15413, 51 455422, 51 61 G1 S15417, 51 S15413, 51 452417, 51 51 S00TH-CAFJLINA AREA CENTROID (X,	$\frac{1924 - CENTROID + (X,Y) - (2,43, 4,50)}{ENISSION SENTROID = (1,14, 4,55)}$ $1924 - (2017,61) + ($

۶ [†]

AREA	81	FL1	SOUTHE	RN FLOR		A258	CENT		X-Y1	±	15.33.	-=5-89		
											14.75			
G2 1	0 01	FLLS	INCLUDE	D4										
	_16	(15.4	-91		B1		-482	1641		_7.51	1521		_79(16+	-7
	80	17.	-7)	103(14	-61		109 (1561		110(16,-61		111117.	-6
	139	(14,-	-93 -7) -5)	141(15	51		141(16,-51		- 142 C	17,-51		169(13,	- 4
	170	(14	-41	171115			1721	1641						
				0NL 51.00	7.77.4	· · · ·			. ·			•		
AKLA	52	FL2	NORTHE	KN -LU-	TUN		CENT	2010 6	X. Y)	=	15.17,	-2.33		
						-1-4	TON	CTNIRO	ITR_=		_++•\$!	\$7		
G2 T	B C1	2117	TNCLUDE	D :										
0~1	201		-3)	202(15	3)		2030	1631		235 (15,-2)		23+116+	-2
	264	(15.4	-1)											
										•				
AREA	33	SA3	FLORID	A SENSI	TIVE	AREA								-
						AZEA	CENT	2710 (X . Y I	a .	13.50.	-1.50		
						ENISS	104	JI.KL						
GRI	DCI	ELLS	INCLUDE -2)	27244	- 7 9		26.21	12		2631	1411			
	231	(13+)			-21			134-14						
												•		
AREA	34	FL3	WESTER	N_FLORI	<u>na</u>		·							
						AREA	CENT	ROID	(X • Y)	.=	9.50,	90		
						ENISS	ION	ÇENTRO	= DIC		8.38	2/		
GR1	0 3	ELLS	INCLUDE											
	228	(10,	-2)	223(11	,-21		257(8,-11)	253 (9,-1)		259113.	-1
	260	(11.	-2) -1)	261(12	,-1)		2881	8, 91		283	9. 81		293(10.	.
	• • • • •							• .						
AREA	35	AL	ALABAN	IA									<u>-</u>	
						AREA	CENT	ROID ((X.Y)	2	5.57.	2.67	•	
						EMISS	SIGN	CENTRO			8.51	3.64		
GR 1	to c	ELLS	INCLURE	nt										
	287	(7.	() 2)	3156 7	. 11	•	319(5. 11)	323 (3, 11		321(10.	1
	349	(7,	21	3531 8	, 21		351(9. 21	1	352 (10 . 21		3810 8.	3
	382	1 9.	34	-383(1ú	• -3)-		-4124	-844		-41.5 (3443		414(15,	4
	443	(8.	51	44+1 9	. 5)		445 (10. 51						

1.11

1

1. Sec. 1.

16.16

100.1

192

1.1

12.23

188-37⁵

•	· · · · · ·												
AREA 36 MS	#ISSISS	IPPI											
				471	a cent	2010 (X ,¥) =		5.38.		;		
				ENI	KOIZZ	CENTRO	ID = .		6.24	3.31	3		
GRID CELLS	INCLUDED	18											
2851 -5+-	-81	-2864-	6. 1	H	31+4	- \$, 1)	3	131-	- 41 1) <u> </u>	-3164	- 54 -	-4)
3176 6.	11	3656	4 2	2)	347 (5. 21	3	43 (5. ZI	and the second second	377(4.	- 31
378(5, 	31	373(6, 1	57	3801	7, 31	4	03C	4- 41		4836	5.	41
	- 43	4114	-74		<u>*** 9 </u>	-5,-5)		414 -	6	·	-4421	-7	-51
IREA 37 LA	LOUISTA	NΔ		•		· .			<u> </u>				
	2001014			724	A CENT	2010 0	X,Y} =		2.20	41			
					SCION-	CENTRO	ID-=		-3.++		•		
GRID CELLS	TNOLUDER	12											
2221 4.	-21	2231	52	21	2248	52)	2	430	011		2511	1.	-1)
	-11	2521-	3				2	544	-5+-11		-2301	-0	-91
2811 1.	03	2821	2.	0)	2830	3. 0)	2	851	6 . B1		5111	٦.	11
2816 1. 5126 1.	11	31 31	2.	1	342 (R. 21	3	430	1. 2)	3441	2.	21
3451 3.	. 29	3731_	_1	<u> </u>		_1 7 }	3	7-1-	2-3		3764	_3.	-31
APEA 38 AR	ARKANSA	S	-	AR	A CENT	ROID (X,Y) = IO		1.35	. 5.5	5		
	TUO: 10 FT			<u>s</u>	12210W-		7A- <u></u>				T		
GRID CELLS 4040 2,	INCLUDE	11 1021				2. 1.			3 . 61		6351	Π.	51
4361 1+	4)	4471	7	+7 = 1	4030	. 29 47	ł	721	5. 5		4556		. 61
4671 1+		6631		5.1	673/		4	a71	1. 7		6991	1.	71
4071 14	. 6') 7)	6071	5. 5	71	5714	0.81	5	231	1. 8		5321	Ē.	81
JUIL 4.	<i>*</i> 3	2621	24 4	11	52.01								
· · · · · · · · · · · · · · · · · · ·					· .		•						
AREA 39		S-SE	ISIL	LVE_A	254								
				421	EA GENT	1 010S	X,Y) =		2.40	. 7.2	0		
				EM	ISSION	CENTRO	X,Y) = ID = .	•	2.40	6.64			
- GRID CELLS	INCLUDED)1											
468(2.	6)	493(2. 1	71	500 (3, 7)	5	31(2. 8)	531(3,	81
	- •		•			• •							
•		• •			•								
-							•						
				· •									

	ISSOURI		AZEA CENTROID (X.Y)	-	2.58.	11.06	
····			EMISSION CENTROID =		5.39		
GRID CELLS IN	SLUDED:						
. 33 (5+ 8)		6- 81	5591_0, 91				
562 (3, 9)	5631	4, 91	5546 5. 91	5651	5, 91	593(0.10
5910 1,107	.592(2,10)	593(3,10)		4,101		5,10
6211 0+113				624.6	3.111.		4.11
6261 5+111	652 (0,121		65 4 (2.121	655(3,12
656'(4+12)	6571	5,12)	683(0,13)	68 + L	1,13)	685(
	687.4.	4+131	7161_0.163	_7151.	4.141		2+14
717(3,14)						•	
					•		
			- <u> </u>	······			
REA 41 IA I	044						
AKEN WI IN I			APEL CENTROID (X+Y)	-	2 71.	15.30	
			EMISSION CENTROID =				
GRID CELLS IN					3.3 -	Che IV	
		5-141.		_7653.		7671	2.15
7641 3-151	7631	4-451	7501 5-151	7751	-14157-	777(1.15
778/ 2.165	7734	8-465	750(5,15) 780(4,16) 	7817	5.151	7821	5.15
807/ 0.17)		-1-171			3-171		4.17
121 5.171	A781	- 		8401	2.181	RL16	3.18
8421 6.181	8431	5.181			21201		
	4						
· · · · · · · · · ·	·	· · · · ·					
NPEA 42 IL1 - S	JUTHEPN-IL	LINGIS					
			AREA CENTROID (X,Y)	=	5.+++	11.44	
	21.110.504		ENISSION CENTROID =		6-21	11.15	
- GPID CELLS IN		-	CA34 C 445	(6336	• • •
596(0,10)	5971	7 4 24	627 (5, 11)	- 0231	6.13)	8291	2011
070(0,12)	6231	(+1 2)	6881 5,131	50 91	0.131		
· · · ·	; 1						
REA 43 IL2 N	UKTHERN LU		AREA CENTROID (X.Y)		7 1 7	41. 1.2	
•		•	EMISSION CENTROID =	=	1.444	14.46	
- GRID CELLS IN	01 11050.		ENISSION JENIKULU E	(. 1997)	6.97	[76 7 3	
	6931		591(8,13)	7291	6 41.4	721(7.41
722(8.14)				7621	8,15)	7978	7,14
			(761 / 4171	1231		1971	/ a 1 D

and the state

and the second second

1.161.161

10.000

ABER LL THE MODEL				
AKAR 44 TUT NOKIN	ERN INMIANA			41. 50
		AREA CENTROID (X,Y)		
		EXISSION CENTROID		-++55
GRID CELLS INCLUD				
692(9,13)	693(10,13)			
	754(_9,15) _	755(18,15)	755411+15}-	· · ·
			···	
AREA 45 IN2 SOUTH	ERN INDIANA	•		•
and a second second second second second second second second second second second second second second second	-	AREA CENTROID (X,T)		11.13
GRID CELLS INCLUD	E0.	ENISSION CENTROID =		
598(8,10)		631(9.11)	631118.11)	532(11.11)
6611_9+121	557440.47V		0,1,1,0,1,1,	
•				
AREA 46 OHL SOUTH	ERN JHIO			
		AREA CENTROID (X.V)		11.86
		EMISSION CENTROID =		
GRID CELLS INCLUD	EDI			
		635(14,11)	665(14,12)	667 (15,12)
698 (15,13)				
1				
AREA 47 DH2 NORTH	EASTERN DHID			
AREA \$7 DH2 NORTH	EASTERN DHID	AREA CENTROTO (X.Y)	= 15.50,	14.50
			= 15.50. <u>(\$.</u> 32	14.50 14.54
GRID CFLLS INCLUM	EDI	AREA CENTROID (X.Y) 	15.32	14.50 /v. 54
		AREA CENTROID (X.Y) ENISSION_SENTROID_=	= 15.50, <u>18.32</u> 751(16,15)	14.50 /4.54
GRID CFLLS INCLUM	EDI	AREA CENTROID (X.Y) 	15.32	14.50 //.54
GRID CFLLS INCLUM	EDI	AREA CENTROID (X.Y) 	15.32	14.50 //.54
GRID CFLLS INCLUN 729(15,149	ED: 730(16,14)	AREA CENTROID (X.*) ENISSION CENTROID = 760 (15,15)	15.32	14.50 //.54
GRID CFLLS INCLUM	ED: 730(16,14)	AREA CENTROID (X.*) ENISSION CENTROID = 760 (15,15)	<u>15.32</u> 751(16,15)	
GRID CFLLS INCLUN 729(15,149	ED: 730(16,14)	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y)	<u>15.32</u> 751(16,15) = 12.78,	13.33
GRID CFLLS INCLUN 729(15,149 -AREA 68	ED: 731(16+14) WESTERN-OHIO	AREA CENTROID (X.V) ENISSION CENTROID = 760 (15.15)	<u>15.32</u> 751(16,15) = 12.78,	13.33
GRID CFLLS INCLUN 729(15,149 -AREA 68	ED: 731(16,14) WESTERN-OHIO	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y) ENISSION CENTROID =	15.32 751(16,15) = 12.78, (3.64	13.33 13.97
GRID CFLLS INCLUN 729(15,149 -AREA 68-043NORTH 	ED: 731(16,14) HESTERN-OHIO ED: 665(13,12)	AREA CENTROID (X.*) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.*) EMISSION CENTROID = 695(12,13)	15.32 751(16,15) = 12.78, (3.64 695(13,13)	13.33 13.97 597(14,13)
GRID CFLLS INCLUN 729(15,149 -AREA 68	ED: 731(16,14) WESTERN-OHIO	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y) ENISSION CENTROID =	15.32 751(16,15) = 12.78, (3.64	13.33 13.97 597(14,13)
GRID CFLLS INCLUN 729(15,149 -AREA 68-043NORTH 	ED: 731(16,14) HESTERN-OHIO ED: 665(13,12)	AREA CENTROID (X.*) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.*) EMISSION CENTROID = 695(12,13)	15.32 751(16,15) = 12.78, (3.64 695(13,13)	13.33 13.97 597(14,13)
GRID CFLLS INCLUO 729(15,149 -AREA 44	ED: 730(16,14) WESTERN-OHIO EO: 665(13,12) 727(13,14)	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y) ENISSION CENTROID = 695(12,13) 725(14,14)	15.32 751(16,15) = 12.78, (3.64 695(13,13)	13.33 13.97 597(14,13)
GRID CFLLS INCLUO 729(15,149 -AREA 44	ED: 730(16,14) WESTERN-OHIO EO: 665(13,12) 727(13,14)	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y) ENISSION CENTROID = 695(12,13) 725(14,14)	$\frac{15.32}{751(16.15)}$ = 12.78. (3.04) 695(13.13) 757(12.15)	13.33 13.87 697(14.13)
GRID CFLLS INCLUN 729(15,149 -AREA 68	ED: 730(16,14) WESTERN-OHIO EO: 665(13,12) 727(13,14)	AREA CENTROID (X.Y) ENISSION CENTROID = 760 (15,15) AREA CENTROID (X.Y) ENISSION CENTROID = 695(12,13) 725(14,14)	$\frac{15.32}{761(16.15)}$ $= 12.78.$ $\frac{13.45}{695(13.13)}$ 757(12.15)	13.33 13.97 597(14,13)
GRID CFLLS INCLUO 729(15,149 -AREA 44	ED: 730(16,14) WESTERN-OHIO EO: 665(13,12) 727(13,14)	AREA CENTROID (X.Y) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.Y) EMISSION CENTROID = 695(12,13) 723(14,14)	15.32 751(16,15) = 12.78, [3.44] 695(13,13) 757(12,15) = 12.17,	13.33 (3.67 597(16.13 16.67
GRID CFLLS INCLUO 729(15,149 -AREA 44	ED: 731(16+14) WESTERN-OHIO ED: 665(13,12) 727(13,14) ERN-1ICHIGAN	AREA CENTROID (X.*) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.*) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.*)	15.32 751(16,15) = 12.78, [3.44] 695(13,13) 757(12,15) = 12.17,	13.33 13.87 697(14.13
GRID CFLLS INCLUD 729(15,149 -AREA 48-0H3NORTH GRID-CELLS INCLUD 664(12,121 726(12,14) -AREA 49NI1-SOUTH GRID CELLS INCLUC	ED: 731(16,14) WESTERN-OHIO ED: 665(13,12) 727(13,14) ERN-1ICHIGAN	AREA CENTROID (X.*Y) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.Y) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.Y) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.Y) EMISSION CENTROID =	15.32 751(16,15) = 12.78, [3.44] 695(13,13) 757(12,15) = 12.17,	13.33 13.87 697 (14.13) 16.67 16.14
GRID CFLLS INCLUD 729(15,149 -AREA 6=OH3 NORTH GRID-CELLS INCLUD 664(12,121 726(12,14) -AREA 49NI1-SOUTH 	ED: 730(16,14) HESTERN-OHIO ED: 665(13,12) 727(13,14) ERN-1ICHIGAN	AREA CENTROID (X.*Y) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.Y) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.Y) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.Y) EMISSION CENTROID =	15.32 751(16,15) = 12.78, (3.64) 695(13,13) 757(12,15) = 12.17, /2.7/	13.33 13.47 597 (14.13) 16.67 16.16 783 (13.16
GRID CFLLS INCLUD 729(15,149 -AREA 48-0H3NORTH GRID-CELLS INCLUD 664(12,121 726(12,14) -AREA 49NI1-SOUTH GRID CELLS INCLUC	ED: 730 (16,14) WESTERN-OHIO ED: 665 (13,12) 727 (13,14) ERN-4ICHIGAN ED: 755 (19,16) 813 (11,17)	AREA CENTROID (X.Y) EMISSION_CENTROID = 760 (15,15) AREA CENTROID (X.Y) EMISSION CENTROID = 695 (12,13) 723 (14,14) AREA CENTROID (X.Y) EMISSION CENTROID = 787 (11,16) 819 (12,17)	15.32 751(16,15) = 12.78, (3.44) 695(13,13) 757(12,15) = 12.17, /3.7/ 783(12,15)	13.33 13.47 597 (14.13) 16.67 16.16 783 (13.16

(11.19
(12.2)
(12.21
(10.22
(6.18
1-6-19
(6,20
(.5+21
1-6-22
•
1 .
(4.19
(4,19 (
(0.22
1 0,23
(-5+23
(3,24
(2, 25
(2, 26

<i>_</i>
(7,25
1
•

the statistic

245 - 24 C 12

150-51

大学の大学

		· · · · · · · · · · · · · · · · · · ·	AREA CENTROID (X,Y) E4ISSION CENT ROID 	= 12+52+	-24-97
GRID CELLS	INCLUDED				
883 (14+1		884(15,19)	885 (16, 19)	914(14+20)	915(15+20)
916 (16+2	201	945414+21)_			
949(18.2	21)	975(13,22)	976(14,22)		973(17,22)
102(9,2	23) 1	003(10,23)	1004(11+23)	1005(12,23)	1005(13,23)
15C7114+2	2371	•	1003416+234	-10324 -8+244	
1074(10.2	-	035(11,24)	1036(12+24)	1037(13,24)	
1039(15,2		043116,241	1063(8,25)	10641 9.25)	1065(10,25)
1066 111+2			1068(13+25)	-1063(14+25)	
1071(16,		091(4,26)	10917 5+267	10921 6,263	
10041 8,2		095(9,26)	1096427,261	1097(11,26)	1898(12,26)
1099(13.2	26) 1	103 (14+26)-	1101415+261	-1162 (16+25)	
			•		•
REA 55 ON2	SUDBURY	SOURCE ARE	4		
			AREA CENTROID (X.Y)		
			ENISSION CENTROID		-21.80
GRID CTLLS 977(15+3		1			
LREA 56 SAB	ONTAPIO		AREA CENTROID (X,Y)		
	•				19.50 17.12
GRID GFLLS	TNCLUDED	1	AREA CENTROID (X,Y) EVISSION CENTROID =	17. 14	
REA 56 SA8 Grid Cflis 896(17, 1	TNCLUDED		AREA CENTROID (X,Y) EVISSION CENTROID =		
GRID GFLLS 896(17,1	TNCLUDED 19)	1 887(18,19)	AREA CENTROID (X,Y) EVISSION CENTROID =	17. 14	
GRID GFLLS 896(17,1	TNCLUDED 19)	1. 887(18, 19) N JNTARIO	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17.20)	ر ٦، ३५ 915(15,20)	<u>17.12</u>
GRID GFLLS 896(17,1	TNCLUDED 19)	1. 887(18, 19) N JNTARIO	AREA_CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA_CENTROID_(X.Y)	ر۳، ۲۶ 915 (15,20) _=17,12,	17.12 -17.76
GRID GFLLS B96(17, 1 REA 57 ONS	TNCLUDED 19) SJUTHER	1. 887(18, 19) N JNTARIO	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17.20)	ر۳، ۲۶ (۳، ۲۰) 915 (15,20) 17,12,	17.12 -17.76
GRID GFLLS B96(17,) Area 57 ons Grid Cells	TNCLUDED 19) SOUTHER INCLUDED	1 887(18,19) N JNTARIO	AREA_CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA_CENTROID_(X.Y) EMISSION CENTROID = 791(15.16)	(7.34 915(15,20) _=17.12, [6.36	17.12 -17.76 17.27
GRID GFLLS 896(17,) AREA 57 ONS GRID CELLS 759(14,)	TNCLUDED 19) SOUTHER INCLUDED	1 887(18,19) N JNTARIO	AREA_CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA_CENTROID_(X.Y) EMISSION CENTROID = 791(15.16)	(7, 34 915(15,20) _=17,12, /6,26 792(16,16)	17.12 -17.76 17.17 822(15,17)
GRID CFLLS B96(17,) REA 57 ONS GRID CELLS 759(14, 823(16,)	TNCLUDED 19) SJUTHER TNCLUDED 15)	1	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15.16) 853(15.18)	(7.34 915(15,20) _=17.12, [6.36	17.12 -17.76 17.17 822(15,17)
GRID CFLLS 856(17,) REA 57 ON3 GRID CELLS 759(14,) 823(16,) 856(1*,)	TNCLUDED 19) SOUTHER TNOLUDED 15) 171	1 887(18,19) N JNTARIO	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17,20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15,16) 853(15,18) 858(19,19)	(7. 34 915(15,20) 	17.12 -17.76 17.27 822(15,17) 855(17,15)
GRID CFLLS 896(17,) REA 57 ON3 GRID CELLS 759(14,) 823(16,) 856(1*,)	TNCLUDED 19) SOUTHER TNOLUDED 15) 171	1. 887(18,19) N JNTARIO 1 793(1+,16). 824(17,17) 857(19,18)	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17,20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15,16) 853(15,18) 858(19,19)	(7. 34 915(15,20) 	17.12 -17.76 17.27 822(15,17) 855(17,15)
GRID CFLLS 896(17,) AREA 57 ON3 GRID CELLS 	TNCLUDED 19) SOUTHER TNOLUDED 15) 171	1. 887(18,19) N JNTARIO 1 793(1+,16). 824(17,17) 857(19,18)	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17,20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15,16) 853(15,18) 858(19,19)	(7. 34 915(15,20) 	17.12 -17.76 17.27 822(15,17) 855(17,15)
GRID CFLLS 896(17,) AREA 57 ON3 GRID CELLS 	TNCLUDED 19) SJUTHER TNCLUDED 15) 17) 18) 20)	1 887(18,19) N JNTARIO 1 793(1+,16) 824(17,17) 857(19,18) 921(21,20)	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15.16) 853(15.18) 858(19.19)	(7. 34 915(13,20) 	17.12 -17.76
GRID CFLLS B96(17, 1 B96(17, 1 B96(17, 1 B96(17, 1 GRID CELLS 759(14, 1 823(16, 1 856(1*, 1 920(20, 1)	TNCLUDED 19) SJUTHER TNCLUDED 15) 17) 18) 20)	1 887(18,19) N JNTARIO 1 793(1+,16) 824(17,17) 857(19,18) 921(21,20)	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17,20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15,16) 853(15,18) 858(19,19) OPEA AREA CENTROID (X.Y)	(7. 34 915(15,20) 	17.12 -17.76 17.27
GRID GFLLS 896(17, 1 896(17, 1 896(17, 1 896(17, 1 896(17, 1 823(16, 1 823(16, 1 856(1*, 1 920(20, 1)	TNCLUDED 19) SJUTHER TNCLUDED 15) 17) 18) 20) 0JEBEC	1 887(18,19) N JNTARIO 1 793(1+,16) 824(17,17) 857(19,18) 921(21,20) SENSITIVE 6	AREA CENTROID (X.Y) EMISSION CENTROID = 917(17.20) AREA CENTROID (X.Y) EMISSION CENTROID = 791(15.16) 853(15.18) 858(19.19)	(7. 34 915(15,20) 	17.12 -17.76 17.27

۲ I

				DUEREC		CENTROI Ion Cen			22.69.	_		
<u>G</u> ?ID_C	ELLS	INCLU	0501									
	122,2			3(23,20	-	924124.			(19,21)		951(20	
	(21,2			5 (22, 21) 5 (26, 22)		954(23,		953	(24,21)	ç	355(25	,21
						<u></u>						
AREA 60	QE2	CENTI	RAL Q.	JEREC		CENTROI			23.66,			
GRID C	5110	TM2110			-EXISS	IUN CEN	IROID.E		-17.12	-24.13		
	(30,2		-	118,22	, ¹	983 (21,	221	98.	(22,22)	(991(29	1.72
				117-23		611418-			{21+23}-		15(22	
	123.2			124.23		015(25,			(26,23)		22129	
	(30,2			L (17,24)) 1	042(15.	241	-	119,241		44 (20	
				5122-241		047-123+			124+241-		149125	-
	(26.2	- · ·		L(27,24)		052125.			(23, 24)	-	154(3)	
1072 - 1077	(17,2			5(19,25) 5723 ,25 1		C74(19, G79(24,			(23,25) 125,251		[75(2]	
	127,2			3(25,25)		C84(29,			1227297 (31,25)]81(28 103(17	-
1104				5(19+26)	-	106(29,	-		{21,26}		103122	
1109	127,2	261	1110	1424+261	I -	111425+	261					
1114	(28,2	261	1111	5(29,26)	1	115(30,	261 .				÷	1
												•
					-							
		· · ·										
				· · · · · · · · · · · · · · · · · · ·								
					•							
•												
									· · · ·	······		
											•	
		••• ••• •••			· · · · · · · · · · · · · · · · · · ·							
												•
2												
•												
•												
•												
•			•			*						
•												
•						•						

1.3 Aggregrated Grid Areas in 11 Canadian Regions

Canadian Region	Canadian SO ₂ Emissions	SURE Aggregate	Area	SURE SO ₂ Emissions	ę	
Number	(kT/yr)	<u>Areas</u>	Number	(kt/yr)	Difference*	
1	1946	MIL	49	2311		
		MI2	50	$\frac{316}{2627}$		
		Subtotal		(2388)	+19	
				(2500)	+17	-
2	3874	ILL	42	1066		
		IL2	43	960		
	·	INL	44	751		There is a
		IN2	45	<u>1793</u> 4570		計算 1
		Subtotal		4370 . (4154)	+ 7	
				, (4134)	Ŧ 1	
3	4762	OH1	46	3014		
		OH2	47	1109		
		OH3	48	636		
		Subtotal		4759	·	推动 氧
				(4326)	-10	
4	2056	PAL	12	569		
		PA2	13	477		
		PA3	14	1076		
		SA3	15	55		
		Subtotal		2177		
				(1979)	-4	_
5	2408	NYL	9	307		
		NY2	10	379	\sim '	
		VT	3	6		man la suite
		NH	4	138		
		MA	5	670		
		RI	7	33 45		
		CN SA2	8	12		
		NJ	11	692		
	-	SAL	11 2 1	42		
		ME	1	332		
		Subtotal		2656	-	
				(2415)	0	

Relationship Between U.S. 63 Areas and Canadian 11 Regions

(continued)

Canadian Region Number	Canadian SO ₂ Emissions (kT/yr)	SURE Aggregate Areas	Area <u>Number</u>	SURE SO ₂ Emissions _(kT/yr)_	% Difference*
6	2835	KY1 KY2 TN1 TN2 SA4 Subtotal	21 22 23 24 25	754 1055 726 633 <u>73</u> 3241 (2946)	+4
7	2446	DE MD NC1 NC2 VA WV1 WV2 Subtotal	17 16 26 27 18 19 20	$ \begin{array}{r} 131 \\ 428 \\ 512 \\ 473 \\ 644 \\ 1089 \\ \underline{268} \\ 3542 \\ (3220) \end{array} $	+24
8	7485	SC GA1 GA2 SA5 FL1 FL2 FL3 AL MS LA AR SA6 MO IA WI MN	28 29 30 33 31 32 34 35 36 37 38 39 40 41 51 52	423 621 321 60 648 180 912 1209 501 614 67 11 1291 525 936 487	
Total Eastern U		SA7 Subtotal	52 53	<u>20</u> 8826 (8024) 32,398 (29,453)	+7 +6

New York

1000

(continued)

Canadian Region Number	Canadian SO ₂ Emissions (kT/yr)	SURE Aggregate Areas	Area Number	SURE SO ₂ Emissions (kT/yr)	ء Difference*	
9	1970	ON1 ON2 ON3 SA8 Subtotal	54 55 57 56	434 1061 585 <u>8</u> 2088		
		Subtotal		(1898)	-4	
10	1037	QE1 QE2 SA9 Subtotal	59 60 58	287 734 <u>0</u> 1021		
		Subtotal		(928)	-12	
11	469	NS NF Subtotal	62 63	0		
Total Eastern		•				
Canada	3,476			3,109 (2826)	-23	
TOTAL	31,288			35,507 (32,279)	+3	
		₹. _X .	,			

* $\frac{\text{US} - \text{CAN}}{\text{US}}$ x 100

Number in parenthesis are in units of kT/yr where l kT = 1.1 kt

· • .

2. Comparison of U. S. SURE, Canadian SURE, and NEDS 1976 on a State Basis

Table.

Basis

Comparison of U. S. SURE, Canadian SURE, NEDS 1976 on a State

10-00-

an a c

States	SURE Major	SURE Major	SURE	NEDS
	Point $(kt)(1)$	Point (kt)(2)	Total(kt)	<u>1976(kt)</u>
			s.	· .
Alabama	939	944	1290	1028
Arkansas	13	13	79	111
Connecticut	39	45	66	92
Dist. Colum	bia O	• 0	0	40
Delaware	65	65	129	166
Florida	605	630	1788	969
Georgia	587	643	916*	710
Illinois	1635	1650	2344	2771
Indiana	1601	1610	2189	1977
Iowa	228	234	535	344
Kentucky	1613	1621	1824	1644
Louisiana	377	391	636	303
Maine	50	49	337	152
Maryland	248	252	352	363
Massachuset	ts 306	307	666	332
Michigan	1294	1686	2292	1221
Minnesota	339	343	521	349
Mississippi	209	281	447	227
Missouri	975	995	1288	1395
New Hampshi	re 52	51	169	121
New Jersey	194	214	555	317
New York	383	398	974	1129
North Carol	ina 645	651	984*	620
Ohio	3310	3423	4533	3342
Pennsylvania	a 1795	1812	2480	2443
Rhode Islan	d 0	0	43	28
South Carol	ina 242	246	459	265
Tennessee	1046	1075	1332	1281
Vermont	0	0	7	8
Virginia	261	263	695	403
West Virgin	ia 1086	1099	1349	. 1211
Wisconsin	512	521	937	<u> </u>
TOTAL	20,644	21,512	32,216	26,036

(1) Canadian Aggregation

(2) U.S. Aggregation

Emissions in S. Appalachian sensitive area excluded *

> . .

3. New U. S. Total and Utility SOx Emissions for the Aggregated Grid Areas in the United States

		St	ates ()	kt/yr)					-		
Λrea	Total	Point	UTL	AIRTEST 80	New Total	۸rea	Total	Point	UTL	AIRTEST 80	New) Total
1	332.0	49.3	96.5	25.6	261.3	33	59.6	14.4	25.4	9.1	43.3
2	41.7	0.0	20.7	0.0	21.0	34	911.9	43.3	57.5	184.0	1038.4
3	5.8	0.0	0.2	0.0	5.7	35	1208.4	897.9	822.3	508.3	894-4
4	138.6	51.5	86.9	50.0	101.7	36	500.1	325.9	94.3	230.5	636.3
5	670.7	307.4	410.7	189.1	449.1	37	614.1	391.2	243.0	27.1	398.2
6	33.2	13.1	15.2	2.0	20.0	38	67.6	13.4	28.0	27.1	66.7
7	45.1	31.4	27.4	12.3	30.0	39	10.6	0.0	2.4	0.3	8.5
8	12.1	0.0	0.0	2.6	14.7	40	1291.4	994.8	827.1	1357.9	1822.2
. 9	307.1	153.7	70.9	166.3	402.5	41	525.3	212.5	334.6	176.2	366.9
10	379.0	166.7	167.9	195.4	406.5	42	1065.5	917.4	858.8	961.1	1167.8
11	693.4	231.6	222.3	267.1	738.2	43	960.3	463.1	463.4	331.3	828.2
12	569.8	291.6	245.7	143.6	467.7	44	752.2	418.4	311.0	281.0	722.2
13	477.2	333.5	332.2	373.7	518.7	45	1794.0	1487.7	1547.5	1530.7	1777.2
14	1075.8	874.1	817.6	692.4	950.6	46	3014.3	2663.8	2626.6	2391.0	2778.7
15	55.3	30.4	13.4	2.0	43.9	47	1109.5	643.7	435.3	325.5	999.7
16	428.5	254.5	284.6	243.6	387.5	48	636.6	264.7	278.0	169.8	528.4
17	130.6	65.3	40.9	95.0	184.7	49	2311.7	1789.4	437.8	810.1	2684.0
18	644.2	231.1	172.7	211.3	682.8	50	316.5	173.5	6.7	31.2	341.0
19	1086.9	1019.5	1025.5	1039.0	1100.4	51	936.0	526.1	552.2	494.4	878.2
20	268.5	153.8	137.2	108.9	240.2	52	487.8	322.7	356.1	178.9	310.6
21	754.5	583.3	544.5	619.9	829.9	53	20.2	19.9	2.9	0.0	17.3
22	1054.3	1026.4	1026.9	838.2	865.6	54	433.8	425.7	0.0	0.0	433.8
2.3	727.0	629.5	600.1	724.9	851.8	55	1060.8	1058.4	0.0	0.0	1060.8
24	633.3	461.5	419.0	342.5	556.8	· · 56	8.2	0.0	0.0	0.0	8.2
25	72.7	16.1	0.8	0.0	71.9	57	587.5	372.6	348.3	0.0	239.2
26	512.7	380.4	385.2	283.1	410.6	58	0.0	0.0	0.0	0.0	0.0
27	473.3	261.2	216.1	45.5	302.7	59	287.7	89.3	0.0	0.0	287.7
28	423.2	246.3	215.9	225.6	432.9	60	734.2	686.4	0.0	0.0	34.2
29	620.7	537.8	554.4	500.5	566.8	61		· •			
30	321.4	115.9		65.5	247.5	62					
31	648.1	435.1			611.8			• 7			
32	179.8		127.5				35,504.6	24,293.9	19,533.9	18,063.0	33,147.6

New U. S. Total and Utility SOx Emissions for the Aggregated Areas in the United Table

+ AIRTEST 80 NEW TOTAL UTL **Total** -

					,		
		SENSITIVE AR	A EMISSION RATES FOR	SOZIIN KILOTONS)	6 (11) / 1 C	
AKEA	LUDUISTR LAI	ARTA SOURCES	A TRANSPORTATION	FE SIGENTIAL G.Q	THOUSTR LAI	UTILITY	1014
ΠΠÎ	INDUSTRIAL	0.0 U 79.2 25	0 0.0	0.0	32.0	17.3	1.1 332.2
2	159.8 18.4	23:1 1	i 0.3	0.6	0.0	0.0	• 41.7
3	30.2	35.7 16	5 1.5	3.2	0.3	51.2	138.4
5	128.9	103.7 105		12.2	1.3	307.0 11.4	22.4
2	* 2. 2		6 2·6	7.4	0.0	27.1	45.1
9	124.1	15.0 3	1 1 3		37:8	135:8	377:1
li -	153.2	26.9 214	i 13.6	23.7	<u>3</u> 6.1	195.5	653.4 569.6
13	158.4	16.5 54 17.8 21	B 12.6	21.2	19.1	314.4	417.2
įį	164.7	5.8 15	5 10.0	5.6	25:8	511+6	1075.6
16	52.0	71.5 25	9 9 1	9.6	41.4	213.1	428.5
16	រភ្នំដែរ	24.4 65	.ų 12.6	7.0	82.8	148.3 946.7	644.2 1066.4
19	33.9	12.6		\$:ľ	29.2	124.6	21.8.5
21	139.9	12.5 7	.7 B.4 .0 1.5	ç.3	0.0	1026-5	10:4.5
23	88.5	0.9 2	· 6 5 · 2	3:1		577.2	653.3
25	.47.9	0.8	.6 3.6	1.8	18.1	0.0 3-086	5]]:]
29	174:3	1.0 19	.ក្ត រេ ្រ៍	<u>ğ:</u> j	46.0 38.8	215.1	473.3
26 29	152.6	16.6	• ? 8•6	0.3	-ō.ō	537.6	624.7
3ú 31	139.9	48.4 H 28.8 9	.0 8.9	0.3	24.9	421.4	646.1
52	23.2	26.0 2	·2 4.2	0.0	-4:5	103.2	179.8
. 35	822.2	28.5	-3 - 3-1	6.3	14:3	29.U 403.7	911.9 1266.4
30	133.4	34.6	.š 3.5	ŭ. õ	266.2	59.7	5.0.1
36	132:3	14:6	:5 §:0	8:3		13:4	1:13
39	6.3	2.4 0 93.6 2.0	:4 15:1	2:9	261.3	733.5	1291.4
41	142.9	153.2 4	·3 8·2	1.2	31.1	623.8	10(5.5
<u>75</u>	318:6	80.5 5	·6 36.6	1.5	80.2	382.9	960.3
45	157.5	24-1 54	.6 .7.8	3.1	34.3	1223-1	1754.0
46	286.2	46.5 20	:2 18:0	4.3	254.9	368.8	1109.5
46	198.0	114.3 6.6	·9 20.1	12.0	1326:2	437:2	2311.7
5Ú 51	127.3	4.5	.6 5.0	3.8	171.3	463.5	316.5
52	73.9	53:1 10	10.0	16.9	20.3 17-2	302.4	467.6
32	2.0	ő:ő	.4 . 3.6	1:1	425:7	2:0	453.1

響

10 11-11 101-10-10 101-10-10-1

a provins Antalina da

AREA SOURCES	
AREA SOURCES AREA INDUSTRIAL UTILITY COMMENCIAL TRANSPORTATION FESTENTIAL INDUSTRIAL UTILITY	TUTAL
55 1.0 0.0 0.6 0.4 0.4 1058.4 0.0	106.0+0
	<u>Q</u> • <u></u>
57 91.7 0.0 41.0 51.3 3C.8 24.3 348.3	567.8
56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	21.7.7
	734.2

sinia.

W H

***** period (* *

1995 1995 1995

23.27

A.M. Logie

. A. di

SENSITIVE AREA EMISSION RATES FOP SO2(10 KILOTONS)

)

- Andrewski

.

22,622 Salata" Tark? New Canadian SOx Emissions for the Aggregated Grid Areas in Canada 4. 1 4.14.24 1.0 THE PARTY and the state of the L'anned TABLE . 1.16.12.25

In Process

12303

ないない

A. 204

Caracter -

5. Primary SOx Emissions for the Aggregated Grid Areas

1

SPORE N

A STRATES

1971-197

4013, 19-20 Academics

 $(D_{ij}^{(1)})_{i \in \mathbb{N}}$

ALC: N

a State

1 V. 4. 1

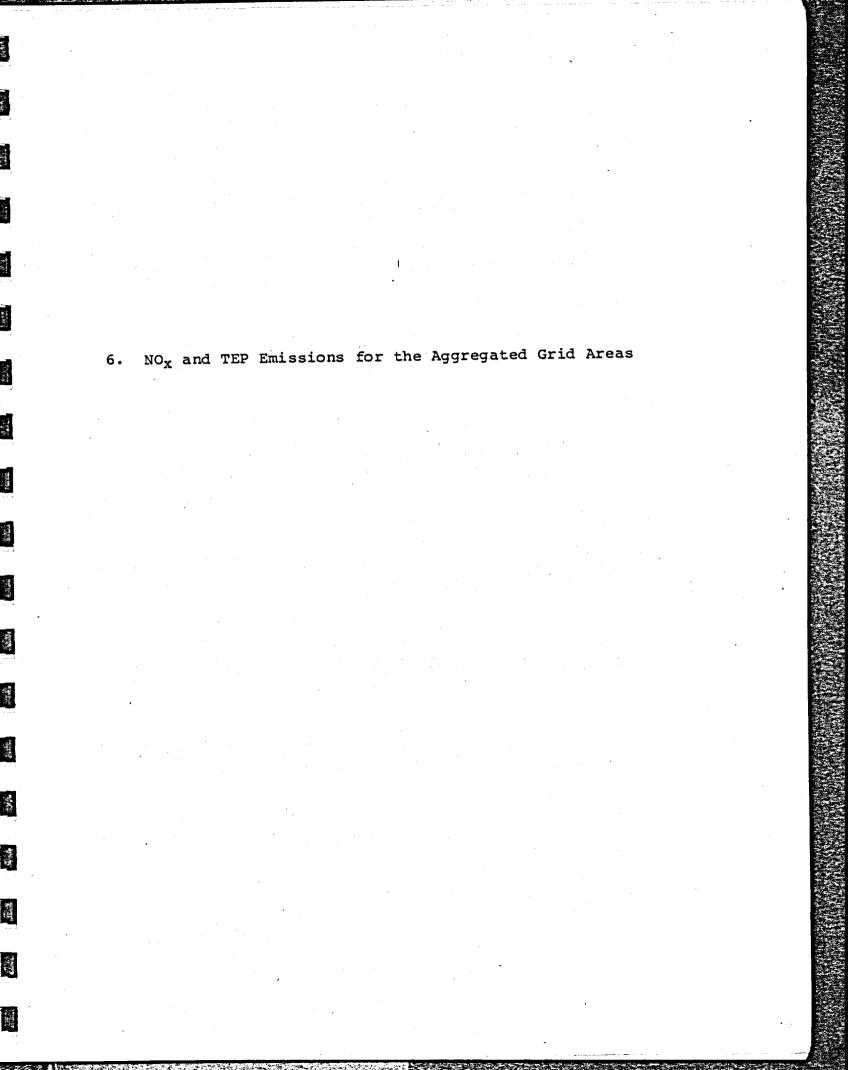
J.

an man

Surger and

1

A. S. S.


THE R.

	a a a a a a a a a a a a a a a a a a a	INDUSTR 05-00-2000 1000000000000000000000000000000	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0	10000000000000000000000000000000000000	RATES FOR ORTATION 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12200012100000000000000000000000000000	LUNU LUNU LUNU LUNU LUNU LUNU LUNU LUNU	SULTI 10000741000057700004700905057780097770060500557780097410000557780097410000000000000000000000000000000000	101-54977504576-5313550956680.446746398640054400554510
--	---	--	---	--	--	--	--	--	--

A CONTRACT

- CONTRACT

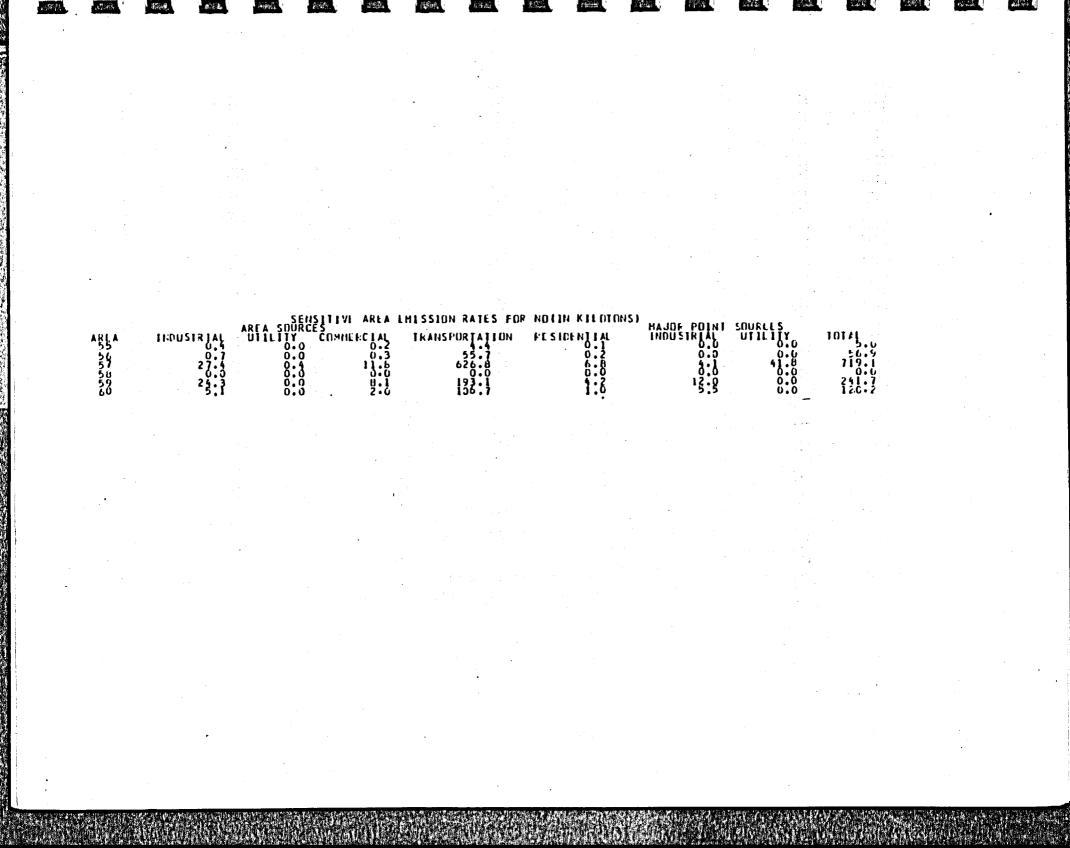
£396884	B withe	n bit int	► rolp Soldar	હાર્થી સોમ્ટ્રેલ	ain\$\$1\$196m	121 (\$1.5 B);		,新闻的	40.654		1.55 B	激练		這些行	1927 I	口建筑		
			x ,									,						
	,																	
	•			•														
				AREA	SENSI SOURCES	TIVE ARE	A LNIS	510N RATE ANSPORTAT 0.0 0.3 3.5 0.0 1.1 0.6	S FOR S	504116 K1	LOTONS	14.191 ⁻ FOI	NÌ SAUF	ar F S				
	ARL 556 578 59	£	INDUSTRIAL 0.1 7.1 7.1 5.0	ÜÜL		(1411 KC 141 0 • 0 •	L 187 1 1 1 2	NSPORTAT 0.0 0.3	I (IN P	T SIDENTI 0. 0.	AL O 1	4 1 1 2 U 1 N 1 2 U 1 N 1 2 U 1 N 1 2 U 1 N 1 2 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CFS LITY U+U Q+U 4.2	101AL 83. 0. 27. 0. 20.	6 7		
	58 59 60	. 	6.0 5.0			Ú. 4. 1.	0 6 2			Ú. 30	Ó	Ú 52	9		0 20 55	Çe		
											•	· ,						•
			•								۲.							
	. •		,															
																•		
									•								•	
			× 1															
		•						· · ·				,						
									×									
					-		,					N .						
														** .				
•								,										

AREA		SENSIT AREA SOURCES	IVE AREA EI	MISSION RATES FOR TRANSPURTATION	NO(IN KILOTONS)	HAJOK POINT INDUSTRIAL 0.0	COURCES UTILITY 0.0	TOTAL
	11:0USTR1AL 0.0 18.3	0.0 16.6 3.2	0.0	19.7	FESIDENTIAL 0+0 2+2	0.0	0.0 3.5 0.0	0.U 64.4
345	0.4 6.6 39.1		0.5		0.5 1.9 9.9		21-5 89-0	3.0 56.7 348.9
9	4.0 5.1	2.3	1.2	28.3	0.6		8.4 23.9 0.0	21.9 65.2 10.5
	3.3	3.9	2.0	92.1 193.4 491.0	3.5	21.0	9.9 36.2 228.8	135.7
13	74.8 15.4 28.6	13.7 8.5 0.9	18.9	226.9	9.3	17.0	- 74.0 - 38.7 105.4	434.7 221.4 246.7
15	-3.0 13.6	1.2 36.3	10.3	27.3	- (j 8) - 5 - 4 - 1 - 1	3.2 21.4	0.9 55.7	57.5 218.9 36.0
19 20	58.0 8.1 19.2	5.9	11.4	137.6	3.1 0.5 0.8		39.7 185.9 43.3	279.7 216.2
21	30.5		4.3	86.6	2.3	10.2	67.5 174.7	266.5
24		5.1	5.5	98.5 59.9	1.3	20.2	95.1 0.0 113.9	256.1
27		0.9	4.3	139.0	2.4	10.9	78:7	256.1 205.2 192.4
30	20.2	20.1	1.4		i.o	12.1	25.5	193.1
33	12:1	1.8		16 - 6		2.6	2.0 7.6 140.8	26.4 67.5 306.6
36 37 38	43.5 96.1	15.1	2.3	63.7	0.5 1.8	12.1	18.2	195.6
38 40	39.0	20.7	0.4 19.6	162.0	0.2	0.0 0.3 8.1	135.2 135.2	379.6
42 43	16.5	19.3	3:6 20.7	92.0 383.6	2.1	19.7 15.2	188.1	330.1 617.5
75 29	34.5	18:2	· · · · · · · · · · · · · · · · · · ·	189.5	2.6	5.2 20.3 39.1	205.3	355.5 543.3
48 49	41.4 130.0	25.7 20.8	12.3	225.6	5.6	10.9 208.2	24.2	345.7 839.6
512355	75.3	19.8 23.0 0.1	· 1:4 7:2		6.2 0.0	11.1	89.2 120.5	326.9 265.2 6.1
54	0.8	0.0	Ú.O U.4	47:4	0.0	3.3	5:0	48.8

Piscetti .

Basel.

1.168


A116

Sar chers?

266 A

微额。

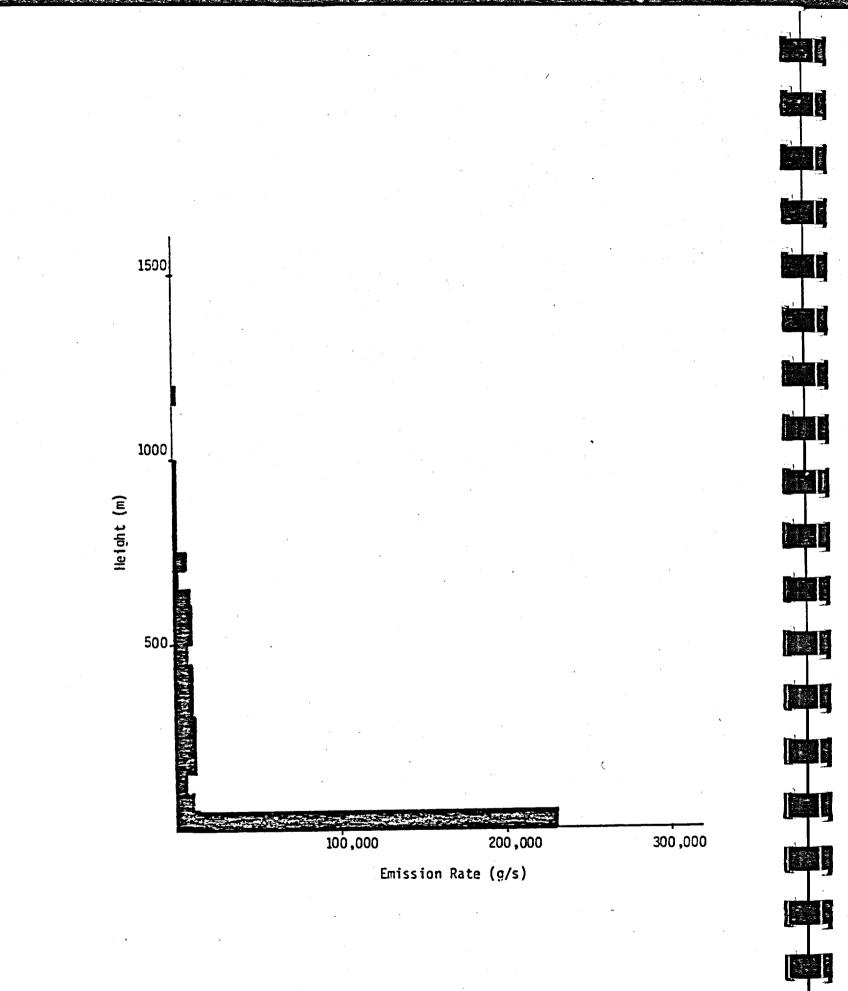
47 1.5 0.2 0.4 0.3 2.2 2.1 2.5 9.4 49 2.4 1.0 0.6 0.3 2.2 0.5 1.0 2.4 49 2.5 0.3 0.7 0.6 0.1 9.4 9.4 50 1.7 0.1 0.6 0.3 2.2 0.5 1.0 2.4 51 3.5 0.1 0.6 0.1 9.4 <th>51 3.</th> <th></th> <th></th> <th>Ff SIDFNI AL INDUSTRIAL 100 0.00 1.0 0.00 0.1 0.00</th> <th></th> <th>000000000000000000000000000000000000000</th>	51 3.			Ff SIDFNI AL INDUSTRIAL 100 0.00 1.0 0.00 0.1 0.00		000000000000000000000000000000000000000
---	-------	--	--	---	--	---

Steller.

2 Mail

S. S. S.

1993 (1994) 1994 (1994)


Maril

.ns:2

1852.25

-

. 165.2.20	.#%#	12.5		2 mil	State of a	. Section	No.		avan .	i Surti	Manual .	101566	STP WAL	308/4	State and	1 4 51 2	1000000	12442 H
			•										•					
								•										•
										,		4						
					. 1													
					SENS	TTIVE AR	LA EMIS	SIDN RAT	IES FOR	N02(IN	KILOTUNS	AJOK FOI 100057k[A 0. 0. 0. 0. 0. 0.						
		AREA	INDUSTR	JAL ARE	A SOŬŘĈĚ ILIJY	TTIVE ARI	AL TR	ANSPORT	TION	PE SIDEI	N]] AL	MAJOK FUI Industria	NI SUUKO LUTIL	ES 11Y 0.0 2.0 0.0 0.0 0.0	TUTAE.	1		
		56 57		0.0	0.0	20	8	Ŏ.	Į,		ç.]	0.	0 6 0		Ű. 8.	2 8 0		
		AR56 556 5789 500	INDUSTR	0.0 1.0 0.2			•0 •4 •1	8	3		1:ž	ů.	62	0.0		Ŭ U		
						•												
					•	· · ·												
1 1 2																		
						•												
														_				
															н. К		•	
											•							
	. •																	
												· .						

AREA	INDUSTR 1AL 0+0 70+9	AREA SOURCES UTILITY COMMENCIAL 0.0		TEP(IN KILDTONS FESIDINTIAL Q+Q) MAJOF POINT INDUSTRIAL Q.Q	SUURCES UTILITY 0.0 0.2	IUTAL
1234	70.9 38.8 2.9 16.6		2.7 0.8 0.3 3.4	0.1	5.2 0.0 0.0	0.2 0.0 0.0 1.5	93.E 41.9 4.7 36.0 222.7
267 89	10.7 10.7 101.3					0.7 0.0 23.6	13.4 21.6 154.6
10	132.0 153.6 221.3 192.9	5.5 175. 0.8 39. 6.0 11.	38.9 110.6 49.0 29.6 23.7		76.0 6.9 110.2 13.3 66.7	18.2 15.6 21.4	310.7 478.1 466.5 378.9 471.6
15	75.5 57.7 19.2 323.7	25.0 1.1 12.5 21. 1.0 3. 1.8 30.	5.4 14.6 26.7	16.9 1.3 3.6	14.1 18.4 3.6 21.6	33.7 0.8 3.7	146.9
2022	242.8 519.2 200.5 138.3		3.5 16.2 3.1	6 • 3 4 • 5 0 • 8 0 • 5	352.2 103.5 2.9	4.5 38.3 25.0 8.3 89.8	259.4 949.3 333.6 162.5
2227 B	277.6 133.7 204.1 25.2				31.0 0.0 28.5 66.8	101.7 30.4 75.2	257.3
· 30 31 32	119.9 73.2 16.4 B.4		28.2	0.24 0.00 0.00	4.4 3.3 32.2 0.4	81.0 10.4 16.0 5.0	178:3 129:3 67:0 15:5
34 35 36 38	22.9 180.0 294.4 126.5		9+5 16+1 8+0 15-2		43.3 51.0 76.5	204.2	44.7 457.2 360.4 247.0
39 - 40 41 42	37.2 535.0 188				0.0 22.5 56.2 37.3	0.0 24.9 32.8 16.1	39.7 597.0 678.4 234.5
4547	258.5 190.9 249.0 330.3		16.7 15.8 52.0	9.2 9.9 7.1	227.7	11.4	602.9 318.0 700.1 576.6
49 51 52	245-9 245-8 256-0 223-6	81.9 44. 4.2 16. 0.9 10. 24.0 10. 16.7 8.	84.8 12.3 23.3 20.1	18.3 10.8 1.5	132+5 411+4 58+7 33+3 84+7		834.4 138.1 398.1 398.1
52 53 54	0:7		8:4	0.0		8:8	

CLOLATION

ARLA 55 57 59 60	11.0	DUSTRIAL 0.3 0.5 294.4 0.0 926.6 9.9	ARFA UTI	SENSI SOURCES LITY C 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TIVI ARLA OMILICIAL 0.1 5.5 0.0 5.6 1.4	LHISSIC TRANS	UN RATES FO SPURTATION 11.0 127.1 39.5 21.0	R TEP() PI 510	KILOTU INTIAI 0.0 0.0 1.8 0.0 0.9 0.2	I AN DIAN Uniti	F PUINI STRIAL 7.5 0.0 11.2 0.0 11.7 35.9	5.00FCE5 UTILITY 0.0 7.9 0.0 0.0 0.0	1)) TAL 8 - 6 1 - 6 4 4 8 - 6 0 - 0 9 - 0 9 - 3 - 4 6 6 - 9	
								•						

. 72.4

•

7. Listing of Historical and Current Emissions by State and County

1. C

1.1

1

Sector Sector

and the second

1.5

Accession of

1

1.00

The Phase I report of work Group III B contains sections on historical, current, and projected emissions in the eastern United States and Canada. Some of the historical and current emissions data from that report is included in this addendum for the convenience of the modelers. Add a state

1

4 Q.

書き

1990 B

el 19

The primary objective in developing historical emission trends is to recreate the emissions situations of several decades ago so that such data can be used in atmospheric models to provide an insight into sulfur deposition rates for those periods. These rates can then be compared to current deposition rates for an indication of the rate of degradation of the environment with time. To examine emission trends on a regional basis in the United States, a data file has been constructd which also uses historical fuel usage figures to calculate emissions of SO_2 and NO_x from various categories of sources. The basis file contains emissions at the individual state level for the following source categories:

Electric Utilities Industrial Commerical/Residential Pipelines Highway Vehicles Gasoline-Powered Diesel-Powered Miscellaneous Railroads Vessel Misc. Off-Highway Mobile Chemicals Primary Metals Mineral Products Petroleum Refineries Others

The file currently contains data for 33 eastern states plus the District of Columbia. Years on record for the file are 1950, 1960, 1965, 1970, 1975, and 1978.

For the electric utility sector, all power plants greater than 25 megawatts have been identified and located by the appropriate county within each state for each year of record. Emissions of SO_2 and NO_x have been determined for each year for all such power plants. Consequently, it is possible to identify power plants emissions on a county-by-county level for each year of record for all 33 states.

The file identifies each power plant by name, size, county location, and SO_2 and NO_x emissions from coal, oil, and natural gas consumption. The file also contains fuel usage information and has some limited data on stack height.

To distribute the non-power plant emissions to a county level, work is underway using historical census data to assign the statewide emissions to the county level. The technique to be used is to apportion the emissions to the county base on a historical population basis. The Brookhaven National Laboratory is currently conducting this work. A partial file is currently available from Carmen Benkovitz and it is expected that EPA/OAQPS will complete this file for Work Group 2. A paper describing the methodology is currently being prepared by a contractor for EPA/OAQPS. As an example of the information from this file, a sample state and county are provided.

And a

To assist in examining the historical emission trends on a regional scale, tables have been prepared in which the states are grouped according to the appropriate EPA regional offices (Regions I through V). Trends in SO_X and NO_X emissions for each state along with a summary for each grouping of the states (by regional office) are shown in the tables.

The current emission rates reported here for the United States are based on estimates of actual rates for numerous sectors of the economy. The values used in this summary are taken from <u>National Air Pollution Emission Estimates</u> (U.S. Environmental Protection Agency). Basically, the methodology for deriving these estimates used an inventory of sources, determinations of fuel consumption, and air pollution emission factors.

The inventory of sources, and associated fuel consumption rates, were taken from the National Emissions Data System (NEDS). The data in NEDS were provided by State agencies as an inventory of sources for each state. NEDS is constantly being updated and the version used here reflects values for 1978. However, NEDS is not complete and some source categories are more accurate than others. Estimates of the accuracy of this information are unavailable at this time.

The emissions factors used in developing these emission estimates are from the U.S. EPA report AP-42. The emission factor is an average estimate of the rate at which a pollutant is released to the atmosphere as a result of some activity. The emission factors are estimates based on source testing, process material balances, and engineering apparaisals. As a result, some emission factors are more accurate than others. In general, the emission factors are more ofter applied to regional or national emission estimates, than to single source estimates where the inaccuracies would be considerable.

 SO_2 and NO_x emissions are shown on a state-by-state basis in the table. Only 33 states are represented in the table. Data for the 15 Western States and Alaska and Hawaii are unavailable at this time. The values in table represent 80% of the SO_2 and 76% of the NO_x emissions for the entire United States.

The emissions estimates can be further disaggregated to show emissions by source category for each state.

· ·	SO _x Emp	LSSIONS	in 1000	's of '	rons		
State of Kentucky	1950	1955	1960	<u>1965</u>	1970	1975	<u>1978</u>
Non PP Power Plant Total	34.5 28.6 63.1	153.6 251.2 404.8	262.3 368.8 631.1	603.3	198.4 1082.5 1280.9	$\frac{117.7}{1349.1}$ 1466.8	108.8 1221.2 1330.0
County of Jefferso	n, KY			-			
Power Plant	<u>1950</u>	1955	1960	1965	<u>1970</u>	<u>1975</u>	<u>1978</u>
Canal Cane Run Mill Creek Paddy's Run Waterside Total PP	$ \begin{array}{r} 1.9 \\ - \\ 7.4 \\ .9 \\ 10.2 \end{array} $	$ \begin{array}{r} 1.5 \\ 3.0 \\ - \\ 10.4 \\ \underline{.8} \\ 15.7 \end{array} $	11.4 9.4 20.8	17.0 4.1 21.1	27.1 3.5 30.6	22.4 17.8 .7 40.9	19.1 21.0 2.3 42.4
Non Power Plant -	Jeffers	on Count	V. KY	•			

Non Power Plant - Jefferson County, KY

言語

Sec.

ansada)

× The second

and the second

1000

Mathematic

1. P. 18.

k NOS

No.

171444

August Ser

21-12-27

10401105

Work not complete on this portion of file as yet.

HISTORICAL TRENDS IN SO2 EMISSIONS

		· · ·	in 1000's t EPA - RE				
State	1950	1955	1960	1965	1970	1975	1978
Conn.	130.3	139.1	241.6	457.6	317.3	191.0	112
Maine	37.8	45.6	70.2	97.0	82.0	67.8	66
Mass.	906.4	956.7	374.6	443.2	584.4	362.2	402.2
New Hamp.	73.3	89.7	29.1	41.2	95.9	75.4	67.8
Rhode Island	67.7	80.2	87.3	41.2	60.1	24.3	19.7
TOTAL	1215.5	1311.3	802.8	1080.2	1139.1.	720.7	667.7
		, ;	<u>EPA - RE</u>	GION II	·		
New York	847.0	1126.0	1427.4	1645.4	1455.0	1079.0	1041.1
New Jersey	*1308.8	*1486.2	482.6	623.4	590.2	341.0	323.7
TOTAL	*2155.8	*2612.20	1910.00	2268.8	2045.2	1420.0	1364.8
•			EPA - RE	GION III			•
Delaware	105.4	136.0	196.1	217.8	223.4	193.6	188.2
D.C.	32.4	31.0	38.5	47.9	78.0	27.1	17.6
Maryland	398.9	515.5	518.2	588.1	467.7	322.3	357.3
Penn.	* 970.2	2138.4	2362.2	2546.8	2245.7	2130.8	1900.0
Va	157.2	277.4	171.4	188.1	475.2	381.0	359.9
West Va.	243.5	617.8	529.7	776.8	9 79.7	1220.0	1049.5
TOTAL	*1907.6	3716.1	<u>3816.</u> T	4365.5	4469.7	4274.8	3872.5
•			EPA - RE	GION IV			
Alabama	139.5	522.7	613.5	892.3	979.1	986.5	762.1
Florida	225.5	350.5	341.1	501.6	862.3	827.9	685.9
Georgia	119.9	163.6	198.2	303.0	410.4	571.4	707.0
Mississippi	46.9	43.3	41.1	44.6	79.4	193.0	264.3
Kentucky	113.1	404.8	631.1	914.0	1280.9	1466.8	1330.0
North Carolina	306.1	347.4	232.4	294.4	533.2	500.5	562.3
South Carolina	44.5	84.3	115.9	121.7	185.4	202.3	288.6
Tenn.	97.3	369.2	731.2	771.5	'988. 1	1141.9	1162.8
TOTAL	1092.8	2285.8	2904.5	3843.1	5318.8	5890.3	5763.0

].

國

en en en en en en en en en en en en en e		in 1000's	tons			
State	1955	1960	1965	1970	1975	1978
•		EPA - RI	EGION V			
Illinois Indiana Mich. Minn. Ohio Wisc. TOTAL	*!172.1 174.2 702.7 536.4 *!344.9 304.2 *234.5	2452.9 1840.8 1085.5 391.8 2933.2 604.0 9308.2	2791.4 2180.3 1521.7 419.8 3181.2 703.8	2506.5 1941.5 1520.9 450.7 3125.2 322.3 9867.1	1950.6 1980.0 1450.6 382.3 3271.2 166.6 9201.3	1747.2 1848.2 1117.8 379.0 3115.3 663.6 8871.1
		OTHER S	TATES			
Arkansas Iowa Louisiana Missouri Texas	36.7 258.0 261.2 2155.1 073.8	26.1 364.5 219.4 582.6 900.0	29.9 440.8 268.7 674.9 1074.3	37.0 370.2 318.0 1107.3 1136.8	68.6 314.0 295.1 1174.3 1123.8	121.6 385.0 359.0 1307.7 1244.8

ORICAL TRENDS IN SO₂ EMISSIONS (Cont.)

*Questionable Data

1. A. A.

1. A. A.

148 H.

1. P. B.

1.11

14. F.B.

4.2 Sail

Coutord!

No.

C hart

ACCURACY, N

A THE REAL FOR

L'ENERS AN

HISTORICAL TRENDS IN NO $_{\mathbf{x}}$ EMISSIONS

	· · · ·		in 1000's tons EPA - REGION I							
State	1950	1955	1960	1965	1970	1975	1978			
Conn.	85.7	100.0	152.6	169.0	202.0	182.0	. 183.0			
Maine	44.6	46.7	49.1	60.2	75.8	72.7	76.7			
Mass.	164.2	195.0	254.9	303.4	359.9	340.2	364.3			
New Hamp.	18.2	22.6	31.1	39.7	63.7	67.5	66.9			
Rhode Island	33.5	32.9	45.2	36.4	55.2	44.9	42.4			
TOTAL	346.2	397.2	532.9	608.7	756.6	707.3	733.3			
			<u>EPA - RI</u>	EGION II						
New York	493.6	606.5	767.0	919.1	1000.3	869.3	908.9			
New Jersey	281.5	319.1	362.7	439.1	538.3	462.0	494.4			
TOTAL	775.1	925.6	1129.7	1358.2	1538.3	1331.3	1403.3			
	-	· · · · · · · · · · · · · · · · · · ·	EPA - RI	EGION III			· · · · · · · · · · · · · · · · · · ·			
Delaware	19.8	30.1	51.2	61.1	71.9	65.2	70.6			
D.C.	30.8	34.3	35.0	38.1	58.3*	36.5	33.5			
Maryland	108.9	138.5	222.9	292.5	298.8	294.9	313.9			
Penn.	479.1	693.2	1020.2	1143.1	1089.2	1093.1	1120.7			
Va.	183.8	228.0	259.9	361.8	433.5	420.8	435.2			
West Va.	118.9	217.4	225.0	322.3	346.9	470.8	462.4			
TOTAL	941.3	1341.5	1814.2	2218.9	2298.6	2381.3	2436.3			
			EPA- RE	GION IV	Υ. ζ					
Alabama	172.6	367.0	308.6	448.3	416.1	580.8	473.0			
Florida	206.8	263.4	321.5	420.8	552.1	733.2	777.4			
Georgia	170.8	198.9	· 226.9	296.7	398.1	520.5	548.8			
Kentucky	145.4	208.0	279.L	377.6	497.2	567.3	563.0			
Mississippi	97.1	80.8	151.2	196.4	304.5	243.5	272.8			
N.C.	192.0	210.7	290.0 150.2	376.2	546.4 237.3	568.0 253.7	591.0 300.2			
S.C. Tenn.	87.4 164.9	125.4 232.7	335.9	178.2 380.3	467.1	615.5	592.9			
			1							
TOTAL	1237.0	1686.9	2063.5	2674.5	3418.8	4082.5	4119.1			

HISTORICAL TRENDS IN NO EMISSIONS (Cont.)

			in 1000's	tons			
State	1950	1955	1960	1965	1970	1975	1978
•	•		EPA - RE	GION V			
Illinois Indiana Mich. Minn. Ohio Wisc.	600.1 296.6 318.3 164.7 498.2 196.5	890.4 447.2 382.9 187.6 771.5 215.4	895.9 584.9 587.3 240.1 960.5 296.6	1063.7 555.2 746.4 275.5 1082.3 367.4	1119.8 576.4 846.6 331.3 1165.1 455.0	1129.1 631.7 840.7 370.0 1221.0 445.7	1129.9 600.0 843. 399.0 1277. 473.2
TOTAL	2074.4	2895.0	3565.3 OTHER S	4090.5 TATES	4494.2	4638.2	4723.
Arkansas Iowa Louisiana Missouri Texas	112.6 167.2 283.5 198.1 876.5	122.9 203.6 330.2 251.0 933.1	115.9 216.4 535.8 294.6 1658.0	147.6 248.1 760.1 339.1 2044.6	193.2 309.6 1016.9 424.6 2551.3	171.4 308.8 1072.0 593.6 2833.9	217. 321. 1593. 563. 3309.

*Questionable Data

The state of the

1400 A

18 S.Cha

1.1.1.1

法禁杀。

111/111

1. N. W.

TANK .

11.4

Support 2

	(kt/yr)	-	•
State	SO ₂		NOx
Alabama	762.1		473.0
Arkansas	121.6		217.9
Connecticut	112.0		183.0
Delaware	188.2	and the second se	70.6
District of Columbia	17.6		33.5
Florida	685.9		777.4
Georgia	707.0		548.8
Illinois	1747.2		1129.9
Indiana	1848.2		600.6
Iowa	385.0		321.0
Kentucky	1330.0		563.0
Louisiana	359.0		1593.7
Maine	66.0		76.7
Maryland	357.3	•	43.9
Massachusetts	402.2		364.3
Michigan	1117.8		843.1
Minnesota	379.0		399.6
Mississippi	264.3		272.8
Missouri	1307.7		563.0
New Hamsphire	67.8		66.9
New Jersey	323.7		494.4
New York	1041.1		908.9
North Carolina	562.3		591.0
Ohio	3115.3		1277.1
Pennsylvania	1900.0		1207.7
Rhode Island	19.7		40.4
South Carolina	288.6		300.2
Tennessee	1162.8		592.9
Texas	1244.8		3309.5
Vermont			
Virginia	359.9		435.2
West Virginia	1049.5		462.4
Wisconsin	663.6		473.2
	·		
TOTAL	23957.2	ζ	19420.6

Table. 1978 SO₂ and NO_x Emissions by State. (kt/yr)

•	Commercial/Residential							
National Alabama Arkansas Connecticut Delaware	<u>TSP</u> 353,760 8,504 4,249 3,202 640	S0 <u>x</u> 2 3,406 407 259 131 53	NO _x 100,672 2,314 1,375 686 229	<u>HC</u> 742,054 18,285 8,417 7,103 1,064	<u>C0</u> 2,152,169 18,285 23,968 20,738 29,089			
Dist. of Columbi	a 612	179	214	477	7,482			
Florida	65,291	1,126	1,870	9,906	28,251			
Georgia	7,298	445	2,646	13,833	39,126			
Illinois	16,606	1,186	2,981	39,490	116,353			
Indiana	12,438	877	3,718	25,938	75,007			
Iowa	8,324	634	2,134	17,083	49,374			
Kentucky	5,927	398	2,192	11,170	32,107			
Louisiana	5,739	287	1,723	11,753	33,316			
Maine	2,719	182	776	5,579	16,072			
Maryland	3,806	257	1,351	7,199	20,439			
Massachusetts	7,794	420	1,501	17,869	52,370			
Michigan	19,415	2,503	15,557	41,699	115,990			
Minnesota	11,634	426	2,211	18,010	52,287			
Mississippi	6,360	339	1,831	13,403	38,451			
Missouri	10,158	429	2,100	23,533	68,831			
New Hampshire	1,836	123	505	3,799	10,965			
New Jersey	10,063	2,074	3,348	12,415	33,673			
New York	16,216	1,453	4,718	27,866	79,280			
North Carolina	11,159	865	4,106	20,296	57,248			
Ohio	21,098	13,046	4,789	45,654	132,886			
Pennsylvania	4,473	1,291	1,531	1,832	15,499			
Rhode Island	1,187	48	208	2,856	8,403			
South Carolina	7,676	390	2,230	16,185	46,695			
Tennessee	9,366	507	2,601	20,165	59,487			
Texas	12,820	784	3,539	26,742	76,609			
Vermont	1,479	95	444	2,995	8,590			
Virginia	6,786	590	2,547	12,661	35,788			
West Virginia	3,947	237	1,434	7,505	21,236			
Wisconsin	11,907	995	3,208	23,524	67,860			

•

1978 Emissions

SOURCE: National Emissions Data System (NEDS).

and the Sets

1

Linear

And Add

1.182 241 A

4. NA 1997

1978 Emissions

Transportation

	TSP	<u>so</u> x	NOx	HC	<u>co</u>
National Alabama Arkansas Connecticut Delaware	6,286,087 110,642 63,752 81,687 16,283	955,767 25,892 9,921 6,622 2,823	9,355,943 205,541 128,555 100,103 28,039	12,549,131 241,841 144,749 152,975 35,773	1,754,292 1,049,778 1,235,652
Dist. of Columbia Florida Georgia Illinois Indiana	15,214 298,690 155,564 286,009 155,893	1,197 30,889 20,212 30,472 18,838	17,111 362,730 270,023 398,479 255,218	24,235 557,336 323,335 518,854 320,855	
Iowa Kentucky Louisiana Maine Maryland	60,897 90,950 113,812 23,288 113,453	9,805 14,480 43,953 3,727 14,795	135,773 189,160 202,170 50,419 152,485	157,697 204,932 240,994 59,136 207,733	428,545
Massachusetts Michigan Minnesota Mississippi Missouri	158,713 269,852 103,899 53,514 151,023	10,765 46,761 14,320 12,257 17,041	161,017 350,936 198,444 123,978 235,436	278,951 482,683 254,163 129,197 306,040	1,947,578 943,985
New Hampshire New Jersey New York North Carolina Ohio	21,252 221,443 340,260 143,885 321,708	1,627 27,381 34,575 19,485 36,836	29,361 248,805 419,157 284,714 433,805	41,446 375,900 634,875 334,094 507,312	3,069,379 5,114,336 2,477,393
Pennsylvania Rhode Island South Carolina Tennessee Texas	282,530 28,389 76,807 129,396 455,232	38,406 1,679 9,897 19,506 111,334	435,991 29,380 136,873 250,647 704,565	531,822 53,827 173,858 274,032 897,667	444,384 1,258,446 2,038,819
Vermont Virginia West Virginia Wisconsin	9,794 135,464 17,147 87,749	1,383 19,047 5,663 13,941	21,363 237,600 69,521 198,364	22,453 286,300 51,699 231,295	2,147,509 326,512

SOURCE: National Emissions Data System (NEDS).

DOCS CA1 EA 81U53 ENG vol. 2 United States-Canada memorandum of intent on transboundary air pollution. --43236193

1929年1月

Exclusion 1

1.50

1200 10

Suprama .

TANK I

Trans.

ALLER.

AND A

LIBRARY E A/BIBLIOTHEOUE A E