

IMAGE EVALUATION

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endummagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Covar title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seula édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveru de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproriuced thanks to the generosity of:

Librery of the Public Archives of Canada

The images eppearing here are the best quality possible considering the condition and legibility of the original copy and In keeplng with the filming contrect specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriete. All other original copies are filmed beginning on the first page with a printed or illustrated impression, end ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow Imeaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., mey be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothéque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformitt avec les conditions du contret de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'iliustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'llustration et en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniere image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'engle supérieur gauche, de gauche à droite, et de haut an bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

DESCRIPTION Λ ND LIST

 LIGHTHOUSES

 LIGHTHOUSES

 OF THE WORLD.

 OF THE WORLD.

 1863.

 1863.}

THIRDEDITION.

BY ALEXANDER G. FINDLAY, Fellow of the Royal Ceagraphical Society.

LONDON:
PUBLISHED FOR RICHARD HOLMES LAURIE, 63, FLEET STREET, E.C.
1863.

The Intric
read hefor have been
by drawin it would b

The var
nature of been touel Thomas will supp

Besides
the Select the Royal subject of upon alms the Unite Engineer: and requi

The list by the A Dunsicer

In orde
latest inf occurred directed.

London,

This ' occurred

London,

PREFACE.

The Introductory portion of this Book is the substance of two Papers, by the Author read before the Socicty of Arts on December 15, 1847, and March 3, 1858; which have been published in the Society's Trumsactions and Journal. It was thought, that by drawing the Sailor's attention to the methods by which the Lights are produced, it would be adding much to their utility, and prove interesting to many.

The varied features of the beautiful Systems in operation are necessarily, from the nature of this Work, very briefly adverted to ; and many important topics have not been touched upon for the same reason. The exeellent works of Robert, Alan, and Thomas Stevenson, will furuish the reader with a fund of varied information, and will supply all defieiencies in this, should a further insight be desired.

Besides these works, and others of carlier date, quoted herein, the bulky Reports of the Select Committces of the House of Commons, of 1822, 1834, and 1845, and that of the Royal Commission published in the present year, if they have not advanced the subject of their inquiry, have collected and recorded a vast mass of detail bearing upon almost every relation of the Lighthouse System. Besides these, the Report of the United States' Lighthouse Board, in 1852, the works of Fresnel, and other Engineers of the lirench Commission, will give an excellent account of the condition and requirements of Lighthouses.

The lists of the Lights which follow have been re-arranged from those published by the Admiralty, which, under the carcful superintendence of Commander Edward Duns'erville, R.N., have attained a completeness approaching perfection.

In order that this Work may preserve its utility for several years, by giving the latest information, a Supplement, containing the additions and changes that have occurred during the previous year, will be annually forwarded on application as directed.

London, July 1, 1861.
A. G•F.

This Third Edition has been duly revised, and those changes which have occurred in the previous year have been inserted in the respective pages.
A. G. F.

London, Jan. 1, 1863.

Lighthouses
Cordoua
de Br house,

Lighthouse

1. Light

10,11
or Ma
2. Catop

Curve
Smith 18; B
3. Diopt Fresne Rovol
23; F
4. The I sions a

Jeneral Ren
Differenc
Lights, Dipin \&c., 29

CONTENTS.

PAONPharology ; or, a Description of Lighthouses and their Illumination1
CHAPTER I.
Early History of Lighthouses 1
CHAPTER II.
Lighthouses and Lightvessels2Cordouan Light, 2; Eddystone, Bell Rock, Skerryvore, Carlingford, and Héhauxde Bréhat Lighthouses, 3 ; Forco of Waves, $4 ;$ Mitehell's Screw liile light-house, 4, 5; Iron Lighthouses, 6 ; Lightvessels, 7, 8; Boacons and Buoys, 8, 9.
CHAPTER III.
Lighthouso Illumination9

1. Lights. Wood and Coal Fires, 9; Argand and Fresnel's Lamps, 10 ; Oils, 10, 11; Drummond, or Lime Light, 11, 12; Bude, or Gurney Light, 12 ; Eloctric, or Magnetic Light, $12,13$.
2. Catoptric, or Reflector System, 13; Early uses, 13; Principles of the Parabolic Curve, 13. 14; Earliest use, 15; Hutchinson's Roflectors, 15, 16; Teulèro's and Smith's Reflectors, 16; Characteristics of Reflectors, 17; Lightvessel Apparatus, 18; Bordier Marcet Apparatus, 18.
3. Dioptric or Lens System, 19; Rogers's, Buffon' n, Sir D. Brew 'ar's Lenses, 19; Fresnel's Invention, 19, 20; Construction of Polyzonal Lens, at Adaptation to Revolving Lights, 21; Fixed Lens Lights, 22; Totally reflectin; Glass Zones, 23; Fixed and Flashing Lights described, 23 ; Example, 24.
4. The Holophotal System, 25; Mr. T. Stevenson's Arrangements, 25, 26; Dimensions and Cost of Lenticular Apparatus, 26, 27.

CHAPTER IV.

Difference in appearance of Lens and Reflector Lights, 27 ; Harbour and Tido Lights, 28; Distance to which Lights aro visible, 28; Colour of Lights, 28; Dipping Tights, 29; Masking of Lights, 29; Control, 20; The Trinity House, \&e., 29,30 ; Forcign munagement, 30,31 .

LIST OF LIGHTHOUSES.

Description of Tubles . 32
L:aylend, Thames Mouth, 33; South Coast, 34-30; West Coast, 37-40; Bast Coast, 41-43.
Scotlund, East Coast, 44, 45; Oriknoy and Shetland Isles, 40, 47; Wost Coast, 47-49.
I'cland, South Coast, 50; East Coast, 51; North Coast, 52, 53.
Norway, 54 ; West Coast, 54-50; Whito Sea, 54. Norway, South Coast, 56, 57 ; Cattegat, 58 ; Demmark, the Belts, 60.
Baltic Sea, W. Shoro, 61, 02; Gulf of Finlund, 63, 64; Baltic South Shoro, 65.
Dermark, West Coust, 60 ; Hanover, Holland, \&c., 67-69; Delgium, 70.
France, North Coast, 71-75; Wost Coast, 76-79.
Spain, North Coast, 80, 81 ; Portugal, 81, 82; Spuin, South Const, 82.
Meditervancan Sea, Coust of Spain, 83-85; Franee, 85-87; Corviea, Sardiniu, \&c., 87 ; Ituly, West Coast, 88-90; Sicily, \&c., 91; Multa, \&c., 92; Adriatic, Wost Shore, 92, 93; East Shore, 03, 94; Ionian Islands, 94; Arehipelago, 95; Dardanelles, \&c., 96 , Bosphorus and Bhek Sca, 97, 98 ; Sea of Azolf, 98.
Syria, Egypt, Tunis, 90 : Algieria, 99, 100.
Africa, West Coast, and Atlantic Isles, 101 : Africa, South Coast, 102.
Indian Ocean, Red Sea, and India, 103-105: Bay of Bengal, East Coast, 105, 106.
Straits of Mralacea, Sunda, \&e., 106: China and Kamchatka, 107.
Australia, West and South Coasts, 107 : Victoria, 108, 109: Now South Wales, 109, 110 : Now Zealand, 110.
British America.-Nowfoundland, 111 : Gulf of St. Lawrence, 112: Now Brunswick, and Nova Scotia, 113-116.
Uuited States.-Maine, 117, 118 : Now Hampshire, \&c., 119 : Massachnsetts, 120, 121: Rhode Islind, \&e., 122: Connecticut, 123: Now York, \&e., 124: New Jersey, \&e., 125: Virginia, \&c., 126: Maryland, 127, 128: North and South Carolina, 129, 129 : Georgia, 130 : Florida, 130, 131: Alabama, \&c., 182 : Mississippi, \&c., 133: Texas, 133, 134.
West Indics.-The Bahamas, Cuba, \&e., 135, 136 : Caribbee Isles, 137 : Coast of Tierra Firma and Mexico, 138.
Nouth America.-Brasil, Patagonia, Chilo, Peru.
Culifornia, British Columbia, Pacific Islands.

To bring in operatio guish one is the obje were but nearly to t

Amid th the Lighth merce have his skill ; the promin mercial pu monitors; approach 1 early perio sions in tho been formo single-eyed themselves terrancan and timid much reas used as a s

Leaving famous lih guide to th still to be Sostratus o it was 800 consisting authority $20 \cdot 480$ incl looking sea into the ha visible at t
This ger 1811 or 18 erected, an Yharology

PHAROLOGY;
 on,
 A DESCRIPTION OF LIGIITHOUSES,
 AND THEIR ILLUMINATION.

Chapter I.

EARLY IIISTORY OF LIGHTHOUSES.

To bring before the sailor's notice the many beautiful adaptations of refined secence in operation in Lighthouses,- to explain their principles, and to enable him to distinguish one description of light from another, through a knowledge of its construction, is the object of the present Introduction. Theso subjects, thongl of grent interest, wero but little noticed till within a few years, although they havo been brought nearly to the present perfection for a long period.

Amid the wonderful progress which has charncterized the last quarter of a century the Lighthouse system has been one of the foremost. Wherever civilization and commeree have spreail, thero has the engineer marked its advanco by these evidences of his skill; and it seems more than probable, that in the course of a very few years all the prominent points of the world interesting to the navigator, wherever his commercial pursuits lead him, will be indicated by day and night by these guardiun monitors; while the whole west of Europe is now so well lighted as to very nearly approach perfection. Whether Lighthouses, as now understood, wero used in the early periods of history is almost more than doubtful, although there are many allusions in the mystical writings of the ancients to such existing, and conjectures have been formed that IIomer has mentioned them. Vague hypothesis has also made tho single-eyed Cyelopes into Lighthouses; or even, in a figurative manner, Lighthouses themselves. It is more then probable that the prominent headlands of the Mediterrancan were marked, in the very carly uges, by beacon lights, to guide the coasting and timid voyagers of these distant ages. It has also been surnised, but without much reason, that the famous Colossus of Rhodes, crected about 300 b.c., was also used as a sigual light.

Lenving these dark conjectures, we arrive at a certainty in the history of the famous Pharos of Alexandria, one of the seven wonders of the world. It served as a guide to the ancient mariners during the period of 1,600 years, and its remains are still to be recognized. Pliny says, in his Natural History, that it was built ly Sostratus of Cnidus, ly command of one of the I'tolemies, about 285 b.c. The cost of it was 800 talents ($£ 21315 \mathrm{~s}$.), or $£ 195,000$ English. It was square, of white stone, consisting of many storeys, and diminishing upwards. Its height, according to the authority of the Georrapiaia Nubiensis, was 100 statures of man, or 300 cubits, (equal $20 \cdot 480$ inches,) equal to 512 English feet. In the upper chambers were windows looking seawards, and in these chambers torehes or fires were burned to guide vessels into the harbour of Alexandria, and we are told by Josephus that these fires wero visible at the distance of 300 stadia (or $29 \frac{1}{5}$ geographic miles).

This gencral description is applicable to ncarly all Lighthouses down to the year 1811 or 1812. Its name was taken from the little Island of Pharos, on which it was erected, and hence it has been applied to Lighthouses generally, while the term Pharology was first introduced by the late Mr. P'urdy to express our modern system

Other Dight-towers existed at Ostia, Ravenna, Apmmen, nad other phees, as mentioned hy l'liny, Suctonins, and Stephams 1 Byantinns.

During the epremil of the lommon power, this mighty nation planted thase evidences of their matical skill in their compuered comntries. The Lixhthonse ut Cominn, mothwest of Spain, is perlaps the oldant existing town now usen ns auch. It in helieved tulave heen erectad in the reign of 'trajan. It was reentablinhed ay a lighthonse in 1633, and in 1817 lad one of the flaest madern light apmatus erected in it.

In Eingland we have an evidence of the loman colomization in the Phuros which stands adjoining the ancient charch on the highest part of Dover Castlo, built prior
 called, from its harduess, "The Devil's brop of Sortar;" mather wecupped the height of Boulegne on the Jrench side. There perhaps may have bere a haman pharos on Fhmborough Hend, and mather one on the const of flintahise. The known eximeneo of these and others, mad the inferred use of others in onf own combery, testify that these phari were among the many marks of the high civilization of thase enrly days.

The Fid perhups, t momertanc Jidly yntone Mr. W'inst latter yeur the water, nuised to atanley we thut mimeth the Wiweh light ; but commence Rudyerd. and 12 fiect Smenton, w
In the medieval period, there are many Lighthouses of which we have some inches, and notices, as well as some which still wro used us such. 'They were also frequently, completed perhaps more gencrally, a portion of other buiddings. Thus, on an angle of the towerevidence of of the little church which crowns St. Michacl's Monnt, in Comwall, are the remainsevident, the of a stone lantern, perhups nearly 500 vears old, which is now known as the fannonsgolidity in St. Michael's Chair. The Light nt St. Elmo's Castle, Malta, has been Nhown sinceand must a 1051. The Skaw Lighthouse, on the N. point of Denmank, recently rebailt, datesforec of the from 1064. The oldest Lights now existing on the same sites in Great Brituin, are those of Lowestoft, since 1609; Win. ton and Dungeness, 1615; the North and Sumenton' South Forclands and Ortordness, 1631; the Isle of May, 16:35; Portland, Harwichquete fiom St. Agnes, Flamboro', \&e., all in the 17th century, and several others soon afterwhole seconthese dates.

All these structures, however, do not differ in their principley from ordinary build ings on land, and were constructed only to show by mirht the uncertuin illumimation of a wood or conl fire, or other imperfect mode of lightimer. Modern seinnce has replaced all these methods by a very different order of building and appuratus; si that, althourh the brief deseription of liehts in ancient times eriven abowe is interest ing to the historim, it is only within ulmost the hast century that the truc requir uock light ments of these monitors have been recopnized. As a building, the first structure, a works, betw a purely nautical work, was the Cordounn 'lower, in the Bay of Biseay: mud thys10). It w next the Eddystone Lighthouse: with these commences the history of Moderizost Le' $^{(0), 000}$ Lighthouses.

The inmens. rock, on λ_{1} on August written. The next Rock Light us a most va

CII C PTERII.

LIGHTHOUSES AND LIGHTVESSFILS.

The famons Cordouan Tower at the mouth of the Gironde, in the Bay of Biseay, is. ${ }^{i}$ tert hit a wonderful monument of skill. This elegant structure, the work of Louis de Foidsti,j00. was completed in 1611, in the reign of the great Hemi the Fourth of France, and was twenty-six years in building. It is minutely deseribed by Belidor in his "Arehi The Light tecture Hydranlique." It was 197 feet high, and consisted of sucecessive galleries $1: 2$ feet bet
 diameter, in which are the light-kepers' apartments, and which also forms a sent on 18300 . outwork to break the foree of the waves from the main building. The tower ited! contains a chapel and numerons apartments, and is ascended by a spiral staircase. I Another n has been lately molified and adapted to the modern system of lighting, and, after léluan (or lapse of 200 years, it is considered the finest Lighthouse in the work.
hese evidonees Coruin, merthIt is lielieved liirhthonse in in it.
louros which tle, built prior irlits, and was red the heifith man phasos on mown existanco re, tristil'y that Ce carly days.

The Edalystone Rock, off Plymouth, has attracted the attention of the public mure, perhaps, thinn any other of bur Lighthonse sites; not an murh on neemut of its duportance, but us forming an era in the construction of lighthouses. 'Ihe first Gidlystome Lighthouse was hinitt of wood, 80 feet high to the top of the vane, from Mr. Winstanley's designs, leme-8. The light was thint alown in November in the latter yeur, but it was soon found that the sea romi, no as "to bary the lanterin under the witer," although at the elevation of 00 feet ubove the roek. It was uecorlingly ruised to 100 fect. In November, 1703, the tower requiring some repuirs, Mr. Winatanley went to the Lighthonse to suprerintend them; but the stom on the egth of that month carried away the whole ercetion, and every soul prishoct. The wreck of the Wïnchitsen, man-of-war, noon nfter oecurred, ins it to paint ont the necessity of a light; but the 'l'inity Honse could not obtain the ametion of tho Govermicnt to conmence matil July, 1706, when n new timber erection was hegran by Mr. Jolan Redyerd. It was sibseghently destroyed hy fire in 1700^{2}. This tower was circular, and 92 feet in height. The tower which exists here at present wns erected ly Mr: Sunaton, who has given un ndmirable description of it. The masomry was 76 bect is we have some inches, and the top of the luntern bis feet above the foundation. 'Ihis noble erection, iso firepuently, completed in 1759 , stands a monument of fame to its constructor, and a lasting fle of the towerevidence of the correctuess of the principles on which it is built. It will he selfre the remainsevident, that the site of this, and similar creetions, calls for extraordinary skill mal a as the famousolidity in their construction. 'I'sey are therefore to be viewed us works sui generis, en shown sinecand mist not be elased with similai building on lamel, removed from the trenendous y^{5} relmilt, datesforee of the wates.
cut Brituin, are the North and

Smenton's description lus heen so often referred to, that it is scarcely neensary to land, Harwichquote firom it here. The varions counses ure so dovetailed into eneh of her, num the hers soon afterwhole secured tugether, that the tower is really almont ns if ent ont of a solid block.

The immense difficulties which had to be overemene, from the first landing on the
 ortinary hinidr ${ }^{\mathbf{r}}$ on Ausust 24, 175!), render Sincuton's book one of the most interesting ever ain illumination ern scime ha:
d upluratus; ; si The next Lighthonse in our conutry, of a similur nature, is the equally fanons Bell bove is interest Rock Lighthouse; whose eonstruetor, the late Mr. Robert Stevenson, hus also given the trie reguircus a mosit valumber necomet of the dificulties to he overeome, und the progress of the
 Hiseay: and this10. It was first illuminated in Febrmary, 1811. 'Ihe tower is 100 leet high, and tory of Muderzost $\mathrm{f}^{\prime}(0), 0000$.

A later, aud the most nuble erection of this kind, is that on the Suerryvore Roek, off the went const of 'Sothond. 'Mhis, from the designs of Mr. Alan Stevenisom, the son of he engineer of the Bell Rock, mad the tulented engineer to the Seottish Sighthouse Board, eost in ity erection, with the harbour for the temder and other nceessaries, Est, 000 , and was first illminated in 18.4. The light is 100 fect above the sea, and he structure and its applianese exhibit every retinement that has hitherto been made It the varied partienhars of the system.

The latest grand Lighthouse of this mature, mul ulso one of the most important in he Britinh list, is that on the Bishop Rock oft' Scilly, built hy Mr. James Walker, Bay of Bieay, i4.j fert high, under the superintendence of Mr. HI. Douglass, at an expense of

in his "Arehi The Lighthouse at Carlingford, on the East coast of Treland, the foumbation of which cessive galleries 12 feet below high water, is an malugons st ructure, 111 leet in height, though not
 o fornus it sert ol 1s:30.
The tower ited
iral stainease. I Another noble and mmanental Dighthonse is on the West enast of Frmen on the

the tower rises to the height of 140 feet. It is beautifully fitted up in many respects.*

It is as difficult to estimate the nautical importance of these triumphs of engineering skill, as it is to calculate the wonderful force of waves that they have to bear against.

The pri number, one in the of hammi feet in dia
Mr. Thomas Steverison, another of that eminent family of Lighthouse engineers, facility int constructed an apparatus, like a railway buffer, that self-registered the force of the it was calc waves that struck it, which has been applied to this purpose.
weight of
In the Atlantic, according to observations made at the Skerryvore Rocks, the average result for five of the summer months, in 1843-4, was 611 lbs . per square foot. The average result for the six winter months of the same years was $2,086 \mathrm{lbs}$. per square foot, or three times as great as in the summer months. The greatest foree registered was on the 29 th Mareh, 1845, during a westerly gale, when a pressure of 6,083 lbs. per square foot was exerted. The next highest was 5,323 lbs.

In the North Sea, at the Bell Rock Lighthouse, the greatest result obtained washouse. It 3,013 lbs. per square foot. This lesser force is to be attributed to the narrow space in the rocks, which the waves have to travel in the North Sea, compared with the roll of theport sever Atlantic. It must, however, be remarked, that it is almost impossible to receive thea single st force unimpaired, as the waves are more or less broken by hidden rocks or shoal ground before they reach the instruments.

Even this tremendous force seems to be far less than that encountered at the Bishor Rock, probably the most exposed Lighthouse in the world. On January 30, 1860, i storm wave shook this tower, and tore away the bell, weighing 3 ewt., from its support at the top of the tower, more than 100 feet above the sea. Mr. Stevenson alve has related some extraordinary circumstances of the foree of waves at the Shetlands, which demonstrate that their power, if opposed, is alnost irresistible. Therefore, it these sea-beaten towers were not, at least, equal in weight to a solid block of granite of 60 or more feet in height, they would not be able to withstand the waves.

The most obvious means to avoid this enorinous amount of hydrodynamic force, i to reduce the extent exposed to it to the smallest possible limits, so as to offer the leas possible resistance. Iron columns have been suggested and used for this purpose But here another difficulty awaits us, namely, that iron, particularly cast iron, decomposed by the action of sea water, and this to a very great extent, the effec being to convert it into a substance similar in its chemieal properties to black lead In evidence of this, on removing the wreck of the Mary Rose at Spithead, which haie been sunk for 292 years, the iron shot, upon being exposed to the air, graduall! became red hot and then fell into a dry powder resembling burnt clay. This is scrious obstacle to the permanency of such erections, and it has been proposed by Mr Gordon to obviate it by using gun metal or bronze; but whether this would answe for piles is a question. Wood has also been used, as in the Small's Lighthouse of Pembrokeshire ; but as it is liable to many sources of decay, and particularly to th ravages of the teredo naialis, when under water, it is not adapted for suc structures.

Having stated these difficulties, the deseription of the means employed to overcom them will be better understood. The first to be noticed is the serew pile of Mr. Alen ander Mitchell, C.E., of Belfast. This principle was first employed in the construe tion of the foundation of the Maplin Lighthouse, on the north side of the mouth a the Thames, which now exhibits a red light. This was commeneed in 1838, and the Thames, which now exhibits a red hight. This was commeneed in 1838, and Morecambe
as firm now as when first ereeted. It stands on the outer edge of the Maplin Sanizroposal of which consists of sand at the surface, and afterwards of sand and mud, exeeedingl3ishop Roc soft and penetrable, and therefore the crection of a Lighthouse upon such a foundatiotisappeared nust considered as a great achievement.
refel a simi lave stoppe ortance to
"Sco "Rambles of a Naturalist;" by A. do Quatrefages. Translated by E. C. Ott Many oth 15.57; vol. i. p. 121.
up in many
The principle of the screw-pile Lighthouse, is having a series of piles, nine in number, eight in the angles of an octagon, and one in the centre. These piles consist of a shaft 1s of engineery have to bear of hammered iron, 5 or 6 inches in diameter, having a single turn of the flange of a serew 4 feet in diameter. This pile is screwed with great puse engineers, facility into the sand to the depth of 22 feet, and the foree of the it was calculated that each of them would bear a weight of 64 tons. These nine piles were fixed in ore Rocks, the per square foot. $2,086 \mathrm{lbs}$. per ${ }^{20}$ uom greatest foree en a pressure of bs. lt obtained washouse. It was intended to affix the foundation to harrow space in tho roeks, and that the iron shafts should supthe roll of theport several storeys; whereas the Maplin and the Foot of Wyre Lights have but le to receive thea single storey. rocks or shoal

Mr. Mitchell previously completed a Lighthouse upon a similar foundation at the

Maplin Lighthouse, crected by Mr. Walker, upon Mitchell's screw-pile foundation. mouth of the Wyre River, in Morecambe Bay, about 30 miles north of Liverpool. It was commenced in November, 1839, and lighted in June, 1840. The foundation is formed of seven screw piles, six in a circle and one in the centre, each of them 5 inches in diameter, with a screw of 3 feet diameter, and these screws sunk 13 feet into the bank of exceedingly hard sand, which is occasionally dry at low water. On these serews is supported the Lighthouse, consisting of a floor, and the lanteru above it.

This serew-pile system has also been adopted for standing Beacons.

As far as experience goes, these Lighthouses answer all the purposes required of them, as regards stability, by offering the smallest possible surface to the force of the waves. How far the perishable nature of the iron may interfere with its permanency, must be left to time to unfold.
These pile Lighthouses have hitherto been placed in the less exposed situations, such as the Thames Mouth, Morecambe Bay, Belfast, Cork, \&c., and have tionswered all their requirements. The iroposal of Mr: Stevenson for the Bell Rock, above alluded to, was attempted on the Bishop Rock, and the structure was completed to the base of the lantern, when it tisappeared in the course of a stormy night in January, 1850 . The same disaster
iefcl a similar structure on the Minot's Ledre, Boston Bay, U.S. These misfortunes 1ave stopped any farther extension of this principle, although it is of very great imlortance to sceure a foundation on a treacherous bed in an exposed situation.
atod by E. C. Ott
Many other plans have been suggested, among which the pneumatic pile of Dr. ?otis deserves notice.

This beautiful adaptation of atmospherio pressure has been applied to the erectio of several Beacons in the vieinity of tho mouth of the Thames. The first experimenthe land, wh was upon the Goodwin Sands, on July 16, 1845, and an iron tube of 2 feet 6 inchéerable. $R t$ diameter was driven into the sand to a depth of 22 feet in two or three hours. of coloured gentleman, present at the experinent, which was made by the Trinity Brethren, saidorecable for that the facility with which this lurge tube was mado to descend could be comparedonger again to nothing better than shutting up a telescope. The method of operation is this:-ippearance One of tho tubes being placed perpendieularly, an air-tight cap is fixed to the uppe There is end. The eap communicates with a powerful air-pump, by means of which the air ithe appeara exhausted from the tube, drawing up the sand or shingle with the water whicbeing like t aseends, and the tube immediately descends from the effects of outward atmospheripainted in t pressure. The contents of the tube are then removed by the pump, which readil draws away the sind or shingle with the water which rises during their action, an the exhausting process is then continued. The upper end of the tube having becom level with the surface, the operation is stopped, the eap removed, a fresh tube affixed and sccured, and the same course pursued, and thus continued, until, with th greatest facility, this great length of tube penctrated what must have been exceed ingly hard sand, nearly resembling stone, as was found by Mr. Bush in his ercetio of a caisson on these sands, for his light of all nations. The practicability of the schem being proved, several Beacons, as before stuted, were erected as on the Buxey, thb Shingles, the Girdler, the Margate, and other sands lying in the mouth of th Thames.
Another plan has been earried into effect, at the Point of Air Lighthouse, at th entrance of the River Dee, near Chester. This, which is similar in sitperstructure t the Maplin Lighthouse, is by Messrs. Walker and Burges, and consists of nim hollow iron cylinders, 3 feet 9 inehes in diameter, sunk 12 feet into the siand by thi aid of an instrument known to well sinkers as "the Miseri," which extracts the sam contained in the eylinder. In these the bases of the piles are inserted, and then fille with conerete. But this is crected above low water mark.
Another adaptation of iron to the eonstruction of Lighthonses has met with fa: greater suceess, and promises to be of the greatest utility, whether as regards econom or facility of construction. This is the iron Lighthouse designed by Mr. Gordon. would seem somewhat singular that iron should not have been employed in this form before, when we consider the multifarious varicty of purposes to which it is now appiied.
A cast-iron Lighthouse was mentioned by Mr. Rennie, in 1805, for the Bell Joek and also, as previously stated, referring to Mitchell's serew pisco, by Robert Stephen son, in 1800 . Mr. Rennic, in alluding to the use of iron, says, "A Lighthouse o cast-iron might also be constructed here, and I will allow that it might have a contins of lead, or other metallic substance, so as for a long time, at least, to resist the effect of marine acid. But to make a Lighthouse that would last of such materials, wouli be nearly, if not wholly, as expensive as one of stone; while-I believe I need searecl! say-no human ingenuity could render it as durable." But Mr. Gordon has provec the futility of this latter assertion, in some experiments he has made. The fiest towe of this construction was placed on the eastern end of Jamaiea, ealled Morant Point.

The build erections an as far as hun only to mar shoal or ree The num greatly fulfi belong to I ships, excel worthy of c
It is man with the st use of that Lighthouse. more expen 6,200. Th £.1,375.

The cost This is mal Lighthousc of a first-cl,
to £ £185;
£1,103, £1
ively, and
in favour 0
The que: problem, w

This noble tower is erected on the ecntre of the remarkable erroup of islands, the scene of Shakespere's Tempest, and the focus of the Atlantic hurricanes. The Lighttower is 105 feet 9 inches high, formed with iron plates, the entire weight of whicl is nearly 100 tons. It has seven storeys, and the lower portion is filled in with cont crete, to the height of 22 feet, to give it stability. Nearly every portion of the edifice is of iron, and the erection of the tower was completed in ten months, finished Uetober 9,1845 . The light is from a beautiful dioptrie first order apparatus, con structed by Messrs. Wilkins and Son, of Long Acre; the lenses composing it wert made by Mr. H. Lepaute, of Paris, and is one of the most efficient and powerful light in the world.
One important point is the colour of Lirhlthouses. In many instances this has no been sufficiently attended to; and some of the noble Scotel towers, left of the natural colour of the stone, too much rescmble the grey hack ground. When it shows against
to the erection
irst experimenthe land, white, of course, is the best; and if against the sky, a dark eolour is pre2 feet 6 incheerable. Red is sometimes used, as at Duggeness, \&e.; and the extension of tho use three hours. Af colonred stripes and bands is recommended. This has been found particularly serBrethren, saidpiceable for duy distinetion in the British American lights, where the snow lies much ad be comparedonger agninst the field fences at right angles to the coast, and has precisely the same ation is this:-appearance at a distaner a white tower.
ed to the uppe There is one diffienlt: . the use of coloured bands, and hat is, during hazy weather, which the air ithe appearanee of the fower is frequently that of a ship under sail, the bright stripes he water whicheing like the sails; this requires caution. The famous Eddystonc has lately boen ard atmospheripainted in this way to distinguish it from the Bishop Rock.
p, which readil. neir action, an having becom a fresh tube until, with th ve been exceed ${ }^{8}$ h in his crectio ty of the sehem
rhthouse, at th
aas met with fit regards econom Mr. Gordon. yed in this for which it is now
ir the Bell Rock Robert Stephen A Lighthonse o: it have a contim: resist the cffeet materinls, wouli e I need scarcel? rlon has prove The first towe Morant Point. p of islimends, tha cs. The light: veight of whieh ed in with con on of the edifice nonths, finished appurutus, conmposing it werc powerful light
es this has not of the natural t shows agrainst
greatly fulfilled this requirement. Oar country posseses 47 such vessels, of which 5 the Buxey, thbelong to Ireland and one to Scotland. Other countries have but very few lightmouth of thships, except the United States, which has 48; but they have only recently been made worthy of comparison with the English light-ships. It is mamifest that a lightressel can perform its office but imperfectly compared and consists of minuse of that refined and enliuged apparatns which is the characteristic of a Shoro the sund by thighthouse. In addition to this, the establishment of a lightvessel is very much xtracts the summore expensive. The average cost of the English Lightships is $£ 3,600$; of the Irish, h, and then fille 6,200. Those of the Jnited States (the best), the Nantucket New South Shoals, $£ 1,375$.

The cost of maintenance is much greater than that of a Ligh: thouge establishment.
The buildings we have been describing, commeneing with those of ordinary land erections and terminating with such towers as tho Bishop Rock, have been extended as far as hmman skill and power can probably be exereised. Still it is necessary, not only to mark a danger, or indicate safety, but to warn ships from tho approach to a shoul or reef, or to show a channel far away from land.
The numerous light-ships which have been established by Great Britain havo This is manifest from the difference of condition. Three men are sufficient to a rock Lighthouse, 11 are required to man a Lightship; consequently, white the annual enst of a first-class Lighthouse is from $£ 203$ to $£ 340$; in Scotland, $£ 380$; Ireland, $£ 40$;
 $£ 1,103$, £1,464, and £1,320 per ammun for England, Liverpool, and Ireland, respectively, and $£ 1,3 \overline{0} 4$ for the United States' Nantucket vesscl. These are strong arguments in favour of stationary buildings.
The question of their suffieiency depends also in some measure on the solution of a problem, which Mr. Herbert, of the Trinity House, proposes to make the subject of experiments on a large seale.
It has been proposed by him to extend the principle of lighting by establishing Floating Lights in the Fuirway; the hulls to be constructed on the principle of his buoys, and the light the best known.
The cfficiency of a Floating Light depeads on the attention paid to the points in reference to the quality of Lighthonses, with one very importait addition, namely, that it should remain on its station in all weathers.
"The best proof that the lights are efficient in the last particular is to be found in the statements of the Lighthouse authorities, which are fully confirmed by the evidence of nariners. The Lightressels very seldom go adrift, and there is no instanco on record in which the erew have voluntarily run from their stations in bad weather. When they have been driven from their moorings, the vessels have always been epplaced in a very short time, and none have ever been wrecked. Tho mariners' evidence on this point is valuable, bceause the rare instances in which Lightvessels have been off their stations are repeatedly mentioned by independent witnesses as remarkable events. It does not appear that the lights have ever been aceidentully extinguished." *

* Report of the Rayal Commission, March, 1561, p. 17.

Much has to be learned about the best form for resisting the forec of winds ansolourss (bl waves when the vessel is always at anchor. The shape of the hull now varies corg27 to $£$ siderably. Nome are longer than others. The part of the vessel to which the moopuoys. ings are attached, and the points where the chains enter, are different. The Irisl vessels are gencrally longer and sharper than those in England, and set an after-sa when its use enubles them to iide more casily. The testimony of the men on boar has been in favour of considerable length, fino entrance, and a low point for attnehin the moorings.

The Trinity House Lightvessels are painted red. In Ireland they are black with white streak. At liverpool, two are red and one black; and they are all distit guished by balls hoisted at the mastheads, and by other signals, and some have thei names painted on their sides. Blaek and red seen to be the colours which eontras best with the colour of the sea, and they are, in fract, best seen.

The United States sea Lightships, where they have been constructed on th improved models of the European floats, since the establishment of the Lighthou: Board in 1852, are painted cither ercam-colour or white.

It is a remarkable fact, that the Lightships lying in very exposed situations, as the at the Seven Stones, ncar Seilly, and the Coningheng, ride very much casier than tho in shallow though sheliered waters, as at the Spurn, off the Humber; the Ower the Catterat, or the Ayklow. This is owing to the great seope of heavy cable whic is out in the one case, acting as preventive toher pitching leavily while she crossest sea; and short cable reuder's a Lirhtship, in some positions, one of the most unple sant situations in the worid. In the shoal water, when the wind is strong, the vesse sometimes ride broadside to the tide and sea. Where the swell is much larger, as the open ocean, the tides are not so strong. The efficiency of a Lightship is th impared by her want of stability. The remedy for this serions drawback involv the grand consideration, whether it is not possible to remodel the Lighthouse syster so to speak, by the establishment of decp sea Floating Lirghts, if a yessel can be co structed of such a form as to ride steadily and be secure at her moorings.
The proposal of Mr. George Herbert, above mentioned, for this important sumiliar to ject, is deserving of every comsideration. In the case of the numerous buoys athe progres beacons constructed and cetablished on his principle, as shown in liverpool Biay anf the Good elsewhere, it ecrtainly does appear that the subject should not be relinqui-hed till Yharles the is demonstrated that moden curgincering skill canmot do in this what has been dound continu in other apparently equal diflicuities. Mr. Herbert's plan of the Beweon is that whicime it was keeps it constantly upright, with but little oscillation. His proposal is to moor a livhich was of these large vessels along the fiirway of the English and St. Gcorge's Channcvas partiall showing lights of the fine ct character ai great elecations; so that by steamers passior burning up channel on one side nod down on the other side, much of the risk of collision (threather, ab increasing and fatal evil) would be avoided, and the anxieties and dangers consequevindows, ar upon hugging the land would also not be ineurred.

A few words may be here acded upon Deucons and Buoys, as neeessorics to out present subject. In some eases Beacons approach the excellonce and costliness standing Lighthonses. Thus the dangcious Wolf Rock and linudlestone are mark with stone Beacons, the first of which eost nearly $\pm 1 \%, 000$, and immense labou There are $2(i 1$ structures of some magnitude erected as lieacons under the pubi authoritics of our comntry; and it is thought that our system, although capable some improvement, is generally superior to that of foreign nations.

In the form and character of Buoys there has been very great improvement of lat years, especially since the employment of iron in their construciton, as in the cane ship-building. In Great Britain and Ireland, 1861, there were about 1,100 Buoys position, excluding wreek, warping, and many others of minor importance; abs one-half of which are under the piblie authorities. They generally keep their pow exhity tions excellently, the chief aecident occurring through being rum down. Ont of hie Liverpoo whole number only 53 broke adrift in 1858, and of these a very large proportion wer The use 0 under local authorities. Mr., Herbert's Buoys, as before alluded to, nuswer theritain they purpose admirably. Peacock's refuge Buoys are also excellent; and there are oth
forms, as Lenox's and Poulter's, which are very efficient. The spiral form and dark oree of winds ansolours (black or red) seem to be the most useful. The cost of a Buoy varies from now varies cong 27 to $£ 36$ for the ordinary can, up to $£ 130$ and $£ 197$ for the first class spiral which the moorpuoys.
rent. The Iris) d set an after-sa le men on boar oint for attachin
are black with ey are all distit i some have the: s which contras
nstructed on th it the Lighthou:

CII APTER III.

LIGHTHOUSE ILLUMINATION.

1.-LIGHTS.

The first Lighthouses, such as the Cordouan and the North Foreland, had originally on their summit open fire-places, or chauffers; in that of the former were burnt billeis of oak wood, and of the latter, eoal; and this was the only means of indieating their ituation during the night. A fow words will show how incompletely these must have performed their office. Of course, the time at which a light becomes most serviceablo s during tempestuous weather; and a wind, blowing towards the land, causes that lread to mariners-a lee-shore; yet this wind would drive the flanes of an open fire iway from the direction in which they were most wanted to be seen ; thus the bars
f the grate were often nearly melting to leeward, while towards the sea the coals emained untouched by fire. There was frequently, however, this advantage in the pen fire, that during the fog or rain the glare of the fire was visible by reflection in the atmosphere, though the fire itself could not be seen. Such a feature would be of 10 advantage in the modern system, as will be hereafter shown.
The North Foreland Lirghthonse, between Ramsgate and Margate, will be more
situations, as th casior than tho ber; the Ower cavy cable whi tile she crosses 1 the most unpls strong, the vess nuch larger, as Lightship is th lrawback involv ighthouse syster yossel can be co ings. is important suamiliar to many than other Lighthouses, and will serve as an excellent example of acrous buoys alihe progress of illumination. This Beacon was instituted for indicating the proximity Liverpool hay arf the Goodwin Sands. The first intimation we have of its existence is in 1636, in e elinquished till Jharles the First's reign, when license was granted to Sir John Meldrum to renew hat has been dound continue this and the South Foreland Lighthouse for the same purpose. At this ieon is that whitime it was merely a large glass lantern on the top of a timber and plaister house, al is io moor a livhich was burnt in 1683 . Towards the end of the same century, the present tower C'corge's Channcras partially erectre: a strong octagonal structure, having the iron grate, or chauffer, steamers passiror burning coals. I. om the difficulty of keeping up a proper flane in windy or rainy E of collision (threather, about the war 1732, it was covered with a sort of lantern, with large sersh angers consequeqindows, and the coal fire was kept alight by means of large bellows, which the ttendants blew throughout the night. This was found not to answer, and the
eflected glare above mentioned was thour ht desirable. Accordingly, the lantern was
aceessorics to or and costliness estone are mark inmense labou under the pubil though eapable keep their porit exhibit a chandelier of twenty-four wax candles, five of which weighed 2 lbs ., and to, miswer theritain they were used till 1823. Thus the Isle of May Lighthouse, at the entranco ad there are othe emoved, and the fire restored to its oris nal condition. Matters went on thus till 790 , when the tower was raised to its preseut height of 70 feet, and further improverents made in the lantern, by the introduction of lamps and other apparatus, herefter to be deseribed.
After some alterations of the Cordouan wood fire, the mariners complained that they suld not see the light at the distance of two leagues as formerly. But Smeaton forms us, that the coal fire of the Spurn Point Lighthouse, at the mouth of the umber, which was constructed on a good principle for burning, had been seen thirty
of the Frith of Forth, had a coal fire till 1310 ; at St. Bees Head, Cumberland, oi was first used in 1823; at the Flat Holm, Bristol Channel, in 1820, \&e.

It is stated that a coal fire is still used on the Grönskar Lirhthouse, Fast const xen to be Sweden. They were in operation on the two towers of Nidingen, in the Cattegar has bee till 1846.
nited Sta
The general use of gool lights is of very recent date. During early times the modouses oth of lighting were most imperfeet, and the rude lamps, with their thick, torch-liki the Ligl wicks, which were the best then attainable, form a ridiculous contrast to the presef the tails universal brilliancy required.
ancy of lig
Up $\sim \eta$ the introduction of the Argand lamp, Ω vast step was advanced towards $\mathrm{tt}^{\text {er }}$ gallon, perfection of Lighthouses. This advance in artificial light was the greatest previoi jear; 48 to the intreduction of gas. It was discovered by M. Argand, a citizen of Genev One grea about 1780 or 1785. It has remained as he left it, and appears as perfect in princippon a ver as can be losked for. Its perfection as an experiment was almost necidental. We auany othe informed by the younger brother of Argand of its aecidental discovery. He sayspect. 'I "My brother had long been trying to bring his lamp to bear. A broken-off neek oflantucket flask was lying on the chimney-piece; I happened to reach it over the table, and ontinnous place it over the circular flame of the lamp; immediately it rose with brilliancy. N The puri brother started from his seat in ecstasy, rushed upon me with a transport of joy, alient of lan embraced me with rapture." Thus was the Argand lamp formed.

On the introduction of a more efficient means of illumination, and the consequeght-room, abandonment of the coal fires, Lighthouses assumed a more important position ower of t maritime affairs, and they were aceordingly largely increased in number.

The cylindrical-wicked lamp, in its various forms, is the usual mode of lighti employed in Lighthouses. For tho reflectors, the wick is nearly an inch in diamet for the lens lights, a more powerful and complicated lamp is used.

For a first-order light, this lamp consisted, in the first instance, of four concent wieks, of the respective diameters of $0.827,1 \cdot 69,2.52$, and 3.39 inches, the smal apparatus being constructed of 3 or 2 concentric wicks; but within these last 10 ye the interior wiek has been removed from all the burners, it being thought that a lig of superior brightness could be obtained by allowing more air to pass into the fla on the inside, and forsing this air outwards on te it by a metal breaker or button $\mathbf{k}^{\text {c }}$ below the level of the flame, so as not to interfere with the rays of light emanati oil, oud the the metal button hiding some of the upper rays, it is probable that perations efficiency of the light has been impaired, and a portion of it sereened from the upramprey, 0 part of the apparatus. The original form of the lamp will therefore be restored. alled Desic

The oil is made to flow into the burners by various means, as is stated above. Fresnc invention consisted of a series of four small pumps, worked by clock-work, which for the oil upwards to the flames. Another mode was by weights acting on a piston third by a spring doing the same office, a plan which has since become in univer use in the moderator lamps. Another mode, the pneumatic lamp of Messrs. Wilki acted by means of the pressure of air in the reservoir; and another, frequently appl: of late, is by placing the reservoir slightly higher than the lamp, the oil thus flewio freely by its own gravity to the required level.

The fucl used in the English Lighthouses in these excellent lamps up to the 5 1846, was the best sperm oil that could be procured. At that period a change v made throughout the whole of the lamps, by adapting them to the use of colza refined rape-seed oil, requiring a thieker wick. This oil was in use in the Fre Lighthouses for some time prior to this, and was procured from the seed of a pecul species of wild cabbage, known in the north of France under the name of colzat, colza. This plant is extensively cultivated in Normandy, \&c., the chief markets the oil being Caen, Rouen, Lille, and Courtrai. That now used by the Trinity Ho is chiefly refined by a patent process. This refined oil is of a superior character to sperm oil; it produces a brighter flame, does not eause so much deposition on wick, consequently, will burn longer without trimming; any adulteration in i much more easily detected than in sperm oil, and it is half the cost. It is

1, Cumberland, oi \&c. ase, East coast secllent subssitute for the oil, which is annually becoming dearer, atd moro sen to being mixed with other and inferior oils. In the Liverpool lights olivein the change effecting a saving of 40 per cent. on the use of , in the Cattegaterm-oil. Olive-oil is also used in the Spanish and Austrian Lighthouses. 'The nited Stetes lights are supplied with sperm-oil exclusively. In our colonial Lighty times the modrouses other varieties of oil are used, of which ono need only be noticed as being used r thick, torch-lik the Lighthouses near the Cape of Good Hope. This oil is procured from the tips rast to the presef tho tails of the Capo sheep, and is said to be far superior to any other oil for brilancy of light ; but the quantity consumed, and the expense, are great. It costs $10 s_{\text {. }} \mathbf{6 d}$. anced towards $\mathrm{tt}^{\mathrm{er}}$ gallon, and the first-order light of Cape Agulhas consumes about 730 gallons e greatest previoi-ycur; 482 gallons of rape-seed oil would bo necessary for a year's supply.
eitizen of Gener: One great advantage in the refined rape-seed oil is that it does not thicken, exeept perfect in princippon a very great degree of cold, a qualification which places it far above sperm and ecidental. We auany other oils for winter use. Indeed the change is a fortunate one in another eovery. He sayzspect. The untiring perseverance of the whale-fishers from the neighbourhood of roken-off neek offantucket has so dispersed and destroyed their prey, that it is almost doubtful if a re the table, and ontinuous and sufficient supply could be maintained, exeept at great prices.
ith brilliancy. N The purity of the fucl, and the perfect combustion effected by the present arrangeansport of joy, arent of lamps, keep the flames used in the apparatus in their normal condition; but ; is necessary to cery off the products of combustion from the confined space of the and the consequeght-room, for, if they were not disposed of, they would both materially diminish tho portant position ower of tho light, and also be a serious detrinent to the health of the attendant
mber.
1 mode of lighti a inch in diamet of four concent nches, the smal these last 10 ye hought that a lig. pass into the flat aker or button kx of light emanati the consumptionaverhaps it would be as well to notice here the very great distances to which lights probable ged from the uplampvey, on the Island of Iviza, and a rocky mountain on the continent of Spain re be restored. alled Desicrto de las Palmas. On the former a powerful lamp with reflectors was laced. After watching for some menths, a supposed minute star was identified as re signal light, and was afterwards casily recognized by the obscrvers. This was a istance of nearly 100 miles. It is not intended by this example to say that a light juld becone serviceable at such a distanee, but that it is possible to cause a light to e acen so far.
All modifications of lamp light sink into utter insignificance when compared with ime other lights, produced by chemieal means, from which very great expectations ere formed, but hitherto with very little prospect of successful introduction. The rst we shall mention is the Drummond light, generally known as the oxyhydrous or me light.
Licut. Drummond, the first promulgator of this splendid light, was employed in the rand trigonometrical survey of England, in the course of which it beeame necessary) connect by observation Leith Hill, in Surrey, with Berkhampstead Tower in Hertrdshire, which were to be seen, but could not be distinguished from each other. "he discovery arose from his consideration of Berzelius's experiments with the blowipe, as detailed in the "Philosophical Transactions," 1826-1831; and from tho ,tense light produced in these, Lieut. Drummond was induced to try a jet of flame :om the combined gases, oxygen and hydrogen, on a ball of lime. Many trials of its intensity were made, one of which was in the north of Ireland. A hill in Inishowen, llled Slicvesnaght, was always enveloped in haze by day, and a Drummond light as placed on it. In the line between it and the observing station was a church
tower, much nearer to the latter, and on this an ordinary reflector was placed. Drummond light, at the distance of 70 miles, was much more elevited thun the of which was 12 miles distant, and thus they appeared nearly on a level. When were both seen, the Drummond light appeared to be much nearer and brighter t the lamp at 12 miles.

Its enormous power is evident from this, and it has been reekoned equal to The total Argand lamps; and this is produced from Ω ball of lime $\frac{8}{2}$ of an inch in diancter, tish it at the angle which this minute object would subtend at the distance of 70 miles is esing that 10 -6th part of a second.

The difficulties of introducing this light, however desirable, appeared at firstance of n be insuperable. 'The preservation of an equal intensity of flame is almost impossi Lieut. Ra from the rapid diminution of the lime ball by fusion and volatilization, nud by sea pur frequently cracking and breaking. It has also the most painful effect ou the ey eectric ligl the attendants, and is most injurious to the sight. minosity
The difficultics, however, of maintaining a steady light has been in part overecoper opti ns an arrangement has been made by Mr. Renton which preserves the eyliuder of thausted r from eracking, and then jets of the combined wases produce a nost brilliant flight rend It has not yet been tried to any great exteut in Lirghthouses.

A proposition for inereasing the intensity of the flume of the oil lamp was mad, Mr. Gurucy in 1835; this was to impinge upon the flame jets of oxyren gas, han or e by increasing the combustion, certainly enhanced the effeets of the flame, bi charred the wiek; and in this case, as in the former, it would be difticult to app to Lighthouses, from their isolated position, and the difliculty and danger of produ and keeping the gas.
The method of illumination by gas has in some instances been suceessfully trice The effect in the Lighthouse at Hartlepool. The buruer here is that of Mr. M•Niel. Gns, a fill a sph illuminator for Lighthouses, was proposed, in 1823, by Signor Aldini, of Milan.

The splendid light obtained by electricity has long been a desideratum, numerous trials and great skill has been employed in overcoming its difficulties. was hoped that the apparatus of Messis. Staite and Pctric (1848) would have successful, but it was found to be uncertain. M. Dubose has designed an exce lamp, which is used in philosophical experiments; but it requires delicate man ment, and is very expensive. Mr. Harrison's plan has not come into use.

There are two great difficulties in solving the problem of a stendy light electricity. The first is, in maintaining an equable force from the producing elem that is, the battery, which, of course, will gradually deeline in power after a time, and no means have, as yet, been devised for so thoroughly obviating this, 0 time, and no means have, as yet, been devised for so thoronghly obviating this, ${ }^{\text {a }}$ ght.
keep up for so many hours as the light must be shown. The next is, at the outlo this current; in preserving that exact distance between the two points of ear The first through which the are passes, which maintains the light in its normal condiistory of These carbon points are usually formed of graphite, the substance which is feranged it lining the inner surface of the old gas retorts. The rapid disintegration of sted the n positive pole, the less diminution of the negative pole, and the irregularity of the ssly been, sumption of both under the intense action, have baffled the ingenuity of almost the cupol who have attempted to control them.
Professor T. H. Holmes has adopted another form of originating the current has hitherto been tried-that of magneto-electricity. The whole apparatus an results are an admirable excmplification of the corrclation of the physical forces. evidence that one power may be traced throughout a train of operations unt emanates in a totally different form. The apparatus consists of a series of powerful permanent maguets, around the poles of which the helices are made to rer by means of a steam-engine, and from the extent of the primary arrangement a powerful magnetic current is produced, which, passing through the carbon per ${ }_{\text {rst }}$ describ shows that splendid light which entirely eclipses all other modes of illumination.

This beautiful adaptation was used for 6 months in the upper Lighthouse of North Foreland, and was very successlul. The light, which is not $\frac{1}{6}$ inch in diam
ree feet;
flecting st pt fice fir ave the fir esent Bor As the C te light sh ards beyo cessary, t rection on nt , we m fective, al mizuntal b To do th roper dired tusing the ords, to al quire conjunt The Para available plied to 1
or was pluced. nted then the or level. When t er and brighter t
eckoned equal to nch in dinumeter, co of 70 miles is
shown to disadvantage in the great lens, which, being adapted for the great mo, was not suitable for it, and appeared at a distance of a bluisla colour, probably nowrast with the red or yellow Hlame of the adjoining oil lamps. It is to be tricd tl. © ఏungeness Lighthouse.
The totally distinct character and colour of the electrie light, will at once distinish it at any distance from that derived from any other source. Therefore, nuposing that this illumination be adopted as an adjunct to that in present use, tho ations in which it is applied will be distinguished from their neighbours without tho ance of mistake, the fruitful source of aecident from the present lights.
appeared at first is ulunost impossi Lieut. Raper, in his adnirable work, proposes another method of showing a light atilization, and byr sea purposes, that is, by illuminating the clouds and huze over the station by tho effect on the eyectric light. It was also proposed by Sir Edward Beleher, in 1833. 'Ihis shift of minosity might be inclived in various directions, or it might be made to revolve by cen in part overeoper optical arrangements, and this would give a great reliof to the already s the eylinder of thausted resources for varying the appearances of lights ; but there is one case whic): nust brilliant ficight render this system of no avail, and that is a perfectly pure atmosphere.

This brief exposition must suffice as to the souree of light. The apparatus used to. il lamp was mad, ntrol or economise this light is of two characters, cither by reflectors or lenses, the f oxygen gas. Ihtoptric and dioptric systems. of the flame, bt difficult to app 1 danger of produ

2.-TIIE CATOPTIIIC, or REFLECTOR SYSTEM.

The effects of a light in giving out rays without any controlling apparatus, will bo successfully trix a fill a sphere whose radius is equal to the distance at which the light is visible. In ldini, of Milan. $1 e$ light shown from a lighthouse, those beams which are thrown upwards or duwnards beyond the reach of vision would be totally lost for practical utility ; it beeomes
a desideratum, g its difficultics. 348) would have designed an exce res delicate man into usc.
a stcady light e producing elem d power after a obvinting this, ext is, at the outlght.
two points of car The first idea of economising light, by the means of reflectors, is met with in the its normal condistory of tho Cordouan light. M. Bitri, who remodelled the lantern in 1727, tance which is feranged it for burning pit coal, of which 225 lbs. (French) were ignited at once, and disintegration of sted the night. Above the fire, instead of having a hollow cupola, as it had previregularity of the asly been, or of being entirely open like other Lighthouses, the circle of the ceiling genuity of almost the cupola was made the base of an inverted cone, whose apex projected downwards tree feet; the whole surface of this was covered with tin plates. These becoming
flecting surfaces, served to increase the intensity of the light; but how they were ept fice from tarnish, and the effects of the smoke, we are not informed. Here wo Ive the first element of tho reflector system, and it is virtually the principle of the esent Bordier-Mareet apparatus. Such an arrangement would certainly answer its quirements as applied to a coal fire, and any improvement on it must be also made conjunction with some better mode of producing a light.
y arrangement a: As the Catoptric principle depends on the figure of the parabolic curve, we will
ting the current ole apparatus an 10 plyysical forecs. of operations unt s of a series of es are made to rer 1 the carbon pctrst describe this curve. s of illumination. ot $\frac{1}{4}$ inch in diam
cessary, to coonomise the light, to deflect these rays and cause them to assume that reetion only in which they would be required. For all practical purposes, at pront, wo may consider that those only which issue in an horizontal direction aro fective, and our apparatus must be so ordered to answer tho end of forming a rizuntal band or zone of light.
To do this we have two alternatives, tho one to reflect the errant rays into the roper direction, by means of mirrors of the requisite form; or to deflect them, by lusing them to pass through some refracting medium for the same purpose; in other ords, to apply lenses of a particular form before the light, or reflectors behinel the

The form given to the Lighthoose reflector is generated by the revolution of tohes, will carve round its axis, producing a semblance to a portion of a sphere. Its propert, n. Thus will be better understood by the diagram. The line P V G is such a parabolio cure axis to 9 and within it is a point, F, which is called the fo cus, which is the eituation of the lamp in the reflector, of which this may be supposed to be a section. Now it is a fundamental law in optics, that the anglo of incidence is equal to the angle of reflection, that is, the ray is thrown off a reflecting surface at the opposito angle to which it s received. The peculiarity of this curved line of the parabola is, that any line drawn from the focus, F, to the parabolic curve, as $\mathbf{F} a$, makes with the normals to the curve, as $a z$, angles equal to the inclination of these sa normals respectively to lines drawn parallel to the axis, V Z. Thus a ray from lamp, F, thrown on the surface of the reflector at a, will be reflected in the direct $a f$, which is parallel to the axis, V Z , and the angle of reflection, $b a c$, is equal to: angle of incidence, d ae; or, in oither words, it makes with the normal, $a z$, the ans $g a h$, equal to the adjacent angle, $h a i$. And this property belongs to cvery port of the surface of the parabola, and consequently the rays will be represented by lines $\mathrm{F} x x^{\prime}, \mathrm{F} w w^{\prime}, \& \mathrm{c}$. Thus it will be understood that this reflector must be m perfect in its action at that portion comprehended between the vertex, \mathbf{V}, and rectum or principal parameter, B D. For, as any deviation from the true figure w of course, be doubled by the operation of the instrument, it will be readily seen t : the acute angles made by incident rays, towards the mouth of the reflector, will much more easily distorted by any defect, than when the angles aro much m obtuse, and the reflection more direct, as they will be behind the parameter. T will show, as before, that the portion at the baek of the light is the most effective the parabolic reflector. There is some loss of light in the reflector, which will more particularly adverted to presently.

Supposing it possible to produce a perfect reflector of the foregoing figure, and its focus we were to place a point of light, it would send forth a cylinder of rays eq: in diameter to its double ordinate, or the distance between G and P; and if we had construct a light apparatus whieh should exhibit a light in every direction azimuth, or round the whole 360 degrees of the horizon, it is manifest that it wo be impossible to do so with any number of such instruments: there would be dut intervals between the directions of their axes.
lose rays ned with maidered a 3 such refld

With ress cry carly ference to ients, an it hetriin, by with in ght owder half iapier and and the ec rodificd fur
The first 703, certni f that pla eseribes th
The origi ciontifie m te would r andle. Tl

Parable from and love)
) But here another circumstance awaits us. The flame of one inch in diameter, in:
illnminating such a roflector, supposing the focul length of tho reflector to be four rovolution of tehes, will subtend an angle of $14^{\prime \prime} 22^{\prime}$ at the vertex of the parabola, or the anglo m ere. Its propert, n. Thus the reflected rays from the external edges of the flame will diverge from h a parabolic curie axis to one-half such an angle on either side of it. This divergence decreases in
tose rays which strike the surface at greater distances from tho vertex, but, comined with other circumstances, between 11° and 15° or 17^{\prime} of divergence may be msidered as effective from such an instrument. It would therefore take from 25 to 3 such reflectors to form a complete zono of light.
With respect to the invention of parabolic mirrors, wo find them mentioned at a pry enrly period, though not in connection with the subject of illumination, but in serence to their powers of focalising the rays of the sun to form burning instruents, un iuverse principle of that of lamp reflectors. In a work entitled "Pantohetria, ly Leonhard 1)igges, published in London in 1571, the author states that with in glasse framed by a revolution of a section parabolicall, I have set fire to owder half a mile and more distant." In the prosecution of this subjeet, the celebrated fapier and Sir Isnac Newton experimented with parobolic reflectors before 1673. and the celebruted Buffion, with the same object, proposed the polyzonal lens, now rodified for Lighthouse purposes, as will be mentioned hereafter.
The first paraholic reflectors for Lighthouses were used at Liverpool, probably in 763, certainly previous to 1777, for in that year William Hutchinson, Dock Master f that place, published his "Practical Scamanship," and in that work he fully .escribes the apparatus used in the four Lighthouses built at Liverpool in 1763.*
The origin of their use is curious. It is said, that at a convivial meeting of somo ciontifie men at Liverpool prior to this date, that one of the company wagered that to would read a newspaper at the distance of 200 fect by the light of a farthing andle. This he alterwards won by means of a wooden bowl, lined with putty, in
nation of these sa Thus a ray from eted in the direet $b a c$, is cqual to rmal, $a z$, the m ngs to every port represented by flector must be m e vertex, V, and the true figure w be readily seen t he reflector, will les are much m e parameter. T he most eflective cetor, which will

Parabolic Refloctors used in the Liverpool Lighthousos, crected in 1763; copied from a plato in Hutchinson's " Practical scamanship," 1777, formed of wood and lined with pioces of looking-glass, or of plates of tin. The oil kept on a level with the flame by a dripping-pot, supplying tho reservoir at the back.
roing figure, and linder of rays eq ; and if we had cvery direction nifest that it wo here would be d

* Lighthouses were not always looked upon as useful aids. The Mayor and Corporation of Liverpool wrote to Sir G. Ireland, their representative in Parliament, on January 5, 1670, to appear against Reading's patent for Lighthooses :-"In regard those Lighthouses will be ao benofit to our Marincrs, but a hurt, and Expose them to more danger if trust to them; ind also he a very great and unnecessary burden and ehargo to them." Seo Trunsactions
"Historic Society of Lancashiro and Cheshiro," vol. vi. pp. 16 and *24.
which facets of hoking.glass were embedded, und formed a reflector. One of company was William Hutchinson, who, seizaing the idea, thus utilized it.

Theso reflectors were formed to a parubolic curve by a somewhat rude proc which he deseribes.
"We have had," says Mr. Hutchinson, "and used here in Liverpool, reflector" 1,2 , und 3 feet foens, and $\left.3,5 \frac{5}{}, 7\right\}$, and 12 feet diameter. The smallest made of plates soldered together, und the largest of wood covered with plates of looking-gl and a eopper lamp, the cistern part for the oil and wick stands behind the refl no that nothing stunds before the reflector to interrupt the blaze of the lamp net upon it, but the tube that goes through with n sprending burner mouth-piece spread the blaze parallel thereto, and with the middle of it just in the foeus or bu
"The lamps are like the reflectors, proportional to make a grenter or less blazi required; their spreading burning parts are from 3 to 12 and 14 inches broad, are trimmed every four hours.
"Thus are these Lighlthouses constructed, kept, and situated, and have stood test of a fair trial, and the preference and advantages given to them oven by th opponents, as there always will be to new things commonly calling them new whit till tine and trial conflim them us useful improvements."

Thus writes Mr. Hutchinson, in 1777; and he also proposed other and more coptrie reve plete reflectors similar to those we now possess.
The refiectors now used in the Trinity House lights are constructed, as before mithe reflect tioned, according to the formula proposed by Captain Joseph ILuddart, F.R.S., ats, and 4 Lider Brother of the Trinity Corporation; and a man of whom Eugland may hes. The proud. These reflectors are hence known by the name of Huddart's reflectors, "u 3 . Messry as fir as their principle is concerned, they may be pronounced perfect. The ir matlently in fucture is conducted with every eare ; but, of course, it is alsolutely impossible to the brillin, duce a faultless instrument : but as they are mude, they may be considered amis of the ax the most perfect specimens of workmanship.

The proposition for parabolic reflectors was made by M. Teulere, of the Frer direction Royal Engineers, in a memoir dated June 26, 1783, as intended for the Cordoring and f Jighthouse, but they were in use in England many years previous to that perio the brip! They were also constructed, by Lenoir, of silvered copper, under the direction of tht at a um Chevalier Borda, in 1780.
In the vear 1786, reflectors and oil lamps were proposed at the first meeting of then a re Scottish lighthouse Commissioners. The first metallic reflectors used in the Northers of a tr T.ighthouses were constructed by Mr. Thomas Smith, of Edinburgh. The figure rular perio fiven to them by a plaster mould, and the cavity was afterwards filled in, by meme, from f of cement, with small facets of mirror-glass. This must have done its work ve horizon; imperfectly, although the general figure was enpable of considerable aecuracy.

[^0]irom the

3, the first polished metal rethectors used in Scotland, were pheed in Iuch-Keith hthouse.
The reflector system has heen called the English system, in contradistinction to the tor Freuch system. This in because we had numerous Lighthouses in which this appuratus had been perfectert before the French, who were second in this fledd, any systematic arrungement, which was inderd not until after 182.j. In the early s of the present Lighthomes these reflectors were supposed to do their work so feetly that but little conld be gained by a change to the expensive and difficult tem of lenses. Later inguities lave not entively subverted this opinion.
It has been generally ansmmed that the dioptrie is preferable to the entoputia tem ; but while your Commisioners do not eminovert this opinion, ther have conive evidence that many of the catoptrie lights in Fargland are not only excellent hemelves, but exceed in cfliciency tho dioptrie lights on its shores. Thie tirst phet Quention 7, of Circular VIII, addressed to mariners, runs thus:-"What British at have you astully seen furthest off?"' Aud out of the 5ia witnesses who have wered this question, the greatest distuaress ure mentioned with reference to the lats at Landy Ishand, the Calf of Man, 'luskar, Flamborough Mead, Benelyy Head, Cromer; and the erreatent mumbers of witnesses mention Flamborough Ilead, the ard, Lundy, Beachy Heal, the Start, and the South Stack, all of which are coptrie revolving lights, with the execption of the Lizard, which is catoptric fixed, I the Lundy and Start, which are dioptric revolving." *
acted, as before mithe reflectors in use by the 'lriaity Howe are 21 inches in diameter for shore Iuddart, F.R.S., ats, and 4 inches of focil length, having a total reftecting surfice of $\delta 18 \cdot f$ square n Eugland may hes. They eost ubout $£: 31$ 10s. The Scotch are of 21 inches uperture, and cost nit's reflectors, 3 . Messrs. Wilkins are propowing them of 36 inches in diumeter. They are most rfeet. The ir maellently made, and have lasted, umimpuired, 30 or 40 years. y) impossible to the brilliancy of the ray from this retlector it ensiderably stronger in the direce considered ano of the axis, that is, when viewed direetly in front, thun it is for some distance on er side of that direction ; and at great distances, in fixed lights, when you are in lere, of tho Fred direction beturen the axes of the adjoining reflectors, the light is frequently glim1 for the Cordoring and focble, but a small change in the position of the ship brings you arnin ious to that perion the brighter beam of the reflector, one of which, it will be understood, is only in the direction of tht at a rime. 'Ihis is an important observation to the sailor, in distinguishing ono ad light from another, of diflerent deseription of uppratus.
first meeting of "When a revoluing liyht is required, a number of these reflectors are fixed to the sed in the Northos of a triangular or quadrangular iron frame, and the whole eaused to revolve in ;h. The figure nular periods, by means of clockwork. The retlectors on ench side of the revolving filled in, by meame, from four to eight in mumber, wre thas suceessively divected to every poiut of lone its work ve horizon; and the combined result of their rays form a Hash of greater or less rable accuracy. ation, according to the rapidity of their revolution.
irom the amount of divergence (13), the period during which such a light will tain visible is from 12 to 15 seconds, the light gradually inereasing, and as grallan Stovenson, Esily diminishing. And as the action of the reflector is only in the direction to ho merit of tho fioh it is placed, the intervals between the flashes will be quite dark, for a shorter anthor quotes fron onger period, according to the distance from which it is viewed, whether it is (or London oditiond that to which the unassisted flame will reach. as published in $17 i$ ant title to the secorthe light from a revolving entoptric or reflecting system is much brighter than beforo they were n a fixed light on either principle, as you have the combined effect of severul ectors, each of which gives an equal amount of light, it is calculated, to $3 \overline{50}$ or 450 He was doek-mash lights without any reflectors. , and meteorolngil rockod, and the er^{n} n floating Lightvessels the light is always shown from parabolic reflectors. These donth, to firnish smaller than those used in Lighthouses, being 12 inches in diameter. For fixed inson, but they wits, eight lamps and reflectors, cach suspended on gimbals, or on ball and soeketds observon this dits, so that they always muintain their perpendicularity, notwithstanding the rolld Cheshire,' vol. i

[^1]ing of the vessel, are arranged in an octagonal lantern, which goes round the n and is hauled up to the mast-head when on service, and is let down on the during the day, or while the lamps are trimming. Revolving lights for flo Lightvessels have four or cight lamps, and similar reflectors, and the lantern rev (his syst around the mast. The adjoining diagram is a representation of one of Messrs. 1ext to b kins' Revolving Light Lanterns. It is very similar to that of a fixed light, the ellhere are work moving it is placed between decks.
given in
led to gri

Only one English Lightvessel, that infeet in di Tees, has a dioptric apparatus. Sever re, altho the Lightvessels are now made to shormonise tl volving red or bripht lights where they formerly fixed lights, as in the case of the use o Nore Lightship, it having been found in many cases it was difficult to distin! the fixed light of the Lightvessel frou mast-head lights of the ships at anchor them.

The red revolving lights are now very efficient. The red lighlt is made by a coloured chimney to the lamp; or, in cases, a pane of red glass is placed up reflector. A green or blue limht is somises, 16 or used as a pier mark, or in other suborinse at the positions; but red is the only efficient cnained til The French coloured lights are much ain recent
than ours. The best red glass is colourei than ours. The best red glass is colourei chloride of gold, known in the middle aTho lens a the purple of Cassius. It has only be Polyzonal discovered of late years. When the The histor Rock lighthouse was completing, therginally de great difficulty in procuring the red pan: no other the coloured flash.
upied a
An apparatus for producing an intern: light, of the only appearanee to which The meri term is applienble, is in use in three turalist, Scottish Lighthouses, the invention of three ed Robert Stevenson. It is an arrangemehes in dia means of which the light is suddenly obs of 8 inch by an eclipser, and as suddenly appeass ne focus, at its full brilliancy. This feature iffon state guishes it completely from revolving Py would which come gradually to their greatest the supg ness, and as gradually decrease, ands, in 17 . cither from the reflecting or refractinss into paratus.
weastle-u
There is yet another sort of reflectessarily i use in France for harbour lights, callest be pree Bordier Marcet apparutus, from its ins the partic or the sideral lamp (faual sidéral). It icyelopmed with a single hump, and consists of twa built lo enlar refleetors about $13 \frac{1}{5}$ inches diarning inst whose figure is formed by the revolutiont of distr parabola around its focus in a horizontal plane; the centre of this is taken sy on thi. admit the lamp, which thus has all around it, above and below, a refleeting suv have; ; which sends its upward and downward rays in a horizontal direction.
ered to do
The lights in the ensuing list, which are upon the eatoptric or reflecting s. fixed lijh are distinguished by this mark - Their magnitude, or order, is not indicatedt is to th class of the light is to be inferred from its importanee.
ar sy:tem
gocs round the n et down on the ag lights for flon of the lantern revil f one of Messrss. Rext to be considered.
fixed light, the elhere ure several very early notices, which seem to shadow out this principle. One given in Smeaton's account of the Eddystone, where a London optician pro;ed to grind the panes of the lantern to circular segments, so as to form a sphere of ghtvessel, that infeet in diameter. This was ncgatived, and we cannot learn what the particulars pparntus. Sever re, although an optician, it would be thought, would deal with refraction and row made to shornomise the light.
ights where they as in the case 0 ving been found
difficult to disting Lightvessel frou o ships at anchor lights are now light is made by the lamp; or, in lass is placed upo blue light is some r in other subori he only efficient c lights are much d glass is coloured n in the middle as It has only hei ears. When the The history of the polyzonal lens is simple. Like the parabolic reflector, it was ; completing, therginally designed for a burning instrument, by collecting the rays of the sun, and aring the red pan no other purpose. For a very long period these instruments, of various forms, supied a large share of the attention of the experimentalists of the last and preling centurics. Modern progress has converted them into scientific toys.
oducing an interm earance to which The merit of the carliest suggestion is due to the celebrated Buffon, the French in use in three turalist, who, in 1773 , according to Condorect, proposed, for a burning glass, to form the invention of three concentric circular pieces npon each other. If a lens were required of 24 t is an arrangemehes in diameter, and 3 inches thick in the middle, then the central portion was to hht is suddenly obs of 8 inches diancter, and 1 inch thick, inserted into a circular zone; ground to tho suddenly appearse focus, and 16 incles diancter ; and this aguin into a similar zone of 24 inches.
This feature iffon states that the rays woukd be twiec as powerful passing through 1 inch, as - from revolving by would through 3 inche's thickness of glass.
to their greatest WThe supgestion of Buffon was acted on by the Abbe Rochon, with some suclly decrease, ands, in 1780 ; but his operation consisted in srinding down a single piece of eting or refractimss into concentric rings. A similar lens was made by Messrs. Cookson, of weastle-upon-TYue, and tried by the Northern Lighthonse Bourd. This process is aer sort of reflectessarily nttended with an enormons amome of trouble aud expense, and the result rbour lights, callst be precarious.
atus, from its int The particulars of Buffon's invention appear in most of the English and Scoteh anal sidéral). It i.cyelopredias, published after 1796 . In 1812 Sir David Brewster proposed a plan nd consists of tw a built lens in the lidinburgh Encyclopedia, vol. v. This was also intended for a $t 13 \frac{1}{3}$ inches diarning instrument, and no mention is mate at this time for its converse properties, 1 by the revolutiont of distributing light, as adopted for lighthonses. There is no need of controof this is taken 'sy on this. Lighthomses, at this date, had not then attaned the importance they w, a reflecting sur have; and the beantiful reflector's then in use, as in the Bell Rock, were conrection.
ered to do their work perfectly. Besides this, the polyoonal lens is not adapted ic or reflecting sifixed lijhts; the eylindric refractor. for the purpose was not perfected till 1836.
er, is not indicatelt is to the late M. Augustin Fresnel that we owe the introduction of the lentiar system, and hence it is frequently called by his name. Its origin dates from
1819. During the progress of the great 'ltigonometrical Survey of Framee, " MM. Arago and Mathieu, powerful lights were used as signals; and one of oint in t lenses, 3 feet in diameter, constructed by M. Soleil from the designs of Fresnel, phericity, applied to a large lamp on Capo Grisncz, and other places, in the antumn of 1 The prin Major Colby, who was employed in the operations on our side, informed Mr. Ruhese to eo Stevenson of the particulars, in Nov. 1821. On July 23, 1823, the splendid revolney are br apparatus of this system was first shown in the Cordouan Lighthouses.

In 1824, Mr. Robert Stevenson visited the French Lighthouses, \&ec., and repo focal Ien on them to the Scottish Lighthouse Board. The first application of the system tounds the was in the Isle of May Light, by Mr. Alan Stevenson, the talented son of the betortion of named eminent Lighthouse engineer, in October, 182i. Holland was the firs: follow France in the use of the system. The Trinity liouse erected the lirst l_{t} cular apparatus in the Start Lighthonse, 1836.

The Lighthouses of France were very few in number prior to Fresnel's invents upon his suceess the French Government determined upon the establishment of grand system adopted in 1825 , and of the sole applieation of the lens in all cast new lights. The case was different on our side. Many of the present lights exi long before the invention of Fresnel, and, having been crected as exigencies a: there necessarily was not that exact order and regularity that mighit have attained by a total change and remodelling at any period. That our system doe: suffer by comparison with those of other countries, is a grand proof of the tale our Trinity Board and other authoritics, and of the skill of our enginecrs.

The lenticular apparatus may be thus deseribed:-It consists of a central powerful lamp, of course emitting luminous beams in every direction. Around is placed an arrangement of glass, so formed as to refruct these beams into par rays in the required directions.

The laws of refraction are well understood, and require but little explanation ! We shall just allude to it sufficiently to elucidate our subject. When a ray of passes out of a raver into a denser medium, or cice cersa, it is refracted from its orizc direction, and assumes that which is induced principally by the density of the se medium. This is made familiar by the hent appearance of an oar, or a mooring "c it dips bencath the water. The use of the glass lens is thus to bend the rays ${ }^{\mathrm{C}}$ fall on and emerge from its 2 surfaces. The action of the bull's-eye lantern, in sending forth the rays in one direction, will explain thisprineiple. Asthe normal figure of the lens is that to which its powers are due, the polyzonal lens must be considered as such a complete lens with the umecessary portions cut away.

One great advantage in the decomposition of the original lens is that of diminishing its weight very considerably, and also the greater certainty of the
certainty of the
more uniform density of the material from which it is made. There is also ano: For a

The cen light). around 6 lt .0 compo formin series will be

The lam espective :onstructio vork, or o il in the teat evolv Diagram illnstrative of the principlo of the polyzonal lens. A p if sperm o a section of an ordinary plano-convex lens, whose focus is at F ? hares, 57 the great thickness of the central portion abstracts much of the urroundin in its passage, tho convex surfice may bo supposed to be cutcries of pid circular zones, whoso section is as the sladed part of tho diaghe case of and these sections being all placed in ono plane, as $\mathrm{A}^{\prime} \mathrm{J}^{\prime} \mathrm{C}^{\prime}$, the horizon in will have all the optical properties of tho former, because thelioptric sy surlaces are still of tho simo relativo figure.
vey of France, 1 : ls; and one of oint in the construction: it affords the means for eorrecting the aberration for sigus of Fresnel, pherieity, a great point in the manufacture of lenses. the antumn of 1 . The principle of the polyzonal lens being thus explained, the method of applying informed Mr. Rinese to control the luminous rays of a lamp is now to be shown. For this puppose the splendid revolney are built into a square figure, that is, for such lenses as are for revolving lights. houses.

For a revolving light, eight of such lenses, which, for a light of the first order, have ses, \&e., and rep focal length of 3 feet 0.25 inehes, are forned into an oetangular drum which surin of the system tounds the central lamp, placed in their common focus. This, then, is the principal ited son of the betortion of the controlling apparatus for a recolcing light.
land was the firs rected the first 1

o Fresncl's invent establishment of e lens in all cnst present lights exi d as exigencies a: nat mighit have at our system doe proof of the tale cugineers.
ists of a central irection. Around se beams into par
ittle explanation When a ray of 1 aeted from its orice density of the se ar, or a mooring "c o bend the rays w

dyzonal lens. A whose tons. Ap sperm oil per hour; or, acorthe to the den tracts ocus is at hares, 570 grallons per year. This powerful apparatus being in the centre of the mupposed moch of the urrounding lenticular system, the ray impinging upon each lens is refracted into a ed part of tho cutieries of paralle, or nearly parallel beans, whose section is the figure of the lens, in he, as $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, the hoorizon in the fixed light. M. A. Fresncl, in the construetion of the Cordonan ormer, beeause the lioptrie system, used a more complicated system than that above deseribed. A similar urrangement also is in operation at the Skerryvore, and some other stations; and in hese cases every available means is taken to economize the light.
here is also ano: For a ficed light, another adaptation of the prineiple is used. We must suppose
the section of the lens, A B (Diagram on p. 20), to revolve around the foeal point, pho wass and in the same plane, which will produce a series of horizontal belts, having thefere the vertical section similar to that of the lens in its cireular form. 'The effect of th One of applied to a central lamp, will be to produce a continuous belt of light in azimuldaptation instead of a series of beams parallel, or nearly parallel, to the axis of the circu,papsible, lenses, as in the case of the revolving apparatus. In the focus of this belt, or drumitevenson, glass, is placed the lamp, as in the former case.
ikerryvor
Originally this cylinder for a fixed light of the first order was made into a polyo render t of thirty-two sides ; but in 1836, the Mcssrs. Cookson, of Neweastle-upon-Tyne, indlete in one entire, which was the greatest step then achieved in the construction of thrith M. I. lenses.

As the systems we have been explaining will only act upon those beams which eomprized within the angle contained between the focus and the upper and lov edges of the lenses, or about threc-eighths of the whole quantity of light, it becon necessary to economize, as far as possible, those portions which are above and bence this portion of the apparatus.

In the early apparatus, the upper portion consisted of a series of catoptric zon fixed lig formed of separate pieces of silvered concave glass, arranged in such a mamer asleven refle reflect horizontally the beams thrown on to them. The degree of curvature and clination to the plane of the system was determined, as in the case of the parab reflector, by considering their section to be a portion of such parabolas as would carried around the focus, form perfect reflectors, as will be readily understond by subjoined Diagram, where the dotted lines show the form of that portion of the pis bola not comprized in the eatoptric zonc. The same applies to the lower portion the system.

In the small, or harbour lights, instead of these reflecting mirrors, another plan first used by M. Augustin Fresnel, that of catadioptric rings, composed of glass, wh totally reflected the rays thrown on to them. The action of these zones or ringsollow, explained in the third Diagram.

F, the focns of the system and the situation of the light ; A A, principal lenses; B B , upper retlecting zones; C C, lower retlecting zones. The parabolic enrves, of which tho section of the zones is a portion, is continued round the tocus in the dotted lines.

Catadinptric Zones. F, the focus, ind A A the principal lenses, as in ine adjoming diatgrim; D D, the upper system of totilly reflecting prismatic zones, and Li i: tho lower portion of the system. The aetion of these prismes is explained in the next diagrime.
the focal point, pho was connceted with the French Commission des Ponts et Chaussèes, a short time belts, having thefere the death of M. Augustin Fresnel.
The effect of the ene of the most important improvements which took placo in pharology was the ff light in azimudaptation of this uecessory on a much larger scale than had previously becin supposed xis of the circu tossible, by the suggestion of Mr. Alan lis belt, or drumitevenson, who, in his construction of the ikerryvore Lighthonse, used every means hade into a polyo render this important edifice most com-lo-npon-T'yne, indete in evcry respect. In conjunction mistruction of thrith M. Leonor Frenel and M. Francois, an., the constructors, this apparatus was dded to the lower portion of the Skerry-

A D C will represent a section of this glass zone, which is so plaeed with regard to the focus, F, that a ray falling upon it at f will bo at such un ancio on D A, that insteal of passing out, it will be totally reffected 'roin that point of incidence, as $f f^{\prime \prime}$, and will finillly assume the direction, $f^{\prime \prime} f^{\prime \prime}$ of a right angle to the normal, a a, as required. This angle, in passing from glass into air, is about $41^{\circ} 49^{\prime}$, and a greater angle of incilence gives a reflected ray. In the largest zone, the radius of the are (the reflecting surfice), D A, is equall to 28.46 feet, and the angle, D C A, is equal to $117^{\circ} 26^{\prime} 42^{\prime \prime}$. lector, bing about $5^{\circ} 9^{\prime}$, owing to the smaller angle subtended by the flame upon the aner surface of the lenses. From this cause, the flash in a revolving light is but of hort duration, while that from revolving reflectors lasts much longer, from their reater powers of divergenee. To compensate for this, the light from the lenticular pparatus is, within a certain distance, continuous; the upper and lower portions of

Fixed and Flasimeg Ligits.-There is one character of light in the French and other) ayntems which is peeuliar, and requires special mention, as it does not ppear to be properly understond he many, and is frequently an important distinction. his, the frul fixe currie par une cichat of Freanel, has this appearance in a light whose eriod is forur minutes: first, a bright fixed light, for above $3 \frac{1}{3}$ minutes; then a short, ut not tutal eclipe, for about 10 seconds; then a very bright flash, of moch greater Itensity than the preeeding fixed light; then another short celipse, and then the xed light as before. In the larger apparutus the distinction between this and an rdinary revolving light is well marked by the intensity of the fixed light betwen te brighter flashes, and also especially by the short eclipses preceding and following ze bright flash. In the smaller apparatus the bright flash is nut so well marked;

There are different modes of producing this cffect. Fresncl's plan was to have an :dinary fixed light apparatus, around the outside of which two revolving panels of :fractors passed in rerular succession. These panels consisted of vartical lenses, milar to the horizontal eentral belt. 'They thus received on their imer surface all
se beams which he upper and lo of light, it becor above and bene fixed light apparatus of the first order, of eatoptric zonineteen of these eatadioptric zoncs replace ch a manner as leven reflecting zones. f curvature and se of the paral rabolas as would y understond by portion of the pa the lower portion
"Nothing can be more beautiful," says Ir. Ahm Stevenson, "than an entire aparatue for a fixed light of the first order. t con ists if a central belt of refractors, mming a hollow eylinder, 6 feet in diaeter and :30 inches high; below it are six riangular rings of glass ranged in a cylinrs, another plan rrical firm, and above a erown of thirteen osed of glass, whings of glass, forming by their union a e zones or ringrollow age composed of polished glass, 10 aet high and 6 ficet in diameter. I know f no work of art more beautiful or creitable to the boldness, atdour, intelligence, nd zeal of the artist."
The divergence of the polyzonal lens is auch less than that of the parabolic rehe system giving a steady light. ut the short celipses will be a elear index to its character.

ie Zoncs.

A the principal lioining dicgran; system of totally ic zones, and LA E: n of the system. ose prisus is exxt diagram. ore diopurie light, consisting of five glass ones, which replaced in tho ordinary ystem four horizontal zones, each comosed of thirty-two concave mirrors. In

cted by M. Tubou:
which they intereept ${ }^{\wedge}$ d, and which each refracts into purellel beams to the direction faces as it revolves. Therefore, instead of the rays passing in all directions on tier the lar aximuth, a portion of them are collected and conecutrated in one direction for tiich, of c bright flash; and the angle between this bright beum and that emanating from tavoided, fixed portion of the apparatus is that which firms the eclipses. The upper and loveconomis zones, of course, are those which maintuin a constunt light; so that the celipseses, usuall this, as well as in most other lenticular liglits, is not total within short distances. e focal le
Sometimes the flash is coloured red, as in the light on Chausey, Vièrge Islare flame a Point d'Alprech, \&e.; and in a few cases green, as in some of the new Turke ponser lights, \&c.
In nnother method of producing this effect, constructed by M. Letourncau, This me necessity for using two lenses is avoided; and, consequently, the loss of light out 1783 evitable in the absorption of a pevenson tion in its passage through grindin
 glass. The adjoining diagram othere a explain it. In the central portserve uot of the apparatus B is one of orks of D polyzonal leuses, similar to thstruction. tigured on page 21 ; on cither : of this is a portion of a fixed li. apparatus, shown by the horizo belts 4 A. For a fixed light As far as course, these horizontal belts ill there earried all round; and the fistrument appears as a vertical stripe of wer led breadth of the fame from the tor rangeme the bottom of the belt. In the stem hav lyzonal lens the light appearso of the cover its whole surface, and is (ag each 1 visible when in front. The wt must be apparatus is made to revolve sen sugge machinery, and the apperance There is as above described: first, the fimprised light from the portions on cibrizontal side ; then a short eclipse due tore upper light being diverted by the gowards is lens; then the full blaze of the rviceable for 8 or 10 seconds; then anotlan Steve eclipse, and so on.

This diagram will also exp The ord another portion of the apparaturtion of which a section is given on hich pass 23. The npper and lower portiherical n C C, in this are the totally reftigs is ad ing glass zones, which have it back almost entirely replaced poptric rin, figured on page 21, and theirntal, and tion is explained before. It is ${ }^{10}$ same part of the apparatus, as bighthonse mentioned, which is constantl! ree on ea sible within 10 or 12 miles inght as fir weather, and is useful in fixing the position of the light in the intervals of as on a a flashes.
It is considered by many, iuchading the great Alan Stevenson, that the fixed Fresnel's flashing light is not altogether a desirable varicty, its appearance being too $\mathrm{n}^{\text {ith }}$ its be like the revolving light; in fact, in our official lists, they were always set dow mple mea revolving lights till within the last few years.
In const lights, when usually the light is not required all round the horizon, tha
all directions on tier the land in the rear, thero would bo a waste of the light from tho great lanip, one direction for fich, of course, suffices to illuminute the whole horizon. In the reflector light this temanating from tavoided, as a smmller number of lamps is used. But in the dioptric lights the light The upper and loveconomised by the use of sphericul mirrors placed ou that side. These splerical mirthat the celipseses, usually of silvered copper, ure formed to a curve, whose radius is equal to that of 1 short distances. e focal lenses they are applied to (in first order lights, 3 feet), having the position of ausey, Vièrge In ef flame us a centre. They thus reflect the rays back again through the flame upon. of the new Turke lenses on the opposite side. Flame, being perfectly transparent, there is no loss power in this.
M. Letourncau, This method of ceonomising light was practised, as aforesaid, by Thomas Rogers, the loss of light out 1783; he used blown glass spherical segments made into mirrors. Mr. Alan e allsorption of a pevenson proposad it in 1834, and MMI. Francois and Letourncau have made them enssare through grinding the glass to the focal envature.
djoining diagram vThere are very many other considerations in the economy of Lighthouses that In the eentral portserve notice, but which would unduly extend this brief description. Tho excellent atus B is one of orks of Mr. A. Stevenson, and of his brother, Mr. 'T'. Stevenson, will afford much ises, similar to thistruction.
ge 21 ; on cither : rition of a fixed li:

THE HOLOPHOTAL SYSTEM.

fwn by the horizo:
For a fixed light As far as they were applicd, the eatoptric and dioptric systems acted perfectly; but horizontal belts ill there was some waste of light, eansed in one direction by the divergence of the ound; and the listruments, and, in another, by their construction. The consideration of this loss of vertical stripe of wer led to the next steps in the science of pharology ; since that period, some new fame from the to rangements have been proposed, by which some of the disadvantages of the dioptric - the belt. In the stem have been partially avoided. M. Letourneau proposed lengthening the durathe light appearsm of the grent Hash of the dioptric lens, by dividing it into two portions, and setle surface, and is age each half at a slight angle mitwards; this woald produce the desired effect, but in front. The wimust be at the expense of brilliancy. Several other minor improvements also have made to revolve sen sugrested, but the main features of the system have remained unaltered.
nd the appearane There is some waste of light in both the systems. In the catoptric it is that angle ribed: first, the fimprised between the angle formed by the lips of the reflector and the flame and the 10 portions on citrizontal ray which strikes the outer edse of the reflector. It is the angle $r \mathrm{P} s$, in hort eclipse due tote upper part of the diagram on page 14. That portion of the light which passes diverted by the yowards is, of course, lost for usclul effect; the other portions may be considered as .e full blaze of the irvieeable. In the year 1849, Mr. 'Ihomas Stevenson, son of Robert, brother of seconds ; then anotlan Stevenson, proposed some arrangements which obviate this loss, upon what is o on. rmed the holophotal system.*
am will also exp The ordinary paraboloidal reflector is rendered holophotal as follows:-A small on of the apparaturtion of the back of the reflector is cut off, behind the parameter, the line B F I), ion is given on hich passes through the focus (Diagram 14); for this is substituted a portion of a er and lower port herical mirror of the same focus. In front of the flume a lens with three diacatoptrie are the totally retngs is added. The action of the spherical reflector is to return all the rays impinged ies, which have it it back through the flame, and thus on to the oisterior sides of the lens and diacaely replaced tiptric rings. Therefore, all the rays which erierge from the lens, \&e., will be horiage 21 , and theirintal, and the remainder, those impinging cis the paraboloid, will also be reflected in ned beforc. It is ${ }^{10}$ same direction. Peterhead light (1859) is on this principle. The Horsburgh apparatus, as bighthouse, in the strait of Singapore, is fitted with 9 snch holophotal reflectors; hich is constantly tree on cach face of a revolving frame, each side of which, it is said, gives as much 10 or 12 miles inght as five reflectors of the ordinary kind. This was completed in 1801. Another the intervals of 1 e, on a large scale, is at Hoy Sound, Orkney. A similar apparatus, a red light, as placed at Wick, in Caithness, in 1851.
on, that the fixed Fresncl's revolving light system, as at work in the Skerryvore and the Cordouan, urance being too nith its beautiful but complicated upper system, is rendered holophotal by a very re always set dow mple means. The zones above and below the main lenses act in the same way us
the centre, that is, these zones, being macie horizontal, are made of segments of ciThe suxconcentric with the centre of the great lens benenth and above them; and, boout $£ 7$ whole apparatus revolving, nearly the whole of the light is projected horizontal the cight directions of the octagonal prism. Proceeding upon the assumption the whole of the emitted rays from the central lamp may be mado to assum horizontal direction, Mr. T. Stevensou has made several most excellent arraugem which, however, we cannot fully deseribe here. The simplest form is that hemispherical metallic reflector, in the focus of which is placed the lamp; before lamp is a refructing polyzonal lens, of such a section that the whole of the direct from the lamp, and the retlected rays from the posterior reflector, are puralleliza their emergence. Carrying this prineiple to grenter retinement, and as it was that the totally rellecting glass. pisms were offective compared with metallie i
 tion and total refleetion, produces the same result as the metallic hemisphere inis is in former instumee. The formulie for the construction of this ingenious apparatus calculuted by Mr. Willinm Swan, F.R.S.E. The ghass refracting mirror ha, advantage over a netallic mirror in its powers of radiation, as in an experiment heat in the interior of the upmatus was so great as to canse the oil to hoil: an in venience, however, which was afterwards obvinted meelanically. Very num other applieations of his principle are also proposed.*
The beautiful holophotal adaptations have been established at several impon localities. The magnificent light at Whulsey Skerries, Shetland, constructe Messrs. Chanee, of Birmingham, is perhaps the most powerful apparatus yet in Lundy Island, St. Abbs Head (eonstrueting), the Red Sea, \&e., have examples of extending system.
Mr. T. Stevenson has constructed a holophotal arrangement which he eal azimuthal condensing light, by which the whole light is used down a narrow chan there are examples at Oronsay and Kyle Akin (1857), west of Seotland. Au most ingenious appliance is that at Stomoway, Lewis Istand, by which a Benct the dangerous Arnish Rock is made to show an apparent light, reflected by a pee. apparatus from a light on the Lighthouse on the adjacent point.

As regnrils the history of the holophotal system, we may refer to Thomas Rogeach hile they plan (1788), before mentioned. Sir David Brewster also proposed an arrangemenction, b fenses, as a burning instrument, in 1812; and the same for Lighthouses, in lost usefu Mr. Alex. Gordon, C.E., also constructed a combination of lens and reflector, w' these, a economised much of the stray light, in 18.4. The carrying this system into full 1 tiee, by Mr. T. Stevenson, is as above related.

A first order lenticular apparatus is one of the most beautiful objects in the w It is a combination of clements, nearly 12 feet ligh and 6 feet in diameter, constru with the utmost skill and refinement, and involving in its structure some of highest principles of applied science.
A first order light apparatus, as above said, is 12 fect high and 6 feet in diameparatus: and the cost of the lenses alone varies from $£ 1,288$ to $£ 1,536$; or, with the cost orstems, a apparatus, and light-room or lantern, $£ 2,488$ to $£ 2,984$.
ust be rc
A second order of light apparatus is 4 feet 7 inehes in diameter; the lens costs t The ist $£ 788$ to $£ 1,131$, or altogether, $£ 1,624$ to $£ 2,187$.
A thir \boldsymbol{d} order apparatus, diameter 3 feet $3 \frac{3}{6}$ inches, costs $£ 378$ to $£ 704$, or gether, $£ 882$ to $£ 1,456$.
he lens c

- other

A fourth order, or harbour light, is $19 \frac{5}{8}$ inches in diameter ; costs from $£ 157$ to fies gets for the lenses, or $£ 329$ to $£ 427$ complete.
A fifth order harbour light, $14 \frac{1}{2}$ inches in diameter, costs $£ 103$ to $£ 195$, or f stems. to $£ 349$ complete.

[^2]le of segments of ciThe suxth order, or smallest size of harbour, is $11 \frac{2}{5}$ inches diameter; lens light costs ove them; and, lyout $£ 70$, or complete $£ 216$. *
rojected horizontal n the assumption bo made to assum excellent arrungen lest form is thut d the lamp; before whole of the direct ctor, are paralleli\% 1t, and ns it was red with metallie nM. Degrand, of the French Lighthouse Commission, has introduced another proposed, whieh, by ras for making the lenses, by forming them of thin slects of moulded or cust glass. wllie hemisphere inus is in use in the Beacon light of Walde Point, near Calais. genious apparatus aeting mirror has in tun experiment ne oil to hoil: an in cally. Very num
d at several impor etland, eonstructe il apparatus yet in ., have examples ot

It is very important that the distinctive eharacter of different Lighthonses, and Id especially of those near to each other, should be plainly marked, and casily regnized. It might be supposed that this was readily y nd well done, by the alternaent which he onll lown a narrow ehan of sowhand. Beac , reflected by a pee: it.
fer to Thomas Ro
 psed an arrangemenction, by which one light can be instantancously distinguished from another, is Lighthonses, in lost useful. The difference in the aspeet between the reflector and lens light is one is and reflector, "' these, at the sailor's command.
s system into fall
At long distances (say above 10 miles) the flash from the revolving light from the flector has a sensible dise, and will last a considerable time, 12 or 14 seconds if the volution is 1 minute; that from the lens light will be whiter, more star-like, and al objects in the $\mathrm{w}_{\text {ill }}$ not last more thun 7 or 8 seconds. Another distinetion of the latter is, that the a diameter, constru ht is not totully extinguished hetween the flashes, - the upper and lower zones
strueture some of structure some of eping eonstantly illuminated. This secondary light, at favourable times, is visiblo far as the horizon of the place, and from 8 to 12 miles, according to the size of the nd 6 feet in diamoparatus: in ordinary weather. This is a marked distinetion between the two or, with the cost orstems, as the eclipse is total from the reflectors, even at short distances. But it ust be remembered that the new holophotal system has also nearly total eclipses.
er ; the lens costs the istinction between the fixed lights, on either system, is not so well marked. be lens equally distributes the light, which is equally bright in all directions: on 78 to £704, or c^{0} other hand, the refiector light is brightest when immediately in front of the flector, so that a vessel sailing past, when very distant, will find that the light at nes gets fainter, till a short distance further brings her into the foree of the next sts from $£ 157$ to $f_{\text {flector }}^{\text {nes }}$
03 to $£ 195$, or Very much has been written upon the comparative merits and economy of the two fstems. Perhaps the difference at times has been over-rated. At all events, it is

* These prices, which are common to nearly all manufacturers, are taken from the Tariff plophotal System," Messrs. Chance, Brothers and Co., Birminghtum (1860).
certain, that for fixed lights the advantages are all on the side of the lens, unless But thi are illuminated be a small one.
Tho English reflector rovolving lights, as beforo stated, aro not considered inft ${ }^{\text {n }}$ to their lens rivals. Many interesting comparisons and details will bo found in Purliamentary leport, the United States leport, and the works of Mr. A. venson.
made
n mafe

It has f
'The harbour and tide lights, so numerous in the ensuing lists, have not been, light elally alluded to in the previous deseription. Where they partuke of the eatoptrisequen dioptric character, it will be understood from what has been said; but in many ve a hif of pier, or small tide lights, they are simply the ordinary strect gas lamp, witful aph coloured pane to distinguish it, or even the inferior hand-lamp.

Ireland
p app
In many eases, in our own country, these local lights are not worthy the posired. they occupy; in others, all improvements of construction and elliciency have used. In most continental countriess, as in France, Spain, \&c., these loeal har and tide lights being all under the Goverument divection, they may all be incl in the descriptions before given, as applied to the primary lights.

The m
ricd ou
There is no recular system in the tide or harbour signals used in the United wes whe dom : however desirable uniformity may be in this and other respects, the diver, are f of ase is of less importance in practice, as the peculiar character of the signal tures, si given for each place, and will be sufficient guide. More extended directions, in it it may nexion with these signal lights, must bo found in the special Sailing Directe, the tight and the charts they clucidate.
the pla ameratio
The distance to which the prineipal lights ere visille is generally limited ${ }^{\text {b }}$ The Eng horizon. Thero is no doubt but that they might be seen to very great distances, hde a sar (60, 80, or even 100 miles, if sufficient elevation could be gained to view them then It is considered by many that 200 feet is the maximum height necessary or advi hder the which will give an horizon 18 miles distant; and, by aseending the rigging, t miles off. When a light is unduly elevated it is very liable to be obscured by clThe anci or fogs, and it is frequently a great detriment to those which are so. In the Taill known the height of the dlame above the highest tide high-water level is given, so that institu the minimum range of the light; ti, this clevation 10 feet is nded for the heigell preser the deek of the ship ubove the sen. leesides the increased distance to which low "y. That will cause the light to be seen, the effect of refraction will also sometimes incitify. their range.
"The ab
The height of the tower, from base to summit, is frequently given, as it affonerally) means, by angular measurement by the sextant, of ascertaining the distanec opy is es tower.
le to jud
1ere, gen
Many of the Lighthouses are handsome and commanding structures, and, gener one wit all modern erections; are made uhmost as availnble for day marks as their lightoptric, b for night. In many eases they aro distinguished by some peculiarity, noticed in a as good lists, as mentioned on page 7.
my."
When the light is dipping on the horizsia it flickers grently, especinlly in r^{T} The Trin wenther, an effect owing to the waves on the intervening horizon. The lights vice ane appear yellwe when in the neighbourhood of large towns, as Liverpool. This is oriods, es to the smoke of the town. Observations on this point is recommended, as dirers in lights on land appear quite bright and white daring und preceding rainy wenrsons w while a yellow or reddish tinge indicate, almost ecrtainly, a continumec or app ${ }^{3}$ reign, of fine weather. were earricd to so great an extent without vertieal divergenee, the effect would send forth the light in such a thin dise that it would be invisible to a distant This Che unless she were cxatly on that part of the oecon which this thin dise of lioht toued James sume aberration is, therefure, absolutely neecessing.
of the lens, unlessBut this point has also been urged by Mr. T. Stevenson (In 8381), as o that might made useful, as a light might be made to be visible onl ver a daug olum reeffor
a mafe channel. Therefore a ship approaching such dang would bee raed wl
not considered inf ils will be found in works of Mr. \mathbf{A}. this ant its becoming visible, or by losmg sight of it. It is stud that a 11 this character was in use at Beachy Head, but the particulurs have not \mid, wervel.
It has frequently happened that a Lighthonse on a perpencticular eliff has not alu-n its, have not been, light to slips passing elose underneath, and in some eases with very disastrous take of the catoptrisequences. In these circumstances it is almost imperative that the fight should aid; but in many sequ a high degree of divergence in the lower portione of the apparatus. Λ very treet gas lamp, witufapphication of this has been made in some few Lighthouses, (as in Ballyeotton, Ireland,) of having the lower panes of the lightroom made of red glass, so that a p appronching too near the land will be warned of it by the light changing red.
Tho masking of lights for the purpose of elearing the navigation of different chanis, is effected in the same way as the ships quarter-lights are, as is most unefully ried out in Liverpool Bay. A different coloured ray is also most serviceable, aty , bright ray from the Maplin, which points out a turn in the channel, or in other $\mathrm{h}^{\text {ies }}$ where the change of colour can be made a licating mark. All these points, how$\mathrm{h}^{2 r}$, are fimiliar to the sailor. In the preeeding notiees are given only the leading tures, sufficient to show what the general prineiples are as applied to our sulject. it it may be affirmed, that almost every variety of circumstance and requirement in ${ }^{3}$ Lighthouse Systen has been the sulject of profound study; and so numerous , the plans and inventions in connexion with all branches of them, that the mero umeration of them would be a bulky list.
Tho English lights are lit at sunset, and extinguished at sumrise. The Scotch have ide a saving by doing so nt darkening and dawn. In all eases of the public lighlts, all countries, the strictest supervision and most carcful management are used to ider them in the highest degree efficient. t 1ot worthy tho pos ad eflicieney have
sc., these local ha dey may all be incl its.
ell in the United K r respects, the dive racter of the signa nded directions, in sial Sailing Direct

DESCRIPTION OF LIGITTIOUSES.

and auch it continues. The Charter was dissolved in 1047, but was renewed bygincers of Charles II. on the Restoration, and the disposal of the funds was settled partly fot ie captuins charituble purposes. The Charter was surrend "ed to Charles II., and renewed byghts. his successor in 1685; and the charitable uses of the fands of the Corporation were In Denma again settled. Theso funds ware derived from various charges, such us pilotageingincer ane lastage, loudmanarge, ballastage, \&c.

The interest which the Trinity Corporation represented having, by the extension of commeree, grown into great magnitude, the Government interfered mal altered some of their privileges at different periods, especinlly in 18j̈4, when the Board of In IIollan Trade partook of the supervision.

In Seotlunt, the Commissioners of Northern Lighthouses are the actingr body, mud were incorporated by the Act 38th Geo. III., c. 58. They have had the benefit of tha In Belpine, specinl services of the family of Stevensons, often noticed previously.

Vorks; but
In Ireland, the Ballast Board of Dublin acts in all Lighthouse matters. (See tho 23rd Gco. III., c. 10.)
Besides these three public bodies thero are very numerous loeal nuthorities, which deal with local lights. The principal among these are the Liverpool Board, the Trinity Honses of Newenstle, Hull, \&c. The number of these separate bodies is very great; as, for the 402 Lighthouses in Great Britain, there are, at least, 174 different authoritics to direet them.

The Colonial lights aro chiefly under the control of the Board of Trade.
Liko many other important interests, this has suffered from over legrislation, as tha Chairman of the Commission of 1861 says,-" It is difficult to discover the necessity for that cumbersome system which now exists, viz., a simyle yovermment (the Board of Trade) for Lighthouses in the British possessions abroad; a double gorerament for tho Lighthouses under the Trinity House; a trianymlar gorermment for the Seotel Lighthouses and for local lights in England; and a quadriluteral government for the Irish Lighthouses and for local lights in Scotland and Ireland;-a system which can scarcely be expected to find favour in the present day."

In France, the Lighthouse service is under the minitry of Public Works, and a speeial Commission, called "Commission des Phares;" which body consists of navul offiecrs, marine engineers, hydrographers, members of scientific bodies, and other genthemen, distinguished for their scientifie attainments in various professions, all of which have to do with branches of seience connected with coast illumination. The gencral conduct of the service is under an officer called Directeur General des Phares who is an engincer, and has other engineers under him.

In tho United States of America, the lights are under one Central Board, constituted in 1852, and composed of a member of the Government, engineer officers, and officers of the army and navy, and civilians of high scientifid attainments.

In Sweden, the lights are under the Admiralty, and managed by a director and officers who have military rank, and enginecrs.

In Norway, the scrvice is under the Royal Marine Department.
In Turkey, it is under the Admiralty; and the systcm is now in course of developmont.

In Hanorer, the service is under the Director-Gencral of Waterworks.
In Hambury, they are under the Committec for Harbours and Navigation.
In Spain, the system of administration is the same as in France; and the full development of the system is now in progress. The lights, \&.c., are under the department of l'ublic Works, and under a permanent Commission composed of
as renewed bingineers of superior rank of the Corps of Roads, Se., and naval officers; and trled partly for fo cuptains of ports mo instructed to sugrent improvements and report on the ad renewed hyghts.
mporution werf In Denmark, the service is under the Ministry of Marine, entrusted to one light eh ins pilutageingineer and two Buoy Inspecturs.

In Russia, the superintendence is dependent from the Hydrographical Depurty the extension tent. ed and altered a the Beard of In Miolland, the management of Lights, Buogs, and Beacons rests with tho Itinister for the Marine, muder whom are an Inspector-General and seven nspectors.
ting body, and
e benefit of the In Belgium, the construction of Lighthonses is under the Minister of Public Works; but when built they aro handed over to the general direction of the Navy, which is under the Minister for Foreign Affairs.
tters. (See the
In Austriu, tho superintendence of nll the Lighthouses, Buoys, and Beaeons thorities, which ool Board, the elongs to the Imperial lloyal Admiralty. The Deputies of the Exchange, at rieste, attend to Lighthouses, - their creetion, management, collection of corlies is very yes, \&ic.
st, 174 different In conclusion, an inspection of theso most useful monitors the sailor is recomnended to him. Ho will then see that the beauty of the npparatus, the discipline, ade.
risintion, ns tha reder, cleanliness and perfection of everything conneeted with them are not exceeded y their utility.

Works, and a onsists of naval , and other genofessions, all of mination. The cral des Phares,
ral Board, con ment, engineer high scientifid
a director and
w in course of
gration.
e; and the full are under the in compesed of

[^0]: tain visibl

 * In the ulmirable account of tho Skerryvore Lighthouso, \&c., by Alan Stovenson, Esliy dimin p. 205, and in his " Rudimentary Treatiso on Lighthouses," p. 73, the merit of the fioh it is pl application of reflectors is awarded to M. Toulere, ns nbovo. But the nuthor quotes fron onger per serond (or Liverpool) edition of IIutchinson's work, in 1791. Tho first (or London olition ond that illustruted by the sime plites, and contuining much tho same mitter, was publishod in 17% uneler the title of "A 'Treatiso on Practical S.amanship," \&c.; ; a differont title to the secu"'he light edition. It is beyond question that reflectors were in uso in Liverpool boforo they were n a fixed the Cordounn.
 Hutchinson closod a life of much usofulness and excellonce in 1870. Ho was dock-masth lights w in or prior to 1759. In 1764 ho commenced a valuablo serios of tide and meteorolngi observations, continued till August, 1793. In oarly life ho was shipwrockod, and tho $\mathrm{cn}^{\mathrm{n}} \mathrm{f}$ floating being without food they drew lots to ascertuin who should be put to death, to furnish smaller t revolting und horrible meal to the survivors. The lot fell upon Hutehinson, but they wits, eight providentially saved ly a ship which hove in sight. He over afterwards observel this dits, so tha as one of strict devotion. "Trans. Historical Society of Lancashire aud Cheshire," vol. i pp. 240, 241.

[^1]: - Report of the Royal Commission, March, 1861, pp. 7, 8.

[^2]: * Sco "Lirhthouse Illumination ; being a Description of the Holophotal Systom"" "These By Thomas Stephenson, F.I.S.E. London, 1859.

