CIHM Microfiche Series (Monographs) ICMH Collection de microfiches (monographies)

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The copy may the sigr check

....

This Ce d

10x

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below. L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\checkmark	Coloured covers / Couverture de couleur		Coloured pages / Pages de couleur			
	Covers damaged /		Pages damaged / Pages endommagées			
	Couverture endommagée	\square	Pages restored and/or laminated /			
	Covers restored and/or laminated /		rages restaurees erou peniculees			
	Couverture restaurée et/ou pelliculée	\checkmark	Pages discoloured, stained or foxed / Pages décolorées, tachetées ou piquées			
	Cover title missing / Le titre de couverture manque					
	Coloured maps / Cartes géographiques en couleur		Pages detached / Pages détachées			
	Coloured ink (i.e. other than blue or black) /		Showthrough / Transparence			
	Encre de couleur (i.e. autre que bleue ou noire)	\checkmark	Quality of print varies / Qualité inégale de l'impression			
	Coloured plates and/or illustrations /					
	Planches et/ou illustrations en couleur		Includes supplementary material / Comprend du matériel supplémentaire			
	Bound with other material /					
	Relié avec d'autres documents		Pages wholly or partially obscured by errata slips,			
	Only edition available /		possible image / Les pages totalement ou			
	Seule édition disponible		partiellement obscurcies par un feuillet d'errata une			
			pelure, etc., ont été filmées à nouveau de facon à			
	Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de		obtenir la meilleure image possible.			
	l'ombre ou de la distorsion le long de la marge		Opposing pages with varying colouration or			
	intérieure.		discolourations are filmed twice to ensure the best			
	Blank leaves added during restorations may appear		possible image / Les pages s'opposant ayant des			
	within the text. Whenever possible, these have been		filmées deux fois afin d'obtenir la meilleure image			
	omitted from filming / II se peut que certaines pages		possible.			
	blanches ajoutées lors d'une restauration					
	apparaissent dans le texte, mais, lorsque cela était					
	possible, ces pages n'ont pas été filmées.					
	Additional comments /					
	Commentaires supplémentaires:					

This item is filmed at the reduction ratio checked below / Ce document est filmé au taux de réduction indiqué ci-dessous.

ues

The copy filmed here has been reproduced thanks to the generosity of:

University of Western Ontario, Sciences Library.

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with tha filming contract specifications.

Original copies in printad paper covers ara filmed beginning with the front covar and anding on the last page with a printed or illustratad impression, or the back cover when appropriata. All other original copies ara filmed beginning on the first page with a printed or illustratad imprasaion, and ending on the last page with a printad or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \longrightarrow (meaning "CON-TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

University of Western Ontario, Sciences Library.

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec las conditions du contrat de filmage. d

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle ampreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole → signifie "A SUIVRE". le symbole ⊽ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Los diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

U. W. O. LIBRARY

[REPRINTED FROM THE SIXTH REPORT OF THE BUREAU OF MINES, ONTARIO.]

ROCKS AND ROCK STRUCTURES

WILLET G. MILLER.

--- BY----

PROSPECTORS' COURSE-KINGSTON SCHOOL OF MINING.

[REPRINTED FROM THE SIXTH REPORT OF THE BUREAU OF MINES, ONTARIO.]

ROCKS AND ROCK STRUCTURES

ر: د : __BY___

WILLET G. MILLER.

PROSPECTORS' COURSE-KINGSTON SCHOOL OF MINING.

ROCKS AND ROCK STRUCTURES.

By WILLET G. MILLER.

According to the commonly accepted theory the earth and the other mem- Rocks of the bers of the solar system were at ono time in a fused or molten condition; henco earth's crust. the first rocks formed on our globe (through the cooling of the wolten mars) belonged to the class which is known as the Igneous or heat-formed rocks. Igneous rocks, These rocks are still being formed through the cooling of fluid matter which rises from depths in the interior of the earth through fissures in the crust, to or towards the surface.

After the molten material had solidified at the earth's surface, it would be acted upon by the atmosphere, water and other agencies, and be broken down to a greater or less extent to form gravel, sand or clay, just as we see masses of rock, such as cliffs, being worn down by these agencios at the present day. The materials thus formed, which are fragmental in nature, together with rocks formed by the deposition of the remains of plants and animals, make up the greater part of the class known as Aqueous or water-formed Aqueous rocks. They are given this name on account of water being the chief agent rocks. in their formation. They are known also under the names sedimentary, fragmental and clastic.

The sorting action of water on the loose material into which rock masses are broken may be seen along the shore of any lake. The coarsest material, gravel, is deposited near the shore, while the sand is deposited in layers in deoper water, and the finest material or clay is deposited still farther from the shore line. Through the effects of pressure and cement substances these . loose products are solidified in time into beds or strata of conglomerate sandstone and shale.

Metamorphic rocks,

Ì

If these aqueous rocks are subjected to greater pressure and heat, they become very compact and their characters are much altered. They become more or less crystalline in appearance and are then known as Metamorphic or altered rocks, or as the Crystalline schists.

d

fi

8

iį

8

tl

r

u

81

ti

i٧

 \mathbf{p}

85

w

N.B

1

Cil

w

fo

m

50

gn

tu

ho

ho

dia

 \mathbf{at}

roo

spe

Su

" a

Th

eac

als are

oth

We thus have three kinds, or three great classes of rocks, making up the crust or outer part of the earth, viz., the Igneous, Aqueous and Metamorphic rocks.

Metamorphic rocks are also formed from these of the igneous class through the agency of pressure and chemical action. Thus, while some gneisses are known to be altered aqueous rocks, it has been proved that ethers have been formed through the alteration or metamorphism of igneous rocks.

The earth is constantly losing heat and diminishing in size. The interior as it loses heat tends to shrink away from the external cool and solid crust, This causes the crust to become folded and wrinkled, as the cooling goes on. In places the side or lateral pressure on the folds becomes so great that they are cracked and broken across. The fissures er cracks thus formed in the crust sometimes reach to great depths, so that the highly heated matter of the interior finds a passage to the suifare. On cooling it gives rise to surfaceformed igneous rocks, or, as they are generally called, volcanic rocks. The material of which these are composed having been exposed at the surface of the earth cools quickly, after the manner of the melten material which is drawn from a furnace. Hence we find that volcanic rocks are often slaglike or glassy in appearance. Through the folding and rupturing of the rocks, the crust has fissures and cavities formed on its under surface. Into these spaces molten matter also makes its way, but here it leses its heat or cools slowly, and gives rise to rocks which are coarse grained and crystalline, and not glassy or slag-like in appearance. Igneous recks of this class are called plutenic rocks, since they are formed deep down beneath the surface of the earth. There is also another class of igneous rocks, which is intermediate in character, or forms a connecting link between the volcanic and the plutonic classes. This class of igneous rocks is known as the dike rocks. They represent melten matter which has cooled in narrew fissures in the crust, and hence has lost heat through contact with the walls of the fissures more rapidly than did the matter which gave rise to the plutonic rocks, but not so rapidly as did the volcanic rocks. Dike rocks are usually much finer grained than these of the plutonic class, and some of the minerals of which they are composed often have a definite crystal outline, giving the rocks a porphyritio structure. They also differ from the volcanic rocks in not being glassy, and in other characteristics.

Some of the fissures formed by the fracturing of the earth's crust de not extend down to the highly heated interior, and hence are not filled with molten material. In course of time however mest of these fissures are filled with mineral matter, which is deposited from solution in the waters which circulate through the crevices and openings in the rocks. The material thus

Forms of igneous rocks

Volcanic rocks,

Plutonic recks. Coposited forms what has been called vein rocks. These materials filling fissures are what is known as mineral voins. While dikes and fissure voins Vein rocks are similar in form, the latter are of aqueous origin, while the former are of igneous formation.

It is natural that the older rocks should in most cases be more broken and fractured than the newer; hence veins are more frequently found in them. In the process of folding, openings are made between the beds of rocks, and moreover cavities are made in rocks through the solvent action of water. These openings and cavities are filled in the course of time in the Orgin of same way as are some fissures, by the deposition of material from solution. We thus get mineral deposits or or locies of various forms,

If a series of beds of rocks has been folded and then posed to erosive or breaking down action, through the sgency of water and the atmosphere, the tops of the folds may be worn off. We then get a structure such Kingston, as is shown by the gneiss C in the following figure.

Ē 18:30 A=Linestone B=Granite. C= Gness. Q= Granite Quarry. Section across Barriefield Common, Kingston.

A Limestene (an aqueous rock.) B-Granite (an igneous rock.), C-Gnelss (a metamorphic rock.)

Recks of four ages are shown in the section, viz : gueiss ; granite, which cuts through the gneiss and is therefore the younger of the two ; limestone, which overlies both the granite and the gneiss and centains fragments of the former, and is therefore the youngest of the three ; boulders and other loose material, which overlie the limestone and are hence the youngest rocks present.

Several common geological terms may be explained by means of the section, e.g. "contact," the point of junction of the limestone with the Illustrations gneiss or granite; "unconformity," the beds of limestone lying on the up of geological turned edges of the gneiss. The layers of the gneiss make an angle with the terms. horizontal. The gneiss is therefore said to "dip" at a certain angle. The horizontal direction or the course of the upturned edges, which is perpendicular to the line of dip, is spoken of as the "strike." The granite appears at the surface of the ground, or forms an "out-crop." A mass of igneous rock exposed at the surface in a more or less rounded or irregular form is spoken of as a "boss." Narrow fissures in the gneiss are filled by gran te. Such structures are known as "dikes." The follings in the gneiss show "anticlines" or ridge-like forms, and "synclines" or trough-like forms. The bedded structure in the limestone is spoken of as "stratification," each bed being called a stratum. The gneiss shows a layer like structure also, but the layers are not so regular as those in the limestone, and are more or less finely bent and crumpled. This structure in gneiss and other crystalline rocks is spoken of as "schistosity"-the rocks are said to

a

t, they become oble or

ecrust

rocks.

class seme ethers. rocka. terier crust. es on. t they a the of the rface-The ace of ich is slag. of the Into at or lline, s are ice of diate tonic They orust, more ot so ained y are vritie

o not with are which thus

assy,

5

have a schistose structure. The granite is not arranged in layers, and is called a "massive" rock.

IGNEOUS ROCKS.

Classification of igneous rocks. The Igneous rocks may be divided as we have seen into three groups----plutonic, dike and volcanic. The members of each group are again subdivided, according to the percentage of silica they contain, into acid, intermediate and basic rocks. If a rock contains over 65 per cent. of silica, it is spoken of as an acid rock; if its percentage of silica is between 50 and 65, it is said to be intermediate in composition. Rocks containing less than 50 per cent. of silica are said to be basic.

The names given to Igneous rocks, unless they are perfect glasses, depend on the minerals they contain—hence also on their percentage of silica—and on their structure, that is on the form and arrangement of their constituent minerals.

The following tabular arrangement of the Igneous rocks shows the way in which they are classified according to the description given above. Only the more commonly occurring rocks are shown in the table, and since many of the dike rocks have been but little studied, and are moreover difficult to determine without recourse to refined methods of investigation, their position is not shown in the table. The pink and light colored varieties of these may be simply called granite or syenite dike rocks, while the name "trap" may be applied in the field to the fine grained basic rocks, whose true character cannot be made on in hand specimens.

arse	Chief felspar=OKTHOCLASE with usually MICA (or, and) HORNISLENDE (or, and) AUGITE		Felspar – Plagioclase		
neture=co ned.)			with Houndlende (or, and) MICA	with DIALLAGE.	
2(Str grai	+ QCALIZ.	-QUARTZ			
Plutonic	Granite,	Sycuite.	Diorite.	Gabbro.	
Tre=more	Rhyolite,	Trachyte.	Andesite.	Basalt.	
Volcanic(Structu or less glassy	Obsidian. Pitchstone. Pumice,			Diadase,	

The mineralogical composition of the plutonic rocks can be made out by a glance at the table; e.g., it is seen that we may have a syenite which is composed of mica and orthoclase.

, depend ca---and stituent

the way b. Only ce many ficult to position ese may p" may haracter

ΞĒ.

out by hich is Each volcanic rock corresponds in chemical composition to the plutonic rock in the same column. Usually however the volcanic rocks are incompletely crystallized. They contain more or less glass, which is represented in the corresponding plutonic rocks by mineral grains.

There are no hard and fast lines between rocks. We find one group or class passing gradually into another. Thus, one might get a rock which could be called cither a basic granite or an acid diorite. Hence too much stress About the should not be placed on a name. If we know the characteristics of a rock, rocks, that is, can give a description of it, it matters very little for our own convenience whether we give a name to it or not. A name serves merely as a short general description, but as many closely .elated rocks, varieties of granite for example, differ from one another in so many particulars, it is necessary for us if we wish to give the characteristics of a certain granite to state something more than its mere name. The characters of the Aqueous rocks are less difficult in most cases to determine than those of the Igneous class, and no tabular arrangement is required in their description. Some of the more common Aqueous rocks are conglomerate, sandstone, shale and linestone. The Metamorphic rocks also do not require a complex classification. Some of the more common members of this class are gnciss, mica schist, quartzite, slate and crystalline limestone

Only very brief descriptions are here given of the rocks in the catalogue. Kemp's Handbook of Rocks, (the author, Columbia College, New York, price \$1.50), will be fc. et a good book in which to read up details. This book also contains an excellent glossary of the names of rocks and of other lithological terms.

185 and 186. Granite. Granites are coarse grained rocks, color gray or light red, and are composed typically of quartz, orthoclase, or other acid felspar, and mica, biotite and muscovite. Mica may be replaced in whole or in part by hornblende. The ferromagnesian constituents, biotito Specimens of and hornblende, in granite are often decayed, and the felspar is often altered igneous rocks. to kaolin, or clay, when the rock has been subjected to atmospheric influences. The value of a granite mass for industrial purposes depends on a number of factors, among which might be mentioned color, homogeneity in texture, power of resisting decay, ease in quarrying and facilities for transportation. Practically all the granite used in Ontario for monumental purposes is imported. There are undoubtedly valuable varieties of it in the Province, but it is difficult to overcome trade prejudices. An altered granite found in the gold regions of northwestern Ontario and in other parts of the world is sometimes known as protogine, but the name is not used so much as formerly. Granites have in some cases been changed into gneiss through the action of pressure and other agencies.

Some of the most common accessory minerals of granite aro magnetite, apatite, tourmaline and zircon. Cassiterite, or tin-stone, is also found in certain varieties of granite.

Granites are found in bosses and dikes cutting through other rocks, and they are often overlain by sedimentary rocks.

187 Pegmatite. This is a coarse grained rock made up of the same minerals as are found in granite. Quartz and light colored felspar however predominate in this rock, and mica when present is usually light colored. The rock is often a storehouse for rare and valuable minerals, among which may be mentioned tin-stone, tourmaline, corundum and beryl. Graphic gravite is a variety in which the gray quartz is so arranged through the white felspar as to present the appearance of characters in the ancient Grecian or Phoenician alphabet.

188. Syenite. Coarse grained; co'or usually reddish or gray. This rock has much the appearance of granite, and differs from it only in the absence of quartz Hence a syenite may be called a quartzless granite. While the percettage of silica in granite, on account of the presence of quartz, is high, 65 to 80, making an acid rock, the silica in syenite is in a considerably lower percentage. Hence syenite is said to be a rock of intermediate composition—its percentage of silica lying between that o' granite and the basic rocks, or those low in silica. A highly interesting rock known as nepheline syenite is found in the northern part of the county of Hastings, Ontario. In it the rare mineral nepheline plays the part of a felspar.

189. Diorite. Usually a rather coarse grained rock and darker in color than syenite, from which it differs by having plagioclase instead of orthoclase as its felspathic constituent. Typical diorite consists essentially of plagioclase and hornblende.

¢

r

r

t

t

8

h

a

81

ν

in

ro

ot

co

 \mathbf{pr}

 \mathbf{gr}

cor wit

190. Gabbro. Often very coarse grained; usually dark in color. It contains a lower percentage of silica than diorite, and typical specimens are composed essentially of basic plagioclase and the variety of pyroxene known as dialage. Where hypersthene is present as an essential constituent the rock is known as norite. Anorthosite, a rock related to gabbro, consists essentially of lime-soda felspar. It may be mistaken for crystalline limestone, but is harder. Gabbro often contains much magnetite, and it is believed by some authorities that certain magnetite deposits found associated with this rock are of igneous origin, and have been formed at the same time and out of the same molten mass as the gabbro with which they are associated. A similar theory has been proposed to account for the origin of the nickeliferous pyrrhotite deposits of Sudbury, which are associated with gabbro like rocks.

191. Obsidian. This is a natural glass. It is, in some cases, a volcanic representative of the plutonic granite, as the two rocks agree in chemical composition. Their structural difference, one being a glass and the other a coarsely crystalline granular rock, is to be accounted for by their difference in origin. Granite originated deep down beneath the surface of the earth by the gradual or slow cooling of molten matter. On the other hand, the molten material from which obsidian was formed poured out at the surface of the earth and lost heat so quickly that there was not time for the molecules of the minerals to arrange themselves so as to form grains. The whole mass became solid in a comparatively short time. Rhyolite is like granite in chemical cou position, but is more or less glassy. Sometimes it is composed of crystals of orthoclase and granules of quartz set in a glassy groundmass.

Rhyolite.

8

made up of the same ored felspar however sually light colored. nerals, among which nd beryl. Graphic rranged through the ters in the ancient

dish or gray. This rom it only in the quartzless granite. presence of quartz, ite is in a consider. ock of intermediate of granite and the ng rock known as ounty of Hastings, t of a felspar.

ock and darker in gioclase instead of nsists essentially of

ly dark in color. typical specimens riety of pyroxene an essential conrelated to gabbro, en for crystalline agnetite, and it is s found associated at the same time hey are associated. f the nickeliferous bbro like rocks.

e cases, a volcanic e in chemical come other a coarsely fference in origin. by the gradual or ten material from arth and lost heat nerals to arrange lid in a comparan position, but is als of orthoclase

Pumice. This rock is a porous or vesicular obsidian. stone, which is resinous in appearance, may be looked on as a devitrified obsidian. Why name felsite is sometimes given to a devitrified glassy rock,

fine grain, 1, ad compact in structure, and consisting of orthoclase intimately mixed with some quartz. It has a flint-like fracture, and sometimes is very dull or stony in appearance. The term felsite is however, like the names of some other rocks, so differently used by different writers that its reputation as a rock name is lost.

193. Trachyte. A volcanic rock which corresponds to syenite in chemical composition, light gray in color and presenting a dull appearance. Sometimes looks somewhat like a fine-grained limestone.

194. Andesite. This is the volcanic representative of diorite.

195. Basalt. Corresponds in chemical and mineralogical composition to gabbro, and is one of its volcanic representatives. It is a dark, heavy, close-grained rock, and is often known under the name of trap. It often possesses a columnar structure, and frequently contains cavities through it which are filled with agates, zeolites or other minerals. Basalt is a characteristic rock on the north shore of lake Superior.

196.Columnar Trap.

192.

197. Diabase. This is another volcanic representative of gabbro. It differs from basalt in structure. Typically it consists of the two essential minerals, plagioclase and augite, but olivine may also be present, when the rock is known as olivine diabase. Diabase tends to weather at the surface of the ground into spheroidal or ball-like masses. When examined in thin sections or slices under the microscope the plagioclase is seen to be in lath-like strips which are set into the augite. On a weathered surface of the rock, in hand specimens, the plagioclaso laths may be seen as very fine short white lines, a characteristic by which the rock may be distinguished. Of course if the surface examined is much rusted or decomposed the lines do not come out. Various accessory minerals are found in the rock. It forms dikes and masses in different parts of Outario, notably in the vicinity of Sudbury.

AQUEOUS ROCKS.

198. Conglomerate. This is composed of rounded fragments of various Samples of rocks or minerals cemented together by calcium carbonate, iron oxide or Aqueous rocks. other material. A mass of it may be called a solidified gravel bed.

199-200. Sandstone. Composed typically of quartz grains of various colors cemented togewher, but the rock may be more or less impure from the presence of other minerals. It possesses a bedded or stratified structure.

201. Shale. This rock is composed typically of clay. It is very finegrained and occurs in very thin layers.

202. Clay. The character and uses of this material are well known.

203. Kaolin. Ordinary clay is an impure form of this substance.

204. Limestone. Rocks of this class differ much in color, grain and composition. Typically they are composed of the mineral calcite, together with more or less dolomite. They are formed through the accumulation of

9

Pitch-

ehelis and other calcareous structures of various fresh water and marine organisms, such as mollusca and corals. Many limestones contain fossils, thus showing their organic origin, but usually the calcareous material is more or less crushed or broken up. Some limestones have originated entirely through the deposition of calcium carbonate from aqueous solutions.

205. Lithographic Stone (Limestone).

206. Hydraulic Limestone.

207. Dolomitic Limestone.

208. Calcareous Tufa. In this rock the calcium carbonate of which it is composed has been deposited from solution. The rock is more or less porous in appecrance.

209. Shell Marl. This rock is made up almost entirely of the calcareous shells of small organisms.

210. Chalk. This has a similar origin to shell marl but is usually purer and more compact.

211. Tripolite. Is formed by the accumulation of the shells of minute organisms known as diatoms. It is composed of silica and is used as a material for polishing.

METAMORPHIC ROCKS, ETC.

Samples of Metamorphic rocks. 212-213. Gneiss. Is similar in mineralogical composition to granite, but is distinguished from this massive rock by having its minerals arranged in a more or less layer-like form.

214. Mica Schist. Composed essentially of the minerals quartz and mica. It splits readily into thin layers or foliae.

215. Hornblende Schist. Has a more massive appearance than mica schist, and its chief mineral is hornblende.

216. Quartzite. Is a hardened or metamorphosed sandstone.

217. Quartzite (flexible) or Itacolumite.

218. Slate or Argillite. The term slate is used somewhat loosely, but should be restricted to a rock which is a metamorphosed shale (clay). It splits or cleaves in directions independent of the original bedding.

219. Crystalline Limestone. This is similar in composition to ordinary limestone, but is crystalline in appearance. Some varieties used in the arts are known as marble.

220. Calc-schist. Is a variety of crystalline limestone.

221. Vein and Country Rock. This specimen is taken from the contact of the vein and country rock at the Deloro gold mine, Marmora, Ont.

222. Thin Section of Reck. This specimen shows a thin section or slice of diabase prepared for examination under the microscope.

223. Photograph. Shows the appearance which a thin section of diabase presents under the microscope. Photographs taken of objects through the microscope are known as photomicrographs.

nd marine ossils, thus is more or ly through

of which pre or less

the cal-

is usually

shells of is used as

granite, arranged

artz and

han mica

sely, but ∋ (clay).

ordinary the arts

rom the ra, Ont. section

ction of through

