Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

THE

medical chronicle.

ORIGINAL COMMUNICATIONS.

ART. VI.-Congenital Hydrocephalus, (with remarks) By Wm. Hales Hingston, M.D., L.R.C.S.E., \&c.

Hydrocephalus, like accumulations of water in any other part or organ, is a disease of debility, proceeding from a relaxed condition of the secernents of a part ; from inactivity of its absorbents, or, as more frequently: happens, from both; the cause of the disease being rarely manifest.

Accumulations of fluid are met with in various parts within the cranium: "inter integumenta ipsa externa; inier haec et cranium ; inter cranium et cerebri membranas; inter membranas ipsas; harumque duplicaturas ; inter has et cerebrum ; inter cerebri plicas ; in cavitatibus ipsis." . The flaid, once secreted in any part, spreads with little resistance to another. If the disease occur in infancy, (and infants are most generally the subjects of it,) the bones of the cranium, not yet united by their bony sutures, yield to the internal pressure. Somewhat later in childhood, and while the fontanelles are yet unclosed, they, by a preternatural fulness, \dagger or bulging outwards, warn us of the mischief going on within the skull.

Hydrocephalus is occasionally congenital, sometimes rendering the Lead so large, as greatly to impede, and add to the danger of, delivery-

The appearances, which these congenital malformations present, are not aniform. In the majority of cases, the whole head enlarges gradually; but, in not a few, we may observe protrusion of one side only; while in a still smaller number, an egg or pear shaped tumour is visible beneath a fontanelle or an attenuated parietal or other cranial bone.
"The mode of origin or pathogenesis of congenital hydrocepbaius differs most probably in no essential particular from that of the chronic

[^0]hydrocephalns which commences in the extra uterme pertods of life. The gencral arranyement of the skall of the fortus, and the manner in which the cereloum itself is develoned, are both highly favourable to an excessive accummlation of sermm. And l heleve that the really essental patt of commerital hydrocephalns, that which arrests the developement of the brain, is the atfection of the ependyma; that in proportion to the degree to whicl: the hydrocephalus has advanced, and according to the priond of fortal latrat which at commenced, st does, in various manners and to diferent extent, arrest the developement of the brain, and occasion monstrosit y of it ; and so far contains the ground of its allance with hemicephalns, hydrencephalocele, singleness of the cerchrum (cyclopia) \&c." \dagger

The substance of the brain in this aflection, resembles the ramollisement of French pathologisis. Sometimes the whole organ, sometimes the portion in immediate contact with the water undergo soltening.

So much then, for general remarks; by way of a prefuce to a case which came under my observation some time ago.

Mrs. W., a stout healthy woman, at 30 , sent for me on the morning of the 4 th $\mathrm{Se}_{\mathrm{p}} \mathrm{t}$. last. I was told that she was suffering from violent labor pains, which threatened abortion,-that a midwife had been in attendance during the whole night,but that no progress had been made. I found the woman on my arrival on her back, with knees in a fiexed position, countenance expressive of great suffering, eyes suffused and red, skin hot, pulse 115 , hard and wiry.

The midwife * was un her knees in the patient's bed, both hands be neath the counterpane, lips compressed, tugging away during a "pain (?)" most energetically, and perspiring as copiously as if the fee would be regulated by the visible amomit of cutaneous exhalation. On makig a vag. nal examination, I found the labia, from the unwarrantable hand. ling they had received, very much tumified, not, and painful; the a uteri not dilated, but tilted forwards behind-I might almost say, above the symphisis of the pubis-so high, indeed, that with difficulty could the tif of the finger be brought near its edge. A large tumour-tender a pressure--occupied the hypogastric region. lecognising this as a dit tended bladder, i introduced the catheter, and drew ofl fully two quart of dark offensive urine, with sudden and complete relief. The rectum, also in a loaded state, was emptied by castor oil. During the three fot lowing days the catheter required to be used twice daily, and at the

[^1]end of that period the retroversion was reduced, and the uterms ascended to the superior strait.

I saw nothing more of my patient until two o'clock on the morning of the 13 th Wareh. She was then in labour ; the liquor amnii had escaped the day before. The pains were severe, and at short intervals. On examination, the lireech of the chald was found to be presenting. During a remission of pin, the feet were brougria down, and the body soon followed, but the chin, by a violent pain, vas foreed against and rested upon the synphisis, and any attempt at itering its position immediately induced violent pains. ILaving suceet ded, eventually, in placing the head in a more favorable position, every attempt at extraction was made for upwards of two hours, lut without avail. At length 1 resolved upon diminishing the bulk of the child's head-a resolution which cost me but little pain, as the pulsation in the fumis had ceased upwards of an hour and a half before. At this stage of the proceedings, I was joined by the professor of midwifery, Medill University Dr. Hall, who fully coincided with me in the opinion that craniotomy, afforded the best possible chance of salety. to the mother.

The patient, therefore, having been placed upon her left side, the body of the child was drawn towards the back of the mother by Dr. Hall, (who had already very dexterously placed the head in the "1st position," of Nacgelc, and who, with myself, had fruitlessly cndeavored, by depressing the chin, to accomplish delivery in that way,) forming an obtuse angle at the neck. Introducing my left index finger, l passed it upwards as far as the obstructed nature of the passage would admit, and, gnided by it, introduced the perforator, entering the neck $a \leq$ a point corresponding with the sixth cervical vertebra. Partly by a cuting, partly by a sawing motion, the instrument soon reached the cranial cavity, when, on opening it, a gush of fluid escaped from between the handles; the bones of the skull then collapsed, and the whole slipped casily away. The patient, olthough in a highly excited state from the consciousness of haviagr such a formidable instrument within her, admitted, during the oneration, and afterwards, that she experienced no paiu whatever.
On observing the child, we werc struck with the enormons size of its head, which, on measurement, was found to be as follows:*
 Altitode 6 "

[^2]'There was exaggerated stralusmus of both cyes; the: hody was well formed, and of the nsual size of a mate f child at that period. All the fingers and toes of the boty were permancontly flexed, and tahpes varus of both feet completed the deformity of this cruly ugly little specineen of mortality.

The accompanying wood-cut, from a sketch ly my very excellent friend, Dr. Angus MacDonncll, will cunvey a better idea of the appearance of the little gentleman.

On opening the skull from rtove, the membranes were lound to be thickened, and of a deep red color. The pia mater, firnly gluce to the arachnoid, was dotted here and there with a pale cretaceous substance, intimately united with it. About a half pint of serous fluid still floated. over the cerebral surface of the base of the skull; a film of cerebral matter, about one line in thickness, thickly studded with tubercular matter lined the membranes, except at the superior surface, where it becane gradually thinner, and was ultimately lost; so that the fluid must, some weeks prior to birth, have escaped from its cerebral covering, and been converted into a hydrencerhalocele. The small mass of matter repre-

[^3]senting the brain, and resembling softened cortical substance, bore no resemblance, except in color, to what it should have been; no convolutions or arregularities were visible on its surface. The optic nerves hung loosely in the cavity, but wo trace of others could be detected. The upper part of the spinal cord seemed to have mudergone absorption, for no part of it conld be detected from that point of view. and friends seemed inctisposed to permit an examination from behind.
To a few points of miterest in the above case, I would wish, brietly to draw attention, in the order in which they have been related, and-
1stly. Retroversion. Retroversion of the uterus, in the early months of pregnancy, is the result, generally, of some mechanical force applied te that organ. We may readily muderstand how easily a preternaturally distended blader may tilt over the fundus. and leave it in the hollow, or resting on the promontory, of the sacrum. In this case the uterus was in a position nearly the reverse of natural; the funaux pressing against the rectum, the os behind the symphysis and against the neck of the bladdor-preventing, iuthis way, the acti. n of these two emunctories.
2 2ndly. Retention of Urine. At first the cause, afterwards the result of the displacement of the uterus. In this case, so little inconvenience was felt from the distension of the bladder, that the patient thought I was diectıng too much attention to it, and was not a little surprised at the relief which followed its evacuation. The pains, moreover, were of a character to mislead; they were strong, "learing down pains," which the patient aided, by forcibly pulling at a bandage tied to the bed-post, for the expulsion of the fetus, us she thought-a cendition, which, if not speedily relieved, would have occasioned rupture of the bladder.
3rdly. Breech presentation. In Denman's midwifery we read the following:--"It is some comfort to women to be informed, and I believe the observation is almost universally true, that affections of this kind (dysuria) are never produc ${ }^{-}$d, except in those cases in which the fresentation of the child is natural." If Denman's observation be correct, this case must be considered a rare, it not an unique exception; although \mathfrak{l} can really perceive no reason why exceptions should not be of frequent occurrence.
4thly. Craniotomy. Craniotomy in head presentations, is, by obstetricians, considered to be one of the easiest operations which could, for the extraction of the fetus, be performed. Facility, however, vanishes in presentations of the breech and feet. The head, if large, or even if of average size, with contracted pelvis, lies so high in the "brim," that the obstetrician's finger cannot always afford a safe guide to the point of the instrument. In the case underconsideration, the whole head, with the
exception of the depressed elin, was entirely above the pectineal line. Had the bones of the skull been lined ly the ordinary brain matter, collapse mieht nut have followed portoration, and labor might have required to be terminated in some other way ; but, notwithstandng this apparent objection, it appears to me reasonable to attempt evacuation of the head throngh the passige formed in the long axis of the neek, rather than to thrast ari mstilment uproteced into the cranium, probably, but possilily between the wall of the vagina and uterus, or into the uterus itself. The additional minury to the child wonld be of small moment, as the operation would not be undertaken until tong after the child had ecased to exist.
" Doctors differ" with regard to the period which should clapse before having recourse to craniutomy inhydrocephalic cases. Dr. Tamsbotham jo of opinion that it is especially dangerous to allow a hydrocephalic head to remain for any considerable time locked in the pelvic cavity; because from its compressibiity and the open state of the fontanelles, it so completely adapts itself to the shape, and moulds itself into the irregularities of the cavity, as to occasion strong, uninterrupted, and almost universal pressure, upon the lining structures, to their imminent and certain lazard, while the fluidity of its contents adds on physical principles to the danger of these effects. "We know of one case of this kind, in which a nydrocephalic head produced fatal laceration of the cervix uteri. In another case, where the child presented footling, the spize of the neck and part of the soft tissues, covering it, gave way urder the traction employed, and the dropsical head was thus emptied and allowed to pass. \dagger Dewces + once saw rupture of the uterus from hydrocephalus, which craniotomy, early performed, might possibly have prevented. Fiamsbothameg relates the case of a patient who was delivered of a liydrocephilic chuld, who had been in labour from Sunday, when the membranes broke, to early on Friday morning, when R. first saw. her ; she died the same evening. Another atuthor writes: " hyorocephalus in the child is nut a common cause of protracted labour, but the diagnosis is very difficult where it is, and it the nature of the obstruction be not early ascertained, the result has generally been unfortunate. . . . whould the pains have continued strong for some hours, and the head have not entered the brim, the perforator should be employed without loss of time.'"l Blundell": wishing to guard against undue interference, concescends to be witty:-"Where the head is hydrocephalic, you may,

[^4]if you please, carry your hanu into the uterus; you ma ${ }_{3}$, if you please, burst the vagina; you may, if you please, rupture the uterus, turn the child, and pull its head from its Lody; but have some little mercy. Give a trial of those natural eflirts, which, by the wise accoucheur, are never hastuly distrusted. 'The natural eflorts failing, puncture the head, slould the lever ur forceps have been previously tried without success."

In breech and footling cases, these instruments are uschess, and only protract a delivery which camot be accomptished with them. Craniotony, therefore, should be had recourse to, so soon as we are satisfied that we have made use of as much exertion as we think ourselves warranted in doing, after the head had been phaced in the most favorable pesition.
5thly. Size of Head.-A better idea of this may be formed by comparing it with "average size" heads of a fuctus at birth, and of a Byitish Canadian

The records of midwifery that I have been enabled to consult afford no such instance of a hydrocephalic monster-one alone ex-cepted:-"In 1834, Mr. T. Marsh, Coleford, Gloucester, attended Mrs._-_, in labor with her sixth child. After long delay, Mr. M. dispatched a messenger to some five miles distance for instruments, but before his return, nature-the safest of accoucheurs-had accomplished delivery. The dimensions of the child's head were as follows:-Radix nasi to protuberantia occipitalis, 26 inches; front occipital circunference, 32 inches; ear to ear, across vertex, 24 inches. Around chin and across vertex, 30 inches." \dagger If these measurements be correct, we must, in order to uccount for unessisted delivery, suppose one of two things to have existed, either an extraordinarily capacious pelvis-such a pelvis as we sometimes "read of"-or a scalp loosely covering the fluid, or, probably, both. Excepting, therefore, Mr. Marsh's case, as an extraordinary anomaly, the largest circumference I have seen recorded is 27 inches: Instances of hydrocephatic heads, under this in size, are numerous. Two

[^5]are related by Smellie, in which large heads were expelled." "I have known," says Merriman, "one hydrocephalic fotus pass entire, whose head was seventeen inches; nother passed alive, and lived an hour, whose head measured in circumference twenty-two inches; both the above labors were long and painful." \dagger In Perfect's case, the head extracted whole, the breech having originally presented, measured 24 inches in circumference. \ddagger Heads much muder those related by Smellie and Merriman are occasionally met with by accoucheurs.

6th. The amount of Fluicl. If the size of hydrocephalic heads vary, the amomit of fluid varies also.

In 1751 a Mr. H. relates a case of a furtus where the head contained a large quantity of bloody serum.§ Ramsbotham (pere) relates two rases in which he supposed each cranium to have held many pints of fluid.\| In Smel!ie's first case, threc pints were collected on the cranium being punctured. π In case 20 between two and three pints were joured into the skull, through the opening by which the hydrocephalic fluid was extracted.' Mr. T. Smith, Surgeon, Great Milton, delivered a woman of a child, whose head contained four pints of fluid. \dagger In a case related by Dr. Georget, four pints of a clear yellowish fluid were evacuated by means of a trochar previous to delivery. \ddagger A woman pregnant for the eighth time, was delivered by Dr. Hyewier of a foetus whose head contained one quart of yellowish coloured serum (L 'Union Medicale). \S Mr. Robertson, of Aberdeen, relates the case of a woman who died 45 hours after delivery of her eighth child, from the effects of pressure upon the organs within the pelvis caused by a hydrocephalic head which contained four pints of water.\| A case is mentioned by Blanchard in which four pounds of water were evacuated from the head of a fœtus after birth. 9 'The case related by Mr. Marsh already alluded to, tise head contained ! 54 ozs , or 91 bs 10 ozs of fluid !" The amount of fluid in the case of Mrs. W's child, cannot be stated with anything-

[^6]like certainty, for we unfortunutely forgot to fill the cranial cavity, a proceeding which would have saved much trouble. But, supposing the cranium to have been a paraboloid, then

The circular base being, \quad.
Altude,
The contents or solidity would be, \quad.

And allowing 287 cubic inches to the pint, the cavity would have contained about seved and one-sixth (71.6) pints, wine measure. From this must be deducted the amount represented by the scalpand bones, for the measurements were external; they, being much attenuated, may be represented by 1.6 th of a pint, leaving seven pints of fluid; a quantity much greater that. that in any of the cases enumerated, with the exception of Mr. Marsh's.

7th. Amount of Brain. I have been mable, notwithstanding diligent search, to find but two instances resembling this, in this particular. Sir Astley Cooper some years ago, published a case under the somewhat aitractive title of "A child withont a brain."

Breschet, Surgeon en chef to the Foundling Hospital, in Paris, relates the case of a child who lived to the age of 12 days, whose cranium was of the ordinary size, which contained no brain whatever. \dagger IIad gestation, in Mrs. W.'s case been prolonged to about a week longer; the small anount of brain which existed at the time of parturition, would have been entirely absorbed. As it was, the brain was represented by about a drachm and a half of softened, greyish matter, which might have been easily folded up, and concealed in a thimble.

In what part of the brain, and at what period of intra uterine life was this fiuid first secreted? It should here be stated, that, during the two months preceding delivery, the patient suffered very much from heat in the right side, which compelled her to lie with cold, wet clothes, applied to the part. In the at,normal position of things, the fotal head corresponded to that tender part. Could not the inflammation within the child's cranium, attended, as it no doubt was, by increased heat, have been experienced by the mother? With a snall quantity of amnial fluid, I perceive no reason for doubting that the increased heat experienced by the mother was caused by the hydrocephalic head lying in immediate contact with the abdominal narietes. And, granting this assumption, I should say, in answer to the latter question, that the fluid was secreted at, or shortly before, the period when the natient first complained of

[^7]|London Medical Repository, vol. 18.
pain and heat, namely, two months prior tu delivery. "Hydrocepha-lus--whatever its resuits-is originally an inflammatory affection sitiate in the substance of the central parts of the brain, generally terminating by ramollissement of thuse purts, combined with serous effusion,"' and, as an inflammatory affection, is characterized by one of the symptoms of inflammation-heat.

In answer to the former questien: most probably in the ventricles, these became expanded into large elliptical cavities, and, adopting the description of the first living pathologist, "the cerebral mass around the ventricles, especially towards the top of the head, became attenuated. Intermally and inferiorly, the sermm by its pressure fattened the corpora striata and optic thalami, and passing into the third ventricle, it forced these bodies asunder also; the corpora quadrigemina becama smoothed, the commissures stretched, and the grey commissture wasted; the pillars of the fornix were forced apart, and, with the septum, driven up against the corpus callosum." \dagger The relative situation of things having bcen thus changed, the fluid still continued to increase until what remained of the brain, no longer bore any resemblance to what it should have been.

A question here naturally suggests itself: how are we to account for the fact, that the brain can have its substance absorbed; its structure completely destroyed, and yet consistent with life? While the simplest derangement of its functions, is attended with so much peril, during its scarcely less vegetative infant life.

8th. The strabismus, talipes, and fixed fexure of the fingers and toes. These malformed conditions-intra uterine symptoms of the congenital disease had evidently existed for a considerable period. The flexors of the fingers and toes had contracted some time prior to birth, and remaining in that condition, the palmar surfaces of the phalanges had been arrested in their developement. This deformity was sogreat, that tenotomy could not have restored them to a straightened condition, without partial dislocation.

As olstetricians are agreed that the diagnosis of hydrocephalus, ante partum, is at all times difficult, might not this abnormal position of the smaller joints materially assist in forming an opinion, in arm and footling cases?

Lastly. Reconery-Which, notwithstunding a severe illness, was rapid and satisfactory.

Montreal, July, 1856.

[^8]
VII.-Nutrition, physiologically and pathulogically considered. By James Barnston, M.D., Edin.

As introductory to the nore imenediate subject of this pape:, we conceive it essential to premise an inquiry into what might be called the primary basis of nutrition, viz., the nature of organic life-the agencies which originate, maintain and arrest the vitality of animate particles, and the laws which govern matter so called organized-points which, if ascertained a priori, will aid materially in vur forming clear conceptions relative to nutrition, in its nltimate physiolugical and pathological conditions.
In viewing, respectively, the two great kingdoms of Nature-the animate and inanimate world-the first peculiarity which serves to arrest the attention of the observer in the condition of motion in matter: In the inorganic or inanimate creation, we observe this phenomenon of motion in:parted to mineral matter, otherwise inert or motionless. Whether we view this inorganic matter, in its whole, as an aggregate mass, or consider it in its clementary condition, in the form of simple individual atoms, we discover agencies acting upon it, serving to maintain the inert mass or atom in a state of activity. These agencies are of two kinds-general and specific. The general agencies or powers are strictly physical in their nature, and actupte in common upon ever, species of inorganic matter. Such are, gravity, caloric, electricity, \&c. The speciai or specific forces which operate on inert matter, are those with which nature itself was originally endowed, and are in thei nature essentially chemical.- We have strong experimental evidence for believing, although we cannot reduce it to the validity of fact, that!matter, which in the aggregate mass forms unnumbered separate systems or worlds, is, when ultimately viewed, conutituted of different species of minute particles or atoms, each having a definite form, and possessing distinct properties of its own. The atoms of the same species of matter, pussessing properties alike, will not act on one another so as to produce activity in any one of their number, even though placed in the closest contact, since they are all in a state of equilibrium in relation to their forces or powers, which are identical. Now, what is required in order to excite action in these atoms or particles and produce the phenomenon of motion? It is clear that forces of the same nature cannot excite this activity. In order to the active operation of matter, or an atom of matter, we must conceive the existence of some stimulus or reciprocal power, which would act antagonistically to those powers already existing. The result of this antagonistic force, which operates as soon as it comes within reach of its sohere of
wtion, is manifested in the excitcment of those forces which formenly were latent or dormant-the complete disturbance of the inert atomstheir consequent disarrangement and their subsequent re-arrangement ill a hew form. 'This is fust what is oliserved to take place in every active process in the inorganic or inmmate world, and cannot be better exemplified than in the congelation oi water ly the melting of ice.

The process of combination and decompo: tion-the union and dis. union of individual partiches of diflerent specees of matter-the destruc. tion of one compound and the formation of another, as well as the manifestation of mution in aggregate masses of inorganic matter, are all referable, as phenomena of activity, to the operation of existing firces, which are resident in matter and lie dormant or latent in each species of matter till excited to a state of activity, so soon as they are brought to bear to ach other that relation which is antagonistic or reciprocal.

Asserting, then, our belief in the existence of antagonistic forces, as esseutial to the activity of the inert atoms of inorganic matter, we may, reasoning from analogy, also conceive the existence of forces and puwers which wonld operate in originating and maintaining the living atom of urganic nature.

Watter, as presented to us an the organized form, is compound in its nature-that is to say-it is composed of an infinite number of particles or atoms, not only distanct from each other as constituting different species, but distinct also from those atoms which we observe as constituting the inorganic world. Although received as ultimate particles in the organized structure, they are chemically compound and built up of constituents which, we know, are derived from the inorganic world, and, as such, subject to chemico-physical laws.

But the ultimate atoms of organized structure are not inert, as those of the inorganic world. They exhibit an incessant or perpetual motion; and this is manifested in the formation, growth and decay of organized textures. In order to constitute it a living particle, and one fitted to enter into and form a portion of an organized texture, it must be endowed with a power or force to actuate it. This force, which may be properly designated an organizing agency, is one which is essential to the very existence of an organizable and organized atom. It cannot be considered apart from, or independent of, organized matter; nor can we maintain the idea, as some physiologists do, that it is a superaddition to matter, when the latter is brought, as it were, into a condition of being organized. Matter cannot be organized or brought inio a state of organization without its actuating influence. All organized matter is
ulimately constituted of inorganic elements, which are consequently subject to chemical laws, and we know that chemical laws or forees cannot operate so as to impart life to the kind of matter over which they preside; we must therefore look for another power or force which will serve to originate and maintain vitality in matter so called organized, and it is to this power that we give the name of urganizing agency, which we believe is imparted to inorganic matter so soon as it comes in contact with an organized body to which it bears a relation. It gives to that matter the power: lst, of becominer organized; 2nd, of being or remaining in a state of organization, and, 3rd, of acting the part of an organizing agent in the conversion of matter to organization similar to that of itself. Viewing organized mutter in this hght, we perceive that there are two distinct classes of agencies or powers operating upon it, viz., the organizing agency on the one hand, and the chemical forces on the other-the former serving to maintain the condition of organization, while the latter, on the contrary, uperates fowerfilly to reduce or bring back the organized matter into its promitive state of inorganization. These two powers, therefure, act antagonstically in relation to each other, and it is to this reciptocal u_{1} stimulus-ats a result of these powers acting on matter in opposition w one mother-that the phenomenon of perpetual motion is manifested in it. As a result also uf these operating powers, we observe the phenomenou of constant motion accompanied by incessant changes, which in fact, constitute the individual processes of formation, growth and decay.

The organizing agency, of which we have sfoken, extends its actuating power to all kinds of matter which is organized and cannot serve to specialize the difference in the nature and qualities of the various textures. Every organized texture which exists in a living hody must be possessed of distinct properties of its own to distinguish its species from that of another. These properties may be termed specific, as being limited to the kind of matter which possesses them and as acting upon it alone, so as to preserve its original nature and qualities distinct.

Keeping these details in view, we observe a wide line of demarcation between the two great kingdoms of nature, and yet a marked analogy, both in the phenomena of their respective actions and in the general and special agencies which guide, actuate and govern them, as separate systems. It is by thus contrasting their nature and operating agencies, that we can obtain a clear knowledge of the nature of organic life, or life as exhibited in an organized body; and from what has been considered, it may be safely inferred that life, in the acceptation of the term as applied to an organized body, is the manifestation of activity in
matler resulting from the operation of an exganzing agency on the one hand and of eltenuco-phymal forces on the other; which, acting as they do rerephocilly, serve to proluce:t delinite relative arrangement in the particles of matter so as to form and maintain the condition of organiza-tion- Laving now divensered these preliminary considerations, for the better cilucidation of the process ol Nutrition, let us now proceed to enter into detail respecting the mutritive process itself, as manfested to us in the simpiest as well as in the more complex forms of life; and notice those intimate changes observed to take place in all texturen from the tine they are becoming organized to the period when disorganization or decomposition takes place.

And, in the first place, let us renark that all organized of organiza ble matter is derived more or less directly from the inorganic world livery atom, particle or cell, both animal and verctable-simple as it it organically-is constituted of inorganic elements, which, taken us singly, combine in certain definite proportions, at the same time inflo enced by a new puwer which subjects them to an arrangement fittod for the ir organization. 'This transference of inorganic to organic matte -this transformation of inorganic elements into organized structure-is very beantifully marked out to us in the vegetable world.

Do we not find an intimate relation between the inorganic and vege table kingdoms of nature? Have we not discovered the fact that a cor respondence relates between the consumption of certain elements of the one and a proportionate appropriation and development or growth in the other? The vegetable seed sown in the soil and placed in circumstances favorable to its development, is duly excited to activity by the mutal operation, un the une hind, of that organizing agency which previoust lay dormant in it, and on the other, of the forces resident in the inorganis matter which surrounds it. Thus stimulated to action, it appropriates certain materiais from the soil, with which it builds up its structure. The inorganic elements taken up observe an arrangement favorable to theis being organizable. They become organized, and in their organization they virtually become a portion of the vegetable, which is nourished by a process of selection and assimilation. But, connected with the proce of organization, we observe another chauge of quite an opposite natuse continually groing on. This change consists in the destruction of pat of the organized testure, its decomposition and return to its primitive elements, which are inorganic. But this decomposition is accompanied by a process of elimination or separation of the decomposed element from the vegetable. This process of elimination of effete matter: essential to the preservation of the organized structure, for by thom
means, it gets rid of matter which is mut only useless but detrimental to at, and thas its organic and functional conditoon is preserved in a normal and heallhy state. From what we hav: advanced, yon will perceve that u ulrition in ite simplest form, is, in reality, a complicated process. It consists of a preportionate number of changes, necessary to the life of an organized tissue. These changers constatute individual processes, the sum of which is mutrition. These processes may be thes stated as they vecur-1st. That of adoption or selection of organizable matter ; 2nd, That of its assimilution or its being made like or similar to the organized matter which has appropriated it, and which in consequence of that assimilation and addition is developed and increased in size; 3rd. 'That. of the decomposition of that portion of the organized tissue which has served its functional purpose and its return to the elcmentary form, and 4th. Its elimination or separation from the tissue as useless and effete matter.

In the simplest and most perfect of organized structure-the vegetable cell-these processes are observed with united regnlarity. The vergetable cell is an independent liviug structure, and in it we observe all the functions of life-as manifested inan organized structure-performed in all their simplicity, beanty and perfection. In it-as an independent bady-all the chemico-vital processes of selection and elimination, of assimilation and decomposition, of secretion and excretion, are portrayed with that precision and harmonious pertection-observed in the most complicated living organism-the human frame. But it may be asked-Why this selection of certain elements? Why this decomposition of orgamzed tissue? The first is, we conceive, not the result of an unknown, mysterious and indescribable power-designated, by common usage, " vital attraction," called into existence by the prolific imaginations of vital enthusiasts of modern times, only calculated to limit and stagnate our research and lull us into the false security of a hypothetical doctrine, which has no foundation, but in the minds of its unequivocal supporters!

If the premises upon which we based eur previous observations be correct-the only natural and indeed reasonable conclusion to which we can arrive-respecting the appropriation of certain kinds of elements by organised structure for its nutrition, is, that the same is the result of a mutual and relative bearing between the matter appropriating and the matter appropriated-the latter subject at the same time to a controlling power antagonistic to the power of appropriation ; or, to be more explicit, in order to the appropriation of matter in due amount and quality for proper asaimilation, two powers of relative bearing are requisite,
which are the following, viz:-1st. On the one hand, a power of receiving assimilative matter by the tissue which is to be nutrified, and 2nd. An antagonistic power of control over the amount and quality of that matter which is being appropriated from the other. It may be likened to a process of griving and tating, two acts which are essentially different and distinct.

With reference to the secund yuery, it is clear that since we have as sigued the process of organization to an organizing agency, the gradual diminution of that agency will be followed by a corresponding gradual cessation in the process of organization, and the total loss or extinction of the formet, will be accompanied or succeeded by death of the organized tissue. The chonucal forces have now free and complete control over the dead urganized tissue, which becomes speedily decomposed and disorganized, and ultimately returns to its primitive elementary condition. But what, it may te asked, becomes of the organizing influence which has thels departed! Let us agan for a moment turn to our vegetable cell. Whe found its hie constituted of a series of changes, forming, in their ageregate, the great process of mutrition. It has, however, another tunction to perform ere it dies, and that is the function of reproduction, the last and all-important one, for the preservation of its own species. Its whole power is exercised in order to the formation of a germ which is to be its subsequent representative-" like unto itself."

Upon then does the dying cell stamp its parental impression and to it impart the same urganizing inftuence which originated and maintained its own existence. Springing up from the same species of matter, rccipient of the same primary impression, animated by the same organizing influence and subject to the same special laws of nutrition, the offspring through successive generations, lives to be like unto the parent. It is thus we discover an intimate relation between the funetion of nutrition and the function of reproduction, as displayed in the sim. plest and most perfect of organized structure, and as such we cannot sever the one from the other, but may, without compromising our safety, ex. tend a wide latitude to both and graduate a centre of nutrition intoa centre of reproluction.

The minute details which we have just entered into will sufficiently serve to guide us in our reasonings with reference to nutrition as manifested in the most complicated of organised structure. In the nutrition and growth of a simple cell we observe all the changes which constitute the individual processes of selection or appropriation, assimilation, e ganization, destruction of tissue and elimination of effete matter. The individual processes considered separately, exhibit all the phenumems of:
the great process of nutrition, (which is used in its most extended signification), and since nutrition cannot be normally carried on m any organ, without the proper and simultaneous co-operation of all these processes, we cannot, therefore, limit our ideas of nutrition to one individual pro--cess to the exclusion of the others, but we must derive our conceptions of $i t$, as a great complicated functivn from the mutual and combined workings of several different processes, which, acting as they are wont to do, in complete harmony with cach other, maintain the health and normality of the whole organism. 'The nutrition of an intricate and complicated structural organ is 11 all respects identical to that of a single independent cell, with certain peculiarities, however, incident to its peculiarity of texture.
We find the plant nourished through the intervention of cells, which select, assimilate and organize materials that are subsequently carried to all parts of the plant, by means of vessels, each organ appropriating from these vessels, for itself that kind of matter which is destined for its nutrition and growth. We find a double nutrition, as it were, constantly going on in the plant, viz: the uutrition of the cells in the organizaton of inorganic matter taken from the soil, and the nourishment of the individual organs of the plant from organized matter, which circulates through the vessels that ramify in their tissuc. The same double process is carried on in the ccouomy of the animal organism, and for its nutrition, we find the organised elements of the vegetable must suitably adopted.
In this we discover a graduated scale of organization and a progressive advancement from the organization of the inamimate elements to the most thorough elaborated animal structure. To this end do the three great kingdoms of nature, the mineral, vegetable and animal, unite in just and harmonious co-operation.
If we examine minutely into the nutritive process, as carried on in every organ of the human body, essentually the same clements enter into i.stion. What are these? cells and vessels. The cells are vital bodies of which the organ is partly composed. They are situated in proximity to the vessels, which ramify minutely through the whole organ and carry in them that fluid, the blood, whech contains the elements necessary for the nutrition of the organ. Now! what is the nature of that process? And what are the laws which govern it?

The phenomena of the process may be thus expressed. The fluid or blood which circulates within the vessels, parts with a certain portion of its elements-which, passing through the vessels are thus appropriated by the cells, which are in close contact with them, to be assimi-
lated or made like the organized texture of the organ. There is in fact an exudation of a portion, and a certain portion only, of the contained Huid, the blood, through the coats of the containing tubes or vessels, into the cellular structure without. But why this exudation and why this peculiar portion of matter only? We believe it to be the result of two powers (adverted to before), which continually operate, so long as the phenomena exist. These two powers are, one the power of appropriation, on the part of the tussue: and the other the power of controb, on the part of the vessels. The power of appropriation on the part of the tissues, merely serves to draw fluid from wathin the vessels. If it acted alone, it would undoubtedly draw every constituent cir the blood (with the exception probably of the blood giobules, which cannot pass through, the obstruction being mechanical) as may be proved by injecting a fluid of the same consistence and density as the blood, into the blood vessels of the dead body, when it will be foumd that every constituent of the fluid without discrimmation, is exnded through the vessels of the organ into its proper issue. How is this to be explained? Only, we conceive, upon the supposition. that there is absence in the dead boly of that controlling power which exists in the living and modifies the passage of the fluid elements of the blond; and this, coupled with the circumstance, that diminution or loss of this controlling power in disease is followed by an abnormal exudation as to lind and quality, proves the absolu'e necessity for the constaut operation of this power to control and modify the exudation of certain kinds of flaid matter rom the blood in order to the proper nutrition of any given tissue. In short, we conceive, the functional office of this controlling power to be the allowing to pass nutritive matter alone, and the keeping back that portion of the bloor, which, if exuded, would act detrimentally on the tissue.

The appropriation of fit materials 'ud the assimilation of these bythe tissue which appropriates them do not constitute the whole process of nutrition. In order that nutrition of an urgan be maintained nealthy and normal, there must be a process of destruction of the older tissue. and its subsequent elimination-to give place to the more recently organized portion. As there is a constant building up. so there must be a corresponding process of breaking down of tissue.

To eliminate or carry away this broken down tissue, every organ is supplied with another class of vessels, whose sole function is directed to draw off the effete matter, which ean serve no further purpose in the economy of nutrition, and if retained, would upset the balance of standard healthy nutrition.

Viewing nutrition in this light, we may safely say, that every organ in its nutrition, is in relation to itself, its own elininator-nay more and equally true, as has been well remarked by Paget-overy organ, in its nutrition, stands in relation to the whole body, as an excretory organ, As a reasonable deduction founded upon this generaly received doctrine, we may advance a step further and maintnin that avery organ in relation to its ultimate nutrition is extra vascular. However minute the ramifications of vascular supply through an megan, its own peculiar and proper tissue is extra-vascular. Every mdividual ceil which appropriates matter from the blood vessels, stands without the vessels and is in reality an extra-vascular body. In general the ultimate elements of an organized texture are in cluse proximity to the conts of the vessels which ramily throughout the whole organ, but in some few cases these ultimate elements are situated at a comparative great distance from the vessels from which they obtain their putritive supply. The best example of this is cartilage-the ultimate elements ot which are placed inuch more distant from the source of their natritive supply than those of any other organized stricture. But cartinga camot be considered a non-vascular structure in contradistinction to other tissues, for all other organised structures are in their ultimate nutrition extra-vascular structures, and as such their ultimate elements in the orgenic sense of the term must be considered non-vascular.

Having now presented these observations on the general physiology of ultimate nuttition, let us advert but briefly to those pathological conditions which serve to implicate and disturb the healthy nutritive process; and let us remark in the first place, if the views which we have advanced in reference to the laws which govern healthy nutrition be correct. it is evident that any alteration in these laws will be followed by a change in the nutritive process-a deviation in the one will lead, as a natural consequence, to a corresponding deviation in the other. But in order to understand cause and effect, let us examine into the phenomena of a patholu cal lesion of nutrition.

Now in all pathological lesions of nutrition there is, in general, a manifest change in the quantity and quality of the normal exadation-we say normal exudation in it is probable, nay almost placed beyond a doubt, that all the elements which enter into the nutrition of an organ exist in, and are derived from the blood. In almost all lesions of natrition there is an increase in the amonnt or quantity of the normal exudation. Again, as a general rule, pathological processes are accompanied by an alteration in the quality of the normal exudation. These two conditions, viz: alterations in the quantity and quality of exuded matter may exint
to a greater or less degree either separately or combmed. We have said that the elements of pathologica. exudation all exist in the blood. Thus we find anong the elements of the blood which are exuded-water, which exists in the blood-piasma to the average extent of 880 to 906 parts in a thousand, is often increased to the amount of 970 to 988 in a 1000 parts in recent pathological exudations. Again the albuminous elements of the blood may be exuded abnormally in the form of conplete solution, or in form of solution which cougulates spontaneously, or in the form of viscid matter colloid ur gelatiniform.
Now the only reasonable explanation we can give for the phenomena of pathological nutrition, is by supposing the elenentary powers of nutrition to be at fault. For since we believe the normality of the nutritive process to depend upon the mutual and constant operation of existing forces which govern that process, any alteration in the power of these forces will be accompanied by alteration in the process itself.
What is the alteration in these powers or forces? It consists in a diminution in the amount of elective and controlling power of these forces. The greater the diminution of coutrolling and elective power, the greater will be the chauge in the quautity and quality of the exuded matter. It is thus that we conceive every norbid process to bo relrograde; that is to say, it is the result of a diminution of the controlling power of the vessel on the ons hand, and of the apyropriating powor of the cells in the tissue on the other. Thus, therffore, in every mortid nutritive action, there is a lowerinit of the vitw forces or powers-a marked deviation from the standard of health and a nearer and nearer approach to death.

AR'r. VIII.-Effects of acetate of leall in large doses. By Alexander Lane, M.D., Royal Navy, Janesborough Villa, Mahone Bay, Nova Scotia,
Gerthimen,-An article in your journal for this month ly Mr. Aran, induces me to send you the following, perhaps you will think it worthy of a placa in your columns, it will throw much light upon the same subject published in a work by Doctor William Grove Grady of Dublin, in 1849.
(From Dublin Medical Press, June, 1842.)
© Some time ago a patient of mine laboring under phthisis confirmata was attacked with hæmoptysis, the remedies recommended in such cases were resorted to without relief, as a final measure, I had resource to the
acctate of lead, administered it in the usual dases, but without preducing the desired effect. The powerfill astringent nature of this medicine tempted me to hazard what I then considered a large dose, withont opium ; more particularly as the quantities I bad already given did not appear to have had any direct effect upon the system. I therefore gave five grains, and waited the result with anxiety, four hours passed away without any untoward symptom, and the disposition to homorrhage seemed less. I then repeated the dose, and waited four houry more with less anxiety, after which, I again repeated the dose, thus making fifteen grains in eight hours, without producing any other effect than that of arrestiug the disease. This patient eveutually died of phthisin, but the hæemorrhage did not again return during life.
"The result of this case led me to doult the poisonous nature of this drug, at least in moderate doses, and an opportunity soon offered itself to me of testing, whether in reality it was as dangerous as it was generally supposerl to be. A lady laboring under hemorrhagia applied to me. The complaint had been of lorg standing and had resisted all medical treatment. I commenced the acetate of lead in doses of ten griins every four hours, removing the disease on the evening of the seventh day without giving any inconvenience to my patient. The lady had also a disposition to tubercular phthisis, which has since appeared, and this has led me to suspect that, this medicine may pusess sowe influence over disease of the lungs, prior to the commencement of the auppurative process.
"I am now giving this medicine in a very aggravated case of hcamorrhagia in doses of ten grains every two hours, with a very fair prospect of ultimate recovery, notwithstandicg the digestive organs have suffered considerably from one year's drenching in quackery.
"I am of opinion that a drachm or even two of this meuicine might be given with perfect safaty in desperate cases, and I am in the hope that, when its full power shall become known to the medical world, it will become more general in those fatal disease. I have no doubt of its power in arresting hemorrhage, more particularly from the lungs and uterus, and as for the stomach, its effects should be instantaneous. Should you think what I have communicated to you worthy of notice in the columns of your most valuable publication, I will at some futare day detail the result of the efficacy of this medicine in my practice, and 1 trust this will induce my medical brethren to try its effectr, and test its efficacy."

[^9]covers? thar the acetate of lead may safely be given without opium ! !! What a discovery! Seven years after my publication, perhaps he was only a student then. It appears that he consulted the work of Dr. Graves, lut his doses were too small. I formed an opinion then, which time has not changed, that, if the acetate of lead was to be protected by cpium, a chemical change must, of necessity, take place. The ucetic acid of the lead, must combine with the active princuple of the opium and form an acetate of morphia, and cousequently leave the lead free. Thus changing at once the entire nature of the drug, and as a matter of course, all its astringent and other qualities. I trust you will think these observations worthy of a place in your columns.

Your obedient servant,
A. Lane.

REVIEWS \& BIBLIOGRAPHICAL NOTICES.

XII.-Report of the Commuttet for scientific inruaries in telation to the cholera epidemic of 1854. Presented to both Houses of Parliament, by command of Her Majesty. London, 1855. pp. 129.
Appendix to the Report of the Committee for scientific inquiries in relation to the cholera epidemic of 1854. pp. 352.
Report of the Medical Counczl to the Right Hon. Sir Benjamin Hall, Bart., M.P., President of the General Board of Health, \&c., de., in relation to the cholera epidermic of 1854. pp. 9.
Report on the results of the different methods of treatment pursued in epidemic cholera. Addressed to the President of the General Board of Health, by the Treatment Committee of the Medical Council. pp. 28.
Report on the results of the different methods of treatment pursued in epidemic cholera in the Provinces throughout England and Scotland in 1854 ; beingsupplemertal to the metropolitan Report, addressed to the President of the General Board of Healih, by the Treatment Committee of the Medical Council. pp. 24.
Letter of the President of the Gene:al Board of Health, to the Right Hon. the Viscount Palmerston, Secretary of State for the Home Department, acc., \&cc., accompanying a Report from Dr. Sutherland on epidemic cholera in the Metropolis in 1854. pp. 120.
Report on the cholera outbreak in the pasish of St. James, Westminsieter,
dusring the autumn of 1854. Presented to the Vestry by the Cholera Inquiry Committee. July 1855. London. pp. 175.
The disposition whach the Government of Great Britain bas, of lato years, exhibited to encourage all inquiries having for their object the improvement of public health and the consequent prolongation of human life, must be a source of gratufication to all who take an interest in the advancement and success of sanitary science. In all that relates to the heaith of communities, governing bodies have usunlly evinced an o'stuseness of perception, not to say stupidrty, a dogged determination not to be convinced by the clearest and must conclusive statiatics, whirh is really inexplicable when we consider that such bodies often inclucio many of the most talented men of the community. Errors have been perpatuated and muisances unabolished, although their mischievous and deleterious effects on the sanitary condition of the people have been made su plain that he who runneth, even though a fool, migit read. This state of affairs, however, cannot much longer exist. The severe lesson which England has learned in the Crimea must have a salutary effect. The overweening concoit of hereuitury offee-holders, their undisguised contempt fur everything not having the stamp of antiquity, their dogmatism and impatience of advice must now have received their death-blow. For it is a fact, no less true than melancholy, that, to the ignorance and red-tapeism of a few miserable routibists in office, Great Britain is indebted for the loss of one of the finest and most heroic armies that ever left her shores. Had the warning voice of science been for one moment listened to, many a brave, whose bones now lie scantily covered with earth on the bleak hill sides of the Crimean Yeninsula, would be still living, ready and willing to fight his country's battles in some other quarter of the globe.
"In presenting our Report," say the Medical Council of the General Boasd of Health to the President, Sir Benjamin Hall, Bart., " of Inquiries, conducted under your sanction, into the course and phenomena of the late epidemic of cholera, the Medical Council may be allowed to express their satisfaction at science having at length been recognized by the state as the ally of civil jurisprudence, and as the guide to a more enlightened code of medical police. 'They trust that this prupitious movement may be regarded as the inauguration of a aystem ultimately destined to carry its ameliorating influence through all the ramifications of our sanitary institutions."

The gentlemen composing the Medical Council found it expedient, "from the multifarious character of the objects embraced by this wide inquiry," to Usatribute these objects into meveral classes, and to ontrunt
the examination of each class to a special section of the Council. "Of such special sections of the Medical Council there were threa: one, constituted to report on such scientific inquiries as it had seemed expedient to constitute, and consisting of Dr. Arnott, Dr. Baly, Dr. Farr, Mr. Owen, and Mr. Simon ; a second, to digest from the general mass of contributed material whatever facts could ihnstrate the relative advantages of rival methods of treatment, consisting of Dr. Alderson, Dr. Babington, Dr. Paris, Dr. Tweedie, and Mr. Ward; a third, to invite from the cultivators of science in foreign countries any information which could be given as to the results of their kindred investigations, consisting of Dr. Babington, Mr. Bacot, Sir James Clark, and Mr. Lawrence." We shall now endeavou: to lay before our readers sonie of the information gleaned, and results arrived at by the different cominittees. 'The report, then, of the Committee for scientific inquiries, is divided into three sections. ist. Statistics. 2nd. Etiology. 3rd. Practical pathclogy. From the first we learn that the mumber of deaths occurring in London from diarrhea and cholera, during the epidemic of 1854, amounts to 17,919 persons. By an estimate based on the returns anade by the medical practitioners for the Board of Health, the number of persons that were aunacked at all ages by cholera was 24,917 persons, by diarrhcea of some severity 329,778 ; by diarrhea of slight nature, about 519,487 ; thus making 874,182 persons who were touched by the epidemic, while $1,642,866$ persons escaped. The average mortality was 46 per cent ; that of the hoopitals being 51 per cent, whilst that of cases treated at honse was 42 per cent. The power of recovery from this disease varies considerably for different ages:-" 35 deaths at the age 15 to 25 imply that 100 persons of the age have been attacked; at the age 45 to 55,50 deaths imply 100 attacks; at the advanced age, 75 to 85,71 deaths by cholera imply 100 attacks." So that the chances for recovery of the young person is vastly grenter than that either of the adult or aged. Like in all other places where cholera has appeared, in Lendon certain districts were severely visited whilst others enjoyed n comparative imnunity. "The districts arranged in the order of the rate of mortality from cholera, display a regular series of numbers expressive of that rate, ranging from 6.10 , and 11 at one extreme, to 142,165 , and 170 at the other extreme." The opinion has always prevailed that cholera spreads more rapidly and exhibits a greater degree of virulence whereever there is a deuse population. The inquiries of the committee, however, overthrows this commonly received opinion; proving as they do, that unless other and more potent agencies are present, the influence of mere density may put down as nil. "The mean mortality by cholera and diarrhcea, in the 18 most open district
of London, (40 in 10,000), is nearly the same as ($\$ 2$ in 10,000) the mortality in the 18 most der se districts." Elevation, as was pointed out by Mr. Farr after the eni.demic of 1849 , has m marked influence over the course of the disense, high altitudinal ranges apparently ucing nimical to its development anc rapid spread. 'rlus, we think applies more to comparative altitudes of localities, than generally to high elevations, The population of Juncton is distributed over the low ground on both gides of the Thames, and over at great number of elevations and depressions, which ascend from the south bank of the river up to Blackheath and Norwood, and from the north bank up to Highgate and to Hampstead. The four luwest districts, Newington, Rotherhithe, St. George Southwark, and Branondsey, are on or below the level of the Thames at high water; tine mortality by sholera to 10,000 in these distriets was at the rate: of $11 \approx, 195,121$, and 179 in the last, and 144, 205, 164, and 161 in the previous epide:nic. Mampstead, Islington, Marylebone, and St. Pancras are at average elevations of 350, 94, 87, and 73 feet above the Thames, and the mortality by cholera in these highest districts was at the rate of $12,11,17$, and 10 in the last, of $8,22,17$, nnd 22 to 10,000 in the former epidemic." The thirty-six districts of London beins arranged nccording to the degree of their clavation above the high-water mark of the Themes; the mean mortality by cholera was, to every myriad $(10,000), 150$ in the districts on or belciv the level of the high-water mark, 31 in the districts of 2 and urder 20 feet of olevation, 44 in the districts at $20-40$ feet, 36 in the districts at $40-60$ feet, 23 at $60-80$ feet, 17 at $80-100$ feet, and 10 at 350 feet of elevation. "Independently of any hypothesis," say the Committee, "it may now be stated as the experience of two epidemies in London, that such local varieties of effect, group into masses for comparison, have been more nearly inverse to the elevation of soil in the affected districts than proportionate to any other general influence that we could measure."

The material on which the second or xtiolugical section of the report is based, forms solely the 352 pages of the appendix, and consists of able and scientific reports on the meteorology of London by Mr. Glaisher, of the Royal Observatory, Greenwich-in certain shemical and microscopical investigations of air, by Dr. R. D. Thomson and Mr. Rainey, both of St. Thomas' Hospital,-and in a chemica! and microscopical examinafon of the water suppiied to London, the former being conducted by Pr. Thomson, the latter by the celebrated microscopist Dr. Arthur Hill tiassell.
"Mr. Glaisher's inquiries have related to the pressure of the atmoe-
phere total and aqueous; to its temporature, mean and extreme; to its moisture, absolute and relative; to its density; to the directions and amount of its movement; to the chemical and eleatrical influences that act in it ; to haze, fog, mist, and rainfall."

The pressure of the atmosphere rose considerably above its normal amount when the epidemic reached its height. From the 25th of Aug. to the 19 th of September, the readings of the barometer wasabove 30 in . ; and for three days in this periolus high as 30 h . The tempen. ture, also, was greater than usual ; the excess of heat, averaging, during fify four days, while the disease was at ats maximum, 20.6 ; and dur. ang one week of the same period the excess amounted to bis ${ }^{\circ}$. "The atmosphere, during the prevalence of cholera, was less fult than usual of aqueous vapour. In July, August, September and October, it wus further than usual from saturation; and from June to November it contained, in weight of vapour per given measure of air, 1.20 th less than it average." The density was, with the exception of the months of January and December, in excess. During the most fratal days of the epit demic, there was scarcely any movement of the atmosphere, no ozone could be found at any station near the metropolis, and scarcely any rain fell. Mr. Glaisher gives the following sunnary:-"The threo epidemics were attended with a particuiar state of the atmosphere characterized by a prevalent mist, than mingh places, dense in low. During the height of the epidemic, in all cases, the readings of the barometer, was remarkably high, the atmosphere thick, and in 1849 and 1854, the temperature above its averugc. A total absence of rain and a stillness of air, almost amounting to calm, accompanied the disease on each occasion. In places near the river, the night temperatures were high, with small diurual range, whth a dense torpid mist, and air charged with the many impurities arising from the exhalations of tho Tnames and adjoining marshes, a deficiency of electricity, and, as shown in 1854, a total absence of czone, most probably destroyed by the decomposition of the organic niatter, wilis which the air in these situations is so strongly charged. In both 1849 and 1854 , the firsi decline of the diseaso was murked by a decrease in the readings of the barometer, and in the temperature of nir and water; the air, which previously had for a long time contiuued calm, was succeeded by a strong S.W. wind, which soon dissipated the former staguant and poisonous atmosphers. In both periods at the end of September, the temperature of the Thamen fell below 60°, but in 1854 the thermometer again increased, the is became again stagnant, and the decline of the disease was considerably ohecked. It continued, however, gradually to aubside, although the
months of Novemher and December were uearly is misty as that of September.'

- Dr. Thomsnu and Mr. Ranney experimented on the almosphere of a Hospital ward filled with cholera patients-on that oi a ward partially Gilled with chuiera patients-on that of an empty whal atter cholera had ait the district-on the extermal atmosphere adjacemt io St. 'Thomas' Hoapital, and on air collected thom wihm answer. All that was found peculiar in the: air of the cholera ward were myeelin of fungi, nut difkeing from those which had tormed in sclutions of venctable substances efor expusure to the air where uo cholera was presient; and extremely minute, colourless, indistinctiy beaded fibres, resembliug in therr genenal characters that form of sibrionia called "bucterium." The former, however, were also found in abmiance in the air of the ward after the disappearance of cholera, and the latter in very large quautities in the air of a sewer, when no cholera was preseut. Hence they cannot be booked upon as of much value in our estinute of the proximate causes of the disease.
Dr. Hassall haviner examued macroscopicully many specimens of water, obtained from housex wherein one or more il the vecupants had mfiered from choleri, rephrt., -"That the whole of the numeronsspecimens of water subjected to exrmination cuntained organte matter, dead ad living, animal and vegetuble; that the quantity aud kinds of organic matter varied considerably in difierent cases, but were usually more or tee constant for the same water; that some wuters abounded in hiving mimal or vegetable forms of different genera aud species; containing also a large quantity of dead organic matter, amongst which were frequently to be detected fragments of the husk ot wheat, huirs of the men, starchy matter of different kinds, cells of prutatoes and other vegelable tissures, with, in sume cases, fragmen's of altered muscular fibe -bese latter structures and elements being undoubtedly derived from the foecal matter cusimined is. Lice sewage."
Our readers will find in the first number of our thid volume, a notice of Dr. Snow's work "on the mode of communication of cholern," in which in gentleman's novel theory reganding the propagution of choiera intated and dissented from. Notwithstanding the array of facts favoring his peculiar views industriously collected by the talented author, ud the force of his argumentation, we were of opinion that the history of Chera epidemics entirely disproved the opinion that the dafiusion of the dinase is solely to be attributed to persons having by some means or other, baprincipally through water inhibited, awallowed some of the chulera minon-this poison being derived from the evacuations of cholera pa-
tients. Wo stated at that time that diarrhca is a precursor of choien that everything tending to excite inordinate action of the intestives x far places a person in a situation favorable to an attack of the diseas and that of all substajaces liable to induce diarrhen, water charged wis organic matter in a state of decomposition standing pre-eminent, no thing was more likely than that persons drinking water derived from the Thames opposite London, should stifier from liarrhca, and sufferim from diarrhea durimg the prevalence of in epidemic of cholera, tha they should be attacked by this disease. We are pleased to see tha the committee hold similar views to our uwn. "The admixture of decomposing organic matter," say they. "in the water supply of the metropolis being attested equally by chemical analysis nud by the microscupical evidence just adduced, we do not lesitate to sjeak of this contamination as one that may have exercised great influence on the spread of cholera among the population." And again, in referring to Dr. Snow's suggestion that the intensity of the outbreak in Golda Square and vicinity, was to be attributed to the waters of a cercain well in Broad Street being contaminated with the rice-water evacuations of cholem patients, they report :-" After careful enquiry, we see w reason to adopt this belief. We do not find it established that water was contaminated in the manner alleged; nor is there hefore a any sufficient evidence to sliow, whether the inhabitants of the distrith drinking from that well, suffered in proportion more than noy othe inhabitants of the distriet who drank from other sources. The water was undoubtely impure with organic contamination; and we haw alrendy argued that, ff , at the times of epide mic in vasion, there be operaing in the air some influence which converts putrefiable impurities inton specific poison, the water of the locality, in proportion as it contaim such impurities, would probably be liable to similar puisonous conve. sion."

With regard to the results of different modes of treatment, we lean from the Report of the "Treatment Committee," that the order d rercentage of failure to stop the disease in its earlier stages, or in the of premonitory diarrhca, is as fuilows:-salines, 13.6 ner cent ; chath mixture, 8.9 ; calomel with opium, 6.9 ; opium, 0 ; calomel, 2.4 ; chuls with opium, calomel and astringents, 1.5 ; sulphuric acid, with opina and calomel, 1.3 ; sulphuace acid, with opium, 0 ; chalk with opiam ammonia and catechu, 0.2. Takiug sulphuric acid, with and withos opiam, and with calomel as an adjunctive remedy, 1.31. Taking chall with and without opium, together with azomatic confection and ammo nia, with catechu, kino, logwood, and calomel as an adjunctive remo
dy, 1.31. 'Ihis shews in a musked manner a decided pretcience to the: adringent flun of treatment in the early stages of the disieuse, or in the promonitory diarthara. In cases of collapse, the treutment by calomel and opiam stands highest in the scula of success; whilst that by calomed in small doses, by castor oil, aud by sulphuric acid are much the loweat. The jerecintage of deuths following difterent plans of troatmeat being, cnlomel and ofunn, 59.2 grt cont . calonel (larger doses) 609 ; salues, 62.9 ; chalk and upinm, 63.5 ; culomel (small doses) 73.9 ; cetor oil, 77.6 ; sulphuric acill. 78.9. "Amongst 800 cases of cholera ia the Provinces throughont lingland and Scotland, $\mathbf{3 4}$ cases of conseeutive f ver ure reported to have recurred, or 29.2 per cent. Ot the weatment of consecutive lever in the l'rovinses, 56 cases wero reated with salines. 6 died; 101 with uperients, 8 died; 1 with diureties, 0 ; 21 with stimulanls, 14 died ; 3 with external irritants, 2 died; 6 with nourishment ulone, ${ }^{2}$ died. 'The must successful mode of traatment in consecntive fever, uccording to the foregoing table, appears to have been by aperients."

The rejurts before us cuntinin vast anumint of seicntitic and jractical information reluting to cholera which it is leyond our power to condene within the com, ass of a simgle article, and us our journal is so limitod in size and as there are so many works demunding our attention sow lyiug on our table, we are constrained to dismiss the subject at ths mint. We cannot do so, however, without expressing our satisfaction at the tardy recognitun by the (iovernment of Great Britain of the impormee of scientitic inquiry in multers relating to the healt h of the community, of which the estabishment of tho Commiltec to inquiro into everything relatiug to the choleru epidemic of 185t, is a pleasing evidonce. Ivestigations carricd out as thoroughiy und scientitically as those of Mr. Ghisher, Dr. Ilassall, Dr. 'I'humson, und Mrr. Rainoy, will not only reteet credit on the purties themselv ?s, but will also tend to elevate our prosesion in the eyes of the public, and rescue it from the pitiful jotres madeneers ol those who believo that the sum total of ancedicul science mants in hnowing how to make a bolus ur draw a rooth, to bleed, parge, vomit, and blister the million.
101. -Physical expluration and dicignasis of diseases affecting the resperacory organs. By Austin Flint, M. ., Prufessos of the theory and practice of Medicine in the University of Louisville; honorary member of the Medical Society of Viuginia and the Kentucky Stato Medical Society. Philadelphia: Blanchard and Lea.

> Moutreal : B. Dawsou. Quebec : Midileton and Dawson. 1884 pp. 626.

Che prosent work is limited to the diagnosis of affections of the respin tory crguns, principally, by physical sigue. The author says his methm "hus been to treat of the physical signs as regards their individual ehm racter, their significance and diagnostic relations, separately and cor biacd, without inposing un anyself restraint on the score of brevity Whilst I have desired not to ie tedionsly minute or diffuse, I have in rentiunally amplified somewhat after the usual mode of ural teaching: Upon uil these various points the reader will meet with a full an ample descripton, embimlying the f"esent state of medical knowledg and the eroults af the nuthor's own extensive experience. The pract tioner whod sires :u nise above the !evel of n practral character. wi bere derive the information that will enable him to assign a reason $\{$ what he says, and to define what he hears. As an ana.ytical treation Prufessor Flim's work ranks in the highest order of merit. To impre mere forcihly on the mun.d, the varions truths that is discussed, a recapi zulation is puca at the rad of the derale:l account of each importan subject. And as from the ormer a conclusion might be formed of th efficiency with which the lather has been executed; we select a following extratt wholl is a summary of the physical signs of phthisis.
"Diminished vesteninc resunance un perenssion at the summit of th chest, varying in deprece from slinht dulness to a near appronch to fly ness, present on cure 1 r un butin sides. bat in the latter case more markel on one side. 'Ihe duthess. it gencra!, proportionate to the abundane of the tuherculous $\mathrm{d} \cdot \mathrm{p}$ posit, increased sonoronsaess uccasionally observed at the sulumit of the ient side. dune to tratsmiticie gastric resounger The somad tympusitic mquality and high in pitch; the ve sicular frequeall replaced hy a tympanitic solnd un either side when the sonorousness in not increased coustitutiny tympanitic duluess; an increased sense o resistanco in proportion in the amount of crade tabercle.
A. tympanite resonance wer at circumseribed space at the summith present and absent, at difierent examinations, in some cases gresentiof in amphoric, and the cracked-metal intonation, constituting the evidence afforded by percussion of the existence and situation of tubercolous excavations.
On auscaltating the bronchovessicular, aud the bronchoid respiration the latter denoting tulervulous solinification. Frequently with these me difications, diminisheil jutensity of the respiratory sound; occasionell, sup pression of all respuratory sound ; interrupted or jerking respination Exaggerated vesicular murmur on the side either healthy or least ai
feted; the crepitant, sub-crepitant, sibilant or sonorous mucous and crackling, or crumpling rales occurring'as contingent signs, their significance dependent on their being found within a corner at the summit of the chest; abnormal transmissions of the heart sounds especially at the right summit, increased vocal resonance when situnced on the left side of the aummit ; an acute and more or less intense souffle or bellows sound accompanyiug whispered words, especially if present, on the left side; bronchophony and occasionally transmission of specch, complete or incoupleie, over tuberculous soladification; friction sound limited to the summit of the chest.
The cavernous respration occasionally observed alternating with suppression, or gurgling, occasionally amphoric, and very infrequently, pectoriloquy, constituting the evidence afforded by auscultating the respiration of the existence, and situation of excavations; the characters of the cavernous and bronchal modifications of the respiration sometimes combined (broncho-cavernous respiration) ; splashing ou impulse, seen and felt, existing within circumscribed space ut the summit, signe of cavitie; furnished by the act of courhing ; oceasionally. when the cavity is ver; large, metallic tukling.
By inspection, Hattening or depressiom, at the summat, cithea cuafined to one side or more marked on one side tinn the other; the clavicle generally more prominent but occasionally receding with the ribs; diminished expaosibility with the act of inspiration, the range of motion found to be lessened as well as size of the chest at summit, by mensuration.
Disparity at the summat of the chest in vocal trenitus, provided it be found to be greater on the left side. A splasiling succussion suund in some cases of very large excavation."

IIV. - The causes nnd curutzve treatment of sterility with a preliminary statement on the physiology of gencration. By Augustus K. Gardiff, A.M., M.D., permanent member of the National Medical Association; fellow of the New York Academy of Medicine, physician for the diseases of women in the New York Northern Dispensary, \&c., \&c. New York, DeWitt \& Daveaport. $1856 . \quad \mathrm{pp} .163$.
Obstetricians as well as others are filly aware of the great importance of the suliject of sterility, aud the necessity there subsists for being thoroughly versant with its manifold causes and their special treatment. cues of the kind are by no means of rare occurrence and they gener-
ally present themselves to notico under carcumstances of a most embarrassing and anxious nature. 'Thus perplexing on their own account; they are rendered, not unfrequently, still more troublesome by being through previous mismanagement, complicated with various accidents, the results of improper treatnent at the hands of empirics. The volume above mentoned contains in u few short chaptcas a perspicnous and instructive account of the physiology, patlology and therapentics of sterility: a study of which will tend to remove the difficulties, we referred to, on liture wecitsions, when advice is sought for the remedy of this particular abnormality. So far as we know, Dr. Gardner's work is the best of those that have been written on simi'ar snbjects, and we will be disappointed if it does not ubtan a ruphl sale among the interested. The publishers are deserving of much praise for the finished way in which they have brought it wat. The lithographs are highly colered and eshibil aia artistic sliil woll worthy of attainment.
XV. -How to murse seck children.-lutended especially as a help to the nursesat the hospital for sick chuldren; but contanning directions which may be found of service to all who have the charge of the jouns. New York: ㄷ. \& Wm. Wood. Montreal: B. Dawsun. 185̄̄.
'This mteresting little handbook is well adapted, by the pithy and practical hints it contains, to give matrons and others, sound and valuable directions, alwut the munagement of their children, at that tryirg period ot existence when
"The human blossoun blows, atal every day, Sott as it rolls along, shows some new charm."
XVI.-The dissectons manuel of practical and surirical anatonny. By E. W!lson, F.R.it., author of a system of hmman anatomy, de. The third American from the last revised London edition. Illustrated with 154 wood engravings. Edited by Wm. Ilunt, M.D., demonstrator of anatomy in the Tiniversity of Pennsylvania. Philadelphia: Blanchard \& Tea. Montreal: B. Dawson. Quehee : Niddleton d Dawson. 1850.
Taking the various dissectors, whether the Dublin, or Edinburgh, of London; the manuals from Ilolden downward; the guides either as the venerable Hooper or the younger Ellis; taking them "all in all we
ne'er" have " looked upon the hise" of Wilsun's manual as the embodiment of possessions that exactly suit and suffice the rising brood of Montrea! anatomusts. We do not speak sine experientia; but, most advisedly, after a mature consideration of the wants and services we have seen manifested in the dissecting room. Of kindred books ohs is too recondite, another too unmeaning, a third too simgular, while all are too different in names and state nents ..) the text of the popular work on descriptive anatomy. Wilson is already the usurper, and steps in again; for while he has served the close student with all he can desire in his admirable "system" he atords the practical stadent its familiar companion in a suitable " lissertor."
XVII.-On the organic diveases und functumal disorders of the stornach. By (icorge Budn, M.D., l'R.R., Yrolessor of Meducme 'n King's lollege, London; lats Fellow of l'amis (ollege, Cambrilge.
 Montreal: B. Dawson. Quebec: Middleton A Bawsun.
Hectuches, their causes and their carc. By Hbwhe ii. Whtha, M.N., - M.R.C.S.L., Fellow Loyal Med. Chir. Sine; Pligsiotan to the St. Pancras Loyal Dispeusary. I'p. Ito. 18iti. Xi.w York: simuel s. \& Willian Woul. Montreal: J. Dawsm. Guebee: Middleton \& Dawsou.
We have already given vir ophmot of the atove work-. The nothe of Budd on the stomach will he tomed 1 the 12 h nunter uf our hast volume. We have comsubted to trequently and are athie to ansure our
 we received on our first perasal of the work. hes only heen streaterhened by subsequent caiminatious.
 excellent little momgraph of It. Wrights on brathehes. In the fist number of the present rolume we notied the Vinshsh edhtho, at cup of which was procented to us by the anther. The denvean epront is an every respect equal to the Lagtisia cdition. having, mote ser, the additional recommendation of cheapmes.

THERAPEUTICAL RECORD.

Chronic Bronchites.- Norphiæ hydrochl gr 1.16 ter an de. As a pre|iminary step, all sources of irritation are to be attended to, especially

Tho here, stomach abl howe!s. The Cioton ol hament was also eff. cacious.
 the state of soluthon when enther the aromatie: sulfuric: acid as dinute sulphurie acirl ; a reahly dassolves m these flaids, and the componnd is productive of the m rst marked benefits.

Syrupus ferri colldi.-The following i: 'he most simple and convenient method. No fire is required, and the syrip, may be produced as pale as watnr in 10 or 15 minntes. Iron filings, washed elean, igr. 126 or thore whine or. ${ }^{2} 2$; diceilied water 2 oz. Mix tugether in a flask, shake until colourless and filter the solntion into $\tilde{3} x$ of thick simple syrup.

Vomiting.-Dr. Reynold's of Newhern, Ala., says that he has recently succeeded marresting two cases of vomuting, which had resisted the usual remedies, by the administration of a teaspoonful of sublimed sulphur, The dose is to be reprated it immediately rejected.

Son: Nipples.-R ext. opii. gr. j; ligr. calcis ol amygdal aa $\mathrm{Bi} i \mathrm{j}$. Dip a jnece of lint in the mintme and apply to the affected parts.

Aurithesia ly Carbonate of Sola.-A nail was removed while the toe was r -ndered inseusible by this gas. The toe was placed in a large month jar and the gas generated. The vacant space between the twe and jar was filled up with raw cotlon. In 15 minutes ancesthesia was prodined, and the nail cond he bent and twisted withont cansing the slightest pain.

Iodotannic /laid in lycers.-The followner is tspecially indicated in atonic wounds and old strumoss ulcers. lodme 5 parts ; tanmin 45 are thoroughly rubbed together. and 500 parts of cold water are gradually added. Thas is filtered and evapurated to 100 parts. A stronger preparation is also formed by combining 5 parts of iodiue with 10 of tannin and evaporating to 8.5 parts of water.

PERISCOPE.

Microscopy of the Kiduey.-- It the April session of the New York Academy, Dr. Istacs read a contmantion of his paper on the Mieroseopy of the Kidney, in which he proved still more decidedly than at the previons meeting, the fallacy of some of the physiogical views of Bowman and other Eumpean athorities, and demonstrated to perfection the true anatomical and physhological retations of some important parts; especially the comection betwetn the malnghan tufts and the uriniferous tubes. His mrestrgations have setiled this ve xed question, so that there can no lunger exist any doubt of the a bemg anatomical connection and a direct functional relation between these iwo parts. Ite hed the renal artery of a cat, after putting the animal mader the milnence of chloroform, and was then enabled to see the passage of blood directly from
the capilliary thlt in the tube; aml he has proved to exist, What uthers have denied, becirnse they faled tu ste, the presence of mucleated ceii. upon the surface of the tult, is well as mun the muer surface of the eapsul of the thbe, wheh enbraces and covers tho toft. The cells of the eapsule he: discowed to be of a different chemucal character from these of the tuft-as bitron acut while it destroyed the former. had no efleet upon the lather. Itpon his inathity to discover any cells ugen the duth. Bowman based his theory that the affice of this congenes of eapiliarius was ta semrate water only from the blood;'n theory which is subwerted hy Dr. Isates dneovey of celluhar formation, upon them. The furthermest hemomatited the presence of varions smbstances in the thbe. such as ble matandiced jerson, and various saliwhich cond ony hater eot there threngh the matpichian tuft.
 densed series of aphorisms are talien from the exellent work on Dhseases of Nursing Chaldren, hy MI. Boncinu.

Irimary puctumonia, whel, is alar called phemonia demble is rare in children at the breast.

Pnemmonia usatis follons sample hronchitis. of bronchitic eomplicating fevers, or acemte fobrile dacases.

Primary puenmoni: is nsmatly lubar.
Consecutive puennomia is always lohu! 1 .
Lobular phemania is sometimes discrete, sometimes conthent.
The pueumonia of chidren at the breast is ahost always double, and :sially attacks both louss.

Lobar or lobular phemmonia is observed under two anatomacal forms, slightly differing as to structure; these are intra-vesicular and extravesicular pacmononia.

Intra-vesicular puebmoma, usually primary, leads to congestion and thickeniug of the walls of the cells of the lunes, with the formation of an internal plastic deposit, which constitutes the chara ter of red and grey hepatization.

Extra-vesicular pmeumonia, always consecutive, only produces congestion and the thickening of the walls of the pulmonary vesicles withont fibrinous phastie secreion in the interior of these vesicle:.

Chronic pueumoma. more common in the infant at the breist than in the adult, is always lobar.
Puemnonia often engenders the formation of fibro-plastic miliary granulations in the interior of the cells of the lamg, in lymphatic and scrofulous children, or in the issue of parents tainted with scrulula.

The developement of lobular pneumonia is fivored by the crowding of children in the wards of a hospitul.
Ordiaary and frequent congh, accompanied by fever and anhelation, should make us fearful of au invasion of pneumonia.

Expiratory, groaniug and jerking respuration is a certain sign of the existence of confluent lobar or lobalar preumonia.
Panting respiration, accompranied ly a continual movement of the nostrils, is a sign of pueumonia.

Dullness of the chest is generally but slightly dofined in the pneumonia of chaldren at the breast.

When dillness of the cheat exists in a young child with a very bad ruld, pemmoma shombl be feared.
 -ates plennsy timo prommona.
'Thes sulnceputant rate whith accompunce the cough, the fever, and

Bronchas rexpatien, wheh is rafe in ehblrovat the breast, aluays
 11 it.

Bronchophony. hat is to saty, the rosombing ot the ery, indicates that pmermmonat has arrived al tis last stape.

l'rmary phemmonit. or demblece, is las severe than comserntise faremarmit.

 arions drame.
 "conserfuener at the compheratoms whelt proceced or follow ats develinemeni.

The farmmona of chatdren at ilife hrast has: great tendency to pass atco the chronac stats.
'The phetumona whoh is consecutive to the developement of fibrophatic malary gramulat mas, or to tabercular eramulatons, is usually taial.
"xpmatury, proanng and jetking respination, accompaned by movements of the nustribs amomecs that the hfe of the child is an great danger.

The swellmer aud edema of the hands, or of the feet, which comes on in the romre of puemmona, medicates an aproaching death. ('ronsseall).

The return th the secretom of tears, which has been suspended in the aftach of pilemmana, in a gond augury for its favourable termanation. ('roussean.)

Due or two lecehes at hort antervols, sevaral blisters atront of the rhest and doses of pecacmanha, are suflicient for the chre of simple acme juenmonin.- Varginis Medical Jowrnal.

On Vecramul. By Dr. C. H. Iones, F. R. S.-This term is applied ty Dr. Williams to that condition of the blood, in which it appears to le itself primarily and specially affected, and to lose its vital pioperties. It is, m faci, death beginning with the blood. 'Ihe appearance of petechia and vibuces on the externul surface, the occurrence of more extensive hemorrhapes in the internal parts. the general fluidity of the
blood, and frequently its unusually dark or otherwise altered aspect, its poisunous properties nes rabibited in its deleterions operations un other anımais, and its preneness to prawn anto decompustion, point out the blood as the first seat of disuriter; amb loy the fruhare of it matural properties

 surese of hite in the: whole Indy. is itself dend, and sproade death insterad of hati. Tha heart's action iv filtering and lieroble; the atonies veresels

 the respirulury mivements hreome irregular. Mnseolar strongh is

 of pas, and of a dirty red raspla.rry-jelly coliour: its surium dark from

 vessels anil in the areolar tassus, in giving rise to it kind of \cdot mpheysema. It is remurkable that this necremis combtion, or vine closely resembling de may be hrought ou by violent sharks intheted on tiae nervens system. as well as by any introdnction ol miasmatic or animal paisone into the circulation. Viole nt co:ivilaiuv. overwhelming chetions, the shock of an amputation stroke of lightning, averl a severe exhasting hibor, uzt mantioned by the German pathologist as havini produced this edlict. Nore common canses are however, matignant searlatima and typhas. yellow fever. the plague, and the diserise ealleal giandors. It may be suid, genorally, that the carly appearnnce of siaking and prostration many tever, indicates that the blued is thas serionsly affectrid. We are ignorant what is the exact mature of the chanser which take placo in this condi-
 ral had-that is, they ulfict the proyerties of the blood more than its compesition. The blod globules do nut appear tio to destroyed; but they circulate probubly some time beforo death, us so many dead burticlos prove to lee eluarged and to stagnate in tho: capillaries, and to part with their contained hematine. The fibring is in great part dearoyed : but how this comes to pass we ars ignorant. Ne catl perceive. on the whole scarce anything more thau that the powers of vital chemistry rapidly decay, and those of ordinary chemicnl affinity supply their place.-- [Braith-waite's Reitos.]

©hr theotal Chbronidh.

I.ICEC OMNIHUS, I.IRHT NUMS MI: NITATFAS AITIS MFDDICA: TIERI,

Are we to hase a se omd loroncr: would probably le a more gertinent gtestion. Sime home has bow claped suce Mr. Comrsol resugned
 cessur. or, mblont; whether lar is to he succeded by my me. We

 nergirements, would discharere the dulles af the ollice with honer to themselves and benefit to lhe combumbty. Nint whiner has reached
 they canmut bave rame the the prosterons conclasion that the larges and most pumanmeity in British Nurth America, is sulliciently suppised with onc Curoner. (irmin ins unr hath is m the present healthy state of morals in Mantrenl, wo are newertheless abliged to confess that, if the duty lie dome: thoronghly, there are a suffienent anmier of mysterions deaths to amply engage the atfontion of two (:oroners. 'Toronto, we all know' is a wicked phace. Lut 'formsto with a fewer mumber of inhabitants than Montrenl has now four Cornars. The "ancient capital" und other flaces, witl fir mfermer populations, nre supplied with two. Why then should thas city have bit one? It is amjust to the gentleman at present holding oflio that all the responsibility should be placed on his shoublers. He uught, we think, to protest against the longer contimannee of this state of affuirs, und urgently demand the appointnent of a capable colleague. And that that collengar should be a physiciaf, will, we are certain, be admittod on all hands. The recognition of the rluints of the meducal man to this office hus beon tardily recogmzed, lmt in now becoming umversal. Soun Cireat Britain will have none but medtal Coroners; and, julging fiom the last two appomiments at Toronte, and numerous others lately made throurhout the lrovince, it is "vident that our own (iovermanent hold healhy views on the sulbect. Let them, therefore, appoint immediately a gentleman to fill the place vacated ly Mr. Coursul, and let the gentlenan selected be a member wh the medical profession. By doing thas they will exhibit in a forcible manner their anxions care for the interest: of the public.

[The fillowing fetter reached ins tou late for present comment. ite sulyurt in of immense impurtanen tu the professons, mat can uri I e sut: freed to slumater: til ohlivion. It shatl he known throughout the Iangth and liseadh of the latud ; nud we will have great gleusure in usui i recurting to it. in the hape thut the tree mny yet hear fruit.-Dins. Mes.「hros.]
A miltiphrity of matler. mevenneted, it is tries, with thase of aprofessional character, bat requring an extended correspondence, prechadad mo from acknowledging the reccipt of your extremely well-conductcal and intmonting medical preriodical; and 1 may add, from alsuadilressug you an article for your next issuc. Yull may, nowever, rest assurcol, that I feel u deep interest-an interent which ought to jervade the whule bolly \& the prolessiou in mavancing hy every possible encans, the medival literaturo of our commen comntry-in the absenec of which our noble profession can never in elevinted th that position and high consideration, which its importan'les as well as usefulness, cun so justly clain.
You may long ere this have colserved the indafierence and aputhy with which-in a public point of view,-yo amportant an institntion as the College of Dhysicinis and Surgeous, has been regarded-this, mainly, is not only to ve attributed to the want of impasting to, and bringing tho proceedingy more frequently lefore the public ; but to the operations being apparently, und merely, coutined to an exumining lBoard af (iovernors, into the qualification of eandidutes for malmixsion to practice and stady, -instrad, its in other cumtriss, of assuming amore enfarged range in the general interests of the prufession, and m those hygienic measures which involvo the public henlth and puiblic satety, from those disastrons and calamitous pustilential and epideme dispases, which iuve already, from time to time, invaded and decimated this I'rovince, as well as the secommendation for legislativo udoption of enactnents for the better regulation and administration of Guarantiue. And I regret that Dr. Morrin whose prolessional lif. (null in which we can never separato Dr. Wolfred Nelson, and our late President l'rutissor liolmes, and others 1 would gladly naue, h his lieen devoted to the public good, should not have persisted in lringing before the College, in a more ostensible form, his very judicious suggestions with regard to the above inpmotun! subject. In Englund, France, and the Continent of Europe, where similar bodies (from being composed of men of the highest professional acquirements and intellectunl character) are, at all times, fully recognised und consmited by Governments in all matters essential to the
protection of the public life and health, and whenever these are menaced with danger by the invasion of pestilential and malignant disease, I cannot forego for our own College of Physicians the same appreciation and regard, on the part of our Provincial Government, particularly as in the Prime Minister we have the adrantage of possessing one of the most liberal minded gentlemen in the Province, formerly a distinguished member of the medical profession, and who has in every instance, in his legislative capacity, never lostan opportunity of promoting its interests and elevating its character. Our college wonld then take rank among the scientific institutions of the older countries. Let us not, however. despair.-With great regard, your very faithful servt., A. Von Iffland.

Grosse Isle, July. 1856.

MEDICAL NEWS.

 moma, 154 oi rroup, $\mathrm{ES6}$ of choleta intantum, 239 of scariet fever, 48 of measles, 9 of small mox, and 61 of yphus and ivphond fevers-_In Buffalo there is a Spiritual Church where the new zorei is supped out pteremeat. It numbers most of the homocopaliss as members, the on!y iemale ph, acian, and the resudui is formed of simplar heretics.--Mr. Owen has beet apponted sap-1midement of the Natural History department of the Braish Muscum, at a salaty ut thite, and Mr. Wheketh. Professor of Elistology, and Conservaior of the Muspun of he Ruyal College of Suryens, London.-- Ilydrophobia has never
 done in 10 years. Of the cases, the average length of seckness was 66 days; in two exrephions liee was prosacted to $36 j$ and 360 days respectively.-Dr. Ramsay, editor of the late "Bhatir and Cuth." was tately artested on the charge of labracaling testimony in support of fete pensun ctans. He procurd \$50u0 bail, which was forfeited by his absconing inmoditeiy. --In the htile iown of Wick, England, there are 42 insane. Their mbechtity is sad to be cansed by want of nourshmg diet, and by frequent intermarriage among relations. - The eiture collar bone has been lately removed by Dr. Blackman, "-. S., .. canser. Che pathent was able to attend to his business in 10 days. - An linch ducios ahertises that the deaf may hear of him át a house in Liffy Stree:, where also his bhad pathents may sec ham Irom 10 till s. .-It is proposed 10 appoint in: spectors of mith a N.w Xurk cily, ontpevent the great adulteration which is practised there at this mportant while of dret.--A medictne has been lately advertised, of wheh some of the virtues art - - oue bottegwill, cure a common pathology ! one to three will cure habeas corpus: Yout butles will cure the under humor! Sti. to eight botlles will cure corsumpthon, event the luturs are gone! Nime botiles wili cure aurora borealis! And to care a hoken bune, wash the parts well with the medicine! Price $\$ 1$ per boatte; to the clergy, hall puce.- An crunent Enghsh physician states that among ine female pauents, tie duluareus, loss of eyesight and pain the the are complamts which have hiscome vely frejecnt ut his machee, since fishon required the aressing of the back of the nech instead of the new. - - Fise Boston Medteal and Surgical Jourmal says that phystians are more moral than ciergymen, and that the fact may be easily sustaned by crimeral statistics. --The Thomsomans are a-commer of it. In a late address, the speaker anticipated the day when "the banner of medicat reform, which the itumorial Thomson tirst minfled, sinil wave mituumph over the headhor every opposition, and the proud and higatted cuns ut theiallos-puthos and similua vimilibus systems of medication shall hive rouched benediht, as dat the mug.iy English hon at the feet of the American eagle." - Ded. Thomas, a surgeut by priession, but for theipast 20 years a pauper in Clerkenwell workhouse, and officiatin- therem as undertaker, was placed at the bar lately, on remand, charged wih murd..nt:; the body of a deceased pauper, by sawng of the head:--Mons. J suchel, ti.e oculist at laris, has been tau'horized to wear the decoration of commander of [Spanish] order os Isabel the Catholic.

[^0]: "Van Swieten, "Cammentaria.".
 $\dagger 1$ speatr gemerally, and not in ignorance of the fact, that in some cases of hydrocephan, the fortimellem are dopiomed.

[^1]: - Rokntenksy's Patnological Anatomy, Vol. III, p. 276, Amer. ed.

 II think it but justice to state that the self-styled midwife is an unqualıfied and unliennd voman.

[^2]: - It mast be borne in mind that these measurements are proximately, not absolutely, correct. The bones of the akull were, as nearly as pocable, filled out to their previons

[^3]: dimensions, but the absence of the contained lluid rendered precisiou impossible. More over, the forcible traction employed, previnus to resortint to craniotomy, must have intor fered with the shape, perhaps, increased the size of the skull.
 \dagger Dr. Georget, in the " London Medical Repository," Vol. 14, observes: Monstrow, diseaved, or mal-formed fetuses, are generally of the femule sex. "Is it," be enquirth, " that thuscx porsesses lessenergy of organization than the male? or that the generative pover is longer and moore porfoct, in the latter than the former 7 ?'

[^4]: - Ramsbotham. American Edition, p. 178.
 \dagger Forbes Medical Review, Vol. XII., p. 480.
 † Mıdwifery, p. 527.
 il Lee's Midwifery, p. 4:
 5 Process of Parturition, p. 272,
 - Obstetnc Medicine, p. 60 and 61 .

[^5]: * In these measurements of the child's head, no allowance is made for the elongation, which usually, and sometimes to a great extent, occurs in labour.
 † London Medical Gazette, vol. xvii., p. 486.
 \ddagger I distanctly recollect having read of a head of this circumference, but on again looking for the passage containing it I am unable to find it. This, however, makea me no less certain.

[^6]: - Smellie's Midwilery, vol. ii., p. 14 and 210.
 † Merriman's Midwitery. \ddagger Ramsbotham, p 272.
 §Smellie's Midwifery, p. 42.
 \|Practical observations, part 1.
 π Collection 31.
 -Ibid 3 3.
 \dagger Lancet, 1847.
 \ddagger London Medical Repository, vol. Ist
 §Lancet, 1847.
 Mifedical Gazette, July 13, 1840.
 qGood's Study of Medicine.
 - London Medical Gazette;', vol. 17, p, 9at.

[^7]: ${ }^{4}$ In this calculation no allowance is made for the unevenness ofd the cerebral surface of the base of the skall.

[^8]: Abercrombie on diseases of the bram, 2nd Ed., p. 148,
 \dagger Rokstansky's Pathological Anatomy, vol. 3, p. 275.

[^9]: The above, you will observe, was published in 1342. And seven yoars afterwards a Doctor Grady, of the Kilmainhama Cholera Hospital, dis-

