The Institute has attempted to obtain the best original copy avallable for filming. Features of this copy which may be biblographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de cosleur
\square Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Car tes géographiques en couleur

Coioured ink (i.e. other than blue or black)/
Encre de couleur (1.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

\square
Tight binding r. \quad y cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaınes pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxedi
Pages décoiorées, tachetées ou piquées

Pages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualıté inégale de l'impression

Continuous pagination/
Pagination continueincludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le tutre de l'en-tête provient:

Title page of issue/
Page de titre de la livratsonCaption of issue/
Titre de départ de la livraison

Masthead/
Gènérique (pérıodiques) de la livraison

Additional commenis:/

Coinmentares supplementaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN JOURNAL．

バほW SEIRY゙ミ。

No．XLIV．－MARCH， 1863.

TIIE PRESIDENT＇S ADDRESS．

Read before the Canadian Institute，January 10th， 1863.
Genthemen of the Canadin Insutcte，－
In opruing the procecdings of a new year of the Society＇s existence with the customary address，my first duty is to return thanks for the honour which you have conferced upon me，by your unanimous election of me as President of the Institute．Whilst I highly appreciate this mark of your estimation，I must confess that when I received the official notification of our Sccretary，I had some hesitation as to the propricty of my accepting the office，for I was conscious that it would be impossible for me to discharge the duties with that regularity which you night expect，and which I myself would desire．In other Socie－ ties，in which I have held a similar position，I have endeavoured，if prevented by my arocations from lending active co－operation，at all events to give assistance by punctuality of attendance at their meet－ ings．In the case of the Camadian Institute，however，as its season extends over precisely that period of the year，when my duties are most heary，and my engagements most pressing，I could not hope to Vol．VII．
be able to give even that proof of the interest, which I feel in its welfare. Whilst I was still doubting on this point, I had the opportumity of ascertaining the views of some of our members, who have taken a most active part in promoting the welfare of the Institute, and they assured me that such uniformity of attendance, as I believed to be necessary for the satisfactory discharge of the duties, was not indispensable. Influenced by these assurances, and confiding in the aid of my able colleagues, the Vice-Presidents, I accepted the office with which you have honored me, with the determination to discharge the duties to the best of my ability, and with the persuasion, that any necessary shortcomings would receive considerate indulgence at your hands.

The commencement of a new year suggests to Societies, as well as to indiviluals, the expediency of taking a retrospect of that which has just passed away, and of considering what they, and what others, in a like position, or engaged in similar pursuits, have done during the past twelve months. Following out this suggestion, I purpose submitting a brief review of the progress which has been made, during the year 1862, in those departments of human knowledge, which it is the object of this Institute to cultivate. In attempting this summary, it is scarcely necessary for me to premise that it must necessarily be very imperfeet. The brief fortnight which has elapsed since I was unexpectedly called upon to prepare an Inaugural Address-the shortness of time, suitable for observations, on such an occasion as the present, which imposes cramping restraint in treating so extensive a subject-the vast number of particulars which solicit attention-and my own inability to handle all the branches, of which I must necessarily treat, with the skill, or ease, or confidence, that almost nothing but special attention to each can bestow,-all these compel me to give but the merest, outline, and to select from the mass of materials, only those which, as it were, crop out on the surface.

The construction of star charts, those invaluable aids to the practical astronomer, is still in progress by Argelander of the Bonn Observatory and Chacornac of the Paris Observatory. In the volumes, which have been recently published by the former distinguished astronomer, the approximate places are given of 216,000 stars between the parallels of 2° South Declination, and 41° North Declination. This maguificent work is intended to be an Atlas of the stars. of the Northern Heavens within 92° of polar distance. An impor-
tane result of the publication of these charts has been that they have greatly facilitated the discorery of the small plancts or asteroids between the orbits of Mars and Jupiter. Since 1859 no fewer than twenty of these remarkable bodies have been discovered, so that their number at the close of last year was seventy-six.

The investigations of the motion of Sirius by Bessel and Peters had revealed some irregularities in right ascension, and Bessel had surmised that they were due to the influence of some unknown body in the vicinity of the star. This companion, whose existence had not been ascertained by sight, was discovered on Jan. 31, by Mr. Clark of the U. S., with his new achromatic glass, and was subsequently observed by Prof. Bond at the Observatory of Marvard College. We have thus another most interesting example of the wondrous power of mathematical research to reveal that latent cause of perturbation, which the keenest visiou, aided by the most powerful instruments, had previously failed to detect. Ic is proper, however, that I should add that Dr. Pcters does not accept the identity of this stranger with that which he had computed.

In accordance with the suggestion of Sir John Herschel, made about eight years ago, relative to the advantages of taking daily photographs of the sun, a new and valuable instrument was invented, the Photoheiiograph, or rather, as the name has been emended, the Heliautograph. At the last meeting of the British Association for the advancement of Science, Prof. Selwyn exhibited a scrics of those wonderful portraits taken by the sun of himselif. They represent the progress of the spots with their penumbra as the sun revolves on his axis, and the facule or bright streaks which accompany those spots. On the same subject Mr. Nasmyth stated his obsorrations relative to the three luminous strata-which envelope the sun--the mist envelopethe penumbral stratum-and the external, in which the lenticular, or, as they are called, the willow leaf structures are frind. Photography has also been successfully applied to the moc::, and Mr. De la Rue's skilful manipulation has produced most accurate representations.

At the same mecting, Prof. Challis communicated a paper on the terrestrial atmosphere, which he rcgarded as definitely limited, and balloon ascents were noticed as a probable mode of furnishing approximations for its actual beight. Previously to this the most remarkable ascent on record had been made by Messrs. Glaisher and Cosewall, in which the astonishing altitude of 35,000 or 36,000 feet

Was gained, not, however, without the most immitient risk to the
 canot contemplate without admiration the coolness with which one of the adrenturese cominued his seientife observations until at length at some five or six miles above the surlace of the earth, he lost all power of eyes and limbs, and fill back in the car as in sleep, and the presence of mind with which his companion, when his hands had failed him, "seized the line between his teeth and pulled the ralve open until the ballow took a turn downward," and the numbed observers were thawed into consciousness.

During the past year two emets have been visible-one by computation only nine millions of miles from the earth. The other, and the more remarkable of the two, continued within the circie of perpetual apparition for five weeks, but when nearest to the carth was distant thirty-three millions of miles.
In comexion with this subject, I have pleasure in calling attention to a magrificent rolume, giving a full areount of the great comet of 1858, by Mr. Bond, Director of the Observatory of Harard College. This is, so tar as I an aware, the most complete work on the subject that has ever been published.

The goverument of Eeuador have offered to the Fiench government the site for an observatory on the plateau of Durito. This locality presents almost unequalled adrantages for ouscreation from its position on the globe, and from the remakkable clearness of the atmosphere. The parallax observations, which bave been made during the past year, taken in sumexion with Foncault's experinents on the velocity of light, and Strue's measurement of an are of parallel, promise the most important results relative to the question of the sun's distance.

But little calling for special notice, on such an occasion as the present, has been doue during the year in pure mathematies, but a most remarkable oxample, illustrating their beanty and their power as applied to constructive mechanics, has been presented by the explanation given by the Astronomer Royal, of the directions and marnitudes of the strains on the sides of tubular bridges. It must be most gratifying to Prof. Airy to find that his theory was accepted not only by mathematicians, who admired the skill with which he produced the equations and the ingenuity with which he rendered them manageable, but also by practical men, such as Mr. Fairbairn and
inir. Inusseii, who recegnzed the precise agreement of the theory with experiment. It is important to add, that the lines of strain as pointed out by him were regarded as bearing some ritation to the lines of polarization and depc'..rization produced by strained glass.

As I have adverted to liechauical Science, I camot pass from the subject without noticing an admirable application of siphons by Mr. Appold, which seems to surpass steam-pumping both in efficiency and in economy. The air is exhausted from the siphons by a small engine, which works air pumps, and the quantity of water discharged by six siphons was no less than 50,000 gallons a minute.

Nor should I omit noticing Mr. Peccr's most wouderful machine for microscopic writing, the working of which seems almost incredible. "Within a circle of the three-hundredth of an inch, about the size of a transverse section of a human hair, the Lord's Prayer can be written so as to be legible; and a calculation has been made that with this machine the entire Bible might be written twenty-two times in the space of a square inch."

In an evamination, which I lately saw somewhere, of the sums expended by the British Association for the advancement of Science, I observed a complaint that so small an amount, less than a tenth I believe, was spent for the encouragement and promotion of the important department of Chemistry. The want of this pecuniary aid, however, does not seem to have produced auy injurious consequences, for there can hardly be a more satisfactory practical proof of the success with which this branch has been cultivated during the past year than the fact, that three out of the four medals of the Royal Society were awarded for chemical researches. A notice of these investigations will, probably, be the most satisfactory review which I can present of the progress of chemical science during the past year. The Copley Medal was awarded to Mr. Graham, Master of the Mint, for his discoveries in the employment of the diffusion of liquids in chemical analysis, or, as he terms the process of separation, dialysis. Compound substances are by him distinguished into colloids and crystalloids, and thees forms are regarded, the former as the dynamic, the latter as the statical form of matter. The importance of the results attainable by this new method justifies our ranking Graham with Dalton and Davy in the adrancement of Chemical Science.

The Rumford Medal was awarded to Professor Kirchoff of IIeidelberg, as a just recognition of his remarkable researches in Spectral
analysis. What a wonderful example is presented, in this most beantiful and valuable discovery, of the progress of human howledge! About two hundred years ago Sir Isaac Newton astomished the scientific world by the discovery of the composition of solar light, and for many years it was a favorite optical experiment to produce the spectrum by a prism, and prove the variety of the tints that are combined in what had been regarded as simply white light. Just sixty years have clapsed since Wollaston added to our howledge of the spectrum by the discovery of the seren dark ines. The subject thus commenced in England was taken up by Fraunhofer who observed no less than 500 of these lines, and since his time the number has been increased by the researches of Brewster and Gladstone to about 2000. In Kirchoff's experiments five prisms were used, and he has succeeded in producing an exact map giving the distanecs, the breadth, and the degree of darkness in the lines. But this is not all. Tvith a similar instrument he and Professor Bumsen examined the spectra of the chemical elements, and the application of this new mode of analysis has already resulted in the addition of three new metals. But the most astonishing of Kirchoff's discoveries is the detection of sodium, nickel, barium and copper in the solar atmosphere. The process has also been applied to the fixed stars and Donati has compared the refractive powers of stellar and solar light.

When we consider the magnitude of these sublime discoveries and the variety of their probable results, we cannot but look with admiration and with gratitude on the wondrous powers of the human intellect-that mighty instrument with which our Almighty creator has equipped us. With it we have bound the hostile elements, fire and water, in amity together and have yoked them in iron harness to execute one will ; with it we have descended into this globe of ours; classed its stratifications; analyzed its natural history; investigated its age ; and even ventured to pourtray, in ideal sketches, the principal features of the primæval landscape : with it we have explored the depths of ocean and laid down the elevations and depressions of its bed in charts of submarine geography: with it we have ascended into heaven and mapped down the courses of the bright luminaries that stud its vault: with it we have brought under our cognizance the composition of the physical source of light, and are able to pronounce, with the certainty of Science, on the constituent elements of a body $95,000,000$ of miles removed from us, through the aid of an analysis so subtle that on
 we cxclain in tho: words which are each year receiving further confirmation and dewiupment:-" What is man that thou art mindful of him? and the Son of man that thou visitest him? For thou hast made him a little lower than the angels and hast crowned him with glory and honour. Thou madest him to have dominion over the works of thy hands; thou hast put all things under his feet."

Of the remaining two medals of the Royal Society one was awarded to Professor Williamson for his researches in compound ethers, and his establishment of the correctness of the theory of types, as foreshadowed by Mr. Sterry IIunt of the Canadian Survey, and now almost universally adopted by chemists.

The benefits of the inter-communication afforded by the electric telegraph are being rapidly extended all over the earth, and so many links of the chain destined yet to gird the world have been completed, that messages on ordinary business are now transmitted over 4000 or 5000 miles. Ilopes are entertained, and not without reason, that the old and the new worlds will soon be comnected by a line more durable and more secure than that which a few years ago raised expectations that were so soon disappointed. Nor should I omit mentioning, whilst adverting to the subject, that amongst the astonishing notices of discoveries of the past year is one, apparently trustuorthy, that electric signals are now transmitted without any artificial conductors.

Before I pass on from this most interesting and important field of scientific research, let me briefly notice the remarkable manufacture of artificial stone by Mr. Ransome. The material consists of "any kind of mineral fragments, sand, limestone or clay, mixed into paste by a mould with fluid silicate of soda, and afterwards dipped into a solution of chloride of calcium."

At the progress of knowledge in the Natural Sciences-Mineralogy and Geology, Zoology and Botany,-I can take but a passing gla

The Surveys which have been carried on both in Europe and on this continent, have greatly extended our acquaintance with the crust of the earth, and no inconsiderable advancement of our knowledge may be expected from the new science of Seismology.
A notable addition to Palæontology has been made by the discovery of a bird in the oolitic slate of Solenhofen, the most ancient ornithic specimen of which we possess any certain evidei ce. Professor Owen has given a description of it, characterised by his usual acumen. He
had proposed Griphornis as a name for the creature, but ho has. abandoned it in faror of Archaopteryx of Von Meyer.

For nine years a committee of the British Association have been engaged in experiments on the preservation of regetative power in seeds. They have est:blished the fact that "the greatest age at which the seeds experimented upon were found to vegetate was about forty years." Much progress has been made in acclimitization; the introduction of the eland into England has succeeded-that of camels into this continent is regarded as promising, and already the warbling of the feathered songsters of Europe has been heard in the Australian woods.

The grorilla controversy so far as it relates to the credibility of M. Du Chaillu may be regarded as set at rest. Mr. Reade, after five active months in the country the habitat of the creature, asserts "that he is in a position to state that M. Du Chaillu shot neither leopards, buffaloes, nor gorillas; that the gorilla does not beat his breast like a drum ; that the Kulukambu does not utter the cry of Koolon or anything like it; that the young gorilla in captivity is not savage; and that while M. Du Chaillu affects to have been "a poor fever-stricken wretch" at Camma, he was really residing in robust health at the Gaboon." Mr. Reade, however, adds that he "must do M. Du Cbaillu the justice to confess, that from the same sources that afforded me proof of his impostures, I learn that he is a good marksman; possessed of no common courage and endurance; that he has suffered many privations and misfortunes of which he has said nothing; that his character as a trader has been unjustly blemished; that his labours as a naturalist have been very remarkable; and that during his residence in Africa he won the affection of the natives and the esteem of those who most merit to be esteemed-the missionaries." Mr. Reade's communication ends with the just and generous expression of his regret "as a fellow-laborer though an humble one, that, actuated by a foolish vanity or by ill adrice, he should have attempted to add artificial flowers to a wreath of laurels which he had fairly and hardly earned."

Another and a more important controversy relative to the gorilla has arisen between Prof. Owen and Prof. IIuxley, extending to the general consideration of the differences in the structure of the brain between man and anthropoid apes. The question discussed by these eminent anatomists has been ably treated by Dr. Wagner, with refer-
ence to their views and those of Gratiolet, in an article which appeared in the Archives of Natural Ilistory in 1361.

In Geographical researches, much has been done during the last year. Within the first twelve months after the concession of the right of travelling with a passport through China, no fewer than twelve of the eighteen provinces have been visited by British subjects,-the great Yangtze has been traced through 1800 miles of its course,-and seven other journeys have been made by English explorers through portions of the Celestial Empire, hitherto unknown to Europeans. In Africa Speke, Petherick, Livingstone, Le Jean, and Von der Decken, have extended the limits of our knowledge. The continent of Australia has lately been traversed for the third time, happily without any sach disastrous result to the adrenturous explorers, as attended the expedition under the command of the gallant O'Yara Burke. In the Arctic regions Mr. Hall of Cincinnati, has discovered that Frobishers Strait is reaily a bay; he has also minutely txamined a tract in N. Lat. $62^{\circ} 52^{\prime}$, W. Long. $65^{\circ} 05^{\prime}$, which seems not to have been visited or seen by any white man for almo +300 years.

Of all the expeditions which hare been undertaken during the last year, probably the most remarkable, is that which proceeded in the spring under the Duke of Saxe-Coburg, with the object of exploring Central Africa. The party included the Duchess and another lady, two Princes, a physician, a litterateur, a painter, a linguist and a numerous retinue. This is doubtless the first Ducal progress with such a suite that has ever been attempted in a field so umpromising for comfort or security. In the Ethnological investigations, which have been prosecuted during the year, although but few positive results have been arrived et, 'much raluable material has been collected by the careful examination of crania, and by a more scientific analysis or language in accordance with the principles applied by Müller. The questions raised hy the discovery of implements in the drift, and of human bones with those of extinct animals, hare not yet been brought to a satisfactory issue. The remarkable fact seems worthy of notice, that so far no human remains have been found with the implements in the drift. To the works illustrative of this science, an important addition has recently been made by the publication of two volumes by one of our own members. The value of Dr. Wilsor's "Prehistoric Man, or Researches into the Origin of Civilization in the Old and New

World," has been recognized by other labourers in the same sphere of enquiry.

The most important discovery during the year, in its bearings on History, is that of the Assyrian canon by Sir Menry Rawlinson. In s arching through the collection of antiquities in the British Muscum, he found some fragmentary tablets containing lists of eponymes or high priests, who gave their name to the year. Of this canon four versions have been found, and the application of the information thus derived, relative to the period between the 7 th and 8 th centuries, before Christ, camot fail to be most interesting and raluable, especially as it may be used in illustration of Biblical IIistory and Chronology. I regret to observe, that from the English periodials it appears that an alienation of feeling has arisen from this discovery, between Rawlinson and that acute and profound scholar, Hincks. Let us earnestly hope that this estrangement will soon pass away, and that they will be found agrain working together in investigations so honourable to themselves and so beneficial to their fellow-men.

In Archæology, judicious excavations have revealed some most important memorials of the past. Under the careful superintendence of Fiorelli, many houses have been opened in Pompeii, and numerous most interesting remains have been discovered. It is much to be desired, that the work which has been entered upon under sucin good auspices, may be continued until the whole town is exhumed.

At Rome, excarations in different parts of the city have been made, and the res, Its have been in some cases so satis factory, that it may be hoped that some quastiones rexate that have troubled Topographical Antiquarians will at last be scttled. Some sculptures, especially a statue of remarkable excellence, have been found in the explorations in the Palatine, conducted at the expense of the Emperor of the French. But the most important discovery has been that of the original Church of St. Clement on the Esquiline, for which archæologists are indebted mainly to the Prior of the Irish Dominican College in the adjoining Convent, who, from his limited means, supplicd the funds by which a considerable portion of this ancient structure has been exposed to riew. The ancient tradition is, that this church was founded by Constantine on the site of the house of St. Clement, the fellow-labourer of St. Paul. That there was one there in the fifth century there can be no donbt, but it was more than once destroyed and rebuilt, and the new church now stands above the level
of the columis of the original edifice. A remarkable confirmation of the tradition as to the time of the erection of the subterramean building has been found in an inseription, on a slab discovered in one of the aisles, which gives the names of the consuls of the year 339. Refore I close this reference to the progress of Areheological researches in "the Eternal City," I must mention that the first volume of the great work by De Rossi on the Christian Inscriptions found at Rome has leen published. The whole collection numbers about 11,000, of which 4,000, drawn from the catacombs, are anterior to the time of Constantine, and about 1,250 bear dates.

The labours of the Prussian Commission in Athens have been rewardec' by di,coveries of singular interest. Prof. Strack had the honor of pointing out the spot where the remains of the Theatre of Dionysius were found, and early in the year the thirteen lowest rows of seats, with two marble thrones in front, were exposed to view. Oiher important results are expected from the excavations carried on under the superintendence of two other members of this Commission, Profs. Büttiger and Curtius. The enquiries of the former were directed to the Erectheion and Parthenon, of the latter to the Pnyx.

In France, the researches promoted by the Emperor have been rewarded by the discovery and identification of some localities mentioned by Cæsar in his account of his Gallic wars. The question relative to the points from which Julius Cæsar started, and at wnich he landed, in his invasion of Britain, has been reconsidered. The first of these has been fixed at Wissant, coorrectly, as seems to me; but others believe either Boulogne or Calais, especially the former, to have stronger claims to identification with the Portus Itius. The other point, scil, that of his landing, has beeu placed at Deal, or between Walmer Castle and Sandwich; but on this we may expect more definite information when the report of an English committee appointed to investigate the subject shall have been published.

The excarations, which are proceeding in England, near Wroxeter, the ancient Viroconium, may be expected to yield a considerable number of Roman relics-already some valuable remains have been discovered. The amhitious name, however, which has been given to the place, "the British Pompeii," is likely to raise hopes which will certainly not be realized. Very lately in the north of England, in the line of the Roman Wall, at Benwell. the ancient Condercum, two altars have been discovered, the inscriptions on which add another
name to the list of the deities worshipped by the northern nations in the Roman period.

The Runic inscriptions which were discovered about two years ago at Macshowe in the C kuess have been deciphered and transated by Profs. Stevens, Mmeh and Ratin with but partial suceess. I perceive by a recent announcement that much light has been thrown on them, and a more satisfactory explanation offered by Dr. Barclay, Principal of the Enisersity of Glasgow.

In Africa some very important diseoveries have been made. Many interesting relies, including a large number of inscriptions, amongst them one in Libyan characters, have been lately cxhmed in Algiers ; and other explorations at Carthage have yielded some most valuable remains, especially specimens of Phouician Epigraphy.

In Industry and tit the great crent of the year has been the Intermational Exhibition; and nobly has this glorions project for national improvement by mational cermpetition been a second time carried out. The building, however open to objection as a specimen of architectural taste and skill, seems to have admirably answered the purposes for which it was intended, and the Exhibition itself must be regarded as completely sucerssful. In examination of the awards of the judges presents results well worthy of cousideration; my limits, however, permit me only to take a passing glance at them. In machines of all classes, tools, philosophical instruments, naval architecture, cars and carriages, glass and lace, Great Britain stands foremost-in ceramic works and those in metal, in dyes and chemicals, in scuipture, aud, strange to say, in food substances, Franco bears the palm, whilst she disputes precedence in woollen fabrics with Austria and England. in furniture with Italy and Spain, and bears favourable comparison in painting with the Belgians, the Dutch, the Zoliverein, and the Scandinavians. Our continent has not been as well represented at this exhibition as at that of 1851. Our friends in the United States have been so eugrossed with the deplorable war, which has taxed all their energies to supply materials for its prosecution, that their contributions have been wholly disproportionate to their rast means, whilst wo ourseives have done little more than manifest the unrivalled resources of Camada in woods and in minerals. In this display we have again had the adrantage of Sir W. Logan's assistance, and the Prorince can point with pride to the Catalogue of her Eenomie Minerals by one of her most gifted sons as the model of what such a work should be. Nor should I omit noticing
the valuable aid rendered by Dr. Hurlburt in the department of forest products.

Magnific:m as was the semberesented at the concursus of nations in this temple of Industry and Art, there was that which dimmed its hightness. from the full enjowent there was a drawback, in the absence of him,

> "The silm tather of our kines to he, Mournd in that gobden hour of juilee,"
to whom was due the homor of having first conceived and earried out the glorious idea of collecting in one spot the matural and artificial productions of the mations of the earth, as the means of mutual improvement, as an index of the prouress of human civilization, and as a standard of the advancement of lmbustry and Art. In the inscrutable wisdom of the Amighty, the Prince Consort was removed before he saw the second triumph of the noble project which he had originated, but though absent, he was present in the memory of the hundreds of thousands of risitors, who deplured the loss of one who had right royally discharged his dity towards his adopted country, and whose name will long be held in fond remembrance throughout every part of the British dominions, as "Albert the Good." And now having taken a hasty and imperfect glamee at the principal points of interest in the progress of science, Industry, and Ari, during the past year, permit me briefly to enquire what we have been doing ourselves-what has been the work of the Institute during 1862. On reference to our Journal-for in estimating the wow of our members, I consider only the communications which have been published-I find that in the six numbers for the past year, there are nineteen original papers, exclusive of Reviews and Seientific and Literary notes. Although such a result of a year's work may be regarded by some as much less than what ought to be expected, when tie large number of members of the Institute is taken mo aceount, I camot but think that reflection will prove that this view of it shond not be cntertained. In the first place, the character of the articles suitable for publication in a Journal, which has already attaned distinction amongst Scientific and Literary periodicals, is such that there must necessarily be but few capable of writing them. The chief object of our Journal is the advancement of human knowledge by the publication of original matter, compreherding new facts, or hypotheses, or deductions, corrections of errors, and such communications as define or extend the limits of what is known. Now in communities much older and more numerous, and more farourably circumstonced than ours, there
are comparatively but few who have the necessary qualifieations for handling such subjects. What then may be expected of a young Province-not yet a century old-in which the great majority are occupied in acquiring or securing the means of subsistence or comfort-in which there are necessarily but few that are so highly educated as to have reached the point of knowing what has been accomplished in each department and what remains to be done-and in which, of those few that have the requisite qualifications, the greater number, in consequence of the requirements of their official or sec:... position, can find but little time for the prosecution of those subjects of study to which they would desire to dernte their leisure? Let me add to this the want of libraries, museums, and instruments, such as would be necessary to place investigators here in an equal position with labourers in the same fields of research in an European capital. Such considerations as these must induce us rather to feel satisfied than discontented with what we have done during the past year. And yet I doubt not that more might have been done-I doubt not that more will be done; for I am persuaded that some of our members, well qualified to give effective aid, are deterred from eren making the attempt by apprehensions which I cannot but regard as ill founded. Some of those, with whom I have spoken on the subject, seemed to think that discoveries were hopeless under the circumstances in which we are placed, exeept, indeed, in those investigations which have for their object the peculiarities of the region which we inhabit. The broad Atlantic, say they, inter. poses between them and the objects of their study-all that can ee done by them is to form probable conjectures, which sight might materially modify. And yet the history of some of the greatest discoveries in our time shews the fillacy of this reasoning. LeVerrier and Adams, by the foree of mathematical reasoning, had discovered the existence and calculated the position of Neptume before mortal eye had crer looked upon its orb; the investigations of Bessel and Peters ha:d found out the companion of Sirius before it was risible through amy telescope; Sir Roger Murchison nmounced the existence of auriferous strata in Australia before the labour of the miner was rewarded by a single grain of gold; Bunsen predicted the presence of a new alkaline metal before a particle of Casium or Rubidium had erer been exposed to view; Grotefend made the first step towards the reading of the cunciform language, with the aid merely of engraved representations of some inscriptions, before he had ceer seen a tablet or a cylinder. Why, then, may not similar results be attained here
by those who adopt similar means? I see around me those who have cultivated the subjeets of their special study up to that point at which valuable results of original researches may naturally be expected; whilst there are very few indeed of our members who are not qualified by their readiag to add to the pleasure of our weekly mectings by the communication of papers of general interest, not suitable, it may be, for the pages of our Journal, but yet imparting information in a new or attractive form, welcome for their intrinsic merit, welcome also as the earnest of better things to come. Let us, then, gentlemen, procced in the course which we have so far suc. cessfully pursued, thankful for the past, hopeful for the future, with the determination to contribute, so far as in us lies, towards the advancement of knowledge and the attainment of truth, and with the desire to extend the usefulness of an Institute, destined, I doubt not, to do good service in promoting "Industry, Science, and Art," in fostering intellectual and literary pursuits amongst our population, and i.. elevating the reputation of our country.

A POPULAR EXPOSTTION OF TLE MINERALS AND GEOLOGY OF CANADA.

BY E. J. CHAPMAN, Pb.D.
propessor ob minershogy and geology in university college, toronto.

PART V.
Canadian rock-formations : tueir subdivisions, fossils, fconomic materiale, and topograpilical distifibution.
Introductory Notice. Thie lovest rocks of the geological series, bitherto recognised, consist of a rast thichness of crystalline and semi-crystalline strata, or beds in a more or less altered or metamorphic condition, entircly destitute of organic remains, and hence classed together under the common term of Azoic Rosks. They are regarded as sedimentary deposits, conncted in the earlier seas which extended over the greater portion vi the earth during that period of its history which preceded the creation of organic types In Canada, as will be seen below, these Azoic rocks are enormously developed.

Above the deposits of the Azoic Age, various sandstones, limeatones, wiates and other strati, in which organic romains first appear, aro terornized as forming the second geological series, and aro known eollectively as I'alrozoic liocks. The term "Palaozoie," signifying "ancient in".," is bestowed on these strata in allusion to the marked difteromer which preatils between their organic types, viewed as a whole, and those belonging to existing Nature. Among the more remarhable extinct forms of the labeozoic Age, Graptolites, Cystideans, numbrous Brachiopods, Orthoceratites, Trilobites, and som perentiar fishes, hold a prominent place. Reptilian types are rave, and of companatively low organzation; and Mammalia appar to have been entiedy absent. In Canada, the lower members of the Pataonoic: steata are hargely developed, but the higher divisions of the serics are of only partial oecurrence, or are alogether wanting.
'Whe strata of a succeeding seriee, still ascending in the geologieal scake, are known as Mesozoic or Secondary Tossiliferous Rucks. Their orgamic remains are quite distinct from those which oecur in the undertying formations. Ammonites and Belemnites, with highly organied roptilian typos, incliding the lchithyoumps, Plesiosaurus, Pterodutyl, Igmodota, \&e., are among their more chanacteristic and extinct forms. Fishes with cqually-lobed tail-fins, and others with seahoownings similar to those of the great majority of tishes which inhabit our present waters, first appear in the deposits of this Secondary finsilifurous .ire. Mammalian types are all but unknew, and those hitherto discorered, are of low organization. In Camada, the Mesozoic rocks are without representatives.

The Cainozoic or Tertiary Fossiliferous Strata succed the Mesozoic. In these, the organic remains clusely approximate to the farms of the present epoch. Amongst the mollusea, brachiopods become scarec, and cophalopods with chambered shells have greatly diminished. Those with foliated septa (as ammonites, baculites, \&e.) have entirely disappared, together with the huge and abnormal reptiles of the Messanie lge. Mammalian types, on the other hand, are fully represented-examples of all existing orders, with the exefption of that in which aim is alone included, being met with in these deposits. In Camada, howerer, the Cainozoic formations do not occur.

Finally, a still higher series of deposits, partly merging into the Camozoic, where these occur, and in part consisting of the products of existing causes, may be classed together under the term of Post-

Tertiary deposits. These, which inclute the great Drift formation, and sundry accumulations oî more recent origin, are largely devel ped in Canada.

BKETCIL-SECTION OF CANADIAN HOCK-FORMATIONS.

Tir. 151.

$$
\begin{aligned}
& \text { A:- Azoic Strata (Laurentian and Muronian.) } \\
& B \text { - Palaozoic Strata (Chiefly Silumian and Devonian.) } \\
& C=\text { Post-Tertiary depoit; (Drift and Modern accumulations.) } \\
& D=\text { Eruptive rocks (Traps, Trachytes, Syenite, Granite.) }
\end{aligned}
$$

Our rock-iomations, therefore, as shown in the accompanying diagram, comprise representatives of the Azoic, Paleuzoic, and PostTertiary series, a wide break oceurring between the two latter,-together with trap dykes and other masses of eruptive origin. The subdivisions and leading characters of these will now be considered. We commence with the older formations, and proceed upwards to those of modern date.*

azoro rocks of canada.

$$
\left|\begin{array}{l}
\text { Iuronian. } \\
\text { Laurentian. }
\end{array}\right|
$$

The Canadian rock-form:tions of Azoic age, are referred to tro series: the Laurentian, below; and the IIuronian above. This subdivision, not yet fully recognized by American geologists, was first proposed by sir Wilian Itoman; and the terms "Laurentian" and "Iluronian" are of his bestowal. The former is now adopted in Europe for gneissoid strata of the same ancient date. The Lauren-

[^0]Vox. VILI.
tian series, which forms the lower and more largely developed portion of the Azoie group, is ehiefly characterised by its highly erystalline condition, and (as regards Canada) by the great beds of iron ore which it contains. The Huronian series includes many conglomerates and part ially-metamorphosed slates amongst its strata, and dis taversed by numerous quarta veins holding copper pyrites and other copper ores. Tron ore is also associated with this series, but not abundantly in Canada. The semi-crystalline condition of its rocks (as compared with the highly crystalline gneissoid strata of the Laurentian series) and the marked prevalonee of slaty conglomerates, constitute its more distinctive ehameters.

Laurentian Series. - These stata, the oldest series of deposits recognised on the American continent, are regarded as sedimentary accumblations, originally collected together by the aetion of water, and converted subsequently into a erystalline condition be the agency of metamorphic forces. (See under the head of "Metamorphic Rocks" in lart 111). Their absolute thickness eannot be ascertained, but it must be very great, embracing many thousands of feet; and their exposed area in Camada, as estimated by Sir William Logan, covers a surface of about 200,000 square mites. It will be convenient to consider these Laurentian rocks under the following heads:(1) Minema characters; (2) Structure; (3) Associated intrusive rocks; (4) Eeonomic materials; and (5) Topographical distribution.

Mineral churucters of the Lamention strata;--The stratified rocks of Lementim age consist essentially of wast beds of micaerous amb hornblembe gneiss; interstratified with subordinate beds of quartr-rock mica-shate, hornhlende-rock, erystalline limestone and dolomite, and oxidized iron ores; and associated with thick beds of feldspar rock or anorthosite. In addition to these, a few quartzose conglonerates (shewing the metamorphic character of these deposits), thin layers of serpentime, beds and layers of a talcose character (Renselaerite or pyrallolite : s. Part II.), and others composed in large part of Wollastonite, are interstratified with the limestones, or with the gneissoid beds, of particular localities. These different kinds of metamorphic rocks have been described already in Part III.; but a few additional remarks on some of their more special characters are necessary here. Viewing our Canadian formations, of this age, in their broader features, we may subdivide them conveniontly, and to some extent naturally,
into three groups, viz:--(1) Gncissoid strata ; (1) Limestones, Quartzites, and Iron bands ; and (r), Auorthosites or feldspar rocks.
(a) Gneissoid Strala :--'These make up the larger mass of our Laurentian rocks. Ordinary gheiss, as explained in Pamer III., consists of quarta, potash-feldspar, and mien; whilst in syenitic groviss, the mica is replaced by homblembe. These varieties oceur both alone and mixed with one another, throughout our Lamrentian disiricts The feldspar is generally red or white, the quart\% colourless and vitreous, and the mica and hornblende of some dark tint-hlack, brown, or green. The two later minerals occasionally dir out, when a binary mixture of quartz and feldspar results. In certain beds of coarse structure, the stratification lines become obseure; but usually, and ceen in hand specimens, guriss exhibits a striped or banded aspect, by which it is distinguished from ordinary gramite. The potash-ffldspar or orthoclase (see Paier II.) is sometimes replaced or accompanied by sodn-fellepar or c:lbite, but the instances of this are not common. The predominating colour of these gneissoid strata, is reddish or dark grey, the latter resulting from shipes of dark mica combined with marrow zones of white quartz and white or pale red feldspar. When much hornblende is present, the rock may assume a black or dark greenish colour, or present a flecked surface of red and black: exhibiting in the former case, a transition ints hornblende-rock. A red gneiss with green layers of epidote, forming a stome well adapted for ornamental purposes, occurs at Carlton Place near Kingston, and at some other localitios. The black or dark green homblende-rock associated with the gueissoid and limestone strata, freguently contains crystals of red garnet (Barric trwnship, \&.c.) ; and the latter mincral sometimes occurs in the gnciss or quartaites in considerable abundance (Grenville, River Rouge, \&e.e. It is usually found, however, in the vicinity of the limestone bands, occasionally forming true garuet-rock.
(b) Limestones, Quartites, and Iron Ores:-The limestone beds associated with the. gneissoid and other Laurentian rocks are often of a fine gramular or saccharoidal texture; at other times coarse granular, and occasionally almost compact. The colour is usually white or grey, but for short distances the rock is sometimes of a pale reldish, or greenish tint. It is frequent'y zoned with specks and scales of mica, serpentine, or graphite, and contains also various accidental minerals, of which the more abundant or interesting comprise: Iron fyrites; apatite or phosphate of lime; sulphate of baryta; tremolite, diopside,
and other varieties of hornblende and augite; garnet; tourmaline; condrodite; spinel; cormdum, molybdenite, \&c. Descriptions of these minerals are given in Parr II. of this series of Papers. A talcose mineral (Renselaerite or Pyrallolite), probably an altered augite, (see $\mathbf{P}_{\text {abt }}$ II.) occurs also in interstratified beds with the limestones of some localities (Ramsay, Grenville, Rawdon); and in Grenville and Brargess, yellowish and greenish-grey serpentinc occurs under similar ec nditions. Phosphate of lime likewise, occasionally forms irregular bands amongst the strata: as, more especially, in North Elmsley, South Burgess, and Ross; and at Calumet Falls.

Some of the limestone beds are of great thickness. According to Sir William Logan, who has devoted much time to an elaborate examination of the crystalline limestones of the Ottawa region in particular, certain beds exhibit a thickness of 1500 feet. In the district alluded to, four beds, presenting an aggregate thickness of over 3500 feet, have been traced out and mapped. For full information respecting the structural and other cliaracters of these, the reader is referred to the Revised Report on the Geology of Canada, by Sir William Logan and the other officers of our Geological Survey.* The more important localities in which workable beds of crystalline limestone occur, will be found under the head of " Economic Materials." below. The crystalline dolomites, composed of carbonate of lime and carbonate of magnesia, closely resemble the crystalline limestones, and occur under the same conditions, the two being frequently interstratified. A fine saccharoidal variety is found on Lake Mazinaw in the County of Frontenac, and a more compact kind occurs in the townships of Madoc, McNab, Loughborough, Shefficld, Grenville, \&c. Many of these dolomites, it is remarked by Sir William Logan, become of a yellowish brown colour by weathering.

The quartzites and quartzose conglomerates, mentioned above, may be referred to in comnection with the limestones, as they are generally found in their immediate vicinity or otherwise interstratified with them. Some beds of quartzite present a thickness of several hundred fect. This rock, composed of quartz more or less pure, exhibits a vitrcous or sub-vitreous aspect, and is either colourless or of a pale reddish, brownish, or greenish tint. The quartzose conglomerates are com-

[^1]paratively rare, but some occur in the townships of Rawdon and Bastard, associated with crystalline limestone. They are usually somewhat micaceous, and the imbedded pebbles consist of quartz, feldspar, (often decomposed), sandstone, and sometimes of limestone. The quartzites of Bay St. Paul, and those of Rawdon, contain garnets in great abundance, and pass into garnet rock.

The beds of iron ore, also placed in this subdivision from their general association with the erystalline limestones and dolomites, belong partly and chiefly to Magnetic iron oxide, and partly to Specular iron ore-minerals of which full descriptions are given in Part II. of this Essay. These ores occur in vast beds interstratified with the limestones and other Laurentian strata. In thickness they vary from a yard or two, to upwards of two hundred feet. Their more important localitics are mentioned below.
(c) Anorthosites:-The term anorthosite was first employed by Prof. Sterry Hunt of the Geological survey, to designate the more purely feldspathic rocks of the Laurentian serics. These rocks consist of a mixture of lime and soda feldspars-minerals forming several species (Labradorite, Albite, Anorthite, \&c., see Part II), all of which belong to the Triclinic or Anorthic system of crystallization (Part I.) The anorthosites make up in themselves a vast thickness of the Laurentian rocks, and cover surface areas of large extent. They appear, according to Prof. Hunt, to occupy a higher position than the orthoclase gneiss-rocks, although occasionally interstratified with subordinate beds of these, and also, though more rarely, with strata of quartzrock. Their structure is coarsely crystalline, or otherwise more or less compact ; and their marks of stratification are frequently obscure. They often contain laminar masses of hypersthene of a brown (or green) submetallic tint; and when this mineral becomes somewhat abundant, the variety termed "hypersthene rock" originates (see Part III.) Ilmenite or titaniferous iron ore (described in Part II) is also sometimes present. An immense bed, 300 feet long and about 90 feet wide, occurs in a feldspathic rock of this series, near Bay St. Paul, below Quebec. These rocks are chiefly of a greyish blue colour, but some are white, and others exhibit a yellowish, greenish, or reddish tint. All become opaque white by weathering. Many contain cleavable masses of lime feldspar or Labradorite (Part II.), or appear to be almost wholly made up of that mineral. In these, a fine green and blue opaiescence or play of colour is sometimes observable: as in
the morthosite of the township of Ahererombie in the comely of 'Toresbomme, in those of Marin mul Mille-lsles, mud in some of lhe boulders met with in the Ottawn distriet.
 occur in inclaned heds- the dip varying from eight or fon to over sovonty degres. 'The diroction of the dip is extremely rarinhle, as the strmanare mot mily inclined, but are folded more or lese into a serios of amficlinals and symelimals. In some beds, both of pueiss and limestome, the subordmate larevs are much comborfed, as shown in the ammed fipure skedehed on Gow lahe, north of Marmora;

Fik. 1:se. and the same pronliarity is scon in many other loralities. Betweon the lamentian strata and the Silurian bods which rest upon them in Eastern and the greater pare of Western Canada (the Huromisu being uhsent), there is always a wat of couformability. Along the line of jumetion of the two formations, betwere the castorn extremity of lahe Ontario mad the east eoast of (ieorgian Bay, the laurentian strata appar to dip very genembly towneds the noth, that is, betweon N.W. mad N.F: or away from the Silurim beds -as shown in the accompanying section, taken on Jake St. John in the township of Rama, ('. W'. The dotted line in this section shows

Fig 158.
the ordinay level of the lake. The Laurentian strata have a general northerly dip, also, near the junction lise of the two formations in the township of Elawir, and at other points visited by the writer; but this does uot apply everywhere, as on Loughborough and Crow Lakes the dip is SE. or nearly so; meither does it continue apparently for any great distance to the north, the dip rapidly changing with the foldings of the strata. The Sketch-section on a previous page (fig. 151), in which an attempt is made to concey an idea of the foldings of the Laurentian strata generally, will render this sufticiently clear.
3. Intrusive Rocks:-Considering the immense extent of country occupied by the Laurentian rocks, intrusive masses of contempora-
neous geologionl nar, appear to be exeesedingly rare. Miny of the
 considhord, by thow who have had the best apportantore ta stady them, an wins of sergegntion rather than trar eruptive matters. The most important example of malondterl remptive arigin, is the great mass of syenite deseribed hy sir Willam hagn as orempying an area of ahout thirf gix upure miles in the lenwashipsof (irenville, Chathata, and Wentworth, near the left bank of the: Otawa. 'This comsists of red or white potash-fridepur, with black hermblemde, and a small amomit of graty ; but here and there it comatige a certain numunt of mica also, forming the variety qenerally known as syenitic pranite. This creptive massत a series of greenstome dykes belonging to a still entior ernpion ; und is in itself traversed hy mother series of porphyrifie dykes of n neresuatily more rerent origin. The greenstone dyken, acoording to Sir Willinm Logra, rxhibit a will-marked edhanar structure, and vary in width from n few feet to a hundreal yards. These three ernptive formations are also intersected by a fourth serics of dykes, supposed to be of Indeozoic age. (See Report for 1853. Also the Lherised lieport on the (ieology of Canada). As the more northern and uncleared districts within the vast area of our Laurentian region become opened up o, more thoroughly explored, other eruptive masses of an amalogous character will, in all probability, bebrought to light.
4. Eiconomic Materials:-In addition to grood building stones of gneiss, \&e., obtainahle generally throughout the region oceupied by our Laurentian rocks, the followine are the more important economic materias discovered in ihese strata up to the present time: * (a) Iron Ores; (b) Lead Ore; (c) Sulphide of Mlolybelenum ; (d) Graphite; (e) Mica; (f) Ormamental I'cldspars; (g) Marbles, (h) Sulphate of Baryta: (i) Millslones.
(a) Lron Ores.-These comprise Magnetic Oxide of Iron; Specular Iron ore (or lled oxide of Iron) ; and Titaniferous Iron Ore. The magnetic ore occurs principally at the following localities:-(1) Belmont ' 'ownship (the Marmora mine) : several beds, lying between crystalline limestone and gnciss, and mixed with layers of serpentine, talcose slate, \&c. Tootal thickiess of the ore beds, over 400 fect.-2, Madoc Township: Bed of ore of excellent quality, 25 feet thick, in

[^2]gneiss.-3, South Crosby Township, Newborough mine: Bcd in gneiss, on Mud Lake, 200 feet in thickness.-4, South Sherbrooke Township: Bed of 12 feet in gneiss.-5, Ifull Townslip on the Ottawa: Dome-shaped bed in gneiss; thickness, about 90 feet.-6, Grenville Township, C. E.: Bed of 10 or 12 feet in thickness.7, Grandison Township, C. E., 20 feet bed. The average amount of iron in these beds, varies from 60 to 70 per cent. Specular iron ore (averaging about 55 per cent. of metal) occurs in a 30 feet bed, in the township of McNabb, near the Lac des Chats. Also in "Iron Island" on Lake Nipissing. Titaniferous Iron (Ilmenite), as already mentioned, forms a bed of 90 feet in thickness, in Feldspar-rock (anorthosite) at Bay St. Paul on the Lower St. Lawrence.
(b). Lead Ore:-This consists of galena or sulphide of lead. Mixed with a gangue of calc spar and heary spar it forms a series of narrow reins in the townships of Lansdowne, Ramsay, and Bedford, C. W. These veins, which vary in thickness irom six inches to a foot, belong, probably, to a somewhat more recent period of formation than the Laurentian ep $s h$; but as they occur among the Laurentian rocks, they are properly mentioned in comexion with these strata. The lead ore is rery slightly argentiferous, and apparently in no great quantity in the veins. It occurs also, under similer conditions, in the township of Dummer, Peterborough Co., C.W.
(c). Sulphide of Molybdenum:-This mineral (sce Part II.) is not at present of much value. It forms the source of various molybdeaum compounds, some of which are employed in chemical investigations, and occasionally in porcelain painting. It occurs, in small quantities, in the Laurentian rocks of several localities, as mentioned under the description of the mineral in a preceding part of this Essay ; but in workable quantities it has ouly been found, as yet, at the mouth of the Quetachoo River on the north shore of the Gulf of St. Lawrence. ("Descriptive Catalogue of the Eronomic Minerals of Canada in the Exhibition of 1862 "-issued by the Geological Survey.)
(d). Graphite:-Found in workable quantities in the Augmentation of Grenville, on the Ottawa, (see Part II.) Also in the townships of Burgess and Lochaber. The quality is scarcely sufficient to render the substance available as a material for pencils, but the graphite of these localities is well adapted for refractory crucibles, and also as a burnishing material for stoves and grates.
(e). Mica:-This mineral occurs in pieces sufficiently large for
store-doors, $\mathbb{S c}$., in the townships of North and South Burgess, C. W. Also in Grenville and the "Augmentation" of that township in C.E.
(f). Ornamental Feldspars:-These comprise, the Labradorite of Abercrombie township, C. E.; the Peristerite (an iridescent variety of Albite) found in the townships of Bathurst and Burleigh, C. W. ; and the Perthite (an irideseent Orthoclase,) of the township of Burgess. Sce Parr II. The two latter rarieties were first made known (as occurring in these localities) by Dr. James Wilson of Perth.
(9). Marbles:-The principal marbles of Laurentian age occur at the following localities: Arnprior, MacNabb township (grey, striped); Grenville township (white with yellowish specks of serpentine, or yellowish-white) ; Augmentation of Gremville (white with pale green spots of serpentine); Elzerir township, C. W., (white but of somewhat coarse grain) ; Barrie township, at Lahe Mazinaw, \&c., (a crystalline dolomite, pure white, and of saccharoidal texture).
(h). Sulphate of Buryta :-This substance, used as a paint material or substitute for white lead (see Part II.), is found in cousiderable quantities, in connexion with Latrentian rocks, in the townships of Lansdowne, Burgess, Bathurst, and Dummer, in Canada West, where it occurs in the form of veins which often contain galena. It is found still more abundantly on Lake Superior, but in rocks of another age.
(i). Millstones:-The intrusive mass of syenite in the township of Grenville, C. E., (described under the head of "Eruptive Rocks" above) is associated with some remarkable veins of chert (a variety of quartz) from which grod millstones have been manufactured. These veins are regarded by Sir William Logan as veins of segregation; and it is considered probable that the siliceous matter of which they consist may have been derived from the decomposition of the feldspar in the adjoining mass of syenite. The feldspar is said to be converted into kaolin for a considerable distance on each side of the chert.
5. Area of the Laurentian Rocks:-As shewn by the shaded surface in the accompanying map, (figure 154), the Laurnutian strata may be regarded as constituting from the coast of Labrador, the whole of the north shore of the Saint Lawrence to within a short distance of Quebec (Cape Tourmente)-a few isolated and narrow strips of Lower Silurian strata (made known by the Geological Survey) alone intervening between these rocks and the waters of the Gulf or river. These outlying patches occur on the north shore of the Straits of

Belle Isle, at the mouth of the Mingan liver, near the Seven Islands, and at the Murray Bay River, and the Gouffre. From Cave Tourmente, the Laurentian strata run inland, at a distance of from ten to thirty miles from the river but roughly parallel with its cours, and cross the Ottawa near the Lac des Chats. From this point, the strata extend both southwards and to the northwest. The southern portion crosses the Saint Lawrence abont the Thousand Isles, and occupies a large area in the State of

New York between Lake Ontario and Lake Champlain, including the wild district of the Adirondack Mountains. The narrow belt of crystalline rock connecting this southern Laurentian area with the main or northern region of these strata, probably exerted at the close of the Drift period, as discussed on a succeeding page, a remarkable influence on the physical condition of the country to the west. The other portion of the Laurentian outcrop, west of the Lac des Chats, traverses the back townships of the counties of Frontenac, Addington, Hastings, Peterborough, Victoria, and Simcoe, and strikes Georgian Bay near the mouth of the River Severn. From thence, the Laurentian rocks form the eastern and north-eastern shores of the Bay up to a point nearly opposite the east end of the Manitoulin Islands, or some five or six miles west of the most western mouth of French River, where they are overlaid by Huronian deposits. They reappear upon the east and north shore of Lake Superior, and extend far into the great North-West-reaching in all probability to the shores of the Arctic Ocean. The vast area thus occupied by the Laurentian rocks, includes many thousands of square miles; and that part of it which lies within the limits of Canada properly so-called, greatly exceeds in extent the other portions of the Province.
6. Agriculturul Capabilities:-As a general rule, liable only to par-
tial or local exceptions, the Laurentian area is not farorably circumstanced for agricultural occupation. Soils of depth and fertility can only be expected to occur under the following conditions:-first, where feldspar rocks or anorthos:es prevail, most of these yielding calcarcous soils by decomposition; secondly, where the belts of crystalline limestone crop out and form the surface of the country; and thirdly, where the rocks are covered to a sufficient depth by Drift clays and sands. These latter deposits, however, arc u*nally filled in these districts with large aud numerous boulders, and rarely extend over areas of any sonsiderable size. Patches of a certain extent occur here and there, but they are too generally separated by huge and bare masses of gneissoid rock, familiarly known to the settlers as "elephants backs." Such, at least, is the general condition of the country in the back townships of the western counties mentioned above. Northwards, and in Eastern Canada, the severe climatic relations which there prevail, must be added to these disadvantages. In those parts of the province, however, which are occupied by other rock-formations, numerous uncleared tracts of unrivalled fertility are still left to repay the settler's toil.

FIuronian Series:-The rocks of this group, the next in ascending order above the Laurentian series of strata, may be described under the following heads:-1, Mineral characters; 2, Associated intrusive rocks; 3, Economic materials; and 4, Topographical distribution.*

1. Mineral Characters of the Huronian Strata :-These rocks consist principally of thick beds of quartzite, passing into quartzose and jasper conglomerates; green slate rocks passing into slate conglomerates; bands of compace or sub-crystalline limestone; and interstratified masses or beds of grecnstone. The entire thickuess of the series, where fully displayed, is probably not far short of 20,000 feet. The quartzites are chisfly white or greenish in colour, but exhibit in some places grey, brownish, and also red tints. Some are ritreous in texture ; others, more or less arenaceous. In the conglomerates, the included pebbles, which are sometimes quite small, consist of different varicties of quartz-colourless, opaque-white, brown, black, dark-red,

[^3]\&e.,- the latter constituting the varicty known as jasper. The slates and slate conglomerates appear to owe their general green colour to the presence of chlorite and cpidote, or perhaps more commonly to the former alone. In some, different shades of green (or of green, black, and rec!) run in parallel lines, imperting to the rock a beantiful ribanded aspect. Well-marked slaty cleavage, however, is apparently very rare : if ever present. In the conglomerates, the enclosed pebbles, or rounded fragments, for some are eight or ten inches across, consist of pieces of gneiss, syenite, quartz, \&c., evidently derived in many instances from the adjacent Laurentian rocks. Some of these slates and slate conglomerates form vast stratified masses of between two and three thousand feet in thickness. The limestone beds of the Huronian series are of comparatively subordinate importance. They are chiefly of a light or dark grey colow, though in places they offer a white, greenish or brownish tint. In structure, they are more or less compact, or but slightly crystalline; the latter condition is, however, rare. Some exhibit a brecciated appearance, and all seem to contain a good deal of siliceous matter. Thin beds of chert (a flinty variety of quartz) occur indeed interstratified with them, in some places. In addition to their want of crystalline texture, these limestones differ from those of the Laurentian ser.es in not containing any crystallized minerals-apatite, garncts, tourm:line, homblende, \&e.,-a fact pointed out by Professor Sterry Hum. The masses of greenstone interstratified with the slates and other beds of this series, are of somewhat doubtful origin. They may consist, as suggesied by Prof. Hunt, of altered sedimentary deposits : or they may be stratified beds made up of mateials derived from neighbouring dykes and cruptive greenstone masses ; or, otherwise, they may consist of overflows of igneous rock during the building up of the associated strata; or of lateral dykes, so to say, forced at some after period between the lines of bedding. As regards structure, \&e., they exhibit several varieties. Some are largegrained, consisting of feldspar (usually of a greenish-white color) and dark green or black hornblende. Other varicties are fine-grained, and of a uniform green colour except when they become amygdaloidal or contain cavities filled with calc spar, magnesite, quartz, \&c. Certain fine-grained varicties also become schistose and quite sectile, from the presence of a large quantity of chlorite. These finer greenstones are likewse porphyritic in places, or hold imperfect crystals of feldspar; and those of coarser grain, by the addition of a little quartz, pass
occasionally into syenitic gaciss or syenite-according as to whether the rock be regarded as of sedimentary or eruptive origin.
2. Associated Intrusive Rocks, Mineral Veins, fe:-TThe intrusive rocks which break through the IIuronian series, and belong appazently to the same geological period, consist of numerous dykes of dark greenstone, varying in breadth from less than a font to two hundred feet or more; and of some large masses and veins of red granite, frequently of an epidotic charncter. An exposure of the latter occurs in force on the north shore of Lake Iruron, associated with Laurentian strata, but is regarded by Sir William Logan as most probably of Huronian age from its agreement in mineral characters with similar veins which traverse the deposits of that period at neighbouring localities. Some of the greenstone dykes are older, and others newer, than the granite masses. The vein-fissures filled with copper pyrites, \&c., which are so abundant amongst these Huromian strata, are of still later formation, since they cut many of the greenstones and granites, and often break the continuity of these and the surrounding beds, causing upthrows or downthrows of greater or less extent. An enormous fault caused by a dislocation of this character, has been traced out by Mr. Murray in the valley of the Thessalon and adjoining district. In one place, a downthrow of nine thousand feet is attributed to this fault. (See the Report for 1858. Also Canadian Journal. vol. V, p. 463.) Finally, it may be observed that several large anticlinals extend across the Huronian strata of this region generally. The axis or summit of one of these, crosses the workings of the Bruce Mines.
3. Fconomic Materials:-The more important substances of this class obtained from the IIuronian rocks, comprise: copper ores; quartzose sandstones suitaible for glass making purposes; hones of good quality; and (as ornamental stones) the jasper conglomerates mentioned above. The copper ores belong chiefly to copper pyrites, purple copper pyrites or erubescite (the "horse flesh ore" of the miners), and copper glanee : minerals which have been fully described in Part II. These occur on the nurth shore of Lake IIuron in weins or lodes, varying in thickness from about two to ten feet. The gangue or veinstone consists cssentially of quartz, and the average yield of metal is said to be from six to eight per cent: amounting, however, in the dressed ore to about eighteen or twenty per cent. The principal workings are at the Bruce Mines (Cuthbertson location), Wellington Mines (Keating location), and at the Copper Bay Mines; but ore has
been found also at the Wallace Mine near the mouth of White Fish River, at Echo Lake, Root River, Garden River, Mississagui River, Spmish River, and other localities of that region. The ore (according to Mr. Murrays observations) appears to be far more abmaidat in the greenstones than in the quartzites. Lodes of some richess in the greenstome, when passing into the latter frequently beeme quite poor. Ottertail Lake, an expansion of the Thessalon River, is named by the Geological Survey as a locality from which good homes may be obtained. They are cut from the green or greyish siliceons shates, found towards the base of the series. From some of the soft chloritic slates, also, the Indians have long obtained sufticiently compart and seetile masses to be worked into pipe-lowls and other oljects.
4. Topographical Distribution:-The Ilurominn rocks are unknown throughout the greater portion of Westem Camada, and in the East they appear to be entirely wanting. The Laurentian rocks of these districts, (ither form the surface of the ground, with or without a covering of Diift, or are otherwise overlaid unconformably by Silurian stratn-the Hurouian being absent The principal Huronian area extembs along the north coast of Lake Huron trom a few miles west of French River, where this enters the lake, up to the the neighbourhood of hoot liver opposite the northem part of Sugar Island, or to within a short distance of the Sault Ste. Marie. A narrow strip of the shore-fine, however, from about ten miles north of the entrane to Lake George to a point west of Little Lake George, consists appurenty of newer strata. The extension northward of this IIuromian helt has not yet len definitely made out, but it does not appear to excerd ten or fifteen miles, and in places is less than this. Huronian rocks are exposed also at several points on Lake Superior: as in Batchohwhung Bay; at the mouth of the Dore, and around the lower part of Michipicoten River; in strips along the coast farther west ; and more extensively aromd the lower part of the Kaministiequia hiver, and elsewhere, on the coast of Thunder Bay. In many patts of this region, the Mwonian rocks are followed unconformably by a somewhat similar series of altered strata, associated with dykes and interstratified n :sses of trap, and containing also, copper ores, native copper, and oth $\cdot \mathrm{r}$ metallic matters. Until recently, these strata were considered to be of IHromian age ; but they are now looked upon as altered Silurian deposits, belonging in part to the Potsdam group,
and partly to the Calciferous or Quebee Series. They will be described, consequently, moder those divisions.
[The present series of pajers on the Mincrals and Geology of Canada will be concluded in two other articles. These will comprise a review of our Silurian and higher strata, with many figures of characteristic fossils, sections, \&e., and a brief recapitulatory sketeh of the geology of the Province generally.]

mllustrations of the significance of certatn ANCIENT BRITISH SKULE FORMS.

HY DANIEI, WILSON, LI.. D.,

PROEWSSOR OF HSTORY AND FACHISH I.ITERATURL, GNIVERSITY COI.EEGE, TOBONTO.
During a recent visit to Washingtor, i arailed myself of the facilities afforded me by Professor Henry, the learned Scectary of the Smithsonian Institution, to examine with minute care the ethnological collections preserved there, including those formed by the United States Exploring Expedition ; and especially a highly interesting collection of human cramia. The latter includes those of Esquimaux and Teliuktehi, a number of eompressed and greatly distorted Chinook and other Fhathead skuls, as well as examples of those of other Indian tribes, borh of North and South America; and of Fiji, Kanaka, and other Pacifie islander:. On my return I spent a short time in Philadelphia chicfly for the purpose of renewed study of the valuabie materials of the Mortonian collection; and while there enjuyed the opportunity of examining, in company with Dr. J. Aitien Mcigs, a series of 125 Requimaux crania obtained by Dr. Hayes during his Aretic Jumbey of 2854 .

The materials for eraniolugical investigation which such collections supply can searcely be surpassed in some of their depariments; and invite to very diverse researches by the illustrations they are caleulated to afford. Jt chanced, however, that my atention had been recently recalled to an old subject of speculation, relative to the possiblo modification of the forms of ancient British crama by some of the very causes which so materially alter those of many American tribes; and this accordingly influenced me in part, in the notes I made of the collections both at Washington and Philadelphia; and will now give direction to some remarks bearing on the same inquiry.

Among the most prized cramia in the collection of the Academy of Natural Sciences at Pliladelphia is the celebrated Scioto Mound skull. But though on a former visit, I made the ancient mound crania an object of special study, this most remarkable example of the series was not then included among them; and I now examined the original for the first time. The result of this examination was to satisfy me that the remarkable form and proportions of that skull are much more due to artificial influences than I had been led to suppose from the views published in the Simithsonian Contributions to Knowledge.* The vertical view, especially, is very inaccurate. In the origiual it presents the peculiar characteristies of what I have before designated as the truncated form : passing abruptly from a broad flattened occiput to its extreme parictal breadth, and then tapering with slight lateral swell, until it reaches its least breadth immediately behind the external angular processes of the frontal bone. The occiput has been subjected to the flattening process to a much greater extent than is apparent from the drawings; but at the same time it is accompanied by no corresponding affection of the frontalbone, such as inevitably results from the procedure of the Chinooks and other Flathead tribes; among whom the desired cranial deformation is effected by bandages crossing the forchad and consequently modifying the frontal as much as the parictal and occipital bones. On this account, great as is the amount of flattening in this remarkable skull, it is probably due solely to the madesigned pressure of the cradle-board acting on a head of markedly brachyecphalic proportions and great matural posterior breadth. The forehead is fully arched, the glabella prominent, and the whole character of the frontal bone is essentially differcut from the Indian type. The sutures are very much ossified; and even to some extent obliterated. So early as 1837, when discussing Dr. Morton's theory of one miform cranial type pervading the whole ancient and modern tribes of North and South America, with the single exception of the Dequimanx, I remarked: I think it extremely probable that further investigation will tend to the conclusion that the vertical or fhatened occiput, instead of being a typical characteristic, pertains entirely to the class of artificial modifications of the natural cranium fimilian to tho American ethnologist alike in the disclosures of ancient graves, and in the customs of widely separated living tribes. \dagger

[^4]This idea received further coufirmation from noticing the almost invariable accompaniment of such traces of artificial modifisation, with more or less inequality in the two sides of the head. In the extrenely transformed skulls of the Flathead Tndians, and of the Natchez, Peruvians, and other aucient mations by whom the same barbarous practico was encouraged, the extent of this deformity is frequently such as to excite surprise that it could have proved compatible with the healthful excreise of any vital functions. But the aspect in which it is now purposed to review the snbject of artificial modifications of the human cranium, in relation to ancient British skull-forms, was suggested, in the same paper above referred to, when pointing out the mistaken idea adopted by Dr. Morton, that such unsymmetrical confomation, or irregularity of form, is peculiar to American crania.* The hatter remask, I then observed, is too wide a generalization. I have repeatedly noted the like unsymmetrical characteristics in the brachycephalic crania of Scottish barrows; and it has occurred to my mind, on more than one occasion, whether such may not furnish an indication of some partial compression, depeudent, it may be, on the mode of nurture in infancy, having tended, in their case also, if not to produce, to exaggerate the short longitudinal diameter, which coustitutes one of their most remarkable characteristics.

The idea thus expressed, in a paper read before the American Scientific Association at Montreal, as well as at the Dublin meeting of the British Association in 1857, was the result of observations made before leaving Scotland in 18j3. Ove section of the Prehistoric Annats uf Scotland is devoted to a discussion as to the ethological significance of the cranio of Scottish Tumuli; and after its publication I availed myself of every farourable opportunity for adding to the rare materials illustrative of that interesting department. In pursuing such researches my attention was repeatedly drawn to the unsymmetrical proportions of ancient brachyecphatic skulls, and to their peculiar troneated form, accompanied, as in the mound skull of the Sciotc Valiey, by an abrupt flattening of the oeciput which I soon begran to suspect was due to artificial callses. Sinee then the facilities derived from repeated examinations of American collections have familarized me, not only with the extreme varieties of form of which the human head is susceptible under the influence of artificial compression; but also with the less marked changes undesignedly resulting from such seemingly slight causes as the constant

[^5]pressure of the Indian cradle-board. The examination and measurement of several hundred specimens of Americiun crania, as well as of the living head in representatives of various Indian tribes, havo also vatisfied me not only of the xistence of dolichocephalic and brachycephalic heads as tribal or national characteristics, but of tho common occurrence of the same exaggerated brachycephalic form, accompanied with the rertical or obliquely flattened occiput, which had seemed to be chameteristic of the crania of the Scottish tumuli. There are inderd ethmical differences apparent, as in the frontal and malar bones, but so far as the posterior region of the head is concerned, both appear to exhibit the same undesigned deformation resulting from the process of uussing still practised among many Indian tribes.
The light thus thrown on the habits of the British mother of prehistoric times, by the shull-forms found in ancient barrows, is replete with interest, from the suggestions it furnishes of ancient customs hitherto undreamt of. But it has also another and higher value to the cramiologist, from its thus showing that some, at least, of the peculiar forms hitherto accepted as ethnical distinctions, may be more correctly traced to causes operating after birth.

The first example of this peculiar cranial conformation which attracted my attention, as possibly tracenble to other causes than inherited characteristics, or natural deviations from the typical skull-form of an extinct race, occurred on the opening of a stone cist at Juniper Green, near Edinburgh, on the 17th of May, 1851. Soon after the publication of the Prehistoric Annals of Scotland, in which the special characteristics of the crania of the Scottish tumuli were first discussed, I learned of the accidental discovery of an ancient tomb in a garden on the Lanark road, a few miles to the north-west of Edinburgh, and immediately proceeded to the spot. The cist occupied a slightly elevated site, distant only a few yards from the road; and as this had long been under cultivation as a garden, if any mound originally marked the spoi it had disappeared, and no external indication distinguished it as a place of sepulture. A shallow cist formed of unhewn slabs of sandstone enclosed a space measuring three feet eleven inches in length, by two feet one inch in breadth at the head, and one foot cleven inches at foot. The ioints fitted to cach other with sufficient regularity to admit of their being closed by a few stone chips inserted at the junction, after which they appeared to have been carefully cemented with wet loam or clay. The slab which covered the whole projected
over the sides, so as effectually to protect the sepulehral chamber from any infiltration of earth. It lay in a sandy soil, within little more than two feet of the surface; but it had probably been covered until a comparatively recent period by a greater depth of earth, as its site was higher than the surrounding surface, and possibly thus marked the traces of the nearly levelled tumulus. Slight as this eleration was it had proved sufficient to prevent the lodgment of water, and hence the cist was found perfectly free from damp. Within this a male skeleton lay on its left side. The arms appeared to have been folded over the breast, and the knees drawn up so as to touch the elbows. The head had been supported by a flat water-worn stone for its pillow ; but from this it had fallen to the bottom of the cist, on its being detached by the decomposition of the fleshly ligatures; and, as is common in crania discovered under similar circumstances, it had completely decayed at the part in contact with the ground. A portion of the left side is thus wanting; but with this exception the skull was not only nearly perfect when found, but the bones are solid and heavy; and the whole skeleton appeared to me so well preserved as to have admitted of articulation. Above the right shoulder, a neat earthen vase had been placed, probably with food or drink. It contained only a little sand and black dust when recovered, uninjured, from the spot where it had been deposited by affectionate hands many centuries before, and is now preserved along with the skull in the Scottish Museum of Antiquities.

As the peculiar forms of certain ckulls, such as one described by Dr. Thurnam, from an Anglo-Saxon cemetery at Stone, in Buckinghamshire, * and another from an Indian cemetery at Montreal in Lower Canada, \dagger as well as those of numerous distorted crania, from the Roman site of Uriconium and other ancient cemeteries, have been ascribed to posthumous compression : the precise circumstances attendant on the discovery of the Juniper Green cist are important, from the proof they afford that the body originally deposited within it, had lain there undisturbed and entirely maffected by any superincumbent pressure from the day of its interment. Two, if not three, classes of skulls have been recovered from early British graves. One with a predominant longitudinal diameter, in the most marked examples differs so essentially in its elongated and narrow forchead, and occiput from the modern dolichocephalic head, that I was led to assign it to

[^6]a separate class under the title kumbecephalic.* Another has the longitudinal diameter little in cxcess of the greatest parictal breadth, and is no less strikingly distinguished from the prevailing modern head, whether of Celtic or Saxon areas, by its shortness, than the other is by its leugth, when viewed either in profile or vertically. The Auglo Saxon type of skull appears to be intermediate between those two forms, with a more symmetrical oval, such as is of common occurrence in modern English skulls.

If cranial conformation has any cthnical significance, it appears tome inconceivable that the two extreme forms above referred to can both pertain to the same race; and the circumstances under which the most characteristic examples of the opposite types have been found, confirm me in the belief which I adrocated when the evidence was much less conclusive, that the older dolichocephalic or kumbecephalie skull illustrates the physical characteristics of a race which preceded the advent of the Celto in Britain, and gradually disappeared before their aggressions. As, however, the opposite opinion is maintained by so high an authority as Dr. J. Barnard Davis, the comparison of the following measurements, illustrative of the three types of head, will best exhibit the amount of deviation in opposite directions from the intermediate form. The measurements are taken from those furnished in the Crania Britannica, and include the longitudinal diameter, frontal, parietal, and occipital br sallth, parietal height, and horizontal circumference. No. 1, like the majority of the same class, is derived from a megalithic chambered barrow, and has been selected by Dr. Davis as a characteristic example of the class to which it belongs; \dagger though, according to him, that is one of aberrant deviation from the typical British form. No. 2, obtained from a barrow at Colford, in Wiltshire, has also been selected by Dr. Davis as one of three typical British crania. It is of the same type as the Jumper Green skull, and its strougly marked characteristics are thus defined by him: "Its. most interesting peculiarities are its small size, and its decidedly brachychepalic conformation. This latter character, which commonly appertains to the ancient British cranium, and even to that form which re regard as tupical, is seldom met with expressed in so marked a manner." \ddagger No. 3, is a skull from an Anglo-Saxon cemetery near Litlington, Sussex, one of two of which Dr. Davis remarks: "There is

[^7]a general i: idication of grod-form in these fine capacious skulls, which is apparent in every aspect. . . On a review of the whole series of Anglo-Saxon crania which have come under our notice, we are led to conclude that this pleasing oval, rather dolichocephalic form, may best be diserving the epithet of typical among them.,"* All the three examples are male skulls:

	L. D.	F. B		C. 18.	P. 11.	II. 0.
1. Whey Chambered Barrow Skull	8.1	4.7	5.7	5.	5.1	21.7
2. Codford Skull.	6.8	4.6	5.7	5.1	4.7	
3. Mitlington Skull	7.5	4.7	5.3	4.6	4.9	20.3

Each of the above examples presents the features of the type to which it belongs with more than usual prominence, so that if the mean of a large series were taken, the elements of difference between the threc would be less strongly defined. The differeres are, howercr, those on which their separate classification depen's; ard they thus illustrate the special points on which any cranion picai er rinarison for ethnological purposes must be based. Of the three sist..s, the era and race of one of them (No. 3) are well determined. It is that of a Saxon, probably of the seventh or eighth century, of the race of the South Saxons, descended from EIIa and his followers; and recovered in a district where the permanency of the same ethnic type is illustrated by its predominance among the rural population at the preseat day. Another of the selected examples, No. 2, is assumed by Dr. Davis, perhaps on satisfactory grounds, to be arl ancient British, i.e., Celtic Skull. It is indeed a difficulty, which has still to be satisfactorily explained, how it is that if this brachycephalic type be the true British head-form, no such prevalence of it on modern Celtic areas is to be found, as in the case of Saxon Sussex connects the race of its ancient pagan and christian cemeteries, by means of the characteristic ovoid skull, with the Anglo-Saxon population of the present day. The historical race and cra with which Dr. Davis appears to connect the Barrow-builders of Wiltshire, is thus indicated in the Crania Britannica:-"Megion of the Belgæ, Temp. Ptolemæi, A.D. 120." The Belga of that era-then apparently comparatively recent intruders, and by some regarded as not Celtic but Germanic-were displaced, if not exterminated; but the modern Britons of Wales are

[^8]undoubted descendants of British Celts of Ptolemy's age. Though doubtless mingling Saxon and Norman with pure British blood, they probably preserve the native type as little modified by such foreign admixture as that of its supplanters in the most thoroughly Saxon or Anglish districts of England. It is therefore a question of some importance how far the extreme brachyecphalic proportions of the so-called British type may be traceable to other than inherited ethmical characteristics; whether in fact it is not eatirely due to the undesigned flattening of the occiput, and lateral expansion of the brain and skull, consequent on the use of the cradle-board.

Mcanwhile, turning from this supposed British skull of Roman times, to the one derived from Uley chambered barrow, No. l, the most ancient of the serics, and assuming their chronulogical order to be undisputed, as it appears to be: we find no gradation from an abbreviated to an elongated form, but, oin the contrary, an extreme brachycephalic type interpoued between the ovoid dolichocephalic AngloSaxon of the Christian era, and the extreme dolichocephalic, or kumbecephalic one belonging to a period seemingly so remote that Dr. Thurnam, when noting the recurrence of the san. ype in another chambered b row at Littleton Drew, Wiltshire, remarked: "It is not necessary to admit the existence of any pre-Celtic race, as the skulls described may be those of Gaclic, as distinguished from Cymric, Celts; or the long-headed builders of these long, chambered, stone barrows, may have been an intrusive people, who entered Britain from the South-west. Can they have been some ancient Iberian or IberoPhœnician settlers?" ${ }^{\text {: }}$

Among the rarer crania of the Morton collection is one to which a peculiar interest attaches, and which may possibly have some significance in reference to this inquiry. Its history is thas narrated in Dr. Henry S. Paterson's Memoir of Dr. Morton: During a visit of Mr. Gliddon to Paris, in 1846, he presented a copy of the Craniu Egyptiaca to the celebrated oriental scholar, M. Fresuel, and exited his interest in the labours of its author. Upwards of a year after he received at Philadelphia, a box containing a skull, forwarded from Naples, but without a?y information relative to it. "It was handed over to Morton," says Dr. Paterson, "who at once perceived its dissimilarity to any in his possession. It was cridently very ohd, the animal matter having almost entirely disappeared. Day after day would Morton

[^9]be found absorbed in its contemplation. At last he announced his conclusion. He had never seen a Phonician skull, and lec had no idea where this one came from ; but it was; what he conceived a Phœnician skull should be, and it could be no other." * Six months alterwards Mr. (iliddon received, along with other letters and papers forwarded to him from Naples, a slip of paper, in the handwriting of M. Fresuel, containing the history of the skill, which had been discovered by him during his explotation of an ancient tomb at Malta. Dr. Meigs refers to this in his catalogue of the collection, (No. 1352,) as an illustration of "the wonderful power of discrimination, the tactus visus, acquired by Dr. Morton in his long and critical study of craniology." Such was my own impression on first reading it ; but I confess the longer I reffect on i, the more an I puzaled to guess by what classical or other data, or process short of absolute intuition, the ideal type of the Phomician head could be determined. I suspect, therefore, if we had the statemen: in Dr. Morton's own words, it would fall short of such an absolute craniolorical induction. The following is the sole entry made by him in his catalogue: "Ancient Phenician? I received this highly interesting relic from M. F. Fresnel, the distinguished French archeologist and traveller, with the following nemorandum, A. D. 1 S.47:-Cràne provenant des cares sépulchrales de Ben-Djemma, dans lile de Malte. Ce cràne parait avoir appartenu a un individu de la race qui, dans les temps les plus ancieus, occupait la côté septentrionale de l' Afrique, at les iles adjacentes." The sepulchral caves of Ben-Djemma, are a series of galleries with lateral chambers or catacombs hewn in the face of the cliffs on the southwest side of the island of Malta. Other traces besides the rookhewn tombs indicate the existence of mancient town there, although no recora of its name or history survives. M. Fredérick Lacroin remarks, in his Kalle et 7_{c} Goze, "Whoever the inhabitants of this city may have been, it is manifest from what remains of their works, that they were not strangers to the processes of art. The sepulchral caves, amounting to a hundred in number, reccive light ly means of little apertures, some of which are decorated like a finished dommay. In others, time and the action of the humid atmospliere, have obliterated all traces of such ornament, and let only the weathered rock.

The chambers set apart for sepulture are excavated at a considerable distance from the entrance, n the immost recesses of

[^10]the subterrancan gallerics. The tombs are of admirable desiga and style of art, and the details of their execution exhibit remarkable ingenuity and purity of taste. The author of the Toyage pittoresque de Sicile does not hesitate to declare that they surpass in elegance any that he has seen executed on the same scale. What hand has hewn out these gloomy recesses in the rock? To that we cat gre no reply. The chromicles of Malta are silent on this point. Time has defaced the restiges which might otherwise have helped to the solution of the problem."*

O her and rery remarkable remains of antiquity abound in Malta and the neighbouring island of Goza, including the cyclopean ruins styled La tour des Céants, which have also been assigned by some writers to a Phœnician or Punic origin, as a temple dedicated to Astarte; and the Z'adarnadu; Isrira, a magalithic structure for which a Pelasgic origin is assumed. But in drawing any comparison between the chambered galleries of Ben-Djemma and the megalithic chambered barrows or cairns of the British Islands, we are at best reasoning from the little known to the less known indices of prehistoric races ; between whom the points in common may amount to no more than those which admit of a companson being drawn between the Brachycephali of the British Stone-Period, and the corresponding physical form and rude arts of American gravemounds.

Nevertheless the Ben-Djemma skull in the Mortonian collection is not improbably what it has been assumed it to be; and it is in many respects a remarkable one. A deep incentation at the nasal suture gires the idea of an overhanging forehead, but the superciliary ridges are not prominent, and the peculiar character of the frontal bone is most strikingly apparent in the rertical view, where it is seen to retreat on either side, almost in a straight line from the centre of the glabella to the external angular processes of the frontal bone. The contour of the coronal region is describel by Dr. Meigs as "a long oval, which recalls to mind the kumbecephalic form of Wilson." \dagger It it is of more importance, perhaps, to note that the remarkabie skull recovered by Dr. Schmerling, from the Engis Cavern, on the left bank of the Meuse, buricd five feet in a breccia, along with the tooth of a rhinoceros and other fossil bones, appears to be of the same elongated dolichocephalic type. Its frontal derelopment is long and narrow;

[^11]and its greatest relative proportions, in length and breadth, are 7% by 5.25 inches, so that it closely corresponds in those respects to the most characteristic British kumbecephalic crania.*

Whaterer be the final conclusion of ethologists, as to the eridence which led me to adopt that name to indicate the characteristics of a preceltic British race; the necessity appears to be acknowledged for some such term to distinguish this form from the ordinary dolichocephalic type. The Ben-Djemma skull is narrow throughout, with its great. est breadth a little belind the coronal suture, from whence it narrows gradually towards front and rear. The lower jaw is large and massive, but with less of the prognathous development than in the superior maxillary. The skull is, no doubt, that of a man, and the nose has been prominent; but the zygomatic arches are delicate, and the whole face is long, narrow, and tapering towards the chin. The parietals mect at an angle, with a bulging of the sagittal suture, and a slight but distinctly defined pyramidal form rumuing into the frontal bone. The occiput is full, round, and projecting a little more on the left side than the right. The measurements are as follows:-
Longitudinal diameter 7.4
Parietal diameter. 5.1
Frontal diameter 4.
Vertical diameter. 5.3
Intermeatoid arch. 12.3
Intermastoid arch 15. (?)
Intermastoid line 4.3 (?)
Occipito-frontai arch 14.2
Morizontal circumference 20.2

I hare been thus particular in describing this interesting skull, because it furnishes some points of comparison with British kum. jecephalic crania, bearing on the inquiry, whether we may not thus recover traces of the Pbomician explorers of the Cassiterides in the long-headed builders of the chambered barroriss. When contrasting the wide and nearly rirgin area with which Dr. Morton had to deal, with that embraced in the scheme of the Crania Britannica, I remarked in 1857 :-Compared with such a mide field of investigation, the little islaid home of the Saxons may well seem narrow ground for exploration. But to the ethnologist it is not so. There, amid the rudest traces of primeval arts, he secks, and probably not in val, for the remains of primitive European allophy-

[^12]lix. There it is not improbable that both Phenicians and early Greek navigators have left behind them evidences of their presence, such as he alone can discriminate.*

Before, however, we can abandon ourselves to the temptations of so seductive a theory,-which, after all, fixds only such support as may be deduced from a ceitain general analogy of cramial form; and derives no confirmaiion from the works of art accompanying the remains of the long-headed barrow builders;-it has to be borne in remembrance that the question is still disputed with reference to this class of British dolichocephalic crania: are they examples of an essentially distinct type, presering cridence of the characteristics of a different race, or are they mere exceptional aberrant deviations from the supposed brachyeephatic Celtic, or British type? Much stress is laid on the fact that the two forms of skull ha:e occasionally been recovered from the same barrow; from which it may be inferred that the two races to which I conceive them to have belonger, were for a more or less limited period contemporancous. More than this I camot regard as a legitimate induction from such premises, in relation to crania of such extremely diverse types. But this amounts to little; for the same is undoubtedly true of the ancient British and the modern Angl. Saxon race; and the diseovery of Celtic and Saxon skulls in a common barrow or tumulus of the 6 th century is no proof that the latter race was not preceded by many centuries in the occupation of the country, by the Britons, among whom they then mingled as conquerors and supplanters.

But the clongated skulls of the Uley barrow type are no rare and exceptional forms. They have beeu most frequently found in tombs of a peculiar character, and of great antiquity Many have been recovered in too imperfect a state to admit of more being deduced from the fragments than that these conform to the more perfect cxamples of this peculiar form. Nevertheless the number already obtained in a sufficiently perfect state to admit of detailed measurement is remarkable, when their great age, and the circumstances of their recovery are fully considered. Of this the following enumeration will afford satisfactory proof. Only two perfect crania from the chambered tumulus of Uley, in Gloucestershire,-of which the proportions of one are cited above, -have been preserved. But in the later search of Mr. Frecman, and Dr. Thurnam, in 18J4, the fragments of eight or nine other skulls were recorered, and of theso

[^13]the latter remarks: "The fragments are interesiing, as proving that the characters observed in the more perfect crania were common to the individuals interred in this tumulus. Three or four calvaria are sufficiently complete to show that in them likewise the length of the skulls had been great in proportion to the breadth."* Again in the megralithic tumulus of Littleton Drew, North Wilts, at least twenty-six skeletons appear to have been found, from several of whick imperfect cramia were recorred, and of those Dr. Thurnam remarks: "Eight or nine crania were sulficiently perfect for comparison. With one exception, in which a lengthened oval form is not marked, they are of the dolichocephalic class." \dagger So illso the four nearly perfect skulls from West Kemnct are deseribed as "more or less of the lengthened oval form, with the occiput expanded and projecting, and presenting a strong contrast to skulls from the circular barrows of Wilts and Dorset." \ddagger To these may be added those of Stoney Littleton, Somersetshire, first pointed out by Sir R. C. Moare ; |i and cxamples from barrows in Derby, Stafford, and Yor'sshire, described by Mr. Thomas Bateman in his "Ten Years' Diggings in Celtic and Saxon Grare IIills;" including those from Bolehill, Longlow, and Ringham Low, Derbyshire ; from the galleries of the tumulus on Five Wells Hill; and from the Yorkshire barrow near IIeslerton-on-the-Wolds. Several of the above contained a number of skulls; and of the last, in which fifteen human skeletons lay heaped together, Mr. Bateman remarks: "The crania that have been preserved are all more or less mutilated; but about six remain sufficiently entire to indicate the prevailing conformation to be of the long or Fumbecephalic type of Dr. Wilson."§ The cravia occuring in graves of this class mentioned by Mr. Bateman alone, exceed fifty in number, of which the majority are either of the elongated type, or too imperfect to be determined. The others include between thirty and forty well-determined examples, besides a greater number in too imperfect a state to supply more than indications of their correspondence to the same characteristic form. Alongside of some of these are also found brachycephalic crania; but in the most ancient barrows the elongated skull appearsto be the predominant, and in some cases the sole type; and of the examples found in Scotland, severak

[^14]havo been recovered from peat bogs, or others under circumstances more definitely marking their great antiquity.

The variations of cranial form are thus, it appears, no gradual transition, or partial modification, but an abrupt change from an extreme dolichocephalic to an extreme brachycephalic type; which, on the intrusion of the new and essentially distinct Anglo-Saxon race, gives place once more to a dolichocephalic form of medium proportions. The three forms may be represented, reduced to an abstract ideal of their essential diversities by means of the following diagram :*-

Leaving, meanwhile, the consideration of the question of distinct races inlicated by such cvidence, it will be well to determine first if such rariations of skull-form can be traced to other than a transmitted ethnical source. The Juniper Green skull, already referred to, prew sents in profile, as shown in the full sized view in the Crania Britannica, the square and compact pioportions characteristic of British brachycephalic crania. It also exhibits in the vertical outline, the truncated wedge form of the type indicated in Fig. 2. In the most strongly marked examples of this form, the vertical or flattened occiput is a prominent feature, accompanied generally with great parietal breadth, from which it abrubtly narrows at the occiput. The proportions of this class of crania were already familiar to me before the discovery of the Juniper Green example; but it had not before occurred to me to ascribe any of their features to other than natural causes. But the circumstances attending its exhumation gave peculiar interest to whatever was characteristic in the skull and its accompanying relics, handled for the first time as evidences of the race and age of the freshly opened cist, discovered almost within sight of the Scottish Capital, and yet pertnining to prehistoric times. The skull was carried home in my

[^15]hand a distance of several miles, and its truncated outline, and still more, its flattened occiput attracted special attention, and gave rise to conversation with my friend Mr. Robert Chambers, who had accompanied me on this exploratory excursion. With the temptation of a novel discovery, I was at first disposed to recognise the traces of art in this abbreviated form, not only as exaggerating the natural characteristics, but as a possible source of their production. But a comparison with examples of the true dolichocephalic skull, to which I had already assigned priority in point of time, sufficed to dispel that illusion, and to satisfy me-of what the examination of the corresponding classes of Peruvian crania has still more strongly confirmed,-that no artificial modification can eutirely efface the distinctions between two such diverse forms. At a subsequent meeting of the Society of Antiquaries of Scotland, I accompanied the presentation of the cranium and urn with an account of the circumstances of their discovery, and some remarks on the novel features noticcable in the skull. Unfortunately the printing of the Society's Proceedings, which had been suspended for some time, was not resumed till the following season; and no record of this communication was preserved beyond the title.

Another skull in the same collection, found under somewhat similar circumstances in a cist at Lesmurdie, Banffshire, has the vertical occiput accompanied by an unusual parietal expansion and want of height, suggestive of the idea of a combined coronal and occipital compression.* A third Scottish skull, procured from one of a group of cists near Kinaldie, Aberdeenshire, also exhibits the posterior vertical flattening. But a more striking example than any of those appears in the one from Codford, South Wiltshire, selected above to illustrate this type. \dagger Dr. Davis remarks in his description of it:-"The zygomatic arches are short, a character which appertains to the entire calvarium, but is most concentrated in the parictals, to which the abruptly ascending portion of the occipital lends its influence. The widest part of the calvarium is about an inch behind, and as much abore the auditory foramen, and when we view it in front we perceive it gradually to expand from the outer angular process of the frontal to the point now indicated." The entire paricto-occipital region presents in profile an abrupt vertical line; but when viewed vertically it tapers considerably more towards the occiput than is usual in crania of the same class.

The cause of the vertical occiput, as well as the oblique parieto-oc-

* Crania Britannica, Dec. ii. pl. 16.
† Ilid, Dec. ij. pl. 14.
cipital flattening in this class of British Crania, I feel no hesitation in believing to be traceable to the same kind of rigid cradle-board as is in constant nse among many of the Indian tribes of America, and which produces precisely similar results. Its mode of operation, in effecting the various forms of oblique and vertical occiputs, will be considered, when deseribing some of the phenomena of compressed Indian crania; but another feature of the Juniper Green skull, which is even more obvious in that from Lesmurdie, in the same collection, is an irregularity amounting to a marked inequality in the developement of the two sides. This occurs in skulls which have been altered by posthumous compression; but the recovery of both the examples referred to from stone cists, precludes the iden of their having been affected by the latter cause; and since I was first led to suspect the modification of the occiput, and the exaggeration of the characteristic proportions of British brachycephalic crania by artificial means, familiarity with those of the Flathead Indians, as well as other ancient and modern artificially distorted American crania, has led me to recognise in them the constant occurrence of the same unsymmetrical inequality in opposite sides of the head.

But another class of deformations, of a less marked character than the well-known distortions produced on many American cramia, both by the undesigned action of the cradle-board, and by protracted compression purposely applied with a view to change the form, merits the carefilatatention of craniologists. The normal human head may be assumed to present a perfect correspondence in its two hemispheres; but very slight investigation will suffice to convince the observer that few living cxamples satisfy the requirements of such a theoretical standard. Not only is inequality in the two sides frequent, but a perfectly symmetrical head is the exception rather than the rule. The plastic condition of the cramial bones in infancy, which admits of all the strange malformations of ancient Macroccphali and modern Flatheads, also renders the infant head liable to many undesigned changes. From minute personal examination I have satisfied myself of the repeated occurrence of inequality in the two sides of the head, arising from the mother being able to suckle her child only at one breast, so that the head was subjected to a slight but constantly renewed pressure in the same direction. It is surprising, indeed, to how great an extent such unsymmetrical irregularity is found to prevail, when once the attention has been drawn to it. The only example of
the Greck liead possessed by Dr. Morton, was a cast presented to him by Dr. Retzins, and which, from its selection by the distinguished Swedish eraniolomist for such a purpose, mirht reasounhly be assumed to illustrate the (ireck type. It is accordingly deseribed by Dr. J. Aitken Meigs, in his " (ranial characteristics of the leace of Man," as Wery much resembling that of Constantine Demetriades, a (ireek native of Corfu, and long a teacher of the modern Greck languare at Oxford, as engraved in Dr. Prichard's Jesearches. Its cranial characteristics are thus defined in the Catalorue of the Mortonian Collection: (No. 1354,) "The calvarial region is well developed, the frontal line expansive and prominent, the facial line departs but slightly from the perpendicular." On recently visiting Philadelphia for the purpose of renewed examination of its valuable collections, I was sur, prised to find this head,-instead of b^ing either oval or as Blumenback describes the example selected by him, sub-globular.-presenting the truncated form, with extreme bieadth at the parictal protuberances, and then abruptly passing to a flatten \mathbf{d} occiput. It measures 6.5 longitudinal diameter; 5.7 parietal diame ${ }^{\wedge} r$; and 19.2 horizontal circumference. But the most noticeable fenture is the great inequality of the two sides, the right side is less tumid than the left, while it projects more to the rear, and the whole is fully as unsymmetrical as many American crania. Were it not that this feature appears to have wholly escaped Dr. Morton's attention, as he merely enters it in his catalogue as a "Cast of the skull of a young Greek, Prof. Retzius;" I should be tempted to suppose it had been purposely sent to him to illustrate the phenomena of unsymmetrical development; and of the influence of undesigned artificial causes on skull-forms.

Dr. Morton was not unobservant of such indications of the frequent dissimilarity between opposite sides of the skull, nor did he entertain any doubt as to its cause when occurring as the accompaniment of other artificial changes, though he entirely overlooked its more general prevalence. When first noticing the probable origin of the flattened occiput of certain British skulls, I drew attention to the fact that he had already recognised undesigned artificial compression as one source of abnormal cranial conformation, and he accompanied its demonstration with a reference to the predominant unsymmetrical form in all such skulls. "This irregularity," he added, "chiefly consists in the greater projection of the occiput to one side than the other," and "is not to be attributed to the intentional application of mechanical force." Such want of uniformity in the two
sides of the head is mueh more strongly marked in the Flathead skulls, which have been subjected to great compression. It is clearly traceable to the difficulty of subjecting the living and growing head to a perfeetly uniform and equable pressure, and to the cerebral mass forcing the skull to expmend with it in the direction of least resistance. Hence the unsymmetrical form accompanying the vertical occiput in the Lesmurdie and Juniper Green skulls, and, as I conceive also in the Greek skull of Retzius. 'To me, at least, the study of the latter skullform has tended strongly to confirm the belief that the extreme abbreviated proportions of many naturally brachycephatic crania are due to artificial causes. Wherever a very noticable inequality exists between the two sides of a skull, it may be ascribed with much probability to the indirect results of designed or accidental compression in infancy; and by its frequent occurrence in any uniform aspect, may, quite as much as the flattened occiput, furnish a clue to customs or modes of nurture among the people to whom it pertains.

Dr. Struthers of Edinburgh has in his collection an interesting example of a moderu skull, measuring 7.5 longitudinal diameter, 6.5 parietal diameter, 21.4 horizontal circumference, in which the truneated form is even more strongly marked by the abrupt flattening, immediately behind the parietal protuberances, accompanied with inequality in the two sides of the head. It was obtained from a grave digger in Dundee, who stated it to be that of a middle aged female whom he had known during life. There was nothing particular about her mental developement.

I have also drame attention in former papers to the fact that such peculiar forns and examples of inequality in the developement of the two sides of the head, are familiar to hat manufacturers. Occasionally the cye is attracted by very umusual cramial forms revealed by baldness; but the hair suffices generally to conceal abnormal irregularities, some of which, as illustrated by hatters' shapes, are extremely odd and fantastical. My attention was originally directed to this familiar test by a remark of the late Dr. Kombst, that he had never been able to obtain an English-made hat that would fit his head. Ine added that he believed such was the general experience of Germans, owing to the greater length of the English head. I subsequently found the shapes of a Yorkshire hatter to be shorter than some furnished me from Dublin; and I believe that such comparisors of the shapes most
in demand in different parts of the British Islands, and on the Continent, will supply important eraniological results.

The novel forms thas oceurring in modern heads, though chiefly traceable, as I believe, to artificial causes, are not the result of design. But the same is true of the prevalent vertical and oblipuely flattened occiput of many ancient and modern American crania, as well as of the British brachycephalic class already described. Nor are such changes of the natural form neeessarily limited to skulls of short lougitudinal diameter, in which this typical characteristic is exaggerated by the pressure of the cradle-board in infancy. Now that this source of modification begins to receive general recognition among craniologists, its influence is assumed as a probable source of the most diverse aberrant forms. Dr. Thurnam, when referring to two skulls of different shapes, recovered from the same group of British barrows, of "a somewhat late though pre-Koman period," on Roundway IIill, North Wiltshire, thus indicates their contrasting characteristics, and suggests the probable source of such divergence from the supposed British type : "c The general form of the cranium (pl. 43.) differs greatly from that from the adjoining barrow, (pl. 42). That approaches an acrocephalic, this a platyecphalic form ; that is eminently brachycephalic, this more nearly of a dolichocephalic character. As the eye at once detects, the difference is much greater than would be inferred from a mere comparison of the measurements. The respective peculiarities of form in the two skulls, may possibly be explained by supposing that both have been subject to artificial deformation, though of a different kind,-the one appearing to have been flattened on the occiput, the other showing a depression immediately behind the coronal suture, over the parictal bones, which seems to indicate that this part of the skull was subject to some habitual pressure and constriction, perhaps from the use of a bandage or ligature tightly bound across the head and tied under the chin, such as to this day is employed in certain parts of the west of France, producing that form of distortion named by Dr. Gosse, the sincipital, or téte bilobée."* The influence of the recognition of this source of change, is indeed very manifest throughout the fifth Decade of the Orania Britannica. An extremely brachycephalic skull of a youth, obtained from a barrow on Ballard Down, Isle of Purbeck, is described as unsymmetrical, and as affording "tolerably clear evidence that this form, if not always produced, was at least

[^16]Vol. VIII.
liable to be exaggerated by an artificial flattening of the occiput, such as is practised by many American and lolvenem tribes."* In the same Decade another skull of the type most dissimilar to this, is described and illustrated. It was recovered in fragmehts from the remarkable chambered barrow at West Kemet, Wiltshire; and its most characterist features are thus defincd by Dr. Thurnam :--" It is decidedly dolichocephalic, narrow, and rery flat at the sides, and realizes more nearly than any we have yet had to firure the kumbecephalic or boatshaped form described by Dr. D. Wilson. The frontal region is narrow, moderately arched and elevated at the vertex, but slopes away on each side. The parietal region is long, and marked by a prominent ridge or carina in the line of the sagittal suture, which is far adranced towards obliteration, whilst the other sutures are quite as perfect as usual. The occiput is full and prominent ; the supra-occipital ridges only moderately marked. There is a deep digastric groove, and a slight paroccipital process on each side. The external auditory openings are somewhat behind the middle of the skull, and very much behind a vertical line drawn from the junction of the coronal and sagittal sutures" Its extreme length and breadth are $7 \cdot 7$ and $5 \cdot 1$, and an inequality in the development of the two sides is obvious in the vertical view. As the brachyecephalic skull recalls ce: ain American and Polynesian forms, so such examples of the opposite type suggest the narrow and elongated skulls of the Australians and Esquimaux : and he thus proceeds:-"The Ballard Down skull bears marks of artificial flattening of the occiput; this calls to mind the artificial lateral flattening of the skull characteristic of the ancient people called Macrocephali, or long-heads, of whom Hippocrates tells us, that 'while the head of the child is still tender, they fashion it with their hands, and constrain it to assume a lengthened shape by applying bandages and other suitable contrivances, whereby the spherical form of the head is destroyed, and it is nade to increase in length.' 'This mode of distortion is called by Dr. Gosse the temporo-parietal, or 'tête aplatie sur les côlés.' It appears to have been practised by various people, both of the ancient and modern world, and in Europe as well as the East. The so-called Moors, or Arabs of North Africa, affected this form of skull; and even in modern times, the women of Belgium and Ilamburgh are both described as compressing the heads of their infants into an clongate form. Our own olservations lead at least to a presumption that this form of arti-

[^17]ficial distortion may have been practised by certain primeral British tribes, particularly those who buried their distinguished dead in long chambered tumuli."
Accordingly Dr. Thurnam draws attention to the oblitcration of the sagittal suture, both in the skull in question, and to a still greater estent in one figured by Blumenbach, under the name of " λ siatic Macrocephali," and expresses his belief that this "has bren produced by pressure or manipulations of the sides of the head in infancy, by which it was sought to favour the development of a lengthened form of skull; to which, however, there was probably, in the present instance at least, a matural and inherent tendency." It is perhaps worthy of note here, that a long marow head has been observed as characteristic of certain Berber tribes, the occupants of ancient Punic sites in North Africa.

It thus appears that a class of variations of the form of the human skull, which becomes more comprehensive as attention is directed to it, is wholly independent of congenital iransmitted characteristics. Kumbecephalic, acrocephalic, and platycephalic, unsymmetrical, truncated, or elongated heads, may be so common as apparentiy to furnish distinctive ethnical forms, and yet, after all, cach may be traceable to artificial causes, arising from an adherence to certain customs and usages in the nursery. It is in this direction, I conceive, that the importance of the truths resulting from the recognition of artificial causes affecting the forms of British brachycephalic or other crania chiefly lies. The contents of carly British cists and barrows prove that the race with which they originated was a rude people, ignorant for the most part of the revy knowledge of metals, or at best in the earliest rudimentary stage of metallurgic arts. They were in fact in as uncivilized a condition as the rudest forest Indians of America. To proce, therefore, that like the Red Indian squaw, the British allophylian or Celtic mother formed the cradle for her babe of a flat board, to which she bound it, for safcty and facility of nursing, in the vicissitudes of her nomade life, -though interesting, like every other recovered glimpse of a long-forgotten past,--is not in itself a discovery of much significance. But it reminds us how essentially man, cren in the most degraded state of wandering sarage life, differs from all other animals. The germs of an artincial life are there. Extermal appliances, and the conditions which we designate as dumestication in the lower animals, appear to be inseparable from han. The most untu-
tored nomades subject their offspring to many artificial influences, such as have no amalogy among the marvellous instinctive operations of the lower animals. It is not even unworthy of notice that man is the only animal to whom a supine position is natural for repose; and with him more than any other animal, the head when recumbent, invariably assumes a position which throws the greatest pressure on the brain-case, and not on the malar or maxillary bones. Without, therefore, rumning to the extreme of Dr. Morton, who denied, for the American contine th at least, the existence of any true dolichocephalic crania, or ind ${ }^{\circ}$ ed any essential variation from one assumed typical form, it becomes an important point for the craniologist to determine, if possible, to what extent certain characteristic diversities may be relied upon as the inherited features of a tribe or race; or whether they are not the mere result of artificial causes originating in long perpetuated national customs and nursery usages. If the latter is indeed the case, then they pertain to the materials of archæological, rather than of ethnological deduction, and can no longer be employed as elements of ethmical classification.

Every scheme of the craniologist for systematising ethnical variations of cranial configuration, and every process of induction pursued by the ethnolngist from such data, proceed on the assumption that such varieties in the form of cranium are constant within certain determinate limits, and originate in like natural causes with the features by which we distinguish one nation from another. By like means the comparative anatomist discriminates between the remains of the Bos primigenius, the Bos lonyifrons, and other kindred animal remains, frequently found alongside of the human skeleton, in the barrow : and by a similar crucial comparison the craniologist aims at classifying the crania of the ancient Briton, Roman, Saxon, and Scandinavian, apart from any aid derived from the evidence of accompanying works of art. But if it be no longer disputable that the human head is liable to modification from external causes, so that one skull may have been subjected to lateral compression, resulting in the elongation and narrowing of its form; while another under the influence of occipital pressure may exhibit a consequent abbreviation in its length, accompanied by parietal expausion; it becomes indispensable to determine some data whereby to eliminate this perturbing element before we can ascertain the actual siguificance of national skullforms. If, for example, -as appears to be the case, -the crania from British graves of Roman times reveal a different form from that of
the modern Celtic Briton, the cause may be an intermixture of races, like that which is clearly traceable among the mingled descendants of Celtic and Scamdinavian blood in the north of Scotland; but it may also be, in part, or wholly, the mere result of a change of national customs following naturally on conquest, civilization, and the abandonment of paganism for christianity.

It is in this respect, that the artificial causes tending to alter the natural conformation of the human head, invite our special study. They appear at present purely as disturbing elements in the employment of craniological tests of classification. It is far from improbable, however, that when fully understood they may greatly extend our means of classification; so that when we have traced to such cruses certain changes in form, in which modern races are known to differ from their cthnical precursors, we shall be able to turn the present element of disturbance to account, as an additional confirmation of truths established by inductive craniology. Certain it is, however, whatever value may attach to the systematising of such artinicial forms, that they are of frequent occurrence; apart altogether from such configuration as is clearly referrible to the alpplication of mechanical pressure in infancy with that express object in view; or again, as is no less obviously the result of posthumous compression. But, though the deforming processes designedly practised among ancient and modern sarage nations lie beyond the direct purpose of the present inquiry, they are calculated to throw important light on the approximate results of undesigned compression and arrested development.

Among the Flathead Indian tribes of Oregon and the Columbia River, where malformation of the skull is purposely aimed at, the infant's heal is tightly bound in a fixed position, and maintaineu under a contimous pressure for months. But it is a mistake to suppose that in the ordinary use of the cradle-board the Indian papponse is sulject to any such erreme restraint. The oljects in view are facility of nursing and transport, and perfect safety for the child. But those being secured it is nutured with a temberness of maternal inst inct surpassing that of many savare mations. The infant is invariathy laid on its back, but the head rests on a pillow or mat of moss or frayed bark, and is not further restraneal in a fixed position than necessarily resulte from the posture in which the body is retained by the inadages securins it in the cradle. This fact I have satisfict myself of from repeated observations. But the consequence necessarily is, that the soft and pliant bones of the intant's head are subjected to a slight but con-
stant pressure on the occiput during the whole protracted period of nursing, when they are peculiarly sensitive to external influences. Experimente have shewn that at that period the bones specially affected by the action of the cradle-board are not only susceptible of changes, but liable to morbid affections, dependent on the nature of the infant's food. Lchmom supposes the craniotabes of Elsaisser to be a form of rachitis which :ffects the occipital and parietal bones during the period of sucking; and Schlossberger ascertained by a series of analyses of such bones that the 63 per cent. of mineral constituents found in the normal occipital bones of healthy children during the first year, dimiashed to 51 per cent. in the thickened and spongy bone.* The fluctuations in proportion of the mineral constituents of bones are considerahle, and rary in the different bones, but in the osscous tissue they may be stated at from 67 to 70 per cent. It is obrious, therefore, that, under the peculiar physiological condition of the cramial bones during the period of mursing, such constant mechanical action as the occipital region of the Indian pappoose is subjected to, must be productive of permanent change. The child is not removed from the cradle-board when suckling, and is not therefore liable to any counteracting latcral pressure against its mother's breast. One effect of such continuous pressure must be to bring the edges of the bones together, and thereby to retard, or arrest the growih of the bone in certain dirrections. The result of this is apparent in the premature ossification of the sutures of artificially deformed crania.

At Washington I had an opportunity of minutely examining thirtyfour Flathead skulls brought home by the United States E.j. ${ }^{\text {Poring }}$ Expedition; some of them presenting the most diverse forms of distortion. In the majority of those the premature ossification of the sutures is apparent, and in some they are almost entirely obliterated. The same is no less obvions among the corresponding class in the collection of the Academy of Natural Sciences of Philadelphia; and especially in skulls of the Chinooks, who carry the process of deformation to the greatest extent. But I have also been struck, not only with the frequent occurrence of wormian bones in such altered skulls, but also with the distinet defnition of a true supraoccipital bone.

It is marvellous to see the extraordinary amount of distortion to which the skill and brain may be subjected without seemingly affecting cither health or intellect. The coveted deformity is produced partly

[^18]by actual compression, and partly by the growth of the brain and skull being thereby limited to certain directions. Hales, the Ethographer of the Exploring Expedition, alter describing the process as practised among the Chinooks, remarls: "The appearance of the child when just released from this continement is truly hideons. The transverse diancter of the head abore the ears is nearly twice as great as the longitudinal, from the forchead to the occiput. The cyes, which are naturally deep set, become protruding and appear as if squeczed partially out of the head. ${ }^{2: 3}$ Mr. Ianl Fine in describing to me the same appearance, as witnessel by him on the Columbia River, compared the cyes to those of a mouse strangled in a trap. The appearance is little less singular for some time after the child has been freed from the constricting bandages; as shown in an engraving from one of Mr. Kanc's sketches of a Chinook child seen by him at Fort Astoria.* In after years the brain as it increases, partially recovers its shape; and in some of the deformed adult skulls one suture gapes, while all the rest are ossified, and occasionally a fracture, or false suture remains oncu. An adult, skull of the same extremely deformed shape, among those brought home by the Exploring Expedition, illustrates the great extent to which the brain may be subjected to compression and malformation without affecting the intellect. It is that of a Nasqually chief, procured from his canoe bier in Washington Territory. (No. 4549 .) The internal eapacity, and consequent volume of brain, is 95 cubic inches. The head is compressed into a flatened dise, with the forchead receding in a straight line from the nasal suture to the crow a of the head, while the lambdoidal suture is on the same plane with the foramen magnum. The sutures are nearly all completely ossified; and the teeth ground quite flat, as is common with many of the tribes in the same region, and especially with the Walla-walla Indians on the Columbia River, who live chiefly on salmon, dried in the sun, and invariably impregnated with the sand which abounds in the barren waste they occupy. I assume the unimpaired intellect of the Nasqually chief from his rank. The Flathead tribes are in the constant habit of making slaves of the Roundheaded Indians; but no slave is allowed to flatten or otherwise modify the form of her child's head, that being the badge of Flathead aristocracy. As this has been systematically pursued since ever the

[^19]tribes of the Pacific coast were brought under the notice of Europeans, it is obvious that if such superinduced deformity developed any general tendency to cerebral disease, or materially affected the intellect, the result would be apparent in the degencracy or extirpation of the Flathead tribes. But so far is this from being the case, that they are described by traders and royagers, as acute and intelligent. They are, moreover, an object of dread to neighbouring tribes who retain the normal form of head; and they look on them with contempt as thus bearing the hereditary badge of slaves.

The child born to such strange honours is laid, soon after its birth, upon the cradle-board, an oblong piece of wood, somtimes slightly hollowed, and with a cross board projecting beyond the head to protect it from injury. A small pad of leather stuffed with moss or frayed cedar-bark is placed on the forehead and tightly fastened on either side to the board; and this is rarely loosed until its fimal removal before the end of the first year. The skull has then received a form which is only slightly modified during the subsequem growth of the brain. But the very same kind of cradle is in use among all the Indian tribes. It is indeed raried as to its omamental adjuncts, and non-essential details; but practically it resolves itself, in every case, into a straight board to which the infant is bound; and as it is retained in a recumbent position, and thus the pressure of its own weight during the period when, as has been shown, the occipital and parietal bones are peculiarly soft and compressible, is made to act constantly in one direction. This, I assume to have been the cause of the vertical or otherwise flatened occiput in the ancient British brachycephalic crania. The same cause must tend to increase the characteristic shortness in the longitudinal diameter, to produce the premature ossification of certain slitures, and to shorten the zygoma, with probably aliso some tendency to make the arch bulge out in its effort at subsequent full growth, and so to widen the face.

Dr. J. Barnard Davis has applied the term "parieto-occipital flatness," where the results of artificial compression in certain British skulls extend over the parictals with the upper portion of the occipital ; and he appears to regard this as something essentially distinct from the vertical occiput.* But it is a form of common occurrence in Tudian skulls, and is in reality the most inartificial of all the results of the undesigned pressure of the cradle-board. This will he understood

[^20]by a very simple experiment. If the observer lie down on the floor, without a pillow, and then ascertain what part of the back of the head touches the ground, he will find that it is the portion of the occiput immediately abore the lambdoidal suture, and not the occipital bone. When the Indian mother places a sufficiently high pillow for her infant, the tendency of the constant pressure will be to produce the vertical occiput ; but where, as is more frequently the case, the board has a mere cover of moss or soft leather, then the result will be just such an oblique parietal flattenning, as is shown on a British skull from the remarkable tumulus near Littleton Drew, Wiltshire. Crania Britamica, Decade III. plate 24.

But there are other sources of modification of the human skull in infancy, even more common than the cradle-board. More than one of the predominant head-forms in Normandy and Belgium are now traced to artificial changes; and by many apparently trifling and unbeeded causes, consequent on national customs, nursing usages, or the caprices of dress and fashion, the form of the head may be modified in the nursery. The constant laying of the infant to rest on its side, the pressure in the same direction in nursing it, along with the fashion of cap, hat, or wrappage, may all influence the shape of head amoug civilized uations, and in certain cases tend as much to exaggerate the naturally dolichocephalic skull, as the Indian cradle-board increases the short diameter of the opposite type. Such artificial cranial forms as that designated by M. Forille, the T'ête annulaire, may have predominated for many centuries throughout certain rural districts of France, solely from the unreasoning conformity with which the rustic nurse adhered to the traditional or prescriptive bandages to which he ascribes that distortion. All experience shows that such usages are among the least eradicable, and long survive the shock of revolutions that change dynasties and efface more important national characteristics.

But now that attention has beer directed to the subject of undesigned changes thus effected on the human head, its full bearings begin to be appreciated; and there is even, perhaps, a danger that more may be ascribed to them than is legitimate. Such was undoubtedly the effect on Dr. Morton's mind from his familiarity with the results of artificial deformation on American crania; and were we to follow his example, we should be tempted to designate all the extreme caricties of the elongated dolichocephalic, acrocephalic, and brachycephalic skulls of British barrows, as mere modifications of the same ethical fcim.

In his latest recorded opinions, when commenting on some of the abnormal forms of Peruvian cramia, he remarks: "I at first found it difficult to conceive that the original rounded skull of the Indian could be changed into this fantastic form : and was led to suppose that the latter was an artificial clongation of a head remarkable for its length and narrowness. I even supposed that the long-headed Peruvians were a more ancient people than the Inca tribes, and distinguished from them by their cranial configuration. In this opinion I was mistaken. Abundant means of observation and comparison have since convinced me that all these variously-formed heads were originally of the same shape, which is characteristic of the aboriginal race from Cape Horn to Caunda, and that art alone has caused the diversitics among them."* The repented opportunities I have enjoyed of cxamining the Mortonian and other Ancrican collections, have satisfied me of the occurrence of both dolichocephalic and brachycephalic crania not only as the characteristies of distinct tribes, but also among the contents of tho same l'erurian cemeteries,-not as examples of extreme latitudes of form in a common race, but as the results of the admixture either of conqueriug and subject races, or of distinct classes of nobles and serfs, most generally resulting from the predominance of conquerors. \dagger Among the Peruvims the clongated cranium pertained to the dominant race; and some of the results of later rescarches in primitive British cemeteries, and especially the disclosures of the remarkable class of chambered barrows, seem to point to an analogous condition of races. That the Uley and West Kennet slulls may have been laterally compressed, while the Codford barrow and other brachycephalic skulls have been affected in the opposite direction, appears equally probable. But such artificial influences only very partially account for the great diversity of type; and no such causes, even if brought to benr in infancy, could possibly convert the one into the other form.

But as the cranial forms, both of the Old and New World, betray ovidences of modification by such artificial means; so also we find in ancient Africa a diverse form of head, to which art may have contributed, solely by leaving it more than usually free from all extraneous influences. Such at least is the cenclusion suggested to my mind from the oxamination of a considerable number of Egyptian skulls. Among familiar relics of domestic usages of the anceent Egyptinns is the pil-

[^21]low designed for the neck, and not the head, to rest upon. Such pillows are found of miniature sizes, indicating that the Joryptian passed from carliest infancy withont his head being subjected even to so slight a pressure as the pillow, while he rester recumbent. The Egyptian skull is long, with great breadth and fulness in tho posterior region. In its prominent, rounded parieto-oceipital conformation, an equally strihing contrast is presented to the British brachyeephalic skull with truncated occiput, and to the opposito extreme characteristic of the primitive dolichocephatic skull; though exceptional examphes are not rare. This characteristic did not escapo Dr. Morton's observant eye; and is repeatedly indicated in tho Crania EDj!!ptiaca under the designatim, "tumid occiput." It also appeared to me after carcful examination of the fine collection formed by him, and now in the Academy of Natural Sciences of Philadelphia, that the Egyptian crania are generally characterised by considerable symmetrical uniformity: as was to be miticipated, if there is any truth in the idea of undesigned artificial compression and deformation resulting from such simple causes as accompany the mode of nurture in infincy.

The heads of the Fiji Islanders supply a means of testing the same cause, operating on a brachycephatic form of cranium; as most of the Islauders of the Fiji group cmploy a neck pillow nearly similar to that of the ancient Egyptians, and with the same purpose in view: that of preserving their claborately dressed hair from disshevelment. In their case, judging from an example in the collection of the Royal College of Surgeons of London, the occipital region is broad, and presents in profile a uniform, rounded conformation passing almost imperceptibly into the coronal region. Indeed the broad, well rounded occiput is considered by the Fijians a great beatuty. The bearing of this, however, in relation to the present argunent depends on whether or not the Fiji neck-pillow is used in infancy, of which I am uncertain. The necessity which suggests its use at a later period, does not then exist; but the prevalent use of any special form of pillow for adults is likely to lead to its adoption from the first. In one male Fiji skull brought home by the United States Exploring Expedition (No. 4581), the occiput exhibits the characteristic full, rounded form, with a large and well defined supra-occipital bone. But in another skull in the same collection, that of Veindovi, Chicf of Kantavu, who was taken prisoner by the

United States ship Peacock, in 1840, and died at New York in 1842, the occiput, though full, is slightly vertical. The occipital development of the Fiji cranium is the more iuteresting as wo are now familiar with the fact that an artificially flattened occiput is of common occurrence among the islanders of the Pacific Occan. "In the Malay race," says Dr. Pickering, "a more marked peculiarity, and one very generally observable, is the clevated occiput, and its slight projection beyond the line of the neek. The Mongolian traits are heightened artificially in tho Chinooks; but it is less generally known that a slight pressure is often applied to the occiput by the Polynesians, in conformity with the Malay standard."* Dr. Nott, in describing the skull of a Kanaka of the Sandwich lslands who died at the Marine Hospital at Mobile, mentions his being struck by its singular occipital formation ; but this he learned was due to an artificial flattening which the Islander had stated to his medical attendants in the hospital, was habitually practised in his family: \dagger According to Dr. Davis, it is traceable to so simple a source as the Kanaka mother's habit of supporting the head of her nursling in the palm of her hand. \ddagger Whatever be the cause, the fact is now well established. The occipital flattening is clearly defined in at least three of the Kanaka skulls in the Mortonian Collection; No. 1800, a male native of the Sandwich Islands, aged about forty; No. 1308, apparently that of a woman, from the same locality; and in number 695 a girl of Oahu, of probably twelve years of age, which is markedly unsymmetrical, and with the flattening on the left side of the parietal and occipital bones. The Washington Collection includes fourteen Kanaka skulls; besides others from various Islands of the Pacific, among which several examples of the same artificial formation occur: e.g. No. 4537, a large male skull, distorted and unsymmetrical; and No. 1367, (female?) from an ancient cemetery at Wailuka, Mani, in which the flattened occiput is very obvious.

The traces of purposed deformation of the head among the Islanders of the Pacific have an additional interest in their relation to one possible source of South American population by oceanic migration, suggested by philological and other independent evidence. But for our present purpose the peculiar value of those modified skulls lies in the disclosures of induences operating alike undesignedly, and with a well defined purpose, in producing the very same cranial conforma-

[^22]tion among races occupying the British Jslands in ages long anterior to earliest history; and among the savage tribes of America, and the simple lslanders of the Pacific in the present day. They illustrate, with even greater fores than the rude implements of flint and stone found in early British graves, the exceedingly primitive condition of the British Islanders of prehistoric times.

ON 'I'HE MAGNETIC DISTURBANCES AT TORONTO D ${ }^{\text {IIRING THE YEARS } 1856 \text { TO 1862, INCLUSIVE. }}$

BX G. T. KINGSTON, M. A.
dIRECTOR OF THE MAGNETIC OBSERVATORT:

A few years prior to the establishment of the Colonial Meqnetic observatories in 1839-40, the attention of philosophers in Germany had been directed to certain magnetic phenomona, consisting sometimes in abrupt changes of short duration, and sometimes in a long continued abnormal condition of the magnetic elements. These disturbances as they are termed, at first attributed to variations in atmospheric temperature and other local causes, were discovered by comparing preconcerted contemporaneous observations to prevail simultaneously, and to correspond in direction, and to great extent also in amount, at different and distant parts of Germany. The improbability of local origin which this synchronism in their occurrence indicated, and the probability whèrewith it suggested some extra terrestrial influence, was greatly strengthened by the observations at the observatories at Toronto, Hobarton, \&c., which first brought to light the fact that the disturbances occurred simultaneously, not only within a small region in Europe, but also at stations widely removed from each other on the earth's surface. It was found, however, that the disturbing influence would frequently affect different elements at two distant stations, or the same element to a different extent or in an opposite direction.

It was further made known that the disturbances, though in the ordinary sense irregular, are subject in their frequency and aggregate amount to definite periodic laws, manifesting a preference, so to speak, for certain hours of the day and night, and for certain months in the year.

The existence and general charactar of this periodicity was exhibited by the approximate methods employed in the carlier volumes of the colonial observations, but it was by the more accurate system first developed by General Sabine, ia the 3rd volume of the 'Toronto observations, and since applied by him to the observations of other stations, that the periodic laws were rendered definite and precise.

In the method referred to, the disturbed values of an element under discussion, are confined to those which differ from the normal value of that element proper to the hour by an amount equal or exceeding a certain definite limit, such normal being the average of the values of the element for that hour, during a month or some other suitable group of consecutive days, excluding all the disturbed values and including all others; the magnitude of the disturbance being measured by the difference between the actual and the normal valuc of the element.

The disturbance limit for an element, determined on with reference to the amplitude of its regular periodic variations, is generally different at different stations; but for the sake of inter-comparison must be constant at the same station.

Of the facts revealed by disfussing the disturbances at several stations, the following are among the most prominent:-
(1,) The frequency and amount of disturbance of the declination, inclination, and force, have a diurnal and an amnual period.
(2,) The disturbances of the clements without regard to sign, the disturbances in which the needle is deflected to the east, and those in which it is deflected to the west of its normal position, as well as the disturbances which increase, and those which decrease the foree and inclination, have all distinct and often different periodic laws.
(3,) The periodic variations at different stations, though possessing the same general characters, exhibit in their epochs of maximum and minimum, very great diversities.
(4,) In addition to the diurnal and annual periods, the yearly aggregates of disturbance for each element and at every station are subject to a periodic increase and diminution, occupying a rycle of about ten yr.ars, which corresponds both in its length and in the epochs of maximum and minimum, with a periodic variation in the number of groups of spots on the surface of the sun. The disturbances discussed, and the results announced by General Sabine, in the 3rd volume of the Toronto observations, relate to the hourly observations from 1st July, 1843, to 30th June, 1948. It is my purpose in the present commu-
nicalion to give analogous results for the years 1856 to 1862 , inclusive, partly to shew that the diurnal and amual variations of the disturbances are substantially the same in the more recent as in the carlier series, but chiefly for the purpose of furnishing materials for discovering the precise character of the so-called decemnial period.

In the investigations on which the accompanying tables are based, those disturbances only are included which equal or exceed the limits employed by General Sabine; namely, for the declination, $5^{\prime} .0$; Horizontal force, $\cdot 0012$; Vertical force, $\cdot 00026$; Total force, $\cdot 0004$; Inclination, $1^{\prime} .0$.

In the process of collecting the disturbances of the Horizontal foree, additional security has been aimed at, by employing in most instances the observations furnished by two, and in a few cases by threc bifilars. The normal for each bifilar being found in the usual way, the difference therefrom of the disturbed readings, and expressed in parts of the Horizontal force, were placed in parallel columns. In the great majority of observations where one instrument gave a disturbed reading the other did so also, but when such was not the case, the blank was filled up by the difference, whatever it might be, between the observed reading and the corresponding normal. The means of the corresponding entrics in the different columns being then taken, those were retained as disturbances which equalled or exceeded 0012 .

The disturbances of the horizontal and vertical components of the force being found, the corresponding abnormal deviation $\left(\frac{\Delta \phi}{\phi}\right)$ of the total force and $(\Delta \theta)$ of the inclination were calculated by the formula

$$
\begin{aligned}
\frac{\Delta \phi}{\phi} & =\cos ^{2} \theta \frac{\Delta X}{X}+\sin ^{2} \theta \frac{\Delta Y}{Y} \\
\Delta \theta & =\frac{1}{2} \sin 2 \theta\left\{\frac{\Delta X}{X}-\frac{\Delta Y}{Y}\right\}
\end{aligned}
$$

Where $\frac{\Delta X}{-X}$ and $\frac{\Delta Y}{X}$ represent the contemporancous abnormal deviations of the horizontal and vertical components of the force, where one or both of them are disturbed. Of the resulting values of $\frac{\Delta \phi}{\phi}$ and $\Delta \theta$, those and those only were regarded as disturbances, which equalied or exceeded the limits determined on for these elements, namely, $\cdot 0004$ for the total force, and $l^{\prime} .0$ for the inclination.

The ratios in tables I. and II. are derived from obserrations in the seven years, commencing lst January, 1856, and endin 31st Dec.
1862. For the purpose of comparison, the corresponding ra_{a}. is for the series 1st July, 1843, to 30th June, 1848, and derived from the 3rd Toronto volume, have been introduced. The ratios in table II. are identical with those in the printed volume, but in table I. the aggregate sums at the separate six observation hours, are expressed in terms of the average of the same six aggregate sums, whereas in the printed volume, the unit employed is the average of the twenty-four aggregate sums.

In table III. the yearly aggregat, relate in every case to the year ending 30 th June. It has been thus ar.anged, partly, that the later series might harmonise better with that of 1844-48, and also for the sake of including the year ending 30 th June, 1854, and a few of the later months in 1855. The year ending 30th June; 1856, includes for the declination an approximation to the aggregate value of disturbances in July, 1855, calculated on the supposition that it bore to the aggregates in the concluding months of 1855, the same ratio as that founded by the whole series, 1856 to 1862. Approximate values of the disturbances of the vertical force for July, and of the horizontal force, total force, and inclination, both for July and August, 1855, have been similarly found and employed in calculating the aggregates for the year ending 30th June 1856.
ln table IV., the sums in table III. have been expressed in terms of the average of the seven yearly sums, terminating 30th June, 1862. These units of reference are employed to show better ihe periodic character of the last seven years; and though not adapted to exhibit so distinctly the position of the several years, 1844-48, in the decennial period in which the years are included, they render sufficiently apparent the relative magnitude of the aggregates in the two series. Columns 2 and 3 give the results of the observations of M. Schwabe on the solar spots.

On comparing the series 1856-62, in table I., with that of 1844-48 the general correspondence in the ratio is very apparent, the chief characteristic difference in the later series being, that the distinctive features of different parts of the day, as shown in the earlier series, are somewhat softened down; the ratios that are above unity being for the most part less, and those that are less than unity, being greater in the ater than the earlier series. In one case only, namely, of the disturbances that increase the horizontal force at $8 \mathrm{a} . \mathrm{m}$., do the ratios lie on opposite sides of unity in the two series; but on referring to table

VIII．，page 14 of vol．3rd，Toronto Observations，we find that the ratios at $9 \mathrm{a} . \mathrm{m}$ ，and $10 \mathrm{a} . \mathrm{m}$ ．are 0.94 and $1 \cdot 4 \mathrm{f}$ ，so that the discre－ pancy amounts simply to a transfer of the passage through unity from about 9 a ．m．to Sa ．m．

In table II．，giving the annual distribution of the disturbances， while there is a general resemblance in the ratios of the two series，the maxima and minima，in the more recent series，are less distinctly de－ veloped，owing in some measure to the fact that they embrace only the disturbances at six hours，instead of at each of the twenty four hours，and are therefore differently affected by the disturbance diur－ nal variation．

Other points of difference in the two series are the ollowing：
（1，）In five instances the September maximum is transferred to October．
（2，）In nearly every case the April maximum occurs in March， and in the general disturbances of declination，and in those of westerly disturbance the ratio is less than unity．
（3）In every case there is an abrupt decrease in the Novem－ ber disturbances with a subsequent increase in December．

The generality of these points of difference，as far as they extend， will be better seen by comparing the means of the ratios，for the decli－ nation，horizontal force and vertical force，as given in the following table．

		号 ¢ ¢	宗	家	官	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{5}}$	苞		｜r	$\left\lvert\, \begin{gathered}\text { ¢ } \\ \text { 岢 } \\ \vdots \\ 0\end{gathered}\right.$	宫
$\begin{aligned} & 1844-1843 \\ & 1856-1862 \end{aligned}$	$\|$0.57 0.84 $0.70 \mid 0.63$	1.04	1.47 1.03	$1.0{ }^{1.00}$	0.46	0.75 1.05	0.09 1.29	1.64 1.60	1.36	0.84	1.65

In the following table is shewn the comparative prevalence of easterly and westerly disturbances of declination in the different months． The ratios indicating the preponderance of easterly and westerly dis－ turbances reach a maxinum in June，a minimum in December，a second maximum in March，with a second minimum in April．

The relative amount of easterly and westerly disturbances of declination, and of the disturbances which increase and diecrease the total force and inclination, are indicated by the following ratios, whereby it will be noticed, that while the preponderance of easterly over westerly disturbances has increased the preponderance in the disturbances which decrease the force, and in those which increase the inclinution, has become much less in the later series.

In table III, a. `IV. containing the absolute and relative amount of disturbance in different years, it appears that 1836-57 were years of mimimun, and $18(i)$ a year of maximum disturbancc. The year IS.59 shows a becach of continuity, its disturbances, excepting those of declimation, amounting to less than those of $18.5 \mathrm{~s}^{\text {and }} 1860$. If the years commencing damary lst are compared, 1850 becomes the maximum year, but in this case, the disturbances of 1861, are, in in several instances, slightly less than in 1560 and ! 562 . One striking peculiarity in these table, consists in the extraordinary armount of dis-
turbances of all the elements in the year ending 30th June, 1854. The observations during that year were taken under rather unfavorable rircumstances. Portions of the building were in the course of reconstruction, and werkraen with iron tools were much about the premises, but as I have been informed that great care was always taken to ascertain that no iron was left in dangerous proxmity to the instruments during the observations, I cannot ascribe wholly to this cause, the anomalous character of the results. It will be seen, that of the three instrumentally independent elements, the vertical force was most affected, the aggregate in this year of expected minimum actually exceeding that of 18.18 , the epoch of maximum.

One clue towards the solution of this difficulty may be sought from an examination of the relative magnitudes of the annual mean ranges of the regular diumal variations of declination, which, according to past experience, correspond very generally with the amnual aggregates of disturbance. Taking the amplitudes or ranges, as the angle between the mean positions of the needle: at $8 \mathrm{a} . \mathrm{m}$. and 2 p. m., we have

It will be here noticed, that although the range in 1853-54 is larger than those of $1844, ' 45, ' 16, ' 47, ' 56$, '57, the preponderance is not such as to warrant any decided inference in explanation of the anomaly in question. İt is possible that the disturbance period, which, during the few years that have been examined, has approximately coincided with the decenmial period in the appearance of solar spots, may, in addition to the cause thus suggested, be due to some other rarinble and less powerful influence, the length of whose period may be nearly equal io or nearly a multiple of ten years. Should such an influence exist, the approximate but not accurate superposition of the maxima of the two periods in some cyeles, and their interference and antagonism, in others, touether with perhaps local causes, would account both for the general correspondence and the occasional anomalies.

[^23]TABLE I .
Ratios of the agraregate values of the Magnetic Disturbances at each of the six observation hours, derived from a serics of years to the average aggregate value of the six hours.

TABLE II.

Ratios of the norgregate values of the Magnetic Disturbances in the different Months, derived from a series of years to the average aggregate value of all monthe.

TABLE III.
Aggregate values of the disturbances in the different years, each ending 30th June.

Y	Declination.			Horizontal Force. In jarts of the Hor. Force			Fertical force. in parts of the V.P.			Totaf, Force. In parts of the Total Force.			Inclisation.		
	Total.	Easterly	esterls	Total.	$\begin{aligned} & \text { In. } \\ & \text { creasing } \end{aligned}$		Total.	$\begin{array}{\|c\|} \hline \text { Int } \\ \text { creasing } \end{array}$	$\begin{aligned} & \text { De- } \\ & \text { creasing } \end{aligned}$	Total.	$\begin{array}{\|l\|} \text { In- } \\ \text { creasing } \end{array}$	$\begin{gathered} \text { De_ ; } \\ \text { creasing } \end{gathered}$, Total.	In-	$\begin{aligned} & \text { De. } \\ & \text { creasing } \end{aligned}$
													1		
1844	: 614'			. 1779	. 0458	. 1321	. 1134	. 0473	. 0661	. 1143	. 0480	. 0663	:154.8		
1845	11702			523	. 0236	. 1287	. 0994	. 0325	. 0669	. 0600	. 0155	. 0540 :	$\because 138.0$		
1840	771			. 2015	. 044	568	333	. 058	74	. 100	420	. 0592	17175.0		
2847	1373			. 3986	. 059	. 3380	. 2226	. 0646	1580	. 13	. 0422	518	303.		
18.48	- 1582			. 0342	. 1161	. 8181	9	. 1624	4%	. 2725	. 1123	602	789.4		
1849-53	Vot P	c.													
1854	1494	846^{\prime}	648'	$11_{1} .529$ i	. 1051	. 4246	. 3320	. 1444	. 1876	. 2356	. 0802	. 1464	464.2	354.4	109.8
1855	Obser	vations	suspend	$1{ }^{1}$ ed.											
1556	366	15.1	212	.2974	. 0012	. 2062	. 107	. 0412	. 0663	. 0525	. 0144	. 0381	259.5	168.9	90.6
1857	423	293	130	. 2558	. 0470	. 2108	. 1101	. 0533	. 0658	. 0677	. 0236	. 0441	$\because 218.1$	174.7	43.4
1858	[1961	612	349	.8531	. 1811	. 6720	. 2326	. 1161	165	. 1726	. 0713	. 1013	725.7	571.5	154.2
2859	1200	793	408	. 7490	. 1671	. 5819	.2129	. 1220	. 0909	. 1523	. 0732	.0ヶ91	641.1	502.8	138.3
1860	1608	882	816	1.3436	. 2886	1.0550	. 356	. 1668	. 2002	. 2845	. 1062	$.1782$	1123.4	875.3	248.1
1861	[1465	758	707	.9377	. 2134	. 7243	. 2808	. 1415	. 1393	. 2353	. 1027	. 1326	72.	606.4	166.5
1862	1118	570	548	. 5740	. 1178	. 4562	. 2020	. 1025	. 0995	. 1401	. 0627	. 0774	, 513.9	403.4	110.5

TABLE IV．
Ratios of the aggregate values of the Disturbances in different Years，to the arerage of the aggregato values of the seven years

总 密			Dichination．			Horizontal force．			Verticar Fozce．			Total Force．			ixclivation．		
			$\stackrel{\text { gin }}{\substack{\circ}}$				官若	官苞				$\begin{aligned} & \text { ت } \\ & \text { E } \\ & \text { E- } \end{aligned}$	我		－i \％		
1844	52	111	：0．59			0.25	0.29	0.24	0.52	0.45	0.59	0.72					
1845	114	29	． 0.68	．		021	0.15	0.23	0.43	0.31	0.60	0.44	0.23	0.58	0.23		
18.46	157	1	10.75			0.28	0.28	0.28	0.61	0.55	0.67	0.6 .4	0.65	0.64	0.29		
18.47	257		$\therefore 1.33$	\cdots		0.55	0.38	0.61	1.02	0.61	1.42	1.23	065	1.63	0.50		
1848	330	0	1.53	\cdots		1.30	0.73	1.47	1.43	1.53	1.33	1.73	1.73	1.72	1.30		
1849	238	07															
1850	186	2															
1851	151		Observ	ations	not yet	publis	hed．										
1852	125	1															
1853	91	4															
1854	67	65	1.45	1.46	1.43	0.74	0.67	0.76	1.53	1.36	1.69	1.49	1.30	157	0.76	0.75	0.80
1855	38	146	Obserr	ations	suspen	ded．											
1856	3.4	193	： 0.35	0.27	0.47	10．42	0.58	0.37	0.50	0.39	0.60	0.33	0.22	0.41	0.43	0.36	0.67
1857	98	52	${ }^{1} 0.41$	0.51	0.39	： 0.36	0.30	0.38	0.55	0.50	0.59	0.43	0.36	0.47	0.36	0.37	0.32
1858	188	0	0.93	1.05	0.77	1.19	1.15	1.20	1.07	1.09	1.05	1.09	1.10	1.09	1.19	1.21	1.13
1859	205	0	1.16	1.36	0.90	1.05	1.06	1.04	9.98	1.15	0.83	0.96	1.13	0.85	1.05	1.07	1.02
1860		．	1.64	1.52	1.80	1.88	1.83	1.89	1.60	1.57	1.80	1.80	1.64	1.92	1.85	1.85	1.83
1861		．	1.42	1.31	1.56	1.31	1.35	1.30	1.29	133	1.25	1.49	1.58	1.43	1.27	1.29	1.22
1862	\cdots	\cdots	1.08	0.98	1.21	0.80	0.75	0.82	0.93	0.97	0.89	0.89	0.97	0.83	0.85	0.85	0.81

SCIENTIFIC AND LITERARY NGTES.

olabbification of the baline springs of canada-by t. stermy hent, f.r.s.
[The following extract, introductory to a very elaborate review of our mineral Bprings and river waters, is taken from the revised Repurt on the Geology of Canada, now passing through the press.]

The mineral waters of Canada may for convenience be arranged in sis classes, according to their chemical composition. In the firsi three classes, chlorids predominate; in the fourth, carbonates; and in the fifth and sixth, sulphuric acid and sulphates. The waters of the first, second, and sixth classes are nentral; those of the third and fourth are alkaline; and those of the fifth aro acil.
The first class includes saline waters containing chlorid of sodium, with lerge portions of chlorids of calcium and maguesium, sometimes with sulphates. The carbonates of lime and magnesia are either present only in very smail quantities, or are altogether wantung. These waters are generally very bitter to the taste, and always contain portions of bromids and iodids. Examples,-St. Catherines, Ancaster, Whitby, Hallowell.
The second class includes a large number of saline waters which differ from the first in containing, besides the chlorids of sodium, calcium, and magnesium, considerable portions of bicarbonates of lime and magnesia, the latter carbonate generally predominating. Small quantities of oxid of iron, and of baryta and strontia, are frequently present. These waters generally contain much smaller quantities of earthy chlorids than the first class, and are therefore less bitter, and more pleasant to the taste. Examples,-Plantagenct, St. Léon, St. Generiève.
The third class includes those saline waters which contain, besides chlorid of sodium, a portion of carbonate of soda, with bicarbonates of lime and magnesia. Small amounts of baryta, strontia, and of boracic and phosphoric acids, are often p resent in these waters; and bromids and iodids are very rarely wanting. Examples,-Caledonia, Varennes, Fitzroy.

Tho waters of the forirth class differ from the last in containing but a small proportion of chlorid of sodium, while the carbonate of soda predominates. Theso waters generally contain a much smaller amount of solid matters than those of the previous classes, and have not a very marked taste until evaporated to a small volume, when they are found to be strongly alkaline. Examples, Ohambly, St. Ours.

The fifth class includes acid waters which are remarkable for containing a large proportion of free sulphuric acid, with sulphates of lime, magnesia, protoxide of iron, and alumina. These springs, which are few in number, and characterized by their acid styptic taste, generally contain some sulphuretted hydrogen. Examples,-Tuscarora and Niagara.

In the sixth class may be included some neutral saline waters, in which the sulphates of lime, magnesia, and the alkalies predominate; chlorids being preeent only in small amounts. To this class belongs a mineral water from Hamilton, and avother from Charlotteville.

CANADIAN INSTITUTE.

ANNUAL REPORT OF TAE COUNCIL FOR THE YEAR 1862-68.
Tare Council of the Canadian Institute have the honor to present the followingRefort of the proceedings of the Society for the past year:They regret to have to announce a slight falling off in the list of members,arising chiefly from the unusually small number of names that have been addedduring the year. In the year 1860 , twenty-seven new members were elected; in1861, thirty-seven; in 1862, twelve. The loss, from various causes, has beentwenty-nine, so that the decrease amounts to seventeen.
The present state of the membership is a3 follows:
Members at commencement of Session, 186i-62 464
New members elected, Session 1861-62 11
By the Council during recess-1801-62 1
Total 476
Deduct-Deaths 6
Withdrawn 13
Left the Province 29
Total 30th November, 1862 447
Composed of Honorary Members 4
Life Memberz 34
Corresponding Members 6
Junior Members 7
Members 396
Total 447
COMMUNICATIONS.The following list of Papers, read at the Ordinary Meetings held during theSession, will be found to contain many communications of value, and some ofgeneral interest:
7 tif December, 1861.
Prof. D. Wilson, LL.D., "On indications of an Asiatic Origin for the American Race."
P. Freeland, Esq., "Exhibited and Described Wenham's New Binocular Microscope."

14 ta Deceaber, 1861.

Prof H. Croft, D.C.L., "Exhibited and Described Griffine's Gas Furnace." Rev. Prof. Einchs, F.L.S., \&e., "On a curious variety of Maize from Oregon, with Remarks on some diseased specimens of Maize."

21 st December, 1861.
Prof. H. Croft, D.C.I., " A communication upon an old Chemical Joke."
Prof. E. J. Chapman, "On the peculiar conditions of occurrenco of certain Canadian Nianerals, illustrated by a series of specimens."

18 til January, 1 S62.
Hon. J. H. Hagarty.read "The Annual Address."
Prof. H. Y. Hind, M.A., F.G.S., " A communication enbodying Observatione made during his Expedition to the Labrador Coast last summer."
$25 t i f ~ J a v c a r y, 1862$.
Rev. Prof. E. Hatch, B.A., "The Thysical Theory of Heracleitus."
Ist fedruary, 1860.
Prof. D. Wilson, L.L.D., "On apparent traces of Works of Art in the American Drift."
T. C. Keefer, Esq., C.E., "On Ice Phenomena."

Sth Febrgary, 1869.
Prof. II. Croft, D.C.L., "On Toxicology illustrating the application of Chemical Science in elueidating questions relative to Poisoningr Cases in Jurisprudeace."

Rev. Prof. Hincks, F.L.S., sc., "Note on a Canadian Specimen of the Sula Bassana (Solan Goose or Ganuet)."

22xd Fedruary, 1862.
Beverley R. Morris, M.D., "On the Habits of some Water Birds."
Prof. G. T. Kiugston, M.A., "The Meteorological Report for 1861."
Ist Marci, 1862.
Rev. Prof. E. Hatch. B.A., "A Slietch of the Pre-Socratic Philosophers."
James Bovell, Esq., "Some recent theories of Cell Developement, with Microscopical Illustrations."

8til Manch, 1862.
Rev. Prof. G. P. Young, M.A., "Remarks on an argument of Dr. Whewell against the claim of the Parmenides to be considered a genuino dialogue of Plato."

Prof. D. Wilson, LL.D., "On the nim of Shakspeare in his Historical Drames, as illustrated in his King John."

15 ta Marca, 1862.
Prof. H. Croft, D.C.L., "On the supposed existence of Benzole in Canadian Petroleum."

Prof. E. J. Chapman, "A communicution relative to the occurrence of the phenomena of Mock Suns as observed by Mr. Cliford Thomson, P.L.S., near the mouth of the Muskoka River, in November last."

22xd Marca, 1862.
Prof. E. J. Chapman, " Remarks on some recent announcements and discopeties in Natural Science."
D. Ogden, M.D., "On an atmospheric cause of Disease."

29 tr March, 1862.
Rev. Prof. G. P. Young, M.A., "Note on a passage in the Euthyphro of Plato." 5 til Apall, 1862.
Rev. Prof. E. Hatch, B.A., "On the relation of the Volscian language to others of the Italian Family."

Prof. D. Wilson, LL.D., "On the induence of Medimval Art on the subsequent forms of Literature."

$$
\text { 3nd May, } 1862 .
$$

Licut. Ormsby, R.A., "On Modern English Guus."
Rev. Prof. E. Hatch, B.A., "On the light which is thrown by the latest results of the Science of Language upon the Early History of Mankind."

The last two papers were originally communicated to the Iustitute at the Conversazione, which was held at the Music Lall on the 24 th of April. The Council believe that, in most respects, the labore of those who superintended the arrangements, and the liberality of those who furnished them with objects of interest for exhibition, were euccessful in making the meeting a pleasant and instructive gathering to the members of the Institute and their friends; but, to their great regret, it was found, when it was too late to change the place of meeting, that the partially filled hall is not at all suited for public speaking, and the result was that the gentlemen who had kindly consented to read papers could be heard only by a very few persons. In order to meet a generally expressed wish of the members, the Council appointed an Extra-ordinary Meeting on the third of May, when the authors of two of these papers were good ebough to give the Institute another opportunity of hearing their valuable communications.

With regard to the papers gencrally, the Councit regret that so small a number of the members of the lustitute are to be found in the list of contributors. During the past Session twenty-seven papers have been read, but the number of writers has been only fifteen; and even these numbers do not show the amount of work which has been thruwn upon one or two members. The Council would again urge upon the members in geucral the necessity of increased exertion in this respect, in order that the meetings of the Society may continue to maintain the bigh character which ther have hitherto held.

The Council have to regret the loss of the valuable services of Prof. Chapman as General Editor of the Journal. They trust, however, that under the management of Prof. Chemimau it will continue to hold the high reputation which it has already secured. The thauks of the Iustitute are also due to Prof. Hincks for discharging the duties of Editor during the summer, in the absence of Prof. Cherriman in England.

REPORT OF THE EDITING COMMITTEE.

[^24]They have continued their labours on the same general plan as during preceding years, and they hope the result will not be found unsatisfactory. Thoy wish the Journal to be as far at posible supplied with materials by papers read at the meetings of the Institute, and they gladly publish as many of these as are at all suited to their purpose. They have bad occasion to regret that during the last Session the proportion was so great of communications which, although highly interesting to the members present, were not designed by their authors for publication, and were either not committed to writing or not placed at the disposal of the Committee.

They are aware that such communications may be, in some cases, useful and acceptable; but they venture to hope that in general those who contribute to the instruction and entertainment of the members will consider those who are absent as well as those who are able to be present, and will place their papers in the bands of the Committec. They woull also again express their earnest desire that a greater number of the members of the Institute would manifest their interest in its prosperity by occasional communications on the subjects connected with Literature, Science, the fine or he useful Arts, which engage their attention.

The change in the general editorship during the year, occasioned by Professor Chapman's resiguation, owing to his visit to Europe, was only designed as a temporary provision, Professor Hincks having only undertaken the duty in the expectation of being relieved at the close of the year.

Professor Cherriman has, in the mean time, been appointed to the office, and will commence his duties with the January number of the Journal.

The cost of the Journal for the past year, iucluding printing and engravings, has amounted to $\$ 1249$.

WILLIAM HINCISS,
General Editor.

TREASURER'S REPORT.

The following is the Report of the Treasurer:
Statement of the Canadian Institute General Account, for the Year 1861-9,from 1st December, 1861 to 30th November, 1862.

```
    DR.
    &. d.
Cash balance from last year ............................. 472 19 11\frac{1}{2}
    " received from Members ...................... 187 7 4
" " for Journals............................... 4i in 0
* " for Interest on Loans.................. 101 0
" " Parliamentary Grant for 1862......... 250 0 0
" due by Members................................. 422 13 9
" due for Old Jourual ................................ }28 5
" due for New Journal . . . . ........................ 


The Treasurer in acconnt with the Canadian Institute, for the Yaar 1861-62,from 1st December, 1861, to 30th November, 1862.


Statiment of the Building Find.
Balauee from'last year.
2038110
Received Interest on Loans ........................... 101100
Subscriptions (uncollected).............................. 634 l5 0
—— 2674168
D. Unawfond, Treasurer.

Compared Vouchers with Cash Book, the Secutities for Investmenta axbibited. Balance in the hands of the Treasurer, \(\operatorname{sive9}\) 13s. Id.
\[
\left.\begin{array}{l}
\text { samulel B. Harman; } \\
\text { G. H. Winson, }
\end{array}\right\} \text { Auditora. }
\]

10th December, 186?.

In conclusion, the Comeil think that on the whole they may congratulate the Institute on the results of the past Session. They could wish, indeed, to have had to amonnce an increase rather than a dimiunion of numbers; but there
seems no reason to fear that this diminution arises from any toss of the publio favour, or that it will not be made up by larger accessions in the future. The numbers of a Society which has passed its early period of rapid growth must be expected to be liable to some amount of fluctuation; and the real prosperity of the Institute depends not so nuch upon its numerical stiength as upon the continued interest taken by its members in its proceedings and publications.

\section*{APPENDIX.}
DONATIONS OF BOOKS, MAPS, \&o., SINCE LAST ANNUAL REPORT. Marked thms * not bound, or pamphlets.
From tae Hon. G. W. Allan, M.L.C.
Gould's Trochilidx. Parts 21, 22, 23, 24, and 25 ..... \(5{ }^{\circ}\)
From tie Secretary for india.
Magnetical and Meteorological Observations made at the Government 0 b -servatory, Bombay, year 18591
From J. Dyees Campbella Esq.
The early Pnems of Mr. Tennyson, privately printed. 1862 ..... 1*
Doomsday Book, Cornwall. Photozincographed by Her Majesty's command, at tine Ordnance Survey Office, Southampton. 1861 ..... 1
Fron the Soperintendewt of Education, Lofer Canada.Journal de l'instruction Publique Cinquieme. Vol. 1861. Journal ofEducation, Lower Canada, for the year 1861, Both bound in one vol.Cloth1
Fbom New York State Library.
Catalogue of the Library. 1S61. General Library First Supplement. I. Titles; II. Index of Subjects. ..... 1
General Index to the Documents relative to the Colonial Eistory of the State of New York. Prepared by E. B. O'Callaghan, M.D. ..... 1
Per Saithanoman Instifution, Wasmington.
Verbandluroger des Zoologisch-botanishen Vereins in Wien, Band III. Jahr,1853. ........................................................................... \(1^{*}\)
do. do. Band IV. Jahr, 1854........... I*
do. dio. " VI. " 1856 ..... 1*
do do. "VII, Jalurgang,1S57 ..... 1*
do. do.
do. do.
do. do,
"VIII. " 1858. ..... 1*
" IX. " 1859 ..... 1*
ANNUAL REPORT OF THE COUNCIE. ..... 175
Finow the Smitnsomin Institution, Wasmington.
The Smithsonian Miscellancous Collections. Vols. 1, 2, 3, and 4. 8vo ..... \(4^{4}\)
Annual Report of the Board of Regents of the Smithsonian Institution, for 1861. ..... 1*
Results of Meteorological Observations made under the direction of the United States Patent Office, and the Snithsonian Institution, from the year 1854-59, inclusive. Vol. I., 4to ..... 1
From the Geological Survey of India.Memeirs of the Geologicel Survey of India. Vol. IIL., Part 11*
Annual Report of the Geological Survey of India, Fifth Year. 1S60-61 ..... 10
From Chmstoraer Walton, Esq., London.
Memorial of William Law, Jacob Böhme, Dio A. Frether, -J. G. Gichtel, Francis Lee, and other Theosophers. Printed for private circulation. London, 1554 ..... 1
An Introduction to Theosophy; or, the "Mystery of Christ," that is, of Deity, Nature, and Creature, Col. i., 15-20. Vol. I., complete in itself. London: John Kendrik, 27 Ludgate Street ..... 1
From the Provincial Gofernment of Caxada.
Statutes of Canada. 1862. ..... 1
Froy the University of McGill Clllege, Montreal.
The University Calendar and Examination Papers. 1862. Corrected to June, 1862 ..... 1
From J. Dyres Campbell, Esq.
Leaves from the Back Woods. Montreal: John Lovell. 1861. By Mrs Walker, Sarnia. ..... 1
From H. G. Boun, Esq., London, Exgland.
Aristotle's History of Animals, in ten books. Translated by Richard Cress- well, M.A., St. John's College, Oxford. ..... 1
The Roman Fistory of A. Marcellinus, during the reigns of the Emperors Constantine, Julian, Jovianas, Valentinian, and Valens. Transhated by C. D. Youge, B.A., London. 1562 ..... 1
From tae Mancaegter Literany and Philosormcal Society.
Memoirs of the Society, 1st Series. Vol.IV., Part II. ..... 1
" " " V. ..... 1
" 2nd Series. " III. Part XIV ..... 12
" 3rd " ..... 1
Proceedings of the Society. Vol. II. Session 1S00-61, and 1S61-62 ..... 1*
Rules ..... 1*
Dalton's New System of Chemistry. Vol. I., Part 1 ..... 1
" " Vol. II., Part 1, with ar pendix. ..... 1
Dalton's Meteorolegy, 2nd Edition. 1834 ..... 1
Froy Da. Oldhas, Surfaintindent of the Geological Surfey of India.
Memoirs of the Gealogical Survey o: India. Palicontologia. India ..... 1
Fron Professor Jamles Hall, Albany.
Report on the Geological Surrey of the State of Wiscousin. Vol. I. James IIall and J. D. Whitney ..... 1
Beport of the Superintendent of the Geological Survey, cxhibiting the Pro. gress of the Work, January 1, 1861 ..... \(1{ }^{7}\)
From the Societr.Proccedings of the Society of Antiquaries of Scotlaud. Vol. III., Parts 1,2 , and 33*
Proceedings of the Koyal Physical Society of Ediaburgh, 1851-5, 1855-6 ..... \(1 *\)
DONATIONS OF PAMPIILETS, SEEETS, \&o.
From the Roral Uniyersity of Cubistiania.
Earlmagnus Saga ok Kappa Eans. Fortacllinger on Keiser Karl Magnus og IIans Jarvinger. J. Norsk Bearbeidelse, fra det Trettende Aabun- drede uilgivet af \(\because\). . R. Unger. II ..... 1
Oversight af Nurges Echinodermer, ved Dr. Michael Sara, Profr. ved Christi- anias Universitet. Med 16 Lithographerede Plancher. 1861 ..... 1
Forhandlinger i Vidmskabs-Selsbabet I. Christiania, aar lSC.. Med Litho- grapherede Plader. 1560 ..... 1
Om Siphonodentalium Vitreum en ny Slixgt or art of Dcutaliderbes I milio af Dr, Sichael Sars, Profr. vid Cbristianias Universitet. Med 3 Latho- grapibrede Placher. 1561 ..... i
Om Kumetbanernes Indbyrdes Beliggenhed af II. Moha. Med Lithograph- erede Matier. \(1 \leqslant 61\) ..... 1
On Nordmoendenes Landhusholding i Oldtiden af Fr. Chr. Schübeler. 1560. ..... 1
Generalberetning fra Gustad Sindssygeasyl ior aaret ISou ..... 1
Om Cislers Bewring af C. M. Gubdberer. 1501 ..... 1
Sambing af Fuakjellige Lowe, Resolationcr, Circelaerer M. V. Vedrorende komgerigit norges Mandel ug Shib-fart, uedgi.et till brus for de forenede Rigers Consular efter Fomastalning af Departementet for det Inde e, de. ..... 1
Beretning on let koneclige Skelskab for Norges del dets Tisstand or Virks- onbed i arret 1560. Med Pilaye ..... 1
Beretuing om Bodsfaengstets Viksomhed i aret isro ..... 1
Det Kougchge Norshe Frederiks Uni ritets siffelese Fomstillet I anled- ming af dets llahshandredar-fest af M. F. Mourad ..... 1
From Jons Paterson, Fo., Tononto.
Stran Markinn. Oedinances respecting Swans, on the liver Witham, in Lin- colashire, from 1524 ..... 1177
Fbom Silminax's Jocrial.Profozsor Hall's rejoinder to the Criticiams of this Journal on his "Contri-butions to Palæontology ".1
Frox T. C. Wallbitide, Esq.
Mr. Russell "On Bull Run," with a Note; from the Rebellion Record ..... 1
From Col. J. D Grayny, U. S. Topografmical Enginerg.Report of Licut.Col. J. D. Graham, U. S. Topographical Eugincers, on Masonand Dixon's Line, with a Map. Chicago. 1862.1
From Harvard College.
Report of the Committee of the Orersecrs of, appointed to vislt the Library, for the year 1861 ..... 1
Une::oms. (By Post.)
Hall's Journal of Health. Vol. IX. 156? ..... 1
From the Althor.
A Proposal for an Act to authorize the isst: of Land Debentares. By Richard Snelling, Student-at-Law ..... 2
The Grand Trunk Railway of Canada, \&c., by Richard Snelling, Student at Law ..... 1
Feon the Authoe.
On the Rocks lying betreen the carboniferous Limestone of the lower Penin- sula of Michigan, de., by Alea. Winchell, State Geolugist of Michigan. ..... 1
Genlogical Surtey of Canada.
Descriptive Catalogue of a collection of the Economic Minerals of Canada, and of its Crystaline Rocks, sent to the Exhibition at London, 1862. Printed by John Lovell, Montreal ..... 1
Fhom Smithsonias Inetitute, Wasmisgton.
Beitráge zur Anatonie und Entrichlungsgeschichte der Algengatiang iema- nea, Vou B. Wartmaun, Dr. Philosopher Bericht uber die Thátigheit der St. Gallischen, Naturwisenschaftichen Gesellechaft wahrend der Vereins- jabre, 1858-60. (Redaktor: Prof. Dr. Wartmanu) ..... 1
do do do. 1S60-61 ..... 1
Quarterly Journal, Rocal Dublin Society, Oct. 1859 ..... 1
Unkwown Suprosed from the Auteme.
The Miscellaneons writings of W. Sharswood, Vol. one in Jemoriam Copy, No. 14, P. P., 1-16. ..... 1
Catalogue of the Jemerals containidy Corium, by Doctor W. Sarswood, from Proceedings of Boston Nat. His. Soc., For. 1801 ..... 2
Natcant. History Society, Nem" 3 hacaswich.Copy of Regneaimas and Bye Laws1
Foom McGill Colleie, Movtreal.
Faculty of atedicint of the University of McGiil Col.ege, Montreal, 156: 63 1 ..... 1
Uninsorn.
Poughkeepsic Collegiate School, N. Y. ..... 1
Vox. VIII.
From Mon. P. J. C. Chaturat, Montreal.
Nouville Note sur les Antiquités Aborigenes trouves a Montreal ..... i
From Grological. Sochty London, per H. Rot aeli, Esq.
Apniver:ary Address of the President, 2lst Feb, 1802 ..... 1
Quarterly Journal, Vol. 17, Part 4, Nov, 1861 ..... ,
Do .. 1S, " 1, Feb. 1862 ..... 1
Do " " " 2, May, IS62. ..... 1
Froy tae Geograpmeal Society, London, per H. Rowsell. Esq.
Proced diags, Vol. V., No. 4, Anniversary Moeting, 27 Jany, 1 S 61 ..... 1
" " " No. 5, 1861 ..... 1
" " Yi., No.l. 1862 ..... 1
" " " No. 2. 1862 ..... 1
Fhoy the Rozal Ashatic Society of Great Britain and Ireland.
Journal of. Vol. 19. Part I. 1801 ..... 1
" " " 2. " ..... 1
" " * S. 1502 ..... 1
" " " "4. 4 ..... i
Fbem I. Qcamitch, London,
Oatnloguc Raisonned of Rare and Valuable Bjoks ..... 12
Fgoy tee Literary ayi Misturical. Society of Quebeo.
Transactions of. Vol. V. May, 1862. Part 1 ..... 1
From L. Scorm \& Co., New York.
Reviews-Westminster, Esuburgh, London, North Bitish, and Blackrood's ..... 1
Magazine for 1562 . Each ole Set
From Brimsin Sorm Anericas Assoctaton.
Speech of Eon. A. T. Galt, at the Chamber of Commerce, Janchester, \(25 t h\) September, 1862 ..... 1
Rules of the B. N. American A-sociation ..... 1
Public Meeting of do. at the London Tarern, 13 Aug., 1862 ..... 1
Letter of Mr. Galt to the Editor of the Times. Published in the daily Neres, Th Cet., 1862 ..... 1
Is Excuange for Tocranal.
The Jourmal of Education for Upyer Canada, 1502, (Duplicate) ..... 1
The Journal of the Franklin Iustitute, Philadelphia, 1562 ..... 1
The Artizan, London, 1862 ..... 1
The Journal of the Society of Arts, 1862, (Duplicate). ..... 1
Sialiman's American Joumal, 1 sfe ..... 1
Canadian Naturalist and Geologist, 1862 ..... 1
Proceedings of the Boston Nat. His. Socitty, 1862. ..... 1
Journal of Eureation, Lower Canada, 186? ..... 1
Journal de I'Instruction Publique, Lnwer Canada, 1862 ..... 1
The proceediugs of the Acadeny of Natural Sciences, Philadelphia, 1862. ..... I
ANNUAL REPORT Of the COUNCil. ..... 179
Historical Recollections of the Essex Institute, 1862 ..... 1
Anmales Des Mines, \&c.. France.
Tome XX., 4th Livraison, 1801, 3rd Serie. ..... I
" " bth " " " " ..... 1
" " 6 lh ..... 1
" XX. lst 1562, 6th " ..... 1
" " 2nd ..... 1
" " 8 rl ..... 1
Proceediuge of the American Antiquarian Soceety, Boston ..... 1
The Canadian Agriculturist, 1862 ..... 1
Annals of the Lyceum of Natural History, New Yoik, Vol. VII., January to June, 1861 ..... 1
The Journal of the Board ce Arts and Mauvactures. ..... 1
Proceedings of Session, 1860 01, of the Royal Society of Edinburgh ..... 1
Transactions of do. Yol. XXII. Part III. ..... 1
BOOKS PURCHASED.
vos.s.
Bacon's Works. Vols. II. III. and IV ..... \(\varepsilon\)
Smile's Lives of Eugineers ..... 2
Sketches of celebrated Canadians and Persons connected with Canada ..... 1
Reports of the Britisi Association from 1831 to 18058 ..... 27
The Sea and its Living Wouders. By Di. (. Hartwig, and edition. ..... 1
The Constitutional History of England. By Thos. Erskane May, C. D., in Two Vols. Vol. I. ..... 1
The General History of Ceylon. By Sir J. Emerson Tenuent ..... 1
Lankester's Lectures on Food. ..... 2
" Uses of Animals to Man. ..... 1
Crania Britannica. Decade V ..... 1
New Zealand and its Inhabitant.s By Rev. R. Tayior, M. A. ..... 1
Polyuesian Mythology and Ancient Traditional History of the Nem Zealand Race. By Sir G. Grey, late Governor ..... 1
Fiji and the Fijians. By Thomas Williams. Yols. 1 and a, and cdition. ..... 2
A Treatise co some of the Insects injurious to Vegetatio:. By Thadicus William Harris, M. D. New Edition cnlarged ..... 1
Peter Jones ..... 1
Ure's Dictionary ..... 1
BOOKS BOUND FROM PERIODICALS RECEIVED, \&C.
The Mining Journal for 1801 ..... 1
Illustrated Iondon News. July to December, 1S61: Januar J June, 186? ..... 1
Athenxum. July to December, 1861 ; January to June, 186: ..... 2
The Builder. 1561 ..... 1
The Art Jommal. 1561 ..... 1
The Artizan. 1501 ..... 1
The London, Edinburgh and Dublin Philosophical Magazine. Vo!. 17 and 18. 1853 ..... 2
The London, Edinbargh, and Dublin Philosophical Magazine. Vol. 22. 18611 " " " " " " 23, 1862 1
The Journal of Elucation, Upper Canada. Fears 1859 and '60 ..... 1
The Chemical Iews 1861 ..... 1
The Precedings of the Acadary of Natural Sciences of Pliladelphia. Year 1860 and 1561 ..... 2
North Bitish Review. 1560-1561 ..... 2
The Westminster Review. 1861 ..... 1
The Elinburgh Revierr. 1859-1861 ..... 1
Relation Aherge, de. ..... 1
Journal of the Board of Arts and Manufactures. 1861 ..... 1
Silliman's Jonmal, 1861-1862 ..... 2
Journal of the Fiank'in Inatitute. January.June 1862. ..... 1
Biackwood. July December. 1861 ; Jamuary-June, 1862 ..... 2
Ciril Engineers and Atchitects Journal. 1961 ..... 1
No:th American Review. July and October, 1561 ..... 1
Edinburgh Ner: Philosophich Journal. Ful. XV. January-April. 1862. ..... 2
Quarterly Joarnal of the Chemical Society. Vol. 14. April, 1961. January, 1862 ..... 1
Historicai Recoilections ef the Essex Iustitute. Vols. 1, 2 and 3. 1859, '60 and 61 ..... 3
Quarteriy Journal of the Geological Society. Vol. 17. IS6I ..... 1
Annales des limes.
Jutrnal of the Buard of Agiculture, Torcnto. 1861 ..... 2
Verhandlungeides 2 oologisch botanischen vereins in Wein :- Band III. Jalur. ..... 1853. 1
" IV. " ..... 1854. 1
" V. " ..... 1855. 1
" VI. " ..... 1856. 1
" Vil. " ..... 1857. 1
" Vili. " ..... 1858. 1
" IX. " ..... 1859. 1
" X. " ..... 1860. 1
Smithsonian Miscellaneous Collections. Vn!a. \(1,2,3\) and 4 ..... 4
Canadian Journal. 1801 ..... 2
Journal of the Buard of Aris and Manufactures. 1881 ..... 1
Journel of the Royal Geographical Society, England. Vols. 29, 1559; 30, 1860 ..... 2
Conadian Naturalist. Tol.c. 1861 ..... 1

\section*{181}

KONTHLY METEOROLOGICAL REGISTER, AT TEE PROVINCLAL MAGNEMICAL OBSERFATORY, TORONTO, OANADA WEST,-DEGEMBER, 18EE.
Latiiude- \(\mathbf{~} 3\) deg. 30.4 mis, North. Longitulde-5 7.17 m .33 s . West. Elovation above Lakc Ontario, 108 fcet.


I82
REMARKS ON TORONTO MRTEOROLOGICAL REGISTER POR DECBMBER， 1869.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  \(\stackrel{\text { ．Maximum temperature }}{\circ}\) ． & \multicolumn{13}{|l|}{December，1s6g，was comparativoly mild and calm；it had more than the mean uepth of rail，and less of snow．The amount of clondiness was exactly the average．} \\
\hline －Minimun tomyerituro． & \multicolumn{13}{|l|}{COMPARATVVE TABLE FOR DECEMBER．} \\
\hline  & \multicolumn{6}{|l|}{miperature} & \multicolumn{2}{|l|}{Rais} & \multicolumn{2}{|l|}{now} & \multicolumn{3}{|l|}{Ind．} \\
\hline  & \multirow[t]{3}{*}{riar．} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{烒苞} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{Resultant．} & \multirow[t]{3}{*}{\begin{tabular}{l}
Mean \\
Velocity
\end{tabular}} \\
\hline  & & & & & & & & & & & & & \\
\hline ximum \(\left\{\right.\) Solar \({ }^{\text {a }}\) ，．．．． & & & & & & & & & & & tio & & \\
\hline  & 1810 & 24．3 & & 4 & & 4 & & & & & & & \\
\hline  & & & \(\pm 2.6\) & 45.5 & & & & & & & ．．． & ．．＇ & \\
\hline Rainims on shays；lellth，i，ies finclios；duration of fill， \(41: 2\) & 1843 & 21．7 & & \({ }_{4}^{4} 1.1\) & & & & & & & & & \\
\hline Mran of cloudiness \(=1.75\) ： 1 i）iference from nveraze， 0.0 ．No & & & ＋ & & & \({ }^{39.7}\) & & 1.010 & & 8.1 & & & － \(\begin{aligned} & 0.6 \\ & 0.4\end{aligned}\) \\
\hline & & & & & & & & & & & & & \\
\hline Sums of the components of the ditmosplueric Curront， & \({ }_{18,47}\) & & & 59.2 & & 45.5 & & & & 6.0 & & & \\
\hline 2140 & & 29.1 & & & & & & & & & & & \\
\hline 24．30 N 730 W & & & & & & 16.5 & & & & 9．6 & & & ＇8 \\
\hline & & & & & & 5s． 0 & & & & & & & \\
\hline Maximum velooity 35.5 milies，froum 1.30 to \(2.30 \mathrm{p} . \mathrm{m}\) ．on 6 th & & 21．6 & ¢ 5.8 & & & \({ }^{51} .3\) & & & 15 & 10.7 & & & \({ }^{7.37}{ }^{\text {c／＂}}\) \\
\hline Least windy day 31st－Mcan velocity 1.9 in miles per hour．\(\quad\}\) Differenco 10．5s． & 1835 & 25．3 & & & & 3 \(\overline{1}\) & & & & & & ． 30 & \({ }^{\prime}\) \\
\hline Most windy hour， 10 to 11 a．m．－Meni velocity 11.73 & & & & & & 47.7 & & & 12 & ． 2 & & & \\
\hline  & & & & & & 48.0 & & & & & & & \\
\hline Yery stormy day ；cold aud kenn．-13 th． &  & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 17 th ． \(10 \mathrm{p} . \mathrm{m} .=30.263\}\) Aseending range \(=1.158\) in 16 hours & 析 & 28．8 & ＋2． & & & 52.3 & 5 & 1.9 & & 0.4 & & 3.1 & 7.5 \\
\hline \(=29.156\) & & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & 2.07 & 8.18 \\
\hline & & & & & & & & & & & & & \\
\hline m．\(-3.0-\)－scending range 50.0 in 128 hours． & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{183}
MONTELI METEOROLOGICAL, REGISTRL, AT THE PROVINOIAL MAGNETICAL OBSERVATORY, TORONTO, CANADA WRST,-JANEARY, I8ES.


184
REMARKS ON TORONTO METEOROIOGICAL REGISTER FOR JANUARY, 1863.
 11 \(\left.\begin{array}{l}30.378 \text { at } 10 \mathrm{a}, \mathrm{m} . \text { on } 18 \mathrm{th} \\ 28.846 \text { at } 2.30 \mathrm{p} . \mathrm{m} .0 n 4 \text { th }\end{array}\right\} \begin{gathered}\text { Sonthly range } \\ 1.532 \text { inches. }\end{gathered}\)
 \(\left.\begin{array}{l}\text {... } 32^{\circ} 32 \\ 22^{\circ} 93\end{array}\right\}\) Mean daily range \(=\) om a. m. to n.m. of 10 th . impossible ond 21 niji
-momanqy

Sums of the components of the Atmospheric Current, exprossed in miles. West.
2248.13
Resultant direction N. \(61^{\circ}\) W.; Resultant velocily 1.13 miles per hour.
Hean velocity .....................23 miles ner hour.
Moximum volocity .................. 30.3 miles, from 3 to 4 a.m. on 6 th.

Least vindy hour... \(2 \mathrm{p} . \mathrm{m}\). to \(3 \mathrm{a} . \mathrm{m}\). ............Mcan velocity, 8.50 dicto.
\(\xrightarrow{ } 2.32\) miles.

 light, arch and streamers, 10 p.mn, to midnight. -25 th. Auroral light from 8 p.maral lunar halo 8 to \(10 \mathrm{p} . \mathrm{m}\). 10 pin. to 1st. Solar halo durine foran tunar halo 8 to 10 p.m. January, 1863, was vory mild, cloudy, and comparatively calm; it had loss rain IIghest Barometor.......................... Maximum Tomperaturo

\(\qquad\)
\[
\begin{aligned}
& \text { and more snow than the average; and the total amount of moisture was in excess of } \\
& \text { the mean by } 0.402 \text { inches on the surface. }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { Raining on } 10 \text { days, depth 1. } 122 \text { inches; duration of fall } 20.7 \text { hours. } \\
\text { Hean or cloudinoss }=0 . S 3 . \text { Above averayc } 0.12 \text {. } \\
\text { Host cloudy hour observed, midnight, mean }=0.86 \text {; least cloudy }
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \left.\begin{array}{l}
\text { emporature......... } 40^{\circ} \circ 0^{\circ} 0 \\
0^{\circ} 30
\end{array}\right\} \text { Difference }=40^{\circ} 90 . \\
& \text {.......... } \left.66^{\circ} 0 \text { oil pim. of } 5 t h\right\} \text { Monthly rango }
\end{aligned}
\]```


[^0]:    - In the present place, licese rock-fomatome will be considered separately, and in a more or less detaled mamer as rewards structhal charact: rs, economics, charactrristic fossils (when crhbited), lecalities of instructive eaposures, and other allied mints of inquiry; and nferwards, in a comberted sketeh, their mathal rilations will bo shewa, torether wath the special feolezical areas whech oceur within the Prevince. The peneral reader whe searerly gain a clear wea of the Geoloy of comad, matil after the pernal of this latter section. The present cletals are necessary, howerer, as an introdnction to this.

[^1]:    * Tu this valuable and truly national work, it may be mentioned here, the persent Essay is manly jutended to serve as an introduction: ollustrating and explaning the varions technicalities and details, a knowledge of whic!, on the part of the reader, is necessarily presupe posed in tise Report in question.

[^2]:    -These varions substances will be fonnd descrihed in full, as repards minral characterg, composition, se, in Pabe II. of this lissay.

[^3]:    * It is but just to state, that most of the facts $k$ iven under these heads. are drawn from the publications of the Geoloxical Survey of Canada. The writer, however, has visited the north shore of lake Huron where the rocks of this series are chieny displayed; and he has thus examined many of the strata and preenstone masses in situ, and has procured, personally, it considerable collection of spreimens from that localits. He is consequently better able thatis mere compiler would be, to clasify and sepanate from subordinate details tho more salient points belonging to the study of this ceological group. These observations will apply also to other cases in which he is more especially indebted to the labours of the Survey

[^4]:    * Ancient Monuments af the Mississippi Valley: pl. alvii and xhiii.
    $\ddagger$ Elin,b,九rgh Philosoph. Junval, N. S., vol. vii. p. 2\%. Canadi:n Journal, vol. ii. p. 403.

[^5]:    - Crania Americana, p. 115 . I'jpes of Llankind, p. 44.

    Vol. VIII.

[^6]:    - Crania Brilamica, Dec. I. p. 38.
    $\dagger$ Ediu. Philosoph. Journal, N. S. XVI. p. 209.

[^7]:    - Prehistoric Annals of icolland, $p 177$.
    + Procecdinys of the Acall. Nat. Sciences, Philadelphia, 1857, p. 42
    $\ddagger$ Crania Britanica, Dec. ii., pl. 14.

[^8]:    * Crania Britanica, Dec. iv., pls. 39, 40.

[^9]:    - Crania Britannica, Dec. ii. ph. 2f, (4.)

[^10]:    - Memozr of S. G. Morton; Tupcs of Mankinnt, D. xl

[^11]:    - Malto ct le Gñe, p. 21.
    + Cataiosuc of Human Crania in the Acadr waj of Nat. Sciences of Philadelphia, p. 20.

[^12]:    - Natural Listory Revicto, vol. i.

[^13]:    - Canadian Journa?, vol. i: n. 今t5.

[^14]:    - Archeol. Journal, vol. xi. م.313. Crania Britannica, Dec. I. pl. 5, (5).
    +Crania IBritannica, Dec. III. pl. 2\&, (3).
    $\ddagger$ Ibid, Dec. V. pl . $\mathrm{so}(\mathrm{l}$.
    \# Archacologia, vol. xix. p. 47 .
    5 Ten Ycars' Liggings in Cellic and Saxon Grave Lills. p. 230.

[^15]:    - Owing to inaccurate copying on the part of the wood engraver, the diagrams, especially Ag. 3, do not corresjond on opposite sides, as they ought to do.

[^16]:    - Orania Britannica, Dec. v. pl. 43.

[^17]:    - Crania Lritannica, Dec. ve pl. 45.

[^18]:    - Schlossberacr. Arch. f. phys. Heilk. Lelman:, Physiol. Chem. Vol. III. p. 2s.

[^19]:    - Ethmography of the U.S. Exploring Expedition, p. 2l6.
    t Prehistoric Man. Vol. II. p. 300

[^20]:    

[^21]:    - Physical Iype of the Ancrican Indians. Schooleraft: p. 320.
    t. Prehistorio Slan, vol ii. p. 2:5.

[^22]:    * Picliering's Raccs of Man, p. 4.".
    $\dagger$ Types rf Mankind, p. Bisi.
    $\ddagger$ Crania Britannica, Dec. III. pl. シt, (1.)

[^23]:    *The effects of disturbances are not ciminated e- om the amplitude irom isis to 1890. To render them comparable with those of the subsequent year ther should be each incyeased by alout 0.23.

[^24]:    The Seventa Annual Volume of the New Serics of the Canadian Journal is now completed, and the Editing Committee submit to the Council of the Iastitute their annual Report.

